
Finsler geometry generalizes Riemannian geometry in the same sense that
Banach spaces generalize Hilbert spaces. This book presents an expository
account of seven important topics in Riemann–Finsler geometry, which have
recently undergone significant development but have not had a detailed ped-
agogical treatment elsewhere. Each article will open the door to an active
area of research and is suitable for a special topics course in graduate-level
differential geometry.

Álvarez and Thompson discuss the theory of volumes for normed spaces and
Finsler spaces and show how it unifies a wide range of geometric inequalities.
Bellettini studies the evolution of crystals, where the driving agent is the mean
curvature of the facets. Aikou reviews the essential role played by Finsler
metrics in complex differential geometry. Chandler and Wong explain why
parametrized jet bundles admit only Finsler metrics and develop machinery
which they use to prove the Kobayashi conjecture (1960) and a special case of
the Green–Griffiths (1979) conjecture. Bao and Robles focus on the flag and
Ricci curvatures of Finsler manifolds, with an emphasis on Einstein metrics
of Randers type. Rademacher gives a detailed and new account of his Sphere
Theorem for nonreversible Finsler metrics. Shen’s article explains why Finsler
manifolds are colorful objects and examines the interplay among the flag, S-,
and Landsberg curvatures in Finsler geometry.
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Preface

This volume contains seven expository articles and concerns three facets of

Riemann–Finsler geometry that have undergone important recent developments:

1. The concept of volumes on normed spaces and Finsler manifolds, and crys-

talline motion by mean curvature in phase transitions.

2. The essential role played by Finsler metrics in complex manifold theory, to-

gether with the resolution of the Kobayashi conjecture and a special case of

the Green–Griffiths conjecture.

3. The significance of the flag, Ricci, and S-curvatures of Finsler metrics, as well

as the Sphere Theorem for nonreversible Finsler structures.

Conspicuously absent from the above are two highly geometrical areas: Bryant’s

use of exterior differential systems to understand Finsler metrics of constant flag

curvature, and Foulon’s dynamical systems approach to Finsler geometry. They

are not included here because reasonable expositions already exist in a special

Chern issue of the Houston Journal of Mathematics 28 (2002), 221–262 (Bryant)

and 263–292 (Foulon).

Our goal is to render the aforementioned developments accessible to the dif-

ferential geometry community at large. It is not our intention to present an

encyclopedic picture of the field. What we do covet are concrete examples, in-

structive graphics, meaningful computations, and care in organizing technical

arguments. The resulting articles appear to have met these criteria at an above-

average level.

All the articles have been refereed. In fact, a total of 26 referee reports

were obtained, some addressing the mathematics, others critiquing expository

matters. After a few rounds of revision, each article was line-edited by at least

one mathematician who is not familiar with the topic in question, in the hope

that this would uncover most typographical mistakes. It is certain that, in spite

of these attempts at quality control, layers of blemishes are still awaiting their

turn to surface. We urge readers to bring those mistakes to the attention of one

of us (Bao).

ix
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Synopses

1. Part One

• Álvarez–Thompson: This paper is a concise introduction to the theory of

volumes on normed and Finsler spaces. The definitions of Holmes–Thompson,

Busemann, and Benson–Gromov are studied and their convexity (ellipticity)

properties are discussed in detail. The authors show how the theory of volumes

provides a unified context for a diverse range of geometric inequalities. The

article is intended for students and researchers in differential, integral, and

convex geometry.

• Bellettini: Crystalline motion driven by the mean curvature is an evolution

process arising in material science and phase transitions. It is an anisotropic

flow in an ambient space endowed with a piecewise linear norm. For three-

dimensional crystals, the crystalline mean curvature of a facet is defined and

identified with the initial velocity in the evolution process. Facets with con-

stant crystalline mean curvature are important because they are expected not

to break or curve under the evolution. The problem of characterizing such

facets is discussed.

2. Part Two

• Aikou: This article highlights the essential role played by Finsler metrics in

complex differential geometry. It describes a few situations for which tech-

niques based solely on Hermitian metrics are hopelessly inadequate. These

include Kobayashi’s characterization of negative holomorphic vector bundles

over compact complex manifolds, in terms of the existence of negatively curved

pseudoconvex Finsler metrics.

• Chandler–Wong: The authors present the proof of the Kobayashi conjec-

ture (1960) on the hyperbolicity of generic algebraic surfaces of degree d > 5

in P3. They also address the Green–Griffiths conjecture (1979) that every

holomorphic map f : C → X to a surface X of general type is algebraically

degenerate. Their paper establishes the latter for the special case where X is

xi



xii SYNOPSES

minimal, Pic(X) ∼= Z, and pg(X) > 0. The main tool used is their generaliza-

tion of the classical Schwarz lemma for complex curves, to varieties of every

dimension. In this crucial step, algebraic geometric arguments are used to

construct a Finsler metric of logarithmic type, thereby reducing the problem

to one in which a certain estimate (the lemma of logarithmic derivatives) is

applicable.

3. Part Three

• Bao–Robles: Many recent developments have advanced our understanding

of the flag and Ricci curvatures of Finsler metrics. This paper is a uniform

presentation of these results and their underlying techniques. Included is a

geometric definition of Einstein–Finsler metrics. Einstein metrics of Randers

type are studied via their representation as solutions to Zermelo navigation

on Riemannian manifolds. This viewpoint leads to the classification of all

constant flag curvature Randers metrics. It also yields a Schur lemma, and

settles a question of rigidity in three dimensions, for Einstein–Randers metrics.

The theory is illustrated with a diverse array of explicit examples.

• Rademacher: The author shows in detail how the classical Sphere Theorem

in Riemannian geometry is extended to the case of nonreversible Finsler met-

rics. The proof hinges on a fruitful definition of the notion of reversibility,

and how that can be used to effect some crucial estimates, such as the injec-

tivity radius, the length of nonminimal geodesics between two fixed points,

and the length of nonconstant geodesic loops. The proof also capitalizes on

an idea of Klingenberg: that Morse theory of the energy functional allows us

to circumvent Toponogov’s comparison theorem for geodesic triangles. This

idea renders irrelevant the “handicap” that, in Finsler geometry proper, there

is no Toponogov’s theorem.

• Shen: This paper is about the interaction between the generalized Riemann

curvature and other non-Riemannian quantities in Finsler geometry. The lat-

ter include the S-curvature, whose vanishing is equivalent to having constant

“distortion” along each geodesic. The S-curvature quantifies some aspect

of the change in the Minkowski model (“infinitesimal color pattern”) as one

moves from one tangent space to another, along geodesics on a Finslerian

landscape. The information it provides is complementary to that supplied

by a certain contracted version of the Berwald curvature. These theoretical

constructs are exemplified by Finsler metrics with a broad array of special

curvature properties. The author also proves a number of local and global

theorems using certain curvature equations along geodesics.
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1. Introduction

The study of volumes and areas on normed and Finsler spaces is a relatively

new field that comprises and unifies large domains of convexity, geometric to-

mography, and integral geometry. It opens many classical unsolved problems in

these fields to powerful techniques in global differential geometry, and suggests

new challenging problems that are delightfully geometric and simple to state.

Keywords: Minkowski geometry, Hausdorff measure, Holmes–Thompson volume, Finsler man-
ifold, isoperimetric inequality.
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2 J. C. ÁLVAREZ PAIVA AND A. C. THOMPSON

The theory starts with a simple question: How does one measure volume

on a finite-dimensional normed space? At first sight, this question may seem

either unmotivated or trivial: normed spaces are metric spaces and we can mea-

sure volume using the Hausdorff measure, period. However, if one starts asking

simple, naive questions one discovers the depth of the problem. Even if one is

unwilling to consider that definitions of volume other than the Hausdorff mea-

sure are not only possible but may even be better, one is faced with questions

such as these: What is the (n−1)-dimensional Hausdorff measure of the unit

sphere of an n-dimensional normed space? Do flat regions minimize area? For

what normed spaces are metric balls also the solutions of the isoperimetric prob-

lem? These questions, first posed in convex-geometric language by Busemann

and Petty [1956], are still open, at least in their full generality. However, one

should not assume too quickly that the subject is impossible. Some beautiful

results and striking connections have been found. For example, the fact that the

(n−1)-Hausdorff measure in a normed space determines the norm is equivalent

to the fact that the areas of the central sections determine a convex body that

is symmetric with respect to the origin. This, in turn, follows from the study of

the spherical Radon transform. The fact that regions in hyperplanes are area-

minimizing is equivalent to the fact that the intersection body of a convex body

that is symmetric with respect to the origin is also convex.

But the true interest of the theory can only be appreciated if one is willing

to challenge Busemann’s dictum that the natural volume in a normed or Finsler

space is the Hausdorff measure. Indeed, thinking of a normed or Finsler space as

an anisotropic medium where the speed of a light ray depends on its direction,

we are led to consider a completely different notion of volume, which has become

known as the Holmes–Thompson volume. This notion of volume, introduced in

[Holmes and Thompson 1979], uncovers striking connections between integral

geometry, convexity, and Hamiltonian systems. For example, in a recent series

of papers, [Schneider and Wieacker 1997], [Alvarez and Fernandes 1998], [Alvarez

and Fernandes 1999], [Schneider 2001], and [Schneider 2002], it was shown that

the classical integral geometric formulas in Euclidean spaces can be extended to

normed and even to projective Finsler spaces (the solutions of Hilbert’s fourth

problem) if the areas of submanifolds are measured with the Holmes–Thompson

definition. That extensions of this kind are not possible with the Busemann

definition was shown by Schneider [Schneider 2001].

Using Finsler techniques, Burago and Ivanov [2001] have proved that a flat

two-dimensional disc in a finite-dimensional normed space minimizes area among

all other immersed discs with the same boundary. Ivanov [2001] has shown,

among other things, that Pu’s isosystolic inequality for Riemannian metrics in

the projective plane extends to Finsler metrics, and the Finslerian extension

of Berger’s infinitesimal isosystolic inequality for Riemannian metrics on real

projective spaces of arbitrary dimension has been proved by Álvarez [2002].
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Despite these and other recent interdisciplinary results, we believe that the

most surprising feature of the Holmes–Thompson definition is the way in which

it organizes a large portion of convexity into a coherent theory. For example,

the sharp upper bound for the volume of the unit ball of a normed space is

given by the Blaschke–Santaló inequality; the conjectured sharp lower bound is

Mahler’s conjecture; and the reconstruction of the norm from the area functional

is equivalent to the famous Minkowski’s problem of reconstructing a convex body

from the knowledge of its curvature as a function of its unit normals.

In this paper, we have attempted to provide students and researchers in Finsler

and global differential geometry with a clear and concise introduction to the

theory of volumes on normed and Finsler spaces. To do this, we have avoided

the temptation to use auxiliary Euclidean structures to describe the various

concepts and constructions. While these auxiliary structures may render some

of the proofs simpler, they hinder the understanding of the subject and make the

application of the ideas and techniques to Finsler spaces much more cumbersome.

We also believe that by presenting the results and techniques in intrinsic terms we

can make some of the beautiful results of convexity more accessible and enticing

to differential geometers.

In the course of our writing we had to make some tough choices as to what

material should be left out as either too advanced or too specialized. At the

end we decided that we would concentrate on the basic questions and techniques

of the theory, while doing our best to exhibit the general abstract framework

that makes the theory of volumes on normed spaces into a sort of Grand Unified

Theory for many problems in convexity and Finsler geometry. As a result there

is little Finsler geometry per se in the pages that follow. However, just as

tensors, forms, spinors, and Clifford algebras developed in invariant form have

immediate use in Riemannian geometry, the more geometric constructions with

norms, convex bodies, and k-volume densities that make up the heart of this

paper have immediate applications to Finsler geometry.

2. A Short Review of the Geometry of Normed Spaces

This section is a quick review of the geometry of finite-dimensional normed

spaces adapted to the needs and language of Finsler geometry. Unless stated

otherwise, all vector spaces in this article are real and finite-dimensional. We

suggest that the reader merely browse through this section and come back to it

if and when it becomes necessary.

Definition 2.1. A norm on a vector space X is a function

‖ · ‖ : X → [0,∞)

satisfying the following properties of positivity, homogeneity, and convexity:

(1) If ‖x‖ = 0, then x = 0;
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(2) If t is a real number, then ‖tx‖ = |t|‖x‖;

(3) For any two vectors x and y in X, ‖x + y‖ ≤ ‖x‖ + ‖y‖.

If (X, ‖ · ‖) is a finite-dimensional normed space, the set

BX := {x ∈ X : ‖x‖ ≤ 1}

is the unit ball of X and the boundary of BX , SX , is its unit sphere. Notice that

BX is a compact, convex set with nonempty interior. In short, it is a convex

body in X. Moreover, it is symmetric with respect to the origin. Conversely, if

B ⊂ X is a centered convex body (i.e., a convex body symmetric with respect to

the origin), it is the unit ball of the norm

‖x‖ := inf {t ≥ 0 : ty = x for some y ∈ B}.

We shall now describe various classes of normed spaces that will appear re-

peatedly throughout the paper.

Euclidean spaces. A Euclidean structure on a finite-dimensional vector space X

is a choice of a symmetric, positive-definite quadratic form Q : X → R. The

normed space (X,Q1/2) will be called a Euclidean space. Note that a normed

space is Euclidean if and only if its unit sphere is an ellipsoid, which is if and

only if the norm satisfies the parallelogram identity:

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2
.

Exercise 2.2. Let B ⊂ R
n be a convex body symmetric with respect to the

origin. Show that if the intersection of B with every 2-dimensional plane passing

through the origin is an ellipse, then B is an ellipsoid.

The `p spaces. If p ≥ 1 is a real number, the function

‖x‖p :=
(

|x1|
p + · · · + |xn|

p
)1/p

is a norm on R
n. When p tends to infinity, ‖x‖p converges to

‖x‖∞ := max{|x1|, . . . , |xn|}.

The normed space (Rn
, ‖ · ‖

p
), 1 ≤ p ≤ ∞, is denoted by `

n

p
.

The unit ball of `
n

∞ is the n-dimensional cube of side length two, while the

unit ball of `
n

1
is the n-dimensional cross-polytope. In general, norms whose unit

balls are polytopes are called crystalline norms.

Subspaces of L1([0, 1], dx). The space of measurable functions f : [0, 1] → R

satisfying

‖f‖ :=

∫

1

0

|f(x)| dx < ∞

is a normed space denoted by L1([0, 1], dx). The geometry of finite-dimensional

subspaces of L1([0, 1], dx) is closely related to problems of volume, area, and

integral geometry on normed and Finsler spaces. In the next few paragraphs,
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we will summarize the properties of these subspaces that will be used in the

rest of the paper. For proofs, references, and to learn more about hypermetric

spaces, we recommend the landmark paper [Bolker 1969], as well as the surveys

[Schneider and Weil 1983] and [Goodey and Weil 1993].

First we begin with a beautiful metric characterization of the subspaces of

L1([0, 1], dx).

Definition 2.3. A metric space (M,d) is said to be hypermetric if it satisfies the

following stronger version of the triangle inequality: If m1, . . . ,mk are elements

of M and b1, . . . , bk are integers with
∑

i
bi = 1, then

k
∑

i,j=1

d(mi,mj)bibj ≤ 0.

Theorem 2.4. A finite-dimensional normed space is hypermetric if and only if

it is isometric to a subspace of L1([0, 1], dx).

An important analytic characterization of a hypermetric normed space can be

given through the Fourier transform of its norm:

Theorem 2.5. A norm on R
n is hypermetric if and only if its distributional

Fourier transform is a nonnegative measure.

The characterizations above, important as they are, are hard to grasp at first

sight. A much more visual approach will be given after we review the duality of

normed spaces.

Minkowski spaces. Minkowski spaces are normed spaces with strict smoothness

and convexity properties. In precise terms, a norm ‖ · ‖ on a vector space X is

said to be a Minkowski norm if it is smooth outside the origin and the Hessian

of the function ‖ · ‖
2

at every nonzero point is a positive-definite quadratic form.

The unit sphere of a Minkowski space X is a smooth convex hypersurface SX

such that for any Euclidean structure on X the principal curvatures of SX are

positive.

2.1. Maps between normed spaces. An important feature of the geometry

of normed spaces is that the space of linear maps between two normed spaces

carries a natural norm.

Definition 2.6. If T : X → Y is a linear map between normed spaces

(X, ‖ · ‖
X

) and (Y, ‖ · ‖
Y

), we define the norm of T as the supremum of ‖Tx‖Y

taken over all vectors x ∈ X with ‖x‖X ≤ 1.

A linear map T : X → Y is said to be short if its norm is less than or equal to one.

In other words, a short linear map does not increase distances. Two important

types of short linear maps between normed spaces are isometric embeddings and

isometric submersions:
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Definition 2.7. An injective linear map T : X → Y between normed spaces

(X, ‖ · ‖
X

) and (Y, ‖ · ‖
Y

) is said to be an isometric embedding if ‖Tx‖Y = ‖x‖X

for all vectors x ∈ X.

Definition 2.8. A surjective linear map T : X → Y between normed spaces

(X, ‖ · ‖
X

) and (Y, ‖ · ‖
Y

) is said to be an isometric submersion if

‖Tx‖Y = inf {‖v‖X : v ∈ X and Tv = Tx}

for all vectors x ∈ X.

In terms of the unit balls, T : X → Y is an isometric embedding if and only if

T (BX) = T (X) ∩BY , and T is an isometric submersion if and only if T (BX) =

BY .

2.2. Dual spaces and polar bodies. From the previous paragraph, we see

that if (X, ‖ · ‖) is a normed space, then the set of all linear maps onto the one-

dimensional normed space (R, | · |) carries a natural norm. The resulting normed

space is called the dual of (X, ‖ · ‖) and is denoted by (X∗
, ‖ · ‖

∗
). It is easy

to see that the double dual (i.e., the dual of the dual) of a finite-dimensional

normed space can be naturally identified with the space itself. The unit ball of

(X∗
, ‖ · ‖

∗
) is said to be the polar of the unit ball of (X, ‖ · ‖).

Example. Hölder’s inequality implies that if p > 1, the dual of `
n

p
is `

n

q
, where

1/p + 1/q = 1. Likewise, it is easy to see that the dual of `
n

1
is `

n

∞.

If T : X 7→ Y is a linear map then the dual map T
∗ : Y

∗
7→ X

∗ is defined by

(T ∗ξ)(x) = ξ(Tx).

Note that ‖T
∗
‖ = ‖T‖.

Exercise 2.9. Show that if T : X → Y is an isometric embedding between

normed spaces X and Y , the dual map T
∗ : Y

∗
→ X

∗ is an isometric submersion.

Many of the geometric constructions in convex geometry and the geometry of

normed spaces are functorial. More precisely, if we denote by N the category

whose objects are finite-dimensional normed spaces and whose morphisms are

short linear maps, many classical constructions define functors from N to itself.

Exercise 2.10. Show that the assignment (X, ‖ · ‖) 7→ (X∗
, ‖ · ‖

∗
) is a con-

travariant functor from N to N.

Duals of hypermetric normed spaces. As advertised earlier in this section, the no-

tion of duality allows us to give a more geometric characterization of hypermetric

spaces.

Definition 2.11. A polytope in a vector space X is said to be a zonotope if all

of its faces are symmetric. A convex body is said to be a zonoid if it is the limit

(in the Hausdorff topology) of zonotopes.
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Notice that an n-dimensional cube, as well as all its linear projections, are zono-

topes. In fact, it can be shown that any zonotope is the linear projection of a

cube (see, for example, Theorem 3.3 in [Bolker 1969]).

Theorem 2.12. Let X be a finite-dimensional normed space with unit ball BX .

The dual of X is hypermetric if and only if BX is a zonoid .

Notice that this immediately implies that the space `
n

1
, n ≥ 1, is hypermetric.

Duality in Minkowski spaces. If (X, ‖ · ‖) is a Minkowski space, the differential

of the function L := ‖ · ‖
2
/2,

dL(x)(y) :=
1

2

d

dt
‖x + ty‖2

t=0
,

is a continuous linear map from X to X∗ that is smooth outside the origin and

homogeneous of degree one. This map is usually called the Legendre transform,

although that term is also used to describe some related concepts (see, for ex-

ample, § 2.2 in [Hörmander 1994]). The following exercise describes the most

important properties of the Legendre transform.

Exercise 2.13. Let (X, ‖ · ‖) be a Minkowski space and let

L : X \ 0 → X
∗
\ 0

be its Legendre transform.

(1) Show that if x ∈ X is a unit vector, then L(x) is the unique covector ξ ∈ X
∗

such that the equation ξ ·y = 1 describes the tangent plane to the unit sphere

SX at the point x.

(2) Show that the Legendre transform defines a diffeomorphism between the

unit sphere and its polar.

(3) Show that the inverse of the Legendre transform from X \0 to X
∗
\0 is just

the Legendre transform from X
∗
\ 0 to X \ 0.

(4) Show that the Legendre transform is linear if and only if X is a Euclidean

space.

Exercise 2.14. Show that a normed space is a Minkowski space if its unit

sphere and the unit sphere of its dual are smooth.

2.3. Sociology of normed spaces. If ‖ · ‖
1

and ‖ · ‖
2

are two norms on a

finite-dimensional vector space X, it is easy to see that there are positive numbers

m and M such that

m‖ · ‖
2
≤ ‖ · ‖

1
≤ M‖ · ‖

2
.

If we take the numbers m and M such that the inequalities are sharp, then

log(M/m) is a good measure of how far away one norm is from the other.

For example, the following well-known result states that we can always ap-

proximate a norm by one whose unit sphere is a polytope or by one such that

its unit sphere and the unit sphere of its dual are smooth.
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Proposition 2.15. Let ‖ · ‖ be a norm on the finite-dimensional vector space

X. Given ε > 0, there exist a crystalline norm ‖ · ‖
1

and a Minkowski norm

‖ · ‖
2

on X such that

‖ · ‖
1
≤ ‖ · ‖ ≤ (1 + ε)‖ · ‖

1
,

‖ · ‖
2
≤ ‖ · ‖ ≤ (1 + ε)‖ · ‖

2
.

For a short proof see Lemma 2.3.2 in [Hörmander 1994] .

In many circumstances, one wants to measure how far is one normed space

from being isometric to another. The straightforward adaptation of the previous

idea leads us to the following notion:

Definition 2.16. The Banach–Mazur distance between n-dimensional normed

spaces X and Y , is the infimum of the numbers log(‖T‖‖T
−1

‖), where T ranges

over all invertible linear maps from X to Y .

Notice that the Banach–Mazur distance is a distance on the set of isometry

classes of n-dimensional normed spaces: two such spaces are at distance zero if

and only if they are isometric.

An important question is to determine how far a general n-dimensional normed

space is from being Euclidean. The answer rests on two results of independent

interest:

Theorem 2.17 (Loewner). If B is a convex body in an n-dimensional vector

space X, there exists a unique n-dimensional ellipsoid E ⊂ B such that for any

Lebesgue measure on X, the ratio vol(B)/vol(E) is minimal .

Theorem 2.18 [John 1948]. Let X be an n-dimensional normed space with unit

ball B. If E ⊂ B is the Loewner ellipsoid of B, then

E ⊂ B ⊂

√

nE.

Exercise 2.19. Show that the Banach–Mazur distance from an n-dimensional

normed space to a Euclidean space is at most log(n)/2.

The structure of the set of isometry classes of n-dimensional normed spaces is

given by the following theorem (see [Thompson 1996, page 73] for references and

some of the history on the subject):

Theorem 2.20. The set of isometry classes of n-dimensional normed spaces,

Mn, provided with the Banach–Mazur distance is a compact , connected metric

space.

The Banach–Mazur compactum, Mn, enters naturally into Finsler geometry by

the following construction: Let π : ζ → M be a vector bundle with n-dimensional

fibers such that every fiber ζm = π
−1(m) carries a norm that varies continuously

with the base point (a Finsler bundle). The (continuous) map

I : M −→ Mn
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that assigns to each point m ∈ M the isometry class of ζm measures how the

norms vary from point to point.

Currently, there are not many results that describe the map I under different

geometric and/or topological hypotheses on the bundle. However the following

exercise (and its extension in [Gromov 1967]) shows that such results are possible.

Exercise 2.21. Let π : ζ → S
2 be a Finsler bundle whose fibers are 2-

dimensional. Show that if the bundle is nontrivial and the map I is constant,

then the image of S2 under I is the isometry class of 2-dimensional Euclidean

spaces.

A corollary of this exercise is that if X is a three-dimensional normed space

such that all its two-dimensional subspaces are isometric, then X is Euclidean.

Another interesting corollary is that a Berwald (Finsler) metric on S
2 must be

Riemannian.

3. Volumes on Normed Spaces

In defining the notion of volume on normed spaces, it is best to adopt an

axiomatic approach. We shall impose some minimal set of conditions that are

reasonable and then try to find out to what extent they can be satisfied, and to

what point they determine our choices.

In a normed space, all translations are isometries. This suggests that we

require the volume of a set to be invariant under translations. Since any finite-

dimensional normed space is a locally compact, commutative group, we can apply

the following theorem of Haar:

Theorem 3.1. If µ is a translation-invariant measure on R
n for which all

compact sets have finite measure and all open sets have positive measure, then

µ is a constant multiple of the Lebesgue measure.

Proofs of this theorem can be found in many places. A full account is given in

[Cohn 1980] and an abbreviated version in [Thompson 1996].

In the light of Haar’s theorem, in order to give a definition of volume in

every normed space, we must assign to every normed space X a multiple of the

Lebesgue measure. Since the Lebesgue measure is not intrinsically defined (it

depends on a choice of basis for X), it is best to describe this assignment as

a choice of a norm µ in the 1-dimensional vector space Λn
X, where n is the

dimension of X; if x1, . . . ,xn ∈ X, we define µ(x1 ∧x2 ∧ · · ·∧xn) as the volume

of the parallelotope formed by these vectors.

Another natural requirement is monotonicity: if X and Y are n-dimensional

normed spaces and T : X → Y is a short linear map (i.e., a linear map that does

not increase distances), we require that T does not increase volumes. Notice

that this implies that isometries between normed spaces are volume-preserving.
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The monotonicity requirement makes a definition of volume on normed spaces

into a functor from N to itself that takes the n-dimensional normed space

(X, ‖ · ‖) to the 1-dimensional normed space (ΛnX,µ). While we shall often

abandon this viewpoint, it is a guiding principle throughout the paper with

which we would like to acquaint the reader early on.

Definition 3.2. A definition of volume on normed spaces assigns to every

n-dimensional, n ≥ 1, normed space X a normed space (Λn
X,µX) with the

following properties:

(1) If X and Y are n-dimensional normed spaces and T : X → Y is a short

linear map , then the induced linear map T∗ : Λn
X → Λn

Y is also short.

(2) The map X 7→ (Λn
X,µX) is continuous with respect to the topology induced

by the Banach–Mazur distance.

(3) If X is Euclidean, then µX is the standard Euclidean volume on X.

Before presenting the principal definitions of volume in normed spaces, let us

make the first link between these concepts and the affine geometry of convex

bodies.

Exercise 3.3. Assume we have a definition of volume in normed spaces and

use it to assign a number to any centrally symmetric convex body B ⊂ R
n by

the following procedure: Consider R
n as the normed space X whose unit ball is

B and compute

V(B) := µX(B) =

∫

B

µX .

Show that if T : R
n
→ R

n is an invertible linear map, then V(B) = V(T (B)),

and write the monotonicity condition in terms of the affine invariant V.

Notice that we can turn the tables and start by considering a suitable affine

invariant V of centered convex bodies and give a definition of volume in normed

spaces by prescribing that the volume of the unit ball B of a normed space X

be given by V(B).

Exercise 3.4. Let µ be a definition of volume for 2-dimensional normed spaces.

Use John’s theorem to show that if B is the unit disc of a two-dimensional normed

space X, then π/2 ≤ µX(B) ≤ 2π.

3.1. Examples of definitions of volume in normed spaces. The study

of the four definitions of volume we shall describe below makes up the most

important part of the theory of volumes on normed and Finsler spaces.

The Busemann definition. The Busemann volume of an n-dimensional normed

space is that multiple of the Lebesgue measure for which the volume of the unit

ball equals the volume of the Euclidean unit ball in dimension n, εn, . In other

words, we have chosen as our affine invariant the constant εn, where n is the

dimension of the space.
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Another way to define the Busemann volume of a normed space X is by setting

µ
b(x1 ∧ x2 ∧ · · · ∧ xn) =

εn

vol(B; x1 ∧ x2 ∧ · · · ∧ xn)
,

where the notation vol(B; x1 ∧ x2 ∧ · · · ∧ xn) indicates the volume of B in the

Lebesgue measure determined by the basis x1, . . . ,xn.

Using Brunn–Minkowski theory, Busemann showed in [1947] that the Buse-

mann volume of an n-dimensional normed space equals its n-dimensional Haus-

dorff measure. Hence, from the viewpoint of metric geometry, this is a very

natural definition.

Exercise 3.5. Show that the Busemann definition of volume satisfies the axioms

in Definition 3.2.

The Holmes–Thompson definition. Let X be an n-dimensional normed space and

let B
∗
⊂ X

∗ be the dual unit ball. If x1, . . . ,xn is a basis of X and ξ
1
, . . . , ξ

n

is its dual basis, define

µ
ht(x1 ∧ x2 ∧ · · · ∧ xn) := ε

−1

n
vol(B∗; ξ

1
∧ ξ

2
∧ · · · ∧ ξ

n
).

Another way of defining the Holmes–Thompson volume is by considering the

set B×B
∗ in the product space X ×X

∗. Since X×X
∗ has a natural symplectic

structure defined by

ω((x1, ξ1
), (x2, ξ2

)) := ξ
2
(x1) − ξ

1
(x2),

it has a canonical volume (the symplectic or Liouville volume) defined by the

n-th exterior power ωn of ω, divided by n!. The Holmes–Thompson volume of

the n-dimensional normed space X is the multiple of the Lebesgue measure for

which the volume of the unit ball equals the Liouville volume of B ×B∗ divided

by the volume of the Euclidean unit ball of dimension n. We mention in passing

that in convex geometry it is usual to denote the Liouville volume of B ×B
∗ as

the volume product of B, vp(B).

The Holmes–Thompson definition — introduced in [Holmes and Thompson

1979] — was originally motivated by purely geometric considerations. However,

from the physical point of view it is the natural definition of volume if we think

of normed spaces as homogeneous, anisotropic media: media in which the speed

of light varies with the direction of the light ray, but not with the point at which

the propagation of light originates.

It is interesting to remark that the Busemann definition and the Holmes–

Thompson definition are dual functors: to obtain the Holmes–Thompson volume

of an n-dimensional normed space X we pass to the dual normed space X
∗, we

apply the “Busemann functor” to obtain (Λn
X

∗
, µ

b

X∗) and then pass to the dual

of the normed space (Λn
X

∗
, µ

b

X∗).

Exercise 3.6. Consider a definition of volume (X, ‖ · ‖) 7→ (Λn
X,µX), where

n is the dimension of X, and define its dual definition by the map (X, ‖ · ‖) 7→
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(ΛnX,µ∗
X

) := (ΛnX∗, µX∗)∗. Show that µ∗ also satisfies the axioms in Defini-

tion 3.2.

The notion of duality is somewhat mysterious and is closely related to the duality

between intersections and projections proposed in [Lutwak 1988], and which led

to the development of the dual Brunn–Minkowski theory. We shall have a little

more to say about this duality after presenting a second dual pair of volume

definitions.

Gromov’s mass. If X is an n-dimensional normed space, define µm : ΛnX →

[0,∞) by the formula

µ
m(a) := inf

{

n
∏

i=1

‖xi‖ : x1 ∧ x2 ∧ · · · ∧ xn = a

}

.

Another way to define the mass of an n-dimensional normed space X is as the

multiple of the Lebesgue measure for which the volume of the maximal cross-

polytope inscribed to the unit ball is 2n
/n!.

Exercise 3.7. Consider the 2-dimensional normed space whose unit disc D is

a regular hexagon. What is µ
m(D)?

The Benson definition or Gromov’s mass∗. One way to make the Benson defi-

nition is as the dual of mass: given an n-dimensional normed space X together

with a basis x1, . . . ,xn, we take the dual basis ξ
1
, . . . , ξ

n
in X∗ and define

µ
m∗
X

(x1 ∧ x2 ∧ · · · ∧ xn) :=
1

µm

X∗(ξ
1
∧ ξ

2
∧ · · · ∧ ξ

n
)
.

This is Gromov’s definition [1983]. Benson [1962] originally defined the mass∗

of an n-dimensional normed space as the multiple of the Lebesgue measure for

which the volume of a minimal parallelotope circumscribed to the unit ball is

2n.

Exercise 3.8. Consider the 2-dimensional normed space whose unit disc D is

a regular hexagon. What is µ
m∗(D)?

The following exercise gives a third characterization of mass∗.

Exercise 3.9. Let X be an n-dimensional normed space and let B be its unit

ball. A basis ξ
1
, . . . , ξ

n
of X∗ is said to be short if |ξ

i
(x)| ≤ 1 for all x ∈ B

and all i, 1 ≤ i ≤ n (i.e., if all the vectors in the basis are in the dual unit ball).

Show that for any n-vector a ∈ ΛnX

µ
m∗(a) = sup{|ξ

1
∧ ξ

2
∧ · · · ∧ ξ

n
(a)| : ξ

1
, . . . , ξ

n
is a short basis of X

∗
}

It is not hard to come up with other definitions of volume. For example, instead

of considering inscribed cross-polytopes and circumscribed parallelotopes one

might consider maximal inscribed or minimal circumscribed ellipsoids (as in

Loewner’s theorem cited above) and then specify the volume of either to be
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εn. However, as we shall see in the next two sections, a good definition of

volume must satisfy some additional conditions that are very hard to verify.

The examples given above are important mainly because their study provides a

common context to many problems in convex, integral, and differential geometry.

3.2. The volume of the unit ball. If we are given a definition of volume

and a normed space, we would like to compute the volume of the unit ball.

This is, of course, trivial if we work with the Busemann definition, but for the

other definitions it is a challenging problem. Let us start with some simple

experiments.

Example 3.10. In the table below we use 7 different norms in R
3 whose unit

balls are, in order, the Euclidean unit ball; the cube with vertices at (±1,±1,±1);

the octahedron with vertices at ±(1, 0, 0), ±(0, 1, 0), ±(0, 0, 1); the right cylinder

over the unit circle in the xy-plane and with −1 ≤ z ≤ 1; its dual, the double

cone which is the convex hull of the unit circle in the xy-plane and the points

±(0, 0, 1); the affine image of the cuboctahedron that has vertices at ±(1, 0, 0),

±(0, 1, 0), ±(0, 0, 1), ±(1,−1, 0), ±(1, 0,−1), ±(0, 1,−1); and its dual, the affine

image of the rhombic dodecahedron, that has vertices at ±(1, 1, 1), ±(0, 1, 1),

±(1, 0, 1), ±(1, 1, 0), ±(0, 0, 1), ±(0, 1, 0), ±(1, 0, 0). These are listed in the first

column. In the subsequent columns are the volumes of each unit ball using the

different definitions of volume.

The ball B µ
b(B) µ

ht(B) µ
m∗(B) µ

m(B)

ball 4π/3 4π/3 4π/3 4π/3

cube 4π/3 8/π 8 2

octahedron 4π/3 8/π 16/3 4/3

cylinder 4π/3 π 2π π

double cone 4π/3 π 4π/3 2π/3

cuboctahedron 4π/3 10/π 20/3 10/3

rhombic dodecahedron 4π/3 10/π 4 2

Exercise 3.11. Verify these numbers.

Given a definition of volume, an interesting problem is to determine sharp up-

per and lower bounds for the volume of the unit balls of n-dimensional normed

spaces. In the case of the Holmes–Thompson definition, this question has a clas-

sical reformulation: give sharp upper and lower bounds for the volume product

of an n-dimensional centrally-symmetric convex body.

Theorem 3.12 (Blaschke–Santaló inequality). The Holmes–Thompson

volume of the unit ball of an n-dimensional normed space is less than or equal to

the volume of the Euclidean unit ball of dimension n. Moreover , equality holds

if and only if the space is Euclidean.

The sharp lower bound for the Holmes–Thompson volume of unit balls is a

reformulation of a long-standing conjecture of Mahler [1939]:
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Conjecture. The Holmes–Thompson volume of the unit ball of an n-dimen-

sional normed space is greater than or equal to 4n
/εnn!. Moreover , equality holds

if and only if the unit ball is a parallelotope or a cross-polytope.

This conjecture has been verified by Mahler [1939] in the two-dimensional case

and by Reisner [1985, 1986] in the case when either the normed space or its dual

is hypermetric.

For µ
m∗(B) the upper bound of 2n is attained for a parallelotope and for

µ
m(B) the equivalent lower bound of 2n

/n! is attained by a cross-polytope. One

also has µ
m∗(B) ≥ 2n

/n! and µ
m(B) ≤ 2n but these are far from optimal; better

bounds will be obtained after studying the relationship between the different

definitions of volume.

3.3. Relationship between the definitions of volume. There are several

relationships between the various measures we are considering. For example, the

Blaschke–Santaló inequality is clearly equivalent to the following theorem:

Theorem 3.13. If X is an n-dimensional normed space, then µ
ht

X
≤ µ

b

X
with

equality if and only if X is Euclidean.

For mass and mass∗ we have the following inequality:

Proposition 3.14. If X is an n-dimensional normed space, then µ
m

X
≤ µ

m∗
X

.

Proof. Let P be a minimal circumscribed parallelotope to the unit ball B.

Then (see for example [Thompson 1999], but there are many other possible

references) the midpoint of each facet of P is a point of contact with B. The

convex hull of these midpoints is a cross-polytope C inscribed to B. Also, if

P is given the volume 2n, then C has volume 2n
/n!. Hence, in this situation,

a maximal inscribed cross-polytope will have volume greater than or equal to

2n
/n!. �

Theorem 3.15. If X is an n-dimensional normed space, then µ
m

X
≤ µ

b

X
with

equality if and only if X is Euclidean.

The proof depends on the following theorem of McKinney [1974]:

Theorem 3.16. Let K ⊂ X be a convex set symmetric about the origin and let

S be a maximal simplex contained in K with one vertex at the origin, then for

any Lebesgue measure λ

λ(S)/λ(K) ≥ 1/n!εn

with equality if and only if K is an ellipsoid .

Proof of Theorem 3.15. If B is the unit ball of X then µb(B) = εn and

µ
m(B) = 2n

λ(B)/n!λ(C) where C is a maximal cross-polytope inscribed to

B. Moreover, C is the convex hull of S ∪ −S, where S is a maximal simplex

inscribed to B with one vertex at the origin. It follows from the theorem that

λ(C)/λ(B) ≥ 2n
/n!εn which, upon rearrangement, gives µ

b(B) ≥ µ
m(B). �
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The relationship between mass∗ and the Holmes–Thompson volume follows from

Theorem 3.15 and the following simple exercise:

Exercise 3.17. Let µ and ν be two definitions of volume, and let µ
∗ and ν

∗ be

their dual definitions. Show that if for every normed space X

µX ≤ νX , then ν
∗
X

≤ µ
∗
X

.

Corollary 3.18. If X is an n-dimensional normed space, then µ
ht

X
≤ µ

m∗
X

with

equality if and only if X is Euclidean.

The previous inequalities are summarized by the diagram

µ
b

µ
ht

µ
m∗

µ
m

? ?

@
@

@
@

@
@R

�
�

�
�

�
�	

Notice that as a consequence of the Mahler–Reisner inequality we have the fol-

lowing lower bounds for the mass and mass∗ of unit balls in normed spaces and

their duals.

Corollary 3.19. For any unit ball B, we have µm(B) ≤ εn and , if B is either

a zonoid or the dual of a zonoid , µ
m∗(B) ≥ 4n

/n!εn.

Problem. Is the mass∗ of the unit ball of an n-dimensional normed space at

least 4n/n!εn? This is a weaker version of Mahler’s conjecture.

3.4. Extension to Finsler manifolds

Definition 3.20. A volume density on ann-dimensional manifold M is a con-

tinuous function

Φ : Λn
TM −→ R

such that for every point m ∈ M the restriction of Φ to ΛnTmM is a norm. A

volume density is said to be smooth if the function Φ is smooth outside the zero

section.

If M is an oriented manifold and Φ is a volume density on M , then we can define

a volume form Ω on M whose value at a basis x1, . . . ,xn of TmM is Φ(m; x1 ∧

x2 ∧ · · · ∧xn) if the basis is positively oriented and −Φ(m; x1 ∧x2 ∧ · · · ∧xn) if

it is negatively oriented. For any positively oriented n-dimensional submanifold

U ⊂ M we have that
∫

U

Φ =

∫

U

Ω.

However, the integral of a volume density does not depend on the orientation and

volume densities can be defined in nonorientable manifolds like the projective

plane where no volume form exists.
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Definition 3.21. A continuous Finsler metric F on a manifold M assigns a

norm, F (m, ·), to each tangent space TmM in such a way that the norm varies

continuously with the base point. A continuous Finsler manifold is a pair (M,F ),

where M is a manifold and F is a continuous Finsler metric on M .

An important class of examples of Finsler manifolds are finite-dimensional sub-

manifolds of normed spaces. If M is a submanifold of a finite-dimensional normed

space X, at each point m ∈ M the tangent space TmM can be thought of as a

subspace of X and, as such, it inherits a norm.

If γ : [a, b] → M is a differentiable curve on a continuous Finsler manifold

(M,F ), we define

length(γ) :=

∫

b

a

F (γ(t), γ̇(t)) dt.

This definition can be extended in the obvious way to piecewise-differentiable

curves. If x and y are two points in M , we define the distance between x and y

as the infimum of the lengths of all piecewise-differentiable curves that join them.

Thus, continuous Finsler manifolds are metric spaces and metric techniques can

be used to study them.

Each definition of volume on normed spaces gives a definition of volume on

continuous Finsler manifolds: if we are given a volume definition µ and an n-

dimensional continuous Finsler manifold (M,F ), then the map that assigns to

every point m the norm µTmM on Λn
TmM is a volume density on M . Notice

that, in particular, a definition of volume on normed spaces immediately yields

a way to measure the volumes of submanifolds of a normed space X because, as

remarked above, the tangent space TmM of such a submanifold can be regarded

as a subspace of X and so inherits both a norm and a volume. This will be

studied from an extrinsic viewpoint and in much more detail in the next section.

Exercise 3.22. Show that if a definition of volume on normed spaces is used

to define a volume on Finsler manifolds, it satisfies the following two properties:

(1) If the Finsler manifold is Riemannian, its volume is the standard Riemannian

volume;

(2) If ϕ : M → N is a short map (i.e., does not increase distances) between two

Finsler manifolds of the same dimension, then ϕ does not increase volumes.

Extending our four volume definitions from normed spaces to continuous Finsler

manifolds, we may speak of the Busemann, Holmes–Thompson, mass, and mass∗

definition of volumes on continuous Finsler manifolds. To end the section we re-

late the Busemann and Holmes–Thompson definitions with well-known geometric

constructions.

As was previously remarked, Finsler manifolds are metric spaces and, as

such, we can define their volume as their Hausdorff measure: if (M,F ) is an

n-dimensional Finsler manifold and r > 0, we cover M by a family of metric

balls of radius at most r, B(m1, r1), B(m2, r2), . . ., and consider the quantity
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εn(rn

1
+ rn

2
+ · · ·). We now take the infimum of this quantity over all possible

covering families and take the limit as r tends to zero. The resulting number is

the n-dimensional Hausdorff measure of (M,F ).

Theorem 3.23 [Busemann 1947]. The Busemann volume of a continuous Finsler

manifold is equal to its Hausdorff measure.

To explain the second construction, we need to recall some standard facts about

the geometry of cotangent bundles.

If π : T
∗
M → M is the canonical projection, we define the canonical 1-form

α on T
∗
M by the formula

α(vp) := p(π∗(vp)).

In standard coordinates (x1, . . . , xn, p1, . . . , pn), α :=
∑

n

i=1
pidqi. The canonical

symplectic form on T
∗
M is defined as ω := −dα and the Liouville volume is

defined by Ω := ωn/n!.

If (M,F ) is a continuous Finsler manifold, each tangent space TmM carries

the norm F (m, ·) and, hence, each cotangent space T
∗
m

M carries the dual norm

F
∗(m, ·). Let us denote the unit ball in T

∗
m

M by B
∗
m

and define the unit co-disc

bundle of M as the set

B
∗(M) :=

⋃

m∈M

B
∗
m

⊂ T
∗
M.

Proposition 3.24. The Holmes–Thompson volume of an n-dimensional , con-

tinuous Finsler manifold is equal to the Liouville volume of its unit co-disc bundle

divided by the volume of the n-dimensional Euclidean unit ball .

Proof. It suffices to verify the result on normed spaces where it easily follows

from the definitions. �

Theorem 3.25 [Duran 1998]. If M is a Finsler manifold , then the Holmes–

Thompson volume of M is less than or equal to its Hausdorff measure with

equality if and only if M is Riemannian.

Proof. By the Blaschke–Santaló inequality, at each point m ∈ M we have that

µ
ht

TmM
≤ µ

b

TmM
with equality if and only if TmM is Euclidean. The result now

follows immediately from Theorems 3.23 and 3.24 . �

4. k-Volume Densities

The theory of volumes and areas on Euclidean and Riemannian spaces is

based on the fact that a Euclidean structure on a vector space induces natural

Euclidean structures on its exterior powers: if x1, . . . ,xn is an orthonormal basis

of a Euclidean space X, then the vectors

xi1
∧ xi2

∧ · · · ∧ xik
, 1 ≤ i1 < i2 < · · · < ik ≤ n,
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form an orthonormal basis of ΛkX. If we want to know the area of the parallel-

ogram formed by the vectors x and y, we need to compute the norm of x∧ y in

Λ2X. In normed and Finsler spaces these simple algebraic constructions, which

should be seen as functors from the category of Euclidean spaces onto itself, can-

not be reproduced and we need to understand their geometry to see how they

may be naturally extended to these spaces.

The first important remark is that in order to compute k-dimensional volumes

(k-volumes from now on), we do not need to define a norm on all of Λk
X. It

suffices to define the magnitude of vectors of the form v1 ∧ v2 ∧ · · · ∧ vk, where

v1, . . . ,vk are vectors in X. In this paper we shall refer to these k-vectors as

simple and denote the set of all simple k-vectors in X by Λk

s
X. Note that for

k = 1, n− 1 every k-vector is simple, which makes the study of (n−1)-volume in

n-dimensional normed spaces a richer and more approachable subject than the

study of volumes in higher codimension. Indeed, when k 6= 1, n − 1, Λk

s
X is not

a vector subspace of Λk
X, but just an algebraic cone.

Exercise 4.1. Let Q : Λ2
R

4
→ Λ4

R
4 be the quadratic form defined by Q(a) =

a ∧ a. Show that Λ2

s
R

4 is the quadric Q = 0 and use this to prove that the

intersection of Λ2

s
R

4 with the (Euclidean) unit sphere in Λ2
R

4 is a product of

two 2-dimensional spheres.

In general, the intersection of Λk

s
R

n with the Euclidean unit sphere in ΛkR
n is

the Plücker embedding of the Grassmannian of oriented k-planes in R
n, G

+

k
(Rn).

Let us recall that this Grassmannian is a smooth manifold of dimension k(n−k).

Following our first remark, we see that in order to compute k-volumes in a

normed space X, we need to define a “norm” on the cone of simple k-vectors

of X. The fact that Λk

s
X is not a vector space complicates matters since it is

not clear how to write the triangle inequality, and, even if an apparent analogue

could be found, it would have to be justified in terms of its geometric significance.

Nevertheless, the homogeneity and positivity of a norm are easy to generalize:

Definition 4.2. A k-density on a vector space X is a continuous function

φ : Λk

s
X −→ R

that is homogeneous of degree one (i.e., φ(λa) = |λ|φ(a)). A k-density φ is said

to be a k-volume density if φ(a) ≥ 0 with equality if and only if a = 0.

4.1. Examples of k-volume densities. In the previous chapter we studied

four natural volume definitions on normed spaces. Each one of these definitions

yields natural constructions of k-volume densities on the spaces of simple k-

vectors of a normed space X.

Given a volume definition µ and a k-vector a in a k-dimensional normed space

Y , we can compute µ(a). To be perfectly rigorous, we should include the normed

space as a variable in µ, for example, by writing µY (a). If a is a simple k-vector

in an n-dimensional normed space X, then we may consider it as a k-vector on
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the k-dimensional normed space “spanned by a”,

〈a〉 := {x ∈ X : a ∧ x = 0} ⊂ X,

(provided with the induced norm), and compute µ〈a〉(a). Thus, once we have

chosen a way to define volume in all finite-dimensional normed spaces, we have

a way to associate to each norm on an n-dimensional vector space X a family of

k-volume densities, with 1 ≤ k ≤ n.

The Busemann k-volume densities. Let X be a normed space of dimension n

with unit ball B, and let k be a positive integer less than n. The Busemann

k-volume density on X is defined by the formula

µ
b(a) :=

εk

vol(B ∩ 〈a〉; a)
.

The Holmes–Thompson k-volume densities. Let X be a normed space of dimen-

sion n, and let k be a positive integer less than n. If a is a simple k-vector

spanning the k-dimensional subspace 〈a〉, we consider the inclusion of 〈a〉 into

X and the dual projection π : X∗
→ 〈a〉

∗
. Regarding a as a volume form on

〈a〉
∗

we define

µ
ht(a) := ε

−1

k

∫

π(B∗

X
)

|a|.

The mass k-volume densities. Let (X, ‖ · ‖) be a normed space of dimension n,

and let k be a positive integer less than n. The mass k-volume density on X is

defined by the formula

µ
m(a) := inf

{

k
∏

i=1

‖xi‖ : x1 ∧ x2 ∧ · · · ∧ xk = a

}

.

The mass∗ k-volume densities. According to the characterization of mass∗ given

in Exercise 3.9, we may describe the mass∗ k-volume densities as follows:

Let X be a normed space and let W ⊂ X be a k-dimensional subspace. If a

is a simple k-vector on X, we define µm∗(a) as the supremum of the numbers

|ξ
1
∧ ξ

2
∧ · · · ∧ ξ

k
(a)|, where ξ

1
, . . . , ξ

k
ranges over all short bases of 〈a〉

∗
.

However, there is a simpler description:

Exercise 4.3. Using the Hahn–Banach theorem and the notation above, show

that µ
m∗(a) is the supremum of the numbers |ξ

1
∧ ξ

2
∧ · · · ∧ ξ

k
(a)|, where

ξ
1
, . . . , ξ

k
∈ B∗

X
.

In the study of volumes and areas on Finsler manifolds, we shall also need to

work with k-densities and smooth k-densities on manifolds. For this purpose we

introduce the bundle of simple tangent k-vectors on a manifold M , Λk

s
TM . This

is a subbundle of algebraic cones of the vector bundle Λk
TM , and if we omit the

zero section it is a smooth manifold.
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Definition 4.4. A k-density φ (resp. k-volume density) on a manifold M is a

continuous function φ : Λk

s
TM → R such that at each point m, the restriction of

φ to Λk

s
TmM is a k-density (resp. k-volume density). If the function φ is smooth

outside the zero section, we shall say that the density is smooth.

Since every tangent space of a Finsler manifold (M,F ) is a normed space, we may

define the Busemann, Holmes–Thompson, mass, and mass∗ k-volume densities

on (M,F ) by assigning to each tangent space its respective k-density. It is easy

to show that if F is a smooth Finsler metric, then the Busemann and Holmes–

Thompson k-volume densities are smooth. This is probably not the case with

mass and mass∗, but we have no explicit examples to illustrate this.

Just like differential k-forms, k-densities can be pulled back: if f : N → M is

a smooth map and φ is a k-density on M , then

f
∗
φ(v1 ∧ v2 ∧ · · · ∧ vk) = φ

(

Df(v1) ∧ Df(v2) ∧ · · · ∧ Df(vk)
)

.

Remark that if f : N → M is an immersion and φ is a k-volume density on M ,

then f∗φ is a k-volume density on N .

Also like differential forms, k-densities can be integrated over k-dimensional

submanifolds: if N ⊂ M is a k-dimensional submanifold of M and i : N → M

is the inclusion map, then i
∗
φ is a volume density on N , and its integral over N

was defined in Section 3. This integral is independent of the parameterization

and orientation of N . In the same way, we may define the integral of a k-density

over a k-chain.

For the rest of the chapter, we associate to a given k-volume density φ on a

vector space X the functional

N 7−→

∫

N

φ,

and investigate the relationship between the behavior of the functional and cer-

tain convexity properties of φ. The easiest case is when φ is an (n−1)-volume

density in an n-dimensional vector space.

4.2. Convexity of (n−1)-volume densities. This case is special because

every (n−1)-vector in an n-dimensional vector space, X, is simple and we may

impose the condition that an (n−1)-volume density be a norm in Λn−1
X. This

is, for example, satisfied by (n−1)-volume densities for the Busemann, Holmes–

Thompson, and mass∗ definitions of volume. Nevertheless, it remains to see why

such a condition is desirable.

The next result is the first of four characterizations of norms on Λn−1X.

Theorem 4.5. Let φ be an (n−1)-volume density on an n-dimensional vector

space X. The following conditions on φ are equivalent :
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• φ is a norm;

• If P ⊂ X is a closed (n−1)-dimensional polyhedron in X, then the area of any

one of its facets is less than or equal to the sum of the areas of the remaining

facets.

Before proving this theorem, we need to introduce a classical construction that

associates to any k-dimensional polyhedral surface on X a set of simple k-vectors.

This set will be called the Gaussian image of the polyhedron (see also [Burago

and Ivanov 2002], where the almost identical notion of Gaussian measure is

used).

If P ⊂ X is a polyhedron with facets F1, . . . , Fm we associate to each facet Fi

the simple k-vector ai such that 〈ai〉 is parallel to Fi and such that vol(Fi; ai) = 1.

The Gaussian image of P is the set {a1, . . . , am} ⊂ Λk

s
X. If φ is a k-volume

density in X, the k-volume of P (with respect to φ) is just φ(a1) + · · · + φ(am).

Exercise 4.6. Show that if {a1, . . . , am} ⊂ Λk

s
X is the Gaussian image of a

closed polyhedron in X, then a1 + · · · + am = 0.

In general, the condition that the sum of a set of simple k-vectors be zero, does

not imply that it is the Gaussian image of a closed k-dimensional polyhedron in

X. However, in codimension one we have the following celebrated theorem of

Minkowski.

Theorem 4.7 (Minkowski). A set of (n−1)-vectors of an n-dimensional vector

space X is the Gaussian image of a closed , convex polyhedron if and only if the

(n−1)-vectors span Λn−1
X and their sum equals zero.

To prove Theorem 4.5, we shall need an easy particular case of Minkowski’s

result:

Exercise 4.8. Let X be an n-dimensional vector space and let a1, . . . , an be a

basis of Λn−1
X. Show that there exists a simplex in X whose Gaussian image

is the set {a1, . . . , an,−(a1 + · · · + an)}.

Proof of Theorem 4.5. Assume that φ is a norm, and let P ⊂ X be an (n−1)-

dimensional closed polyhedron with Gaussian image {a0, a1, . . . , am}. Since the

sum of the ai’s is zero, we may use the triangle inequality to write

φ(a0) = φ(a1 + · · · + am) ≤ φ(a1) + · · · + φ(am).

In other words, the area of the facet corresponding to a0 is less than or equal to

the sum of the areas of the remaining facets.

To prove the converse, we take any two (n−1)-vectors a1 and a2, which we

assume to be linearly independent, and use them as part of a basis a1, . . . , an of

Λn−1
X. By Exercise 4.8, the set {a1, . . . , an,−(a1 + · · · + an)} is the Gaussian

image of a simplex in X. Then, by assumption,

φ(a1 + · · · + an) ≤ φ(a1) + · · · + φ(an).
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By letting a3, . . . , an tend to zero in the above inequality we obtain the triangle

inequality φ(a1 + a2) ≤ φ(a1) + φ(a2), and, therefore, φ is a norm. �

Exercise 4.9. Consider the tetrahedron in the normed space `
3

∞ with vertices

(0, 0, 0), (−1, 1, 1), (1,−1, 1), (1, 1,−1), and show that the mass of the facet

opposite the origin is greater than the sum of the masses of the three other

facets. Hint. Use the definition of the mass 2-volume density in terms of minimal

circumscribed parallelograms.

By Theorem 4.5, the previous exercise shows that the mass (n−1)-volume density

of a normed space X is not necessarily a norm in Λn−1X. As we shall see in

the rest of this chapter, this is a good reason to disqualify mass as a satisfactory

definition of volume on normed spaces.

Our second characterization of norms in Λn−1
X is another variation on the

theme of flats minimize.

Theorem 4.10. Let φ be an (n−1)-volume density on an n-dimensional vector

space X. The following conditions on φ are equivalent :

• φ is a norm;

• Whenever C and C ′ are (n−1)-chains with real coefficients such that ∂C =

∂C
′ and the image of C is contained in a hyperplane, then the area of C is

less than or equal to the area of C
′.

In order to prove this theorem we need to introduce the concept of calibration

formalized by Harvey and Lawson [1982].

Definition 4.11. A closed k-form ω is said to calibrate a k-density φ if for all

simple k-vectors a in TM we have that ω(a) ≤ φ(a) and equality is attained on

a nonempty subset of Λk

s
TM .

The homogeneity of ω and φ allows us to consider the set where they coincide as

a subset E of the bundle of oriented k-dimensional subspaces of TM , G
+

k
(TM).

Proposition 4.12 [Harvey and Lawson 1982]. Let φ be a k-volume density on

a manifold M , let ω be a closed k-form on M that calibrates φ and let E ⊂

G
+

k
(TM) be the set where φ and ω coincide. If N ⊂ M is a k-dimensional

oriented submanifold all of whose tangent planes belong to E, and N
′ is another

submanifold of M homologous to N , then

∫

N

φ ≤

∫

N ′

φ.

Proof. Using that φ = ω on the tangent spaces of N and Stokes’ formula, we

have
∫

N

φ =

∫

N

ω =

∫

N ′

ω ≤

∫

N ′

φ. �
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Proof of Theorem 4.10. Assume that φ is a norm, let C and C ′ be as in the

statement of the theorem, and let a be an (n−1)-vector on X such that φ(a) = 1

and the subspace 〈a〉 is parallel to the hyperplane containing the image of C.

Since the unit sphere in (Λn−1
X,φ) is a convex hypersurface, it has a supporting

hyperplane that touches it at a. This hyperplane can be given as the set ω = 1,

where ω is a constant-coefficient (n−1)-form on X. Since the unit sphere lies in

the half-space ω ≤ 1, we have ω ≤ φ and, thus, ω calibrates φ.

Using that ω = φ on C, that dω = 0, and that C + (−C
′) is a closed chain

homologous to zero, we have
∫

C

φ =

∫

C

ω =

∫

C′

ω ≤

∫

C′

φ.

To prove the converse, note that the second condition in the theorem im-

mediately implies that the (n−1)-volume of the facet of a closed polyhedron is

less than or equal to the sum of the (n−1)-volumes of the remaining facets. By

Theorem 4.5, this implies that φ is a norm. �

In Euclidean geometry, the orthogonal projection onto a k-dimensional subspace

is area-decreasing. This can be generalized as follows:

Theorem 4.13. Let φ be an (n−1)-volume density on an n-dimensional vector

space X. The following conditions on φ are equivalent :

• φ is a norm;

• For every (n−1)-dimensional subspace W ⊂ X there is a φ-decreasing linear

projection PW : X → W .

The proof of this theorem rests on a simple lemma in multi-linear algebra.

Lemma 4.14. Let X be an n-dimensional vector space and let W ⊂ X be a

k-dimensional subspace. If w1, . . . ,wk is a basis of W and ω ∈ Λk
X

∗ is such

that ω(w1 ∧ w2 ∧ · · · ∧ wk) = 1, then the linear map

Px :=

k
∑

i=1

(−1)i
ω(x ∧ w1 ∧ · · · ∧ ŵi ∧ · · · ∧ wk)wi

is a projector with range W . Moreover , ω is simple if and only if for any vectors

x1, . . . ,xk ∈ X,

P x1 ∧ P x2 ∧ · · · ∧ P xk = ω(x1 ∧ x2 ∧ · · · ∧ xk) w1 ∧ w2 ∧ · · · ∧ wk.

The proof of the lemma is left as an exercise to the reader.

Proof of Theorem 4.13. Assume that φ is a norm in Λn−1
X and let W ⊂ X

be an (n−1)-dimensional subspace. Choose a basis of W , w1, . . . ,wn−1, such

that φ(w1 ∧ w2 ∧ · · · ∧ wn−1) = 1 and consider the support hyperplane of the

unit sphere of (Λn−1
X,φ) at the point w1 ∧w2 ∧ · · ·∧wn−1. This hyperplane is
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given by an equation of the form ω = 1, where ω is an (n−1)-form with constant

coefficients. In other words, ω ∈ Λn−1
X

∗.

We claim that the linear projection

Px :=
n−1
∑

i=1

(−1)i
ω(x ∧ w1 ∧ · · · ∧ ŵi ∧ · · · ∧ wn−1)wi

is φ-decreasing. Indeed, since ω is an (n−1)-form on an n-dimensional space, it

is simple. Using the second part of Lemma 4.14, we have, for any (n−1)-vector

a := x1 ∧ x2 ∧ · · · ∧ xn−1,

φ(P x1 ∧P x2 ∧ · · · ∧P xn−1) = |ω(a)|φ(w1 ∧w2 ∧ · · · ∧wn−1) = |ω(a)| ≤ φ(a).

To prove the converse, we note that the existence of a φ-decreasing linear

projection onto any given hyperplane implies that the (n−1)-volume of the facet

of any closed (n−1)-dimensional polyhedron is less than or equal to the sum of

the areas of the remaining facets. The argument is quite simple: if the closed

polyhedron has facets F0, F1, . . . , Fm, we use the φ-decreasing projection P to

project the whole polyhedron onto the hyperplane containing F0. Note that

P (F1)∪ · · · ∪ P (Fm) contains P (F0) = F0 and, therefore, the sum of the (n−1)-

volumes of the P (Fi), 1 ≤ i ≤ m, is greater than or equal to the (n−1)-volume

of F0. Since P is φ-decreasing, this gives us that the sum of the (n−1)-volumes

of the Fi, 1 ≤ i ≤ m, is greater than or equal to the (n−1)-volume of F0. �

We now state the fourth and last of our characterizations of norms on the space

of (n−1)-vectors in an n-dimensional normed space.

Theorem 4.15. Let φ be an (n−1)-volume density on an n-dimensional vector

space X. The following conditions on φ are equivalent :

• φ is a norm;

• If K ⊂ K
′ are two nested convex bodies in X, then the area of ∂K is less than

or equal to the area of ∂K ′ with equality if and only if K equals K ′.

The proof of this theorem is a simple consequence of the relation between norms

in the space of (n−1)-vectors and the theory of mixed volumes that will be

developed in Section 6.

At the beginning of this section we mentioned that for any n-dimensional

normed space X the Busemann, Holmes–Thompson, and mass∗ (n−1)-volume

densities on X are norms in Λn−1X. For the Busemann definition this is a

celebrated theorem of Busemann [1949a]. For the mass∗ definition this result is

due to Benson [1962]. We shall follow [Gromov 1983] and give a proof of a much

stronger result later in this section. For the Holmes–Thompson definition, the

result — under a different formulation — goes back to Minkowski.

Theorem 4.16 (Minkowski). The Holmes–Thompson (n−1)-volume density

of an n-dimensional normed space X is itself a norm in Λn−1
X.
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In order to prove the convexity of the Holmes–Thompson (n−1)-volume density,

we shall first give an integral representation for it. This representation depends,

in turn, on two classical constructions: the Gauss map and the surface-area

measure. Our approach follows [Fernandes 2002].

Let X be an n-dimensional vector space and let φ be an (n−1)-volume density

on X. If N ⊂ X is an oriented hypersurface and n ∈ N , we define Gφ(n) as

the unique (n−1)-vector in Λn−1
TnN ⊂ Λn−1

X that is positively oriented and

satisfies φ(Gφ(n)) = 1. Notice that when N is a strictly convex hypersurface,

the Gauss map

Gφ : N −→ Σ := {a ∈ Λn−1
X : φ(a) = 1}

is a diffeomorphism. In this case, we define the surface-area measure of N as the

(n−1)-volume density dSN := G
−1∗
φ

φ on Σ.

Lemma 4.17. Let π : X → Y be a surjective linear map between an n-

dimensional vector space X and an (n−1)-dimensional vector space Y , and let

φ be an (n−1)-volume density on X with unit sphere Σ ⊂ Λn−1
X. If N ⊂ X is

a smooth, strictly convex hypersurface and ω is a volume form on Y , then

∫

π(N)

|ω| =
1

2

∫

a∈Σ

|π
∗
ω(a)| dSN .

Proof. By the definition of the Gauss map, if n ∈ N and x1∧x2∧· · ·∧xn−1 ∈

Λn−1
TnN ,

x1 ∧ x2 ∧ · · · ∧ xn−1 = φ(x1 ∧ x2 ∧ · · · ∧ xn−1)Gφ(n).

Therefore, π
∗
|ω|(x1 ∧ x2 ∧ · · · ∧ xn−1) = |π

∗
ω(Gφ(n))|φ(x1 ∧ x2 ∧ · · · ∧ xn−1).

Then

∫

π(N)

|ω| =
1

2

∫

N

π
∗
|ω| =

1

2

∫

n∈N

|π
∗
ω(Gφ(n))|φ

=
1

2

∫

Σ

G
−1∗
φ

|π
∗
ω(Gφ(n))|φ =

1

2

∫

a∈Σ

|π
∗
ω(a)|G−1∗

φ
φ

=
1

2

∫

a∈Σ

|π
∗
ω(a)| dSN . �

Proof of Theorem 4.16. By a standard approximation argument, it suf-

fices to consider the case where the dual unit sphere ∂B∗
⊂ X∗ is smooth and

strictly convex. Applying the previous lemma to the surface N = ∂B
∗ and to

an arbitrary (n−1)-volume density on X
∗, we have

µ
ht(a) = ε

−1

n−1

∫

π(B∗)

|a| = ε
−1

n−1

∫

ξ∈Σ

|a(ξ)| dS∂B∗ .
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Since the surface-area measure dS∂B∗ is nonnegative,

µ
ht(a + b) = ε

−1

n−1

∫

ξ∈Σ

|a(ξ) + b(ξ)| dS∂B∗

≤ ε
−1

n−1

∫

ξ∈Σ

|a(ξ)| dS∂B∗ + ε
−1

n−1

∫

ξ∈Σ

|b(ξ)| dS∂B∗

= µ
ht(a) + µ

ht(b). �

Exercise 4.18. Let X be an n-dimensional vector space and let φ be an (n−1)-

volume density on X. Show that if φ is a norm, then compact hypersurfaces

cannot by minimal.

4.3. Convexity properties of k-volume densities. We now pass to the

more delicate subject that Busemann, Ewald, and Shephard studied extensively

under the heading of convexity on Grassmannians. Most of what follows can be

found in their papers, “Convex bodies and convexity on Grassmannian cones”

I–XI, but we have tried to make the language and proofs more accessible.

We shall see that there are several notions and degrees of convexity for k-

volume densities. These are closely related to the concept of ellipticity in geo-

metric measure theory and, historically, to the generalization of the Legendre

condition for variational problems.

Weakly convex k-densities. Let X be an n-dimensional vector space and let

Λk

s
X, 1 ≤ k ≤ n − 1, be the cone of simple k-vectors on X. If Y is a (k + 1)-

dimensional subspace of X, then the subspace ΛkY ⊂ ΛkX lies inside Λk

s
X. This

motivates a definition:

Definition 4.19. A k-volume density φ on an n-dimensional vector space X,

n > k, is said to be weakly convex if for any linear subspace Y of dimension

k + 1, the restriction of φ to the linear space ΛkY is a norm.

From the previous section, we know that the k-volume densities of any normed

space for the Busemann, Holmes–Thompson, or mass∗ definitions of volume are

weakly convex.

Exercise 4.20. Show that a k-volume density in a vector space X is weakly

convex if for every (k + 1)-dimensional simplex in X the area of any one facet is

less than or equal to the sum of the areas of the remaining facets.

Extendibly convex k-volume densities

Definition 4.21. A k-volume density φ on an n-dimensional vector space X,

n > k, is said to be extendibly convex if it is the restriction of a norm on Λk
X

to the cone of simple k-vectors in X.

Equivalently, φ is extendibly convex if and only if there is a support hyperplane

for the unit sphere

S := {a ∈ Λk

s
X : φ(a) = 1}



VOLUMES ON NORMED AND FINSLER SPACES 27

passing through any of its points.

Theorem 4.22. If φ is an extendibly convex k-volume density on a vector

space X, then any k-chain with real coefficients whose image is contained in a

k-dimensional flat is φ-minimizing .

The proof — by the method of calibrations — is nearly identical to the proof of

Theorem 4.10 and is left as an exercise for the reader. Notice that a corollary to

Theorem 4.22 is that if P ⊂ X is a closed k-dimensional polyhedron, the area

of any of its facets is less than or equal to the sum of the areas of the remaining

facets.

The problem of determining whether the Busemann k-volume densities are

extendibly convex was posed by Busemann in several of his papers as a major

problem in convexity. So far, there are no results in this direction.

Problem. Is the Busemann 2-volume density of a 4-dimensional normed space

extendibly convex?

In the case of the Holmes–Thompson definition, Busemann, Ewald, and Shep-

hard have given explicit examples of norms for which the k-volume densities,

1 < k < n − 1, are not extendibly convex (see [Busemann et al. 1963]). A

simpler example has been given recently by Burago and Ivanov:

Theorem 4.23 [Burago and Ivanov 2002]. Consider the norm ‖ · ‖ on R
4 whose

dual unit ball in R
4∗ is the convex hull of the curve

γ(t) := (sin t, cos t, sin 3t, cos 3t), 0 ≤ t ≤ 2π.

The Holmes–Thompson 2-volume density for (R4
, ‖ · ‖) is not extendibly convex .

Despite these examples, in many important cases the Holmes–Thompson k-

volume densities are extendibly convex.

Theorem 4.24. The Holmes–Thompson k-volume densities of a hypermetric

normed space are extendibly convex .

In order to prove this result, we shall derive a formula for the Holmes–Thompson

k-volume densities of a Minkowski space in terms of the Fourier transform of its

norm. In a somewhat different guise, this formula was first obtained by W. Weil

[1979]. In the present form it was rediscovered by Álvarez and Fernandes in

[1999], where it was shown to follow from the Crofton formula for Minkowski

spaces.

Let φ be a smooth, even, homogeneous function of degree one on an n-

dimensional vector space X, let e1, . . . ,en be a basis of X, and let ξ
1
, . . . , ξ

n
be

the dual basis in X
∗. Using the basis e1, . . . ,en and its dual to identify both X

and X
∗ with R

n, we can compute the (distributional) Fourier transform of φ,

φ̂(ξ) :=

∫

Rn

e
iξ·x

φ(x) dx.



28 J. C. ÁLVAREZ PAIVA AND A. C. THOMPSON

The form φ̂ dξ1 ∧ · · · ∧ dξn does not depend on the choice of basis in X. Up to a

constant factor, we define the form φ̌ as the contraction of this n-form with the

Euler vector field, XE(ξ) = ξ, in X∗:

φ̌ :=
−1

4(2π)n−1
φ̂ dξ1 ∧ · · · ∧ dξncXE .

It is known (see [Hörmander 1983, pages 167–168]) that φ̂ is smooth on X∗
\ 0

and homogeneous of degree −n− 1; therefore φ̌ is a smooth differential form on

X
∗
\ 0 that is homogeneous of degree −1.

Denoting by φ̌
k the product form in the product space (X∗

\0)k, we have the

following result:

Theorem 4.25. Let (X,φ) be an n-dimensional Minkowski space. For any

simple k-vector a on X, 1 ≤ k < n, we have

µ
ht(a) =

1

εk

∫

(ξ
1
,...ξ

k
)∈S∗k

|ξ
1
∧ · · · ∧ ξ

k
· a|φ̌

k
,

where S
∗ is any closed hypersurface in X

∗
\ 0 that is star-shaped with respect to

the origin.

Notice that this formula allows us to extend the definition of the Holmes–

Thompson k-volume density of any Minkowski space to all of ΛkX. It remains

to see when this extension is a norm.

Proof of Theorem 4.24. It is enough to prove convexity in the case the

hypermetric space (X,φ) is also a Minkowski space. This allows us to use the

integral representation given above. Since X is hypermetric, Theorem 2.5 tells

us that the form φ̂ dξ1∧· · ·∧dξn is a volume form, and, therefore, the restriction

of φ̌
k to the manifold S

∗k defines a nonnegative measure. Then for any two

k-vectors a and b we have

µ
ht(a + b) =

∫

S∗k

|ξ
1
∧ · · · ∧ ξ

k
· (a + b)| φ̌k

≤

∫

S∗k

|ξ
1
∧ · · · ∧ ξ

k
· a|φ̌

k +

∫

S∗k

|ξ
1
∧ · · · ∧ ξ

k
· b|φ̌

k

= µ
ht(a) + µ

ht(b). �

Totally convex k-densities

Definition 4.26. A k-density φ on an n-dimensional vector space X, n > k, is

said to be totally convex if through every point of the unit sphere of Λk
X there

passes a supporting hyperplane of the form ξ = 1 with ξ a simple k-vector in

ΛkX∗.

Total convexity implies extendible convexity and, in turn, weak convexity. The

following result, stated in [Busemann 1961] gives an important characterization

of totally convex k-densities in terms of what Gromov [1983] calls the compressing

property.



VOLUMES ON NORMED AND FINSLER SPACES 29

Theorem 4.27. A k-density φ on an n-dimensional vector space X is totally

convex if and only if for every k-dimensional linear subspace there exists a φ-

decreasing linear projection onto that subspace.

The proof, using Lemma 4.14, is nearly identical to the proof of Theorem 4.13.

Of all the four volume definitions we have studied, mass∗ has by far the

strongest convexity property:

Theorem 4.28. The mass∗ k-volume densities of an n-dimensional normed

space X, 1 ≤ k ≤ n − 1, are totally convex .

Proof. By Theorem 4.27, it is enough to show that given any k-dimensional

subspace W , there exists a linear projection P : X →W that is mass∗-decreasing.

Choose a basis ξ
1
, . . . , ξ

k
of W

∗ which satisfies two properties:

(1) It is short (i.e., |ξ
i
(x)| ≤ 1 for all x ∈ B ∩ W );

(2) The integral of the volume density |ξ
1
∧ξ

2
∧ · · ·∧ξ

k
| over B∩W is maximal

among all short bases.

Notice that for any basis w1, . . . ,wk of W , we have that

µ
m∗(w1 ∧ w2 ∧ · · · ∧ wk) = |ξ

1
∧ ξ

2
∧ · · · ∧ ξ

k
(w1 ∧ w2 ∧ · · · ∧ wk)|,

and that if w1, . . . ,wk is dual to ξ
1
, . . . , ξ

k
, then µm∗(w1 ∧ w2 ∧ · · · ∧wk) = 1.

By the Hahn–Banach theorem, there exist covectors ξ̂
1
, . . . , ξ̂

k
∈ X∗ such

that

(1) |ξ̂
i
(x)| ≤ 1 for all x ∈ B and for all i, 1 ≤ i ≤ k;

(2) the restriction of ξ̂
i

to W equals ξ
i

for all i, 1 ≤ i ≤ k.

We may now define the projection P : X → W by the formula

P (x) :=
k

∑

i=1

ξ̂
i
(x)wi,

and show that it is µm∗-decreasing. Indeed, if a = v1 ∧ v2 ∧ · · · ∧ vk is a simple

k-vector in X,

P (v1) ∧ P (v2) ∧ · · · ∧ P (vk) = ξ̂
1
∧ ξ̂

2
∧ · · · ∧ ξ̂

k
(a)w1 ∧ w2 ∧ · · · ∧ wk,

and therefore

µ
m∗(P (v1) ∧ P (v2) ∧ · · · ∧ P (vk)) = |ξ̂

1
∧ ξ̂

2
∧ · · · ∧ ξ̂

k
(a)|.

Since the restriction of ξ̂
i
, 1 ≤ i ≤ k, to 〈a〉 form a short basis of 〈a〉

∗
, we have

µ
m∗(P (v1) ∧ P (v2) ∧ · · · ∧ P (vk)) = |ξ̂

1
∧ ξ̂

2
∧ · · · ∧ ξ̂

k
(a)| ≤ µ

m∗(a). �

We end the section with an exercise and an open problem:

Exercise 4.29. Show that the sum of two totally convex 2-volume densities in

R
4 is not necessarily totally convex. On the other had, show that the maximum

of two totally convex k-volume densities is a totally convex k-volume density.
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Problem. For what (hypermetric) normed spaces are the Holmes–Thompson

k-volume densities totally convex?

5. Length and Area in Two-Dimensional Normed Spaces

Before going into the rich and beautiful theory of (hypersurface) area on finite-

dimensional normed spaces, we shall sharpen our intuition by carefully consid-

ering the case of two-dimensional normed spaces. This case is fundamentally

simpler because the notion of hypersurface area coincides with that of length

and is thus independent of our volume definition. Nevertheless, we shall see

that the theory of length and area on two-dimensional normed spaces is far from

trivial and provides a platform from which to jump to higher dimensions.

We start with two theorems that involve solely the notion of length:

Theorem 5.1 [Go la̧b 1932]. The perimeter of the unit circle of a two-dimen-

sional normed space is between six and eight . Moreover , the length is equal to

six if and only if the unit ball is an affine regular hexagon and is equal to eight

if and only if it is a parallelogram.

Full proofs can be found in [Schäffer 1967] and [Thompson 1996]. We stress that

the length of the unit circle is measured with the definition of length given by

the norm:

If γ : [a, b] → X is a continuous curve on the normed space (X, ‖ · ‖), the

length of γ is defined as the supremum of the quantities

n−1
∑

i=0

‖γ(ti+1) − γ(ti)‖

taken over all partitions a = t0 < t1 < · · · < tn = b of the interval [a, b]. Notice

that if γ is differentiable, we can also compute its length by the integral

`(γ) =

∫

b

a

‖γ̇(t)‖ dt.

It is convenient to denote the length of a curve γ on the normed space X

with unit disc B by `B(γ). Note that `B(∂B) is an affine invariant of the convex

body B.

Theorem 5.2 [Schäffer 1973]. If B and D are unit balls of two norms in a

two-dimensional space X and if B
∗ and D

∗ are the dual balls in X
∗ then

`D(∂B) = `B∗(∂D
∗).

In particular ,

`B(∂B) = `B∗(∂B
∗).

A complete proof is available in [Thompson 1996].

For those who like simply stated open problems, we pass on the following

question of Schäffer (private communication):
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Problem. Given an arbitrary convex body B ⊂ R
3 that is symmetric with

respect to the origin, does there always exist a plane Π passing through the origin

and for which `Π∩B(∂(Π ∩ B)) is less than or equal to 2π?

Next we discuss the relation between length and area on two-dimensional normed

spaces. The first important question that arises is the isoperimetric problem: Of

all convex bodies in a two-dimensional normed space X with a given perimeter

find those that enclose the largest area.

The solution of this problem passes through the representation of the length

as a mixed volume (in this case a mixed area). This permits the use of Brunn–

Minkowski theory to solve the isoperimetric problem and to also give further

properties of the length functional. The reader is referred to [Schneider 1993]

for a complete discussion of the theory, but our needs can be met in just a few

paragraphs.

Let X be an n-dimensional vector space and let λ be a Lebesgue measure on

X. If K and L are two subsets of X, the Minkowski sum of K and L is the set

K + L := {x + y ∈ X : x ∈ K,y ∈ L}.

If L is the unit ball of a norm in X, we may think of K + L as the set of all

points in X whose distance from K is less than or equal to one. In other words,

the tube of radius one about the set K.

The mixed volume V (K[n − 1], L) of two closed, bounded convex sets K and

L in X is defined as a “directional derivative” of the Lebesgue measure:

V (K[n − 1], L) =
1

n
lim

t→+0

λ(K + tL) − λ(K)

t
.

In the two-dimensional, case V (K,L) := V (K[1], L) is linear and monotonic in

each variable. The key result in the solution of the isoperimetric problem in

normed spaces is the Minkowski mixed volume inequality:

V (K[n − 1], L) ≥ λ(K)n−1
λ(L).

Moreover, if K and L are convex bodies, then equality holds if and only if K is

obtained from L by translation and dilation.

Back to the two-dimensional case, if we’re given a centered convex body B,

we may define the magnitude of a vector x in two different ways:

(1) Take B to be the unit ball of a norm ‖ · ‖ on X and set the magnitude of x

to be ‖x‖.

(2) Let [x] ⊂ X denote the line segment from the origin to x and define the

magnitude of x as V ([x], B).

Exercise 5.3. Show that for any convex body B that is symmetric with respect

to the origin, the map x 7→ V ([x], B) is a norm, but that in general its unit disc

is different from B.
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The first step in solving the isoperimetric problem in a normed space X is to

find a centrally symmetric convex body I such that

‖x‖ = V ([x], I), for all x ∈ X.

Of course, I will also depend on the choice of Lebesgue measure λ used to define

the mixed volume. However, given a volume definition the body I will be defined

intrinsically in terms of the norm.

The construction of I is extremely simple: Let B be the unit ball of X and

let Ω be the volume form on X that satisfies Ω(x∧y) = λ(x∧y) for all positive

bases x,y of X (we are forced to take an orientation of X at this point, but the

result will not depend on the choice). If

iΩ : X −→ X
∗

is defined by iΩ(v)(w) := Ω(v ∧ w), the set I is given by (iΩB)∗.

Summarizing:

Proposition 5.4. Let X be a two-dimensional normed space with unit ball B

and volume form Ω. If I denotes the body (iΩB)∗ , then

‖x‖ = V ([x], I)

for all vectors x ∈ X.

The proof will be postponed to the next section where we will treat the n-

dimensional version of the proposition.

Notice that if the orientation of X is changed, the form Ω changes sign, but

the symmetry of the unit disc B implies that the body I stays the same.

Exercise 5.5. Show that if K is a convex body in X, its perimeter equals

2V (K, I) and that, in particular, the perimeter of I is twice its area. Hint: Try

first with bodies whose boundaries are polygons and use the previous proposition.

The representation of length as a mixed volume gives an easy proof of the fol-

lowing monotonicity property of length in two-dimensional normed spaces.

Proposition 5.6. If K1 ⊂ K2 are nested convex bodies in a two-dimensional

normed space, then `(∂K1) ≤ `(∂K2).

The proof is left as a simple exercise to the reader. The following related exercise

is, perhaps, somewhat harder.

Exercise 5.7. Show that a Finsler metric on the plane satisfies the monotonicity

property in the previous proposition if and only if its geodesics are straight lines.

Theorem 5.8. Let X be a two-dimensional normed space with unit disc B and

area form Ω ∈ Λ2
X

∗. Of all convex bodies in X with a given perimeter the one

that encloses the largest area is, up to translations, a dilate of I := (iΩB)∗.
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Proof. Let K ⊂ X be a convex body and let

`B(∂K) = 2V (K, I)

be its perimeter. By Minkowski’s mixed volume inequality, we have

`B(∂K)2

4
= V (K, I)2 ≥ λ(K)λ(I)

with equality if an only if K and I are homothetic. Thus, the area enclosed by

K is maximal for a given perimeter if and only if K is a dilate of I. �

Definition 5.9. Let Y 7→ (Λ2
Y, µY ) be a volume definition for two-dimensional

normed spaces. If X is a two-dimensional normed space with unit ball B, the

isoperimetrix of X corresponding to the volume definition µ is the body IX :=
(

iΩX
(B)

)∗
, where ΩX is a 2-form on X satisfying |ΩX | = µX .

We shall denote the isoperimetrices of a two-dimensional normed space X with

respect to the Busemann, Holmes–Thompson, mass, and mass∗ volume defini-

tions by I
b

X
, I

ht

X
, I

m

X
, and I

m∗
X

.

If T : X → X is an invertible linear transformation, the isoperimetrix, with

respect to any volume definition, of the norm with unit ball T (BX) is T (IX).

Exercise 5.10. If X is a two-dimensional normed space with unit ball B and

if µ is a particular choice of volume definition, then

`B(∂IX) = 2µX(IX) and µX(IX) = µ
∗
X

(B∗).

Using this exercise, we can give sharp estimates on the area and perimeter of

the isoperimetrix of a two-dimensional normed space for Busemann, Holmes–

Thompson, and mass∗ volume definitions.

Indeed, it follows trivially from the exercise that µb

X
(Ib

X
) = vp(BX)/π and

that µ
ht

X
(Iht

X
) = π. Using the Mahler and Blaschke–Santaló inequalities, we have

8

π
≤ µ

b

X
(Ib

X
) ≤ π.

The fact that µ
m∗
X

(Im∗
X

) ≤ π with equality if and only if X is Euclidean is

equivalent to the inequality µ
m∗

≥ µ
ht for two-dimensional normed spaces.

Exercise 5.11. Find the sharp lower bound for µ
m∗
X

(Im∗
X

).

It is interesting to note that the Blaschke–Santaló inequality implies that

µ
b

X
(BX) ≥ µ

b

X
(Ib

X
) and µ

ht

X
(BX) ≤ µ

ht

X
(Iht

X
),

with equality in both cases if and only if B is an ellipse. Of course this implies

that for both the Busemann and Holmes–Thompson definitions BX = IX if

and only if X is Euclidean. Notice that whether a unit disc is equal to its

isoperimetrix depends on the volume definition we are using. However, whether

the unit disc is a dilate of its isoperimetrix does not depend on such a choice.
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Definition 5.12. Let X be a two-dimensional normed space. If BX is a dilate

of IX for one (and, therefore, any) volume definition, the unit circle, ∂BX , is

said to be a Radon curve.

For comparison with the higher-dimensional case we summarize the properties

of the map I that sends a unit disc BX to IX . This maps sends convex bodies

to convex bodies; it is a bijection; it commutes with linear maps in the sense

that T (BX) is sent to T (IX) for all invertible linear maps T ; it maps polygons

to polygons, smooth bodies to strictly convex bodies and strictly convex bodies

to smooth bodies; and the only fixed points for the µ
b and µ

ht normalizations

are ellipses.

A good, very elementary account of the construction of the isoperimetrix from

first principles and its relationship to physics and symplectic geometry (the ball

is used for measuring position and the isoperimetrix for measuring velocity) is

given by Wallen [1995].

Finally, we explore the relationship between the perimeter and area of the

unit ball. The motivation is that `(∂I) = 2µ(IB) and that in the Euclidean case

this holds for the ball.

Theorem 5.13. If X is a two-dimensional normed space with unit ball B then

2µ
m(B) ≤ `(∂B) ≤ 2µ

m∗(B)

with equality on the left if and only if ∂B is a Radon curve and on the right if

and only if ∂B is an equiframed curve.

For the definition of equiframed curves and a proof of the theorem we refer the

reader to [Martini et al. 2001] where the history of this result is also discussed.

Exercise 5.14. Use this result and properties of IX to show that BX = I
m

X
if

and only if ∂BX is a Radon curve; and that BX = I
m∗
X

if and only if ∂BX is

equiframed.

There is a further recent result in this direction.

Theorem 5.15 [Moustafaev]. If X is a two-dimensional normed space, then

2µ
ht

X
(BX) ≤ `(∂BX),

with equality if and only if X is Euclidean.

Proof. By definition of the isoperimetrix and Minkowski’s mixed volume in-

equality, we have

`(BX)2 = 4V (BX , I
ht

X
) ≥ 4µ

ht

X
(BX)µht

X
(Iht

X
).

Using that µ
ht

X
(Iht

X
) = π and that µ

ht

X
(BX)/π ≤ 1, we have

`(BX)2 ≥ 4πµ
ht

X
(BX) ≥ 4πµ

ht

X
(BX)

µ
ht

X
(BX)

π
= 4µ

ht

X
(BX)2. �
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Exercise 5.16. If X is a two-dimensional normed space, show that

2 ≤ µ
m

X
(BX) ≤ π,

3 ≤ µ
m∗
X

(BX) ≤ 4,

and (using inequalities from Section 3)

8/π ≤ µ
ht

X
(BX) ≤ π.

Give the equality cases.

6. Area on Finite-Dimensional Normed Spaces

In Section 4, we saw that the Busemann, Holmes–Thompson, and mass∗ vol-

ume definitions induce k-volume densities that are weakly convex. In the special

case where the dimension of the normed space X is n = k + 1, then the (n−1)-

volume densities are norms on the space Λn−1
X.

It follows from the properties of the volume definitions that, in all three cases,

the map that assigns to the normed space X the normed space Λn−1
X has the

following properties:

(1) If T : X → Y is a short linear map between normed spaces X and Y , then

the induced map T∗ : Λn−1
X → Λn−1

Y is also short.

(2) The map X 7→ Λn−1
X is continuous with respect to the topology induced

by the Banach–Mazur distance.

(3) If X is a Euclidean space, then the (n−1)-volume density is the standard

Euclidean area on X.

(4) If the dimension of X is two, the map X 7→ Λ1
X is the identity.

Notice that property (1) states that for the Busemann, Holmes–Thompson, and

mass∗ definitions, the map that takes the normed space X to the normed space

Λn−1
X is a covariant functor in the category N of finite-dimensional normed

spaces.

Definition 6.1. A definition of area on normed spaces assigns to every n-

dimensional, n ≥ 2, normed space X a normed space (Λn−1
X,σX) in such a way

that properties (1)–(4) above are satisfied.

For simplicity, we shall speak of the Busemann, Holmes–Thompson, and mass∗

definitions of area to refer to the definitions of area induced, respectively, by the

Busemann, Holmes–Thompson, and mass∗ volume definitions.

Definitions of area in normed spaces are related to important constructions in

convex geometry such as intersection bodies, projection bodies, and Wulff shapes.

However, let us start by posing a few natural questions that arise whenever we

have a definition of area. The answer to some of these questions, once specialized

to the Busemann and Holmes–Thompson definitions, are deep results in the
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theory of convex bodies. Other questions are long-standing open problems, and

yet others seem to be new.

Given a definition of area X 7→ (Λn−1X,σX) on normed spaces, we may

ask: Is the map X 7→ (Λn−1
X,σX) injective? What is its range? Does it

send crystalline norms to crystalline norms? Does it send Minkowski spaces to

Minkowski spaces? In what numeric range is the area of the unit sphere of an

n-dimensional normed space?

Other problems arise when we consider the relationship between length, area,

and volume, but, for now, let us concentrate on the questions we have just posed.

6.1. Injectivity and range of the area definition Let us start the study of

the injectivity and range of the Busemann definition of area by describing the

unit ball of the (n−1)-volume density in terms of a well-known construction in

convex geometry.

Busemann area and intersection bodies. Consider R
n with its Euclidean struc-

ture and its unit sphere S
n−1. If K ⊂ R

n is a star-shaped body containing

the origin, the intersection body of K, IK, is defined by the following simple

construction: if x ∈ R
n is a unit vector, let A(K ∩ x⊥) denote the area of the

intersection of K with the hyperplane perpendicular to x, and let IK be the

star-shaped body enclosed by the surface

{x/A(K ∩ x⊥) ∈ R
n : x ∈ S

n−1
}.

A celebrated theorem of Busemann, which is equivalent to the weak convexity

of the Busemann volume definition, states that if K is a centered convex body,

then IK is also a centered convex body.

Let X be an n-dimensional normed space. Choose a basis of X and use it to

identify X with R
n. Take the Euclidean structure in R

n for which the basis is

orthonormal and use the resulting Euclidean structure to identify the spaces X
∗

and Λn−1X, as well as to define the unit sphere Sn−1 in R
n.

Exercise 6.2. Show that with all these identifications, the convex body {x ∈

R
n : σb

X
(x) ≤ 1} is εn−1 times the intersection body of BX ; (here σb

X
is the

norm induced on X
∗ by the norm on Λn−1

X).

Notice that we can now write the question of whether the Busemann definition

of area is injective in the following classical form: Is a centered convex body

determined uniquely by the area of its intersections with hyperplanes passing

through the origin? The answer is affirmative (see [Lutwak 1988] and [Gardner

1995]), and so we have the following result:

Theorem 6.3. The Busemann area definition is injective.

Determining the range of the Busemann area definition is somewhat trickier.

Thanks to the efforts of R. Gardner, G. Zhang, and others in the solution of the

first of the Busemann–Petty problems, it is known (see [Gardner 1994], [Gard-

ner et al. 1999], and [Zhang 1999] and the references therein) that in dimensions
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two, three, and four every convex body symmetric with respect to the origin

is the intersection body of some star-shaped body. It is not clear at this point

whether those bodies that are intersection bodies of centered convex bodies can

be characterized effectively. For dimensions greater than four, not every centered

convex body is an intersection body ([Gardner et al. 1999]). For further infor-

mation about intersection bodies see, for example, [Gardner 1995] and [Lutwak

1988].

Examples in [Thompson 1996] show that the Busemann area definition does

not take crystalline norms to crystalline norms. We don’t know whether it takes

Minkowski norms to Minkowski norms.

Let us now pass to the Holmes–Thompson definition.

Holmes–Thompson area and projection bodies. Consider R
n with its Euclidean

structure and its unit sphere S
n−1. If K ⊂ R

n is a convex body, the projection

body of K, ΠK, is given by the following simple construction: if x ∈ R
n is a unit

vector, let A(K|x⊥) denote the area of the orthogonal projection of K onto the

hyperplane perpendicular to x, and let the polar of ΠK be the body enclosed

by the surface

{A(K|x⊥)x ∈ R
n : x ∈ S

n−1
}.

As in the case of the Busemann definition of area, identifying a normed space

X with R
n allows us to write the unit ball for the (n−1)-volume density in terms

of this nonintrinsic construction.

Exercise 6.4. Show that by identifying a normed space X with R
n as in the

previous exercise, the convex body {x ∈ R
n : σ

ht

X
(x) ≤ 1} is 1/εn−1 times the

polar of the projection body of B
∗
X

.

The question of the injectivity of the Holmes–Thompson definition of area can

now be formulated in classical terms: Is a centered convex body determined

uniquely by the area of its orthogonal projections onto hyperplanes? The answer,

in the affirmative, follows from a celebrated result of Alexandrov [1933] (see also

[Gardner 1995]). We then have the following result:

Theorem 6.5. The Holmes–Thompson area definition is injective.

It is known, basically from the time of Minkowski, that a centered convex body

B is the projection body of another if and only if it is a zonoid (see [Gardner

1995]). By Theorem 2.12, this means that for any n-dimensional normed space

X the normed space (Λn−1
X,σ

ht

X
) is hypermetric.

Moreover, because of the integral formula for the Holmes–Thompson (n−1)-

volume density in terms of the surface area measure of the dual sphere given

in the proof of Theorem 4.16, the problem of reconstructing the norm from

the Holmes–Thompson (n−1)-volume density is precisely the famous Minkowski

problem: Reconstruct a convex body from the knowledge of its Gauss curvature

as a function of its unit normals. The next two theorems follow directly from
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the work of Minkowski, Pogorelov, and Nirenberg (see [Pogorelov 1978] for a

detailed presentation).

Theorem 6.6. The range of the Holmes–Thompson area definition is the set of

hypermetric normed spaces.

Theorem 6.7. Let X be an n-dimensional vector space and let σ : Λn−1
X →

[0,∞) be a Minkowski norm. If (Λn−1X,σ) is hypermetric, then there exists a

unique Minkowski norm ‖ · ‖ on X such that σ is the Holmes–Thompson (n−1)-

volume density of the normed space (X, ‖ · ‖).

Another important feature of the Holmes–Thompson area is the following (for a

proof see [Thompson 1996]):

Theorem 6.8. The Holmes–Thompson area definition takes Minkowski spaces

to Minkowski spaces and crystalline norms to crystalline norms.

Mass* area and wedge bodies. Let B be a centered convex body in an n-

dimensional vector space X, and let Bn−1 be the (n−1)-fold product of B in

the n(n − 1)-dimensional space X
n−1. If Alt : X

n−1
→ Λn−1

X denotes the

(nonlinear) map

(x1, . . . ,xn−1) 7−→ x1 ∧ x2 ∧ · · · ∧ xn−1,

we define the wedge body of B, denoted by WB, as the convex hull of Alt(Bn−1)

in Λn−1X.

We remark that even if B
n−1

⊂ X
n−1 is a centered convex body, Alt(Bn−1)

is not necessarily convex.

Theorem 6.9. The unit ball in Λn−1
X for the mass∗ (n−1)-volume density of

a normed space X is the body (WB∗
X

)∗.

Proof. By Exercise 4.3, we have

σ
m∗
X

(a) = sup{|ξ
1
∧ ξ

2
∧ · · · ∧ ξ

n−1
· a| : ξ

1
, . . . , ξ

n−1
∈ B

∗
X
}.

But this is just the supremum of |η ·a|, where η ∈ Alt
(

(B∗
X

)n−1
)

. Therefore σ
m∗
X

is the dual to the norm in Λn−1X∗ whose unit ball is WB∗
X

. �

It is quite easy to do calculations for WB∗ in the case when the centered convex

body B is a simple object. The following statements are based on such calcula-

tions, the details of which are left as exercises (see also [Thompson 1999]).

Proposition 6.10. The mass∗ area definition is not injective.

Sketch of the proof.. All we must do is find two centered convex bodies B

and K such that WB∗ = WK∗, but B 6= K.

Let B be the cube with vertices at (±1,±1,±1). In this case, B
∗ is the

octahedron with vertices (±1, 0, 0), (0,±1, 0), (0, 0,±1) and WB
∗ = B

∗.
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Let K be the cuboctahedron with vertices (±1,±1, 0), (±1, 0,±1), (0,±1,±1).

The dual ball K
∗ is the rhombic dodecahedron with vertices ±(1, 0, 0), ±(0, 1, 0),

±(0, 0, 1) and (± 1

2
,±

1

2
,±

1

2
). A simple calculation shows that WB∗ = WK∗.

In fact, if L is any centered convex body that lies between the cube and the

cube-octahedron then WL
∗ = WB

∗. �

While it seems unlikely that the wedge body of the unit ball in a Minkowski

space is the ball of a Minkowski space, it is not hard to show that the wedge

body of a polytope is a polytope. Then:

Proposition 6.11 [Thompson 1999]. The mass∗ area definition takes crys-

talline norms to crystalline norms.

The question of determining the range for the mass∗ area definition is completely

open. Is it possible that any centered convex body is a wedge body?

6.2. Area of the unit sphere. In this section we give the higher-dimensional

analogues (as far as we know them) of the theorems of Schäffer and Go la̧b dis-

cussed in Section 5.

The Holmes–Thompson definition was designed originally to yield a general-

ization of Schäffer’s result and we have the following theorem.

Theorem 6.12 [Holmes and Thompson 1979]. If B and K are the unit balls of

two norms ‖ · ‖
B

and ‖ · ‖
K

in the vector space X, the Holmes–Thompson area

of ∂K in the normed space (X, ‖ · ‖
B

) equals the Holmes–Thompson area of ∂B
∗

in the normed space (X∗
, ‖ · ‖

∗
K

).

Notice that in particular, the Holmes–Thompson area of the unit sphere of a

normed space equals the Holmes–Thompson area of the unit sphere of its dual.

Simple calculations show that neither the Busemann, the mass∗, nor the mass

definition have this property. In fact, Daniel Hug (private communication) has

shown that Theorem 6.12 characterizes the Holmes–Thompson definition. How-

ever, the following question remains open.

Problem [Thompson 1996]. Is the Holmes–Thompson definition of volume

characterized by the fact that the area of the unit sphere of a normed space

equals the area of the unit sphere of its dual?

The first result extending Go la̧b’s theorem to higher dimension is the following

sharp upper bound for the Busemann area of a unit sphere.

Theorem 6.13 [Busemann and Petty 1956]. The Busemann area of the unit

sphere of an n-dimensional normed space is at most 2nεn−1 with equality if and

only if B is a parallelotope.

For n ≥ 3 no sharp lower bound for the Busemann area of the unit sphere

of an n-dimensional normed space has been proved. It is conjectured that the

minimum is nεn attained by the Euclidean ball. However, when n = 3 it is also

attained by the rhombic dodecahedron.
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Since µb
≥ µht, an upper bound for the Busemann area is also an upper bound

for the Holmes–Thompson area.

Corollary 6.14. The Holmes–Thompson area of the unit sphere of an n-

dimensional normed space is less than 2nεn−1.

While the sharp upper bound for the Holmes–Thompson area of the unit sphere

in any dimension greater than two is not known, the sharp lower bound in

dimension three is given by the following unpublished result of Álvarez, Ivanov,

and Thompson:

Theorem 6.15. The Holmes–Thompson area of the unit sphere of a three-

dimensional normed space is at least 36/π. Moreover , equality holds if the unit

ball is a cuboctahedron or a rhombic dodecahedron.

Since µb
≥ µht and µm∗

≥ µht, we have the following lower bound for the

Busemann and mass∗ areas of the unit sphere of a three-dimensional normed

space.

Corollary 6.16. The Busemann and mass∗ areas of unit sphere of a three-

dimensional normed space is greater than 36/π.

Although these bounds are not sharp, they are the best bounds known so far.

It is possible to use a variety of inequalities including the Petty projection

inequality (in the case of σ
ht) and the Busemann intersection inequality (in the

case of σb) to give nonsharp lower bounds. The reader is referred to [Thompson

1996] for examples of what one can get.

6.3. Mixed volumes and the isoperimetrix. We now pass to questions

concerning the relationship between areas and volumes, and, in particular, to

the solution of the isoperimetric problem in finite-dimensional normed spaces.

The subject is classical and has been studied from different viewpoints by convex

geometers, geometric measure theorists, and crystallographers (see, for example,

[Busemann 1949b], [Taylor 1978], and [Ambrosio and Kirchheim 2000]). Never-

theless, being interested in a particular intrinsic viewpoint and relations to area

on normed and Finsler spaces that are not treated elsewhere, we shall give a

short account of the subject.

Let X be an n-dimensional vector space and let λ be a Lebesgue measure on

X. If I ⊂ X is a centered convex body, we can define an (n−1)-volume density

on X by the following construction: given n − 1 linearly independent vectors

x1, . . . ,xn−1 ∈ X, we denote the parallelotope they define by [x1, . . . ,xn−1] and

set

σI(x1 ∧ x2 ∧ · · · ∧ xn−1) :=
1

n
lim

t→+0

λ([x1, . . . ,xn−1] + tI) − λ([x1, . . . ,xn−1])

t
.

It is easy to see that σI is well defined and that by changing λ for another

Lebesgue measure on X we simply multiply σI by a constant. Note also that
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although the measure of [x1, . . . ,xn−1] is zero, we have included it in the formula

to stress its relationship with the n-dimensional mixed volume of two bodies,

V (K[n − 1], L) :=
1

n
lim

t→+0

λ(K + tL) − λ(K)

t
.

With this definition, if K is a convex body in X,
∫

∂K

σI = nV (K[n − 1], I).

Exercise 6.17. Show that the (n−1)-volume density σI constructed above is a

norm on Λn−1(X), and that
∫

∂I

σI = nλ(I).

We would also like to reverse this construction: Starting from a norm σ :

Λn−1
X → [0,∞) and a Lebesgue measure λ on X construct a convex body

I ⊂ X such that σ = σI . The construction is quite simple: Let Ω be a volume

form on X such that |Ω| = λ and consider the linear isomorphism

iΩ : Λn−1
X −→ X

∗

defined by iΩ(x1 ∧x2 ∧ · · · ∧xn−1)(x) = Ω(x1 ∧x2 ∧ · · · ∧xn−1 ∧x). The body

I is given by (iΩB)∗, where B ⊂ Λn−1
X is the unit ball of σ.

In terms of mixed volumes, we have the following result:

Proposition 6.18. Let X be an n-dimensional vector space, let σ be a norm

on Λn−1
X with unit ball B and let λ be a Lebesgue measure on X. Using the

notation above, if I := (iΩB)∗, we have
∫

∂K

σ = nV (K[n − 1], I)

for all convex bodies K ⊂ X.

To prove the proposition, let us give a simpler, more visual relationship between

σ and I := (iΩB)∗ that is of independent interest. Given a nonzero (n−1)-vector

a ∈ Λn−1
X, we shall say that a vector v ∈ X is normal to a with respect to I

if v ∈ ∂I, the hyperplane parallel to 〈a〉 and passing through v supports I, and

Ω(a ∧ v) > 0. When I is smooth and strictly convex the normal is unique, but

this is of no importance to what follows. Notice, and this is important, that v

is constructed in such a way that

Ω(a ∧ v) = sup{|Ω(a ∧ x)| : x ∈ I}.

Lemma 6.19. Let X be an n-dimensional vector space, let σ be a norm on

Λn−1
X with unit ball B and let Ω ∈ Λn

X
∗ be a volume form on X. If a is a

nonzero (n−1)-vector on X and v ∈ X is normal to a with respect to I := (iΩB)∗,

then

σ(a) = Ω(a ∧ v).
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Proof. Let ‖ · ‖
∗

denote the norm in X∗ whose unit ball is I∗ = iΩB. Trivially,

we have σ(a) = ‖iΩ(a)‖∗ for any a ∈ Λn−1
X. Therefore,

σ(a) = sup{|Ω(a ∧ x)| : x ∈ I} = Ω(a ∧ v). �

In other terms, if x1, . . . ,xn−1 are linearly independent vectors in X and v is

normal to x1 ∧ x2 ∧ · · · ∧ xn−1 with respect to I, then the volume of the n-

dimensional parallelotope [x1, . . . ,xn−1,v] is the area of the (n−1)-dimensional

parallelotope [x1, . . . ,xn−1].

Proof of Proposition 6.18. Let x1, . . . ,xn−1 be linearly independent vectors

in X and let [x1, . . . ,xn−1] denote the parallelotope spanned by them. Notice

that if v is normal to x1 ∧ x2 ∧ · · · ∧xn−1 with respect to I, then for any t > 0,

the union of the n-dimensional parallelotopes

[x1, . . . ,xn−1, tv] and [x1, . . . ,xn−1,−tv],

which we denote by P (t), is contained in the set [x1, . . . ,xn−1] + tI. More-

over, since up to terms of order 2 and higher in t the volumes of P (t) and

[x1, . . . ,xn−1] + tI are the same, we have

1

n
lim

t→+0

λ([x1, . . . ,xn−1] + tI)

t
=

1

n
lim

t→+0

λ(P (t))

t
= σ(x1 ∧ x2 ∧ · · · ∧ xn−1),

and this concludes the proof. �

We are now ready to solve the isoperimetric problem for convex bodies:

Theorem 6.20. Let X be an n-dimensional vector space, let σ be a norm on

Λn−1
X with unit ball B, and let Ω ∈ Λn

X
∗ be a volume form on X. Of all

convex bodies in X with a given surface area the one that encloses the largest

volume is, up to translations, a dilate of I := (iΩB)∗.

Proof. Let K ⊂ X be a convex body and let
∫

∂K

σ = nV (K[n − 1], I)

be its surface area. By Minkowski’s mixed volume inequality, we have
(

∫

∂K

σ

)n

= n
n
V (K[n − 1], I)n

≥ n
n
λ(K)n−1

λ(I)

with equality if an only if K and I are homothetic. Thus, the volume enclosed

by K is maximal for a given surface area if and only if K is a dilate of I. �

We shall denote the isoperimetrices of a normed space X with respect to the

Busemann, Holmes–Thompson, and mass∗ definitions by I
b

X
, I

ht

X
, and I

m∗
X

, re-

spectively. In the case of the Busemann and Holmes–Thompson definitions,

the isoperimetrices can be given, nonintrinsically, in terms of intersection and

projection bodies.
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Exercise 6.21. Using Exercises 6.2 and 6.4, and the construction of the iso-

perimetrix, show that

I
b

X
=

εn−1

εn

λ(BX)(IBX)∗ and I
ht

X
=

εn

εn−1

λ
∗(B∗

X
)−1ΠB

∗
X

,

where λ and λ∗ are, respectively, the Euclidean volumes on X and X∗ given by

their identification with R
n.

Exercise 6.22. Describe the isoperimetrix Im∗
X

B in terms of wedge bodies.

6.4. Geometry of the isoperimetrix. We now turn our attention to problems

relating the unit ball of a normed space and its isoperimetrix with respect to some

volume definition. Let us start with the deceptively simple problem of estimating

the volume of the isoperimetrix.

Identifying the normed space X with R
n as in Exercise 6.21, we see that the

Holmes–Thompson volume of Iht

X
is

µ
ht

X
(Iht

X
) = ε

−1

n

(

εn

εn−1

)n

λ
∗(B∗

X
)−n+1

λ(ΠB
∗
X

).

The statement that this quantity is greater than or equal to εn with equality if

and only if X is Euclidean is known as Petty’s conjectured projection inequal-

ity, and is one of the major open problems in the theory of affine geometric

inequalities.

Sharp lower bounds for µ
b

X
(Ib

X
) and µ

m∗
X

(Im∗
X

) are also unknown, although as

observed in [Thompson 1996] the inequality µ
b

X
(Ib

X
) ≥ εn for n ≥ 3 would easily

yield (exercise!) that the Busemann area of unit sphere of a normed space of

dimension n is at least nεn.

Another interesting affine invariant involving the isoperimetrix is the sym-

plectic volume of BX × I∗
X

in X × X∗. In the two-dimensional case this simply

yields the square of the area of the unit disc, but in higher dimension it is a

much more interesting invariant:

Exercise 6.23. Pick up either [Gardner 1995] or [Thompson 1996] and, using

Exercise 6.21, prove that the inequality

svol(BX × I
∗
X

) ≤ εnµX(BX)

is true for the Busemann (resp. Holmes–Thompson) definition by showing that

it is equivalent to Busemann’s intersection inequality (resp. Petty’s projection

inequality).

It would be interesting to complete the picture by having a sharp upper bound

for svol(BX × (Im∗
X

)∗) in terms of µm∗
X

(BX).

We finish the paper by considering some questions relating length, area, and

volume. In terms of the isoperimetrix they have very simple statements: Given

a volume definition, when is the isoperimetrix equal to the unit ball, when is it

a multiple of the ball, and when is it inside the ball?
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These simple questions are really about the existence of a coarea formula or

inequality for the different definitions of volume on normed and Finsler spaces.

Many Riemannian and Euclidean results depend, or seem to depend, on the

simple fact that volume = base × height. To what extent is this true in normed

and Finsler spaces?

In order to relate the coarea formula and inequality with the geometry of the

isoperimetrix, let us first define the height of a parallelotope [x1, . . . ,xn−1,xn]

in a vector space X with respect to a centered convex body B ⊂ X by the

following construction: let ξ ∈ X
∗ be a covector in ∂B

∗ such that ξ(xi) = 0 for

all i between 1 and n − 1. The quantity |ξ(xn)|, which is independent of the

choice of ξ, will be called the height of [x1, . . . ,xn−1,xn] with respect to B.

By the construction of the isoperimetrix, we know that the volume of the

parallelotope [x1, . . . ,xn−1,xn] equals the area of its base, [x1, . . . ,xn−1], times

its height with respect to the isoperimetrix. Therefore, if the volume of every

parallelotope in a normed space equals the area of its base times its height with

respect to the unit ball, the ball equals the isoperimetrix. If the volume is greater

than the area of the base times the height with respect to the unit ball, then the

isoperimetrix is contained in the ball, and so on.

The first clear sign that the relationship between length, area and volume

may not go smoothly on normed and Finsler spaces is the following result of

Thompson:

Proposition 6.24 [Thompson 1996]. The isoperimetric of a normed space X

for the Holmes–Thompson definition is contained in the unit ball if and only if

the space is Euclidean. In which case, the ball and the isoperimetric are equal .

In other words, the coarea equality or inequality “volume ≥ base × height” for

the Holmes–Thompson definition is true only for Euclidean spaces.

Proof. If I
ht

X
⊂ BX , then B

∗
X

⊂ (Iht

X
)∗ and, therefore,

svol(BX × (Iht

X
)∗) ≥ svol(BX × B

∗
X

) = εnµ
ht

X
(BX).

By Exercise 6.23, the only way this can happen is if X is Euclidean. �

However, for the mass∗ definition the coarea inequality is always true:

Theorem 6.25 [Gromov 1983]. If X is a finite-dimensional normed space, then

I
m∗
X

⊂ BX .

Proof. We must show that if [v1, . . . ,vn] is a parallelotope,

µ
m∗(v1 ∧ v2 ∧ · · · ∧ vn) ≥ σ

m∗(v1 ∧ v2 ∧ · · · ∧ vn−1)|ξ(vn)|,

where ξ ∈ ∂B
∗
X

and ξ(vi) = 0, 1 ≤ i ≤ n − 1.

Without loss of generality we may suppose that v1,v2, . . . vn−1 is an extremal

basis in the subspace V ⊂ X they span, i.e. each vector vi is a point of contact

between BX ∩ V and a minimal circumscribing parallelotope for B ∩ V . Let u
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be such that ‖u‖ = ξ(u) = 1 and set vn = αu+x where x ∈ V . The right hand

side of the above inequality is |α|.

Let ξ
1
, ξ

2
, . . . , ξ

n−1
be the dual basis to the vi’s in V and extend these to the

whole of X by setting ξ
i
(u) = 0. Then ξ

1
, ξ

2
, . . . , ξ

n−1
, ξ are all of norm 1 and

form the dual basis to v1,v2, . . . ,vn−1,u. Now

µ
m∗
X

(v1 ∧ v2 ∧ · · · ∧ vn) = |α|µ
m∗
X

(v1 ∧ v2 ∧ · · · ∧ vn−1 ∧ u)

= |α|(µm

X∗(ξ
1
∧ ξ

2
∧ · · · ∧ ξ

n−1
∧ ξ))−1

≥ |α|(‖ξ‖
∏

‖ξ
i
‖)−1 = |α|.

The inequality comes from the definition of mass. �

As we have said, the problem of determining for what normed spaces metric

balls are solutions to the isoperimetric problem, i.e. when is the isoperimetrix

a multiple of the unit ball, is completely open for all three definitions of volume

in dimensions greater than two.
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48 J. C. ÁLVAREZ PAIVA AND A. C. THOMPSON

[Schneider 1993] R. Schneider, Convex bodies: the Brunn–Minkowski Theory, Encyclo-
pedia of Math. and Its Appl. 44, Cambridge University Press, New York, 1993.

[Schneider 2001] R. Schneider, “On the Busemann area in Minkowski spaces”, Beitr.

Algebra Geom. 42 (2001), 263–273.

[Schneider 2001] R. Schneider, “Crofton formulas in hypermetric projective Finsler
spaces”, Festschrift: Erich Lamprecht. Arch. Math. (Basel) 77:1 (2001), 85–97.

[Schneider 2002] R. Schneider, “On integral geometry in projective Finsler spaces”,
Izv. Nats. Akad. Nauk Armenii Mat. 37 (2002) 34–51.

[Schneider and Weil 1983] R. Schneider and W. Weil, “Zonoids and related topics”,
pp. 296–317 in Convexity and its applications, edited by P. M. Gruber and J. M.
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1. Introduction

Motion by mean curvature of an embedded smooth hypersurface without

boundary has been the subject of several recent papers, because of its geometric

interest and of its application to different areas, see for instance the pioneering

book [Brakke 1978], or the papers [Allen and Cahn 1979], [Huisken 1984], [Osher

and Sethian 1988], [Evans and Spruck 1991], [Almgren et al. 1993]. A smooth

boundary ∂E of an open set E = E(0) ⊂ R
n flows by mean curvature if there

49
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exists a time-dependent family (∂E(t))t∈[0,T ] of smooth boundaries satisfying the

following property: the normal velocity of any point x ∈ ∂E(t) is equal to the

sum of the principal curvatures of ∂E(t) at x. One can show that, at each time

t, such an evolution process reduces the area of ∂E(t) as fast as possible. Mean

curvature flow has therefore a variational character, since it can be interpreted

as the gradient flow associated with the area functional ∂E → H
n−1(∂E), where

H
n−1 indicates the (n−1)-dimensional Hausdorff measure in R

n.

In several physical processes (for instance in certain models of dendritic growth

and crystal growth, see [Cahn et al. 1992], or in statistical physics (see for ex-

ample [Spohn 1993]) it turns out, however, that the evolution of the surface is

not simply by mean curvature, but is an anisotropic evolution. From the en-

ergy point of view, this means that the functional of which we are taking the

gradient flow is not the area of ∂E anymore, but is a weighted area, which can

be derived by looking at R
n as a normed space. Let φ : R

n
→ [0,+∞[ be a

norm on R
n. One of the most common area measures of ∂E in the normed

space (Rn
, φ) is the so-called Minkowski content M

n−1

dφ
(∂E) of ∂E induced by

φ. Denoting by dφ(x, y) := φ(y − x) the distance on R
n induced by φ and by

H
n

dφ
the n-dimensional Hausdorff measure with respect to dφ, M

n−1

dφ
is defined

as

M
n−1

dφ
(∂E) := lim

ρ→0+

1

2ρ
H
n

dφ

(

{z ∈ R
n : inf

x∈∂E
dφ(z, x) < ρ}

)

. (1–1)

Since it is possible to prove that H
n

dφ
coincides with the Lebesgue measure | · |

multiplied by the factor

cn,φ :=
ωn

|{ξ ∈ R
n : φ(ξ) ≤ 1}|

,

ωn being a normalizing constant, we have

M
n−1

dφ
(∂E) = cn,φ lim

ρ→0+

1

2ρ

∣

∣

{z ∈ R
n : inf

x∈∂E
dφ(z, x) < ρ}

∣

∣. (1–2)

Therefore, Mn−1

φ
(∂E) measures (for small ρ > 0) the ratio between the volume

of a ρ-tubular neighborhood of ∂E and ρ. Definition (1–1) can be made more

explicit, since it turns out that

M
n−1

dφ
(∂E) = cn,φ

∫

∂E

φ
o(νE) dHn−1

. (1–3)

Here νE is the Euclidean unit normal to ∂E pointing outside of E, and the func-

tion φo : R
n
→ [0,+∞[ is the dual norm of φ. Physically, φo(ν) plays the rôle of

a surface tension of a flat surface whose normal is ν, and can be considered as the

anisotropy. The functional (1–3) is the above mentioned weighted area, whose

gradient flow gives raise to the so-called anisotropic motion by mean curvature.

In the regular case, that is, when φ2 is smooth and strictly convex, the relevant

quantity is the so-called Cahn–Hoffman vector field nE
φ

on ∂E, which is the im-

age of νE
φ

:= ν
E
/φ

o(νE) through the map 1

2
∇((φo)2), and whose divergence is
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the anisotropic mean curvature of ∂E (denoted by κE
φ

). The anisotropic mean

curvature is derived (again by a variational principle) in the computation of the

first variation of (1–3). Therefore, for any time t, anisotropic mean curvature

flow is defined in such a way to decrease M
n−1

dφ
(∂E(t)) as fast as possible.

Besides the regular case, other anisotropies can be considered; we are partic-

ularly interested in the crystalline case, when the function φ is piecewise linear

(or equivalently when the unit ball Bφ := {φ ≤ 1} is a polytope). From the

mathematical point of view, this field of research was initiated by the work of J.

Taylor [Taylor 1978], [Taylor 1986], [Taylor 1991], [Cahn et al. 1992], [Taylor

1992], [Taylor 1993], [Almgren and Taylor 1995]. See also the papers [Hoffman

and Cahn 1972], [Cahn and Hoffman 1974], [Cahn et al. 1993]. Recently, several

authors contributed to the subject: see for instance

• [Girao and Kohn 1994], [Girao 1995], [Rybka 1997], [Ishii and Soner 1999]

and [Giga and Giga 2000] for general properties of the crystalline flow in two

dimensions and for the convergence of a crystalline algorithm;

• [Stancu 1996] for self-similar solutions of the crystalline flow in two dimen-

sions;

• [Fukui and Giga 1996], [Giga and Giga 1997], [Giga and Giga 1998b], [Giga

and Giga 1999] for the crystalline evolution of graphs in two dimensions;

• [Giga and Gurtin 1996] for a comparison theorem for crystalline evolutions in

two dimensions;

• [Roosen and Taylor 1994] for the crystalline evolution in a diffusion field, and

[Giga and Giga 1998a] for the crystalline flow with a driving force in two

dimensions;

• [Ambrosio et al. 2002] for some regularity properties of solutions to crystalline

variational problems in two dimensions;

• [Yunger 1998] and [Paolini and Pasquarelli 2000] for some properties of the

crystalline flow in three dimensions.

In two dimensions (that is, for crystalline curvature evolution of curves) the

situation is essentially understood, since the notion of crystalline curvature is

clear, as well as the corresponding geometric evolution law. For instance, for

polygonal initial curves (whose geometry is compatible with the geometry of

∂Bφ) a comparison principle is available and the flow admits local existence

and uniqueness. It turns out that each edge of the curve translates in normal

direction during the flow, and the evolution can be described by a system of

ordinary differential equations.

However, in three space dimensions the situation is not so clear. As in the two-

dimensional case, it is necessary to redefine what is a smooth boundary ∂E, in

order to assign to our interface some notion of φ-mean curvature. To this purpose

we recall a (rather strong) notion of smoothness, the Lipschitz φ-regularity. Even

with this notion at our disposal, the definition of the crystalline mean curvature

is quite involved. In addition, once the crystalline mean curvature κE
φ

is defined
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on ∂E, one realizes that, in general, it is not constant on two-dimensional facets

F of ∂E. This fact is a source of difficulties, since (being κE
φ

identified with the

normal velocity of ∂E at the initial time) facets can split in several pieces, or can

even bend (forming curved regions) during the subsequent evolutionary process.

These phenomena (which probably should not be considered as singularities of

the flow) partially explain why when n = 3, a short time existence theorem for

crystalline mean curvature flow is still missing (even for convex initial data E).

Concerning this kind of behavior, we refer also to the work [Yunger 1998].

Before illustrating the plan of the paper, we observe that other choices of area

measures are possible in (Rn
, φ), which are as natural as the φ-Minkowski con-

tent. For example, one could consider the (n−1)-dimensional Hausdorff measure

H
n−1

dφ
(∂E) of ∂E with respect to dφ. Also for this notion of area, an integral rep-

resentation theorem is available, which shows in particular that Mn−1

dφ
(∂E) and

H
n−1

dφ
(∂E) may differ. Therefore, taking the first variation of Hn−1

dφ
would give

a notion of mean curvature (see [Shen 1998]) which is different from κ
E

φ
. This,

in turn, implies that the gradient flow of the dφ-Hausdorff measure functional

is a different geometric evolution process. Our viewpoint will be to work with

the φ-Minkowski content of ∂E. We remark that all the theory that we develop

can be similarly constructed for H
n−1

dφ
: indeed, what is really relevant is that

H
n−1

dφ
(∂E) can also be represented as an integral on ∂E, by means of an inte-

grand (weighting νE) which is convex. Finally, we recall that the mean curvature

obtained from the first variation of the volume form for the Minkowski content

on regular hypersurfaces in a Finsler manifold is considered in [Shen 2001].

The content of the paper is the following. In Section 2 we give some notation.

In particular, in Subsection 2.1 we introduce the norm φ, its unit ball Bφ and

the induced distance dφ. In Subsection 2.2 we recall the main properties of the

dual φo of φ and of the duality maps Tφ and Tφo . In particular, we discuss the

geometric properties of such maps, also in the crystalline case. In Subsection 3.1

we discuss the integral representation of Hn−1

dφ
(Theorem 3.3). In Subsection 3.2

we discuss the integral representation of M
n−1

dφ
(Theorem 3.7). The relations

between H
n−1

dφ
and M

n−1

dφ
are considered in Subsection 3.3. Section 3 is based

on the results proved in [Bellettini et al. 1996]. In Section 4 we recall the first

variation of area in the Euclidean case, and the main definitions and properties

of Euclidean mean curvature flow. We rely heavily on the notion of oriented

distance function from ∂E. In Subsection 4.2 we focus attention on the regular

case and on the first variation of the weighted area. The definition of φ-mean

curvature is given in (4–9). Also here the oriented φ-distance function plays

a crucial rôle. In Subsection 4.3 we state some generalizations of the previous

results when the norm is space-dependent. Subsections 4.2 and 4.3 are based

on the results proved in [Bellettini and Paolini 1996]. The crystalline case is

deepened in Section 5. Lipschitz φ-regularity is introduced in Definition 5.2, and

illustrated with examples. The geometry of a facet F ⊂ ∂E is studied in Section
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6, which is preliminary to the definition of crystalline mean curvature on F

(Definition 7.2). We will restrict for simplicity to polyhedral Lipschitz φ-regular

sets. After some examples, in Subsection 7.1 we illustrate some properties of

those facets having constant crystalline mean curvature. Sections 5, 6 and 7

are based on the results originally proved in [Bellettini et al. 1999], [Bellettini

et al. 2001a], [Bellettini et al. 2001b], [Bellettini et al. 2001c]. We conclude the

paper with Section 8, where we briefly summarize the main ideas and motivations

behind our approach.

2. Notation

Given two vectors v, w ∈ R
n, n ≥ 2, we denote by 〈v, w〉 the scalar product be-

tween v and w. We also set |v| :=
√

〈v, v〉 and Sn−1 := {v ∈ R
n : |v| = 1}. Given

an integer k ∈ [0, n], we denote by H
k the k-dimensional Hausdorff measure in

R
n (see [Federer 1969] and [Ambrosio et al. 2000]). If B ⊂ R

n is a Borel set, we

let |B| to be the Lebesgue measure of B (which equals Hn(B)) and dist(x,B) to

be the distance of the point x ∈ R
n from B, defined as inf{|y−x| : y ∈ B}. Even

if B is a smooth hypersurface, it is not difficult to realize that the distance func-

tion dist( · , B) is not differentiable on B. We let ωm := π
m/2

/ ∫

+∞

0
s
m/2

e
−s

ds,

which turns out to be the Lebesgue measure of {x ∈ R
m : |x| ≤ 1}, for an integer

m ∈ [0, n].

We say that the set M ⊂ R
n is an (n−1)-dimensional Lipschitz manifold if

M can be written, locally, as the graph of a Lipschitz function (with respect to

a suitable orthogonal system of coordinates) defined on an open subset of R
n−1.

We say that the open set E ⊂ R
n is Lipschitz (or that its topological boundary

∂E is Lipschitz) if ∂E can be written, locally, as the graph of a Lipschitz function

of (n−1) variables (with respect to a suitable orthogonal system of coordinates)

and E is locally the subgraph. We recall (see [Federer 1969]) that, if E has

Lipschitz boundary, then at H
n−1-almost every x ∈ ∂E, the unit (Euclidean)

normal vector to ∂E pointing toward R
n
\ E is well defined and, in the sequel,

will be denoted by νE(x).

If f is a smooth function defined on an open subset of R
n, we denote by

∇f = (∂f/∂x1, . . . , ∂f/∂xn) the gradient of f and by ∆f the Laplacian of f .

2.1. The norm φ and the distance dφ. In what follows we indicate by

φ : R
n
→ [0,+∞[ a convex function which satisfies the properties

φ(ξ) ≥ λ|ξ|, ξ ∈ R
n
, (2–1)

for a suitable constant λ ∈ ]0,+∞[, and

φ(aξ) = |a|φ(ξ), ξ ∈ R
n
, a ∈ R. (2–2)

Notice that our assumptions ensure that there exists a constant Λ ≥ λ such that

φ(ξ) ≤ Λ|ξ| for any ξ ∈ R
n. The function φ is a norm on R

n, called a Minkowski
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norm (or Minkowski metric). The vector space R
n endowed with φ is a normed

space called Minkowski space and is probably the simplest example of a Finsler

manifold: in this case, the manifold is R
n, and φ is a norm (independent of the

position) on its tangent space which obviously is a copy of R
n. We set

Bφ := {ξ ∈ R
n : φ(ξ) ≤ 1}

(the unit ball of φ), a bounded convex set containing the origin in its interior and

centrally symmetric (a so-called symmetric convex body). Bφ is usually called

the indicatrix (sometimes also Wulff shape). The function φ can be identified

with Bφ, since given a symmetric convex body K, the function ξ → inf{α > 0 :

ξ ∈ αK} is a convex function satisfying (2–1), (2–2) and having K as unit ball.

Clearly φ is uniquely determined by its values on the unit sphere Sn−1.

Remark 2.1. If we weaken assumption (2–2) into φ(aξ) = aφ(ξ) for any ξ ∈ R
n

and any a ≥ 0, we have that Bφ is not centrally symmetric anymore. Some of

the results in the next sections can be generalized to nonsymmetric functions φ;

in the sequel, for simplicity we will restrict to the symmetric case.

It is always useful to keep in mind the Euclidean case, which corresponds to the

choice φ(ξ) = |ξ|. The Riemannian case corresponds to a norm φ whose Bφ is

an ellipsoid: φ(ξ) :=
√

〈Aξ, ξ〉 for a real positive definite symmetric matrix A.

Definition 2.2. We say that φ is regular if Bφ has boundary of class C
∞ and

each principal curvature of ∂Bφ is strictly positive at each point of ∂Bφ.

Example 2.1. Let p ∈ [1,+∞[, p 6= 2 and set φ(ξ) := (
∑

n

i=1
|ξi|

p)1/p. Then

φ is not regular: indeed, if p > 2 then Bφ is of class C
2 but the requirement on

principal curvatures in Definition 2.2 is not fulfilled. On the other hand, if p < 2

then ∂Bφ is not of class C
2.

Definition 2.3. We say that φ is crystalline if Bφ is a polytope.

Example 2.2. The norms φ(ξ) :=
∑

n

i=1
|ξn| and φ(ξ) := max{|ξ1|, . . . , |ξn|} are

crystalline.

It is well known that, given the norm φ, we can measure distances in R
n by

“integrating” φ as follows: the φ-distance dφ(x, y) between two points x, y ∈ R
n

is given by

dφ(x, y) = inf
{

∫

1

0

φ(γ̇) dt : γ ∈ AC([0, 1]; Rn), γ(0) = x, γ(1) = y

}

= φ(y − x), (2–3)

where AC([0, 1]; Rn) is the class of all absolutely continuous curves from [0, 1]

to R
n. The last equality in (2–3) is, for instance, a consequence of Jensen’s

inequality. The function dφ is nonnegative, symmetric, vanishes only if x = y,

and satisfies the triangular property. To be consistent with the beginning of this
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section, when φ(ξ) = |ξ| (Euclidean case) we omit the subscript φ in the notation

of the distance function.

Remark 2.4. We recall the following interesting fact. Given a distance d :

R
n
× R

n
→ [0,+∞[ on R

n, by differentiation we can construct a new function

ψd : R
n
× R

n
→ [0,+∞] which, under suitable assumptions, turns out to be a

Finsler metric (which, in this case, depends on the position x):

ψd(x, ξ) := lim sup
t→0

d(x, x+ tξ)

t
, x ∈ R

n
, ξ ∈ R

n
.

Some of the properties of the functions ψd, dψd have been investigated for in-

stance in the papers [De Giorgi 1989], [De Giorgi 1990], [Venturini 1992], [Bel-

lettini et al. 1996], [Amar et al. 1998] (see also [De Cecco and Palmieri 1993],

[De Cecco and Palmieri 1995] for related results on Lipschitz manifolds).

2.2. The dual norm φo. The duality maps. Given the norm φ acting on

vectors, we define the dual norm φ
o : R

n
→ [0,+∞[ of φ (acting on covectors)

as

φ
o(ξo) := sup{〈ξ, ξo〉 : ξ ∈ Bφ}, ξ

o
∈ R

n
. (2–4)

It is not difficult to verify that φo is a norm on (the dual of) R
n, and that

(φo)o = φ. It is possible to prove that if φ is regular then also φo is regular, and

that if φ is crystalline then φo is crystalline. The function φo is strictly related to

the Legendre–Fenchel transform φ
∗ of φ, defined as φ∗(ξo) := sup{〈ξ, ξo〉−φ(ξ) :

ξ ∈ R
n
}. Indeed φ∗(ξo) = +∞ if ξ /∈ Bφo , and φ∗(ξo) = 0 if ξ ∈ Bφo .

Example 2.3. Figure 1 describes how to construct Bφo starting from φ. As-

sume we have been given a smooth symmetric convex body {φ ≤ 1} as (the

ellipse) in Figure 1. Let ν ∈ S
n−1 be a unit vector. By definition and using

the homogeneity, computing φo(ν) is equivalent to solve the maximum problem

max{〈ν, z〉 : z ∈ ∂Bφ}.

The vector ξ = ξ(ν) in Figure 1 is the solution, hence φo(ν) = 〈ν, ξ〉. Observe

that the strict convexity of Bφ ensures uniqueness of the solution of the maximum

problem (2–4); it is clear that if ∂Bφ contains some flat region, problem (2–4)

has in general more than one solution.

Remark 2.5. Notice that

φ
o(ν) =

1

2
H

1(pr
ν
(Bφ)), (2–5)

where pr
ν
(Bφ) denotes the orthogonal projection of Bφ onto the line Rν; see

Figure 1.

The map described in Figure 1 associating to the vector ξ ∈ ∂Bφ the vector

ν/φ
o(ν) ∈ ∂Bφo (extended in a one-homogeneous way on the whole of R

n) is

called the duality map, and can also be defined in the crystalline case.
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ν

−ξ

ξ

Bφ

S
1

H
1(prν(Bφ))

Figure 1. ν is a unit vector. The vector ξ ∈ ∂Bφ (dotted line) is such that

φ
o(ν) = 〈ν, ξ〉. Observe that the line tangent to ∂Bφ at ξ is orthogonal to ν.

The distance between this line and its parallel line tangent to ∂Bφ at −ξ is the

length of the orthogonal projection of Bφ onto the one-dimensional subspace

Rν, and equals 2φ
o(ν).

Definition 2.6. By Tφ and Tφo we denote the (possibly multivalued) duality

maps defined as

Tφ(ξ) := {ξ
o
∈ R

n : 〈ξo, ξ〉 = φ(ξ)2 = (φo(ξo))2}, ξ ∈ R
n
,

Tφo(ξ
o) := {ξ ∈ R

n : 〈ξ, ξo〉 = (φo(ξo))2 = φ(ξ)2}, ξ
o
∈ R

n
.

(2–6)

Possibly adopting the conventions on multivalued mappings (see for instance

[Brezis 1973]) one can check that Tφ(aξ) = |a|Tφ(ξ) for any ξ ∈ R
n and any

a ∈ R, and similarly for Tφo . Moreover Tφ takes ∂Bφ onto ∂Bφo , Tφo takes ∂Bφo

onto ∂Bφ, and TφTφo = TφoTφ = Id.

Remark 2.7. Let φ be regular. Then Tφ and Tφo are single valued. Moreover

Tφ =
1

2
∇((φ)2) = φ∇φ, Tφo =

1

2
∇((φo)2) = φ

o
∇φ

o
. (2–7)

Example 2.4. When φ(ξ) = |ξ| (Euclidean case), then Tφ = Id. When φ(ξ) =
√

〈Aξ, ξ〉 is Riemannian, then Tφ(ξ) = Aξ.

Figure 2 illustrates how to construct Tφ in a regular case. First of all, since Tφ
is one-homogeneous, it is enough to evaluate Tφ on ∂Bφ.

The point ξ belongs to ∂Bφ; since Tφ(ξ) = ∇φ(ξ) and ∂Bφ is a level set of φ,

it is clear that Tφ(ξ) is orthogonal to ξ. In addition, φo(∇φ(ξ)) = 1 = 〈ξ,∇φ(ξ)〉,

which implies |Tφ(ξ)| = 〈ξ,∇φ(ξ)/|∇φ(ξ)|〉−1.

In what follows, it is important to keep in mind that the duality maps in (2–6)

are still well defined under our assumptions on a Minkowski norm, in particular

in the crystalline case. If φ is not regular, the equalities in (2–7) become

Tφ = 1

2
∇

−((φ)2) = φ∇
−
φ, Tφo = 1

2
∇

−((φo)2) = φ
o
∇

−
φ
o
, (2–8)
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ξ

ξ
o

ξ
o

Bφ Bφo

Tφ

Figure 2. The point ξ belongs to ∂Bφ. The point Tφ(ξ) := ξ
o ∈ ∂Bφo is the

unit normal ν
Bφ(ξ) to ∂Bφ at ξ, multiplied by the factor 〈ξ, νBφ(ξ)〉−1.

where ∇
− denotes the usual subdifferential in convex analysis (see for instance

[Rockafellar 1972]); the main feature of the maps Tφ and Tφo is that they are no

longer one-to-one.

Geometrically, if ξ ∈ ∂Bφ, then Tφ(ξ) is the intersection of the closed outward

normal cone to ∂Bφ with ∂Bφo . In Figure 3 we show an example of Bφ and of

its dual body Bφo : Bφ is the Cartesian product of a planar regular hexagon with

the interval [−1, 1]. If ξ ∈ ∂Bφ is a point in the relative interior of a facet, then

the normal cone Tφ(ξ) to ∂Bφ at ξ is a singleton (a vertex in ∂Bφo); if ξ ∈ ∂Bφ is

a point in the relative interior of an edge, then Tφ(ξ) is a one-dimensional closed

segment (a closed edge in ∂Bφo); if ξ ∈ ∂Bφ is a vertex, then Tφ(ξ) is a closed

triangle (a closed facet in ∂Bφo).

Bφo Bφ

Figure 3. Dual polytopes. Duality maps take vertices into closed facets, points

in the relative interior of a facet into vertices, and points in the relative interior

of an edge into closed edges. The Bφo depicted here is supposed to look like an

umbrella viewed from above.

3. Area Measures in (Rn, φ)

3.1. The (n−1)-dimensional Hausdorff measure. We recall the definition

of Hausdorff measure in the metric space (Rn
, dφ); see [Federer 1969].
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Definition 3.1. If A ⊆ R
n is a Borel subset of R

n and m ∈ {n− 1, n} we set

H
m

dφ
(A) :=

ωm

2m
lim
δ→0+

inf

{

+∞
∑

i=1

(diamdφ
(Si))

m : A ⊆

⋃

+∞
i=1

Si, diamdφ
(Si) < δ

}

,

(3–1)

where diamdφ
(Si) := sup{dφ(s, σ) : (s, σ) ∈ Si × Si} is the diameter of the set

Si with respect to dφ.

It is not difficult to prove that the limit in (3–1) exists. Consistent with the

notation in Section 2, when φ is the Euclidean norm we omit the subscript dφ
in the notation of the Hausdorff measure. The following integral representation

result provides an explicit formula for computing H
n

dφ
and H

n−1

dφ
.

Theorem 3.2. Let φ be a norm on R
n. Then

H
n

dφ
(A) =

∫

A

ωn

|Bφ|
dx =

ωn

|Bφ|
|A|,

for any Borel set A ⊆ R
n.

Given ν ∈ Sn−1, denote by

Sν(Bφ) := {ξ ∈ Bφ : 〈ν, ξ〉 = 0}

the section of Bφ with the hyperplane orthogonal to ν passing through the origin;

moreover, set

Iφ(ν) :=
1

H
n−1(Sν(Bφ))

. (3–2)

Theorem 3.3. Let φ be a norm on R
n. Let M be a (n−1)-dimensional Lipschitz

manifold in R
n. Then

H
n−1

dφ
(A ∩M) = ωn−1

∫

A∩M

Iφ(νM ) dHn−1
, (3–3)

where νM (x) is a unit vector normal to M at x and A ⊆ R
n is a Borel set .

The measure H
n−1

dφ
is also called Busemann surface measure, see the books

[Thompson 1996], [Schneider 1993] for detailed information on this topic and

for complete references.

We will still denote by Iφ the one-homogeneous extension of the function in

(3–2) on the whole of R
n. We then have that the unit ball of Iφ can be written

as

{ξ ∈ R
n : Iφ(ξ) ≤ 1} =

{

ξ ∈ R
n : |ξ| ≤ H

n−1(Sξ/|ξ|(Bφ))
}

,

that is, {Iφ ≤ 1} is the so-called intersection body I(Bφ) of Bφ. An interesting

result of Busemann ensures that I(Bφ) is convex (see [Busemann 1947], [Buse-

mann 1949], [Thompson 1996], [Schneider 1993] and references therein). This, in

turn, is essentially equivalent to the following semicontinuity property of Hn−1

dφ
:
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if {Ek}k is a sequence of finite perimeter sets whose characteristic functions con-

verge in L
1(Rn) to the characteristic function of a finite perimeter set E, then

H
n−1

dφ
(∂E) ≤ lim infk→+∞ H

n−1

dφ
(∂Ek).

3.2. The (n−1)-dimensional Minkowski content.

Definition 3.4. Let M be a (n−1)-dimensional Lipschitz manifold. We define

the (n−1)-dimensional Minkowski content M
n−1

dφ
(M) of M with respect to dφ

as

M
n−1

dφ
(M) := lim

ρ→0+

H
n

dφ
({z ∈ R

n : distφ(z,M) < ρ})

2ρ
. (3–4)

Under our regularity assumption on ∂E it is possible to prove that the limit in

(3–4) exists (see [Federer 1969], [Ambrosio et al. 2000]).

In the Euclidean case φ(ξ) = |ξ|, the (n−1)-dimensional Minkowski content

coincides with the (n−1)-dimensional Hausdorff measure.

Observe that H
n

dφ
and M

n−1

φ
are invariant under isometries between the

normed ambient spaces, while cn,φ is not invariant.

Remark 3.5. The Minkowski content M
n−1

dφ
provides a notion of surface mea-

sure which is constructed by means of the orthogonal projections of Bφ onto

the (one-dimensional) normal spaces to the manifold M ; on the other hand the

Hausdorff measure H
n−1

dφ
is constructed by means of the intersections of Bφ with

the ((n−1)-dimensional) tangent spaces to M . Other notions of surface mea-

sure, different in general from these two notions, can be considered, such as the

Holmes–Thompson measure, see [Thompson 1996], or the definitions introduced

in [De Giorgi 1995] (see [Ambrosio and Kirchheim 2000]).

Remark 3.6. It can be proved that, for a Lipschitz set E, Mn−1

dφ
(∂E) coincides

with the perimeter of the set E with respect to φ, whose definition is given in a

distributional way.

The following representation result provides an explicit integral formula for com-

puting the Minkowski content of a sufficiently smooth set.

Theorem 3.7. Let M be a (n−1)-dimensional Lipschitz manifold . Then

M
n−1

dφ
(M) = cn,φ

∫

M

φ
o(νM ) dHn−1

. (3–5)

The validity of Theorem 3.7 can be explained as follows: the measure H
n

dφ
is

cn,φ times the Lebesgue measure. Moreover the Lebesgue measure of the ρ-

tubular neighborhood (in the distance dφ) in (3–4) is approximately H
n−1(M)

multiplied by the 1-dimensional length of the orthogonal projection of {φ ≤ ρ}

in the direction ν, see Figure 4. This length equals 2ρφo(ν), hence (3–5) follows.

Since φ
o is convex, the following semicontinuity property of M

n−1

dφ
holds:

if {Ek}k is a sequence of finite perimeter sets whose characteristic functions

converge in L1(Rn) to the characteristic function of a finite perimeter set E,

then M
n−1

dφ
(∂E) ≤ lim infk→+∞ M

n−1

dφ
(∂Ek).
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2φ
o(ν)

M

ν

{φ ≤ ρ}

Figure 4. We assume for simplicity that M is flat, and that ν ∈ S
n−1 is

orthogonal to M . The ρ-tubular neighborhood (in the distance dφ) is obtained

by centering rescaled sets {φ ≤ ρ} of {φ ≤ 1} at points of M .

3.3. From the Hausdorff measure to the Minkowski content. As already

remarked in the Introduction, in what follows we will work with M
n−1

dφ
and this

will affect the value of the φ-mean curvature. However, one could consider Hn−1

dφ

as well, and change all subsequent definitions by replacing φo with Iφ. We refer

to [Shen 1998] for a definition of mean curvature obtained by considering the

intrinsic Hausdorff measure.

The following result follows from Theorems 3.3 and 3.7.

Proposition 3.8. Let φ be a norm on R
n. Then

H
n−1

dφ
= M

n−1

dψ
, ψ :=

(

ωn−1|B(Iφ)o |

ωn

)1/(n−1)

(Iφ)o. (3–6)

4. First Variation of Area and Mean Curvature Flow.

Regular Case

In this section we define the anisotropic φ-mean curvature. We first recall

some facts concerning the Euclidean case.

4.1. Preliminaries on the Euclidean case. Let E ⊂ R
n be an open set with

smooth compact boundary. It is known (see for instance [Giusti 1984], [Ambrosio

1999]) that, under these assumptions, there exists a tubular neighborhood U of

∂E such that the oriented distance function d
E from ∂E negative inside E,

defined as

d
E(z) := dist(z,E) − dist(z,Rn

\ E), z ∈ R
n
,

is smooth on U , and |∇d
E(z)| = 1 for any z ∈ U (eikonal equation). Hence, given

any x ∈ ∂E, ∇dE(x) is the outer unit normal νE(x) to ∂E at x. In addition

∆dE(x) is the sum of the principal curvatures (the mean curvature) of ∂E at x.

Therefore −∆dE(x)∇dE(x) is the mean curvature vector of ∂E at x.
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In order to compute the first variation of area, we need to introduce a class of

admissible variations. We define a family Ψλ of compactly supported diffeomor-

phisms of the ambient space R
n as follows. Denote by Ψ : R

n+1
→ R

n a smooth

vector field. Given any λ ∈ R, define Ψλ : R
n

→ R
n as Ψλ(x) := Ψ(x, λ).

Assume that Ψ0 = Id and that Ψλ− Id has compact support for any λ ∈ R \{0}.

The following theorem is the classical result on the first variation of area, see for

instance [Giusti 1984].

Theorem 4.1. For any λ ∈ R define Eλ := Ψλ(E). Then

d

dλ
H
n−1(∂Eλ)|λ=0 =

∫

∂E

∆dE 〈X,∇d
E
〉 dH

n−1
, (4–1)

where X := (∂Ψλ/∂λ)|λ=0.

Observe that only the normal component of X enters in formula (4–1).

We are now in a position to define the smooth mean curvature flow starting

from a given ∂E.

Definition 4.2. Let E ⊂ R
n be an open set with smooth compact boundary.

Let T > 0 and, for any t ∈ [0, T ], let E(t) be a set with compact boundary.

We say that (E(t))t∈[0,T ] is a smooth mean curvature flow in [0, T ] starting from

E = E(0) if the following conditions hold:

(i) there exists an open set A ⊂ R
n containing ∂E(t) for any t ∈ [0, T ] such

that, if we set

d̄(z, t) := dist(z,E(t)) − dist(z,Rn
\E(t)), z ∈ R

n
, t ∈ [0, T ],

we have d̄ ∈ C
∞

(

A× [0, T ]
)

;

(ii)
∂

∂t
d̄(x, t) = ∆d̄(x, t), x ∈ ∂E(t), t ∈ [0, T ]. (4–2)

Condition (i) implies that each ∂E(t) is a smooth boundary, smoothly evolving

in time. The vector −(∂d̄/∂t)∇d̄(x, t) is the projection of the velocity of the

point x on the normal space to ∂E(t) at x (see for instance [Ambrosio 1999]).

Example 4.1. The main explicit example of mean curvature flow is the one

of the sphere E = {|z| < R0}, which shrinks self-similarly. Indeed in this case

d̄(z, t) = |z| − R(t), and the equation (4–2) becomes Ṙ = −(n − 1)/R. Its

solution represents the evolving sphere of radius R(t) =
√

R2

0
− 2(n− 1)t for

t ∈ [0, 1

2
R

2

0
/(n− 1)], which disappears for times larger than 1

2
R

2

0
/(n− 1).

It is customary to say that the evolution law (4–2) is the gradient flow of the

area functional Hn−1(∂E); the idea is that, at each time, the set E(t) evolves in

such a way to make H
n−1(∂E(t)) as small as possible. This assertion has been

made rigorous in the paper [Almgren et al. 1993], where it is shown that the
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correct (nonsymmetric) distance between sets to use in order to obtain the mean

curvature flow is

(E,F ) ⊂ R
n
× R

n
→

∫

(E\F )∪(F\E)

dist(x, ∂F ) dx. (4–3)

Mean curvature flow has been the subject of several recent papers, of which we

list some. We refer to:

• [Gage and Hamilton 1986] and [Evans and Spruck 1992a] for a local in time

existence and uniqueness theorem of a smooth solution;

• [Ecker and Huisken 1989] and [Ecker and Huisken 1991] for the evolution of

graphs;

• [Huisken 1984] for the evolution of convex sets;

• [Grayson 1987] and [Angenent 1991a] for local and global properties of the

flow of curves;

• [Barles et al. 1993], [Evans and Spruck 1992b], [Evans and Spruck 1995],

[White 1995], [White 2000], [White 2003] for some qualitative properties of

the flow.

• Concerning global in time solutions, defined after the onset of singularities,

we refer to:

• [Brakke 1978], where a geometric measure theory approach is introduced;

• [Evans and Spruck 1991] and [Chen et al. 1991] for the level set method and

viscosity solutions;

• [Ilmanen 1992], [Ilmanen 1993a], [De Giorgi 1993], [De Giorgi 1994] and

[Bellettini and Paolini 1995] for the barriers method (see also [Soner 1993]);

• [Almgren et al. 1993] for a variational approach based on time discretization;

• [Ilmanen 1993b] for the approximation of mean curvature flow by means of a

sequence of reaction-diffusion equations;

• [Ilmanen 1994] for the elliptic regularization method;

• [Angenent 1991a], [Soner and Souganidis 1993], [Altschuler et al. 1995]

and [Bellettini and Paolini 1994] for the analysis of some kind of singularity

of the flow;

• [Fierro and Paolini 1996], [Paolini and Verdi 1992], [Angenent et al. 1995] for

numerical simulations of certain singularities.

4.2. The anisotropic regular case. We assume in this subsection that φ is a

regular norm. Let E be a set with smooth compact boundary. Also in this case

it is possible to prove that there exists a tubular neighborhood U of ∂E such

that the oriented φ-distance function dE
φ

from ∂E negative inside E, defined as

d
E

φ
(z) := distφ(z,E) − distφ(z,R

n
\E), z ∈ R

n
,

is smooth on U , and φ
o(∇dE

φ
(z)) = 1 for any z ∈ U (anisotropic eikonal equa-

tion). Therefore

Tφo(∇d
E

φ
(z)) = φ

o(∇dE
φ

(z))∇φo(∇dE
φ

(z)) = ∇φ
o(∇dE

φ
(z)), z ∈ U. (4–4)
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In particular, given any x ∈ ∂E, we have

∇d
E

φ
(x) =

ν
E(x)

φo(νE(x))
=: νE

φ
(x). (4–5)

The following result is a generalization of Theorem 4.1, and shows also the rôle

of the duality map Tφo . Let Ψλ and Eλ be as in Subsection 4.1.

Theorem 4.3. For any λ ∈ R define Eλ := Ψλ(E). Then

d

dλ
M

n−1

dφ
(∂Eλ)|λ=0 = cn,φ

∫

∂E

div nE
φ

〈X,∇d
E

φ
〉 φ

o(νE)dHn−1
, (4–6)

where X := ∂

∂λ
Ψλ|λ=0

, and

nE
φ

(z) := Tφo(∇d
E

φ
(z)), z ∈ U. (4–7)

The vector field nφ is sometimes called the Cahn–Hoffman vector field, and

satisfies

φ(nE
φ

) = 1 = 〈∇d
E

φ
, n
E

φ
〉 on U. (4–8)

In the Euclidean case φ(ξ) = |ξ| we have nE
φ

= ν
E

φ
= ν

E on ∂E.

Remark 4.4. The left hand side of (4–6) depends on the values of φo only on

Sn−1 (recall (3–5)). Hence also the right hand side of (4–6), written in terms of

the one-homogeneous extension of φo on the whole of R
n, must depend only on

the values of φo on Sn−1.

Observe that

d

dλ
M

n−1

dφ
(∂Eλ)|λ=0 =

∫

∂E

div nE
φ

〈X,∇d
E

φ
〉 dP

n−1

φ
,

where dPn−1

φ
is the measure on ∂E having cn,φφ

o(νE) as density with respect

to H
n−1.

We are in a position to give the following definition.

Definition 4.5. Let E be an open set with smooth compact boundary. We

define the φ-mean curvature κE
φ

of ∂E as

κ
E

φ
(x) := div nE

φ
(x), x ∈ ∂E. (4–9)

It is possible to prove that κE
φ

(x) is also the tangential divergence of nE
φ

evaluated

at x ∈ ∂E. Indeed, define f(z) := 〈ν
E(x),nE

φ
(z)〉 for any z ∈ U . Thanks to

(4–8), f has a maximum at x (with value φo(νE(x))). Therefore ∇f vanishes at

x, that is, νE(x)∇nE
φ

(x) = 0. This implies that the tangential divergence of nE
φ

at x equals div nE
φ

(x).

Example 4.2. The φ-mean curvature of ∂Bφ is constantly equal to n−1. Indeed

∇d
Bφ

φ
(z) = ∇φ(z) and Tφo(∇d

Bφ

φ
(z)) = z/φ(z) for any z in R

n
\ {0}. Then a

computation gives div(z/φ(z)) = n− 1 on ∂Bφ.
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Example 4.3. Let n = 2, and write φo(ξo) = |ξo|φo(ξo/|ξo|) =: ρψ(θ), where

ξo = (ξo
1
, ξ
o

2
) = (ρ cos θ, ρ sin θ). Then κ

E

φ
= κ

E(ψ + ψ
′′), where κ

E is the

Euclidean curvature of ∂E.

Example 4.4. Observe that from (4–4) we derive κE
φ

= tr(∇2
φ
o(∇dE

φ
)∇2

d
E

φ
)

on ∂E, where ∇
2 denotes the Hessian matrix and tr is the trace operator.

Remark 4.6. In the paper [Bellettini and Fragalà 2002] the second variation of

M
n−1

dφ
is computed. What replaces the squared length of the second fundamental

form of ∂E is the term tr(∇nE
φ
∇nE

φ
). In the same paper, a sort of Laplace–

Beltrami operator is introduced, see also [Bao et al. 2000] (for references therein),

[Shen 2001], [Mugnai 2003].

We are now in a position to define what is a smooth anisotropic mean curvature

flow, for a regular anisotropy φ.

Definition 4.7. Let E ⊂ R
n be an open set with smooth compact boundary.

Let T > 0 and, for any t ∈ [0, T ], let E(t) be a set with compact boundary. We

say that (E(t))t∈[0,T ] is a smooth φ-mean curvature flow in [0, T ] starting from

E = E(0) if the following conditions hold:

(i) there exists an open set A ⊂ R
n containing ∂E(t) for any t ∈ [0, T ] such

that, if we set

d̄φ(z, t) := distφ(z,E(t)) − distφ(z,R
n
\ E(t)), z ∈ R

n
, t ∈ [0, T ],

we have dφ ∈ C
∞

(

A× [0, T ]
)

;

(ii)
∂

∂t
dφ(x, t) = divn

E(t)

φ
(x), x ∈ ∂E(t), t ∈ [0, T ]. (4–10)

Example 4.5. We show that {ξ ∈ R
n : φ(ξ) < R0} shrinks self-similarly under

the flow (4–10). We have in this case d̄φ(z, t) = φ(z)−R(t), and (4–10) (thanks to

Example 4.2) becomes Ṙ = −(n− 1)/R. Its solution represents the evolving set

{ξ ∈ R
n : φ(ξ) < R(t)}, where R(t) =

√

R2

0
− 2(n− 1)t for t ∈ [0, 1

2
R

2

0
/(n− 1)],

which disappears for times larger than 1

2
R2

0
/(n− 1).

The evolution law (4–10) is the gradient flow of Mn−1

dφ
(∂E). This can be seen,

for instance, by using the (nonsymmetric) distance between sets in (4–3), where

dist(x, ∂F ) is replaced by distφ(x, ∂F ).

For what concerns anisotropic mean curvature flows, we refer to the following

(largely incomplete) list of papers: [Hoffman and Cahn 1972], [Angenent 1991b],

[Spohn 1993], [Cahn et al. 1993], [Gage 1994], [Giga and Goto 1992] (see also

[Giga et al. 1991] for weak solutions to a large class of anisotropic equations).

4.3. On space dependent norms. In this subsection we list some general-

ization of the previous results. Assume that φ = φ(x, ξ) : R
n
× R

n
→ [0,+∞[

depends on the position x, φ2 is smooth, φ2(x, · ) is strictly convex (in the sense of

Definition 2.2) and φ satisfies (2–1), (2–2) for any x ∈ R
n, with λ independent of
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x. Define φo(x, ξo) := sup{〈ξ, ξo〉 : ξ ∈ Bφ(x)}, Bφ(x) := {ξ ∈ R
n : φ(x, ξ) ≤ 1},

and dφ as in the first equality of (2–3), with φ(γ, γ̇) in place of φ(γ̇). Tφ and Tφo

are defined as in (2–8) taking x fixed. Then (3–3) holds with

Iφ(x, νM (x)) =
1

H
n−1(Sν(Bφ(x))

in place of Iφ(νM (x)). The n-dimensional dφ-Hausdorff measure H
n

dφ
in R

n has

the integral representation

H
n

dφ
(A) = ωn

∫

A

1

|Bφ(x)|
dx,

for any Borel set A ⊆ R
n. Then (3–5) becomes

M
n−1

dφ
(M) = ωn

∫

M

φ
o(x, νM (x))

1

|Bφ(x)|
dH

n−1(x).

In addition, the function ψ in (3–6) becomes ψ(x, ξ) = f(x)(Iφ)o(x, ξ), where f

depends only on x and has the expression

f(x) =

(

ωn−1|B(Iφ)o(x)|

ωn

)1/(n−1)

.

Concerning the first variation of area and φ-mean curvature, (4–6) of Theorem

4.3 reads as

d

dλ
M

n−1

dφ
(∂Eλ)|λ=0 = ωn

∫

∂E

divφ nE
φ

〈X,∇d
E

φ
〉

1

|Bφ(x)|
φ
o(x, νE)dHn−1

,

where the operator divφ acts on a smooth vector field v as follows:

divφ v := div v +

〈

v, ∇

(

log
1

|Bφ(x)|

)

〉

,

and

nE
φ

(z) := ∇φ
o(z,∇dE

φ
(z)),

∇φo being the gradient of φo with respect to the ξ variable.

5. The Crystalline Case: Lipschitz φ-Regular Sets

In this section we assume that φ is a crystalline norm. The main difficulties

when trying to generalize the notion of φ-curvature given in (4.5) to the crys-

talline case are due to the loss of regularity, both of ∂E and of the norm φ
o.

Observe that the explicit computation of κE
φ

in (4.5) requires the computation

of the hessian of φo which, in the crystalline case, is just a (nonnegative) mea-

sure. Recall also that, in the crystalline case, the duality maps are not single

valued anymore. This will force us to consider inclusions in place of equalities,

and suitable selection principles will be required. Finally, we have to keep in
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mind that, whichever definition of smoothness we choose, the set ∂Bφ must be

smooth.

Unlike the regular case, in the crystalline case we have to redefine what is

a smooth boundary. The idea is to define smoothness of ∂E by requiring the

existence of at least one Lipschitz selection of a normal (in a suitable sense)

vector field.

Before giving formal definitions, we recall some notation. At points x ∈

∂E where ν
E(x) exists we set ν

E

φ
(x) := ν

E(x)/φo(νE(x)). We indicate by

Lip(∂E; Rn) the class of all Lipschitz vector fields defined on the Lipschitz bound-

ary ∂E.

Definition 5.1. If E ⊂ R
n is Lipschitz we define

Norφ(∂E; Rn) := {N∈ L
∞(∂E; Rn) : N(x)∈ T o(νE

φ
(x)) for H

n−1a.e. x ∈ ∂E},

Lip
ν,φ

(∂E; Rn) := Lip(∂E; Rn) ∩ Norφ(∂E; Rn).

As we shall see, in general smooth sets E in the usual sense do not admit even

one element in the class Lip
ν,φ

(∂E; Rn). The best of smoothness that we can

hope is described by the following definition [Bellettini and Novaga 1998]:

Definition 5.2. Let E ⊂ R
n be an open set with compact boundary. We say

that E is Lipschitz φ-regular if ∂E is Lipschitz continuous and there exists a

vector field η ∈ Lip
ν,φ

(∂E; Rn). With a small abuse of notation, the pair (E, η)

will also denote a Lipschitz φ-regular set.

Observe that, unlike νE
φ

, the vector field η is defined everywhere on ∂E.

To better understand the meaning of Definition 5.2, we consider examples.

E

p

ω

a

a

b

b

c

c

c

b

q

x

Bφo Bφ

Tφo

Figure 5. The open ball E is not Lipschitz φ-regular when we endow R
2 with

the norm φ(ξ) = max{|ξ1|, |ξ2|}.
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Example 5.1. Let n = 2 and φ(ξ) := max{|ξ1|, |ξ2|}, in such a way that Bφ
is the square of side 2, see Figure 5. Let E := {z ∈ R

2 : |z| < 1} be the

open unit disk. Then E is not Lipschitz φ-regular. Indeed, to see that E is

Lipschitz φ-regular, we have to compute T o(νE
φ

(x)), for x ∈ ∂E, and to show

that we can produce a vector field η on ∂E which is a Lipschitz selection for

the multivalued map x ∈ ∂E → Tφo(ν
E

φ
(x)). Observe now that T o(νE

φ
(p)) is

the upper horizontal segment [a, b] of ∂Bφ; we depict therefore a corresponding

dotted triangle at p. Similarly, Tφo(ν
E

φ
(q)) is the right vertical segment [b, c] of

∂Bφ, and again we depict the corresponding dotted triangle at q. On the other

hand, any point x on ∂E lying in the (relatively) open arc A between p and q is

such that Tφo(ν
E

φ
(x)) = b. We deduce that η ≡ b on A, and η ≡ c on the open arc

on ∂E between q and ω. Hence, any vector we choose inside the dotted triangles

(for instance, the triangle at q) will produce a discontinuity in the vector field η

(at q). We can conclude that the circle, considered in (R2
, φ), is not Lipschitz

φ-regular, and that it takes the rôle of the square in the usual Euclidean plane.

E

Bφo Bφ

Tφo

Figure 6. Example of a Lipschitz φ-regular set E when φ(ξ) = max{|ξ1|, |ξ2|}.

The values of η are uniquely determined at the vertices and on the curved arc

of ∂E. Any Lipschitz extension of these values on the interior of the edges,

which lies in the dotted triangles, produces a Lipschitz vector field satisfying

the required properties (that is, making E Lipschitz φ-regular). Examples are

depicted in Figures 10 and 13.

Example 5.2. Let φ(ξ) := max{|ξ1|, |ξ2|}. In Figure 6 we show an example of

a Lipschitz φ-regular set E.

At the vertices of ∂E the vector νE
φ

is not defined. Let v be a vertex of ∂E,

and let F1 and F2 be the two arcs of ∂E having v as a vertex (arcs can also be

flat, i.e., segments). For any x in the relative interior of Fi, the closed convex

set Tφo(ν
E

φ
(x)) is either a segment or a singleton; in both cases is independent
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of x and depends only on Fi. Denote it by Ki. The crucial property that makes

E Lipschitz φ-regular is that the intersection ∩
2

i=1
Ki is a singleton, see Figure

6. This produces a unique vector at each vertex of ∂E; at this point, it is easy

to realize that we can construct infinitely many vector fields η ∈ Lip
ν,φ

(∂E; R2)

lying inside the dotted triangles with the assigned values at the vertices (see for

instance Figures 10 and 13).

E

Bφo Bφ

Tφo

F1

F2

F3

q p

x

Figure 7. An example of Lipschitz φ-regular set E for the norm φ whose unit

ball is the product of an hexagon with [−1, 1].

Example 5.3. In Figure 7 it is shown an example of Lipschitz φ-regular set

in R
3 when the unit ball of φ is prism with hexagonal basis. Observe that the

vector νE
φ

is not defined on the vertices and on the edges of ∂E. Let p ∈ ∂E

be a vertex of ∂E and let F1, F2, F3 be the three (relatively) closed facets of ∂E

having p as a common vertex. For any x in the relative interior of Fi, the convex

set Tφo(ν
E

φ
(x)) is a closed facet of ∂Bφ which is independent of x and depends

only on Fi. Denote it by Ki. The intersection ∩
3

i=1
Ki is a singleton (and is the

corresponding vertex of ∂Bφ). In Figure 7 we have depicted such an intersection

as a vector at the point p. On the other hand, if F1 and F2 have in common

the segment S, and q is a point in the relative interior of S, then ∩
2

i=1
Ki is the

corresponding edge of ∂Bφ. We have depicted this set as a triangle. Finally, if x

is a point in the relative interior of a facet (for instance, the top facet F ), then

ν
E

φ
(x) coincides with the top vertex of the ∂Bφo , and therefore Tφo(νφ(F )) is the

top facet of ∂Bφ, and we have depicted this set on the interior of F as a pyramid.

Showing that E is Lipschitz φ-regular means to exhibit a Lipschitz vector field

η : ∂E → R
3 which on the vertices of ∂E is fixed (to be the corresponding

vertices of ∂Bφ), on the relative interior of an edge of ∂E is constrained to lie in

the corresponding segment of ∂Bφ, and in the relative interior of a facet of ∂E

is constrained to lie in the corresponding facet of ∂Bφ. It is at this point easy
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to realize that such a choice can be made (in infinitely many different ways) for

the set E in Figure 7.

E

Bφo Bφ

C

a

a b

b

Figure 8. A non polyhedral Lipschitz φ-regular set E.

Example 5.4. In Figure 8 we show an example of Lipschitz φ-regular set E in

R
3 which is not polyhedral. The curved region C is ruled ; if S is any horizontal

segment in C (see the dotted lines), any vector field η ∈ Lip
ν,φ

(∂E; R3) must lie,

on S, in the corresponding segment [a, b] of ∂Bφ.

In two dimensions the structure of Lipschitz φ-regular sets E having a finite

number of arcs (arcs can be also segments) can be described as follows. The arcs

are located in a precise order consistent with φ-regularity, and are divided into

two classes. In the first class there are edges which are parallel to some facet of

Bφ and have the same exterior Euclidean normal vector (and we say that the

edge corresponds to a facet of Bφ). The second class consists of the arcs (some

of which can be flat) not belonging to the first class, where there is only one

possible choice of the vector field η consistent with the φ-regularity. The arcs

of the second class have therefore zero φ-curvature (see [Taylor 1993], [Giga and

Gurtin 1996]).

6. On Facets of Polyhedral Lipschitz φ-Regular Sets

We have seen in Example 5.2 that, even in two dimensions, if (E, η) is a

Lipschitz φ-regular set, there are in general infinitely many vector fields η ∈

Lip
ν,φ

(∂E; R2) such that (E, η) is Lipschitz φ-regular. Therefore the divergence

of each of these η could be considered as a φ-mean curvature of ∂E, and in this

way the Lipschitz boundary ∂E would have infinitely many different φ-mean

curvatures. This approach could be pursued to some extent; however, we shall
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see that, among all vector fields satisfying the required constraints, there are

some which are distinguished, have the same divergence, and such a uniquely

defined divergence is what we can call the φ-mean curvature of ∂E, at least

from the evolutionary point of view. Indeed, this notion of φ-mean curvature

should be identified with the initial velocity of the interface under crystalline

mean curvature flow.

To simplify notation, in this section we shall consider, when n ≥ 3, only poly-

hedral Lipschitz φ-regular sets E with a finite number of facets, that will be

understood as (relatively) closed connected (n−1) dimensional flats with Lip-

schitz (polyhedral) boundary. The symbol F will always denote such a facet.

This is surely a restriction, since in general facets can produce curved regions

during the flow.

6.1. Some notation. If F ⊂ ∂E is a facet, we denote by ∂F and int(F ) the

relative boundary and relative interior of F . An edge of ∂E with vertices p, q

will be denoted by [p, q], and its relative interior by ]p, q[. We denote by ΠF the

affine hyperplane spanned by the facet F .

ν̃
F

ν̃
F

ν̃
F

F

ν(F )

ΠF

Figure 9. A facet F . The dotted lines delimit the solid set E having F as a

facet.

We define ν(F ) to be the unit normal to int(F ) which points outside of E

and we set νφ(F ) := ν(F )/φo(νφ(F )). We indicate by ν̃
F the (Hn−2-almost

everywhere defined) unit normal to ∂F pointing outside of F ; see Figure 9.

Only facets F such that Tφo(νφ(F )) is a facet of Bφ (that is., facets of ∂E

corresponding to some facet of ∂Bφ) will be considered.

Definition 6.1. Let (E, η) be a Lipschitz φ-regular set. We define the trace

function cF ∈ L
∞(∂F ) as

cF := 〈η, ν̃
F
〉. (6–1)
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E

Figure 10. The normal trace of η on the boundary of each one-dimensional

facet of ∂E is independent of η itself (among all vector fields making E Lipschitz

φ-regular).

Example 6.1. In Figure 10 we depict a vector field η which makes ∂E Lipschitz

φ-regular (Bφ is the square as in Figure 6). Since the values of η are uniquely

determined at the vertices of ∂E, the constants cF do not depend on the partic-

ular choice of η. The dotted vectors at the vertices indicate the unit normals (in

the line containing the facet F ) pointing outward F (that is, ν̃F ).

Bφ

E
p

q

F

Figure 11. A Lipschitz φ-regular set when Bφ is the cube.

Example 6.2. Consider the Lipschitz φ-regular set (E, η) of Figure 11 (Bφ is

the unit cube). In Figure 12 the bold vectors at the vertices of ∂E are the unique

possible values for η. The vector field ν̃
F points outside F , and on ]p, q[ points

inside E. The pyramids with vertex on the relative interior of the two facets

having [p, q] in common represent the corresponding facets of ∂Bφ (for instance,

Tφo(νφ(F )) for the facet F ), that is, the range of admissibility of η. It follows

that cF is negative on ]p, q[, while cF is positive on the remaining relatively open

edges of ∂F .

Given a Lipschitz φ-regular set (E, η), in general it is possible to prove that

cF does not depend on the choice of η in Lip
ν,φ

(∂E; Rn). More precisely, for
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Bφ

E

p

q

F

ν̃
F

ν̃
F

ν̃
F

ν̃
F

Figure 12. On the relative interior of [p, q] the function cF is negative (and

constant).

H
n−1-almost every x ∈ ∂F , we have

cF (x) =

{

max{〈ξ, ν̃F (x)〉 : ξ ∈ Tφo(νφ(F ))} if ν̃F (x) points outside E,

min{〈ξ, ν̃F (x)〉 : ξ ∈ Tφo(νφ(F ))} if ν̃F (x) points inside E.
(6–2)

7. φ-Mean Curvature on a Facet

In this section we want to define (pointwise almost everywhere) the φ-mean

curvature on a facet F of a polyhedral Lipschitz φ-regular set (E, η). We need

some preliminaries. We let

Norφ(F ; ΠF ) :=
{

N ∈ L∞(int(F ); ΠF ) :

N(x) ∈ Tφo(νφ(F )) for H
n−1 a.e. x ∈ int(F )

}

.

It is possible to prove (see [Giga et al. 1998]) that any N ∈ Norφ(F ; ΠF ) with

divN ∈ L
2(int(F )) admits a normal trace 〈N, ν̃

F
〉 on ∂F , for which the Gauss–

Green Theorem holds on F (see [Anzellotti 1983]). We set

H(F ; ΠF ) :=
{

N ∈ Norφ(F ; ΠF ) : divN ∈ L
2(int(F )), 〈N, ν̃F 〉 = cF H

n−2 a.e. on ∂F
}

.

Remark 7.1. Thanks to (6–2), the class H(F ; ΠF ) does not depend on the

choice of the vector field η making E Lipschitz φ-regular.

We define the functional F( · , F ) : H(F ; ΠF ) → [0,+∞[ as

F(N,F ) := cn,φ

∫

int(F )

(divN)2 φo(νE)dHn−1
. (7–1)

The right hand side of (7–1) equals cn,φφ
o(ν(F ))

∫

F
(divN)2 dHn−1, since F is

flat.
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Our definition of φ-mean curvature is based on the following result: the min-

imum problem

inf {F(N,F ) : N ∈ H(F ; ΠF )} (7–2)

admits a solution, and any two minimizers have the same divergence.

Denote by NF

min
a solution of problem (7–2); since divNF

min
is independent of

the choice of NF

min
among all minimizers of (7–2), we can give the definition of

crystalline mean curvature.

Definition 7.2. We define the φ-mean curvature κF
φ

on the relative interior of

F as

κ
F

φ
(x) := divNF

min
(x), H

n−1 a.e. x ∈ int(F ).

Observe that κF
φ

is only a function in L2(int(F )). We then set κE
φ

:= κ
F

φ
on each

facet F of ∂E: it turns out that the orthogonal projection of minimizing vector

fields on the orthogonal to ∂F is continuous on ∂F .

Remark 7.3. The minimum problem (7–2), which is at the basis of Definition

7.2, arises when looking at the best way to decrease the M
n−1

dφ
(∂E) through

deformations of the ambient space, precisely in the computation of the first

variation

lim inf
λ→0+

M
n−1

dφ
(∂Eλ) −M

n−1

dφ
(∂E)

λ

of Mn−1

dφ
at ∂E. Here, using the notation of Theorem 4.3, we have Eλ = Ψλ(E)

and Ψλ(x) = x+ λX(x), where X is a suitable Lipschitz vector field.

The φ-mean curvature of ∂Bφ is constantly equal to n − 1. Indeed, the vector

field x/φ(x) has constant divergence on ∂Bφ, hence it solves the Euler–Lagrange

inequality derived from (7–2). We now use the (strict) convexity in the divergence

to show that x/φ(x) is actually a minimizer of F( · , F ) on any facet F ⊂ ∂Bφ.

The following example concerning crystalline curvature of curves is enlighten-

ing.

E

F

Figure 13. The vector field N
E
min : ∂E → R

2 is, on each facet F , the linear

combination of the values of η at the vertices.
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Example 7.1. Let n = 2. We compute explicitly the φ-curvature of a two-

dimensional Lipschitz φ-regular set (E, η). Given a facet F ⊂ ∂E (in this case

F equals a segment [z, w]), the minimum problem (7–2) reads as

inf

{

∫

]z,w[

(N ′(s))2dH1(s) : N ∈ L
2(]z, w[; Π[z,w]), N

′
∈ L

2(]z, w[),

N(x) ∈ Tφo(ν
[z,w]

φ
(x)) for a.e. x ∈ ]z, w[, N(z) = cz, N(w) = cw

}

,

where cz and cw are the orthogonal projections of η(z) and η(w) on the line

Π[z,w], with the correct sign.

We now observe that the above minimum problem has a unique solutionNF

min
,

which is simply the linear function connecting cz at z with cw at w. Hence, when

n = 2, not only the divergence of a minimizer is unique, but also the minimizer

itself. If we now repeat this procedure for any facet, and on each facet we add to

N
F

min
the proper (constant) normal component to F , we end up with the vector

field N
E

min
: ∂E → R

2 whose divergence is the φ-curvature of ∂E. An example

of this vector field is depicted in Figure 13. Curved regions in ∂E have zero

φ-curvature. On the other hand, if F is a facet of ∂E ⊂ R
2 and BF ⊂ ∂Bφ is

the corresponding facet in ∂Bφ, κ
F

φ
is constant on F and

κ
F

φ
= δF

|BF |

|F |
on int(F ), (7–3)

where δF ∈ {0,±1} is a convexity factor: δF = 1, −1 or 0 depending on whether

E is locally convex at F , locally concave at F , or neither.

In two dimensions (7–3) is used to define the curvature flow of a Lipschitz φ-

regular set (see the references quoted in the Introduction). If ∂E has a finite

number of arcs, crystalline curvature flow can be described with a system of

ordinary differential equations, since each arc (with nonzero φ-curvature) moves

in normal direction in the evolution process: it cannot split or curve since, as

dictated by (7–3), its normal velocity is constant. On the other hand, arcs or

segments with zero φ-curvature stay still, and are progressively eaten by the

other evolving arcs.

When the space dimension n is larger than or equal to 3, the computation of

the φ-mean curvature on a facet is not, in general, an easy problem. As already

mentioned in the Introduction, a short time existence theorem of a crystalline

mean curvature flow is still missing. Concerning the comparison principle, only

an indirect proof is available, in a certain class of crystalline evolutions, see

[Bellettini et al. 2000].

Definition 7.4. We say that E is convex at F if E, locally around F , lies on

one side of ΠF .

The following results show that the φ-curvature enjoys some additional regularity

properties.
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Theorem 7.5. κF
φ

∈ L∞(int(F )). Moreover , κF
φ

has bounded variation on

int(F ). Finally , if F is convex and E is convex at F , then κF
φ

is convex on

int(F ).

Since the jump set of a function with bounded variation is well defined (see

for instance [Ambrosio et al. 2000]), this theorem makes it possible to speak

of the jump set of κF
φ

on int(F ), which should describe, at time zero, where

the facet splits under crystalline mean curvature flow. For small times in the

evolution problem, F is expected to translate parallel to itself if κF
φ

is constant

on int(F ) or to bend if κF
φ

is continuous but not constant on int(F ). Facets

with constant φ-mean curvature have been isolated and studied in [Bellettini et

al. 1999], [Bellettini et al. 2001c], where the following notation was introduced.

Definition 7.6. We say that F is φ-calibrable if κF
φ

is constant on int(F ).

More explicitly, F is φ-calibrable provided there exists a vector fieldN : int(F ) →

ΠF which solves the following problem:


























N ∈ L
∞(int(F ); ΠF ),

N(x) ∈ Tφo(νφ(F )) for H
n−1 a.e. x ∈ int(F ),

〈N, ν̃
F
〉 = cF H

n−2 a.e. on ∂F,

divN =
1

|F |

∫

∂F

cF dH
n−1

.

(7–4)

Observe that the constant on the right hand side of the differential equation in

(7–4) is determined by using the Gauss–Green theorem on F . The complete

characterization of φ-calibrable facets F is not yet available. We conclude the

paper by pointing out some known results in this direction.

7.1. Characterization of φ-calibrable facets in special cases. Assume

that n = 3. Let BF ⊂ ∂Bφ be the facet corresponding to F . If necessary, we

identify BF with its orthogonal projection on the plane parallel to ΠF passing

through the origin of R
3. We also assume that BF contains the origin in its inte-

rior and that it is symmetric (this latter assumption can be weakened). Therefore

BF can be considered as the unit ball of a norm (in R
2), which we denote by φ̃.

We assume that F is Lipschitz φ̃-regular. Denote by κF
φ̃

the φ̃-curvature of ∂F

and by φ̃o the dual of φ̃. The following result holds.

Theorem 7.7. Let n = 3. Assume that F is convex and that E is convex at F .

Then F is φ-calibrable if and only if

sup
∂F

κ
F

φ̃
≤

1

|F |

∫

∂F

φ̃
o(ν̃F ) dH1

. (7–5)

The sup in (7–5) is an essential supremum, since κF
φ̃

is a function in L
∞(∂F ).

Hence, under the assumptions of Theorem 7.7, problem (7–4) is solvable if and

only if the φ̃-curvature of ∂F is bounded above by the constant on the right
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hand side of (7–5); this means, roughly speaking, that the edges of ∂F cannot

be too “short”.

Finally, let us mention that examples of facets which are not φ-calibrable are

given in [Bellettini et al. 1999], and that the problem of calibrability when Bφ

is a portion of a cylinder (hence not in a crystalline setting) has been recently

considered, under rather mild assumptions, in the papers [Bellettini et al. 2002]

and [Bellettini et al. 2003].

8. Concluding Remarks

Fix a norm φ on R
n and denote by dφ the distance induced by φ. As a

starting point of our approach let us consider the (n−1)-dimensional measure

M
n−1

dφ
, defined as in (1–1) on compact and sufficiently smooth boundaries ∂E

of solid sets E. Such a notion is called the φ-Minkowski content of the manifold

∂E, and is a geometric invariant under isometries of the ambient space (because

the n-dimensional Hausdorff measure H
n

dφ
with respect to dφ is invariant and

the tubular neighborhoods are computed with respect to the distance dφ). On

the other hand cn,φ is not invariant (recall that ωn is a normalizing constant).

We recall that, in the generic (finite dimensional) normed space (Rn
, φ), there

are other meaningful notions of surface measure, such as for instance the (n−1)-

dimensional Hausdorff measure H
n−1

dφ
with respect to dφ, the Holmes–Thompson

measure and the measure considered in [De Giorgi 1995]. Even in n = 2 dimen-

sions, there are examples of norms φ on R
2 for which M

1

dφ
and H

1

dφ
are different.

Roughly speaking, this can be explained as follows. M
n−1

dφ
(∂E) is constructed

by taking the projections of Bφ := {φ ≤ 1} onto the (one-dimensional) normal

spaces to ∂E. On the other hand, Hn−1

dφ
(∂E) is constructed by taking the inter-

sections of Bφ with the ((n−1)-dimensional) tangent spaces to ∂E. We notice

that, in any case, Hn−1

dφ
can be seen as the Minkowski content with respect to

another norm ψ.

Beside its geometric interest, our choice of working with M
n−1

dφ
is motivated

also by the physics of phase transitions, where it happens that some relevant

phenomena are concentrated in a very thin tubular neighborhood of the inter-

face (sometimes called diffuse interface), and lead in the limit to the Minkowski

content.

The next step in our approach consists in the definition of the φ-mean curva-

ture κE
φ

of ∂E. This concept, which as usual depends also on the immersion of

the manifold, is obtained by computing the first variation of Mn−1

dφ
on ∂E, and

is identified with the normal velocity of the initial datum ∂E = ∂E(0) under the

anisotropic mean curvature flow.

The computation of the first variation of Mn−1

dφ
is rather direct when ∂Bφ is

smooth and all its principal curvatures are strictly positive (regular case), but

becomes more involved in the crystalline case (that is, when Bφ a polytope). In
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this latter situation, assuming that ∂E is polyhedral and has a geometry locally

resembling the geometry of ∂Bφ, we compute κE
φ

on its facets, by applying a

suitable minimization principle. We then discuss the problem of characterizing

φ-calibrable facets of ∂E in n = 3 dimensions, that is, those facets F ⊂ ∂E for

which κE
φ

is constant on the relative interior int(F ) of F .

We conclude by recalling that (a scalar multiple of) Bφ is a solution of the

so-called isoperimetric problem, that is, the problem of minimizing M
n−1

dφ
(∂E)

among all finite perimeter sets E with H
n

dφ
(E) fixed. This is in agreement with

the fact that ∂Bφ has constant φ-mean curvature, precisely equal to n− 1.
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1. Introduction

A Finsler metric of a manifold or vector bundle is defined as a smooth as-

signment for each base point a norm on each fibre space, and thus the class

of Finsler metrics contains Riemannian metrics as a special sub-class. For this

reason, Finsler geometry is usually treated as a generalization of Riemannian ge-

ometry. In fact, there are many contributions to Finsler geometry which contain

Riemannian geometry as a special case (see e.g., [Bao et al. 2000], [Matsumoto

1986], and references therein).

On the other hand, we can treat Finsler geometry as a special case of Riemann-

ian geometry in the sense that Finsler geometry may be developed as differential

geometry of fibred manifolds (e.g., [Aikou 2002]). In fact, if a Finsler metric in

the usual sense is given on a vector bundle, then it induces a Riemannian inner

product on the vertical subbundle of the total space, and thus, Finsler geometry

is translated to the geometry of this Riemannian vector bundle.

It is natural to question why we need Finsler geometry at all. To answer this

question, we shall describe a few applications of complex Finsler geometry to

some subjects which are impossible to study via Hermitian geometry.

83
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The notion of complex Finsler metric is old and goes back at least to Cara-

théodory who introduced the so-called Carathéodory metric. The geometry of

complex Finsler manifold, via tensor analysis, was started by [Rizza 1963], and

afterwards, the connection theory on complex Finsler manifolds has been de-

veloped by [Rund 1972], [Icijyō 1994], [Fukui 1989], and [Cao and Wong 2003],

etc..

Recently, from the viewpoint of the geometric theory of several complex vari-

ables, complex Finsler metric has become an interesting subject. In particular,

an intrinsic metric on a complex manifold, namely the Kobayashi metric, is a

holomorphic invariant metric on a complex manifold. The Kobayashi metric is,

by its definition, a pseudo Finsler metric. However, by the fundamental work

of [Lempert 1981], the Kobayashi metric on a smoothly bounded strictly convex

domain in Cn is a smooth pseudoconvex Finsler metric.

The interest in complex Finsler geometry also arises from the study of holo-

morphic vector bundles. The characterization of ample (or negative) vector

bundles due to Kobayashi [Kobayashi 1975] shows the importance of Finsler ge-

ometry. In fact, he has proved that E is ample if and only if its dual E
∗ admits

a “negatively curved” pseudoconvex Finsler metric (Theorem 3.2). The meaning

of the term “negatively curved” is defined by using the curvature tensor of the

Finsler connection on a Finsler bundle (E,F ).

Another example of interest in complex Finsler geometry arises from the ge-

ometry of geometrically ruled surfaces X . A geometrically ruled surface X is, by

definition (see [Yang 1991]), an algebraic surface with a holomorphic projection

φ : X → M , M a compact Riemann surface, such that each fibre is isomorphic to

the complex projective line P1. Every geometrically ruled surface is isomorphic

to P(E) for some holomorphic vector bundle π : E → M of rank(E) = 2. Then,

every geometrically ruled surface X = P(E) is also a compact Kähler manifold

by Lemma 6.37 in [Shiffmann and Sommese 1985], and any Kähler metric gX

on X induces a Finsler metric F , which is not a Hermitian metric in general, on

the bundle E. Thus the geometry of (X , gX ) is translated to the geometry of

the Finsler bundle (E,F ).

In general, an algebraic curve (or polarized manifold) ϕ : X → PN has a

Kähler metric ωX = ϕ
∗
ωFS induced from the Fubini–Study metric ωFS on PN .

An interesting subject in complex geometry is to investigate how metrics of

this kind are related to constant curvature metrics, and moreover, it is inter-

esting to investigate how constant scalar curvature metrics should be related

to algebro-geometric stability. LeBrun [LeBrun 1995] has investigated minimal

ruled surfaces X = P(E) over a compact Riemann surface M of genus g(M) ≥ 2

with constant scalar curvature. He showed that, roughly speaking, X admits

such a Kähler metric gX if and only if the bundle E is semi-stable in the sense

of Mumford–Takemoto. By the statement above, an arbitrary Kähler metric on

a minimal ruled surface X determines a Finsler metric F on E by the identity

ωX =
√

−1 ∂∂̄ log F for the Kähler form ωX . The geometry of such a minimal
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ruled surface can also be investigated by the study of the Finsler bundle (E,F )

(see [Aikou 2003b]).

In this article, we shall report on the geometry of complex vector bundles with

Finsler metrics, i.e., Finsler bundles. Let F be a Finsler metric on a holomorphic

vector bundle π : E → M over a complex manifold M . The geometry of a Finsler

bundle (E,F ) is the study of the vertical bundle VE = kerπ∗ with a Hermitian

metric GVE
induced from the given Finsler metric.

The main tool of the investigation in Finsler geometry is the Finsler con-

nection. The connection is a unique one on the Hermitian bundle (VE , gVE
),

satisfying some geometric condition (see definition below). Although it is nat-

ural to investigate (VE , gVE
) by using the Hermitian connection of (VE , gVE

), it

is convenient to use the Finsler connection for investigating some special Finsler

metrics. For example, the flatness of the Hermitian connection of (VE , gVE
) im-

plies that the Finsler metric F is reduced to a flat Hermitian metric. However, if

the Finsler connection is flat, then the metric F belongs to an important class,

the so-called locally Minkowski metrics (we simply call these special metrics flat

Finsler metrics). If the Finsler connection is induced from a connection on E,

then the metric F belongs to another important class, the so-called Berwald

metrics (sometimes a Berwald metric is said to be modeled on a Minkowski

space). In this sense, the big difference between Hermitian geometry and Finsler

geometry is the connection used for the investigation of the bundle (VE , gVE
).

2. Ampleness

2.1. Ample line bundles. Let L be a holomorphic line bundle over a compact

complex manifold M . We denote by O(L) the sheaf of germs of holomorphic

sections of L. Since M is compact, dimC H
0(M,O(L)) is finite. Let {f 0

, . . . , f
N
}

be a set of linearly independent sections of L, from the complex vector space of

global sections. The vector space spanned by these sections is called a linear

system on M . If the vector space consists of all global sections of L, it is called

a complete linear system on M . Using these sections {f
0
, . . . , f

N
}, a rational

map ϕ|L| : M → PN is defined by

ϕ|L|(z) = [f0(z) : · · · : f
N (z)]. (2.1)

This rational map is defined on the open set in M which is complementary to

the common zero-set of the sections f i (0 ≤ i ≤ N). It is verified that the

rational map ϕ̃|L| obtained from another basis {f̃
0
, . . . , f̃

N
} is transformed by

an automorphism of PN .

Definition 2.1. A line bundle L over M is said to be very ample if the rational

map ϕ|L| : M → PN determined by its complete linear system |L| is an embed-

ding. L is said to be ample if there exists some integer m > 0 such that L
⊗m is

very ample.
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Let L be a very ample line bundle over a compact complex manifold M , and

{f
0
, . . . , f

N
} a basis of H

0(M,O(L)) which defines an embedding ϕ|L| : M →

PN . Embedding M into PN , we may consider the line bundle as the hyperplane

bundle over M ⊂ PN . We define an open covering {U(j)} of M by U(j) =
{

z ∈ M : f
j(z) 6= 0

}

. With respect to this covering, the local trivialization ϕj

over U(j) × C is given by ϕj(f
i) = (zα

(j)
, f

i

(j)
). The transition cocycle {ljk :

U(j) ∩ U(k) → C∗
} is given by

ljk(z) =
f

i

(k)

f i

(j)

. (2.2)

Let {hjk} be the transition cocycle of the hyperplane bundle H with respect to

the standard covering {U(j)} of PN . Then, {hjk} is given by hjk = ξ
k
/ξ

j in

terms of the homogeneous coordinate system [ξ0 : · · · : ξ
N ] of PN . Since (2.2)

implies

hjk ◦ ϕ|L| =
f

i

(k)

f i

(j)

= ljk,

we obtain L = ϕ
∗
|L|H.

Lemma 2.1. Let L be a very ample line bundle over a complex manifold M .

Then L is isomorphic to the pullback bundle ϕ
∗
|L|H of the hyperplane bundle H

over the target space PN of ϕ|L|.

Example 2.1. (1) The hyperplane bundle H over PN is very ample.

(2) Let E be a holomorphic line bundle and L an ample line bundle over a

compact complex manifold M . For some sufficiently large integer k, the line

bundle E ⊕ L
⊗k is very ample (see [Griffith and Harris 1978, p. 192]).

As we can see from the above, it is an algebro-geometric issue to determine

whether a holomorphic line bundle is ample or not. However, the Kodaira em-

bedding theorem provides a differential geometric way to check ampleness; see

Theorem 2.1 and Proposition 2.1 below. The key idea is to relate ampleness to

the notion of positivity, defined as follows.

Definition 2.2. A holomorphic line bundle L is said to be positive if its Chern

class c1(L) ∈ H
2(M, R) is represented by a positive real (1, 1)-form. A holo-

morphic line bundle L is said to be negative if its dual L
∗ is positive. Since

c1(L
∗) = −c1(L), the holomorphic line bundle L is negative if c1(L) is repre-

sented by a negative real (1, 1)-form.

A Hermitian metric g on L is given by the family
{

g(j)

}

of local positive functions

g(j) : U(j) → R, satisfying g(k) = |ljk|
2g(j) on U(j)∩U(k) for the transition cocycle

{ljk} of L. Since ljk are holomorphic, we have ∂̄∂ log g(j) = ∂̄∂ log g(k), and thus

{∂̄∂ log g(j)} defines a global (1, 1)-form on M , which will be denoted by ∂̄∂ log g,

and is just the curvature form of (L, g). The Chern form c1(L, g) defined by

c1(L, g) =
√

−1 ∂̄∂ log g is a representative of the Chern class c1(L).
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By the definition above, a holomorphic line bundle L is positive if and only

if L admits a Hermitian metric g whose Chern form c1(L, g) is positive-definite.

A compact complex manifold M is called a Hodge manifold if there exists a

positive line bundle L over M . If M is a Hodge manifold, then there exists a

Hermitian line bundle (L, g) whose Chern form c1(L, g) is positive-definite, and

thus c1(L, g) defines a Kähler metric on M . Consequently, every Hodge manifold

is Kähler.

The hyperplane bundle H over PN is positive. In fact, if we define a function

g(j) on V(j) =
{

[ξ0 : · · · : ξ
N ] ∈ PN : ξ

j
6= 0

}

by

g(j) =
|ξ

j
|
2

∑

|ξk
|
2
, (2.3)

the family {g(j)}j=0,...,N satisfies g(k) = |hjk|
2g(j) on V(j) ∩ V(k), and thus it

determines a Hermitian metric gH on H. Then we have

c1(H) =

[
√

−1

2π
∂̄∂ log gH

]

> 0. (2.4)

The closed real (1, 1)-form representing c1(H) induces a Kähler metric on PN ,

which is called the Fubini–Study metric gFS with the Kähler form

ωFS =
√

−1 ∂∂̄ log ‖ξ‖
2
,

where we put ‖ξ‖
2

=
∑

|ξ
i
|
2.

The following well-known theorem shows that every Hodge manifold M is

algebraic, i.e., M is holomorphically embedded in a projective space PN .

Theorem 2.1 (Kodaira’s embedding theorem). Let L be a holomorphic

line bundle over a compact complex manifold M . If L is positive, then it is

ample, i .e., there exists some integer n0 > 0 such that for all m ≥ n0 the map

ϕ|L⊗m| : M → PN is a holomorphic embedding .

Conversely, we suppose that L is ample. Then, by definition, there exists a basis

{f0, . . . , fN
} of H0(M,O(L⊗m)) such that ϕ|L⊗m| : M → PN defined by (2.1) is

an embedding. By Lemma 2.1, the line bundle L
⊗m is identified with ϕ

∗
|L⊗m|H.

Thus L
⊗m admits a Hermitian metric g = ϕ

∗
|L⊗m|gH, and c1(L

⊗m) is given by

c1(L
⊗m) = mc1(L) =

[
√

−1

2π
∂̄∂ log g

]

.

Since H is positive, the (1, 1)-form
√

−1 ∂̄∂ log g is positive, and thus

c1(L) =
1

m

[
√

−1

2π
∂̄∂ log g

]

is positive. Consequently:

Proposition 2.1. A holomorphic line bundle L over a compact complex mani-

fold M is ample if and only if L is positive.
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Let M be a compact Riemann surface. The integer g(M) defined by

g(M) := dimC H
1 (M,OM ) = dimC H

0 (M,O(KM ))

is called the genus of M , where KM = T
∗
M

is the canonical line bundle over M ,

and OM is the sheaf of germs of holomorphic functions on M . The degree of a

line bundle L is defined by

deg L =

∫

M

c1(L) ∈ Z.

Applying the Riemann–Roch theorem

dimC H
0(M,O(L)) − dimC H

1(M,O(L)) = deg L + 1 − g(M)

to the case of L = KM , we have

dimC H
1(M,O(KM )) = dimC H

0(M,Ω
1(K∗

M
)) = dimC H

0(M,OM ) = 1,

since M is compact. Consequently we have deg KM = 2g(M)− 2, and the Euler

characteristic χ(M) is given by

χ(M) =

∫

M

c1(TM ) = −deg KM = 2 − 2g(M).

By the uniformisation theorem (e.g., Theorem 4.41 in [Jost 1997]), any com-

pact Riemann surface M is determined completely by its genus g(M). If g(M) =

0, then M is isomorphic to the Riemannian sphere S
2 ∼= P1 and its holomorphic

tangent bundle TM is ample. In the case of g(M) = 1, then M is isomorphic to

a torus T = C/Λ, where Λ is a module over Z of rank two, and TM is trivial.

In the last case of g(M) ≥ 2, it is well-known that M is hyperbolic, i.e., M

admits a Kähler metric of negative constant curvature, and TM is negative since

c1(TM ) < 0.

In the case of dimC M ≥ 2, Hartshone’s conjecture (“If the tangent bundle

TM is ample, then M is bi-holomorphic to the projective space Pn”) was solved

affirmatively by an algebro-geometric method ([Mori 1979]). Then, it is natural

to investigate complex manifolds with negative tangent bundles. We next discuss

the negativity and ampleness of holomorphic vector bundles.

2.2. Ample vector bundles. Let π : E → M be a holomorphic vector

bundle of rank(E) = r + 1 (≥ 2) over a compact complex manifold M , and

φ : P(E) = E
×

/C×
→ M the projective bundle associated with E. Here and in

the sequel, we put E× = E − {0} and C× = C − {0}. We also denote by L(E)

the tautological line bundle over P(E), i.e.,

L(E) = {(V, v) ∈ P(E) × E | v ∈ V } .

The dual line bundle H(E) = L(E)∗ is called the hyperplane bundle over P(E).
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Since L(E) is obtained from E by blowing up the zero section of E to P(E),

the manifold L(E)× is biholomorphic to E
×. This biholomorphism is given by

the holomorphic map

τ : E
×
3 v → ([v], v) ∈ P(E) × E

×
. (2.5)

Then, for a arbitrary Hermitian metric gL(E) on L(E), we define the norm ‖v‖
E

of v ∈ E
× by

‖v‖
E

=
√

gL(E)(τ(v)). (2.6)

Extending this definition to the whole of E continuously, we obtain a function

F : E → R by

F (v) = ‖v‖
2

E
(2.7)

for every v ∈ E. This function satisfies the following conditions.

(F.1) F (v) ≥ 0, and F (v) = 0 if and only if v = 0,

(F.2) F (λv) = |λ|
2
F (v) for any λ ∈ C× = C\{0},

(F.3) F (v) is smooth outside of the zero-section.

Definition 2.3. Let π : E → M be a holomorphic vector bundle over a

complex manifold M . A real valued function F : E → R satisfying the conditions

(F1) ∼ (F3) is called a Finsler metric on E, and the pair (E,F ) is called a

Finsler bundle. If a Finsler metric F satisfies, in addition,

(F.4) the real (1, 1)-form
√

−1 ∂∂̄F is positive-definite on each fibre Ez,

then F is said to be pseudoconvex . (Note: it’s
√

−1 ∂∂̄F , not
√

−1 ∂∂̄ log F .)

This discussion shows that any Hermitian metric on L(E) defines a Finsler metric

on E. Conversely, an arbitrary Finsler metric F on E determines a Hermitian

metric gL(E) on L(E), i.e., we obtain

Proposition 2.2 [Kobayashi 1975]. There exists a one-to-one correspondence

between the set of Hermitian metrics on L(E) and the set of Finsler metrics

on E.

Definition 2.4 [Kobayashi 1975]. A holomorphic vector bundle π : E → M

over a compact complex manifold M is said to be negative if its tautological line

bundle L(E) → P(E) is negative, and E is said to be ample if its dual E
∗ is

negative.

The Chern class c1(L(E)) is represented by the closed real (1, 1)-form

c1 (L(E), F ) =

√

−1

2π
∂̄∂ log F

for a Finsler metric F on E. Thus, E is negative if and only if E admits a Finsler

metric F satisfying c1(L(E), F ) < 0. Consequently:
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Proposition 2.3. Let E be a holomorphic vector bundle over a compact complex

manifold M . Then E is negative if and only if E admits a Finsler metric F

satisfying
√

−1 ∂̄∂ log F < 0.

Given any negative holomorphic vector bundle E over M , we shall construct

a pseudoconvex Finsler metric F on E, with c1 (L(E), F ) < 0 (see [Aikou

1999] and [Wong 1984]). By definition the line bundle L(E) is negative, and

so L(E)∗ is ample. Hence there exists a sufficiently large positive m ∈ Z such

that L := L(E)∗⊗m is very ample. By the definition of very ampleness, we can

take f0, . . . , fN
∈ H0(P(E), L) such that

ϕ|L| : P(E) 3 [v] →
[

f
0([v]) : · · · : f

N ([v])
]

∈ P
N

defines a holomorphic embedding ϕ|L| : P(E) → PN . Then, by Lemma 2.1, we

have L ∼= ϕ
∗
|L|H for the hyperplane bundle H → PN . Since c1(H) is given by (2.4),

we have c1(L) = c1(ϕ
∗
|L|H) = ϕ

∗
|L|c1(H) > 0, and the induced metric gL is given

by gL = ϕ∗
|L|gH for the metric gH on H defined by (2.3). Since L = (L(E)∗)

⊗m
,

we have gL = g
−m

L(E)
, and thus the induced metric gL(E) on L(E) is given by

gL(E) =
[

ϕ
∗
|L|gH

]−1/m

=

[

1

ϕ∗
|L|gH

]1/m

.

Because of (2.3), the metric gL is locally given by

g(j) =
|f j

|
2

∑

|fk
|
2
,

and the Finsler metric F on E corresponding to gL(E) is given by

F (v) =
[

(ϕ∗
|L|gH) (τ(v))

]−1/m

=

[∑

|f
k([v])|2

|f j([v])|2

]1/m

|v
j
|
2 (2.8)

for v = (v1, . . . , vr+1) ∈ Ez. The Finsler metric F obtained as above satisfies the

condition c1 (L(E), F ) < 0. The pseudoconvexity of F will be shown by more

local computations (see Theorem 3.2).

Remark 2.1. Every pseudoconvex Finsler metric on a holomorphic vector

bundle E is obtained from a pseudo-Kähler metric on P(E) (Propositions 4.1

and 4.2).

In a later section, we shall show a theorem of Kobayashi’s (Theorem 3.2) which

characterizes negative vector bundles in terms of the curvature of Finsler metrics.

For this purpose, in the next section, we shall discuss the theory of Finsler

connections on (E,F ).
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3. Finsler Connections

Let π : E → M be a holomorphic vector bundle of rank(E) = r + 1 over

a complex manifold M . We denote by TM the holomorphic tangent bundle of

M . We also denote by TE the holomorphic tangent bundle of the total space E.

Then we have an exact sequence of holomorphic vector bundles

0 −→ VE

i
−→ TE

π∗

−→ π
∗
TM −→ 0, (3.1)

where VE = ker π∗ is the vertical subbundle of TE . A connection of the bundle

π : E → M is a smooth splitting of this sequence.

Definition 3.1. A connection of a fibre bundle π : E → M is a smooth

VE-valued (1, 0)-form θE ∈ Ω1,0(VE) satisfying

θE(Z) = Z (3.2)

for all Z ∈ VE . A connection θE defines a smooth splitting

TE = VE ⊕ HE (3.3)

of the sequence (3.1), where HE ⊂ TE is a the horizontal subbundle defined by

HE = ker θE .

The complex general linear group GL(r + 1, C) acts on E in a natural way. A

connection θE is called a linear connection if the horizontal subspace at each

point is GL(r+1, C)-invariant. A Hermitian metric on E defines a unique linear

connection θE .

On the other hand, the multiplier group C× = C\{0} ∼= {c · I | c ∈ C×
} ⊂

GL(r + 1, C) also acts on the total space E by multiplication Lλ : E 3 v →

λv ∈ E on the fibres for all v ∈ E and λ ∈ C×. In this paper, we assume that

a connection θE is C×-invariant. We denote by E ∈ OE(VE) the tautological

section of VE generated by the action of C×, i.e., E is defined by

E(v) = (v, v)

for all v ∈ E. The invariance of θE under the action of C× is equivalent to

LEHE ⊂ HE , (3.4)

where LE denotes the Lie derivative by E . In this sense, a C×-invariant connec-

tion θE is called a non-linear connection.

Example 3.1. Let E be a holomorphic vector bundle with a Hermitian metric

h. Let ∇̄ be the Hermitian connection of h, and ∇ = π
∗
∇̄ the induced connection

on VE . If we define θ ∈ Ω1,0(VE) by

θE = ∇̄E , (3.5)

then θE defines a linear connection on the bundle π : E → M .



92 TADASHI AIKOU

If a pseudoconvex Finsler metric F is given on E, then it defines a canonical

non-linear connection θE (see below).

If a connection θE is given on E, we put

X
V = θE(X), X

H = X − X
V

,

and

(dV
f)(X) = df

(

X
V

)

, (dH
f)(X) = df

(

X
H

)

for every X ∈ TE and f ∈ C
∞(E). These operators can be decomposed as

d
V = ∂

V + ∂̄
V and d

H = ∂
H + ∂̄

H . Furthermore the partial derivatives are also

decomposed as ∂ = ∂H + ∂V and ∂̄ = ∂̄H + ∂̄V .

3.1. Finsler connection. We define a partial connection ∇
H : VE → Ω1(VE)

on VE by

∇
H

Y
Z = θE

(

[Y H
, Z]

)

(3.6)

for all Y ∈ TE and Z ∈ VE , where [ · , · ] denotes the Lie bracket on TE . This

operator ∇
H is linear in X and satisfies the Leibnitz rule

∇
H(fZ) = (dH

f) ⊗ Z + f∇
H

Z

for all f ∈ C
∞(E).

On the other hand, since E is a fibre bundle over M , the projection map

π : E → M can be used to pullback the said fibre bundle, generating a π
∗
E

which sits over E. Note that VE
∼= π∗E. Thus VE admits a canonical relatively

flat connection ∇
V : VE → Ω1(VE) defined by ∇

V

X
(π∗

s) = 0 for every local

holomorphic section s of E, i.e.,

∇
V = d

V
. (3.7)

Then a connection ∇ : VE → Ω1(VE) is defined by

∇Z = ∇
H

Z + d
V

Z (3.8)

for every Y ∈ TE and Z ∈ VE . We note here that the connection ∇ is determined

uniquely from the connection θE on the bundle π : E → M .

Proposition 3.1. Let ∇ : VE → Ω1(VE) be the connection on VE defined by

(3.8), from a connection θE on the bundle π : E → M . Then ∇ satisfies

∇E = θE . (3.9)

Proof. Since θE is invariant by the action of C×, we have ∇
H
E = 0. In fact,

∇
H

X
E = θE

(

[XH
, E ]

)

= −θE

(

LEX
H ]

)

= 0.

Furthermore, since
(

dV
E

)

(X) = XV , we obtain

∇XE = ∇
H

X
E +

(

d
V
E

)

(X) = X
V = θE(X)

for every X ∈ TE . Hence we have (3.9). ˜
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For the rest of this paper, we shall use the following local coordinate system on

M and E. Let U be an open set in M with local coordinates (z1
, . . . , z

n), and s =

(s0, . . . , sr) a holomorphic local frame field on U . By setting v =
∑

ξisi(z) on for

each v ∈ π
−1(U), we take (z, ξ) =

(

z
1
, . . . , z

n
, ξ

0
, . . . , ξ

r
)

as a local coordinate

system on π
−1(U) ⊂ E. We use the notation

∂α =
∂

∂zα
and ∂j =

∂

∂ξj
.

We also denote by ∂ᾱ and ∂j̄ their conjugates.

We suppose that a pseudoconvex Finsler metric F is given on E. Then, by

definition in the previous section, the form ωE =
√

−1 ∂∂̄F is a closed real (1, 1)-

form on the total space E such that the restriction ωz on each fibre Ez = π
−1(z)

defines a Kähler metric Gz on Ez, and ωE defines a Hermitian metric GVE
on

the bundle VE . Thus we shall investigate the geometry of the Hermitian bundle

{VE , GVE
}.

A Finsler metric F on E is pseudoconvex if and only if the Hermitian matrix
(

Gij̄

)

defined by

Gij̄(z, ξ) = ∂i∂j̄F (3.10)

is positive-definite. Each fibre Ez may be considered as a Kähler manifold with

Kähler form ωz =
√

−1
∑

Gij̄dξ
i
∧ dξ̄

j . The family {Ez, ωz}z∈M
is considered

as a family of Kähler manifolds and the bundle is considered as the associated

fibred manifold. The Hermitian metric GVE
on VE is defined by

GVE
(si, sj) = Gij̄ , (3.11)

where we consider s = (s0, . . . , sr) as a local holomorphic frame field for VE
∼=

π
∗
E. We denote by ‖ · ‖

E
the norm defined by the Hermitian metric GVE

. Then,

because of the homogeneity (F2), we have

‖E‖
2

E
= GVE

(E , E) = F (z, ξ) (3.12)

and

LEGVE
= GVE

(3.13)

for the tautological section E(z, ξ) =
∑

ξ
i
si(z).

Let θ =
(

θ
1
, . . . , θ

r
)

be the dual frame field for the dual bundle V
∗
E

, i.e.,

θi (sj) = δi

j
. A connection θE for the bundle π : E → M is written as

θE = s ⊗ θ =
∑

si ⊗ θ
i
.

Proposition 3.2. Let F be a pseudoconvex Finsler metric on a holomorphic

vector bundle E. Then there exists a unique connection θE such that (3.3) is the

orthogonal splitting with respect to ωE .
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Proof. We can easily show that the required (1, 0)-form θi is defined by θi =

dξ
i +

∑

N
i

α
dz

α, where the local functions N
i

α
(z, ξ) are given by

N
i

α
=

∑

G
im̄

∂α∂m̄F

for the inverse matrix
(

Gim̄
)

of (Gim̄). By the homogeneity (F2), these functions

satisfy N
i

α
(z, λξ) = λN

i

α
(z, ξ) for every λ ∈ C×, which implies that θE is C×-

invariant. ˜

For the rest of this paper, we shall adopt the connection θE obtained in Propo-

sition 3.2 on a pseudoconvex Finsler bundle (E,F ).

Proposition 3.3 [Aikou 1998]. The connection θE satisfies

∂
H
◦ ∂

H
≡ 0. (3.14)

Such a connection θE determines a unique connection ∇ on VE .

Definition 3.2. The connection ∇ : VE → Ω1(VE) on (VE , GVE
) defined by

(3.8) is called the Finsler connection of (E,F ).

The connection ∇ defined by (3.8) is canonical in the following sense.

Proposition 3.4 [Aikou 1998]. Let ∇ be the Finsler connection on a pseudo-

convex Finsler bundle (E,F ). Then ∇ = ∇
H +dV satisfies the following metrical

condition.

d
H

GVE
(Y,Z) = GVE

(∇H
Y,Z) + GVE

(Y,∇
H

Z) (3.15)

for all Y,Z ∈ VE .

The connection form ω =
(

ω
i

j

)

of ∇ with respect to a local holomorphic frame

field s = (s0, . . . , sr) is defined by ∇sj =
∑

si ⊗ ωi

j
. By the identity (3.15), ω is

given by

ω = G
−1

∂
H

G. (3.16)

3.2. Curvature. Let ∇ be the Finsler connection on (E,F ). We also denote

by ∇ : Ωk(VE) → Ωk+1(VE) the covariant exterior derivative defined by ∇.

Definition 3.3. The section R = ∇◦∇ ∈ Ω2 (End(VE)) is called the curvature

of ∇.

With respect to the local frame field s = (s0, . . . , sr), we put

R(sj) =
∑

si ⊗ Ω
i

j
.

In matrix notation, the curvature form Ω =
(

Ωi

j

)

of ∇ is given by

Ω = dω + ω ∧ ω. (3.17)

The curvature form Ω is decomposed as Ω = d
H

ω + ω ∧ ω + d
V

ω, which can be

simplified to

Ω = ∂̄
H

ω + d
V

ω. (3.18)

This is made possible by
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Proposition 3.5. The horizontal (2, 0)-part of Ω vanishes, i .e.,

∂
H

ω + ω ∧ ω ≡ 0. (3.19)

Proof. Since ω = G
−1

∂
H

G, (3.14) implies

∂
H

ω + ω ∧ ω = ∂
H

(

G
−1

∂
H

G
)

+ ω ∧ ω

= −G
−1

∂
H

G ∧ G
−1

∂
H

G + G
−1

∂
H
◦ ∂

H
G + ω ∧ ω

= G
−1

∂
H
◦ ∂

H
G = 0. ˜

We give the definition of flat Finsler metrics.

Definition 3.4. A Finsler metric F is said to be flat if there exists a holo-

morphic local frame field s = (s0, . . . , sr) around every point of M such that

F = F (ξ), i.e., F is independent of the base point z ∈ M .

Theorem 3.1 [Aikou 1999]. A Finsler metric F is flat if and only if the curva-

ture R vanishing identically .

Let R
H be the curvature of the partial connection ∇

H , i.e., R
H = ∇

H
◦ ∇

H .

From (3.18), the curvature form ΩH of RH is given by ΩH = ∂̄Hω. If we put

∂̄
H

ω
i

j
=

∑

R
i

jαβ̄
dz

α
∧ dz̄

β
,

the curvature R
H is given by

R
H (sj) =

∑

si ⊗

(

R
i

jαβ̄
dz

α
∧ dz̄

β

)

.

For the curvature form Ω
H of ∇H , we define a horizontal (1, 1)-form Ψ by

Ψ(X,Y ) =
GVE

(

R
H

XY
(E), E

)

‖E‖
2

E

=
1

F

∑

R
ij̄αβ̄

(z, ξ)ξi
ξ̄

j
X

α
Ȳ

β

for any horizontal vector fields X,Y at (z, ξ) ∈ E, where we put R
ij̄αβ̄

=
∑

Gmj̄R
m

iαβ̄
. We set

Ψ
αβ̄

(z, ξ) =
1

F

∑

R
ij̄αβ̄

ξ
i
ξ̄

j
. (3.20)

In [Kobayashi 1975], this (1, 1)-form Ψ =
∑

Ψ
αβ̄

dz
α
∧ dz̄

β is also called the

curvature of F .

Definition 3.5. If the curvature form Ψ satisfies the negativity condition, i.e.,

Ψ(Y,Z) < 0 for all Y,Z ∈ HE , then we say that (E,F ) is negatively curved .

Direct computation gives:

Proposition 3.6 [Aikou 1998]. For a pseudoconvex Finsler metric F on a

holomorphic vector bundle E, the real (1, 1) form
√

−1 ∂∂̄ log F = −c1 (L(E), F )

is given by
√

−1 ∂∂̄ log F =
√

−1

(

−Ψ
αβ̄

O

O ∂i∂j̄ log F

)
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with respect to the orthogonal decomposition (3.3), i .e.,

√

−1 ∂∂̄ log F =
√

−1

(

−

∑

Ψ
αβ̄

dz
α
∧ dz̄

β +
∑

∂i∂j̄ (log F )θi
∧ θ̄

j

)

. (3.21)

Analyzing the negativity of the form c1 (L(E), F ), we have the following theorem

of Kobayashi.

Theorem 3.2 [Kobayashi 1975]. A holomorphic vector bundle π : E → M over

a compact complex manifold M is negative if and only if E admits a negatively

curved pseudoconvex Finsler metric.

Proof. By Proposition 2.3, E is negative if and only if there exists a Finsler

metric F such that
√

−1 ∂̄∂ log F < 0. Since ∂ and ∂̄ anti-commute, this char-

acterization is equivalent to
√

−1 ∂∂̄ log F > 0. Thus, E is negative if and only

if the right hand side of (3.21) is positive.

Denote by Fz the restriction of F to each fibre Ez = π
−1(z). Then, we have

√

−1 ∂∂̄Fz =
√

−1Fz

(

∂∂̄ log Fz + ∂ log Fz ∧ ∂̄ log Fz

)

.

If (3.21) has positive right hand side, then
√

−1Ψ must be negative, and
√

−1 ∂∂̄ log Fz must be positive. The latter, in conjunction with the displayed

formula, implies the positivity of
√

−1 ∂∂̄Fz. Thus F is pseudoconvex and neg-

atively curved.

Conversely, suppose F is pseudoconvex and negatively curved. That is, we

have
√

−1 ∂∂̄Fz > 0 and
√

−1Ψ < 0. Now, the pseudoconvexity of F implies

that the second term on the right hand side of (3.21) is positive-definite (see

section 4.1 for details). Thus the entire right hand side of (3.21) is positive. ˜

Remark 3.1. In this section, the horizontal (1, 1)-part R
H of R plays an impor-

tant role. In Finsler geometry, there are other important tensors. The VE-valued

2-form TE defined by

TE = ∇θE (3.22)

is called the torsion form of ∇, which is expressed by

TE = s ⊗ (dθ + ω ∧ θ) =
∑

si ⊗

(

dθ
i +

∑

ω
i

j
∧ θ

j

)

.

Because of (3.9), the torsion form TE is also given by

TE = R(E).

The torsion form TE vanishes if and only if the horizontal subbundle HE defined

by θE is holomorphic and integrable (see [Aikou 2003b]).

On the other hand, the mixed part R
HV of R defined by

R
HV (sj) =

∑

si ⊗ d
V

ω
i

j

is also an important curvature form. The vanishing of R
HV shows that (E,F ) is

modeled on a complex Minkowski space, i.e., there exists a Hermitian metric hF
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on E such that the Finsler connection ∇ on (E,F ) is obtained by ∇ = π∗
∇̄ for

the Hermitian metric ∇̄ of (E, hF ) (see [Aikou 1995]). Hence a Finsler metric F

is flat if and only if (E,F ) is modeled on a complex Minkowski space and the

associated Hermitian metric hF is flat.

3.3. Holomorphic sectional curvature. We now study the holomorphic

tangent bundle TM of a complex manifold with a pseudoconvex Finsler metric

F : TM → R. The pair (M,F ) is called a complex Finsler manifold . This is the

special case of E = TM in Definition 2.3, and we have the natural identifications

VE
∼= HE

∼= π
∗
TM .

Let ∆(r) = {ζ ∈ C : |ζ| < r} be the disk of radius r in C with the Poincaré

metric

gr =
4r

2

(r2
− |ζ|2)2

dζ ⊗ dζ̄.

For every point (z, ξ) ∈ TM , there exists a holomorphic map ϕ : ∆(r) → M

satisfying ϕ(0) = z and

ϕ∗(0) := ϕ∗

(

(

∂

∂ζ

)

ζ=0

)

= ξ. (3.23)

Then, the pullback ϕ
∗
F defines a Hermitian metric on ∆(r) by

ϕ
∗
F = E(ζ) dζ ⊗ dζ̄,

where we put E(ζ) = F (ϕ(ζ), ϕ∗(ζ)). The Gauss curvature Kϕ∗F (z, ξ) is defined

by

Kϕ∗F (z, ξ) = −

(

1

E

∂
2 log E

∂ζ ∂ζ̄

)

ζ=0

.

Definition 3.6 [Royden 1986]. The holomorphic sectional curvature KF of

(M,F ) at (z, ξ) ∈ TM is defined by

KF (z, ξ) = sup
ϕ

{Kϕ∗F (z, ξ) : ϕ(0) = z, ϕ∗(0) = ξ} ,

where ϕ ranges over all holomorphic maps from a small disk into M satisfying

ϕ(0) = z and (3.23).

Then KF has a computable expression in terms of the curvature tensor of the

Finsler connection ∇.

Proposition 3.7 [Aikou 1991]. The holomorphic sectional curvature KF of a

complex Finsler manifold (M,F ) is given by

KF (z, ξ) =
Ψ(E , E)

‖E‖
2

E

=
1

F 2

∑

R
ij̄kl̄

(z, ξ)ξi
ξ̄

j
ξ

k
ξ̄

l
, (3.24)

where R
ij̄kl̄

=
∑

Gmj̄R
m

ikl̄
is the curvature tensor of the Finsler connection ∇

on (TM , F ).

Then we have a Schwarz-type lemma:
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Proposition 3.8 [Aikou 1991]. Let F be a pseudoconvex Finsler metric on

the holomorphic tangent bundle of a complex manifold M . Suppose that its

holomorphic sectional curvature KF (z, ξ) at every point (z, ξ) ∈ TM is bounded

above by a negative constant −k. Then, for every holomorphic map ϕ : ∆(r) →

M satisfying ϕ(0) = z and (3.23), we have

gr ≥ kϕ
∗
F. (3.25)

The Kobayashi metric FM on a complex manifold M is a positive semidefinite

pseudo metric defined by

FM (z, ξ) = inf
ϕ

{

1

r
: ϕ(0) = z, ϕ∗(0) = ξ

}

. (3.26)

In general, FM is not smooth. FM is only upper semi-continuous, i.e., for every

X ∈ TM and every ε > 0 there exists a neighborhood U of X such that FM (Y ) <

FM (X)+ε for all Y ∈ U (see [Kobayashi 1998], [Lang 1987]). Even though FM is

not a Finsler metric in our sense, the decreasing principle shows the importance

of the Kobayashi metric, i.e., for every holomorphic map ϕ : N → M , we have

the inequality

FN (X) ≥ FM (ϕ∗(X)). (3.27)

This principle shows that FM is holomorphically invariant, i.e., if ϕ : N → M

is biholomorphic, then we have FN = ϕ
∗
FM . In this sense, FM is an intrinsic

metric on complex manifolds.

A typical example of Kobayashi metrics is the one on a domain in Cn. It is

well-known that, if M is a strongly convex domain with smooth boundary in Cn,

then FM is a pseudoconvex Finsler metric in our sense (see [Lempert 1981]).

A complex manifold M is said to be Kobayashi hyperbolic if its Kobayashi

metric FM is a metric in the usual sense. If M admits a pseudoconvex Finsler

metric F whose holomorphic sectional curvature KF is bounded above by a

negative constant −k, then (3.25) implies the inequality

F
2

M
≥ kF, (3.28)

and thus M is Kobayashi hyperbolic.

Theorem 3.3 [Kobayashi 1975]. Let M be a compact complex manifold . If its

holomorphic tangent bundle TM is negative, then M is Kobayashi hyperbolic.

Proof. We suppose that TM is negative. Then, Theorem 3.2 implies that there

exists a pseudoconvex Finsler metric F on TM with negative-definite Ψ . By the

definition (3.20), the negativity of Ψ and (3.24) imply

KF (z, ξ) =
Ψ(E , E)

‖E‖
2

E

< 0.

Since M is compact, P(E) is also compact. Moreover, since KF is a function on

P(E), the negativity of KF shows that KF is bounded by a negative constant

−k. Hence we obtain (3.28), and M is Kobayashi hyperbolic. ˜
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Remark 3.2. Recently Cao and Wong [Cao and Wong 2003] have introduced the

notion of “mixed holomorphic bisectional curvature” for Finsler bundles (E,F ),

which equals the usual holomorphic bisectional curvature in the case of E =

TM . They also succeeded in showing that a holomorphic vector bundle E of

rank(E) ≥ 2 over a compact complex manifold M is ample if and only if E

admits a Finsler metric with positive mixed holomorphic bisectional curvature.

4. Ruled Manifolds

4.1. Projective bundle. Let φ : P(E) → M be the projective bundle associ-

ated with a holomorphic vector bundle E over M .

Definition 4.1. A locally ∂∂̄-exact real (1, 1)-form ωP(E) on the total space

P(E) is called a pseudo-Kähler metric on P(E) if its restriction to each fibre

defines a Kähler metric on P(Ez) ∼= Pr.

If a pseudo-Kähler metric ωP(E) is given on P(E), then its restriction to each fibre

φ
−1(z) = P(Ez) is a Kähler form on P(Ez). We shall show that a pseudoconvex

Finsler metric on E defines a pseudo-Kähler metric on P(E). For this purpose,

we use the so-called Euler sequence (e.g., [Zheng 2000]).

We denote by ρ : E×
→ P(E) the natural projection. We also denote by

VP(E) := kerφ∗ the vertical subbundle of TP(E). Let s = (s0, . . . , sr) be a holo-

morphic local frame field of E on an open set U ⊂ M , which is naturally con-

sidered as a holomorphic local frame field of VE on π
−1(U). Then, the vertical

subbundle VP(E) ⊂ TP(E) is locally spanned by {ρ∗s0, . . . , ρ∗sr} with the relation

ρ∗E = 0. (4.1)

Then the Euler sequence

0 −→ L(E)
i

−→ φ
∗
E −→ L(E) ⊗ VP(E) −→ 0

implies the following exact sequence of vector bundles:

0 −→ 1P(E)

i

−→ H(E) ⊗ φ
∗
E

P
−→ VP(E) −→ 0, (4.2)

where H(E) = L(E)∗ is the hyperplane bundle over P(E) and the bundle mor-

phism P : H(E) ⊗ φ
∗
E → VP(E) is defined as follows. Since any section Z of

H(E) ⊗ φ
∗
E can be naturally identified with a section Z =

∑

Z
j
sj of VE sat-

isfying the homogeneity Z
j(λv) = λZ

j(v), the definition ρ∗Z(v) = (ρ∗Z) ([v])

makes sense. Then P is defined by

P(Z) = ρ∗

(

∑

Z
j
sj

)

. (4.3)

Moreover, since ρ∗E = 0, 1P(E)(= kerP) is the trivial line bundle spanned by E .

Then, since kerP = 1P(E) is spanned by E , the morphism P is expressed as

P(Z) = Z −

GVE
(Z, E)

‖E‖
2

E

E
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for a Hermitian metric GVE
on VE . Since P is surjective, for any sections Z̃

and W̃ of VP(E), there exist sections Z and W of VE satisfying P(Z) = Z̃ and

P(W ) = W̃ . Then, a Hermitian metric GVP(E)
on VP(E) is defined by

GVP(E)
(Z̃, W̃ ) =

‖E‖
2

E
GVE

(Z,W ) − GVE
(Z, E)GVE

(E ,W )

‖E‖
4

E

(4.4)

for the Hermitian metric GVE
on VE defined by (3.11), which induces the or-

thogonal decomposition

H(E) ⊗ φ
∗
E = 1P(E) ⊕ VP(E).

Because of (4.1) and (4.4), the components of the metric GVP(E)
with respect to

the local frame {ρ∗(sj)} is given by

GVP(E)
(ρ∗si, ρ∗sj) = ∂i∂j̄ (log F ). (4.5)

Consequently we have

Proposition 4.1. If F is a pseudoconvex Finsler metric on a holomorphic

vector bundle E, then the real (1, 1)-form
√

−1 ∂∂̄ log F defines a pseudo-Kähler

metric on P(E).

Conversely:

Proposition 4.2. If ωP(E) is a pseudo-Kähler metric on P(E), then ωP(E)

defines a pseudoconvex Finsler metric F on E such that ρ
∗
ωP(E) =

√

−1 ∂∂̄ log F .

Such a pseudoconvex Finsler metric F is unique up to a local positive function

σU on U ⊂ M .

Proof. On each open set U(j) = {[v] = (z, [ξ]) ∈ φ
−1(U) : ξ

j
6= 0} of P(E), we

express the pseudo-Kähler metric ωP(E) by

ωP(E)|U(j)
=

√

−1 ∂∂̄g(j),

where {g(j)} is a family of local smooth functions g(j) : U(j) → R. Since the

restriction of this form to each fibre Pz ⊂ U(j) is a Kähler form ωz on Pz, we

may put

ωz =
√

−1 ∂∂̄gz,(j),

where the local functions gz,(j) = g(j)|Pz
depend on z ∈ U smoothly. Then we

define a function Fz : E
×
z

→ R by

Fz(ξ) = |ξ
j
|
2 exp gz,(j).

Since Fz also depends on z ∈ U smoothly, we extend this function to a smooth

function F : E
×

→ R by F (z, ξ) = Fz(ξ). It is easily verified that F defines a

pseudoconvex Finsler metric on E.
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We note that another Kähler potential {g̃(j)} for ωP(E) which induces the

Kähler metric ωz on each Pz is given by

g̃(j)(z, [ξ]) = σU (z) + g(j)(z, [ξ]) (4.6)

for some functions σU (z) defined on U . Hence the Finsler metric F̃ determined

from the potential {g̃j} is connected to the function F by the relation F̃ =

e
σU (z)

F on each U . ˜

Similar to Definition 3.4, we say a pseudo-Kähler metric ωP(E) on P(E) is flat if

there exists an open cover {U, s} of E so that we can choose Kähler potentials

g(j) for ωP(E) which are independent of the base point z ∈ M . Now we define

the projective-flatness of Finsler metrics.

Definition 4.2. A Finsler metric on E is said to be projectively flat if it is

obtained from a flat pseudo-Kähler metric on P(E).

In a previous paper, we proved this result:

Theorem 4.1 [Aikou 2003a]. A pseudoconvex Finsler metric is projectively flat

if and only if the trace-free part of the curvature form Ω vanishes identically ,

i .e.,

Ω = A(z) ⊗ Id (4.7)

for some (1, 1)-form A on M .

Remark 4.1. A Finsler metric F is projectively flat if and only if there exists

a local function σU (z) on U such that F is of the form

F (z, ξ)|U = expσU (z) · |ξj
|
2 exp g(j)([ξ]) (4.8)

on each U . In other words, a Finsler metric F is projectively flat if and only if

there exists a local function σU (z) on U such that the local metric e−σU (z)F is

a flat Finsler metric on U . In the previous paper [Aikou 1997], such a Finsler

metric F is said to be conformally flat .

We suppose that a pseudoconvex Finsler metric F is projectively flat. Then,

since the curvature form Ω is given by (3.18), we have R
HV

≡ 0, and thus

(E,F ) is modeled on a complex Minkowski space. We can easily show that the

associated Hermitian metric hF is also projectively flat. Hence:

Theorem 4.2. A holomorphic vector bundle E of rank(E) = r + 1 admits a

projectively flat Finsler metric if and only if P(E) is flat , i .e.,

P(E) = M̃ ×ρ P
r
, (4.9)

where M̃ is the universal cover of M , and ρ : π1(M) → PU(r) is a representation

of the fundamental group π1(M) in the projective unitary group PU(r).
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4.2. Ruled manifolds. An algebraic surface X is said to be ruled if it is

birational to M ×P1, where M is a compact Riemann surface. An algebraic sur-

face X is said to be geometrically ruled if there exists a holomorphic projection

φ : X → M such that every fibre φ
−1(z) = Xz is holomorphically isomorphic

to P1. As is well known, a geometrically ruled surface is ruled (see [Beauville

1983]), and every geometrically ruled surface X is holomorphically isomorphic

to P(E) for some holomorphic vector bundle π : E → M of rank(E) = 2 (see

[Yang 1991], for example).

An algebraic manifold X is said to be a ruled manifold if X is a holomorphic

Pr-bundle with structure group PGL(r + 1, C) = GL(r + 1, C)/C×. Any holo-

morphic Pr-bundle over M is classified by H
1(M,PGL(r + 1,OM )), and any

rank r + 1 holomorphic vector bundle over M is classified by the elements of

H
1(M,GL(r + 1,OM )). The exact sequence

0 → O
∗
M

→ GL(r + 1,OM ) → PGL(r + 1,OM ) → 0

implies the sequence of cohomology groups:

· · · → H
1(M,GL(r + 1,OM )) → H

1(M,PGL(r + 1,OM )) → H
2(M,O

∗
M

) → · · ·

Since H2(M,O∗
M

) = 0, the following is obtained.

Proposition 4.3. Every ruled manifold X over a compact Riemann surface

M is holomorphically isomorphic to P(E) for some holomorphic vector bundle

π : E → M of rank(E) = r + 1. Such a bundle E is uniquely determined up to

tensor product with a holomorphic line bundle.

If E is a holomorphic vector bundle over a compact Kähler manifold M , then

P(E) is also a compact Kähler manifold. In fact, we can construct a Kähler

metric ωP(E) on P(E) of the form ωP(E) = φ
∗
ωM + εη. Here, ωM is a Kähler

metric on M , ε is a small positive constant, and η is a closed (1, 1)-form on

P(E) such that η is positive-definite on the fibres of φ (see Lemma (6.37) in

[Shiffmann and Sommese 1985]). Thus every ruled manifold X over a compact

Riemann surface M is a compact Kähler manifold, and φ : X = P(E) → M is

a holomorphic submersion from a compact Kähler manifold X to M . Then we

have

Theorem 4.3. Let X be a ruled manifold over a compact Riemann surface M

with a Kähler metric ωX . Then there exists a negative vector bundle π : E → M

such that X = P(E), and a negatively curved pseudoconvex Finsler metric F on

E satisfying ρ∗ωX =
√

1∂∂̄ log F .

Proof. Let ωX be a Kähler metric on X . Propositions 4.3 and 4.2 imply

that there exists a holomorphic vector bundle E satisfying X = P(E) with a

pseudoconvex Finsler metric F . Then, since
√

−1 ∂∂̄ log F = ωX > 0,
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F is negatively curved, and hence Theorem 2.3 implies that E is negative. ˜

LeBrun [LeBrun 1995] has investigated minimal ruled surfaces (i.e., geometrically

ruled surface) over a compact Riemann surface of genus g(M) ≥ 2 with constant

negative scalar curvature. Roughly speaking, he proved that such a minimal

ruled surface X is obtained by a semi-stable vector bundle over M so that X =

P(E). Since the semi-stability of vector bundles over a compact Riemann surface

is equivalent to the existence of a projectively flat Hermitian metric on E, such

a surface is written in the form (4.9).

On the other hand, by Theorem 4.3, the geometry of a minimal ruled surface

X is naturally translated to the geometry of a negative vector bundle E with

a negatively curved pseudoconvex Finsler metric F . From this viewpoint, we

have also investigated minimal ruled surfaces, and we have concluded that each

minimal ruled surface φ : X → M over a compact Riemann surface of genus

g(M) ≥ 2 with constant negative scalar curvature is a Kähler submersion with

isometric fibres (see [Aikou 2003b]).
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Introduction

A complex manifold X is Brody hyperbolic if every holomorphic map f :

C → X is constant. For compact complex manifolds this is equivalent to the

condition that the Kobayashi pseudometric κ1 (see (1.12)) is a positive definite

Finsler metric. One may verify the hyperbolicity of a manifold by exhibiting a

Finsler metric with negative holomorphic sectional curvature. The construction

of such a metric motivates the use of parametrized jet bundles, as defined by

Green–Griffiths. (The theory of these bundles goes back to [Ehresmann 1952].)

We examine the algebraic-geometric properties (ample, big, nef, spanned and

the dimension of the base locus) of these bundles that are relevant toward the

metric’s existence. To do this, we start by determining (and computing) basic

invariants of jet bundles. Then we apply Nevanlinna theory, via the construction

of an appropriate singular Finsler metric of logarithmic type, to obtain precise

extensions of the classical Schwarz Lemma on differential forms toward jets.

Particularly, this allows direct control over the analysis of the jets jk
f of a

holomorphic map f : C → X; namely, the image of jkf must be contained

in the base locus of the jet differentials. For an algebraically nondegenerate

holomorphic map we show by means of reparametrization that the algebraic

107
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closure of jkf is quite large while, under appropriate conditions, the base locus

is relatively small. This contradiction shows that the map f must be algebraically

degenerate. We apply this method to verify that a generic smooth hypersurface

of P3, of degree d ≥ 5, is hyperbolic (see Corollary 7.21). Using this we show

also the existence of a smooth curve C of degree d = 5 in P2 such that P2
\C is

Kobayashi hyperbolic.

In the classical theory of curves (Riemann surfaces) the most important in-

variant is the genus. The genus g of a curve is the number of independent global

regular 1-forms: g = h
0(KX) = dimH

0(KX), where KX = T
∗
X is the canonical

bundle (which in the case of curves is also the cotangent bundle). A curve is

hyperbolic if and only if g ≥ 2. One way to see this is to take a basis ω1, . . . , ωg

of regular 1-forms and define a metric ρ on the tangent bundle by setting

ρ(v) =

(

g
∑

i=1

|ωi(v)|
2

)1/2

, v ∈ TX. (∗)

For g = 1 the metric is flat, that is, the Gaussian or holomorphic sectional

curvature (hsc) is zero. Hence X is an elliptic curve. For g ≥ 2 the curvature of

this metric is strictly negative which, by the classical Poincaré–Schwarz Lemma,

implies that X is hyperbolic. Algebraic geometers take the dual approach by

interpreting ρ as defining a metric along the fibers of the dual T ∗X = KX and,

for g ≥ 2, the Chern form c1(KX , ρ) is positive, that is, the canonical bundle is

ample. Indeed the following four conditions are equivalent:

(i) g ≥ 2;

(ii) X is hyperbolic;

(iii) T ∗
X is ample; and

(iv) There exists a negatively curved metric.

For a complex compact manifold of higher dimension the number of independent

1-forms g = h
0(T ∗

X) is known as the irregularity of the manifold. If g ≥ 1, we

may define ρ as in (∗). More generally, for each m, we may choose a basis

ω1, . . . , ωgm
of H0(

⊙
m
T

∗
X), where

⊙
m
T

∗
X is the m-fold symmetric product,

and define, if gm ≥ 1,

ρ(v) =

gm∑

i=1

|ωi(v)|
1/m

. (∗∗)

In dimension 2 or higher, ρ cannot, in general, be positive definite and it is only

a Finsler rather than a hermitian metric. However the holomorphic sectional

curvature may be defined for a Finsler metric and the condition that the curva-

ture is negative implies that X is hyperbolic. It is known [Cao and Wong 2003]

that the ampleness of T ∗
X is equivalent to the existence of a Finsler metric with

negative holomorphic bisectional curvature (hbsc):
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Theorem [Aikou 1995; 1998; Cao and Wong 2003]. T ∗X is ample ⇐⇒ Finsler

metric has negative hbsc =⇒ Finsler metric has negative hsc =⇒ X is hyper-

bolic.

In our view the fundamental problems in hyperbolic geometry are the following.

Problem 1. Find an algebraic geometric characterization of the concept of

negative hsc.

Problem 2. Find an algebraic geometric and a differential geometric charac-

terization of hyperbolicity .

It is known that there are hyperbolic hypersurfaces in Pn (for each n). On the

other hand, there are no global regular 1-forms on hypersurfaces in Pn for n ≥ 3;

indeed h
0(
⊙

m
T

∗
X) = 0 for all m. These hyperbolic hypersurfaces are discov-

ered using, in one form or another, the Second Main Theorem of Nevanlinna

Theory, which involves higher-order information; see for example [Wong 1989;

Stoll and Wong 1994; Fujimoto 2001].

This leads us to the concept of the (parametrized) jet bundles [Ehresmann

1952], formalized (for complex manifolds) and studied by Green and Griffiths

[1980]. Observe that a complex tangent v at a point x of a manifold may be

represented by the first order derivative f ′(0) of a local holomorphic map f :

∆r → X, f(0) = x for some disc ∆r of radius r in the complex plane C (more

precisely, v is the equivalence class of such maps, as different maps may have

the same derivative at the origin). A k-jet is defined as the equivalence class of

the first k-th order derivatives of local holomorphic maps and the k-jet bundle,

denoted J
k
X, is just the collection of all (equivalence classes of) k-jets. Note

that J1
X = TX. For k ≥ 2 these bundles are C

∗ bundles but not vector bundles.

The nonlinear structure is reflected in reparametrization. Namely, given a k-jet

jkf(0) = (f(0), f ′(0), . . . , f (k)(0)) we obtain another k-jet by composing f with

another local holomorphic self map φ in C that preserves the origin, then taking

jk(f ◦φ)(0). In particular, if φ is given by multiplication by a complex number

λ we see that jk(f ◦φ)(0) = (f(0), λf ′(0), λ2
f
′′(0), . . . , λk

f
(k)(0)). Equivalence

under this action is denoted by λ · j
f (0) and this is the C

∗-action on J
k
X; in

general there is no vector bundle structure on J
k
X. We write:

λ · (v1, . . . , vk) = (λv1, λ
2
v2, . . . , λ

k
vk), (v1, . . . , vk) ∈ J

k
X (∗∗∗)

and assign the weight i to the variable vi. A 1-form ω may be regarded as a

holomorphic function on the tangent bundle ω : TX → C satisfying the condition

ω(λ · v) = λω(v), that is, linearity along the fibers. More generally, an element

ω ∈ H0(
⊙

m
T ∗X) is a holomorphic function on the tangent bundle ω : TX → C

that is a homogeneous polynomial of degree m along the fibers. Analogously we

define a k-jet differential ω of weight m to be a holomorphic function on the k-jet

bundle ω : Jk
X → C which is a weighted homogeneous polynomial of degree m

along the fibers. The sheaf of k-jet differentials of weight m will be denoted by
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J
m

k
X. Taking a basis ω1, . . . , ωN of H0(J m

k
X) we define

ρ(v1, . . . , vk) =

N∑

i=1

∣
∣ωi(v1, . . . , vk)

∣
∣
1/m

,

and from (∗∗∗) we see (since each ωi is a weighted homogeneous polynomial of

degree m) that ρ is a Finsler pseudometric, that is,

ρ(λ · (v1, . . . , vk)) =

N∑

i=1

(
|λ

m
ωi(v1, . . . , vk)|

)1/m

= |λ|

N∑

i=1

(
|ωi(v1, . . . , vk)|

)1/m

= |λ| ρ(v1, . . . , vk).

The positive definiteness is a separate issue that one must deal with in higher

dimension. The algebraic geometric concept that is equivalent to the positive

definiteness of ρ is that the sheaf J m

k
X is spanned (meaning that global sections

span the fiber at each point). Other relevant concepts here are whether such a

sheaf is ample, nef (numerically effective), or big. These concepts are intimately

related to the Chern numbers of the sheaf J
m

k
X and the dimensions of the

cohomology groups hi(J m

k
X), 0 ≤ i ≤ n = dimX. The starting point here is

the computation of the Euler characteristic in the case of a manifold of general

type by the Riemann–Roch Formula. An asymptotic expansion of χ(J m

k
X) was

given in [Green and Griffiths 1980] with a sketch of the proof. Often in articles

making reference to this result readers questioned the validity of the statement.

A detailed proof, in the case of general type surfaces (complex dimension 2),

of this formula was given in [Stoll and Wong 2002] using a different approach

to that given in by Green and Griffiths. Indeed explicit formulas, not merely

asymptotic expansions, were given for J
m

k
X, k = 2 and 3. The method of

computation also shows that J m

k
X is not semistable (see Section 3, Remark 3.5)

in the sense of Mumford–Takemoto despite the fact (see [Maruyama 1981; Tsuji

1987; 1988]) that all tensor products ⊗T ∗X and symmetric products
⊙

m
T ∗X

are semistable ifX is of general type. In this article we also introduce an analogue

of semistability in the sense of Gieseker–Maruyama (see [Okonek et al. 1980])

and show that J
m

k
X is not semistable (see Section 7) in this sense either.

We have (see Section 5 for the reason in choosing the weight k! below)

T
∗
X is ample =⇒ J

k!

k
X is ample for all k

=⇒ J
k!

k
X is ample for some k

⇐⇒ there exists Finsler metric on Jk
X with negative hbsc

=⇒ there exists Finsler metric on Jk
X with negative hsc

=⇒ X is hyperbolic.
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The condition that J
k!

k
X is ample is much stronger than hyperbolicity of X.

A weaker condition is that J
k!

k
X is big ; this says that

h
0(J k!m

k
X) = dim(X,J k!m

k
X) = O(mn(k+1)−1),

where n = dimX. From the differential geometric point of view, this means that

there is a pseudo-Finsler metric on Jk
X that is generically positive definite and

has generically negative hbsc (as defined wherever the metric is positive definite).

The condition that J k!

k
X is big implies that, for any ample divisor D on X, there

exists m0 = m0(D) such that J
k!m0

k
X ⊗ [−D] (the sheaf of k-jet differentials of

weight k!m0 vanishing along D) is big. This, however, is not quite enough to

guarantee hyperbolicity; the problem is that the base locus of J k!

k
X⊗ [−D] may

be “too big”. As a natural correction, we verify, using the Schwarz Lemma for

jet differentials (see Theorem 6.1, Corollaries 6.2 and 6.3), that the assumption

J
k!m0

k
X⊗ [−D] is big and spanned (that is, the base locus is empty) does imply

hyperbolicity.

However, the condition that a sheaf is big and spanned may be difficult to

verify (unless, perhaps, it is already ample and we know of no hypersurfaces in

P3 satisfying this condition). To alleviate this, we refine the form of Schwarz’s

Lemma (see Theorem 6.4 and Corollary 6.5) to establish the result that every

holomorphic map f : C → X is algebraically degenerate if the dimension of the

base locus of J k!m0

k
X⊗ [−D] in the projectivized jet bundle P(Jk

X) is no more

than n+ k− 1. From this we show in Section 7, using the explicit computation

of the invariants of the jet bundles in the first 3 sections (see Theorem 3.9 and

Corollary 3.10), that the dimension of the base locus of a generic hypersurface

of degree ≥ 5 in P3 is, indeed, at most n+k−1 = k+1 (n = 2 in this case) and

consequently, hyperbolic. The key ingredient is the extension of the inductive

cutting procedure of the base locus, of [Lu and Yau 1990] and [Lu 1991] (see also

[Dethloff et al. 1995a; 1995b]) in the case of 1-jets, to k-jets. There is a delicate

point in the cutting procedure, namely that intersections of irreducible varieties

may not be irreducible. We show, again using the Schwarz Lemma, that under

the algebraically nondegenerate assumption on f , there is no loss of generality

in assuming that the intersection is irreducible (see the proof of Theorems 7.18

and 7.20).

The crucial analytic tools here are the Schwarz Lemma for jet differentials

and its refined form. These are established using Nevanlinna Theory. We remark

that jet differentials are used routinely in Nevanlinna Theory without a priori

knowledge of whether regular jet differentials exist at all. The main idea of the

proof of the Schwarz Lemma is to use jet differentials with logarithmic poles; to

determine conditions under which the sheaf of such jet differentials is spanned

and provides a singular Finsler metric that is positive definite in the extended

sense. The classical Nevanlinna Theory is seen to work well with nonhermitian

Finsler metrics with logarithmic poles on account of the fundamental principle



112 KAREN CHANDLER AND PIT-MANN WONG

(the Lemma of logarithmic derivatives of Nevanlinna) that logarithmic poles are

relatively harmless (see the proof of Theorem 6.1 in Section 6 for details).

The article is organized as follows. We describe the parametrized jet bundles

of Green–Griffiths, which differ from the usual jet bundles; for example, they

are C
∗ bundles but in general not vector bundles. The definitions are recalled

in Section 1. For the usual jet bundles there is the question of interpolation:

Find all varieties with prescribed jets, say, at a finite number of points. This

problem, for 1-jets, is equivalent to the Waring problem concerning when a

general homogeneous polynomial is the sum of powers of linear forms. The

Waring problem is related to the explicit construction (not merely existence) of

hyperbolic hypersurfaces in Pn for any n. Limitation of space does not allow

us to discuss this problem in this article. Solutions of the interpolation problem

for a collection of points can be found in [Alexander and Hirschowitz 1992a;

1992b; 1995; Chandler 1995; 1998a; 2002]. The analogous problem concerning

the Green–Griffiths jet bundles is still open.

In Section 2 we give a fairly detailed account of the jet bundles of curves.

We calculate the Chern number c1(J
m

k
X) and the invariants h0(J m

k
X) and

h
1(J m

k
X). We show, by examples, how to construct jet differentials explicitly,

in terms of the defining polynomial, in the case of curves of degree d ≥ 4 in P2.

Jet bundles may also be defined for varieties defined over fairly general fields

(even in positive characteristic). The explicit construction of sections of powers

of the canonical bundle, Km

X
, was useful in the solution of the “strong uniqueness

polynomial problem” (see Section 2 and the articles [An et al. 2004] in the

complex case and [An et al. 2003a; 2003b] in the case of positive characteristic).

The formulas for invariants of the jet differentials for surfaces (the Chern num-

bers, the index, the Euler characteristic, the dimensions of cohomology groups)

are given in Sections 3, 4 and 7. The calculations are similar to those over

curves, though combinatorially much more complicated. We provide compu-

tations in special cases; the details are given in [Stoll and Wong 2002]. For

example the explicit computation in Section 7 (see Theorem 7.7) shows that, for

a smooth hypersurface in P3 the Euler characteristic χ(J m

2
X) is big if and only

if the degree is ≥ 16.

In Section 6 we prove a Schwarz Lemma for jet differentials. This is the

generalization of the classical result for differential forms on curves: if

ω ∈ H
0(X,KX ⊗ [−D]),

that is, if ω is a regular 1-form vanishing on an effective ample divisor D in the

curve X, then f∗(ω) ≡ 0 for any holomorphic map f : C → X. This says that

f
′ vanishes identically, that is, f is a constant. The proof given in Section 6 of

the Schwarz Lemma for jets jkf has been in circulation since 1994 but was never

formally published; it was used, for example, in the thesis of Jung [1995] and by

Cherry–Ru in the context of p-adic jet differentials.
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For surfaces of general type the fact that J
k!

k
X is big for k � 0 is equivalent

to the “hyperplane” line bundle L
k!

k
being big on P(Jk

X). (Note that L
m

k
is

locally free only if m is divisible by k!; see Section 5 for more details.) Schwarz’s

Lemma then implies that the lifting [jk
f ] : C → P(Jk

X) of a holomorphic map

f : C → X must be contained in some divisor Y ⊂ P(Jk
X). The idea is to show

that Lk!

k
|Y is again big so that the image of [jk

f ] is contained in a divisor Z of Y .

Then we show that Lk!

k
|Z is big and continue until we reach the critical dimension

n+ k− 1 = k+1. For surfaces of general type the sheaf of 1-jet differentials L
1

1

is big if c2
1
> c2. In order for the restriction of L1

1
to subvarieties to be big, the

condition that the index c2
1
− 2c2 is positive is required. The proof is based on

the intersection theory of the projectivized tangent bundle P(TX) and the fact

that the cotangent bundle T ∗X of a surface of general type is semistable (in the

sense of Mumford–Takemoto) relative to the canonical class. As remarked earlier

the k-jet differentials are not semistable for any k ≥ 2. However, by our explicit

computation, for minimal surfaces of general type the index of J k!

k
X is positive

for k � 0. Indeed, we may write the index as ι(J k!

k
X) = c(αkc

2

1
−βkc2) where

c, αk and βk are positive and we show that limk→∞ αk/βk = ∞ (see Corollary

3.10). This is crucial in showing that L
k!

k
|Z is big in the cutting procedure. For

example, for a smooth hypersurface of degree 5 in P3, ι(J k!

k
X) is positive and

the ratio αk/βk must be greater than 11 in order to establish the degeneracy

of a map from C to X. Using the explicit expressions for αk and βk we show,

with the aid of computer, that this occurs precisely for k ≥ 199 (see the table at

the end of Section 3 and Example 7.6 in Section 7). However, in order for the

index of the restriction of the sheaf to subvarieties (in the cutting procedure)

to be positive (verifying the hyperbolicity of X), k must be even larger. Using

our formulas in the proof of Theorem 7.20, Professor B. Hu, using the computer,

checked that k ≥ 2283 is sufficient.

Note. Experts who are familiar with parametrized jet bundles and are interested

mainly in the proof of the Kobayashi conjecture may skip the first five sections

(with the exception of Theorem 3.9 and Corollary 3.10) and proceed directly to

Sections 6 and 7.

1. Holomorphic Jet Bundles

Summary. Two notions of jet bundles, the full and the parametrized bundles,

are introduced . The parametrized jet bundle is only a C
∗-bundle, not a vector

bundle in general . For the resolution of the Kobayashi conjecture, as dictated by

analysis, it is necessary to work with the parametrized jet bundle. (See Section 6

on the Schwarz Lemma.) Some basic facts are recalled here, all of which may be

found in [Green and Griffiths 1980; Stoll and Wong 2002].

There are, in the literature, two different concepts of jet bundles of a complex

manifold. The first is used by analysts (PDE), algebraic geometers [Chandler
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1995; 1998a; 2002] and also by number theorists (see Faltings’s work on rational

points of an ample subvariety of an abelian variety and integral points of the

complement of an ample divisor of an abelian variety [Faltings 1991]); it was used

implicitly in [Ru and Wong 1991] (see also [Wong 1993b]) for the proof that there

are only finitely many integral points in the complement of 2n+1 hyperplanes

in general position in Pn. The second is the jet bundles introduced by Green

and Griffiths [1980] (see also [Stoll and Wong 2002]). The first notion shall

henceforth be referred to as the full jet bundle and these bundles are holomorphic

vector bundles (locally free). The second notion of jet bundle shall be referred

to as the parametrized jet bundle. These bundles are coherent sheaves that are

holomorphic C
∗-bundles which, in general, are not locally free.

For a complex manifold X the (locally free) sheaf of germs of holomorphic

tangent vector fields (differential operators of order 1) of X shall be denoted by

T
1
X or simply TX. An element of T 1

X acts on the sheaf of germs of holomorphic

functions by differentiation:

(D, f) ∈ T
1
X ×OX 7→ Df ∈ OX

and the action is linear over C; in symbols, D ∈ HomC(OX ,OX). This concept

may be extended as follows:

Definition 1.1. Let X be a complex manifold of dimension n. The sheaf of

germs of holomorphic k-jets (differential operators of order k), denoted T k
X, is

the subsheaf of the sheaf of germs of homomorphisms HomC(OX ,OX) consisting

of elements (differential operators) of the form

k∑

j=1

∑

ij∈N

Di1
◦ · · · ◦Dij

,

where Dij
∈ T

1
X. In terms of holomorphic coordinates z1, . . . , zn an element of

T
k
X is expressed as

k∑

j=1

∑

1≤i1,...,ij≤n

ai1,...,ij

∂
j

∂zi1
. . . ∂zij

,

where the coefficients ai1,...,ij
are symmetric in the indices i1, . . . , ij . The bundle

T
k
X is locally free. One may see this by observing that T k−1

X injects into T k
X

and there is an exact sequence of sheaves:

0 → T
k−1

X → T
k
X → T

k
X/T

k−1
X → 0, (1.1)

where T k
X/T

k−1
X ∼=

⊙
k
T

1
X is the sheaf of germs of k-fold symmetric prod-

ucts of T 1X. These exact sequences imply, by induction, that T kX is locally

free as each sheaf
⊙

k
T

1
X, a symmetric product of the tangent sheaf, is locally

free. A proof of (1.1) can be found in [Stoll and Wong 2002].
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The parametrized k-jet bundles for complex manifolds are introduced by Green–

Griffiths. (These are special cases of the general theory of jets due to Ehresmann

[1952] for differentiable manifolds.) These bundles are defined as follows. Let

Hx, x ∈ X, be the sheaf of germs of holomorphic curves: {f : ∆r → X, f(0) = x}

where ∆r is the disc of radius r in C. For k ∈ N, define an equivalence relation

∼k by designating two elements f, g ∈ Hx as k-equivalent if f
(p)

j
(0) = g

(p)

j
(0) for

all 1 ≤ p ≤ k, where fi = zi ◦f and z1, . . . , zn are local holomorphic coordinates

near x. The sheaf of parametrized k-jets is defined by

J
k
X =

⋃

x∈X

Hx/ ∼k . (1.2)

Elements of Jk
X will be denoted by jk

f(0) = (f(0), f ′(0), . . . , f (k)(0)). The fact

that Jk
X, k ≥ 2, is in general not locally free may be seen from the nonlinearity

of change of coordinates:

(wj ◦ f)′ =

n∑

i=1

∂wj

∂zi

(f)(zi ◦ f)′,

(wj ◦ f)′′ =

n∑

i=1

∂wj

∂zi

(f)(zi ◦ f)′′ +

n∑

i,k=1

∂
2
wj

∂zi∂zk

(f)(zi ◦ f)′(zk ◦ f)′

and for each k,

(wj ◦ f)(k) =

n∑

i=1

∂wj

∂zi

(f)(zi ◦ f)(k) +P

(

∂
l
wj

∂zi1
. . . ∂zil

(f), (wj ◦ f)(l)
)

,

where P is an integer-coefficient polynomial in ∂
l
wj/∂zi1

. . . ∂zil
and (wj ◦ f)(l)

for j = 1, . . . , n and l = 1, . . . , k. There is, however, a natural C
∗-action on

J
k
X defined via parameterization. Namely, for λ ∈ C

∗ and f ∈ Hx a map fλ ∈

Hx is defined by fλ(t) = f(λt). Then j
k
fλ(0) = (fλ(0), f ′

λ
(0), . . . , f

(k)

λ
(0)) =

(f(0), λf ′(0), . . . , λk
f

(k)(0)). So the C∗-action is given by

λ · j
k
f(0) = (f(0), λf ′(0), . . . , λk

f
(k)(0)). (1.3)

Definition 1.2. The parametrized k-jet bundle is defined to be J k
X together

with the C
∗-action defined by (1.3) and shall simply be denoted by J k

X.

It is clear that, for a complex manifold of (complex) dimension n, J
k
X is a

holomorphic C
∗-bundle of rank r = kn and T k

X is a holomorphic vector bundle

of rank r =
∑

k

i=1
C

n+i−1

i
where Cj

i
are the usual binomial coefficients. Although

J
1
X = T

1
X = TX these bundles differ for k ≥ 2. The nonlinearity of the change

of coordinates formulas above shows that there is in general no natural way of

injecting Jk−1
X into Jk

X as opposed to the case of T k
X (see (1.1)). There is

however a natural projection map (the forgetting map) pkl : JkX → J lX for any

l ≤ k defined simply by

pkl(j
k
f(0)) = j

l
f(0), (1.4)
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which then respects the C
∗-action defined by (1.3) and so is a C

∗-bundle mor-

phism. If Φ : X → Y is a holomorphic map between the complex manifolds X

and Y then the usual differential Φ∗ : T 1X → T 1Y is defined. More generally,

the k-th order differential Φk∗ : T k
X → T

k
Y is given by

Φk∗ = (D1 ◦ · · · ◦Dk)(g)
def
= D1 ◦ · · · ◦Dk(g ◦Φ) (1.5)

for any g ∈ OY . The k-th order induced map for the parametrized jet bundle,

denoted JkΦ : Jk
X → J

k
Y , can also be defined:

J
kΦ(jk

f(0))
def
= (Φ ◦ f)(k)(0) (1.6)

for any jkf(0) ∈ JkX. For the parametrized jet bundle JkX there is another

notion closely related to the differential: the natural lifting of a holomorphic

curve. Namely, given any holomorphic map f : ∆r → X(0 < r ≤ ∞), the lifting

j
k
f : ∆r/2 → J

k
X is defined by

j
k
f(ζ) = j

k
g(0), ζ ∈ ∆r/2 (1.7)

where g(ξ) = f(ζ + ξ) is holomorphic for ξ ∈ ∆r/2.

Definition 1.3. The dual of the full jet bundles T k
X shall be called the sheaf

of germs of k-jet forms and shall be denoted by T
∗
k
X. For m ∈ N the m-fold

symmetric product shall be denoted by
⊙

m
T

∗
k
X and its global sections shall be

called k-jet forms of weight m.

In this article we shall focus on the dual of the parametrized jet bundles defined

as follows.

Definition 1.4. The dual of JkX (i.e., the sheaf associated to the presheaf

consisting of holomorphic maps ω : jk
X|U → C such that ω(λ ·jk

f) = λ
m
ω(jk

f)

for all λ ∈ C
∗ and positive integer m) shall be referred to as the sheaf of germs

of k-jet differentials of weight m and shall be denoted by J
m

k
X.

It follows from the definition of the C
∗-action on Jk

X that a k-jet differential ω

of weight m is of the form:

ω(jk
f) =

∑

|I1|+2|I2|+···+k|Ik|=m

aI1,...,Ik
(z)(f ′)I1 . . . (f (k))Ik , (1.8)

where aI1,...Ik
are holomorphic functions, Ij = (i1j , . . . , inj), n = dimX are the

multi-indices with each ilj being a nonnegative integer and |Ij | = i1j + · · ·+ inj .

In terms of local coordinates (z1, . . . , zn),

(f ′)I1 . . . (f (k))Ik = (f ′
1
)i11 . . . (f ′

n
)in1 . . . (f

(k)

1
)i1k . . . (f (k)

n
)ink .

Further, the coefficients aI1,...Ik
(z) are symmetric with respect to the indices in

each Ij . More precisely,

a(iσ1(1)1,...,iσ1(n)1),...,(iσ
k
(1)k,...,iσ

k
(n)k) = a(i11,...,in1),...,(i1k,...,ink),
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where each σj , j = 1, . . . , n, is a permutation on n elements. For example,

(f ′
1
)2(f ′′

2
)2 + f

′′′
1
f
′
2
f
′′
2

+ f
′′′′
1
f
′′
2

+ f
′′′′′
1

f
′
2

is a 5-jet differential of weight 6.

There are several important naturally defined operators on jet differentials;

the first is a derivation δ : J m

k
X → J

m+1

k+1
X defined by

δω(jk+1
f)

def
= (ω(jk

f))′. (1.9)

Note that in contrast to the exterior differentiation of differential forms δ ◦δ 6= 0

on jet differentials. In particular, given a holomorphic function φ defined on

some open neighborhood U in X, the k-th iteration δ(k) of δ,

δ
(k)
φ(jk

f) = (φ ◦ f)(k)
, (1.10)

is a k-jet differential of weight k.

Another difference between jet differentials and exterior differential forms is

that a lower order jet differential can be naturally associated to a jet differential

of higher order. The natural projection pkl : Jk
X → J

l
X defined by pkl(j

k
f) =

j
l
f , for k ≥ l, induces an injection p

∗
kl

: Jm

l
X → J

m

k
X defined by “forgetting”

those derivatives higher than l:

p
∗
kl
ω(jk

f)
def
= ω(pkl(j

k
f)) = ω(jl

f). (1.11)

We shall simply write ω(jk
f) = ω(jl

f) if no confusion arises.

The wedge (exterior) product of differential forms is replaced by taking sym-

metric product; the symmetric product of a k-jet differential of weight m and a

k
′-jet differential of weight m′ is a max{k, k′}-jet differential of weight m+m

′.

Example 1.5. A 1-jet differential is a differential 1-form ω =
∑

n

i=1
ai(z)dzi.

Let f = (f1, . . . , fn) : ∆r → X be a holomorphic map. Then

ω(j1f) =

n∑

i=1

ai(f)dzi(f
′) =

n∑

i=1

ai(f)f ′
i

and δω is a 2-jet differential of weight 2, given by

δω(j2f) = (ω(j1f))′ =

(

n∑

i=1

ai(f)f ′
i

)′

=

n∑

i,j=1

∂ai

∂zj

(f)f ′
i
f
′
j
+

n∑

i=1

ai(f)f ′′
i
.

Analogously, δ2ω is a 3-jet differential of weight 3, given by

δ
2
ω(j3f) =

n∑

i,j=1

∂
2
ai

∂zj∂zk

(f)f ′
i
f
′
j
f
′
k
+3

n∑

ij=1

∂ai

∂zj

(f)f ′′
i
f
′
j
+

n∑

i=1

ai(f)f ′′′
i
.

The concept of jet bundles extends also to singular spaces. Let us remark on how

this may be defined. One may locally embed an open set U of X as a subvariety

in a smooth variety U ⊂ Y . At a point x ∈ U the stalk jet (J k
Y )x is then

defined, as Y is smooth. The stalk (Jk
X)x is defined as the subset

{
j

k
f(0) ∈ (Jk

Y )x | f : ∆r → Y is holomorphic, f(0) = x and f(∆r) ⊂ U
}
.
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From the differential geometric point of view, properties of the full jet bundle

T
∗
k
X, as a vector bundle, are reflected by the curvatures of hermitian metrics

along its fibers. The parametrized jet bundles, however, are only C
∗-bundles

hence can only be equipped with Finsler metrics. A Finsler pseudometric (or a

k-jet pseudometric) on X is a map ρ = ρk : Jk
X → R≥0 satisfying the condition

ρ(λ · j
k
) = |λ|ρ(j

k
)

for all λ ∈ C and j
k
∈ J

k
X. It is said to be a Finsler metric if it is positive

outside of the zero section. A (k− 1)-jet (pseudo)-metric (k ≥ 2) ρk−1 can be

considered as a k-jet (pseudo)-metric by the forgetting map:

ρk−1(jk
) := ρk−1(jk−1

).

where j
k

= j
k
f(0) and j

k−1
= j

k−1
f(0). Define, for j

k
∈ J

k
M,k ≥ 1,

κk(j
k
) = inf {1/r}, (1.12)

where the infimum is taken over all r such that

H
k

r
(ζ) = {f : ∆r → X | f is holomorphic and jk

f(0) = j
k
}

is nonempty. For k = 1 this is the usual Kobayashi–Royden pseudometric

on J
1
X = TX. Henceforth we shall refer to κk as the k-th infinitesimal

Kobayashi–Royden pseudometric. We shall also say that X is k-jet hyperbolic

if κk is indeed a Finsler metric; that is, κk(j
k
) > 0 for each nonzero k-jet

j
k
. Thus 1-jet hyperbolicity is the same as Kobayashi hyperbolicity. Since a

holomorphic map f : ∆r → X such that jk
f(0) = (z, ζ1, . . . , ζk) also satisfies

j
k−1

f(0) = (z, ζ1, . . . , ζk−1), we obtain:

κk(z, ζ1, . . . , ζk) ≥ κk−1(z, ζ1, . . . , ζk−1). (1.13)

From this we see that (k− 1)-jet hyperbolicity implies k-jet hyperbolicity.

Remark 1.6. The notion introduced above is not to be confused with the k-

dimensional (1 ≤ k ≤ n = dimX) Kobayashi pseudometric in the literature

(see [Lang 1987], for example); n-dimensional Kobayashi hyperbolicity is more

commonly known as measure hyperbolicity.

In general the k-th Kobayashi–Royden metric does not have a good regularity

property. It is well-known that κ1 is upper-semicontinuous (see [Royden 1971] or

[Kobayashi 1970]); a similar proof shows that the same is true for κk for any k. It

is also known that κ1, in general, is not continuous; however it is continuous if X

is complete hyperbolic (that is, the distance function associated to the metric κ1

is complete). In particular, κ1 is continuous on a compact hyperbolic manifold

X. On the other hand, using a partition of unity one may construct k-jet metrics
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that are continuous everywhere and smooth outside of the zero section. Consider

first the space

C
n

k
= C

n
× . . .×C

n

︸ ︷︷ ︸

k

with C
∗-action λ · (z1,z2, . . . ,zk) 7→ (λz1, λ

2z2, . . . , λ
kzk). Define, for Z =

(z1, . . . ,zk) ∈ C
n

k
:

rk(Z) = (|z1|
2k! + |z2|

2k!/2 + · · ·+ |zk|
2k!/k)1/2k! (1.14)

where |zi| is the usual Euclidean norm on C
n. Observe that rk(λ ·Z) = |λ| rk(Z)

and that rk is continuous on C
n

k
, smooth outside of the origin. Indeed r

2k!

k
is

smooth on all of C
n

k
. Alternatively we can take

rk(Z) = |z1|+ |z2|
1/2 + · · ·+ |zk|

1/k
, (1.15)

which also satisfies rk(λ·Z) = |λ| rk(Z) and is continuous on C
n

k
, smooth outside

of the set [z1 ·zk =0]. On a local trivialization JkX|U
∼= U ×C

n

k
we define

simply ρk(z, Z) = rk(Z) on Jk
X|U so that a global k-jet metric is defined via a

partition of unity subordinate to a locally finite trivialization cover. This general

construction is of limited use as it does not take into account the geometry of

the manifold.

In the case of a compact manifold a more useful construction can be carried out

by taking a basis ω1, . . . , ωN of global holomorphic k-jet differentials (provided

that these exist), and defining

ρk(jk
f) =

(

N∑

i=1

|ωi(j
k
f)|2
)1/2

. (1.16)

Then, since a jet differential is a linear functional on the k-jet bundle (that is,

ω(λ·jk
f) = λω(jk

f)), we see readily that ρk(λ·jk
f) = |λ|ρk(jk

f). It is clear from

the definition that ρk is continuous on JkX, real analytic on JkX\{zero section};

indeed, ρ2

k
is real analytic on Jk

X. For k = 1 use a basis of global holomorphic

1-forms. The number N = h
0(T ∗

X) is the irregularity of X (for a Riemann

surface this is just the genus of X). Thus the invariants h0(J m

k
X) play an

important role in the determination of hyperbolicity.

The jet bundles may be defined, in an analogous way, over fairly general fields.

We conclude this section by introducing a very interesting problem:

Interpolation Problem. Find all subvarieties in Pn = Pn(K) (where K is

an infinite field) of a given degree d with prescribed jet spaces at a finite number

of points. More precisely , given subspaces V1 ⊂ T
k

x1
Pn, . . . , VN ⊂ T

k

xN
Pn (or

V1 ⊂ Jk

x1
Pn, . . . , VN ⊂ Jk

xN
Pn), find all varieties X of degree d such that

V1 = T
k

x1
X, . . . , VN ⊂ T

k

xN
X.

At this time little is known about the problem for the bundle J k
X however much

is known in the case of T k
X. For example, the following is known (see [Chandler
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1998a; 2002] or else [Alexander 1988; Alexander and Hirschowitz 1992a; 1992b;

1995]).

Theorem 1.7. Let Ψ be a general collection of d points in Pn. The codimension

in H0(OPn(3)) of the space of sections singular on Ψ is min{(n+1)d, (n+3)!/3!n!}

unless n = 4 and d = 7. More generally , the codimension in H0(OPn(m)) of the

space of sections singular on Ψ is equal to min{(n+1)d, (n+m)!/m!n!} unless

(n,m, d) = (2, 4, 5), (3, 4, 9), (4, 3, 7) or (4, 4, 14).

The problem is related also to the Waring problem for linear forms: when can a

general degree m form in n+1 variables be expressed as a sum of m-th powers of

linear forms? Let PS(n,m, d) be the space of homogeneous polynomials in n+1

variables expressible as Lm

1
+ · · ·+Lm

d
, where L1, . . . , Ld are linear forms. Then:

Theorem 1.8. With the notation above, we have

dimPS(n,m, d) = min{(n+1)d, (n+m)!/m!n!}

unless (n,m, d) = (2, 4, 5), (3, 4, 9), (4, 3, 7) and (4, 4, 14).

For details, see the articles by Chandler and by Alexander and Hirschowitz in

the references, as well as [Iarrobino and Kanev 1999].

2. Chern Classes and Cohomology Groups

The Case of Curves

Summary. The theory of parametrized jet bundles is complicated by their not

being vector bundles. This section discusses the case of curves to acquaint readers

with the theory in the simplest situation. The theory is based on the fundamental

result of Green and Griffiths on the filtration of the parametrized jet bundles (see

Theorem 2.3 and Corollary 2.4). The explicit computations of this section have

numerous applications (see for example [An et al. 2003a; 2004; 2003b]).

In this section we compute the Chern numbers and the invariants hi(J m

k
X),

i = 0, 1, of the jet bundles for curves. In the case of curves in P2 we are inter-

ested in finding an explicit expression of a basis for h0(J m

k
X). The procedure

introduced here for the construction works as well for singular curves and in

varieties defined over general differential fields. For applications in this direction

to the strong uniqueness polynomial problem and the unique range set problem;

see [An et al. 2004] in the complex case and [An et al. 2003a; 2003b] in the case

of fields of positive characteristic.

For the full jet bundles the computation of Chern classes and cohomology

groups is straightforward. Dualizing the defining sequence (1.1) we get an exact

sequence

0 →

⊙
k
T

∗
1
X → T

∗
k
X → T

∗
k−1

X → 0. (2.1)
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For example, for k = 3 the exact sequences

0 →

⊙
3
T

∗
1
X → T

∗
3
X → T

∗
2
X → 0,

0 →

⊙
2
T

∗
1
X → T

∗
2
X → T

∗
1
X → 0

and Whitney’s Formula yields

c1(T
∗
3
X) = c1(T

∗
2
X)+ c1(

⊙
3
T

∗
1
X) = c1(T

∗
1
X)+ c1(

⊙
2
T

∗
1
X)+ c1(

⊙
3
T

∗
1
X).

In general, we have, by induction:

Theorem 2.1. The first Chern number of the bundle T ∗
k
X is given by

c1(T
∗
k
X) =

k∑

j=1

c1(
⊙

j
T

∗
1
X).

In particular , if X is a Riemann surface,

c1(T
∗
k
X) =

k∑

j=1

jc1(T
∗
1
X) =

k(k+1)

2
c1(KX) = k(k+1)(g− 1)

where KX = T
∗
1
X is the canonical bundle of X and g is the genus.

For a line bundle L and nonnegative integer i the i-fold tensor product is denoted

by L
i and L

−i is the dual of L
i. (Recall that tensor product and symmetric

product on line bundles are equivalent.)

Theorem 2.2. Let X be a smooth curve of genus g ≥ 2. Then h
0(T ∗

k
X) =

k
2(g− 1)+1 and h1(T ∗

k
X) = 1.

Proof. By Riemann–Roch for curves,

h
0(Ki

X
)−h

1(Ki

X
) = χ(Ki

X
) = χ(OX)+ c1(K

i

X
)

= h
0(OX)−h

1(OX)+ 2(g− 1)i = 1− g+2(g− 1)i

for any nonnegative integer i. Thus h
0(Ki

X
) = h

1(Ki

X
)+ (2i− 1)(g− 1) =

h
0(K1−i

X
)+ (2i− 1)(g− 1). As h0(K1−i

X
) = 1 for i = 1 and h

0(K1−i

X
) = 0 for

i ≥ 2 we get

h
0(Ki

X
) =







0, i < 0,

1, i = 0,

g, i = 1,

(2i− 1)(g− 1), i ≥ 2.

(2.2a)

By duality, h1(Ki

X
) = h

0(K1−i

X
); hence

h
1(Ki

X
) =







0, i ≥ 2,

1, i = 1,

g, i = 0,

(1− 2i)(g− 1), i < 0.

(2.2b)
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From the short exact sequence (2.1) we get the exact sequence

0 → H
0(Kk

X
) → H

0(T ∗
k
X) → H

0(T ∗
k−1

X) → H
1(Kk

X
) →

→ H
1(T ∗

k
X) → H

1(T ∗
k−1

X) → 0.

From (2.2a,b) we deduce that, for k ≥ 2, H1(T ∗
k
X) = H

1(T ∗
k−1

X) and that

h
0(T ∗

k
X) = h

0(T ∗
k−1

X)+h
0(Kk

X
).

These imply that

h
1(T ∗

k
X) = h

1(T ∗
X) = h

1(KX) = h
0(OX) = 1

for all k ≥ 1 and that

h
0(T ∗

k
X) =

k∑

i=1

h
0(Ki

X
) = g+

k∑

i=2

(2i− 1)(g− 1) = k
2(g− 1)+1. ˜

The computation of Chern classes and cohomology groups for the parametrized

jet bundles is somewhat more complicated. This depends on the fundamental

filtration for these bundles due to Green–Griffiths. Let

0 → S
′
→ S → S

′′
→ 0

be an exact sequence of sheaves. Then for any m there is a filtration

0 = F
0
⊂ F

1
⊂ · · · ⊂ F

m
⊂ F

m+1 =
⊙

m
S

of the symmetric product
⊙

m
S, such that F i/F i−1 ∼=

⊙
i
S
′
⊗

⊙
m−i

S
′′. Anal-

ogously, for the exterior product
∧

m
S we have a filtration

0 = F
0
⊂ F

1
⊂ · · · ⊂ F

m
⊂ F

m+1 =
∧

m
S

such that F i
/F

i−1 ∼=
∧

i
S
′
⊗

∧
m−i

S
′′. These filtrations connect the cohomology

groups of higher symmetric (resp. exterior) products to the cohomology groups of

lower symmetric (resp. exterior) products. The analogue of these is the following

theorem of Green and Griffiths (the proof can be found in [Stoll and Wong 2002]):

Theorem 2.3. There exists a filtration of J m

k
X:

J
m

k−1
X = F

0

k
⊂ F

1

k
⊂ · · · ⊂ F

[m/k]

k
= J

m

k
X

(where [m/k] is the greatest integer smaller than or equal to m/k) such that

F
i

k
/F

i−1

k

∼= J
m−ki

k−1
X ⊗ (

⊙
i
T ∗X).

As an immediate consequence [Green and Griffiths 1980], we have:
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Corollary 2.4. Let X be a smooth projective variety . Then J
m

k
X admits

a composition series whose factors consist precisely of all bundles of the form:

(
⊙

i1
T ∗X)⊗· · ·⊗ (

⊙
ik
T ∗X) where ij ranges over all nonnegative integers sat-

isfying i1 +2i2 + · · ·+ kik = m. The first Chern number of J m

k
X is given by

c1(J
m

k
X) =

∑

i1+2i2+···+kik=m

ij∈Z≥0

c1

(
(
⊙

i1
T

∗
X)⊗ · · · ⊗ (

⊙
ik
T

∗
X)
)
.

In particular , if X is a curve then

c1(J
m

k
X) =

∑

i1+2i2+···+kik=m

ij∈Z≥0

(i1 + i2 + · · ·+ ik)c1(T
∗
X).

Example 2.5 [Stoll and Wong 2002]. It is clear that for m < k the filtration

degenerates and we have J
m

k
X = J

m

k−1
X = . . . = J

m

m
X. In particular, J 1

2
X =

J
1

1
X = T ∗X. For m = k = 2, the filtration is given by

⊙
2
T

∗
X = J

2

1
X = S

0

2
⊂ S

1

2
= J

2

2
X, S

1

2
/S

0

2
∼= T

∗
X,

so we have the exact sequence

0 →

⊙
2
T

∗
X → J

2

2
X → T

∗
X → 0.

Thus the first Chern numbers are related by the formula

c1(J
2

2
X) = c1(

⊙
2
T ∗X)+ c1(T

∗X).

Analogously, J 1

3
X = J

1

2
X = J

1

1
X = T ∗X and J

2

3
X = J

2

2
X. The filtration of

J
3

3
X is as follows:

J
3

3
X = S

1

3
⊃ S

0

3
= J

3

2
X, J

3

3
X/J

3

2
X = S

1

3
/S

0

3
∼= T

∗
X.

Hence we have an exact sequence

0 → J
3

2
X → J

3

3
X → T

∗
X → 0.

Now the filtration of J 3

2
X is

J
3

2
X = S

1

2
⊃ S

0

2
= J

3

1
X, J

3

2
X/J

3

1
X ∼= T

∗
X ⊗T

∗
X

and, since J
3

1
X =

⊙
3
T

∗
X, we have an exact sequence

0 →

⊙
3
T

∗
X → J

3

2
X → T

∗
X ⊗T

∗
X → 0.

From these two exact sequences we get

c1(J
3

3
X) = c1(T

∗
X)+ c1(T

∗
X ⊗T

∗
X)+ c1(

⊙
3
T

∗
X).

From basic representation theory (or linear algebra in this special case) we have

T
∗
X ⊗T

∗
X =

⊙
2
T

∗
X ⊕

∧
2
T

∗
X hence

c1(J
3

3
X) = c1(T

∗
X)+ c1(

⊙
2
T

∗
X)+ c1(

⊙
3
T

∗
X)+ c1(

∧
2
T

∗
X).
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In representation theory
∧

2
T ∗X is the Weyl module W ∗

1,1
X associated to the

partition {1, 1} (see [Fulton and Harris 1991]). Thus we have

c1(J
3

3
X) =

3∑

j=1

c1(
⊙

j
T ∗X)+ c1(W

∗
1,1
X).

In the special case of a Riemann surface
∧

2
T

∗
X is the zero-sheaf. Thus for a

curve we have

c1(J
3

3
X) = (1+2+3)c1(T

∗
X) = 6c1(T

∗
X).

For m= k = 4, we have the filtrations J 4

4
X = S

1

4
⊃ S

0

4
=J

4

3
X, J

4

4
X/J

4

3
X =

S1

4
/S0

4
∼=T ∗X, J

4

3
X =S1

3
⊃S0

3
=J

4

2
X, J

4

3
X/J 4

2
X =S1

3
/S0

3
∼=T ∗X⊗T ∗X, and

J
4

2
X = S

2

2
⊃ S

1

2
⊃ S

0

2
= J

4

1
X, with

J
4

2
X/S

1

2
=
⊙

2
T

∗
X, S

1

2
/S

0

2
∼= T

∗
X ⊗ (

⊙
2
T

∗
X).

Thus the Chern number is given by

c1(J
4

4
X) = c1(T

∗
X)+ c1(T

∗
X ⊗T

∗
X)+ c1(

⊙
2
T

∗
X)

+ c1(T
∗
X ⊗ (

⊙
2
T

∗
X))+ c1(

⊙
4
T

∗
X).

From elementary representation theory we obtain

T
∗
X ⊗ (

⊙
k
T

∗
X) = W

∗
k,1
X ⊕ (

⊙
k+1

T
∗
X)

where W ∗
k,1

is the Weyl module associated to the partition {k, 1} so that

c1(J
4

4
X) = c1(

⊙
2
T

∗
X)+

∑
4

i=1
c1(
⊙

i
T

∗
X)+

∑
2

i=1
c1(W

∗
j,1
X).

In particular, if X is a curve,

c1(J
4

4
X) = (1+2+2+3+4)c1(T

∗
X) = 12c1(T

∗
X).

The procedure can be carried out further; for instance,

c1(J
5

5
X) =

∑
3

j=2
c1(
⊙

j
T

∗
X)

+
∑

5

j=1
c1(
⊙

j
T

∗
X)+

∑
2

j=1
c1(W

∗
j,1
X)+

∑
3

j=1
c1(W

∗
j,1
X),

c1(J
6

6
X) = c1(T

∗
X)+ 3c1(T

∗
X ⊗T

∗
X)+ 2c1

(
T

∗
X ⊗ (

⊙
3
T

∗
X)
)

+ c1(
⊙

2
T

∗
X)+ c1(

⊙
3
T

∗
X)+ c1

(
(
⊙

2
T

∗
X)⊗ (

⊙
2
T

∗
X)
)

+ c1

(
T

∗
X ⊗ (

⊙
4
T

∗
X)
)
+ c1(

⊙
6
T

∗
X).

So if X is a curve we have

c1(J
5

5
X) = (1+2+3+2+3+4+5)c1(T

∗
X) = 20c1(T

∗
X),

c1(J
6

6
X) = (1+6+8+2+3+4+5+6)c1(T

∗
X) = 35c1(T

∗
X).
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The calculation of the sum
∑

i1+2i2+···+kik=m

i1 + · · ·+ ik (2.3)

can be carried out using standard combinatorial results which we now describe.

Definition 2.6. (i) A maximal set of mutually conjugate elements of Sm (the

symmetric group on m elements) is said to be a class of Sm.

(ii) A partition of a natural number m is a set of positive integers i1, . . . , iq such

that m = i1 + · · ·+ iq.

The following asymptotic result concerning the number of partitions of a positive

integer m is well-known in representation theory and in combinatorics [Hardy

and Wright 1970]:

Theorem 2.7. The number of partitions of m, the number of classes of Sm

and the number of (inequivalent) irreducible representations of Sm are equal .

This common number p(m) is asymptotically approximated by the formula of

Hardy–Ramanujan:

p(m) ∼
e

π

√

2m/3

4m
√

3
.

The first few partition numbers are p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5,

p(5) = 7, p(6) = 11, p(7) = 15, p(8) = 22, p(9) = 30, p(10) = 42, p(11) = 56,

p(12) = 77, p(13) = 101. Consider first the case of partitioning a number by

partitions of a fixed length k. Denote by pk(m) the number of positive integral

solutions of the equation

x1 + · · ·+xk = m

with the condition that 1 ≤ xk ≤ xk−1 ≤ . . . ≤ x1. This number is equal to the

number of integer solutions of the equation

y1 + · · ·+ yk = m− k

with the condition that the solutions be nonnegative and 0 ≤ yk ≤ yk−1 ≤

. . . ≤ y1. If exactly i of the integers {y1, . . . , yk} are positive then these are the

solutions of x1 + · · ·+xi = m− k and so there are pi(m− k) of such solutions.

Consequently we have (see [Stoll and Wong 2002] for more details):

Lemma 2.8. With the notation above we have: p(m) =
∑

m

k=1
pk(m), where

pk(m) =
k∑

i=0

pi(m− k),

for 1 ≤ k ≤ m and with the convention that p0(0) = 1, p0(m) = 0 if m > 0

and pk(m) = 0 if k > m. Moreover , the number pk(m) satisfies the following

recursive relation:

pk(m) = pk−1(m− 1)+ pk(m− k).
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Example 2.9. We shall compute p(6) and p(7) using the preceding lemma. We

have p1(m) = pm(m) = 1 and p2(m) = m/2 or (m− 1)/2 according to m being

even or odd; thus p1(6) = 1, p2(6) = 3, p6(6) = 1. Analogously, we have:

p3(m) = p2(m− 1)+ p3(m− 3),

p4(m) = p3(m− 1)+ p4(m− 4),

p5(m) = p4(m− 1)+ p5(m− 5),

so that, for example:

p3(6) = p2(5)+ p3(3) = 2+1 = 3,

p4(6) = p3(5)+ p4(2) = p2(4) = 2,

p5(6) = p4(5) = p3(4) = p2(3) = 1.

Since p(m) =
∑

m

k=1
pk(m) we have

p(6) =

6∑

k=1

pk(6) = 1+3+3+2+1+1 = 11.

For m = 7 we have p1(7) = 1, p2(7) = 3, p7(7) = 1, p3(7) = p2(6)+ p3(4) =

p2(6)+ p2(3) = 4, p4(7) = p3(6) = 3, p5(7) = p4(6) = 2, p6(7) = p5(6) = 1; hence

p(7) =

7∑

k=1

pk(7) = 1+3+4+3+2+1+1 = 15.

For k ≤ m denote by Lk(m) the sum of the lengths of all partitions λ of m whose

length lλ is at most k:

Lk(m) =
∑

λ, lλ≤k

lλ.

The next lemma follows from the definitions [Wong 1999; Stoll and Wong 2002]:

Lemma 2.10. With notation as above we have

Lk(m) =
∑

λ,lλ≤k

lλ =

k∑

j=1

jpj(m) =
∑

λ, lλ≤k

k∑

j=1

ij ,

where the sum on the right is taken over all partitions λ = (λ1, . . . , λρλ
) of m,

1 ≤ λlλ
≤ . . . ≤ λ2 ≤ λ1, lλ ≤ k and ij is the number of j’s in {λ1, . . . , λlλ

}.

For k = m,L(m) = Lm(m) is the total length of all possible partitions of m. For

example if m = 6 then L(6) = 1+6+9+8+5+6 = 35 and for m = 7, L(7) =

1+6+12+12+10+6+7 = 54. Indeed we have:

Theorem 2.11. If X is a nonsingular projective curve, the Chern number of

J
m

m
X is

c1(J
m

m
X) = Lm(m)c1(KX) =

m∑

j=1

jpj(m)c1(KX),
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where KX is the canonical bundle of X.

There is a formula for the asymptotic behavior of pk(m):

Theorem 2.12. For k fixed and m→ ∞ the number pk(m) is asymptotically

pk(m) ∼
mk−1

(k−1)! k!
.

We give below the explicit calculation of the above in the first few cases. For

m = k = 3, we have p(3) = 3 and the possible indices are

λ lλ dλ i1 i2 i3
∑

k

j=1
ij

1 (1, 1, 1) 3 1 3 0 0 3

2 (2, 1) 2 2 1 1 0 2

3 (3) 1 1 0 0 1 1

The cases cases correspond to the possible partitions of 3: 1+1+1 = 3, 2+1 = 3

and 3 = 3, of respective lengths 3, 2, and 1. The Chern number c1(J
3

3
X) of

a curve X is obtained by summing the last column: c1(J
3

3
X) = (1+2+3)×

c1(T
∗X) = 6c1(T

∗X).

For m = k = 4 the number of partitions is p(4) = 5 and we have

λ lλ dλ i1 i2 i3 i4
∑

k

j=1
ij

1 (1, 1, 1, 1) 4 1 4 0 0 0 4

2 (2, 1, 1) 3 3 2 1 0 0 3

3 (3, 1) 2 3 1 0 1 0 2

4 (2, 2) 2 2 0 2 0 0 2

5 (4) 1 1 0 0 0 1 1

and c1(J
4

4
X) = 12c1(T

∗X).

For m = k = 5, p(5) = 7,

λ ρλ dλ i1 i2 i3 i4 i5
∑

k

j=1
ij

1 (1, 1, 1, 1, 1) 5 1 5 0 0 0 0 5

2 (2, 1, 1, 1) 4 4 3 1 0 0 0 4

3 (3, 1, 1) 3 6 2 0 1 0 0 3

4 (2, 2, 1) 3 5 1 2 0 0 0 3

5 (4, 1) 2 4 1 0 0 1 0 2

6 (3, 2) 2 15 0 1 1 0 0 2

7 (5) 1 1 0 0 0 0 1 1

and c1(J
5

5
X) = 20c1(T

∗
X).

For m = k = 6, p(6) = 11,
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λ lλ dλ i1 i2 i3 i4 i5 i6
∑

k

j=1
ij

1 (1, 1, 1, 1, 1, 1) 6 1 6 0 0 0 0 0 6

2 (2, 1, 1, 1, 1) 5 5 4 1 0 0 0 0 5

3 (3, 1, 1, 1) 4 10 3 0 1 0 0 0 4

4 (2, 2, 1, 1) 4 9 2 2 0 0 0 0 4

5 (4, 1, 1) 3 10 2 0 0 1 0 0 3

6 (3, 2, 1) 3 36 1 1 1 0 0 0 3

7 (2, 2, 2) 3 5 0 3 0 0 0 0 3

8 (5, 1) 2 30 1 0 0 0 1 0 2

9 (4, 2) 2 9 0 1 0 1 0 0 2

10 (3, 3) 2 5 0 0 2 0 0 0 2

11 (6) 1 1 0 0 0 0 0 1 1

and c1(J
6

6
X) = 35c1(T

∗X).

The next few values of Lk(k) are L7(7) = 54, L8(8) = 86, L9(9) = 128,

L10(10) = 192, L11(11) = 275, L12(12) = 399, L13(13) = 556, L14(14) = 780,

L15(15) = 1068, L16(16) = 1463.

Next we deal with the problem of computing the invariants: h
i(J m

k
X) =

dimH
i(J m

k
X) for a curve X of genus g ≥ 2. We have

h
0(J 1

1
X) = h

0(KX) = g,

h
1(J 1

1
X) = h

0(OX) = 1.

For curves the filtration of Green–Griffiths takes the form

J
m

k
X = S

[m/k]

k
⊃ · · · ⊃ S

0

k
= J

m

k−1
X, S

i

k
/S

i−1

k
= K

i

X
⊗J

m−ki

k−1
(X).

Hence, for k = 2, Si

2
/S

i+1

2
= K

i

X
⊗J

m−2i

1
= K

i

X
⊗K

m−2i

X
= K

m−i

X
. It is clear

from the filtration that J 1

1
X ∼= J

1

2
X (the isomorphism is given by the forgetting

map (1.11)). For J
2

2
X the filtration yields the short exact sequence

0 → K
2

X
=
⊙

2
T

∗
X → J

2

2
X → T

∗
X = KX → 0,

from which we get the exact sequence

0 →H
0(K2

X
) →H

0(J 2

2
X) →H

0(KX) →H
1(K2

X
) →H

1(J 2

2
X) →H

1(KX) → 0.

By (2.2b) we have h1(KX) = 1 and h
1(K2

X
) = 0 if d ≥ 2. Hence, as KX =

OX(3− d),

h
0(J 2

2
X) = h

0(KX)+h
0(K2

X
) = 4g− 3,

h
1(J 2

2
X) = h

1(T ∗
X) = h

0(OX) = 1.

For J
3

2
X we obtain the short exact sequence from the filtration,

0 → K
3

X
→ J

3

2
X → K

2

X
→ 0,
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and the exact cohomology sequence

0 →H
0(K3

X
) →H

0(J 3

2
X) →H

0(K2

X
) →H

1(K3

X
) →H

1(J 3

2
X) →H

1(K2

X
) → 0.

Since h1(K2

X
) = h1(K3

X
) = 0 for g ≥ 2 we find

h
1(J 3

2
X) = 0,

h
0(J 3

2
X) = h

0(K2

X
)+h

0(K3

X
) = 8(g− 1).

For J
4

2
X the filtration is given by

J
4

2
X = S

2

2
⊃ S

1

2
⊃ S

0

2
= J

4

1
X = K

4

X

with S
2

2
/S1

2
= K

2

X
,S1

2
/S0

2
= K

3

X
. From the filtration we have two short exact

sequences,

0 → S
1

2
→ J

4

2
X → K

2

X
→ 0 and 0 → K

4

X
→ S

1

2
→ K

3

X
→ 0.

For g ≥ 2 we get from the second exact sequence and the fact that h1(K3

X
) =

h
1(K4

X
) = 0 that h1(S1

2
) = 0. This and the first exact sequence imply that

h
1(J 4

2
X) = h

1(K2

X
) = 0 and

h
0(J 4

2
X) = h

0(K2

X
)+h

0(K3

X
)+h

0(K4

X
) = 15(g− 1).

We get, inductively:

Theorem 2.13. For a smooth curve with genus g ≥ 2 the following equalities

hold :

(i) J
1

2
X = KX ; hence h1(J 1

2
X) = 1, h0(J 1

2
X) = genus of X;

(ii) h1(J 2

2
X) = 1, h

0(J 2

2
X) = h

0(KX)+h
0(K2

X
) = 4g− 3;

(iii) h1(J m

2
X) = 0, and for m ≥ 3,

h
0(J m

2
X) =

∑
[m/2]

j=0
h

0(Km−j

X
) = (2m− [m

2
]− 1)([m

2
] + 1)(g− 1);

(iv) for i ≥ 1,

h
0(J 1

2
X ⊗K

i

X
) = h

0(Ki+1

X
) = (2i+1)(g− 1),

h
0(J 2

2
X ⊗K

i

X
) = h

0(Ki+1

X
)+h

0(Ki+2

X
) = 4(i+1)(g− 1),

and for m ≥ 3,

h0(J m

2
X ⊗K

i

X
) =

∑
[m/2]

j=0
h0(Km+i−j

X
) = (2m+2i− [m

2
]− 1)([m

2
] + 1)(g− 1).

Proof. Parts (i), (ii) and (iii) are clear. For part (iv), tensoring the exact

sequence 0 → K
2

X
→ J

2

2
X → KX → 0 by K

i

X
yields the exact sequence 0 →

K
i+2

X
→ J

2

2
X ⊗K

i

X
→ K

i+1

X
→ 0. From the associated long exact cohomology
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sequence one sees that h0(J 2

2
X⊗K

i

X
) = h0(Ki+1

X
)+h0(Ki+2

X
) as claimed. From

the exact sequences

0 → S
[m/2]−1

m,2
→ J

m

2
X → K

[m/2]
⊗J

m−2[m/2]

1
X = K

m−[m/2]

X
→ 0,

0 → S
[m/2]−2

m,2
→S

[m/2]−1

m,2
→K

[m/2]−1

X
⊗J

m−2([m/2]−1)

1
X = K

m−[m/2]+1

X
→ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 →J
m

1
X = K

m

X
→ S

1

m,2
→ KX⊗J

m−2

1
X = K

m−1

X
→ 0,

we obtain, by tensoring with K
i

X
, i ≥ 0, the exact sequences

0 →S
[m/2]−1

m,2
⊗K

i

X
→ J

m

2
X⊗K

i

X
→ K

m+i−[m/2]

X
→ 0,

0 →S
[m/2]−2

m,2
⊗K

i

X
→S

[m/2]−1

m,2
⊗K

i

X
→K

m+i−[m/2]+1

X
→ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 → K
m+i

X
→ S

1

m,2
⊗K

i

X
→ K

m+i−1

X
→ 0,

from which we deduce that h1(J m

2
X ⊗K

i

X
) = h

1(S
[m/2]−j

m,2
⊗K

i

X
) = 0 for 0 ≤

j ≤ [m/2] and that

h
0(Jm

2
X ⊗K

i

X
) =

[m/2]
∑

j=0

h
0(Km+i−j

X
),

as claimed. ˜

The coefficient of (g− 1) in part (iv) of the preceding lemma may be expressed

as

α(m, i, 2) =

{
1

4
(3m2+4m(i+1)+8i−4) = 1

4
(m+2)(3m+4i−2), m even,

1

4
(3m2+2m(2i+1)+4i−1) = 1

4
(m+1)(3m+4i−1)4, m odd.

The coefficient of (g− 1) in part (iii) is α(m, 2) = α(m, 0, 2).

Corollary 2.14. For a smooth curve of genus g ≥ 2 we have, for m ≥ 3,

h
0(J m

2
X) =

{
1

4
(3m2 +4m− 4)(g− 1), m even,

1

4
(3m2 +2m− 1)(g− 1), m odd ,

and

c1(J
m

2
X) =

{
1

4
(3m2 +6m)(g− 1), m even,

1

4
(3m2 +4m+1)(g− 1), m odd .

Proof. The first formula is given by part (iii) of Theorem 2.13. The second

formula is a consequence of the Riemann–Roch for curves:

h
0(J m

2
X)−h

1(J m

2
X) = c1(J

m

2
X)− (rkJ m

2
X)(g− 1),

using the fact that rkJ m

2
X = [m/2]+ 1 and that h1(J m

2
X) = 0 if m ≥ 3. ˜



FINSLER GEOMETRY OF HOLOMORPHIC JET BUNDLES 131

We now deal with the case of general k. We shall be content with asymptotic

formulas as the general formulas become complicated by the fact that the general

formula for sums of powers is only given recursively. However the highest order

term is quite simple:

m∑

i=1

i
d =

m
d+1

d+1
+O(md). (2.4)

The filtration theorem of Green–Griffiths implies that

rk J
m

k
X =

∑

I∈Ik,m

rk SI .

For a curve, SI =
⊙

i1
T

∗
X ⊗ · · ·⊗

⊙
ik−1

T
∗
X ⊗

⊙
ik
T

∗
X = K

|I|
X

= K
i1+···+ik

X
.

Hence

rk J
m

k
X = #Ik,m, Ik,m =

{
I = (i1, . . . , ik) |

∑
k

j=1
jij = m

}
.

Alternatively, since SI = SI′⊗

⊙
ik
T

∗
X, where I ′ = (i1, . . . , ik−1) ∈ Ik−1,m−kik

,

we have

rk J
m

k
X =

[m/k]
∑

ik=0

rk (J m−kik

k−1
X ⊗K

ik

X
) =

[m/k]
∑

ik=0

rk J
m−kik

k−1
X;

equivalently,

#Ik,m =

[m/k]
∑

ik=0

#Ik−1,m−kik
.

Theorem 2.15. Let Ik,m =
{
I = (i1, . . . , ik) |

∑
k

j=1
jij = m

}
. Then, for a

curve X,

rk J
m

k
X = #Ik,m =

mk−1

k!(k− 1)!
+O(mk−2).

Proof. It is clear that rk J
m

1
X = 1 and we have seen that rk J

m

2
X = [m/2]+1,

thus writing rk J
m

k
X = akm

k−1 +O(mk−2) we get, via (2.4),

akm
k−1 +O(mk−2) = ak−1

[m/k]
∑

ik=0

(m− kik)k−2 +O(mk−2)

= ak−1

[m/k]
∑

ik=0

(m− kik)k−2 +O(mk−2)
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= ak−1

k−2∑

j=0

(−1)j
(k− 2)!

j!(k− 2− j)!
m

k−2−j
k

j

[m/k]
∑

ik=0

i
j

k
+O(mk−2)

= ak−1

k−2∑

j=0

(−1)j
(k− 2)!

j!(k− 2− j)!
m

k−2−j
k

j
m

j+1

(j+1)kj+1
+O(mk−2)

=
ak−1

k

k−2∑

j=0

(−1)j

j+1

(k− 2)!

j!(k− 2− j)!
m

k−1 +O(mk−2).

The following formula is easily verified by double induction:

Lemma 2.16. For any positive integers 1 ≤ l ≤ k, we have

k∑

j=0

(−1)j

j+ l

(

k

j

)

=
(l− 1)! k!

(k+ l)!
.

Using this lemma we obtain a recursive formula for k ≥ 2:

ak =
ak−1

k(k− 1)
, a1 = 1.

The first few values of ak are a1 = 1, a2 = 1/2, a3 = 1/223, a4 = 1/(2432),

a5 = 1/(26325), a6 = 1/(273352). The recursive formula also yields the general

formula for ak:

ak =
1

∏
k

l=2
(l− 1)l

=
1

(k− 1)! k!
. ˜

The filtration also yields a formula for a curve of genus g:

c1(J
m

k
X) =

∑

I∈Ik,m

c1(SI) =
∑

I∈Ik,m

|I|c1(KX) = 2
∑

I∈Ik,m

|I|(g− 1),

where |I| = i1 + · · ·+ ik. On the other hand we have

c1(J
m

k
X) =

[m/k]
∑

ik=0

∑

I′∈Ik−1,m−ki
k

(c1(SI′)+ ikc1(KX))

= 2

[m/k]
∑

ik=0

∑

I′∈Ik−1,m−ki
k

(|I ′|+ ik)(g− 1).

It is clear that c1(J
m

1
X) = 2m(g− 1) and we have seen that

c1(J
m

2
X) =

{
1

4
(3m2 +6m)(g− 1), m even,

1

4
(3m2 +4m+1)(g− 1), m odd.

Theorem 2.17. For a curve of genus g ≥ 2 we have, for each k ≥ 2,

c1(J
m

k
X) =

(

2(g− 1)

(k!)2

k∑

i=1

1

i

)

m
k +O(mk−1).
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Proof. It is clear that asymptotically c1(J
m

k
X) = O(mk). Hhence, writing

c1(J
m

k
X) = 2bkm

k(g− 1)+O(mk−1) ,

we get via Theorem 2.15 that, for k ≥ 3,

2bkm
k(g− 1)+O(mk−1)

= 2

m/k
∑

ik=0

∑

I′∈Ik−1,m−ki
k

(bk−1(m− kik)k−1 + ik)(g− 1)+O(mk−1)

= 2(g− 1)

m/k
∑

ik=0

(
ak−1ik(m− kik)k−2 + bk−1(m− kik)k−1

)
+O(mk−1).

By Lemma 2.16 we have

m/k
∑

ik=0

ik(m− kik)k−2 =
1

k2

k−2∑

j=0

(−1)j

j+2

(k− 2)!

j!(k− 2− j)!
m

k =
1

k3(k− 1)

and

m/k
∑

ik=0

(m− kik)k−1 =
1

k

k−1∑

j=0

(−1)j

j+1

(k− 1)!

j!(k− 1− j)!
m

k =
1

k

(k− 1)!

k!
=

1

k2
.

From these we obtain

2bkm
k(g− 1)+O(mk−1) = 2(g− 1)

(

ak−1

k3(k− 1)
+
bk−1

k2

)

+O(mk−1)

and hence the recursive relation:

bk =
ak−1

k3(k− 1)
+
bk−1

k2
=

1

k2k!(k− 1)!
+
bk−1

k2
=

1

k2
(bk−1 +

1

k!(k− 1)!
)

with a1 = 1 and b1 = 1. An explicit formula is obtained by repeatedly using the

recursion. More precisely, we first apply the recursive formula to bk−1:

bk−1 =
1

(k− 1)2

(

bk−2 +
1

(k− 1)!(k− 2)!

)

and substitution yields

bk =
1

k2

(

1

(k− 1)2

(

bk−2 +
1

(k− 1)!(k− 2)!

)

+
1

k!(k− 1)!

)

.

The procedure above may be repeated until we reach b1 = 1. Induction shows

that

bk =
1

(k!)2

k∑

i=1

1

i
. ˜
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For general m > k ≥ 2 we get from the filtrations the following [m/k] exact

sequences:

0 →S
[m/k]−1

m,k
→ J

m

k
X → K

[m/k]

X
⊗J

m−k[m/k]

k−1
X → 0

0 →S
[m/k]−2

m,k
→S

[m/k]−1

m,k
→K

[m/k]−1

X
⊗J

m−k([m/k]−1)

k−1
X → 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 → J
m

k−1
X → S

1

m,k
→ KX⊗J

m−k

k−1
X → 0.

(2.5)

Observe that m− k[m/k] = 0 or 1 depending on whether m is divisible by k.

By induction, we see that h1(Ki

X
⊗J

m−ki

k−1
X) = 0 implies that h1(Si

m,k
) = 0, for

0 ≤ i ≤ [m/k]. Hence h1(J m

k
X) = 0 for any k ≥ 2, and as a result we also have

h
0(J m

k
X) = h

0(J m

k−1
X)+

[m/k]
∑

i=1

h
0(Ki

X
⊗J

m−ki

k−1
X) if m > k. (2.6)

Corollary 2.18. Let X be a curve of genus g ≥ 2. Then, h1(J m

k
X) = 0 if

m ≥ k, and for all k ≥ 2 we have

h
0(J m

k
X) =

(

2(g− 1)

(k!)2

k∑

i=1

1

i

)

m
k +O(mk−1).

Proof. By Riemann–Roch for curves, we have

h
0(J m

k
X)−h

1(J m

k
X) = c1(J

m

k
X)− (rk J

m

k
X)(g− 1).

As observed, h1(J m

k
X) vanishes. By Theorem 2.15, (rk J

m

k
X)(g−1) is of lower

order, so h0(J m

k
X) = c1(J

m

k
X) and the result follows from Theorem 2.17. ˜

By induction we get from (2.6)

h
0(J m

k
X)

= h
0(J m

2
X)+

[m/3]
∑

i=1

h
0(Ki

X
⊗J

m−3i

2
X)+ · · ·+

[m/k]
∑

i=1

h
0(Ki

X
⊗J

m−ki

k−1
X)

=

[m/2]
∑

i=0

h
0(Km−i

X
)+

[m/3]
∑

i=1

h
0(Ki

X
⊗J

m−3i

2
X)+ · · ·+

[m/k]
∑

i=1

h
0(Ki

X
⊗J

m−ki

k−1
X).

Tensoring (2.5) with K
i

X
yields exact sequences

0 →S
[m/k]−1

m,k
⊗K

i

X
→ J

m

k
X⊗K

i

X
→ K

[m/k]+i

X
⊗J

m−k[m/k]

k−1
X → 0,

0 →S
[m/k]−2

m,k
⊗K

i

X
→S

[m/k]−1

m,k
⊗K

i

X
→K

[m/k]+i−1

X
⊗J

m−k([m/k]−1)

k−1
X → 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 → J
m

k−1
X⊗K

i

X
→ S

1

m,k
→ K

i+1

X
⊗J

m−k

k−1
X → 0.
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These imply that

h
0(J m

k
X ⊗K

i

X
) =

[m/k]
∑

j=0

h
0(Ki+j

X
⊗J

m−kj

k−1
X).

Thus, for k = 3 we get by Theorem 2.13:

h
0(J m

3
X) =

[m/2]
∑

i=0

h
0(Km−i

X
)+

[m/3]
∑

i=1

h
0(Ki

X
⊗J

m−3i

2
X)

=

[m/2]
∑

i=0

h
0(Km−i

X
)+

[m/3]
∑

i=1

[(m−3i)/2]
∑

j=0

h
0(Km−2i−j

X
).

With this it is possible to write down the explicit formulas. In the case of J m

2
X

there are only two cases depending on the parity of m. For 3-jets there are the

following cases: (1a) m = 3q, q even; (1b) m = 3q, q odd; (2a) m = 3q+1, q

even; (2b) m = 3q+1, q odd; (3a) m = 3q+1, q even; and (3b) m = 3q+2, q

odd. For simplicity we shall only do this for case (1a). First we observe that the

rank of J m

3
X is given by the number

rk J
m

3
X =

[
m

2

]

+1+

[m/3]
∑

i=1

([

m− 3i

2

]

+1
)

= O(m2).

If m is divisible by 3! then

rk J
m

3
X =

m

2
+1+

m

3
+

m/6
∑

l=1

m− 3(2l− 1)

2
+

m/6
∑

l=1

m− 3(2l)

2

= 1

12
(m+3)(m+4). (2.7)

For k = 3 we get, by Theorem 2.13,

h
0(J m

3
X)

=

[m/2]
∑

i=0

h
0(Km−i

X
)+

[m/3]
∑

i=1

h
0(Ki

X
⊗J

m−3i

2
X)

=

[m/2]
∑

i=0

h
0(Km−i

X
)+

[m/3]
∑

i=1

[(m−3i)/2]
∑

j=0

h
0(Km−2i−j

X
)

= (g− 1)×
(

(

2m−1−
[

m

2

])([

m

2

]

+1
)

+

[m/3]
∑

i=1

(

2m−4i−1−
[

m−3i

2

])([

m−3i

2

]

+1
)

)

.
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If m is divisible by 3!, both m and [m/3] are even. Then, denoting the second

sum above by S,

S =

m/6
∑

l=1

(

2m− 4(2l− 1)− 1−
m− 1− 3(2l− 1)

2

)(

m− 1− 3(2l− 1)

2
+1
)

+

m/6
∑

l=1

(

2m− 8l− 1−
m− 6l

2

)(

m− 6l

2
+1
)

=
1

2

m/6
∑

l=1

(3m2 +10m+6+60l2 − (28m+36)l) =
1

2233
m(11m2

− 18m− 18).

Thus for m divisible by 3! we have

h
0(Jm

3
X) =

(
1

2233
m(11m2

− 18m− 18)+
1

22
(m+2)(3m− 2)

)

(g− 1),

and, by Riemann–Roch and (2.7),

c1(J
m

3
X) = (g− 1)×
(

1

2233
m(11m2

− 18m− 18)+
1

22
(m+2)(3m− 2)+

1

223
(m+3)(m+4)

)

.

Example 2.19. The filtration of J
6

3
X is given by J

6

3
X = S

2
⊃ S

1
⊃ S

0 =

J
6

2
X, and the associated exact sequences are 0 → S

1
→ J

6

3
X → K

2

X
→ 0 and

0 → J
6

2
X → S

1
→ KX ⊗J

3

2
X → 0.

Hence h0(J 6

3
X) = 0 and h0(J 6

3
X) = h0(J 6

2
X)+h0(K2

X
)+h0(KX⊗J

3

2
X). From

the exact sequence 0 → K
3

X
→ J

3

2
X → K

2

X
→ 0 we obtain the exact sequence

0 → K
4

X
→ KX ⊗J

3

2
X → K

3

X
→ 0

from which we conclude that

h
0(J 6

3
X) = h

0(J 6

2
X)+h

0(K2

X
)+h

0(K3

X
)+h

0(K4

X
)

= h
0(K2

X
)+ 2(h0(K3

X
)+h

0(K4

X
))+h

0(K5

X
)+h

0(K6

X
)

= (3+2(5+7)+9+11)(g− 1) = 47(g− 1).

Next we consider the problem of constructing an explicit basis for H 0(J m

k
X).

First we recall the construction of a basis for H0(J 1

1
X) = H

0(KX). The proce-

dure of this construction works in any algebraically closed field and has been used

toward resolving the uniqueness problem for rational and meromorphic functions.

(The reader is referred to [An et al. 2003a; 2004; 2003b] for details.) Let z0, z1, z2

be the homogeneous coordinates on P2. Then

d

(

zi

zj

)

=
zjdzi − zidzj

z2

j

=

∣
∣
∣
∣

z1 z2

dz1 dz2

∣
∣
∣
∣

z2

j

(2.8)
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is a well-defined rational 1-form on Pn. Let P (z0, z1, z2) be a homogeneous

polynomial of degree d and

X = {[z0, z1, z2] ∈ P
2(C) | P (z0, z1, z2) = 0}.

Then, by Euler’s Theorem, for [z0, z1, z2] ∈ X, we have

z0
∂P

∂z0
(z0, z1, z2)+ z1

∂P

∂z1
(z0, z1, z2)+ z2

∂P

∂z2
(z0, z1, z2) = 0.

The tangent space of X is defined by the equation P (z0, z1, z2) = 0 and

dz0
∂P

∂z0
(z0, z1, z2)+ dz1

∂P

∂z1
(z0, z1, z2)+ dz2

∂P

∂z2
(z0, z1, z2) = 0.

These may be expressed as

z0
∂P

∂z0
(z0, z1, z2)+ z1

∂P

∂z1
(z0, z1, z2) = −z2

∂P

∂z2
(z0, z1, z2),

dz0
∂P

∂z0
(z0, z1, z2)+ dz1

∂P

∂z1
(z0, z1, z2) = −dz2

∂P

∂z2
(z0, z1, z2).

Then by Cramer’s rule, we have on X

∂P

∂z0
=
W (z1, z2)

W (z0, z1)

∂P

∂z2
,
∂P

∂z1
=
W (z2, z0)

W (z0, z1)

∂P

∂z2

provided that the Wronskian W (z0, z1) = z0dz1 − z1dz0 6≡ 0 on any component

of X; that is, the defining homogeneous polynomial of X has no linear factor of

the form az0 + bz1. Thus

W (z1, z2)

∂P

∂z0
(z0, z1, z2)

=
W (z2, z0)

∂P

∂z1
(z0, z1, z2)

=
W (z0, z1)

∂P

∂z2
(z0, z1, z2)

(2.9)

is a globally well-defined rational 1-form on any component of π−1(X) ⊂ C
3
\{0},

where (π : C
3
\{0} → P2(C) is the Hopf fibration), provided that the expressions

make sense (that is, the denominators are not identically zero when restricted to

a component of ψ−1(X)). For our purpose, we also require that the form given

by (2.9) is not identically trivial when restricted to a component of π−1(X). This

is equivalent to the condition that the Wronskians in the formula above are not

identically zero; in other words, the defining homogeneous polynomial of X has

no linear factor of the form azi + bzj where a, b ∈ C, 0 ≤ i, j ≤ 2 and i 6= j.

If P , ∂P/∂z0, ∂P/∂z1, ∂P/∂z2 never vanish all at once (that is, X is smooth)

then, at each point, one of the expressions in (2.9) is regular at the point. Hence

so are the other expressions. This means that

η =

∣
∣
∣
∣

z1 z2

dz1 dz2

∣
∣
∣
∣

∂P/∂z0
(2.10)
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is regular on π−1(X). (Note that the form η is not well-defined on X unless

n = 3; see (2.8)). The form

ω =

∣
∣
∣
∣

z1 z2

dz1 dz2

∣
∣
∣
∣

z2

0

z
n−1

0
∂P/∂z0 =

∣
∣
∣
∣

z1 z2

dz1 dz2

∣
∣
∣
∣

∂P/∂z0
z

n−3

0
= z

n−3

0
η,

with n = degP , is a well-defined (again by (2.8)) rational 1-form on X. More-

over, as η is regular on X, the 1-form ω is also regular if n ≥ 3. If n = 3

then ω = η and if n ≥ 4 then ω is regular and vanishes along the ample divisor

[zn−3

0
=0]∩X. Thus for any homogeneous polynomial Q = Q(z0, z1, z2) of degree

n− 3, the 1-form

Q

z
n−3

0

ω = Qη

is regular on C and vanishes along [Q=0]. Note that the dimension of the vector

space of homogeneous polynomials of degree n−3 (a basis is given by all possible

monomials) is
1

2
(n− 1)(n− 2) = genus of X.

We summarize these observations:

Proposition 2.20. Let X =
{
[z0, z1, z2] ∈ P2(C) | P (z0, z1, z2) = 0

}
be a

nonsingular curve of degree d ≥ 3. If d = 3 then the space of regular 1-forms on

X is {cη | c ∈ C}, where η is defined by (2.2). If d ≥ 4 take the set

{
Qi | Qi is a monomial of degree d− 3 for 1 ≤ i ≤

1

2
(d− 1)(d− 2)

}

as an ordered basis of homogeneous polynomials of degree d− 3. Then

{
ωi = Qiη | 1 ≤ i ≤

1

2
(d− 1)(d− 2)

}

is a basis of the space of regular 1-forms on X.

Using the preceding we may write down explicitly a basis for H0(J m

k
X). We

demonstrate via examples. For d = 4, h0(J 2

2
X) = h0(K2

X
)+h0(KX) = 6+3 = 9

and, since the genus is 3, there are 3 linearly independent 1-forms ω1, ω2, ω3

which, as shown above, may be taken as

ω1 =
z0(z0 dz1 − z1dz0)

∂P/∂z2
, ω2 =

z1(z0 dz1 − z1dz0)

∂P/∂z2
, ω3 =

z2(z0 dz1 − z1dz0)

∂P/∂z3
.

A basis for H0(J 2

2
X) is given by

ω
⊗2

1
, ω

⊗2

2
, ω

⊗2

3
, ω1 ⊗ω2, ω1 ⊗ω3, ω2 ⊗ω3, δω1, δω2, δω3,

where δ is the derivation defined in (1.9). The first six of these provide a basis

of H0(K2

X
) and the last three may be identified with a basis of H0(KX). For
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J
3

2
X we have

h
0(J 3

2
X) = h

0(K2

X
)+h

0(K3

X
)

= h
0
(
OX(2(d− 3))

)
+h

0
(
OX(3(d− 3))

)

= C
2d−4

2
−C

d−4

2
+C

3d−7

2
−C

2d−7

2
.

In particular, for d = 4, h0(J 3

2
X) = h0(K2

X
)+h0(K3

X
) = 6+10 = 16. A basis

for H0(J 3

2
X) is given by the six elements (identified with a basis of H0(K2

X
))

δω
⊗2

1
, δω

⊗2

2
, δω

⊗2

3
, δ(ω1 ⊗ω2), δ(ω1 ⊗ω3), δ(ω2 ⊗ω3)

and the 10 elements (a basis of H0(K3

X
)):

ω
⊗3

1
, ω

⊗3

2
, ω

⊗3

3
, ω1 ⊗ω2 ⊗ω3,

ω
⊗2

1
⊗ω2, ω

⊗2

1
⊗ω3, ω

⊗2

2
⊗ω1, ω

⊗2

2
⊗ω3, ω

⊗2

3
⊗ω1, ω

⊗2

3
⊗ω2.

3. Computation of Chern Classes

The Case of Surfaces

Summary. We exhibit here the explicit formulas due to [Stoll and Wong 2002]

(see also [Green and Griffiths 1980]) for the Chern numbers of the projectivized

parametrized jet bundles of a compact complex surface. The most important is

the index formula given in Theorem 3.9:

ι(J m

k
X) = (αkc

2

1
−βkc2)m

2k+1 +O(m2k)

where ci = ci(X), αk = βk + γk and

βk =
2

(k!)2(2k+1)!

k∑

i=1

1

i2
, γk =

2

(k!)2(2k+1)!

k∑

i=1

1

i

i−1∑

j=1

1

j
.

This implies that αk/βk → ∞ hence αk/βk > c2/c
2

1
for k sufficiently large

provided that c2
1
> 0. For example, c2/c

2

1
= 11 for a smooth hypersurface of

degree d = 5 and the explicit formula shows that αk/βk > 11 for all k ≥ 199.

(See the table at the end of this section). The explicit formulas for αk and βk

are crucial in the proof of the Kobayashi conjecture in Section 7.

We now treat the case of a complex surface (complex dimension 2). The com-

putations here are more complicated than those of Section 2 as we must deal

with the second Chern number. The computation of the first Chern class

is relatively easy since the Whitney formula is linear in this case; that is, if

0 → S
′
→ S → S

′′
→ 0 is exact, then c1(S) = c1(S

′)+ c1(S
′′). The Whitney

formula for the second Chern classes on the other hand is nonlinear: c2(S) =

c2(S
′)+ c2(S

′′)+ c1(S
′)c1(S

′′). The (minor) nonlinearity may seem harmless

at first but for filtrations the nonlinearity carries over at each step and the

complexity increases rapidly. Thus the correct way to deal with the prob-

lem is not to calculate the second Chern class directly but to calculate the
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index ι(J m

k
X) = c2

1
(J m

k
X)− 2c2(J

m

k
X) which does behave linearly, that is,

ι(S) = ι(S ′)+ ι(S ′′). We then recover the second Chern class from the for-

mula c2(J
m

k
X) = (c2

1
(J m

k
X)− ι(J m

k
X))/2. In order to compute the jet dif-

ferentials we must first calculate the Chern classes and indices of the sheaves

SI =
⊙

i1
T

∗
X ⊗ · · ·⊗

⊙
ik
T

∗
X where I = (i1, . . . , ik). For details of the com-

putations see [Stoll and Wong 2002].

By results from [Tsuji 1987; 1988; Maruyama 1981], the exterior, symmetric

and tensor products of the cotangent sheaf of a manifold of general type are

semistable in the sense of Mumford–Takemoto. For a coherent sheaf S on a

variety of dimension n the index of stability relative to the canonical class is

defined to be

µ(S) =
c
n−1

1
(S) c1(T

∗
X)

(rk S)cn
1
(T ∗X)

.

A sheaf S is said to be semistable in the sense of Mumford–Takemoto (relative

to the canonical class) if µ(S ′) ≤ µ(S) for all coherent subsheaves S
′ of S.

For a nonsemistable sheaf a subsheaf S
′ satisfying µ(S ′) > µ(S) is said to be

a destabilizing subsheaf . In view of Tsuji’s result it would seem reasonable to

expect that the sheaves of jet differentials are also semistable. However using

the explicit formulas for the Chern classes computed below we shall see that this

is not the case. Tsuji’s result is used in [Lu and Yau 1990] (see also [Lu 1991])

to show that a projective surface X satisfying the conditions that KX is nef and

c
2

1
(T ∗

X)−2c2(T
∗
X) > 0 contains no rational nor elliptic curves. The instability

of the jet differentials implies that the analogous result of Lu–Yau requires a

different argument.

We list below some basic but very useful formulas (see [Wong 1999; Stoll and

Wong 2002]):

Lemma 3.1. Let X be a nonsingular complex surface and E be a vector bundle

of rank 2 over X. Then rk (
⊙

m
E) = m+1 and

c1(
⊙

m
E) = 1

2
m(m+1)c1(E),

c2(
⊙

m
E) = 1

24
m(m2

− 1)(3m+2)c2
1
(E)+ 1

6
m(m+1)(m+2)c2(E).

Consequently the index is given by the formula:

ι(
⊙

m
E) = 1

6
m(m+1)(2m+1)c2

1
(E)− 1

3
m(m+1)(m+2)c2(E).

Moreover , if c2
1
(E) 6= 0 then

δ∞(E)
def
= lim

m→∞

c2(
⊙

m
E)

c2
1
(
⊙

m
E)

=
1

2
.

Note that δ∞(E) is independent of c2(E)/c2
1
(E). The next formula gives the

Chern numbers for tensor products of different bundles.

Lemma 3.2. Let Ei, i = 1, . . . , k, be holomorphic vector bundles, of respective

rank ri, over a nonsingular complex surface X. Let R =
∏

k

l=1
rl. Then:
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(i) c1

(

k⊗

i=1

Ei

)

=
k∑

i=1

(r1 . . . ri−1ri+1 . . . rk)c1(Ei) = Rri

k∑

i=1

c1(Ei)

ri
.

(ii) c2

(

k⊗

i=1

Ei

)

= R

(

k∑

i=1

c2(Ei)

ri
+(R− 1)

∑

1≤i<j≤k

c1(Ei)c1(Ej)

rirj

)

+

k∑

i=1

(∏
k

l=1,l 6=i
rj

2

)

c
2

1
(Ei).

In particular :

(iii) c2(E1 ⊗E2) =

(
r2

2

)

c
2

1
(E1)+ (r1r2 − 1)c1(E1)c1(E2)+

(
r1

2

)

c
2

1
(E2)

+r2c2(E1)+ r1c2(E2);

(iv) c2

(

3⊗

i=1

Ei

)

= r1r2r3

(

3∑

i=1

c2(Ei)

ri
+(r1r2r3 − 1)

∑

1≤i<j≤3

c1(Ei)c1(Ej)

rirj

)

+
3∑

i=1

(
r1r2r3/ri

2

)

c
2

1
(Ei);

and the index ι(E1 ⊗E2) = c
2

1
(E1 ⊗E2)− 2c2(E1 ⊗E2) is given by

(v) ι(E1 ⊗E2) = r2c
2

1
(E1)+ r1c

2

1
(E2)+ 2c1(E1)c1(E2)− 2r2c2(E1)− 2r1c2(E2).

With the preceding formulas the computation of the Chern numbers for J
m

k
X

can now be carried out by using the filtration given in Theorem 2.3, reducing

the calculation to the Chern numbers of bundles of the form

SI =
⊙

i1
T ∗X ⊗ · · ·⊗

⊙
ik
T ∗X,

where the indices I = (i1, . . . , ik) satisfy the condition i1 +2i2 + · · ·+ kik = m.

More precisely, take

Ikm =
{
I = (i1, . . . , ik) | ij ∈ N ∪{0}, i1 +2i2 + · · ·+ kik = m

}

together with a fixed ordering of Ikm (say, the lexicographical ordering). Then a

brute force computation, applying Lemma 3.2 and Lemma 3.3 repeatedly yields

the following formulas:

Theorem 3.3. Let X be a nonsingular complex surface and let Sm−2i,i =
⊙

m−2i
T

∗
X ⊗

⊙
i
T

∗
X. Denote by c1 = c1(T

∗
X), c2 = c2(T

∗
X). Then

rk (Sm−2i,i) = (m−2i+1)(i+1) = (m+1)+(m−1)i−2i2,

c1(Sm−2i,i) = 1

2
(m−i)(m−2i+1)(i+1)c1

= 1

2
m(m+1)+(m2

−2m−1)i− (3m−1)i2+2i3c1,

c2(Sm−2i,i) = 1

24
{m(m2

−1)(3m+2)+2(3m4
−5m3

−3m2+4m+1)i

+(3m4
−30m3+12m2+6m−7)i2−2(9m3

−27m2+5m+1)i3

+(39m2
−42m+7)i4−4(3m−1)i5+4i6}c2

1
+ 1

6
bm−2i,ic2,
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where ci = ci(T
∗X). The index is given by

ι(Sm−2i,i) = 1

6
(am−2i,ic

2

1
− 2bm−2i,ic2),

where am−2i,i and bm−2i,i are polynomials given by

am−2i,i = m(m+1)(2m+1)+(2m3
−6m2

−7m−1)i− (9m2
−6m−5)i2

+(14m−2)i3−8i4,

bm−2i,i = m(m+1)(m+2)+(m3
−3m2

−8m−2)i− (6m2
−3m−7)i2

+(13m−1)i3−10i4.

The rank rk J
m

2
X of the sheaf of J m

2
X is given by

1

24
(m+1)(m+3)(m+5) =

1

233
(m3 +9m2 +23m+15), if m is odd,

1

24
(m+2)(m+3)(m+4) =

1

233
(m3 +9m2 +26m+24), if m is even;

and the first Chern class of same sheaf , c1(J
m

2
X), is

(m+1)(m+3)(m+5)(3m+1)

192
c1 =

3m4+28m3+78m2+68m+15

263
c1, m odd,

m(m+2)(m+4)(3m+10)

192
c1 =

3m4+28m3+84m2+80m

263
c1, m even.

The index of J m

2
X is given by

ι(J m

2
X) = c

2

1
(J m

2
X)− 2c2(J

m

2
X) = amc

2

1
− bmc2,

where the coefficients am and bm are polynomials in m given by

am =

{
1

2615
(7m5 +75m4 +270m3 +390m2 +203m+15) if m is odd ,

1

2615
(7m5 +75m4 +280m3 +420m2 +208m) if m is even;

bm =

{
1

2615
(5m5 +75m4 +390m3 +810m2 +565m+75) if m is odd ,

1

2615
(5m5 +75m4 +400m3 +900m2 +720m) if m is even.

The formula for the index also yields the formula for c2(J
m

2
X):

c2(J
m

2
X) =

1

2
{c

2

1
(J m

2
X)− (amc

2

1
− bmc2)} =

1

2
{λmc

2

1
+ bmc2} (3.1)

where the coefficients am and bm are given by Theorem 3.3, and the coefficient

λm is given by

λm =

{(
1

192
(m+1)(m+3)(3m2 +16m+5)

)2
− am, m odd,

(
1

192
m(m+2)(m+4)(3m+10)

)2
− am, m even.

In particular:
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Corollary 3.4. Let X be a nonsingular complex surface and assume that

c
2

1
(T ∗

X) > 0. Then

δ(J m

2
X) = lim

m→∞

c2(J
m

2
X)

c2
1
(J m

2
X)

=
1

2
.

For simplicity, set c1 = c1(T
∗
X), c2 = c2(T

∗
X). For any sheaf S, define

ι(S) = c
2

1
(S)− 2c2(S), µ(S) =

c1(S) c1
(rk S)c2

1

, δ(S) =
c2(S)

c2
1
(S)

, (3.2)

provided that the denominators are not zero. Denote for simplicity δ = δ(TX)

= c2/c
2

1
. It is well known that c2

1
≤ 3c2 and c2 ≤ 5c2

1
+36 for a surface of general

type with c
2

1
> 0 [Barth et al. 1984, p. 228]. Thus, for such surfaces, δ satisfies

the estimate
1

3
≤ δ ≤ 5+

36

c2
1

≤ 41. (3.3)

We give the precise numbers for a few special cases:

• J
2

2
X. In this case k = 2, m = 2 and there are two weighted partitions

(i1, i2) corresponding to the two solutions of i1 +2i2 = 2 (Example 2.9), namely

I1 = (2, 0) and I2 = (0, 1). The corresponding sheaves are SI1
=
⊙

2
T

∗
X,

SI2
= T

∗
X. The various invariants of these sheaves are as follows:

I S rank c1(S) c2(S) ι(S) µ(S) δ(S)

(2, 0)
⊙

2
T ∗X 3 3c1 2c2

1
+4c2 5c2

1
− 8c2 1 1

9
(2+4δ)

(0, 1) T
∗
X 2 c1 c2 c

2

1
− 2c2

1

2
δ

J
2

2
X 5 4c1 5c2

1
+5c2 6c2

1
− 10c2

4

5

5

16
(1+ δ)

The Chern numbers are calculated using Lemma 3.1 and Lemma 3.2. Note that
⊙

2
T

∗
X is a subsheaf of J

2

2
X (by Example 2.5, 0 →

⊙
2
T

∗
X → J

2

2
X →

T
∗
X → 0 is an exact sequence) with µ(

⊙
2
T

∗
X) > µ(J 2

2
X). A subsheaf with

such a property is said to be a destabilizing subsheaf. On the other hand T ∗
X is

a quotient sheaf of J 2

2
X with µ(T ∗

X) < µ(J 2

2
X). A quotient sheaf with such a

property is said to be a destabilizing quotient sheaf.

• J
3

2
X. In this case k = 2, m = 3 and there are two weighted partitions

I1 = (3, 0) and I2 = (1, 1) corresponding to the two solutions of i1 +2i2 = 3.

I S rk c1(S) c2(S) ι(S) µ(S) δ(S)

(3, 0)
⊙

3
T

∗
X 4 6c1 11c2

1
+10c2 14c2

1
− 20c2

3

2

1

36
(11+10δ)

(1, 1)
⊗

2
T ∗X 4 4c1 5c2

1
+4c2 6c2

1
− 8c2 1 1

16
(5+ δ)

J
3

2
X 8 10c1 40c2

1
+14c2 20c2

1
− 28c2

5

4

1

50
(20+7δ)

The sheaves
⊙

3
T

∗
X and

⊗
2
T

∗
X are respectively a destabilizing subsheaf and

a destabilizing quotient sheaf of J 3

2
X. The sequence 0 →

⊙
3
T

∗
X → J

3

2
X →

⊗
2
T

∗
X → 0 is exact, by Example 2.5.



144 KAREN CHANDLER AND PIT-MANN WONG

• J
4

2
X. In this case k = 2, m = 4 and there are 3 weighted partitions

I1 = (4, 0), I2 = (2, 1) and I3 = (0, 2) corresponding to the 3 solutions of

i1 +2i2 = 4.

I S rk c1(S) c2(S) ι(S) µ(S) δ(S)

(4, 0)
⊙

4
T

∗
X 5 10c1 35c2

1
+20c2 30c2

1
−40c2 2 7

20
+ 1

5
δ

(2, 1)
⊙

2
T ∗X⊗T ∗X 6 9c1 31c2

1
+11c2 19c2

1
−22c2

3

2

31

81
+ 11

81
δ

(0, 2)
⊙

2
T ∗X 3 3c1 2c2

1
+4c2 5c2

1
−8c2 1 2

9
+ 4

9
δ

J
4

2
X 14 22c1 215c2

1
+35c2 54c2

1
−70c2

11

7

215

484
+ 35

484
δ

The sheaves
⊙

4
T

∗
X and

⊙
2
T

∗
X are respectively a destabilizing subsheaf and

a destabilizing quotient sheaf of J 4

2
X. Note that

⊙
2
T

∗
X ⊗T

∗
X is neither a

subsheaf nor a quotient sheaf of J 4

2
X. We have two exact sequences:

0 → F
1

2
→ J

4

2
X →

⊙
2
T ∗X → 0,

0 →

⊙
4
T

∗
X → F

1

2
→

⊙
2
T

∗
X ⊗T

∗
X → 0.

• J
5

2
X. In this case k = 2, m = 5 and there are 3 weighted partitions

I1 = (5, 0), I2 = (3, 1) and I3 = (1, 2) corresponding to the 3 solutions of

i1 +2i25.

I S rk c1(S) c2(S) ι(S) µ(S) δ(S)

(5, 0)
⊙

5
T ∗X 6 15c1 85c2

1
+35c2 55c2

1
−70c2

5

2

17

45
+ 7

45
δ

(3, 1)
⊙

3
T ∗X⊗T ∗X 8 16c1 106c2

1
+24c2 44c2

1
−48c2 2 53

128
+ 3

32
δ

(1, 2) T
∗
X⊗

⊙
2
T

∗
X 6 9c1 31c2

1
+11c2 19c2

1
−22c2

3

2

31

81
+ 11

81
δ

J
5

2
X 20 40c1 741c2

1
+70c2 118c2

1
−140c2 2 741

1600
+ 7

160
δ

The sheaves
⊙

5
T

∗
X and

⊙
2
T

∗
X ⊗T

∗
X are respectively a destabilizing sub-

sheaf and a destabilizing quotient sheaf of J 5

2
X. Note that

⊙
3
T

∗
X ⊗T

∗
X is

neither a subsheaf nor a quotient sheaf of J 5

2
X. We have two exact sequences:

0 → F
1

2
→ J

5

2
X → T

∗
X ⊗

⊙
2
T ∗X → 0,

0 →

⊙
5
T

∗
X → F

1

2
→

⊙
3
T

∗
X ⊗T

∗
X → 0.

• J
6

2
X. In this case k = 2, m = 6 and there are 4 weighted partitions

I1 = (6, 0), I2 = (4, 1), I3 = (2, 1) and I4 = (0, 3) corresponding to the 3

solutions of i1 +2i2 = 6.

I S rk c1(S) c2(S) ι(S) µ(S) δ(S)

(6, 0)
J6

T
∗

X 7 21c1 175c
2
1+56c2 91c

2
1−112c2 3 25

63
+ 8

63
δ

(4, 1)
J4

T
∗

X⊗T
∗

X 10 25c1 270c
2
1+45c2 85c

2
1−90c2

5
2

54
125

+ 9
125

δ

(2, 2)
J2

T
∗

X⊗
J2

T
∗

X 9 18c1 138c
2
1+24c2 48c

2
1−48c2 2 23

54
+ 2

27
δ

(0, 3)
J3

T
∗

X 4 6c1 11c
2
1+10c2 14c

2
1−20c2

3
2

11
36

+ 5
18

δ

J 6
2 X 30 70c1 2331c

2
1+135c2 238c

2
1−270c2

7
3

333
700

+ 27
980

δ
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We have three exact sequences:

0 → F
2

2
→ J

6

2
X →

⊙
3
T

∗
X → 0,

0 → F
1

2
→ F

2

2
→

⊙
2
T

∗
X ⊗

⊙
2
T

∗
X → 0,

0 →

⊙
6
T

∗
X → F

1

2
→

⊙
4
T

∗
X ⊗

⊙
2
T

∗
X → 0.

The sheaves
⊙

6
T

∗
X and

⊙
3
T

∗
X are respectively a destabilizing subsheaf and

a destabilizing quotient sheaf of J 6

2
X.

Remark 3.5. For each partition I = (i1, i2) satisfying i1+2i2 = m we associate

the (nonweighted) sum |I| = i1+i2. Let Imax = maxI{|I|} and Imin = maxI{|I|}.

Then the sheaf SImax
is a destabilizing subsheaf and the sheaf SImin

is a destabi-

lizing quotient sheaf.

We now deal with the case of general k. We shall be content with asymptotic

formulas as the general formulas become complicated since the general formula

for sums of powers can only be given recursively. However the highest order term

is quite simple; indeed, we have

m∑

i=1

i
d =

md+1

d+1
+O(md). (3.4)

Before dealing with the jet bundles J m

k
X we must first find the formulas for the

sheaves SI =
⊙

i1
T

∗
X ⊗ · · · ⊗

⊙
ik
T

∗
X. This is easier due to the symmetry of

the sheaves and we know, a priori, that the formulas can be expressed in terms of

the symmetric functions in the exponents i1, . . . , ik. For general k we introduce

some notation for the j-th symmetric functions on k indices:

s0;k = 1, s1;k =

k∑

p=1

ip, s2;k =

k∑

1≤p<q≤k

ipiq, . . . , sk;k =

k∏

p=1

ip. (3.5)

We have

µk =

k∏

p=1

(ip +1) =

k∑

p=0

sp;k. (3.6)

Let I = (i1, . . . , ik) and I ′ = (i1, . . . , ik−1), so that

SI =
⊙

i1
T

∗
X ⊗ · · ·⊗

⊙
ik−1

T
∗
X ⊗

⊙
ik
T

∗
X = SI′ ⊗

⊙
ik
T

∗
X.

By Lemma 3.1, Lemma 3.2 and induction we obtain the following result, where

we abbreviate ci = ci(T
∗
X):

Lemma 3.6. Let X be a nonsingular complex surface and SI = Si1,i2,...,ik
=

⊙
i1
T

∗
X⊗

⊙
i2
T

∗
X⊗· · ·⊗

⊙
ik
T

∗
X where i1, i2, . . . , ik are nonnegative integers.
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Then rk SI = µk,

c1(SI) =
1

2

k∑

j=1

ij

k∏

j=1

(ij +1)c1 = 1

2
s1;kµkc1(T

∗
X) = 1

2
s1;k

k∑

p=0

sp;k,

ι(SI) = 1

6
µk

(
(2s2

1;k
+s1;k−s2;k)c2

1
−2(s2

1;k
+2s1;k−2s2;k)c2

)
,

c2(SI) = 1

24
µksj;k

(
(3s2

1;k
µk−4s2

1;k
−2s1;k +2s2;k)c2

1
+4(s2

1;k
+2s1;k−2s2;k)c2

)
,

where sj;k, 1 ≤ j ≤ k are the symmetric functions in i1, . . . , ik as defined in (3.5)

and µk =
∑

k

j=0
sj;k.

These formulas, together with the filtrations of Green–Griffiths, are now used to

get the formulas for J
m

k
X. First we have the formula for the rank (the proof is

similar to that of Theorem 2.15 though somewhat more complicated):

Theorem 3.7. For any positive integer k ≥ 2 we have

rk J
m

k
X =

∑

(i1,...,ik)∈Ik,m

k∏

j=1

(ij +1) = Akm
2k−1 +O(m2k−2)

where the coefficient is given by

Ak =
1

∏
k

l=2
l2(2l− 2)(2l− 1)

=
1

(k!)2(2k− 1)!
.

Next we derive the formulas for c1(J
m

k
X) from the formulas for c1(SI), for

I ∈ Ik,k. By Whitney’s formula, we see that c1(J
m

k
X) is given by

c1(J
m

k
X) =

[m/k]
∑

ik=0

∑

I′∈Ik−1,m−ki
k

(
c1(SI′) rk

⊙
ik
T ∗X + c1(

⊙
ik
T ∗X) rkSI′

)
, (3.7)

where i1 + · · ·+kik = m and Ik−1,m−kik
consists of all indices I ′ = (i1, . . . , ik−1)

satisfying i1 +2i2 + · · ·+(k− 1)ik−1 = m− kik. We have already seen that

c1(J
m

1
X) =

(
1

2
m

2 +O(m)
)
c1,

c1(J
m

2
X) =

(
1

26m
4 +O(m3)

)
c1,

where c1 = c1(T
∗X). For general k we have (using (3.7) and along the lines of

the proof of Theorem 2.16):

Theorem 3.8. Let X be a nonsingular complex surface. Then, for any positive

integer k ≥ 2,

c1(J
m

k
X) =

(
Bkm

2k +O(m2k−1)
)
c1,

where the coefficient Bk is given by

Bk =
1

(k!)2(2k)!

k∑

i=1

1

i
=
Ak

2k

k∑

i=1

1

i
.
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We now compute the index of J
m

k
X for general k. As in the case of the first

Chern number, the filtration theorem implies that

ι(J m

k
X) =

∑

I∈Ik,m

ι(SI).

Since ι(SI) = (rk
⊙

ik
T

∗
X) ι(SI′)+(rk SI′) ι(

⊙
ik
T

∗
X)+2c1(SI′) c1(

⊙
ik
T

∗
X),

where I = (i1, . . . , ik) and I ′ = (i1, . . . , ik−1), we get

ι(J m

k
X) =

[m/k]
∑

ik=0

(
(ik +1)

∑

I′ ι(SI′)+ ι(
⊙

ik
T

∗
X)
∑

I′ rk (SI′)

+ ik(ik +1)
∑

I′ c1(SI′)
)
,

where we abbreviate
∑

I′∈Ik−1,m−ki
k

by
∑

I′ . Using the formulas for ι(SI′) and

rk (SI′) obtained previously (Lemma 3.6) and induction we get:

Theorem 3.9. Let X be a nonsingular complex surface. For any positive integer

k ≥ 2,

ι(J m

k
X) = (αkc

2

1
−βkc2)m

2k+1 +O(m2k),

where the coefficients αk and βk satisfy the respective recursive relations:

αk =
αk−1

2k3(2k+1)
+

Bk−1

k4(4k2
− 1)

+
Ak−1

2k5(k− 1)(4k2
− 1)

,

βk =
βk−1

2k3(2k+1)
+

Ak−1

2k5(k− 1)(4k2
− 1)

with α1 = β1 = 1

3
and Ai, Bi are the numbers given in Theorems 3.7 and 3.8

respectively . The coefficients are given explicitly as αk = βk + γk, where γ1 = 0

and for k ≥ 2

βk =
2

(k!)2(2k+1)!

k∑

i=1

1

i2
, γk =

2

(k!)2(2k+1)!

k∑

i=1

1

i

i−1∑

j=1

1

j
.

Corollary 3.10. With the assumptions and notations of Theorem 3.9,

lim
k→∞

αk

βk

= lim
k→∞

γk

βk

= ∞.

Consequently if c2
1
> 0 then ι(J m

k
X) = cm

2k+1
c
2

1
+O(m2k) for some positive

constant c.

The asymptotic expansion for c2(J
m

k
X) now follows readily from Corollary 3.10

along with Theorems 3.8 and 3.9:

Theorem 3.11. Let X be a nonsingular complex surface. For any positive

integer k,

c2(J
m

k
X) = 1

2
(c2

1
(J m

k
X)− ι(J m

k
X)) = 1

2
c
2

1
(J m

k
X) = 1

2
A

2

k
c
2

1
m

4k +O(m4k−1).
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We tabulate the ratios αk/βk on the next page (they can be checked readily

using Mathematica or Maple):

k αk βk αk/βk

2
7

2615

5

2615
1.40000

3
17

27367

7

27365
1.73469

4
83

216387

41

216387
2.02439

5
1717

217385611

479

21738567
2.28108

6
1927

2213115611 13

59

2213115611
2.51239

7
726301

222312577611 13

266681

222312577611 13
2.72348

8
3144919

234312577611 13 17

63397

234312577611 13
2.91804

9
2754581

235320577613 17 19

514639

235320577611 13 17
3.09879

10
2923673

2393215107713 17 19

178939

2393215977 13 17 19
3.26779

11
315566191

2403215107711617 19 23

10410343

2403215977116 13 17 19
3.42666

12
330851461

2473245127711617 19 23

18500393

24732451177116 17 19 23
3.57670

197 10.9808

198 10.9987

199 11.0165

200 11.0345

4. Finsler Geometry of Projectivized Vector Bundles

Summary. Our use of projectivized jet bundles is initiated by the recognition

that , for projectivized vector bundles, the algebraic geometric concept of ample-

ness is equivalent to the existence of a Finsler (not hermitian in general) metric

with negative mixed holomorphic bisectional curvature. It is known, at least in

the case of the tangent bundle that , even for Finsler metrics, negative holomor-

phic bisectional curvature implies hyperbolicity . We provide in this section some

of the basic notions from Finsler geometry . For more details see [Cao and Wong

2003; Chandler and Wong 2004] and the references there.

Many questions concerning a complex vector bundle E of rank greater than 1

may be reduced to problems about the tautological line bundle (or its dual)

over the projectivization P(E). For example the algebraic geometric concept

of ampleness (and the numerical effectiveness) of a holomorphic vector bundle
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E may be interpreted in terms of Finsler geometry (see [Cao and Wong 2003],

and also [Aikou 1995; 1998]; for general theory on Finsler geometry we refer

to [Bao and Chern 1991; Bao et al. 1996; Abate and Patrizio 1994]). For the

relationship with the Monge–Ampère equation see [Wong 1982]. We also provide

some implications of this reformulation. For applications of the formulation using

projectivized bundles to complex analysis see [Dethloff et al 1995a, b]. The dual

of a vector bundle E will be denoted by E∗. For any positive integer k, denote

by
⊙

k
E the k-fold symmetric product. The dual vector bundle E∗ is said to

be ample if and only if the line bundle LP(E) is ample.

By a Finsler metric along the fibers of E we mean a function h : E → R≥0

with the following properties:

(FM1) h is of class C
0 on E and is of class C

∞ on E \ {zero section}.

(FM2) h(z, λv) = |λ|h(z, v) for all λ ∈ C.

(FM3) h(z, v) > 0 on E \ {zero section}.

(FM4) For z and v fixed, the function ηz,v(λ) = h2(z, λv) is smooth even at

λ = 0.

(FM5) h|Ez
is a strictly pseudoconvex function on Ez \ {0} for all z ∈M .

Denote by π : TE → E the projection and V = ker π ⊂ TE the vertical sub-

bundle. A Finsler metric F defines naturally a hermitian inner product on the

vertical bundle V ⊂ TE by

〈V,W 〉V =
r∑

i,j=1

gij̄(z, v)V
i
W

j

, gij̄(z, v) =
∂2F 2(z, v)

∂vi∂v̄j
(4.1)

for horizontal vector fields V =
∑

i
V

i
∂/∂v

i
,W =

∑

i
W

i
∂/∂v

i
∈ V on E where

v1, . . . , vr are the fiber coordinates. (The difference between a Finsler metric

and a hermitian metric is that, for a hermitian metric, the components (gij̄) of

the hermitian inner product on the vertical bundle are independent of the fiber

coordinates). The hermitian inner product defines uniquely a hermitian con-

nection (known as the Chern connection) θ = (θk

i
) and the associate hermitian

curvature Θ = (Θk

i
). If (gij̄) comes from a hermitian metric then the curvature

forms depend only on the base coordinates; however if it comes from a general

Finsler metric then the curvature forms will have horizontal, vertical and mixed

components:

Θk

i
=

n∑

α,β=1

K
k

iαβ̄
dz

α
∧ dz̄

β +

r∑

j,l=1

κ
k

ijl̄
dv

j
∧ dv̄

l +

n∑

α=1

r∑

l=1

µ
k

iαl̄
dz

α
∧ dv̄

l

+

r∑

j=1

n∑

β=1

ν
k

ijβ̄
dv

j
∧ dz̄

β
.

Denote by P =
∑

r

i=1
v

i
∂/∂v

i the position vector field on E. The mixed holo-

morphic bisectional curvature of the Finsler metric is defined, for any nonzero
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vector field X ∈ Γ(M,TM), to be

〈
Θ(X,X)P, P

〉

V
=

r∑

i,j,k=1

n∑

α,β=1

gkj̄K
k

iαβ̄
v

i
v̄

j
X

α
X

β

, (4.2)

where the inner product is defined by (4.1). The following result can be found

in [Cao and Wong 2003].

Theorem 4.1. Let E be a rank r ≥ 2 holomorphic vector bundle over a compact

complex manifold X. The following statements are equivalent :

(1) E∗ is ample (resp. nef ).

(2)
⊙

k
E∗ is ample (resp. nef ) for some positive integer k.

(3) The dual L
P(

J

k
E)

of the tautological line bundle over the projectivized bundle

P(
⊙

k
E) is ample (resp. nef ) for some positive integer k.

(4) There exists a Finsler metric along the fibers of E with negative (resp. non-

positive) mixed holomorphic bisectional curvature.

(5) For some positive integer k there exists a Finsler metric along the fibers of
⊙

k
E with negative (resp. nonpositive) mixed holomorphic bisectional curva-

ture.

From the algebraic geometric point of view the key relationship between a vector

bundle and its projectivization is the Fundamental Theorem of Grothendieck

[Grothendieck 1958]:

Theorem 4.2. Let p : E → X be a holomorphic vector bundle of rank r ≥ 2

over a complex manifold X of dimension n. Then for any analytic sheaf S on

X and any m ≥ 1,

p
i

∗L
m

P(E)
∼=

{⊙
m
E

∗
, if i = 0,

0, if i > 0,

where pi

∗L
m

P(E)
is the i-th direct image of Lm

P(E)
. Consequently ,

H
i(X,

⊙
m
E

∗
⊗S) ∼= H

i(P(E),Lm

P(E)
⊗ p

∗
S) for all i ≥ 0.

The theorem implies that the cohomology groups vanish beyond the dimension n

of X although the dimension of P(E) is n+r−1 > n; moreover, χ(
⊙

m
E

∗
⊗S) =

χ(Lm

P(E)
⊗ p

∗
S). For a vector bundle F over a smooth surface X, the Chern

character and the Todd class are defined by

ch(F ) = rk(F )+ c1(F )+ 1

2
(c2

1
(F )− 2c2(F )),

td(F ) = 1+ 1

2
c1(F )+ 1

12
(c2

1
(F )+ c2(F )).

(4.3)

The Riemann–Roch formula is

χ(F ) = ch(F ) · td(TX)[X] =
(

1

2
(ι(F )− c1(F ) c1)+ 1

12
rk(F )(c2

1
+ c2)

)
[X], (4.4)
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where ci = ci(T
∗X) = −ci(TX). The notation ω[X] indicates the evaluation of

a form of top degree on the fundamental cycle [X], that is,

ω[X] =

∫

X

ω.

Assume rank F = 2 over a nonsingular complex surface X. Then, by Lemma

3.1,

ι(
⊙

m
F ) = 1

6
m(m+1)(2m+1)c2

1
(F )− 1

3
m(m+1)(m+2)c2(F ),

ch(
⊙

m
F ) = m+1+ 1

2
m(m+1)c1(F )+ 1

12
m(m+1)

(
(2m+1)c2

1
(F )

− 2(m+2)c2(F )
)
,

χ(
⊙

m
F ) = 1

12
m(m+1)

(
(2m+1)c2

1
(F )− 2(m+2)c2(F )

)

−
1

4
m(m+1)c1(F ) c1 + 1

12
(m+1)(c2

1
+ c2).

For example, taking F = T
∗
X,

χ(
⊙

m
T

∗
X) = 1

12
(m+1)

(
(2m2

− 2m+1)c2
1
− (2m2 +4m− 1)c2)

)
;

in particular,

χ(T ∗
X) = 1

6
(c2

1
− 5c2), χ(

⊙
2
T

∗
X) = 1

4
(5c2

1
− 15c2).

In any case we have:

Theorem 4.3. Let p : E → X be a holomorphic vector bundle of rank r = 2

over a complex surface X. Then dim P(E) = 3 and for any positive integer m,

χ(
⊙

m
E

∗) = χ(Lm

P(E)
) =

m
3

3!
(c2

1
(E∗)−c2(E

∗))+O(m2) =
m

3

3!
c
3

1
(Lm

P(E)
)+O(m2).

Suppose that h2(Lm

P(E)
) (= h

2(
⊙

m
E)) = O(m2) and that c3

1
(Lm

P(E)
) > 0 (equiva-

lently, c2
1
(E)−c2(E) > 0). The preceding theorem implies that E (or equivalently

LP(E)) is big, that is,

h
0(Lm

P(E)
) = h

0(
⊙

m
E) ≥ Cm

3

for some constant C > 0. Recall the following fact (from [Cao and Wong 2003]

or [Kobayashi and Ochiai 1970], for example):

Theorem 4.4. Let E be a holomorphic vector bundle of rank r ≥ 2 over a

complex manifold X. Then the canonical bundles of X and P(E) are related by

the formula

KP(E)
∼= [pE ]∗(KX ⊗detE∗)⊗L

−r

P(E)

where L
−r

P(E)
is the dual of the r-fold tensor product of LP(E). In particular , we

have

KP(TX)
∼= [pTX ]∗K2

X
⊗L

−n

P(TX)
and KP(T∗X)

∼= L
−n

P(T∗X)

where n = dimX.
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Corollary 4.5. Let X be a complex manifold of dimension n.

(i) TX is ample (resp. nef) if and only if K−1

P(T∗X)
is ample (resp. nef).

(ii) If KX is nef then KP(TX) ⊗L
n

P(TX)
is nef .

(iii) If T ∗
X is ample then KP(TX)⊗L

n

P(TX)
is nef and KP(TX)⊗L

n+1

P(TX)
is ample.

We have the following vanishing theorem [Cao and Wong 2003] (for variants see

[Chandler and Wong 2004]):

Corollary 4.6. Let E be a nef holomorphic vector bundle of rank r ≥ 2 over

a compact complex manifold M of dimension n. Then

H
i
(
X,
⊙

m
E⊗detE⊗KX

)
= 0,

H
i
(
X,
⊙

m
(
⊗

k
E)⊗det(

⊗
k
E)⊗KX

)
= 0,

for all i,m, k ≥ 1. Consequently , if E = TX then H
i(X,

⊙
m
TX) = 0 for all

i,m ≥ 1.

For a holomorphic line bundle L over a compact complex manifold Y with

h0(Lm) > 0,m a positive integer, define a meromorphic map

Φm = [σ0, . . . , σN ] : Y → P
N

where σ0, . . . , σN is a basis of H0(Lm). The Kodaira–Iitaka dimension of L is

defined to be

κ(L) =

{
−∞, if h

0(Lm) = 0 for all m,

max{dimΦm(X) | h0(Lm) > 0}, otherwise.

The line bundle L is said to be big if k(L) = dimY . This is equivalent to saying

that, for m� 0

h
0(Lm) ≥ Cm

dim Y

for some positive constant C; in other words, the dimension of the space of sec-

tions h0(Lm) has maximum possible growth rate. See [Chandler and Wong 2004]

for a discussion of the differential geometric meaning of big bundles. Riemann–

Roch asserts that if cdim Y

1
(L) > 0 the Euler characteristic is big:

χ(Lm) =
cdim Y

1
(L)

(dimY )!
m

dim Y +O(mdim Y −1).

This, in general, is not enough to conclude that L is big. However, Corollary 4.6

implies that if T ∗X is nef then the cohomology groups H i(X,T ∗X) = 0 for all

i ≥ 1. Hence T ∗
X is big if the Euler characteristic is big. In fact, for surfaces

the weaker condition that KX is nef suffices:

Corollary 4.7. Suppose that the canonical bundle KX of a nonsingular surface

is nef and that c
dim P(TX)

1
(LP(TX)) > 0. Then LP(TX) is big .
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A vector bundle E of rank > 1 is said to be big if the line bundle LP(E) is big. By

Theorem 4.3, for a surface X the condition c
dim P(TX)

1
(LP(TX)) > 0 is equivalent

to the condition that c2
1
(TX)− c2(TX) = c2

1
(T ∗X)− c2(T

∗X) is positive. Thus

we may restate Corollary 4.7 as follows:

Corollary 4.8. Let X be a nonsingular compact surface such that c2
1
(T ∗X)−

c2(T
∗
X) > 0 and KX is nef . Then T

∗
X is big .

The preceding corollary implies the following theorem which may be viewed as

an analogue, for surfaces, of the classical theorem that a curve of positive genus

is hyperbolic [Lu and Yau 1990; Lu 1991; Dethloff et al. 1995a; 1995b]:

Theorem 4.9. Let X be a nonsingular surface such that c2
1
(T ∗

X)−2c2(T
∗
X) >

0 and KX is nef . Then X is hyperbolic.

We refer the readers to [Dethloff et al. 1995a; 1995b] for further information and

refinements of the preceding theorem. The condition c2
1
(T ∗

X)− c2(T
∗
X) > 0 is

not satisfied by hypersurfaces in P3 which is the main reason that jet differentials

are introduced. The computations in the previous section will provide conditions

(on the Chern numbers c2
1
(T ∗

X) and c2(T
∗
X)) under which the sheaves of jet

differentials J
m

k
X must be big.

5. Weighted Projective Spaces and Projectivized Jet Bundles

Summary. The fibers of the k-jet bundles P(Jk
X) are special types of weighted

projective spaces. We collect some of the known facts of these spaces in this

section. The main point is that these spaces are, in general , not smooth but with

very mild singularities and we show that the usual theory of fiber integration for

smooth manifolds extends to P(Jk
X). This will be used in later sections.

We follow the approach of the previous section by reducing questions concerning

k-jet differentials to questions about the line bundle over the projectivization

P(JkX). Since JkX is only a C
∗-bundle rather than a vector bundle the fibers of

the projectivized bundle P(Jk
X) is not the usual projective space but a special

type of weighted projective space. We give below a brief account concerning

these spaces; see [Beltrametti and Robbiano 1986; Dolgachev 1982; Dimca 1992]

for more detailed discussions and further references. The general theory of the

projectivization of coherent sheaves can be found in [Banica and Stanasila 1976].

Consider C
r+1 together with a vector Q = (q0, . . . , qr) of positive integers.

The space C
r+1 is then denoted (Cr+1

, Q) and we say that each coordinate zi,

0 ≤ i ≤ r, has weight (or degree) qi. A C
∗-action is defined on (Cr+1

, Q) by

λ.(z0, . . . , zr) = (λq0z0, . . . , λ
qrzr) for λ ∈ C

∗
.

The quotient space P(Q) = (Cr+1
, Q)/C

∗ is the weighted projective space of type

Q. The equivalence class of an element (z0, . . . , zr) is denoted by [z0, . . . , zr]Q.



154 KAREN CHANDLER AND PIT-MANN WONG

For Q = (1, . . . , 1) = 1, P(Q) = Pr is the usual complex projective space of

dimension r and an element of Pr is denoted simply by [z0, . . . , zr]. The case

r = 1 is special as it can be shown that P(q0, q1) ∼= P1 for any tuple (q0, q1).

This is not so if r ≥ 2. For a tuple Q define a map ψQ : (Cr+1
,1) → (Cr+1

, Q)

by

ψQ(z0, . . . , zr) = (zq0

0
, . . . , z

qr

r
).

It is easily seen that ρQ is compatible with the respective C
∗-actions and hence

descends to a well-defined morphism:

[ψQ] : Pr → P(Q), [ψQ]([z0, . . . , zr]) = [zq0

0
, . . . , z

qr

r
]Q. (5.1)

The weighted projective space can also be described as follows. Denote by Θqi

the group consisting of all qi-th roots of unity. The group ΘQ =
⊕

r

i=0
Θqi

acts

on Pr by coordinatewise multiplication:

(θ0, . . . , θr).[z0, . . . , zr] = [θ0z0, . . . , θrzr], θi ∈ Θqi
,

and the quotient space is denoted by Pr/ΘQ. The next result is easily verified

[Dimca 1992]:

Theorem 5.1. The weighted projective space P(Q) is isomorphic to the quotient

Pr/ΘQ. In particular , P(Q) is irreducible and normal (the singularities are cyclic

quotients and hence rational).

Given a tupleQ we assign the degree (or weight) qi to the variable zi (i = 1, . . . , q)

and denote by SQ(m) the space of homogeneous polynomials of degree m. In

other words, a polynomial P is in S(Q)(m) if and only if P (λ · (z0, . . . , zr)) =

λ
m
P (z0, . . . , zr). We may express such a polynomial explicitly as

P =
∑

(i0,...,ir)∈IQ,m

ai0...ir
z

i0

0
. . . z

ir

r
,

where the index set IQ,m is defined by

IQ,m =
{
(i0, . . . , ir)

∣
∣
∑

r

j=0
qjij = m, il ∈ N ∪{0}

}
.

The sheaf OP(Q)(m), m ∈ N, is by definition the sheaf over P(Q) whose global

regular sections are precisely the elements of SQ(m), i.e., H0(P(Q),OP(Q)(m)) =

SQ(m). For a negative integer −m the sheaf OP(Q)(−m) is defined to be the

dual of OP(Q)(m) and OP(Q)(0) is the structure sheaf OP(Q) of P(Q). Here are

some basic properties of these sheaves (see [Beltrametti and Robbiano 1986]):

Theorem 5.2. Let Q = (q0, . . . , qr) be an r+1-tuple of positive integers.

(i) For any for any m ∈ Z, the line sheaf OP(Q)(m) is a reflexive coherent sheaf .

(ii) OP(Q)(m) is locally free if m is divisible by each qi (hence by the least common

multiple).

(iii) Let mQ be the least common multiple of {q0, . . . , qr}. Then OP(Q)(mQ) is

ample.
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(iv) There exists an integer n0 depending only on Q such that OP(Q)(nmQ) is

very ample for all n ≥ n0.

(v) OP(Q)(αmQ)⊗OP(Q)(β) ∼= OP(Q)(αmQ +β) for any α, β ∈ Z.

For Q = 1 the assertions of the preceding theorem reduce to well-known prop-

erties of the usual twisted structure sheaves of the projective space. For any

subset J ⊂ {0, 1, . . . , r} denote by mJ the least common multiple of {qj , j ∈ J}

and define

m(Q) = −

q
∑

i=0

qi +
1

r

r+1∑

i=2

∑

#J=i
mJ

(
r−1

i−2

) ,

where #J is the number of elements in the set J . It is known that we may take

n0 = m(Q)+ 1 in assertion (iv) above. In general the line sheaf OP(Q)(m) is

not invertible if m is not an integral multiple of mQ. It can be shown that

for Q = (1, 1, 2) the sheaf OP(Q)(1) is not invertible and hence, neither is

OP(Q)(1)⊗OP(Q)(1). On the other hand, by part (ii) of the preceding theo-

rem we know that OP(Q)(2) is invertible, thus OP(Q)(1)⊗OP(Q)(1) 6∼= OP(Q)(2).

The following theorem on the cohomologies of the sheaf OP(Q)(p) is similar to

the case of standard projective space (see [Beltrametti and Robbiano 1986] or

[Dolgachev 1982]):

Theorem 5.3. If Q = (q0, . . . , qr) is an (r+1)-tuple of positive integers then

for p ∈ Z,

H
i(P(Q),OP(Q)(p)) =







{0}, i 6= 0, r

SQ(p), i = 0,

S(Q)(−p− |Q|), i = r,

where |Q| = q0 + · · ·+ qr.

The cohomology group H i(P(Q),OP(Q)(p)) vanishes provided that i 6= 0, r. Let

Q = (q0, . . . , qr) be a (r+1)-tuple of positive integers and define, for k = 1, . . . , r,

lQ,k = lcm
{

qi0 . . . qik

gcd (q0, . . . , qik
)

∣

∣

∣
0 ≤ i0 < · · · < ik ≤ r

}

.

For integral cohomology we have:

Theorem 5.4. Let Q be an (r+1)-tuple of positive integers. Then

H
i(P(Q); Z) ∼=

{
Z, if i is even,

0, if i is odd .

Further , take [ψQ] : Pr
→ P(Q) as the quotient map defined by (5.1). Then the

diagram

H
2k(P(Q); Z)

[ψQ]∗
- H

2k(Pr; Z)

Z

∼=

? lQ,k
- Z

∼=

?
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commutes, where the lower map is given by multiplication by the number lQ,k.

Note that the number lQ,r is precisely the number of preimages of a point in P(Q)

under the quotient map [ψQ] (see (5.1)). The proof of the preceding Theorem

for k = r is easy; the reader is referred to [Kawasaki 1973] for the general case.

Let Q = (q0, q1, . . . , qr), r ≥ 1, be an (r+1)-tuple of positive integers. The tu-

ple Q is said to be reduced if the greatest common divisor (gcd) of (q0, q1, . . . , qr)

is 1. In general, if the gcd is d, the tuple

Qred = Q/d = (q0/d, . . . , qr/d)

is called the reduction of Q. Let

d0 = gcd(q1, . . . , qr),

di = gcd(q0, q1, . . . , qi−1, qi+1, . . . , qr), 1 ≤ i ≤ r− 1,

dr = gcd(q0, . . . , qr−1)

and define

a0 = lcm(d1, . . . , dr),

ai = lcm(d0, d1, . . . , di−1, di+1, . . . , dr), 1 ≤ i ≤ r− 1,

ar = lcm(d0, . . . , dr−1),

where “lcm” is short for “least common multiple”. Define the normalization of

Q by

Qnorm = (q0/a0, . . . , qr/ar).

A tuple Q is said to be normalized if Q = Qnorm.

Theorem 5.5. Let Q be a normalized (r+1)-tuple of positive integers. Then the

Picard group Pic(P(Q)) and the divisor class group Cl(P(Q)) are both isomorphic

to Z, and are generated , respectively , by

[
L

mQ

P(Q)
= OP(Q)(mQ)

]
and

[
LP(Q) = OP(Q)(1)

]
.

Note that the generators of the two groups are different in general. For the

standard projective space we have mQ = 1 and so the generators are the same.

For the k-jet bundles the fibers of their projectivization are weighted projective

spaces with mQ = k!, so we shall only be concerned with the case where n, k ≥ 1

are positive integers and

Q =
(
(1, . . . , 1
︸ ︷︷ ︸

n

), (2, . . . , 2
︸ ︷︷ ︸

n

), . . . , (k, . . . , k
︸ ︷︷ ︸

n

)
)
,

which is normalized. In this case we shall write Pn,k for P(Q). Note that

r = dim Pn,k = nk− 1; the least common multiple of Q is

mQ = k! and lQ,r = (k!)n
. (5.2)
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Define a positive function

ρQ(z0, . . . , zr) =

r∑

i=0

|zi|
2/qi (5.3)

on (Cr+1
, Q) \ {0}. Then

ρQ(λq0z0, . . . , λ
qrzr) = |λ|

2

r∑

i=0

|zi|
2/qi = |λ|

2
ρQ(z0, . . . , zr)

and

ψ
∗(ρQ)(z0, . . . , zr) =

r∑

i=0

|z
qi

i
|
2/qi =

r∑

i=0

|zi|
2 = ρ1(z0, . . . , zr)

is the standard Euclidean norm function on (Cr+1
,1). The function ρQ is not

differentiable along Z =
⋃
{[zqi

=0], qi 6= 1}. However, on C
r+1

\Z, we deduce

from the above that

∂∂̄ log ρQ(λq0z0, . . . , λ
qrzr) = ∂∂̄ log ρQ(z0, . . . , zr)

and that

ψ
∗
Q

(∂∂̄ log ρQ) = ∂∂̄ log ρ1.

The first identity shows that ∂∂̄ log ρQ is invariant under the C
∗-action hence

descends to a well-defined (1, 1)-form ωQ on P(Q)\πQ(Z). The second identity

says that ψ∗
Q

(ωQ) is the Fubini–Study metric ωFS on the standard projective

space Pr
\π(Z) (hence actually extends smoothly across π(Z)). The Fubini–

Study metric [ωFS ] is the first Chern form of OPr (1) which is the (positive)

generator of Pic Pr = Cl Pr. Hence [ωFS ] is the positive generator of H2(Pr,Z).

Theorem 5.4 implies that [lQ,1ωQ] is the generator of H2(P(Q),Z).

Consider the function
(∑

r

i=0
|zi|

2κ
)1/κ

, for κ a positive integer, defined on

C
r+1. It clearly satisfies

(∑
r

i=0
|λzi|

2κ
)1/κ

= |λ|
2(
∑

r

i=0
|zi|

2κ)1/κ;

hence is a metric along the fibers of the tautological line bundle over Pr. More-

over, the form

∂∂̄ log
(∑

r

i=0
|zi|

2κ
)1/κ

descends to a well-defined form on the standard projective space Pr, indeed

a Chern form, denoted by ηκ, for the hyperplane bundle of Pr; moreover it is

cohomologous to the Fubini–Study form. With this we may define an alternative

to ρQ,

τQ(z0, . . . , zr) =

(

r∑

i=0

|zi|
2κ/qi

)1/κ

, κ =

r∏

i=0

qi. (5.4)
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It is of class C
∞ on C

r+1
\ {0}. Just like ρQ, the function τQ satisfies

τQ(λq0z0, . . . , λ
qrzr) =

(

r∑

i=0

|λ|
2κ
|zi|

2κ/qi

)1/κ

= |λ|
2

(

r∑

i=0

|zi|
2κ/qi

)1/κ

and

(ψ∗
τQ)(z0, . . . , zr) = τQ(zq0

0
, . . . , z

qr

r
) =

(

r∑

i=0

|zi|
2κ

)1/κ

.

These equalities imply that ∂∂̄ log τQ descends to a well-defined form γQ on P(Q)

with the property that ψ∗
Q
γQ = ηk, and consequently is cohomologous to ωQ.

Let π : Jk
X → X be the parametrized k-jet bundle of a complex manifold X

and denote by p : P(Jk
X) → X and pr : p∗Jk

X → P(Jk
X) the corresponding

projection maps. The following diagram is commutative:

p
∗
J

k
X

p∗
- J

k
X

P(Jk
X)

pr

?
p

- X

π

?

and the tautological subsheaf of p∗Jk
X is the line sheaf defined by

{([ξ], η) ∈ p
∗
J

k
X | [ξ] ∈ P(Jk

X), p([ξ]) = π(η) = x, [η] = [ξ]}

where, for ξ (resp. η) in Jk
X, its equivalence class in P(Jk

X) is denoted by [ξ]

(resp. [η]). The “hyperplane sheaf ”, denoted L = Lk, is defined to be the dual of

the tautological line sheaf. The fiber P(Jk

x
X) over a point x ∈ X is the weighted

projective space of type Q = ((1, . . . , 1); . . . ; (k, . . . , k)) and the restriction of Lk

to P(Jk

x
X) is the line sheaf OP(Q)(1) as defined in Theorem 5.2. The next result

follows readily from Theorem 5.2:

Theorem 5.6. Let X be a complex manifold .

(i) For any m ∈ Z,Lm

P(JkX)
is a reflexive coherent sheaf .

(ii) L
k!

P(JkX)
is the generator of Pic(P(Jk

X)), that is, Lm

P(JkX)
is locally free if

m is divisible by k!.

(iii) For any α, β ∈ Z, L
k!α

P(JkX)
⊗L

β

P(JkX)

∼= L
k!α+β

P(JkX)
.

The Chern class of the bundle L
k!

P(JkX)
is k!ωQ = lQ,1ωQ, where ωQ is con-

structed after Theorem 5.5. By (5.3) the function ρk!

Q
is a Finsler metric along

the fibers of Lk!

P(JkX)
. The same is of course also true if we use γQ and τQ instead.

Just as in the case of projectivized vector bundles we still have the identification

of the spaces L−1

P(JkX)
\{0} with Jk

X \{0}, which is compatible with the respec-

tive C
∗ action. Thus, as in the case of vector bundles, we conclude that a metric

along the fibers of L−1

P(JkX)
is identified with a Finsler metric along the fibers of
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JkX. As JkX, in general, is only a C
∗-bundle and not a vector bundle, we see

that Finsler geometry is indispensable.

Note that, for k ≥ 2, the sheaf LP(JkX) is not locally free and, in general,

L
a

P(JkX)
⊗L

b

P(JkX)
(a) 6∼= L

a+b

P(JkX)
.

Hence some of the proofs of the results that are valid for projectivized vector

bundles require modifications. Basically, things work well if we use integer multi-

ples of k! (that is, J mk!

k
X); for example, Grothendieck’s Theorem (Theorem 4.2)

remains valid:

Theorem 5.7. Let X be a complex manifold and p : P(JkX) → X the k-th

parametrized jet bundle and let S be an analytic sheaf on X. For any m ≥ 1,

p
i

∗L
mk!

P(JkX)
∼=

{

J
mk!

k
X, if i = 0,

0, if i > 0,

where pi

∗L
mk!

P(JkX)
is the i-th direct image of Lmk!

P(JkX)
. Consequently , we have

H
i(X,J mk!

k
X ⊗S) ∼= H

i(P(Jk
X),Lmk!

P(JkX)
⊗ p

∗
S)

for all i.

In the case of vector bundles, Theorem 4.3 provides a relation between the Chern

numbers of the bundle and that of the line bundle over the projectivization. The-

orem 4.3 may be proved directly via fiber integration. Although the projectivized

k-jet bundles are not smooth for k ≥ 2 this correspondence is still valid. These

technicalities are needed when we deal with problem of degeneration; as we shall

see in Sections 6 and 7, under the condition that Lk!

k
is big, k-jets of holomorphic

maps into X are algebraically degenerate, that is, the images are contained in

some (special type of) subvarieties of P(Jk
X) which may be very singular. In

order to calculate the Euler characteristic of Lk!

k
X of these subvarieties it is nec-

essary to compute the intersection numbers, as usual, via Chern classes and this

is best handled by going down, via fiber integration, to the base variety X which

is nonsingular. We take this opportunity to formulate a criterion for certain type

of singular spaces on which fiber integration works well. The purpose here is not

to exhibit the most general results but results general enough for our purpose.

First we recall some basic facts concerning fiber integration. Let P and X be

complex manifolds and p : P → X be a holomorphic surjection. The map p is

said to be regular at a point y ∈ P if the Jacobian of p at y is of maximal rank.

The set of regular points is an open subset of P and p is said to be regular if

every point of P is a regular point. The following statements concerning fiber

integration are well-known (see [Stoll 1965], for example):

Theorem 5.8. Let P and X be connected complex manifolds of dimension N

and n respectively . Let p : P → X be a regular holomorphic surjection. Let r, s

be integers with r, s ≥ N −n = q. Then for any (r, s)-form ω of class C
k on
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P that is integrable along the fibers of p, the fiber integral p∗ω is a well defined

(r− q, s− q) form of class C
k on X. Moreover :

(i) For any (N − r, N − s)-form on X such that ω∧ p
∗
η is integrable on P , we

have ∫

P

ω ∧ p
∗
η =

∫

X

p∗ω ∧ η.

(ii) If ω is of class C
1 and if ω and dω are integrable along the fibers p then

dp∗ω = p∗dω, ∂p∗ω = p∗∂ω and ∂p∗ω = p∗∂ω.

(iii) If ω is nonnegative and integrable along the fibers of p then p∗ω is also

nonnegative.

(iv) Suppose that Y is another connected complex manifold of dimension n′ with

a regular holomorphic surjection π : X → Y . Assume that ω is a (r, s)-form

such that r, s ≥ q+q′ where q = N−n and q′ = n−n
′. If ω is integrable along

the fibers of p and p∗ω is integrable along the fibers of π then π∗p∗ω = (π◦p)∗ω.

If ω is a form of bidegree (r, s) so that either r < q or s < q, where q is the fiber

dimension, then we set p∗ω = 0. If p : P → X is a holomorphic fiber bundle

with smooth fiber S, then p is a regular surjection and the preceding Theorem is

applicable. Consider now P , an irreducible complex space of complex dimension

N , with a holomorphic surjection p : P → X where X is nonsingular and of

complex dimension n. The map p is said to be regular if there exists a connected

complex manifold P̃ of the same dimension as P and a surjective morphism

τ : P̃ → P such that the composite map p̃ = p ◦ τ : P̃ → X is regular. Let

U ⊂ P be an open set and ι : U → V ⊂ C
N

′

a local embedding, where V is

an open set of C
N

′

for some N ′. If η is a differential form on V then ι∗η is a

differential form on U . Conversely, a differential form ω on U is of the form ι
∗
η

for some embedding ι : U → V and some differential form η on V . Suppose that

ω is a differential form on P of bidegree (r, s); hence τ ∗ω is a differential form

on P̃ of bidegree (r, s). If either r or s is less than the fiber dimension q = N−n

then p∗ω is defined to be zero. For the case r, s ≥ q and assuming that τ ∗ω is

integrable along the fibers of p̃ (for example, this is the case if ω is integrable

along the fibers of p), we are in the nonsingular situation; hence p̃∗τ
∗
ω is defined.

The pushforward p∗ω is naturally defined by

p∗ω
def
= p̃∗τ

∗
ω. (5.5)

From this definition it is clear (since p̃ = p ◦ τ) that the basic properties of fiber

integrals remain valid in the more general situation:

Theorem 5.9. Let τ̃ : P̃ → P, p : P → X and p̃ : P̃ → X be as above and

let ω be a form of bidegree (r, s) on P with r, s ≥ N −n where n = dimX,N =

dimP = dim P̃ . Then:

(i) If τ∗ω is integrable along the fibers P̃y = p̃
−1(x) for almost all x ∈ X then

for any (N − r,N − s)-form on X such that ω∧ p
∗
η is integrable on P and
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τ∗ω ∧ p̃∗η is integrable on P̃ ,
∫

P

ω ∧ p
∗
η =

∫

X

p∗ω ∧ η =

∫

P̃

p̃∗τ
∗
ω ∧ τ

∗
η.

(ii) If ω is of class C
1 and if τ∗ω and τ∗dω are integrable along the fibers P̃x for

all x ∈ X then dp∗ω = p∗dω, ∂p∗ω = p∗∂ω and ∂p∗ω = p∗∂ω.

(iii) If τ∗ω is integrable along M̃x for all x ∈ X then p∗ω is a form of type

(p−N +n, q−N +n) on X.

(iv) If ω is a continuous nonnegative form and τ
∗
ω is integrable along P̃x for

all x ∈ X then p∗ω is also nonnegative.

The converse of part (iv) is not true in general.

The next theorem shows that the preceding theorem is applicable to the pro-

jectivized k-jet bundles (we refer the readers to [Stoll and Wong 2002] for details).

Theorem 5.10. Let X be a complex manifold of complex dimension n and let

p : P = P(Jk
X) → X be the projectivized k-jet bundle of X. Then there exists a

complex manifold P̃ of the same dimension as P and a surjective finite morphism

τ̃ : P̃ → P such that p̃ = p ◦ τ : P̃ → X is a regular holomorphic surjection.

Moreover , P̃ can be chosen so that each of the fibers of p̃ is the complex projective

space Pq where q = nk− 1.

A similar argument (see [Stoll and Wong 2002]) shows that in general we have:

Theorem 5.11. Let X be a connected complex manifold of complex dimension

n. Suppose that P is an irreducible complex space for which there exists a holo-

morphic surjective morphism p : P → X that is locally trivial ; that is, for any

x ∈ X there exists an open neighborhood V of X, a complex space Y and a

biholomorphic map αV : p−1
V → V ×Y such that the diagram

p
−1(V )

αV

∼=
- V ×Y

V

p

?

========= V

pV

?

commutes, where pV is the projection onto the first factor . Then there exists

a complex manifold P̃ of the same dimension as P and a surjective morphism

τ : P̃ → P such that p̃ = p ◦ τ : P̃ → X is a regular holomorphic surjection.

Next we extend the definition of pushforward of forms to subvarieties of a com-

plex space P with a projection map p : P → X satisfying the local triviality

condition of the preceding theorem. In general the pushforwards exist only as

currents. Suppose that Y ⊂ P is an irreducible subvariety of dimension ν of P

and assume that p|Y : Y → X is surjective. Let Σ ⊂ Y be the set of singu-

lar points of Y ; so the set S1 = {z ∈ X | (p|Y )−1(z) ⊂ Σ} is a subvariety of
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codimension at least one in X. Note that

p|Y \Σ : Y \Σ → X \S1

is surjective, hence generically regular; that is, there exists a subvariety S2 ⊂ X

of codimension at least 1 such that

p|Y \(Σ∪(p|Y )−1(S2))
: Y1 = Y \ (Σ∪ (p|Y )−1(S2)) → X1 = X \ (S1 ∪S2)

is a regular surjection. Let ω be a smooth (r, s)-form on Y , r, s ≥ N −n =

generic fiber dimension of p|Y1
, which is integrable along the fibers of p|Y1

. Then

(p|Y1
)∗ω is a (p−N +n, q−N +n)-form on X1. Meanwhile, the pushforward

(p|Y )∗ω exists as a current on X, that is,

(p|Y )∗ω((p|Y )∗φ)
def
= ω(φ) =

∫

Y

(p|Y )∗φ∧ω (5.6)

for any (N−r,N−s)-form φ with compact support on X. Clearly, (p|Y )∗ω|X1
=

(p|Y )∗ω. Note that as a current the pushforward commutes with exterior dif-

ferentiation, that is, d(p|Y )∗ω = p∗dω, ∂(p|Y )∗ω = (p|Y )∗∂ω and ∂(p|Y )∗ω =

(p|Y )∗∂ω. Also, by definition, the pushforward preserves nonnegativity.

The Riemann–Roch formulas for jet differentials follow from those of the

bundles
⊙

i1
T ∗X ⊗ · · ·⊗

⊙
ik
T ∗X, given below (see [Stoll and Wong 2002] for

details):

Theorem 5.12. Let X be a smooth compact complex surface. Set I = (i1, . . . , ik)

and SI =
⊙

i1
T

∗
X⊗· · ·⊗

⊙
ik
T

∗
X, where each ij is a nonnegative integer . Then

χ(X;SI) = 1

12
µk(2s2

1;k
− 2s1;k − s2;k +1)c2

1
(T ∗

X)

−
1

12
µk(2s2

1;k
+4s1;k − 4s2;k − 1)c2(T

∗
X),

where sj;k, for 1 ≤ j ≤ k, is the degree-j symmetric function in i1, . . . , ik and

µk =
∑

k

j=0
sj;k is as in (3.6).

Given an exact sequence of coherent sheaves 0 → E1 → E2 → E3 → 0 the

ranks, the first Chern classes, the Chern characters, the indices and the Euler

characteristics are additive in the sense that rkE2 = rkE1 +rkE3, c1(E2) =

c1(E1)+ c1(E3), ι(E2) = ι(E1)+ ι(E3), ch(E2) = ch(E1)+ ch(E3) and χ(X;E2)

= χ(X;E1)+χ(X;E3). The Euler characteristic of J k!

k
X is given thus:

Theorem 5.13. Let X be a nonsingular surface. We have, for m� k,

χ(J k!m

k
X) = 1

2
ι(J k!m

k
X)+O(m2k) = 1

2
(k!)2k+1(αkc

2

1
−βkc2)m

2k+1 +O(m2k),

where αk and βk are constants given in Theorem 3.9.
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Example 5.14. We record below explicit formulas for the sheaves that occur in

the preceding computations:

S ch(S) χ(S)

T
∗

X 2+ c1 + 1
2
(c2

1 − 2c2)
1
6
(c2

1 − 5c2)
J2

T
∗

X 3+ 3c1 + 1
2
(5c

2
1 − 8c2)

1
4
(5c

2
1 − 15c2)

J3
T

∗

X 4+ 6c1 + 7c
2
1 − 10c2

1
3
(13c

2
1 − 29c2)

J4
T

∗

X 5+ 10c1 + 15c
2
1 − 20c2

1
12

(125c
2
1 − 235c2)

J5
T

∗

X 6+ 15c1 + 1
2
(55c

2
1 − 70c2)

1
2
(41c

2
1 − 84c2)

J6
T

∗

X 7+ 21c1 + 1
2
(91c

2
1 − 112c2)

1
12

(427c
2
1 − 665c2)

J7
T

∗

X 7+ 21c1 + 1
2
(91c

2
1 − 112c2)

1
3
(170c

2
1 − 250c2)

T
∗

X ⊗T
∗

X 4+ 4c1 + 3c
2
1 − 4c2

1
3
(4c

2
1 − 11c2)

(
J2

T
∗

X)⊗T
∗

X 6+ 9c1 + 1
2
(19c

2
1 − 22c2)

1
2
(11c

2
1 − 21c2)

(
J3

T
∗

X)⊗T
∗

X 8+ 16c1 + 22c
2
1 − 24c2

1
3
(44c

2
1 − 70c2)

(
J2

T
∗

X)⊗ (
J2

T
∗

X) 9+ 18c1 + 24c
2
1 − 24c2

1
4
(63c

2
1 − 93c2)

(
J4

T
∗

X)⊗T
∗

X 10+ 25c1 + 1
2
(85c

2
1 − 90c2)

1
6
(185c

2
1 − 265c2)

(
J3

T
∗

X)⊗ (
J2

T
∗

X) 12+ 30c1 + 49c
2
1 − 46c2 35c

2
1 − 45c2

(
J5

T
∗

X)⊗T
∗

X 12+ 36c1 + 73c
2
1 − 76c2 56c

2
1 − 75c2

J 2
2 X 5+ 4c1 + 3c

2
1 − 5c2

1
12

(17c
2
1 − 55c2)

J 3
2 X 8+ 10c1 + 10c

2
1 − 14c2

1
4
(23c

2
1 − 53c2)

J 4
2 X 14+ 22c1 + 27c

2
1 − 35c2

1
6
(103c

2
1 − 207c2)

J 5
2 X 20+ 40c1 + 59c

2
1 − 70c2

1
3
(122c

2
1 − 205c2)

J 6
2 X 30+ 70c1 + 119c

2
1 − 135c2

1
2
(173c

2
1 − 265c2)

J 7
2 X 40+ 110c1 + 214c

2
1 − 200c2

1
3
(487c

2
1 − 590c2)

Although the space P(Jk
X) is not smooth, the following Riemann–Roch Theo-

rem is still valid, by Theorems 5.7 and 5.13:

Theorem 5.15. Let X be a nonsingular surface and p : P(Jk
X) → X the k-jet

bundle. Then

χ(Lm

P(JkX)
) = ch(Lm) . td(P(Jk

X))[P(Jk
X)]

= ch(Lm) . td(Tp) . p
∗td(X)[P(Jk

X)]

= p∗

(
ch(Lm) . td(Tp)

)
.td(X)[X],

where Tp is the relative tangent sheaf of the projection p : P(JkX) → X, that

is, the restriction of Tp to each fiber of p is the tangent sheaf of the weighted

projective space P(Q).
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On P(JkX) we have

ch(Lm) =

2k+1∑

i=0

c
i

1
(Lm)

i!
=

2k+1∑

i=0

c
i

1
(L)

i!
m

i

which implies that

χ(Lm) =
c
2k+1

1
(L)

(2k+1)!
m

2k+1 +O(m2k).

Theorems 5.13 and 5.15 imply:

Corollary 5.16. Let X be a nonsingular surface and p : P(Jk
X) → X the

k-jet bundle. Then

p∗

(

c
2k+1

1
(L)

(2k+1)!

)

=
1

2
ι(JkX) =

1

2
(αkc

2

1
−βkc2)

where αk and βk are constants given in Theorem 3.9.

6. The Lemma of Logarithmic Derivatives and the Schwarz

Lemma

Summary. In this section we use Nevanlinna Theory to show (Corollary 6.2)

that if ω is a holomorphic k-jet differential of weight m vanishing on an effec-

tive divisor of a projective manifold X then f ∗ω ≡ 0 for any holomorphic map

f : C → X. (For our application in Section 7 it is enough to assume that the divi-

sor is a hyperplane section.) This implies (see Theorem 6.4) that if f : C → X is

an algebraically nondegenerate holomorphic map then the irreducible component

of the base locus containing [jk
f ] is of codimension at most (n−1)k; equivalently

the dimension is at least n+k−1, n = dimX. This result is crucial in the proof

of our main result in Section 7. We must point out that the method of this section

works only for the parametrized jet bundles but not the full jet bundles. (Other-

wise we could have avoided the complicated computations of the Chern numbers

of the parametrized jet bundles; computing the Chern numbers of the full jet

bundles, as honest vector bundles, is much simpler !) The idea of the proof is

relatively standard from the point of view of Nevanlinna Theory . The main step

is to construct , using a standard algebraic geometric argument , a Finsler metric

of logarithmic type, reducing the problem to a situation in which the Lemma of

Logarithmic Derivatives is applicable. If f ∗
ω 6≡ 0 this lemma implies that the

integral of log |f∗
ω| is small . On the other hand , the first Crofton formula in

Nevanlinna Theory asserts that the integral of log |f ∗ω| (as the counting function

of the zeros of f∗
ω by the Poincaré–Lelong formula ) is not small . This contra-

diction establishes Theorem 6.1 and Corollary 6.2. Theorem 6.4 and Corollary

6.5 then follow from the Schwarz Lemma via a reparametrization argument often

used in Nevanlinna Theory . The main point is that a reparametrization does
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not change, as a set , the (algebraic closure of the) image of the map f but does

change the image of f∗
ω if ω is a k-jet differential and k ≥ 2.

The classical Schwarz Lemma in one complex variable asserts that a holomorphic

map f : C → X is constant for a compact Riemann surface X of genus ≥ 2; that

is, there are at least 2 independent regular 1-forms on X. Further, there is a

noncompact version; namely, let X be a compact Riemann surface and let D be a

finite number of points in X. Then a holomorphic map f : C → X\D is constant

if the logarithmic genus is at least 2, that is, there are at least 2 independent

1-forms regular on X \D and with no worse than logarithmic singularity at each

of the points in D. There are of course many proofs of this classical result, one

of which is to find a nontrivial holomorphic 1-form (or, logarithmic 1-form) on

X such that f∗
ω ≡ 0 for any entire holomorphic map f : C → X. This is

not so difficult to do because g ≥ 2 implies that T ∗
X is ample (and a priori,

spanned). The main difficulty of proving the preceding comes from the fact that

a big bundle is not necessary spanned. A coherent sheaf S is said to be spanned

(by global regular sections) if, for every v ∈ Sx there is a global regular section

σ ∈ H0(S) such that σ(x) = v. However, it is easily seen that a coherent sheaf

S is spanned by global rational sections. For example, the complex projective

space has no global regular 1-form. Hence it cannot span any of the fibers of

T
∗Pn. However take any point x ∈ Pn, assuming without loss of generality that

x = [x0, . . . , xn] with x0 6= 0, then T
∗
x

P
n is spanned by dti, i = 1, . . . , n, where

ti = xi/x0. Now dti is a global rational one-form since ti is a global rational

function; in fact

dti =
x0dxi −xidx0

x2

0

has a pole of order 2 along the “hyperplane at infinity”, [x0=0]. This shows that

T
∗Pn is spanned by global rational one-forms. In fact we can do better, namely,

we may replace dti by d log ti

d log ti =
dti

ti
=
dxi

xi

−

dx0

x0

.

A simple argument shows that there is a finite set of logarithmic one-forms

{dLi/Li} where each Li is a rational function which span T
∗Pn at every point.

The mild singularity can be dealt with using the classical Lemma of Logarith-

mic Derivatives in Nevanlinna Theory and a weak form of the analytic Bézout

Theorem known as Crofton’s Formula.

It is not hard to see that the preceding procedure can be extended to deal with

jet differentials. The details are given in the next theorem. The most convenient

way to get to the Schwarz Lemma is via Nevanlinna Theory. First we recall some

standard terminology. The characteristic function of a map f : C → X is

Tf (r) =

∫
r

0

1

t

∫

∆t

f
∗
c1(H),
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where H is a hyperplane section in X and the characteristic function of a non-

trivial holomorphic function F : C → C is

TF (r) =

∫
2π

0

log+
|F (re

√
−1θ)|

dθ

2π
.

Note that ω(jk
f) is a holomorphic function if f is a holomorphic map and ω is

a k-jet differential of weight m.

Theorem 6.1 (Lemma of Logarithmic Derivatives). Let X be a projec-

tive variety and let (i) D be an effective divisor with simple normal crossings,

or (ii) D be the trivial divisor in X (that is, the support of D is empty or

equivalently , the line bundle associated to D is trivial). Let f : C → X be an al-

gebraically nondegenerate holomorphic map and ω ∈ H
0(X,J m

k
X(logD)) (resp.

H
0(X,J m

k
X) in case (ii)) a jet differential such that ω ◦ j

k
f is not identically

zero. Then

Tω◦jkf (r) =

∫
2π

0

log+
∣
∣ω(jk

f(re
√
−1θ))

∣
∣
dθ

2π
≤ O(log Tf (r))+O(log r).

Proof. We claim that there exist a finite number of rational functions t1, . . . , tq
on X such that

(†) the logarithmic jet differentials {(d(j)
ti/ti)

m/j
| 1 ≤ i ≤ q, 1 ≤ j ≤ k}

span the fibers of J m

k
X(logD) (resp.J m

k
X) over every point of X.

Note that rational jet differentials span the fibers of J m

k
X(logD) (resp.J m

k
X);

the claim here is that this can be achieved by those of logarithmic type. Without

loss of generality we may assume that D is ample; otherwise we may replace D

by D+D′ so that D+D′ is ample. (This is so because a section of J m

k
X(logD)

is a priori a section of J m

k
X(log(D+D

′)).) Observe that if s is a function that

is holomorphic on a neighborhood U such that [s=0] = D∩U then [sτ = 0] =

τD∩U for any rational number τ . Thus δ(j)(log sτ ) = τδ
(j)(log s) is still a jet

differential with logarithmic singularity along D∩U so the multiplicity causes

no problem. This implies that we may assume without loss of generality that D

is very ample (after perhaps replacing D with τD for some τ for which τD is

very ample).

Let u ∈ H
0(X, [D]) be a section such that D = [u = 0]. At a point x ∈ D

choose a section v1 ∈ H
0(X, [D]) so that E1 = [v1 =0] is smooth, D+E1 is of

simple normal crossings and v1 is nonvanishing at x. (This is possible because the

line bundle [D] is very ample.) The rational function t1 = u1/v1 is regular on the

affine open neighborhoodX\E1 of x and (X\E1)∩[t1=0] = (X\E1)∩D. Choose

rational functions t2 = u2/v2, . . . , tn = un/vn where ui and vi are sections of

a very ample bundle L so that t2, . . . , tn are regular at x, the divisors Di =

[ui=0], Ei = [vi=0] are smooth and the divisor D+D2+ · · ·+Dn+E1+ · · ·+En

is of simple normal crossings. Further, since the bundles involved are very ample

the sections can be chosen so that dt1∧· · ·∧dtn is nonvanishing at x; the complete
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system of sections provides an embedding. Hence at each point there are n+1

sections with the property that n of the quotients of these n+1 sections form a

local coordinate system on some open neighborhood Ux of x. This implies that

(†) is satisfied over Ux. SinceD is compact it is covered by a finite number of such

open neighborhoods, say U1, . . . , Up, and a finite number of rational functions

(constructed as above for each Ui) on X so that (†) is satisfied on
⋃

1≤i≤p
Ui.

Moreover, there exist relatively compact open subsets U ′
i

of Ui (1 ≤ i ≤ p) such

that
⋃

1≤i≤p
U

′
i

still covers D.

Next we consider a point x in the compact set X \

⋂

1≤i≤p
U

′
i
. Repeating the

procedure as above we may find rational functions s1 = a1/b1, . . . , sn = an/bn

where ai and bi are sections of some very ample line bundle so that s1, . . . , sn form

a holomorphic local coordinate system on some open neighborhood Vx of x. Thus

(†) is satisfied on Vx by the rational functions s1, . . . , sn. Note that we must also

choose these sections so that the divisor H = [s1 . . . sn =0] together with those

divisors (finite in number), which have been already constructed above, is still a

divisor with simple normal crossings (this is possible by the very ampleness of the

line bundle L.) Since X \

⋂

1≤i≤p
U

′
i

is compact, it is covered by a finite number

of such coordinate neighborhoods. The coordinates are rational functions and

finite in number and by construction it is clear that the condition (†) is satisfied

on X \

⋂

1≤i≤p
U

′
i
. Since

⋃

1≤i≤p
Ui together with X \

⋂

1≤i≤p
U

′
i

covers X, the

condition (†) is satisfied on X. If D is the trivial divisor, then it is enough to

use only the second part of the construction above and again (†) is verified with

J
m

k
X(logD) = J

m

k
X. To obtain the estimate of the theorem observe that the

function ρ : Jk
X(− logD) → [0,∞] defined by

ρ(ξ) =

q
∑

i=1

k∑

j=1

∣
∣(d(j)

ti/ti)
m/j(ξ)

∣
∣
2

, ξ ∈ J
k
X(− logD), (6.1)

{ti} being the family of rational functions satisfying condition (†), is continuous

in the extended sense; it is continuous in the usual sense outside the fibers

over the divisor E (the sum of the divisors associated to the rational func-

tions {ti}; note that E contains D). Over the fiber of each point x ∈ X −E,
∣
∣(d(j)ti/ti)

m/j(ξ)
∣
∣
2

is finite for ξ ∈ JkX(− logD)x, thus ρ is not identically infi-

nite. Moreover, since
{
(d(j)

ti/ti)
m/j

| 1 ≤ i ≤ q, 1 ≤ j ≤ k
}

span the fiber of J m

k
X(logD) over every point of X, ρ is strictly positive (pos-

sibly +∞) outside the zero section of JkX(− logD). The quotient

|ω|
2
/ρ : Jk

X(− logD) → [0,∞]

does not take on the extended value ∞ when restricted to J kX(− logD)\ {zero

section} because, as we have just observed, ρ is nonvanishing (although it does

blow up along the fibers over E so that the reciprocal 1/ρ is zero there) and the
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singularity of |ω| is no worse than that of ρ since the singularity of ω occurs only

along D (which is contained in E) and is of log type. Thus the restriction to

JkX(− logD) \ {zero section},

|ω|
2
/ρ : Jk

X(− logD) \ {zero section} → [0,∞),

is a continuous nonnegative function. Moreover, |ω| and ρ have the same homo-

geneity,

|ω(λ.ξ)|2 = |λ|
2m

|ω(λ.ξ)|2 and ρ(λ.ξ) = |λ|
2m
ρ(ξ),

for all λ ∈ C
∗ and ξ ∈ JkX(− logD); therefore |ω|2/ρ descends to a well-defined

function on P(Ek,D) = (Jk
X(− logD) \ {zero section})/C

∗, that is,

|ω|
2
/ρ : P(Ek,D) → [0,∞)

is a well-defined continuous function and so, by compactness, there exists a

constant c with the property that |ω|
2
≤ cρ. This implies that

Tω◦jkf (r) =

∫
2π

0

log+
∣
∣ω(jk

f(re
√
−1θ))

∣
∣
dθ

2π

≤

∫
2π

0

log+
∣
∣ρ(jk

f(re
√
−1θ))

∣
∣
dθ

2π
+O(1).

Since ti is a rational function on X, the function

(d(j)
ti/ti)

m/j(jk
f) =

(
(ti◦f)(j)/ti◦f

)m/j

(m is divisible by k!) is meromorphic on C and so, by the definition of ρ,

log+
|ρ(jk

f)| ≤ O
(
max1≤i≤q, 1≤j≤k log+

|(ti◦f)(j)/ti◦f |
)
+O(1).

Now by the classical lemma of logarithmic derivatives for meromorphic functions,
∫

2π

0

log+
∣
∣(ti◦f)(j)/ti◦f

∣
∣
dθ

2π
·≤· O(log r)+O(log Tti◦f (r)),

where ·≤· indicates that the estimate holds outside a set of finite Lebesgue mea-

sure in R+. Since ti is a rational function,

log Tti◦f (r) ≤ O(log Tf (r))+O(log r)

and we arrive at the estimate
∫

2π

0

log+
∣
∣ρ(jk

f(re
√
−1θ))

∣
∣
θ

2π
≤ O

(∫
2π

0

log+
|(ti◦f)(j)/ti◦f |

dθ

2π

)

+O(1)

·≤· O(log Tf (r))+O(log r).

This implies that Tω◦jkf (r) ·≤· O(log Tf (r))+O(log r), as claimed. ˜

We obtain as a consequence the following Schwarz type lemma for logarithmic

jet differentials.
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Corollary 6.2. Let X be a projective variety and D be an effective divisor

(possibly the trivial divisor) with simple normal crossings. Let f : C → X \D be

a holomorphic map. Then

ω(jk
f) ≡ 0 for all ω ∈ H

0(X,J m

k
X(logD)⊗ [−H]),

where H is a generic hyperplane section (and hence any hyperplane section).

Proof. If f is constant the corollary holds trivially, so we may assume that f

is nonconstant. Now suppose that ω ◦ jkf 6≡ 0. Since f is nonconstant, we may

assume without loss of generality that log r = o(Tf (r)) (after perhaps replacing

f with f ◦φ, where φ is a transcendental function on C). By Theorem 6.1, we

have
∫

2π

0

log+
|ω ◦ j

k
f |

dθ

2π
= Tω◦jkf (r) ·≤· O

(
log(rTf (r))

)
.

On the other hand, since ω vanishes on H and H is generic, we obtain via

Jensen’s Formula ,

Tf (r) ≤ Nf (H; r)+O
(
log(rTf (r))

)

=

∫
2π

0

log |ω ◦ j
k
f |

dθ

2π
+O(log

(
rTf (r))

)
,

which, together with the preceding estimate, implies that

Tf (r) ≤ O
(
log(rTf (r))

)
.

This is impossible; hence we must have ω ◦ jkf ≡ 0. If H1 = [s1 =0] is any

hyperplane section then it is linearly equivalent to a generic hyperplane section

H = [s=0]. If ω vanishes alongH ′ then (s/s1)ω vanishes alongH. The preceding

discussion implies that (s/s1)ω(jk
f) ≡ 0. Further, this implies that ω(jk

f) ≡ 0

as we may choose a generic section H so that the image of f is not entirely

contained in H. ˜

Interpreting this corollary via Grothendieck’s isomorphism we may restate the

result in terms of sections of Lm

P(JkX)
|Y ⊗ p|

∗
Y

[−D] on the projectivized bundle:

Corollary 6.3. Let Y ⊂ P(Jk
X) be a subvariety and suppose that there exists

a nontrivial section

σ ∈ H
0
(
Y, L

m

P(JkX)
|Y ⊗ p|

∗
Y

[−D]
)
,

where D is an ample divisor in X and p : P(Jk
X) → X is the projection map. If

the image of the lifting [jk
f ] : C → P(Jk

X) of a holomorphic curve f : C → X

is contained in Y , then σ([jk
f ]) ≡ 0.

Theorem 6.1 and Corollaries 6.2 and 6.3 tell us about the base locus Bm

k
(D) of

the line sheaves L
m

k
⊗ p∗[−D], where we write for simplicity L

m

k
= L

m

P(JkX)
and
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D is an ample divisor in X; by that we mean the (geometric) intersection of all

possible sections of powers of Lk:

B
m

k
(D) =

⋂

σ∈H0(P(JkX),Lm

k
)

[σ=0]. (6.2)

Indeed, Corollary 6.3 implies that the image of the (projectivized k-jet) [jk
f ] :

C → P(Jk
X) of a nonconstant holomorphic map f : C → X must be contained

in Bm

k
(D) for all m ∈ N and D ∈ A = the cone of all ample divisors; that is, the

image [jk
f ](C) is contained in

Bk(Lk) =
⋂

m∈N

⋂

D∈A

B
m

k
(D), (6.3)

which is a subvariety of P(Jk
X). Moreover, the image [jk

f ](C), being a con-

nected set, must be contained in an irreducible component of Bk(L). If f is alge-

braically nondegenerate then dim f(C) = dimX = n. Since p∗[jkf(C)] = f(C)

and [jkf(C)] ⊂ Bk(L) (where p : P(Jk
X) → X is the projection) we conclude

that the dimension of the base locus is at least n = dimX if f is algebraically

nondegenerate. We shall show that the dimension is actually higher, for k ≥ 2,

by considering a reparametrization of the curve f .

Define

A = {φ | φ : C → C is a nonconstant holomorphic map},

Aζ0
= {φ ∈ A | φ(ζ0) = ζ0, φ

′(ζ0) 6= 0},

Aζ0,ζ1
= {φ ∈ A | φ(ζ0) = ζ1, φ

′(ζ0) 6= 0}.

By a reparametrization of f we mean the composite map f ◦φ : C → X, where

φ ∈ A. It is clear that, as a set, the algebraic closure of the image of f is invariant

by reparametrization. Moreover, since a reparametrization is again a curve in X,

the Schwarz Lemma implies that its k-jet is contained in the base locus Bk(L).

As remarked earlier, if f is algebraically nondegenerate the dimension of the base

locus is at least n.

The first order jet of a reparametrization is given by

j
1(f ◦φ) = (f(ζ), f ′(φ)φ′).

Thus, if φ ∈ A0 (that is, φ(0) = 0), then

j
1(f ◦φ)(0) =

(
f(φ(0)), f ′(φ(0))φ′(0)

)
=
(
f(0), f ′(0)φ′(0)

)
,

which implies that the projectivization satisfies

[j1(f ◦φ)(0)] = [f ′(0)φ′(0)] = [f ′(0)] = [j1f(0)];

that is, the fiber Pf(ζ0)
(J1

X) is invariant by φ ∈ Aζ0
.
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Assume from here on that the map f is algebraically nondegenerate. For k ≥ 2

we have

j
2(f(φ)) =

(
f(φ), f ′(φ)φ′

, f
′(φ)φ′′ + f

′′(φ)(φ′)2
)
.

Moreover, φ ∈ A0 implies

j
2(f ◦φ)(0) =

(
(f ◦φ)(0), (f ◦φ)′(0), (f ◦φ)′′(0)

)

=
(
f(0), sφf

′(0), tφf
′(0)+ s

2

φ
f
′′(0)

)
,

where sφ = φ
′(0) and tφ = φ

′′(0). We are free to prescribe the complex numbers

sφ and tφ. The bundle P(J2
X) is algebraic and locally trivial, hence locally

algebraically trivial (as a C
∗-bundle). In particular, we have a C

∗-isomorphism

J
2

f(0)
X ∼= C

n
⊕C

n, where λ(z,w) = (λz, λ2w) for (z,w) ∈ C
n
⊕C

n. The

Jacobian matrix of the map

(sφ, tφ) 7→ (sφf
′(0), tφf

′(0)+ s
2

φ
f
′′(0))

is given by






∂(f ◦φ)′(0)

∂sφ

∂(f ◦φ)′′(0)

∂sφ

∂(f ◦φ)′(0)

∂tφ

∂(f ◦φ)′′(0)

∂tφ







=

(
f
′(0) 2sφf

′′(0)

0 f
′(0)

)

.

It is clear that the rank is 2 if f ′(0) 6= 0 (which we may assume without loss of

generality because f ′
6≡ 0 so f ′(ζ) 6= 0 for generic ζ). Thus, as φ varies through

the space A0, j
2(f ◦φ)(0) sweeps out a complex 2-dimensional set in the fiber

J2

f(0)
X over the point f(0) ∈ X, and the projectivization is a set of dimension

at least 1 in P(J2

f(0)
X). If f is algebraically nondegenerate, the algebraic closure

of [j2f(C)] is of dimension n = dimX, as remarked earlier. The preceding

argument shows that
⋃

φ∈A

[j2(f ◦φ)(C)]

is of dimension at least n+1. By Schwarz’s Lemma the set
⋃

φ∈A [j2(f ◦φ)(C)] is

contained in the base locus B2(L) thus dimB2(L) ≥ n+1. Since dim P(J2
X) =

n(2+1)− 1, the codimension of B2(L) in P(J2
X) is at most 3n− 1− (n+1) =

2(n− 1).

For k = 3 we get

j
3(f(φ)) =
(
f(φ), f ′(φ)φ′

, f
′(φ)φ′′ + f

′′(φ)(φ′)2, f ′(φ)φ′′′ +3f ′′(φ)φ′
φ
′′ + f

′′′(φ)(φ′)3
)
.

Hence, for φ ∈ A0,

j
3(f◦φ)(0) =

(
f(0), sφf

′(0), tφf
′(0)+s2

φ
f
′′(0), uφf

′(0)+3sφtφf
′′(0)+s3

φ
f
′′′(0)

)
,

where sφ = φ
′(0), tφ = φ

′′(0), and uφ = φ
′′′(0). The Jacobian matrix of the map

(sφ, tφ, uφ) 7→
(
sφf

′(0), tφf
′(0)+ s

2

φ
f
′′(0), uφf

′(0)+ 3sφtφf
′′(0)+ s

3

φ
f
′′′(0)

)
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is










∂(f ◦φ)′(0)

∂sφ

∂(f ◦φ)′′(0)

∂sφ

∂(f ◦φ)′′′(0)

∂sφ

∂(f ◦φ)′(0)

∂tφ

∂(f ◦φ)′′(0)

∂tφ

∂(f ◦φ)′′′(0)

∂tφ

∂(f ◦φ)′(0)

∂uφ

∂(f ◦φ)′′(0)

∂uφ

∂(f ◦φ)′′′(0)

∂uφ











=






f
′(0) 2sφf

′′(0) 3tφf
′′(0)+ 3s2

φ
f
′′′(0)

0 f
′(0) 3tφf

′′(0)

0 0 f
′(0)




 .

It is clear that the rank is 3 if f ′(0) 6= 0 (which we may assume without loss of

generality). Thus, as φ varies through the space A0, j
3(f ◦φ)(0) sweeps out a

complex 3-dimensional set in the fiber J 3

f(0)
X over the point f(0) ∈ X and the

projectivization is a set of dimension at least 2 in P(J 3

f(0)
X). If f is algebraically

nondegenerate then the set
⋃

φ∈A [j3(f ◦φ)(C)] is of dimension at least n+2 in

P(J3
X). By Schwarz’s Lemma this same set is contained in the base locus B3(L)

thus dimB3(L) ≥ n+2. Since dim P(J3
X) = n(3+1)− 1, the codimension of

B3(L) in P(J3
X) is at most 4n− 1− (n+2) = 3(n− 1).

The case for general k is argued in a similar fashion. Define polynomials Pij ,

1 ≤ j ≤ i, by setting P1,1 = φ′, P2,1 = φ′′, P2,2 = (φ′)2 and, for i ≥ 3,

Pi,1 = φ
(i)
,

Pi,2 = Pi−1,1 +P
′
i−1,2

, . . .

Pi−1,i−1 = Pi−1,i−2 +P
′
i−1,i−1

,

Pi,i = (φ′)i
.

In particular, Pi,1 is the only polynomial involving φ
(i); each Pi,j , for j ≥ 2,

involves only derivatives of φ of order less than i. We get, by induction:

(f ◦φ)(i) =
i∑

j=1

f
(j)(φ)Pi,j = f

′(φ)φ(i) +
i∑

j=2

f
(j)(φ)Pi,j .

Thus the k-th jet jk(f ◦φ) is given by

(f ′(φ)φ′
, · · · , f

′(φ)φ(i) +

i∑

j=2

f
(j)(φ)Pi,j , · · · , f

(k)(φ)φ(k) +

k∑

j=2

f
(j)(φ)Pk,j),

and we have k parameters sφ,i = φ
(i)(0), i = 1, . . . , k. The Jacobian matrix of

the map (with φ(0) = 0)

(sφ,1, . . . , sφ,k) 7→ (sφ,1f
′(0), sφ,2f

′(0)+s2
φ,1
f
′′(0), . . . , sφ,kf

′(0)+

k∑

j=2

f
(j)(0)Pk,j)
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is given by the k×nk matrix











f ′(0) 2sφf
′′(0) 3tφf

′′(0)+ 3s2
φ
f ′′′(0) . . . . .

0 f
′(0) 3tφf

′′(0) . . . . .

0 0 f
′(0) . . . . .

. . 0 . . . . .

. . . . . . f
′(0) .

0 0 . . . . 0 f
′(0)











.

It is clear that the rank is k if f ′(0) 6= 0 (which we may assume without loss

of generality). Thus, as φ varies through the space A0, j
k(f ◦φ)(0) sweeps out

a complex k-dimensional set in the fiber Jk

f(0)
X over the point f(0) ∈ X, and

the projectivization is a set of dimension at least k− 1 in P(J k

f(0)
X). If f is

algebraically nondegenerate then the set
⋃

φ∈A [jk(f ◦φ)(C)] is of dimension at

least n+k−1 in P(JkX). By Schwarz’s Lemma this same set is contained in the

base locus Bk(L) thus dimBk(L) ≥ n+k−1. Since dim P(Jk
X) = n(k+1)−1,

the codimension of Bk(L) in P(JkX) is at most (k+1)n−1−(n+k−1) = k(n−1).

This completes the proof of the following Theorem:

Theorem 6.4. Let X be a connected compact manifold of dimension n and

let Lk be the dual of the tautological line bundle over P(JkX), k ≥ 2. Suppose

that f : C → X is an algebraically nondegenerate holomorphic map. Then the

irreducible component of the base locus containing [jkf ] is of codimension at

most (n− 1)k; equivalently the dimension is at least n+ k− 1.

Corollary 6.5. Let X be a connected projective manifold of complex dimension

n and let Lk be the dual of the tautological line bundle over P(JkX). If the

dimension of the base locus Bk(Lk) ≤ n+ k− 2 then every holomorphic map

f : C → X is algebraically degenerate.

7. Surfaces of General Type

Summary. In this section we shall show that every holomorphic map f : C → X

is algebraically degenerate, where X is a minimal surface of general type such

that pg(X) > 0 and PicX ∼= Z. These conditions, together with the explicit

calculations in Section 3, imply that JkX is big (equivalently , the line bundle Lk

over P(Jk
X) is big) for k � 0. The Schwarz Lemma of the preceding section

implies that the image of the lifting [jk
f ] : C → P(Jk

X) is contained in the

base locus Bk(Lk) (see (6.3)). (Note that the dimension of P(Jk
X) is 2k+1.)

Moreover , if f is algebraically nondegenerate, dimBk(Lk) ≥ k+1.

On the other hand , we show (Theorem 7.20) that the base locus is at most

of dimension k. This contradiction establishes the theorem. The result in The-

orem 7.20 is obtained by a cutting procedure (each cut lowers the dimension

of the base locus by one) pioneered by Lu and Yau and extended by Dethloff–

Schumacher–Wong (in which the condition PicX ∼= Z was first introduced).
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The starting point in the process is the explicit formulas obtained by Stoll

and Wong in Theorem 3.9 and Corollary 3.10, namely , the index ι(J m

k
X) =

χ(Lm

k
)+O(m2k) = (αkc

2

1
−βkc2)m

2k+1 +O(m2k) (here ci = ci(X)) is very big ;

indeed we have, limk→∞ αk/βk = ∞. Consequently if c2
1
> 0, which is the case

if X is minimal , then χ(Lm

k
) = cm

2k+1
c
2

1
+O(m2k) for some positive constant

c (as, eventually , αk/βk > c2/c
2

1
). If the base locus Y1 were of codimension one

(which we show that there is no loss of generality in assuming that it is irre-

ducible) then for k � 0, χ(Lk|Y1
) is still big and Schwarz Lemma implies that

the base locus must be of codimension 2. The computation is based on the inter-

section formulas obtained in Lemma 7.15 (requiring the assumption PicX ∼= Z)

and Theorem 7.16. The cutting procedure can be repeated and , as to be expected ,

each time with a loss which can be explicitly estimated using the intersection

formulas. These losses are compensated by taking a larger k. In the proof of

Theorem 7.20 we show that , after k cuts, the Euler characteristic is bounded

below by

µk

(

δkc
2

1
−

(

k∑

i=1

1

i2

)

c2

)

,

where µk is a positive integer and

δk =

(

k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

−

1

4

(

k∑

i=1

1

i

)2

+
(k+1)

4(k!)2

(

k∑

i=1

1

i

)2

.

It remains to show that
δk

∑
k

i=1

1

i2

>
c2

c2
1

for k sufficiently large. A little bit of combinatorics shows that

lim
k→∞

δk
∑

k

i=1

1

i2

= ∞

(compare the proof of Corollary 3.10). This completes the proof of our main

result . Indeed , for a hypersurface of degree d ≥ 5 in P3, our colleague B . Hu

checked , using Maple, that k ≥ 2283 is sufficient . This, together with a result of

Xu implies that a generic hypersurface of degree d ≥ 5 in P3 is hyperbolic.

We recall first some well-known results on manifolds of general type. The fol-

lowing result can be found in [Barth et al. 1984]:

Theorem 7.1. Let X be a minimal surface of general type. The following

Chern-number inequalities hold :

(i) c2
1
(T ∗

X)[X] > 0.

(ii) c2(T
∗
X)[X] > 0.

(iii) c2
1
(T ∗X)[X] ≤ 3c2(T

∗X)[X].

(iv) 5c2
1
(T ∗

X)[X]− c2(T
∗
X[X])+ 36 ≥ 0 if c2

1
(T ∗

X)[X] is even.

(v) 5c2
1
(T ∗X)[X]− c2(T

∗X)[X] + 30 ≥ 0 if c2
1
(T ∗X)[X] is odd.
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Let L0 be a nef line bundle on a variety X of complex dimension n. A coherent

sheaf E over X is said to be semistable (or semistable in the sense of Mumford–

Takemoto) with respect to L0 if c1(E) . cn−1

1
(L0) ≥ 0 and if, for any coherent

subsheaf S of E with 1 ≤ rkS < rkE, we have µS,L0
≤ µE,L0

, where

µS,L0

def
=

c1(S) . cn−1

1
(L0)

rk S

[X] and µE,L0

def
=

c1(E) . cn−1

1
(L0)

rk E
[X]. (7.1)

It is said to be stable if the inequality is strict, that is, µS,L0
< µE,L0

.

The number µS,L0
shall be referred to as the normalized degree relative to L0.

We shall write µS for µS,L0
if L0 is the canonical bundle. If X is of general

type then (see [Maruyama 1981] in the case of surfaces and [Tsuji 1987, 1988]

for general dimensions):

Theorem 7.2. Let X be a smooth variety of general type. Then the bundles
⊗

m
T

∗
X,
⊙

m
T

∗
X are semistable with respect to the canonical bundle KX .

Recall from Section 2 that for a vector bundle E of rank r,

rk
⊙

m
E =

(m+ r− 1)!

(r− 1)!m!
, c1(

⊙
m
E) =

(m+ r− 1)!

r! (m− 1)!
c1(E).

Thus, for surfaces of general type, we have

µ�mT∗X = 1

2
mc

2

1
(T ∗

X)[X]

with respect to the canonical bundle. More generally:

Theorem 7.3. Let X be a surface of general type. If D is a divisor in X

such that H0(X,SI ⊗ [−D]) 6= 0 where SI = (
⊙

i1
T

∗
X ⊗ · · ·⊗

⊙
ik
T

∗
X) and

I = (i1, . . . , ik) is a k-tuple of positive integers satisfying m = i1+2i2+ · · ·+kik,

then

µ[D] ≤ µSI
=

∑
k

j=1
ij

2
c
2

1
(T ∗

X)[X] ≤ 1

2
mc

2

1
(T ∗

X)[X],

where [D] is the line bundle associated to the divisor D.

The examples at the end of Section 2 show that the sheaves of k-jet differentials

are not semistable unless k = 1. However we do have (by Theorems 3.7 and 3.8):

Theorem 7.4. Let X be a surface of general type. Then

µJ m

k
X =

∑

I
c1(SI) c1(T

∗X)
∑

I
rkSI

=
∑

I

rkSI
∑

I
rkSI

µSI
≤

m

2
c
2

1
(T ∗

X),

and equality holds if and only if k = 1; moreover , asymptotically ,

µJ m

k
X =

(∑
k

i=1

1

i

2k
m+O(1)

)

c
2

1
(T ∗

X).
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A coherent sheaf E is said to be Euler semistable if for any coherent subsheaf S

of E with 1 ≤ rkS < rkE, we have

χ(S)

rkS
≤

χ(E)

rkE
(7.2)

It is said to be Euler stable if the inequality is strict.

There is a concept of semistability due to Gieseker–Maruyama (see [Okonek

et al. 1980]) for coherent sheaves on Pn in terms of the Euler characteristic that

differs from the concept introduced here.

Example 7.5. From the exact sequence

0 →

⊙
2
T

∗
X → J

2

2
X → T

∗
X → 0,

we get, via the table on page 163,

χ(J 2

2
X) = χ(T ∗

X)+χ(
⊙

2
T

∗
X) = 1

6
(c2

1
−5c2)+

1

4
(5c2

1
−15c2) = 1

12
(17c2

1
−55c2).

Theorem 6.1 yields c2
1
− 3c2 ≤ 0, which implies that

χ(T ∗
X) =

c2
1
− 5c2
6

< 0.

Thus χ(J 2

2
X) < χ(

⊙
2
T

∗
X), that is, J

2

2
X is not semistable in the sense of

(7.2).

Recall that the index of each of the sheaves SI and J
m

k
X of a surface X is of the

form ac
2

1
(T ∗

X)+bc2(T
∗
X). Thus the ratio γ(X) = γ(T ∗

X) = c2(T
∗
X)/c2

1
(T ∗

X)

is an important invariant. More generally, we define

γ(S) =
c2(S)

c2
1
(S)

, (7.3)

provided that c2
1
(S) 6= 0.

Let X be a smooth hypersurface in P3. Then

c1 = c1(TX) = −c1(T
∗
X) = d− 4,

c2 = c2(TX) = c2(T
∗
X) = d

2
− 4d+6.

Hence the ratio of c2
1
(T ∗

X) and c2(T
∗
X) is given by

γd(J1X) = γd(T
∗
X) =

c2(T
∗
X)

c2
1
(T ∗X)

=
d
2
− 4d+6

(d− 4)2
= 1+

4d− 10

(d− 4)2
, (7.4)

provided that d 6= 4. Note that γ∞(T ∗
X) = limd→∞ γd(T

∗
X) = 1. Table A on

the next page shows the first few values of γg = γd(J1X).

Recall from Theorem 5.12 that

χ(X;
⊙

m
T

∗
X) = 1

12
(m+1)

(
(2m2

−2m+1)c2
1
− (2m2+4m−1)c2

)

= 1

12
(m+1)

(
(2m2

−2m+1)(d−4)2− (2m2+4m−1)(d2
−4d+6)

)

= 1

3
(5−2d)3m3 +O(m2).
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d γd d γd d γd

5 11 12 51

32
∼ 1.5937 19 97

75
∼ 1.2934

6 9

2
= 4.5 13 14

27
∼ 1.5175 20 163

128
∼ 1.2735

7 3 14 73

50
= 1.46 21 363

289
∼ 1.2561

8 19

8
= 2.375 15 171

121
∼ 1.4132 22 67

54
∼ 1.2408

9 51

25
= 2.04 16 11

8
= 1.375 23 443

361
∼ 1.2244

10 11

6
= 1.83̄ 17 227

169
∼ 1.3432 24 243

200
= 1.215

11 83

49
∼ 1.6939 18 129

98
∼ 1.3164 25 59

49
∼ 1.2041

Table A. Values of γd(J1X) as a function of d.

It is clear that χ(X;
⊙

m
T

∗
X) < 0 for all m ≥ 1 if d ≥ 3. If d ≥ 5 it is well-

known that H0(X,
⊙

m
T

∗
X) = 0, whence the following nonvanishing theorem:

Theorem 7.6. Let X be a smooth hypersurface of degree d ≥ 5 in P3. Then

dimH
1(X,

⊙
m
T

∗
X) ≥ dimH

1(X,
⊙

m
T

∗
X)−dimH

2(X,
⊙

m
T

∗
X)

= 1

6
(m+1)

(
2(2d−5)m2

−(3d2
−16d+28)m−(d2

−6d+11)
)

= 1

3
(2d−5)3m3+O(m2)

for all m� 0.

Next we consider the case of 2-jets. We have, by Riemann–Roch:

χ(J m

2
X) =

1

2

(
ι(J m

2
X)− c1(J

m

2
X) · c1

)
+

1

12
(rk J

m

2
X)(c2

1
+ c2).

(Here c1 = c1(T
∗X), c2 = c2(T

∗X) and, using the formulas for c1(J
m

2
X),

rkJm

2
X and ι(J m

2
X) in Theorem 3.3 we get:

χ(J m

2
X) =

1

27325
(pmc

2

1
− qmc2)

with

pm =

{
21m5 +180m4 +410m3 +180m2 +49m+120, if m is odd,

21m5 +180m4 +420m3 +180m2
− 56m+480, if m is even;

qm =

{
15m5 +225m4 +1150m3 +2250m2 +1235m− 75, if m is odd,

15m5 +225m4 +1180m3 +2520m2 +1640m− 480, if m is even.

The index χ(J m

2
X) is positive if and only if pm/qm > c2/c

2

1
, and taking the limit

as m→ ∞ yields the inequality c2/c
2

1
≤

7

5
. For a smooth hypersurface of degree

d in P3 the ratio c2/c
2

1
= 1+

(
(4d−10)/(d−4)2

)
and we arrive at the inequality

4d− 10

(d− 4)2
≤

2

5
,
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which is equivalent to the inequality 0 ≤ d2
−18d+41 = (d−9)2−40. We deduce:

Theorem 7.7. Let X be a smooth hypersurface in P3. Then χ(J m

2
X) is big if

and only if d = degX ≥ 16.

We use the terminology that the Euler characteristic is big if and only if there

is a constant c > 0 such that

χ(J m

2
X) ≥ cm

5 +O(m4)

for all m � 0. In order to lower the degree in the preceding theorem we must

use jet differentials of higher order. We see from Table A on page 177 that the

ratio c2/c
2

1
of a hypersurface of degree d ≥ 5 in P3 is bounded above by 11. By

Theorem 3.7,

ι(J m

k
X) = (αkc

2

1
−βkc2)m

2k+1 +O(m2k)

thus the index is positive if and only if

αk

βk

>
c2

c2
1

.

In the table on page 148 we see that the ratio αk/βk crosses the threshold 11 as

k increases from 198 to 199. Putting this together with Theorem 5.13, we get:

Theorem 7.8. Let X be a generic smooth hypersurface of degree d ≥ 5 in P3.

For each k ≥ 199,

χ(J m

k
X) ≥ cm

5 +O(m4)

for all m� k.

For a minimal surface of general type, Theorem 7.1 implies that

1

3
≤ γ(X) =

c2(X)

c2
1
(X)

≤

{

5+36c−2

1
≤ 41 if c2

1
is even,

5+30c−2

1
≤ 34 if c2

1
is odd.

The ratio αk/βk was shown to tend to ∞ as k → ∞. Thus Theorem 7.8 extends

to any minimal surface of general type:

Theorem 7.9. Let X be a smooth minimal surface of general type. Then

χ(J m

k
X) ≥ cm

5 +O(m4) for all m� k � 0.

In [Green and Griffiths 1980] we find the following result:

Theorem 7.10. Let X be a smooth surface of general type. If i1+· · ·+ik is even

then a nontrivial section of the bundle
⊙

i1
TX ⊗ · · · ⊗

⊙
ik
TX ⊗K

(i1+···+ik)/2

is nonvanishing .

Using this, Green and Griffiths deduced the following vanishing Theorem. We

include their argument here, with minor modifications.

Theorem 7.11. Let X be a smooth surface of general type. Assume that the

canonical bundle KX admits a nontrivial section. Then H
2(X,J m

k
X) = 0 for

all k ≥ 1 and m > 2k.
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Proof. Let σ be a nontrivial section of KX , so that we have an exact sequence:

0 → SI ⊗K
(/i1+···+ik)2−1 ⊗σ

→ SI ⊗K
(/i1+···+ik)2

→ SI ⊗K
(/i1+···+ik)2

|D → 0

where D = [σ=0], SI =
⊙

i1
TX⊗· · ·⊗

⊙
ik
TX and i1+ · · ·+ik is even. Hence,

0 → H
0(X,SI ⊗K

(/i1+···+ik)2−1)
⊗σ

→ H
0(X,SI ⊗K

(/i1+···+ik)2)

is exact. By Theorem 7.10 the image of the map ⊗σ is 0; hence

H
0(X,SI ⊗K

(/i1+···+ik)2−1) = 0.

The argument applies also to the exact sequence:

0 → SI ⊗K
(/i1+···+ik)2−l ⊗σ

→ SI ⊗K
(/i1+···+ik)2=l+1

→ SI ⊗K
(/i1+···+ik)2

|D → 0

for any l ≥ 1 and we conclude via induction that

H
0(X,SI ⊗K

q) = 0

for all q < (i1 + · · ·+ ik)/2. If i1 + · · ·+ ik is odd then taking ik+1 = 1 we have

H
0(X,Si1,...,ik,ik+1

⊗K
q+1) = 0

provided that q+1 < (i1 + · · ·+ ik +1)/2 (equivalently q < (i1 + · · ·+ ik −1)/2).

Suppose that H0(X,SI ⊗K
q) 6= 0. Then there exists a nontrivial section ρ of

H0(X,SI ⊗K
q) and we obtain a nontrivial section ρ⊗σ of Si1,...,ik,ik+1

⊗K
q+1.

This shows that:

H
0(X, SI ⊗K

q) =

{
0, for all q < 1

2
(i1 + · · ·+ ik − 1) if i1 + · · ·+ ik is odd,

0 for all q < 1

2
(i1 + · · ·+ ik) if i1 + · · ·+ ik is even.

By Serre duality,

H
2(X,SI ⊗K

1−q) =

{
0, for all q < 1

2
(i1 + · · ·+ ik − 1) if i1 + · · ·+ ik is odd,

0 for all q < 1

2
(i1 + · · ·+ ik) if i1 + · · ·+ ik is even,

where SI =
⊙

i1
T

∗
X ⊗ · · ·⊗

⊙
ik
T

∗
X. If |I| = i1 + · · ·+ ik ≥ 3 then we may

take q = 1 in the formulas above. Thus we have: H2(X,SI) = 0, if |I| ≥ 3. Note

J
m

k
X admits a composition series by SI satisfying the condition

∑
k

j=1
jij = m.

Thus H2(X,J m

k
X) = 0 if each of these SI satisfies the condition |I| ≥ 3. If

k = 2 we have:

i1 +2i2 = m ⇐⇒ i2 = (m− i1)/2 ⇐⇒ i1 + i2 = (m+ i1)/2.

Thus i1 + i2 ≥ 3 if and only if m ≥ 6− i1. Since i1 ≥ 0 we conclude that m ≥ 6

implies i1 + i2 ≥ 3. If k = 3 then

i1+2i2+3i3 = m ⇐⇒ (i1+i3)+2(i2+i3) = m ⇐⇒ i2+i3 = 1

2
(m−i1−i3)

⇐⇒ i1+i2+i3 = 1

2
(m+i1−i3).
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Thus i1 + i2 + i3 ≥ 3 if and only if m ≥ 6− i1 + i3 ≥ 6+ i3. Since i3 is at most

[m/3] we conclude that i1 + i2 + i3 ≥ 3 if m ≥ 9. The case of general k can be

established by an induction argument. ˜

For our purpose only the following weaker result is needed:

Theorem 7.12. Let E be a holomorphic vector bundle of rank r ≥ 2 over a

nonsingular projective surface X. Assume that

(i) KX is nef and not the trivial bundle;

(ii) PicX ∼= Z;

(iii) detE∗ is nef ;

(iv) there exists a positive integer s with the property that there is a nontrivial

global regular section ρ of (KX ⊗detE∗)s such that the zero divisor [ρ=0] is

smooth.

Then Hi(X,
⊙

m
E∗) = 0 for all i ≥ 2 and for m sufficiently large.

The canonical bundle KX of a minimal surface X of general type is nef. If

PicX ∼= Z then KX is ample, so KX ⊗det
(⊙

i1
T ∗X⊗· · ·⊗

⊙
ik
T ∗X

)
is ample

for any nonnegative integers i1, . . . , ik. Hence:

Corollary 7.13. Let X be a nonsingular minimal surface of general type.

Assume that PicX ∼= Z and pg(X) > 0. Let I = (i1, . . . , ik) be a k-tuple of

nonnegative integers. Then H2
(
X,
⊙

i1
T ∗X⊗· · ·⊗

⊙
ik
T ∗X

)
= 0 if i1+· · ·+ik

is sufficiently large; consequently , H2(X,J m

k
X) = 0 if m� k.

Corollary 7.14. Let X be a nonsingular minimal surface of general type with

PicX ∼= Z. Then

h
0(X,J k!m

k
X) ≥ cm

2k+1 +O(m2k)

for some positive constant c; that is, J k!

k
X is big .

A good source for the general theory of vanishing theorems is [Esnault and

Viehweg 1992].

Next we deal with the question of algebraic degeneration of holomorphic maps

and hyperbolicity of surfaces of general type. The condition that J
k!

k
X is big

implies that J
k!

k
X ⊗ [−D] is big for any ample divisor D on X. We may write

D = a0D0 for a0 > 0, with D0 as the positive generator of PicX. The Schwarz

Lemma for jet differentials implies that the image of [jkf ] is contained in the

zero set of all k-jet differentials vanishing along an ample divisor. Thus we may

assume that [jk
f ](C) is contained in an effective irreducible divisor in P(J k

X)

and is the zero set of a section

σ ∈ H
0
(
P(Jk

X), Lk!mk

k
⊗ p

∗[−νkD0]
)
, (7.5)

where we abbreviate Lk = LP(JkX) (note that Pic P(Jk
X) ∼= Z〈L

k!

k
〉⊕PicX).

Our aim is to show that the restriction L
k!

k
|[σ=0] is big. First we need a lemma:
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Lemma 7.15. Let X be a nonsingular minimal surface of general type with

PicX ∼= Z. Suppose that H0(J k!m

k
X ⊗ [−D]) 6= 0 for some divisor D in X.

Then for all m� 0,

c1([D]) ≤
Bk

Ak

k!mc1(T
∗
X)+O(1)

where Ak and Bk are the constants defined in Theorems 3.7 and 3.8.

Proof. The assumption that PicX ∼= Z implies that c1(J
k!

k
X ⊗ [−D]) = qc1,

where c1 = c1(T
∗
X) and q ∈ Q. Let σ be a nontrivial section of J k!

k
X ⊗ [−D].

The Poincaré–Lelong formula implies that

0 =

∫

X

dd
c log ||σ||2 ∧ c1 ≥

∫

[σ=0]

c1 −

∫

X

c1(J
k!m

k
X ⊗ [−D])∧ c1

=

∫

[σ=0]

c1 − q

∫

X

c
2

1
,

implying q > 0. On the other hand, the usual formula for Chern classes yields

0 < c1(J
k!m

k
X ⊗ [−D]) = c1(J

k!m

k
X)− (rkJ k!m

k
X)c1([D]).

By the asymptotic formula in Section 3, we have

c1(J
k!m

k
X) = Bk(k!m)2k

c1 +O((k!m)2k−1);

hence the preceding inequality may be written as

Akc1([D])(k!m)2k−1 = (rkJ k!m

k
X)c1([D]) < Bk(k!m)2k

c1 +O((k!m)2k−1),

where Ak and Bk are the constants defined in Theorems 3.7 and 3.8. Thus we

get the estimate

c1([D]) ≤
Bk

Ak

k!mc1 +O(1). ˜

Theorem 7.16. Let X be a smooth surface and Lk be the “hyperplane line

sheaf” over P(Jk
X). Then

p∗c
2k+1

1
(Lk!

k
) = (2k+1)!χ(Lk!

k
) = 1

2
(2k+1)!(k!)2k+1(αkc

2

1
−βkc2)

= (k!)2k−1

(

k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

c
2

1
−

(

k∑

i=1

1

i2

)

c2,

p∗

(
c
2k

1
(Lk!

k
)p∗c1

)
= 1

2
(k!)2k(2k!)Bkc

2

1
=

(

(k!)2k−2

2

k∑

i=1

1

i

)

c
2

1
,

p∗

(
c
2k−1

1
(Lk!

k
)p∗c2

1

)
= (k!)2k−1(2k− 1)!Akc

2

1
= (k!)2k−3

c
2

1
.

Proof. Let E be a coherent sheaf of rank r and L be a line bundle. Then

ck(E⊗L) =

k∑

i=0

(r− i)!

(k− i)!(r− k)!
ci(E)c1(L)k−i

.
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For a surface we have only two Chern classes, c1(E⊗L) = rc1(L)+ c1(E) and

c2(E⊗L) = 1

2
r(r− 1)c2

1
(L)+ (r− 1)c1(E)c1(L)+ c2(E). From this we get

ι(E⊗L) = r
2
c
2

1
(L)+ 2rc1(L)c1(E)+ c

2

1
(E)− r(r− 1)c2

1
(L)

− 2(r− 1)c1(L)c1(E)− 2c2(E)

= c
2

1
(E)− 2c2(E)+ rc

2

1
(L)+ 2c1(L)c1(E)

= ι(E)+ rc
2

1
(L)+ 2c1(L)c1(E)

and the Euler characteristic (with ci = ci(T
∗
X)):

χ(E⊗L) = 1

2

(
ι(E⊗L)− c1(E⊗L)c1

)
+

1

12
rk(E⊗L)(c2

1
+ c2)

= 1

2

(
ι(E)+ rc

2

1
(L)+ 2c1(L)c1(E)− (rc1(L)+ c1(E))c1

)
+ 1

12
r(c2

1
+ c2)

= χ(E)+ 1

2

(
rc

2

1
(L)+ 2c1(L)c1(E)− rc1(L) c1

)
.

For the sheaf of jet differentials we have the asymptotic expansions

c1(J
m

k
X) = Bkm

2k
c1 +O(m2k−1),

rk J
m

k
X = Akm

2k−1 +O(m2k−2)

χ(J m

k
X) = χ(Lm) = 1

2
(αkc

2

1
−βkc2)m

2k+1 +O(m2k)′;

hence

c1(J
k!m

k
X) = (k!)2k

Bkm
2k
c1 +O(m2k−1),

rk J
k!m

k
X = (k!)2k−1

Akm
2k−1 +O(m2k−2)

χ(J k!m

k
X) = χ(Lk!m) = 1

2
(k!)2k+1(αkc

2

1
−βkc2)m

2k+1 +O(m2k).

We get from these the asymptotic expansion for χ(J k!m

k
X ⊗Lm):

χ(J k!m

k
X ⊗L

m) = χ(J k!m

k
X)+ 1

2
m
(
m(rkJ k!m

k
X)c2

1
(L)+ c1(L)c1(J

k!m

k
X)

− (rkJ k!m

k
X)c1(L)c1

)

= 1

2

(
(k!)2k+1(αkc

2

1
−βkc2)

+ (k!)2k−1
Akc

2

1
(L)+ (k!)2k

Bkc1(L)c1
)
m

2k+1 +O(m2k).

If c1(L) = λc1 then

χ((Lk!

k
⊗ p

∗
L)m)

= χ((J k!m

k
X ⊗L

m)

= 1

2

(
(k!)2k+1(αkc

2

1
−βkc2)+ (λ2(k!)2k−1

Ak +λ(k!)2k
Bk)c2

1

)
m

2k+1 +O(m2k)

= χ(J k!m

k
X)+ 1

2
λ

2(k!)2k−1
Akc

2

1
m

2k+1 + 1

2
λ(k!)2k

Bkc
2

1
m

2k+1 +O(m2k).

Since ci
1
(p∗L) = 0 for all i ≥ 3, we have

c
2k+1

1
(Lk!

k
⊗ p

∗
L)

= (c1(L
k!

k
)+ c1(p

∗
L))2k+1

= c
2k+1

1
(Lk!

k
)+ (2k+1)c2k

1
(Lk!

k
)c1(p

∗
L)+ k(2k+1)c2k−1

1
(Lk!

k
)c2

1
(p∗L),
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and we get, up to O(m2k),

χ((Lk!

k
⊗ p

∗
L)m)

=
c
2k+1

1
(Lk!

k
⊗ p∗L)

(2k+1)!
m

2k+1

=
c
2k+1

1
(Lk!

k
)+ (2k+1)c2k

1
(Lk!

k
)c1(p

∗
L)+ k(2k+1)c2k−1

1
(Lk!

k
)c2

1
(p∗L)

(2k+1)!
m

2k+1

=
c
2k+1

1
(Lk!

k
)

(2k+1)!
m

2k+1 +
c
2k

1
(Lk!

k
)c1(p

∗
L)

(2k)!
m

2k+1 +
1

2

c
2k−1

1
(Lk!

k
)c2

1
(p∗L)

(2k− 1)!
m

2k+1

=
c
2k+1

1
(Lk!

k
)

(2k+1)!
m

2k+1 +λ
c
2k

1
(Lk!

k
)p∗c1

(2k)!
m

2k+1 +λ
2
1

2

c
2k−1

1
(Lk!

k
)p∗c2

1

(2k− 1)!
m

2k+1
.

Comparing the two expressions for χ((Lk!

k
⊗ p

∗
L)m) we deduce that

p∗c
2k+1

1
(Lk!

k
) = (2k+1)!χ(Lk!

k
),

p∗c
2k

1
(Lk!

k
)p∗c1 = 1

2
(k!)2k(2k!)Bkc

2

1
,

p∗c
2k−1

1
(Lk!

k
)p∗c2

1
= (k!)2k−1(2k− 1)!Akc

2

1
.

The theorem follows from these by substituting the asymptotic expansions for

χ(Lk!

k
), Ak and Bk into the expressions above. ˜

As a means toward understanding the general case we treat the special case of

2-jets and 3-jets (for the case of P(TX), that is, 1-jets, see [Miyaoka 1977; Lu and

Yau 1990; Lu 1991; Dethloff et al. 1995b]). For 2-jets the intersection formulas

in Lemma 7.15 and Theorem 7.16 read as:

c1([D]) ≤ 3

4
mc1,

p∗c
5

1
(L2

2
) = 14c2

1
− 10c2,

p∗c
4

1
(L2

2
)p∗c1 = 3c2

1
,

p∗c
3

1
(L2

2
)p∗c2

1
= 2c2

1
.

(7.6)

We shall use these formulas to deal with holomorphic maps from the complex

plane into a minimal surface X of general type satisfying the conditions that

PicX ∼= Z and KX is effective and nontrivial (for example X is a hypersurface

in P3 of degree d ≥ 5). The condition was first introduced in [Dethloff et al.

1995b] and is crucial in the rest of this article. We shall use the following

terminology. An irreducible subvariety Y in P(Jk
X) is said to be horizontal if

p(Y ) = X, where p : P(Jk
X) → X is the projection; otherwise it is said to be

vertical. A variety is said to be horizontal (resp. vertical) if every irreducible

component is horizontal (resp. vertical). A subvariety Y may be decomposed as

Y = Y hor +Y ver, where Y hor and Y ver consist respectively of the horizontal and

vertical components. Note that Y ver = (p−1
C)∩Y , where C is a subvariety of

X; indeed C = p(Y ver). We shall need a lemma:
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Lemma 7.17. Let X be a surface such that pg(X) > 0 and PicX ∼= Z with ample

generator [D0]. There exist positive integers m and a and a nontrivial section σ ∈

H0
(
P(JkX), Lk!m

k
⊗ p∗[−aD0]

)
such that [σ = 0]hor is reduced and irreducible,

that is, there exists exactly one horizontal component with multiplicity 1.

For the proof of the case k = 1, see [Dethloff et al. 1995b, Lemmas 3.5 and

3.6]. The proof depends only on the assumption PicX ∼= Z, which implies that

Pic P(J1
X) ∼= Z ⊕Z. This is of course also valid for Pic P(Jk

X) for any k.

Indeed the proof (with J1
X replaced by Jk

X) is word for word the same.

Theorem 7.18. Let X be a minimal surface of general type with effective ample

canonical bundle such that PicX ∼= Z, pg(X) > 0, and

17c2
1
(T ∗

X)− 16c2(T
∗
X) > 0.

(This is satisfied if X is a hypersurface of degree d ≥ 70.) Then every holomor-

phic map f : C → X is algebraically degenerate.

Proof. We start with the weaker assumption 7c2
1
(T ∗

X)− 5c2(T
∗
X) > 0. (By

Theorem 7.7, this is satisfied for smooth hypersurfaces in P3 if and only if

degX ≥ 16.) Under this assumption the sheaf J 2

2
X is big. This implies that,

for any ample divisor D in X there is a section 0 6≡ σ1 ∈ H
0(L2m

2
⊗ p

∗[−aK])

provided that m � 0 where a > 0 and K is the canonical divisor. By Schwarz

Lemma (Corollary 6.3) the image of [j2f ] (as f is algebraically nondegenerate) is

contained in the horizontal component of [σ1=0]. By Lemma 7.17 we may assume

that the horizontal component of [σ1 =0] is irreducible. The vertical component

of [σ1 =0] must be of the form p
∗(bK) for some b ≥ 0 which admits a section sb.

Replacing σ1 with σ1 ⊗ s
−b

∈ H
0(L2m1

2
⊗ p

∗[−(a− b)K]), Y1 = [σ1 ⊗ s
−b =0] is

horizontal, irreducible and contains the image of [j2
f ]. Since dim P(J2

X) = 5

the dimension of Y1 is 4. As remarked earlier we may assume that a1 = a−b ≥ 0.

We get from the first and third intersection formulas of (7.6):

c
4

1
(L2

2
|Y1

) = c
4

1
(L2

2
) . (c1(L

2m1

2
)− a1p

∗
c1) ≥ m1

(
c
5

1
(L2

2
)− a1c

4

1
(L2

2
) . p∗c1

)

≥ m1

(
(14c2

1
− 10c2)−

9

4
c
2

1

)
=
m1

22
(47c2

1
− 40c2) > 0.

(For a hypersurface of degree d in Pn we have c2
1

= (d− 4)2, c2 = d2
− 4d+6.

Thus, for d = 16, 47c2
1

= 6768 and 40c2 = 7920, so χ(L2

2
|Y ) < 0; however,

47c2
1
− 40c2 = 47(d2

− 8d+16)− 40(d2
− 4d+6) = 7d(d− 30)− 2(3d− 256)

is positive if and only if d ≥ 40.) We claim that L
2

2
|Y1

is big. It suffices to show

that H2(L2m1

2
⊗ [−Y1]) = 0 for m� 0. To see this consider the exact sequence

0 → L
2m1

2
⊗ [−Y1]

⊗σ
→ L

2m1

2
→ L

2m1

2
|Y1

→ 0

and the induced exact sequence

· · · → H
2(L2m1

2
⊗ [−Y1])

⊗σ
→ H

2(L2m1

2
) → H

2(L2m1

2
|Y1

) → 0.
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The vanishing ofH2(L2m1

2
|Y1

) form1 � 0 follows from the vanishing ofH2(L2m

2
).

By Schwarz’s Lemma, the image of [jk
f ] is contained in the zero set of any

nontrivial section σ2 ∈ H0(Y1,L
2m1

2
|Y1

⊗ p∗[−a2K]), a2 > 0 and m2 � 0. Since

Y1 is irreducible Y2 = [σ2 =0]∩Y1 is of codimension 2 (so dimY2 = 3) in P(J2
X)

where σ2 ∈ H
0(L2m2

2
|Y1

⊗ [−a2D]). By Schwarz’s Lemma the reparametrized

k-jets {[jk(f ◦φ)]} is contained in Y2.

We may assume that Y2 is irreducible. Otherwise Y2 =
∑

n

i=1
Y2,i, where

n ≥ 2 and each Y2,i, is irreducible and hence effective. We have
⊗

n

i=1
[Y2,i] =

[Y2] = L
k!m2

k
⊗ p∗[−a2K]|Y1

(we use the notation [Z] to denote the line bundle

associated to a divisor Z). The image [jk
f ](Pn) is contained in Y2,i0

for some

1 ≤ i0 ≤ n. Let si be the (regular) section such that [si =0] = Y2,i (an effective

divisor in Y1); then we have an exact sequence

0 → [Y2,i0
]

ρi0

→ L
k!m2

k
⊗ p

∗[−a2K]|Y1
→ L

k!m2

k
⊗ p

∗[−a2K]|Y2,i0
→ 0.

In particular, we have an injection

0 → [Y2,i0
]

ρi0

→ L
k!m2

k
⊗ p

∗[−a2K]|Y1
,

where the map ρi0
is defined by multiplication with the section

⊗
n

i=1,i6=i0
si. In

other words we may consider each [Y2,i0
] as a subsheaf of Lk!m2

k
⊗ p

∗[−a2K]|Y1

hence a section of [Y2,i0
] is identified also as a section of Lk!m2

k
⊗ p∗[−a2K]|Y1

.

The Schwarz Lemma applies and we conclude that si0
([jk

f ]) ≡ 0 for each i.

Thus we may assume that Y2 is irreducible by replacing Y2 with Y2,i0
.

We now repeat the previous calculation for Y1 to Y2 using again the intersec-

tion formulas listed above; we get

c
3

1
(L2

2
|Y2

) = c
3

1
(L2

2
) . (c1(L

2m1

2
)− a1p

∗
c1) . (c1(L

2m2

2
)− a2p

∗
c1)

≥

(
m1m2c

5

1
(L2

2
)− (a1m2 +m1a2)c

4

1
(L2

2
) . p∗c1 + a1a2c

3

1
(L2

2
) . p∗c2

1

)

= m1m2

(
c
5

1
(L2

2
)− (l1 + l2)c

4

1
(L2

2
) . p∗c1 + l1l2c

3

1
(L2

2
) . p∗c2

1

)

= m1m2

(
(14c2

1
− 10c2)− 3(l1 + l2)c

2

1
+2l1l2c

2

1

)
,

where 0 ≤ li = ai/mi ≤
3

4
, for i = 1, 2. Elementary calculus shows that the

function 14−3(l1+l2)+2l1l2 achieves its minimum value 14−3( 3

4
+ 3

4
)+2( 3

4
)2 = 85

8

at l1 = l2 = 3

4
; thus we get

c
3

1
(L2

2
|Y2

) ≥ m1m2(
85

8
c
2

1
− 10c2) =

5m1m2

23
(17c2

1
− 16c2) > 0.

This shows that L
2

2
|Y2

is big and the image of [j2f ] is contained in

Y3 = Y2 ∩ [σ3 =0]

(where the intersection is taken over all global sections σ3 of L2m

2
|Y2

vanishing

on an ample divisor), which is of dimension 2. By Corollary 6.5 the dimension

of the base locus is at least 3 if f is algebraically nondegenerate. Thus f must
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be algebraically degenerate (and if X contains no rational or elliptic curve then

X is hyperbolic). ˜

Note that the intersection procedure was applied twice. For a smooth hypersur-

face X in P3, condition (iii) is satisfied if and only degree of X ≥ 70 (this is

easily checked from the formulas c2
1

= (d− 4)2, c2 = d
2
− 4d+6). This can be

improved if we use 3-jets. For 3-jets the intersection formulas of Lemma 7.15

and Theorem 7.16 are given explicitly as follows:

c1([D]) ≤
11m

3!
c1,

p∗c
7

1
(L3!

3
) =

7!(3!)7

2

(

17

27367
c
2

1
−

7

27365
c2

)

= (3!)3(85c2
1
− 49c2),

p∗c
6

1
(L3!

3
)p∗c1 =

(3!)311

2
c
2

1
,

p∗c
5

1
(L3!

3
)p∗c2

1
= (3!)3c2

1
.

Theorem 7.19. Let X be a minimal surface with PicX ∼= Z, pg(X) > 0, and

389c2
1
(T ∗

X)− 294c2(T
∗
X) > 0. (∗)

Then every holomorphic map f : C → X is algebraically degenerate.

Proof. The sheaf J3X is big if and only if degree d ≥ 11. As in the case of

2-jets we know that the image of [j3f ] is contained in Y1 = [σ1 =0] for some

σ1 ∈ H
0(L2m1

2
⊗ p

∗[−a1K]). Since dim P(J3
X) = 7 the dimension of Y1 is 6.

From the intersection formulas listed above we get

c
6

1
(L2

2
|Y1

) = c
6

1
(L3!

2
) . (c1(L

2m1

2
)− a1p

∗
c1) ≥ m1

(
c
7

1
(L3!

2
)− a1c

6

1
(L3!

2
) . p∗c1

)

≥ (3!)3m1

(
(85c2

1
− 49c2)−

1

12
112

c
2

1

)
= (3!)3 1

12
m1(899c2

1
− 588c2) > 0.

For a smooth hypersurface in P3, 899c2
1
− 588c2 > 0 if and only if d ≥ 13.

Continuing as in the case of 2-jets, we see that the image of [j3f ] is contained

in the zero set of any nontrivial section σ2 ∈ H0
(
Y1,L

(3!)m1

2
|Y1

⊗ p∗[−a2K]
)
,

a2 > 0 and m2 � 0. The dimension of Y2 = [σ2 =0]∩Y1 is 5. By Schwarz’s

Lemma the reparametrized 3-jet {[j3(f ◦φ)]} is contained in Y2. As in the case

of 2-jets we may assume that Y2 is irreducible. We now repeat the previous

calculation using the intersection formulas above:

c
5

1
(L3!

3
|Y2

) = c
5

1
(L3!

3
) . (c1(L

(3!)m1

3
)− a1p

∗
c1) . (c1(L

(3!)m2

3
)− a2p

∗
c1)

≥

(
m1m2c

7

1
(L3!

3
)− (a1m2 +m1a2)c

6

1
(L3!

3
) . p∗c1 + a1a2c

5

1
(L3!

3
) . p∗c2

1

)

= m1m2

(
c
7

1
(L3!

3
)− (l1 + l2)c

6

1
(L3!

3
) . p∗c1 + l1l2c

5

1
(L3!

3
) . p∗c2

1

)

= (3!)3m1m2

(
(85c2

1
− 49c2)−

11

2
(l1 + l2)c

2

1
+ l1l2c

2

1

)

where 0 ≤ li = ai/mi ≤
11

6
for i = 1, 2. Elementary calculus shows that the

function 85− 11

2
(l1 + l2)+ l1l2 achieves its minimum value at l1 = l2 = 11

6
; thus
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we have

c
5

1
(L3!

3
|Y2

) ≥ (3!)3m1m2

(
2455

36
c
2

1
− 49c2

)
> 0.

For a smooth hypersurface in P3 this occurs if and only if d ≥ 18.

Now the image of [j3f ] is contained in Y3 = [σ3 =0]∩Y2 and has dimension 4.

Moreover, an argument identical to the case of Y2 shows that we may assume Y3

irreducible. Continuing with the procedure we get

c
4

1
(L3!

3
|Y3

) = c
4

1
(L3!

3
)

3∏

i=1

(
c1(L

(3!)mi

3
)− aip

∗
c1

)
.

Expanding the right-hand side above yields (note that p∗c3
1
≡ 0 because the

dimension of the base space is 2 hence c3
1

= c
3

1
(X) ≡ 0)

m1m2m3c
7

1
(L3!

3
)− (a1m2m3 +m1a2m3 +m1m2a3)c

6

1
(L3!

3
) . p∗c1

+(a1a2m3 + a1m2a3 +m1a2a3)c
5

1
(L3!

3
) . p∗c2

1
,

so we have

c
4

1
(L3!

3
|Y3

) ≥
(
m1m2m3c

7

1
(L3!

3
)− (a1m2m3 +m1a2m3 +m1m2a3)c

6

1
(L3!

3
) . p∗c1

+(a1a2m3 + a1m2a3 +m1a2a3)c
5

1
(L3!

3
) . p∗c2

1

)

= m1m2m3

(
c
7

1
(L3!

3
)− (l1 + l2 + l3)c

6

1
(L3!

3
) . p∗c1

+(l1l2 + l2l3 + l3l1)c
5

1
(L3!

3
) . p∗c2

1

)

= (3!)3m1m2m3

(
(85c2

1
− 49c2)−

11

2
(l1 + l2 + l3)c

2

1

+(l1l2 + l2l3 + l3l1)c
2

1

)
,

where 0 ≤ li = ai/mi ≤
11

6
for i = 1, 2, 3. Elementary calculus shows that the

function 85− 11

2
(l1 + l2 + l3)+ (l1l2 + l2l3 + l3l1) achieves its minimum value at

l1 = l2 = l3 = 11

6
; thus we get

c
4

1
(L3!

3
|Y3

) ≥
(3!)3

6
m1m2m3(389c2

1
− 294c2) > 0.

For hypersurfaces in P3 this happens if and only if d ≥ 20. Thus the image of

[j3f ] is contained in a subvariety Y4 = Y3 ∩ [σ4 =0] which is of dimension 3. By

Corollary 6.5 the map f must be algebraically degenerate. ˜

Note that the intersection procedure was applied three times. In order to remove

condition (∗) in Theorem 7.19 we must use very high order jets, and if we use

k-jets then it is necessary to carry out the intersection procedure k times. The

preceding proof underscores the importance of the explicit formulas obtained in

Section 3.

Theorem 7.20. Let X be a smooth minimal surface of general type with

pg(X) > 0 and PicX ∼= Z. Then every holomorphic map f : C → X is al-

gebraically degenerate. If , in addition, the surface X contains no rational nor

elliptic curve then X is hyperbolic.
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Proof. As remarked earlier, we have to work with the k-jet bundles for k

sufficiently large. In the case of 2-jets the cutting procedure was applied twice

and for 3-jets, 3 times. Now we have to do this k-times, each time making sure

(by using the explicit formulas of section 3) that the bundle is still big.

The assumption implies that L
k!

k
is big for k � 0 hence there exists m1 �

k and a1 > 0 such that h0(P(Jk
X),Lk!m1

k
⊗ p

∗[−a1K]) > 0 where K is the

canonical divisor. As in the proof of Theorem 7.18 (and Theorem 7.19) we may,

by Lemma 7.17, assume that there exists σ1 ∈ H
0(P(Jk

X),Lk!m

k
⊗ p

∗[−a1K])

such that Y1 = [σ1 =0] is horizontal and irreducible. This implies that codim

Y1 = 1 (equivalently, dimYi = dim P(Jk
X)− 1 = 2k+1− 1 = 2k).

By the Schwarz Lemma of the preceding section, we conclude that the image

of [jk
f ] is contained in Y1. The proof of Theorem 7.19 shows that LP(JkX)|Y1

is still big and so there exists σ2 ∈ H
0(Y1,L

k!m2

k
⊗ p

∗[−a2K]),m2, a2 > 0 and

(because Y1 is irreducible) that Y2 = [σ2 =0] is of codimension 2 in P(Jk
X).

Schwarz’s Lemma implies that the image of [jk
f ] is contained in Y2. As was

shown earlier, we may assume that Y2 is irreducible. A calculation similar to

that of Theorem 7.19 shows that L
k!

k
|Y2

is still big (see the calculation below).

The process can be continued k times, resulting in a sequence of reduced and

irreducible horizontal subvarieties,

P(Jk
X) = Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yk ⊃ [jk

f ](C),

where codim Yi = i (equivalently, dimYi = 2k+1− i as dim P(Jk
X) = 2k+1),

and each of the subvarieties is the zero set of a section σi:

Yi = [σi =0], σi ∈ H
0
(
Yi−1, L

k!mi

k
⊗ p

∗[−aiK]
)

for 1 ≤ i ≤ k.

We claim that L
k!

k
|Yi

is big for 1 ≤ i ≤ k, by a calculation (to be carried out

below) analogous to that in Theorems 7.19 and 7.20.

Assuming this for the moment, we see that there exists a nontrivial section

σk+1 ∈ H
0
(
Yk, L

k!mk

k
⊗p

∗[−ak+1K]
)

and [jk
f ](C) is contained in an irreducible

component of [σk+1 =0]∩Yk. Since Yk is irreducible this component, denoted

Yk+1, is of codimension k+1 (equivalently, dimYk+1 = 2k+1− (k+1) = k).

This however contradicts Corollary 6.5 that the component containing all the

reparametrization [jk(f ◦φ)](C) must be of codimension at most k (equivalently,

dimension at least k+1) if f is algebraically nondegenerate. Thus the map f

must be algebraically degenerate. Since the image of an algebraically degenerate

map must be contained in a rational or an elliptic curve inX, we conclude readily

that X is hyperbolic if it contains no rational nor elliptic curve.

It remains to verify the claim by carrying out the computations for k-jets—

more precisely, computations for the Chern numbers c2k+1−λ

1
(Lk!

k
|Yλ

), for 1≤λ≤k

—using Theorem 7.16 the intersection formulas obtained in Lemma 7.15:

c
2k+1−λ

1
(Lk!

k
|Yλ

)
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= c
2k+1−λ

1
(Lk!

k
)

λ∏

i=1

(
mic1(L

k!

k
)− aic1

)

=

(

λ∏

i=1

mi

)

c
2k+1

1
(Lk!

k
)−

(

λ∑

i=1

ai

∏

1≤j 6=i≤λ

mj

)

c
2k

1
(Lk!

k
X)c1

+

(

∑

1≤i<j≤l

aiaj

∏

1≤q 6=i,j≤λ

mqc
2k−1

1
(Lk!

k
)

)

c
2

1

= (k!)2k−3

(

λ∏

i=1

mi

)

(

(k!)2
(

k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

c
2

1
− (k!)2

(

k∑

i=1

1

i2

)

c2

−

(

λ∑

i=1

li

)(

k!

2

k∑

i=1

1

i

)

c
2

1
+

(

∑

1≤i<j≤λ

lilj

)

c
2

1

)

for 1 ≤ lj = aj/mj ≤ (Bk/Ak)k! and 1 ≤ λ ≤ k. The coefficient of c2
1

is

Dk,λ = (k!)2
(

k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

−

(

λ∑

i=1

li

)(

k!

2

k∑

i=1

1

i

)

+
∑

1≤i<j≤λ

lilj .

The minimum occurs at

lj =
Bk

Ak

k! =
(k−1)!

2

k∑

i=1

1

i

for all 1 ≤ j ≤ λ ≤ k. By the intersection formulas in Lemma 7.15 and Theorem

7.16, we have:

Dk,λ ≥ (k!)2
(

k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

−λ
(k− 1)! k!

4

(

k∑

i=1

1

i

)2

+
λ(λ+1)

4k

(

k∑

i=1

1

i

)2

.

It is clear that the worst case occurs for λ = k, namely, Dk,λ ≥ Dk,k, and that

Dk,k ≥ (k!)2
(

k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

−

(k!)2

4

(

k∑

i=1

1

i

)2

+
(k!)2(k+1)

4(k!)2

(

k∑

i=1

1

i

)2

.

In other words, denoting the expression on the right-hand side above by (k!)2
δk,

we have

c
2k+1−λ

1
(Lk!

k
|Yλ

) = c
2k+1−λ

1
(Lk!

k
)

λ∏

i=1

(
mic1(L

k!

k
X)− aic1

)

≥ (k!)2k−3

(

λ∏

i=1

mi

)(

(k!)2δkc
2

1
− (k!)2

(

k∑

i=1

1

i2

)

c2

)

= (k!)2k−1

(

λ∏

i=1

mi

)(

δkc
2

1
−

(

k∑

i=1

1

i2

)

c2

)
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for 1 ≤ λ ≤ k. It remains to show that

δkc
2

1
−

(

k∑

i=1

1

i2

)

c2 > 0

or, equivalently,
δk

∑
k

i=1
1/i2

>
c2

c2
1

(7.7)

for k sufficiently large. We claim that

lim
k→∞

δk
∑

k

i=1
1/i2

= ∞, (7.8)

where

δk =

(

k∑

i=1

1

i2
+

k∑

i=2

1

i

i−1∑

j=1

1

j

)

−

1

4

(

k∑

i=1

1

i

)2

+
(k+1)

4(k!)2

(

k∑

i=1

1

i

)2

.

Observe that

k∑

i=2

1

i

i−1∑

j=1

1

j
=

∑

1≤i<j≤k

1

ij
and

(

k∑

i=1

1

i

)2

=

k∑

i=1

1

i2
+ 2

∑

1≤i<j≤k

1

ij
;

hence

δk ≥

1

2

∑

1≤i<j≤k

1

ij
−

3

4

k∑

i=1

1

i2
,

and the ratio satisfies

δk
∑

k

i=1
1/i2

≥

1

2

∑

1≤i<j≤k
1/(ij)

∑
k

i=1
1/i2

−

3

4
.

Since
∑

1≤i<j≤k

1

ij
=

k∑

i=2

1

i

i−1∑

j=1

1

j
,

we must show that

lim
k→∞

∑
k

i=2
1/i
∑

i−1

j=1
1/j

∑
k

i=1
1/i2

= ∞,

just as in the limit in Corollary 3.10. But this is clear, because

lim
k→∞

k∑

i=2

1

i

i−1∑

j=1

1

j
≥ lim

k→∞

k∑

i=2

(i− 1)
1

i2
= ∞,

whereas limk→∞

∑
k

i=1
1/i2 <∞. Thus (7.7) is verified.

We remark that c2/c
2

1
= 11 for a smooth hypersurface of degree d = 5 in P3.

Thus, by (7.7), it is enough to choose k so that

δk
∑

k

i=1
1/i2

> 11.
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With the aid of a computer, we found that this occurs at k = 2283 (for k = 2282

the ratio on the left above is approximately 10.9998). By Theorem 7.1,
{

5c2
1
− c2 +36 ≥ 0, if c2

1
is even,

5c2
1
− c2 +30 ≥ 0, if c2

1
is odd,

which implies that
{

23 ≥ 5+ (36/c2
1
) ≥ c2/c

2

1
, if c2

1
is even,

35 ≥ 5+ (30/c2
1
) ≥ c2/c

2

1
, if c2

1
is odd.

Thus, by (7.7), we need k so that the ratio δk/
∑

k

i=1
1/i2 is > 23 if c2

1
is even

and > 35 if it is odd. We did not find the explicit k satisfying these conditions;

this would take a lot of time, even for the computer. However we do know from

(7.8) that k exists. This shows that c2k+1−λ

1
(Lk!

k
|Yλ

) > 0 hence

2∑

i=0

(−1)i
H

i(Yλ,L
k!

k
|Yλ

) = χ(Lk!

k
|Yλ

) > 0.

To show that L
k!

k
|Yλ

is big it is sufficient to show that H2(Yλ,L
k!

k
|Yλ

) = 0 for

0 ≤ λ ≤ k. This is done as in Theorems 7.18 and 7.19 by considering the exact

sequences

0 → L
k!mλ

k
|Yλ−1

⊗ [−Yλ]
⊗σλ

−→ L
k!mλ

k
|Yλ−1

→ L
k!mλ

k
|Yλ

→ 0

and the induced exact sequence

· · · → H
2
(
L

k!mλ

k
|Yλ−1

⊗ [−Yλ]
)
→ H

2(Lk!mλ

k
|Yλ−1

) → H
2(Lk!mλ

k
|Yλ

) → 0.

By induction H
2(Lk!mλ

k
|Yλ−1

) = 0 for mλ � 0 and the exact sequence above

implies the vanishing of H2(Lk!mλ

k
|Yλ

). This completes the proof of the theorem.

˜

Corollary 7.21. A generic hypersurface surface of degree d ≥ 5 in P3 is

hyperbolic.

Proof. The assumptions of Theorem 7.19 are satisfied by a generic hypersurface

of degree d ≥ 5 in P3. Thus the image of a holomorphic map f : C → X is

contained in a curve, necessarily rational or elliptic curve. By a theorem of Xu

[1994] a generic hypersurface surface of degree d ≥ 5 in P3 contains no rational

nor elliptic curve. Hence f must be a constant. ˜

The generic condition in Xu means that the statement holds for all curves outside

a countable union of Zariski closed sets. A variety X satisfying the condition

that every holomorphic curve f : C → X is constant is usually referred to as

Brody hyperbolic. In general Kobayashi hyperbolic implies Brody hyperbolic.

For compact varieties Brody hyperbolic is equivalent to Kobayashi hyperbolic

but for open varieties this is not the case. As a consequence of Corollary 7.21

we have:
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Corollary 7.22. There exists a curve C of degree d = 5 in P2 such that P2
\C

is Kobayashi hyperbolic.

Proof. It is well-known that the complement of 5 lines, in general position, in

P2 is Kobayashi hyperbolic. By a Theorem of Zaidenberg [1989] any sufficiently

small (in the sense of the classical topology, rather than the Zariski topology)

deformation of a Brody hyperbolic manifold is Brody hyperbolic. Thus, for

any curve C of degree 5 in a sufficiently small open (in the classical topology)

neighborhood U , of 5 lines in general position, the complement P2
\C is Brody

hyperbolic. Let
⋃
Zi be a countable union of Zariski closed sets in the space of

surfaces of degree 5 in P3 such that any surface S 6∈ ∪Zi is hyperbolic. Embed P2

in P3 as a linear subspace. Any curve C ∈ C = {S ∩P2
| S 6∈ ∪Zi} is a curve of

degree 5 and is hyperbolic. It is clear that C ∩U is nonempty. Thus there exists

a hyperbolic curve C of degree 5 in P2 such that P2
\C is Brody hyperbolic. It

is well-known that this implies that P2
\C is Kobayashi hyperbolic. ˜
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d’Horace eclatée: application a l’interpolation en degré quatre.” Invent. Math. 107
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Introduction

It is our goal in this article to present a current and uniform treatment of

flag and Ricci curvatures in Finsler geometry, highlighting recent developments.

(The flag curvature is a natural extension of the Riemannian sectional curvature

to Finsler manifolds.) Of particular interest are the Einstein metrics, constant

Ricci curvature metrics and, as a special case, constant flag curvature metrics.

Our understanding of Einstein spaces is inchoate. Much insight may be gained

by considering the examples that have recently proliferated in the literature.

This motivates us to discuss many of these metrics.

Happily, the theory is developing as well. The Einstein and constant flag

curvature metrics of spaces of Randers type, a fecund class of Finsler spaces,

are now properly understood. Enlightenment comes from being able to identify

the class as solutions to Zermelo’s problem of navigation, a perspective that

allows a very apt characterisation of the Einstein spaces. When specialised to

flag curvature, the navigation description yields a complete classification of the

constant flag curvature Randers metrics.

We hope to bring out the rich variety of behaviour displayed by these metrics.

For example, Finsler metrics of constant flag curvature exhibit qualities not found

in their constant sectional curvature Riemannian counterparts.

• Beltrami’s theorem guarantees that a Riemannian metric is projectively flat

if and only if it has constant sectional curvature. On the other hand, there

are many Finsler metrics of constant flag curvature which are not projectively

flat. See Section 3.2.3 and [Shen 2004].

• Every Riemannian metric of constant sectional curvature K is locally isometric

to a round sphere, Euclidean space, or a hyperbolic space, depending on K.

Hence, for each K, there is only one Riemannian standard model, up to

isometry. By contrast, on S
n, R

n, and the unit ball B
n, there are numerous

nonisometric Randers metrics of constant flag curvature K. In fact, isometry

classes of Randers type standard models make up a moduli space MK whose

dimension is linear in n. See the table on page 242 and [Bryant 2002].

A roadmap. This article is written with a variety of readers in mind, ranging

from the geometric neophyte to the Finsler aficionado. We anticipate that these

users will approach the manuscript with distinct aims. The outline below is

intended to help readers navigate the article efficiently.

Section 1 introduces Finsler metrics and their curvatures, as well as tools

and constructions that are endemic to non-Riemannian Finsler geometry. The

reader conversant with Finsler metrics might only skim this section to glean our

notation and conventions.

In Section 2 we develop a useful characterisation of the Einstein spaces among

a ubiquitous class of Finsler metrics. This description generalises a charac-

terisation of constant flag curvature Randers metrics ([Bao–Robles 2003] and
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[Matsumoto–Shimada 2002]) to the Einstein realm. The resulting conditions

form a tensorial, coupled system of nonlinear second order partial differential

equations, whose unknowns consist of Riemannian metrics a and 1-forms b.

These equations provide a substantial step forward in computational efficiency

over the defining Einstein criterion (which stipulates that the ‘average flag cur-

vature’ is to be a function of position only). Indeed, study of these equations

has led to the construction of the Finslerian Poincaré metric ([Okada 1983] and

[Bao et al. 2000]), as well as the S
3 metric [Bao–Shen 2002]. However, while the

characterisation improves the computational accessibility of Einstein metrics, it

does little to advance our understanding of their geometry. It is in the following

section that we pursue this geometric insight.

The sine qua non here is Shen’s observation that Randers metrics may be

identified with solutions to Zermelo’s problem of navigation on Riemannian man-

ifolds. This navigation structure establishes a bijection between Randers spaces

(M, F = α+β) and pairs (h,W ) of Riemannian metrics h and vector fields W on

the manifold M . From this perspective, the characterisation of Section 2 is par-

layed into a breviloquent geometric description of Einstein metrics. Explicitly,

the Randers metric F with navigation data (h,W ) is Einstein if and only if h is

Einstein and W is an infinitesimal homothety of h. (In particular, these h and W

solve the system of partial differential equations in Section 2.) The transparent

nature of the navigation description immediately yields a Schur lemma for the

Ricci scalar, together with a certain rigidity in three dimensions.

The variety of examples in the article may be categorised as follows.

• Metrics in their defining form: Sections 1.1.1, 1.2.1, 2.1.1, 2.3.2, 3.1.2

• Solutions to Zermelo navigation: Sections 1.1.1, 3.1.1, 3.1.2, 3.2.3

• Of constant flag curvature: Sections 1.2.1, 2.3.2, 3.1.2, 3.2.3, 4.1.1

• Einstein but not of const. flag curvature: Sections 4.1.1, 4.1.2, 4.2.3, 4.3.3

• Ricci-flat Berwald: Sections 3.1.1 (locally Minkowski), 4.3.3 (not loc. Mink.)

In Section 4, the emphasis is on Einstein metrics of nonconstant flag curvature,

especially those on compact boundaryless manifolds. The spaces studied include

Finsler surfaces with Ricci scalar a function on M alone (the scalar is a pri-

ori a function on the tangent bundle), as well as non-Riemannian Ricci-constant

solutions of Zermelo navigation on Cartesian products and Kähler–Einstein man-

ifolds. Section 5 discusses open problems.

1. Flag and Ricci Curvatures

1.1. Finsler metrics

1.1.1. Definition and examples. A Finsler metric is a continuous function

F : TM → [0,∞)

with the following properties:
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(i) Regularity : F is smooth on uniformized in favor of : TM r 0 := {(x, y) ∈

TM : y 6= 0}.

(ii) Positive homogeneity : F (x, cy) = cF (x, y) for all c > 0.

(iii) Strong convexity : the fundamental tensor

gij(x, y) :=
(

1

2
F

2
)

yiyj

is positive definite for all (x, y) ∈ TM r 0. Here the subscript yi denotes

partial differentiation by y
i.

Strong convexity implies that {y ∈ TxM : F (x, y) 6 1} is a strictly convex set,

but not vice versa; see [Bao et al. 2000].

The function F for a Riemannian metric a is F (x, y) :=
√

aij(x)yiyj . In

this case, one finds that gij := ( 1

2
F

2)yiyj is simply aij . Thus the fundamental

tensor for general Finsler metrics may be thought of as a direction-dependent

Riemannian metric. This viewpoint is treated more carefully in Section 1.1.2.

Many calculations in Finsler geometry are simplified, or magically facilitated,

by Euler’s theorem for homogeneous functions:

Let φ be a real valued function on R
n, differentiable at all y 6= 0. The

following two statements are equivalent.

• φ(cy) = c
r
φ(y) for all c > 0 (positive homogeneity of degree r).

• y
i
φyi = rφ; that is, the radial derivative of φ is r times φ.

(See, for example, [Bao et al. 2000] for a proof.) This theorem, for instance, lets

us invert the defining relation of the fundamental tensor given above to get

F
2(x, y) = gij(x, y)yi

y
j
.

Consequently, strong convexity implies that F must be positive at all y 6= 0. The

converse, however, is false; positivity does not in general imply strong convexity.

This is because while gij(x, y)yiyj = F 2(x, y) may be positive for y 6= 0, the

quadratic gij(x, y) ỹi
ỹ

j could still be 6 0 for some nonzero ỹ.

Here are some 2-dimensional examples. Being in two dimensions, we revert

to the common notation of denoting position coordinates by x, y rather than x
1,

x
2, and components of tangent vectors by u, v rather than y

1, y
2.

Example (Quartic metric). Let

F (x, y;u, v) := (u4 + v
4)1/4

.

Positivity is manifest. However, det(gij) = 3u2v2/(u4 + v4) along the tangent

vector u∂x + v∂y based at the point (x, y). Thus (gij) fails to be a positive

definite matrix when u or v vanishes. For instance, if u = 0 but v 6= 0, we have

gij(x, y; 0, v) =
(

1

0

0

0

)

, which is not positive definite. It is shown in [Bao et al.

2000] that F can be regularised to restore strong convexity. ♦
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We shall see in Section 2.1.2 that, surprisingly, positivity of F does imply strong

convexity for Randers metrics.

Next, consider a surface S given by the graph of a smooth function f(x, y).

Parametrise S via (x, y) 7→ (x, y, f). By a slight abuse of notation, set ∂x :=

(1, 0, fx) and ∂y := (0, 1, fy), and denote the natural dual of this basis by dx, dy.

The Euclidean metric of R
3 induces a Riemannian metric on S:

h :=
(

1+ f
2

x

)

dx⊗ dx+ fxfy (dx⊗ dy + dy⊗ dx)+
(

1+ f
2

y

)

dy⊗ dy.

If Y := u∂x + v∂y is an arbitrary tangent vector on S, we have

|Y |
2 := h(Y, Y ) = u

2 + v
2 +(ufx + vfy)2.

We note for later use that the contravariant description of df = fx dx + fy dy is

the vector field

(df)] =
1

1+ f2
x

+ f2
y

(fx∂x + fy ∂y), with |(df)]
|
2 =

f2

x
+ f2

y

1+ f2
x

+ f2
y

.

Example (Metric from Zermelo navigation). If we assume that gravity

acts perpendicular to S, a person’s weight does not affect his motion along the

surface. Now introduce a wind W = W
x
∂x + W

y
∂y blowing tangentially to S.

The norm function F that measures travel time on S can be derived using a

procedure (Section 3.1) due to Zermelo and generalised by Shen. With

|W |
2 = (W x)2 +(W y)2 +(W x

fx +W
y
fy)2,

h(W,Y ) = uW
x + vW

y +(ufx + vfy)(W x
fx +W

y
fy),

and λ := 1− |W |
2, the formula for F reads

F (x, y;u, v) =

√

h(W,Y )2 + |Y |
2λ

λ
−

h(W,Y )

λ
.

This Zermelo navigation metric F is strongly convex if and only if |W | < 1. The

unit circle of h in each tangent plane represents the destinations reachable in

one unit of time when there is no wind. It will be explained (Section 3.1) that

the effect of the wind is to take this unit circle and translate it rigidly by the

amount W . The resulting figure is off-centered and represents the locus of unit

time destinations under windy conditions, namely the indicatrix of F . Since the

latter lacks central symmetry, F could not possibly be Riemannian; the above

formula makes explicit this fact. ♦

Example (Matsumoto’s slope-of-a-mountain metric). Take the same

surface S, but without the wind. View S as the slope of a mountain resting

on level ground, with gravity pointing down instead of perpendicular to S. A

person who can walk with speed c on level ground navigates this hillside S along

a path that makes an angle θ with the steepest downhill direction. The accel-

eration of gravity (of magnitude g), being perpendicular to level ground, has a



202 DAVID BAO AND COLLEEN ROBLES

component of magnitude g‖ = g
√

(f2

x
+ f2

y
)/(1+ f2

x
+ f2

y
) along the steepest

downhill direction. The hiker then experiences an acceleration g‖ cos θ along her

path, and compensates against the g‖ sin θ which tries to drag her off-course. Un-

der suitable assumptions about frictional forces, the acceleration g‖ cos θ rapidly

effects a terminal addition 1

2
g‖ cos θ to the pace c generated by her leg muscles.

In other words, her speed is effectively of the form c + a cos θ, where a is inde-

pendent of θ. Thus the locus of unit time destinations is a limaçon. The unit

circle of h, instead of undergoing a rigid translation as in Zermelo navigation,

has now experienced a direction-dependent deformation. The norm function F

with this limaçon as indicatrix measures travel time on S. It was worked out by

Matsumoto, after being inspired by a letter from P. Finsler, and reads

|Y |
2

c |Y | − (g/2)(ufx + vfy)
;

see [Matsumoto 1989] and [Antonelli et al. 1993].

For simplicity, specialise to the case c = g/2. Multiplication by c then converts

this norm function to

F (x, y;u, v) :=
|Y |

2

|Y | − (ufx + vfy)
= |Y |ϕ

(
(df)(Y )

|Y |

)
,

with ϕ(s) := 1/(1− s). We see from [Shen 2004] in this volume that metrics

of the type αϕ(β/α) are strongly convex whenever the function ϕ(s) satisfies

ϕ(s) > 0, ϕ(s)−sϕ
′(s) > 0, and ϕ

′′(s) > 0. For the ϕ at hand, this is equivalent

to (df)(Y ) <
1

2
|Y |, which is in turn equivalent to |(df)]

| <
1

2
. (In one direction,

set Y = (df)]; the converse follows from a Cauchy–Schwarz inequality.) Using

the formula for |(df)]
|
2 presented earlier, this criterion produces

f
2

x
+ f

2

y
<

1

3
.

Whenever this holds, F defines a Finsler metric. Such is the case for f(x, y) := 1

2
x

but not for f(x, y) := x, even though the surface S is an inclined plane in

both instances. As for the elliptic paraboloid given by the graph of f(x, y) :=

100−x
2
−y

2, we have strong convexity only in a circular vicinity of the hilltop. ♦

The functions F in these two examples are not absolutely homogeneous (and

therefore non-Riemannian) because at any given juncture, the speed with which

one could move forward typically depends on the direction of travel. Our dis-

cussion also raises a tantalising question: if the wind were blowing on the slope

of a mountain, would the indicatrix of the resulting F be a rigid translate of the

limaçon?

1.1.2. The pulled-back bundle and the fundamental tensor. The matrix gij

involved in the definition of strong convexity is known as the fundamental tensor,

and has a geometric meaning, which is most transparent through the use of the

pulled-back bundle introduced by Chern.



RICCI AND FLAG CURVATURES IN FINSLER GEOMETRY 203

TM r 0 M

(x,y)

TxM(π∗TM)(x,y)

π
x

Figure 1. The pulled-back tangent bundle π
∗

TM is a vector bundle over the

“parameter space” TM r 0. The fiber over any point (x, y) is a copy of TxM .

The dotted part is the deleted zero section.

The gij depend on both x and y ∈ TxM . Over each fixed point (x, y) ∈

TM r 0, the bundle π
∗
TM provides a copy of TxM . Endow this TxM with the

symmetric bilinear form

g := gij(x, y) dx
i
⊗ dx

j
.

Since the Finsler metric is strongly convex, this bilinear form is positive definite,

which renders it an inner product. Thus, every Finsler metric endows the fibres

of the pulled-back bundle with a Riemannian metric. Two facts stand out:

(1) The fundamental tensor gij(x, y) is invariant under y 7→ λy for all λ >

0. This invariance directly follows from the hypothesis that F is positively

homogeneous of degree 1 in y. Thus, over the points {(x, λy) : λ > 0} in

the parameter space TM r 0, not only the fibres are identical, but the inner

products are too.

(2) That gij arises as the y-Hessian of 1

2
F

2 imposes a stringent symmetry con-

dition. Namely, (gij)yk must be totally symmetric in its three indices i, j, k.

For this reason, not every Riemannian metric on the fibres of the pulled-back

bundle comes from a Finsler metric.

Property (1) is a redundancy that will be given a geometrical interpretation

below. We will also explain why the symmetry criterion (2) is an integrability

condition in disguise.

Let’s switch our perspective from the pulled-back bundle π
∗
TM to the tangent

bundle TM itself. Recall that a Riemannian metric on M is a smooth assignment

of inner products, one for each tangent space TxM . By contrast, a Finsler metric

F gives rise to a family of inner products gij(x, y) dx
i
⊗ dx

j on each tangent

space TxM . Item (1) above means that there is exactly one inner product for

each direction. This sphere’s worth of inner products on each tangent space has

to satisfy the symmetry condition described in (2).

The converse is also true. Suppose we are given a family of inner products

gij(x, y) on each tangent space TxM , smoothly dependent on x and nonzero
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y ∈ TxM , invariant under positive rescaling of y (that is, maps y 7→ λy, for

λ > 0) and such that (gij)yk is totally symmetric in i, j, and k. We construct a

Finsler function as follows:

F (x, y) :=
√

gpq(x, y)ypyq.

This F is smooth on the entire slit tangent bundle TM r 0. It is positively ho-

mogeneous of degree 1 in y because gpq(x, y) is invariant under positive rescaling

in y. Also, with the total symmetry of (gij)yk , we have

(F 2)yiyj = (gpq y
p
y

q)yiyj =
(

(gpq)yi y
p
y

q + giq y
q + gpiy

p
)

yj

= (giq)yj y
q + gij +(gpi)yj y

p + gji = 2gij .

Thus F is strongly convex because, for each nonzero y, the matrix gij(x, y) is

positive definite.

In the calculation above, the quantity (gpq)yi y
p on the first line and the terms

(giq)yj y
q and (gpi)yj y

p on the second line are all zero because of the hypothesis

that (grs)yt is totally symmetric in r, s, t. For instance,

(gpq)yi y
p = (giq)yp y

p = 0,

where the last equality follows from Euler’s theorem, and the assumption that

giq(x, y) is positive homogeneous of degree 0 in y. The symmetry hypothesis

therefore plays the role of an integrability condition.

We conclude that the concept of a Finsler metric on M is equivalent to an

assignment of a sphere’s worth of inner products gij(x, y) on each tangent space

TxM , such that (gij)yk is totally symmetric in i, j, k and appropriate smooth-

ness holds. Similarly , a Finsler metric on M is also equivalent to a smooth

Riemannian metric on the fibres of the pulled-back bundle π
∗
TM , satisfying the

above redundancy (1) and integrability condition (2).

The pulled-back bundle π
∗
TM and its natural dual π

∗
T

∗
M each contains an

important global section. They are

` :=
y

i

F (x, y)
∂xi ,

the distinguished section, and

ω := Fyi dx
i
,

the Hilbert form. As another application of the integrability condition, we dif-

ferentiate the statement F
2 = gij y

i
y

j to find

Fyi =
g
yi

F
= gij `

j =: `i, with g
yi := gij y

j
.

This readily gives

`
i
`i = 1 and `i;j = gij − `i`j ,

where the semicolon abbreviates the differential operator F∂yi .
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1.1.3. Geodesic spray coefficients and the Chern connection. We have seen

in Section 1.1.1 that if F is the Finsler function of a Riemannian metric, its

fundamental tensor has no y-dependence. The converse follows from the fact

that gij y
i
y

j reconstructs F
2 for us, thanks to Euler’s theorem. Thus, the y

derivative of gij measures the extent to which F fails to be Riemannian. More

formally, we define the Cartan tensor

Aijk := 1

2
F (gij)yk = 1

4
F (F 2)yiyjyk ,

which is totally symmetric in all its indices. As an illustration of Euler’s theorem,

note that since g is homogeneous of degree zero in y, we have y
i
Aijk = 0.

Besides the Cartan tensor, we can also associate to g its formal Christoffel

symbols of the second kind ,

γ
i
jk := 1

2
g

is(gsj,xk − gjk,xs + gks,xj ),

and the geodesic spray coefficients

G
i := 1

2
γ

i
jk y

j
y

k
.

The latter are so named because the (constant speed) geodesics of F are the

solutions of the differential equation ẍ
i + ẋ

j
ẋ

k
γ

i
jk(x, ẋ) = 0, which may be

abbreviated as ẍ
i +2G

i(x, ẋ) = 0.

Caution: the G
i defined here is equal to half the G

i in [Bao et al. 2000].

Covariant differentiation of local sections of the pulled-back bundle π
∗
TM

requires a connection, for which there are many name-brand ones. All of them

have their genesis in the nonlinear connection

N
i
j := (Gi)yj .

This N i
j is a connection in the Ehresmann sense, because it specifies a distribu-

tion of horizontal vectors on the manifold TM r 0, with basis

δ

δxj
:= ∂xj −N

i
j ∂yi .

As another application of Euler’s theorem, note that N
i
j y

j = 2G
i, since G

i

is homogeneous of degree 2 in y. We also digress to observe that the Finsler

function F is constant along such horizontal vector fields:

F|j :=
δ

δxj
F = 0.

The key lies in the following sketch of a computation:

N
i
j `i = (Gi

`i)yj −

1

F
G

i
`i;j = Fxj ,

in which establishing (`i
Gi)yj = 1

2
(Fxj +y

k
Fxkyj ) and its companion statement

−(1/F )Gi
`i;j = 1

2
(Fxj − y

k
Fxkyj ) takes up the bulk of the work.
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Using A, γ, and N , we can now state the formula of the Chern connection in

natural coordinates [Bao et al. 2000]:

Γi
jk = γ

i
jk −

1

F
g

is(AsjtN
t
k −AjktN

t
s +AkstN

t
j),

with associated connection 1-forms ωj
i := Γi

jk dx
k. These ωj

i represent the

unique, torsion-free (Γi
kj = Γi

jk) connection which is almost g-compatible:

dgij − gkj ωi
k
− gik ωj

k =
2

F
Aijk (dy

k +N
k

ldx
l).

As yet another application of Euler’s Theorem, we shall show that the nonlinear

connection N can be recovered from the Chern connection Γ as follows:

Γi
jk y

k = N
i
j .

A crucial ingredient in the derivation is (γi
st)yj y

s
y

t = 2(gip)yj Gp. Indeed,

(γi
st)yj y

s
y

t = (gip
γpst)yj y

s
y

t

= (gip)yj γpsty
s
y

t + g
ip

((
1

F
Apsj

)
xt

−

(
1

F
Astj

)
xp

+
(

1

F
Atpj

)
xs

)
y

s
y

t

= 2(gip)yj Gp +0.

Whence, with the help of Aijk yk = 0 and N t
k yk = 2Gt, we have

Γi
jk y

k = γ
i
jk y

k
−

2

F
g

is
Astj G

t = γ
i
jk y

k
− g

is(gst)yj G
t

= γ
i
jk y

k +(gis)yj gstG
t

= γ
i
jk y

k + 1

2
(γi

st)yj y
s
y

t

= ( 1

2
γ

i
sty

s
y

t)yj = (Gi)yj = N
i
j ,

as claimed.

It is now possible to covariantly differentiate sections of π
∗
TM (and its tensor

products) along the horizontal vector fields δ/δx
k of the manifold TM r 0. For

example,

T
i

j|k :=
δ

δxk
T

i
j +T

s
j Γi

sk −T
i
sΓs

jk.

If F arises from a Riemannian metric a, then A = 1

2
F (aij)yk = 0 because a has

no y-dependence. In that case, Γ is given by the Christoffel symbols of a. If

the tensor T also has no y-dependence, T
i
j|k reduces to the familiar covariant

derivative in Riemannian geometry.

Let’s return to the Finsler setting. Using the symmetry Γi
sk = Γi

ks and the

recovery property ys Γi
ks = N i

k, we have

y
i

|k =
δ

δxk
y

i + y
sΓi

ks = 0, hence `
i

|k = 0.
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Also, the covariant derivative of the Cartan tensor A along the special horizontal

vector field `
s
δ/δx

s gives the Landsberg tensor, which makes frequent appear-

ances in Finsler geometry:

Ȧijk := Aijk|s `
s
.

Note that Ȧ is totally symmetric, and its contraction with y vanishes.

The Chern connection gives rise to two curvature tensors:

Rj
i
kl =

δ

δxk
Γi

jl −

δ

δxl
Γi

jk +Γi
sk Γs

jl −Γi
sl Γ

s
jk,

Pj
i
kl = −F

∂

∂yl
Γi

jk (note the symmetry: Pj
i
kl = Pk

i
jl),

both invariant under positive rescaling in y. In the case of Riemannian metrics,

Γ reduces to the standard Levi-Civita (Christoffel) connection, which is indepen-

dent of y; hence δ

δx
Γ becomes ∂

∂x
Γ. The curvature R is then the usual Riemann

tensor, and P is zero.

In Finsler geometry, there are many Bianchi identities. A leisurely account of

their derivation can be found in [Bao et al. 2000].

1.2. Flag curvature. This is a generalisation of the sectional curvature of

Riemannian geometry. Alternatively, flag curvatures can be treated as Jacobi

endomorphisms [Foulon 2002]. The flag curvature has also led to a pinching

(sphere) theorem for Finsler metrics; see [Rademacher 2004] in this volume.

1.2.1. The flag curvature versus the sectional curvature. Installing a flag on a

Finsler manifold (M,F ) implies choosing

◦ a basepoint x ∈ M at which the flag will be planted,

◦ a flagpole given by a nonzero y ∈ TxM , and

◦ an edge V ∈ TxM transverse to the flagpole.

See Figure 2. Note that the flagpole y 6= 0 singles out an inner product

g
y

:= gij(x, y) dx
i
⊗ dx

j

from among the sphere’s worth of inner products described in Section 1.1.2. This

g
y

allows us to measure the angle between V and y. It also enables us to calculate

the area of the parallelogram formed by V and ` := y/F (x, y).

The flag curvature is defined as

K(x, y, V ) :=
V i (yj Rjikly

l)V k

g
y
(y, y)g

y
(V, V )− g

y
(y, V )2

,

where the index i on Rj
i
kl has been lowered by g

y
. When the Finsler function

F comes from a Riemannian metric, g
y

is simply the Riemannian metric, Rjikl

is the usual Riemann tensor, and K(x, y, V ) reduces to the familiar sectional

curvature of the 2-plane spanned by {y, V }.
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Finsler
manifold M

transverse
edge V

basepoint x
flagpole y

`

flag

TxM

Figure 2. A typical flag, based at the point x on a Finsler manifold M . The

flagpole is y, and the “cloth” part of the flag is `∧V . The entire flag lies in the

tangent space TxM .

Since g
y
(y, y) = F 2(x, y), the flag curvature can be reexpressed as

K(x, y, V ) =
V

i (`j
Rjikl `

l)V k

g
y
(V, V )− g

y
(`, V )2

.

The denominator here is the area-squared of the parallelogram formed by V and

the g
y

unit vector ` = y/F .

The tensor Rik := `j Rjikl `
l is called the predecessor of the flag curvature. It

is proved in [Bao et al. 2000] that Rki = Rik.

We also note that `iRik = 0 = Rik `k. The second equality is immediate

because Rj
i
kl is manifestly skew-symmetric (Section 1.1.3) in k and l. The first

equality follows from the symmetry of Rik.

One can use y
i
Rik = 0 = Rik y

k to show that if {y, V1} and {y, V2} have the

same span, then K(x, y, V1) = K(x, y, V2). In other words, K depends on x, y,

and span{y, V }.

A Finsler metric is of scalar curvature if K(x, y, V ) does not depend on V ,

that is, if Rik V iV k = K(x, y)(gik − `i`k)V iV k. This says that two symmetric

bilinear forms generate the same quadratic form. A polarisation identity then

tells us that the bilinear forms in question must be equal. So, Finsler metrics of

scalar curvature are described by

Rik = K(x, y)(gik − `i`k),

where `i = Fyi = g
yi/F (see Section 1.1.2).
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Example (Numata metrics). Numata [1978] has shown that the Finsler

metrics

F (x, y) =
√

qij(y)yiyj + bi(x)yi
,

where q is positive definite and b is closed, are of scalar curvature. Note that the

first term of F is a locally Minkowski norm, Riemannian only when the qij are

constant.

Consider the case that qij = δij and b = df , where f is a smooth function on

R
n. If necessary, scale f so that the open set M :=

{

x ∈ R
n :

√

δijfxifxj < 1
}

is nonempty. Then a straightforward calculation reveals that F is of scalar

curvature on M with

K(x, y) =
3

4

1

F 4
(fxixj y

i
y

j)2 −
1

2

1

F 3
(fxixjxky

i
y

j
y

k).

The computation in [Bao et al. 2000] utilises the spray curvature and Berwald’s

formula, to be discussed in Section 1.2.3. The Numata metrics are projectively

flat. For Finsler metrics of (nonconstant) scalar curvature but not projectively

flat, see [Shen 2004] in this volume. ♦

The flag curvature is an important geometric invariant because its sign governs

the growth of Jacobi fields, which in turn gives qualitative information about

short geodesic rays with close initial data. See [Bao et al. 2000]. To bring

out the essential difference between the Finslerian and Riemannian settings, we

consider the case of surfaces. There, once the basepoint x and the flagpole y are

chosen, span{y, V } is equal to the tangent plane TxM for all transverse edges V .

Thus every Finsler surface is of scalar curvature K(x, y).

Remark. It is evident from the Numata metrics that the sign of K(x, y) can

depend on the direction of the flagpole y ∈ TxM . By contrast, when the surface

is Riemannian, this K(x, y) reduces to the usual Gaussian curvature K(x), which

does not depend on y. The implication of this difference is profound when we

survey the immediate vicinity of any fixed x. If the landscape is Riemannian,

the sign of K(x) creates only one type of geometry near x: hyperbolic, flat,

or spherical. If the landscape is Finslerian, the sign of K(x, y) can depend on

the direction y of our line of sight, making it possible to encounter all three

geometries during the survey!

If K is a constant (namely, it depends neither on V , nor y, nor x), the Finsler

metric F is said to be of constant flag curvature. The tensorial criterion is

Rik = K (gik − `i`k), with K constant. For later purposes, we rewrite it as

F
2
R

i
k = K (F 2

δ
i
k − y

i g
yk),

where g
yk := gksy

s (see Section 1.1.2).

Example (Bryant’s metrics). Bryant discovered an interesting 2-parameter

family of projectively flat Finsler metrics on the sphere S
2, with constant flag
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curvature K = 1. Here we single out one metric from this family for presentation;

see [Bryant 1997] for the geometry behind the construction.

Parametrise the hemispheres of S
2 via the map (x, y) 7→

(

x, y, s
√

1−x2
−y2

)

,

with s = ±1. Denote tangent vectors by (u, v) = u∂x + v∂y ∈ T(x,y)S
2, and

introduce the following abbreviations:

r
2 := x

2 + y
2
, P

2 := 1− r
2
, B := 2r

2
− 1;

R
2 := u

2 + v
2
, C := xu+ yv;

a := (1+B
2)

(

(P 2
R

2 +C
2)+B(P 2

R
2
−C

2)
)

+8(1+B)C2
P

4;

b := (1+B
2)

(

(P 2
R

2
−C

2)−B (P 2
R

2 +C
2)

)

− 8(0+B)C2
P

2
.

We emphasise that in b, the very last term contains C2P 2 and not C2P 4.

The formula for the Finsler function is then

F (x, y;u, v) =
1

1+B2

(
1

P

√

a+
√

a2 + b2

2
+2C

)
.

Note that a is a quadratic and a2 + b2 is a quartic. All the geodesics of F

are arcs of great circles with Finslerian length 2π. As a comparison, the corre-

sponding Finsler function for the standard Riemannian metric on S
2 is simply

(1/P )
√

P 2R2 +C2. For additional discussions, see [Bao et al. 2000; Sabau 2003;

Shen 2004]. ♦

In dimension greater than two, a Schur lemma says that if K does not depend

on V and y, it must be constant. This was proved in [del Riego 1973], then in

[Matsumoto 1986]; see also [Berwald 1947].

In two dimensions, K can be a function of position x only without being

constant. All Riemannian surfaces with nonconstant Gaussian curvature belong

to this category; for non-Riemannian examples, see Section 4.1.1.

1.2.2. Rapscák’s identity. We now prepare to relate the flag curvature to one of

Berwald’s spray curvatures. Suppose F and F are two arbitrary Finsler metrics,

with geodesic spray coefficients G
i and G

i. We think of F as a “background”

metric, and use a colon to denote horizontal covariant differentiation with respect

to the Chern connection of F . (Note that F:j vanishes by Section 1.1.3, but not

F:j .) Finally, let gij denote the inverse of the fundamental tensor of F , and let

the subscript 0 abbreviate contraction with y: for instance, F:0 = F:j y
j .

Then Rapcsák’s identity [Rapcsák 1961] reads

G
i = G

i + y
i

(
1

2F
F:0

)
+ 1

2
Fg

ij
(

(F:0)yj − 2F:j

)

.

Since Finsler metrics generally involve square roots, another form of Rapcsák’s

identity is more user-friendly:

G
i = G

i + 1

4
g

ij
(

(F 2
:0)yj − 2F

2
:j

)

.
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The derivation of the identity involves three key steps, in which the basic fact

FFyi = gij y
j will be used repeatedly without mention.

We first verify that 2Gi = (FFxk)yi yk
−FFxi .

2Gi = γijk y
j
y

k = 1

2
(gij,xk − gjk,xi + gki,xj )yj

y
k

= (gij y
j)xk y

k
−

1

2
(gjk y

j
y

k)xi = ( 1

2
F

2)yixk y
k
− ( 1

2
F

2)xi , (†)

where grs := ( 1

2
F 2)yrys , and the last displayed equality follows from two appli-

cations of Euler’s theorem.

Next, observe that FFxr = FF:r +N
j
r

g
yj , where g

yj := gjsy
s and N is the

nonlinear connection of F . Indeed, horizontal differentiation with respect to F

is given by ( · · · ):r = ( · · · )xr −N
j
r ( · · · )yj . Thus

FFxr = F (F:r +N
j
r Fyj ) = FF:r +N

j
r (gjs y

s). (‡)

Here we have chosen to reexpress Fxr using the nonlinear connection of F rather

than that of F , thereby opening the door for G to enter the picture.

Finally, we substitute equality (‡) into the purpose of (†), getting

2Gi = Fyi F:k y
k +F (F:k)yi y

k
−FF:i+(N j

k)yi
g
yj y

k +N
j
k(g

yj)yi y
k
−N

j
i

g
yj .

Note that (F:k)yi y
k = (F:0)yi −F:i. Also, since N

j
k = (Gj)yk , Euler’s theorem

gives

(N j
k)yi

g
yj y

k = (Gj)yi
g
yj = N

j
i

g
yj ,

N
j
k (g

yj)yi y
k = (2Gj)

(

( 1

2
F

2)yjysyi y
s + gjs δ

s
i

)

= (2Gj)(0+ gji).

These two statements constitute the heart of the entire derivation. After using

them to simplify the above expression for 2Gi, and relabelling i as r, we have

2Gr = 2Gj
gjr +

1

F

g
yr F:0 +F

(

(F:0)yr − 2F:r

)

.

Contracting with 1

2
g

ir yields Rapcsák’s identity in its original form. The user-

friendly version follows without much trouble.

1.2.3. Spray curvatures and Berwald’s formulae. The definition of the flag

curvature through a connection (for example, Chern’s) has theoretical appeal,

but is not practical if one wants to compute it. Even for relatively simple Finsler

metrics, the machine computation of any name-brand connection is already a

daunting and often insurmountable task, let alone the curvature. This is where

Berwald’s spray curvatures come to the rescue. They originate from his study of

systems of coupled second order differential equations, and are defined entirely

in terms of the geodesic spray coefficients [Berwald 1929].

K
i
k := 2(Gi)xk − (Gi)yj (Gj)yk − y

j(Gi)xjyk +2G
j(Gi)yjyk ,

Gj
i
kl := (Gi)yjykyl .
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These spray curvatures are related to the predecessor of the flag curvature, and

to the P curvature of Chern’s, in the following manner:

F
2
R

i
k = y

j
Rj

i
kly

l = K
i
k,

1

F
Pj

i
kl = −Gj

i
kl +(Ȧi

jk)yl .

The statement about P follows from the fact that the Berwald connection (G)yy

can be obtained from the Chern connection Γ by adding Ȧ. This, together with

a companion formula, is discussed in the reference [Bao et al. 2000] (whose Gi is

twice the G
i in the present article). Explicitly,

Ȧ
i
jk = (Gi)yjyk −Γi

jk and Ȧijk = −
1

2

g
ys(G

s)yiyjyk ,

where g
ys := gsty

t. The key that helps establish the first claim is the realisation

that G
i = 1

2
Γi

pq y
p
y

q, which holds because contracting A with y gives zero.

When calculating the y-Hessian of G
i, we need the latter part of Section 1.1.3

and the Bianchi identity `
j
Pj

i
kl = −Ȧ

i
kl. As for the second claim, here is a

sketch of the derivation:

◦ Start with Ȧ
s
jk = (Gs)yjyk − Γs

jk, apply ∂yi , contract with g
ys, and use

P = −F ∂yΓ (Section 1.1.3). We get g
ys (Ȧs

jk)yi = g
ys (Gs)yiyjyk + `

s
Pjski.

◦ With the two Bianchi identities (3.4.8) and (3.4.9) of [Bao et al. 2000], it can

be shown that `sPjski = −`sPsjki = Ȧjki.

◦ The term gys (Ȧs
jk)yi on the left is equal to `s (Ȧs

jk);i, which in turn =

(`s Ȧ
s
jk);i − `s;i Ȧ

s
jk = 0− (gsi − `i`s)Ȧ

s
jk = −Ȧijk.

◦ These manoeuvres produce Ȧijk = −
1

2

g
ys(G

s)yiyjyk as stated.

We are now in a position to express the Chern curvatures in terms of the

Berwald spray curvatures. Note that applying ∂yl to Ȧ
i
jk = (Gi)yjyk − Γi

jk

immediately yields the statement involving P . The derivation of the formula

F
2
R

i
k = K

i
k makes frequent use of the relationship

y
k Γi

jk = N
i
j , (∗)

from Section 1.1.3. We first demonstrate that

y
r

δT

δxs
=

δ

δxs
(yr

T )+N
r
sT. (∗∗)

This arises from 0 = y
r
|s = δ

δxs y
r + y

k Γr
ks; see Section 1.1.3. Property (∗)

gives y
k Γr

ks = y
k Γr

sk = N
r
s. Thus δ

δxs y
r = −N

r
s, and (∗∗) follows from the

product rule.

Using (∗∗) and (∗), we ascertain that

F
2
R

i
k = y

j

(
δ

δxk
N

i
j −

δ

δxj
N

i
k

)
. (∗∗∗)

Indeed, F
2
R

i
k is obtained by contracting with y

j
y

l the explicit formula for Rj
i
kl

(Section 1.1.3). After several uses of (∗), we get the intermediate expression
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yj(yl δxkΓi
jl)− yl(yj δxlΓi

jk) + yj Γi
hk Nh

j −N i
hNh

k. Now apply (∗∗) to the

first two sets of parentheses, and use (∗) again. The result simplifies to (∗∗∗).

Finally, recall from Section 1.1.3 that N i
j := (Gi)yj , so Euler’s theorem gives

y
j
N

i
j = 2G

i. Consequently,

y
j

δ

δxk
N

i
j =

δ

δxk
(2G

i)+N
i
j N

j
k by (∗∗)

= (2G
i)xk −N

j
k (2G

i)yj +N
i
j N

j
k = (2G

i)xk − (Gi)yj (Gj)yk ,

−y
j

δ

δxj
N

i
k = −y

j(N i
k)xj +(yj

N
h

j)(N
i
k)yh = −y

j(Gi)ykxj +2G
j(Gi)ykyj .

Summing these two conclusions gives Berwald’s formula for K i
k. (For ease of

exposition, we shall refer to K
i
k simply as the spray curvature.)

We now return to the setting of two arbitrary Finsler metrics F and F , as

discussed in the previous subsection. Denote their respective spray curvatures

by K
i
k and K

i
k. According to Rapcsák’s identity, the geodesic coefficients of F

and F are related by G
i = G

i +ζ
i. Inspired by Shibata–Kitayama, we now show

that substituting this decomposition into Berwald’s formula for K
i
k allows us to

rewrite the latter in a split and covariantised form

K
i
k = K

i
k +2(ζi):k − (ζi)yj (ζj)yk − y

j(ζi
:j)yk +2ζ

j(ζi)yjyk +3ζ
j
Ȧ

i
jk,

where the colon refers to horizontal covariant differentiation with respect to the

Chern connection of F , and Ȧ is associated to F as well.

Remarks. 1. Had we used the Berwald connection (which equals the Chern

connection plus Ȧ), that 3ζȦ term in the above formula would have been

absorbed away.

2. If the background metric were Riemannian, F
2 = aij(x)yi

y
j , then Aijk =

1

2
F(aij)yk would be zero because a is independent of y. Hence Ȧ = 0 as well.

Since A = 0, the Chern connection is given by the usual Christoffel sym-

bols of a. Also, the Chern and Berwald connections coincide for Riemannian

metrics because they differ merely by Ȧ.

Here is a sketch of the derivation of the split and covariantised formula. First

we replace G by G + ζ in Berwald’s original formula, obtaining

K
i
k = K

i
k +2(ζi)xk − (ζi)yj (ζj)yk − y

j(ζi)xjyk +2ζ
j(ζi)yjyk

−N
i
j(ζ

j)yk − (ζi)yjN
j
k +2Gj(ζi)yjyk +2ζ

j(Gi)yjyk . (†)

Next, let Γ̃ denote the Chern connection of F . Then horizontal covariant

differentiation of ζ is

ζ
i
:j =

(

(ζi)xj −N
l
j(ζ

i)yl

)

+ ζ
lΓ̃i

lj ,
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from which we solve for (ζ i)xj in terms of ζi
:j . The result is used to replace

(“covariantise”) all the x-derivatives in (†). The outcome reads

K
i
k = K

i
k +2(ζi):k − (ζi)yj (ζj)yk − y

j(ζi
:j)yk +2ζ

j(ζi)yjyk

− 2ζ
lΓ̃i

lk +2(ζi)ylN
l
k + y

j(ζ l)yk Γ̃i
lj + y

j
ζ

l(Γ̃i
lj)yk

− y
j(N l

j)yk(ζi)yl − y
j
N

l
j(ζ

i)ylyk −N
i
j(ζ

j)yk − (ζi)yjN
j
k

+2Gj(ζi)yjyk +2ζ
j(Gi)yjyk .

It remains to check that the last ten terms on the above right-hand side

actually coalesce into the single term 3ζ
j
Ȧ

i
jk. To that end, homogeneity and

Euler’s theorem enable us to make the substitutions

y
j(N l

j)yk = (N l
j y

j)yk −N
l
k = 2(Gl)yk −N

l
k = N

l
k,

y
j(Γ̃i

lj)yk = (Γ̃i
lj y

j)yk − Γ̃i
lk = (N i

l)yk − Γ̃i
lk,

y
j Γ̃i

lj = y
j Γ̃i

jl = N
i
j ,

y
j
N

l
j = 2Gl

.

After some cancellations, those final ten terms consolidate into

3ζ
j
y

l(Γ̃i
jl)yk = 3ζ

j
(

(Gi)yjyk − Γ̃i
jk

)

= 3ζ
j
Ȧ

i
jk.

1.3. Ricci curvature. The importance of Ricci curvatures (defined below, in

Section 1.3.1) can be seen from the following Bonnet–Myers theorem:

Let (M,F ) be a forward-complete connected Finsler manifold of dimension n.

Suppose its Ricci curvature has the uniform positive lower bound

Ric > (n− 1)λ > 0;

equivalently , y
i
y

j Ricij(x, y) > (n− 1)λF
2(x, y), with λ > 0. Then:

(i) Every geodesic of length at least π/
√

λ contains conjugate points.

(ii) The diameter of M is at most π/
√

λ.

(iii) M is in fact compact .

(iv) The fundamental group π(M,x) is finite.

The Riemannian version of this result is one of the most useful comparison

theorems in differential geometry; see [Cheeger–Ebin 1975]. It was first extended

to Finsler manifolds in [Auslander 1955]. See [Bao et al. 2000] for a leisurely

exposition and references.

1.3.1. Ricci scalar and Ricci tensor. Our geometric definition of the Ricci cur-

vature begins with K(x, y, V ) = V
i
Rik V

k
/
(

g
y
(V, V )− g

y
(`, V )2

)

, a formula for

the flag curvature (Section 1.2.1). If, with respect to g
y
, the transverse edge V

has unit length and is orthogonal to the flagpole y, that formula simplifies to

K(x, y, V ) = V
i
Rik V

k
.
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Using g
y

to measure angles and length, we take any collection of n−1 orthonormal

transverse edges {eν : ν = 1, . . . , n− 1} perpendicular to the flagpole. They

give rise to n− 1 flags whose flag curvatures are K(x, y, eν) = (eν)iRik (eν)k.

The inclusion of en := ` = y/F completes our collection into a g
y

orthonormal

basis B for TxM . Note that K(x, y, eν) is simply Rνν (no sum), the (ν, ν)

component of the tensor Rik with respect to B. Also, as mentioned in Section

1.2.1, `
i
Rik `

k = 0. Thus Rnn = 0 with respect to the orthonormal basis B.

Define, geometrically, the Ricci scalar Ric(x, y) as the sum of those n−1 flag

curvatures K(x, y, eν). Then

Ric(x, y) :=

n−1
∑

ν=1

Rνν =

n
∑

a=1

Raa = R
a

a = R
i
i =

1

F 2
(yj

Rj
i
ily

l) =
1

F 2
K

i
i,

where the last equality follows from Section 1.2.3.

Remarks. 1. The indices on R are to be manipulated by the fundamental

tensor, and the latter is the Kronecker delta in the g
y

orthonormal basis B.

Thus each component Raa has the same numerical value as R
a

a (no sum).

2. The fact that Rik is a tensor ensures that its trace is independent of the basis

used to carry that out. Hence R
a

a = R
i
i. Consequently, the definition of the

Ricci scalar is independent of the choice of those n−1 orthonormal transverse

edges.

3. The invariance of Rj
i
kl under positive rescaling in y makes clear that Ric(x, y)

has the same property. It is therefore meant to be a function on the projec-

tivised sphere bundle of (M,F ), but could just as well live on the slit tangent

bundle TM r 0. In any case, being a function justifies the name scalar.

We obtain the Ricci tensor from the Ricci scalar as follows:

Ricij := ( 1

2
F

2
Ric)yiyj = 1

2
(yk

Rk
s
sl y

l)yiyj .

This definition, due to Akbar-Zadeh, is motivated by the fact that, when F arises

from any Riemannian metric a, the curvature tensor depends on x alone and the

y-Hessian in question reduces to the familiar expression aRi
s
sj , which is aRicij .

The Ricci tensor has the same geometrical content as the Ricci scalar. It can

be shown that

Ric = `
i
`
k Ricik,

Ricik = gik Ric + 3

4
(`i Ric ;k + `k Ric ;i)+ 1

4
(Ric ;i;k +Ric ;k;i),

where the semicolon means F∂y. See [Bao et al. 2000].

1.3.2. Einstein metrics. We defined the Ricci scalar Ric as the sum of n− 1

appropriately chosen flag curvatures. We showed in the last section that this

sum depends only on the position x and the flagpole y, not on the specific n−1

flags with transverse edges orthogonal to y. Thus it is legitimate to think of Ric

as n−1 times the average flag curvature at x in the direction y. In Riemannian
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geometry this is the average sectional curvature among sections spanned by y

and a vector orthogonal to y; so generically the result again depends on both x

and y.

Using the above perspective, it would seem quite remarkable if the said average

does not depend on the flagpole y. Finsler metrics F with such a property,

namely Ric = (n − 1)K(x) for some function K on M , are called Einstein

metrics. This nomenclature is due to Akbar-Zadeh. The reciprocal relationship

(Section 1.3.1) between the Ricci scalar and the Ricci tensor tells us that

Ric = (n− 1)K(x) ⇐⇒ Ricij = (n− 1)K(x)gij .

Going one step further, if that average does not depend on the location x either,

F is said to be Ricci-constant ; in this case, the function K is constant.

Remarks. 1. Every Riemannian surface is Einstein (because Ric equals the

familiar Gaussian curvature K(x)), but not necessarily Ricci-constant. On the

other hand, Finsler surfaces are typically not Einstein, with counterexamples

provided by the Numata metrics in Section 1.2.1.

2. In dimension at least 3, a Schur type lemma ensures that every Riemann-

ian Einstein metric is necessarily Ricci-constant. The proof uses the second

Bianchi identity for the Riemann curvature tensor.

3. It is not known at the moment whether such a Schur lemma holds for Finsler

Einstein metrics in general. However, if we restrict our Finsler metrics to

those of Randers type, then there is indeed a Schur lemma for dimM > 3; see

[Robles 2003] and Section 3.3.1.

A good number of non-Riemannian Einstein metrics and Ricci-constant metrics

are presented in Section 4.

It follows immediately from our geometric definition of Ric that every Finsler

metric of constant flag curvature K must be Einstein with constant Ricci scalar

(n−1)K. As a consistency check, we derive the same fact from the constant flag

curvature criterion in Section 1.2.1, R
i
k = K(δi

k − y
i g

yk/F
2). Indeed, tracing

on i and k, and noting that y
i g

yi = y
i
y

j
gij = F

2, we get Ric = R
i
i = (n−1)K.

1.3.3. Known rigidity results and topological obstructions. We summarise a few

basic results on Riemannian Einstein manifolds. References for this material

include [Besse 1987; LeBrun–Wang 1999].

In two dimensions: Every 2-dimensional manifold M admits a complete Rie-

mannian metric of constant (Gaussian) curvature, which is therefore Einstein.

The construction involves gluing together manifolds with boundary, and is due

to Thurston; see [Besse 1987] for a summary. If M is compact, there is a vari-

ational approach. In [Berger 1971], existence was established by starting with

any Riemannian metric on M and deforming it conformally to one with constant

curvature. For an exposition of the hard analysis behind this so-called (Melvyn)

Berger problem, see [Aubin 1998].
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In three dimensions: For 3-dimensional Riemannian manifolds (M,h), the

Weyl conformal curvature tensor is automatically zero. This has the immediate

consequence that h is Einstein if and only if it is of constant sectional curvature.

Though such rigidity extends to Finsler metrics of Randers type (Section 3.3.2),

it is not known whether the same holds for arbitrary Finsler metrics. The said

rigidity in the Riemannian setting precludes some topological manifolds from

admitting Einstein metrics. Take, for example, M = S
2
× S

1. Were M to

admit an Einstein metric h, the latter would perforce be of constant sectional

curvature. Now M is compact, so h is complete and Hopf’s classification of

Riemannian space forms implies that the universal cover of M is either compact

or contractible. This is a contradiction because the universal cover of M is S
2
×R.

In four dimensions: The basic result is the Hitchin–Thorpe Inequality [Hitchin

1974; Thorpe 1969; LeBrun 1999]: If a smooth compact oriented 4-dimensional

manifold M admits an Einstein metric, then

χ(M) >
3

2
|τ(M)|.

Here χ(M) is the Euler characteristic, τ(M) = 1

3
p1(M) is the signature, and

p1(M) is the first Pontryagin number. The key lies in the following formulae

peculiar to four dimensions [Besse 1987]:

τ(M) =
1

12π2

∫

M

(|W+
|
2
− |W

−
|
2)
√

h dx,

χ(M) =
1

8π2

∫

M

(|S|2 + |W
+
|
2 + |W

−
|
2)
√

h dx,

where S and W are respectively the scalar curvature part and the Weyl part

of the Riemann curvature tensor of h. In the second formula, the fact that h

is Einstein has already been used to zero out an otherwise negative term from

the integrand. The complex projective space CP
2 has the Fubini–Study metric,

which is Einstein; there, τ = 1 and χ = 3. On the other hand, the connected

sum of 4 or more copies of CP
2 fails the inequality and hence cannot admit any

Einstein metric. Finally, the said inequality is not sufficient. See [LeBrun 1999]

for compact simply connected 4-manifolds which satisfy χ >
3

2
|τ |, but which do

not admit Einstein metrics.

In three dimensions, rigidity equips us with all the tools available to space

forms. In particular, there are well-understood universal models. Without this

structure in dimensions at least 4, the analysis of Einstein metrics becomes con-

siderably more difficult. The saving grace in four dimensions may be attributed

to the fact [Singer–Thorpe 1969] that a 4-manifold is Einstein if and only if its

curvature operator (as a self-adjoint linear operator on 2-forms) commutes with

the Hodge star operator. This is the property which leads us to the Hitchin–

Thorpe Inequality. The tools above do not apply in dimensions greater than

four, where there are no known topological obstructions.
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2. Randers Metrics in Their Defining Form

2.1. Basics

2.1.1. Definition and examples. Randers metrics were introduced by Randers

[1941] in the context of general relativity, and later named by Ingarden [1957].

In the positive definite category, they are Finsler spaces built from

• a Riemannian metric a := aij dxi
⊗ dxj , and

• a 1-form b := bi dx
i, with equivalent description b

] := b
i
∂xi ,

both living globally on the smooth n-dimensional manifold M . The Finsler

function of a Randers metric has the simple form F = α +β, where

α(x, y) :=
√

aij(x)yiyj , β(x, y) := bi(x)yi
.

Generic Randers metrics are only positively homogeneous. No Randers metric

can satisfy absolute homogeneity F (x, cy) = |c|F (x, y) unless b = 0, in which

case it is Riemannian.

Examples. The Zermelo navigation metric (page 201) is a Randers metric with

defining data

aij =
λhij +WiWj

λ2
and bi =

−Wi

λ
, where λ := 1−h(W,W ).

Matsumoto’s slope-of-a-mountain metric (page 201) is not of Randers type.

This is because it has the form F = α
2
/(α− β), where α comes from the Rie-

mannian metric on the graph of a certain function f , and β = df .

Of the examples in Section 1.2.1, a subclass of the Numata metrics — those

with constant qij (which serves as our aij) and closed 1-forms b —is Randers,

while Bryant’s metrics are manifestly not Randers. ♦

2.1.2. Criterion for strong convexity. In order that F = α + β : TM → R be a

Finsler function, it must be nonnegative, regular, positively homogeneous, and

strongly convex (Section 1.1.1). Regularity and positive homogeneity can be

established by inspection. Strong convexity concerns the positive definiteness of

the fundamental tensor, which for Randers metrics is

gij =
F

α

(
aij −

a
yi

α

a
yj

α

)
+

(a
yi

α
+ bi

)(a
yj

α
+ bj

)
, where a

yi := aij y
j
.

It turns out that the following three criteria are equivalent:

(1) The a-norm ‖b‖ of b is strictly less than 1 on M .

(2) F (x, y) is positive for all y 6= 0.

(3) The fundamental tensor gij(x, y) is positive definite at all y 6= 0.

Proof: (1) =⇒ (2). Suppose ‖b‖ < 1. A Cauchy–Schwarz type argument gives

±β 6 |β| = |biy
i
| 6 ‖b‖‖y‖ < 1 ·

√

aij yiyj = α.
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In particular, F = α +β is positive.

(2) =⇒ (3). (As stressed in Section 1.1.1, this is false for general Finsler metrics.)

Suppose F = α + β is positive. Then so is Ft := α + tβ, where |t| 6 1. Let gt

denote the fundamental tensor of Ft. Starting with the cited formula for the

fundamental tensor of Randers metrics, a standard matrix identity gives

det(gt) =
(

Ft

α

)n+1

det(a).

For a leisurely treatment, see [Bao et al. 2000]. This tells us that gt has positive

determinant, hence none of its eigenvalues can vanish. These eigenvalues depend

continuously on t. At t = 0, they are all positive because g0 = a is Riemannian.

If any eigenvalue were to become nonpositive, it would have to go through zero

at some t, in which case det(gt) could not possibly remain positive. Thus all

eigenvalues stay positive; in particular, g = g1 is positive definite.

(3) =⇒ (2). As in Section 1.1.1, this follows from F
2(x, y) = gij(x, y)yi

y
j .

(2) =⇒ (1). Suppose F is positive. Then F (x,−b(x)) = ‖b‖(1 − ‖b‖) forces

‖b‖ < 1 wherever b(x) 6= 0. At points where b(x) vanishes, the said inequality

certainly holds.

2.1.3. Explicit formula of the spray curvature. Let a
K

i
k denote the spray curva-

ture tensor of the Riemannian metric a. Then the spray curvature tensor K
i

k
of

the Randers metric F (x, y) := α + β =
√

aij(x)yiyj + bi(x)yi can be expressed

in terms of a
K

i
j and the quantities

lieij := bi|j + bj|i,

a
yi := aij y

j
,

curlij := bi|j − bj|i,

ξ := 1

2
lie00 −αθ0,

θj := b
i curlij ,

ξ|0 := 1

2
lie00|0 −αθ0|0,

through the use of Berwald’s formula (Section 1.2.3) in a split and covariantised

form. When applying Section 1.2.3, set the background metric F to be the

Riemannian a, with Christoffel symbols a
γ

i
jk, and let | instead of : denote the

corresponding covariant differentiation. We also need the fact, derived in [Bao

et al. 2000], that G
i = a

G
i + ζ

i with 2ζ
i = (yi

/F )ξ + α curli0. The resulting

formula for the spray curvature (also independently obtained by Shen) reads

K
i
k = a

K
i
k +yy-Coeff y

i a
yk +yb-Coeff y

i
bk +δ-Coeff δ

i
k

+ 1

4
curlij curlj0

a
yk−

1

4
α

2 curlij curljk + 3

4
curli0 curlk0

+ 1

4
(α2

/F )yi
θj curljk−

3

4
(1/F )yi

θ0 curlk0

+ 1

2
(α/F )yi curlj0 liejk−

1

4
(α/F )yi liej0 curljk

+α curli0|k−
1

2
α curlik|0−

1

2
(1/α) curli0|0

a
yk

+ 1

2
(α/F )yi

θk|0−(α/F )yi
θ0|k + 1

2
(1/F )yi lie00|k−

1

2
(1/F )yi liek0|0.
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The three suppressed coefficients are

yy-Coeff :=
(

α/(2F
2)− 1/(4F )

)

curlj0θj −

(

1/(2F
2)+ 1/(4Fα)

)

curlj0 liej0

+ 1

2
θ0|0/(Fα)− 3

4
ξ
2
/(F 3

α)+ 1

2
ξ|0/(F 2

α),

yb-Coeff := 1

2
(α2

/F
2) curlj0θj −

1

2
(α/F

2) curlj0 liej0 −
3

4
(1/F

3)ξ2 + 1

2
(1/F

2)ξ|0,

δ-Coeff := −
1

2
(α2

/F ) curlj0θj + 1

2
(α/F ) curlj0 liej0 + 3

4
(1/F

2)ξ2
−

1

2
(1/F )ξ|0.

Remark. Covariant differentiation with respect to the Riemannian metric a,

indicated by our vertical slash, can be lifted horizontally to TM r 0, using the

nonlinear connection and the Christoffel symbols of a. The section y of π
∗
TM

then satisfies y
i
|k = 0; see Section 1.1.3. So, in the above expressions, we can

interpret the subscript 0 as contraction with y either before or after the vertical

slash has been carried out, with no difference in the outcome.

2.2. Characterising Einstein–Randers metrics. In this section we derive

necessary and sufficient conditions on a and b for the Randers metric to be

Einstein. Recall that F is Einstein with Ricci scalar Ric(x) if and only if K i
i =

Ric(x)F 2 (Section 1.3.2). We begin by assuming that this equality holds, and

deduce the necessary conditions for the metric to be Einstein. Then we show

that these necessary conditions are also sufficient.

Compute Ki
i by tracing the expression for K i

k in Section 2.1.3 to arrive at

0 = K
i
i −F

2
Ric(x)

= aRic00 +α curli0|i + 1

2
(n− 1)

α

F
θ0|0 −

1

4
(n− 1)

1

F
lie00|0

+ 1

2
(n− 1)

α

F
curli0 liei0 −

1

2
(n− 1)

α
2

F
θ

i curli0 + 1

2
curli0 curli0

+ 1

4
α

2 curlij curlij + 3

16
(n− 1)

1

F 2
(lie00)

2
−

3

4
(n− 1)

α

F 2
lie00θ0

+ 3

4
(n− 1)

α
2

F 2
(θ0)

2
− F

2
Ric(x).

Here, we have used the fact that a
K

i
k, the spray curvature of the Riemannian

metric a, is related to the latter’s Riemann tensor via a
K

i
k = y

j a
Rj

i
kly

l, as

shown in Section 1.2.3. Hence a
K

i
i = y

j a
Rj

i
ily

l = y
j aRicjl y

l = aRic00.

Multiplying this displayed equation by F 2 removes y from the denominators.

The criterion for a Randers metric to be Einstein then takes the form

Rat +αIrrat = 0, where α :=
√

aij(x)yiyj .

Here Rat and Irrat are homogeneous polynomials in y, of degree 4 and 3 respec-

tively, whose coefficients are functions of x. Their formulae are given below.

As observed by Crampin, the displayed equation becomes Rat−αIrrat = 0

if we replace y by −y. The two equations then effect Rat = 0 and αIrrat = 0.
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Being homogeneous in y, Irrat certainly vanishes at y = 0. At nonzero y, we

have α > 0 because aij is positive-definite. Hence Irrat = 0.

Lemma 1. Let F (x, y) :=
√

aij(x)yiyj + bi(x)yi be a Randers metric with posi-

tive definite (i .e., Riemannian) aij . Then F is Einstein if and only if Rat = 0

and Irrat = 0.

The formulae for Rat and Irrat are

Rat = (α2 +β
2)aRic00 +2α

2
β curli0|i + 1

2
(α2 +β

2) curli0 curli0

+ 1

4
α

2(α2 +β
2) curlij curlij − (α4 +6α

2
β

2 +β
4)Ric(x)

+ 1

2
(n− 1)

(

α
2
θ0|0 −

1

2
β lie00|0 +α

2 curli0 liei0

−α
2
βθ

i curli0 + 3

8
(lie00)

2 + 3

2
α

2(θ0)
2
)

,

Irrat = 2β
aRic00 +(α2 +β

2) curli0|i +β curli0 curli0

+ 1

2
α

2
β curlij curlij − 4β(α2 +β

2)Ric(x)

+ 1

2
(n− 1)

(

βθ0|0 −
1

2
lie00|0 +β curli0 liei0 −α

2
θ

i curli0 −
3

2
lie00θ0

)

.

From these two expressions we will derive the preliminary form of three necessary

and sufficient conditions for a Randers metric to be Einstein.

2.2.1. Preliminary form of the characterisation. Assume F is Einstein, so that

Rat = 0 and Irrat = 0. For convenience abbreviate Ric(x) by Ric. Then the

weaker statement Rat−β Irrat = 0 certainly holds, and reads

0= (α2
−β

2)
(

aRic00 +β curli0|i+
1

2
curli0 curli0+ 1

4
α

2 curlij curlij−(α2+3β
2)Ric

+ 1

2
(n− 1)(curli0 liei0 + 3

2
(θ0)

2 + θ0|0)
)

+ 3

16
(n− 1)

(

lie00 +2βθ0

)2

.

Fix x. Considering the right-hand side as a polynomial in y, we see that α
2
−β

2

divides (lie00+2βθ0)
2. The polynomial α

2
−β

2 is irreducible, because if it were to

factor—necessarily into two linear terms — its zero set would contain a hyper-

plane, contradicting the strong convexity condition (‖b‖ < 1), which requires

that it be positive at all y 6= 0 (Section 2.1.2).

Being irreducible, α2
− β2 must divide not just the square but lie00 + 2βθ0

itself. Thus there exists a scalar function σ(x) on M such that

lie00 +2βθ0 = σ(x)(α2
−β

2).

This is our Basic Equation, the first necessary condition for a Randers metric to

be Einstein. Differentiating with respect to y
i and y

k gives an equivalent version:

lieik + biθk + bk θi = σ(x)(aik − bibk).

To recover the original version, just contract this with yiyk. The Basic Equation

is equivalent to the statement that the S-curvature of the Randers metric F is

given by S = 1

4
(n+1)σ(x)F ; see [Chen–Shen 2003].
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Now return to the expression for 0 = Rat−β Irrat. We use the Basic Equation

to replace lie00+2βθ0 with σ(x)(α2
−β

2), and then divide off by a uniform factor

of α2
−β2. The result reads

aRic00 = (α2 +3β
2)Ric −β curlj0|j −

1

4
α

2 curlhj curlhj −
1

2
curlj0 curlj0

−
1

2
(n− 1)

(

3

8
σ

2(x)(α2
−β

2)+ curlj0 liej0 + 3

2
(θ0)

2 + θ0|0

)

.

This is the Ricci Curvature Equation, so named because it describes the Ricci

tensor of a. We obtain the indexed version by differentiating with respect to yi

and y
k, and making use of the symmetry aRicik = aRicki.

aRicik = (aik +3bibk)Ric −
1

2
(bi curljk|j + bk curlji|j)

−
1

4
aik curlhj curlhj −

1

2
curlji curljk

−
1

2
(n− 1)

(

3

8
σ

2(x)(aik − bibk)+ 1

2
(curlji liejk +curljk lieji)

+ 3

2
θiθk + 1

2
(θi|k + θk|i)

)

.

From the Basic and Ricci Curvature Equations we derive the final character-

ising condition, which we call the E23 Equation (the number 23 being of some

chronological significance in our research notes). Two pieces of information from

the Basic Equation are required. To reduce clutter, abbreviate σ(x) as σ. First,

differentiate to obtain

lie00|0 = σ|0(α
2
−β

2)− lie00(σβ + θ0)− 2βθ0|0.

Next, contract the indexed form of the Basic Equation with y
i curlk0 to get

curlj0 liej0 = −βθ
j curlj0 − (θ0)

2
−σβθ0.

Return to the equation 0 = Irrat. Replace the term aRic00 by the right-hand side

of the Ricci Curvature Equation. Then, wherever possible, insert the expressions

for lie00, lie00|0 and curlj0 liej0 given by the Basic Equation. After dividing off a

factor of α
2
−β

2, we obtain the E23 Equation:

curlj0|j = 2Ric β +(n− 1)
(

1

8
σ

2
β + 1

2
σθ0 + 1

2
θ

j curlj0 + 1

4
σ|0

)

. (E23)

Again, differentiating by y
i produces the indexed version

curlj i|j = 2Ric bi +(n− 1)
(

1

8
σ

2
bi + 1

2
σθi + 1

2
θ

j curlji + 1

4
σ|i

)

.

The Basic, Ricci Curvature and E23 Equations are all necessary conditions for

the Randers metric F to be Einstein. Together, they are also sufficient. In view

of Lemma 1 (page 221), we can demonstrate this by showing that they imply

Rat = 0 = Irrat.

Recall that we deduced the E23 Equation from Irrat = 0 by

◦ expressing aRic00 via the Ricci Curvature Equation,

◦ computing lie00, lie00|0 and curlj0 liej0 with the Basic Equation, and

◦ dividing by a uniform factor of α
2
−β

2.
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Reversing these three algebraic steps allows us to recover Irrat = 0 from the E23

Equation.

Likewise, the Ricci Curvature Equation came from Rat−β Irrat = 0 by

◦ using the Basic Equation to replace lie00 +2βθ0 with σ(α2
−β

2), and

◦ dividing by α
2
−β

2.

Again, reversing the two steps above will give us Rat − β Irrat = 0, whence

Rat = 0 because Irrat = 0.

To summarise, the Basic Equation, the Ricci Curvature Equation and the E23

Equation characterise strongly convex Einstein Randers metrics.

In the next section we will refine the three characterising equations by showing

that σ must be constant.

2.2.2. Constancy of the S-curvature. In the previous section we commented

that the S-curvature of any Randers metric F satisfying the Basic Equation is

given by S = 1

4
(n + 1)σ(x)F [Chen–Shen 2003]. The S-curvature is positively

homogeneous of degree 1 in y. In Section 1 we demonstrated a strong preference

for working with objects that are positively homogeneous of degree zero in y.

That is because such objects naturally live on the projectivised sphere bundle

SM as well as the larger slit tangent bundle TM r 0. The compact parameter

space provided by the sphere bundle is generally better suited for global and

analytic considerations. So the object we are really interested in is not S, but

S/F , which is homogeneous of degree zero in y. In this context, when we say that

the S-curvature of any Randers metric satisfying the Basic Equation is isotropic,

we mean that the quotient S

F
is a function of x alone. Similarly, when σ(x) is

constant, F is said to be a metric of constant S-curvature.

The following lemma plays a crucial role in establishing the constancy of the

S-curvature for Einstein Randers metrics.

Lemma 2. The covariant derivative of the tensor curl associated to any Randers

metric is given by

curlij|k = −2b
s a

Rksij + lieik|j − liekj|i.

Proof. Using Ricci identities and the definition of lieij we have

bi|j|k − bi|k|j = b
s a

Risjk,

bi|k|j + bk|i|j = lieik|j ,

−bk|i|j + bk|j|i = −b
s a

Rksij ,

−bk|j|i − bj|k|i = −liekj|i,

bj|k|i − bj|i|k = b
s a

Rjski.

Summing these five equalities and applying the first Bianchi identity produces

the desired formula. �
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Proposition 3. Let F be a strongly convex Randers metric on a connected

manifold , satisfying the Basic Equation (with σ a function of x) and the Ricci

Curvature Equation. Then F is of constant S-curvature (i .e., σ is constant) if

and only if the E23 Equation holds.

In practice, the E23 Equation has proved to be remarkably useful. Proposition 3

shows us that such efficacy is attributable to the constancy of the S-curvature.

Also, since strongly convex Einstein Randers metrics satisfy the Basic, Ricci

Curvature and E23 Equations, the following corollary is immediate.

Corollary 4. Any strongly convex Einstein Randers metric on a connected

manifold is necessarily of constant S-curvature.

Proof of Proposition. The key is to compute a formula for the tensor curli0|i.

Lemma 2 plays a pivotal role. We first contract that lemma with a
ik

y
j to obtain

curli0|i = 2b
i aRici0 + liei

i|0 − liei

0|i, (∗)

a preliminary formula around which all further analysis is centered. Another

contracted version of Lemma 2 will be needed when we calculate a certain term

in 2b
i aRici0 and − liei

0|i. Before plunging into details, here is an outline:

If σ is constant, we use the Basic and Ricci Curvature Equations to finish

calculating the right-hand side of (∗). A third contracted version of Lemma 2

will come into play. The outcome is none other than the E23 Equation.

Conversely, if the E23 Equation is presumed to hold, we immediately get one

formula for curli0|i. We use the Basic, Ricci Curvature, and E23 Equations to

finish calculating the right-hand side of (∗), thereby deducing a second formula

for curli0|i. A comparison of the two then tells us that σ is constant.

Now for the calculations. We first reexpress the terms in the right-hand side

of (∗). The last two terms are handled using the Basic Equation:

liei

i|0 = (n−‖b‖
2)σ|0 −σ (1−‖b‖

2)(σβ + θ0),

liei

0|i = σ|0 −βb
i
σ|i −

1

2
σ

2(n− 2‖b‖2 +1)β + 1

2
σ(2‖b‖2

−n)θ0

+ 1

2
βθiθ

i + 1

2
θ

i curli0 −βθ
i

|i − b
i
θ0|i.

The remaining term, 2b
i aRici0, is handled by the Ricci Curvature Equation:

2b
i aRici0 = θ

i curli0 − (n−1)
(

1

4
‖b‖

2
σ|0 + 1

2
b
i(θi|0 + θ0|i)

)

+β(2(1+ ‖b‖
2)Ric −

1

2
curlij curlij − (n−1)

(

1

8
σ

2(3−‖b‖
2)+ 1

4
b
i
σ|i

)

).

Next we compute the quantities b
i
θi|0, b

i
θ0|i, and θ

i
|i that occur in these

formulae. We will use without explicit mention the equalities

bi|j = 1

2
(lieij +curlij) and bi|j curlij = 1

2
curlij curlij .

For b
i
θi|0, notice that b

i
θi = b

i
b
j curlij = 0, because curlij is skew-symmetric.

Differentiating biθi = 0 and using the Basic Equation gives

b
i
θi|0 = 1

2
θiθ

i
β −

1

2
σθ0 −

1

2
θ

i curli0. (∗∗)
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To compute biθ0|i, expand it as 1

2
bi(lieik − curlik) curlk0 + bibk curli0|k. By

Lemma 2, b
i
b
k curli0|k = b

i
b
k(−2b

j a
Rijk0 + lieik|0 + liei0|k). However, b

i
b
j a

Rijk0

vanishes because a
R is skew-symmetric in the first two indices. Hence

b
i
θ0|i = 1

2
b
i(lieik − curlik) curlk0 + b

i
b
k(lieik|0 + liei0|k).

Our calculation of b
i
θ0|i can now be completed in three steps as follows.

◦ Use the Basic Equation to remove all occurrences of the tensor lie and its

covariant derivatives.

◦ Replace the b
i
θi|0 term, which resurfaces twice, by the right-hand side of (∗∗).

◦ Simplification leads to an expression of the form (1−‖b‖
2)( · · · ) for the quan-

tity (1−‖b‖
2)bi

θ0|i. Strong convexity (Section 2.1.2) allows us to divide both

sides by 1−‖b‖2 to obtain

b
i
θ0|i = 1

2
θiθ

i
β + 1

2
σθ0 −

1

2
θ

i curli0 + ‖b‖
2
σ|0 − b

i
σ|iβ.

The last term of interest, θi
|i, is computed separately for each direction of

the proof. First, if we assume that F is of constant S-curvature (σ is constant),

the Ricci Curvature Equation simplifies. Carrying out an appropriate trace on

Lemma 2, followed by contracting with b and rearranging, we find that

θ
i

|i = 1

2
curlij curlij − b

i(2b
j aRicij + liej

j|i − liej

i|j).

Now replace the Ricci tensor by the right-hand side of the Ricci Curvature Equa-

tion, and use the Basic Equation (with σ constant) to remove all occurrences

of lie and its covariant derivatives. After simplifying we find that each term

contains a factor of 1 + ‖b‖
2 (not the 1−‖b‖

2 occurring previously). Dividing

out by that factor gives

θ
i

|i = 1

2
curlij curlij −

(

2Ric + 1

8
(n− 1)σ2

)

‖b‖
2 + 1

2
(n− 1)θi θ

i
. (†)

Conversely, assume that the E23 Equation holds. Without the constancy of σ

it is not possible to compute θ
i
|i via Lemma 2. Happily, the hypothesised E23

Equation saves the day:

θ
i

|i = (bi curlij)|j = 1

2
curlij curlij − b

i curlji|j

= 1

2
curlij curlij −

(

2Ric + 1

8
(n−1)σ2

)

‖b‖
2 + 1

2
(n−1)θiθ

i
−

1

4
(n−1)bi

σ|i. (‡)

Remark. This is the only place where the E23 Equation gets used in the proof.

We are now ready to complete the proof. Consider the expressions for 2b
i aRici0,

liei
i|0, and − liei

0|i found on the previous page. By (∗), the sum of the three is

curli0|i. Now substitute into this sum the formulae for biθi|0, biθ0|i, and θi
|i just

found, and simplify.

Under the hypothesis that F is of constant S-curvature, using (†) for the value

of θ
i
|i, we get

curli0|i = 2Ric β +(n− 1)
(

1

8
σ

2
β + 1

2
σθ0 + 1

2
θ

i curli0
)

.
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This is the E23 Equation (with σ constant, i.e. σ|i = 0).

If instead we assume that F satisfies the E23 Equation, and use (‡) as the

value of θi
|i, we obtain

curli0|i = 2Ric β +(n− 1)
(

1

8
σ

2
β + 1

2
σθ0 + 1

2
θ

i curli0 +σ|0 −
3

4
‖b‖

2
σ|0

)

.

Comparing this formula for curli0|i with the one given by the E23 Equation indi-

cates that 3

4
(1−‖b‖

2)σ|0 = 0. Since ‖b‖ < 1, we must have σ|0 = 0; equivalently,

all covariant derivatives σ|i vanish. But σ is a function of x, so all its partial

derivatives are zero. Therefore σ is constant on the connected M . �

2.2.3. Final characterisation of Einstein–Randers metrics. In Section 2.2.1 we

showed that strongly convex Einstein Randers metrics are characterised by the

preliminary form of the Basic, Ricci Curvature and E23 Equations. The con-

stancy of σ, established in Corollary 4, can now be used to refine these conditions

to their final form.

Let’s begin with the final form of the Basic Equation. Since the equation

involves no derivatives of σ, it undergoes little cosmetic alteration. We simply

write σ instead of σ(x) to emphasise the constancy of the function:

lie00 +2βθ0 = σ (α2
−β

2).

Equivalently, the indexed form reads

lieik + biθk + bk θi = σ (aik − bibk).

The final form of the Ricci Curvature Equation is derived in two steps. First,

use the Basic Equation above to remove the tensor lie and its covariant deriva-

tives from the preliminary expression in Section 2.2.1. Then replace the curlj0|j

term with the formula given by the E23 Equation in Section 2.2.1. Keep in mind

that the covariant derivatives σ|i vanish because σ is constant. After simplifying,

the result is

aRic00 = (α2 +β
2)Ric(x)− 1

4
α

2 curlhj curlhj −
1

2
curlj0 curlj0

−(n− 1)
(

1

16
σ

2(3α
2
−β

2)+ 1

4
(θ0)

2 + 1

2
θ0|0

)

.

Differentiating by y
i and y

k and applying the symmetry of aRicik produces the

indexed version

aRicik = (aik + bibk)Ric(x)− 1

4
aik curlhj curlhj −

1

2
curlji curljk

−(n− 1)
(

1

16
σ

2(3aik − bibk)+ 1

4
θiθk + 1

4
(θi|k + θk|i)

)

.

The constancy of σ updates the E23 Equation to

curlj
0|j = 2Ric(x)β +(n− 1)

(

1

8
σ

2
β + 1

2
σθ0 + 1

2
θ

j curlj0
)

,

or

curlj
i|j = 2Ric(x)bi +(n− 1)

(

1

8
σ

2
bi + 1

2
σθi + 1

2
θ

j curlji

)

.
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Remark. The final forms of the Basic, E23 and Ricci Curvature Equations are

equivalent to the preliminary forms. In the case of the Basic and E23 Equations,

this follows immediately from the constancy of σ. As for the Ricci Curvature

Equation, its final form was deduced from the preliminary form by replacing

the terms lie00, lie00|0, curlj0 liej0 and curlj0|j with the expressions given by the

Basic and E23 Equations. Reversing this algebraic substitution resurrects the

preliminary form of the Ricci Curvature Equation.

We saw in Section 2.2.1 that the preliminary forms characterise strongly convex

Einstein metrics. Therefore the final forms of the Basic, Ricci Curvature and E23

Equations are necessary and sufficient conditions for the metric to be Einstein.

Moreover, Proposition 3 assures us that, with σ constant, the Basic and Ricci

Curvature Equations alone do the trick.

Theorem 5 (Einstein Characterisation). Let F = α + β be a strongly

convex Randers metric on a smooth manifold M of dimension n > 2, with α
2 =

aij(x)yiyj and β = bi(x)yi. Then (M,F ) is Einstein with Ricci scalar Ric(x) if

and only if the Basic Equation

lieik + biθk + bk θi = σ(aik − bibk)

and the Ricci Curvature Equation

aRicik = (aik + bibk)Ric(x)− 1

4
aik curlhj curlhj −

1

2
curlji curljk

−(n− 1)
(

1

16
σ

2(3aik − bibk)+ 1

4
θiθk + 1

4
(θi|k + θk|i)

)

are satisfied for some constant σ.

Tracing the Basic Equation tells us that σ, besides being related to the S-

curvature (Section 2.2.2), also has the geometrically significant value

σ =
2divb

]

n−‖b‖2
,

where divb] := bi
|i is the divergence of the vector field b] := bi∂xi .

Remark. The Basic Equation, Ricci Curvature Equation, and E23 Equation are

tensorial equations, and highly nonlinear due to the presence of aRicik. They

constitute a coupled system of second order partial differential equations.

Their redeeming feature is being polynomial in the tangent space coordinates

y
i, whereas the original Einstein criterion is not (unless b = 0). This greatly

reduces computational complexity. While testing Randers metrics to see whether

they satisfy the Einstein criterion K
i
i = F

2
Ric(x), we encountered cases in

which the software Maple was unable to complete computations of K
i
i. So, for

those examples we could not directly verify the Einstein criterion. Maple was

able, however, to work efficiently with the three indirect characterising equations.
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2.3. Characterising constant flag curvature Randers metrics

2.3.1. The result. Recall from Section 1.3.1 that the Ricci scalar Ric is the

sum of n − 1 appropriately chosen flag curvatures. Thus, Finsler metrics of

constant flag curvature K necessarily have constant Ricci scalar (n− 1)K, and

are therefore Einstein. By Corollary 4, they must have constant S-curvature.

Computationally, the equation K
i
k = KF

2(δi
k−`

i
`k) characterizing constant

flag curvature is even more challenging than the Einstein equation, which already

gives Maple trouble (see end of previous section). The need for machine-friendly

characterisation equations is acute.

Partly motivated by this, Randers metrics of constant flag curvature have been

characterised in [Bao–Robles 2003]. The same conclusion was simultaneously

obtained in [Matsumoto–Shimada 2002], albeit by a different method. The result

is similar to that described in Theorem 5.

Theorem 6 (Constant flag curvature characterisation). Let F =

α+β be a strongly convex Randers metric on a smooth manifold M of dimension

n > 2, with α
2 = aij(x)yi

y
j and β = bi(x)yi. Then (M,F ) is of constant flag

curvature K if and only if there exists a constant σ such that the Basic Equation

lieik + biθk + bk θi = σ (aik − bibk)

holds and the Riemann tensor of a satisfies the Curvature Equation

a
Rhijk = ξ (aij ahk − aik ahj)−

1

4
aij curlth curltk + 1

4
aik curlth curltj

+ 1

4
ahj curlti curltk −

1

4
ahk curlti curltj

−
1

4
curlij curlhk + 1

4
curlik curlhj + 1

2
curlhi curljk,

with ξ := (K −
3

16
σ

2)+ (K + 1

16
σ

2)‖b‖2
−

1

4
θ

i
θi.

2.3.2. Utility. Theorem 6 provides an indirect but efficient way for checking

whether a given Randers metric is of constant flag curvature.

As we mentioned in Section 2.2.3, tracing the Basic Equation reveals that the

constant σ, whenever it exists, is equal to 2 div b
]
/(n−‖b‖

2). Hence, this quotient

is one of the first items we must compute. If the answer is not a constant, it is

pointless to proceed any further.

If the computed value for σ is constant, surviving the Basic Equation consti-

tutes the next checkpoint. After that, we solve the Curvature Equation for K,

and see whether it is constant.

Example (Finslerian Poincaré disc). This metric is implicit in [Okada

1983], and is extensively discussed in [Bao et al. 2000]. Let r and θ denote polar

coordinates on the open disc of radius 2 in R
2. The Randers metric in question

is defined by the following Riemannian metric a and 1-form b:

a =
dr⊗ dr + r

2
dθ⊗ dθ

(1− 1

4
r2)2

, b =
r dr

(1+ 1

4
r2)(1− 1

4
r2)

.



RICCI AND FLAG CURVATURES IN FINSLER GEOMETRY 229

Note that a is the Riemannian Poincaré model of constant sectional curvature

−1, and b = d log
(

(4+r
2)/(4−r

2)
)

is exact.

This metric is interesting because its geodesic trajectories agree with those

of the Riemannian Poincaré model a. However, as shown in [Bao et al. 2000],

the travel time from the boundary to the center is finite (log 2 seconds), while

the return trip takes infinite time! We summarise below three key steps in

ascertaining that our Randers metric has constant flag curvature K = −
1

4
.

◦ The value of the S-curvature σ is computed to be 2.

◦ Since b is exact, it is closed and curl = 0. In particular, θ = 0 and lieik = 2bi|k.

The Basic Equation is shown to hold with σ = 2.

◦ Since curl = 0 and a has constant curvature −1, the Curvature Equation

reduces to (K + 1

4
)(1+ ‖b‖

2) = 0, which gives K = −
1

4
. ♦

Another byproduct of Theorem 6 is the corrected Yasuda–Shimada theorem,

proved in [Bao–Robles 2003; Matsumoto–Shimada 2002], and discussed near the

end of [Bao et al. 2003]. That theorem characterises, within the family of Randers

metrics satisfying θ = 0, those that have constant flag curvature K. (Those with

K > 0 and θ = 0 were classified in [Bejancu–Farran 2002; 2003].)

Lastly, Theorem 6 provides an important link in the complete classification

of constant flag curvature Randers metrics; see [Bao et al. 2003].

2.3.3. Comparing with the Einstein case. In Sections 1.3.2 and 2.3.1, we pointed

out that Finsler metrics of constant flag curvature are necessarily Einstein. In

particular, Randers metrics characterised by Theorem 6 should satisfy the crite-

ria stipulated in Theorem 5. This is indeed the case. The two Basic Equations

are identical; and tracing the Curvature Equation of Theorem 6 produces the

Ricci Curvature Equation of Theorem 5.

In [Bao–Robles 2003], the characterisation result includes a third condition,

called the CC(23) Equation, which gives a formula for the covariant derivative

curlij|k of curl. We excluded this equation from our statement of Theorem 6

because, like the E23 Equation, it is automatically satisfied whenever the Basic

and Curvature Equations hold with constant σ.

Proposition 7. Suppose F is a strongly convex Randers metric on a connected

manifold , satisfying the preliminary form of the Basic and Curvature Equations

described in [Bao–Robles 2003]. Then F is of constant S-curvature (σ is con-

stant) if and only if the CC (23) Equation of [Bao–Robles 2003] holds.

We omit the proof because it is structurally similar to the one we gave for

Proposition 3. For constant σ, the CC(23) Equation reads:

curlij|k = aik

(

(2K + 1

8
σ

2)bj + 1

2
curlhj θh + 1

2
σθj

)

−ajk

(

(2K + 1

8
σ

2)bi + 1

2
curlhiθh + 1

2
σθi

)

.

Tracing the CC(23) Equation on its first and third indices gives the E23 Equation

(with σ constant) in Section 2.2.1.
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3. Randers Metrics Through Zermelo Navigation

3.1. Zermelo navigation. Zermelo [1931] posed and answered the following

question (see also [Carathéodory 1999]): Consider a ship sailing on the open sea

in calm waters. Suppose a mild breeze comes up. How must the ship be steered

in order to reach a given destination in the shortest time?

Zermelo assumed that the open sea was R
2 with the flat/Euclidean metric.

Recently, Shen generalised the problem to the setting where the sea is an ar-

bitrary Riemannian manifold (M,h). Shen [2002] finds that, when the wind is

time-independent, the paths of shortest time are the geodesics of a Randers met-

ric. This will be established in Section 3.1.1. For the remainder of this section,

we develop some intuition by considering the problem on the infinitesimal scale.

Given any Riemannian metric h on a differentiable manifold M , denote the

corresponding norm-squared of tangent vectors y ∈ TxM by

|y|
2 := hij y

i
y

j = h(y, y).

Think of |y| as measuring the time it takes, using an engine with a fixed power

output, to travel from the base-point of the vector y to its tip. Note the symmetry

property |−y| = |y|.

The unit tangent sphere in each TxM consists of all those tangent vectors u

such that |u| = 1. Now introduce a vector field W such that |W | < 1, the spatial

velocity vector of our mild wind on the Riemannian landscape (M,h). Before

W sets in, a journey from the base to the tip of any u would take 1 unit of time,

say, 1 second. The effect of the wind is to cause the journey to veer off course

(or merely off target if u is collinear with W ). Within the same 1 second, we

traverse not u but the resultant v = u+W instead.

As an example, suppose |W | = 1

2
. If u points along W (that is, u = 2W ), then

v = 3

2
u. Alternatively, if u points opposite to W (u = −2W ), then v = 1

2
u. In

these two scenarios, |v| equals 3

2
and 1

2
instead of 1. So, with the wind present, our

Riemannian metric h no longer gives the travel time along vectors. This prompts

the introduction of a function F on the tangent bundle TM , to keep track of the

travel time needed to traverse tangent vectors y under windy conditions. For all

those resultants v = u+W mentioned above, we have F (v) = 1. In other words,

within each tangent space TxM , the unit sphere of F is simply the W -translate

of the unit sphere of h. Since this W -translate is no longer centrally symmetric

about the origin 0 of TxM , the Finsler function F cannot be Riemannian.

Given any Finsler manifold (M,F ), the indicatrix in

���p0
Wx

h = 1

F = 1
TxMeach tangent space is Sx(F ) := {y ∈ TxM : F (x, y) = 1}.

The indicatrices of h and the Randers metric F with

navigation data (h,W ) are related by a rigid transla-

tion: Sx(F ) = Sx(h) + Wx. In particular, the Randers

indicatrix is simply an ellipse centered at the tip of Wx.
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In the following section we will algebraically derive an expression for F , show-

ing that it is a Randers metric. Then we demonstrate that the paths of shortest

time are indeed the geodesics of this F .

3.1.1. Algebraic and calculus-of-variations aspects. We return to the earlier

discussion and consider those u ∈ TxM with |u| = 1; equivalently, h(u, u) = 1.

Into this, we substitute u = v−W and then h(v,W ) = |v| |W | cos θ. Introducing

the abbreviation λ := 1− |W |
2, we have

|v|
2
− (2 |W | cos θ) |v| −λ = 0.

Since |W | < 1, the resultant v is never zero, hence |v| > 0. This leads to

|v| = |W | cos θ+
√

|W |
2 cos2 θ +λ, which we abbreviate as p+q. Since F (v) = 1,

we see that

F (v) = 1 = |v|
1

q + p
= |v|

q− p

q2
− p2

=

√

[h(W, v)]2 + |v|2λ

λ
−

h(W, v)

λ
.

It remains to deduce F (y) for an arbitrary y ∈ TM . Note that every nonzero

y is expressible as a positive multiple c of some v with F (v) = 1. For c > 0,

traversing y = cv under the windy conditions should take c seconds. Conse-

quently, F is positively homogeneous: F (y) = cF (v). Using this homogeneity

and the formula derived for F (v), we find that

F (y) =

√

[h(W, y)]2 + |y|2λ

λ
−

h(W, y)

λ
.

Here, F (y) abbreviates F (x, y); the basepoint x has been suppressed temporarily.

As promised, F is a Randers metric. Namely, it has the form F (x, y) =
√

aij(x)yiyj + bi(x)yi, where a is a Riemannian metric and b a differential 1-

form. Explicitly,

aij =
hij

λ
+

Wi

λ

Wj

λ
, bi =

−Wi

λ
.

Here Wi := hij W
j and λ = 1 − W

i
Wi. In particular, there is a canonical

Randers metric associated to each Zermelo navigation problem with data (h,W ).

Incidentally, the inverse of a is given by

a
ij = λ(hij

−W
i
W

j), and b
i := a

ij
bj = −λW

i
.

Under the influence of W , the most efficient navigational paths are no longer

the geodesics of the Riemannian metric h; instead, they are the geodesics of the

Finsler metric F . To see this, let x(t), for t ∈ [0, τ ], be a curve in M from

point p to point q. Return to our imaginary ship sailing about M , with velocity

vector u but not necessarily with constant speed. If the ship is to travel along

the curve x(t) while the wind blows, the captain must continually adjust the

ship’s direction u/|u| so that the resultant u+W is tangent to x(t). The travel

time along any infinitesimal segment ẋ dt of the curve is F (x, ẋ dt) = F (x, ẋ) dt,

because as explained above it is the positively homogeneous F (not h) that keeps
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track of travel times. The captain’s task is to select a path x(t) from p to q that

minimises the total travel time
∫

τ

0

F (x, ẋ) dt.

This quantity is independent of orientation-preserving parametrisations due to

the positive homogeneity of F and the change-of-variables theorem. Such an

efficient path is precisely a geodesic of the Finsler metric F , which is said to

have solved Zermelo’s problem of navigation under the external influence W .

Let’s look at some 2-dimensional examples. Being in two dimensions, we

revert to the common notation of denoting position coordinates by x, y rather

than x
1, x

2, and components of tangent vectors by u, v rather than y
1, y

2.

Example (Minkowski space). Consider R
2 equipped with the Euclidean met-

ric hij = δij . Let W = (p, q) be a constant vector field. The resulting Randers

metric is of Minkowski type, and is given by

F (x, y;u, v) =

√

(pu+qv)2 +(u2+v2)
(

1− (p2+q2)
)

1− (p2+q2)
+

−(pu+ qv)

1− (p2+q2)
.

The condition |W |
2 = p

2 + q
2

< 1 ensures that F is strongly convex. The

geodesics of both h and F are straight lines. Thus, when navigating on flat-land

under the influence of a constant wind, the correct strategy is to steer the ship

so that it travels along a straight line. This means the captain should aim the

ship, not straight toward the desired destination, but slightly off course with a

velocity V , selected so that V +W points at the destination. ♦

Example (Shen’s fish pond). Fish are kept in a pond with a rotational

current. The pond occupies the unit disc in R
2, and hij is again the Euclidean

metric δij . The current’s velocity field is W := −y∂x + x∂y, which describes a

counterclockwise circulation of angular speed 1. These navigation data give rise

to the Randers metric [Shen 2002]

F (x, y;u, v) =

√

(−yu+xv)2 +(u2 + v2)(1−x2
− y2)

1−x2
− y2

+
−yu+xv

1−x2
− y2

,

with |W |
2 = x

2+y
2

< 1. A feeding station is placed at a fixed location along the

perimeter of the pond. The fish, eager to get to the food, swim along geodesics

of F . As observed by a stationary viewer at the pond’s edge, these geodesics are

spirals because it is the fish’s instinct to approach the perimeter quickly, where it

can obtain the most help from the current’s linear velocity (which equals angular

speed times radial distance). An experienced fish will aim itself with a velocity

V , selected so that V +W is tangent to the spiral. ♦

For the pond described above, Shen has found numerically that the geodesics of

F are spirals as expected. Now suppose that instead of fish we have an excited

octopus which secretes ink as it swims toward the feeding station. The resulting
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ink trail comoves with the swirling water. Its exact shape can be deduced by

reexpressing the above spiral with respect to a frame which is comoving with the

water. Shen agrees with this trend of thought and finds, somewhat surprisingly,

that the trail in question is a straight ray.

fish pond ink trail geodesic in space

counterclockwise

current

food food

no current

food food

3.1.2. Inverse problem. A question naturally arises: Can every strongly convex

Randers metric be realised through the perturbation of some Riemannian metric

h by some vector field W satisfying |W | < 1?

The answer is yes. Indeed, let us be given an arbitrary Randers metric F with

Riemannian metric a and differential 1-form b, satisfying ‖b‖
2 := a

ij
bibj < 1.

Set b
i := a

ij
bj and ε := 1−‖b‖

2. Construct h and W as follows:

hij := ε(aij − bibj), W
i := −b

i
/ε.

Note that F is Riemannian if and only if W = 0, in which case h = a. Also,

Wi := hij W
j = −εbi.

Using this, it can be directly checked that perturbing h by the stipulated W

gives back the Randers metric we started with. Furthermore,

|W |
2 := hij W

i
W

j = a
ij

bibj =: ‖b‖2
< 1.

Incidentally, the inverse of hij is

h
ij = ε

−1
a

ij + ε
−2

b
i
b
j
.

This hij , together with W i, defines a Cartan metric F ∗ of Randers type on

the cotangent bundle T
∗
M . A comparison with [Hrimiuc–Shimada 1996] shows

that F ∗ is the Legendre dual of the Finsler–Randers metric F on TM . It is

remarkable that the Zermelo navigation data of any strongly convex Randers

metric F is so simply related to its Legendre dual. See also [Ziller 1982; Shen

2002; 2004].

We summarise:
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Proposition 8. A strongly convex Finsler metric F is of Randers type if and

only if it solves the Zermelo navigation problem on some Riemannian mani-

fold (M,h), under the influence of a wind W with h(W,W ) < 1. Also, F is

Riemannian if and only if W = 0.

Example (Finslerian Poincaré disc). As an illustration of the inverse

procedure, we apply it to the Randers metric F that describes the Finslerian

Poincaré disc (Section 2.3.2). With r and θ denoting polar coordinates on the

open disc of radius 2 in R
2, the Randers metric in question is defined by

a =
dr⊗ dr + r2dθ⊗ dθ

(1− 1

4
r2)2

, b =
r dr

(1+ 1

4
r2)(1− 1

4
r2)

.

The underlying Zermelo navigation data is

h =
(1− 1

4
r
2)2dr⊗ dr + r

2(1+ 1

4
r
2)2dθ⊗ dθ

(1+ 1

4
r2)4

, W =
−r(1+ 1

4
r
2)

1− 1

4
r2

∂r.

It turns out that this Riemannian landscape h on which the navigation takes

place is flat (!), and the associated 1-form

W
[ = −r

1− 1

4
r2

1+ 1

4
r2

dr = −8 d
r
2

(4+ r2)2

is exact. The wind here is blowing radially toward the center of the disc, and its

strength decreases to zero there.

The geodesics of h are straight lines. Those of F have been analysed in detail

in [Bao et al. 2000]. Their trajectories coincide with those of the Riemannian

Poincaré model: straight rays to and from the origin, and circular arcs intersect-

ing the rim of the disc at Euclidean right angles. ♦

3.1.3. General relation between two covariant derivatives. Our goal in Section

3.2 will be to reexpress the Einstein characterisation of Theorem 5 in terms of

the navigation data (h,W ). To that end, it is helpful to first relate the covariant

derivative bi|j of b (with respect to a) to the covariant derivative Wi:j of W (with

respect to h). Let aγi
ij and hγi

jk denote the respective Christoffel symbols of

the Riemannian metrics a and h. We have

bi|j = bi,xj − bs
a
γ

s
ij and Wi:j = Wi,xj −Ws

h
γ

s
ij .

Since
a
γ

i
ij = (a

G
i)yjyk ,

h
γ

i
ij = (h

G
i)yjyk ,

it suffices to compare the geodesic spray coefficients

a
G

i := 1

2

a
γ

i
jky

j
y

k =: 1

2

a
γ

i
00 and h

G
i := 1

2

h
γ

i
jky

j
y

k =: 1

2

h
γ

i
00.

The tool that effects this comparison is Rapcsák’s identity (Section 1.2.2).
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The symbol α denotes the Finsler norm associated to the Riemannian metric a:

α
2(x, y) := aij(x)yi

y
j = a(y, y). According to Section 1.2.2, the user-friendly

form of Rapcsák’s identity gives

a
G

i = h
G

i + 1

4
a

ij
(

(α2
:0)yj − 2α

2
:j

)

.

Using the formula aij = 1

λ
hij + 1

λ2 WiWj derived in Section 1.3.1, we find that

a
ij = λ(hij

−W
i
W

j ) and α
2 =

1

λ
h00 +

1

λ2
W0

2
.

Here, Wi := hij W
j , λ := 1 − W

i
Wi, and the formula for the inverse a

ij is

ascertained by inspection. A straightforward but tedious computation of the

right-hand side of Rapcsák’s identity yields

a
G

i = h
G

i + ζ
i
,

where (using W
s:i to abbreviate W

s
:r h

ri)

ζ
i :=

1

λ
y

i
W

s
Ws:0 + 1

2
W

i
W0:0 +

(
1

2λ
h00 +

1

λ2
W0

2

)
(W i

W
s
W

t
Ws:t −WsW

s:i)

+
1

2λ
W0

(

W
i
W

s(Ws:0 +W0:s)+ (W i
:0 −W0

:i)
)

.

Differentiating with respect to y
j , y

k gives a
γ

i
jk = h

γ
i
jk + (ζi)yjyk , whence

bj|k = bj:k − bi(ζ
i)yjyk . Into the right-hand side we substitute bs = −(1/λ)Ws

(Section 1.3.1), resulting in a formula for bj|k in terms of the covariant derivatives

of W with respect to h. For later purposes, it is best to split the answer into its

symmetric and anti-symmetric parts,

bj|k = 1

2
(bj|k + bk|j)+ 1

2
(bj|k − bk|j) =: 1

2
liejk + 1

2
curljk,

and to introduce the abbreviations

Ljk := Wj:k +Wk:j , Cjk := Wj:k −Wk:j .

Then the said computation gives bj|k = 1

2
liejk + 1

2
curljk, with

liejk = −Ljk −

(
1

λ
hjk +

2

λ2
WjWk

)
W

s
W

t
Lst

+
1+ |W |

2

λ2
W

i(Wi:jWk +Wi:kWj)−
1

λ
(WjWk:i +WkWj:i)W

i
,

curljk = −

1

λ
Cjk +

2

λ2
W

i(Wi:jWk −Wi:kWj).

Observe that since curljk = ∂xkbj−∂xj bk and liejk = b
i
∂xiajk+aik ∂xj b

i+aji∂xkb
i

(where bi = −λW i), the last two conclusions could have been obtained without

relying on the explicit formula of a
γ. In any case, the relation above between

bj|k and the covariant derivatives of W is valid without any assumption on b.
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3.2. Navigation description of curvature conditions. Theorem 5 (p. 227)

characterises Einstein Randers metrics via the defining Riemannian metric a and

1-form b. It says that a Randers metric F is Einstein if and only if both the Basic

and Ricci Curvature Equations hold with constant σ (or S-curvature). Though

this is a substantial improvement over the Einstein criterion K
i
i = Ric(x)F 2,

most notably in the realm of computation, the characterisation does little to

describe the geometry of these metrics. Surprisingly, the breakthrough lies in a

change of dependent variables. We find that replacing the defining data (a, b)

by the navigation data (h,W ) (discussed in Section 3.1.2) yields a breviloquent

geometric description of Einstein Randers metrics. Explicitly, this change of

variables reveals that the Riemannian metric h must be an Einstein metric itself,

and the vector field W an infinitesimal homothety of h. The next two subsections

are devoted to developing this “navigation description”.

3.2.1. Consequences of the Basic Equation. Our first step is to derive the

navigation version of the Basic Equation lieik + biθk + bkθi = σ(aik − bibk) of

page 226. For that we replace aik by (1/λ)hik + (1/λ
2)WiWk, bi by −(1/λ)Wi,

and lieik by the expression derived on the previous page. We also use the formula

for curljk there to compute θk := b
j curljk. Since b

j := a
js

bs = −λW
j , we get

θk = Tk −

1

λ
(W i

W
j
Lij)Wk +

2

λ
|W |

2
W

i
Wi:k.

Here, an abbreviation has been introduced for the ubiquitous quantity

Tk := W
j(Wj:k −Wk:j) = W

j
Cjk.

These manoeuvres, followed by some rearranging, convert the Basic Equation

to λLik +L(W,W )hik = −σhik, where L(W,W ) stands for LstW
s
W

t. Con-

tracting with W i, W k and using λ := 1− |W |
2 shows that L(W,W ) = −σ|W |

2.

Consequently, the navigation version of the Basic Equation is

Lik := Wi:k +Wk:i = −σhik, that is, LW h = −σh.

We name this the LW Equation. It says that W is an infinitesimal homothety

of h; see [Kobayashi–Nomizu 1996, p. 309]. In this equation,

σ must be zero whenever h is not flat.

(In particular, σ must vanish whenever h is not Ricci-flat.) Indeed, let ϕt denote

the time t flow of the vector field W . The LW Equation tells us that ϕ
∗
t
h = e

−σt
h.

Since ϕt is a diffeomorphism, e
−σt

h and h must be isometric; therefore they

have the same sectional curvatures. If h is not flat, this condition on sectional

curvatures mandates that e
−σt = 1, hence σ = 0. The argument we presented

was pointed out to us by Bryant.

Incidentally, the use of h = ε(a− b⊗ b) and W = −b
]
/ε (Section 3.1.2) allows

us to recover the Basic Equation from the LW Equation. Thus the two equations
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are equivalent. This remains so even if σ were to be a function of x, because

neither equation contains any derivative of σ.

We now turn to the derivation of the navigation versions of the Ricci Curva-

ture Equation (Theorem 5, page 227) and the Curvature Equation (Theorem 6,

page 228). The LW Equation affords simplified expressions for many quantities

that enter into the curvature equations of Theorems 5 and 6. The key in all such

simplifications can invariably be traced back to the statement

Wi:j = 1

2
(Lij + Cij) = −

1

2
σhij + 1

2
Cij .

We first address all but one of the terms on the right-hand sides of the cur-

vature equations. Keep in mind that indices on curl, θ, and ayi := aij yj are

manipulated by the Riemannian metric a, while those on C, T , and h
yi := hij y

j

are manipulated by the Riemannian metric h. The relevant formulae are

curlij = −

1

λ
Cij +

1

λ2
(TiWj −TjWi),

curlij = −C
i
j +

1

λ
T

i
Wj ,

curlij = −λC
ij;

a
yi =

1

λ

h
yi +

1

λ2
WiW0,

θi =
1

λ
Ti,

θ
i = T

i
.

This does not address the term θ0|0 (equivalently θi|k+θk|i), which appears on

the right-hand side of the Ricci Curvature Equation (Section 2.2.3). To tackle

this, as well as the left-hand sides of those curvature equations, we shall need the

relation between the geodesic spray coefficients a
G

i and h
G

i. That relation, first

derived in Section 3.1.3, undergoes a dramatic simplification in the presence of

the LW Equation. The result is

a
G

i = h
G

i + ζ
i
,

where

ζ
i = y

i
1

2λ
(T0 −σW0)−T

i

(
1

4λ
h00 +

1

2λ2
W0

2

)
+

1

2λ
C

i
0W0.

Hence

θ0|0 = θ0:0 − 2θi ζ
i =

1

λ
T0:0 −

1

λ2
W0T

i
Ci0 +

(
1

2λ2
h00 +

1

λ3
W0

2

)
T

i
Ti.

Differentiating these two statements with respect to y
j
, y

k gives an explicit

relation between the Christoffel symbols a
γ

i
jk and h

γ
i
jk, as well as a formula for

θj|k+θk|j in terms of the navigation data (h,W ). However, we refrain from doing

so. In the following two subsections, we shall determine the navigation version

of the Ricci Curvature Equation in Theorem 5 and of the Curvature Equation

in Theorem 6. It is found, in retrospect, that the computational tedium is

significantly lessened by working with aRic00,
a
K

i
k rather than aRicij ,

a
Rhijk.

Consequently, the relation a
G

i = h
G

i +ζ
i and the formula for θ0|0 should suffice.
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3.2.2. Einstein–Randers metrics. The contracted form of the Ricci Curvature

Equation (Section 2.2.3) reads

aRic00 = (α2 +β
2)Ric(x)− 1

4
α

2 curlhj curlhj −
1

2
curlj0 curlj0

−(n− 1)
(

1

16
σ

2(3α
2
−β

2)+ 1

4
(θ0)

2 + 1

2
θ0|0

)

.

With α
2 = a00 = (1/λ)h00 +(1/λ

2)W0
2 and β = b0 = −(1/λ)W0, the simpli-

fied formulae in Section 3.2.1, and Ric(x) =: (n− 1)K(x), all the terms on the

right-hand side are accounted for.

For the left-hand side, note first that aRic00 = aKi
i. Specialising the split and

covariantised form of Berwald’s formula (Section 1.2.3) to F = a and F = h,

and taking the natural trace, we have

aRic00 = hRic00 +(2ζ
i):i − (ζi)yj (ζj)yi − y

j(ζi
:j)yi +2ζ

j(ζi)yjyi .

Though ζ
i has a simplified formula (Section 3.2.1), computing the four terms

dependent on ζ is still tedious. That task is helped by the LW Equation and the

navigation description [Robles 2003] of the E23 Equation:

W
i
:0:i = (n− 1)

(

K(x)+ 1

16
σ

2
)

W0.

The result is unexpectedly elegant:

hRic00 = (n− 1)
(

K(x)+ 1

16
σ

2
)

h00.

Differentiating away the contracted y
i
, y

k gives hRicik.

Conversely, it has been checked that, via h = ε(a− b⊗ b) and W = −b]/ε

(Section 3.1.2), the above navigation description reproduces the characterisation

in Theorem 5. Thus the characterisation (in terms of a, b) is equivalent to the

navigation description (in terms of h, W ). In particular, Theorem 5 implies:

Theorem 9 (Einstein navigation description). Suppose the Randers met-

ric F solves Zermelo’s problem of navigation on the Riemannian manifold (M,h)

under the external influence W , |W | < 1. Then (M,F ) is Einstein with Ricci

scalar Ric(x) =: (n− 1)K(x) if and only if there exists a constant σ such that

(i) h is Einstein with Ricci scalar (n− 1)
(

K(x)+ 1

16
σ2

)

, that is,

hRicik = (n− 1)
(

K(x)+ 1

16
σ

2
)

hik,

and

(ii) W is an infinitesimal homothety of h, namely ,

(LW h)ik = Wi:k +Wk:i = −σhik.

Furthermore, σ must vanish whenever h is not Ricci-flat .

We call this a ‘description’ rather than a ‘characterisation’ because, in contrast

with Theorem 5, it makes explicit the underlying geometry of Einstein–Randers

metrics. Section 4 will illustrate Theorem 9 with a plethora of examples.
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3.2.3. Constant flag curvature Randers metrics. For Randers metrics of con-

stant flag curvature, the equation destined to be recast into navigational form

is given in Theorem 6. Contracting it with yh, yk, raising the index i with a,

and relabelling j as k, we obtain the following expression for the spray curvature
a
K

i
k (= y

j a
Rj

i
kl y

l; Section 1.2.3):

a
K

i
k =

(

(K−
3

16
σ

2)+(K+ 1

16
σ

2)bs
bs−

1

4
θ

s
θs

)

(δi
k α

2
−y

i a
yk)

+ 1

4
curls0(curls

i a
yk+y

i curlsk−curls0 δ
i
k)− 1

4
α

2 curlsi curlsk−
3

4
curli0 curlk0.

Here a
yk := aiky

i. This is equivalent to the Curvature Equation because

a
Rhijk = 1

3

(

(a
Kij)ykyh − (a

Kik)yjyh

)

. (∗)

We now recast the equality just given for a
K

i
k. All the terms on the right-

hand side are routinely computed, using α2 = a00 = (1/λ)h00 + (1/λ2)W0
2,

bs = −(1/λ)Ws, b
s = −λW

s, and the simplified formulae in Section 3.2.1.

For the left-hand side, we first specialise the split and covariantised form of

Berwald’s formula (Section 1.2.3) to F = a and F = h, getting

a
K

i
k = h

K
i
k +(2ζ

i):k − (ζi)ys(ζs)yk − y
s(ζi

:s)yk +2ζ
s(ζi)ysyk .

Into this we substitute the simplified formula for ζ (Section 3.2.1). The ensu-

ing computation is assisted by the prodigious use of the LW Equation and the

navigation description of the CC(23) Equation:

Wi:j:k =
(

K + 1

16
σ

2
)

(hik Wj −hjk Wi).

The result is as elegant as the Einstein case:

h
K

i
k =

(

K + 1

16
σ

2
)

(δi
k h00 − y

i h
yk),

where h
yk := hik y

i. Lowering the index i with the Riemannian metric h and

differentiating in the same fashion as formula (∗) gives hRhijk.

We have verified that the use of h = ε(a− b⊗ b) and W = −b
]
/ε (Section

3.1.2) converts the above navigation description in terms of h, W back to the

characterisation in terms of a, b presented by Theorem 6. So the two pictures

are indeed equivalent, and Theorem 6 implies:

Theorem 10 (Constant flag curvature navigation description). Sup-

pose the Randers metric F solves Zermelo’s problem of navigation on the Rie-

mannian manifold (M,h) under the external influence W , |W | < 1. Then (M,F )

is of constant flag curvature K if and only if there exists a constant σ such that

(i) h is of constant sectional curvature (K + 1

16
σ

2), that is,

h
Rhijk =

(

K + 1

16
σ

2
)

(hijhhk −hikhhj) ,

and
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(ii) W is an infinitesimal homothety of h, namely ,

(LW h)ik = Wi:k +Wk:i = −σhik.

Furthermore, σ must vanish whenever h is not flat .

Examples. We present three favorite examples to illustrate the use of Theorem

10. In the examples below: position coordinates are denoted x, y, z rather than

x
1, x

2, x
3; components of tangent vectors are u, v, w instead of y

1, y
2, y

3.

Funk disc. The Finslerian Poincaré example was discussed in Section 2.3.2

and Section 3.1.2. Here we revisit it a third time, for the sake of those who prefer

to work with simple navigation data.

Fix the angle θ and contract the radius via r 7→ r/
(

1+ 1

4
r2

)

. This map is an

isometry of the Finslerian Poincaré model onto the Funk metric of the unit disc

[Funk 1929; Okada 1983; Shen 2001]. The navigation data of the Funk metric is

simple: h is the Euclidean metric and the radial W = −r∂r is an infinitesimal

homothety with σ = 2. Writing tangent vectors at (r, θ) as u∂r + v∂θ, we have

F =

√

u2 + r2(1− r2)v2

1− r2
+

ru

1− r2
, with r

2 = x
2 + y

2
.

By Theorem 10, K + 1

16
σ

2 = 0. Hence the Funk metric on the unit disc has

constant flag curvature K = −
1

4
.

The isometry above is a global change of coordinates which transforms the

navigation data in the Section 3.1.2 example into a more computationally friendly

format. ♦

A 3-sphere that is not projectively flat. We start with the unit sphere

S
3 in R

4, parametrised by its tangent spaces at the poles, as in [Bao–Shen 2002].

For each constant K > 1, let h be 1/K times the standard Riemannian metric

induced on S3. The rescaled metric has sectional curvature K. Perturb h by the

Killing vector field

W =
√

K − 1
(

− s(1+x
2), z − sxy,−y − sxz

)

,

with s = ±1 depending on the hemisphere. Then |W | =
√

(K − 1)/K and W is

tangent to the S
1 fibers in the Hopf fibration of S

3. By Theorem 10, the resulting

Randers metric F has constant flag curvature K. Explicitly, F = α +β, where

α =

√

K(su− zv + yw)2 +(zu+ sv−xw)2 +(−yu+xv + sw)2

1+x2 + y2 + z2
,

β =

√

K − 1(su− zv + yw)

1+x2 + y2 + z2
.

This Randers metric is not projectively flat [Bao–Shen 2002]. This is in stark

contrast with the Riemannian case because, according to Beltrami’s theorem,

a Riemannian metric is locally projectively flat if and only if it is of constant

sectional curvature. ♦
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Shen’s fish tank. This example, first presented in [Shen 2002], is a three-

dimensional variant of Shen’s fish pond (Section 3.1.1). Consider a cylindrical

fish tank x2 + y2 < 1 in R3, equipped with the standard Euclidean metric h.

Suppose the tank has a rotational current with velocity vector W = y∂x−x∂y +

0∂z, and a big inquisitive mosquito hovers just above the water. Wishing to

reach the bug as soon as possible, the hungry fish swim along a path of shortest

time —that is, along a geodesic of the Randers metric F = α +β with Zermelo

navigation data h and the infinitesimal rotation W . Explicitly,

α =

√

(−yu+xv)2 +(u2 + v2 +w2)(1−x2
− y2)

1−x2
− y2

,

β =
−yu+xv

1−x2
− y2

, with |W |
2 = x

2 + y
2
.

Since W is a Killing field of Euclidean space we have σ = 0, and Theorem 10

tells us that F is of constant flag curvature K = 0. The same conclusion holds

for the fish pond. ♦

Theorem 10 implies that every constant flag curvature Randers metric is lo-

cally isometric to a “standard model” with navigation data (h,W ), where h is a

standard Riemannian space form (sphere, Euclidean space, or hyperbolic space),

and W is one of its infinitesimal homotheties. It remains to sort these standard

models into Finslerian isometry classes.

Let (M1, F1), (M2, F2) be any two Randers spaces, with navigation data

(h1,W1) and (h2,W2). It is a fact that F1, F2 are isometric as Finsler metrics

if and only if there exists a Riemannian isometry ϕ : (M1, h1) → (M2, h2) such

that ϕ∗W1 = W2. For each standard Riemannian space form (M,h), the isom-

etry group G of h leaves h invariant, but acts on its infinitesimal homotheties

W via push-forward. By the cited fact, all (h,W ) which lie on the same G-

orbit generate mutually isometric standard models. This redundancy can be

suppressed by collapsing each G-orbit to a point. For any fixed K, the resulting

collection of such “points” constitutes the moduli space MK for strongly convex

Randers metrics of constant flag curvature K. Lie theory effects (a parametrisa-

tion and hence) a dimension count of MK ; see [Bao et al. 2003] for details. The

table on the next page includes, for comparison, similar information about the

Riemannian setting and the case θ := curl(b]
, ·) = 0 (Section 2.3.2).

3.3. Issues resolved by the navigation description

3.3.1. Schur lemma for the Ricci scalar. In essence, this lemma constrains the

geometry of Einstein metrics in dimension > 3 by forcing the Ricci scalar to

be constant. Historically, this is the second Schur lemma in (non-Riemannian)

Finsler geometry. The first Finslerian Schur lemma concerns the flag curvature;

see [del Riego 1973; Matsumoto 1986; Berwald 1947]. An exposition can be

found in [Bao et al. 2000].
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Dimension of moduli space

K < 0
CFC metrics dim M K > 0 K = 0

σ = 0 σ 6= 0

Riemannian

b equiv. W = 0
n > 2 0 empty

Yasuda–Shimada even n 0∗

θ = 0 odd n 1
1 0∗ 0†

Unrestricted even n n/2

Randers odd n (n+1)/2 (n− 1)/2

The moduli spaces of dimension 0 consist of a single point.
∗ The single isometry class is Riemannian.
† The single isometry class is non-Riemannian, of Funk type.

Table 1. The dimension of the moduli space for several families of constant flag

curvature (CFC) Randers metrics.

In two dimensions, the Ricci scalar of a Riemannian metric is the Gaussian

curvature of the surface. Hence all Riemannian surfaces are Einstein in the

sense of Section 1.3.2. Since the Gaussian curvature is not constant in general,

the Schur lemma fails for Riemannian (and therefore Randers) metrics in two

dimensions. It is natural to ask whether the Schur lemma also fails for non-

Riemannian (W 6= 0) Randers surfaces. The answer is yes. Section 4.1 develops

a class of non-Riemannian Randers surfaces whose Ricci scalars are nonconstant

functions of x alone. In particular, these non-Riemannian surfaces are Einstein,

but fail the Schur lemma.

In dimension n > 3, every Riemannian Einstein metric h is Ricci-constant.

This follows readily from tracing the second Bianchi identity and realising that,

for such metrics, hRicij = (S/n)hij , where S denotes the scalar curvature of h.

Lemma 11 (Schur lemma). The Ricci scalar of any Einstein Randers metric

in dimension greater than two is necessarily constant .

Proof. Suppose F is an Einstein metric of Randers type, with navigation data

(h,W ) and Ricci scalar Ric(x) = (n− 1)K(x). Theorem 9 says that h must be

Einstein with Ricci scalar (n− 1)
(

K + 1

16
σ2

)

, for some constant σ. Since n > 2

here, the Riemannian Schur lemma forces K + 1

16
σ

2 to be constant. The same

must then hold for K and Ric = (n− 1)K. �

Another proof of the Schur lemma, based on the Einstein characterisation of

Section 2.2.3 (Theorem 5 on page 227), is given in [Robles 2003].

3.3.2. Three dimensional Einstein–Randers metrics. For Riemannian metrics

in three dimensions, being Einstein and having constant sectional curvature are

equivalent conditions because the conformal Weyl curvature tensor automatically

vanishes. It is not known whether this rigidity holds for Einstein–Finsler metrics
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in general. However, the said rigidity does hold for Randers metrics. The proof

rests on a comparison between the navigation descriptions for Einstein (Section

3.2.2) and constant flag curvature (Section 3.2.3) Randers metrics.

Proposition 12 (Three-dimensional rigidity). Let F be a Randers metric

in three dimensions. Then F is Einstein if and only if it has constant flag

curvature.

Proof. Metrics of constant flag curvature are always Einstein. As for the

converse, let F be an Einstein Randers metric with navigation data (h,W ). The

Ricci scalar of F is (n − 1)K = 2K; in view of the Schur lemma above, K

has to be constant. According to Theorem 9, h is Einstein with Ricci scalar

2
(

K + 1

16
σ

2
)

, for some constant σ. By Riemannian three-dimensional rigidity, h

must have constant sectional curvature K + 1

16
σ

2. The navigation description in

Theorem 10 then forces F to be of constant flag curvature K. �

Interestingly, the two navigation descriptions also tell us that any Einstein Ran-

ders metric that arises as a solution to Zermelo’s problem of navigation on a

Riemannian space form must be of constant flag curvature.

3.3.3. The Matsumoto identity. This identity first came to light in a letter from

Matsumoto to the first author. It says that any Randers metric of constant flag

curvature K satisfies

σ
(

K + 1

16
σ

2
)

= 0.

Since metrics of constant flag curvature are Einstein, it is natural to wonder

whether this identity can be extended to Einstein Randers metrics. The answer

is yes, by the following result:

Proposition 13. Let F be an Einstein Randers metric whose Ricci scalar

Ric(x) we reexpress as (n− 1)K(x). Then

σ
(

K + 1

16
σ

2
)

=

{

W
i
K:i when n = 2,

0 when n > 2.

Here, σ is the constant supplied by the navigation data (h,W ) of F . According

to Theorem 9, h must be Einstein with Ricci scalar (n− 1)(K + 1

16
σ

2), and W

satisfies the LW Equation Wi:j +Wj:i = −σhij .

Proof. We begin with the Ricci identity for the tensor Cij := Wi:j −Wj:i,

namely Cij:k:h −Cij:h:k = Csj
h
Ri

s
kh + Cis

h
Rj

s
kh, where h

R
i

h jk
is the curvature

tensor of h. Trace this identity on (i, k) and (h, j) to obtain

(

W
i:j

:i −W
j:i

:i

)

:j =
(

W
i:j

−W
j:i

)

hRicij = 0,

where the second equality follows because hRicij is symmetric.
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Next, we compute W i:j
:i −W j:i

:i. To that end, differentiating the LW Equa-

tion gives Wp:q:r +Wq:p:r = 0. This and the Ricci identity for W imply that

Wi:j:k −Wj:i:k = (Wi:j:k −Wi:k:j)− (Wk:i:j −Wk:j:i)+ (Wj:k:i −Wj:i:k)

= W
s h

Risjk −W
s h

Rksij +W
s h

Rjski.

Using h to trace on (i, k) and raise j, we get W
i:j

:i−W
j:i

:i = 2Ws
hRicsj . Since

hRic = (n− 1)(K + 1

16
σ2)h, we are led to

W
i:j

:i −W
j:i

:i = 2(n− 1)
(

K + 1

16
σ

2
)

W
j
. (∗)

Finally, tracing the LW Equation gives 2W
j
:j = −nσ, whence

0 = (W i:j
:i −W

j:i
:i):j = 2(n− 1)

(

W
j
K:j −

1

2
nσ(K + 1

16
σ

2)
)

.

The identity now follows from the Schur lemma (Section 3.3.1). �

Remark. If we assume that the LW Equation (or the Basic Equation, which

amounts to the same) holds, the E23 Equation (Section 2.2.3) can be reexpressed

as (∗). Thus (∗) is the navigation version of the E23 Equation. It can be further

refined, using Wi:j:k +Wj:i:k = 0, to read

W
i
:j:i = (n− 1)

(

K + 1

16
σ

2
)

Wj .

A second derivation of the Matsumoto Identity, based on Theorem 5 (page 227),

may be found in [Robles 2003].

4. Einstein Metrics of Nonconstant Flag Curvature

We now present a variety of non-Riemannian Randers metrics that are either

Einstein or Ricci-constant. Apart from the 2-sphere, which is included merely

because of its simplicity, all examples have nonconstant flag curvatures. Section

3.1.1 will be used without mention.

4.1. Examples with Riemannian–Einstein navigation data

4.1.1. Surfaces of revolution. Our first class of examples comprises surfaces of

rotation in R
3. We shall see that solutions to Zermelo’s problem of navigation

under infinitesimal rotations are Einstein, with Ricci scalar Ric(x) equal to the

Gaussian curvature of the original Riemannian surface. Among the examples

below, two (the elliptic paraboloid and the torus) have nonconstant Ricci scalar.

These solutions of Zermelo navigation are non-Riemannian counterexamples to

Schur’s lemma in dimension 2.

To begin, take any surface of revolution M , obtained by revolving a profile

curve

ϕ 7→

(

0, f(ϕ), g(ϕ)
)
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in the right half of the yz-plane around the z axis. The ambient Euclidean space

induces a Riemannian metric h on M . Parametrise M by

(θ, ϕ) 7→
(

f(ϕ) cos θ, f(ϕ) sin θ, g(ϕ)
)

, 0 6 θ 6 2π.

Now consider the infinitesimal isometry W := ε∂θ, where ε is a constant. By

limiting the size of our profile curve if necessary, there is no loss of generality in

assuming that f is bounded. Choose ε so that ε|f | < 1 for all ϕ. Expressing h

in the given parametrisation, we find that the solution to Zermelo’s problem is

the Randers metric F = α +β on M , with

α =

√

u2f2 + v2 (1− ε2f2)(ḟ2 + ġ2)

1− ε2f2
, β =

−εuf2

1− ε2f2
,

and ‖b‖
2 = ε

2
f

2 = |W |
2. Here, u∂θ +v∂ϕ represents an arbitrary tangent vector

on M , and ḟ , ġ are the derivatives of f , g with respect to ϕ. Note that the

hypothesis ε|f | < 1 ensures strong convexity.

Because W is a Killing vector field, σ vanishes. The Einstein navigation

description (Theorem 9 on page 238) then says that the Ricci scalar Ric of F is

identical to that of the Riemannian metric h. The latter is none other than the

Gaussian curvature K of h. Hence

Ric(x) = K(x) =
ġ (ḟ g̈− f̈ ġ)

f (ḟ2 + ġ2)2
,

where the dots indicate derivatives with respect to ϕ.

We examine three special cases of surfaces of revolution:

Sphere. The unit sphere is given as a surface of revolution by f(ϕ) = cos ϕ and

g(ϕ) = sinϕ. We will consider the infinitesimal rotation W = ε∂θ, with ε < 1 to

effect the necessary ε|f | < 1. The Randers metric solving Zermelo’s problem of

navigation on the sphere under the influence of W is of constant flag curvature

K = 1, with

α =

√

u2 cos2 ϕ+ v2 (1− ε2 cos2 ϕ)

1− ε2 cos2 ϕ
, β =

−εu cos2 ϕ

1− ε2 cos2 ϕ
. ♦

Elliptic paraboloid. This is the surface z = x
2 + y

2 in R
3. Set the multiple

ε in W to be 1. The resulting Randers metric lives on the x
2 + y

2
< 1 portion

of the elliptic paraboloid, and has Ricci scalar 4/(1+4x
2 +4y

2)2. It reads

α =

√

(−yu+xv)2 +
(

(1+4x2)u2 +8xyuv +(1+4y2)v2
)

(1−x2
− y2)

1−x2
− y2

,

β =
yu−xv

1−x2
− y2

, with ‖b‖
2 = x

2 + y
2
. ♦

Torus. Specialize to a torus of revolution with parametrisation

(θ, ϕ) 7→
(

(2+ cos ϕ) cos θ, (2+ cos ϕ) sin θ, sinϕ
)

.
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Set the multiple ε in W to be 1

4
. The resulting Randers metric on the torus has

Ricci scalar cos ϕ/(2+ cosϕ). It is given by

α =
4
√

16(2+ cosϕ)2u2 +
(

16− (2+ cos ϕ)2
)

v2

16− (2+ cos ϕ)2
,

β =
−4(2+ cosϕ)2u

16− (2+ cos ϕ)2
, with ‖b‖

2 = 1

16
(2+ cos ϕ)2. ♦

4.1.2. Certain Cartesian products. Recall from Section 1.3.2 the geometri-

cal definition of the Ricci scalar and of Einstein metrics. When specialised to

Riemannian n-manifolds, it says that the Ricci scalar Ric is obtained by sum-

ming the sectional curvatures of n− 1 appropriately chosen sections that share

a common flagpole. A Ricci-constant metric is remarkable because this sum is a

constant. A moment’s thought convinces us of the following:

The Cartesian product of two Riemannian Einstein metrics with the same

constant Ricci scalar ρ is again Ricci-constant, and has Ric = ρ.

As we will illustrate, this allows us to construct a wealth of Ricci-constant

Randers metrics with nonconstant flag curvature.

Fix ρ. For i = 1, 2, let Mi be an ni-dimensional Riemannian manifold with

constant sectional curvature ρ/(ni − 1). Therefore Mi is Einstein with Ricci

scalar ρ. Let Wi be a Killing field on Mi. Let h denote the product Riemannian

metric on the Cartesian product M = M1 ×M2. Then h has constant Ricci

scalar ρ, and admits W = (W1,W2) as a Killing field.

By Theorem 9 (page 238), the Randers metric F generated by the naviga-

tion data (h,W ) on M is Einstein, with constant Ricci scalar ρ. When ρ is

nonzero, the Einstein metric h on M is not of constant sectional curvature.

Hence Theorem 10 (page 239) assures us that F will not be of constant flag

curvature. Proposition 8 (page 234) then says that the Randers metric F is

non-Riemannian if and only if the wind W is nonzero. So it suffices to select a

nonzero W1.

To that end, let ˜M1 be the n1-dimensional, complete, simply connected stan-

dard model of constant sectional curvature ρ/(n1 − 1). The space of globally

defined Killing fields on ˜M1 is a Lie algebra g of dimension 1

2
n1(n1 +1). Select a

nonzero W̃1 from g. The isometry group G of ˜M acts on g via push-forwards. Let

H be any finite subgroup of the isotropy group of W̃1. Then we have a natural

projection π : ˜M1 → ˜M1/H. The quotient space M1 := ˜M1/H is of constant

sectional curvature ρ/(n1 − 1), and has a nonzero Killing field W1 := π∗W̃1.

As a concrete illustration, we specialise the discussion to spheres. For sim-

plicity, we specify the finite subgroup H to be trivial.

Example. Let Mi (i = 1, 2) be the ni-sphere of radius
√

ni − 1, ni > 2. Then

Mi has constant sectional curvature 1/(ni − 1), and is therefore Einstein with

Ricci scalar 1. The Cartesian product M = M1×M2, equipped with the product
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metric h, is an (n1 + n2)-dimensional Riemannian Einstein manifold with Ricci

scalar 1, and it is not of constant sectional curvature.

The Lie algebra of Killing fields on the n-sphere Sn(r) with radius r is isomor-

phic to so(n +1), regardless of the size of r. The following description accounts

for all such vector fields. View points p ∈ S
n(r) as row vectors in R

n+1. For

each Ω ∈ so(n + 1), the assignment p 7→ pΩ ∈ Tp(S
n(r)) is a globally defined

Killing vector field on S
n(r).

Now, for i = 1, 2, take Ωi ∈ so(ni +1). Denote points of M1, M2 by p and q,

respectively. The map (p, q) 7→ (pΩ1, qΩ2) ∈ T(p,q)M defines a Killing field W

of h. This W is nonzero as long as Ω1, Ω2 are not both zero. Zermelo navigation

on (M,h) under the influence of W generates a non-Riemannian Randers metric

with constant Ricci scalar 1, and which is not of constant flag curvature. ♦

4.2. Examples with Kähler–Einstein navigation data. In this section, we

construct Einstein metrics of Randers type, with navigation data h, which is a

Kähler–Einstein metric, and W , which is a Killing field of h. We choose h from

among Kähler metrics of constant holomorphic sectional curvature, because the

formula can be explicitly written down. There exist much more general Kähler–

Einstein metrics, for instance those with positive sectional curvature; see [Tian

1997].

4.2.1. Kähler manifolds of constant holomorphic sectional curvature Suppose

(M,h) is a Kähler manifold of complex dimension m (real dimension n = 2m)

with complex structure J . Let (z1
, . . . , z

m), where z
α := x

α + ix
ᾱ, denote local

complex coordinates. Here, x
1
, . . . , x

m;x1̄
, . . . , x

m̄ are the 2m real coordinates.

In our notation, lowercase Greek indices run from 1 to m. The complex coordi-

nate vector fields are
Zα := ∂zα = 1

2
(∂xα − i∂xᾱ),

Zᾱ := ∂z̄α = 1

2
(∂xα + i∂xᾱ),

respectively eigenvectors of J with eigenvalues +i and −i. In what follows,

uppercase Latin indices run through 1, . . . ,m, 1̄, . . . , m̄. Also, z̄
α := x

α
− ix

ᾱ

abbreviates the complex conjugate of zα.

The Kähler metric h is a Riemannian (real) metric with the J-invariance

property h(JX, JY ) = h(X,Y ), and such that the 2-form (X,Y ) 7→ h(X,JY ),

known as the Kähler form, is closed.

Let hAB := h(ZA, ZB). The J-invariance of h implies hαβ = 0 = h
ᾱβ̄

. Ex-

panding in terms of the complex basis gives

h = h
αβ̄

(dz
α
⊗ dz̄

β + dz̄
β
⊗ dz

α),

where (h
αβ̄

) is an m×m complex Hermitian matrix. By contrast, using the

real basis and setting HAB := h(∂xA , ∂xB ), we have h = HAB dxA
⊗ dxB , with

H
ᾱβ̄

= Hαβ and Hᾱβ =−H
αβ̄

: the two diagonal blocks are symmetric and identi-

cal, while the off-diagonal blocks are skew-symmetric and negatives of each other.
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The Kähler form being closed is equivalent to either Zγ(h
αβ̄

) = Zα(h
γβ̄

) or

Zγ̄(h
αβ̄

) = Z
β̄
(hαγ̄), which puts severe restrictions on the usual Riemannian con-

nection of h. Consequently, if we expand the curvature operator hR(ZC , ZD)ZB

as h
RB

A
CD ZA in the complex basis, it is not surprising to find considerable

economy among the coefficients:

h
R

β̄

α
CD = h

Rβ
ᾱ

CD = 0 = h
RB

A
γδ = h

RB
A

γ̄δ̄
.

For each Y in the real tangent space TxM , the 2-plane spanned by {Y, JY }

is known as a holomorphic section because it is invariant under J , and the

corresponding sectional curvature (in the usual Riemannian sense) is called a

holomorphic sectional curvature. If all such curvatures are equal to the same

constant c, the Kähler metric is said to be of constant holomorphic sectional

curvature c. Such metrics are characterised by their curvature tensor having the

following form in the complex basis {ZA}:

h
R

βᾱγδ̄
=

c

2
(hβᾱ h

γδ̄
+hγᾱh

βδ̄
).

Equivalently,
h
Rβ

α

γδ̄
=

c

2
(δβ

α
h

γδ̄
+ δ

α
γ h

βδ̄
).

Discussion of all this may be found in [Kobayashi–Nomizu 1996]; but one must

adjust for the fact that their KABCD is our RBACD, and that their definition of

the curvature operator agrees with ours.

Remarks. 1. Suppose h is a Kähler metric of constant holomorphic sectional

curvature c. Return to the expression for h
Rβ

α

γδ̄
above. Tracing on the indices

α and γ, we see that hRic = (m + 1)(c/2)h. That is, h must be an Einstein

metric with constant Ricci scalar (m+1)c/2.

2. If a Kähler metric h were to satisfy the stronger condition of constant sectional

curvature c, then it would necessarily be Einstein with Ricci scalar (n−1)c =

(2m− 1)c; see Section 1.3.1. At the same time, (1) implies that the Ricci

scalar is (m+1)c/2. Hence we would have to have either c = 0 or m = 1.

Thus a Kähler manifold (M,h) can have constant sectional curvature in only

two ways: either h is flat, or the real dimension of M is 2. This rigidity indicates

that in the Kähler category, the weaker concept of constant holomorphic sectional

curvature is more appropriate.

In analogy with the constant sectional curvature case we have a classifica-

tion theorem for Kähler metrics of constant holomorphic sectional curvature

[Kobayashi–Nomizu 1996]:

Any simply connected complete Kähler manifold of constant holomorphic sec-

tional curvature c is holomorphically isometric to one of three standard models:

c > 0: the Fubini–Study metric on CP
n (see below),

c = 0: the standard Euclidean metric on C
n,

c < 0: the Bergmann metric on the unit ball in C
n.
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4.2.2. Killing fields of the Fubini–Study metric. The Fubini–Study metric is

a Kähler metric on CP
m of constant holomorphic sectional curvature c > 0.

Complex projective space is obtained from Cm+1 r 0 by quotienting out the

equivalence relation ζ ∼ λζ, where 0 6= λ ∈ C. Denote the equivalence class

of ζ by [ζ]. CP
m is covered by the charts U

j :=
{

[ζ] ∈ CP
m : ζ

j
6= 0

}

,

j = 0, 1, . . . ,m, with holomorphic coordinate mapping

[ζ] 7→
1

ζj
(ζ0

, . . . , ̂ζj , . . . , ζ
m) =: (z1

, . . . , z
m) = z ∈ C

m
.

In these coordinates, the Fubini–Study metric of constant holomorphic sec-

tional curvature c > 0 has components

h
αβ̄

:= h(Zα, Z
β̄
) =

2

c

(
1

ρ
δαβ −

1

ρ2
z̄αzβ

)
,

where z̄α := δαβ z̄
β, zβ := δβτ z

τ , and ρ := 1+ z
α
z̄α.

Conventional wisdom in complex manifold theory prompts us to construct

some explicit Killing vector field of h by considering ξ := π∗(P
i
j ζ

j
∂ζi). Here,

π : C
m+1

r0 → CP
m is the natural projection and P ∈ u(m+1), the Lie algebra

of the unitary group U(m+1). Note that U(m+1) is the group of holomorphic

isometries of Euclidean C
m+1

r 0.

For concreteness, we compute ξ in the local coordinates of the chart U
0.

We have π(ζ0
, ζ

1
, . . . , ζ

m) := (1/ζ
0)(ζ1

, . . . , ζ
m) =: (z1

, . . . , z
m), from which it

follows that

π∗(∂ζ0) = −

1

ζ0
z

α
∂zα and π∗(∂ζα) =

1

ζ0
∂zα

because the differential of π is simply the matrix

π∗ =
1

ζ0











−z
1 1

0
...

. . .

−z
m

0
1











.

Thus

π∗(P
i
j ζ

j
∂ζi) = P

0
j ζ

j

(
−

1

ζ0
z

α
∂zα

)
+P

α
j ζ

j

(
1

ζ0
∂zα

)

= (−P
0
0 −P

0
β z

β)zα
∂zα +(Pα

0 +P
α

β z
β)∂zα .

With the skew-Hermitian property P
t = −P̄ , and introducing the decomposition

P =

(

E C̄
t

C Q

)

, where







E := P
0
0 is pure imaginary,

C = (Cα) := (Pα
0) ∈ C

m
,

Q = (Qα
β) := (Pα

β) ∈ u(m),

we see that

ξ := π∗(P
i
j ζ

j
∂ζi) =

(

Q
α

β z
β +C

α +(C̄ · z + Ē)zα
)

∂zα .
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The real and imaginary parts of ξ give two real vector fields. A straightforward

calculation shows that only Re ξ is Killing. The failure of Im ξ to be Killing

persists even for CP 1. In that case, the skew-Hermitian Q is simply a pure

imaginary number, C is a single complex constant, and

LIm ξh =

(
2

ρ2

(
1−

2

ρ

)
Im(E + Q̄)+

8

ρ3
Im(EC̄)

)
(dx

1
⊗ dx

1 + dx
1̄
⊗ dx

1̄),

where ρ := 1 + |z|
2. (We hasten to add that for CP

m with m > 1, the dx
α
dx

β̄

and dx
ᾱ
dx

β components of LIm ξh do not vanish.)

Thus, our construction of ξ gives rise to the real Killing fields

W := Re ξ = 1

2
(ξα

∂zα + ξα∂z̄α) = 1

2

(

(Re ξ
α)∂xα +(Im ξ

α)∂xᾱ

)

,

where

ξ
α := Q

α
β z

β +C
α +(C̄ · z + Ē)zα

.

4.2.3. Non-Riemannian Einstein metrics on CP
m. Theorem 9 (page 238) assures

us that the Randers metric F = α + β generated by the navigation data h,W

is a globally defined Einstein metric on CP
m, provided that the Killing field W

satisfies |W | < 1. Since, with ρ := 1+ z
γ
z̄γ , the Fubini–Study metric

h :=
2

c

(
1

ρ
δαβ −

1

ρ2
z̄αzβ

)
(dz

α
⊗ dz̄

β + dz̄
β
⊗ dz

α)

does not have constant sectional curvature for m > 1, Theorem 10 (page 239)

ensures that F will not be of constant flag curvature. Moreover, the Ricci scalar

of F equals that of h, which has the constant value (m+1)c/2 (Section 4.2.1).

Example. To make explicit the Riemannian metric a underlying α and the 1-

form b that gives β, it is necessary to have available the covariant description W [

of the Killing field W . If we write W = W
B

∂xB and HAB := h(∂xA , ∂xB ), then

W [ := (HAB WB) dxA. Using Hαβ = 2 Re h
αβ̄

= H
ᾱβ̄

and H
αβ̄

= 2 Im h
αβ̄

=

−Hᾱβ , a computation tells us that

W
[ = (Re ξᾱ) dx

α +(Im ξᾱ) dx
ᾱ = 1

2
(ξᾱ dz

α + ξᾱ dz̄
α).

Here, ξᾱ := hᾱB ξ
B = hᾱβ ξ

β has the formula

ξᾱ =
2

cρ2

(

ρ(Qαβ z
β +Cα)+ (C̄ · z −C · z̄ + Ē −Qβγ z̄

β
z

γ)zα

)

,

where indices on Q, C, z are raised and lowered by the Kronecker delta.

As long as

|W |
2 := h(W,W ) = 1

2
Re(ξα

ξᾱ) < 1,

the Randers metric F with defining data

a :=
1

λ
h+

1

λ2
W

[
⊗W

[
, b := −

1

λ
W

[
,
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where λ := 1− |W |
2, will be strongly convex. Note that W [

⊗W [ does have

dz
α
dz

β and dz̄
α
dz̄

β components, whereas h doesn’t; thus the Riemannian metric

a is not Hermitian unless W = 0.

For any choice of the constant quantities Q, C, E, the resulting function

|W |
2 is continuous on the compact CP

m, and is therefore bounded. Normalising

these quantities by a common positive number if necessary, the strong convexity

criterion |W |
2

< 1 can always be met. ♦

4.3. Rigidity and a Ricci-flat example. In this final set of examples, we

consider Einstein–Randers metrics on compact boundaryless manifolds M , with

an eye toward those with nonpositive constant Ricci scalar. The information

obtained will complement the Ricci-positive example presented in Section 4.2.3.

We begin by observing that any infinitesimal homothety of (M,h) is neces-

sarily Killing; that is, σ = 0. The proof follows from a divergence lemma (for

compact boundaryless manifolds) and the trace of the LW Equation:

0 =

∫

M

W
i
:i dVh by the divergence lemma [Bao et al. 2000]

=

∫

M

−
1

2
nσ dVh by tracing Wi:j +Wj:i = −σhij ,

where dVh :=
√

h dx. In conjunction with Theorem 9 (page 238), we have:

Lemma 14. Let (M,h) be a compact boundaryless Riemannian manifold . Every

infinitesimal homothety W must be a Killing field ; equivalently , σ = 0. In

particular , if h is Einstein with Ricci scalar Ric, then the navigation data (h,W )

generates an Einstein Randers metric F with Ricci scalar Ric.

4.3.1. Killing fields versus eigenforms. Let W be any Killing vector field on

a Riemannian Einstein manifold (M,h) with constant Ricci scalar Ric. Let

W [ := Wi dxi denote the 1-form dual to W . The action of the Laplace–Beltrami

operator ∆ := dδ + δd on W
[ is given by the Weitzenböck formula

∆W
[ = (−Wi

:j
:j + hRici

j
Wj) dx

i
. (†)

See, for example, [Bao et al. 2000]. Given that hRicij = Ric hij , we have

hRici
j
Wj = Ric Wi.

By a Ricci identity, W
j
:j:i−W

j
:i:j = −

hRici
s
Ws. Since W is Killing, Wi:j +Wj:i

vanishes. Thus W
j
:j = 0 and −W

j
:i = Wi

:j , which reduce that Ricci identity to

−Wi
:j

:j = hRici
s
Ws = Ric Wi.

(Note for later use that if W is parallel but 6≡ 0, then Ric = 0.)

The Weitzenböck formula (†) now becomes

∆W
[ = 2Ric W

[
. (∗)
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Therefore, whenever h is Einstein with constant Ricci scalar Ric, all its Killing

1-forms must be eigenforms of ∆, with eigenvalue 2Ric.

Now suppose M is compact and boundaryless, so that integration by parts can

be carried out freely without generating any boundary terms. Let 〈 , 〉 denote

the L2 inner product on k-forms; namely,

〈ω, η〉 :=
1

k!

∫

M

h
i1j1

· · ·h
ikjk ωi1···ik

ηj1···jk

√

h dx.

Since the codifferential δ is the L2 adjoint of d, we have

2Ric 〈W
[
,W

[
〉 = 〈∆W

[
,W

[
〉 = 〈δW

[
, δW

[
〉+ 〈dW

[
, dW

[
〉 > 0. (‡)

In particular, if Ric is negative, then W must be zero.

On the other hand, using (†) and hRicij = Ric hij , we get

〈∆W
[
,W

[
〉 =

∫

M

(Wi:j W
i:j +Ric |W |

2)
√

h dx.

This enables us to make a Bochner type argument: if Ric = 0, so that W
[ is

harmonic by (∗), then Wi:j must vanish identically.

4.3.2. Digression on Berwald spaces. In anticipation of our discussion of non-

positive Ricci curvature, we review Berwald spaces. (See [Szabó 1981; 2003] for

a complete classification of such spaces.)

Let (M,F ) be an arbitrary Finsler space. M need not be compact boundary-

less, and F need not be Einstein or of Randers type. Let Gi denote the geodesic

spray coefficients of F . Then (M,F ) is a Berwald space if the Berwald connection

coefficients (Gi)yjyk do not depend on y. In particular, all Riemannian and

locally Minkowski spaces are Berwald; for explicit examples belonging to neither

of these two camps, see [Bao et al. 2000].

Now suppose F = α + β is Randers but not necessarily Einstein, and has

navigation data (h,W ). It is known that F is Berwald if and only if the defining

1-form b is parallel. This elegant theorem is due to the efforts of the Japanese

school. See [Bao et al. 2000] for an account of the history and references therein;

see also the errata for a proof by Mike Crampin.

Decompose bi|j = 1

2
lieij + 1

2
curlij into its symmetric and skew-symmetric

parts. Look back at the expression for lie and curl at the end of Section 3.1.3.

(We reiterate here that they were derived under no assumptions on F .) Observe

that Wi:j = 0 implies bi|j = 0. We prove the converse: suppose bi|j = 0.

◦ We have 0 = 2bj|kW
j
W

k = liejkW
j
W

k = −(1/λ)Wj:kW
j
W

k by referring to

Section 3.1.3. Hence Wj:kW
j
W

k = 0.

◦ Using this, a similar calculation gives 0 = 2bj|kW
j = −(2/λ)W j

Wj:k and

0 = 2bj|kW k = −(2/λ)Wj:kW k. That is, W jWj:k = 0 = Wj:kW k.

◦ The formulae for liejk and curljk now simplify to 0 = liejk = −Ljk and

0 = curljk = −(1/λ)Cjk. Hence Wj:k = 1

2
(Ljk + Cjk) = 0.
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Lemma 15. Let F be any Randers metric, with defining data (a, b) and naviga-

tion data (h,W ). The following three conditions are equivalent :

• F is Berwald .

• b is parallel with respect to a.

• W is parallel with respect to h.

4.3.3. A rigidity theorem. We now focus on Einstein Randers metrics of non-

positive constant Ricci scalar, and show that there is considerable rigidity.

We begin by addressing the Ricci-flat case. We saw at the end of 4.3.1 that

Ric = 0 implies that W is parallel. Conversely, if W is parallel and not identi-

cally zero, then Ric = 0 (see parenthetic remark just before (∗) on page 251).

Whence, in conjunction with Lemma 15 and Proposition 8 (page 234), we obtain:

Proposition 16. Let F be an Einstein Randers metric on a compact bound-

aryless manifold M .

• If Ric = 0, then F must be Berwald .

• If F is non-Riemannian and Berwald , then Ric = 0.

The second conclusion is false if we remove the stipulation that F be non-

Riemannian. A Riemannian metric is always Berwald and Randers, and being

Einstein certainly does not mandate it to be Ricci-flat.

Next, we turn our attention to compact boundaryless Einstein Randers spaces

of constant negative Ricci scalar. In this case, by (‡) on page 252, W must be

identically zero. Equivalently, F = h is Riemannian.

Proposition 17. Let F be an Einstein Randers metric with constant negative

Ricci scalar on a compact boundaryless manifold M . Then F is Riemannian.

Together, these two propositions imply the following rigidity theorem.

Theorem 18 (Ricci rigidity). Suppose (M,F ) is a connected compact bound-

aryless Einstein Randers manifold with constant Ricci scalar Ric.

• If Ric < 0, then (M,F ) is Riemannian.

• If Ric = 0, then (M,F ) is Berwald .

Note that locally Minkowskian spaces, being Berwald and of zero flag curvature,

are obvious examples of the second camp. The following arguments show that

there exist Ricci-flat non-Riemannian Berwald–Randers metrics which are not

locally Minkowskian.

Example. Take any K3 surface†, namely a complex surface with zero first Chern

class and no nontrivial global holomorphic 1-forms. All K3 surfaces admit Kähler

†According to [Weil 1979, v. 2, p. 546], K3 surfaces are named after Kummer, Kodaira,
Kähler, and “the beautiful mountain K2 in Kashmir” — the second tallest peak in the world.
One may conjecture that with this last reference Weil was implying that such surfaces are as
hard to conquer as the K2. . .
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metrics (a result due to Todorov and to Siu), and hence Ricci-flat Kähler metrics,

by Yau’s proof of the Calabi conjecture. Since χ(K3) = 24 by Riemann–Roch,

these metrics are not flat by virtue of the Gauss–Bonnet–Chern theorem. See

[Besse 1987] for details and references therein. It is futile to consider the Killing

fields of such Ricci-flat metrics because, by an argument involving Serre duality,

the isometry groups in question are all discrete. To circumvent this difficulty,

set M := K3×S
1 (a compact boundaryless real 5-manifold) and consider the

product metric h on M ; it can be checked that h is also Ricci-flat but not flat.

The vector field W := 0⊕∂/∂t on M is parallel, hence Killing, with respect to h.

Theorem 9 (page 238) tells us that the Randers metric F on M with navigation

data (h,W ) is Ricci-flat, while Proposition 8 (page 234) guarantees that it is not

Riemannian. Theorem 10 (page 239) ensures that F is not of constant (zero)

flag curvature; hence it could not be locally Minkowskian. ♦

Theorem 18 generalises a result of Akbar-Zadeh’s for Finsler metrics of constant

flag curvature [Akbar-Zadeh 1988]:

Suppose (M,F ) is a connected compact boundaryless Finsler manifold of constant

flag curvature λ.

• If λ < 0, then (M,F ) is Riemannian.

• If λ = 0, then (M,F ) is locally Minkowski.

The Ricci rigidity theorem is a straightforward extension of Akbar-Zadeh’s

result when Ric < 0. To appreciate the generalisation when Ric = 0, it is

helpful to note that locally Minkowski spaces are precisely Berwald spaces of

constant flag curvature K = 0; see, for instance, [Bao et al. 2000].

Akbar-Zadeh’s theorem holds for all compact boundaryless Finsler spaces of

constant flag curvature, while the Ricci rigidity theorem above is restricted to

the Randers setting. So, towards a complete generalisation of Akbar-Zadeh’s

result: What should the conclusions be if we replace ‘Randers’ by ‘Finsler’ in

the Ricci rigidity theorem?

5. Open Problems

5.1. Randers and beyond. Table 2 summarises some key information about

Randers metrics, which are the simplest members in the much larger family of

strongly convex (α, β) metrics. Matusmoto’s slope-of-a-mountain metric (Section

1.1.1) is a prime example from this family. Formal discussions of (α, β) metrics

are given in [Matsumoto 1986; Antonelli et al. 1993]; see also [Shen 2004] in this

volume.

For strongly convex (α, β) metrics, how should the entries of the table be

modified?

Also, Randers metrics exhibit three-dimensional rigidity (Section 3.3.2), and

their Ricci scalars obey a Schur lemma (Section 3.3.1).
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Property Characterisation with (a, b) Description with (h,W )

Strong

convexity
‖b‖ < 1 |W | < 1

Berwald a
∇b = 0 h

∇W = 0

Constant

flag

curvature

Lb]a = σ(a− bb)− (bθ + θb)
a
R = poly(K,σ, a, b, curl)

(Theorem 5)

h is a

space form,

LW h = −σh

Einstein
Lb]a = σ(a− bb)− (bθ + θb)

aRic = poly(Ric, σ, a, b, curl, a
∇θ)

(Theorem 6)

h is Einstein,

LW h = −σh

Table 2. Summary of information about Randers metrics

• Does the passage from Randers metrics to (α, β) metrics allow us to construct,

in three dimensions, a Ricci-constant metric which is not of constant flag

curvature?

• Does every Einstein (α, β) metric (Ric a function of x only) in dimension > 3

have to be Ricci-constant?

Finally, fans of Randers metrics can aim to append an extra row to the above

table, characterising Randers metrics of scalar curvature (Section 1.2.1).

5.2. Chern’s question. Professor S.-S. Chern has openly asked the following

question on many occasions:

Does every smooth manifold admit a Finsler Einstein metric?

Topological obstructions prevent some manifolds, such as S2
×S1, from admitting

Riemannian Einstein metrics; see Section 1.3.3 and references therein. By the

navigation description of Theorem 9 (page 238), any manifold that admits an

Einstein Randers metric must also admit a Riemannian Einstein metric. Thus

the same topological obstructions confront Einstein metrics of Randers type.

As a prelude to answering Chern’s question, it would be prudent to first settle

the issue for concrete examples such as S
2
×S

1. The discussion above shows that

in searching for a Finsler Einstein metric on this 3-manifold, we must look beyond

those of Randers type.
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5.3. Geometric flows. On the slit tangent bundle TM r 0, there are two

interesting curvature invariants: the Ricci scalar and the S-curvature. They open

the door to evolution equations which may be used to deform Finsler metrics.

In this frame of mind, we wonder:

• Would a flow driven by the Ricci scalar, such as† ∂t log F = −Ric, enable us

to prove the existence of Finsler metrics with coveted curvature properties?

• Can deformations tailored to the S-curvature be used to ascertain the exis-

tence of Landsberg metrics (Ȧ = 0) which are not of Berwald type (P = 0)?
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jektivkrümmung allgemeiner affiner Räume und Finslersche Räume skalarer Krüm-
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[Szabó 2003] Z. I. Szabó, “Classification of Berwald and symmetric Finsler manifolds
via explicit constructions”, preprint, 2003.



RICCI AND FLAG CURVATURES IN FINSLER GEOMETRY 259

[Thorpe 1969] J. Thorpe, “Some remarks on the Gauss–Bonnet formula”, M. Math.

Mech. 18 (1969), 779–786.

[Tian 1997] G. Tian, “Kähler–Einstein metrics with positive scalar curvature”, Invent.

Math. 130 (1997), 1–39.
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1. Introduction

Finsler geometry is an essential extension of Riemannian geometry. Instead

of an inner product on every tangent space one considers Minkowski norms on

every tangent space. For a Finsler metric the unit sphere in each tangent space is

a strictly convex hypersurface. One obtains for every nonzero tangent vector an

inner product, arising from Minkowski norm; in the Riemannian case these inner

products all coincide on a fixed tangent space. The length of a smooth curve

is well-defined. Geodesics— locally length-minimizing curves parametrized with

constant speed—are uniquely defined for a given initial direction. From the

viewpoint of the calculus of variations Finsler metrics are a suitable generaliza-

tion of Riemannian metrics such that the variational problem for the length of

curves between two fixed points is positive and positive regular. In terms of

physics a Finsler metric describes a Lagrangian system without a potential; a

Riemannian metric can be viewed as the special case of quadratic kinetic energy.

261
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But in contrast to the Riemannian case there is no canonical connection, so

several connections have been used in Finsler geometry. We use here the one

introduced by S.-S. Chern [Bao et al. 2000, Chapter 2], transposed to vector

fields on the manifold for a fixed direction field: Given a nowhere vanishing

vector field V in an open nonempty subset U , there is a uniquely determined

torsionfree connection ∇
V that is almost metric. Using this connection one can

define the flag curvature, which generalizes the sectional curvature in Riemannian

geometry and controls the infinitesimal behavior of geodesics. Given a geodesic

c and a nowhere vanishing geodesic vector field V in an open neighborhood of c

extending the velocity field c′ of the geodesic, there is a Riemannian metric gV

on U such that c is also a geodesic of the Riemannian manifold (U, gV ) and the

flag curvature K(c′;σ) for any plane σ containing c′ coincides with the sectional

curvature K(σ) of gV . In particular the Jacobi fields of the Finsler metric and

of gV coincide along the geodesic c. Thus the flag curvature can be introduced

without selecting a connection. The flag curvature does not completely determine

the metric. For example, in contrast to the Riemannian case, there are Finsler

metrics of constant positive flag curvature on spheres that are not isometric to

the standard Riemannian metric; see [Bao et al. 2003; Bryant 2002; Shen 2002]

for their characterization.

We call a Finsler metric F reversible (or symmetric) if opposite vectors have

the same length: F (X) = F (−X) for all tangent vectors X. In this case the unit

sphere T 1

p
M = {X ∈ TpM | F (X) = 1} is symmetric under reflection through

the origin. But this assumption excludes many interesting examples, for example

Randers metrics, which are Finsler metrics defined by adding a one-form to the

norm induced by a Riemannian metric: F (X) =
√

g(X,X) + α(X), where g is

a Riemannian metric and α is a one-form.

In Riemannian geometry a metric with constant positive sectional curvature

on a compact simply connected manifold is isometric to the standard sphere of

the same curvature. The now classical Sphere Theorem states that a compact,

simply connected manifold of dimension n with sectional curvature K such that
1

4
< K ≤ 1 everywhere is homeomorphic to the n-sphere [Klingenberg 1995, § 2.8;

Abresch and Meyer 1997]. In this form the result is contained in [Klingenberg

1961]; earlier contributions are due to M. Berger, H. Rauch and V. A. Topono-

gov [Berger 1998, I A 2]. The proof uses an estimate for the injectivity radius

and the Toponogov comparison theorem for geodesic triangles. In [Klingenberg

1963] it is shown that one can prove the Sphere Theorem without making use

of Toponogov’s comparison result for geodesic triangles. Instead one uses Morse

theory of the energy functional on the space of curves between two fixed points

and on the space of loops. The injectivity radius is bounded from below by π, so

geodesic loops have length at least 2π and their Morse index is bounded below

by n−1. This implies that the loop space is (n−2)-connected and therefore the

manifold is homotopy equivalent to the n-sphere.
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Though in Finsler geometry the condition of constant positive flag curvature

no longer determines the metric up to isometry, one can show using the expo-

nential map that a simply connected Finsler manifold of constant positive flag

curvature is homeomorphic to the n-sphere. P. Dazord [1968a; 1968b] remarked

that in the case of a reversible Finsler metric one can carry over the Morse-

theoretic proof of the Sphere Theorem found in [Klingenberg 1963]. The original

proof of the Sphere Theorem does not carry over, since the triangle comparison

result cannot be extended to the Finsler case.

The main topic of this article is to show in detail how the estimates for the

injectivity radius, the length of a nonminimal geodesic between two fixed points,

the length of a nonconstant geodesic loop and the length of a nonconstant closed

geodesic can be extended to the case of a nonreversible Finsler metric by in-

troducing the notion of reversibility λ := sup{F (−X) | F (X) = 1} ≥ 1. We

will derive from a length estimate (Proposition 9.9) and from Theorem 9.10 the

following Sphere Theorem for nonreversible Finsler metrics:

Theorem 9.11. A simply connected and compact Finsler manifold of dimension

n≥3 with reversibility λ and with flag curvature K satisfying
(

1− 1

1+λ

)2

<K≤1

is homotopy equivalent to the n-sphere.

A proof appears in [Rademacher 2004]. In this article we will present this result

in detail, adopt a slightly different approach at places. The examples due to

A. Katok of nonreversible Finsler metrics on S
2 with only two geometrically

distinct closed geodesics are of great importance in the theory of closed geodesic

as a test case for several statements [Rademacher 1992, § 5.3]. It was pointed

out in [Rademacher 2004, Chapter 5] that the Finsler metric of Katok’s example

on S
2 coincides with the Finsler metric of constant flag curvature constructed

in [Shen 2002]. These examples show that the length estimate for a shortest

geodesic given in Theorem 9.10 is sharp. Using the Legendre transformation, we

see that Katok’s examples describe Finsler metrics of Randers type.

It remains an open problem whether one can improve the Sphere Theorem

in the nonreversible case by choosing the lower curvature bound 1

4
as in the

reversible case.

2. Conventions

We consider metric structures on a differentiable manifold M = M
n of di-

mension n. If not otherwise stated, differentiable means C∞-differentiable. The

tangent bundle of M is denoted by TM , with projection τ : TM → M , and

TxM := τ
−1(x) for x ∈M . We denote by VM the vector space of smooth vector

fields on M , that is, the space Γ(TM) of smooth sections of the tangent bundle.

The zero section T
0
M of TM is the union of the zero vectors 0x ∈ TxM ; it can

be identified with M . The cotangent bundle of M is denoted by T ∗
M .
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If (x1, . . . , xn) are coordinates on M , the coordinate vector fields (∂1, . . . , ∂n)

defined by ∂i(x) = (∂/∂xi)(x) form a basis for the tangent space TxM . For

this set of coordinates, the tangent bundle can be given canonical coordinates by

associating (x, y) = (x1
, . . . , x

n
, y

1
, . . . , y

n) to the tangent vector
∑

n

i=1
y

i
∂i(x) ∈

TxM . A vector field V can be written as V (x) =
∑

n

i=1
v

i(x)∂i(x).

The real vector space of differentiable functions f : M → R is denoted by

FM = C
∞(M). A multilinear map

A : VM × · · · × VM
︸ ︷︷ ︸

k

→ FM

is called a (0, k)-tensor field on M if it is linear in each argument with respect to

the vector space FM . A multilinear map A : VM × · · · × VM 7→ VM is called a

(1, k)-tensor field on M if it satisfies the same condition. A (0, k)-tensor field A

on M is symmetric if for any x ∈M the induced k-linear map Ax : TxM × . . .×

TxM → R is symmetric, that is, satisfies Ax(Xσ(1), . . . ,Xσ(k)) = Ax(X1, . . . ,Xk)

for all X1, . . . ,Xk ∈ TxM and all permutations σ ∈ Sk. Symmetric (1, k)-tensor

fields are defined similarly.

LetX be a vector field onM and let f ∈ FM . For p ∈M and γ : (−ε, ε) →M

a smooth curve with γ(0) = p and γ ′(0) = X(p), the quantity (d/dt)|t=0f(γ(t))

does not depend on the choice of γ. As p varies, this defines a new function on

M , called the Lie derivative of f in the direction of X, and written Xf or X(f).

We also write df(p)X for Xf(p).

The projection τ : TM → M induces by differentiation the double tangent

bundle τ∗ : TTM → TM ; for any X ∈ TxM , the space TX(TM) is called the

double tangent space atX ∈ TM and has dimension 2n, where n is the dimension

of M . The tangent vectors Y ′(0) of vertical curves Y : (−ε, ε) → TxM ⊂

TM with Y (0) = X span a distinguished n-dimensional subspace of TX(TM),

called the vertical tangent space and denoted by T v

X
(TM) = TX(TxM). Hence

T v

X
(TM) = ker

(

dτ : TX(TM) → TxM
)

. Together the vertical subspaces form

the vertical subbundle T v
TM ⊂ TTM .

Given a tangent vector Y ∈ TxM , we define a map Y : TxM → T (TxM) =

TxM × TxM by setting Y (X) = (X,Y ). Then from any vector field on M we

obtain an associated vertical vector field on TM (that is, a section of T v
TM):

its value at X ∈ TxM is Y (X), where Y is the value at x of the given vector

field on M . All of this is independent of coordinates.

If Y is a vector field on M with associated vertical vector field Y on TM , the

Lie derivative of a function F : U ⊂ TM → R with respect to Y is given by

Y F (V ) = (d/dt)|t=0F (V+tY ).

In terms of a set of canonical coordinates (x, y) = (x1
, . . . , x

n
, y

1
, . . . , y

n) on

TM , we have ∂/∂xiF = ∂/∂y
i
F for F equal to each coordinate function; hence

∂/∂xi = ∂/∂y
i
.
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3. Finsler Metrics

Definition 3.1. A Finsler manifold (M,F ) is a differentiable manifold M

equipped with a Finsler metric F . A Finsler metric on M is a continuous map,

F : TM → R differentiable outside the zero section T
0
M and satisfying three

conditions:

(1) F is positively homogeneous, that is, F (µX) = µF (X) for all positive µ ∈ R

and all tangent vectors X ∈ TM .

(2) If F (X) = 0 then X = 0.

(3) The Legendre condition or strong convexity condition: for any nonzero V ∈

TxM , the symmetric bilinear form gV : TxM × TxM → R given by

gV (X,Y ) = 〈X,Y 〉V := 1

2
XY F

2(V ) =
1

2

∂
2

∂s∂t

∣
∣
∣

s=0
t=0

F
2(V + sX + tY )

is positive definite.

Remark 3.2. (a) In terms of a set of canonical coordinates (x, y) = (x1
, . . . , x

n
,

y1, . . . , yn) on TM , and setting

gij(x, y) := g(x,y)

(
∂

∂xi
,
∂

∂xj

)

=
1

2

∂
2
F

2

∂yi∂yj
(x, y),

the Legendre condition states that the symmetric matrix
(

gij(x, y)
)

1≤i,j≤n
is

positive definite whenever y 6= 0.

(b) Since F (µX) = µF (X) for all µ > 0, we have

〈V, V 〉V =
1

2

d
2

dt2

∣

∣

∣

∣

t=0

F
2(V + tV ) =

1

2

d
2

dt2

∣

∣

∣

∣

t=0

(1 + t)2F 2(V ) = F
2(V )

In coordinates,
1

2
y

i
y

j
∂2

∂yi∂yj
F

2(x, y) = F
2(x, y).

(c) Euler’s Theorem states that for a positively homogeneous function f : V → R

of order k on a vector space V (meaning that f(µX) = µ
k
f(X) for X ∈ V and

µ > 0), the radial derivative coincides up to the factor k with f itself:

n
∑

i=1

y
i
∂

∂yi
f(y) = kf(y).

See [Bao et al. 2000, Theorem 1.2.1].

Definition 3.3. The Legendre transformation on a Finsler manifold (M,F ) is

the map LF : TM → T
∗
M defined by

LF (V )(W ) = gV (V,W ).

One can view LF (V ) as the 1-form dual to V with respect to the metric gV .
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Lemma 3.4. If F is a Finsler metric, F (X + Y ) ≤ F (X) + F (Y ) for all

X,Y ∈ TxM . Equality holds only if Y = µX for some µ ≥ 0.

This implies that 〈X,Y 〉Y ≤ F (X)F (Y ) for all X,Y ∈ TxM , with equality if

and only if Y = µX for some µ ≥ 0 [Shen 2001a, § 1.2; Bao et al. 2000, p. 10].

Lemma 3.5 [Bao et al. 2000, Proposition 14.8.1; Shen 2001a, Lemma 1.2.4]. Let

V,W ∈ TxM be nonzero. If 〈X,V 〉V = 〈X,W 〉W for all X ∈ TxM , then V = W .

Consequently, the Legendre transformation is an isomorphism.

A Riemannian metric g on a manifold M is symmetric (2, 0)-tensor field

g : VM × VM → FM such that for every x ∈ M the bilinear map gx : TxM ×

TxM → R is positive definite. The associated Finsler metric is defined by

F (X) =
√

g(X,X); forming the metric gV for any nonzero V we obtain g for

every nonzero V .

Example 3.6 (Randers metrics). Suppose given a Riemannian metric α and

a differential 1-form β. There is a vector field ζ satisfying β(X) = α(X, ζ) for

all X; we say ζ is dual to β with respect to α. Define ‖β‖ := ‖ζ‖ =
√

α(ζ, ζ). If

‖β‖ < 1 everywhere,

F (X) :=
√

α(X,X) + β(X) =
√

α(X,X) + α(X, ζ)

defines a Finsler metric. This type of Finsler metric is called a Randers metric.

Since X 6= 0 implies ‖X‖ =
√

α(X,X) > 0, we have

F (X) = ‖X‖

(

1 + α

(
X

‖X‖

, ζ

))

≥ ‖X‖ (1 − ‖ζ‖) > 0,

showing that F satisfies condition (2) of Definition 3.1. Condition (1) is obvious.

For the proof of (3) we refer to [Bao et al. 2000, Chapter 11].

A Randers metric F (X) =
√

α(X,X)+α(X, ζ) is only positively homogeneous.

If α(X, ζ) 6= 0 then F (−X) 6= F (X). This motivates the following notion:

Definition 3.7. On a Finsler manifold (M,F ) the reversibility function λ :

M → R
+ is defined by

λ(x) := sup
{

F (−X) | X ∈ TxM, F (X) = 1
}

.

The number λ = λ(M,F ) = sup
{

λ(x) | x ∈M
}

is called the reversibility of the

Finsler manifold (M,F ), if it exists — for example, if M is compact.

One has to show that the function λ is continuous, which is done using a standard

argument: The subspace T 1

x
M = {X ∈ TxM | F (X) = 1} is called the unit

sphere or indicatrix at the point x. It is a compact space diffeomorphic to

the sphere Sn−1. The subspaces T 1

x
M , x ∈ M , form a sphere bundle over M .

The function X ∈ T 1

x
M 7→ F (−X) ∈ R is continuous, therefore the supremum

is actually the maximum of this function. The sphere bundle T 1
M → M is

locally trivial, that is, for small open sets U ⊂ M the restriction T
1
U → U can
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be identified via a fiber-preserving diffeomorphism with the canonical projection

U×S
n−1

→ U on the first factor. The function T 1
U ∼= U×S

n−1
7→ F (−X) ∈ R

is continuous. A proof by contradiction, using the sequential compactness of

S
n−1, then shows that the reversibility function λ : M → R is continuous. If M

is compact, the function is bounded and the supremum is actually a maximum.

Since F is positively homogeneous we could also write

λ(x) = max
{
F (−X)

F (X)

∣
∣
∣ X ∈ TxM, X 6= 0

}

.

We call a Finsler metric reversible if F (−X) = F (X) for all X ∈ TM . Then

obviously λ = 1. If there is a tangent vector X such that F (−X) 6= F (X) then

λ ≥ max

{

F (−X)

F (X)
,
F (X)

F (−X)

}

> 1.

Hence a Finsler metric is reversible if and only if λ = 1. In this case the indicatrix

T 1

p
M is symmetric with respect to reflection X 7→ −X. Sometimes a reversible

metric is also called symmetric, but this terminology conflicts with other notions

such as symmetric quadratic forms and symmetric spaces.

For an arbitrary Finsler metric on a compact manifold M we obtain

λ
−1
F (X) ≤ F (−X) ≤ λF (X).

If γ : [0, 1] → M is a smooth curve on M , we define the length of γ as L(γ) =
∫

1

0
F (γ′(t)) dt. We also introduce γ−1 : [0, 1] → M , the curve γ run in reverse:

γ−1(t) = γ(1 − t). The lengths of γ and γ−1 satisfy

1

λ
L(γ) ≤ L(γ−1) ≤ λL(γ). (3–1)

Example 3.8. Let F (X) =
√

α(X,X) + α(X, ζ) be a Randers metric, with

vector field ζ. For fixed x ∈ M , we will find λ(x) by looking at the quotient

F (−X)/F (X) on the unit ball {X ∈ TxM | α(X,X) = 1} of α:

X 7→

F (−X)

F (X)
=

1 − α(X, ζ(x))

1 + α(X, ζ(x))
.

This quotient attains its maximum for X = −ζ(x)/‖ζ(x)‖, and we obtain

λ(x) =
1 + ‖ζ(x)‖

1 − ‖ζ(x)‖
.

For a nonzero tangent vector V ∈ TxM , we define on TxM the trilinear form

〈X1,X2,X3〉V := 1

4
X1X2X3F

2(V )

=
1

4

∂
3

∂s1∂s2∂s3

∣
∣
∣
(s1,s2,s3)=(0,0,0)

F
2

(

V +

3
∑

i=1

siXi

)

.

For a given everywhere nonzero vector field V defined on an open subset U ⊂M ,

we obtain a symmetric (0, 3)-tensor, called the Cartan tensor ; its coefficients are
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usually denoted Cijk (that is, the functions Cijk at V ∈ TxM express the trilinear

form 〈 , , 〉V in a given system of canonical coordinates).

The Cartan tensor vanishes if and only if the Finsler metric comes from a

Riemannian metric g (meaning that F 2(X) = g(X,X)). Euler’s theorem implies

that

〈V,X, Y 〉V = 〈X,V, Y 〉V = 〈X,Y, V 〉V = 0 (3–2)

for all vector fields X,Y .

A distance function on a differentiable manifold M is a smooth function θ :

M ×M → [0,∞) such that θ(p, q) = 0 if and only if p = q, and such that the

triangle inequality is satisfied:

θ(p, q) ≤ θ(p, r) + θ(r, q) for all p, q, r ∈M.

Given a connected Finsler manifold (M,F ), the induced distance θ :M ×M →R

is defined by

θ(p, q) := inf {L(c) | c : [0, 1] →M piecewise smooth, c(0) = p, c(1) = q}.

(Piecewise smooth means that c is continuous and there is a finite partition of the

interval [0, 1] such the restriction of c to each closed subinterval is smooth.) It is

easy to check that θ is a distance function. If the Finsler metric is nonreversible,

the induced metric is not symmetric: there are points p, q with θ(p, q) 6= θ(q, p).

Lemma 3.9. The induced distance of a Finsler manifold (M,F ) with reversibility

λ ≥ 1 satisfies
1

λ
θ(p, q) ≤ θ(q, p) ≤ λθ(p, q) (3–3)

Proof. For every k ∈ N, let γk : [0, 1] → M be a piecewise smooth curve with

p = γk(0), q = γk(1) and L(γk) ≤ θ(p, q) + 1/k. Then (3–1) gives L(γ−1

k
) ≤

λθ(p, q) + λ/k for all k. Thus θ(q, p) ≤ L(γk) ≤ λ
(

θ(p, q) + 1/k
)

for all k. ˜

Given a Finsler manifold (M,F ), the symmetrized distance d : M ×M → R is

defined by d(p, q) = 1

2

(

θ(p, q) + θ(q, p)
)

. The distance functions θ and d of a

Finsler manifold coincide if and only if the Finsler metric is reversible.

For U an open subset of a manifold M , recall that VU is the space of smooth

vector fields on U , and let VU+
⊂ VU be the subset of nowhere vanishing vector

fields. For the next theorem we recall the definition of an affine connection: a

map ∇
V : (X,Y ) ∈ VU × VU 7→ ∇

V

X
Y ∈ VU , linear in Y and satisfying

∇
V

X
(fY ) = f∇

V

X
Y +X(f)Y and ∇

V

fX
Y = f∇XY for all f ∈ FU, X, Y ∈ VU.

Theorem 3.10. Let (M,F ) be a Finsler manifold and U ⊂ X an open subset .

There is a map

∇ : (V,X, Y ) ∈ VU
+
× VU × VU 7→ ∇

V

X
Y ∈ VU

with the following properties:
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(a) for every V ∈ VU+, the map ∇
V : (X,Y ) ∈ VU × VU 7→ ∇

V

X
Y ∈ VU is an

affine connection.

(b) ∇
V is torsionfree, that is,

∇
V

X
Y −∇

V

Y
X = [X,Y ] for all X,Y ∈ VU. (3–4)

(c) ∇
V is almost metric, that is,

X
(

〈Y,Z〉V

)

= 〈∇
V

X
Y,Z〉V + 〈Y,∇

V

X
Z〉V + 2〈∇V

X
V, Y, Z〉V . (3–5)

Moreover we have

2〈∇V

X
Y,Z〉V = X

(

〈Y,Z〉V

)

+ Y
(

〈Z,X〉V

)

− Z
(

〈X,Y 〉V

)

+
〈

[X,Y ], Z
〉

V
−

〈

[Y,Z],X
〉

V
+

〈

[Z,X], Y
〉

V

− 2〈∇V

X
V, Y, Z〉V − 2〈∇V

Y
V,Z,X〉V + 2〈∇V

Z
V,X, Y 〉V (3–6)

for all vector fields X,Y,Z ∈ VU , and this equation, called the generalized Koszul

formula, uniquely determines ∇.

Sketch of proof. From the requirements (3–4) and (3–5) we obtain, through

straightforward calculations, the generalized Koszul formula (3–6). Equations

(3–5), (3–6) and (3–2) then imply that

〈∇
V

V
V,Z〉V = 2V

(

〈V,Z〉V

)

− Z
(

〈V, V 〉V

)

+ 2
〈

[Z, V ], V
〉

V

and

2〈∇V

X
V,Z〉V = X

(

〈V,Z〉V

)

+ V
(

〈Z,X〉V

)

− Z
(

〈X,V 〉V

)

+
〈

[X,V ], Z
〉

V
−

〈

[V,Z],X
〉

V
+

〈

[Z,X], V
〉

V
− 2〈∇V

V
V,Z,X〉V . (3–7)

Thus the right-hand side of (3–6) can be expanded into an expression devoid of

any reference to ∇, showing that ∇
V

X
Y is uniquely determined. Then one has

to check that the ∇
V thus defined is in fact an affine connection, torsionfree and

almost metric. ˜

Remark 3.11. (a) In the Riemannian case the connection ∇
V = ∇ is indepen-

dent of V ∈ VU , it is metric, meaning that X
(

〈Y,Z〉
)

= 〈∇XY,Z〉 + 〈Y,∇XZ〉,

and it is determined by the Koszul formula:

2〈∇XY,Z〉 = X 〈Y,Z〉 + Y 〈Z,X〉 − Z 〈X,Y 〉

+
〈

[X,Y ], Z
〉

−

〈

[Y,Z],X
〉

+
〈

[Z,X], Y
〉

. (3–8)

∇ is called the Levi-Civita connection or canonical connection.

(b) We point out the correspondence between the development adopted above

(which one can find in [Matthias 1980, Chapter 2]) and the description given in

[Bao et al. 2000, Chapter 2] and [Shen 2001a, § 5.2]. In canonical coordinates
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(x, y) = (x1, . . . , xn, y1, . . . , yn) of the tangent bundle TU of an open set U ⊂M ,

we obtain the functions

gij : (x, y) ∈ TU 7→ gij(x, y) = g(x, y)
(
∂

∂xi
,
∂

∂xj

)

=
1

2

∂
2

∂yi∂yj
F

2(x, y).

The coefficients Cijk = Cijk(x, y) of the Cartan tensor are

Cijk(x, y) =
1

4

∂
2

∂yi∂yj
F

2(x, y) =
〈
∂

∂xi
,
∂

∂xj
,
∂

∂xk

〉

.

We also define gij(x, y) as the coefficients of the inverse matrix of gij(x, y). Then

one can define formal Christoffel symbols γi

jk
: TU → R:

γ
i

jk
(x, y) = 1

2
g

il(x, y)
(
∂glj

∂xk
(x, y) −

∂gjk

∂xl
(x, y) +

∂gkl

∂xj
(x, y)

)

.

We can raise and lower indices by contracting with the coefficients gij and gij ;

for example, Ci

jk
= gilCljk. Here we use the Einstein summation convention.

Then we define the quantities

N
i

j
= N

i

j
(x, y) = γ

i

jk
(x, y)yk

− C
i

jk
(x, y)γk

rs
y

r
y

s
.

It turns out that the coefficients of the Chern connection are

Γi

jk
(x, y) = γ

i

jk
− g

li (CijrN
r

k
− CjkrN

r

i
+ CkirN

r

j
),

(see [Bao et al. 2000, (2.4.9)]), the Chern connection is given by

∇∂/∂xi

∂

∂xj
(x, y) = Γk

ij
(x, y)

∂

∂xk
,

and one shows that

N
j

i
(x, y) = Γj

ik
(x, y)yk

.

The Chern connection is torsionfree, which implies that Γk

ij
= Γi

jk
. It is also

almost metric, which implies (see [Shen 2001a, (5.22), (5.29)])

∂gjl

∂xm
(x, y) = gklΓ

i

jm
+ gkjΓ

k

lm
+ 2CjklN

k

m

= gklΓ
i

jm
+ gkjΓ

k

lm
+ 2CjklΓ

k

mr
y

r
.

In particular:

Lemma 3.12. For two vector fields V,W ∈ VU
+ and a point p ∈ U with

V (p) = W (p) and for arbitrary vector fields X,Y ∈ VU we have:

∇
V

X
Y (p) = ∇

W

X
Y (p).
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Using the connection ∇
V we introduce the covariant derivative ∇

V/dt along a

curve c : [a, b] →M . For a vector field X along the curve c with tangent vector

field c′ define (∇V/dt)X(t) = ∇
V

c′
X(t), where on the right-hand side one has to

take extensions of the vector fields V,X, c′ onto an open subset containing the

curve. This expression is independent of the chosen extensions. If the vector

fields V, c′ coincide, we also write simply (∇V
/dt)X = (∇/dt)X.

For a differentiable map H : [0, 1]× [0, 1] →M and a vector field X(s, t) along

F (meaning that X(s, t) ∈ TH(s,t)M), we define (∇V
/∂t)X(t) as a vector field

along the curve t 7→ H(s1, t) for a fixed s1 and (∇V
/∂s)X(t) as a vector field

along the curve s 7→ H(s, t1) for a fixed t1. Then we obtain the following rule

for exchanging the order of differentiation:

∇
V

∂t

∂H

∂s
=

∇
V

∂s

∂H

∂t

This rule follows since the connection ∇
V is torsionfree.

4. First Variation of the Energy Functional

In the Morse-theoretic proof of the Sphere Theorem we use the energy func-

tional E on a suitable space of curves as the Morse function. For a smooth curve

c : [0, 1] →M , the energy is defined as

E(c) =
1

2

∫

1

0

F
2
(

c
′(t)

)

dt.

For a variation cs in the first variation formula one studies the first derivative

(d/ds)|s=0E(cs):

Lemma 4.1 (First variational formula). If cs : [a, b] →M , for s ∈ (−ε, ε),

is a smooth variation of the curve c = c0 with variation vector field V (t) =

(∂/∂s)|s=0cs(t), then

d

ds

∣
∣
∣
s=0

E(cs) =
〈

c
′(b), V (b)

〉

c′(b)
−

〈

c
′(a), V (a)

〉

c′(a)
−

∫

b

a

〈
∇

dt
c
′
, V

〉

c′
dt. (4–1)

Proof.

1

2

∂

∂s
〈c

′
s
, c

′
s
〉c′

s
=

〈
∇

c
′

s

∂s
c
′
s
, c

′
s

〉

c′
s

+
〈
∇

c
′

s

∂s
c
′
s
, c

′
s
, c

′
s

〉

c′
s

︸ ︷︷ ︸

=0

=
〈

(∇/∂t)
∂cs

∂s
, c

′
s

〉

c′
s

=
∂

∂t

〈
∂cs

∂s
, c

′
s

〉

c′
s

−

〈
∂cs

∂s
, (∇/∂t)c′

s

〉

c′
s

−

〈
∇

c
′

s

∂s
c
′
s
,
∂cs

∂s
, c

′
s

〉

c′
s

︸ ︷︷ ︸

=0

Hence we conclude that

d

ds

∣
∣
∣
s=0

∫

b

a

〈c
′
s
, c

′
s
〉c′

s
dt =

〈

V (t), c′(t)
〉

c′

∣
∣
∣

b

a

−

∫

b

a

〈

V (t), (∇/dt)c′
〉

c′
dt. ˜
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Corollary 4.2. If c : [0, 1] → M is a piecewise smooth curve such that no

other piecewise smooth curve joining p = c(0) and q = c(1) is shorter , then c is

a geodesic, that is, c is smooth and (∇/dt)c′ = 0.

Proof. Let c be smooth when restricted to each subinterval [tj , tj+1] of a

partition 0 = t0 < t1 < · · · < tk = 1 of [0, 1]. We first want to prove that these

restrictions are geodesics, so that c is a broken geodesic (also known as a geodesic

polygon). If (∇/dt)c′(s) 6= 0 for some s ∈ (tj , tj+1), we choose a vector field V (t)

along the image of c as follows:

V (t) = φ(t)
∇

dt
c
′(t),

where φ : [0, 1] → [0, 1] is a smooth function with φ(s) = 1 and φ(t) = 0 for

t /∈ (tj , tj+1). Then we take a smooth variation cs : [0, 1] → M of the piecewise

smooth curve c with variation vector field V (t) = (∂/∂s)|s=0cs(t). (Saying that

the family cs is a smooth variation of c is saying that, for each j = 0, . . . , k − 1,

the restrictions cs|[tj , tj+1] form a smooth variation of c |[tj , tj+1].) Then the

first variation formula (Lemma 4.1) gives

0 =
d

ds

∣
∣
∣
s=0

E(cs) =

∫

1

0

〈
∇

dt
c
′
, V

〉

ċ

dt =

∫

1

0

φ(t)

∥
∥
∥
∇

dt
c
′
∥
∥
∥

2

dt.

Since φ(t)≥0 for all t and φ(s)=1, the right-hand side is positive, a contradiction.

Hence no such s exists, and c is a broken geodesic.

Now fix l ∈ {1, 2, . . . , k−1} and choose any tangent vector V0 ∈ Tc(tl)
M and a

variation vector field V = V (t) along the broken geodesic c such that V (tl) = V0

and V (tj) = 0 for j 6= l. Again, Lemma 4.1 shows that

0 =
d

ds

∣
∣
∣
s=0

E(cs) =
〈

c
′(t+

l
), V0

〉

c′(t
+

l
)
−

〈

c
′(t−

l
), V0

〉

c′(t
−

l
)

for all V0 ∈ Tc(tl)
M . (Here, as usual, c′(t±) = limε→0, ε>0 c

′(t ± ε).) We con-

clude that c′(t+
l

) = c
′(t−

l
), since the Legendre transformation is an isomorphism

(Lemma 3.5). Hence c is a smooth curve. ˜

A vector field V ∈ VU is called a geodesic vector field if ∇
V

V
V = 0, which says

that the flow lines of V are geodesics of the Finsler metric. These lines can also

be seen as geodesics of an associated Riemannian metric:

Lemma 4.3. Let V be a nowhere vanishing geodesic field defined on an open

subset U ⊂ M . Denote by ∇ the Levi-Civita connection of the Riemannian

manifold (U, gV ). Then

∇
V

X
V = ∇XV

for all vector fields X; in particular , the vector field V is also geodesic for the

Riemannian manifold (U, gV ).
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Proof. ∇ is uniquely determined by the Koszul formula (see (3–8), with ∇

playing the role of ∇). Since ∇
V

V
V = 0 we conclude from Equation 3–7 that

〈∇XV,Z〉V = 〈∇
V

X
V,Z〉V (4–2)

for all vector fields X,Y . ˜

We obtain a similar statement if we restrict to vector fields along a given geodesic:

Lemma 4.4. Let c : [0, 1] →M be a non-self-intersecting geodesic of the Finsler

manifold (M,F ), and V ∈ VU
+ an extension of the velocity vector field c′ onto

an open neighborhood U of c([0, 1]). We call the Riemannian manifold (U, gV )

an osculating Riemannian manifold , denote its Levi-Civita connection by ∇ and

the covariant derivative along c by (∇/dt). Then c is also a geodesic of the

osculating Riemannian metric gV and

∇

dt
X(t) =

∇

dt
X(t)

for any vector field X along c.

Proof. As in the proof of Lemma 4.3 we show that (4–2) holds along the given

geodesic:

〈∇XV,Z〉V (c(t)) = 〈∇
V

X
V,Z〉V (c(t)).

Then
(∇V

/dt)c′X(t) = ∇
V

c′
X(t) = ∇

V

X
c
′(t) + [c′,X]

= ∇Xc
′ + [c′,X] = ∇

V

c′
X(t) = (∇/dt)X(t).

For X = c
′ it follows that c is also a geodesic of the osculating Riemannian

metric. ˜

5. Flag curvature, Jacobi Fields and Conjugate Points

For a Riemannian manifold (M,g) with Levi-Civita connection ∇, the Rie-

mann curvature tensor is a (1, 3)-tensor defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, forX,Y,Z ∈ VM.

It is determined by the Jacobi operators or directional curvature operators RX ,

X ∈ TxM , given by

Y ∈ TxM 7→ R
X(Y ) := R(Y,X)X.

The sectional curvature K(σ) = K(X,Y ) of a plane σ ⊂ TxM spanned by the

tangent vectors X,Y is defined by

K(X,Y ) =

〈

R(X,Y )Y,X
〉

|X|
2
|Y |

2
− 〈X,Y 〉

2
=

〈

R
X(Y ), Y

〉

|X|
2
|Y |

2
− 〈X,Y 〉

2
.

The Finsler geometry counterparts of these entities can be introduced by

considering the osculating Riemannian metric. In the next statement we make
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use of the notion of a geodesic variation of a geodesic c; this is simply a variation

cs of c such that each curve cs : [0, 1] →M is geodesic.

Proposition 5.1. (a) [Shen 2001b, Lemma 8.1.1] For every nonzero tangent

vector X ∈ TxM on a Finsler manifold M with geodesic c = cX : [0, 1] → M

and c′
X

(0) = X, the map RX : TxM → TxM given by

R
X(Y (0)) = −

∇
2

dt2
Y (0),

where Y (t) = (∂/∂s)|s=0 cs(t) is the variation vector field of a geodesic vari-

ation of c, is well-defined and linear . It is called the Riemann curvature

(operator) of the Finsler manifold .

(b) [Shen 2001b, Proposition 8.4.1] For every nonzero tangent vector X ∈ TxM

with a nonzero geodesic vector field V extending X ∈ TxM in an open neigh-

borhood U of x, the Riemann curvature operator RX of the Finsler manifold

coincides with the Jacobi operator RX of the osculating Riemannian metric

ḡ = g
V defined on U .

We can now introduce the Finsler counterpart of the sectional curvature. In

contrast with the Riemannian case, the notion depends not only on the choice

of a two-dimensional tangent plane but also on a direction in this plane.

Definition 5.2. For a Finsler manifold (M,F ) and a flag (X,σ) consisting of a

nonzero tangent vector X ∈ TxM and a plane σ ⊂ TxM spanned by the tangent

vectors X,Y , the flag curvature is defined as

K(X;σ) = K(X;Y ) =

〈

R
X(Y ), Y

〉

X

|X|
2

X
|Y |

2

X
− 〈X,Y 〉

2

X

.

The notation δ < K ≤ 1, where δ ∈ (0, 1), will be used often; it is a shorthand

for the condition δ < K(X;σ) ≤ 1 for all flags (X;σ) in the tangent bundle.

Given a nonzero vector field V on a Finsler manifold (M,F ) with connection ∇
V

(see Theorem 3.10), one can consider the curvature tensor RV defined by

R
V (X,Y )Z = ∇

V

X
∇

V

Y
Z −∇

V

Y
∇

V

X
Z −∇

V

[X,Y ]
Z.

If the vector field V is geodesic, it follows from the definition of the Riemannian

curvature that

R
V (Y ) = R

V (Y, V )V = −∇
V

V
∇

V

Y
V −∇

V

[Y,V ]
V.

As in the Riemannian case, the flag curvature geometrically controls the infini-

tesimal behavior of geodesics, as described by the Jacobi fields along a geodesic:

Definition 5.3. On a Finsler manifold (M,F ) we call a vector field Y = Y (t)

along a geodesic c : [0, 1] →M a Jacobi field if it satisfies the differential equation

∇
2

dt2
Y (t) +R

c
′

(Y ) = 0.
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It follows from Proposition 5.1 that the Jacobi fields of an osculating Riemannian

metric (U, gV ) along the geodesic coincide with the Jacobi fields of the Finsler

metric along c. Therefore the following well-known facts of Riemannian geom-

etry (see [Klingenberg 1995, 1.12], for example) carry over to the Finsler case

immediately:

Lemma 5.4. Let (M,F ) be a Finsler manifold and c : [0, 1] →M a geodesic.

(a) For any Y0, Y1 ∈ Tc(0)M , there is a uniquely determined Jacobi field Y along

c with initial conditions Y (0) = Y0 and (∇/dt)Y (0) = Y1.

(b) If , in addition, 〈Y0, c
′(0)〉c′(0) = 0 = 〈Y1, c

′(0)〉c′(0), the Jacobi field Y thus

defined satisfies
〈

Y (t), c′(t)
〉

c′(t)
= 0 for all t ∈ [0, 1].

The Jacobi equation of Definition 5.3 is the linearization of the geodesic equation:

Lemma 5.5. Let (M,F ) be a Finsler manifold .

(a) The variation vector field V (t) = (∂/∂s)|s=0cs(t) of a geodesic variation

cs : [0, 1] →M on M is a Jacobi field .

(b) For every Jacobi field Y = Y (t) along the geodesic c : [0, 1] →M there is a

geodesic variation cs : [0, 1]→M whose variation vector field coincides with Y .

The proof from the Riemannian case carries over; see [Klingenberg 1995, 1.12.4].

Definition 5.6. Let (M,F ) be a Finsler manifold and X a unit tangent vector

in TM . Let the geodesic parametrized by arc length with initial direction X be

defined (at least) in the closed interval [0, a], and denote it by c : [0, a] → M ,

so that c′(0) = X. Suppose that for some s ∈ (0, a) there is a nontrivial Jacobi

field Y = Y (t) along c that vanishes for t = 0 and t = s. (Nontrivial means that

(∇/dt)Y (0) 6= 0.) Then the point c(s) is called conjugate to p = c(0) along c.

Moreover, Y can be chosen so that 〈Y, c′〉c′ = 0, and the set of all Y satisfying

all these conditions is a vector space whose dimension is called the multiplicity

of the conjugate point c(s). We define conj
X

∈ (0,∞] as the smallest positive

number r such that c(r) is conjugate to p along c. The point c(r) is called the first

conjugate point to p along c. The conjugate locus is the set of all first conjugate

points to p. The conjugate radius conj
p

of a point p ∈ M is the infimum of the

set {conj
X

| X ∈ TpM, F (X) = 1}.

The conjugate locus of p consists of critical points of the exponential map (see

Section 8). The function X ∈ T
1

p
M 7→ conj

X
∈ R

+
∪ {∞} is continuous. We

denote by conj := inf {conj
p
| p ∈ M} the conjugate radius of M . If M is

compact this is a positive real number or ∞.

Remark 5.7. In the case of constant flag curvature one can describe Jacobi fields

explicitly. Let c : R →M be a geodesic parametrized by arc length on a Finsler

manifold (M,F ) and assume that the flag curvature along c is a constant δ,

meaning that K(c′(t);V ) = δ for every t and every V ∈ Tc(t)M forming a flag

with c
′(t). One can choose an orthonormal basis (e1, e2, . . . , en) of the tangent



276 HANS-BERT RADEMACHER

space Tc(0)M with respect to the metric 〈 · , · 〉c′ with en = c′(0). Using parallel

transport defined by the covariant derivative ∇/dt along c we obtain a frame

(e1(t), e2(t), . . . , en(t)) along c = c(t) orthonormal with respect to 〈 · , · 〉c′ and

satisfying e1(t) = c
′(t) for all t ∈ R. Then with Y (t) =

∑

n

i=2
yi(t)ei(t) the Jacobi

equation for a Jacobi field orthogonal to c′ (with respect to 〈 · , · 〉c′) decouples

because of the identities

∇
2

dt2
Y (t) =

n
∑

i=2

y
′′
i
(t)ei(t)

and

R
c
′

(Y, c′)c′(t) =
n

∑

i,j=2

yi

〈

R
c
′

(ei), ej

〉

c′
ej(t) =

n
∑

i=2

yiK(e1; ei)ei(t) = δ

n
∑

i=2

yiei(t)

into n−1 ordinary differential equations

y
′′
i
(t) + δyi(t) = 0, i = 2, . . . , n.

The solutions y′′ + δy = 0, y(0) = 0, y′(0) = 1 are

yδ(t) =











1/
√

δ sin(
√

δ t) if δ > 0,

t if δ = 0,

1/
√

−δ sinh(
√

−δ t) if δ < 0.

Hence in the case of constant flag curvature K(c(t)) = δ along a geodesic c, we

obtain for conj
c′(0)

the value π/
√

δ if δ > 0, and ∞ if δ ≤ 0.

6. Second Variation of the Energy Functional

The first variational formula shows that geodesics can be seen as critical points

of the energy functional. Therefore it is natural to study the second-order behav-

ior of the energy functional at a geodesic. This leads to the second variational

formula.

For a piecewise smooth curve c : [0, 1] →M denote by Wc the set of piecewise

smooth vector fields along c. The index form of a geodesic c : [0, 1] → M is the

symmetric bilinear form Ic : Wc ×Wc → R defined by

Ic(X,Y ) :=

∫

1

0

(〈
∇

dt
X,

∇

dt
Y

〉

c′
(t) − 〈R

c
′

(X), c′〉c′(t)
)

dt.

Lemma 6.1 [Shen 2001a, § 10.2; Shen 2001b, § 8.5]. Let cs : [0, 1] → M , for s ∈

(−ε, ε), be a variation of the geodesic c = c0 with fixed end points cs(0) = c(0),

cs(1) = c(1); or let cs : S1
→ M be a variation of the closed geodesic c = c0 by

closed curves. Let the variation vector field be V (t) = (∂cs/∂s)|s=0cs(t). Then

d
2

ds2

∣
∣
∣
s=0

E(cs) = Ic(V, V ).
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For a geodesic c : [0, 1] → M on a Finsler manifold (M,F ) with an osculating

Riemannian metric ḡ = gV defined in a neighborhood of c([0, 1]), the index

forms Ic, Ic with respect to the Finsler metric and with respect to the osculating

Riemannian metric coincide.

We introduce some subspaces of the space Wc of vector fields along c defined

at the beginning of this section. W 0

c
denotes the subspace consisting of vector

fields that vanish at the end points. If c is a closed geodesic, also known as a

periodic geodesic (that is, c(0) = c(1) and c
′(0) = c

′(1)), we denote by W
1

c
the

subspace of Wc consisting of periodic vector fields (X(0) = X(1)). Note that a

closed geodesic can be though of as having domain S1 = [0, 1]/{0, 1}.

Using Lemma 6.1 we obtain:

Corollary 6.2. (a) For points p, q ∈M let c : [0, 1] →M be a geodesic joining

p = c(0) and q = c(1). The restriction of the index form of c to W 0

c
is denoted

by I0

c
. If cs : [0, 1] →M , s ∈ (−ε, ε), is a piecewise smooth variation of c with

variation vector field Y ∈ W
0

c
and with fixed end points p = cs(0), q = cs(1),

we have
d
2

ds2

∣
∣
∣
s=0

E(cs) = I
0

c
(Y, Y ).

(b) Let c : S1
→ M be a closed geodesic and denote the restriction of the index

form Ic to W 1

c
by I1

c
. If cs : S1

→M , s ∈ (−ε, ε) is a variation of c by closed

curves with variation vector field Y , we have

d
2

ds2

∣
∣
∣
s=0

E(cs) = I
1

c
(Y, Y ).

We now define important invariants of geodesics and closed geodesics.

Definition 6.3. (a) The index ind c of a geodesic c : [0, 1] →M joining points

p and q of a Finsler manifold is by definition the same as the index indW 0

c
of

the quadratic form

I
0

c
: W 0

c
×W

0

c
→ R,

that is, the maximal dimension of a subspace on which I0

c
is negative definite.

The nullity nul c is the maximal dimension of a subspace W ′
⊂W 0

c
such that

I
0

c
(X,Y ) = 0 for all X ∈W

′ and Y ∈W
0

c
.

(b) The Λ-index indΛ c of a closed geodesic c : S1
→ M on a Finsler manifold

is the maximal dimension of a subspace on which the index form

I
1

c
: W 1

c
×W

1

c
→ R

is negative definite. The Λ-nullity nul c is the maximal dimension of a subspace

W
′′
⊂W

1

c
such that I1

c
(X,Y ) = 0 for all X ∈W

′′ and Y ∈W
1

c
.

As in the Riemannian case, one can show that these numbers are finite:

Lemma 6.4. The index ind c and the nullity nul c of a geodesic c are finite. So

are the Λ-index indΛ c and the Λ-nullity nul c of a closed geodesic c.
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Proof. Let c : [0, 1] → M be a geodesic. Choose a partition 0 = t0 < t1 <

· · · < tk = 1 of the unit interval such that there is no pair of conjugate points

in [ti, ti+1]. Define the following subspaces of the vector space W 0

c
of piecewise

smooth vector fields along c vanishing at the endpoints:

J := {X ∈W
0

c
| X|[ti, ti+1] is a Jacobi field for i = 0, . . . , k−1},

H := {X ∈W
0

c
| X(ti) = 0 for i = 1, . . . , k−1},

W
⊥
c

= {X ∈W
0

c
| 〈X, c

′
〉c′ = 0 and X|[ti, ti+1] is smooth for i = 0, . . . , k−1}.

Then, for X,Y ∈W
⊥
c

,

Ic(X,Y ) =

∫

1

0

(〈
∇

dt
X,

∇

dt
Y

〉

c′
−

〈

R
c
′

(X, c′)c′, Y
〉

c′

)

dt

= −

∫

1

0

〈
∇

2

dt2
X +R

c
′

(X, c′)c′, Y
〉

c′
dt

+

k−1
∑

i=1

〈
∇

dt
X(t−

i
) −

∇

dt
X(t+

i
), Y (ti)

〉

c′
. (6–1)

It follows that J and H ∩ W⊥
c

are orthogonal with respect to Ic, that is,

Ic(X,Y ) = 0 for all X ∈ J and Y ∈ H ∩ W
⊥
c

. Therefore we can conclude

that W 0

c
is the direct orthogonal sum J ⊕ (H ∩W⊥

c
) with the following argu-

ment: For every Xi ∈ Tc(ti)
M and Xi+1 ∈ Tc(ti+1)

M there is a unique Jacobi

field Y along c |[ti, ti+1] with Y (ti) = Xi and Y (ti+1) = Xi+1, since c |[ti, ti+1]

is by assumption free of pairs of conjugate points. On the other hand, the in-

dex form I
0

c
is positive definite on H since there is no conjugate point c(t∗),

t
∗
∈ (ti, ti+1), to the point c(ti) along c |[ti, t

∗]. This shows that the indices and

nullities match:

ind c = ind I0

c
= ind(I0

c
|J), nul c = nul I0

c
= nul(I0

c
|J). (6–2)

Since J is finite-dimensional these invariants are finite. An analogous proof shows

that the Λ-index and Λ-nullity of a closed geodesic are also finite. ˜

We call a geodesic c nondegenerate if nul c = 0. This implies that the point

q = c(1) is not conjugate to p = c(0) along c.

We call a closed geodesic c : S1
→ M nondegenerate if nulΛ c = 1. Since in

this case I1

c
(c′, c′) = 0, the nullity is at least 1. (That’s why some other authors

define the nullity of a closed geodesic as nulΛ c−1.) A Finsler metric all of whose

closed geodesics are nondegenerate is called bumpy.

7. Results from Topology

Using the energy functional on the space ΩpqM of curves on a Finsler manifold

M joining two fixed points p, q ∈M , we obtain a CW-decomposition of the space

ΩpqM . The Morse indices of the geodesics in Ωpq are related to the dimensions
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of the cells of the CW-decomposition. In this chapter we review results from the

topology of CW-complexes and the relation between the topology of ΩpqM and

that of M . As general references we cite [Milnor 1969; Bredon 1995; Spanier

1966].

Definition 7.1. Let A,X be topological spaces with A ⊂ X. We say that X is

obtained from A by adjoining k-cells ek

j
, j ∈ Jk, if the following conditions hold:

(a) For every j ∈ Jk the set ek

j
is a closed subset of X.

(b) Let ėk

j
:= e

k

j
∩ A. Then for all i, j ∈ Jk with i 6= j the subsets ek

i
− ė

k

i
and

e
k

j
− ė

k

j
are disjoint.

(c) The topology of X = A ∪

⋃

j∈Jk
e

k

j
is the weak topology with respect to the

component subsets A and ek

j
, for j ∈ Jk. (This means that U ⊂ X is open if

and only if U ∩A is open in A and U ∩ e
k

j
is open in ek

j
for each j.)

(d) For every j ∈ Jk there is a continuous map

φj : (Dk
, S

k−1) → (ek

j
, ė

k

j
)

with φj(D
k) = e

k

j
such that the restriction φj : Dk

− S
k−1

→ e
k

j
− ė

k

j
is

a homeomorphism, and such that a subset U ⊂ e
k

j
is open if and only if

U ∩ ė
k

j
⊂ ė

k

j
and φ−1

j
(U) ⊂ D

k are open subsets.

For k = 0 the space X is the disjoint union of the space A and a discrete space.

Definition 7.2. A (relative) CW-complex (X,A) consists of a topological space

X, a closed subspace A ⊂ X, and a sequence of closed subspaces (X,A)k
⊂ X,

k ≥ 0 (where (X,A)k is called the k-skeleton) with X = A ∪

⋃

k≥0
(X,A)k such

that the following conditions hold:

(a) (X,A)0 is obtained form A by adjoining 0-cells and for every k ≥ 1 the space

(X,A)k is obtained from (X,A)k−1 by adjoining k-cells.

(b) The topology of X is the weak topology of the union A ∪

⋃

k≥0
(X,A)k.

Hence it is possible to build up a CW-complex recursively. Start with the topo-

logical space (X,A)−1 := A, and recursively assume that (X,A)k−1 has been

defined. Given continuous maps φ̃j : Sk−1
→ (X,A)k−1, j ∈ Jk (called at-

taching maps), we form the subset (X,A)k as follows: Let ėk

j
= φj(S

k−1) and

e
k

j
:= D

k
∪φj

ė
k

j
, meaning that ek

j
is the quotient space of the disjoint union

of Dk and ė
k

j
with the equivalence relation identifying each x ∈ S

k−1 with

φj(x) ∈ ė
k

j
. The sets Dk

\ S
k−1 and e

k

j
\ ė

k

j
are homeomorphic and can be

identified. Next define the characteristic map φj : (Dk
, S

k−1) → (ek

j
, ė

k

j
) by

φj(x) = x, for x ∈ D
k
− S

k−1, and φj(y) = φ̃j(y), for y ∈ S
k−1. Then set

(X,A)k = (X,A)k−1
∪

⋃

j∈Jk
e

k

j
. A subset U ⊂ (X,A)k is open if and only if the

intersection U ∩ (X,A)k−1 is open in (X,A)k−1 and for all j ∈ Jk the preimages

φ
−1

j
(U ∩e

k

j
) are open subsets of Dk. The subsets ek

j
, j ∈ Jk, are called the closed

k-cells of the CW-complex. Because of possible identifications on the boundary,
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these cells are in general not homeomorphic to Dk. The subsets ek

j
− ėk

j
are called

open cells; they are homeomorphic to Dk
− S

k−1, but in general these sets are

not open subsets of the k-skeleton (X,A)k.

A subcomplex of a CW-complex is the union of closed cells of the CW-complex

with the same attaching resp. characteristic maps which is itself a CW-complex.

For example, the k-skeleton (X,A)k is a subcomplex. For A = ? we simply

write Xk = (X,?)k.

Remark 7.3. The advantage of using CW-complexes is that one generally needs

fewer cells to write a space as a CW-complexes than to triangulate it. A simple

but important example: for n ≥ 1 the n-dimensional sphere Sn = {x ∈ R
n+1

|

‖x‖
2 = 1} has the structure of a CW-complex with one 0-cell e0 and one n-cell;

the attaching map is the constant map φ : Sn−1
→ e

0.

CW-complexes are very useful if one considers homotopy properties of topolog-

ical spaces. For example, Morse theory shows that any manifold is homotopy

equivalent to a CW-complexes; see the proof of Corollary 7.7.

Two continuous maps f, g : X → Y are called homotopic if there is a con-

tinuous map F : X × [0, 1] → Y , (x, t) 7→ Ft(x) = F (x, t), with F0 = f and

F1 = g. There is also a relative version of this concept: Let (X,A) and (Y,B) be

pairs of topological spaces, meaning that A ⊂ X and B ⊂ Y . A continuous map

f : (X,A) → (Y,B) between these pairs is a continuous map f : X → Y with

the property f(A) ⊂ B. Two continuous maps f, g : (X,A) → (Y,B) agreeing

on A are homotopic relative to A, or homotopic rel A, if there is a continuous

map F : (X,A) × [0, 1] 7→ (Y,B), (x, t) 7→ Ft(x) = F (x, t), with F0 = f , F1 = g

and Ft|A = f |A = g|B for all t ∈ [0, 1]. Two topological spaces X,Y are called

homotopy equivalent if there are continuous maps f : X → Y and g : Y → X

such that the compositions f ◦ g and g ◦ f are homotopic to the identity maps

idY and idX , respectively. Then f is called a homotopy equivalence. We call a

pathwise connected topological space X n-connected for some n ≥ 1 if for every

j ∈ {1, . . . , n} every continuous map f : Sj
→ X is homotopic to a constant map.

(This implies that the homotopy groups πj(X, p) = 0 vanish for all j = 1, . . . , n,

but we do not need this concept here.) A 1-connected space is also called simply

connected. A topological pair (X,A) is called n-connected for some n ≥ 1 if

for every j ∈ {1, . . . , n} every continuous map f : Sj
→ X is homotopic to a

continuous map whose image lies in A.

A continuous map f : X → Y between CW-complexes is called cellular if it

respects the CW-structure, that is, if the image f(Xk) of the k-skeleton lies in

the k-skeleton of Y : f(Xk) ⊂ Y
k.

Proposition 7.4 (Cellular Approximation Theorem). Every continuous

map f : X → Y between CW-complexes is homotopic to a cellular map. (See

[Spanier 1966, Theorem 7.6.17] for a proof.)
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Thus every continuous map f : Sj
→ Sn between spheres is homotopic to a

cellular map F : Sj
→ S

n, where the spheres have the CW-structure described

in Remark 7.3. Now suppose that j < n; since the j-skeleton of Sn equals the

0-skeleton (a single point), Sn is (n−1)-connected. The same argument shows:

Proposition 7.5. If a pathwise connected CW-complex X has no j-dimensional

cells for any j ∈ {1, 2, . . . , k}, the space X is k-connected .

We note the following consequences of Whitehead’s and Hurewicz’s theorems

[Bredon 1995, Theorems VII-11.2 and VII-10.7]:

Proposition 7.6 [Bredon 1995, Corollary VII-11.14]. (a) Let f : X → Y be a

continuous map between two simply connected CW-complexes, such that the

induced homomorphism f∗ : Hi(X; Z) → Hi(Y ; Z) of the singular homology

groups with integer coefficients is an isomorphism for all i. Then f is a

homotopy equivalence.

(b) If a topological space X is (n−1)-connected for some n ≥ 2, then for every

homology class h ∈ Hn(X; Z) there is a continuous map fh : Sn
→ X and a

generator g ∈ Hn(Sn; Z) such that (fh)∗(g) = h. (Hence every n-dimensional

homology class can be represented by a spherical cycle.)

Corollary 7.7. A compact and (n−1)-connected differentiable manifold M is

homotopy equivalent to the n-sphere.

Proof. We use the fact that an n-dimensional manifold has the homotopy

type of a finite CW-complex X (meaning there are only finitely many cells) of

dimension n (meaning the maximal cell dimension is n). This can be proved

using a Morse function on M ; one obtains a CW-structure where every critical

point of index k corresponds to a k-dimensional cell. Since the critical points

are nondegenerate and the manifold is compact, there are only finitely many of

them. The index of a critical point on a differentiable manifold is bounded above

by the dimension of the manifold.

The manifold is simply connected, therefore orientable. Hence Hn(M ; Z) ∼= Z

[Bredon 1995, Corollary VI-7.2]. It follows from Proposition 7.6(b) that there

is a continuous map f : Sn
→ M inducing an isomorphism f∗ : Hn(Sn; Z) →

Hn(M ; Z). Since Sn and Mn are (up to homotopy equivalence) CW-complexes,

we conclude from Proposition 7.6(a) that f is a homotopy equivalence. ˜

Remark 7.8. The Poincaré conjecture states that for n ≥ 3, an n-dimensional

simply connected and compact manifold homotopy equivalent to the n-sphere

is homeomorphic to the n-sphere. For n ≥ 5 the conjecture was proven by S.

Smale, for n = 4 by M. Freedman. There is an announcement of a proof for

n = 3, by G. Perelman [Milnor 2003].

Given a topological space X and a point p ∈ X, we define the loop space

Ωp(X) = {γ : [0, 1] → X | γ continuous, γ(0) = γ(1) = p}.
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Proposition 7.9. If X is a pathwise connected topological space and ΩpX is

the loop space of X with p ∈ X, the homotopy groups satisfy

πk−1(ΩpX) ∼= πkX for all k ≥ 1.

Proof. Consider the cube Ik = [0, 1]k, with boundary

İ
k = {(x1, . . . , xk) ∈ I

k
| there is j = 1, . . . , k with xj ∈ {0, 1}}

Given a continuous map f : (Ik+1
, İ

k+1) → (X, p) for some point p ∈ X, we

define F (f) : (Ik
, İ

k) → (ΩpX, p) by

F (f)(x1, x2, . . . , xk)(t) = f(x1, x2, . . . , xk+1).

Also, for a continuous map g : (Ik
, İ

k) → (ΩX, p) we define a continuous map

G(g) : (Ik+1, İk+1) → (X, p) by

G(g)(x1, . . . , xk+1) = g(x1, . . . , xk)(xk+1).

This lets us define the isomorphism between the homotopy groups πk(ΩX, p)

and πk+1(X, p). ˜

Corollary 7.10. Let M be a simply connected , compact , n-dimensional man-

ifold and p, q ∈M arbitrary points. Consider the space

ΩpqM := {γ : [0, 1] →M | γ piecewise smooth, γ(0) = p, γ(1) = q}.

If this space is homotopy equivalent to a CW-complex with no cells of dimension

j ∈ {1, . . . , k}, then M is k-connected . In particular , if k = n− 1 the manifold

is homotopy equivalent to the n-sphere.

Proof. The space ΩpqM of piecewise continuous curves joining p and q is

homotopy equivalent to the space Ω∗
pq
M of continuous curves joining p and q with

the compact-open topology. This can be shown by using the finite-dimensional

approximation Ω(k, a) for ΩaM = {γ ∈ ΩpqM | E(γ) ≤ a} with a sufficiently

large k [Milnor 1969, Theorem 17.1]. The next step is that the homotopy type

of the spaces ΩpqM does not depend on the chosen points. For two curves

γ1, γ2 : [0, 1] → M with γ2(1) = γ1(0), denote by γ1 ∗ γ2 : [0, 1] → M their

composition, defined by

γ1 ∗ γ2(t) =

{

γ2(2t) for 0 ≤ t ≤
1

2
,

γ1(2t− 1) for 1

2
≤ t ≤ 1.

Now fix a curve γ1 ∈ ΩqrM ; the map γ ∈ ΩpqM 7→ γ1 ∗ γ ∈ ΩrM defines a

homotopy equivalence. Hence we can conclude from Proposition 7.5 that the loop

space is k-connected. This finally implies by Proposition 7.9 that the manifold is

(k−1)-connected. If k = n− 1 we conclude from Corollary 7.7 that the manifold

is homotopy equivalent to the n-sphere. ˜
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8. Morse Theory of the Energy Functional

For a Finsler manifold (M,F ) and two points p, q ∈M we consider the energy

functional on the space Ωpq of curves joining the points p and q. A critical value

κ equals the energy E(c) of a geodesic c joining these points. Morse theory

provides a connection between invariants of critical points of a function on a

manifold and global topological invariants, in our case a connection between

homology or homotopy invariants of the loop space and indices of geodesics.

We introduce the space ΩpqM of absolutely continuous curves γ : [0, 1] →M

satisfying γ(0) = p, γ(1) = q, and

∫

1

0

F
2(γ′(t))dt <∞.

The energy functional E : ΩpqM −→ R, given by

E(γ) =
1

2

∫

1

0

F
2(γ′(t)) dt,

is C1,1-differentiable, that is, it is C1-differentiable and its derivative is locally

Lipschitz continuous [Mercuri 1971].

If cs : [0, 1] → M , s ∈ (−ε, ε), is a variation of c = c0 with fixed end points

p = c(0), q = c(1), we conclude from the first variation formula (Lemma 4.1)

that the variation vector field Y (t) = (d/ds)|s=0 cs(t) satisfies

dE(c)Y :=
∂

∂s

∣
∣
∣
s=0

E(cs) =

∫

1

0

〈
∇

dt
c
′
, Y

〉

c′
(t) dt.

The curve c is a critical point of the energy functional if dE(c)Y = 0 for every

vector field Y ∈ W
0

c
. Then it follows from Corollary 4.2 that the critical points

are the geodesics c : [0, 1] →M , starting at p = c(0) and ending at q = c(1). For

nonnegative κ ≥ 0 we define the sublevel sets

Ωκ

pq
= Ωκ := {σ ∈ ΩpqM | E(σ) ≤ κ};

then Ωl

pq
M with 2l = θ(p, q)2 contains the minimal geodesics joining p and q.

For l small enough there is a unique minimal geodesic, that is, Ωl

pq
M contains

exactly one element. If the case p=q the subset Ω0

pp
consists of the point curve p.

We choose an arbitrary Riemannian metric g on the manifold, which induces

a Hilbert space structure on ΩpqM . If c : [0, 1] → M is a smooth curve with

c(0) = c(1) and X,Y are smooth vector fields along c, a Riemannian metric on

ΩpqM is defined by

g1(X,Y ) =

∫

1

0

g
(

X(t), Y (t)
)

dt+

∫

1

0

g

(
∇

dt
X(t),

∇

dt
Y (t)

)

dt,

where ∇/dt is the covariant derivative along c induced by the Levi-Civita con-

nection of the Riemannian manifold. The energy functional induces a Lipschitz
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continuous gradient vector field gradE through the equation

g1

(

gradE(c),X
)

= dE(c)X

for all X. The energy functional satisfies the Palais–Smale condition and the

negative gradient flow, that is, the flow of the vector field −gradE on λ, is

defined for every t ≥ 0 [Mercuri 1971].

For the Morse theory of the energy functional we have to consider also the

second derivatives of the energy functional at the critical points. For a non-

Riemannian Finsler metric the square F 2 of the Finsler metric F is not C2-

differentiable at the zero section. Hence E is C2-differentiable only at the regular

curves, those curves c with c
′(t) 6= 0 for all t. Geodesics of positive length are

regular, so we can use the statement in Corollary 6.2. As remarked just before

that corollary, the index form I
0

c
of the geodesic defined with the Finsler metric

coincides with the index form Ic of an osculating Riemannian metric.

We will not go into details in this construction since instead of the space Ωpq

one can use a finite-dimensional approximation. This allows us to use Morse the-

ory for a finite-dimensional compact manifold instead of the infinite-dimensional

Hilbert manifold ΩpqM . The finite-dimensional approximation was introduced

by M. Morse and is explained in [Milnor 1969, Chapter 16]. We start with a com-

pact Finsler manifold (M,F ) with injectivity radius inj > 0 (see Definition 9.1

below). For every pair of points p, q ∈ M with distance θ(p, q) < inj, there is

a unique minimal geodesic from p to q. Choose a > 0 and k ∈ N such that

1/k < (inj)2/(2a), and set ti := i/k for i ∈ N. Define

Ωpq(k, a) :=
{

c ∈ Ωa

pq
M | c |[ti, ti+1] is a geodesic

}

.

Since

θ
2
(

c(ti), c(ti+1)
)

≤ L
2
(

c |[ti, ti+1]
)

≤

2

k
E

(

c |[ti, ti+1]
)

≤

2a

k
< inj2,

a curve c ∈ Ωpq(k, a) is uniquely determined by the points c(t1), . . . , c(tk−1) ∈

M × · · · ×M . Therefore we can identify Ωpq(k, a) with the submanifold with

boundary

{

(x1, . . . , xk−1) ∈M × · · · ×M | θ(xi, xi+1) ≤
1

2
inj for i = 0, . . . , k − 1

}

of the product manifold M × · · · × M , where we set p = x0, q = xk. We

conclude that Ωpq(k, a) has the structure of a compact manifold with boundary

of dimension (k−1) dimM . Then there is a strong deformation retraction

ru : Ωa

pq
→ Ωa

pq
, u ∈ [0, 1],

with r0(c) = c for all c ∈ Ωa

pq
, ru(c) = c for all c ∈ Ωpq(k, a), u ∈ [0, 1], and

r1(c) ∈ Ωpq(k, a) for all Ωa

pq
. It is defined for u ∈ [ti, ti+1], as follows: For t ≤ ti,

ru(c)(t) is the broken geodesic with corners c(0), c(t1), c(t2), . . . , c(ti); ru(t) for
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t ∈ [ti, u] is the minimal geodesic between c(ti) and c(u) and ru(c)(t) = c(t) for

t ≥ ti+1. Then the restriction E ′ : Ωpq(k, a) → R of E given by

E
′(x1, . . . , xk) = 1

2

∑

k

i=1
θ
2(xi, xi+1)

is a C1-smooth function. The first variational formula implies that the critical

points are the geodesics from p to q with E(c) ≤ a, and the function is C∞

differentiable in the neighborhood of critical points of positive length.

For a broken geodesic c = (x1, . . . , xk) (smooth except at t = t1, . . . , tk−1,

where ti no longer bears the meaning i/k), a tangent vector y(t)=(∂/∂s)|s=0 cs(t)

is given by a variation cs = (xs

1
, . . . , x

s

k
) ∈ Ωpq(k, a), s ∈ (−ε, ε), that is, a curve

in Ωpq(k, a). Since the variation vector field of a geodesic variation is a Jacobi

field (Lemma 5.5), the tangent space TxΩpq consists of broken Jacobi fields,

TxΩpq(k, a) =
{

X ∈Wc | X|[ti, ti+1] is a Jacobi field
}

.

In particular, if c is a geodesic (smooth throughout), the tangent space TcΩpq

coincides with the space J introduced in the Proof of Lemma 6.4. Therefore the

Proof of Lemma 6.4 also shows that restricting the index form to the tangent

space TcΩpq(k, a) changes neither the index nor the nullity.

The energy functional E ′ : ΩpqM(k, a) → R is a differentiable function on

the compact manifold ΩpqM(k, a). It is a Morse function if all critical points

are nondegenerate, that is, if all geodesics c joining the points p and q with

energy ≤ a are nondegenerate— in symbols, nul c = 0. Assume c ∈ Ωpq(k, a) is

degenerate, so there is X ∈ W 0

c
with X 6= 0 and I0

c
(X,Y ) = 0 for all Y ∈ W 0

c
.

Since X is a piecewise smooth vector field, choose 0 = t0 < t1 < · · · < tk = 1

such that X is smooth when restricted to each subinterval [ti, ti+1], and also

such that no subinterval contains a pair of conjugate points. Then we obtain

from Equation 6–1:

0 = Ic(X,Y ) = −

∫

1

0

〈
∇

2

dt2
X +R

c
′

(X, c′)c′, Y
〉

c′
dt

+
k−1
∑

i=1

〈
∇

dt
X(t−

i
) −

∇

dt
X(t+

i
), Y (ti)

〉

c′
. (8–1)

Let Y ∈W
0

c
be a broken Jacobi field with Y (ti) := (∇/dt)X(t−

i
)−(∇/dt)X(t+

i
),

so the restrictions Y |[ti, ti+1] are Jacobi fields along c |[ti, ti+1]. Then Equa-

tion 8–1 implies

Ic(X,Y ) =
k−1
∑

i=1

∥
∥
∥
∇

dt
X(t−

i
) −

∇

dt
X(t+

i
)

∥
∥
∥

2

c′
= 0,

hence X is a smooth vector field. We have shown:

Lemma 8.1. The energy functional E ′ : Ωpq(k, a) → R is a Morse function if

and only if the point q is not conjugate to p along any geodesic c with E(c) ≤ a

joining p and q.
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The next proposition relates the conjugate points of p ∈M to the critical points

of the exponential map at p. (Recall that the exponential map exp
p

: TpM →M

is defined by exp
p
(X) = cX(1), where for X ∈ TpM we denote by cX : R → M

the geodesic with c
′
X

(0) = X. This assumes that the metric is complete—

more precisely, forward geodesically complete —an assumption that is satisfied

in particular if the manifold is compact, thanks to the Finsler version of the

Hopf–Rinow Theorem [Bao et al. 2000, § 6.6].)

Proposition 8.2. Let (M,F ) be a complete Finsler manifold and let p ∈M . A

point q = exp
p
(X) is a critical point of the exponential map exp

p
: TpM →M if

and only if q is a conjugate point of p along the geodesic t ∈ [0, 1] 7→ exp
p
(tX) ∈

M from p to q.

The proof of the Riemannian case [Milnor 1969, Theorem 18.1] carries over. As

an application of Sard’s Theorem one obtains:

Corollary 8.3 [Milnor 1969, Corollary 18.2]. Let (M,F ) be a compact Finsler

manifold and let p ∈ M . For almost all points q ∈ M (that is, up to a set of

measure zero) the point q is not a conjugate point to p along any geodesic from

p to q. For almost all q ∈ M the energy functional E : ΩpqM → R is a Morse

function.

It is the chief observation of Morse theory that the topology of the sublevel

sets Ωκ

pq
M := {σ ∈ Ωpq | E(σ) ≤ κ} and Ωκ

pq
(k, b) can only change if κ is

a critical value. The change in topology can be described by the indices of

the corresponding critical points. Applied to the energy functional, this line of

argumentation yields (compare [Milnor 1969, Theorem 17.3]):

Theorem 8.4 (Fundamental Theorem of Morse Theory). Let (M,F ) be

a compact Finsler manifold and p ∈M an arbitrary point . For almost all q ∈M

and for all a > 0 the function E′ : Ωpq(k, a) → R is a Morse function and there

are only finitely many geodesics c joining p and q with E(c) ≤ a.

The spaces Ωκ

pq
M and Ωκ

pq
(k, a) have the homotopy type of a CW-complex

having as many m-cells as there are geodesics c joining p and q with E(c) ≤ a

and ind c = m.

Sketch of proof. As remarked in Proposition 8.2, for almost all q ∈ M and

all a > 0 the energy functional E ′ : Ωpq(k, a) → R is a Morse function. If there

is no critical value in [α, β], one can use the flow of the negative gradient field

−gradE′ on Ωpq(k, a) and retract Ωβ

pq
(k, a) onto Ωα

pq
(k, a).

The behavior of a Morse function near a critical point is described by the

Morse Lemma [Milnor 1969, Lemma 2.2]. Applied to E
′ it states that near a

geodesic c one can introduce local coordinates y = (y1, . . . , yr), with c corre-

sponding to 0 = (0, . . . , 0), such that

E
′(y1, . . . , yr) = E(c) −

ind c
∑

j=1

y
2

j
+

r
∑

j=ind c+1

y
2

j
.
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Here r = (k−1) dimM = dimΩpq(k, a). Hence the index describes the dimension

of a subspace on which the energy of nearby curves decreases quadratically,

whereas on a complementary subspace the energy grows quadratically. This

implies that the geodesics are isolated. Since Ωpq(k, a) is compact, there are

only finitely many geodesics joining p and q with energy ≤ a.

Assume for simplicity that there is only one geodesic of energy a joining p

and q. Let ind c = m. Then one can show that for sufficiently small ε > 0

the set Ωa+ε

pq
(k, a) has the homotopy type of Ωa−ε

pq
(k, a) with an m-dimensional

cell attached [Milnor 1969, Theorem 3.2]. This m-cell corresponds to the set
{

(y1, . . . , yk, 0, . . . , 0) | y2

1
+ . . .+ y2

m
< ε

}

in the coordinates used in the Morse

Lemma. ˜

Remark 8.5. In Remark 5.7 we discussed Jacobi fields along a geodesic where

the flag curvature is constant and positive. Now we consider the index form

Ic(δ, l) of a geodesic c = cl(δ) : [0, 1] →M of length l with constant flag curvature

K(c′(t);σ). We can use bounds for the flag curvature to estimate the index and

the conjugate radius, as in the Riemannian case.

We choose e1, e2, . . . , en in Tc(0)M , orthonormal with respect to 〈 · , · 〉c′ and

such that c′(0) = F (c′)e1. We extend this frame by parallel transport with

respect to (∇/dt) along c. We can write vector fields X = X(t) along c as

X(t) =
∑

n

i=1
xi(t)ei(t), for smooth functions xi : [0, 1] → R. Then

Ic(δ, l)(X,X) =

∫

1

0

(

x
′
i
(t)2 − δx

2

i
(t)

)

dt

and one shows that

ind cl(δ) = ind Ic(δ, l) = k(n− 1) (8–2)

for l ∈
(

kπ/
√

δ, (k+1)π/
√

δ
)

. See [Klingenberg 1995, Example 2.5.7].

Now let γ : [0, 1] → M be a geodesic of a Finsler metric with a lower bound

for the flag curvature: K ≥ δ. We again choose along γ an orthonormal frame

(e1, e2, . . . , en)(t) parallel with respect to (∇/dt). We can estimate the indexes

ind γ and ind Iγ by comparing them with the index ind cl(δ) of a geodesic cl(δ)

of the same length on a space form with constant sectional curvature:

Ic(X,X) =

∫

1

0

(

x
′
i
(t)2 −K(e1(t); e2(t))x

2

i
(t)

)

dt

≤

∫

1

0

(

x
′
i
(t)2 − δx

2

i
(t)

)

dt = Ic(δ, l)(X,X).

This computation and a similar one in the case of an upper bound for the flag

curvature lead to the following estimates for the distance of conjugate points and

indices of geodesics. Here we use the fact that the index form Iγ of γ = γX is

positive definite for L(γ) < conj
X

and degenerate for L(γ) = conj
X

.
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Lemma 8.6. Let γ = γX : [0, a] → M be a geodesic parametrized by arc length

on a Finsler manifold (M,F ), with γ′
X

(0) = X.

(a) If the flag curvature K = K(γ ′;σ) satisfies K ≤ ∆ (resp. K < ∆) then

conj
X

≥ π/
√

∆ (resp. conj
X
> π/

√

∆).

(b) If the flag curvature K = K(γ ′;σ) satisfies δ ≤ K (resp. δ < K) then

conj
X

≤ π/
√

∆ (resp. conj
X
< π/

√

∆).

(c) If the Ricci curvature Ric = Ric(γ ′)F 2 satisfies Ric ≥ δ(n−1)F 2 (resp. Ric >

δ(n− 1)) then conj
X

≤ π/
√

δ (resp. conj
X
< π/

√

δ).

Sketch of proof. The argument for cases (a) and (b) is given in Remark 8.5.

The argument in case (c) is the same as in the Riemannian case. As in the

preceding remark we choose an orthonormal frame (e1, . . . , en)(t) along γ with

L(γ) = a = π/
√

δ, parallel with respect to ∇/dt, and such that γ ′(0) = X =

F (X)e1(0). Then we define the vector fields

Xi(t) = sin(
√

δ t)ei(t), i = 2, . . . , n.

We compute for the index form Iγ :

n
∑

i=2

Iγ(Xi,Xi) =
n

∑

i=2

∫

a

0

(

cos2(
√

δ t) −K(e1(t); ei(t)) sin2(
√

δ t)
)

dt

= (n− 1)

a
∑

0

(

δ cos2(
√

δ t ) −

∑

n

i=2
K(e1; ei)

n− 1
sin2(

√

δ t )

)

dt

≤ (n− 1)δ

∫

a

0

(

cos2(
√

δ t) − sin2(
√

δ t)
)

dt = 0.

We conclude that conj
X

≤ π/
√

δ. ˜

The diameter of a complete Finsler manifold M is the maximal distance of two

points. By the Hopf–Rinow theorem [Bao et al. 2000, § 6.6] there is a minimal

geodesic between two points of maximal distance. Since a geodesic is not minimal

after the first conjugate point, the diameter is at most max {conj
X

| X ∈ T
1
M}.

Therefore we obtain as a consequence of Lemma 8.6 the following generalization

of the Bonnet–Myers theorem of Riemannian geometry:

Corollary 8.7 [Auslander 1955]. Let (M,F ) be a complete Finsler manifold

of dimension n with Ricci curvature Ric(V ) ≥ δ (n−1)F 2(V ) for some positive

δ and for all nonzero tangent vectors V . Then M is compact and its diameter

is at most π/
√

δ.

Since this estimate also holds for the universal covering space, we conclude that

the universal covering space is also compact, so the fundamental group of the

manifold is finite. In the proof of the Sphere Theorem the following statement

is of importance:
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Proposition 8.8. Let (M,F ) be a compact and simply connected Finsler man-

ifold of dimension n, and let p, q ∈M be such that q is not conjugate to p along

any geodesic joining p and q. Assume there is a number m ≥ 2 such that every

nonminimal geodesic c from p to q has index at least m. Then:

(a) The manifold is m-connected (see page 280 for definition).

(b) If m = n− 1, the manifold is homotopy equivalent to the n-sphere.

Proof. It follows from the Fundamental Theorem of Morse Theory (Theo-

rem 8.4) that the space Ωpq has the homotopy type of a CW-complex with no

cells of dimension k ∈ {1, 2, . . . ,m − 1}. By Proposition 7.5 this implies that

the space Ωpq is (m−1)-connected; Proposition 7.9 then implies that M itself is

m-connected. Part (b) follows from Corollary 7.7. ˜

9. Shortest Nonminimal Geodesics and the Sphere Theorem

Now we come to the crucial geometric argument in the proof of the Sphere

Theorem. We obtain a lower bound for the length of a nonminimal geodesic c

joining two points p, q or a nonconstant geodesic loop. In contrast to a minimal

geodesic, this geodesic will meet the cut locus, after which the geodesic is not

minimal anymore.

The exponential map exp
p

: TpM → M is C∞-smooth on TpM \ {0} and

C1-smooth on TpM [Shen 2001a, § 11.1]. The differential at 0 ∈ TpM is an

isomorphism; hence there is an ε > 0 such that the restriction

exp
p

: Bε(TpM) = {X ∈ TpM |F (X) < ε} →M

is a local diffeomorphism onto its image Bε(p) ⊂ M . If a piecewise smooth

curve c : [0, a] → M is minimal, that is, L(c) = θ
(

c(0), c(a)
)

, it follows from

Corollary 4.2 that c is a smooth geodesic.

Definition 9.1. For a unit tangent vector X ∈ TpM , set

t(X) = sup
{

s > 0 | θ(exp
p
(sX), p) = s

}

.

Then q = exp
p
(t(X)X) is called a cut point. The cut locus

Cut(p) :=
{

exp
p
(t(X)X) | F (X) = 1, t(X) <∞

}

is the union of all cut points on geodesics starting from p. The injectivity radius

at p is inj p := inf
{

θ(p, q) | q ∈ Cut(p)
}

. If the manifold is compact we define

the injectivity radius of M as inj = inj(M ;F ) = inf
{

inj p | p ∈ M
}

. The

symmetrized injectivity radius at p is d(p) := inf
{

d(p, q) | q ∈ Cut(p)
}

. If the

manifold is compact, we define the symmetrized injectivity radius d = d(M ;F ) =

inf
{

d(p) | p ∈M
}

. Finally, given two points p, q we define

ϑ(p, q) := inf
{

θ(p, r) + θ(r, q) | r ∈ Cut p }.
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Hence d(p) is the symmetrized distance between p and its cut locus, whereas

inj p is the distance θ(p,Cut(p)) with respect to the distance function θ. For a

reversible Finsler metric these functions coincide. In general we have the bounds

1

2

(

1 + 1/λ
)

inj p ≤ d(p) ≤ 1

2
(1 + λ) inj p,

2

1 + λ
d(p) ≤ inj p ≤

2λ

1 + λ
d(p),

which imply the corresponding estimates for global injectivity radii inj and d in

case of a compact manifold. Obviously ϑ(p, p) = 2d(p) and the triangle inequality

for θ implies

ϑ(p, q) + θ(q, p) ≥ 2d(p). (9–1)

If the manifold is compact, the cut locus of a point is also compact, so the

infima in the above definitions of the injectivity radius and the symmetrized

injectivity radius are actually minima.

Definition 9.2. A broken geodesic with one

corner joining p and q is a continuous curve

c : [0, b] → M such that p = c(0), q = c(b),

and for some a ∈ (0, b) the restrictions c1 =

c |[0, a] → M and c2 = c |[a, b] → M are mini-

mal geodesics. The point r = c(a) is the corner

of c. We call c smooth at r if c′
1
(a) = c′

2
(a). The

length of c is given by L(c) = L(c1)+L(c2) = θ(p, r)+θ(r, q). If p = q, we have a

closed broken geodesic, and its length is twice the symmetrized distance between

p and r: L(c) = 2d(p, r).

p

r

q

c1

c2

Lemma 9.3. Let (M,F ) be a compact Finsler manifold with reversibility λ and

flag curvature K ≤ 1, and let p ∈ M be a point on M . If there is a cut point

r ∈ Cut p with θ(p, r) < π, there is a local hypersurface H ⊂M with r ∈ H such

that for every smooth curve τ : (−1, 1) → H with τ(0) = r there are two geodesic

variations c1,s, c2,s : [0, θ(p, q)] → M with c1,s(θ(p, r)) = c2,s(θ(p, r)) = τ(s),

L(c1,s) = L(c2,s) and such that c1 = c1,0, c2 = c2,0 are two distinct minimal

geodesics joining p and r.

p

r
τ(s)

H

c2

c1

c1,s
c2,s

Proof. We conclude from Lemma 8.6 that, since r is not conjugate to p along

a minimal geodesic, there are distinct minimal geodesics c1, c2 : [0, θ(p, r)] →M
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parametrized by arc length with c1(0)= c2(0)=p and c1(θ(p, r))= c2(θ(p, r))= r.

Since r is not conjugate to p along c1 or c2, we can choose an open neighborhood

U ⊂ M of r and open disjoint neighborhoods Uj ⊂ TpM of c′
j
(0), for j = 1, 2,

such that the restrictions of the exponential map exp
p

: TpM → M to U1, U2

are diffeomorphisms; see Proposition 8.2. We define functions f1, f2 : U → R by

setting

fj(v) = F
(

(exp
p
|Uj)

−1(v)
)

, j = 1, 2.

These functions are differentiable and of maximal rank, with fj(r) = θ(p, r),

grad fj(r) = c
′
j
(θ(p, r)) and dfj(r)(X) =

〈

c
′
j
(θ(p, r)),X

〉

c
′

j
(θ(p,r))

for j = 1, 2 and for all X, as follows from the Gauss lemma (see [Bao et al. 2000,

§ 6.1] and [Shen 2001a, 11.2.1]). One can view f1, f2 as distance functions on the

Finsler manifolds (U ′
1
, F ) and (U ′

2
, F ), where U ′

j
is a small open neigborhood of

the image of the curve c
(

[0, θ(p, r)]
)

. Since

grad f1(r) = c
′
1
(θ(p, r)) 6= c

′
2
(θ(p, r)) = grad f2(r),

the function f1 − f2 has maximal rank in an open neighborhood of r, which

we again denote by U ; thus H = f
−1(0) = {x ∈ U | f1(x) = f2(x)} is a

smooth hypersurface with r ∈ H. We finish by setting c′
1,s

(0) = f
−1

1
(τ(s)) and

c
′
2,s

(0) = f
−1

2
(τ(s)). ˜

Lemma 9.4. Let (M,F ) be a compact Finsler

manifold with reversibility λ and with flag cur-

vature K ≤ 1. Let p, q ∈ M be two points with

ϑ(p, q) + θ(q, p) < π(1 + λ
−1). Then there is a

cut point r ∈ Cut p and a geodesic c of length

ϑ(p, q) parametrized by arc length from p to q

going through r.

Proof. Choose r ∈ Cut p such that ϑ(p, q) =

θ(p, r) + θ(r, q). If θ(p, r) ≥ π, the definition

of the reversibility (Lemma 3.9) implies that

θ(r, p) ≥ π/λ, hence ϑ(p, q)+θ(q, p) = θ(p, r)+

θ(r, q) + θ(q, p) ≥ θ(p, r) + θ(r, p) = 2d(p, r) ≥

π(1+λ−1), contradicting the assumption. Thus

we have proved that θ(p, r) < π.

p

r

q

τ(s)

H

c2

c1

c3

c3,s

c1,s
c2,s

On the other hand, if θ(r, q) ≥ π, we have θ(q, r) ≥ π/λ and ϑ(p, q)+θ(q, p) =

θ(p, r) + θ(r, q) + θ(q, p) ≥ θ(r, q) + θ(q, r) = d(r, q) ≥ π(1 + λ
−1). Therefore it

follows also that θ(r, q) < π.

Since θ(p, r) < π, the point r is not conjugate to p along a minimal geodesic

joining p. Therefore Lemma 9.3 gives an open hyersurface H ⊂ M with r ∈ H

such that for every smooth curve τ : (−1, 1) → H with τ(0) = r there are

variations c1,s, c2,s : [0, θ(p, r)] → M such that L (c̃1,s) = L (c̃1,s), p = c1,s(0) =
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c2,s(0), τ(s) = c1,s(1) = c2,s(1) and c1 = c1,0, c2 = c2,0 : [0, θ(p, r)] → M are

distinct minimal geodesics joining p and r.

Now let c3 : [θ(p, r), ϑ(p, q)] → M be a minimal geodesic parametrized by

arc length joining c3(θ(p, r)) = r and c3(2d(p, q)) = p. Since θ(r, q) < π, the

point q is not conjugate to r along a minimal geodesic from r to q. Therefore

we can choose a geodesic variation c3,s : [θ(p, r), ϑ(p, q)] → M with c3,0 = c3,

c3,s(θ(p, r)) = τ(s) and c3,s(ϑ(p, q)) = q for all s ∈ (−1, 1).

Now we can combine the smooth geodesic variations c1,s, c2,s and c3,s to

obtain two piecewise smooth variations c̃1,s, c̃2,s : [0, ϑ(p, q)] →M with

c̃j,s(t) =

{

cj,s(t) if t ∈
[

0, θ(p, r)
]

,

c3,s(t) if t ∈
[

θ(p, r), ϑ(p, q)
]

.

These are variations of the broken geodesics c̃1 = (c1, c3) and c̃2 = (c2, c3) by

broken geodesics with fixed end points p = c̃j(0) and q = c̃j(ϑ(p, q)) and with

τ
′(0) = (∂/∂s)|s=0 c̃j,s(θ(p, r)).

We assume that c′
1
(θ(p, r)) 6= c

′
3
(θ(p, r)) and c

′
2
(θ(p, r)) 6= c

′
3
(θ(p, r)). Since

c1 and c2 are distinct, c′
1
(θ(p, r)), c′

2
(θ(p, r)), c′

3
(θ(p, r)) are pairwise disjoint.

Recall from Definition 3.3 the Legendre transformation L(X)(Y ) = 〈Y,X〉X .

Given three pairwise distinct nonzero vectors X1,X2,X3 ∈ TrM , we have

dim
{

Y ∈ TrM | L(X1)(Y ) = L(X2)(Y ) = L(X3)(Y )
}

≤ n− 2.

Applying this c′
1
(θ(p, r)), c′

2
(θ(p, r)), c′

3
(θ(p, r)), we see that there is a tangent

vector V ∈ TrH ⊂ TrM such that L
(

c3(θ(p, r))
)

(V ) is not equal simultaneously

to L

(

c1(θ(p, r))
)

(V ) and L

(

c2(θ(p, r))
)

(V ). We assume without loss of generality

that

L

(

c1(θ(p, r))
)

(V ) −L

(

c3(θ(p, r))
)

(V ) 6= 0.

The first variational formula for the energy functional (Lemma 4.1), applied

to the variation c̃1,s of the broken geodesic c̃1, yields

d

ds

∣
∣
∣
s=0

E(c̃1) = L

(

c1(θ(p, r))
)

− L

(

c3(θ(p, r))
)

6= 0.

By using s 7→ τ(−s) instead of s 7→ τ(s), if necessary, we can assume that

d

ds

∣
∣
∣
s=0

E(c̃1,s) < 0.

It follows that θ
(

p, c̃1,s(θ(p, r))
)

+ θ
(

c̃1,s(θ(p, r)), q
)

< θ(p, r) + θ(r, q) for small

s > 0. Since for sufficiently small s > 0 the geodesics c̃1,s, c̃2,s : [0, θ(p, r)] → M

intersect at t = θ(p, r), the cut point c̃1,s(t1,s) of c̃1,s occurs no later than θ(p, r),

that is, t1,s ≤ θ(p, r). Since

θ
(

p, c̃1,s(t1,s)
)

+θ
(

c̃1,s(t1,s), q
)

≤ θ
(

p, c̃1,s(θ(p, r))
)

+θ
(

c̃1,s(θ(p, r)), c̃1,s(ϑ(p, q))
)

= L
(

c̃1,s

)

< ϑ(p, q),
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we have found for sufficiently small s > 0 a cut point r1,s = c̃1,s(t1,s) ∈ Cut p

satisfying θ(p, r1,s)+ θ(r1,s, q) < θ(p, r)+ θ(r, q) = ϑ(p, q), which contradicts the

definition of ϑ(p, q). Hence c′
1
(θ(p, r)) = c′

3
(θ(p, r)), that is, the broken geodesic

(c1, c3) with break point r is actually smooth. ˜

Lemma 9.5. Let (M,F ) be a compact Finsler manifold with reversibility λ and

flag curvature K ≤ 1.

(a) Let p, q ∈M with q 6∈ Cut p and assume that ϑ(p, q) + θ(q, p) < π(1 + λ
−1).

Then ϑ(p, q) is the length of the shortest nonminimal geodesic from p to q.

(b) If the symmetrized injectivity radius d of M satisfies d < π(1+λ−1)/2, there

is a shortest geodesic loop c with initial point p and a point q ∈ Cut(p) on this

loop with L(c) = 2d = 2d(p, q).

Proof. (a) The cut locus Cut p is a closed subset; hence there exists r ∈ Cut p

with θ(p, r)+θ(r, q) = ϑ(p, q). It follows from Lemma 9.4 that there is a geodesic

c from p to q through r with L(c) = ϑ(p, q). Since r is a cut point and r 6= q,

this geodesic is not minimal.

(b) Let q ∈ Cut(p) be a point with d = d(p, q). We know from Lemma 9.4 that

there is a geodesic loop c with c(0) = p and L(c) = 2d. We only have to show

that this curve is a shortest geodesic loop. If c1 is a shortest geodesic loop with

c1(0) = p and with cut point q = c1(t0), the restriction c1|[0, t0] is minimal and

L(c1) ≥ 2d(p, q). But we showed in Lemma 9.4 that there is a geodesic loop

c ∈ Ωp with L(c) = 2d = 2d(p). This finally implies that L(c1) = 2d. ˜

Remark 9.6. If the Finsler metric is reversible, the proof of Lemma 9.4 simplifies

considerably. The argument for this case was introduced by Klingenberg [1995,

2.1.11] in the Riemannian setting. The minimal geodesic c3 coincides with one of

the minimal geodesics c1, c2 (say c1) up to orientation, that is, θ(p, r) = d(p, r)

and c3(t) = c1(2d(p, r) − t). By using the same argument exchanging the roles

of p, r one can prove then that there is a closed geodesic c of length 2d. If c is

parametrized by arc length, c(d) is the cut point, and there is no shorter geodesic

loop.

If we use the same argument as in the proof of Lemma 9.4, we obtain:

Lemma 9.7. Let (M,F ) be a compact Finsler manifold with reversibility λ

and flag curvature K ≤ 1. If the symmetrized injectivity radius satisfies d <

π
(

1 + 1

λ

)

, there is a point p ∈M and a cut point r ∈ Cut p such that either

(a) there is a closed geodesic c : [0, 2d] → M parametrized by arclength with

L(c) = 2d and c(0) = p, c(θ(p, r)) = r, or

(b) there are two distinct geodesic loops c1, c2 : [0, 2d] →M parametrized by arc

length (that is, both have the same length 2d) with c1(0) = p = c2(θ(r, p)) and

c1(θ(p, r)) = r = c2(0).
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p

r

c1

c2 c3

p

r

c1

c3

c2

Proof. If we use the statement of Lemma 9.4 and the argument in the proof

of the same lemma, exchanging the roles of p and q, we reach the follow-

ing statement: There are three minimal geodesics c1, c2 : [0, θ(p, q)] → M

and c3 : [θ(q, p), 2d] → M with d = d(p, q), p = c1(0) = c2(0) = c3(2d),

and q = c1(θ(p, q)) = c2(θ(p, q)) = c3(θ(p, q)). Without loss of generality we

can assume that the broken geodesic (c1, c3) with corner q is smooth at q:

c
′
1
(θ(p, q)) = c

′
3
(θ(p, q)). In addition there are two cases: Either the broken

geodesic formed by c3, c1 is smooth at p, so that c′
3
(2d) = c

′
1
(0), which means

that the geodesics c1, c3 form a closed geodesic, or the broken geodesic formed

by c3, c2 is smooth at p. ˜

In the reversible case we have case (a) of the lemma. It is not clear whether case

(b) occurs in the nonreversible case.

Lemma 9.8. Let (M,F ) be a compact Finsler manifold with reversibility λ and

flag curvature K ≤ 1 and let p, q ∈M be two points with distance θ(p, q) < inj p.

Let c1 : [0, 1] → M be a nonminimal geodesic with c1(0) = p and c1(1) = q, and

let c0 : [0, 1] → M be a curve such that the reversed curve c
−1

0
: [0, 1] → M ,

c
−1

0
(t) = c0(1 − t) is a minimal geodesic with q = c0(1), p = c0(0) and length

L(c0) = θ(q, p). If cs : [0, 1] → M , s ∈ [0, 1], is a homotopy of piecewise smooth

curves with fixed endpoints p = cs(0), q = cs(1) for all s ∈ [0, 1] between the

curves c0, c1, then

θ(q, p) + max
s∈[0,1]

L(cs) ≥ π

(

1 +
1

λ

)

.

Proof. We are assuming that θ(q, p) + L(cs) < π (1 + λ
−1) for all s ∈ (0, 1];

hence there is a ρ > 0 such that θ(q, p)+L(cs) ≤ (π−ρ)(1+λ−1) for all s ∈ [0, 1].

We show by contradiction that

θ(p, cs(t)) ≤ π − ρ for all s, t ∈ [0, 1]. (9–2)

If there are s, t ∈ [0, 1] such that θ(p, cs(t)) > π − ρ, then

θ(q, p) + L(cs) ≥ θ(p, cs(t)) + θ(cs(t), q) + θ(q, p)

≥ θ(p, cs(t)) + θ(cs(t), p) ≥ θ(p, cs(t))(1 + λ
−1)

> (π − ρ)(1 + λ
−1),
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which contradicts our assumption.

Define the closed ball Ba(TpM) := {v ∈ TpM | F (v) ≤ a} of radius a > 0 in

the tangent space TpM at p. The subset Ba(p) :=
{

x ∈ M | θ(p, x) ≤ a
}

⊂ M

equals the image exp
p
(Ba(TpM)) of the exponential map exp

p
: TpM → M for

an arbitrary a > 0. It follows from 9–2 that cs(t) ∈ Bπ−ρ(p) for all s, t ∈ [0, 1].

The restriction

F := exp
p

: Bπ−ρ(TpM) → Bπ−ρ(p)

has everywhere maximal rank since the flag curvature satisfies K ≤ 1; thus it is

a local diffeomorphism. The restriction

exp
p

: Binj p(TpM) → Binj p(p)

is a diffeomorphism, since θ(q, p) < inj p for sufficiently small η > 0 we have

cs([0, 1]) ⊂ Binj p(p) for all s ∈ [0, η). Hence there is a uniquely defined lift

c̃s : t ∈ [0, 1) 7→ c̃s(t) ∈ Binj p(TpM)

for s ∈ [0, η) with cs(t) = exp
p
(c̃s(t)), 0p = c̃s(0), and X = c̃0(1) = c̃s(1) for all

s ∈ [0, η). Since the restriction F = exp
p
|Bπ−δ(TpM). is a local diffeomorphism,

there is a uniquely determined extension

c̃s : t ∈ [0, 1) 7→ c̃s(t) ∈ Bπ−ρ(TpM)

with cs(t) = exp
p
(c̃s(t)) of the lift for all s ∈ [0, 1]. It remains to show that this

lift is a homotopy with fixed end points. Define J0 :=
{

s ∈ [0, 1]|c̃s(0) = 0p

}

,

J1 :=
{

s ∈ [0, 1]|c̃s(1) = X
}

; these subsets contain the nonempty interval [0, η)

and are closed in [0, 1]. Since the restriction F of the exponential map is a local

diffeomorphism the subsets J0, J1 ⊂ [0, 1] are also open, hence J0 = J1 = [0, 1].

By assumption c1 : [0, 1] → M is a geodesic from p to q; hence c̃1(t) = tc
′
1
(0)

for all t ∈ [0, 1], contradicting c̃1(1) = 0p. Therefore we arrive at a contradiction

starting from the assumption θ(q, p) + L(cs) < π
(

1 + 1

λ

)

for all s ∈ [0, 1], which

finally proves the claim. ˜

With the long homotopy lemma we are able to gain a lower bound for the length

of nonminimal geodesics:

Proposition 9.9. Let (M,F ) be a simply connected , compact Finsler manifold

of dimension n ≥ 3, with reversibility λ and flag curvature
(

1− 1

1+λ

)2
< K ≤ 1.

If p ∈M , there exists for every ε > 0 a point q that is a regular point of exp
p

and

that satisfies θ(q, p) < ε and ϑ(p, q) + θ(q, p) ≥ π
(

1 + 1

λ

)

. (Recall that ϑ(p, q) is

the length of a shortest nonminimal geodesic from p to q.)

Proof. Since M is compact we can choose δ >
(

1 −
1

1+λ

)2

such that the flag

curvature K of satisfies δ < K ≤ 1. For a given ε > 0 we choose a regular point

q of exp
p

with θ(q, p) < ε and

θ(q, p) < π

(

1 +
1

λ
−

1
√

δ

)

.
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Now we assume that there is a shortest nonminimal geodesic c1 : [0, 1] → M

from p = c1(0) to q = c1(1) with length L(c1) and satisfying L(c1) + θ(q, p) <

π
(

1 + 1

λ

)

.

M is simply connected, so there is a path s ∈ [0, 1] 7→ cs ∈ ΩpqM going from

c0 (the reverse of the minimal geodesic c−1

0
from q to p of length θ(q, p)) to the

geodesic c1. This path describes a map

H : ([0, 1], {0, 1}) →
(

ΩpqM,Ωκ−
pq
M

)

,

with H(s) = cs, Ωκ−
pq
M := {γ ∈ ΩpqM | E(γ) < κ}, and κ defined by

2
√

κ = π(1 + λ
−1) − θ(q, p). Let c∗ : [0, 1] → M be a geodesic from p to q

with length L(c∗) ≥ π
(

1 + 1

λ

)

− θ(q, p) ≥ π/
√

δ. Lemma 8.6 gives the bound

ind c ≥ n − 1, so ind c ≥ 2 in view of the assumption n ≥ 3. We can conclude

from the Fundamental Theorem of Morse Theory (Theorem 8.4) that the pair

(ΩpqM,Ωκ−
pq
M) has the homotopy type of a CW-complex with no 1-dimensional

cells; hence the relative homotopy group

π1

(

ΩpM,Ωκ−
p
M

)

= 0,

is 1-connected, as is the pair
(

ΩpqM,Ωκ−
pq
M

)

; see Proposition 7.5. Therefore

there is a map Φ : (u, s) ∈ [0, 1] × ([0, 1], {0, 1}) 7→ Φu(s) ∈ (ΩpqM,Ωκ−
pq
M)

with Φu(0)(t) = c0(t), Φu(1)(t) = c(t) for all t, u ∈ [0, 1] and Φ0(s) = cs and

c̄s = Φ1(s) ∈ Ωκ−
pq

for all s ∈ [0, 1]. This implies that L(c̄s) < π
(

1 + 1

λ

)

− θ(q, p)

for all s ∈ [0, 1], that and c̄0 = c0 is up to orientation the minimal geodesic,

and that c̄1 = c is a shortest nonminimal geodesic joining p and q. But we

conclude from the Long Homotopy Lemma 9.8 that there is a s∗ ∈ (0, 1) with

L(c̄s∗) ≥
(

1 + 1

λ

)

− θ(q, p), which is a contradiction. ˜

The assumption that q is a regular value of the exponential map exp
p

ensures

that the energy functional is a Morse function, so all geodesics joining p and

q are nondegenerate. If one aims at estimating the length of geodesic loops or

closed geodesics it won’t be the case in general that p itself is a regular value of

the exponential map exp
p
. For example, on the standard sphere every point p

is conjugate to itself along a great circle; in particular every point p is a critical

point of exp
p
. But the statement of Proposition 9.9 is also correct if we remove

this assumption. In that case either one has to use a version of Morse theory

including degenerate critical points [Rademacher 2004, Theorem 3] or one can

argue as follows:

Theorem 9.10. Let (M,F ) be a simply connected , compact Finsler manifold of

dimension n ≥ 3, with reversibility λ and flag curvature
(

1 −
1

1+λ

)2

< K ≤ 1.

Then every nonconstant geodesic loop c has length at least π
(

1 + 1

λ

)

and the

injectivity radius satisfies inj ≥ π/λ.

Proof. For a point p ∈M the function

(q, r) ∈M × Cut p 7→ θ(p, r) + θ(r, q) ∈ R
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is continuous, hence also the map

q ∈M 7→ ϑ(p, q) = inf
{

θ(p, r) + θ(r, q) | r ∈ Cut p
}

.

Choose a sequence (qi)i∈N of regular points of the exponential map exp
p

with

limi→∞ θ(qi, p) = 0. We conclude from Proposition 9.9 that

2d(p) = lim
i→∞

ϑ(p, qi) ≥ π

(

1 +
1

λ

)

.

The estimate for the injectivity radius follows from Equation 9–1. ˜

Now we can prove the Sphere Theorem:

Theorem 9.11. A simply connected and compact Finsler manifold of dimension

n≥3 with reversibility λ and with flag curvature K satisfying
(

1− 1

1+λ

)2

<K≤1

is homotopy equivalent to the n-sphere.

For n = 2, Synge’s Theorem (Theorem 10.2) implies that an orientable compact

surface carrying a Finsler metric of positive flag curvatureK > 0 is diffeomorphic

to the 2-sphere.

Proof of the Sphere Theorem. Since M is compact we can choose δ >

π
(

1 + λ
−1

)

such that the flag curvature K satisfies δ < K ≤ 1. We choose ε > 0

with

ε < π

(

1 +
1

λ
−

1
√

δ

)

. (9–3)

We conclude from Proposition 9.9 that there is a regular point q ∈ M of the

exponential map exp
p

with θ(q, p) < ε and ϑ(p, q) ≥ π
(

1 + 1

λ

)

− ε; hence

ϑ(p, q) ≥ π/
√

δ, by 9–3. We conclude from Lemma 8.6 that the index ind c

of a nonminimal geodesic c joining p and q satisfies ind c ≥ n− 1. Then Propo-

sition 8.8 implies that M is homotopy equivalent to the n-sphere. ˜

10. Length of Closed Geodesics in Even Dimensions

In even dimensions one obtains a lower bound for the length of closed geodesics

for every metric of positive curvature on a simply connected manifold without

assuming a lower curvature bound. The crucial point (Synge’s argument) is

that in even dimensions there is a periodic parallel vector field along a closed

geodesic. By scaling the metric we can assume that the flag curvature K satisfies

0 < K ≤ 1.

Lemma 10.1. Let (M,F ) be a compact , oriented Finsler manifold of even di-

mension with positive flag curvature 0 < K ≤ 1. For every closed geodesic c there

is a parallel and periodic vector field W with 〈W,W 〉c′ = 1 and 〈W, c
′
〉c′ = 0.

Proof. The covariant derivative (∇/dt) along the geodesic c : [0, 1] → M

with ċ(0) = ċ(1) defines a parallel transport P : TpM → TpM with P (X(0)) =

X(1) and X = X(t) is a parallel vector field along c with respect to (∇/dt).
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Since (d/dt)
〈

X(t),X(t)
〉

c′
= 2

〈

(∇/dt)X(t),X(t)
〉

c′
, the parallel transport is an

orientation-preserving isometry. Since P (ċ(0)) = ċ(1), the parallel transport

defines an isometry of the orthogonal complement

T
⊥
p
M :=

{

X ∈ TpM | 〈X, ċ〉c′ = 0
}

.

This vector space has odd dimension, so there exists a nonzero eigenvector to

the eigenvalue 1, that is, a vector v ∈ T
⊥
p
M with Pv = v. Then the parallel field

W along c with W (0) = v is periodic: W (1) = W (0). ˜

Now we prove a generalization of Synge’s Theorem:

Theorem 10.2. Let (M,F ) be a compact Finsler manifold of positive flag cur-

vature.

(a) If M is orientable, it is simply connected .

(b) If M is nonorientable, its fundamental group satisfies π1(M) = Z2.

Proof. Let M be orientable, and assume that π1(M) 6= 0. Then there is a

nontrivial homotopy class in M and a shortest closed curve in this nontrivial

homotopy class is a closed geodesic c : [0, 1] → M . By Lemma 10.1 there is a

parallel and periodic vector field W along c; the index form at W satisfies

Ic(W ;W ) =

∫

1

0

〈

R
c
′

(W, c′)c′,W
〉

c′
dt < 0;

therefore there is a variation by homotopic closed curves cs with L(cs) < L(c)

for s > 0, contradicting the assumption that c is a shortest closed curve in the

given homotopy class. Hence π1(M) = 0.

If M is nonorientable one passes to the orientable double cover, which by (a)

is simply connected, so π1(M) = Z2. ˜

Theorem 10.3. Let (M,F ) be a simply connected compact Finsler manifold of

even dimension n ≥ 2 with reversibility λ and with flag curvature 0 < K ≤ 1.

Then every nonconstant closed geodesic c has length L(c) ≥ π
(

1 + 1

λ

)

.

Proof. Let c : S1
→M be a shortest closed geodesic with 0 < L(c) < π

(

1 + 1

λ

)

.

By Lemma 10.1, there exists a parallel unit vector field W along c; it follows

that the index form Ic on V
⊥
c

satisfies Ic(W,W ) < 0. Let cs, s ∈ (−ε, ε), be

a variation of c = c0 with variation vector field W . It follows from the second

variation formula that E(cs) < E(c0) for all s ∈ (−ε, 0) ∪ (0, ε). Since there are

no critical values of E in the interval
(

0, E(c0)
)

, there is a map hs : S1
→ M ,

s ∈ [−1, 1], with c = h0, L(h1) = L(h−1) = 0 and L(hs) < L(c) = L(h0) for

all nonzero s ∈ (−1, 1). One can generalize the Long Homotopy Lemma 9.8 to

the case of homotopies cs : S1
→ M of freely homotopic closed curves. This

generalization yields a contradiction. ˜
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11. An Example

Shen [2002] constructed Finsler metrics of constant flag curvature and Ran-

ders type. It turns out that in the Hamiltonian description these are the met-

rics introduced in [Katok 1973] and investigated in [Ziller 1982], as observed

in [Rademacher 2004, Chapter 4]. These examples show that the estimates in

Proposition 9.9 and Theorem 9.10, for the lengths of nonminimal geodesics be-

tween fixed points and of nonconstant geodesic loops, are sharp.

One can describe a Finsler metric using the Legendre transformation with a

Hamiltonian function [Ziller 1982, Chapter 1]. The Katok examples on S
2 =

{(x, y, z) ∈ R
3
| x

2 + y
2 + z

2 = 1} can be introduced as follows. We start

with the standard Riemannian metric g on the 2-sphere S2, letting g
∗ be the

dual metric on the cotangent bundle T ∗
M . In the Hamiltonian description the

standard metric is determined by the quadratic Hamiltonian function

y ∈ T
∗
S

2
7→ g

∗(y, y) ∈ R,

or by the 1-homogeneous Hamiltonian H0 : T ∗S2
→ R, H0(y) =

√

g∗(y, y).

Let ψt

0
: T ∗

S
2
→ T

∗
S

2 be the corresponding Hamiltonian flow. Then t ∈ R 7→

τ∗(ψt

0
(y)) is a geodesic of the standard metric; here τ ∗ : T ∗S2

→ S2 is the

projection of the cotangent bundle.

Let V (x, y, z) = (y,−x, 0) be the Killing field belonging to the 1-parameter

subgroup φt : S2
→ S

2 generated by the rotations around the z-axis. A. Katok

introduced the following perturbation of Randers type:

Hε : T ∗
S

2
→ R;Hε(y) =

√

g∗(y, y) + εy(V ).

In [Bao et al. 2003] these perturbations are connected to Zermelo navigation.

For ε ∈ [0, 1) this defines a quadratic Hamiltonian 1

2
H

2

ε
and using the Legendre

transformation of this Hamiltonian we obtain a Finsler metric Fε.

The description of the geodesics appears to be easier in the Hamiltonian pic-

ture: Since φt is a group of isometries leaving H0 invariant, the Hamiltonian

flow ψt

ε
of the quadratic Hamiltonian 1

2
H2

ε
is generated by two commuting flows,

ψ
t

ε
= ψ

t

0
◦ (φεt)∗. Here (φt)∗ : T ∗

S
2
→ T

∗
S

2 is the flow on the cotangent bundle

induced by differentiating φt. The projection of the Hamiltonian flow onto the

2-sphere yields the geodesics of the Finsler metric. As described in [Ziller 1982,

Chapter 1] one can visualize the geodesic flow of these Finsler metrics by identi-

fying the cotangent bundle T ∗
S

2 with the tangent bundle T∗S
2 via the standard

Riemannian metric g. Then the geodesic flow can be seen as the geodesic flow

of the standard metric observed from a coordinate system rotating around the

z-axis with constant speed 2πε, as shown in the figure on the next page. For

irrational ε the only closed geodesics are c±(t) = (cos 2πt,± sin 2πt, 0), t ∈ [0, 1],

i.e., the equator with both orientations. (We consider c+ and c− geometrically

distinct; for example their lengths L(c±) = 2π/(1 ± ε) differ.)
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β

Using the results [Hrimiuc and Shimada 1996, Theorem 5.8], [Shen 2001a,

Example 3.1.1] one obtains in geodesic polar coordinates (r, φ) ∈ (0, π) × [0, 2π]

of the standard metric the following formula for Fε :

Fε =

√

(1 − ε2 sin2
r) dr2 + sin2(r) dφ2

− ε sin2
r dφ

1 − ε2 sin2
r

. (11–1)

It is shown in [Shen 2002, Remark 3.1] that this metric has constant flag curva-

ture 1. The reversibility of the Finsler metrics Fε can be computed by

max
{

Hε(−y) | y ∈ T
∗
S

2
, Hε(y) = 1

}

.

Collecting the results from [Ziller 1982] and [Rademacher 2004, Chapter 5] one

obtains:

Theorem 11.1 [Rademacher 2004, Theorem 5]. There is a one-parameter family

Fε, ε ∈ [0, 1), of Finsler metrics on the 2-sphere S2 of constant flag curvature 1.

These Finsler metrics are nonreversible for ε ∈ (0, 1) and F0 is the standard

metric. The reversibility is λ = (1+ε)/(1−ε). If ε is irrational there are exactly

two geometrically distinct closed geodesics c± of length L(c±) = 2π(1 ± ε)−1.

In particular the shortest closed geodesic c+ satisfies L(c+) = 2π(1 + λ
−1) =

π/(1 + ε). The injectivity radius and the diameter equal π.
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1. Introduction

Roughly speaking, Finsler metrics on a manifold are regular, but not neces-

sarily reversible, distance functions. In 1854, B. Riemann attempted to study a

special class of Finsler metrics — Riemannian metrics —and introduced what is

now called the Riemann curvature. This infinitesimal quantity faithfully reveals

the local geometry of a Riemannian manifold and becomes the central concept

of Riemannian geometry. It is a natural problem to understand general regu-

lar distance functions by introducing suitable infinitesimal quantities. For more

than half a century, there had been no essential progress until P. Finsler studied

the variational problem in a Finsler manifold. However, it was L. Berwald who

303
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first successfully extended the notion of Riemann curvature to Finsler metrics

by introducing what is now called the Berwald connection. He also introduced

some non-Riemannian quantities via his connection [Berwald 1926; 1928]. Since

then, Finsler geometry has been developed gradually.

The Riemann curvature is defined using the induced spray, which is indepen-

dent of any well-known connection in Finsler geometry. It measures the shape

of the space. The Cartan torsion and the distortion are two primary geometric

quantities describing the geometric properties of the Minkowski norm in each

tangent space. Differentiating them along geodesics gives rise to the Landsberg

curvature and the S-curvature. These quantities describe the rates of change of

the “color pattern” on the space.

In this article, I am going to discuss the geometric meaning of the Landsberg

curvature, the S-curvature, the Riemann curvature, and their relationship. I will

give detailed proofs for several important local and global results.

2. Finsler Metrics

By definition, a Finsler metric on a manifold is a family of Minkowski norms

on the tangent spaces. A Minkowski norm on a vector space V is a nonnegative

function F : V → [0,∞) with the following properties:

(i) F is positively y-homogeneous of degree one, i.e., F (λy) = λF (y) for any

y ∈ V and any λ > 0;

(ii) F is C
∞ on V \ {0} and for any tangent vector y ∈ V \ {0}, the following

bilinear symmetric form g
y

: V × V → R is positive definite:

g
y
(u, v) :=

1

2

∂
2

∂s∂t

(

F
2(y + su + tv)

)

|s=t=0.

A Minkowski norm is said to be reversible if F (−y) = F (y) for y ∈ V. In this

article, Minkowski norms are not assumed to be reversible. From (i) and (ii),

one can show that F (y) > 0 for y 6= 0 and F (u + v) ≤ F (u) + F (v) for u, v ∈ V.

See [Bao et al. 2000] for a proof.

Let 〈 , 〉 denote the standard inner product on Rn, defined by 〈u, v〉 :=
∑

n

i=1
u

i
v

i
. Then |y| :=

√

〈y, y〉 is called the standard Euclidean norm on Rn.

Let b ∈ Rn with |b| < 1, then F = |y|+ 〈b, y〉 is a Minkowski norm on Rn, which

is called a Randers norm.

Let M be a connected, n-dimensional, C∞ manifold. Let TM =
⋃

x∈M
TxM

be the tangent bundle of M , where TxM is the tangent space at x ∈ M . We

denote a typical point in TM by (x, y), where y ∈ TxM , and set TM0 := TM\{0}

where {0} stands for {(x, 0) | x ∈ X, 0 ∈ TxM}. A Finsler metric on M is a

function F : TM → [0,∞) with the following properties:

(a) F is C∞ on TM0;

(b) At each point x ∈ M , the restriction Fx := F |TxM is a Minkowski norm on

TxM .
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The pair (M,F ) is called a Finsler manifold.

Let (M,F ) be a Finsler manifold. Let (xi
, y

i) be a standard local coordinate

system in TM , i.e., yi’s are determined by y = yi(∂/∂xi)|x. For a vector y =

y
i(∂/∂x

i)|x 6= 0, let gij(x, y) := 1

2
[F 2]yiyj (x, y). The induced inner product g

y

is given by

g
y
(u, v) = gij(x, y)ui

v
j
,

where u = u
i(∂/∂x

i)|x and v = v
i(∂/∂x

i)|x. By the homogeneity of F ,

F (x, y) =
√

g
y
(y, y) =

√

gij(x, y)yiyj .

A Finsler metric F = F (x, y) is called a Riemannian metric if the gij = gij(x)

are functions of x ∈ M only.

There are three special Riemannian metrics.

Example 2.1 (Euclidean metric). The simplest metric is the Euclidean

metric α0 = α0(x, y) on Rn, which is defined by

α0(x, y) := |y|, y = (yi) ∈ TxRn ∼= Rn
. (2–1)

We will simply denote (Rn
, α0) by Rn, which is called Euclidean space.

Example 2.2 (Spherical metric). Let Sn := {x ∈ Rn+1
| |x| = 1} denote the

standard unit sphere in Rn+1. Every tangent vector y ∈ TxSn can be identified

with a vector in Rn+1 in a natural way. The induced metric α+1 on Sn is defined

by α+1 = ‖y‖x, for y ∈ TxSn
⊂ Rn+1, where ‖·‖x denotes the induced Euclidean

norm on TxSn. Let ϕ : Rn
→ Sn

⊂ Rn+1 be defined by

ϕ(x) :=

(
x

√

1 + |x|2
,

1
√

1 + |x|2

)

. (2–2)

Then ϕ pulls back α+1 on the upper hemisphere to a Riemannian metric on Rn,

which is given by

α+1 =

√

|y|2 + (|x|2|y|2 − 〈x, y〉2)

1 + |x|2
, y ∈ TxRn ∼= Rn

. (2–3)

Example 2.3 (Hyperbolic metric). Let Bn denote the unit ball in Rn.

Define

α−1 :=

√

|y|2 − (|x|2|y|2 − 〈x, y〉2)

1 − |x|2
, y ∈ TxBn ∼= Rn

. (2–4)

We call α−1 the Klein metric and denote (Bn
, α−1) by Hn.

The metrics (2–1), (2–3) and (2–4) can be combined into one formula:

αµ =

√

(1 + µ|x|2)|y|2 − µ〈x, y〉2

1 + µ|x|2
. (2–5)

Of course, there are many non-Riemannian Finsler metrics on Rn with special

geometric properties. We just list some of them below and discuss their geometric

properties later.
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Example 2.4 (Funk metric). Let

Θ :=

√

|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉

1 − |x|2
, y ∈ TxBn ∼= Rn

. (2–6)

Θ = Θ(x, y) is a Finsler metric on Bn, called the Funk metric on Bn.

For an arbitrary constant vector a ∈ Rn with |a| < 1, let

Θa :=

√

|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉

1 − |x|2
+

〈a, y〉

1 + 〈a, x〉
. (2–7)

where y ∈ TxBn ∼= Rn. Θa = Θa(x, y) is a Finsler metric on Bn. Note that

Θ0 = Θ is the Funk metric on Bn. We call Θa the generalized Funk metric

on Bn [Shen 2003a].

Example 2.5 [Shen 2003b]. Let δ be an arbitrary number with δ < 1. Let

Fδ :=

√

|y|2−(|x|2|y|2−〈x, y〉2)+〈x, y〉

2(1−|x|2)
− δ

√

|y|2−δ2(|x|2|y|2−〈x, y〉2)+δ〈x, y〉

2(1−δ2
|x|2)

,

where y ∈ TxBn ∼= Rn. Fδ is a Finsler metric on Bn. Note that F−1 = α−1 is

the Klein metric on Bn. Let Θ be the Funk metric on Bn defined in (2–6). We

can express Fδ by

Fδ = 1

2

(

Θ(x, y) − δΘ(δx, y)
)

.

Example 2.6 [Berwald 1929b]. Let

B :=

(
√

|y|2 − (|x|2|y|2 − 〈x, y〉2) + 〈x, y〉
)2

(1 − |x|2)2
√

|y|2 − (|x|2|y|2 − 〈x, y〉2)
, (2–8)

where y ∈ TxBn ∼= Rn. Then B = B(x, y) is a Finsler metric on Bn.

Example 2.7. Let ε be an arbitrary number with |ε| < 1. Let

Fε :=

√

Ψ
(

1

2
(
√

Φ2+(1−ε2)|y|4+Φ)
)

+(1−ε2)〈x, y〉2 +
√

1−ε2
〈x, y〉

Ψ
, (2–9)

where

Φ := ε|y|
2 + (|x|2|y|2 − 〈x, y〉

2), Ψ := 1 + 2ε|x|
2 + |x|

4
.

Fε = Fε(x, y) is a Finsler metric on Rn. Note that if ε = 1, then F1 = α+1 is

the spherical metric on Rn.

R. Bryant [1996; 1997] classified Finsler metrics on the standard unit sphere

S2 with constant flag curvature equal to +1 and geodesics being great circles.

The Finsler metrics Fε in (2–9) is a special family of Bryant’s metrics expressed

in a local coordinate system. See Example 12.7 for further discussion.
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The examples of Finsler metrics above all have special geometric properties.

They are locally projectively flat with constant flag curvature. Some belong to

the class of (α, β)-metrics, that is, those of the form

F = α φ

(
β

α

)

, (2–10)

where α = αx(y) =
√

aij(x)yiyj is a Riemannian metric, β = βx(y) = bi(x)yi

is a 1-form, and φ is a C
∞ positive function on some interval I = [−r, r] big

enough that r ≥ β/α for all x and y ∈ TxM . It is easy to see that any such

F is positively homogeneous of degree one. Let ‖β‖x := sup
y∈TxM

βx(y)/αx(y).

Using a Maple program, we find that the Hessian gij := 1

2
[F 2]yiyj is

gij = ρaij + ρ0bibj + ρ1(biαj + bjαi) + ρ2αiαj ,

where αi = αyi and

ρ = φ
2
− sφφ

′
,

ρ1 = −s(φφ
′′ + φ

′
φ
′) + φφ

′
,

ρ0 = φφ
′′ + φ

′
φ
′
,

ρ2 = s
2(φφ

′′ + φ
′
φ
′) − sφφ

′
,

where s := β/α with |s| ≤ ‖β‖x ≤ r. Then

det (gij) = φ
n+1 (φ − sφ

′)
n−2

(

(φ − sφ
′) + (‖β‖2

x
− s

2)φ′′
)

det (aij) .

If φ = φ(s) satisfies

φ(s) > 0, φ(s) − sφ
′(s) > 0,

(

(φ − sφ
′) + (b2

− s
2)φ′′(s)

)

≥ 0 (2–11)

for all s with |s| ≤ b ≤ r, then (gij) is positive definite; hence F is a Finsler

metric.

Sabau and Shimada [2001] have classified (α, β)-metrics into several classes

and computed the Hessian gij for each class. Below are some special (α, β)-

metrics.

(a) φ(s) = 1 + s. The defined function F = α + β is a Finsler metric if and only

if the norm of β with respect to α is less than 1 at any point:

‖β‖x :=
√

aij(x)bi(x)bj(x) < 1, x ∈ M.

A Finsler metric in this form is called a Randers metric. The Finsler metrics

in Example 2.4 are Randers metrics. The Finsler metrics in Example 2.5 is

the sum of two Randers metrics.

(b) φ(s) = (1 + s)2. The defined function F = (α + β)2/α is a Finsler metric if

and only if ‖β‖x < 1 at any point x ∈ M . The Finsler metric in Example 2.6

is in this form.

By a Finsler structure on a manifold M we usually mean a Finsler metric.

Sometimes, we also define a Finsler structure as a scalar function F
∗ on T

∗
M

such that F
∗ is C

∞ on T
∗
M \ {0} and F

∗
x

:= F
∗
|T∗

x M is a Minkowski norm on
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T ∗
x
M for x ∈ M . Such a function is called a co-Finsler metric. Given a co-Finsler

metric, one can define a Finsler metric via the standard duality defined below.

Let F ∗ = F ∗(x, ξ) be a co-Finsler metric on a manifold M . Define a non-

negative scalar function F = F (x, y) on TM by

F (x, y) := sup
ξ∈T∗

x M

ξ(y)

F ∗(x, ξ)
.

Then F = F (x, y) is a Finsler metric on M , said to be dual to F
∗. In the same

sense, F
∗ = F

∗(x, ξ) is also dual to F :

F
∗(x, ξ) = sup

y∈TxM

ξ(y)

F (x, y)
.

Every vector y ∈ TxM \ {0} uniquely determines a covector ξ ∈ T
∗
x
M \ {0} by

ξ(w) :=
1

2

d

dt

(

F
2(x, y + tw)

)

|t=0, w ∈ TxM.

The resulting map `x : y ∈ TxM → ξ ∈ T
∗
x
M is called the Legendre transforma-

tion at x. Similarly, every covector ξ ∈ T
∗
x
M \ {0} uniquely determines a vector

y ∈ TxM \ {0} by

η(y) :=
1

2

d

dt

(

F
∗2(x, ξ + tη)

)

|t=0, η ∈ T
∗
x
M.

The resulting map `∗
x

: ξ ∈ T ∗
x
M → y ∈ TxM is called the inverse Legendre

transformation at x. Indeed, `x and `
∗
x

are inverses of each other. Moreover,

they preserve the Minkowski norms:

F (x, y) = F
∗(x, `x(y)), F

∗(x, ξ) = F (x, `
∗
x
(ξ)). (2–12)

Let Φ = Φ(x, y) be a Finsler metric on a manifold M and let Φ∗ = Φ∗(x, ξ)

be the co-Finsler metric dual to Φ. By the above formulas, one can easily show

that if y ∈ TxM \ {0} and ξ ∈ T ∗
x
M \ {0} satisfy

d

dt

(

Φ∗(x, ξ + tη)
)

|t=0 = η(y), η ∈ T
∗
x
M.

Then

Φ(x, y) = 1. (2–13)

Let V be a vector field on M with Φ(x,−Vx) < 1 and let V ∗ : T ∗M → [0,∞)

denote the 1-form dual to V , defined by

V
∗
x

(ξ) = ξ(Vx), ξ ∈ T
∗
x
M.

We have Φ∗(x,−V
∗
x

) = Φ(x,−Vx) < 1. Thus F
∗ := Φ∗ + V

∗ is a co-Finsler

metric on M . Define F = F (x, y) by

F (x, y) := sup
ξ∈T∗

x M

ξ(y)

F ∗(x, ξ)
, y ∈ TxM. (2–14)
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F is a Finsler metric on M , called the Finsler metric generated from the pair

(Φ, V ). One can also define F in a different way without using the duality:

Lemma 2.8. Let Φ = Φ(x, y) be a Finsler metric on M and let V be a vector

field on M with Φ(x,−Vx) < 1 for all x ∈ M . Then F = F (x, y) defined in

(2–14) satisfies

Φ
(

x,
y

F (x, y)
− Vx

)

= 1, y ∈ TxM. (2–15)

Conversely , if F = F (x, y) is defined by (2–15), it is dual to the co-Finsler metric

F
∗ := Φ∗ + V

∗ as defined in (2–14).

Proof. For the co-Finsler metric F ∗ = Φ∗ + V ∗, let F = F (x, y) be defined in

(2–14). Fix an arbitrary nonzero vector y ∈ TxM . There is a covector ξ ∈ T
∗
x
M

such that

F (x, y) =
ξ(y)

F ∗(x, ξ)
. (2–16)

Let η ∈ T
∗
x
M be an arbitrary covector. Consider the function

h(t) :=
ξ(y) + tη(y)

Φ∗(x, ξ + tη) + ξ(Vx) + tη(Vx)
.

Then h(t) ≤ h(0) = F (x, y). Thus h
′(0) = 0:

η(y)F ∗(x, ξ) − ξ(y)
(

d

dt

(

Φ∗(x, ξ + tη)
)

|t=0 + η(Vx)
)

= 0.

Dividing by F
∗(x, ξ) and using (2–16), one obtains

η(y) − F (x, y)
(

d

dt

(

Φ∗(x, ξ + tη)
)

|t=0 + η(Vx)
)

= 0.

From this identity it follows that

d

dt

(

Φ∗(x, ξ + tη)
)

|t=0 = η

(
y

F (x, y)
− Vx

)

, η ∈ T
∗
x
M.

Thus F (x, y) satisfies (2–15) as we have explained in (2–13).

Conversely, let F = F (x, y) be defined by (2–15). Then for any ξ ∈ T
∗
x
M ,

Φ∗(x, ξ) = sup
y∈TxM

η

(
y

F (x, y)
− Vx

)

.

One obtains

sup
y∈TxM

ξ(y)

F (x, y)
= sup

y∈TxM

ξ

(
y

F (x, y)
−Vx

)

+ ξ(Vx) = Φ∗(x, ξ)+V
∗
x

(ξ) = F
∗(x, ξ).

Thus F
∗ is dual to F and so F is dual to F

∗, that is, F is given by (2–14). �
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Let Φ =
√

φij(x)yiyj be a Riemannian metric and let V = V i(x)(∂/∂xi) be a

vector field on a manifold M with

Φ(x,−Vx) = ‖V ‖x :=
√

φij(x)V i(x)V j(x) < 1, x ∈ M.

Solving (2–15) for F = F (x, y), one obtains

F =

√

(1 − φijV
iV j)φijy

iyj + (φijy
iV j)2 − φijy

i
V

j

1 − φijV
iV j

. (2–17)

Clearly, F is a Randers metric. It is easy to verify that any Randers metric

F = α+β, where α =
√

aij(x)yiyj and β = bi(x)yi, can be expressed in the form

(2–17). According to Lemma 2.8, any Randers metric F = α + β expressed in

the form (2–17) can be constructed in the following way. Let Φ∗ :=
√

φij(x)ξiξj

be the Riemannian metric dual to Φ =
√

φij(x)yiyj and V
∗ := ξ(Vx) = V

i(x)ξi

be the 1-form dual to V . Then F ∗ := Φ∗(x, ξ) + V ∗(ξ) =
√

φij(x)ξiξj + V i(x)ξi

is a co-Finsler metric on M . Moreover, the dual Finsler metric F of F
∗ is given

by (2–17). This is proved in [Hrimiuc and Shimada 1996].

It was discovered in [Shen 2003c; 2002] that if Φ is a Riemannian metric of

constant curvature and V is a special vector field, the generated metric F is

of constant flag curvature. This discovery opens the door to a classification of

Randers metrics of constant flag curvature [Bao et al. 2003]. But Maple programs

played an important role in the computations that led to it.

Example 2.9. Let φ = φ(y) be a Minkowski norm on Rn and let

Uφ :=
{

y ∈ Rn
| φ(y) < 1

}

.

Define

Φ(x, y) := φ(y), y ∈ TxRn ∼= Rn
.

Φ = Φ(x, y) is called a Minkowski metric on Rn. Let Vx := −x, for x ∈ Rn. V

is a radial vector field pointing toward the origin. For any x ∈ Uφ,

Φ
(

x, −Vx

)

= φ(x) < 1.

The pair (Φ, V ) generates a Finsler metric Θ = Θ(x, y) on Uφ by (2–15):

Θ(x, y) = φ
(

y + Θ(x, y)x
)

. (2–18)

Differentiating with respect to x
k and y

k separately, one obtains
(

1 − φwl(w)xl
)

Θxk(x, y) = φwk(w)Θ(x, y),
(

1 − φwl(w)xl
)

Θyk(x, y) = φwk(w),

where w := y + Θ(x, y)x. It follows that

Θxk(x, y) = Θ(x, y)Θyk(x, y). (2–19)

This argument is from [Okada 1983].
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A domain Uφ in Rn defined by a Minkowski norm φ is called a strongly convex

domain. A Finsler metric Θ = Θ(x, y) defined in (2–18) is called the Funk metric

on a strongly convex domain in Rn. When φ = |y| is the standard Euclidean

metric on Rn, Uφ = Bn is the standard unit ball and Θ = Θ(x, y) is given by

(2–6). Equation (2–19) is the key property of Θ, from which one can derive other

geometric properties of Θ.

Definition 2.10. A Finsler function Θ = Θ(x, y) on an open subset in Rn is

called a Funk metric if it satisfies (2–19).

Example 2.11. Let Φ(x, y) := |y| be the standard Euclidean metric on Rn and

let V = V (x) be a vector field on Rn defined by

Vx := |x|
2
a − 2〈a, x〉x,

where a ∈ Rn is a constant vector. Note that

Φ(x,−Vx) =
√

φijV
iV j = |Vx| = |a||x|2 < 1, x ∈ Bn(1/

√

|a|),

and that

φijy
i
V

j = |x|
2
〈a, y〉 − 2〈a, x〉〈x, y〉.

Given the pair (Φ, V ) above, one obtains, by solving (2–15) for F ,

F =

√

(

|x|2〈a, y〉−2〈a, x〉〈x, y〉
)2

+ |y|2
(

1−|a|2|x|4
)

−

(

|x|
2
〈a, y〉−2〈a, x〉〈x, y〉

)

1 − |a|2|x|4
.

(2–20)

This Randers metric F has very important properties. It is of scalar curvature

and isotropic S-curvature. But the flag curvature and the S-curvature are not

constant. See Example 11.2 below for further discussion.

3. Cartan Torsion and Matsumoto Torsion

To characterize Euclidean norms, E. Cartan [1934] introduced what is now

called the Cartan torsion. Let F = F (y) be a Minkowski norm on a vector space

V. Fix a basis {bi} for V. Then F = F (yibi) is a function of (yi). Let

gij := 1

2
[F 2]yiyj , Cijk := 1

4
[F 2]yiyjyk(y), Ii := g

jk(y)Cijk(y),

where (gij) := (gij)
−1. It is easy to see that

Ii =
∂

∂yi

(

ln
√

det(gjk)
)

. (3–1)

For y ∈ V \ {0}, set

Cy(u, v, w) := Cijk(y)ui
v

j
w

k
, Iy(u) := Ii(y)ui

,

where u := u
ibi, v := v

jbj and w := w
kbk. The family C := {Cy | y ∈ V \ {0}}

is called the Cartan torsion and the family I := {Iy | y ∈ V \ {0}} is called the
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mean Cartan torsion. They are not tensors in a usual sense. In later sections, we

will convert them to tensors on TM0 and call them the (mean) Cartan tensor.

We view a Minkowski norm F on a vector space V as a color pattern. When

F is Euclidean, the color pattern is trivial or Euclidean. The Cartan torsion

Cy describes the non-Euclidean features of the color pattern in the direction

y ∈ V \ {0}. And the mean Cartan torsion Iy is the average value of Cy.

A trivial fact is that a Minkowski norm F on a vector space V is Euclidean if

and only if Cy = 0 for all y ∈ V \ {0}. This can be improved:

Proposition 3.1 [Deicke 1953]. A Minkowski norm is Euclidean if and only if

I = 0.

To characterize Randers norms, M. Matsumoto introduces the quantity

Mijk := Cijk −

1

n + 1

(

Iihjk + Ijhik + Ikhij

)

, (3–2)

where hij := FFyiyj = gij − gipy
p
gjqy

q
/F

2. For y ∈ V \ {0}, set

My(u, v, w) := Mijk(y)ui
v

j
w

k
,

where u = uibi, v = vjbj and w = wkbk. The family M := {M y | y ∈ V\{0}} is

called the Matsumoto torsion. A Minkowski norm is called C-reducible if M = 0.

Lemma 3.2 [Matsumoto 1972b]. Every Randers metric satisfies M = 0.

Proof. Let F = α + β be an arbitrary Randers norm on a vector space V,

where α =
√

aijy
iyj and β = biy

i with ‖β‖α < 1. By a direct computation, the

gij := 1

2
[F 2]yiyj are given by

gij =
F

α

(

aij −

yi

α

yj

α
+

α

F

(

bi +
yi

α

)(

bj +
yj

α

))

, (3–3)

where yi := aijy
j . The hij = FFyiyj = gij − gipy

p
gjqy

q
/F

2 are given by

hij =
α + β

α

(

aij −

yiyj

α2

)

. (3–4)

The inverse matrix (gij) = (gij)
−1 is given by

g
ij =

α

F

(

a
ij
− (1 − ‖β‖

2)
y

i

F

y
j

F
+

α

F

((

b
i
−

y
i

α

)(

b
j
−

y
j

F

)

− b
i
b
j

))

. (3–5)

The determinant det(gij) is

det (gij) =
(

α + β

α

)n+1

det (aij) .

From this and (3–1), one obtains

Ii =
n + 1

2(α + β)

(

bi −

yi

α

β

α

)

. (3–6)
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Differentiating (3–3) yields

Cijk =
1

n + 1

(

Iihjk + Ijhik + Ikhij

)

, (3–7)

implying that Mijk = 0. �

Matsumoto and Hōjō later proved that the converse is true as well, if dimV ≥ 3.

Proposition 3.3 [Matsumoto 1972b; Matsumoto and Hōjō 1978]. If F is a

Minkowski norm on a vector space V of dimension at least 3, the Matsumoto

torsion of F vanishes if and only if F is a Randers norm.

Their proof is long and I could not find a shorter proof which fits into this article.

4. Geodesics and Sprays

Every Finsler metric F on a connected manifold M defines a length structure

LF on oriented curves in M . Let c : [a, b] → M be a piecewise C
∞ curve. The

length of c is defined by

LF (c) :=

∫

b

a

F
(

c(t), ċ(t)
)

dt.

For any two points p, q ∈ M , define

dF (p, q) := infc LF (c),

where the infimum is taken over all piecewise C
∞ curves c from p to q. The

quantity dF = dF (p, q) is a nonnegative function on M × M . It satisfies

(a) dF (p, q) ≥ 0, with equality if and only if p = q; and

(b) dF (p, q) ≤ dF (p, r) + dF (r, q) for any p, q, r ∈ M .

We call dF the distance function induced by F . This is a weaker notion than the

distance function of metric spaces, since dF need not satisfy dF (p, q) = dF (q, p)

for p, q ∈ M . But if the Finsler metric F is reversible, that is, if F (x,−y) =

F (x, y) for all y ∈ TxM , then dF is symmetric.

A piecewise C
∞ curve σ : [a, b] → M is minimizing if it has least length:

LF (σ) = dF

(

σ(a), σ(b)
)

.

It is locally minimizing if, for any t0 ∈ I := [a, b], there is a small number ε > 0

such that σ is minimizing when restricted to [t0 − ε, t0 + ε] ∩ I.

Definition 4.1. A C
∞ curve σ(t), t ∈ I, is called a geodesic if it is locally

minimizing and has constant speed (meaning that F (σ(t), σ̇(t)) is constant).

Lemma 4.2. A C
∞ curve σ(t) in a Finsler manifold (M,F ) is a geodesic if and

only if it satisfies the system of second order ordinary differential equations

σ̈
i(t) + 2G

i
(

σ(t), σ̇(t)
)

= 0, (4–1)
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where the Gi = Gi(x, y) are local functions on TM defined by

G
i := 1

4
g

il(x, y)
(

[F 2]xkyl(x, y)yk
− [F 2]xl(x, y)

)

. (4–2)

This is shown by the calculus of variations; see, for example, [Shen 2001a; 2001b].

Let {∂/∂xi, ∂/∂yi
} denote the natural local frame on TM in a standard local

coordinate system, and set

G := y
i

∂

∂xi
− 2G

i
∂

∂yi
, (4–3)

where the G
i = G

i(x, y), which are given in (4–2), satisfy the homogeneity

property

G
i(x, λy) = λ

2
G

i(x, y), λ > 0. (4–4)

G is a well-defined vector field on TM . Any vector field G on TM having the

form (4–3) and satisfying the homogeneity condition (4–4) is called a spray on

M , and the Gi are its spray coefficients.

Let

N
i

j
=

∂G
i

∂yj
,

δ

δxi
:=

∂

∂xi
− N

i

j

∂

∂yj
.

Then HTM := span{δ/δxi
} and V TM := span{∂/∂yi

} are well-defined and

T (TM0) = HTM ⊕ V TM . That is, every spray naturally determines a decom-

position of T (TM0).

For a Finsler metric on a manifold M and its spray G, a C
∞ curve σ(t) in

M is a geodesic of F if and only if the canonical lift γ(t) := σ̇(t) in TM is an

integral curve of G. One can use this to define the notion of geodesics for sprays.

It is usually difficult to compute the spray coefficients of a Finsler metric.

However, for an (α, β)-metric F , given by equation (2–10), the computation is

relatively simple using a Maple program. Let G
i be the spray coefficients of the

Riemannian metric α, with coefficients Γi

jk
, so that Gi = 1

2
Γi

jk
(x)yjyk. These

coefficients are called the Christoffel symbols of α. By (4–2), they are given by

Γi

jk
=

ail

2

(
∂ajl

∂xk
+

∂akl

∂xj
−

∂ajk

∂xl

)

.

To find a formula for the spray coefficients G
i = G

i(x, y) of F in terms of α and

β, we introduce the covariant derivatives of β with respect to α. Let θ
i := dx

i

and θ
i

j
:= Γi

jk
dx

k. We have

dθ
i = θ

j
∧ θ

i

j
, daij = akjθ

k

i
+ aikθ

k

j
.

Define bi;j by

bi;jθ
j := dbi − bjθ

j

i
.

Let
rij := 1

2

(

bi;j + bj;i

)

,

s
i

j
:= a

ih
shj , sj := bis

i

j
,

sij := 1

2

(

bi;j − bj;i

)

,

eij := rij + bisj + bjsi.

By (4–2) and using a Maple program, one obtains the following relationship:
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Lemma 4.3. The geodesic coefficients Gi are related to Gi by

G
i = G

i +
αφ

′

φ − sφ′
s

i

0
+

φφ
′
− s(φφ

′′ + φ
′
φ
′)

2φ
(

(φ − sφ′) + (b2
− s2)φ′′

)

×

(
−2αφ

′

φ − sφ′
s0 + r00

)(
y

i

α
+

φφ
′′

φφ′
− s(φφ′′ + φ′φ′)

b
i

)

, (4–5)

where s = β/α, s
i

0
= s

i

j
y

j , s0 = siy
i, r00 = rijy

i
y

j and b
2 = a

ij
bibj .

Consider the metric

F =
(α + β)2

α
,

where α =
√

aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form

with ‖β‖x < 1 for every x ∈ M . By (4–5), we obtain a formula for the spray

coefficients of F :

G
i = G

i +
2α

α − β
αs

i

0
+

α(α − 2β)

2α2b2 + α2
− 3β2

(
−4α

α − β
αs0 + r00

)(
y

i

α
+

α

α − 2β
b
i

)

,

where b = ‖β‖x.

Given a spray G, we define the covariant derivatives of a vector field X =

X
i(t)(∂/∂x

i)|c(t) along a curve c by

DċX(t) :=
(

Ẋ
i(t) + X

j(t)N i

j
(c(t), ċ(t))

) ∂

∂xi

∣
∣
∣
c(t)

,

∇ċX(t) :=
(

Ẋ
i(t) + X

j(t)N i

j
(c(t),X(t))

) ∂

∂xi

∣
∣
∣
c(t)

.

(4–6)

DċX(t) is the linear covariant derivative and ∇ċX(t) the covariant derivative of

X(t) along c. The field X is linearly parallel along c if DċX(t) = 0, and parallel

along c if ∇ċX(t) = 0. For linearly parallel vector fields X = X(t) and Y = Y (t)

along a geodesic c, the expression g
ċ(t)

(

X(t), Y (t)
)

is constant, and for a parallel

vector field X = X(t) along a curve c, F
(

c(t),X(t)
)

is constant.

5. Berwald Metrics

Consider a Riemannian metric F =
√

gij(x)yiyj on a manifold M . By (4–2),

we obtain G
i = 1

2
Γi

jk
(x)yj

y
k, where

Γi

jk
(x) := 1

4
g

il(x)
(

∂glk

∂xj
(x) +

∂gjl

∂xk
(x) −

∂gjk

∂xl
(x)

)

. (5–1)

In this case the Gi = Gi(x, y) are quadratic in y ∈ TxM at any point x ∈ M .

A Finsler metric F = F (x, y) is called a Berwald metric if in any standard

local coordinate system, the spray coefficients Gi = Gi(x, y) are quadratic in

y ∈ TxM .

There are many non-Riemannian Berwald metrics.
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Example 5.1. Let (M, ᾱ) and (M,α) be Riemannian manifolds and let M =

M ×M . Let f : [0,∞)× [0,∞) → [0,∞) be a C
∞ function satisfying f(λs, λt) =

λf(s, t) for λ > 0 and f(s, t) 6= 0 if (s, t) 6= 0. Define

F (x, y) :=
√

f
(

[ᾱ(x̄, ȳ)]2, [α(x, y)]2
)

, (5–2)

where x = (x̄, x) ∈ M and y = ȳ ⊕ y ∈ TxM ∼= Tx̄M ⊕ TxM .

We now find additional conditions on f(s, t) under which the matrix gij :=
1

2
[F 2]yiyj is positive definite. Take standard local coordinate systems (x̄ā, ȳā)

in TM and (xa
, y

a) in TM , so that ȳ = ȳ
ā
∂/∂x̄

ā and y = y
a
∂/∂x

a. Then

(xi
, y

j) := (x̄ā
, x

a
, ȳ

ā
, y

a) is a standard local coordinate system in TM . Express

ᾱ and α by

ᾱ(x̄, ȳ) =
√

ḡ
āb̄

(x̄)ȳāȳb̄, α(x, y) =
√

gab(x)yayb,

We obtain

gab = 2fssȳāȳ
b̄
+ fsḡāb̄

, gab = 2fstȳāyβ, gab = 2fttyayb + ftgab, (5–3)

where ȳā := ḡ
āb̄

ȳ
b̄ and ya := gaby

b. By an elementary argument, one can show

that (gij) is positive definite if and only if f(s, t) satisfies the conditions

fs > 0, ft > 0, fs + 2sfss > 0, ft + 2tftt > 0, fsft − 2ffst > 0.

In this case,

det (gij) = h
(

[ᾱ]2, [α]2
)

det (ḡ
āb̄

) det
(

gab

)

, (5–4)

where

h := (fs)
n̄−1(ft)

n−1(fsft − 2ffst), (5–5)

where n̄ := dimM and n := dimM .

By a direct computation, one can show that the spray coefficients of F split

as the direct sum of the spray coefficients of ᾱ and α:

G
ā(x, y) = G

ā(x̄, ȳ), G
a(x, y) = G

a(x, y), (5–6)

where G
ā and G

a are the spray coefficients of ᾱ and α. From (5–6), one can see

that the spray of F is independent of the choice of a particular function f(s, t).

In particular, the G
i(x, y) are quadratic in y ∈ TxM . Thus F is a Berwald

metric.

A typical example of f is

f = s + t + ε
k
√

sk + tk,

where ε is a nonnegative real number and k is a positive integer. The Berwald

metric obtained with this choice of f is discussed in [Szabó 1981].
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Let (M,F ) be a Berwald manifold and p, q ∈ M be an arbitrary pair of points

in M . Let c : [0, 1] → M be a geodesic going from p = c(0) to q = c(1). Define

a linear isomorphism T : TpM → TqM by T (X(0)) := X(1), where X(t) is a

linearly parallel vector field along c, so DċX(t) = 0. Since F is a Berwald metric,

the linear covariant derivative ∇ċ coincides with the covariant derivative Dċ along

c, by (4–6). Thus X(t) is also parallel along c, that is, ∇ċX(t) = 0. Therefore,

F (c(t),X(t)) is constant. This implies that T : (TpM,Fp) → (TqM,Fq) preserves

the Minkowski norms. We have proved the following well-known result:

Proposition 5.2 [Ichijyō 1976]. On a Berwald manifold (M,F ), all tangent

spaces (TxM,Fx) are linearly isometric to each other .

On a Finsler manifold (M,F ), we view the Minkowski norm Fx on TxM as an

infinitesimal color pattern at x. As we mentioned early in Section 3, the Cartan

torsion Cy describes the non-Euclidean features of the pattern in the direction

y ∈ TxM \ {0}. In the case when F is a Berwald metric on a manifold M , by

Proposition 5.2, all tangent spaces (TxM,Fx) are linearly isometric, and (M,F )

is modeled on a single Minkowski space. More precisely, for any pair points

x, x
′
∈ M and a geodesic from x to x

′, (linearly) parallel translation defines

a linear isometry T : (TxM,Fx) → (Tx′M,Fx′). This linear isometry T maps

the infinitesimal color pattern at x to that at x
′. Thus the infinitesimal color

patterns do not change over the manifold. If one looks at a Berwald manifold

on a large scale, with the infinitesimal color pattern at each point shrunken to

a single spot of color, one can only see a space with uniform color. The color

depends on the Minkowski model.

A Finsler metric F on a manifold M is said to be affinely equivalent to another

Finsler metric F̄ on M if F and F̄ induce the same sprays. By (5–6), one can

see that the family of Berwald metrics in (5–2) are affinely equivalent.

Proposition 5.3 [Szabó 1981]. Every Berwald metric on a manifold is affinely

equivalent to a Riemannian metric.

Based on this observation, Z. I. Szabó [1981] determined the local structure of

Berwald metrics.

6. Gradient, Divergence and Laplacian

Let F = F (x, y) be a Finsler metric on a manifold M and let F
∗ = F

∗(x, ξ)

be dual to F . Let f be a C
1 function on M . At a point x ∈ M , the differential

dfx ∈ T
∗
x
M is a 1-form. Define the dual vector ∇fx ∈ TxM by

∇fx := `
∗
x
(dfx), (6–1)

where `∗
x

: T ∗
x
M → TxM is the inverse Legendre transformation. By definition,

∇fx is uniquely determined by

η(∇fx) :=
1

2

d

dt

(

F
∗2(x, dfx + tη)

)

|t=0, η ∈ T
∗
x
M.
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∇fx is called the gradient of f at x. We have

F (x,∇fx) = F
∗(x, dfx).

If f is C
k (k ≥ 1), then ∇f is C

k−1 on {dfx 6= 0} and C
0 at any point x ∈ M

with dfx = 0.

Given a closed subset A ⊂ M and a point x ∈ M , let d(A, x) := sup
z∈A

d(z, x)

and d(x,A) := sup
z∈A

d(x, z). The function ρ defined by ρ(x) := d(x,A) is

locally Lipschitz, hence differentiable almost everywhere. It is easy to verify

[Shen 2001b] that

F (x,∇ρx) = F
∗(x, dρx) = 1 almost everywhere. (6–2)

Any function ρ satisfying satisfies (6–2) is called a distance function of the Finsler

metric F ; another example is the function ρ defined by ρ(x) := −d(x,A). In

general, a distance function on a Finsler manifold (M,F ) is C
∞ on an open

dense subset of M . For example, when A = {p} is a point, the distance function

ρ defined by ρ(x) := d(x, p) or rho(x) := d(p, x) is C
∞ on an open dense subset

of M .

Let ρ be a distance function of a Finsler metric F on a manifold M . Assume

that it is C
∞ on an open subset U ⊂ M . Then ∇ρ induces a Riemannian metric

F̂ :=
√

g∇ρ
(v, v) on U . Moreover, ρ is a distance function of F̂ and ∇ρ = ∇̂ρ is

the gradient of ρ with respect to F̂ . See [Shen 2001b].

Every Finsler metric F defines a volume form

dVF := σF (x) dx
1
· · · dx

n
,

where

σF :=
Vol Bn

Vol
{

(yi) ∈ Rn
| F (x, yi(∂/∂xi)|x) < 1

} . (6–3)

Here Vol denotes Euclidean volume in Rn. It was proved by H. Busemann [1947]

that if F is reversible, the Hausdorff measure of the induced distance function

dF is represented by dVF . When F =
√

gij(x)yiyj is Riemannian,

σF =
√

det(gij(x)) and dVF =
√

det(gij(x)) dx1
· · · dxn.

For a vector field X = X i(x)(∂/∂xi)|x on M , the divergence of X is

div X :=
1

σF (x)

∂

∂xi

(

σF (x)Xi(x)
)

. (6–4)

The Laplacian of a C
2 function f with df 6= 0 is

∆f := div∇f.

∆ is a nonlinear elliptic operator. If there are points x at which dfx = 0, then

∇f is only C
0 at these points. In this case, ∆f is only defined weakly in the

sense of distributions.
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For a C∞ distance function ρ on an open subset U ⊂ M , dρx 6= 0 at every

point x ∈ U and the level set Nr := ρ
−1(r) ⊂ U is a C

∞ hypersurface in U . Thus

∆ρ can be defined by the above formula and its restriction to Nr, H := ∆ρ|Nr
,

is called the mean curvature of Nr with respect to the normal vector n = ∇ρ|Nr
.

7. S-Curvature

Consider an n-dimensional Finsler manifold (M,F ). As mentioned in Section

5, we view the Minkowski norm Fx on TxM as an infinitesimal color pattern at

x. The Cartan torsion Cy describes the non-Euclidean features of the pattern in

the direction y ∈ TxM \ {0}. The mean Cartan torsion Iy is the average value

of Cy. Besides the (mean) Cartan torsion, there is another geometric quantity

associated with Fx. Take a standard local coordinate system (xi
, y

i) and let

τ := ln

√

det
(

gij(x, y)
)

σF (x)
, (7–1)

where σF is defined in (6–3). τ is called the distortion [Shen 1997; 2001b].

Intuitively, the distortion τ(x, y) is the directional twisting number of the infin-

itesimal color pattern at x. Observe that

τyi =
∂

∂yi
ln

√

det
(

gjk(x, y)
)

=
1

2
g

jk
∂gjk

∂yi
= g

jk
Cijk =: Ii. (7–2)

Here σF does not occur in the first equality, because it is independent of y at

each point x. If the distortion is isotropic at x, that is, if τ(x) is independent of

the direction y ∈ TxM , then τ(x) = 0 and Fx is Euclidean (Proposition 3.1). In

this case, the infinitesimal color pattern is in the simplest form at every point.

It is natural to study the rate of change of the distortion along geodesics. For

y ∈ TxM \ {0}, let σ(t) be the geodesic with σ(0) = x and σ̇(0) = y. Let

S :=
d

dt
τ
(

σ(t), σ̇(t)
)

∣
∣
∣
t=0

. (7–3)

S is called the S-curvature. It is positively homogeneous of degree one in y:

S(x, λy) = λS(x, y), λ > 0.

In a standard local coordinate system (xi
, y

i), let G
i = G

i(x, y) denote the

spray coefficients of F . Contracting (8–2) with g
ij yields

∂G
m

∂ym
= 1

2
g

ml
∂gml

∂xi
y

i
− 2IiG

i
,

so

S = y
i
∂τ

∂xi
− 2

∂τ

∂yi
G

i = 1

2
g

ml
∂gml

∂xi
y

i
− 2IiG

i
− y

m
∂

∂xm
lnσF
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and finally

S =
∂G

m

∂ym
− y

m
∂

∂xm
lnσF . (7–4)

Proposition 7.1 [Shen 1997]. For any Berwald metric, S = 0.

However, many metrics of zero S-curvature are non-Berwaldian.

Some comparison theorems in Riemannian geometry are still valid for Finsler

metrics of zero S-curvature; see [Shen 1997; 2001b].

By definition, the S-curvature is the covariant derivative of the distortion

along geodesics. Let σ(t) be a geodesic and set

τ(t) := τ
(

σ(t), σ̇(t)
)

, S(t) := S
(

σ(t), σ̇(t)
)

.

By (7–3), S(t) = τ ′(t), so if S vanishes, τ(t) is a constant. Intuitively, the

distortion (twisting number) of the infinitesimal color pattern in the direction

σ̇(t) does not change along any geodesic. However, the distortion might take

different values along different geodesics.

A Finsler metric F is said to have isotropic S-curvature if

S = (n + 1)cF.

More generally, F is said to have almost isotropic S-curvature if

S = (n + 1)(cF + η),

where c = c(x) is a scalar function and η = ηi(x)yi is a closed 1-form.

Differentiating the S-curvature gives rise to another quantity. Let

Eij := 1

2
Syiyj (x, y). (7–5)

For y ∈ TxM \ {0}, the form Ey = Eij(x, y) dx
i
⊗ dx

j is a symmetric bilinear

form on TxM . We call the family E := {Ey | y ∈ TM \ {0}} the mean Berwald

curvature, or simply the E-curvature [Shen 2001a]. Let hy := hij(x, y) dx
i
⊗dx

j ,

where hij := FFyiyj . We say that F has isotropic E-curvature if

E = 1

2
(n + 1)cF−1h,

where c = c(x) is a scalar function on M . Clearly, if the S-curvature is almost

isotropic, the E-curvature is isotropic. Conversely, if the E-curvature is isotropic,

there is a 1-form η = ηi(x) dx
i such that S = (n + 1)(cF + η). However, this η

is not closed in general.

Finally, we mention another geometric meaning of the S-curvature. Let ρ =

ρ(x) be a C∞ distance function on an open subset U ⊂ M (see (6–2)). The

gradient ∇ρ induces a Riemannian metric F̂ = F̂ (z, v) on U by

F̂ (z, v) :=
√

g∇ρ
(v, v), v ∈ TzU.
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Let ∆ and ∆̂ denote the Laplacians on functions with respect to F and F̂ . Then

H = ∆ρ|Nr
and Ĥ = ∆̂ρ|Nr

are the mean curvature of Nr := ρ
−1(r) with respect

to F and F̂ , respectively. The S-curvature can be expressed by

S(∇ρ) = ∆̂ρ − ∆ρ = Ĥ − H.

From these identities, one can estimate ∆̂ and obtain an estimate on ∆ρ under

a Ricci curvature bound and an S-curvature bound. Then one can establish a

volume comparison on the metric balls. See [Shen 2001b] for more details.

8. Landsberg Curvature

The (mean) Cartan torsion is a geometric quantity that characterizes the Eu-

clidean norms among Minkowski norms on a vector space. On a Finsler manifold

(M,F ), one can view the Minkowski norm Fx on TxM as an infinitesimal color

pattern at x. The Cartan torsion Cy describes the non-Euclidean features of

the pattern in the direction y ∈ TxM \ {0}. The mean Cartan torsion Iy is the

average value of Cy. They reveal the non-Euclidean features which are different

from that revealed by the distortion. Therefore, it is natural to study the rate

of change of the (mean) Cartan torsion along geodesics.

Let (M,F ) be a Finsler manifold. To differentiate the (mean) Cartan torsion

along geodesics, we need linearly parallel vector fields along a geodesic. Recall

that a vector field U(t) := U
i(T )(∂/∂x

i)|σ(t) along a geodesic σ(t) is linearly

parallel along σ if Dσ̇U(t) = 0:

U̇
i(t) + U

j(t)N i

j
(σ(t), σ̇(t)) = 0. (8–1)

On the other hand, by a direct computation using (4–2), one can verify that gij

satisfy the following identity:

y
m

∂gij

∂xm
− 2G

m
∂gij

∂ym
= gimN

m

j
+ gmjN

m

i
(8–2)

Using (8–1) and (8–2), one can verify that for two linearly parallel vector fields

U(t), V (t) along σ,
d

dt
g

σ̇(t)

(

U(t), V (t)
)

= 0.

In this sense, the family of inner products g
y

does not change along geodesics.

However, for linearly parallel vector fields U(t), V (t) and W (t) along σ, the

functions C σ̇(t)

(

U(t), V (t),W (t)
)

and I σ̇(t)

(

U(t)
)

do change, in general. Set

Ly(u, v, w) :=
d

dt

(

Cσ̇(t)(U(t), V (t),W (t))
)

|t=0 (8–3)

and

Jy(u) :=
d

dt

(

I σ̇(t)(U(t))
)

|t=0,

where u = U(0), v = V (0), w = W (0) and y = σ̇(0) ∈ TxM . The family

L = {Ly | y ∈ TM \ {0}} is called the Landsberg curvature, or L-curvature, and
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the family J = {Jy | y ∈ TM \ {0}} is called the mean Landsberg curvature,

or J-curvature. A Finsler metric is called a Landsberg metric if L = 0, and a

weakly Landsberg metric if J = 0.

Let (xi
, y

i) be a standard local coordinate system in TM and set Cijk :=
1

4
[F 2]yiyjyk . From the definition, Ly = Lijk dx

i
⊗ dx

j
⊗ dx

k is given by

Lijk = y
m

∂Cijk

∂xm
− 2G

m
∂Cijk

∂ym
− CmjkN

m

i
− CimkN

m

j
− CijmN

m

k
, (8–4)

and J = Jidx
i is given by

Ji = y
m

∂Ii

∂xm
− 2G

m
∂Ii

∂ym
− ImN

m

i
. (8–5)

We have

Ji = g
jk

Lijk.

It follows from (4–2) that

gsmG
m =

1

4

(

2
∂gsk

∂xm
−

∂gkm

∂xs

)

y
k
y

m
.

Differentiating with respect to yi, yj , yk and contracting the resulting identity

by 1

2
y

s, one obtains

Lijk = −
1

2
y

s
gsm

∂
3
G

m

∂yi∂yj∂yk
. (8–6)

Thus if G
m = G

m(x, y) are quadratic in y ∈ TxM , then Lijk = 0. This proves

the following well-known result.

Proposition 8.1. Every Berwald metric is a Landsberg metric.

By definition, the (mean) Landsberg curvature is the covariant derivative of

the (mean) Cartan torsion along a geodesic. Let σ = σ(t) be a geodesic and

U = U(t), V = V (t),W = W (t) be parallel vector fields along σ. Let

L(t) := Lσ̇(t)

(

U(t), V (t),W (t)
)

, C(t) := C σ̇(t)

(

U(t), V (t),W (t)
)

.

By (8–3),

L(t) = C ′(t).

If F is Landsbergian, the Cartan torsion C σ̇ in the direction σ̇(t) is constant

along σ. Intuitively, the infinitesimal color pattern in the direction σ̇(t) does not

change along σ. But the patterns might look different at neighboring points.

It is easy to see that in dimension two, a Finsler metric is Berwaldian if and

only if E = 0 (or S = 0) and J = 0. It seems that E and L are complementary

to each other. So we may ask: Is a Finsler metric Berwaldian if E = 0 and

L = 0? A more difficult problem is: Is a Finsler metric Berwaldian if L = 0?

So far, we do not know.

Finsler metrics with L = 0 can be generalized as follows. Let F be a Finsler

metric on an n-dimensional manifold M . We say that F has relatively isotropic
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L-curvature L + cFC = 0, where c = c(x) is a scalar function on M . We say

that F has relatively isotropic J-curvature if J + cFI = 0.

There are many interesting Finsler metrics having isotropic L-curvature or

(almost) isotropic S-curvature. We will discuss them in the following two sec-

tions.

9. Randers Metrics with Isotropic S-Curvature

We now discuss Randers metrics of isotropic S-curvature. Let F = α + β be

a Randers metric on an n-dimensional manifold M , with α =
√

aij(x)yiyj and

β = bi(x)yi. Recall from page 307 that this is a special case of an (α, β)-metric,

with φ(s) = 1 + s. By (4–5), the spray coefficients G
i of F and G

i of α are

related via

G
i = G

i + Py
i + Q

i
, (9–1)

where

P :=
e00

2F
− s0, Q

i = αs
i

0
, (9–2)

and e00 := eijy
i
y

j , s0 := siy
i, s

i

0
:= s

i

j
y

j . The formula above can be found in

[Antonelli et al. 1993].

Let

ρ := ln
√

1 − ‖β‖2
x
.

The volume forms dVF and dVα are related by

dVF = e
(n+1)ρ(x)

dVα.

Since sij = sji, s00 := sijy
i
y

j = 0 and s
i

i
= a

ij
sij = 0. Observe that

∂(Py
m)

∂ym
=

∂P

∂ym
y

m + nP = (n+1)P,
∂Q

m

∂ym
= α

−1
s00 + αs

m

m
= 0.

Since α is Riemannian, we have

∂G
m

∂ym
= y

m
∂

∂xm
lnσα.

Thus one obtains

S =
∂G

m

∂ym
− y

m
∂

∂xm
lnσF

=
∂G

m

∂ym
+

∂(Py
m)

∂ym
+

∂Q
m

∂ym
− (n+1)ym

∂ρ

∂xm
− y

m
∂

∂xm
lnσα

= (n+1)(P − ρ0) = (n+1)
(

e00

2F
− (s0 + ρ0)

)

, (9–3)

where ρ0 := ρxi(x)yi.

Lemma 9.1 [Chen and Shen 2003a]. For a Randers metric F = α + β on an

n-dimensional manifold M , the following conditions are equivalent :
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(a) The S-curvature is isotropic, i .e., S=(n+1)cF for a scalar function c on M.

(b) The S-curvature is almost isotropic, i .e., S = (n+1)(cF + η) for a scalar

function c and a closed 1-form η on M .

(c) The E-curvature is isotropic, i .e., E = 1

2
(n+1)cF−1h for a scalar function

c on M .

(d) e00 = 2c(α2
− β2) for a scalar function c on M .

Proof. (a) =⇒ (b) and (b) =⇒ (c) are obvious.

(c) =⇒ (d). First, S = (n + 1)(cF + η), where η is a 1-form on M . By (9–3),

(c) is equivalent to the following e00 = 2cF
2 +2θF , where θ := s0 + ρ0 + η. This

implies that

e00 = 2c(α2 + β
2) + 2θβ, 0 = 4cβ + 2θ.

Solving for θ in the second of these equations and plugging the result into the

first, one obtains (d).

(d) =⇒ (a). Plugging e00 = 2c(α2
− β

2) into (9–3) yields

S = (n + 1)
(

c(α − β) − (s0 + ρ0)
)

. (9–4)

On the other hand, contracting eij = 2c(aij−bibj) with bj gives si+ρi+2cbi = 0.

Thus s0 + ρ0 = −2cβ. Plugging this into (9–4) yields (a). �

Example 9.2. Let V = (A,B,C) be a vector field on a domain U ⊂ R3, where

A = A(r, s, t), B = B(r, s, t) and C = C(r, s, t) are C
∞ functions on U with

|V (x)| =
√

A(x)2 + B(x)2 + C(x)2 < 1, ∀x = (r, s, t) ∈ U.

Let Φ := |y| be the standard Euclidean metric on R3. Define F = α + β by

(2–15) for the pair (Φ, V ). α and β are given by

α =

√

〈V (x), y〉2 + |y|2(1 − |V (x)|2)

1 − |V (x)|2
, β = −

〈V (x), y〉

1 − |V (x)|2
,

where y = (u, v, w) ∈ TxU ∼= R3. One can easily verify that ‖β‖x < 1 for x ∈ U .

By a direct computation, one obtains

e11 =
B

2(Ar−Bs) + C
2(Ar−Ct) − Ar + H

1−A2
−B2

−C2
,

e22 =
A

2(Bs−Ar) + C
2(Bs−Ct) − Bs + H

1−A2
−B2

−C2
,

e33 =
A

2(Ct−Ar) + B
2(Ct−Bs) −Ct + H

1−A2
−B2

−C2
,

e12 = −
1

2
(As+Br), e13 = −

1

2
(At+Cr), e23 = −

1

2
(Bt+Cs),,

where H := 2ABe12 + 2ACe13 + 2BCe23. Here as usual we write Ar = ∂A/∂r,

etc. On the other hand,

aij − bibj =
δij

1 − A2
− B2

− C2
.
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It is easy to verify that eij = 2c(aij − bibj) if and only if A, B, and C satisfy

Ar = Bs = Ct, At + Cr = 0, As + Br = 0, Bt + Cs = 0.

In this case,

c = −
1

2
Ar = −

1

2
Bs = −

1

2
Ct.

By Lemma 9.1, we know that S = 4cF .

If F = α+β on an n-dimensional manifold M is generated from the pair (Φ, V ),

where Φ =
√

φijy
iyj is a Riemannian metric and V = V

i(∂/∂x
i) is a vector

field on M with φij(x)V i(x)vj(x) < 1 for any x ∈ M , then F has isotropic

S-curvature, S = (n + 1)c(x)F , if and only if

Vi;j + Vj;i = −4cφij ,

where Vi = φijV
j and Vi;j are the covariant derivatives of V with respect to Φ.

This observation is made by Xing [2003]. It also follows from [Bao and Robles

2003b], although it is not proved there directly.

10. Randers Metrics with Relatively Isotropic L-Curvature

We now study Randers metrics with relatively isotropic (mean) Landsberg

curvature. From its definition, the mean Landsberg curvature is the mean value

of the Landsberg curvature. Thus if a Finsler metric has isotropic Landsberg cur-

vature, it must have isotropic mean Landsberg curvature. I don’t know whether

the converse is true as well; no counterexample has been found. Nevertheless, for

Randers metrics, “having isotropic mean Landsberg curvature” implies “having

isotropic Landsberg curvature”. According to Lemma 3.2, the Cartan torsion is

given by (3–7). Differentiating (3–7) along a geodesic and using (8–4) and (8–5),

we obtain

Lijk =
1

n + 1
(Jihjk + Jjhik + Jkhij). (10–1)

Here we have used the fact that the angular form hy is constant along geodesics.

By (3–7) and (10–1), one can easily show that Ji + cFIi = 0 if and only if

Lijk + cFCijk = 0. This proves the claim.

Lemma 10.1 [Chen and Shen 2003a]. For a non-Riemannian Randers metric

F = α + β on an n-dimensional manifold M , these conditions are equivalent :

(a) J + cF I = 0 (or L + cFC = 0).

(b) S = (n+1)cF and β is closed .

(c) E = 1

2
cF

−1h and β is closed .

(d) e00 = 2c(α2
− β

2) and β is closed .

Here c = c(x) is a scalar function on M .



326 ZHONGMIN SHEN

Proof. By (10–1), to compute Lijk, it suffices to compute Ji. First, the mean

Cartan torsion is

Ii =
1

2
(n + 1)F−1

α
−2(α2

bi − βyi), (10–2)

where yi := aijy
j . By a direct computation using (8–5), one obtains

Ji = 1

4
(n + 1)F−2

α
−2(2α

(

(ei0α
2
− yie00) − 2β(siα

2
− yis0) + si0(α

2 + β
2)

)

+α
2(ei0β − bie00) + β(ei0α

2
− yie00) − 2(siα

2
− yis0)(α

2 + β
2) + 4si0α

2
β).

Using this and (10–2), one can easily prove the lemma. �

Thus, for any Randers metric F = α + β, the J-curvature vanishes if and only

if e00 = 0 and dβ = 0. This is equivalent to bi;j = 0, in which case, the

spray coefficients of F coincide with that of α. This observation leads to the

following result, first established by the collective efforts found in [Matsumoto

1974; Hashiguchi and Ichijyō 1975; Kikuchi 1979; Shibata et al. 1977].

Proposition 10.2. For a Randers metric F = α + β, the following conditions

are equivalent :

(a) F is a weakly Landsberg metric, J = 0.

(b) F is a Landsberg metric, L = 0.

(c) F is a Berwald metric.

(d) β is parallel with respect to α.

Example 10.3. Consider the Randers metric F = α + β on Rn defined by

α :=

√

(1 − ε2)〈x, y〉2 + ε|y|2(1 + ε|x|2)

1 + ε|x|2
, β :=

√

1 − ε2
〈x, y〉

1 + ε|x|2
,

where ε is an arbitrary constant with 0 < ε ≤ 1. Since β is closed, sij = 0 and

si = 0. After computing bi;j , one obtains

eij =
ε
√

1 − ε2

(1 + ε|x|2)(ε + |x|2)
δij .

On the other hand, aij − bibj =
ε

1 + ε|x|2
δij . Thus eij = 2c(aij − bibj) with

c :=

√

1 − ε2

2(ε + |x|2)
.

By Lemma 10.1, F satisfies L + cFC = 0, S = (n + 1)cF , and E = 1

2
cF

−1h.

See [Mo and Yang 2003] for a family of more general Randers metrics with

nonconstant isotropic S-curvature.
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11. Riemann Curvature

The Riemann curvature is an important quantity in Finsler geometry. It was

first introduced by Riemann for Riemannian metrics in 1854. Berwald [1926;

1928] extended it to Finsler metrics using the Berwald connection. His extension

of the Riemann curvature is a milestone in Finsler geometry.

Let (M,F ) be a Finsler manifold and let G = y
i(∂/∂x

i)− 2G
i(∂/∂y

i) be the

induced spray. For a vector y ∈ TxM \ {0}, set

R
i

k
:= 2

∂G
i

∂xk
− y

j
∂

2
G

i

∂xj∂yk
+ 2G

j
∂

2
G

i

∂yj∂yk
−

∂G
i

∂yj

∂G
j

∂yk
. (11–1)

The local curvature functions Ri

k
and Rjk := gijR

i

k
satisfy

R
i

k
y

k = 0, Rjk = Rkj . (11–2)

Ry = R
i

k
(∂/∂x

i) ⊗ dx
k : TxM → TxM is a well-defined linear map. We call

the family R = {Ry | y ∈ TM \ {0}} the Riemann curvature. The Riemann

curvature is actually defined for sprays, as shown in [Kosambi 1933; 1935]. When

the Finsler metric is Riemannian, then

R
i

k
(x, y) = R

i

j kl
(x)yj

y
l
,

where R(u, v)w = R
i

j kl
(x)wj

u
i
v

j(∂/∂x
i)|i denotes the Riemannian curvature

tensor. Namely, Ry(u) = R(u, y)y.

The geometric meaning of the Riemann curvature lies in the second variation

of geodesics. Let σ(t), for a ≤ t ≤ b, be a geodesic in M . Take a geodesic

variation H(t, s) of σ(t), that is, a family of curves σs(t) := H(t, s), a ≤ t ≤ b,

each of which is a geodesic, with σ0 = σ. Let

J(t) :=
∂H

∂s
(t, 0).

Then J(t) satisfies the Jacobi equation

Dσ̇Dσ̇J(t) + Rσ̇(t)(J(t)) = 0, (11–3)

where Dσ̇ is defined in (4–6). See [Kosambi 1933; 1935].

There is another way to define the Riemann curvature. Any vector y ∈ TxM

can be extended to a nonzero C
∞ geodesic field Y in an open neighborhood U

of x; a geodesic field is one for which every integral curve is a geodesic. Define

F̂ (z, v) :=
√

g
Yz

(v, v), v ∈ TzU, z ∈ U.

Then F̂ = F̂ (z, v) is a Riemannian metric on U . Let ĝ = g
Y

be the inner product

induced by F̂ and let R̂ be the Riemann curvature of F̂ . It is well-known in

Riemannian geometry that

R̂y(u) = 0, ĝ
(

R̂y(u), v
)

= ĝ
(

u, R̂y(v)
)

, (11–4)
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where u, v ∈ TxU . An important fact is

Ry(u) = R̂y(u), u ∈ TxM. (11–5)

See [Shen 2001b, Proposition 6.2.2] for a proof of (11–5). Note that ĝ
x

= g
y
. It

follows from (11–4) and (11–5) that

Ry(y) = 0, g
y
(Ry(u), v) = g

y
(u,Ry(v)), (11–6)

where u, v ∈ TxM . In local coordinates, this equation is just (11–2). See [Shen

2001b] for the application of (11–5) in comparison theorems in conjunction with

the S-curvature.

For a two-dimensional subspace Π ⊂ TxM and a nonzero vector y ∈ Π, define

K(Π, y) :=
g

y
(Ry(u), u)

g
y
(y, y)g

y
(u, u) − g

y
(y, u)2

, (11–7)

where u ∈ Π such that Π = span {y, u}. One can use (11–6) to show that K(Π, y)

is independent of the choice of a vector u, but it is usually dependent on y. We

call K(Π, y) the flag curvature of the flag (Π, y). When F =
√

gij(x)yiyj is a

Riemannian metric, K(Π, y) = K(Π) is independent of y ∈ Π, in which case

K(Π) is usually called the sectional curvature of the section Π ⊂ TxM .

A Finsler metric F on a manifold M is said to be of scalar curvature K =

K(x, y) if for any y ∈ TxM \ {0} the flag curvature K(Π, y) = K(x, y) is

independent of the tangent planes Π containing y. From the definition, the flag

curvature is a scalar function K = K(x, y) if and only if in a standard local

coordinate system,

R
i

k
= KF

2
h

i

k
, (11–8)

where h
i

k
:= g

ij
hjk = g

ij
FFyjyk . F is of constant flag curvature if this K is a

constant. For a Riemannian metric, if the flag curvature K(Π, y) = K(x, y) is a

scalar function on TM , then K(x, y) = K(x) is independent of y ∈ TxM and it

is a constant when n ≥ 3 by the Schur Lemma. In the next section we show that

any locally projectively flat Finsler metric is of scalar curvature. Such metrics

are for us a rich source of Finsler metrics of scalar curvature.

Classifying Finsler metrics of scalar curvature, in particular those of constant

flag curvature, is one of the important problems in Finsler geometry. The local

structures of projectively flat Finsler metrics of constant flag curvature were

characterized in [Shen 2003b]. R. Bryant [1996; 1997; 2002] had earlier classified

the global structures of projectively flat Finsler metrics of K = 1 on Sn, and

given some ideas for constructing non–projectively flat metrics of K = 1 on Sn.

Very recently, some non–projectively flat metrics of constant flag curvature

have been explicitly constructed; see [Bao–Shen 2002; Bejancu–Farran 2002;

Shen 2002; 2003a; 2003b; 2003c; Bao–Robles 2003], for example. These are all

Randers metrics. Therefore the classification of Randers metrics of constant flag

curvature is a natural problem, first tackled in [Yasuda and Shimada 1977; Mat-

sumoto 1989]. These authors obtained conditions they believed were necessary
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and sufficient for a Randers metric to be of constant flag curvature. Using their

result strictly as inspiration, Bao and Shen [2002] constructed a family of Ran-

ders metrics on S3 with K = 1; these metrics do satisfy Yasuda and Shimada’s

conditions. Later, however, examples were found of Randers metrics of constant

flag curvature not satisfying those conditions [Shen 2002; 2003c], showing that

the earlier characterization was incorrect. Shortly thereafter, Randers metrics of

constant flag curvature were characterized in [Bao–Robles 2003] using a system

of PDEs, a result also obtained in [Matsumoto and Shimada 2002] by a different

method. This subsequently led to a corrected version of the Yasuda–Shimada

theorem. Finally, using the characterization in [Bao–Robles 2003], and moti-

vated by some constructions in [Shen 2002; 2003c], Bao, Robles and Shen have

classified Randers metrics of constant flag curvature with the help of formula

(2–17):

Theorem 11.1 [Bao et al. 2003]. Let Φ =
√

φijy
iyj be a Riemannian metric

and let V = V
i(∂/∂x

i) be a vector field on a manifold M with Φ(x, Vx) < 1 for

all x ∈ M . Let F be the Randers metric defined by (2–17). F is of constant flag

curvature K = λ if and only if

(a) there is a constant c such that V satisfies Vi|j + Vj|i = −4cφij , where Vi :=

φijV
j , and

(b) Φ has constant sectional curvature K̃ = λ + c
2,

where | denotes the covariant derivative with respect to Φ and c is a constant .

The equation Vi|j + Vj|i = −4cφij of part (a) is by itself always equivalent to

S = (n + 1)cF , for c a scalar function on M [Xing 2003].

An analogue of Theorem 11.1 still holds for Randers metrics of isotropic Ricci

curvature, i.e., Ric = (n − 1)λF 2, where λ = λ(x) is a scalar function on M .

See [Bao and Robles 2003b] in this volume.

We have not extended the result above to Randers metrics of scalar curvature.

Usually, the isotropic S-curvature condition simplifies the classification problem.

It seems possible to classify Randers metrics of scalar curvature and isotropic

S-curvature. The following example is our first attempt to understand Randers

metrics of scalar curvature and isotropic S-curvature.

Example 11.2. Let F = α + β be the Randers metric defined in (2–20). Set

∆ := 1 − |a|
2
|x|

4. We can write α =
√

aij(x)yiyj and β = bi(x)yi, where

aij =
δij

∆
+

(

|x|
2
a

i
− 2〈a, x〉x

i
)(

|x|
2
a

j
− 2〈a, x〉x

j
)

∆2
, bi = −

|x|
2
a

i
− 2〈a, x〉x

i

∆
.
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Using Maple for the computation, we obtain, with the notations of Section 9,

e00 =
2〈a, x〉|y|

2

∆
= 2〈a, x〉(α2

− β
2),

sj0 = 2
〈a, y〉x

j
− 〈x, y〉a

j

∆2
,

s0 = b
i
si0 = 2

|a|
2
|x|

2
〈x, y〉 + 〈a, x〉〈a, v〉

∆
.

By Lemma 9.1, we see that F has isotropic S-curvature:

S = (n+1)〈a, x〉F.

By (9–1), the spray coefficients G
i = G

i(x, y) of F are

G
i = G

i + Py
i + αa

ij
sj0,

where P = e00/(2F ) − s0 = 〈a, x〉(α − β) − s0. Using the formulas for G
i and

Ri

k
in (11–1), we can show that F is also of scalar curvature with flag curvature

K = 3
〈a, y〉

F
+ 3〈a, x〉

2
− 2|a|2|x|2.

12. Projectively Flat Metrics

A Finsler metric F = F (x, y) on an open subset U ⊂ Rn is projectively flat if

every geodesic σ(t) is straight in U , that is, if

σ
i(t) = x

i + f(t)yi
,

where f(t) is a C
∞ function with f(0) = 0, f

′(0) = 1 and x = (xi), y = (yi) are

constant vectors. This is equivalent to Gi = Pyi, where P = P (x, y) is positively

y-homogeneous of degree one. P is called the projective factor.

It is generally difficult to compute the Riemann curvature, but for locally

projectively flat Finsler metrics, the formula is relatively simple.

Consider a projectively flat Finsler metric F = F (x, y) on an open subset

U ⊂ Rn. By definition, its spray coefficients are in the form G
i = Py

i
. Plugging

them into (11–1), one obtains

R
i

k
= Ξδ

i

k
+ τky

i
, (12–1)

where

Ξ = P
2
− Pxky

k
, τk = 3(Pxk − PPyk) + Ξyk .

Using (11–6), one can show that τk = −ΞF
−1

Fyk and

R
i

k
= Ξ

(

δ
i

k
−

Fyk

F
y

i

)

. (12–2)

Thus F is of scalar curvature with flag curvature

K =
Ξ

F 2
=

P
2
− Pxky

k

F 2
. (12–3)
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Using (7–4), one obtains

S = (n + 1)P (x, y) − y
m

∂

∂xm
lnσF (x). (12–4)

By (12–2), one immediately obtains the following result. (See also [Szabó 1977]

and [Matsumoto 1980] for related discussions.)

Proposition 12.1 [Berwald 1929a; 1929b]. Every locally projectively flat Finsler

metric is of scalar curvature.

There is another way to characterize projectively flat Finsler metrics.

Theorem 12.2 [Hamel 1903; Rapcsák 1961]. Let F = F (x, y) be a Finsler

metric on an open subset U ⊂ Rn. F is projectively flat if and only if F satisfies

Fxkyly
k
− Fxl = 0, (12–5)

in which case, the spray coefficients are given by Gi = Pyi with P = 1

2
Fxkyk/F .

Proof. Let G
i = G

i(x, y) denote the spray coefficients of F in the standard

coordinate system in TU ∼= U × Rn. One can rewrite (4–2) as

G
i = Py

i + Q
i
, (12–6)

where

P =
Fxky

k

2F
, Q

i = 1

2
Fg

il(Fxkyly
k
− Fxl).

Thus F is projectively flat if and only if there is a scalar function P̃ = P̃ (x, y)

such that G
i = P̃ y

i, i.e.,

Py
i + Q

i = P̃ y
i
. (12–7)

Observe that

gijy
j
Q

i = 1

2
Fy

l(Fxkyly
k
− Fxl) = 0.

Assume that (12–7) holds. Contracting with yi := gijy
j yields

P = P̃ .

Then Q
i = 0 by (12–7). This implies (12–5). �

Since equation (12–5) is linear, if F1 and F2 are projectively flat on an open

subset U ⊂ Rn, so is their sum. If F = F (x, y) is projectively flat on U ⊂ Rn,

so is its reverse F̄ := F (x,−y). Thus the symmetrization

F̃ := 1

2

(

F (x, y) + F (x,−y)
)

is projectively flat.

The Finsler metric F=αµ(x, y) in (2–5) satisfies (12–5), so it’s projectively flat.

Theorem 12.3. (Beltrami) A Riemannian metric F = F (x, y) on a manifold

M is locally projectively flat if and only if it is locally isometric to the metric αµ

in (2–5).
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Using the formula (9–1), one can easily prove the following:

Theorem 12.4. A Randers metric F = α+β on a manifold is locally projectively

flat if and only if α is locally projectively flat and β is closed .

Besides projectively flat Randers metrics, we have the following examples.

Example 12.5. Let φ = φ(y) be a Minkowski norm on Rn and let U be the

strongly convex domain enclosed by the indicatrix of φ. Let Θ = Θ(x, y) be the

Funk metric on U (Example 2.9). By (2–19),

Θxkyly
k = (ΘΘyk)yly

k = 1

2
(Θ2)ykyly

k = 1

2
[Θ2]yl = Θxl .

Thus Θ is projectively flat with projective factor

P =
Θxky

k

2Θ
=

ΘΘyky
k

2Θ
= 1

2
Θ.

By (12–3), the flag curvature is

K =
Θ2

− 2Θxky
k

4Θ2
=

Θ2
− 2Θ2

4Θ2
= −

1

4
.

Example 12.6 [Shen 2003b]. Let φ = φ(y) be a Minkowski norm on Rn and let

U be the strongly convex domain enclosed by the indicatrix of φ. Let Θ = Θ(x, y)

be the Funk metric on U and define

F := Θ(x, y)
(

1 + Θyk(x, y)xk
)

.

Since F (0, y) = Θ(0, y) = φ(y) is a Minkowski norm, by continuity, F is a Finsler

metric for x nearby the origin. By (2–19), one can verify that

Fxkyly
k = Fxl , Fxky

k = 2ΘF.

Thus F is projectively flat with projective factor P = Θ(x, y). By (2–19) and

(12–3), we obtain

K =
Θ2

− Θxkyk

F 2
=

Θ2
− ΘΘyky

k

F 2
= 0.

Now we take a look at the Finsler metric F = Fε(x, y) defined in (2–9).

Example 12.7. Let

F :=

√

Ψ
(

1

2
(
√

Φ2 + (1 − ε2)|y|4 + Φ)
)

+ (1 − ε2)〈x, y〉2 +
√

1 − ε2
〈x, y〉

Ψ
,

(12–8)

where

Φ := ε|y|
2 +

(

|x|
2
|y|

2
− 〈x, y〉

2
)

, Ψ := 1 + 2ε|x|
2 + |x|

4
.
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First, one can verify that F = Fε(x, y) satisfies (12–5). Thus F is projectively

flat with spray coefficients G
i = Py

i, where P = 1

2
Fxk(x, y)yk

/F (x, y). A Maple

computation gives

P =

√

Ψ
(

1

2
(
√

Φ2 + (1 − ε2)|y|4 + Φ)
)

− (1 − ε2)〈x, y〉2 − (ε + |x|2)〈x, y〉

Ψ
.

(12–9)

Further, one can verify that P satisfies

Pxky
k = P

2
− F

2
.

Thus

K =
P

2
− Pxky

k

F 2
=

P
2
− (P 2

− F
2)

F 2
= 1.

That is, F has constant flag curvature K = 1.

The projectively flat Finsler metrics constructed above are incomplete. They

can be pulled back to Sn by (2–2) to form complete irreversible projectively flat

Finsler metrics of constant flag curvature K = 1. See [Bryant 1996; 1997].

13. The Chern Connection and Some Identities

The previous sections introduced several geometric quantities, such as the

Cartan torsion, the Landsberg curvature, the S-curvature and the Riemann cur-

vature. These quantities are not all independent. To reveal their relationships,

we use the Chern connection to describe them as tensors on the slit tangent

bundle, and use the exterior differentiation method to derive some important

identities.

Let M be an n-dimensional manifold and TM its tangent bundle. As usual,

a typical element of TM will be denoted by (x, y), with y ∈ TxM . The natural

projection π : TM → M pulls back the tangent bundle TM over M to a vector

bundle π
∗
TM over the slit tangent bundle TM0. The fiber of π

∗
TM at each

point (x, y) ∈ TM0 is a copy of TxM . Thus we write a typical element of π
∗
TM

as (x, y, v), where y ∈ TxM \ {0} and v ∈ TxM . Let ∂i|(x,y) :=
(

x, y, (∂/∂x
i)|x

)

.

Then {∂i} is a local frame for π
∗
TM . Let (xi

, y
i) be a standard local coordinate

system in TM0. Then HT ∗M := span{dxi
} is a well-defined subbundle of

T
∗(TM0). Let

δy
i := dy

i
− N

i

j
dx

j
,

where N
i

j
:= ∂G

i
/∂y

j . Then V T
∗
M := span {δy

i
} is a well-defined subbundle

of T ∗(TM0), so that T ∗(TM0) = HT ∗M ⊕ V T ∗M . The Chern connection is a

linear connection on π
∗
TM , locally expressed by

DX = (dX
i + X

j
ω

i

j
) ⊗ ∂i, X = X

i
∂i,
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where the set of 1-forms {ω i

j
} is uniquely determined by

dω
i = ω

j
∧ ω

i

j
,

dgij = gikω
k

j
+ gkjω

k

i
+ 2Cijkω

n+k
,

(13–1)

where gij := 1

2
[F 2]yiyj , Cijk := 1

4
[F 2]yiyjyk , ω

i := dx
i
, and ω

n+i := δy
i
. See

[Bao and Chern 1993; Bao et al. 2000; Chern 1943; 1948; 1992]. Each 1-form

ω i

j
is horizontal: ω i

j
= Γi

jk
dxk. The coefficients Γi

jk
= Γi

jk
(x, y) are called the

Christoffel symbols. We have N
i

j
= y

kΓi

jk
. Thus

ω
n+i = dy

i + y
j
ω

i

j
. (13–2)

Put

Ωi := dω
n+i

− ω
n+j

∧ ω
i

j
. (13–3)

One can express Ωi as

Ωi =
1

2
R

i

kl
ω

k
∧ ω

l
− L

i

kl
ω

k
∧ ω

n+l
,

where

R
i

kl
=

∂N
i

l

∂xk
−

∂N
i

k

∂xl
+ N

s

l

∂N
i

k

∂ys
− N

s

k

∂N
i

l

∂ys
,

and

L
i

kl
:= y

j
∂Γi

jk

∂yl
=

∂N
i

k

∂yl
− Γi

kl
.

Let Ri

k
be defined in (11–1) and Lijk be defined in (8–4). Then

R
i

k
= R

i

kl
y

l
, R

i

kl
=

1

3

(
∂R

i

k

∂yl
−

∂R
i

l

∂yk

)

, L
i

kl
= g

ij
Ljkl. (13–4)

Put

Ω i

j
:= dω

i

j
− ω

k

j
∧ ω

i

k
.

One can express Ω i

j
as

Ω i

j
=

1

2
R

i

j kl
ω

k
∧ ω

l + P
i

j kl
ω

k
∧ ω

n+l
.

Differentiating (13–2) yields Ωi = y
jΩ i

j
. Thus

R
i

kl
= y

j
R

i

j kl
, L

i

kl
= −y

j
P

i

j kl
.

There is a canonical way to define the covariant derivatives of a tensor on

TM0 using the Chern connection. For the distortion τ on TM \ {0}, define τ|m

and τ·m by

dτ = τ|iω
i + τ·iω

n+i
. (13–5)

It follows from (7–2) that

τ·i =
∂τ

∂yi
= Ii. (13–6)



LANDSBERG, S- AND RIEMANN CURVATURES 335

For the induced Riemannian tensor, g = gijω
i
⊗ ωj , define gij|k and gij·k by

dgij − gkjω
k

i
− gikω

k

j
= gij|kω

k + gij·kω
n+k

.

It follows from (13–1) that

gij|k = 0, gij·k = 2Cijk.

Similarly, one can define Cijk|l at Ii|l. Equations (8–4) and (8–5) become

Lijk = Cijk|my
m

, Ji = Ii|my
m

. (13–7)

Differentiating (13–3) yields the Bianchi identity

dΩi = −Ωj
∧ ω

i

j
+ ω

n+j
∧ Ω i

j
. (13–8)

It follows from (13–8) that

R
i

j kl
= R

i

kl·j + L
i

kj|l − L
i

lj|k + L
i

lm
L

m

kj
− L

i

km
L

m

lj
. (13–9)

We are going to find other relationships among curvature tensors. Differenti-

ating (13–1) yields

0 = gikΩ k

j
+ gkjΩ

k

i
+ 2(Cijk|lω

l + Cijk·lω
n+l) ∧ ω

n+k + 2CijkΩk
.

It follows that

Rjikl + Rijkl + 2CijmR
m

kl
= 0, (13–10)

where Rjikl := gimR m

j kl
, and

Pjikl + Pijkl + 2Cijl|k − 2CijmL
m

kl
= 0,

where Pjikl := gimP
m

j kl
. Then (13–9) can be expressed by

Rjikl = gimR
m

kl·j + Likj|l − Lilj|k + LilmL
m

kj
− LikmL

m

lj
.

Plugging the formulas for Rjikl and Rijkl into (13–10) yields

Lijk|l − Lijl|k = −
1

2
(gimR

m

kl·j + gjmR
m

kl·i) − CijmR
m

kl
,

Ik|l − Il|k = −R
m

kl·m − ImR
m

kl
.

(13–11)

The expression for R
i

kl
in (13–4) can be written as

R
i

kl
= 1

3
(Ri

k·l − R
i

l·k). (13–12)

Lemma 13.1 [Mo 1999]. Lijk and R
i

k
are related by

Cijk|p|qy
p
y

q + CijmR
m

k

= −
1

3
gimR

m

k·j −
1

3
gjmR

m

k·i −
1

6
gimR

m

j·k −
1

6
gjmR

m

i·k. (13–13)

In particular ,

Ik|p|qy
p
y

q + ImR
m

k
= −

1

3
(2R

m

k·m + R
m

m·k). (13–14)
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Proof. By (13–7), we have

Lijk|my
m = Cijk|p|qy

p
y

q
, Jk|my

m = Ik|p|qy
p
y

q
.

Contracting the first line of (13–11) with y
l yields (13–13), and contracting

(13–13) with gij yields (13–14). Here we have made use of (13–12). �

The equations above are crucial in the study of Finsler metrics of scalar curva-

ture. Let F = F (x, y) be a Finsler metric of scalar curvature with flag curvature

K = K(x, y). Then (11–8) holds. Plugging (11–8) into (13–13) and (13–14)

yields

Cijk|p|qy
p
y

q + KF
2
Cijk = −

1

3
F

2(K·ihjk + K·jhik + K·khij),

Ik|p|qy
p
y

q + KF
2
Ik = −

1

3
(n + 1)F 2K·k.

(13–15)

Using the first of these equations, one shows that any compact Finsler mani-

fold of negative constant flag curvature must be Riemannian [Akbar-Zadeh 1988].

It follows from (13–15) that for any Finsler metric F of scalar curvature with

flag curvature K, the Matsumoto torsion satisfies

Mijk|p|qy
p
y

q + KF
2
Mijk = 0. (13–16)

One can use (13–16) to show that any Landsberg metric of scalar curvature

with K 6= 0 it is Riemannian, in dimension n ≥ 3 [Numata 1975]. See also

Corollary 17.4.

Using (13–16), one can easily prove this:

Theorem 13.2 [Mo and Shen 2003]. Let (M,F ) be a compact Finsler manifold

of dimension n ≥ 3. If F is of scalar curvature with negative flag curvature, F

must be a Randers metric.

Now we derive some important identities for the S-curvature. Differentiating

(13–5) and using (13–3) and (13–6), one obtains

0 = d
2
τ = (τ|k|lω

l + τ|k·lω
n+l) ∧ ω

k + (Ik|lω
l + Ik·lω

n+l) ∧ ω
k + ImΩn+m

.

This yields the Ricci identities

τ|k|l=τ|l|k + IpR
p

kl
, (13–17)

τ|k·l=Il|k − IpL
p

kl
. (13–18)

From the definition (7–3), the S-curvature can be regarded as

S = τ|my
m

. (13–19)

Contracting (13–17) with y
k yields

S·k = (τ|my
m)·k = τ|m·ky

m + τ|k = Ik|my
m
− IpL

p

mk
y

m + τ|k = Jk + τ|k,

where we have made use of (13–17) and (13–19). We restate this equation as

S·k = τ|k + Jk. (13–20)
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Lemma 13.3 [Mo 2002; Mo and Shen 2003]. The S-curvature satisfies

S·k|my
m
− S|k = −

1

3
(2R

m

k·m + R
m

m·k). (13–21)

Proof. It follows from (13–20) that

S·k|l = τ|k|l + Jk|l. (13–22)

By (13–17) and (13–22), one obtains

S·k|my
m
− S|k = (S·k|m − S·m|k)ym = (τ|k|m − τ|m|k)ym + (Jk|m − Jm|k)ym

= IpR
p

km
y

m + Jk|my
m = IpR

p

k
− IpR

p

k
−

1

3
Im(Rm

k·l − R
m

l·k)

= −
1

3
Im(Rm

k·l − R
m

l·k). �

14. Nonpositively Curved Finsler Manifolds

We now use some of the identities derived in the previous section to establish

global rigidity theorems.

First, consider the mean Cartan torsion. Let (M,F ) be an n-dimensional

Finsler manifold. The norm of the mean Cartan torsion I at a point x ∈ M is

defined by

‖I‖x := sup
06=y∈TxM

√

Ii(x, y)gij(x, y)Ij(x, y).

It is known that if F = α + β is a Randers metric, then

‖I‖x ≤

n + 1
√

2

√

1 −

√

1 − ‖β‖2
x

<
n + 1
√

2
.

The bound in dimension two was suggested by B. Lackey. See [Shen 2001b,

Proposition 7.1.2] or [Ji and Shen 2002] for a proof. Below is our first global

rigidity theorem.

Theorem 14.1 [Shen 2003d]. Let (M,F ) be an n-dimensional complete Finsler

manifold with nonpositive flag curvature. Suppose that F has almost constant

S-curvature S = (n + 1)(cF + η) (with c a constant and η a closed 1-form) and

bounded mean Cartan torsion sup
x∈M

‖I‖x < ∞. Then J = 0 and R ◦ I = 0.

Moreover F is Riemannian at points where the flag curvature is negative.

Proof. It follows from (13–14) and (13–21) that

Ik|p|qy
p
y

q + ImR
m

k
= S·k|my

m
− S|k. (14–1)

Assume that the S-curvature is almost isotropic:

S = (n + 1)(cF + η),

where c = c(x) is a scalar function on M and η = ηidxi is a closed 1-form on M .

Observe that

η·k|my
m
− η|k = (ηk|m − ηm|k)ym =

(
∂ηk

∂xm
−

∂ηm

∂xk

)

y
m = 0.
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Thus

S·k|my
m
− S|k = (n + 1)(cxmy

m
F·k − c|kF + η·k|my

m
− η|k)

= (n + 1)(cxmy
m

F·k − c|kF ).

In this case, (13–21) becomes

2R
m

k·m + R
m

m·k = −3(n + 1)(cxmy
m

F·k − c|kF ) (14–2)

and (14–1) becomes

Ik|p|qy
p
y

q + ImR
m

k
= (n + 1)(cxmy

m
F·k − c|kF ).

By assumption, c is constant, so this last equation reduces

Ik|p|qy
p
y

q + ImR
m

k
= 0. (14–3)

Let y ∈ TxM be an arbitrary vector and let σ(t) be the geodesic with σ(0) = x

and σ̇(0) = y. Since the Finsler metric is complete, one may assume that σ(t)

is defined on (−∞,∞). The mean Cartan torsion I and the mean Landsberg

curvature J restricted to σ(t) are vector fields along σ(t):

I(t) := I
i(σ(t), σ̇(t))

∂

∂xi

∣
∣
∣
σ(t)

, J(t) := J
i(σ(t), σ̇(t))

∂

∂xi

∣
∣
∣
σ(t)

.

It follows from (8–5) or (13–7) that

Dσ̇I(t) = I
i

|m(σ(t), σ̇(t))σ̇m(t)
∂

∂xi

∣
∣
∣
σ(t)

= J(t).

It follows from (14–3) that

Dσ̇Dσ̇I(t) + Rσ̇(t)(I σ̇(t)) = 0.

Setting

ϕ(t) := g
σ̇(t)

(

I(t), I(t)
)

,

we obtain

ϕ
′′(t) = 2g

σ̇(t)

(

Dσ̇Dσ̇I(t), I(t)
)

+ 2g
σ̇(t)

(

Dσ̇I(t),Dσ̇I(t)
)

= −2g
σ̇(t)

(

Rσ̇(t)(I(t)), I(t)
)

+ 2g
σ̇(t)

(

J(t),J(t)
)

. (14–4)

By assumption, K ≤ 0. Thus

g
σ̇(t)

(

Rσ̇(t)(I(t)), I(t)
)

≤ 0.

It follows from (14–4) that

ϕ
′′(t) ≥ 0.

Thus ϕ(t) is convex and nonnegative. Suppose that ϕ
′(t0) 6= 0 for some t0.

By an elementary argument, limt→+∞ ϕ(t) = ∞ or limt→−∞ ϕ(t) = ∞. This
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implies that the mean Cartan torsion is unbounded, which contradicts the as-

sumption. Therefore, ϕ
′(t) = 0 and hence ϕ

′′(t) = 0. Since each term in (14–4)

is nonnegative, one concludes that

g
σ̇(t)

(

Rσ̇(t)(I(t)), I(t)
)

= 0, J(t) = 0.

Setting t = 0 yields

g
y

(

Ry(Iy), Iy

)

= 0 (14–5)

and Jy = 0. By (11–6), Ry(y) = 0 and Ry is self-adjoint with respect to g
y
,

i.e., g
y

(

Ry(u), v
)

= g
y
(u,Ry(v)), for u, v ∈ TxM . Thus there is an orthonormal

basis {ei}
n

i=1
with en = y such that

Ry(ei) = λiei, i = 1, . . . , n,

with λn = 0. By assumption, the flag curvature is nonpositive. Then

g
y
(Ry(ei),ei) = λi ≤ 0, i = 1, . . . , n − 1.

Since Iy is perpendicular to y with respect to g
y
, one can express it as Iy =

µ1e1 + · · · + µn−1en−1. By (14–5), one obtains

0 = g
y

(

Ry(Iy), Iy

)

=
n−1
∑

i=1

µ
2

i
λi.

Since each term µ2

i
λi is nonpositive, one concludes that µiλi = 0, or yet

Ry(Iy) =
n−1
∑

i=1

µiλi = 0. (14–6)

Now suppose that F has negative flag curvature at a point x ∈ M . Then

λi < 0 for i = 1, . . . , n−1. By (14–6), one concludes that µi = 0, i = 1, . . . , n−1,

namely, Iy = 0. By Deicke’s theorem [Deicke 1953], F is Riemannian. �

Corollary 14.2. Every complete Berwald manifold with negative flag curvature

is Riemannian.

Proof. For a Berwald metric F on a manifold M , the Minkowski spaces

(TxM,Fx) are all linearly isometric (Proposition 5.2). Thus the Cartan tor-

sion is bounded from above. Meanwhile, the S-curvature vanishes (Proposition

7.1). Thus F must be Riemannian. �

Example 14.3. Let (M, ᾱ) and (M,α) be Riemannian manifolds and let F =

F (x, y) be the product metric on M = M × M , defined in Example 5.1. We

computed the spray coefficients of F in Example 5.1. Using (11–1), one obtains

the Riemann tensor of F :

R
ā

b̄
= R

ā

b̄
, R

ā

b
= 0 = R

a

b̄
, R

a

b
= R

a

b
,
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where Rā

b̄
and R

a

b
are the coefficients of the Riemann tensors of ā and a. Let

Rij := gikR
k

j
as usual, and define R

āb̄
and Rab similarly. Using (5–3), one

obtains

R
āb̄

= fsRāb̄
, Rāb = 0 = R

ab̄
, Rab = ftRab.

For any vector v = v
i(∂/∂x

i)|x ∈ TxM ,

g
y

(

Ry(v), v
)

= fsRāb̄
v

ā
v

b̄ + ftRabv
a
v

b
.

Thus if α1 and α2 both have nonpositive sectional curvature, F has nonpositive

flag curvature.

Using (5–4), one can compute the mean Cartan torsion. First, observe that

Ii =
∂

∂yi
ln

√

det(gjk) =
∂

∂yi
ln

√

h
(

[α1]2, [α2]2
)

,

where h = h(s, t) is defined in (5–5). One obtains

Iā =
hs

h
ȳā, Ia =

ht

h
ȳa,

where ȳā := ḡ
āb̄

yb̄ and ȳa := ḡaby
b. Since ȳāRā

b̄
= 0 and ȳaR

a

b
= 0, one obtains

g
y

(

Ry(Iy), Iy

)

= IiR
i

j
I

j =
hs

h
ȳāR

ā

b̄
I

b̄ +
ht

h
ȳaR

a

b
I

b = 0.

Since Ry is self-adjoint and nonpositive definite with respect to g
y
, Ry(Iy) = 0.

Therefore F satisfies the conditions and conclusions in Theorem 14.1.

The next example shows that completeness in Theorem 14.1 cannot be replaced

by positive completeness.

Example 14.4. Let φ(y) be a Minkowski norm on Rn. Let Θ = Θ(x, y) be the

Funk metric on U := {y ∈ Rn
| φ(y) < 1} defined in (2–18). Let a ∈ Rn be an

arbitrary constant vector. Let

F := Θ(x, y) +
〈a, y〉

1 + 〈a, x〉
, y ∈ TU ∼= U × Rn

.

Clearly, F is a Finsler metric near the origin. By (2–19), one sees that the spray

coefficients of F are given by G
i = Py

i, where

P :=
1

2

(

Θ(x, y) −
〈a, y〉

1 + 〈a, x〉

)

.

Using this and (12–3), one obtains

K =

1

4

(

Θ −

〈a, y〉

1 + 〈a, x〉

)2

−

1

2

(

Θ2 +
(

〈a, y〉

1 + 〈a, x〉

)2
)

(

Θ(x, y) +
〈a, y〉

1 + 〈a, x〉

)2
= −

1

4
.

Thus F has constant flag curvature K = −
1

4
. See also [Shen 2003b, Example 5.3].
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Now we compute the S-curvature of F . A direct computation gives

∂G
m

∂ym
= (n + 1)P.

Let dV = σF (x) dx
1
· · · dx

n be the Finsler volume form on M . From (12–4), we

obtain

S =
n + 1

2
F (x, y) − (n + 1)

〈a, y〉

1 + 〈a, x〉
− y

m
∂

∂xm
lnσF (x)

= (n + 1)
(

1

2
F (x, y) + dϕx(y)

)

,

where ϕ(x) := − ln
(

(1 + 〈a, x〉)σF (x)1/(n+1)
)

. Thus

E = 1

4
(n + 1)F−1h,

where hy = hij(x, y) dx
i
⊗ dx

j is given by hij = F (x, y)Fyiyj (x, y).

When φ(y) = |y| is the standard Euclidean norm, U = Bn is the standard

unit ball in Rn and

Θ =

√

|y|2 −
(

|x|2|y|2 − 〈x, y〉2
)

1 − |x|2
.

Thus

F =

√

|y|2 −
(

|x|2|y|2 − 〈x, y〉2
)

1 − |x|2
+

〈a, y〉

1 + 〈a, x〉
.

Assume that |a| < 1. It is easy to verify that F is a Randers metric defined on

the whole Bn, with constant S-curvature S = 1

2
(n + 1)F (x, y). One can show

that F is positively complete on Bn, so that every geodesic defined on an interval

(λ, µ) can be extended to a geodesic defined on (λ,+∞).

15. Flag Curvature and Isotropic S-Curvature

It is a difficult task to classify Finsler metrics of scalar curvature. All known

Randers metrics of scalar curvature have isotropic S-curvature. Thus it is a

natural idea to investigate Finsler metrics of scalar curvature which also have

isotropic S-curvature.

Proposition 15.1 [Chen et al. 2003]. Let (M,F ) be an n-dimensional Finsler

manifold of scalar curvature with flag curvature K = K(x, y). Suppose that the

S-curvature is almost isotropic,

S = (n + 1)(cF + η),

where c = c(x) is a scalar function on M and η = ηi(x)yi is a closed 1-form.

Then there is a scalar function σ = σ(x) on M such that the flag curvature

equals

K = 3
cxmy

m

F
+ σ. (15–1)
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Proof. By assumption, the flag curvature K = K(x, y) is a scalar function on

TM0. Thus (11–8) holds. Plugging (11–8) into (14–2) yields

cxmy
m

F·k − cxkF = −
1

3
KykF

2
. (15–2)

Rewriting (15–2) as
(

1

3
K −

cxmy
m

F

)

yk

= 0,

one concludes that the quantity

σ := K −

3cxmy
m

F

is a scalar function on M . This proves the proposition. �

Corollary 15.2 [Mo 2002]. Let F be an n-dimensional Finsler metric of scalar

curvature. If F has almost constant S-curvature, the flag curvature is a scalar

function on M .

From the definition of flag curvature, one can see that every two-dimensional

Finsler metric is of scalar curvature. One immediately obtains the following:

Corollary 15.3. Let F be a two-dimensional Finsler metric with almost isotro-

pic S-curvature. Then the flag curvature is in the form (15–1).

Let F = F (x, y) be a two-dimensional Berwald metric on a surface M . It follows

from Corollaries 15.3 and 15.2 that the Gauss curvature K = K(x) is a scalar

function of x ∈ M . Since F is a Berwald metric, the G
i = 1

2
Γi

jk
(x)yj

y
k are

quadratic in y = yi(∂/∂xi)|x ∈ TxM . By (11–1), the Riemann curvature, Ri

k
=

R
i

k
(x, y), are quadratic in y. This implies that the Ricci scalar Ric = R

m

m
(x, y)

is quadratic in y. Suppose that K(x0) 6= 0 at some point x0 ∈ M . Then

F (x0, y)2 =
Ric(x0, y)

K(x0)

is quadratic in y ∈ Tx0
M . Namely, Fx0

= F |Tx0
M is Euclidean at x0. By

Proposition 5.2, all tangent spaces (TxM,Fx) are linearly isometric to each other.

One concludes that Fx is Euclidean for any x ∈ M and F is Riemannian. Now

we suppose that K ≡ 0. Since F is Berwaldian, F must be locally Minkowskian.

See [Szabó 1981] for a different argument.

16. Projectively Flat Metrics with Isotropic S-Curvature

Recall that a Finsler metric F on a manifold M is locally projectively flat if

at any point x ∈ M , there is a local coordinate system (xi) in M such that every

geodesic σ(t) is straight, i.e., σ
i(t) = f(t)ai + b

i. This is equivalent to saying

that in the standard local coordinate system (xi, yi), the spray coefficients Gi are

in the form G
i = Py

i with P = Fxky
k
/(2F ). It is well-known that any locally

projectively flat Finsler metric F is of scalar curvature, and its flag curvature
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equals K = (P 2
−Pxkyk)/F 2 (see Proposition 12.1). Our goal is to characterize

those with almost isotropic S-curvature.

First, by Beltrami’s theorem and the Cartan classification theorem, a Rie-

mannian metric is locally projectively flat if and only if it is of constant sectional

curvature. Every Riemannian metric of constant sectional curvature µ is locally

isometric to the metric αµ on a ball in Rn, defined in (2–5). A Randers metric

F = α + β is locally projectively flat if and only if α is locally projectively flat

(hence of constant sectional curvature) and β is closed. This follows directly

from a result in [Bácsó and Matsumoto 1997] and the Beltrami theorem on

projectively flat Riemannian metrics. If in addition, the S-curvature is almost

isotropic, then β can be determined explicitly.

Proposition 16.1 [Chen et al. 2003]. Let F = α+β be a locally projectively flat

Randers metric on an n-dimensional manifold M . Suppose that F has almost

isotropic S-curvature, S = (n + 1)(cF + η), where c is a scalar function on M

and η is a closed 1-form on M . Then:

(a) α is locally isometric to αµ and β is a closed 1-form satisfying

(µ + 4c
2)β = −cxky

k
.

(b) The flag curvature is given by

K =
3cxky

k

α + β
+ 3c

2 + µ = 3

4
(µ + 4c

2)
α − β

α + β
+

µ

4
. (16–1)

(c) If µ + 4c
2
≡ 0, then c is a constant and the flag curvature equals −c

2. In

this case, F = α + β is either locally Minkowskian (c = 0) or , up to scaling

(c = ±
1

2
), locally isometric to the generalized Funk metric Θa = Θa(x, y) of

(2–7) or its reverse Θ̄a = Θa(x,−y).

(d) If µ + 4c
2
6= 0, then F = α + β must be locally given by

α = αµ(x, y), β = −

2cxk(x)yk

µ + 4c2
(16–2)

where c := cµ(x) is given by

cµ =



















(λ + 〈a, x〉)

√

µ

±(1 + µ|x|2) − (λ + 〈a, x〉)2
, µ 6= 0,

±1

2
√

λ + 2〈a, x〉 + |x|2
, µ = 0,

for a ∈ Rn a constant vector and λ ∈ R a constant number .

Proof. Let αµ =
√

aij(x)yiyj and β = bi(x)yi. We may assume that α = αµ

in a local coordinate system

aij =
δij

1 + µ|x|2
−

µx
i
x

j

(1 + µ|x|2)2
.
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The Christoffel symbols of α are given by

Γi

jk
= −µ

x
j
δ

i

k
+ x

k
δ

i

j

1 + µ|x|2
.

Thus

G
i = −

µ〈x, y〉

1 + µ|x|2
y

i
.

The spray coefficients of F are given by G
i = G

i+Py
i+Q

i, where P = e00/(2F )

and Q
i = αs

i

0
are given by (9–1) and (9–2). Since β is closed, sij := 1

2
(bi;j +

bj;i) = 0 and si := bjs
j

i
= 0. Thus Q

i = 0. By assumption, S = (n +1)(cF + η)

and Lemma 9.1,

e00 = β|ky
k = 2c(α2

− β
2). (16–3)

Thus P = e00/(2F ) − s0 = c(α − β) and

βxky
k = β|ky

k + 2G
k
βyk = 2c(α2

− β
2) −

2µ〈x, y〉β

1 + µ|x|2
.

Then G
i = P̃ y

i, where P̃ = −

µ〈x, y〉

1 + µ|x|2
+ c(α − β). By (12–3), we obtain

KF
2 = P̃

2
− P̃xky

k = µα
2 + c

2(3α + β)(α − β) − cxky
k(α − β).

On the other hand, by Theorem 15.1, the flag curvature is in the following form

K =
3cxky

k

α + β
+ σ,

where σ = σ(x) is a scalar function on M . It follows from the last two displayed

equations that

2
(

2cxky
k + (σ + c

2)β
)

α +
(

2cxky
k + (σ + c

2)β
)

β + (σ − 3c
2
− µ)α2 = 0.

This gives

2cxky
k + (σ + c

2)β = 0, σ − 3c
2
− µ = 0.

Solving the second of these equations for σ and substituting into the first we get

(µ + 4c
2)β = −2cxky

k
. (16–4)

To prove part (c) of the Proposition, suppose that µ + 4c
2
≡ 0. Then c is

constant. It follows from (16–1) that K = 3c
2 + µ = −c

2. The local structure

of F can be easily determined [Shen 2003a].

Now suppose instead that µ + 4c2
6= 0 on an open subset U ⊂ M . By (16–4),

β = −

2cxky
k

µ + 4c2
. (16–5)
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Note that β is exact. It follows from (16–3) and (16–5) that

cxixj +
µ(xi

cxj + x
j
cxi)

1 + µ|x|2

= −c(µ + 4c
2)

(
δij

1 + µ|x|2
−

µx
i
x

j

(1 + µ|x|2)2

)

+
12ccxicxj

µ + 4c2
. (16–6)

We are going to solve for c. Let

f :=



















2c
√

1 + µ|x|2

√

±(µ + 4c2)
, µ 6= 0,

1

c2
, µ = 0,

where the sign is chosen so that the radicand ±(µ + 4c
2) > 0. Then (16–6)

reduces to

fxixj =

{

0, µ 6= 0,

8δij , µ = 0.

We obtain

f =

{

λ + 〈a, x〉, µ 6= 0,

4
(

λ + 2〈a, x〉 + |x|
2
)

, µ = 0,

where a ∈ Rn is a constant vector and λ is a constant. This gives part (d). �

By Proposition 16.1, one immediately obtains:

Corollary 16.2. Let F = α+β be a locally projectively flat Randers metric on

an n-dimensional manifold M . Suppose that F has almost constant S-curvature

S = (n + 1)(cF + η), where c is a constant . Then F is locally Minkowskian, or

Riemannian with constant curvature, or up to a scaling , locally isometric to the

generalized Funk metric in (2–7).

Proof. Let µ be the constant sectional curvature of α. If µ + 4c
2 = 0, by

Proposition 16.1(c), F = α +β is either locally Minkowskian or, up to a scaling,

locally isometric to the generalized Funk metric in (2–7). If µ + 4c
2
6= 0 instead,

F = α + β is given by (16–2). Since cxk = 0, we get β = 0 and F = α is a

Riemannian metric. �

Proposition 16.1 completely classifies projectively flat Randers metrics of almost

isotropic S-curvature. If a Randers metric has almost isotropic S-curvature, its

the E-curvature is isotropic. By Lemma 9.1, the S-curvature is isotropic. Thus

a Randers metric is of almost isotropic S-curvature if and only if it is of isotropic

S-curvature. This is not true for general Finsler metrics: if Θ(x, y) is the Funk

metric on a strongly convex domain U ⊂ Rn, the Finsler metric

F = Θ(x, y) +
〈a, y〉

1 + 〈a, x〉
, y ∈ TxU ∼= Rn

,
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is projectively flat with almost isotropic S-curvature, according to Example 14.4.

Thus it has isotropic E-curvature. However, this F is of isotropic S-curvature

only for certain U ’s such as the standard unit ball.

A natural problem is whether there are other types of projectively flat Finsler

metrics of almost isotropic S-curvature. Here is the answer:

Proposition 16.3 [Chen and Shen 2003b]. Let F = F (x, y) be a projectively

flat Finsler metric on a simply connected open subset U ⊂ Rn. Suppose that F

has almost isotropic S-curvature,

S = (n + 1)c(F + η), (16–7)

where c is a scalar function on M and η is a closed 1-form on U .

(a) If K is not of the form −c
2+cxmy

m
/F at every point x ∈ U , then F = α+β

is a Randers metric on U . Further , α is of constant sectional curvature K̄ = µ

with µ + 4c
2
6= 0 and α and β are as in Proposition 16.1(c).

(b) If K ≡ −c
2 + cxmy

m
/F on U , then c is a constant , and either F is locally

Minkowskian (c = 0) or there exist a Funk metric Θ and a constant vector

a ∈ Rn such that F has the form

F =
1

2c

{

Ψ +
〈a, y〉

1 + 〈a, x〉
,

where Ψ = Θ(x, y) if c = 1

2
and Ψ = −Θ(x,−y) if c = −

1

2
.

Proof. Since F is projectively flat, the spray coefficients are given by G
i = Py

i,

where

P :=
Fxky

k

2F
.

Thus the S-curvature is given by (12–4) and the flag curvature of F is given by

(12–3).

By assumption, S is of the form (16–7). Since η is closed on U , it can be

written as η(x, y) = dhx(y), where h = h(x) is a scalar function on U . Thus

P = cF + dϕx, (16–8)

where ϕ(x) := h(x) + (lnσF (x))/(n + 1). It follows from the last two displayed

equations that

Fxiy
i = 2FP = 2F (cF + ϕxiy

i).

Using this together with (16–8) and (12–3), one obtains

K =
(cF + ϕxiy

i)2 − (cxiy
i
F + cFxiy

i + ϕxixj y
i
y

j)

F 2

=
−c

2
F

2
− cxmy

m
F + (ϕxiϕxj − ϕxixj )yi

y
j

F 2
. (16–9)
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On the other hand, since F is of scalar curvature, by Proposition 15.1, the flag

curvature of F is given by (15–1). Comparing (16–9) with (15–1) yields

(σ + c
2)F 2 + 4cxmy

m
F + (ϕxixj − ϕxiϕxj )yi

y
j = 0. (16–10)

Assume that K 6= −c
2 + cxmy

m
/F at every point x ∈ U . Then, by (15–1),

for any x ∈ U , there is a nonzero vector y ∈ TxU such that

σ + c
2 +

2cxmy
m

F
6= 0.

We claim that σ + c
2
6= 0 on U . If not, there is a point x0 ∈ U such that

σ(x0) + c(x0)
2 = 0. The inequality above implies that dc 6= 0 at x0. Then

(16–10) at x0 reduces

4cxm(x0)y
m

F (x0, y) +
(

ϕxixj (x0) − ϕxi(x0)ϕxj (x0)
)

y
i
y

j = 0. (16–11)

Differentiating with respect to yi, then restricting to the hyperplane

V := {y | cxm(x0)y
m = 0},

one obtains

4cxi(x0)F (x0, y) +
(

ϕxixj (x0) − ϕxi(x0)ϕxj (x0)
)

y
j = 0.

In other words, F (x0, y) is a homogeneous linear function of y ∈ V . This is

impossible, because F (x0, y) is always positive for y ∈ V \ {0}.

Now we may assume that σ + c
2
6= 0 on U . One can solve the quadratic

equation (16–10) for F ,

F =

√

(σ + c2)(ϕxixj − ϕxiϕxj )yiyj + 4(cxmym)2 − 2cxmy
m

σ + c2
.

That is, F is expressed in the form F = α+β, where α =
√

aijy
iyj and β = biy

i

are given by

aij =
(σ + c

2)(ϕxixj − ϕxiϕxj ) + 4cxicxj

(σ + c2)2
, bi = −

2cxi

σ + c2
.

Since F is a Randers metric, by Lemma 9.1, one concludes that S is isotropic,

i.e., η = 0 and

S = (n + 1)cF.

Since F is projectively flat, α is of constant sectional curvature K̄ = µ and β

is closed. Moreover, by Proposition 16.1, the flag curvature is given by (16–1).

Note that σ + c
2
6= 0 is equivalent to the inequality µ + 4c

2
6= 0. By Proposition

16.1(d), F is given by (16–2).

We now assume that K ≡ −c2 + cxiyi/F . It follows from (15–1) that

σ + c
2 +

2cxmy
m

F
≡ 0.
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Suppose that cxm(x0)y
m

6= 0 at some point x0. From the preceding identity, one

sees that σ(x0) + c(x0)
2
6= 0. Thus

F (x0, y) = −

2cxm(x0)y
m

σ(x0) + c(x0)2

is a linear function. This is impossible. One concludes that cxmy
m = 0 on U ,

and hence c is a constant and σ(x) = −c
2 is a constant too. In this case, the

flag curvature is given by K = −c
2. Equation (16–10) reduces to

ϕxixj − ϕxiϕxj = 0,

which is easily solved to yield

ϕ = − ln
(

1 + 〈a, x〉
)

+ C,

where a ∈ Rn is a constant vector and C is a constant.

Assume that c = 0. Then K = −c
2 = 0. It follows from (16–8) that the

projective factor P = dϕx is a 1-form, hence the spray coefficients Gi = Pyi are

quadratic in y ∈ TxU . By definition, F is a Berwald metric, and every Berwald

metric with K = 0 is locally Minkowskian (see [Bao et al. 2000] for a proof).

Assume that c 6= 0. By (16–8), P = cF +dϕ. With Ψ := P +cF = 2cF +dϕx,

we have

F =
1

2c
(Ψ(x, y) − dϕx) =

1

2c

(

Ψ(x, y) +
〈a, y〉

1 + 〈a, x〉

)

.

Since F is projectively flat and P is the projective factor,

Fxk = (PF )yk , Pxk = PPyk + c
2
FFyk .

These equations imply that Ψxi = ΨΨyi . Let Θ := Ψ(x, y) if c > 0 and Θ :=

−Ψ(x,−y) if c < 0. Then Θ is a Funk metric and F is of the form stated in part

(b) of the theorem. �

17. Flag Curvature and Relatively Isotropic L-Curvature

Although the relatively isotropic J-curvature condition is stronger than the

isotropic S-curvature condition for Randers metrics (Lemma 10.1), it seems that

there is no direct relationship between these two conditions. Nevertheless, for

Finsler metrics of scalar curvature, the relatively isotropic J-curvature condition

also implies that the flag curvature takes a special form in certain cases.

Proposition 17.1 [Chen et al. 2003]. Let F be an n-dimensional Finsler man-

ifold of scalar curvature and of relatively constant J-curvature, so that

J + cFI = 0, (17–1)

for some constant c. Then

K = −c
2 + σe

−3τ/(n+1)
,



LANDSBERG, S- AND RIEMANN CURVATURES 349

where τ = τ(x, y) is the distortion and σ = σ(x) is a scalar function on M .

Proof. By assumption, Jk = −cFIk. Using (13–6) and (13–7), one obtains

Ik|p|qy
p
y

q = Jk|my
m = −cFIk|my

m = c
2
F

2
τ·k.

Plugging this into the second line of (13–15) yields

1

3
(n + 1)K·k + (K + c

2)τ·k = 0.

This implies that

(

(K + c
2)(n+1)/3

e
τ
)

·k
= (K + c

2)(n−2)/3
e

τ
(

1

3
(n + 1)K ·k + Kτ·k

)

= 0.

Thus the function (K + c
2)(n+1)/3

e
τ is independent of y ∈ TxM . �

Proposition 17.1 in the particular case c = 0 was essentially achieved in the

proof of [Matsumoto 1972a, Proposition 26.2], where it is assumed that F is a

Landsberg metric, but what is needed is merely that J = 0. Since the notion of

distortion is not introduced in [Matsumoto 1972a], the result is stated in a local

coordinate system.

Corollary 17.2. Let F be a Finsler metric on a manifold M . Suppose that F

has isotropic flag curvature not equal to −c
2 and that F has relatively constant

J-curvature. Then F is Riemannian.

Proof. By Proposition 17.1,

K(x) = −c
2 + σ(x)e−3τ/(n+1)

.

Since K(x) 6= −c
2, one concludes that σ(x) 6= 0, so τ = τ(x) is independent of

y ∈ TxM . It follows from (7–2) that Ii = τyi = 0. Thus F is Riemannian by

Deicke’s theorem [Deicke 1953]. �

Proposition 17.3. Let F be a Finsler metric of scalar curvature on an n-

dimensional manifold . Suppose that F has relatively isotropic L-curvature, so

L + cFC = 0, (17–2)

where c is a scalar function on M .

(a) If c is constant , then

K = −c
2 + σe

−3τ/(n+1)
,

where σ is a scalar function on M .

(b) If n ≥ 3 and K 6= −c
2 +cxmy

m
/F for almost all y ∈ TxM \{0} at any point

x in an open domain U of M , then F = α + β is a Randers metric in U .
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Proof. If F has relatively isotropic L-curvature, (17–1) holds by taking the

average of (17–2) on both sides. Statement (a) then follows from Proposition

17.1.

Now we assume that K 6= −c
2 + cxm(x)ym

/F for almost all y ∈ TxM \{0} at

any point x in an open domain U ⊂ M . By assumption, Lijk = −cFCijk, one

obtains

Cijk|p|qy
p
y

q = −cxmy
m

FCijk − cFLijk =
(

c
2
−

cxmym

F

)

F
2
Cijk.

Since Jk = −cFIk by (17–1), we have

Ik|p|qy
p
y

q = −cxmy
m

FIk − cFJk =
(

c
2
−

cxmy
m

F

)

F
2
Ik.

By the formula for Mijk in (3–2), one obtains

Mijk|p|qy
p
y

q =
(

c
2
−

cxmy
m

F

)

F
2
Mijk.

Since F is of scalar curvature, equation (13–16) holds. One obtains
(

K + c
2
−

cxmy
m

F

)

F
2
Mijk = 0.

It follows that Mijk = 0, so the Matsumoto torsion vanishes. By Proposition 3.3,

F = α + β is a Randers metric on U . �

Proposition 17.3 was proved by H. Izumi [1976; 1977; 1982], The particular case

c = 0 is proved by S. Numata [1975].

Corollary 17.4 [Numata 1975]. Let F be a Finsler metric of scalar curvature

on an n-dimensional manifold , with n ≥ 3. Suppose that L = 0 and K 6= 0.

Then F is Riemannian.

Proof. By Proposition 17.3, F = α + β is a Randers metric with L = 0. By

Lemma 10.1, S = 0 and β is closed. By Proposition 15.1, one concludes that

K = σ(x) is a scalar function on M . It follows from (13–14) that 0 = −F
2
σ(x)Ik.

By assumption, K = σ(x) 6= 0. Thus Ik = 0 and F is Riemannian by Deicke’s

theorem. �

We may ask again: is there a non-Berwaldian Finsler metric satisfying K = 0

and L = 0 (or J = 0)? If such a metric exists, it cannot be locally projectively

flat and it cannot be a Randers metric. (Why?)

Example 17.5. Let F = α + β be the Randers metric on Rn defined by

F := |y| +
〈x, y〉

√

1 + |x|2
, y ∈ TxRn ∼= Rn

.

Note that

‖β‖
2 =

|x|
2

1 + |x|2
< 1.
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F is indeed a Randers metric on the whole of Rn. One can verify that F satisfies

(12–5). Thus it is a projectively flat Randers metric on Rn. Further, the spray

coefficients Gi = Pyi are given by

P = c

(

|y| −
〈x, y〉

√

1 + |x|2

)

,

where c = 1/
(

2
√

1 + |x|2
)

. Let ρ := ln
√

1 − ‖β‖2 = − ln
√

1 + |x|2. By (9–3),

one obtains S = (n+1)(P −ρ0) = (n+1)cF . Since β is closed, this is equivalent,

by Proposition 10.1, to the identity L + cFC = 0.

Since F is projectively flat, it is of scalar curvature. Further computation

yields the flag curvature:

K =
P 2

− Pxkyk

F 2
=

3

4(1 + |x|2)
·

|y|
√

1 + |x|2 − 〈x, y〉

|y|
√

1 + |x|2 + 〈x, y〉
.

Note that K 6= −c
2 + cxk(x)yk

/F (x, y) and that F is a Randers metric. This

matches the conclusion in Proposition 17.3(b).

The Randers metric in Example 17.5 is locally projectively flat. There are non–

projectively flat Randers metrics of scalar curvature and isotropic S-curvature;

see Example 11.2. This example is a Randers metric generated by a special vector

field on the Euclidean space by (2–15). In fact, we can determine all vector fields

V on a Riemannian space form (M,αµ) of constant curvature µ such that the

generated Randers metric F = α + β by (αµ, V ) is of scalar curvature and

isotropic S-curvature. This work will appear elsewhere.
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mung, wenn seine Weylsche Projektivkrümmung verschwindet”, Acta Sci. Math.

(Szeged) 39 (1977), 163–168.
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pseudo-Kähler, 99
Randers, 266
Riemannian, 266, 305

minimizing curve, 313
Minkowski content, 50, 52, 59, 60
Minkowski metric, 310
Minkowski mixed volume inequality, 31,

33, 42
Minkowski norm, 8, 304
Minkowski problem, 3, 37
Minkowski space, 5, 7, 36, 38
Minkowski sum, 31
Minkowski theorem, 21
Minkowski, H., 21, 24, 38

mixed area, 31
mixed volume, 31, 32, 41
Monge–Ampère equation, 149
monotonicity, 9
Moustafaev, Z., 34
µ

ht, Holmes–Thompson volume, 11
µ

b, Busemann volume, 11
µ

m∗, Gromov’s mass∗, 12
µ

m, Gromov mass, 12
multiplicity, 275

nef, 110
negatively curved, 95
Nirenberg, L., 38
nondegenerate, 278
norm, 3

Minkowski, 5, 37, 304
norm of linear map, 5
normalized degree, 175
normalized tuple, 156
nullity, 277

octahedron, 13, 38
of constant flag curvature, 328
of scalar curvature, 328
Okada, T., 310
oriented distance function, 52, 60
osculating Riemannian metric, 273

parallel vector field, 315
parallelogram

minimal circumscribed, 22
parallelogram identity, 4
parallelotope

minimal circumscribed, 12
partition, 125
perimeter of unit circle, 30
periodic geodesic, 277
φ-calibrable facets, 75
Picard group, 156
piecewise smooth, 268
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