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Preface

Getting pregnant is usually easy and fun, but the gestation and delivery may be
another story; messy and painful perhaps, but instructive nevertheless. So it is with
this book, which began with enthusiasm and confidence, but ten or so years later the
twists and turns along the way emerge as a key part of the story.

Functional data analysis leads inevitably to dynamic systems. Ramsay and
Silverman (2005) emphasized the reduction in bias and sampling variance that
could be achieved by incorporating even an only approximately correct model into
the penalty term by using a linear differential operator, thereby extending the more
usual practice of defining roughness by the size of a high-order derivative. It was a
natural next step to consider how one or more parameters that were needed to define
such an operator might be estimated from data. Data associating the incidence of
melanoma with solar activity became a prototype problem.

Principal differential analysis—a specific case of what we here term gradient
matching—and its close resemblance to principal components analysis was the
subject of a later chapter in Ramsay and Silverman (2005). The availability of
high-resolution replicated data resulted in some rather successful applications,
notably to data recording complex physical motion: handwriting and juggling.
These analyses estimated low-dimensional basis systems that could be used to
define the linear differential operators whose kernels were spanned by these systems
which largely captured the variation in the data. This leads to the somewhat clumsy
attempt, judging by limited attention that it received, to introduce the reader to
Wronskians and Green’s functions, not to mention such ethereal topics as repro-
ducing kernel Hilbert spaces (we still regard the later chapters of Ramsay and
Silverman (2005) as highly instructive for the so-inclined reader). In contrast,
chapters on function linear regression, which did seem to appeal to readers, were for
us only a partial success. Our attempts to use functions as covariates in a regression
equation to approximate other functions seemed to us only marginally successful
and, as a premonition of trouble to come, we were struck by how hard it was to find
data to illustrate the methodologies involved.

The first serious attention given to parameter estimation for differential equations
began with a collaboration with N. Heckman (Ramsay and Heckman 2000) where
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we noted that the large number of parameters in the smoothing function relative to
the few defining the operator tended to lead to overfitting of the data and bias in the
estimates of the parameters of interest. The idea of parameter cascading described in
Chap. 9 came from realizing that the implicit function theorem provided a way out
of this dilemma by replacing the unrestricted coefficients of the basis function
expansion by a smooth function of the parameters being estimated.

We benefited enormously by a close collaboration and friendship with Kim
McAuley and Jim McLellan in the Department of Chemical Engineering at Queen’s
University, who were able to steer us to the large literature in that field on the
nonlinear least squares estimation strategy described in Chap. 7, and to pass along
the nylon and refinery data used in various chapters.

We discovered again just how hard it was to find data that we could use in
demonstration and test analyses in the engineering world, where data are owned by
industrial concerns protected against access by competitors. When we turned to the
large literature on dynamics in various fields like biology, epidemiology and phys-
iology, we found almost no use or display of data. For example, nearly every text
used the spread of disease (SIR) or the closely related Lotka-Volterra equations as a
first illustration of a nonlinear system; but, if data were available at all, it was only on
infected cases or predator abundances, where data fits were essentially only smooths
of the data and therefore uninformative. Only recently have we discovered the
invaluable archive of dynamic systems with data assembled by Klaus Schittkowski
(Schittkowski 2002), which has been a great help in completing this book, and we are
most grateful for his cooperation.

Why, we asked, were data-based estimations of dynamical system so hard to
find? One answer seemed to be the rather restricted set of parameters yielding the
solution characteristics that motivated such systems as the Lotka–Volterra, SIR,
tank reactor and the FitzHugh-Nagumo, which are featured in this volume.
Parameter estimation strategies, including our own, were prone to bouncing
parameters into regions where they generated completely inappropriate solutions.

But another possible explanation for the paucity of data is that, in many fields,
the differential equation is viewed, effectively, as data itself. That is, if there are
solutions of a proposed system that exhibits the shape characteristics seen in
experiments and natural settings, such as oscillations in predator-prey abundances,
then these systems are considered to be demonstrations that a scientific under-
standing of the live system has been gained. We observed that papers on dynamics
without any display of fits to data often appeared in journals like Nature and
Science. Even the Hodgkin-Huxley papers, themselves exceptional examples of
data-based science, were quickly followed by downgrades of their model to those
like the FitzHugh–Nagumo that retained the general shape features but were not
intended as data models.

Ironically, the idea of the equation as data, although rather difficult for an
information scientist to warm to, dovetails beautifully with the parameter cascading
algorithm that we discuss in Chaps. 9 and 10, where we allow a smooth and
continuous set of compromises between data-fitting and equation-solving. This
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tension between data and equation is everywhere in evidence in these pages as well
as the dynamical system modeling literature. It is, in fact, why we wrote this book.

Our central concept of a dynamical system as a buffer that translates sudden
changes in input into smooth controlled output responses has led us to applications
to data that we have previously analyzed, such as the daily Canadian weather data
and the Chinese handwriting data (Ramsay 2000). We hope to have opened up
entirely new opportunities for dynamical systems where none were envisaged
before, which involve extensions of the functional linear model and what we call
dynamic smoothing.

Dear reader, if you have survived to this point in this Preface, you must be
wondering how much you need to know to read further. Take heart! We have
worked hard to keep the technical level as low as possible, and our first goal is to
bring those with little or even no exposure to differential equations as modeling
objects into this fabulous data analysis landscape. Our emphasis on linear systems
reflects a belief that nature is a tough place where only rugged and stable systems
exhibit adaptive behavior over a wide range of environmental conditions survive.

We thank our former graduate students David Campbell and Jiguo Cao for their
own versions of dynamic systems analyses. Cornell University contributed, besides
the Tennebaum and Pollard team, our colleagues Steve Ellner and John
Guckenheimer whose writing, experimentation and mathematical analysis continue
to inform and inspire our work. We thank our Queen’s collaborators Jim McClellan
and Kim McAuley, as well as their students and colleagues for their guidance
through the fascinating chemical engineering world and their hospitality and
support.

Ottawa, Canada James Ramsay
March 2017
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Symbols

t A time value
i Usually, the index of a variable in a system of differential equations
d The total number of variables in a system
j Usually, the index of an observation
n or ni The number of observations for variable i
t A vector of time values of length n
xi Used to designate a single variable among a set of d variables
x(t) Used to represent the state vector of the system at time t. In the case

of the SIR models above we have x(t) = (S(t), I(t), R(t)) and we will
continue to refer to the constituent parts of the state vector by other
names or by using subscripts as in xðtÞ ¼ ðxSðtÞ; xIðtÞ; xRðtÞÞ. When the
state vector x is viewed as a function of time, it will be described as the
state trajectory.

xi A positive weight to be applied to the fitting terms of the ith variable
D The derivative operator that transforms a function x into its time

derivative d x=d t. Dm generates the derivative of order m. D−1 generates
the antiderivative. Dx(t) is the vector of time derivatives of x(t).

fl A coefficient or rate function in the homogeneous portion of a linear
differential equation. This may be a function of time or the values of
external variables, but may not be a function of the values of variables in
the system.

L A linear differential operator that transforms a function x into a linear
combination of time derivatives D jx. The coefficients in the linear
combination can be functions of time, but may not be functions of values
of variables.

� A vector of parameters that require estimation from data

xv



# A vector of parameters that require estimation from data augmented by
initial values that must also be estimated from data

x0 Refers to the starting point of the trajectory. We distinguish this from
xð0Þ because it will often need to be estimated as additional parameters.
When this is the case, we will use the augmented parameter vector
# ¼ ð�; x0Þ. The initial time 0 can be replaced by an suitable real
number.

f(xj�Þ Represents a vector-valued function of x that depends on a parameter
vector �. Generally this is used to represent the right-hand side of a
differential equation.

fi A coefficient or rate function in the forcing portion of a linear differential
equation that multiplies an additive external input u into a linear
differential equation

uðtÞ Describes a vector of external or forcing functions that are additive inputs
into an autonomous or homogeneous system and therefore render it
nonautonomous or nonhomogeneous. An individual forcing
function is u‘.

L The total number of forcing functions in a linear differential equation
yij An observation or measurement value at time tj for variable I
yj Represents the vector of measurements of length d of a set of d variables

at time tj. Sometimes it will be useful to write down a matrix of
observation vectors over time. For this we will use Yj in which rows
denote time points and columns the dimension of the observation vector.

`• A known basis function used to approximate a trajectory x in a linear
expansion

K The total number of basis functions in a linear expansion
` A vector of basis functions of length K
ck or cik Real numbers that are the coefficients in a basis function expansion of a

trajectory
c or C Either a vector or a matrix of coefficients for one or more basis function

expansions
‰ A smoothing parameter in the half-open interval [0, 1) used the analysis

of linear differential equations by program Data2LD
J The inner fitting criterion in a parameter cascading analysis in Chaps. 9

and 10
H The outer fitting criterion in a parameter cascading analysis in Chaps. 9

and 10
‚ A non-negative smoothing parameter in used the analysis of linear or

nonlinear differential equations by program CollocInfer
I An identity matrix
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B A matrix of rate values for a system of linear stationary differential
equations

R The matrix defining the penalty term for the homogeneous part of a linear
differential equation, defined and used in Chap. 9

S The matrix defining the penalty term for the forcing part of a linear
differential equation, defined and used in Chap. 9

Additional symbols, primarily for variables in specific dynamical systems, are
found in the index of the book.
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Chapter 1
Introduction to Dynamic Models

1.1 Six Examples of Input/Output Dynamics

Science and baseball have much in common; what counts is not where the ball is but
where it’s going and how fast it’s getting there. This places the focus on modelling
change, and change is more complex than stasis. The trajectory of a baseball is
greatly affected by spin, so that the three dimensions of motion combine with three
spin coordinates to produce a six-dimensional system for change distributed over the
single dimension of time.

It is inevitable, then, that derivatives with respect to time and space appear often
in mathematical models as measures of instantaneous change, and in this book we
consider how these differential equations can be estimated from data.

The book is also an introduction to a new horizon in statistics: an equation as
a model for data, where a differential equation is only one possible sub-class, and
where data-fitting, parameter estimation, model evaluation, inference and so on do
not rely on finding an algebraic solution to the equation or even an accurate numerical
approximation to a solution.

This chapter lets data from various settings speak to us about situations where it
is the statistical description of change that is the primary focus. Simple dynamical
models are proposed in each setting, but with no attempt to describe what we must
do in subsequent chapters: estimate model parameters from noisy data, display the
uncertainty in these estimates, and assess fits to the data from competing models.

1.1.1 Smallpox in Montreal

Nothing leads to insight faster than facing a gruesome death. In April of 1885,
when a man knocked on the door of the Hotel Dieu hospital in Montreal hoping to
see a doctor, the 167,000 citizens had for a few years neglected vaccination against
smallpox. Within a few months 3234 would die, and about 9600 would be infected,
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2 1 Introduction to Dynamic Models

many of whomwould be permanently disfigured. Figure 1.1 tells the story with data.
We see the consequences of the introduction of compulsory vaccination in 1876 by
Sir William Hingston, the Irish Roman Catholic mayor of Montreal and its chief
surgeon. Working with Bishop Bourget to overcome the fear by French Canadian
catholics that the real purpose of vaccination was the decimation their population by
spreading the disease, it took a couple of years before most of Montreal’s children
were immunized, andwe see in the figure the decline over the next 2years in smallpox
fatalities from around 600 per year to zero.

But by 1885 noncompliance had returned, partly due to fear-mongering by a quack
physician from New York. Smallpox arrived in Montreal on the newly constructed
Canadian Pacific Railroad with soldiers returning from the suppression of the Riel
Rebellion in the prairies, and spread with the speed that the figure makes only too
obvious. The insight that vaccination was essential spread nearly as quickly.
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Fig. 1.1 The number of smallpox deaths per year in Montreal, Quebec. The first vertical line indi-
cates the introduction of compulsory vaccination, and the second the re-introduction of vaccination
following the last smallpox epidemic in North America

We are, naturally, impressed by the three levels of small pox fatalities, 600, 0
and 3000, but the data are more dramatic in terms of the two rates of change: the
disappearance of the disease in 2years or so, and its explosive return. Thus we see the
structure in the data on two time scales, namely the two long-term mortality levels,
and the two short-term transitions. We need to model both the levels and the rates of
change. That is, we want a model that relates x(t) to Dx(t), where x(t) is deaths per
year and we use the notation Dx for the first derivative of x instead of dx/dt.
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Focussing first on the decline in deaths in the 1876–1879 period, we see that,
when the death rate is high, the downward slope is negative and large, but as the
death rate approaches zero, the slope remains negative but declines to zero. It seems
plausible that the proportional relation

Dx(t) = −βx(t) or τDx(t) = −x(t) (1.1)

could get us somewhere. Whatwell-known function has a derivative value negatively
proportional to a function value? Introductory calculus and a little reflection leads to
x(t) = C exp(−βt) for some arbitrary constant C as the solution to (1.1), and from
there to the nonlinear model equation

x(t) = Ce−βt + e(t) or x(t) = Ce−t/τ + e(t) (1.2)

where an appropriate positive constant C must be estimated and the residual e(t)
takes care of small and ignorable effects. Of these two equations, (1.1) is simpler and
tells the story with the greater clarity, and gives us our first lesson in constructing or
parsing a differential equation that links rate of change to level.

Parameters β or 1/τ are, in effect, regression coefficients in a simple single-
predictor linear relation between “covariate” x and “response” Dx . A useful rule
of thumb is that x(t) will decline from a level of C to practically zero in 4τ time
units, leading to a rough-and-ready estimate derived from the 3-year disappearance
of smallpox, so that the time constant τ ≈ 3/4 years and β ≈ 4/3. That is, β controls
the speed with which the level changes to its new level, and consequently represents
what we mean by the dynamics of the system. Highly dynamic systems have large
β’s and small τ ’s, and sluggish systems have the respective converses.

This simple dynamic equation models a buffering process in which an impact of
an event, here the introduction of compulsory vaccination, is spread over time. This
concept of a differential equating defining a buffer will play a central role in this
book.

We need a statistical method for using the smallpox deaths reported to the city
in April of each year to estimate parameter β, along with confidence limits. The
useful data are those from 1876 to 1883, with the three values over 1878–1880 being
especially informative about the rate of decline in smallpox mortality. The single
report in 1885 is evocative, but by itself insufficient for describing the time course
of the infection.

1.1.2 Spread of Disease Equations

But what can be said about the onset of smallpox? Viewing vaccination as itself
a disease, as many Montrealers did, smallpox by comparison is far more dynamic.
Indeed, it is only surpassed bymeasles as themost communicable disease in humans.
We have only a single point to record the time course of smallpox infection, but here
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is a system of two equations that is often used to model the infection process:

DS = −βSI

DI = βSI − δ I . (1.3)

The S variable stands for the number of individuals susceptible to infection, roughly
all of the 167,000 citizens less those with immunity because of a prior infection.
Variable I represents the number of infected people. Focussing on the first equation,
here we have again the same relation as before between DS and S. But with a
difference! The speed of the impact of the infection is now β I , since we use β here
as the probability of infection of a single individual. This means that the population
rate of infection gathers speed in proportion to the number of infected individuals,
so that the number of uninfected persons goes down faster and faster as the epidemic
spreads. Left to itself, the entire populationwould be infected in a year or so according
to this model. But Mayor Hingston now had no trouble re-introducing compulsory
vaccination, in spite of a riot or two, and this combined with severe quarantining
arrested the disease by the end of the summer.

The second term in the left of the I equation also has this proportionality of DI to
I , and this is due to infected persons becoming noninfective due to either recovery
or death, with a speed represented by δ. But of course it also has the first term,
representing the transfer of the new infections into the infected pool. As a whole, the
SI equations seem to represent an anti-buffer, but only because the reaction speed
of the buffer itself changes over time, in this case for the worse. We will return to
simple first order buffers like these when we come to the chapters on how to use the
data to estimate a buffer’s characteristics.

1.1.3 Filling a Container

Figure 1.2 shows the level of a fluid in a tray within an oil refinery distillation column
before and after a valve setting is changed. This is a simple input–output system that
resembles the structure of the smallpox data following the onset of vaccination. In
this case, however, we have much more detailed data on both the input (V) and
output (T) processes. We see that a change in valve setting at time point 67 results in
a change in fluid level in Tray 47, and this change moves virtually instantaneously.
The slope of the tray level then rises steadily from this initial large value to find a new
equilibrium. This is what we would expect if we increase the flow into a tank with a
constant pressure-driven outflow: a rapid rise which levels off as the level rises and
the pressure on the outflow increases until it matches the new inflow rate.

We will see that the simple differential equation

DT = −βT + αV (1.4)
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does a fine job of representing these changes. Using our trick of estimating β as the
reciprocal of the time for 2/3 of the change to be realized, we see that τ is roughly
50, implying the value β = 0.02. The total change is about 4.5 level units, and we
call this the gain of the system. It turns out that the gain, denoted by K , is K = α/β,
suggesting that α = Kβ, or about 0.09. We will return to these data in a number of
chapters as simple dynamic system furnished with abundant data.
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Fig. 1.2 The upper panel shows the fluid level in a tray that receives input from another container
when a valve is opened. The lower level shows the setting of a valve before and after being opened

1.1.4 Head Impact and Brain Acceleration

The data in Fig. 1.3 were collected in a study to measure the effects of motorcycle
accident on the driver’s brain tissue. They were measurements of acceleration of
brain tissue within the cranium of a corpse before and after being struck by a blunt
object with a force typical in a collision by a motorcycle driver’s head with a hard
surface. Analyses of the data have been reported by many authors, including Härdle
(1990) and Silverman (1985). This, too, is an input/output system, although we had
to construct the input ourselves by representing it as an abrupt but brief pulse of force
positioned at the point where the hammer encountered the cranium.
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Fig. 1.3 The circles indicate observations of acceleration of brain tissue from five replications of an
experiment involving striking the cranium of a corpse with a blunt object. The box was constructed
to represent the impact itself spread over one time unit. The solid line is the fit from the data for
ρ = 0.998 and the dashed line is the fit for ρ = 0.5

The shape of the data indicates that there is a rapidly decaying oscillation in
acceleration after the impact. Anyone who dipped a paddle into a still lake early in
the morning knows that this is natural viscous fluids like brain tissue that cannot be
compressed, but can dissipate energy by wave action. We will learn that this requires
a system that uses the second derivative. We therefore analyzed the data using a
three-parameter damped harmonic equation

D2x(t) = −β0x(t) − β1Dx(t) + αu(t) (1.5)

where u is the box function located at the impact time and with unit height and
width which is displayed in the figure. Positive parameter β0 defines the period or
frequency of oscillation, and is often called the stiffness of the system. Parameter β1

determines the rate of decay of the oscillations, and thus plays a role similar to that
of the parameter in the smallpox equation (1.1). Impact pulse u is an external input
to the system described by the first two terms on the right, and is often referred to
as a forcing term. Parameter α is essentially a regression coefficient that determines
the amplitude of the oscillations, sometimes called the gain in the system.
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1.1.5 Compartment Models and Pharmacokinetics

The decline in smallpox deaths can thought of as having the properties of a bath
tub, where deaths are like water going down its drain. Perhaps you have noticed that
when the plug is pulled, the water level at first goes down rather quickly, but that
it drains out more and more slowly as the water level drops, so that you wind up
waiting with shivering impatience for the dirty water to get out so that you can begin
the cleanup. This happens because the pressure at the drain opening is proportional
to the weight of the water above it, so that change in water level is proportional to
level. First order dynamics, in short.

The uptake of drugs by the body is often a series of compartments, with the drug
passing along from one to another. An injected substances passes from the tissue to
the blood stream, from the blood stream to a target site such as the brain, from brain
back into the blood stream, from the blood into the liver and so on. Each of these
containers has its own elimination rate or drain size; and in each either all of the
drug may be passed on, or some fraction may be absorbed or broken down and the
balance eliminated. Simple first order dynamics seem to serve well to describe most
of these systems, and pharmacologists find systems of first order constant coefficient
differential equations highly useful in the discipline of pharmacokinetics (Fig. 1.4).

Suppose that at time 0 a drug is injected into a tissue site with concentration C0,
and that its concentration Ca(t) in the blood stream declines at a rate proportional to
its level, that is

DCa(t) = −βaCa(t) .

The decline in blood concentration is due to the drug being taken up by the target
organs, and then eliminated by the liver with speed βb, so that

DCb(t) = −βbCb(t) + βaCa(t) .

Note that Ca(t) is a forcing function for the second equation.
It is typical that the absorption dynamics are rather faster than the elimination

dynamics, and Fig. 1.5 shows how blood concentrations in fifteen patients increase
rapidly at first, and then decline more slowly as the elimination process begins to
dominate the absorption process. The Figure also illustrates the possibility that dif-
ferential equations can vary randomly. We expect that constants such as βa and βb

will vary from patient to patient, and so will the initial doseC0 to at least some extent.
That is, we often see differential equations in multilevel data structures where we
have to model variation across levels (patients in this case) as well as within-level
variation. Differential equations having randomly varying aspects are referred to as
stochastic, although we have to be careful with the term stochastic differential equa-
tion since the phase has been co-opted by financial analysts and probability theorists
to refer to something quite specialized.
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Fig. 1.4 The uptake and
elimination of a drug for 15
subjects as reflected in its
concentration in the blood
stream

These equations as well as the SIR equations are examples of mass balance
systems where something is conserved in the system, so that each equation has to
account for what happens to various fractions of that which remains constant. The
central place occupied by differential equations in astronomy, chemistry, biology and
physics is due primarily to conservation principles that imply that what goes in must
come out somewhere, and which enforce smoothness of the time-varying aspects
of the system. Conservation of momentum in mechanics, heat in thermodynamics,
mass of chemical species in chemistry, volume in fluid dynamics and energy in all
fields are examples. Even in phenomena as seemingly ephemeral as stock prices,
total wealth is conserved as long as any stock can be sold for its paper value.

1.1.6 Chinese Handwriting

The dynamics of the human body are, for most of us, endlessly fascinating. We are
far from the fastest or the most skilled creatures on the planet, but when we watch
ourselves drive home a goal on the soccer field or produce an arpeggio on a piano,
the universe seems for those few seconds to collapse. How do we do this?
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When we learn a movement, such as, say, handwriting, we at first make a few
clumsy strokes, and then, again and again, until the shapes that we have in mind
begin to emerge. Perhaps faster and with more precision for some of us than others,
but by secondary school the production of script has been mastered, and one does it
without needing any appreciable concentration.

Consider the Chinese script displayed in Fig. 1.6, which is the four characters for
“statistics”. This is the first of 50 replications of this script on a horizontal surface by
Dr. Xiachun Li, a postdoctoral fellow working with one of us in 1996–1997. A small
infra-red emitting diodewas attached to the tip of the pen, and three camerasmounted
on the recorded pen position 400 times a second with a typical error of about 0.5
mm. The total time for the production of the script varied slightly around 6s. The
experiment and some analyses were reported in Ramsay (2000).

The script includes these elements:

• strokes, curved or straight and in contact with the paper
• cusps, when the pen comes to a near standstill
• lifts, a stroke while the pen is more than 2.5 mm off the paper

On a hunch, we plotted the numbers from 1 to 46 at the times in the middles of 46
equal-sized time intervals, each 130.5ms in length. It is striking that each numbered
point corresponds closely to an event time, whether in the center of a curved stroke
or a lift, or precisely at a cusp.

This constancy of event times for a well-learned sequence of movements has
become quite familiar to us in our various investigations of human motion, although
they are usually around 120–125ms. The slight increase is no doubt due to the fact
that the writing was executed while standing and on a surface substantially larger
than would be used in normal circumstances.

We have conjectured that the brain achieves synchronized activation of many
muscles by using a stable clock cycle of about this duration to fire a discrete pulse
of neural activity over the many channels involved once each cycle. At the muscle
end, the arrival of bundle of spikes resets the tension in the muscle fibre. It is well
known (Kandel 2000) that the natural motion of the limb affected will be harmonic
with little damping, and that the period of this oscillation will depend on the tensions
in the attached muscles.

What would happen, then, if we saw the brain/arm/hand system as a single har-
monic oscillator, each coordinate of which is defined by the equation D2x(t) =
−βx(t), where D2x is the second derivative of variable x and β defines the period
of oscillation along the coordinate direction?We would need two oscillators, one for
the horizontal X direction and the other for the vertical Y direction. We could add
one for Z where the lifts play out, but let’s not, given our two-dimensional viewing
surface. This starts us off with two positive parameters, βX and βY , to estimate.
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Fig. 1.5 The solid line segments show the position of a pen while on a writing surface during a
single writing of “statistics” in Chinese. The writing took 6s, and the numbers are displayed at the
centerpoints of 46 equally spaced time intervals

Now, suppose that this bundled neural activation of this harmonic system could
be represented by two functions, αX (t) and αY (t), each with 46 steps, and each step
having the same 130.5ms duration. We add these step functions to the right sides of
the respective equations. We treat the height of each of the 46 steps as a parameter to
be estimated, so that our total parameter load is 2+ 2*46 = 94. This might sound like
a lot of parameters, but we do have 2401 highly accurate observations per coordinate,
and there are only two parameters per feature, with cusps, for example, requiring
precise synchronization.

Using the estimating machinery that we will lay out in Chap. 9, Fig. 1.6 shows
the estimated pen trajectory defined by the pair of dynamic equations

D2X (t) = −βX X (t) + αX (t)

D2Y (t) = −βY Y (t) + αY (t) . (1.6)

The reproduction of the actual script is remarkable, right down to reproduction of
the cusps. The two estimated β parameters correspond to 3/8 of a complete rotation
over a subinterval, which is the amount of turning noted in the most curved seg-
ments. Figure 1.6 shows in each panel the estimated step functions, αX (t) and αY (t),
respectively.

http://dx.doi.org/10.1007/978-1-4939-7190-9_9
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Fig. 1.6 The solid line shows the estimated position on the writing surface of a pen whose motion
is defined by the dynamic Eq. 1.6. The dashed line shows the actual pen position for this script. The
circles are placed at the points where the step function input changes level

It would be easy matter to program a robot arm to carry out a writing of this
script. Moreover, if we have in storage the roughly dozen steps required to produce
any character, then one can see how a sequence of text could be input to the robot, and
translated as rapidly as needed to the corresponding written script. More generally,
we wonder if this isn’t general recipe for any form of highly practiced human motion
(Fig. 1.7).

1.1.7 Where to Go for More Dynamical Systems

Although we have tried to show how differential equations can be used as models
for observed processes, there is no substitute for seeing dynamic systems in action
within the reader’s favorite field. Fortunately, there are many texts available that
highlight the modelling side of dynamics. Barnes and Fulford (2009), Blanchard
et al. (2006) and Borrelli and Coleman (2004) are three readable introductions to
dynamic modelling that cover a wide selection of areas. Ellner (2006) and a number
of other texts are available as surveys of dynamics systems in biology, and Wilson
(1999) does a great job for neuroscience. Don’t, however, expect a great deal of data
to be in evidence.
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Fig. 1.7 The top panel displays the estimated step function αX (t) driving the horizontal component
of thewriting, and the bottom panel the corresponding inputαY (t) to the vertical harmonic oscillator

For live data, our sources have been data collected by our colleagues as well
our own collections. But Schittkowski (2002) has a remarkable collection of data,
both simulated and real, along with literature citations and analyses of the type
that we call trajectory matching in Chap. 7. A computer application, EASYFIT, is
also available from the author that both gives access to these data and provides the
analyses. We hope that this book provides a link between the statistics community
and application-oriented mathematicians like this author.

Those who prefer an historical approach will have to begin with the origins of cal-
culus itself; James Bernoulli, only three years after the publication of Newton’s Prin-
cipia Mathematica, modelled pendulum dynamics (Edwards 1979). The chemical
engineering and process control literature is a great way to see dynamic models used
in feedback systems (Marlin 2000). The first chapter of Deuflhard and Bornemann
(2000) surveys a wide range of scientific applications of dynamics. Keeling (2008)
can be consulted for more on modelling infectious diseases.

1.2 What This Book Undertakes

There is a large literature on parameter estimation methods in engineering and
sciences, and the chemical engineering community has probably made the greatest
progress. Our Chaps. 7 and 8 review the two main approaches: trajectory matching

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
http://dx.doi.org/10.1007/978-1-4939-7190-9_7
http://dx.doi.org/10.1007/978-1-4939-7190-9_8
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involving alternating between numerical approximation of an initial value problem
and parameter optimization, and the other, gradient matching, in which data smooth-
ing methods are used to estimate the derivatives that the equation requires, followed
by nonlinear least squares regression. Unfortunately both involve of these strategies
have severe limitations that at times require large computational overhead and in
others lead to serious instability and inaccuracy issues.

Our approach is based onRamsay et al. (2007), and represents a synthesis of these
two previous strategies. Called either generalized profiling or parameter cascading,
it represents a solution as a basis function expansion, typically by spline functions,
and involves an inner optimization process in which the coefficients defining these
expansions are optimized for fixed parameter values, and an outer optimization of the
fit to the defined by the parameter values. The first of the two chapters, 9, considers
linear differential equations such as head impact, compartment and handwriting
examples. Here there is a closed form solution to the inner optimization, so that,
helped by a few tricks, rapid and stable optimization with minimal user input is
achieved. More generally, Chap. 10 requires more setup, including functions for
evaluating the right sides of the equations and various derivatives, but can tackle
nonlinear problems.

1.3 Mathematical Requirements

This book may interest a wide range of readers, going well beyond the usual sta-
tistical communities. For example, applied mathematicians wanting to check their
models against data may have a limited exposure to statistical methods for estimating
confidence limits on parameters and inferential tools for deciding among compet-
ing models. We have tried to be generous with background material and literature
resources to ease their way into the data sciences.

The readerwill notice that these examples all involved amore in-depth description
of the physical processes underlying data than is common inmore standard statistical
methods and that the models are developed in a fair amount of detail before the data
are examined. This mechanistic approach to modelling is common in the physical
sciences and appliedmathematics, but is rarely evenmentioned in statistics curricula.
We regard this disconnect as unfortunate: statisticians miss out on a large class of
powerful modelling tools while those who work with differential equation models
have largely developed ad hoc (though by no means misguided) procedures to deal
with data. This book is intended for both audiences: we devote the first half of
the book to describing ordinary differential equations and how to work with them
mathematically, and then turn to statistical techniques for estimating parameters,
quantifying uncertainty in them, assessing the adequacy of models, and planning
experiments.

http://dx.doi.org/10.1007/978-1-4939-7190-9_10
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1.4 Overview

The first half of the book covers the mathematical framework of ordinary dif-
ferential equations—their interpretation, their solution and their properties. Much of
this material is found in applied mathematics texts and we do not provide a com-
prehensive treatment here. Our intention is an accessible introduction for those not
familiar with dynamic systems as models and enough background to be able to work
with them statistically. In the next chapter we outline the basic mathematical nota-
tion, terminology and the types of models that we deal with. Chapter 3 will provide
a framework for solving linear ordinary differentials. Chapter 4 takes up nonlinear
differential equations, and will be devoted to the types of models that are commonly
encountered, their origins, and heuristics for understanding how the model struc-
ture determines the shape aspects of the solutions. Chapter 5 focuses on numerical
methods for approximating solutions for ordinary differential equations (ODEs) or
initial value problems, where enough information is available at at the beginning of
the trajectory to define the solution. This chapter reviews commonly used Runge–
Kutta methods as well as collocation methods and some of the numerical trouble that
you can run into. Chapter 6 presents a survey of qualitative aspects of the solutions
to differential equations. While nonlinear ODEs cannot be solved, it is possible to
describe limit points or cyclic behavior. We present a brief review of the basics of
these tools for understanding the system.

The second half of the text is given over to statisticalmethods for fitting differential
equationmodels to data. In each of thesewe describemeans of estimating parameters,
the numerical issues involved and ways to quantify statistical uncertainty. Chapter 7
describes the most direct means of working with ODEs and data: varying parameters
and initial conditions so as to minimize the distance between ODE solutions and
the data. We have titled this Trajectory Matching. Chapter 8 deals with Gradient
Matching where, rather than solving ODEs numerically, we obtain non-parametric
estimates of x and it’s derivative D, and choose parameters to make the ODE fit these
as well as possible. Besides some numerical advantages, this also allows for ways
to assess how the dynamic system may be extended and improved, and these can
also be used with the profiling techniques in the next chapters. Chapters 9 and 10
introduce a trade-off between trajectory and gradient matching, which we have titled
profiling. These methods combine some of the advantages of each. We work through
them in detail for linear systems in Chap. 9 and then present the extension to general
ODE models in Chap. 10.

Throughout these chapters we have provided explanations for the statistical meth-
ods used and the reader need not be familiar with nonlinear regression or statistical
smoothingmethods.We acknowledge, however, that as with the first part of the book,
our treatment of these subjects is necessarily brief and throughout we refer the reader
to useful texts for more details.

While the models in this book are more complicated than the linear regression
framework that makes up much of introductory statistics, we have focussed on mak-
ing the material as mathematically accessible as possible. We intend this book to
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be useful for first year graduate students in statistics or applied mathematics as well
as to researchers in applied fields with some mathematical or statistical knowledge.
We do assume the reader is familiar with the techniques of calculus and linear alge-
bra along with the common statistical paradigms of estimation, testing, confidence
intervals and, in places, Bayesian analysis. We hope, however, that little beyond this
background will be required.

An important area that we do not treat is stochastic models, or models in which
the system evolves probabilistically. This is a large and important area with a sub-
stantial statistical and mathematical literature. Indeed, one way to view the lack of fit
in differential equation models is as being due to random disturbances of the system.
We note, however, that mechanistically-inspired models of probabilistic evolution
frequently do not contain sufficient variability to adequately match real-world data
and further flexibility is still often required; see for example He et al. (2010). Sta-
tistical methods for partially observed Markov processes have generally employed
a set of computational tools that are different from those we describe in this book
and we have therefore not pursued these here. We note, though, that there have been
important developments for these models, see Ionides et al. (2006), Beskos et al.
(2006), Andrieu et al. (2010), Wood (2010), Golightly and Wilkinson (2011) and
Fearnhead et al. (2014) among a substantial literature. Developing the intersection
between these two literatures is an important and largely unexplored topic.

Similarly, we do not treat partial differential equations: systems which evolve
over both space and time. These have received very little attention, with only a few
references devoting to fitting them to data (Ramsay 2002; Azzimonti et al. 2014).
In broad outline, the methods from Chaps. 9 and 10 can be applied to these types
of models, but much work needs to be done to fill these in. This framework is also
quite different from the ideas in data assimilation (Kennedy and O’Hagan 2001;
Kaufman et al. 2011) in which large-scale computer models for systems like global
climate–often based on partial differential equations–can be run only a very small
number of times and a compromise between their solutions and observed data must
be made to produce forecasts or to obtain rough parameter estimates.

http://dx.doi.org/10.1007/978-1-4939-7190-9_9
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Chapter 2
Differential Equations: Notation
and Architecture

2.1 Introduction and Chapter Overview

This and the next three chapters are resources, designed to get the neophyte started,
to recall and extend the skills of the initiated, and to call the expert’s attention to the
relative importance of what is already known. In this chapter we first introduce and
motivate the notation that we use throughout the book, and specifically the operator
notation Dx for the derivative of a function x . That is, we view a derivative as a
transformation of a function into a new function whose value at any location t is the
slope of x at that point.

Differential equations are divided into various classes, and we first describe the
autonomous/forced dichotomy defined by whether or not the system has an external
or exogenous input. Then we consider linear versus nonlinear systems, a distinction
that is already familiar to statistical readers in regression analysis.

The data are assumed to be distributed over the whole interval of observation,
and to be subject to measurement error to other types of random disturbances. This
contrasts with the errorless initial and boundary value data configurations that apply
to so many models.

2.2 Notation for Dynamical Systems

2.2.1 Dynamical System Variables

Dynamical systems concern observations distributed over a substrate, such as time,
space, space/time, wavelength, frequency and so forth. We mostly focus on contin-
uous dynamical systems, where the substrate has the properties of a line, plane or
higher dimensional vector space. We tend to index positions on the substate by t for
derivatives with respect to one-dimensional continua such as time, and we reserve s
for planes and volumes and other higher dimensional structures. Thus, we leave out
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systems defined explicitly over discrete countable and equally spaced points such as
days, quarters, years and etc.; that is, systems dealt with in the time series literature.
We are aiming to keep the mathematical level as low as possible, and we therefore
assume that few readers will mind that we also ignore data distributed over curved
surfaces and other manifolds, but it is worth stating here that such situations are both
important and not rare.

These chapters are also restricted to the description of deterministic dynamic sys-
tems where all the elements in the system are nonrandom entities. By contrast sto-
chastic dynamic systems explicitly incorporate random elements, such as randomly
varying functional inputs, randomly varying parameters or random initial values. But
stochastic systems are typically modifications of systems that have a deterministic
core, so that it is wise to get a firm grip on deterministic systems first.

A variable x in a dynamical system is a function of position on the substrate, and
the corresponding values of the functions at specific substrate values are x(t) and so
on. We will also refer to these functions as “states”, “paths” and “trajectories.” But
we must also remember that certain dynamic systems are so familiar in particular
fields that specialized letter allocations are used. An example is the SIR system
in epidemiology where the letters S, I and R refer to “susceptible”, “infected” and
“recovered” populations, respectively. Although we will define these symbols before
using them, readers will have to be adaptable.

Most situations in applied statistical settings involve more than one variable, and
we follow the usual practice of using bold face, as in x, to refer to a vector of
functions. Occasionally the data configurations and the dynamic models themselves
call for rectangular and higher dimensional arrays, in which case capital boldface
letters such as X are employed.

Statisticians are familiar with linear and nonlinear regression models where some
variables are designated as covariate, independent, causal or input, and one or more
others as dependent or output. Consequently, we will use tend to use u, v and w as
well as their boldface versions for these input variables, which may vary over the
substrate t or s. Typically the dynamical systems literature refers to these variables
as “forcing” functions, and especially when they affect the dependent variable in
an additive manner. Additive forcing tends to change the location of x in function
space but not alter its fundamental behavior. By contrast, inputs which affect output
variables in a multiplicative way or have more complex effects will usually change
more drastically the shape characteristics of an output trajectory.

2.2.2 Dynamical System Parameters

Models almost always involve parameters that define the dynamical system, and
which typically must be estimated from the data at hand or from data collected in
collateral experiments. Here we follow standard practice in using the Greek alphabet
for parameters, with boldface versions where vectors of parameters are assumed, and
θ will be the usual choice.
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A fundamental goal is to estimate the values of these parameters from data, and
also estimate the precision of these estimates given the noise level in the data. We
may also conjecture that parameter values will vary randomly, typically in some
structured way, from one realization of the system to another, and such parameters
are called random effects. We will naturally then want to estimate characteristics of
their variation, such as their means, variances and covariances.

2.2.3 Dynamical System Data Configurations

Since we approach dynamic systems as models for data, we will consider data con-
figurations that are seldom considered in textbooks on the mathematics of dynamical
systems, which tend to focus heavily on the initial value problems arising in science
and engineering where data are only available at time t = 0, and are assumed to
be virtually free of error. They also consider boundary value problems, where the
system is also constrained to be in a specific state at some other fixed time t1. By
contrast, the statistician is seldom willing to assume error-free data, and we focus
more on distributed data problems where data are available at a considerable number
of time points for at least some subset of the variables involved in a dynamic system.

Data configurations are apt to vary from one variable to another. For example,
some measurements are inexpensive and available on line, such as temperature, but
others such as chemical assays are expensive and available only some time after the
experiment is completed. It is typical that some variables will not be observed at
all, so that these variables have some of the characteristics of the latent variables
often used in various areas of statistics to model known but unobservable sources of
variation.

2.2.4 Mathematical Background

We do need to know some of the fundamental theorems to be found in mathematical
texts, and we shall try to state these as clearly as we can, but leave the reader to turn
to textbooks for the proofs of these results. Moreover, a fair part of a college text on
differential equations is devoted to techniques for calculating algebraic solutions to
certain classic equations and classes of equations. But these constitute a tiny fraction
of the differential equations in actual use. Thus, although it certainly worthwhile to
derive solutions in a few simple cases, much more reliance will be placed in this
book on numerical methods for the accurate approximation of solution values given
both the values of parameters defining the system and, in most cases, initial states of
the systems. Chapter 5 is devoted to this approximation technology.

Fortunately for both the readers and writers of this book, some fine texts have
been written for first-timers and more advanced students of dynamical systems. We
especially like Tennenbaum and Pollard (1963), a classic text that is now available as

http://dx.doi.org/10.1007/978-1-4939-7190-9_5
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an inexpensive paperback, and which has received the highest reader rating among
the texts distributed by a well-known on-line bookseller. It is organized into 65
lessons, each corresponding roughly to a single lecture in a two-semester course, and
each lesson’s topic is illustrated with examples of historical and practical interest.
Another source now in paperback is Coddington (1961). Engineering texts often
have readable accounts of dynamical systems in the context of specific topics such a
electrical circuit theory or chemical process control. Textbooks such as Barnes and
Fulford (2009), Blanchard et al. (2006) and Borrelli and Coleman (2004) emphasize
how differential equation systems are constructed in order to capture the behaviour
of specific observed systems.

2.3 The Architecture of Dynamic Systems

2.3.1 Elementary Autonomous or Unforced Systems

Dynamical systems are defined by equations involving one or more derivatives. The
most elementary of these define polynomials; the solution to Dmx = 0 is the space
of all polynomials of degreem − 1. But most differential equations have expressions
on the right side, and we will give considerable attention to the prototypical

Diffusion equation or first order buffer: Dx = −βx , (2.1)

where β is a nonzero positive constant. The solution to this system is x(t) =
C exp(−βt), constant C being arbitrary. Notice here that (2.1) hides the role of
t , which we could bring back in by expressing the equation as Dx(t) = −βx(t) or,
more obsessively, as (Dx)(t) = −βx(t). The result of removing t is a nice clean
expression that works well when we already understand what the substrate variable
t is.

The order of a differential equation is the highest order of derivative involved, so
that, for example,

Harmonic equation: D2x = −ω2x , (2.2)

is of order two. Its solution is x(t) = C1 sin(ωt) + C2 cos(ωt), where both C1 and
C2 are arbitrary constants. The wavelength of the sinusoid is 2πω and 2π/ω is its
period. The harmonic equation in turn is a special case of

Second order buffer: D2x = −β0x − β1Dx . (2.3)

It is common and convenient notation to isolate the highest order derivative in
this way on the left side of the equation without any multiplier, and to move all other
elements of the equation to the right side. According to this convention, a single
differential equation of order m can be expressed as
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Dmx = f (x,Dx, . . . ,Dm−1x) . (2.4)

Models of practical value in the real world typically require an account of how
several variables interact to produce the behavior of a system, as we saw for the SIR
and handwriting models in Chap. 1. Hence we need to gather several variables xi ,
i = 1, ..., d, into a vector of variables x of dimension d. Letter d carries a heavy load
in this book, but as a rule it will be clear from the context when we use d to indicate
the dimension of a system, rather than a differential dx or dt . This another reason
for preferring the operator notation Dx as our standard notation for a derivative.

An equation of order m can always be reduced to a set of first order equations
by defining artificial variables. For example, if we define y = Dx , then the second
order linear equation (2.3) is split into the two order one equations Dx = y and
Dy = −β0x − β1y. Of course, the result is often neither natural nor easy to read, so
that keeping multiple orders explicitly in a single equation is often to be preferred
for clarity. But this does allow us to express any dynamical system, whether of order
1 or of order m > 1, as the differential equation system

Dx = f(x) (2.5)

where right-hand function f has a vector-valued argument and maps the values of
x into a vector of dimension d, and where, moreover, some of the variables in x
may be dummy variables coding one or more derivatives of one or more state vari-
ables. However, while this level of abstraction may have some appeal and utility in
describing theoretical results, in practice we prefer to express dynamical systems in
a manner that keeps the special structure of the system visible.

Parameters, like β in the simple first order diffusion system above, ω in the
harmonic equation and (β0, β1) in the second order buffer equation play a prominent
role in dynamic models, and we often like to keep them up front in our expressions.
But if we opt for abstraction, then we can collect all the n parameters into a parameter
vector θ in the expression

Dx = f(x|θ) . (2.6)

Occasionally, theremay even be remaining time-variant aspects to a system, in which
case we can add a t itself as an additional argument in f so that

Dx(t) = f(t, x|θ). (2.7)

2.3.2 Forced or Non-autonomous Systems

Now we turn to the critical role of input or forcing variables, such as force F in

Newton’s second law: D2x = F/M , (2.8)

http://dx.doi.org/10.1007/978-1-4939-7190-9_1
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where x is position and M is the mass of the body on which the force is acting.
Dynamical systems model change, and are essential where the response of an system
to a change in an input is not direct or straight-through. Often, for example, inputs
can change abruptly, or arrive as short but intense bursts, and the system does not
have the sensitivity or the energy resources to respond immediately to these nearly
instantaneous changes.Cars can’t stop instantly, so that the yellow traffic light permits
the driver to spread the stopping response over an acceptable time interval. We use
the term buffer to describe how a dynamical system spreads its response over a longer
time interval than that over which the input changes.

Let u be a vector of � external “forces” that change the behavior of a system in
some way. We want to distinguish the behavior of a system isolated from any such
inputs from one where they apply. Forced dynamic systems are expressed as

Dx = f(x|θ ,u) . (2.9)

An important special case, that is often assumed in the term “force”, is forcing of an
additive nature, expressible as

Dx = f(x|θ) + g(u) . (2.10)

If a system is relatively linear in the sense defined in Sect. 2.4.1, and the input
is additive, the system will tend to respond in a more or less mild and predictable
manner. For example, a step change in input will produce a more gradual approach
to a new level in the output. A simple example that we will explore in more detail
is the equation defining the concentration C of a chemical species in the output of a
chemical reactor with volume V (m3) and input flow rate F(V/min)

DC = −βC + FC0/V (2.11)

where the speed-of-reaction parameter β = (F + Vk)/V and k is the rate constant
for the reaction. Here C0 in the second forcing term on the right side is a fixed
equilibrium concentration, and we will see in the next chapter that C will approach
C0 at an exponential rate no matter what the initial concentration C(0).

But external values can also affect other aspects of the system, and specifically
an external variable may change one or more parameter values of an otherwise
autonomous system. When this happens, and it does often, the results can be much
more dramatic. Stable systems can become unstable, relatively predictable systems
can exhibit surprising variation, or even the seemingly unpredictable shapes called
chaotic in the dynamical systems literature.
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2.3.3 Differential Operator Notation

We can go further in emphasizing the input/output nature of a specific dynamical
system. As an example, we can re-express the diffusion equation with forcing by
input u, Dx = −βx + αu, as

Dx + βx = αu , (2.12)

where parameter α modulates the impact of changes in forcing function u on the
system. Here we have put the autonomous part of the equation on the left side, and
have effectively recast the model into regression format familiar to statisticians.

We use the notation Lx = βx + Dx , or more generally, Lx = f (x |θ) + Dx for
(2.6), and call L the differential operator associated with the dynamic system. In this
operator notation, the differential operator for the forced diffusion equation is L =
D + β I , and for the second order buffer equation it would be L = D2 + β0 I + β1D1.
It is useful to think of L as a generalization of the notion of a derivative, and especially
since the Taylor series machinery for approximating functions at specific values of t ,
as well as other concepts associated with derivatives in elementary calculus courses,
have versions in this more general setting. The autonomous differential equation in
differential operator notation becomes

Lx = 0 . (2.13)

In the next chapters, and elsewhere in the book,we explore how systems defined by
specific differential operators respond to various prototypical inputs such as localized
spikes, step functions, oscillating functions and random random noise processes.

Other differential operators can play a large role in scientific systems. For example,
the curl and divergence operators, curl and div, are used as a compact way of
expressing the four fundamental equations of electromagnetism, and are now used
in many other contexts.

2.4 Types of Differential Equations

Between the simple diffusion equation and the general formulation (2.10) are a
whole range of specialized classes of differential equations, each with their own
special properties. It is essential at this point to learn the terminology for these
classes before we take up their special characteristics in the next chapter.

2.4.1 Linear Differential Equations

Statisticians will not be surprised that linearity in differential equations, as in regres-
sion models, enables a host of specialized mathematical tools and results. We have
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already seen three linear equations: the diffusion, harmonic and second order equa-
tions.

Here by linear we mean the linearity of the right side function f with respect to
its arguments x and x’s derivatives. The single unforced linear equation of orderm is

Order m buffer: Dmx =
m−1∑

j=0

β jD
j x or L = Dm −

m−1∑

j=0

β jD
j . (2.14)

The coefficient functions β j may themselves vary over t , but must not depend on the
values of x or any of its derivatives.

Equation (2.14) may be extended in various ways that still preserve linearity. The
highest order term Dm may also be multiplied by a coefficient function βm , and if
this coefficient goes to zero at a specific value t over an interval, the equation then
loses dimensionality as a system but retains linearity as a property.

Specific linear systems, such as the diffusion and harmonic equations, often have
specific signs associated with their terms, such as the minus sign for the x-coefficient
in the diffusion and harmonic equations. When this happens, it is often assumed that
the sign of the coefficient does not change and, usually, the coefficient preceded by
a minus sign is assumed positive. For example, in the second order buffer equation
(2.3) it is common in many applications to assume that β0, but not necessarily β1, is
always positive.

When all the coefficients functions β j are constants, we call the system stationary
as well as linear, because that the fundamental structure of the dynamic system does
not vary over t . Stationary linear systems have additional useful analytical techniques,
especially, as we shall see later, the Laplace transform, and stationary systems are
useful for a great many applications where the characteristics of a process do not
substantially change within the time scale over which the system is observed. An
example is the dynamics of electrical circuits where their physical characteristics
have been rendered stable by cooling systems.

Be warned that many treatments of differential equations, and especially in the
engineering literature, use the term “linear” to mean by default stationary as well.
This unfortunate lack of clarity is also common in the statistical time series literature.

2.4.2 Nonlinear Dynamical Systems

Even seemingly minor departures from the linearity of the relation of right side
function f to its arguments can have dramatic consequences. For example,

Catalytic equation: Dx = βx(K − x) , (2.15)

where β is a positive constant has a solution
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x(t) = K/

[
1 + K − x0

x0
exp(−βt)

]

where x0 is the value of x at time zero and 0 < x0 < K . Solutions of this form are
widely used in statistics for constraining function values to be within the interval
[0, K ]. We see that this happens because the slope of the function goes to zero as the
value of x approaches either zero or K .

A common source of nonlinearity is the appearance of products of variables in
systems of two or more equations. For example, the equations of the SIR model for
the spread of disease are

DS = −βSI

DI = βSI − ν I

DR = γ I (2.16)

where S is the number of susceptible but uninfected members, I is the number of
infectedmembers, and R is the number of recovered (including dead) of a population.
Here the appearance of the product SI renders these equations nonlinear, even though
the equations are linear in their parameters β and ν. Equations of this type can be
properly called quadratic in their variables, and constitute the largest subclass of
nonlinear systems in applications. In our terminology for forcing, S is rate-forced
by I , I in turn is rate-forced by S (but with the opposite sign), and R is add-forced
by I . In the last R equation, there is no term involving R, so that the change in R is
simply proportional to input I .

If the susceptible population S is large, the number of infected individuals will
exhibit exponential increase, so that the I -equation behaves as an anti-buffer that
turns a small increase in infected individuals into an epidemic, as we saw with the
smallpox data in Chap.1. The great importance of the SIR model and its many
variants demands that we return often to this example.

2.4.3 Partial Differential Equations

Partial differential equations arise when more than one substrate is involved or when
a substrate is multidimensional. The most common examples involve variation over
space or over space and time. Partial differential equations play a huge role in climate
modelling, the spatial aspects of spread of disease and pollution, fluid and airflow
dynamics, two- and three-dimensional mechanical systems and a great many other
areas in engineering and science.

Methods for workingwith these equations are beyond the scope of this book, since
the mathematical technology involved can be substantially more advanced than for
the ordinary differential equations that we consider. Nevertheless, they can retain
aspects of ordinary linear systems. The Laplace equation

http://dx.doi.org/10.1007/978-1-4939-7190-9_1


26 2 Differential Equations: Notation and Architecture

∂x

∂t
= −

(
∂2x

∂s21
+ ∂2x

∂s22

)
= −�x (2.17)

describes how spatial irregularities in the concentration of a solution diffuse over time
to finally reach a state of equilibrium. The equation be viewed as a first order buffer
in time forced by the negative spatial curvature of function x(t, s)with respect to the
two spatial coordinates s1 and s2. This forcing implies that over time hills (negative
curvature) will be levelled and valleys (positive curvature) will be filled in.

2.4.4 Algebraic and Other Equations

Mixtures of conventional algebraic equations, expressed as g(x, u) = 0, and dif-
ferential equations arise in many contexts. These equations often define constraints
on the solutions, of which a most common example is the initial value constraints
x(0) = ξ where ξ is a vector of real-valued constants.

In addition to algebraic equations, it is not unusual to have integral equations
applying to the system as well. Moreover, delay-differential equations often are
required where Dx(t) = f [x(t − δ)] for some nonzero lag δ.

2.5 Data Configurations

Thedata available for estimating both the parameters defining a dynamic systemand a
function x̂i can come frommany different sources, and be related to the values xi (t) in
many different ways. We specify some of the data configurations that are commonly
encountered. We use y as a rule to refer to data, and yi j , i = 1, . . . , d; j = 1 . . . , ni
to indicate data specific to variable xi and substrate value ti j . Additional subscripts
may also be needed to identify replicated data for specific pairs (i, j).

2.5.1 Initial and Boundary Value Configurations

By far the largest amount of mathematical material on dynamical systems is for
initial value problems where the state of system x(t0) at an initial time t0 is known
and the goal is to predict the behavior of a system at times t > t0. Also included in
initial value systems are those in which values of certain derivatives are also known,
but we have seen that the use of dummy variables to label derivatives can convert
these to the simpler initial state formulation.

Initial value systems are also of great interest to statisticians when the initial
values are random, so that the trajectories or space curves with values x(t) are them-
selves random objects, possibly because initial values are measured with substantial
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imprecision. In these cases, statisticians and probabilists find themselves teaming up
with numerical analysts specializing in approximating solutions to the system given
specific initial states and differential geometers bring their expertise on the analysis
of structures on manifolds.

To initial value systems we can add boundary value systems where something is
also known about the system at terminal time t1. For example, a Brownian bridge is
a trajectory that begins and ends at the same fixed value, such as a periodic process
with fixed period.

2.5.2 Distributed Data Configurations

As a rule, we hope to work with measurements that are distributed over the complete
range of observation.

This raises the critical question, “How many observations do I need?” What mat-
ters is not so much the number of measurements as how they are allocated along the
line. Solutions to differential equations can have sharp localized features, often as a
consequence of being forced by functions u with abrupt changes. By a “feature” one
means something like a change in level, a change in slope, a peak or valley, a cross-
ing of some fixed threshold, or even a point of inflection. Using peak as an example,
which needs to be defined in terms of its location, its amplitude and its curvature
at the peak, three points carefully placed are the minimal configuration required to
convey this information. But if the measurements are subject to any error, an accurate
characterization can require anywhere from five to eleven points within the range of
the peak depending on the amount of imprecision involved.

We call this the resolution of the data. Of course over regions in which nothing of
interest happens, rather fewer observations will do, with the number depending on
whether these regions are flat, tilted or subject to mild curvature. The refinery data
in Sect. 1.1.3 are high resolution data by any standard, in contrast to the smallpox
data where there are only a couple of observations defining the rate of change after
vaccination.

2.5.3 Unobserved or Lightly Observed Variables

It is quite common to have some variables that are not observed or only sporadically
measured. The spread of disease SIR model is a prototypical example. Fairly com-
prehensive records are often kept of the number of cases presenting with an infection,
with daily or weekly observation times for variable I being typical. On other hand,
the number of susceptibles S in a population may be available only annually, and
then only approximately since the property may not apply to the whole population.
A common situation is that S is only observed once, at a time close to the beginning
of the outbreak. The recovered variable R may not be measured at all.

http://dx.doi.org/10.1007/978-1-4939-7190-9_1
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Having none or only a few observations for a variable can have a great effect
on what can be estimated in a model. Certain parameters will typically be only
determined by information on one or two variables, and therefore may be inestimable
if these are not measured. The relationship holding between a measured and an
unmeasured variable can also matter. If a variable is causal with respect to another,
such as S with respect to I , it will matter greatly that it is observed; but a downstream
variable like R can be well defined by a well defined upstream variable like I . If only
S(0) is observed, it can matter a great deal that the measurement error is small.

2.5.4 Observational Data and Measurement Models

Whether data are available at only time t0, or distributed over a range of t-values, it
may be that the relationship of the data to a function value xi (t) may be nontrivial,
rather than the usual straight-up additive error relation E[yi j ] = xi (t j ). For example,
a set of 0’s and 1’s can indicate a set of binary outcomes occurring for variable i
with a probability P[xi (t)], in which case a logistic link generalized linear model
is a likely choice for estimating function P that connects the model to the data.
Another example occurs when the data available relate to the sum, or some other
combination, of two or more of the variables that cannot in practice be separated at
the observational level. We may see this when we conceptually differentiate between
reproducing organisms and the same organism in a non-reproductive phase of their
life cycle, and it only the reproducing individuals that are affecting other variables.

It may happen, too, that the data for various variables differ enormously in their
scale, as can happen for population and spread of disease models. In such cases we
may consider either a model on the log scale with an exponential transformation
of model values to fit the data, or logging the data prior to an analysis, which also
requires a log-scale model, but with a straightforward connection to the data. That
is, transforming variables can be important. In the log case, for example Dx = f (x)
is equivalent to D ln x = f (x)/x or, if y = ln x , Dy = f (exp y) exp(−y).

The nature of a measurement can impact the data resolution in a distributed data
configuration. For example binary variables convey much less information per mea-
surement than directly connected continuous measurements with a high-signal-to
noise ratio. A useful rule of thumb is that it takes at least five binary measurements
at or near a location to yield the same resolution as a single low-noise continuous
measure.

It happens often that the data do not provide enough information about the values
of certain parameters to yield a useful estimate. For example, Chap.10 looks at an
example where a parameter specifying an upper limit cannot be estimated because
there are no observations anywhere near such a limit. Similarly, estimating what a
variable does near a lower limit such as zero requires that there be observations in
that zone. Again, if a pair of parameters always appear in a product, then they are
not individually identifiable.

http://dx.doi.org/10.1007/978-1-4939-7190-9_10
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The term experimental design in statistics refers to the the relationship between the
data and elements of a model designed to fit them. Good experimental designs ensure
that there are data informing the estimation of all elements of a model. Bad designs
should usually be seen as an imperative to simplify the model before attempting any
analysis.

2.6 Differential Equation Transformations

We noted above that variables can often vary over large scales, suggesting that it
would be better to work with a logarithm of the data, whether with base e or 10.
Of course, that would imply that it would be convenient to know the differential
equation in the log scale that is equivalent to the original. Letting y = log x , we see
that

D log x = Dy = f (x |θ)

x
.

That is, substitute x → ey into the raw-scale equation and divide by ey to obtain the
equivalent equation in the Y or log-scale.

Similarly, a linearization of a differential model for a variable bounded below by 0
and above by K would imply the transformation y = log[x/(K − x)] and therefore
the multiplication of the right side function by the factor K/(K − x).

2.7 A Notation Glossary

Now that we have introduced the basic set of models that will be employed in this
book, we will collate our notation before continuing. The reader will have already
seen some of these, but we will formalize it here. This book will largely be concerned
with the combination of twomodels, althoughwe have so far only formally discussed
one. The first of these is the process modelwhich describes the way a system changes
over time. Formally, we will use

xi is used to designate a single variable among a set of d variables.
x(t) is used to represent the state vector of the system at time t . In the case of the

SIR models above we have x(t) = (S(t), I (t), R(t)) and we will continue
to refer to the constituent parts of the state vector by other names or by
using subscripts as in x(t) = (xS(t), xI (t), xR(t)). When the state vector x
is viewed as a function of time, it will be described as the state trajectory.

Dx(t) is the vector of time derivatives of x(t). The differential operator D will be
used exclusively for time.

f(x|θ) represents a vector-valued function of x that depends on a parameter vector
θ . Generally this is used to represent the right hand side of a differential
equation so that the SIR differential equation can be expressed as Dx =
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f(x|θ). Again, the components of f can be indexed by named subscripts. In
the SIR model we might have f = ( fS, f I , fR).

u(t) will be used to describe a vector of external inputs into the system that
are not affected by system dynamics. If we imagine an external source of
new susceptibles in the SIR spread of disease differential equation which
increases Swith rate u(t), the S equation could bemodified toDS = u(t) −
βSI . In a generic ODE model, we will include these by writing Dx =
f(x|θ ,u).

x0 will refer to the starting point of the trajectory.We distinguish this from x(0)
because it will often need to be estimated as additional parameters. When
this is the case, we will use the augmented parameter vector ϑ = (θ, x0).

Along with these notations, we need a second model to describe the measurement
of the system, or the observation model. We may observed several quantities about
a system and so describe

y j will be used to represent the vector of measurements of length d of
a set of d variables at time t j . Sometimes it will be useful to write
down a matrix of observation vectors over time. For this we will use
Y j in which rows denote time points and columns the dimension of
the observation vector.

P(yt |x(t), θ) gives a probabilistic model for the observations. Frequently, we will
model yit = xi (t) + εi t — that is we will measure at least some
components of the state vector directly and assume additive noise.
However, it will often be useful to be more complex than this. In the
case of the SIR models above, we might assume binomial sampling
of the infected individuals, for example. Other times, the error vari-
ance will scale with the observations. There are also occasions in
which the sum of two state variables is observed. This model can,
of course, depend on θ , although we will mostly be concerned with
parameters that govern the process model.

Finally, in order to avoid confusion, we have used D to represent solely a derivative
with respect to time. In many places, we will need to differentiate a likelihood with
respect to parameters or other quantities and we will refer to the vector of derivatives
by ∂θ where the subscript indicates which derivatives are being taken.



Chapter 3
Linear Differential Equations and Systems

3.1 Introduction and Chapter Overview

The importance of linear systems of differential equations in real world modelling
cannot be underestimated, constrained though it may be from a mathematical per-
spective.We shall see in the next chapter thatmost nonlinear equation systems involve
relatively elementary nonlinear elements, such as products or powers of variables,
or rate functions that have mildly nonlinear dependencies on the variables. Linear
approximations to nonlinear differential equations can be quite useful as approxima-
tions to the actual nonlinear system over limited time intervals.

When an investigator has no particular differential equation in mind, but would
still like to explore the dynamics of an observed system, linear equations are an excel-
lent and powerful exploratory data analysis tool. The explorations of the Canadian
weather data and Chinese handwriting in Chap.1 are examples where we induced
a dynamic model directly from the observed data, rather than entering the analysis
with a pre-chosen system in mind.

The chapter begins with the simplest of linear differential equations, a model
that involves only a single parameter. It extends to this to include a set of simple
forcing function multiplied by a constant and added to the unforced equation. The
result is a simple buffer that acts to soften the impact of sharp changes in input to
the unforced system. This scenario is far from being unrealistic, since a very large
number applications begin with this concept and then achieve the required modelling
horsepower by making relatively elementary extensions. Two of these modifications
are (1) to increase the order the derivative on the left side and (2) to allow the constant
parameters to vary over time. The mathematical analysis of such systems involves
only elementary algebra and is a valuable aid to understanding what these systems
do.

The single variable model is then expanded to allow multiple variables, each of
whichmay act as an additive forcing function to one or more of the other variables. In
this way, surprisingly complex system features can emerge, evenwhen all parameters
are constants. Multi-variable systems are especially important in feedback systems
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in process control designed to keep the controlled variable from wandering too far
from a desired target.

The completely general linear case, in which any variable in an additive equation
can be multiplied by a possibly time-varying factor that we call a rate function, in
which the highest orders of the derivatives appearing in the equation are arbitrary,
and where any number of additive forcing terms may appear in any equation, is a
large topic. We can only sketch some results here, with some interesting examples
to whet the reader’s appetite for knowing more.

It might be helpful to have at the outset a clear idea of what is meant by a linear
differential equation. A single such equation involves these elements:

• The left side of the equation involves a derivative of order m ≥ 0, Dmx(t).
• The right side is a sum of terms, where each term is the product of:

– either the derivative D j x of a variable, where j < m, or an external function u,
called a forcing function

– a coefficient β (for x) or α (for u) that may be either constant or varying over
time, but may not be a function of x

– a known constant b, which is most often either 1 or −1.

That is, a the value of a single linear differential equation of order m at time t is
defined to be

Dmx(t) =
m−1∑

j=0

b jβ j (t |θ)D j x(t) +
L∑

�

a�α�(t)u�(t), m ≥ 0 . (3.1)

Notice that the rate function β j can vary over time, are expected to be determined
by values in a parameter vector θ , and it is assumed that at least some of these
parameters will be need to be estimated from data. Where multiple linear equations
are involved, called a linear system, a term can also involve any permissible derivative
D j xi , j < mi ) of any variable xi . More generally, too, the left side Dmx may also
be multiplied by a rate function βm(t |θ), but we will, for simplicity of exposition,
assume that βm(t |θ) > 0 and that such a differential equation has been reformulated
by dividing through by βm .

The case of m = 0 is important and useful, and such an equation is called alge-
braic. In this case no terms involving variable on the left side can be on the right side;
but other variables and their derivatives can, as well as any number of forcing terms.
Algebraic equations permit the use of observed variables that are linear combinations
of other variables in the system or of forcing functions.

We appreciate that the general form (3.1) can intimidate the reader, but in the next
section we begin much more simply by first looking at a single differential equation
with the simplest possible structure. In subsequent sections we will introduce forcing
terms, higher order equations, and systems of equations.
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3.2 The First Order Stationary Linear Buffer

We consider first the simplest differential equation that has practical applications.
Aside from the wisdom of starting slowly, a thorough understanding of the impli-
cations of this equation is vital since it is the nucleus or motif that is clearly visible
in many dynamic systems. We open this discussion by looking at the equation in
its autonomous or unforced version, and then proceed to viewing the equation as a
buffer that modifies four important types of inputs in its forced or non–autonomous
role.

Here is the stripped-down autonomous version of the first order stationary linear
buffer, expressed in both differential equation and differential operator format,

Dx = −βx or L = D + β I . (3.2)

The single parameter β is a constant, and the minus sign precedes β because in the
majority of applications this constant will be taken to be positive.

This equation has a great deal in common with a linear regression model. We are,
effectively, regressing change in x , expressed as Dx , on x itself; if the value of x is
a position on some continuum, than we are regressing velocity on position. In this
sense β can be viewed as a regression coefficient.

However, for differential equations the variable appears on both sides of the equa-
tion, whereas this is not so for regression equations. Moreover, we shall see that the
term “coefficient” has many roles in this monograph, so that “regression coefficient”
can be confusing as a term.

On reflection, it seemed to the authors that a different term was required, and we
settled on rate function for coefficient β since it determines the rate of change in x
or the speed with which it reacts to a unit change in input. We add “function” to this
system since we will often want β to change over time.

It will take most readers no time at all to work out that the solution to (3.2) is

x(t) = Ce−βt , (3.3)

where C is any nonzero constant. That is, this equation, like most differential equa-
tions, has an infinity of solutions, in this case corresponding to the values possible
for C . We remind ourselves, too, that the constant e, said to be the third most impor-
tant constant in mathematics after 0 and 1, is not essential; any positive constant not
equal to one will do. For example, 10 is often a friendlier option when talking to
non-mathematicians, and 2 is useful in the theories of probability and information.
The solution exhibits exponential decay when β > 0, and exponential growth when
β < 0; so that zero is a critical point for β, dividing a stable decay process that
converges to zero from a growth process that diverges to infinity.

The corresponding operator equation Lx = βx + Dx = 0 transforms the expo-
nential function to the zero function, and we say that the solution space is the kernel
of L.
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Butwhat happens to an arbitrary input functionwhen it passes through the operator
L? The first order forced stationary linear equation is

Dx = −βx + αu or Lx = αu (3.4)

where α is a nonzero constant modulating the impact of an external explanatory
variable u on Dx . The refinery data in Sect. 1.1.3 is well approximated by a solution
of this equation.

This dynamic equation has, over an interval beginning at zero, the solution

x(t) = x(0)e−βt + α

∫ t

0
e−β(t−s)u(s)ds . (3.5)

The integral in the second term is the convolution of u with the kernel function
e−β(t−s). The convolution operation is often used in mathematics to represent a
smoothing or blurring operation, and the output x is therefore smoother than the
input u. We can say that x is a buffered version of u in the sense that u’s sharp
variation will show up in x’s variation as being spread forward in time.

The ratio K = α/β is called the gain in system, being the total change in x(t)
resulting from a step change in input u(t). Obviously the gain will be proportional to
the forcing rate function α, notice that is inversely proportional to the rate parameter
β. This is because, the faster the system reacts, the shorter the time interval over
which u has an impact.

The top panels of Fig. 3.1 show four types of u’s varying over the interval [0,10]:

• a step change,
• a point input surrounded by zero,
• a sinusoidal input and
• a white noise random input.

The middle and bottom panels display the corresponding outputs x for two values
of the rate function β, a moderate level 0.5 and a fast level 2.0, respectively.

A step change becomes an exponentially smooth approach to the new level, and
the larger β, the faster the new level is reached. But the gain in the bottom panel
is only a quarter of what it is in the top panel, because the time over which u(t) in
(3.5) is effectively integrated in the convolution is likewise a quarter of what it is
in the middle panel. A point input converts to an initial step increase followed by
an exponential decay to baseline, again we see the gain is inversely proportional to
the speed of the reaction. A sinusoidal input displays two effects: The amplitude is
attenuated, and the output‘s crossing of zero, it’s phase, lags to a later value in each
oscillation. Both the attenuation and the lag are greater for the slower reaction in the
middle panel. White noise remains random on output, but we note a slower and more
wave-like variation around zero, a consequence of being positively autocorrelated.
The slower the reaction, the smoother the output is.

Parameter β is the reciprocal of time, and τ = 1/β is the time required to achieve
about 2/3 of the complete response, and 4τ time units suffices for 95% of response

http://dx.doi.org/10.1007/978-1-4939-7190-9_1
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Fig. 3.1 The top panels display four types of forcing functions u(t), the middle panels indicate
the consequences of using these as inputs to a first order stationary linear differential equation
Dx(t) = βx(t) with the moderate value β = 0.5, and the bottom panels display the output with a
higher rate function value β = 2.0

change. These relations allow us to get a quick visual estimate of β. We note that a
parameterization of (3.4) in terms of τ rather than β might seem rather more natural,
and in fact the equation τDx = x + αu does often appear in texts.

Almost any system that we can imagine has a buffer to protect it against sudden
shocks. It does this by spreading the response over a longer time interval than was
required for the shock, and in so doing conserves its most precious resource: energy.
The energy required to respond proportionately and on the same time scale to an
arbitrarily large and arbitrarily instantaneous shock would be much larger than most
systems are designed to have available, and would in the course of a system’s nor-
mal mode of operation mostly sit in idle reserve. Consequently, response patterns
characterizable by first order buffers are found everywhere in nature and the works
of man.

Much can be learned about the dynamics of a system by plotting one derivative
against another, a technique that is put to work in functional data analysis (Ram-
say and Silverman 2005) where it is referred to as phase-plane plotting. First and
higher order derivatives can often be estimated directly from noisy data by using data
smoothing techniques such as spline smoothing, provided that the noise level is not
too high and the number of observations or the resolution of the data is sufficiently
high. If we plot the the values of the first derivative of a first order unforced system
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against the corresponding values of the function itself, it will be clear from (3.2)
that the result will be a straight line passing through the origin. Over regions where
forcing by either a step or point function has taken place, this plot will be piecewise
linear.

3.3 The Second Order Stationary Linear Equation

If systems need to be protected against shocks, don’t they also need to be shielded
from sudden changes in velocity, implying infinite acceleration? The concept of
energy, defined as the capacity to do work, which in turn is defined as force acting
through distance, plays a key role here. Newton’s second law implies that an instan-
taneous change in velocity would require infinite force and therefore infinite energy
to achieve. Figure3.1 indicates that a first order system is unrealistic if that is so,
since the slope goes from 0 to a positive value at the moment that the input changes
level.

The second order equation

D2x = −β0x − β1Dx Lx = D2x + β0x + β1Dx = 0 (3.6)

might be what we need since its second derivative will have a smooth relationship
to x and Dx .

The solution to a special case of (3.6) is easy to obtain. When −β1 = 0 and β0 is
positive, this is the harmonic equation, repeated here as

D2x = −(2πω)2x L = D2 + (2πω)2 I (3.7)

where β0 = (2πω)2. Because the second derivatives of sin(2πωt) and cos(2πωt)
are −(2πω)2 sin(2πωt) and −(2πω)2 cos(2πωt), respectively, linear combinations
of these two functions satisfy the differential equation; and ω is the frequency of the
sinusoid per unit time and 1/ω is its period or wavelength. The solution space is the
set of functions of the form x(t) = C1 sin(2πωt) + C2 cos(2πωt), and consequently
is two-dimensional corresponding to the possible constantsC1 andC2. If, on the other
hand, the sign in front β0 in (3.6) is positive, the two solution functions are linear
combinations of the hyperbolic counterparts sinh and cosh, respectively.

More generally, the solutions of the second order stationary linear equation (3.6)
take the form

x(t) = C1e
z1t + C2e

z2t (3.8)

where z1 and z2 are roots of the characteristic equation

z2 + β1z + β0 = 0 or z =
−β1 ±

√
β2
1 − 4β0

2
,
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and C1 and C2 are arbitrary constants. If the roots of the equation are complex, they
will appear in conjugate pairs in the form a ± ib. In particular, for the harmonic
equation where β1 = 0, the roots are ±i

√
β0, and the exponentials of these values

define the functions sin and cos.
Youwill be correct if, at this point, you induce two rules: (1) solutions tomth order

linear stationary differential equations are linear combinations of m functions, and
(2) these m functions are all exponential functions, but with different rate constants.
Below you will also find out that both rules apply even when the rate functions are
not constants, but rather rate functions that vary over time. But then we will need
a slightly more general notion of “exponential”. What is important here is that the
higher order linear systems behave like a cascade of first order buffers acting on the
input signal and combining their effects, but where each first order buffer has its own
rate or time constant.

An especially important case for applications arises when β0 = (2πω)2 > 0 and
β1 �= 0. The solution family in this case is

x(t) = eβ1t/2[C1 sin(
√

β0 − β2
1/2t) + C2 cos(

√
β0 − β2

1/2t)] . (3.9)

In this case of β0 > 0, the second order linear station equation is that for damped
harmonic motion, and we can see that β1 > 0 will imply that the sinusoidal variation
will diminish in amplitude. But for β1 < 0, on the other hand, the amplitude will
increase exponentially, while for β1 = 0 we return to undamped harmonic motion.

Figure3.2 shows damped harmonic motion forced by three of the four inputs in
Fig. 3.1. The rate function β0 = 5 in both figures. In the panels in column two of the
figure, the damping coefficient β1 is relatively small, and we see that the sinusoidal
variation that would see for β1 = 0 is very much in evidence, but declining to near
zero amplitude over one time unit. One is reminded of how a first-timer behind the
wheel drives a car, and on the whole we’d prefer to eliminate the oscillations. The
third column of figures has a β1 value that achieves exactly that, and, moreover, there
are two improvements over the equivalent first order buffer: the new level is achieved
much more quickly, and and the transition to the steep slope is smooth at the step-up
time. Hence, a more efficient machine with less wear and tear on the mechanism
(and on the nerves of the driving instructor). The final column shows the disastrous
consequences of negative damping.

Plotting the second derivative against the first derivative can be especially reveal-
ing for second order systems because of the nature of energy. A mechanical system
in free motion, such as the earth in its rotation around the sun, conserves energy, and
as such, exhibits either a constant velocity linear trajectory, or, if tethered by gravity
or some other bond to another body that is viewed as fixed, an elliptical orbit. The
energy of a body of mass m exists in two exchangeable forms:

Kinetic: E = m(Dx)2/2 when in motion, or
Potential: E = mD2x when momentarily at rest, as in a pendulum at the end of its

swing or a bungee jumper at the point of being launched.
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Fig. 3.2 The first panels in each row display three types of functional input patterns, and the
remaining panels in each row indicate the consequences of using these as inputs to the second order
stationary differential equation D2x(t) = −β0x(t) − β1Dx(t), β0 > 0. Rate function β0 = 5 for
each panel

By plotting acceleration D2x against velocity Dx , we see the interplay between
potential energy and the signed square root of potential energy. This plot will be
elliptical, as we can see from the solution to the harmonic equation (3.7), and the
area contained with the ellipse will reflect the total energy in the system.

Phase-plane plots like this also work well when the process is only partially
harmonic. The first panel of Fig. 3.3 shows the growth of the lower leg of a newborn
baby over the its first 40days, and we see that growth is a step-wise process. The
daily data were smoothed by a strictly monotonic function, and the smooth is shown
as a solid curve. In the second panel we see that the phase plane plot shows a series
of loops corresponding to each of the growth steps. The smallest loop is the first, and
each successive loop is larger as the growth process gains energy. The loops are all
associated with centers with positive velocity since there is a positive nearly linear
trend in the data. Ramsay and Silverman (2005) report that this harmonic component
in growth is still visible at the age of ten, but with a much reduced energy level.

We obtained the harmonic equation by dropping β1 from the general equation,
but what happens when we drop β0? We can see when we view the equation as a
first order equation in velocity. The velocity decays or grow exponentially, but is
alway either positive or negative. When we allow β1(t) to be a function of time, we
have a recipe any strictly monotonic twice-differentiable function, and (Ramsay and
Silverman, 2005) use this fact in many ways to describe and analyze phase variation
in functional data, where time always runs forward, but with a speed that can vary
over from one time to another, but with β1(t) = 0 representing constant rate physical
time. This monotonicity differential equation was used to fit the data in Fig. 3.3.



3.4 The mth Order Stationary Linear Buffer 39

0 5 10 15 20 25 30 35 40
112

114

116

118

120

122

124

126

128

130

132

Age (day)

Ti
bi

a 
le

ng
th

 (m
m

)

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

O

Tibia velocity (mm/day)

Ti
bi

a 
ac

ce
le

ra
tio

n 
(m

m
/d

ay
2 )

Fig. 3.3 The first panel plots the daily lengths of the lower leg of a newborn baby over the first
40days of its life, along with a smooth monotonic smooth of these data. The second panel plots the
acceleration of smoothed leg length against its velocity. The initial point is marked by an “O”

3.4 The mth Order Stationary Linear Buffer

Now we consider the equation

βmD
mx =

m−1∑

j=0

b jβ jD
j x , (3.10)

where βm �= 0 and the known constants b j are often assumed to be −1. Notice that
the operator L version of the equation is a polynomial of degree m in the symbol D.
That is, by factoring this polynomial, it can be represented as

L = βm(zm−1 I + D) . . . (z0 I + D)

where z j , j = 0, . . . ,m are roots of the polynomial. That is, an mth order linear
stationary system is actually a cascade of first order buffersworking in series. Because
the roots are constants, the order of the factors in the series does not matter. It can
be seen, then, that if a solution of the equation is of the form

x(t) =
m−1∑

j=0

C j+1e
z j t ,

then the first order operator z j I + Dwill knock out the term involving ez j t , but on the
other hand only change the multiplier for each of the other terms. Once this cascade
of first order buffers has passed through the solution, all terms will be reduced to 0.
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In the harmonic equation case, L = (2πω)2 I + D implies that the roots are ±2iπω,
and these in turn imply the equivalent basis functions (sin(2π t), cos(2π t)).

To summarize, stationarity and linearity imply the possibility of solving the differ-
ential equation explicitly, even when a forcing term is added to the basic autonomous
equation. We will bypass in this book the invaluable machinery of transfer functions,
rational polynomials that result from the application of the Laplace transform to
the differential equation, but readable accounts of this topic can be found in many
sources, including Chap.5 of Tennenbaum and Pollard (1963) and Marlin (2000).

3.5 Systems of Linear Stationary Equations

More generally, a multi-equation first order stationary system with d variables will
allow for each variable to force or input each other variable, so that

Dx = Bx (3.11)

where the square matrix B will have arbitrary real-valued entries.
The solution to the Eq. (3.11) can be expressed as a simple extension of that for

a single first order equation using the matrix exponential function

x(t) = CeBt (3.12)

where C is a vector of initial value defining the state of the system at time 0. If a
forcing term u is added to this equation to make Dx = Bx + u, then a multivariate
counterpart of (3.5) holds,

x(t) = C exp(Bt) +
∫ t

0
exp(B(t − s)u(s)ds . (3.13)

This result is nice on a mathematical level, but not necessarily any more use-
ful than the differential equation itself for computing purposes. Rather than using
the matrix exponential directly, we can obtain a system of d basis functions
φk, k = 1, . . . , d spanning the space of solutions Lx = Dx + Bx = 0 directly from
the eigenvalue/eigenvector decomposition of B, provided that the eigenvalues λk are
distinct. That is,

B =
d∑

1

λkξ k ,

where λk and ξ k are the kth eigenvalue and eigenvector of B, respectively. Note that
B does not have to satisfy the conditions familiar to statisticians of being symmetric
and positive definite, and as a consequence, some eigenvalues may be complex. But

http://dx.doi.org/10.1007/978-1-4939-7190-9_5
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if so, they come in complex conjugate pairs, case situation that we have already seen
in Sect. 3.3.

The basis functions that we need are

φk(t) = exp(λk t)ξ k .

This is because

D exp(λk t)ξ k = λk exp(λk t)ξ k = B exp(λk t)ξ t

so that exp(λk t)ξ k satisfies (3.12) and is therefore a function within the kernel of
L = D − BI.

In the case of complex conjugate pairs, the corresponding basis functions can
be converted to sine and cosine functions with a period defined by the complex
eigenvalue; and these, therefore, represent periodic components of variation in the
solutions.

If the eigenvalues λk are not distinct, which can certainly happen in practice,
there exists an alternative decomposition of B called its Jordan canonical form that
also yields a set of d linearly independent basis functions. See references such as
Coddington and Carlson (1997) for more details.

We can now re-interpret (3.11) with an arbitrary real coefficient matrix B as pro-
ducing a linearly independent basis of functions Φ(t) (taking complex and repeated
eigenvalues into account as needed) and re-write the equation as

x(t) = Φ(t)c .

Here Φ(t) is a d by d matrix and it can be shown to be invertible at any time t . This
will be useful later on when examining forced systems.

3.6 A Linear System Example: Feedback Control

At this pointwemight need an example of amulti-variable linear differential equation
that is often found in the literature, and which illustrates some of the ways in which
variables in linear systems communicate with one another. We will return to this
example in Chap.9.

Feedback loops are an essential aspect ofprocess control, the science and engineer-
ing of the automatic control of the outputs from industrial manufacturing processes.
We illustrate the concept by this simple example. Suppose that an engineer in the
diesel electric locomotive of a passenger train wants to change the speed. Advancing
the throttle will do the job, of course, but the change is speed is hardly instantaneous.
We capture this by the first order forced equation

DS = −βS S + αC (3.14)

http://dx.doi.org/10.1007/978-1-4939-7190-9_9
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where S is speed measured in, say, miles per hour and time in minutes. Variable
C stands for whatever action is taken to determine the speed, which in this case is
throttle movement. Each term must be a ratio of mph to time, so that reaction speed
βS is in min−1 and rate function α is a ratio with mph in the numerator and the
product of min and throttle units in the denominator.

The engineer acts as a feedback system by using the speedometer to change the
throttle position. Let the target speed, called a set point, be denoted by S0. We can
model throttle changes with a second linear equation

DC = γ (S0 − S) (3.15)

where γ converts mph to throttle units. The equation says that the throttle position
increases in proportion to the extent that the current speed falls short of the desired
speed. Technically the equation is forced by two inputs, each with units of speed, but
with rate functions equal in magnitude and opposite in sign. However, the critical
difference is that −S is an input from the other linear equation in the system, while
input S0 is external to the system; so that we prefer to say that the two-variable system
(S,C) is forced by the single input S0. Note, too, that we have here a system in which
one β multiplies two quantities. This warns us that linear equation systems can have
rate functions shared among two or more terms.

Of course the control process also has its own reaction time, but here we consider
this to be so much shorter than the reaction time of the train that we can ignore it.
When the set point speed is reached, C no longer increases and the train settles into
the desired speed at a rate determined by βS .

The set point S0 can also change over time, and Fig. 3.4 displays a set point in the
upper panel by a dashed line that that indicates a target speed of 60 mph for the first
5min, a decrease in speed to 40 mph for the next 5min, perhaps because of passing
through a village, an increase to 80 mph and a final return to 60 mph. The train’s
actual speed, beginning at 0 mph, is shown in the upper panel as a solid line, given
that the reaction rate is βS = 2min−1 and α = 4mph/(min × C-units) The bottom
panel displays the size of the forcing function C , defined in part by the rate function
γ . We see a nice smooth change to target speed that takes about 3min to realize.

We have three parameters in this model, and we want to know what will happen if
these are changed. Parameter γ in effect transforms speed units into controller units,
so that changing its value is effectively the same as changing the size of the set point
function S0. The speed reaction rate β defines the reaction time τ = 4/β that the
train takes to respond to a step change in input C . For example, if coaches are added
to the train, we would expect βS to drop.

This leaves the influence of parameter α to consider, and this turns out to be
interesting. Figure3.5 shows what happens if we either triple (solid line) or take
one-third (dotted line) this parameter. Level twelve results in a faster reaction to set
point change, but with an overshoot in speed. This might not get a car driver a ticket,
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Fig. 3.4 The dashed line in the upper panel indicates the desired speed of the train, and the solid
line shows the actual speed determined by the feedback Eqs. (3.14) and (3.15). The throttle control
position is shown in the bottom panel

but would be a serious matter in the tightly regulated environment of train operation.
Level 4/3, however, decreases the reaction rate to a level likely to leave the train
behind schedule.

How does this work? When α is increased, two things happen. The change in
speed DS increases so that less time (about 30 s) is taken for S to reach S0. This
is also reduced time for C to increase, so that it cannot in net terms increase by as
much as it would if the baseline α = 4 were used. But increased acceleration of the
train, given its large mass and the βS that this implies, also means that once at the
set speed, it cannot decelerate fast enough to avoid over-shooting the target. The
control contribution switches sign and brings the speed back under control to reach a
stable set speed in about 1min. The same thing happens, but in reverse, at the speed
reduction phases.

We can also understand the impact of feedback by combining these two equations.
Solving the controller equation (3.15) with constant of integration 0 gives

C(t) = γ

∫ t

0
[S0(u) − S(u)] du

and, when this is inserted into (3.14) and both sides are then differentiated, we obtain
the single forced second order linear equation
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Fig. 3.5 The dashed line in the upper panel indicates the desired speed of the train. The solid line
shows the actual speed when the rate parameter in Fig. 3.4 is tripled, and the dotted line shows what
happens when it is reduced by 1/3. The corresponding throttle control positions are shown in the
bottom panel

D2S = −αγ S − βSDS + αγ S0.

We now see that the parameter γ is superfluous since it always multiplies another
parameter, α, and so may be set to whatever we please, including 1. Consequently,
the forced second order equation has two instead of three parameters since the S-rate
function plus the forcing rate function multiplying the set point are constrained to
add to zero.

Referring back to Fig. 3.2, we see thatα = 4 results in the response being critically
damped, but thatα = 12 results in anunderdamped system.Moregenerally in process
control, a first order systemwith feedback is effectively a single second order system,
and as such can exhibit all the features of second order responses, including instability
if the system is forced by a periodic input with its resonant frequency. In particular
increasing α increases the rate function multiplying S and therefore increases the
natural resonant frequency of the system.

Process control (Marlin 2000) is a fascinating landscape of applications of first
order stationary linear systems. The engineers who are experts in this area design
control systems that keep chemical reactors, automobiles, aircraft, and a wide variety
of devices on their output targets, even when unexpected external forces temporar-
ily take them off course. The type of control loop described above is an example
of proportional control, but integrative control systems can be preferable in terms
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of stability and accuracy at the price of taking longer to return to target, and for
really fast, but potentially unstable, reaction derivative control systems may be
better. Collectively, this is the PID control family, and these three control strate-
gies are often blended together for optimal performance. For applications of control
theory to human behavior, see Jag (2003).

3.7 Nonstationary Linear Equations and Systems

It must be admitted that the statistical community has rather abused the concept of
stationarity, this being the assumption that the equation itself or the model that it
represents applies unchanged everywhere in time. The ARIMA difference equations
and the conventional Kalman filter in classical time series analysis assume stationar-
ity, but introductory texts are full of examples where even a casual graphical display
will reveal that the dynamics of system itself also evolves over time or space. The
defence for assuming stationarity is, of course, that if the evolution is mild, then
much can still be learned from a model that is too simple. Moreover, a variety of
nonlinear approaches to discrete time series have evolved in the last decades (Tong
1990; Fan and Yao 2005).

There comes a point, however, where either non-stationarity or nonlinearity, or
both, are so obvious in the data and so well supported by solid theory that the analyst
must face up to the additional problems that come with abandoning these twin pillars
of much of dynamic systems theory. Of the two, non-stationarity is much the easier
to deal with.

In this section we first have a look at a single first order linear equation where β(t)
varies over time. Here we see the fundamental structure that characterizes not only
higher order equations or systems of first order equations, but a considerable portion
of nonlinear dynamics as well. After a brief look at a single second order equation,
we review the important theorems about first order linear systems of equations. In
principle, this theory also describes higher order single equations and systems of first
order linear equations as well, but higher order equations deserve a closer look, and
will conclude this section.

3.7.1 The First Order Nonstationary Linear Buffer

The family of solutions to the autonomous first order equation

Dx = −βx or L = β I + D (3.16)

where rate function β varies over time is



46 3 Linear Differential Equations and Systems

x(t) = x(t0) exp

[
−

∫ t

t0

β(v) dv

]
(3.17)

where t0 is the left boundary of the interval of integration, including t0 = −∞ if
needed. We see that the value of x is everywhere on one side of 0, as was the case
for the stationary version. Indeed, (3.16) can be viewed as the universal equation
for single-signed nonzero differentiable functions, and consequently we have that
β(t) = −D log[x(t)/x(t0)].

Notice that exponential decay or growth is intimately tied to the concept of lin-
earity in the differential equation world. The only thing that changes in going from
(3.2) to (3.16) is the constancy of the rate of change. Moreover, solutions to linear
equations, as illustrated here, are one order more smooth than the rate function β

in the sense that they are guaranteed to have a first derivative, but the existence of
higher order derivatives depends on the differentiability of β. Finally, we see that first
order equation solutions lie within a one-dimensional family indexed by an arbitrary
constantC . All of these features are a consequence of linearity, as we shall see below.

Figure3.6 plots in the top panel the weekly number of infections by cholera in
Bombay in the 1906 epidemic.We see an initial exponential growth phase up to about
12weeks, followed by a tapering off of growth and then an exponential decay phase.
The smooth curve is the result of fitting (3.16) to the data by estimating time-varying
function β using seven B-spline basis functions. The bottom panel shows β. We see
that, apart the first week or so, the values of β are negative up to about week 17.
The negative sign on β cancels the negative sign in the definition of the differential
equation, and therefore implies exponential growth, that eventually becomes linear
at the point where β crosses zero. Over its positive phase, however, exponential
decline takes place until about week 28. The fit to the data, based on seven B-spline
coefficients, seems fine. We will return to these data in the next chapter. The fitting
process is described in Chap.9.

For a statistically-oriented example, we need go no further for an illustration
than the univariate density function f (t) as defined over the interval over which
it is positive. Constant C is that which sets its definite integral to one. Equation
(3.16), where β(t) = P(t)/Q(t) and P and Q are low-order polynomials, was the
inspiration of the Pearson family of density functions (Pearson 1895), which contains
many of the familiar textbook univariate probability densities.

The general first order non-stationary autonomous linear equation of order m

Dmx =
m−1∑

j=0

b jβ jD
j x or L = Dmx −

m−1∑

j=0

b jβ jD
j x (3.18)

is the subject of a large literature in mathematics. This literature is heavily dependent
on result for matrices that will be familiar to most statisticians. A readable review is
Coddington and Carlson (1997).

http://dx.doi.org/10.1007/978-1-4939-7190-9_9
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Fig. 3.6 The circles in the top panel show the number of new infections by cholera during an
outbreak in Bombay in 1906. The solid curve is a fit to the data by a solution to the first order
nonstationary linear differential equation (3.16) defined by representing β in terms of seven B-
spline basis functions. The estimated β is displayed in the bottom panel

3.7.2 First Order Nonstationary Linear Systems

As with the single first order equation, we first consider the unforced case for a
system of d first order nonstationary linear equations

Dx(t) = −B(t)x(t) or L = BI + D = 0 . (3.19)

We do this because the solution to a forced equation has a relatively simple relation-
ship to the solution for the corresponding unforced equation, as we saw above for a
single equation. As above, all of the rate functions inB are assumed to be continuous
over the interval of t-values of interest, and t is an element of a compact set.

The first result concerns the properties of the solution space. Just as in the sta-
tionary case, (3.11), the set of solutions of (3.19) is a linear function subspace of
dimension d; and, consequently, given a set of initial values s(t0) there exists a
unique solution within that space satisfying this initial value condition. We can, in
fact, write down the analogue of (3.17) for this case:

Dx(t) = C exp[−
∫ t

t0

B(ν)dν] .
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Unlike in stationary systems, however, in this case there is no analytic expression for
the matrix exponential.

The general forced linear system that corresponds to (3.18) can be expressed in
matrix terms as

Dx(t) = −B(t)x(t) + A(t)u(t) or L = BI + D = Au (3.20)

whereA is amatrix functionwith asmany columns as the length of vectoru.Under the
conditions of compactness of the domain T and continuity ofB, and for any specified
time value (τ ∈ T, x0) any vector ξ of length d, there exists a unique solution to (3.19)
satisfying x(τ ) = ξ . (See p. 226 in Coddington and Carlson 1997). This a powerful
existence and uniqueness result, and one that does not hold for nonlinear systems.
Additional results are available for isolated singularities in the rate functions.

Let x0 be a solution of the unforced linear system equations and let xu be a
particular fixed solution of the forced system equations. Then, as a consequence of the
fact that Lx0 = 0, the function xu + x0 is also a solution of the forced equations. Thus,
the space of all solutions of a given forced linear equation is an affine function space
of dimension d rather than a linear function space. That is, it is a space closed under
both translations by particular solutions and by nonsingular linear transformations.
Moreover, if Φ is a basis for the unforced system, we can write an explicit equation
for the solution of the forced linear system satisfying x(t0) = x0:

x(t) = Φ(t)x0 + Φ(t)
∫ t

t0

Φ−1(u)A(u) .u(u) du. (3.21)

We have seen that an mth order linear single equation can be re-expressed as
a first order system of m linear equations, and hence is within the family (3.16).
Consequently the existence and uniqueness theorem for such equations or systems
of equations can be expressed in terms of values at a fixed time point t0 for the
successive derivatives D0x, . . . ,Dm−1x of x , since each derivative corresponds to
an equation the re-expression of the equation as a first order linear system. Results
analogous to those above for linear first order systems are in some cases, such as
(3.21), are simplified.

Linear systems are important because they often capture the fundamentals of
the dynamics, but also because mildly nonlinear systems can be approximated over
suitably short intervals of t by linear systems.Moreover, although solutions to forced
linear systems cannot often be expressed in neat algebraic terms, they can usually be
easily approximated, as we shall see below where we consider Green’s functions. In
summary, linearity conveys simple well-ordered behavior in dynamics just as it does
in multivariate statistical models.

Often the interval of interest is the whole real line, as would be the case of charac-
terizing a probability density function f such as the Gaussian. In such cases, τ can
be set at any finite value, such as at a mode of the density with the corresponding
fixed value D f = 0. The entire function can be constructed by solving the equation
both forward and backward from this fixed value.
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3.8 Linear Differential Equations Corresponding
to Sets of Functions

In this sectionwe see how a linear differential equation can be defined that annihilates
a set ofm known and linearly independent functions, and explainwhyonewouldwant
such a thing. Dealing with this problem also allows us to introduce the Wronskian
matrix function that will allow us to solve another important problem in the next
section.

We often see in functional data some trends that can be well described by a
small number of elementary functions. This insight sometimes comes from what
we know by common sense, and it sometimes comes by preliminary explorations
of functional data. Suppose, then, that we are given a set of m linearly independent
functions φ j , j = 1, . . . , d. Here’s an example.

Psychometricians develop models for the performance of a set of examinees on a
test composed of a set of multiple choice items. The central construct is a probability
function P(θ) that models the probability that examinees at an ability level θ will
answer a specific item correctly. You might think that such a function, if θ can be
any real number, would have an ogival shape with a left asymptote of zero and a
right asymptote of one. Were that the case, the very useful log-odds ratio W (θ) =
log P(θ)/[1 − P(θ)] would be close to a set of straight lines with varying slopes
and intercepts, and a two-dimensional basis function system would work fine. But
multiple choice items can be successfully answered just by guessing or some other
strategy equally dumb, so that the lower asymptote of the P functions is larger than
zero, and this shows up in the function W as curves that are nearly linear but often
concave upward. Rossi et al. (2002) added a third function log(exp(θ) + 1) to the
basis system which increases linearly on the right but becomes constant on the left.

The complementary problem of identifying a linear mth order linear differential
operator L such that

Lφ j = 0, j = 1, . . . , d (3.22)

plays an important role in spline smoothing, since if it is known a priori that a set of
curves tend to strongly resemble linear combinations of these known null-space or
kernel functions, a great improvement in smoothing bias and sampling variance can
be achieved by using L to define the roughness penalty

∫ [Lx(t)]2 dt.
There are other iconic higher order linear equations, too. Consider as an example

the linear Hermite equation for the Gaussian density function, here expressed in it’s
standardized form:

p(z) = Ce− z2

2 or D2 p(z) = (z2 − 1)p(z) . (3.23)

This suggests the idea of plotting a standardized approximation p̂ of a density func-
tion based on a sample in terms of the transform L p̂(z) = D2 p̂(z) − (z2 − 1) p̂(z)
as an interesting way of noticing non-Gaussian behavior in the approximation. That
is, the operator version of a linear differential equation can act as a filter, as we
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have already seen in the previous subsection, to remove certain known shapes from
candidate functions so as to see more clearly their unique features.

The Wronskian matrix

W(t) =
⎡

⎢⎣
φ1(t) Dφ1(t) . . . Dm−1φ1(t)

...
...

...
...

φm(t) Dφm(t) . . . Dm−1φm(t)

⎤

⎥⎦ . (3.24)

and the rate function vector β = (β0, . . . , βm−1)
T defining the right side of the linear

equation define the functional matrix equation

Wβ = −Dmφ ,

so that, with a little help perhaps from symbolic computation software to solve the
equation for β, an explicit representation of the equation can be realized.

If we try this out on the harmonic basis system, sin(ωt) and cos(ωt), for example,
get that [

sin(ωt) ω cos(ωt)
cos(ωt) −ω sin(ωt)

][−β0

−β1

]
=

[ −ω2 sin(ωt)
−ω2 cos(ωt)

]
(3.25)

and the solution β0 = ω2 and β1 = 0 pops out.
The consideration of phase variation is a great way of generating new problems.

Suppose we have a harmonic oscillator, but time is running fast and slow, so that
there is a strictly monotonic function s = h(t) such that oscillator applies to warped
time s. The reader can work out that the change in the harmonic equation defined by
phase variation is quite benign:

L = D2 + ω2(Dh)2 I ,

since Dh > 0.

3.9 Green’s Functions for Forcing Function Inputs

Our focus in this book is on input/output systems. At the beginning this chapter
we explored how the simple buffer Dx = −βx or the linear differential operator
Lx = Dx + βx transforms various inputs into smoother outputs, and Figs. 3.1 and
3.2 were designed to provide some insights. But we want some more general tools
allow us to explore the operator equation

Lx = u
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where L is an arbitrary order m linear differential operator. That is, how can we,
given input u, get at the output x?

Of course, any part of x satisfying Lx = 0 is not going to be defined by u alone.
But as a rule we have auxiliary constraints that can determine that part of x . A classic
example is knowledge of the value x and its first m − 1 derivatives at time 0. But we
could also use observational data to do this, as we will see in Chaps. 7–10.

So let’s focus on the “inversion” of Lx = u wherewe only ask for a result that does
not satisfy Lx = 0. Here our intuition suggests that the “inverse” of a differential
operator will involve integration, although it is a tad mathematically naive to see
integration as merely the reverse of differentiation. But intuition is often enough
right to be trusted, and the answer to the inverse question is indeed defined by

x(t) =
m∑

1

ckφk(t) +
∫ t

0
G(t; s)Lu(s) ds . (3.26)

The first half of the equation captures the part of x satisfying Lx = 0 where the
m basis functions φk(t) span this kernel space. We’ll see in Chap.9 an easy method
for finding such a basis. We can also choosem linearly independent vectors of initial
values [x(0),Dx(0), . . . ,Dm−1x(0)] and use the initial value solution approximation
methods described in Chap.5 to set up m functions φk .

The second half is a linear integral operator with a bivariate function G(t; s)
acting as a weight function (unfortunately, often called the “kernel” of the integral
operator). Function G is called the Green’s function associated with L and the set
linear constraints identifying the differential equation. What these constraints are
doesn’t matter for our purpose, and the Green’s functions that we use are associated
with the initial value constraints.

Actually, we’ve already seen a Green’s function in (3.5) for the first order station-
ary operator. There

G(t; s) = exp[−β(t − s)] .

The solution to the general case of L of orderm and nonstationary is also relatively
easy to get, and the key is the Wronskian matrix (3.24). Let ηk, k = 1, . . . ,m be the
functions in the last row of W−1. Then

G(t; s) =
m∑

k

φk(t)ηk(s) . (3.27)

For example, using sin(ωt) and cos(ωt) to span the kernel of the harmonic operator,
we obtain

G(t : s) = [sin(ωt) cos(ωs) − cos(ωt) sin(ωs)]/ω .

We can put this Green’s function to work, for example, for theMandarin handwriting
data in Chap.1 where we can observe the consequences of any input to the two
harmonic oscillators that we will identify in Chap.9.

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
http://dx.doi.org/10.1007/978-1-4939-7190-9_10
http://dx.doi.org/10.1007/978-1-4939-7190-9_9
http://dx.doi.org/10.1007/978-1-4939-7190-9_5
http://dx.doi.org/10.1007/978-1-4939-7190-9_1
http://dx.doi.org/10.1007/978-1-4939-7190-9_9


Chapter 4
Nonlinear Differential Equations
and Systems

4.1 Introduction and Chapter Overview

Autonomous nonlinear first order systems or single higher order nonlinear equations
are expressible as

Dx = f(x|θ) or Dmx = f
(
x,Dx, . . . ,Dm−1x |θ)

, (4.1)

respectively. A great deal depends on how the right side functions f or f vary with
respect to their arguments, which are the values or x or, in the case of a single x , a
certain number of the derivatives of x . This is a very large modelling landscape, but
fortunately the large majority of nonlinear models actually do not get very far from
the linear comfort zone.

In this chapter, we see how nonlinear dynamical systems often start out as the
kinds of linear equations and systems that are discussed in Chap. 3, but which are
subsequently modified in fairly simple ways to tune the model to better fit the data.
Seeing the linearity behind the nonlinear system can help to understand how the
system works, and even suggest further modifications. We will show that many of
the modifications arise from some sort of mild dependency of the rate functions β

on the values of one or more internal or external variables. We call this dependency
rate-forcing. We look at some important case studies in this chapter, and the chapter
also acts as a kind of repository for the dynamic systems that are taken up in later
chapters.

4.2 The Soft Landing Modification

For example, the level ofwater x(t) in a bathtubwith an open drain should in principle
satisfy our simplemodelDx = −βx .Butwe all know that the last drops ofwater take
forever to get down the drain, and often evaporate before that happens, suggesting
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that β declines as x approaches zero. Or, when a really big tub is really full, and the
drain is small, the high pressure in the drain can cause turbulence and back pressure
that seems to indicate that β also goes down.

What happens when droplets remain in the bottom of the tub is that viscosity,
frictional and adhesive processes slow the movement of the fluid down to the point
where these factors becomemore important than gravitational pull. This is a complex
process, but it can be caricatured by noting that the speed parameter β seems to
decrease when the value of x approaches zero, with a consequent increase in the
time parameter τ . Were the Montreal smallpox epidemic allowed to go unchecked, it
would burn itself out in part because there would be soon so few susceptible citizens
that the chances that they would encounter an infected individual would be slim.
Which would be good news for the variola virus since it would be certain that a few
susceptible individuals would still be around to rebuild the population, and therefore
restart the plague.

This automatic lowering of β can be modelled by replacing a constant β by the
ratio

β(x) = βmax x

(K + x)
. (4.2)

When x(t) is large with respect to threshold parameter K , x/(K + x) ≈ 1 and the
decay is at the fixed exponential rate βmax . But as x(t) → 0, the effective reaction
speed also goes to zero and the whole system slows down. Constant K is often called
the “half-saturation” because when x reaches this level, the reaction speed is βmax/2.
In population dynamics, this leads to the predator population declining to the point
that the prey, who usually have a larger birth rate, and can consequently bounce back
in the interregnum when there are few prey left. This is why the two populations
tend to exhibit the cycles of abundance and scarcity that we see in nature. The rate
function (4.2) is often called a “hill” function because of its shape, but it goes by
the more formal name of the Michaelis/Menton function due to its originators who
worked in enzyme kinetic models.

The resulting differential equation Dx = −β(x)x is no longer linear. But, we note
that if we allow β to be time-varying, and we can estimate this functional version of
β using the methods in Chap. 9; then a plot of this coefficient versus x will reveal the
nonlinear structure. That is, some nonlinear differential equations are not consistent
with only stationary linear equations.

4.3 Existence and Uniqueness Results

While we can happily write down equations of the form (4.1), it isn’t clear that there
is always a solution x(t) that satisfies it. In the linear ODE models in Chap. 3, this
could be observed by inspection, but we generally cannot analytically write down
solutions to nonlinear ODE models.

http://dx.doi.org/10.1007/978-1-4939-7190-9_9
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We now briefly review what can said about the existence and uniqueness of what
are described as first order initial value problems, where the the “data” consist only
of the state xτ of the system (4.1) at time τ or, in the case of a single mth order
equation consist of the values of x and its firstm − 1 derivatives at time τ . Like linear
differential equations, most, but not all, nonlinear equations have a d-dimensional
solution space corresponding to the d-dimensional space of initial values x0. First
we define a type of smoothness or regularity of the right-side function f with respect
to variation of x over an interval |t − τ | <= T and which is continuous in the usual
sense with respect to both t and x .

Let the f be continuous in t and y over a d + 1-dimensional rectangle S be defined
as containing t-values |t − τ | ≤ T and y-values |y − a| ≤ b for some a and b. The
right-side function f is Lipschitz-continuous over S if for every t and every pair
(y1, y2) in S there exists a constant K such that |f(t, y1) − f(t, y2)| < K |y1 − y2|.A
useful sufficient condition for Lipschitz-continuity is that f have a continuous partial
derivative with respect of y and the order d matrix of absolute values of partial y-
derivatives satisfies |∂f/∂y| < K . This means that there is a limit on how quickly
Dx can change when x is varied.

There are a variety of existence and uniqueness results that hold given Lipschitz
continuity of f over S. A local result is that there exists a constant δ > 0 such that
the initial value problem has a unique solution over |t − τ | < δ.

This says that if we start at time τ , there is an x(t) that satisfies (4.1), at least for
some time ahead. The restriction to local existence is because we can write down
equations with x(t) which blow up to infinity in finite time. A good example of this
is Dx = x2 which has solutions x(t) = 1/(c − t)where the constant c is determined
by x0.

The representationof (4.1) is natural in the studyofODEsasmathematical objects:
they are uniquely determined, given a set of initial conditions; and this will also
be a useful viewpoint in Chap. 5 where x0 gives us a place from which to start
approximating x(0)whenwe can’t do so analytically.We remind ourselves, however,
that data often do not come as errorless observations of the variables at a specific time
point, and we make some statistically-minded observations about using the initial
value formulation for data fitting:

1. Given x0 and θ , we completely determine solutions to (4.1) and can write these as
x(t, θ , x0). Thus, fitting these solutions to data can simply be thought of in terms
of nonlinear least squares. This approach will be described in Chap. 7; there are
several good references for this, for example Bates and Watts (1988); Seber and
Wild (2003).

2. While we expect θ to be a relevant object of statistical estimation, the initial
conditions x0 must be either known a priori or must also be estimated.

3. A search over parameters can lead to values in which (4.1) does not have solutions
that are defined over the entire time-interval in the data. This happens rarely, but
can cause optimizers to break down.

4. Except in special circumstances, while we know x(t, θ , x0) is a unique function
of time, analytic expressions for it are not available and we must approximate it

http://dx.doi.org/10.1007/978-1-4939-7190-9_5
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numerically. Besides additional computational cost, this can also pose problems
when the numerical approximation is poor at some values of θ .

In Chap. 5 we will examine means of approximating solutions x(t) to (4.1) while
Chap. 6 presents some means of analyzing the way these solutions behave.

4.4 Higher Order Equations

A further way of building differential equationmodels is to usemore derivatives. The
most prominent example of this is Newton’s law of motion, stating that an object’s
acceleration is proportional to the force applied to it. Using x as the object’s position,
this can be stated mathematically as

D2x = f(t) .

There are then many ways in which force can be modelled. Returning to the gradient
field, we could imagine a ball on a surface. The force on the ball is due to gravity,
but since it cannot move through the surface, it’s acceleration depends on the local
gradient. If the surface is given by G(x) we have that

D2x = −g∇xG(x)

where the negative sign is because the ball rolls downhill and g is the gravitational
constant. We can further complicate this by adding friction terms, forces in the
opposite direction to the ball’s velocity, giving

D2x = −αDx − g∇xG(x) . (4.3)

Here we have a second-order equation expressed in terms of three derivatives D2,
D1 and D0 of x. As we have seen in Chaps. 3 and 4 it is always possible to reduce
a higher-order ODE to a first order ODE by expanding the state vector to include
derivatives. In the case of the ball with friction in (4.3) we can use z = Dx as another
set of state vector components and write

Dx = z

Dz = −αz − g∇xG(x) .

The first of these equations essentially just defines z and the second replaces Dxwith
z everywhere it appears. This also helps to make clear that for this system, in addition
to providing the initial position of our ball, x(0), we also need to specify its starting
velocity z(0) before we can obtain a solution.

This method of substitution can be carried out for any higher-order ODE, with a
new set of state variables for each order of derivative that appears. We should also

http://dx.doi.org/10.1007/978-1-4939-7190-9_5
http://dx.doi.org/10.1007/978-1-4939-7190-9_6
http://dx.doi.org/10.1007/978-1-4939-7190-9_3
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note that while this approach in principle reduces the problem to first-order systems,
the practical implications are that we have doubled the size of the state vector and
this can make such a re-formulated model more numerically challenging to work
with. In practice it is rare for real-world systems to employ more than second order
derivatives, although when they do, the terms “jerk,” “pop,” “snapple,” and “crack”
have been known for the values of orders three to six.

4.5 Input/Output Systems

Another important source of modeling terms comes from external inputs into a
system. Here again, the simplest such expression was given by Newton:

Dv = u(t)

where v is the velocity of an object and u(t) is a force applied to it. In this case, u
is external to the system which responds to it dynamically. These can be viewed as
input/output systems when the response of the system to u is relevant.While much of
our analysis in the next few chapters will apply to autonomous (i.e. self-contained)
systems, input/output systems are the main focus in a number of fields, particularly
in engineering where the response of chemical systems to temperature, for example,
is of primary interest.

Chapter 3 introduced the response of linear differential equation systems to inputs
where we observed the tendency of dynamic models to smooth out changes in u.
More generally, non-linear systems can also be viewed as responding to stimuli. In
Chap. 6 we will examine models for neural firing behavior where neurons respond to
an electric current by producing “action potentials” or sequences of sharp peaks in
voltage across the neural membrane. Understanding mathematically how this occurs
is the motivation behind the study of bifurcations which we overview there.

4.6 Case Studies

4.6.1 Bounded Variation: The Catalytic Equation

We saw in Chap. 3 that some simple linear equations define useful families of func-
tions, so that Dmx = −βDm−1x defines positive, monotonic and concave functions
for m = 1, 2, 3, respectively. In a sense, these equations are identified with trans-
formations. That is, Dx = βx , equivalent to x = C exp(D−1β) where we use the
notation D−1x for the indefinite integral of x plus an arbitrary constant. This sug-
gests the logarithmic transformation of the solution as a means of linearizing the

http://dx.doi.org/10.1007/978-1-4939-7190-9_3
http://dx.doi.org/10.1007/978-1-4939-7190-9_6
http://dx.doi.org/10.1007/978-1-4939-7190-9_3
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family, and likewise the log-derivative and log-second-derivative transforms for the
monotonic and concave families, respectively.

A simple nonlinear equation corresponds to functions constrained to lie between
two boundaries:

Dx = βx(K − x), β > 0 (4.4)

has the solution for constant β:

x = Keβ t

1 + eβ t
or log

x

K − x
=

∫ t

0
βdt . (4.5)

For statisticians, this is the familiar logistic function and the system is also described
as the logistic equation.

Strictly speaking, we haven’t included a starting point x0 here, but it is fairly easy
to see that starting at a particular point just involves replacing t with t − c where
c = log[x0/(K − x0)] is chosen so that x(0) = x0.

Again, we see (4.4) as a nonlinear equation where the rate parameter depends on
the value of x and is β∗ = β(K − x). When x → 0 the equation becomes one of
exponential growth, but as x → K , the contribution of x moves β∗(x) to 0 and x
approaches the asymptotic value of K . Dx becomes negative if x > K , but we don’t
generally consider the system ever starting in this range, and of course it won’t get
there from below K . In Chap. 6, the values x = K and x = 0 are called stable points
for the system, as illustrated in Fig. 4.1.
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Fig. 4.1 Catalytic growth. Left Dx plotted as a function of x in (4.4). Right the resulting solution
given as x(t)

More generally, if β is time-varying, and then

x = KeD
−1β

1 + eD
−1β

or log
x

K − x
= D−1β . (4.6)

http://dx.doi.org/10.1007/978-1-4939-7190-9_6


4.6 Case Studies 59

The model derives its name from chemical applications where a catalyst promotes a
reaction up to the point where it is exhausted. This equation is often a motif in more
complex equations in the same manner as the first order linear buffer is, as we shall
see in Sect. 4.6.2. Moreover, the equation is also equivalent to a linear equation with
time-varying β.

In Chap. 7 we will use the Rosenzweig-MacArthur ODE model (Rosenzweig
and MacArthur 1963) to model the population dynamics of a predator and prey in a
chemostat. These equations are

DC = ρC(κ − C) − γβCB

χ + C

DB = βCB

χ + C
− δB (4.7)

and we note that they make use of both an upper boundary parameter κ and of a soft
landing parameter χ .

4.6.2 Rate Forcing: The SIR Spread of Disease System

The SIR class of models were designed to model the spread of a disease in a popula-
tion (Kermack andMcKendrick 1927). A recent survey of infective diseasemodeling
is Keeling (2008).

We will examine how the model’s structure affects the nature of the system.
We have chosen the SIR model because it contains a common type of nonlinearity
in which one variable changes the dynamics by rate-forcing another variable. A
population of susceptible individuals of size S(t) at time t is exposed to a number
I (t) of infected individuals. Those infected pass into a post-infected or “recovered”
group of size R(t) who cannot be infected again either because they have acquired
immunity or have expired. Here are the equations:

DS(t) = −β I (t)S(t)

DI (t) = β I (t)S(t) − γ I (t)

DR(t) = γ I (t) . (4.8)

Models of this nature are often called compartment models because a total mass
moves between a number of compartments, and the dynamic system describes the
transport process. We see that the susceptibles succumb to the disease according to a
first order linear buffer with a time-varying rate β∗(t) = β I (t), which makes sense
since the more infected cases, the more likely one is to be infected. Infected cases,
according to the first term in the I equation, increase exponentially at a time-varying
rate βS(t), capturing the obvious fact that as the number of susceptibles declines,
the rate of increase will decline proportionately. This contribution to DI is offset by

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
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the cure (or death) decline modulated by fixed rate parameter γ. They pass into the
R population as a forcing term u(t) = I (t) modulated by the same rate parameter
that tends to empty the infected compartment. The critical parameter is β, which
controls the rate at which the infection spreads. Specifically, if N = S(0), the initial
size of the population before anyone is infected, than βN is the average number of
individuals infected by a single infected case per unit time. A natural unit of time for
the model is τ = 1/γ , the recovery time for 2/3 of the infected individuals.

We can see the effect of all this for a fixed γ = 1, an initial S population of 500,
a single infected individual, and a range of β values in Fig. 4.2. The β values vary
from 0.002 to 0.004, or 1/2 to 2 infections per I and per τ . The larger β the faster the
infection spreads, and the more susceptibles are infected. For example, if our single
infected person infects 2 persons per τ -day, in about 6 days 80 cases are infected,
and ultimately about 80% of the population is infected and then recovered. But for
β = 0.002, or 1/2 an infection per I τ , only about 25 cases of infection are ultimately
recorded.
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Fig. 4.2 The time course of infection in an SIR model (4.8) where γ = 1, S(0) = 499, I (0) =
1, R(0) = 0 and β takes on values 0.002, 0.0025, 0.003, 0.0035 and 0.004. The upper panel shows
the number of susceptible individuals in a population of fixed size 500 (solid curves) and the number
of recovered cases (dashed curves). The lower panel contains the number of infected individuals.
Higher values of β produce larger numbers of infections but a shorter epidemic. The final number
of infected individuals in order of size of β is 23, 184, 294, 358 and 400

Ultimately, of course, the disease burns itself out as the number of susceptibles
declines to the pointwhere an infected individual is unlikely to come into contactwith
a susceptible individual before recovering. The quantity R0 = βN/γ , ranging here
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from 1/2 to 2, is called the “basic reproductive rate,” and plays a central role in the
characterization of communicable diseases. In our experiments, when R0 reaches 5,
the entire population is infected. Smallpox has R0 values of 3.5–6 and one of themost
infectious human diseases, measles, has values of 16 or higher in an unvaccinated
population.

Notice that the sum of the three variables at any time t is equal to the entire
population size N . Among the many extensions of this model used in actual disease
modelling, we can introduce a background birth and death rate, both of which can
have a large effect on the disease dynamics since the spread of infection depends
critically on the number of susceptibles available. Also implicitly assumed is that
each individual freely mixes with the entire population, as might be the case in a
boarding school, for example. In fact, contact with infected cases where childhood
diseases are involved greatly increases at the beginning of the school year, and this
can be modelled by allowing β itself to vary over time. The SEIR version of the
model allows for an intermediate “exposed” period of infection where the infected
person is infective, but not yet symptomatic.

The SIR model and its many variants are often fit to data where there are obser-
vations only on I . When there is no information on S, the I -equation becomes
equivalent to the first order non-stationary linear equation (4.1), and consequently
the model can be fit to any data on I whatever, and therefore offers no insight into
the process. The Bombay cholera data analyzed in Chap. 3 are a case in point. On the
other hand, it happens often that the initial size S(0) is roughly known before the
outbreak of the disease, and even this tiny bit of extra information can lead to some
reasonable estimates of the SIR model parameters and the shape of the S function.
If the hill function is employed instead of a constant β, an estimate of the threshold
parameter K requires data for S-values close to zero.

The SIR model is designed to fit count data where the scales of the S and R
variables can be orders of magnitude larger than the scale of I . For this reason, the
logarithmic version of the model, the setup of which is considered in Sect. 2.6 is
often used to fit the logarithm of the data, where the base of the logarithm is often
10 rather than e in order express results in a form that is more comprehensible to
clients.

In summary the SIRmodel is constructed from three first order buffers, but derives
its nonlinearity from the fact that S and I rate-force each other’s dynamics. Formally,
we may think of the SIR structure as quadratic rather than linear since products of
variables are involved. The impact of one variable modifying another variable’s
dynamics can be far more dramatic than the effect of additive forcing, and the result
in this case is a system that is a kind of “anti-buffer” in the sense that a small
additive perturbation of a single infected individual can have an explosive impact
on the system, although in this case the impact is comparatively short-lived. A more
elaborate quadratic system of ten differential equations used to model a chemical
reaction is taken up in Chap. 10.

http://dx.doi.org/10.1007/978-1-4939-7190-9_3
http://dx.doi.org/10.1007/978-1-4939-7190-9_2
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4.6.3 From Linear to Nonlinear: The FitzHugh-Nagumo
Equations

Dynamical systems exhibiting oscillations with fixed a period are one of the most
important classes, primarily because they have a particular type of stable variation
that we often see in nature. Of course, the harmonic oscillator discussed in Chap. 3 is
one such stably periodic system. Here we look at a two-variable system that is made
nonlinear in order to have asymmetric cycles.

First we modify the two-variable first order linear system version of D2x =
−x − Dx slightly by defining Dx = −y:

Dx = −y

Dy = −x + y . (4.9)

Next we generalize this system into what is known as the Liénard equation, used in
electrical circuit theory (Hirsch and Devaney 2013):

Dx = −y

Dy = − f (x) + y . (4.10)

The van der Pol equation, where f (x) = x3 − x , is:

Dx = −y

Dy = x − x3 + y . (4.11)

Finally, we study a modified van der Pol system where three parameters are tossed
in that don’t have much influence on the shape of the periodic oscillations.

The FitzHugh-Nagumo (FitzHugh 1961) equations were intended to capture the
essential dynamic properties of oscilloscope records of voltages observed in neu-
rones when they fire. These equations were constructed to be a simplification of the
Hodgkin-Huxley equations (Hodgkin and Huxley 1952). Variable V represents the
voltage across themembrane of a neurone, and R is a sum of “recovery” ion currents.

d

dt
V = c(V − V 3/3 − R) (4.12)

d

dt
R = (V − a + bR)/c . (4.13)

Intuitively, V represents the voltage across the membrane of a neurone, and R is
an aggregate of “recovery” ion currents. Figure 4.3 shows the solutions V and R
corresponding to initial conditions V (0) = −1 and R = 1; and to parameter values
a = −0.8, b = −0.3, and c = 2.5. The voltage trajectory resembles more or less a
series of spike potentials in a firing nerve cell axon, and in particular has periodic
asymmetric spikes separated by substantial recovery periods.

http://dx.doi.org/10.1007/978-1-4939-7190-9_3
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Fig. 4.3 The solid line indicates the solution for voltage V (t) to the FitzHugh-Nagumo system
(4.12) and the dashed line shows the recovery variable R(t). The voltage trajectory has roughly the
shape of a series of spike potentials in the axon of a nerve cell

We see in the R equation the first order stationary linear buffer with with speed of
response b/c and additive forcing by V and constant a/c. Since b/c is negative, this
buffer exhibits exponential decay interrupted by the impact of a spike in V . There is
a substantial delay before a V -spike produces an increase in R, as is characteristic
of first order buffers.

On the other hand, the V equation is nonlinear because of the influence of the V 3

term in the equation. Because c is positive, the V term contributes an exponential
increase or decrease in V depending on the current sign of V . On the other hand,
the V 3 term has a negative sign, leading to an exponential decay or approach to an
asymptote depending the current sign of V . When |V | < 1, the V term dominates
the V 3 term, but otherwise the influence of the positive V term becomes less and less
important. It is this effective flip in the dynamics that leads to the periodic behavior
of V . The asymmetry of the spikes are determined by the cubic power and by the
interaction with the recovery variable R. Thus, we can use what we know about first
order buffers from Fig. 3.1 to puzzle out how why this system does what it does.

The FitzHugh-Nagumo system shares with many dynamic systems the data prob-
lem that, while measuring V across an axon membrane is comparatively easy, the
aggregated nature of R renders difficult or impossible the collection of data on its val-
ues. We have to hope that we can achieve accurate estimates of the three parameters
as well as on the shape of R on the basis of information on V alone.

http://dx.doi.org/10.1007/978-1-4939-7190-9_3
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A more elaborate two-variable neuronal response model that ties the recovery
phase to experimental variables and more closely resembles actual spike potentials
is theMorris-Lecar system (Morris and Lecar 1981)

CDV = I − gL(V − VL) − gCaMss(V )(V − VCa) − gK R(V − VK )

DR = Rss(V ) − R

τR(V )
(4.14)

where the additional functions of membrane potential V are

Mss(V ) = 1

2

[
1 + tanh(

V − V1

V2
)

]

Rss(V ) = 1

2

[
1 + tanh(

V − V3

V4
)

]

τR(V ) = 1/

[
φ cosh(

V − V3

V4
)

]
. (4.15)

The observed or otherwise known constants are the applied current I , the membrane
capacitance C , the leak conductance gL , the calcium Ca++ conductance gCa , the
potassium K+ conductance gK and the corresponding equilibriumpotentials VL , VCa

and VK , and the reference frequencyφ.The tuning parameters that could be estimated
from data are the steady state and time constant potentials V1, . . . , V4.

Another equation that has similarities to the FitzHugh-Nagumo equation for V is
the Duffing equation:

D2x = β0x − β1Dx − β2x
3 (4.16)

where the parameters are usually taken to be positive. If the equation is forced
by α cos(ωt), ω > 0, it is called the Duffing oscillator. The Duffing oscillator can,
depending on parameter values, exhibit surprisingly complex and varied behaviour,
including the chaotic variation that is described in Chap. 6, and it has been used
as a filter for EEG data, where it seems to do a good job of differentiating among
emotions (Bhowmik and Konar 2010).

4.6.4 Nonlinear Mutual Forcing: The Tank Reactor
Equations

We turn now to two case studies taken from Ramsay et al. (2007). The first of these
is a nonlinear two-variable system that plays a central role in chemical engineering,
and which illustrates many of the issues taken up in this chapter.

Acontinuously stirred tank reactor (CSTR) is a tank surroundedbya cooling jacket
and containing an impeller which stirs its contents. A fluid containing a reagent with

http://dx.doi.org/10.1007/978-1-4939-7190-9_6
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concentration Cin enters the tank at a flow rate Fin and temperature Tin . A coolant
in the cooling jacket has temperature Tco and flow rate Fco. An exothermic reaction
within the tank produces an output with changed concentration C at temperature T .

The differential equations used to model a CSTR, taken from Marlin (2000) and
somewhat simplified by changes like setting the volume of the tank to one, are

DC = −β(T )C + Fin(Cin − C)

DT = 130β(T )C + 2aFb+1
co

(2Fco + aFb
co)

(T − Tco) + Fin(Tin − T ) , (4.17)

where concentration is in moles per cubic metre, temperature is in degrees Kelvin
and

β(T ) = κ exp
[−104τ(1/T − 1/Tre f )

]
. (4.18)

Each variable is forced by the other, as well as by functions of known external inputs.
The two composite rate functions in the homogeneous part of each equation involve
a term defined by functions of known flow functions Fin and Fco and a term βT . The
latter is a nonlinear function of temperature, called an Arrhenius coefficient after the
Swedish chemist who worked out the affect of temperature on chemical reactions
in 1889. Temperature Tref is a baseline temperature inserted into the coefficient to
normalize the parameters τ, κ and a that must be estimated from data.

The plant engineer needs to understand the dynamics of the two output variables
C and T as determined by the five inputs Cin, Fin, Tin, Tco and Fco. A typical exper-
iment designed to reveal these dynamics is illustrated in Fig. 4.4, where we see each
input variable stepped up from a baseline level, stepped down, and then returned to
baseline. Two baseline levels are presented for the most critical input, the coolant
temperature Tco.

The values of output variables C and T under the two experimental regimes,
given values 0.833, 0.461, 1.678 and 0.5 for parameters τ, κ, a and b, respectively,
are shown in Fig. 4.5. When the reactor runs in the cool mode, where the baseline
coolant temperature is 335 degrees K, the two outputs respond smoothly to the step
changes in all inputs. However, an increase in baseline coolant temperature by 30
degrees K generates oscillations that come close to instability when the coolant
temperature decreases. Oscillations in concentration are undesirable in an actual
industrial process, and feedback loops are used to dampen them down to a tolerable
level.

The output oscillations resemble rather closely the underdamped situation in
Fig. 3.5 in the linear feedback model discussed in Chap. 3, and suggest that this
CSTR system, in spite of being nonlinear, can be closely approximated by a lin-
ear system. Marlin (2000), which contains an excellent account of CSTR dynamics,
shows that such is the case, and that linear dynamics can be sufficient in most cases.
But this nonlinear system has surprises which, though seldom seen in practice, need
to be considered. For example, under certain experimental regimes and parameter

http://dx.doi.org/10.1007/978-1-4939-7190-9_3
http://dx.doi.org/10.1007/978-1-4939-7190-9_3
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combinations, the system can display the kind of periodic spikes that the FitzHugh-
Nagumo model was designed to emulate.
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Fig. 4.4 The five inputs to the chemical reactor modeled by the Eqs. (4.17) and (4.18): flow rate
F(t), input concentration C0(t), input temperature T0(t), coolant temperature Tco(t) and coolant
flow F0(t). Coolant temperature Tco(t) was set at two baseline levels, cool and hot

The importance of the CSTR system is in part due to the difficulty and expense
of measuring concentration. The mutual forcing nature of the systems means that
measurements of temperature alone, which are accurate, cheap, online and can yield
accurate estimates of concentration, whether in the same temperature mode or not
(Ramsay et al. 2007).

4.6.5 Modeling Nylon Production

If water (W ) in the form of steam is bubbled through molten nylon (L) under high
temperatures, nylon will split into amine (A) and carboxyl (C) groups. To produce
nylon, on the other hand, A and C are mixed together under high temperatures,
and their reaction produces L and W , water then escaping as steam. These reverse
reactions are depicted symbolically by A + C � L + W . The reaction dynamic
equations are

− DL = DA = DC = −kp ∗ 10−3(CA − LW/Ka)

DW = kp ∗ 10−3(CA − LW/Ka) − km(W − Weq) (4.19)
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where
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Fig. 4.5 The two outputs, for each of baseline coolant temperatures Tco of 335 and 365◦. K, from
the chemical reactor modeled by the two Eq. (4.17): concentration C(t) and temperature T (t). The
input functions are shown in Fig. 4.4. Times at which an input variable Tco(t) was stepped down
and then up are shown as vertical dotted lines

Ka =
[(

1 + g

1000
Weq

)
CT

]
Ka0 exp

[
− ΔH

R

(
1

T
− 1

T0

) ]

and R = 8.3145 ∗ 10−3, CT = 20.97 exp[−9.624 + 3613/T ] and a reference tem-
perature T0 = 549.15 was chosen to be in the middle of the range of experimentally
manipulated temperatures. Rate parameter km = 24.3was estimated in previous stud-
ies. Due to the reaction mass balance, if A,C and W are known then L can be
algebraically removed from the equations, so that we will only estimate those three
components.

In an experiment described in Zheng et al. (2005), a mixture of steam and an
inert gas was bubbled into molten nylon to maintain a constant W , causing A,C, L
andW to move towards equilibrium concentrations. Within each of six experimental
runs the steam pressure was stepped down from its initial level at times τi1, i =
1, . . . , 6, and then returned to its initial pressure at times τi2. The temperature Ti and
concentration difference Ai (t) − Ci (t) varied over runs but were constant within a
run. Samples of themoltenmixturewere extracted at irregularly spaced intervals, and
the A and C concentrations measured. The goal was to estimate the rate parameters
θ = [kp, g, Ka0,ΔH ]. Figure 4.6 shows the data for the runs aligned by experiment
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within columns. Since concentrations of A and C are expected to differ only by a
vertical shift, their plots within an experimental run are shifted versions of the same
vertical spread. The temperature of each run is given above the plots for each set of
components.
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Fig. 4.6 Nylon components A,C andW along with the solution to the differential equations using
initial values estimated by the smooth for each of six experiments. The times of step change in input
pressures are marked by thin vertical lines.Horizontal axes indicate time in hours, and vertical axes
are concentrations in moles. The labels above each experiment indicate the constant temperature in
degrees Kelvin

The profile estimation process was run initially with λ = 10−4. Upon convergence
of θ̂ , λ was increased by a factor of ten and the estimation process rerun using the
most recent estimates as the latest set of initial parameter guesses, increasing λ up
to 103. Beginning with such a small value of λ made the results robust to choice of
initial parameter guesses. Further details concerning the data analysis are available
in Campbell and Steele (2012).

The parameter estimates along with 95% limits were: kp = 20.59 ± 3.26, g =
26.86 ± 6.82, Ka0 = 50.22 ± 6.34 and ΔH = −36.46 ± 7.57. The solutions to the
differential equations using the final parameter estimates for θ̂ and the initial system
states estimated by the data smooth are shown in Fig. 4.6.



Chapter 5
Numerical Solutions

5.1 Introduction

As we have seen until now, ordinary differential equation models are a powerfully
expressive class of models for describing the way systems evolve over time. How-
ever, outside a fairly narrow class of equations, we cannot obtain solutions to these
ODEs analytically, and therefore directly understand the behavior that these equa-
tions produce. Methods of finding numerical solutions will be described here, while
the analysis of dynamical behavior will be given in Chap. 6. Naturally, our treatment
of both of these topics will be superficial and is no substitute for a text devoted to
them, but we hope to provide enough background for the reader to understand numer-
ical approaches to solving ODEs and the challenges that these pose for statistical
inference.

We particularly want to note that most of the material presented in these two
chapters does not discuss ODEs as input–output systems. In this chapter, we allow
the right hand side function f(t, x, θ) to change over time–hence accounting for
potential inputs–but Chap. 6 will mostly focus explicitly on autonomous systems
in which the dynamic relations between x and its derivatives are fixed. The reasons
for this are mathematical simplicity of two different forms: numerical methods for
solvingODEs do not change a great deal when continuous inputs are added (although
discontinuities must be accounted for); on the other hand, analyzing the qualitative
behavior of ODEs in the presence of anything but slowly-varying inputs requires a
great deal ofmathematicalmachinery. That stated,wewill provide some commentary
about extensions to input–output models at the end of each chapter.

Chapter 4 discussed nonlinear differential equations as initial value problems,
stated formally in (4.1), where we describe a system by its starting value x0 and
the relationship between the rate of change, Dx, and its state x. Section 4.3 also
demonstrated that this was enough to uniquely identify x(t) as a function of t,
which we will label x(t, θ, x0). However, except in special cases, it generally is
not possible to write down an analytic expression for x(t, θ , x0). Instead, we must
rely on computational methods to approximate it.
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For the rest of this chapter we will describe numerical methods to approximate
x(t, θ , x0) which we will then be able to use within estimation methods. As will
be the case for much of this book, there is an extensive literature on this topic and
we will provide a very incomplete survey of these methods, confining ourselves to
the simplest and most commonly-employed methods. Full treatment of this problem
can be found in Deuflhard and Bornemann (2000) and Kincaid and Cheney (2002)
as well as more general texts on differential equations (Borrelli and Coleman 2004;
Nagle et al. 2008).

5.2 Euler Methods

In this section we will start with the simplest of numerical ODE solvers. These are
named Euler methods and date to 1768. Although these methods are generally too
inaccurate to be useful, they are a good first step in developing more sophisticated
approximations.

The differential equation states that x(t) is changing at rate f(t, x, θ), so that if
we let timemove forward h units where h is small, we should change x by hf(t, x, θ)

units. Formally, we write

x(t + h) ≈ x(t) + hDx(t) = x(t) + hf(t, x(t), θ).

If we iterate this, we can use the same procedure to start at the new value x(t + h)

and move to x(t + 2h) by incrementing by hf(t, x(t + h), θ). This scheme is given
explicitly in the pseudo-code below:

1. Start x̂(t0) = x0, t = t0.
2. Do until t > t1:

a. x̂(t + h) = x̂(t) + hf(t, x̂(t), θ),

b. t = t + h.

This scheme is illustrated in the left hand plot of Fig. 5.1. The approximation
initially moves in a direction tangential to the estimated trajectory; subsequent steps
move tangentially to the trajectory they would have taken if they started from the last
value. As the step size decreases we get closer and closer to the truth.

While this scheme is simple and intuitive, it tends to perform poorly for many
systems. For example, consider the system

Dx =
[

0 1
−1 0

]
x, x0 =

[
1
0

]
,

which is solved for x(t) = (cos(t), sin(t)) and for which ‖x(t)‖ = 1 for all t. For
the Euler method, however, it is easily checked that
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‖x(t) + hDx(t)‖2 = (x1(t) − hx2(t))
2 + (x2(t) + hx1(t))

2 = 1 + h2.

−
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0.
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x̂(t+h)= x (t)+hf (x~ (t+h 2))

Fig. 5.1 Illustrations of Euler (left) and second order Runge–Kutta methods for approximating
the solution to an ordinary differential equation, in this case Dx = −x + 2. The Euler step moves
tangentially to the true trajectory for h time units. The Runge–Kutta method moves h/2 time units,
calculates the derivative of the trajectory at this point and then moves h steps in that direction
starting from the original point. Right-hand plot axes are different from the left-hand plot to allow
additional detail to be presented, but both plots use the same h

Thus, an Euler-step approximation to this model will always tend to spiral away from
the origin even though the analytical solution is stable, as we see in Fig. 5.2. Euler
methods can have similarly distorting effects on dynamics in other systems, too, as
we will see in an analysis of the property of stiffness below.

One way to understand the success of a scheme is through an analysis of howwell
it approximates the true underlying function x(t). To do this, we can look at one step
from x(t) to x(t + h). Here we can use Taylor’s theorem to give us

x(t + h) = x(t) + hDx(t) + h2

2
D2x(t∗),

where t∗ is some time between t and t + h. When we substitute f(t, x(t), θ) for
Dx(t) we can re-arrange the equation above to yield

x(t + h) − x(t) − f(t, x, θ) = O
(
h2

)
.

Now, of course, we want an error over the whole interval, and since there are (t1 −
t0)/h steps, we have an over-all error of O(h) (assuming that the system behaves
nicely). Here, to improve the accuracy of the over-all solution by an order of 10,
we must do 10 times as much work. As we will see below, this can be substantially
improved with Runge–Kutta methods.
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Fig. 5.2 Approximations to
circular motion by Euler
(dashed) and second-order
Runge–Kutta methods
(dotted). Both methods spiral
out from the true circular
orbit, but the Euler method
does so at a much faster rate
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5.3 Runge–Kutta Methods

As we have seen above, we can think of Euler’s methods as using first-order Taylor
expansion of x(t + h) around x(t) and we have observed that it does not converge
particularly quickly. It is tempting, therefore, to extend this to a higher-order expan-
sion:

x(t + h) = x(t) + hDx(t) + h2

2
D2x(t) + O

(
h3

)
,

and we could employ the relationship

D2x(t) = Df(t, x(t), θ) = f(t, x(t), θ)∂xf(t, x(t), θ) + ∂t f(t, x(t), θ)

for the third term in the expansion. This would require us to start evaluating partial
derivatives of fwith correspondingly more work on the users part and more potential
for error. Instead, we can achieve the same level of accuracy by an evaluation of f
at t + h/2. To do this, we first of all take an Euler step of size h/2 to approximate
x̃(t + h/2) and then use the derivative at h/2 to take a step from x(t) to x(t + h). It
is easiest to understand this in terms of pseudo-code:

1. Start x̂(t0) = x0, t = t0.
2. Do until t > t1:

a. x̃(t + h/2) = x̂(t) + 1
2hf(t, x̂(t), θ)

b. x̂(t + h) = x̂(t) + hf(t + h/2, x̃(t + h/2), θ)

c. t = t + h
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The right hand plot of Figs. 5.1 and 5.2 illustrates this graphically where the improve-
ment on Euler schemes is readily apparent.

Intuitively, f(t + h/2, x̃(t + h/2), θ) should help account for how f changes
between t and t + h. In fact, if we put these two steps together we have

x̂(t + h) = x(t) + hf(t + h/2, x(t) + h/2f(t, x(t), θ),

and we can expand the second term to be

hf(t + h/2, x(t) + h/2f(t, x(t), θ), θ)

= hf(t, x(t), θ) + h2

2
[f(t, x(t), θ)∂xf(t, x(t), θ)]

+ h2

2
[∂t f(t, x(t), θ)] + O

(
h3

)
,

in which we recognize the second term as being the second derivative we needed
above. Since one step of this scheme has an error that is O(h3), the over-all error is
of O(h2) meaning that ten times the work nets us 100 times the accuracy.

For the circular motion example employed above, it is fairly easy to calculate that
the Runge–Kutta step is exactly

x̂1(t + h) = x1(t) + hx2(t) − h2

2
x1(t),

x̂2(t + h) = x2(t) − hx1(t) − h2

2
x2(t),

with ‖x̂(t)‖2 = 1 + h4/4, if we start on the unit circle. A small increase in the radius
of the Runge–Kutta solutions is visible in Fig. 5.2, but this remains considerably
more accurate than the Euler step.

The point of the intermediate step x̃ here is to help conceptualize the algorithm.
In particular, similar calculations can improve the error of the approximation up to
any degree desired. Typically, a fourth-order method is used which can be written as

x̂(t + h) = x̂(t) + h

6
(k1 + 2k2 + 2k3 + k4) ,

where the values k1, . . . , k4 are the extension of x̃(t + h/2) above and are generated
in sequence:

k1 = f(t, x̂(t))

k2 = f
(
t + h/2, x̂(t) + hk1/2

)
k3 = f

(
t + h/2, x̂(t) + hk2/2

)
k4 = f

(
t + h, x̂(t) + hk3

)
.
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The over-all error of this method is O(h4). Although higher methods can also be
derived, this is the most commonly used differential equation solver due to its effi-
ciency and ease of implementation. Despite this, it does not always perform well,
especially for “stiff” systems; and we will explore where it can break down below.

5.4 Collocation Methods

The methods so far describe provide approximations to x(t) at a set of points t, t +
h, t + 2h, etc. Ifwewish to find a value of x between these pointswemust interpolate
between them. Alternative means of solving ODEs are described as collocation
methods. Thesemethods approximate the solution to (4.1) explicitly as a combination
of pre-defined functions. We will make use of these in Chap. 9 as a way of moving
from initial value problems in which we start from x0 and approximate x(t) going
forward in time to trying to choose a trajectory that matches data that are distributed
over time as well as possible.

Collocation methods represent x(t) explicitly in terms of a linear combination of
a set of basis functions:

x(t) ≈
K∑

k=1

ckφk(t) = Cφ(t), (5.1)

where the φk(t) are a pre-chosen set of functions and the ck are weights given to each
function. Here φ(t) is the vector (φ1(t), . . . , φK (t))′ and C is a matrix whose rows
are the ck .

Most commonly, collocation solvers divide the interval [t0 t1] into sub-intervals
of length h and use a set of low-order polynomials within each sub-interval. In
particular, suppose that we are interested in solving the equation from t0 to t0 + h.

For the moment, it will be convenient for us to think of the derivative of x in terms
of a basis rather than x itself:

Dx(t) ≈
K∑

k=1

ckDφk(t).

We now try to choose the ck so as to make the differential equation fit exactly at K
collocation points s1, . . . , sK on [t0 t0 + h]. In particular, for each sl

x (sl) = x (t0) +
∫ sl

t0

Dx(u) = x (t0) +
K∑

k=1

a jlck

http://dx.doi.org/10.1007/978-1-4939-7190-9_4
http://dx.doi.org/10.1007/978-1-4939-7190-9_9
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where

a jl =
∫ sl

t0

Dφk(t)dt.

Here we have expressed a jl somewhat unusually as an integral of Dφk(t); this is so
that the increment represents a step starting at x(t0). We can now insist that

Dx (sl) =
K∑

k=1

ckDφk (sl) = f

(
t0 + sl, x (t0) +

K∑
k=1

a jlck, θ

)
.

This produces dK equations for the dK variables ck (remembering that there are d
state variables) that can be solved numerically. Terminologically, we refer to the
φk(t) as collocation functions with the sk being collocation points.

The Lagrange polynomial basis is often used for collocation or approximation
purposes in numerical methodology, and is defined by

φk(t) = (t − t0) . . . (t − tk−1)(t − tk+1) . . . (t − tK )

(tk − t0) . . . (tk − tk−1)(tk − tk+1) . . . (tk − tK )
. (5.2)

Because Dφk(sl) = δ jl for the Lagrange polynomial basis, these equations reduce to

ci j = fi

(
t0 + sl , x (t0) +

K∑
k=1

aikck j

)
, i = 1, . . . , K , j = 1, . . . , K .

In fact, this choice yields what is referred to as an implicit Runge–Kutta method
(“implicit” because the ci j are not explicitly defined but rather numerical solutions to
an equation). The solution then proceeds by setting t1 = t0 + h and x(t1) = x(t0) +∑K

k=1 akK and repeating the same process in in the next interval [t1, t1 + h].
It is often useful to use Lagrange polynomials on a standard interval [0, 1] in

this case, we use φ(ht + t0) to obtain bases on the interval [t0, t0 + h] and if the
sl are also defined as a fixed set of points on [0, 1] with akl = ∫ sl

0 φk(t)dt we can

re-scale to
∫ hsl
0 Dφ(ht)dt = hakl . See Deuflhard and Bornemann (2000) for a more

detailed description. Typically, K is small (usually 3) and the error in the collocation
approximation can be calculated to be O(hK ).

Amore general framework will be used below in which this idea is generalized in
which we return to (5.1) with a basis that covers the interval [t0 t1] with (s1, . . . , sK )

chosen over the same interval. Using (5.1), we can define the following equations
for the ck :

K∑
k=1

ckDφk (sl) = f

(
sl ,

K∑
k=1

ckφk (sl) , θ

)
, k = 1, . . . , K , l = 1, . . . , K .

(5.3)
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This is a much more direct formulation of a collocation approach which is feasible
because we have not incorporated a specific starting value x(t0) and can express x(t)
explicitly as a basis expansion and add the initial condition x(t0) = x0 as a further
equation to be satisfied.

There are many potential choices for the bases φk here. We will discuss some of
these—B-splines in particular—in Chap. 8, but the formulation is generic: wavelets,
Fourier series and any other sensible choice could all be employed.

The basic idea is illustrated graphically in Fig. 5.3. Here we have illustrated a
B-spline basis with 11 knots; the solution will be estimated by a linear combination
of these functions. In particular, the right hand plot also illustrates the points at which
we insist the ODE be matched along with the B-splines scaled by their coefficients.
For this illustration, we have used the system Dx = −x + 2 so we can translate (5.3)
into [

φ(0)
DΦ + Φ

]
c =

[
x0
2

]
,

where φ(0) = (φ1(0), . . . , φK (0)) and Φ is the matrix with [Φ]i j = φk(si ). In this
case there is only one component of the trajectory, so only one vector of coefficients
c. Generally, the equations are non-linear and require concatenating the trajectory
components. For the sl we have used the mid points between knots as well as the end
points of the interval.
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Fig. 5.3 An illustration of a collocation method. Left hand plots the values of a B-spline basis of 13
basis functions defined to be polynomials between breaks (vertical lines) and to joint up smoothly
at breaks. Right a collocation fit to the differential equation Dx = −x + 2; the basis functions are
scaled by the values of their coefficients and theODE is forced to be exactly correct at the collocation
points, marked by solid squares. Visually, the collocation fit exactly obscures the true curve (dashed
lines)

There are a number of reasons for preferring the local-formulation of using a small
basis on a small interval [t0, t0 + h]: while it requires repeated solutions of nonlinear
equations, they are of much lower dimension than if a global basis is defined and this

http://dx.doi.org/10.1007/978-1-4939-7190-9_8
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in turn results in a more stable algorithm. However, we will see that global basis such
as the B-splines above can be more useful when estimating parameters. Here, we
have data distributed over the whole range of t rather than simply specifying an initial
condition at x(t0) from which to start approximating. This global formulation allows
for both the ck and the θ to chosen simultaneously and this can provide substantial
numerical advantages.

5.5 Numerical Problems

5.5.1 Stiffness

Applying a Taylor expansion to the Euler method in Sect. 5.2 as well as higher-order
Runge–Kutta methods suggests that numerical error, at least, in terms of individ-
ual time-steps, can be bounded by some derivative of the solution of the ODE.
Unfortunately, this analysis does not always provide an adequate characterization of
numerical problems associatedwith solvingODEs, partly because it does not address
the propagation of this error through the rest of the solution. This can result in an
ODE which has very smooth dynamics having an approximation with quite unstable
results. ODEs which exhibit this phenomenon are described as “stiff” and may be
illustrated by the one-dimensional system

Dx = −15x .

The solution of this system is x(t) = e−15t and it converges rapidly to a fixed value of
0. However, Euler and Runge–Kutta methods exhibit strong instability when trying
to solve it unless very small step sizes are used—this is illustrated in Fig. 5.4. Euler
systems oscillate around the fixed point of 0; if the step size is not small enough
these oscillations actually increase. Runge–Kutta methods manage to cancel these
oscillations out, but this yields an approximation that converges to the fixed point
much more slowly than real solutions.

In the case of this equation, the cause of numerical instability can be described as
being due to high curvature relative to step size as the system approaches the fixed
point. The error associated with overshoot is then propagated as the solver continues
forward, requiring a long time to settle down. An explicit definition of stiffness,
however, remains elusive and we define it as requiring excessively small step sizes
relative to the smoothness of the over-all solution.

There are numerous characterizations of stability of numerical methods. A-
stability, of particular note, focusses on the requirement that numerical solutions
to Dx = −kx converge to zero for any positive k. For example, in the Euler scheme
above with step-size h, it is easy to show that
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Fig. 5.4 Example of a stiff system Dx = −15x . Solid blue line produces exact solution x(t) =
exp(−15t); the dashed and dotted lines are solutions by Euler methods with h = 0.125 and 0.25,
respectively and the solid black line with circles is the second-order Runge–Kutta solution

x(t + nh) = (1 − kh)n,

and this will converge to zero only when |1 − kh| < 1 or h < 2/k, it is thus not
A-stable (since for any h, we will find non-convergence for some k) and it is, in fact,
possible to show that no explicit Runge–Kutta method is A-stable.

To combat stiffness, alternative solvers have been developed. These are either
implicit, as in the collocation methods above, or rely on calculating the Jacobian
∂xf, or both, hence reducing their appeal when stiffness is not a problem. Rosen-
brock methods are particularly common among these and have been implemented in
multiple software packages. The statistical modeller should be aware that such prob-
lems can come up, and that there are numerical methods to deal with them. Some
solvers attempt to detect stiff systems and change the numerical method they employ
automatically—the lsodamethods (for example in the R package deSolve) pro-
duce solutions that are almost identical to the truth.

5.5.2 Discontinuous Inputs

So far we have allowed our dynamics to varywith time: Dx(t) = f(t, x(t), θ),which
means that we implicitly allow our models to account for inputs to the system, but we
have not described these explicitly. These methods can still be used if we explicitly
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include an input u(t) into Dx(t) = f(x(t), θ, u(t)), provided that u(t) is smooth
enough.

In real world systems, however, it is very common that u(t) is discontinuous in,
places. Systems which are either locally disturbed, as in the cranial deformation data,
or where we see an abrupt change in level as in the refinery data (both in Chap. 3) do
not satisfy this condition. These types of step changes are common in experimental
or industrial systems.

The effect of this is easiest to see in Euler methods where we relied on the Taylor
expansion:

x(t + h) = x(t) + hDx(t) + o
(
h2

)
,

to guarantee the accuracy of our method. If Dx(t) is discontinuous between t and
t + h, this expansion is no longer valid and we can expect locally poor convergence.
The same issues apply to Runge–Kuttamethods if u(t) has a discontinuous derivative
(yielding errors in later terms in the Taylor series).

In these cases it is generally wise to split the solution into regions where u(t) is
continuous and differentiable between regions. We solve from the initial point up
until the first discontinuity (at time td , say), obtain the final approximated x(td) and
then re-start from this value until the next discontinuity.

This approach is efficient where there are few discontinuities to worry about
(again, a common scenario in physical systems). However, it becomes more prob-
lematic when we let the number of step changes increase below the resolution h of
our solver.

5.5.3 Constraints and Transformations

In addition to stiff equations, numerical solutions to ordinary differential equations
can also suffer when the state variables change over several orders of magnitude
and when there are natural constraints on the state space. This occurs frequently in
ecological or epidemiological models when the numbers of species (or infectives)
can change dramatically and there is a natural boundary that negative population
numbers are not allowable.

In these circumstances transforming the state variable z(t) = h(x(t)) via an invert-
ible transform can help improve the accuracy of a differential equation solver. For
state variables that take positive values, the transformation zi (t) = log xi (t) is par-
ticularly useful. We can now express an equivalent differential equation for z using
the chain rule:

Dz(t) = D log x(t) = f(x, θ)/x(t) = f
(
ez(t), θ

) ∗ e−z(t),

where we have used a/b and a ∗ b to indicate element-wise division and multipli-
cation.

http://dx.doi.org/10.1007/978-1-4939-7190-9_3
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The effect of this transformation can most readily be seen for the SIR equations
from Chap. 4. By setting (S̃, Ĩ , R̃) = (log S, log I, log R), then we can translate
the equations from (4.8) on the log scale to be

⎡
⎣ DS̃
D Ĩ
DR̃

⎤
⎦ =

⎡
⎢⎣

−βeĨ

βeS̃ − γ

γ eĨ − δ

⎤
⎥⎦ .

The effect of this transform can be seen in Fig. 5.5—the positivity constraints of the
system are naturally enforced on the log scale. For log transforms, particularly of
populations, there is a natural description of the rates as being per population since
we divide by the population size.
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Fig. 5.5 The SIR model on the scale of the original variables (left) and on the log scale (right)

Of course, the easiest way to see that this can be effective in improving numer-
ical methods is to examine the stiff system we tried above in which we simply
have D log x = −15 or log x(t) = log x0 − 15t which Euler’s method will repro-
duce exactly.

The log transform is easily the most common transformation used to stabilize
the solutions to ordinary differential equations; both because positive state vari-
ables occur fairly commonly, and because it allows the original variables to change
over orders of magnitude relatively easily. For other constraints, alternative trans-
formations may be appropriate; we may apply a logistic transform to a variable that
takes values on [0, 1], for example. It may even be useful to transform two variables
together; although we will not use such examples here. Generically, if z(t) = h(x(t))
is invertible we can write

Dz(t) = ∂xh
(
h−1(z(t))

)
f
(
h−1(z(t)), θ)

)
,

http://dx.doi.org/10.1007/978-1-4939-7190-9_4
http://dx.doi.org/10.1007/978-1-4939-7190-9_4
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where ∂xh represents the Jacobian of hwith respect to x and into which we substitute
h−1(z(t)) and the product is a matrix multiplication. While this formulation appears
ugly, as we have seen above, it can result in quite simple dynamical systems models
and can be worth employing. We will also use this idea to get rough parameter
estimates in Chap. 7.

http://dx.doi.org/10.1007/978-1-4939-7190-9_7


Chapter 6
Qualitative Behavior

6.1 Introduction

Within the discipline of applied mathematics, a large part of dynamical systems
theory is concerned with the description of the qualitative behavior of dynamical
systems. By this we mean whether the system converges to a fixed point, diverges
to infinity, produces a consistent pattern of oscillations or does something more
complicated. Frequently, these qualitative features are the main points of interest,
especially if they change with parameters. For example, we want to know if a dis-
ease will become manageable, if oscillations between predators and prey will be
maintained indefinitely or if long term weather patterns are predictable.

The analysis of qualitative behavior in ODEs is not a completely foreign concept
for statisticians. In regression models, an important focus is on the interpretation of
parameters and the effect of interaction terms on model output. In the context of
dynamical systems, it is often qualitative features of solutions that are important to
understand. Indeed, in appliedmathematics modeling, the parameters themselves are
often of secondary interest, as is quantitative agreement with data. Rather, the goal is
to produce a plausible, if idealized, model that reproduces the types of behavior seen
in nature and when they occur. This, it is hoped, will yield a better understanding of
the mechanisms involved in the natural process.

This distinction – that qualitative rather than quantitative agreement with obser-
vations has been a focus of model development – is an important viewpoint. Firstly,
it explains the observation that many ODE models – particularly those that produce
complex dynamics – have poor quantitative agreement with observed data. This
should not be surprising: ODE models assume an idealized system in which unmea-
sured, external influences are removed and populations are so large that random
fluctuations can be ignored. It is only in these simplified contexts that a mathe-
matical analysis of qualitative behavior can be made. We hope that the conclusions
reached from this analysis can be applied, at least approximately, to more complex
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and realistic systems where small perturbations of the system can have long-lasting
effects on its quantitative behavior by, for example, shifting the timing of peaks in
system that exhibits cycles.

Much of the interest in these systems arises through the theory of bifurcations:
essentially when qualitative aspects of systems change when some parameter in
the system is altered. It is not our purpose here to provide a comprehensive guide
to bifurcation theory (there are numerous large books and a whole research field
devoted to this; see Kutznetsov 2004; Nagle et al. 2008; Alligood et al. 1997; Borrelli
and Coleman 2004 for example); we will instead describe some simple tools with
which to understand system behavior at a basic level. Our intention is to provide an
overview of some of the features that can be produced with these models, some basic
mathematical analyses of them, and a window into a way of thinking about models
that can be quite different from traditional statistical concerns.

The analysis of qualitative behavior can already be examined in the linear systems
analyzed in Chap. 3 where solutions to linear ODEs can be written down explicitly.
Recalling a linear first order differential equation in one dimension:

Dx = βx ⇒ x(t) = Ceβt ,

wesee that the behavior of the system transitions atβ = 0 between tending to zero and
blowing up to infinity. This change in behavior is termed a bifurcation which occurs
at β = 0. In the general homogeneous first order differential equation for a vector-
valuedDx = Bx, the differencebetween converging to zero anddivergingdepends on
the eigenvalues of B. For nonlinear systems, there is generally no algebraic expression
for solutions that we can so easily inspect and we instead approximate their behavior
locally by the behavior of a linearODE.However, because of their nonlinear structure,
they can exhibit a broader range of behaviors than we see in linear dynamics.

For the most part, this chapter will consider autonomous systems to simplify
the analysis. By this we mean that f(x, θ) does not change over time. In particular,
external inputs are not considered here. The reason for this is that this way we can
ensure that the evolution of x will not depend on the time at which it is started. More
explicitly, if x(t1) = x(t0) at some time points t1 �= t0, then x(t1 + s) = x(t0 + s)
at all times following them. If this occurs, we can guarantee that the system will
continue to cycle. Clearly, this is a strong restriction that excludes many systems
that are scientifically interesting. We will discuss ways in which this analysis can be
extended in Sect. 6.6.

In this chapter,wewill first examine thefixedpoints of a system–where the system
stays at the same value forever in Sect. 6.2 where we will characterize whether they
attract the system, or repel it. We’ll then examine cyclic systems – described as
having limit cycles in Sect. 6.3. Section 6.4 will describe some types of bifurcations,
or parameter values at which the qualitative behavior of the system changes. We
will discus some more complex features in Sect. 6.5 and non-autonomous systems
in Sect. 6.6. The reader should be aware that this chapter is summarizing at least a
course-worth of material in a very compressed fashion.

http://dx.doi.org/10.1007/978-1-4939-7190-9_3
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6.2 Fixed Points

The first point of analysis in any system is to understand its fixed points – that is, at
what values of x will the system remain at x? In the context of ODEs

Dx = f(x, θ)

the fixed points are given as solutions x∗ to the equation

f(x∗) = 0

since this condition is equivalent to x(t) having no derivative in t , meaning that once
the system hits x∗ it will remain there forever. The simplest such system is a one
dimensional linear ODE

Dx = α − βx

in which at x = α/β, Dx = 0.
As a two-dimensional example, consider the Lotka-Volterra equations discussed

in Chap.4 to describe the interaction of a predator y with a prey species x :

Dx = αx − βxy (6.1)

Dy = δxy − γ y .

Here it is easy to see that the solution (x, y) = (0, 0) is a fixed point: with neither
predators nor prey, the ecology will do nothing. There is another fixed point, however
at (x, y) = (γ /δ, α/β). However, as we will see below, neither fixed point tells us
much about trajectories that are close to them in this case. For this we require some
stability analysis.

6.2.1 Stability

Fixed points indicate the values of xwhere the systemwill not change. However, this
does not account for the behavior of the system near a fixed point. In some cases, if
the system is close to a fixed point it will be attracted to it; a ball rolling to the bottom
of a valley is a good, but imperfect, analogy. When this occurs, the fixed point is
stable: small perturbations from it will be attracted back to it. In other cases, even
a small perturbation will result in the system leaving the neighborhood of the fixed
point – as in a ball balanced on the top of a peak – and in this case the fixed point is
said to be unstable.

We can see thismost readily in solutions to stationary linear differential equations.
Recall from Chap.3 that the second order linear Equation 3.6

D2x = −β1Dx − β0x

http://dx.doi.org/10.1007/978-1-4939-7190-9_4
http://dx.doi.org/10.1007/978-1-4939-7190-9_3
http://dx.doi.org/10.1007/978-1-4939-7190-9_3
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has solutions of the form

x(t) = eβ1t/2

[
[C1 sin

(√
β0 − β2

1/2t

)
+ C2 cos

(
(

√
β0 − β2

1/2t

)]

if β2
1 < 4β0 and

x(t) = eβ1t/2

[
C1 exp

(√
β2
1/2 − β0t

)
+ C2 exp

(
−

√
β2
1/2 − β0t

)]

if β2
1 > 4β0. From here we can readily read off some behavior. First, if β1 > 0, x(t)

will tend to infinity at an exponential rate. Alternatively, if β1 < 0 the system shrinks
exponentially to zero. This makes zero either unstable or stable depending on the
sign of β1. Similarly, the system will exhibit periodic behavior (either shrinking or
growing) if 4β0 > β2

1 and will not oscillate otherwise.
Our solutions derived in Chap.3 can be used more generally. Recall that the

equation
Dx = Bx

has solutions given by

x(t) =
d∑

i=1

ci e
ui t vi

where the ui and vi are eigenvalues and eigenvectors of B and the ci are constants
that depend on initial conditions. Now, recalling that ui = ai + ibi we have

e(ai+ibi )t = eai t (cos(bi t) + i sin(bi t)) (6.2)

so that we can see that behavior is driven by the values of the ui . This yields the
following classification:

• If the real parts of the ui are all negative, the system converges to zero as t grows.
This makes the origin a stable fixed point.

• If the real parts of the ui are all positive, the system diverges from zero in all
directions. This makes the origin unstable.

• If some of the real parts of ui are positive and some are negative, the system
converges towards zero along eigen-directions associatedwith negative Re(ui ) and
diverges along eigen-directions associated with positive Re(ui ). This is referred
to as a saddle point. Note that unless a point lies exactly along an eigenvector, a
solution starting from there will ultimately diverge.

• If the real parts of any pair of eigenvalues are exactly zero, but there are non-zero
imaginary parts, the system produces circular behavior in the plane defined by
their eigendirections.

http://dx.doi.org/10.1007/978-1-4939-7190-9_3
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This classification is illustrated in Fig. 6.1 where we show stable, unstable and saddle
fixed points. Note that when there are non-zero complex parts, the system produces a
spiral inwards or outwards associatedwith the trigonometric terms in (6.2). However,
there are no spiral equivalents to a saddle node.

Stable Fixed Point Unstable Fixed Point Saddle Point

x1

x 2

x1

x 2

x1

x 2

Stable Fixed Point Unstable Fixed Point Limit cycle

x1

x 2

x1

x 2

x1

x 2

Fig. 6.1 Types of stability in linear systemsDx = Ax.Top row systems inwhich A has no imaginary
eigenvalues; a stable fixed point in which all trajectories converge along a straight line to the origin,
an unstable fixed point in which all trajectories diverge from the origin in a straight line and a saddle
point in which trajectories converge towards 0 in x2 but diverge in x1. Bottom row systems in which
A has imaginary eigenvalues resulting in spiral or circular motion; stable fixed point, unstable fixed
point and a limit cycle corresponding to eigenvalues with no real part

This works well for linear systems for which we can write down the global classi-
fication. However, for nonlinear systems we can only indirectly infer behavior. As a
way to try and understand this, we can consider the vector field nearby a fixed point
x∗. In particular, if we make a linear approximation to f(x, θ) (which will only hold
near x∗), we can use the behavior we observed above as a guide. In formal terms, we
write

Dx = f(x∗, θ) + ∂xf(x∗, θ)(x − x∗) + o
(‖x − x∗‖2) .

Here the Jacobian J = ∂xf(x∗, θ) is a square matrix with derivatives along columns
and components of f down rows:

[J]i j = d fi (x∗, θ)

dx j
.
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Substituting z = x − x∗ yields

Dz = Jz + o
(‖z‖2) .

Thus, close enough to x∗ the system behaves like the linear equations

Dz = Jz . (6.3)

andwewill say that x∗ is stable if the real parts of all the eigenvalues of J are negative,
and unstable if the real part of one is positive because locally, at least, x∗ attracts or
repels trajectories respective.

We will illustrate this with three examples:

Example 1: We examine an SIR system from Chap. 4 with a constant birth rate μ

and where we have dropped the recovered class R:

DS = μ − αSI

DI = αSI − β I

It is easy to see by first setting DI = 0 that there is only one fixed point for these
equations:

I ∗ = μ

γ
, S∗ = γ

α
.

If we now turn to the Jacobian of the system, we arrive at

J(S, I ) =
[−α I −αS

α I αS − γ

]
, J(S∗, I ∗) =

[−αμ

γ
−γ

αμ

γ
0

]
.

The eigenvalues of J(S∗, I ∗) are given by −αμ/2γ ± √
(αμ/2γ )2 − αμ which

we can readily verify are always negative. So the fixed point is stable. For some
values of the parameters, the eigenvalues may also be complex indicating a spiral
towards the fixed point as in Fig. 6.2; as functions of time, (S(t), I (t))will exhibit
damped oscillations. We should note that if we start with I = 0, then we always
have DI = 0 but DS = μ so the trajectory is simply described by S = μt which
is not attracted to the fixed point.

Example 2: Consider the van der Pol equations

Dw = a(w − w3/3 − v)

Dv = w/a

which are used to describe certain electrical circuits. We see that (0, 0) is a fixed
point of the system. If we examine the Jacobian

http://dx.doi.org/10.1007/978-1-4939-7190-9_4
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J(w, v) =
[
a − w2a −a
1/a 0

]
.

it is easy to see that at (w, v) = (0, 0) the eigenvalues are a/2 ± √
a2/4 − 1which

are always positive, so the origin is unstable. In fact, later on we will see that the
system exhibits cycles, but near the origin it tends to grow away from it.
This provides at least an initial description of the system; however it cannot be
guaranteed to hold outside of a local region. Global analysis of behavior can be
considerably more difficult as we see below.

Example 3: To illustrate when this can be problematic, we will return to the Lotka-
Volterra model, where

J(x, y) =
[

α − βy −βx
δy δx − γ

]
.

Examining the fixed points we have

J(0, 0) =
[

α 0
0 −γ

]
, J

(
γ

δ
,
α

β

)
=

[
0 −βγ/δ

αδ/β 0

]
.

where we observe that (0, 0) is a saddle node – it will be approached by predators
when there is very little of either species, but the prey will have explosive growth
– while the eigenvalues of J(γ /δ, α/β) are both purely complex. This indicates
that a limit cycle is likely, but needs to be examined more closely.

We have plotted vector fields along with example solutions of these differential
equations in Fig. 6.2. This figure also applies to the next section: the second two
examples both have stable limit cycles and we provide a means of showing this
formally below.

6.3 Global Analysis and Limit Cycles

While the stability of fixed points provides local information about the behavior of a
system, having an unstable fixed point does not guarantee that the systemwill diverge
to infinity. As we have seen empirically in the Lotka-Volterra system (6.1), the fixed
points are a saddle node and a limit cycle, but general solutions to the equations,
while periodic, are distinctly non-circular. In general, a global analysis of system
behavior can be very challenging – indeed it occupies a considerable part of the
research in applied mathematics – but we illustrate a few methods that will provide
some insight into system behavior.
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6.3.1 Use of Conservation Laws

We saw in the discussion of the continuously stirred tank reactor in Chap. 4 that
there are quantities that cannot be changed by system dynamics. These are known as
conservation laws; most famous among these are physical laws such as conservation
of energy in a system. Alternatively, in a closed chemical reaction, the total number
of atoms of the contents cannot be changed. In dynamical terms what this means is
there is a fixed quantity h(x, θ) that is a function of the state x and which does not
change. Therefore, x must travel along level sets of h.

More explicitly for any ODE if we can find h(x, θ) such that

Dh(x) = [∂xh(x)]T f(x, θ) = 0 ,

then we know that if h(x0, θ) = h∗ then x(t) must travel on the h∗ contour of h(x).
In particular, if the contours of h are closed, then we know that x(t) must either have
a stable fixed point on the contour, or it will have a limit cycle.

Returning to the Lotka-Volterra equations (6.1), if we construct

h(x, y) = −δx + γ log(x) − βy + α log(y) (6.4)

we have that

[
∂(x,y)h(x, y)

]T
f(x, y) =

[
−δ + γ

x

]
[αx − βxy] +

[
−β + α

y

]
[δxy − γ y] = 0 ,

so that the system will stay on the contours of h(x, y). Since we know that x(t) has
only a fixed points (0, 0) and (δ/γ, α/β), the system must trace out trajectories that
are contours of h(x, y). These are shown in right panel in Fig. 6.2 where we see
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Fig. 6.2 Vector fields for three example systems. Left an SI model with constant birth rate, arrows
indicate the vector field and solid lines an example solution. Center phase plane and vector field of
the van der Pol oscillator. Solid lines provide a solution of the ordinary differential equation, dashed
lines outline a bounding box from which the movement of the system is always into the interior
of the box. Right phase plane of the Lotka-Volterra model. Arrows indicate direction of motion,
contours are of the level sets of h(x, y) in (6.4). The system will stay on the contour on which it
starts

http://dx.doi.org/10.1007/978-1-4939-7190-9_4
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that a limit cycle emerging from our analysis; but one which depends on the initial
conditions.

This method, as with those below, cannot be applied to all systems and there is
no formula for deciding that a conservation law can be found. However, when it
can, this provides an elegant and useful method of describing system dynamics. We
should note that there have been some attempts at discovering conservation laws
from data (Schmidt and Lipson 2009; Schulte and Drew 2010). There are numerous
difficulties with this, including the possibility that conservation laws may exist only
when including unobservable state variables, and the means by which noise can
be filtered out. We will not examine these ideas further below, but they remain an
interesting area of open research.

6.3.2 Bounding Boxes

Another way to establish the existence of a limit cycle, at least in planar systems, is
to be able to bound the dynamics. Imagine that we can construct a box such that if
we start x at any point on the edge of the box, it immediately moves into the interior.
Then we know that once x(t) is inside the box, it can never escape.

Inside the box a number of behaviors can result. A stable fixed point will, of
course, attract trajectories. The more interesting case is when an unstable fixed point
can has a bounding box. In three or more dimensions, a stable limit cycle could
exist, or the system may produce more complicated or chaotic, dynamics that are
briefly described below. In two dimensions, however, a consequence of the Poincaré-
Bendixson theorem is that such systemsmust have a stable fixed point or a limit cycle
(e.g. Borrelli and Coleman 2004).

The middle panel in Fig. 6.2 illustrates this for the van der Pol system. We have
drawn an irregular hexagon on which the derivatives (Dx,Dy) all point into the
interior. It is somewhat tedious, algebraically, to demonstrate that this is, in fact, the
case.

There are further techniques for demonstrating the existence of stable limit cycles.
It might be possible, for example, to find a quantity that is not conserved, but is
bounded. Some of these can be obtained through the bifurcation analysis described
below – especially for fast-slow systems – others require analysis specific to the
system at hand. We will not go beyond these analyses here; the interested reader is
directed to a large literature, for example Kutznetsov (2004).

6.4 Bifurcations

Bifurcation analysis refers to changes in qualitative behavior as parameters of the
systemchange.Whilewewill present someof the simpler forms of this analysis, there
is an enormous literature describing complex forms of bifurcations. Our purpose here
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is to provide the basic language to describe qualitative changes in systems and an
understanding of the ideas and their application.

The very simplest bifurcation can be observed in the linear equation

Dx = βx (6.5)

with solutions x(t) = x0eβt where we see that there is a fixed point at x = 0 which is
stable if β < 0 and unstable if β > 0. In fact, for linear systems the only real changes
in behavior are from stable to unstable fixed points and in the direction (or existence)
of circular motion. However, nonlinear systems can exhibit a variety of behaviors as
a parameter is changed.

At this point,wemust answer the fundamental question: “Why should a statistician
care? Aren’t parameters fixed, anyway?” There are, we believe, three reasons that
make the material in this section relevant:

1. The statistical properties of parameter estimates can change depending on system
behavior. For a system with stable fixed points, for example, there are generally
no consistent estimators of initial conditions if observations are taken over an
increasing time domain.

2. Frequently, the parameter that is being varied can be controlled in an experiment.
In the example below, we examine the change in the qualitative behavior of the
FitzHugh-Nagumo equations for neural firing as the neuron is stimulated by an
electric current.

3. In some systems it can be useful to think of a slow-moving state variable as a
parameter and examine the behavior of the fast-moving variables with the slow-
moving variable fixed. This can allow us to understand the global behavior of a
system by breaking it down into lower-dimensional counterparts.

Through the rest of this section, we will briefly illustrate some of the most common
forms of bifurcation. The analysis of these is not different to extending the analysis
of stability given in the previous section to a range of possible parameter values.
However, the forms of bifurcation will be useful to understand and, as we will see,
we will sometimes be able to demonstrate that a limit cycle must exist close to a
bifurcation point. For the the sake of presentation, we will join numerous mathemat-
ical texts in presenting only the simplest examples of these, confining ourselves to
one dimension where possible. The same behaviors can be found in more realistic
systems at the cost of more complex mathematical calculations.

6.4.1 Transcritical Bifurcations

Transcritical bifurcations describe a system inwhich one ormore fixed points change
stability as a parameter changes. The linear system (6.5) is a simplest example: x = 0
is a fixed point which is stable for β < 0 and unstable for β > 0. In a more complex
setting, we will consider the one-dimensional system
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Dx = r x − x2

where we consider the behavior of the system as r changes sign. Here it is easy to
see that Dx = 0 at x = 0 and at x = r . By looking at the Jacobian r − 2x we see
that if r < 0 then the fixed point at x = 0 is stable since locally x(t) ≈ ert and x = r
is unstable. However, as r crosses 0, the x = 0 fixed point becomes unstable, while
the x = r fixed point becomes stable; effectively, the two fixed points swap stability.

Transcritical Saddle Node Pitchfork
Dx= rx− x2 Dx= r+ x2 Dx= rx− x3

r

x

r

x

r
x

Fig. 6.3 Three types of bifurcation. In each of the plots, the parameter r is given along the x-axis
and the fixed points – as they change with r – are represented by lines; solid lines indicate stable
fixed points while dashed lines are unstable. The directly of motion (vertical because there is one
state variable x at each value of r ) is indicated by the arrows. In each case there is a bifurcation at
r = 0 given by a vertical line where the behavior of the system changes

This can be illustrated on a bifurcation diagram in Fig. 6.3. We plot the fixed
points on the y axis against the parameter r on the x axis. Stable fixed points are
depicted by solid lines while unstable fixed points are given dashed lines. To aid an
understanding of behavior, we have also plotted arrows indicating the direction of
motion from any initial point.

6.4.2 Saddle Node Bifurcations

Saddle node bifurcations occur when an unstable system produces a pair of fixed
points, one stable and one unstable. A simple system for this is

Dx = r + x2

where if r > 0 there is no fixed point – Dx is always positive and the system increases
to infinity. On the other hand, as r becomes negative, there are fixed points at x =
±√−r and since the Jacobian is 2x the negative fixed point is stable while the
positive fixed point is unstable. This is depicted in the 2nd panel of Fig. 6.3.
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6.4.3 Pitchfork Bifurcations

There is no need to produce only one pair of fixed points at any given time. In
pitchfork bifurcations, one stable fixed points becomes three – two stable fixed points
with an unstable point between them. Continuing our set of univariate examples, this
is produced by the system

Dx = r x − x3

Here, if r < 0 the only solution to Dx = 0 is x = 0. The Jacobian of the system is
r − 3x2 so the system is stable at the fixed point.

However, as we move to r > 0, we observe two more fixed points occurring
at ±√

r . Moreover, since r > 0, the x = 0 fixed point has now become unstable,
while the two new fixed points are both stable (J (x) = −2r ); note that for univariate
differential equations, pairs of stable fixed points must have an unstable fixed point
between them. The third plot in Fig. 6.3 provides a graphical representation of this
behavior.

It is easy to see that reversing the signs of this system (to give Dx = x3 − r x),
we can produce the opposite behavior – an unstable fixed point at r < 0 becomes
stable, but surrounded by two unstable points at ±√

r . This creates a region of
stability between the two unstable fixed points and is known as a subcritical pitchfork
bifurcation (as opposed to the supercritical case above).

6.4.4 Hopf Bifurcations

Hopf bifurcations have a form that gives us some extra insight into system behavior,
and tend to causemost excitement in appliedmathematicians. These describe a stable
fixed point becoming unstable and producing a stable limit cycle along the way.

To demonstrate this, we’ll consider van der Pol system expressed in terms of two
state variables (we need at least two dimensions for a system to cycle at all)

Dx = −y + (μ − y2)x

Dy = x .

Here we see that the origin is a fixed point (this tends to happen in systems developed
for mathematical analysis; it’s less common in systems that describe the real world)
and the jacobian is

J (x, y) =
[

μ −1 − 2yx
1 0

]
, J (0, 0) =

[
μ −1
1 0

]
,

which has eigenvalues μ/2 ± √
μ2/4 − 1 which are always of the same sign as μ.

Moreover, atμ = 0 the eigenvalues are purely imaginary:±i . So asμ passes through
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zero the origin goes from being a stable fixed point to an unstable fixed point via a
pair of purely imaginary eigenvalues. This is illustrated in Fig. 6.4 where the limit
cycle is depicted in the final figure by drawing it in centered at each value of μ.

μ =−0.5 μ = 2 Bifurcation Diagram

x

y

x

y

mu

st
ab

ili
ty

Fig. 6.4 AHopf bifurcation in the van der Pol system. Left atμ < 0 the fixed point is stable and all
trajectories spiral into it.Middle forμ > 0, there is a stable limit cycle that attracts trajectories from
both its interior and exterior. Right bifurcation diagram of the stability of the system as μ changes:
the limit cycle around the unstable fixed point at the origin is depicted by plotting its maximum and
minimum y value and depicting the cycle as it changes while scaling x and re-centering it at x = μ

This behavior – a fixed point changing into a limit cycle – is called a “Hopf
bifurcation” due to the Hopf bifurcation theorem which says, in a more general
context, that if a fixed point moves with θ from being stable to unstable by having
one pair of eigenvaluesmove to being purely imaginary λ = ±iω (while the rest have
negative real parts) then close to the bifurcation, either the unstable fixed point must
be surrounded by a stable limit cycle, or the stable fixed point must be surrounded
by an unstable limit cycle. Close to the bifurcation, the cycle will have period ω/2π
and its amplitude will shrink to zero at the bifurcation point.

The example here is described as a supercritical Hopf bifurcation; the opposite
case (anunstable limit cycle surrounding a stablefixedpointwhichbecomesunstable)
is described as subcritical. The Hopf bifurcation theorem is one of the easiest means
of demonstrating the existence of a limit cycle in more than two dimensions and
these are some of the most commonly studied features in dynamics. It is limited,
though, in applying only very close to a bifurcation point and only when a single
pair of eigenvalues has real part crossing zero.

6.5 Some Other Features

Besides bifurcations, differential equations can exhibit some other qualitative fea-
tures. Chaos, of course, gets its share of publicity. It is also possible to understand
systems when some states move much more slowly than others, or as input-output
systems. As yet, we have seen little work on the effect that these features have on
statistical methods; we’ve also seen little by the way of statistical procedures aimed
at investigating them. Below, we provide brief, heuristic, introductions to each.



96 6 Qualitative Behavior

6.5.1 Chaos

The notion of chaos has been one of themost influential developments in 20th century
mathematics. Few have not heard of the “butterfly effect,” – that a butterfly flapping
its wings in Brazil can cause a hurricane in Florida – coined by Edward Lorenz as
a description of the consequences of chaotic systems. At an intuitive level, chaotic
systems have complex, non-repeating trajectories that nevertheless remain within a
closed volume and exhibit high sensitivity to initial conditions. That is, the system
neither diverges, has fixed points or stable limit cycles. This book will not focus
on chaotic systems – although there are some famous real-world examples – but it
deserves some attention as one of the most interesting consequences of dynamics.
Our discussion in this section is therefore deliberately informal; more sophisticated
presentations of chaos are provided in Alligood et al. (1997).

The most famous example of this is the three-dimensional system1 named for
Lorenz himself:

Dx = σ(y − x)

Dy = x(ρ − z) − y (6.6)

Dz = xy − βz .

This model was originally produced as a simplified system describing atmospheric
dynamics, where Lorenz observed complex behavior with high sensitivity to start-
ing values. An example of the trajectories produced by this system at (σ, ρ, β) =
(10, 28, 8/3) is given in Fig. 6.5. Here we have also plotted the divergence of x from
two points that are 0.01 apart – for a while they appear to track but we can see that
they end up in different loops at different times after a short while.

In terms of dynamical analysis, for ρ < 1 there is a single fixed point which
goes through a saddle node bifurcation at ρ = 1 creating two stable fixed points.
These each then pass through a Hopf bifurcation, creating two stable limit cycles
that increase in diameter quickly as ρ increases. These start interacting so that at
ρ = 28 the classical chaotic picture emerges. In the top right panel Fig. 6.5 solutions
spiral out from an unstable fixed point until they hit a critical value at which point
they switch to spiraling out from the other fixed point. The number of rotations
around each fixed point between transitions appears random but in fact proceeds
from the deterministic evolution of the Lorenz equation. The bifurcation behavior is
depicted in the bottom right panel of Fig. 6.5 where we have indicated for the size
of the limiting orbit by the maximum and minimum value of x . Because this is a
chaotic system, this very approximate calculation can be quite inaccurate, hence the
jagged-looking line.

1It is possible to show that differential equations must have at least a three-dimensional state
variable to show chaos. This is because a trajectory cannot intersect itself; in two dimensions you
either proceed to a fixed point or end up on a limit cycle.
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Fig. 6.5 The Lorenz system (6.6). Top left a time-series plot of y and z. Bottom left two time series
of x with starting points differing by 0.01 demonstrating the sensitivity of the system to initial
conditions. Top right a three-dimensional phase portrait of the system. Bottom right a bifurcation
diagram

Whether a system is chaotic is measured by it’s Lyapunov exponents. At an intu-
itive level, thesemeasure howquickly trajectories starting from x0 and x0 + ε diverge
for small ε. These are given on a log scale, so if any Lyapunov exponent is positive,
the trajectories move away from each other exponentially quickly. This happens in
systems that diverge but whenwe can also show that the system is contained in a finite
region. The only way for this to occur is if the trajectories follow a complicated path
that never intersects itself (hence chaos can only happen in three or more dimen-
sions). The seeming contradiction between trajectories diverging from each other
exponentially quickly and yet remaining within a finite region occurs because the
divergence is measured in the limit as ε → 0 so we really observe that the derivative
∂x0x(t, x0, θ) grows exponentially fast as t increases.
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Besides producing appealing pictures, what are the implications of this behavior
for statistics? The first is predictability; since we generally don’t really know initial
conditions perfectly, the sensitivity of chaotic systems to these conditions means
that we can only predict very short time-periods ahead. Another consequence is for
numerics: the introduction of numerical errors in solving differential equations can
mean that we end up quite far from the true trajectory of the system. For statistics, the
implications of this behavior have not been very carefully analyzed. On one hand,
sensitivity to initial conditions should mean that we can estimate these very well
indeed. On the other, the fact that our numerical solutions to these ODEs might not
correspond to the initial conditions we think we are using may make us skeptical of
this.We are not aware ofmuchwork about the implications of all these considerations
for the problem of estimating parameters.

6.5.2 Fast-Slow Systems

The analysis of dynamical systems can be aided by separating time scales between
fast-moving and slow-moving state variables. We assume that the fast-moving vari-
ables are always at their limiting behavior – treated as though the slow-moving
variables are fixed – we can then break the analysis into lower dimensional and
(hopefully) understandable components.

We will illustrate this with a system that is similar to the van der Pol equations
above. In this case we take a two-dimensional system

Dx = r x − x3 + y

Dy = εx

where ε is intended to be small so that y moves slowly relative to x . In this system
we can then analyze the behavior of x as though y was fixed and only then exam-
ine y. Here we refer to y as being the slow manifold and y as the fast manifold.
Although these correspond to individual state variables, in more complex systems
similar analyses can be carried out in which the slow manifold is simply some lower
dimensional subset of the state space.

The dynamics of the system are depicted in Fig. 6.6. We observe that for y >

2r
√
r/3

√
3, Dx = 0 only at a single point with x < −r and in particular, the fixed

point (for each given y) is stable. Similarly for y < 2r
√
r/3

√
3, there is only one

fixed point at x > r . However, as y moves towards zero, the system undergoes a
saddle node bifurcation with a new pair of fixed points appearing at x = ∓√

2r
when y = ±r

√
r/2

√
2. For y ∈ [−r

√
r/2

√
2, r

√
r/2

√
2] the system has three fixed

points with the outer-two being stable and the inner being unstable.
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Now, consider the behavior of y(t) if we assume that x(t) is always at its fixed
point for each value of y. Assume, to begin with, that y ∈ [−r

√
r/2

√
2, 2

√
2r ] and

x is at its positive stable fixed point. Since Dy = −εx , y(t) will slowly decrease in
value until it crosses −r

√
r/2

√
2; at this point the system in x crosses the saddle-

node bifucation so that the only fixed point is at x < −√
r2. We can assume that x

moves to this point “instantaneously” as far as y is concerned; Dy is now positive
and y(t) will increase. Since x(t) is at the negative stable fixed point, it will stay
there until y passes the saddle node bifurcation at y = 2

√
2r at which point the

negative fixed point disappears, x moves to the positive fixed point and y(t) starts to
decrease again. The result of this is the limit cycle shown in Fig. 6.6; when plotted
over time it exhibits a “square wave” with time spent on the fast manifold appearing
as near-vertical transitions between slower dynamics.

6.6 Non-autonomous Systems

So far, this chapter has considered only systems who’s dynamics do not change over
time. This makes analysis easy because the future behavior of x just depends on its
current value. However, we are frequently faced with systems in which this is not
the case. These represent an input-output system in which an input function u(t) is
transformed into output x(t). Many of our initial examples in Chap. 1 took exactly
this form.

In linear systems, explicit formulae for how x(t) transforms the input are given
in Chap. 3 where we generally observe a smoothing out of inputs. In nonlinear
systems we generally cannot be so explicit. For these problems, the most direct way
to understand system responses to inputs is to assume that the inputs change much
more slowly than x(t) responds to them. Just as in fast-slow systems, we can then
assume that x(t) is always at its equilibrium behavior at each value of the input.

As an example, we will depart from this chapter’s use of very simple models to
examine the Hodgkin-Huxley model of neuron firing (Wilson 1999). This model,
which earned its originators the Nobel Prize in 1963, has a four-dimensional state
vector that describes the flow of a number of different chemical ions across the
membrane of a neurone:

Dv = C
[
I (t) − GNam

3h(v − ENa) − GKn
4(v − EK ) − GL(v − EL)

]
Dm = 0.1(v + 40)

1 − e−0.1(v+40)
(1 − m) − 4e−(v+65)/18m

Dh = 0.07e−(v+65)/20(1 − h) − 1

1 + e−(v+35)/10
h

Dn = 0.01(v + 55)

1 − e−0.1(v+55)
(1 − n) − 0.125e−(v+65)/80n .

http://dx.doi.org/10.1007/978-1-4939-7190-9_1
http://dx.doi.org/10.1007/978-1-4939-7190-9_3
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Fig. 6.6 A fast-slow system
in which the dynamics of x
are much faster than those of
y. Lines indicate the slow
manifold where Dx = 0 for
each value of y, solid lines
indicate stable fixed points
while dashed lines indicate
unstable fixed points. The
arrows indicate the vector
field in x for each y. Dots are
equally-spaced values of an
example trajectory. Where x
is negative, y is increasing
slowly, where it is positive, y
is decreasing slowly
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In this model the voltage v across the neurone membrane is measured – it is also the
primary state variable of interest. The voltage consists of an input current I (t) as well
as currents associated with Sodium (Na) and Potassium (K) ion channels along with
a generalized “leak” of current (L). The terms in the first equation are just Ohm’s law
stating that each of these voltages will tend towards their equilibrium value given by
ENa , EK and EL , respectively.

The rate at which they do so, however, depends on the specific conductances of
both the sodium and potassium ion channels. These are themselves parameterized
by quantities m, h and n, representing the fractions of potential channels that are
able to allow ions to pass, and these variables themselves respond dynamically to
the voltage. In the case of the potassium channel, for example, we may need four
copies of a certain type of protein to be in the right configuration (hence the n4 term
occurring in Potassium conductance). The number of proteins in this configuration,
however, changes depending on the voltage and the configurations of the proteins
around it. The constantC in the equation for v is intended to indicate that vmoves on
a “fast” time scale relative to the other variables. It should be noted that this system
is quite difficult to analyze – fixed points must be found numerically, for example.
However, several simplifications can be made that make the system two dimensional
and hence more readily understood – see Wilson (1999) for a details.

These equations include an input current I (t). When I (t) is zero, the sys-
tem can be shown to have a stable fixed point at the commonly used parameter
values (ENa, EK , EL ,GNa,GK ,GL ,C) = (50, ,−77,−54.4, 120, 36, 0.3, 1).
However, as I (t) increases, the system undergoes at Hopf bifurcation producing
a stable limit cycle at around I = 6.5. This can be seen in Fig. 6.7. The input shown
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in the left panel is typical of neuron experiments, an input voltage is turned on, caus-
ing the neuron to fire repeatedly, allowed to remain on for a while and then turned
off at which point the stable fixed point takes-over the dynamics.

However, this interpretation should be treated with some caution: the plot on
the right demonstrates behavior (over a longer experiment) when I (t) is increased
linearly up to the value 10. In this case, v tracks the fixed point closely until it becomes
unstable, when it takes a long period (in neural terms) to spiral out to the limit cycle.
When the voltage is decreased linearly and the fixed point re-appears, however, it
finds it fairly quickly. The distinction here is that the jump from I = 0 to I = 10 in
the left panel leaves the system close to the limit cycle already. In fact, by increasing
I slowly enough, the spike train can be suppressed for very long periods.

The alternative, in which I (t) changes as fast or faster than the dynamics of x(t)
require specialized analysis and depends on the characteristics of I (t) (sometimes,
we can think of I (t) as having its own dynamics).

6.7 Commentary

In this chapter we have provided an overview of mathematical methods to examine
the qualitative features of dynamical behavior. There is an enormous literature on
this and the material here is by no means comprehensive. This aspect of dynamical
systems modeling has been enormously important in motivating and justifying many
of the systems currently in use and we believe that anyone wishing to examine the
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Fig. 6.7 Two simulated single neuron experiments using the Hodgkin-Huxley model. In both cases
the input current is given in the lower plot. The left hand plot presents a standard neural experiment
in which the current is switched on, and then switched off again and the system responds with a
stable fixed point or limit cycle according to the value of I . In the right hand plot, I is increased
linearly in time and the system tracks the fixed point and takes a long time to spiral out to the limit
cycle after the bifurcation has been crossed
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combination of differential equations and data should understand and appreciate the
power of these approaches.

Nonetheless, the statistical modeler should also understand and appreciate their
limitations, and these are numerous. First of all, the analysis only deals with the
asymptotic properties of dynamical behavior; the long-run trajectory of the model.
Most systems approach this trajectory with an exponential rate, so in some sense
this ought to be reasonable. Nonetheless, we often find that transients – dynamical
behaviors on theway to asymptopia – are often both informative and themain portion
of a trajectory that we observe. Consider, once again, the simple linear system (6.3).
If we let t → ∞ it isn’t difficult to see that observations will yield increasingly little
information about β; indeed there are no consistent estimates of β in this situation.
It is the transient behavior as x(t) tends to its fixed point that is informative about
the parameters. A second important limitation of this analysis is that it often only
applies very near to bifurcation points. The Hopf bifurcation theorem, for example,
does not specify how far away (in parameter space) from the bifurcation a limit cycle
will exist, nor how large around the now-unstable fixed point it can be. We can refine
our analysis to examine the phase relations in the cycle (Cortez and Ellner 2010) but
the application of this result to any particular set of parameters remains heuristic. In
general, numerical methods, despite their potential flaws, must be used to investigate
actual behavior.

The final critique of these methods is that they apply to very simplified systems
that frequently do not fit the observed data very well. They often mimic behavior
well in a qualitative sense, but a statistician would not want to plot both the ODE
solution and real-world data on the same graph. This is simply because these systems
tend to be highly simplified idealizations of a more-complex reality: they presume
convenient forms, few state variables and isolation from the broader world. None of
these hold in reality and while we can again hope that a tractably-analyzable ODE
does, in fact, capture the essential behavior of a model, this again remains – at least
initially – a heuristic argument.



Chapter 7
Nonlinear Least Squares or Trajectory
Matching

7.1 Introduction

Chapters3–4 in this book have focussed on an overview of differential equation
models, the mechanistic thinking behind their development and ways to work with
themmathematically.We can nowmove on to discussing how theymay be reconciled
with real-world data. Largely, our task will be obtaining estimates of parameters
from data and providing confidence intervals for them, but we will also touch on
diagnostics and model criticism as well as experimental design.

We assume that the reader is familiar with the statistical concepts of estimation,
hypothesis testing and Bayesian analysis; we have attempted to briefly provide some
background to these as they come up but the reader is also directed to the many text
on statistical inference. For this chapter, texts on nonlinear regression analysis such
as Bates andWatts (1988) or Seber andWild (2003) are particularly useful resources.

In this chapterwe takeup theoldest and still themost popularmethod for parameter
estimation, referred to in many texts as “nonlinear least squares” or by the acronym
NLS. The modelling context is the standard ordinary differential equation initial
value problem of the form

Dx(t) = f(t; x(t), θ) and x(t0) = x0 (7.1)

where x(t) is a vector containing the state or trajectory values xi(t); i = 1, . . . , d.
Although in many situations the initial state x0 of the system can be considered

as known, we will face up to the challenge that this may not be so, and therefore that
the initial state vector can itself be an additional set of parameters to be estimated.
We therefore use the var theta symbol, ϑ , to indicate the subset of (θ, x0) that must
be estimated throughout this chapter and suppress any elements of θ that are known,
so that it is understood that x(t;ϑ) = x(t; θ , x0) and that all the elements of ϑ must
be estimated. It will occasionally be important to distinguish between θ and x0 and
we return to using these separately where that is the case.

© Springer Science+Business Media LLC 2017
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A great simplification in notation is achieved if we begin by considering only a
single equation, and we will take advantage of this framework in this and the next
two sections, and then in Sect. 7.4 discuss what needs to be considered in moving
to systems of equations, where only a subset of the system may be observed. That
is, for now we will replace x(t) by x(t). Note, too, that we also assume a first order
equation, so that only a single initial value x0 is associated with the equation. That
is, a single higher order differential equation will be treated later in the chapter as a
system of first order equations.

Although the techniques in this chapter are generally described as nonlinear least
squares (NLS), we feel that the term trajectory matching is more descriptive of this
process as applied to differential equations; and we contrast it to gradient matching
in the next chapter. In this chapter we provide an overview of numerical methods,
and some of the hazards, involved in trajectory matching. We also examine ways to
estimate uncertainty in parameters that are obtained from data.

The parameter estimation strategy in this chapter can be characterized as nonlinear
regression. That is, the ordinary differential equation solution x is approximated by
x̂ computed using the methods in Chap.5 at each set of parameters θ and initial
conditions x0. The parameters are manipulated so as to maximize agreement with
the data. Here, as in most of the nonlinear regression literature, agreement with the
data is expressed in terms of the sum of squared errors criterion

SSE(ϑ) =
n∑

j=1

(
yj − x(tj,ϑ)

)2
. (7.2)

However, not much in the theory of nonlinear regression changes if we use other
loss functions such as negative log likelihood, as we will do in Sect. 7.4 and Chap.10
where we will bypass the numerical approximation entirely.

The least squares fitting criterion does bring some simplifications in terms of both
computation and inference, and we will discuss these in the next two sections. The
Gauss–Newton method is the most commonly used technique for optimization in
non-linear least squares problems and we take this up in the next section. These
methods can be used both for minimizing squared error or maximizing log likeli-
hoods as well as obtaining confidence intervals for parameters. However, ordinary
differential equation models can pose particular problems; likelihood surfaces can
be highly multi-modal and often have discontinuities associated with bifurcation
points. Under these circumstances, alternative numerical optimization methods can
be employed; most numerical software packages provide a suite of options and the
interested reader is referred toKincaid andCheney (2002). Ideas from the collocation
methods reviewed in Chap.5 can also be used to help to smooth out the roughness
surface, and we overview these approaches and why they are helpful.

Below, Sects. 7.2–7.4.4 provide a description of nonlinear least squares as applied
to differential equation models to estimate parameters and obtain confidence inter-
vals first in a one-dimensional case and then for multi-dimensional observations.
While this approach is mathematically elegant, it has several potential shortcomings.

http://dx.doi.org/10.1007/978-1-4939-7190-9_5
http://dx.doi.org/10.1007/978-1-4939-7190-9_10
http://dx.doi.org/10.1007/978-1-4939-7190-9_5
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These include optimization problems, finding good initial parameter guesses, and
identifiability. The final sections deal with related methods: Bayesian approaches
are undertaken in Sect. 7.5, specialized optimization approaches in Sect. 7.6 and fit-
ting features of the data in Sect. 7.7. We end with the case study of head impacts
presented in Chap.1.

7.2 Least Squares with Gauss–Newton Methods

Westart this chapter using themost readily-analyzablemodel for observations in non-
linear regression. In this section, we assume that we have a univariate observation y
corresponding to state variable x at time tj along with observational error:

yj = x(tj, θ , x0) + εj. (7.3)

The minimization of error sum of squares (7.2) can be motivated by the assumption
that the errors or residuals εj are independent of each other as well as the trajectory x
itself. It is also implicitly assumed that the variance of the εj’s is finite. One admits,
however, that the least squares criterion is usually chosen for much more mundane
reasons, such as the ready availability of software.

Unfortunately, we can seldom find the minimizing ϑ analytically, and therefore
must resort to numerical optimization methods. The most common way to minimize
SSE(ϑ) is with a Gauss–Newton algorithm because of its reliability and reasonably
fast convergence. The method also has the useful property of making it easy to obtain
estimates of standard errors for ϑ .

We start with an initial guess ϑ0. Taylor’s theorem says that we can approximate
SSE(ϑ) by a quadratic function of ϑ given in terms of its derivatives at ϑ0:

SSE(ϑ) ≈ SSE(ϑ0) + ∂ϑSSE(ϑ0)(ϑ − ϑ0) + 1

2
(ϑ − ϑ0)T∂2

ϑSSE(ϑ0)(ϑ − ϑ0),

(7.4)
where ∂ϑSSE(ϑ0) is the gradient vector at the initial guess and ∂2

ϑSSE(ϑ0) is the
corresponding Hessian matrix.

This quadratic approximation to SSE(ϑ) is minimized at

ϑ1 = ϑ0 − [
∂2
ϑSSE(ϑ0)

]−1
∂ϑSSE(ϑ0) (7.5)

provided that the Hessian matrix is positive definite, meaning that it has positive
eigenvalues. Thus, ϑ1 is new guess for repeating the procedure. This is the Newton–
Raphson method for minimizing a function (Nocedal and Wright 2006), and the
basic idea is illustrated in Fig. 7.2 for an analysis of the refinery data in Fig. 7.1.

For the least squares criterion the derivatives are:

http://dx.doi.org/10.1007/978-1-4939-7190-9_1
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∂ϑSSE(ϑ0) = −2
n∑

j=1

∂ϑx(tj,ϑ)
(
yj − x(tj,ϑ)

)

= −2∂ϑx(ϑ)T (y − x(ϑ))

where y is the vector of length n containing observations (yj) and x(ϑ) is the vector
of (x(tj,ϑ) values. The matrix

J(ϑ) = [J(ϑ)]jl = dx(tj,ϑ)

dϑl
,

having n rows and a column for each parameter in ϑ , is often called the Jacobian
matrix. We can write out the Hessian matrix using J(ϑ) as

∂2
ϑSSE(ϑ0) = −2J(ϑ)TJ(ϑ) − 2∂2

ϑx(ϑ)T (y − x(ϑ)).

At the true ϑ , where yj − x(tj,ϑ) = εj, the second term is a weighted average of
mean-zero random variables, and therefore should be small near the true ϑ0. Con-
sequently omitting this term will be a minor perturbation of the complete Hessian
matrix. Moreover, the first term is a symmetric cross-product matrix, which by its
nature is likely to be positive definite. The result of dropping the second term is a
simple algorithm based only on first derivatives of x(t;ϑ)with respect to parameters.
It’s steps are the following:

1. Initialize ϑ = ϑ0.
2. Do until convergence:

H(ϑk) = J(ϑk)TJ(ϑk)

g(ϑk) = J(ϑk)T (y − x(ϑk))

ϑk+1 = ϑk − H(ϑk)−1g(ϑk).

A good implementation of this algorithm should include checks that each step
actually reduces SSE(ϑ), and may include a search for a minimum along a line in the
step direction −H(ϑk)−1g(ϑk). The Levenberg–Marquardt algorithm (Nocedal and
Wright 2006) replacesH(ϑk) withH(ϑk) + γkI where γk is chosen each iteration to
ensure both that each step improves the objective function as well as making sure that
the matrix can be inverted. It is also advisable to add error-catching codes in case the
algorithm moves parameter estimates to values for which numerical approximations
to x(t;ϑ) fail.

This algorithm does not, of course, terminate at an exact minimum and we there-
fore need to decide when we have found estimates that are “good enough”. We can
judge this in a number of ways:

1. There has been little movement in parameter estimates: ‖ϑk+1 − ϑk‖ < δ1,
2. The objective function has not improved much: SSE(ϑk) − SSE(ϑk+1) < δ2.
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3. The gradient of the objective function is small: ‖∂ϑSSE(ϑ)‖ < δ3.

Generally, tolerances can be set for each one. Termination criteria for the algorithm
can require one or more than one of these tolerances to be met. Nocedal and Wright
(2006) recommend at least requiring a tolerance on the gradient.

Here we emphasize an important principle in nonlinear least squares: that
parameters be transformed so that they have comparable magnitudes. Otherwise,
the change in parameter estimates, or the size of the gradient can be dominated by
one parameter having a large magnitude. Gauss–Newton methods can also experi-
ence numerical problems when gradients with respect to different components of ϑ

have very different scalings. Parameters can be made numerically comparable by
linear re-scaling, or using log(ϑ) in place of ϑ when the natural parameter should be
positive. Likewise, the components of x themselves should be of comparable sizes.
For example, when working with the SIR model, the susceptible population may be
orders of magnitude larger than the infected populations, in which case transforming
the equation to its logarithmic form is advisable.

An important point to note here is that this algorithm assumes thatwe can calculate
J(ϑ) = ∂ϑx(ϑ). This is a non-trivial problem, which we examine in the next section.

7.2.1 Sensitivity Equations

To implement the Gauss–Newton algorithm, we need to calculate J(ϑ). This is made
difficult because we have only implicitly defined x(t;ϑ) through the initial value
problem (7.1). We therefore do not, in general, have an algebraic expression to
differentiate. As a first approach, it is possible to use a finite difference to numerically
approximate

dx(t;ϑ)

dϑl
≈ x(t;ϑ + δel) − x(t;ϑ)

δ

where el is a vector of zeros with a one in the lth position and δ is a small posi-
tive number. However, these approximations can be unstable, especially if the ODE
solver you are using includes adaptive strategies to choose step sizes. In these cases,
numerical artifacts can be a large part of the resulting gradient.

Instead, we define the sensitivity equations by considering the time-derivative of
J(t;ϑ). To do so, we re-expand ϑ into θ and x0 since they must be treated differently.
First we observe that by changing the order of differentiation and applying the chain
rule

D [∂θx(t; θ , x0)] = ∂θ f (t; x(t; θ , x0), θ) + ∂xf (t; x(t; θ , x0), θ)∂θx(t; θ , x0)

and similarly

D
[
∂x0x(t; θ , x0)

] = ∂xf (t; x(t; θ , x0), θ)∂x0x(t; θ , x0).
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Here, we have written out differential equations that treat J as additional state vari-
ables whose solutions can be approximated alongside the original equations within
a numerical solver. Before we can simply solve these extended equations, however,
we need to specify initial conditions. This can be done a priori. Since x(t0) = x0,
x(t0) does not depend on the parameters θ so that

∂θx(t0; θ , x0) = 0

where 0 is a matrix of zeros. Similarly,

∂x0x(t0; θ , x0) = I

where I is the identity matrix.
Putting all these together we have the expanded set of differential equations

D

⎛

⎝
x

∂θx
∂x0x

⎞

⎠ =
⎛

⎝
f (t; x, θ)

∂θ f (t; x, θ) + ∂xf (t; x, θ)∂θx
∂xf (t; x, θ)∂x0x

⎞

⎠

with corresponding initial conditions

⎛

⎝
x(t0)

∂θx(t0)
∂x0x(t0)

⎞

⎠ =
⎛

⎝
x0
0
I

⎞

⎠ .

We illustrate this process with one of the simplest systems we have available.
Figure7.1, illustrates data fromanoil refinery, described inChap.1 and also displayed
in Fig. 1.2. Here we measure level in a large tray. When the outflow is turned off, the
tray fills to a new level, tending towards it exponentially. To describe this behavior,
we write that

Dx = β0 + β1x + β2u (7.6)

in which u is represented by the step change in the flow into the tank. We expect β1

to be negative, so the fixed point for this equation is (β0 + β2u)/β1. In this system,
u is stepped from 96.5 down to zero at t0 = 66 min. Formally, the solutions to (7.6)
are given by

x(t) = x0e
β1t − β0

β1
(1 − eβ1) − 96.5 ∗ β2

β1
eβ1t(e−β1(t)min(t,t0) − 1)

which can be differentiated with respect to the parameters and x0. We can also obtain
this by solving the sensitivity equations

http://dx.doi.org/10.1007/978-1-4939-7190-9_1
http://dx.doi.org/10.1007/978-1-4939-7190-9_1
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D

⎛

⎜⎜⎜⎜⎝

x
∂β0x
∂β1x
∂β2x
∂x0x

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

β0 + β1x + β2u
1 + β1∂β0x
x + β1∂β1x
u + β1∂β3x
β1∂x0x

⎞

⎟⎟⎟⎟⎠

starting from initial conditions

D

⎛

⎜⎜⎜⎜⎝

x
∂β0x
∂β1x
∂β2x
∂x0x

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

x0
0
0
0
1

⎞

⎟⎟⎟⎟⎠

(since this is a linear system, the reader can verify for themselves that we arrive at the
same function either way). Figure7.1 provides the estimates we get by minimizing
squared error using these derivatives, alongwith solutions to the sensitivity equations.
The plot in Fig. 7.2was produced by changing the value ofβ1 away from the optimum
values found below.

0 50 100 150 200

21
5

21
7

21
9

Le
ve

l

0 50 100 150 20019
.9

20
.2

time

F
lo
w

∂ β
0x

∂ β
1x

∂ β
2x

time

∂ x
0x

Fig. 7.1 Fit of the first order forced linear differential equation to the refinery data. Left the data
and fit at the estimated parameter values β0 = 9.24, β1 = −0.0229, β2 = −0.212, x0 = 215.27
found by minimizing squared error. The lower panel shows the forcing flow for the tray. Right
solutions to the sensitivity equations with respect to each parameter and x0



110 7 Nonlinear Least Squares or Trajectory Matching

−0.024 −0.022 −0.020 −0.018

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

β1

S
S

E
β1

i

β1
i+1

Squared Error
Quadratic Approximation at β1

i

Quadratic Approximation at β1
i+1

Fig. 7.2 An illustration of theNewton–Raphson algorithm for estimatingβ1 in the refinery example.
The solid line gives squared error as β1 is varied, with x0, β0 and β2 held fixed. An initial guess is
β0
j = −0.0018 and the dashed line provides a quadratic approximation to it. β i+1

1 is at the minimum
of this quadratic approximation and the dotted line gives a new approximation to SSE(β1). This
successively approaches the point marked with asterisks: the actual minimizer

7.2.2 Automatic Differentiation

Sensitivity equations calculate derivatives of the theoretical process with respect
to parameters and initial conditions. However, they come at the cost of increasing
the dimension of the system that must be estimated. Further, they don’t account
for the numerical approximation of ODEs. We have also seen that employing finite
differences directly can be inaccurate.

An alternative means of taking a derivative is to employ Automatic Differentiation
(AD) (Neidinger 2010). The idea of AD is that, rather than using an analytical
expression for the derivative, the function is evaluated in terms of the numerical
operations performed by the computer. That is, if we write down an expression for
the calculations that the computer makes in approximating x(t;ϑ), for example, then
we can apply the chain rule to this expression to obtain its gradient with respect to
ϑ . These ideas can be used to obtain sensitivities, but the reader will notice that our
real target is ∂ϑSSE(ϑ) which was obtained from the sensitivity equations via the
chain rule! It therefore makes sense just to obtain ∂ϑSSE(ϑ) directly using AD. In
Tien and Guckenheimer (2008) they were used to fit observed qualitative features of
dynamical systems—a method we will examine in Sect. 7.7.
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AD requires additional functionality that tracks numerical operation in code. Pack-
ages to perform this exist in R and Matlab as well as many other programming
environments.

7.3 Inference

It is, of course, not enough to simply estimate values of the parameters, we also want
to find a way to describe their precision. In this book, we mostly take a frequentist
approach to statistics, although the Bayesian framework will be illustrated in
Sect. 7.5, below. While we assume a general familiarity with statistical concepts,
we will review the basics framework for inference here, as we demonstrate it’s appli-
cation to trajectory matching.

Our quantification of uncertainty starts from the question if we imagine conducting
the experiment and obtaining new data many times, how far, on average, would our
parameters be from the truth?. We have described our data as being generated by
(7.3). That is, in a hypothetical repeat data set we would have observations y∗

j that
satisfy

y∗
j = x(tj, θ , x0) + ε∗

j

where the ε∗
j are different random values, but nothing else has changed. Since we

have obtain estimates ϑ̂ based on minimizing the distance between a solution to the
ODE and our (random) data, we can think of these estimates as functions of the data
ϑ̂ = ϑ(y1, . . . , yn) and thus our estimates inherit random variability from the data.

To describe our uncertainty about ϑ , therefore, we need to describe the distribu-
tion of the estimate ϑ̂ . For this, we appeal to the central limit theorem, which states
that the distribution of a sum of independent random variables will tend to the nor-
mal distribution as the number of terms increases. Consequently, under appropriate
conditions, if the true set of parameters are ϑ and we estimate ϑ̂ via nonlinear least
squares, the parameter estimates are asymptotically normal, that is

ϑ̂ ∼ N

(
ϑ, σ 2

[
J(ϑ)TJ(ϑ̂)

]−1
)

(7.7)

where σ 2 is the population variance of the errors ε. This convergence holds under
reasonable regularity conditions on x(ϑ) and εj. This is not always the case for
dynamic systems even if the asymptotic assumptions are correct. However, lacking
much alternative, we will largely rely on this result.

In order to apply this calculation, we need an estimate of σ 2. This is generally
obtained from the empirical residuals at the estimated parameters:

σ̂ 2 = 1

n − p

n∑

j=1

(yj − x(tj, ϑ̂))2. (7.8)
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Herewe have followed the standard practice of dividing by n − p, where p the number
of estimated parameters, exactly as in linear regression, to allow for minimizing the
very term that we are using as an estimate.

Having formed Σ̂ϑ̂ = σ̂ 2
[
J(ϑ̂)TJ(ϑ̂)

]−1
as an estimate for the covariance of

ϑ̂ , we still need some way of turning this into a statement about the generating
parameters ϑ0. To do this, we observe that the difference between ϑ̂ and ϑ0 is also
normal:

ϑ̂ − ϑ ∼ N

(
0, σ 2

[
J(ϑ)TJ(ϑ̂)

]−1
)

.

Looking at a particular parameter ϑk , this means that the estimated ϑ̂k is within
1.96σϑ̂k

units of the true ϑk with 95% probability. Here σϑ̂k
is the square root of the

(k, k)th entry in Σϑ̂ . This is generally translated into a confidence interval

[ϑ̂k − 1.96σϑ̂k
, ϑ̂k + 1.96.σϑ̂k

].

Since, by the central limit theory, ϑ̂k tends to be within 1.96σϑ̂k
units of ϑk in 95% of

hypothetical replicate experiments, this interval covers the true value with the same
0.95 probability. The value 1.96 results from the 0.975 critical value of the standard
normal distribution: P(Z < 1.96) = 0.975 where probability 0.025 is allowed for
being each of too large or too small.

This idea can be extended to confidence ellipses for the whole vector ϑ or some
sub-vector of it, although this is less easy to interpret than giving an interval for each
element. More generally, we can replace 1.96 with any quantile zα of the standard
normal to control the probability of a confidence interval missing the true value at α.
In analogy to linear regression, employ a t distribution with n − k degrees of freedom
to account for the variance associated with estimating σ̂ 2. Unlike linear regression,
this is not exact, but it does provide a little extra conservatism.

We can also translate these into prediction intervals for x(t) via a Taylor expansion
of x(t;ϑ)

x(t; ϑ̂) = x(t;ϑ0) + J(t; ϑ̂)(ϑ̂ − ϑ0)

where J(t; ϑ̂) is the single-row Jacobian evaluated at only t. We now have that

var(x(t; ϑ̂)) ≈ J(t; ϑ̂)TΣϑ̂J(t; ϑ̂) = Σx.

Thus if we wish a prediction interval to cover a new point in any one dimension
yj = x(tj,ϑ) + σε we can employ the interval

[x(t; ϑ̂) − 1.96(σx + σ), x(t; ϑ̂) + 1.96(σx + σ)].
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Note that these estimates only require solutions to the sensitivity equations at the
estimates ϑ̂ . These are employed within a Gauss–Newton method and therefore they
are essentially free.

7.4 Measurements on Multiple Variables

The analysis we have given so far only applies to measurements of only one state
variable, which includes situations involving than one measurement at a time point.
In this section, we will extend the discussion of (7.3) to d > 1 variables and where
measurements are available for a only subsetM of these.Wemust allow for the typi-
cal magnitudes of the measured variables to vary, sometimes by orders of magnitude.
But even if the variable sizes are comparable, we can expect that some variables can
be measured precisely, and other much less so. For example, physical variables like
weight, length, temperature and so on are cheaply but precisely measurable, but
the abundance species in an ecology, or concentration of components in a chemical
reaction are much less so. Finally, it may be that both the location and number of
times of observation may vary, so that ni denotes the number of observations for
variable i. Therefore, our data model is now

yji = xi(tj,ϑ) + εji, i ∈ M , j = 1, . . . , ni, (7.9)

where εji has variance σ 2
i but the errors are otherwise independent.

This model is still a simplification of many systems: we can expect that observa-
tion processes need not have Gaussian errors or that observations of different state
variables at the same time point are dependent. Measurements may also correspond
to some transformation of xi. For example, if observations are made by sampling a
small fraction of a system, we may record axi for some fraction a. Alternatively, if
measurement errors are proportional to xi it may be appropriate to think of log(yji)
as a measurement of log(xi(tj)). In some systems we may also measure the sum of
two state variables, or their ratio.

7.4.1 Multivariate Gauss–Newton Method

Whenminimizing least squares, it will likelymake sense toweight each state variable
differently to account for different scales and different measurement precision. We
therefore modify (7.4) to obtain a weighted sum of squares criterion, where the
weight for variable i is ωi:

SSE(ϑ) =
∑

i∈M

ni∑

j=1

ωi
(
yji − xi(tj,ϑ)

)2
. (7.10)
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We will see below that choosing ωi = 1/σ 2
i is a particularly sensible choice, but we

will have to estimate the measurement error variance σ 2
i from the data before this

option can be employed. Where possible, then, variable transformations should be
used to equilibrate variables, but otherwise the use of a priori weights ωi is strongly
encouraged.

Examining the derivatives of SSE(ϑ) we get the following expressions

∂ϑSSE(ϑ0) = −2
d∑

i=1

1

σ 2
i

∂ϑxi(ϑ)T (yi − xi(ϑ))

= −2
d∑

i=1

1

σ 2
i

Ji(ϑ)T (yi − xi(ϑ))

where Ji(ϑ) is the ni × p Jacobian matrix for variable i. We can write out the second
derivative matrix similarly:

∂2
ϑSSE(ϑ0) = −2

d∑

i=1

ωiJi(ϑ)TJi(ϑ)

− 2
d∑

i=1

ωi∂
2
ϑxi(ϑ)T (yi − xi(ϑ)).

As was the case for univariate observations, we expect that the second term should
be small near the true ϑ0 and this term can be generally omitted. This results in the
following algorithm:

1. Initialize ϑ = ϑ0.
2. Do until convergence:

H(ϑk) =
d∑

i=1

ωiJi(ϑk)TJi(ϑk)

g(ϑk) =
d∑

i=1

ωiJi(ϑk)T (yi − xi(ϑ
k))

ϑk+1 = ϑk − H(ϑk)−1g(ϑk).

This is iterated until convergence. We can again use sensitivity equations to obtain
the derivatives in the Jacobian matrices Ji(ϑ), and the convergence criteria discussed
in Sect. 7.2 also apply.

Our discussion above has implicitly assumed that we have measurements on all
the components of x. However, this is often not the case—frequently, components of
a system are unmeasured or unmeasurable. Fortunately, our calculations are largely
unaffected by this. Unmeasured components are needed to solve the ODE system at
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each parameter value, and they may also appear in the sensitivity equations for the
measured components (particularly if their initial conditions are being estimated), but
they otherwise do not change the methods of estimating parameters or of obtaining
confidence intervals.

7.4.2 Variable Weighting Using Error Variance

While the methods above will yield consistent estimates ϑ̂ for any choice of ωi, the
choices that we make can affect the precision of our estimates. We rely on the result
that

ϑ̂ ∼ N
(
ϑ,Σϑ̂

)
(7.11)

where in this case we have a more complicated expression

Σϑ̂ = H(ϑ̂)−1

[
d∑

i=1

ω2
i σ

2
i Ji(ϑ̂)TJi(ϑ̂)

]
H(ϑ̂)−1 (7.12)

that takes the classic “sandwich” form of a variance estimate. Using this, we
can produce the same confidence and prediction intervals as we did above; after
estimate σ 2

i .
This variance is correct for any choice of ωi. However, if we choose ωi = 1/σ 2

i ,
we can simplify this expression to the inverse of the information matrix:

I−1
ϑ̂

=
[

d∑

i=1

1

σ 2
i

Ji(ϑ̂)TJi(ϑ̂)

]−1

. (7.13)

Besides having a nice form, this is also the smallest variance thatwe can obtain. It also
corresponds to weighting each state variable by the precision of its measurements,
which seem pretty natural.

To do this, we have to have the σ 2
i ’s before we estimate ϑ , but need an estimate

of ϑ before we can estimate σ 2
i . This suggests an iterative scheme outlined below.

7.4.3 Estimating σ 2
i

The weighted squared error objectives above assume that we know σ 2
i , the variance

of the measurement errors in the yji. These can be estimated by (7.8), and we can, as
before, employ critical values from a tn−p distribution rather than a normal to account
for the uncertainty in these estimates.
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We face the problem that for optimal precision, the σ 2
i occur in the ordinary least

squares estimates above through ωi = 1/σ 2
i , but we must have estimated ϑ in order

to obtain estimates for σ 2
i . In the case that we only measured one quantity (the case

most commonly discussed in texts on nonlinear least squares), the minimizer of
σ 2SSE(ϑ) is exactly the same as that of SSE(ϑ). We can therefore start with setting
σ 2
i = 1 and simply re-estimate it once we have ϑ̂ .
However, when more than one state variable is measured, the σ 2

i ’s control the
relative weight give to each dimension. In this case, the relative values of σi affect
our parameter estimates ϑ̂ . A solution to this is to alternate estimating ϑ and σ 2

i . This
is a co-ordinate descent strategy for maximizing the log likelihood in a normal error
model and can be generalized if the yj ∼ N(0,Σ) do not have independent errors,
although with some additional work to find estimates of ϑ (Bates and Watts 1988).

In order to execute this iterative procedure, we need initial starting points for σ 2
i .

We can begin by minimizing the unweighted sum of squares—setting the σ 2
i to be

all equal—and obtain an initial ϑ in this manner. Alternatively, when observations
are frequent, relative to the speed of the dynamics, successive differences between
observations can be used as an estimate:

σ̃ 2
i = 1

n − 1

n∑

i=2

(
yji − yj(i−1)

2

)2

.

althoughmore sophisticated estimators are available (Eubank and Spiegelman 1990).
In this estimate, we have divided the differences by 2 because they include two
measurement errors and have not normalized by n − p since the estimate occurs
before fitting ϑ . This estimate will be inflated because it also includes the differences
xi(tj) − xi(ti−1) and we assume that these are small relative to the measurement
error. However, it does produce a consistent estimate of σ 2

i as the observation times
become more closely spaced and can be a good starting point if estimating ϑ is
computationally expensive.

The framework we have describe here is, of course, highly restrictive. Most obvi-
ously, we are assuming that twomeasurements taken at the same time are nonetheless
independent. It might make more sense to assume that the vector of observations at
time tj is multivariate normal:

yj ∼ N(x(tj,ϑ),Σ)

for some covariance matrix Σ which will then need to be estimated. Rather than go
into detail here, we will cover the case of a general fitting criterion below and then
provide the specifics for multivariate data.
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7.4.4 Example: FitzHugh–Nagumo Models

We illustrate this with a simulated example from the FitzHugh–Nagumo equations.
These equations, discussed in Chap. 4, have a voltage V and a recovery variable R
with the following dynamics:

DV = c(V − V 3/3 + R) (7.14)

DR = −(V − a − bR)/c.

For our purposes, however, we will treat both states as being measured and add
measurement error at intervals of 1/2 from 0 to 20; however, we add measurement
errors with standard deviation 0.2 to V whereas we make R less precisely measured
with standard deviation 0.5 so that our data are given by

yjv = V (tj) + 0.2εjv, yjr = R(tj) + 0.5εjr .

The trajectories generating these data and the data themselves are in the first panel
of Fig. 7.3.

To fit these data, we start from the true values of the parameters: (a, b, c) =
(0.2, 0.2, 3) and initial conditions (V0,R0) = c(−1, 1). This is a luxury that is only
available for simulated data; we have chosen to do so in order to find the closest local
minimum to the truth for reasons that will become evident in Sect. 7.4.5. The first
five iterations of the Gauss–Newton algorithm now yield the following values:

Iteration a b c V0 R0

1 0.2000 0.2000 3.0000 −1.0000 1.0000
2 0.1932 0.0942 3.0066 −1.0893 1.0734
3 0.1925 0.0892 2.9964 −1.0763 1.0793
4 0.1928 0.0834 2.9947 −1.0761 1.0820
5 0.1928 0.0828 2.9946 −1.0759 1.0828
6 0.1928 0.0828 2.9946 −1.0759 1.0830

where we can see that all these parameters have very quickly stabilized to at least
three decimal places; though parameter b has moved a long way from its true value,
due to being poorly defined by the data.

When we estimate the error standard deviations, we obtain 0.19 and 0.49 and
applying the variance estimate in (7.12) gives us the following confidence intervals
which all cover the true parameters.

Lower Upper
a 0.154 0.232
b −0.232 0.398
c 2.918 3.071
V0 −1.231 −0.921
R0 0.890 1.276

http://dx.doi.org/10.1007/978-1-4939-7190-9_4
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However, giving equal weight to each of the yv and yr is clearly inefficient since
we know that our measurements of yv have considerably greater precision. If we re-
weight the data according to our estimated variance, we get new parameter estimates,
and then new estimated variances. Iterating this a few times, however stabilizes
our estimated measurement standard deviations to 0.18 and 0.50. When using these
variances we obtain parameter estimates (a, b, c) = (0.179, 0.258, 2.977) and initial
conditions (V0,R0) = (−1.076, 1.115). Applying the variance estimate (7.13) we
obtain intervals which are considerably narrower than those we obtained from our
first estimates. Note, too, that the estimate of b as well as its confidence limits have
substantially changed.

Lower Upper
a 0.147 0.212
b 0.048 0.469
c 2.899 3.056
v0 −1.204 −0.947
w0 0.968 1.262

7.4.5 Practical Problems: Local Minima

One of the practical difficulties in fitting ODEs to data is that the shapes in the
trajectories xi(t, θ) can change with θ in ways that make the squared error surface
SSE(ϑ) quite complex. While we seek an over-all minimum, the surface can have
many local minima in which a Gauss–Newton method can get trapped. This can
result in poor fits to the data, and require alternative optimization methods which can
significantly increase the computational burden involve.

Figure7.3 provides an example of this. It was generated by solving the FitzHugh–
Nagumo equations (7.14) used in Sect. 7.4.4. In this case, we obtained solutions at
every 0.05 time point without adding noise. We then plotted the the squared error
between this solution and solutions obtained for nearby values of a and b. Two
surfaces have been provided here, the left gives the results obtained by solving the
FitzHugh–Nagumo equations with the ode45 function in Matlab while the right is
what results from repeating the experiment using the lsoda function in R. Here,
both plots indicate breaks in the surface that correspond to bifurcation points inwhich
a stable limit cycle becomes a fixed point; the various behaviors of these estimates
are given in Fig. 7.4. However the left surface has considerably more complexity,
which we speculate to be artifacts of the numerical settings in ode45. Thus both the
ODE solver and initial guesses can have complex effects on the resulting estimates.

These types of artifacts create problems for gradient-based optimizers because
they find local optimum; often (although certainly not always) one that is close to
the initial guess. We can try many different starting values, and this is a common
strategy. But, while this improves the chances of finding a global optimum, it is no
guarantee.
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There are also a collection of alternativemethods for searching for theminimumof
a function over parameters. Many of these methods are computationally challenging;
simulated annealing, which is designed to overcome complex objective surfaces, can
require solving the ODE thousands of times. The Bayesian methods in Sect. 7.5 take
a quite different approach to statistical inference, but can be classed among these
numerical methods. Some methods also try to avoid solving the ODE exactly. This
strategy is outlined in Sect. 7.6, and we give a more comprehensive treatment of this
idea in Chaps. 9 and 10.
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7.4.6 Initial Parameter Values for the Chemostat Data

Given the difficult optimization problems illustrated above, it is important to start at
reasonable parameter values. Finding good initial guesses is something of a dark art,
made darker by the difficulty of publishing good techniques for this. The gradient
matching methods in Chap.8 have sometimes been justified as good initial guesses
for trajectory matching, although we believe there are better justifications; gradient
matching also cannot be employed on all systems.

In general, finding good initial guesses requires some intelligence on the part
of the user, but some basic manipulations can be helpful. We begin by observing
that most systems of interest have candidate parameter values that at least give the
right qualitative dynamics. These can still yield trajectories that are a long way from
the observed data, but we can often perform manual manipulations to obtain better
estimates.

We illustrate this with some data from an ecological experiment described in
Yoshida et al. (2007). These data come from a chemostat experiment in which algae
are grown in a nitrogen-limited medium and serve as a prey species to rotifers, which
are near-microscopic animals. The original purpose of this article was to illustrate
the breakdown of ecological dynamics due to algal evolution, but we will focus on
the initial periods where classical predator-prey dynamics appears to hold and fit
these with a Rosenzweig-MacArthur ODE model:

DC = ρC(κ − C) − γβCB

χ + C
(7.15)

DB = βCB

χ + C
− δB.

In order to fit these, we need reasonable initial conditions. Here we begin by plotting
both our data and solutions of the ODE at the parameters used in Chap.8; see the
left-hand panel in Fig. 7.5. These are carefully plotted on separate graphs (and on
the logarithmic scale) because it is clear that both the amplitude and the period of
the oscillations do not match. If we simply start from these parameters and attempt
to fit the data, we find very poor fits. Many optimization methods also return errors
as parameters are forced into regions where numerical solvers break down.

Observing the structure of (7.15), however, we see that there are ways to directly
manipulate the parameters to at least obtain the right period and amplitude. First of
all, we see that the period at our initial parameters is around 50days, which we would
like to bring down to a little over 10days as observed in the data. To do this, we make
use of the fact that

Dx(at) = a[Dx](at)

so that multiplying each equation in (7.15) by a will “speed up” the period of the
system by a units. Here, we chose a to be 4.54 and observe that this is equivalent to
multiplying each of ρ, β and δ by a.

http://dx.doi.org/10.1007/978-1-4939-7190-9_8
http://dx.doi.org/10.1007/978-1-4939-7190-9_8
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Second, we observe that we can re-scale variables; if we setC∗ = a1C, B∗ = a2B,
then we can again apply the chain rule to (7.15) to discover that C∗ and B∗ satisfy
(7.15) with new parameters ρ∗ = ρ/a1, κ∗ = a1κ , χ∗ = a1χ and γ ∗ = (a1/a2)γ .
In order to estimate a1 and b1, we in fact added these as parameters. We minimized
squared error on the log scale; representing our data as (Cj,Bj) at time tj, we trans-
formed the parameters to have approximately the correct timing as above and then
minimized

30∑

j=1

(logCj − log(a1C(tj, θ)))2 + (logBj − log(a2B(tj, θ)))2

for all of a1, a2 and θ . While this minimization problem is not well defined (as we
have seen above, we can change a1 and a2 arbitrarily and compensate by a change
the θ ) it is more flexible than starting from an initial guess.

Following this, we we updated the parameters as above to get rid of a1 and a2 and
simply minimized squared error (on the log scale). Both minimizations were carried
out using a Nelder–Meade method we then began from these solutions and used a
Newton–Raphson-like method to find a convergent solution. This is plotted in the
right-hand panel of Fig. 7.5.
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Fig. 7.5 Fits of chemostat data to the Rosenzweig–MacArthur model. Left a comparison of the
logged data and solutions to (7.15) with initial parameters before some basic transformation. Right
data and solutions at the finalized objective function

We want to note that this particular sequence of optimizations and parameter
transformations was obtained by trial and error. We found that using a Newton-type
method at any earlier stages quickly resulted in errors, for example, that motivated
trying alternative optimizers. A different model, or different data, might require quite
different techniques; good fits may be found by optimizing early, on the other hand,
it may be necessary to refine initial parameter guesses even further. However, there
are some simple tricks that can be employed:
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1. Shift the inter-time intervals of equations by multiplying equations by a constant.
Often this translates to changes in parameter values.

2. Find a way to change state variables that can be mimicked by changes in para-
meters. Re-scaling state variables, as above, almost always has this property; in
some cases shifting the level of the state variable will also be possible.

3. In some cases, good initial conditions can be found from data directly. In others,
especially where there is stable cyclic behavior, solving the system for a length of
time and then choosing initial conditions from an appropriate point in the cycle
can be helpful.

4. Optimizing over only some parameters to begin with can help get to better values.
We might, for example, have kept κ and χ fixed and found good values for the
other parameters first.

5. Alternatively, allowing some flexibility in the observation process—as in our
estimation a1 and a2 above, can also be useful, even if we will ultimately
re-absorb that into our parameter estimates.

All of these should be tried intelligently with an eye to the type of system under
study, the behavior that is expected, and the observations that are available.

7.4.7 Identifiability

Parameter identifiability is an important issue in fitting ODE models to data. The
mechanistic perspective used to develop ODEs often yields an expression in terms
of parameters that cannot be well-determined from data. A useful example of this is
re-scaling state variables in the Rosenzweig-MacArthur model as described above;
it’s reasonable to assume that we sample some percentage α of an ecosystem, so that
our observations are of the form (αC(tj) + εc, αB(tj) + εB). However, we cannot
estimateα and all the other parameters jointly, even though they all have interpretable
meanings.

In some cases, this type of confounding is straightforward to detect. For example,
parameters on the right hand side of the ODE may always appear together as a sum
or a ratio. If the right hand side of the ODE doesn’t change with some particular
change of parameters, there is a problem of identifiability. In other cases, it can be
more subtle, and often a result of the observation process and can also involve initial
conditions. As a variation on the ecological example above, we can consider the
Susceptible-Infected-Recovered ODE model for epidemics:

DS = −αSI

DI = αSI − βI

DR = βI.

Notice here that there are only two parameters α and β, used in multiple equations,
which should make them easier to identify. However, in most epidemic models, we
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only measure the number of infected individuals and usually we only measure some
percentage p of them; S and R are unmeasured states. Let’s assume that we observe
I∗ = pI perfectly and at all time points, then we can write-out the same equations in
terms of I∗ (dropping R since we don’t observe it, anyway):

DS = −α

p
SI∗

DI∗ = αSI∗ − β

p
I∗.

Had we observed both S and I , we should still be able to identify all three of α, β

and p. However, we generally don’t get to measure the Susceptible population and
so would need to estimate at least its initial values, S0 and we cannot distinguish this
effect from others. To see that, let’s write S = S0S∗, so that S∗ starts from the value
1, then we can write out an equation for (S∗, I∗):

DS∗ = −α

p
S∗I∗

DI∗ = α

S0
αS∗I∗ − β

p
I∗ (7.16)

where it should be clear that we cannot distinguish all of α, β, p and S0 since they
jointly define only three rates. In this case, however, we often have an estimate of
the over-all at-risk population size to use as S0.

For a general ODE model, it is not necessarily easy to work out whether all the
parameters and initial conditions can be determined by the data. There has been
some attention given to this problem, but many of the formal methods suggested
involve rather cumbersome applications. A good review can be found in Miao et al.
(2011). We join this paper in advocating some simple measures to identify whether
parameters can be determined from a finite set of noisy data in practice:

1. Perform a simulation experiment to identify the precision of the parameter esti-
mates.

2. Solve the sensitivity equations (at a plausible set of parameters) and test how
linearly dependent they are.

3. Perform an eigen decomposition of the Hessian ∂2
ϑ l(ϑ̂); very small or zero eigen-

values may indicate that some set of parameters are poorly identified.

We can illustrate this with the SIR model (7.16) above, where we assume we only
measure I∗ but had not recognized the problem of estimating S0. Figure7.6 presents
the sensitivity of the I∗ equation in (7.16) with respect to initial conditions and
parameters, using α = 0.005, β = 0.02 and p = 0.2. Here we see strongly similar
shapes in the sensitivity to α, p and S0. If we perform a principal components analysis
on these sensitivities, the final component has zero eigenvalue with a vector that
contrasts the equations for α, p and S0, revealing the analysis we presented above.
If we remove the sensitivity to S0—assuming it known and fixed when we estimate
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parameters—the smallest component contrasts the sensitivities to β and p but is still
greater than zero.

In addition to strict lack of identifiability, some parameters or parameter combina-
tions may be only weakly determined by the data. This can be due to poor parameter
scaling, as well as to a lack of sensitivity of the observed states to them. In early
work, we discovered that the CSTR equations described in Chap.4 have terms of the
form κ exp(τx) where the effects of parameters κ and τ are nearly indistinguishable
unless x covers a very broad range of values (Ramsay et al. 2007).
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Fig. 7.6 Thederivative of I∗(t)with respect toα,β,p,S0 and I∗0 in themodel (7.16). The sensitivities
of α, β and S0 are linearly dependent, meaning that if only I∗ is observed, these three parameters
cannot all be estimated from data

These effects can be even stronger in high dimensional systems such as cell
signaling or protein networks, evenwhen the dynamics are linear. Brown et al. (2004)
and later Gutenkunst et al. (2007) observed the phenomenon that in these systems, the
eigenvalues of the Hessian matrix H(ϑ) tend to show exponential decay, meaning
that the data are very informative about some combinations of parameter values,
while others are nearly unidentifiable from the observations. This also implies that,
while it is important to pinpoint the values of some parameters, there are others
that have very little impact on the outcomes we are interested in—whether that be
observational data, or the system’s reaction to inputs. It alsomeans in that the squared
error surface tends to have “gorges”—relatively thin but long regions in parameter
space where good agreement with the data can be found. Such systems have been
termed “sloppy” and have inspired specific, often Bayesian, methods to tackle them;
see Girolami and Calderhead (2011), Transtrum et al. (2011).

http://dx.doi.org/10.1007/978-1-4939-7190-9_4
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7.5 Bayesian Methods and Markov Chain Monte Carlo

The methods that we have discussed so far are frequentist in conception—they focus
on the question of howdifferent our estimates could be ifwe imagine re-collecting the
datawith new randomerrors. Bayesianmethods have a very different goal of updating
our uncertainty about ϑ in the light of new evidence. A great deal of the literature
on nonlinear dynamical systems takes a Bayesian perspective, partly because the
computational challenges of working with differential equations lend themselves to
this. Here we will briefly review the framework for Bayesian estimation and go over
some numerical techniques as applied to ordinary differential equation models. We
present only the simplest of approaches here, but point to more sophisticated means
of sampling from the posterior which have been developed specifically for ODE
models.

The Bayesian framework starts with prior distribution π(ϑ) over the space of
possible parameter values. This distribution is intended to represent our state of
knowledge or belief about the values of ϑ before observing data and may be derived
from previous experiments, experience or theory; or may be based on a subjective
understandingof the likely parameter values.This prior is the key toBayesian analysis
since we can now combine it with data to update our beliefs. Specifically, our model
specification can now be extended to

ϑ ∼ π(ϑ), yji|ϑ ∼ N(x(tj,ϑ), σ 2
i ).

Here we have written yij|ϑ to indicate a conditional distribution: for a particular
value of ϑ , we obtain a specific distribution for yij. Putting all the data together,
the conditional density of the observation matrix Y given ϑ can now be seen to be
numerically equal to the likelihood

logP(Y |ϑ) = l(θ).

In this case

l(ϑ) =
d∑

i=1

2∑

j=1

1√
2πσi

(yji − x(tj,ϑ))2 − 1

2
log 2πσ 2

i .

The central concept in Bayesian statistics is that given π(ϑ) and P(Y |ϑ), we can
apply Bayes theorem to recover the a posteriori density of ϑ conditional on Y :

P(ϑ |Y) = K−1P(Y |ϑ)π(ϑ) = K−1el(ϑ)π(ϑ), (7.17)

where K is a normalizing constant so that P(ϑ |Y) integrates to 1. This represents the
update to our knowledge of ϑ in the light of evidence from Y . Interpretation uses
a probability distribution—first π(ϑ) and then P(ϑ |Y)—to encapsulate our state of
understanding before and after the experimental evidence. There is no frequentist
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sense of this is the distribution of parameters we would get from replicate experi-
ments. However, Bayesian methods can be shown to have good statistical properties
from a frequentist perspective.

Technically, the posterior distribution gives us a complete description of our state
of knowledge for ϑ , but it is still often convenient to summarize it. A single best
estimate for parameters is usually given by the expected value of ϑ :

ϑ̃ =
∫

ϑP(ϑ |Y)dϑ,

otherwise referred to as the expected a posteriori estimate (EAP). To describe our
remaining uncertainty about a particular ϑk , we can examine a credible interval: the
central (1 − α)% region of its distribution. It’s possible to define credible regions,
but as with frequentist summaries, it’s generally more interpretable just to examine
one ϑk at a time. From a frequentist perspective, both the EAP and credible intervals
perform equivalently to estimates and confidence intervals when n is large.

The Bayesian framework is appealing at a high level. However, neither credible
intervals nor point estimates can be calculated without knowing the value of K ;
this is algebraically intractable in all but quite specialized settings. Instead, we use
Markov Chain Monte Carlo methods to produce a sample of points ϑ1, . . . , ϑM from
the posterior distribution P(ϑ |Y). We can then use these samples to obtain credible
intervals and EAPs.

It is not our intention in this book to provide a comprehensive overviewofBayesian
statistics and methods and the reader unfamiliar with these methods is referred to
Albert (2009) and Brooks et al. (2011), amongmany others, for a practical guide. The
central idea is to create a Markov chain whose stationary distribution is the desired
P(ϑ |Y). We can then run the Markov chain and obtain samples from the chain.

A simple version ofMCMC takes a two-step form. First, we propose a move from
ϑk to ϑk+1, we then accept that step and make a move, or reject it and stay at ϑk .
This algorithm can be given as:

1. Choose ϑ∗ with density q(ϑ∗|ϑk) that depends on the current ϑk .
2. Calculate

α = P(Y |ϑ∗)
P(Y |ϑk)

π(ϑ∗)
π(ϑk)

q(ϑk|ϑ∗)
q(ϑ∗|ϑk)

. (7.18)

3. Set ϑk+1 = ϑ∗ with probability α, otherwise ϑk+1 = ϑk .

In the acceptance probability (7.18), the first ratio measures how the density of
ϑk+1 to ϑk , while the second balances the the probability of moving from ϑk to
ϑk+1 with that of moving in the other direction. This turns out to be exactly what
is required to achieve the desired stationary distribution (Albert 2009, see many
references including).

This leaves us with the problem of choosing q(ϑ∗|ϑk). The most common default
choice is a symmetric random walk with normally distributed steps:
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ϑ∗ = ϑk + ε, ε ∼ N(0, τ 2I).

This has the advantage that the second ratio in (7.18) becomes 1. This still requires
the variance of the steps we take, τ 2, be selected so as to allow us to move fairly
frequently, but so that the correlation in the resulting values not be too large; usually
we target having an average value of α to be around 0.3.

To make this concrete, we re-examine the FitzHugh–Nagumo data we generated
above. Here, our parameters are a, b, c, V0, R0 as well as the measurement variances
σ 2
V and σ 2

R . Because the last two of these parameters are positive, we will in fact
use their logarithms which we write as sV and sR resulting in a parameter vector
ϑ = (a, b, c, V0,R0, sV , sR). We give each element a N(0, 10) prior, chosen to be
uninformative. This gives us a model for the joint probability of our observations
and parameters as

P(y1V , . . . , y41V , y1R, . . . , y41R,ϑ)

=
41∏

j=1

[
φ(yjV , V (tj;ϑ), esV )φ(yjR,R(tj;ϑ), esR)

] 7∏

k=1

φ(ϑk; 0, 10)

where φ(x;μ, σ 2) is the normal density with mean μ and variance σ 2.
We selected our proposal distribution for ϑ to be Gaussian with independent

dimensions. We determined the size of the steps by first maximizing

log �(ϑ) = logP(yV 1, . . . , yV 41, yR1, . . . , yR41,ϑ)

over ϑ and obtaining the Hessian H at the optimum (here we benefitted from know-
ing the true parameters when we maximized, see comments above). We then used
proposed moves with standard deviations of 0.5

√
diag(H)—about 1/2 the sampling

standard deviation from a Gaussian approximation. When making a proposed move
from ϑ to ϑ ′ we calculated the acceptance probability as

P(ϑ,ϑ ′) = exp[logP(y1V , . . . , y41V , y1R, . . . , y41R,ϑ
′)

− logP(y1V , . . . , y41V , y1R, . . . , y41R,ϑ)]

where calculating the probabilities on the log scale helps to stabilize the numerical
calculation of their values.

We started from the true parameter values and ran MCMC for 5000 steps (this
includes the 79% of times that we did not accept the proposed move). We have
produced scatter plots of the resulting values in Fig. 7.7 along with a plot of the value
of the log posterior as the chain ran.

There is some indication both of autocorrelation and that it took a little while for
the Markov chain to reach a stationary distribution. We therefore removed the first
1,000 values that we generated, and we took every 5th value of what remains. That
left us with 800 “samples” of the P(ϑ |Y) distribution. We can now approximate the
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EAP by averaging the 800 samples from ϑk|Y . We can also directly compute credible
intervals either by obtaining a variance from these samples and using Normal critical
values as in Sect. 7.3, or by simply looking at the 0.025 and 0.095 quantiles in these
samples.

These estimates and intervals are recorded in Table7.1; note that we have
re-exponentiated sV and sR to report (asymmetric) intervals for noise standard devi-
ations. Here we see fairly good agreement between Bayesian intervals and the fre-
quentist intervals computed in Sect. 7.4.4 and that these all cover the true values.
This is to be expected when using a moderate amount of data and wide prior distri-
butions; (Lele et al. 2010) used this correspondence to suggest ways to obtain exact
frequentist intervals from MCMC results by “cloning” data sets to overwhelm the
influence of the prior.

Nominally, MCMC results should converge from any starting value, if allowed to
run for long enough even with a posterior that has multiple modes.We could imagine
that they will eventually propose a step that goes from one local optimum to another,
such as those seen in Fig. 7.3. However this could take a very long time. When we
attempted this starting from all the true parameters but with a and b set to (−0.6, 1)
(point number 3 in Fig. 7.3) we ran into parameter values where our ODE solver
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conditions and measurement error standard deviations in the chain). Bottom right plot gives the
value of the log posterior over the 5000 iterations where we see that it takes some time to reach the
range of posterior values



7.5 Bayesian Methods and Markov Chain Monte Carlo 129

Table 7.1 Bayesian expected a posteriori estimates and 95% credible intervals fromMCMC results
for the example in Sect. 7.4.4. These were obtained after running a Markov chain for 5000, steps,
discarding the first 1000 and then taking every fifth value in the chain

a b c V0 R0 σ 2
V σ 2

R

Truth 0.200 0.200 3.000 −1.000 1.000 0.200 0.500

EAP 0.178 0.212 2.965 −1.099 1.133 0.197 0.510

Lower 0.146 −0.022 2.871 −1.244 0.983 0.161 0.405

Upper 0.210 0.463 3.044 −0.966 1.275 0.244 0.655

produced errors before we found the optimum around the true values. The user is
advised to be aware of these possibilities and to pay attention to starting values even
in this case.

There are mathematical guarantees that the sequence ϑ1,ϑ2, . . . will eventually
have the desired distribution, but not on how long it takes to get here. There are a
number of diagnostics for whether the Markov chain has converged. This is a much
larger topic than we can cover here; the reader is referred to Brooks et al. (2011).

The random-walkMetropolis algorithm that we have employed in these examples
is simple to implement but can perform poorly, particularly when P(ϑ |Y) has many
local modes where it can get caught for many iterations. There is a large literature on
MCMCmethods to deal with this which wewon’t review in detail here. They include
temperingmethods which run parallel MCMC chains on increasingly smoothed-out
versions of P(ϑ |Y) so that the smoother chains can explore the space better (see
Earl and Deem 2005, for an overview). Campbell and Steele (2012) employ methods
similar to this in conjunction with the profiling methods described in Chap.9. Others
attempt to use the geometry ofP(ϑ |Y) to improve our ability to sample. Girolami and
Calderhead (2011), Transtrum et al. (2011) both treat this problem with reference to
nonlinear dynamics explicitly.

7.6 Constrained Optimization: Multiple Shooting
and Collocation Methods

In addition to global optimization, a number of methods make use of the structure of
collocation methods, discussed in Chap.5, to overcome local structure in the likeli-
hood surface. Recall that collocationmethods represent x(t;ϑ) via a basis expansion.
The coefficients of this expansion are chosen so that the ODE is satisfied at a set of
collocation points.

This representation has been used to combine solving the differential equation and
fitting parameters to data into single constrained optimization.We choose parameters
ϑ as well as the coefficients of the basis expansion c1, . . . , cd to satisfy:

http://dx.doi.org/10.1007/978-1-4939-7190-9_9
http://dx.doi.org/10.1007/978-1-4939-7190-9_5
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(ϑ, c1, . . . , cd) = argmin
d∑

i=1

n∑

j=1

(
yji − φ(t)Tci

)2

subject to

φ(t0)C = x0 (7.19)

Dφ(tl)C = f(tl,φ(tl)C, θ), l = 1, . . . ,K − 1.

Here the constraints require the basis-expansion to satisfy the differential equation—
up to the approximation in the collocation equations (7.19)—while the objective
provides the squared error. Note here that althoughϑ does not appear in the objective,
its inclusion in the constraints results in these being estimated as well.

The advantage of this formulation is that it is given explicitly in terms of both
coefficients for the basis representation of x and the parameters. In particular, the
constraints (7.19) need not be satisfied while the algorithm is running. This means
the algorithm has less tendency to get caught in local optima of the objective surface.
This claim is difficult to justify mathematically. However, we can gain some insight
by converting the problem into its equivalent Lagrange multipliers form. We extend
the objective function to include a weighted term for how far each constraint is from
being satisfied:

Λ(C, θ ,λ) =
d∑

i=1

n∑

j=1

(
yji − c′

iφ(t)
)2

(7.20)

+ λT
0 [φ(t0)C − x0] +

K−1∑

l=1

λT
l [Dφ(tl)C − f(tl,φ(tl)C, θ)].

Here λ0, . . . ,λK−1 are weighted values of the constraint called Lagrange multipliers.
We now set the gradient with respect to all of C, θ and λ to zero

∂(C,θ ,λ)Λ(C, θ ,λ) = 0,

and observe that the equation involving the gradient with respect to λ gets us back
to the constraints. The purpose of putting the problem in this form (besides it being
computationally convenient to work with) is that we can observe that the only non-
quadratic term in (7.20) is

Dφ(tl)C − f(tl,φ(tl)C, θ),

and this is often more nearly convex in C and θ than the squared error that results
from solving the ordinary differential equation. If f is linear, then this is convex in
either C or θ separately. Fixing λ, this results in a linear combination of gradients
in C and θ ; each of which is relatively easy to zero, and hence resulting in an easier
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problem. Indeed, this serves as an important motivator for the derivative matching
approaches in Chap.8 and the profiling methods proposed in Chaps. 9 and 10. The
methods examined here have been presented as pertaining to collocation methods;
these have particularly been advocated by Tjoa and Biegler (1991) using interior
point optimization schemes.

Similar methods can be more easily illustrated, graphically, using the multiple
shooting methods proposed in Bock (1983). In these, the ODE is only solved over
short periods—often from one observation to the next—then new initial conditions
are allowed. We therefore have a large set of initial conditions—one for each break
point. This means we start from one observation and solve the ODE to the next.
However, we gradually constrain the difference between the solution over one period
and the initial condition for the next.

As an experiment, we re-examined the chemostat data from Sect. 7.4.6 and tried
to fit these using multiple shooting. The left-most plot gives our initial guesses: we
have used the initial guess from Sect. 7.4.6 by re-scaling both time as well as C
and B as parameters. The dotted lines then give the difference between the value
after solving the ODE and the next initial conditions. We then calculated the sum of
squared errors from the data, plus a scaled sum of squared errors between end points
and new initial conditions:

n∑

j=1

‖yj − x(tj; θ , xtj−1)‖2 + λ

n∑

j=2

‖x(tj, θ , xtj−1) − xtj‖2

where xtj−1 indicates the “reset” initial conditions starting at time tj−1. This was
minimized over parameters and initial conditions. We then increased the penalty on
matching-up ODE solutions to get final parameters with solutions that are nearly
continuous. A few steps of these are given in Fig. 7.8.

Both multiple shooting and collocation methods rely on more complex optimiza-
tion methods than we can discuss in detail here, and which will require exactly
solving ODEs rather than getting close. The scheme derived above is a simplifica-
tion for illustrative purposes only. See Baake et al. (1992), Hooker and Biegler (2007)
for details of implementation and tutorials on running them.

7.7 Fitting Features

A final class of methods for fitting exact solutions of differential equations involves
matching derived features from observed data. Rather than trying to fit all the data
in detail, we derive some statistics from the observed data set and simply look for
parameters that reproduce these well. This approach is largely applicable to systems
with complex dynamical behavior, particularly when you do not attempt to recreate
the process in detail. This approach was taken in Tien and Guckenheimer (2008)
who fit a model of a “bursting” neuron, in which sharp spikes in voltage come in

http://dx.doi.org/10.1007/978-1-4939-7190-9_8
http://dx.doi.org/10.1007/978-1-4939-7190-9_9
http://dx.doi.org/10.1007/978-1-4939-7190-9_10
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pulses of several spikes. They looked for parameters to match the spike amplitude,
the interval between the spikes and the number of spikes in a burst.

Similar approaches havebeen takenwith stochastic dynamicmodels.Wood (2010)
matches statistical features—taken as parameters from fitting time series models—to
repeated simulation from a stochastic model. A related approach is given in Approx-
imate Bayesian Computation, coined by Beaumont et al. (2002) though with many
precursors, in which the likelihood is replaced by an indicator that you are “close”
to derived features. See Csilléry et al. (2010) for a review.

These methods are efficient if the dynamical features selected are sufficient sta-
tistics for the parameters. Indeed, some of the development of ABC has focussed on
finding features that yield high precision estimation. We feel that there is also value
in choosing features that ignore details of the data that are not relevant to discovering
the particular dynamical qualities of the data or fitting a simplified model.

Fig. 7.8 Application of
multiple shooting to the
chemostat data. New initial
conditions are allowed at
each observation time; the
difference between the
solution at the next
observation time and the new
initial conditions is gradually
constrained to zero as we
minimize squared error for θ
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Here we will illustrate this approach briefly using the chemostat data already
described. Here we ignore initial conditions and only examine long term behavior.
Our goal here was to find steady-state behavior that matches the cycles we observe
in the chemostat. To do this, we run a chemostat model for 30days and then look at
the following statistics from the following 30days. These statistics were chosen to
describe the cycles and ought to be insensitive to the initial conditions x0:

1. Maximum and minimum of both rotifer and algae populations.
2. Average time between cycles, defined as the peak of the rotifer cycle.
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3. Lag time from Algal to Rotifer peaks.
4. Maximum positive and negative slopes of both rotifer and algae through the cycle.

This yields 10 features with which to fit five parameters. We extracted these features
from the smoothed estimates of the trajectories described in Chap.8. We calculated
these statistics by visually choosing points from the data to find maxima, minima
and slopes for each cycle. The chosen points chosen and the statistics calculated
are indicated in Fig. 7.9. Note that in one case we have averaged two measurements
corresponding to the bottom of the algal cycle.

15 20 25 30 35 40 45

−2
−1

0
1

2
3

days

lo
g
x

a

b

c

d

e e

f f f

g

g

h
h

h

i

i

i

j

j

Fig. 7.9 Dynamic features derived from algae (C) and rotifer (B) measurements from a chemostat
experiment. Circles and solid lines indicate the data points used to calculate (a) maximum algae
(b) minimum algae (c) maximum rotifers, (d) minimum rotifers, (e) time between algal peaks,
(f) delay between algal and rotifer peaks, (g) maximum rate of algal growth, (h) maximum rate
of algal decline, (i) maximum rate of rotifer growth and (j) maximum rate of rotifer decline. All
parameters were averaged over the cycles where they could be calculated

We then fit parameters by minimizing the sum of squares between these statistics
and equivalently calculated statistics from solutions to the Rosenzweig–MacArthur
equations as indicated above. The result of this fit, where we have plotted both the
original and fitted statistics is given in Fig. 7.10. Here we see a fairly good agreement
in most of the data, although the difference in lag between algal and rotifer peaks is
missed by a fairly wide margin. This may give some indication of ways to improve
the model, although we find the gradient matching diagnostics discussed in Chap. 8
somewhat more direct. The reader will also notice that our trajectories have not, in

http://dx.doi.org/10.1007/978-1-4939-7190-9_8
http://dx.doi.org/10.1007/978-1-4939-7190-9_8
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Fig. 7.10 A fit of features found in Fig. 7.9 to the Rosenzweigh–MacArthur model. Algal tra-
jectories are given in solid lines, rotifers dashed. Straight lines and arrows illustrate the statistics
calculated: solid lines indicate statistics derived from the data (shown in Fig. 7.9), dashed lines are
those obtained from the fitted trajectory. Fitted slopes are not visible

fact, achieved a limit cycle. While we could ensure that they exhibit less variance by
running the model for longer, we cannot guarantee to measure that cycle exactly.

We could, of course, have weighted each feature (this would make sense if they
had very different scales) or used a criterion other than squared error. We do not
deal with inference here. Wood (2010) derives confidence intervals by assuming the
statistics calculated statistics have a multivariate normal distribution and allowing
the parameter estimates to inherit variability from this; the idea is extended beyond
normality byFasiolo et al. (2016).However, the reliability (and bias) of this procedure
will depend very much on the statistics employed—choosing peaks from real data,
for example, can be difficult—and we hesitate to provide a general prescription.

7.8 Applications: Head Impacts

This section uses the head impact data inChap.1 to illustrate some aspects ofworking
with ODEs. Figure7.11 plots head impact data described in Chap.1.

http://dx.doi.org/10.1007/978-1-4939-7190-9_1
http://dx.doi.org/10.1007/978-1-4939-7190-9_1
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Here we model the observed displacement as a second order system driven by
a short (3 ms) impetus starting at 14 ms. This gives us the following equation in
general:

D2x = β0 + β1x + β2Dx + β3u(t)

where u(t) is the indicator function for 14 < t < 17. We can simplify this somewhat
from the discussion above, however, by observing that we clearly start at a steady-
state of 0. This means that we can assume initial conditions (x(0),Dx(0)) = (0, 0)
and that β0 = 0.

The resulting equation can be solved explicitly, but we will continue with a
numeric solver here. Expanding the equation to also describe velocity: v = Dx results
in

D

(
x
v

)
=

(
0 1
β1 β2

) (
x
v

)
+

(
0

u(t)

)

To this we need to append the sensitivity equations where we can write out the
derivatives with respect to β (we fix initial conditions at zero) as

D

⎛

⎝
∂β1v
∂β2v
∂β3v

⎞

⎠ = β1

⎛

⎝
∂β1x
∂β2x
∂β3x

⎞

⎠ + β2

⎛

⎝
∂β1v
∂β2v
∂β3v

⎞

⎠ +
⎛

⎝
x
v
u

⎞

⎠D

⎛

⎝
∂β1x
∂β2x
∂β3x

⎞

⎠

=
⎛

⎝
∂β1v
∂β2v
∂β3v

⎞

⎠ (7.21)

in which these six auxiliary equations also have initial conditions zero.
We selected an initial guess (β1, β2, β3) = (−0.05,−0.075,−3) via methods in

Chap.8 and then minimized squared error via 20 Gauss–Newton steps. Recall that
only x is measured, so setting x(β) = (x(t1,β), . . . , x(tn,β)) to be the vector of
evaluations at the observation time points and defining ∂βx(β) to be the matrix given
by their derivatives with respect toβ = c(β1, β2, β3), we canwrite down the iteration
as

β j+1 = β j +
[
∂βx(β j)

T∂βx(β j)
]−1

∂βxT (y − x(β j)).

Running this algorithm reduces squared error from 252,265 to 69,912 resulting in
parameters (−0.072,−0.213,−19.1) and an estimated measurement standard devi-
ation of 22.9. The starting and final solutions of the ODE are plotted in Fig. 7.11. We
can now calculate confidence intervals using the estimated variance

var(β̂) = 1

n
‖y − x(β)‖2 [

∂βx(β)T∂βx(β)
]−1

,

http://dx.doi.org/10.1007/978-1-4939-7190-9_8
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resulting in confidence intervals [−0.078,−0.066], [−0.257,−0.169] and
[−21.78 − 16.45] for β1, β2 and β3 respectively.

Fig. 7.11 Least-squares fit
to the head impact data using
a linear second-order ODE.
Dashed lines gives solutions
at an initial guess, solid the
final estimate
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Chapter 8
Two-Stage Least Squares or Gradient
Matching

8.1 Introduction

Chapter7 examined estimating parameters for differential equations bymaking solu-
tions to the differential equation match the data as well as possible. This is possibly
the most direct means of estimating parameters. However, these may be unappealing
for a number of reasons:

• Repeatedly solving ODEs at different parameter values and initial conditions can
be computationally costly, although this is mostly a problem only for high dimen-
sional systems or those with very nonlinear dynamics.

• Finding the best-fitting parameters may require optimizing over a complex surface
with multiple local minima.

• The differential equations may be approximately, but not exactly correct.

Instead, the structure of ODEs allows a number of indirect methods that do not
require solving the differential equations explicitly. Here we will examine the most
common of these.

The idea is rather simple: if we could observe x(t) directly, we could simply
choose parameters to make the right hand side of the ODE fit Dx as well as possible,
say by minimizing

ISSE(θ) =
∫

||Dx(t) − f(x, θ)||2 dt . (8.1)

We describe this approach as gradient matching to contrast it with the use of the term
trajectory matching in Chap.7. Gradient matching avoids some of the difficulties that
trajectory matching encounters:

1. It does not require us to repeatedly solve the differential equation at each candidate
value of θ .

2. Frequently f(x, θ) is more nearly linear in θ – and hence the landscape is closer to
quadratic—than are solutions x(t, θ , x0). In many cases, f(x, θ) is exactly linear

© Springer Science+Business Media LLC 2017
J. Ramsay and G. Hooker, Dynamic Data Analysis, Springer Series in Statistics,
DOI 10.1007/978-1-4939-7190-9_8

137

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
http://dx.doi.org/10.1007/978-1-4939-7190-9_7


138 8 Two-Stage Least Squares or Gradient Matching

in θ and in this case the minimum of ISSE(θ) can be given explicitly in terms of
x(t) and Dx(t).

3. WhenDx is only approximately equal to f(x, θ)wemight hope that theminimizer
of (8.1) will exhibit less bias – because it allows deviations of Dx from f(x, θ) –
than the estimates obtained from the trajectory matching approach.

The least-square objective function (8.1) is amenable to the same Gauss-Newton
methods described in Chap.7. Moreover, this approach does not require us to either
know or estimate initial conditions x(0).

However, a drawback is that we must have enough data to estimate both x and Dx
accurately without reference to the model. This can be done a number of ways, either
by differencing the data directly, or by various smoothing techniques. Another limi-
tation is that we assume that each component of x is measured directly; a limitation
that we will relax when we consider the profiling methods in Chap. 9.

Gradient matching has been re-invented several times and has gone by different
names. These include Varah (1982), Ramsay (1996), Pascual and Ellner (2000) and
Timmer and Voss (2000); our earliest reference is Bellman and Roth (1971) but we
would not be surprised to learn that Newton used it, too. The statistical properties of
variations on this idea have been studied in, for example, Brunel (2008), Gugushvili
and Klaassen (2012) and Liang and Wu (2008) where it is often referred to as “two-
stage least squares”. We feel that gradient matching is the most descriptive of the
names given to this approach.

We will review some non-parametric methods used to obtain estimates of x and
Dx before detailing the estimation of θ and obtaining confidence intervals for our
estimate. The presentation of nonparametric smoothing will be brief but will help to
illustrate parameter estimationmethods.Amore comprehensive treatment of smooth-
ing can be found in Eubank and Spiegelman (1990), Ramsay and Silverman (2005)
and Ruppert et al. (2005).

8.2 Smoothing Methods and Basis Expansions

This section is intended to provide a brief overview of nonparametric smoothing in
order to produce an intuition for gradient matching methods.Wewill make use of the
ecological data from Chap.7, as well as returning to them later. We focus on basis
expansion methods because of their relationship to the profiling methods described
in Chaps. 9 and 10.

For notational simplicity and because we apply smoothing to each variable in
turn, we will treat the case of a single variable x .

The technology we employ here and in the next chapter is to represent x(t) as a
linear combination of basis functions, (φ1(t), . . . , φK (t)):

x(t) ≈
K∑

k=1

ckφk(t) = φ(t)T c

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
http://dx.doi.org/10.1007/978-1-4939-7190-9_9
http://dx.doi.org/10.1007/978-1-4939-7190-9_7
http://dx.doi.org/10.1007/978-1-4939-7190-9_9
http://dx.doi.org/10.1007/978-1-4939-7190-9_10
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where we combine the basis functions into the vector φ(t).
There are many potential choices of basis system. The first panel in Fig. 8.1 illus-

trates a B-spline basis system that we employ through the examples in this chapter
and those in Chaps. 9 and 10. These show a system of 10 basis functions over the
time interval [0, 1]. In this case we have defined the basis by partitioning the time
interval into 8 equally-sized blocks on which each of the φk(t) is a cubic polynomial.
We have chosen these knots for display purposes: typically many more knots (and
therefore basis functions) would be used and they need not be equally spaced.
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Fig. 8.1 Basis expansion smoothing. Left panel 10 cubic B-spline basis functions. Middle and
right channels smooth’s resulting from small and large values of λ, solid lines give estimates of the
trajectory of rotifers (B) and dashed for algae (C)

Once we have a set of basis functions, we need to obtain values for the vector of
coefficients c. The most direct means of doing this is to minimize the sum of squared
errors. Let Φ be the n by K matrix contain the values of φk(t j ). We compute the
coefficients as

ĉ = argmin
n∑
j=1

(
y j − φ(t j )

T c
)2 = (

ΦTΦ
)−1

ΦT y .

Given the coefficient estimates, we can then estimate the value of x(t) at any time t
from

x̂(t) = φ(t)T ĉ = φ(t)T
(
ΦTΦ

)−1
ΦT y .

This approach can yield unsatisfying results in the sense that, if many basis functions
are used, we can end up with a very rough curve which nearly interpolates what can
be noisy data. Too few, of course, will fail to capture the trajectory well. We therefore
need to somehow decide how complex our curve should be.

We can control the smoothness of the fit to the data by our choice of the number
of basis functions, but this provides only coarse control over the resulting estimates.
As an alternative, we use fairly large number of basis functions, but modify the way
we estimate the coefficients in c. Rather than simply minimizing squared error, we
add a term that measures the extent the x̂’s are smooth. This makes our objective

http://dx.doi.org/10.1007/978-1-4939-7190-9_9
http://dx.doi.org/10.1007/978-1-4939-7190-9_10
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function

PENSSE(c) = (1 − ρ)

n∑
j=1

(
y j − φ(t j )

T c
)2 + ρ

∫ [
D2φ(t)T c.

]2
dt . (8.2)

We have represented this as a trade-off between two terms, the first of which is
squared error, our data fitting criterion. The second term is referred to as a smoothing
penalty and it trades off making x(t) close to the observed data against requiring
that its curvature, D2x(t), is small. This means that as ρ increases from zero, the
“wiggles” that can be seen in middle panel of Fig. 8.1 are increasingly ironed out.
The right panel of Fig. 8.1 shows the result of changing ρ from being very small,
hence obtaining rough estimates, to very large in which the resulting smooth is nearly
linear.

Wenote thatPENSSE(c) is oftenwritten in terms of unweighted squared error plus
a weighted penalty, usually designated by λ. This is equivalent to our formulation,
but we feel that the trade-off is more apparent here, and it will be a particularly useful
perspective when we present the profiling methods in Chaps. 9 and 10.

The use of the second derivative D2x(t) in the roughness penalty term implies
that straight lines are smooth since they receive zero penalty, and that curvature
implies roughness. This is by no means the only way of representing smoothness;
any derivative or combination of derivatives could be employed. If, for example,
we replace D2x(t) with D3x(t) we state that quadratic functions are also smooth.
Alternatively, using Lx = D3x(t) − ωDx(t) in its place would define sin(ωt) and
cos(ωt) as smooth, along with the constant function. Here, we advocate using a
higher derivative as a penalty – at least D3x(t). This is because we will want to use
the estimate Dx̂(t) below and we want this to be smooth in the sense of having low
curvature. In order to be general, we will use Lx(t) to indicate some combination of
derivatives of x(t) that is used to measure roughness; Chaps. 9 and 10 use Dmx(t) −
f (t, x, θ) as a smoothing penalty, and add the feature that the parameter vector θ is
simultaneously estimated.

We should also note another effect of this penalization; it deliberately introduces
bias into the estimate x(t). In particular, if D2x(t) is large at some point (we might
expect this to be the case when x(t) solves an ordinary differential equation, for
example) then we can expect that our estimate will not be particularly accurate
nearby. This can be alleviated by choosing a penalty that corresponds to the true x(t)
as closely as possible. This is the central idea behind Chaps. 9 and 10.

We can now reformulate the expression of the coefficient vector c by observing
that ∫ [

Lc′φ(t)
]2
dt = cTRc

where R is the matrix with entries

Rkl =
∫

Lφk(t)Lφl(t)dt .

http://dx.doi.org/10.1007/978-1-4939-7190-9_9
http://dx.doi.org/10.1007/978-1-4939-7190-9_10
http://dx.doi.org/10.1007/978-1-4939-7190-9_9
http://dx.doi.org/10.1007/978-1-4939-7190-9_10
http://dx.doi.org/10.1007/978-1-4939-7190-9_9
http://dx.doi.org/10.1007/978-1-4939-7190-9_10


8.2 Smoothing Methods and Basis Expansions 141

From this we obtain
ĉ = (

(1 − ρ)ΦTΦ + ρR
)−1

ΦT y,

and that
x̂(t) = φ(t)T ĉ, and D̂x(t) = Dφ(t)T ĉ .

So far, we have not specified a value of ρ or how to choose it. By its nature, if
we wish to minimize squared error on the observations, our best choice of ρ is 0.
Instead, it is common to minimize cross validation error; this is the error that you
get when you leave one data point out of the model and try to predict it. Explicitly
we define the cross validation error to be

CV(ρ) =
n∑
j=1

(
y j − x̂− j

ρ (t j )
)2

where x̂− j
ρ (t) is the estimate obtained with all the data except (y j , t j ). The value

of CV(ρ) thus represents the error obtained when making predictions for new data.
CV(ρ) may be calculated efficiently by defining the smoothing matrix

S(ρ) = Φ
(
(1 − ρ)ΦTΦ + ρR

)−1
ΦT

and the predictions at the data points (without cross validation)

ŷ = S(ρ)y .

We can now express the cross-validation error to be

CV(ρ) =
n∑
j=1

(
y j − ŷ j

1 − S(ρ) j j

)2

. (8.3)

For various reasons, it is also common to use the related criterion of Generalized
Cross Validation

GCV(ρ) =
∑n

j=1(y j − ŷ j )2∑n
j=1(1 − S(ρ) j j )2

. (8.4)

Alternative methods of choosing ρ are based on representing the smooth in terms
of random effects; see Ruppert et al. (2005). Whichever criterion is used, it is often
easier to search for a minima by looking at a grid of values of in the logit scale
η = log ρ/(1 − ρ), and a grid search often suffices to find a reasonable value.

This procedure must be carried out for each component x(t) of the differential
equation separately. It is often convenient to use the same basis expansion for each
component, in which case state vector is written as x(t) = φ(t)TC withC containing
the coefficients for each state vector stacked in columns. However, the choice of
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roughness measure, basis expansion and penalty parameter can all be tailored to
each component of the state vector if needed. We suggest that experimentation with
various values of ρ should be the norm, as opposed to blind reliance on any automatic
method such as those discussed here.

Figure 8.2 presents the results of carrying this out on the ecological data from
Chap.7. Here weminimised the sum of GCV for bothC and B. The resulting curve is
somewhat rougher than it is visually pleasing, however this results in better predictive
performance; it also produces better parameter estimates from the methods below.
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Fig. 8.2 Optimal smoothness of the chemostat data. Left panel GCV as a function of
log(ρ/(1 − ρ)). It is usually useful to look over values on the logit scale for a minimum. Right
panel the resulting smooths

8.3 Fitting the Derivative

8.3.1 Optimizing Integrated Squared Error (ISSE)

We now return to the the multivariable context. Suppose we use some smoothing
method to obtain estimates x̂(t) and D̂x(t) of x(t) and Dx(t) respectively. We can
now estimate θ bymaking f(x(t), θ) look as much like D̂x(t) as possible. The easiest
way to do this is via non-linear regression and we define θ to be the minimizer of
the integrated squared error:

ISSE(θ) =
d∑

i=1

∫
ωi (t)

(
D̂xi (t) − fi (x̂(t), θ)

)2
dt . (8.5)

This objective can be fairly readily extended to provide different weights to different
components xi of themodel and even to provide more weight to some particular parts

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
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of the time domain. Squared error is also not the only possible objective although,
as we see below, it is one of the easiest to work with.

Variables will often need weighting using the weight function ωi (t), which is
generally chosen to be constant throughmost of the region, but for theoretical reasons
should be zero at the ends of the interval. This is because the non-parametric estimates
x̂i and D̂xi are poorly behaved at the edge of the data and this can impact parameter
estimates – see, Wu et al. (2012) and Gugushvili and Klaassen (2012). In practice,
we can often visually assess poor behaviour of x̂i and D̂xi at either end of the time
interval and remove these from our estimates. Theweights are designed to equilibrate
the impact of variables and of the error levels in the observations across variables.We
again remind ourselves that transformations of variables is often helpful. Comparing
standard errors of observations around their fits is also advisable.

Since we expect that f will be nonlinear, the integral above is usually not tractable.
Consequently, we need to approximate it by a quadrature rule in which we evaluate
the integrand at time points tq for q = 1, . . . , Q and approximate the integral by a
weighted sum

ÎSSE(θ) =
d∑

i=1

Q∑
q=1

wiq
(
D̂xi (tq) − fi (x̂(tq), θ)

)2
.

Here in addition to accounting for the weighting values of ωi (tq) above, the weights
wiq also incorporate the quadrature rule that you use, and there are a number available,
although we will not detail them here. Simpson’s rule (Kincaid and Cheney 2002)
can be readily applied on small intervals, for example between the knots in a basis
expansion, but the simpler trapezoidal rule is often sufficiently accurate.

We now observe that ÎSSE(θ) is a weighted least squares criterion and we can
apply a Gauss-Newton scheme to minimize it just as in Chap. 7. To do this we only
need to deal with the derivative of fi (x, θ) with respect to θ for each i and at specific
values of x. In particular, if we define the vectors Fi (θ) and matrices ∂θ Fi (θ) for
i = 1, . . . , d by

[Fi (θ)]q = fi (x̂(tq), θ), and [∂θ Fi (θ)]q�i = ∂θ�
fi (x̂(tq), θ) .

These contain the value of fi and gradient of fi with respect to θ evaluated at each
time point tq . We will also need to define Wi to be the Q × Q matrix with the wiq

on the diagonal and to let X̂i and D̂Xi be the vectors giving the evaluation of x̂i (tq)
and D̂xi (tq) respectively for q = 1, . . . , Q. We now start with some sensible guess
θ̂0 for θ and on iteration � make the update

θ̂
�+1 = θ̂

�−⎡
⎣ d∑

i=1

Q∑
q=1

∂θ Fi (θ
�)TWi∂θ Fi (θ

�)

⎤
⎦

−1
d∑

i=1

∂θ Fi (θ
�)TWi

(
D̂Xi − Fi (θ

�)
)

.

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
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If we start θ̂0 close to the optimal value, this iteration will converge quickly, but
experimentation with different optimization strategies may be required.

8.3.2 Gradient Matching for the Refinery Data

We illustrate gradient matching with the refinery data from Chaps. 1 and 7 where we
fitted a first-order forced linear ODE:

Dx = β0 + β1x + αu(t) .

In this case, the minimizing values of the parameters can be obtained explicitly:

⎛
⎝β0

β1

α

⎞
⎠ =

⎛
⎝

∫
w

∫
wx̂

∫
wu∫

wx̂
∫
wx̂2

∫
wx̂u∫

wu
∫
wx̂u

∫
wu2

⎞
⎠

−1 ⎛
⎝

∫
wD̂x∫
wx̂D̂x∫
wuD̂x

⎞
⎠ ,

where we have suppressed “(t) dt” for clarity.
Figure 8.3 presents the results of this estimate. We have shown both D̂x and our

prediction of it from x̂ as well as the error between the two. This example shows why
gradient matching is appealing. Besides avoiding solving the differential equation,
gradient matching also often involves a better conditioned optimization problem.
When theODE is linear in the parameters (even if it is not linear in the state variables)
we can write down parameter estimates explicitly.

As a case in point, in Fig. 7.3 fromChap.7we showed the optimization problem for
the FitzHugh-Nagumo model where we observe that there are many local minima,
and that the shape of the surface is influenced by the choice of ODE solver. In
gradient matching, this ODE is linear in a and b meaning that we can give explicit
expressions for their estimates and the objective function is exactly quadratic. Even
when the ODE is not linear in parameters, the gradient matching objective is often
more nearly convex than the trajectory matching objective; this makes for a much
easier optimization problem with less need to be careful about using an initial guess.

8.3.3 Gradient Matching and the Chemostat Data

We have employed this approach with the chemostat data and the smooth shown
in Fig. 8.2 where we have removed the first two and last two days of the series
to down-weigh the end points and fit them with the Rosenzweig–MacArthur model
used in Chap.7. Here, our parameters differ from those found by trajectorymatching.
Figure 8.4 presents a comparison of D̂x and f(x̂, θ̂) plotted over time and against each
other (left and middle plots) where we observe that we have mimicked the derivative

http://dx.doi.org/10.1007/978-1-4939-7190-9_1
http://dx.doi.org/10.1007/978-1-4939-7190-9_7
http://dx.doi.org/10.1007/978-1-4939-7190-9_7
http://dx.doi.org/10.1007/978-1-4939-7190-9_7
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pretty well. The right plot compares the data to the solution of the Rosenzweig–
MacArthur ODE at the parameters found by gradient matching. Here we can see
that gradient matching has resulted in trajectories with a longer period and smaller
amplitude than the data exhibit. This is partly the result of statistical inaccuracies
in estimating D̂x and x̂, but can also be due to error in the ODE as well as in our
measurements, something we discuss in the next section.
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8.4 System Mis-specification and Diagnostics

8.4.1 Diagnostic Plots

An advantage of gradient matching is that it provides some robustness to system dis-
turbances that have not been modeled. This can be important: most ODE models are
written down for simplified systems that assume all external influences are accounted
for in the model. Importantly, we often expect that any discrepancies between the
model and the process generating the data are best modeled in terms of the derivative
of the system rather than the state vector itself. Gradient matching explicitly allows
us to visually examine how D̂x differs from f(x̂, θ̂).
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Fig. 8.4 Gradient matching on the chemostat data. The left panel plots D̂x (dashed) and the fitted
f(x̂, θ̂) (solid) as a function of time forC (top) and B (bottom). Themiddle panel presents D̂x plotted
against f(x̂, θ̂). The right panel plots log data and smooth (thin lines) along with the trajectories
obtained by solving the ODE at parameters obtained from gradient matching (thick lines)

The final panel in Fig. 8.3 presents the basic approach. We have plotted process
residuals

r(t) = D̂x(t) − f(x̂(t), θ̂) .

We think of this as a lack-of-fit function which indicates how far x̂ is from satisfying
the ODE, even at the best possible parameter estimates. Figure 8.3 lets us examine r
where we see what appears to be random oscillations – we will deal with accounting
for these in Sect. 8.5. However, this also gives us the opportunity to examine whether
f has been poorly chosen; we can now visually conduct diagnostics exactly as one
might in more classical regression by plotting r versus x and looking for reliable
patterns. This is amuchmore immediatemeans of improvingmodels than is available
for the trajectory matching methods in Chap. 7 where changing the algebraic form
of f(x, θ) can have counter–intuitive effects on the characteristics of solutions to an
ODE.

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
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An example where wemight suspect some lack of fit comes from themiddle panel
of Fig. 8.4 where we see some evidence of curvature in the relationship between D̂C
and fC(x̂, θ̂). In Fig. 8.5, we investigate this further by plotting r(t) against x̂(t) to
look for relationships that might be used to modify f . Just as in linear regression, we
can use this to add terms to the ODE; it is also often helpful to think of mechanistic
explanations for the relationships you see. It is important to recall that the relation-
ships in Fig. 8.5 arewhat is left over after fitting a nonlinearmodel, and simply adding
terms to the equations (as we might for linear regression) may produce a much more
complicated model than necessary.

To illustrate this, Fig. 8.5 produces a sequence of plots. On the left, we have plotted
r(t) as a two-dimensional function of Ĉ(t) and B̂(t). Here theremay be some patterns
but they are difficult to discern; it can also help to use plotting software that will
allow you interactively rotate these plots when looking for patterns. The middle plot
compares this to what we get when fitting a Lotka–Volterra model

DC = αC − βCB

DB = γCB − δB

(note that this is linear in the parameters (α, β, γ, δ) and we can therefore obtain
estimates using linear regression). Here some more curvature is evident in the C
equation (black lines) although this can still be difficult to make out. The right panel
provides an example template – we have taken the solutions to the ODE displayed
in Fig. 8.4 and then fit the Lotka–Volterra model to them using gradient matching.
Here we have a much “cleaner” picture where curvature associated with the half-
saturation rate χC is more evident as is the logistic growth model for C , although
it would require both some careful thought about appropriate ways to modify the
ODE, and some experimentation, to get back to a Rosenzweig–MacArthur model.
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Fig. 8.5 Diagnostics for fitting the chemostat data. The left panel provides the lack of fit r(t) plotted
against the estimated state variables using the Rosenzweig–MacArthur ODE. The lack of fit in the
C equation is given by lines, in the B equation by circles. The middle panel uses a simpler Lotka–
Volterra ODE. The right panel provides a prototype diagnostic resulting from fitting solutions to a
Rosenzweig–MacArthur model with a Lotka–Volterra ODE
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8.5 Conducting Inference

In this section, we will discuss methods to produce inference for parameters after
performing derivative fitting. How to do this is less obvious than it is for trajectory
fitting in Chap.7 where standard nonlinear regression methods are available. In this
case, variance is derived from both the estimate x̂ and its derivative D̂x; these are
strongly correlated.

In order to derive a reasonable means of estimating variance for this model, we
will think of our estimate as a functional of both x̂ and D̂x. In fact, since we plug in
the values of these estimates at discrete times, we can really write it as θ̂(X̂ , D̂X),
(recall from Sect. 8.3 that X̂ and D̂X are matrices containing the evaluation of x̂ and
D̂x at times tq for q = 1, . . . , Q).

In order to understand variability, we need to have a notion of what θ̂ is varying
around. To do this, we’ll define θ0 = θ(E X̂ , ED̂X) to be the estimator based on the
expected values of X̂ and D̂X . These will be biassed and we expect that θ0 may not,
in fact, lie exactly on the truth – we will examine bootstrap-based means of reducing
this bias below. To try and understand the variability in θ̂ , we will consider taking
one step of the Gauss-Newton algorithm starting at θ0:

θ̂1 = θ0 −
⎡
⎣ d∑

i=1

Q∑
q=1

∂θ Fi (θ0)
TWi∂θ Fi (θ0)

⎤
⎦

−1
d∑

i=1

∂θ Fi (θ0)
TWi

(
D̂Xi − Fi (θ0)

)
,

and we will write out the difference in the last term as

D̂Xq j − Fq j (θ0) =
D̂Xq j − ED̂Xq j + ED̂Xqi − fi (E X̂q , θ0) + fi (E X̂q , θ0) − fi (X̂q , θ0)

=
D̂Xq j − ED̂Xq j + ∂x fi (X̂q , θ0)(X̂q − E X̂q ) + ED̂Xqi − fi (E X̂q , θ0).

(8.6)

These are the terms on which we will base our estimate of variance.
The last of these terms only involves expectations, so has zero variance (it does

contribute bias but we will worry about that later) so we only have to worry about
the variance in X̂i and D̂Xi . To express this, we’ll need to define the matrices

[∂xFi ]qi = ∂xi fi (x̂(tq), θ) .

These contain derivatives with respect to x on each row and use this to construct

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
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H(θ) =
d∑

i=1

∂θ Fi (θ)TWi∂θ Fi (θ)

Ji (θ) = H(θ)−1

(
d∑

k=1

∂θ Fk(θ)TWk
[
diag(∂xFk(θ)i ) diag(1i=k)

])

where 1i=k is an identity matrix if i = k and a matrix of zeros, otherwise. Then,
putting things together we have

θ̂ − θ0 =
d∑

i=1

Ji (θ)

[
X̂i − E X̂i

D̂Xi − ED̂Xi

]

(in fact, this takes some re-arranging of terms to collect all the columns of X̂ − E X̂
in the same place). With this expression we can now calculate a variance as being

var(θ̂) = V =
d∑

i=1

d∑
k=1

Ji (θ)

[
var(X̂i , X̂k) cov(X̂i , D̂Xk)

cov(D̂Xi , X̂k) var(D̂Xi , D̂Xk)

]
Jk(θ)T . (8.7)

Of course, these expressions all depend on θ0, but we can substitute θ̂ in Ji (θ) and
still produce an (asymptotically) correct answer. To manage this, we need to express
the variance and covariances of our initial smooths.

8.5.1 Nonparametric Smoothing Variances

Our estimates (X̂ , D̂X) inherit variability from data modeled as Y ji = Xi (t j ) + ε j i

where ε j i is standardly assumed to be distributed as N (0, σ 2
j ) and represents any

random disturbances in the data. Because we might expect that measurements made
at the same time may be subject to the same random errors (for example, the volume
of a sample from a chemical reaction will increase the volume of all the reactants)
we model these and dependent between different measurements at the same time.
That is, we say that the vector of measurements ε j has covariance matrix Σ and
we will write the elements of the matrix as σik = cov(εi j , ε jk). We can obtain these
estimates simply by obtaining the empirical observation residuals ε̂i j (because they
estimate variability in our observations) and estimating

σ̂ik = 1

n

n∑
j=1

ε̂ j i ε̂ jk .

Often, we will divide by n − df where df is an estimate of the smoothing degrees
of freedom, frequently given as df = tr(S(ρ)) (see Ramsay and Silverman 2005;
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Eubank and Spiegelman 1990), although df = 2tr(S(ρ)) − tr(S(ρ)T S(ρ)) has also
been suggested; see Ruppert et al. (2005).

In the case of basis-expansion smoothing, the variance of x and D̂x can now be
be expressed fairly readily. Since

x̂i (t) = φ(t)T (ΦT
i Φ i + λiP)−1ΦT

i Yi ,

Dx̂i (t) = Dφ(t)T (ΦT
i Φ i + λiP)−1ΦT

j Yi

and the Yi have the same variance as the residuals ε, our estimates just inherit this
variance. In this case, we can write

cov(x̂i (t), x̂k(s)) = σikφ(t)T (ΦT
i Φi + λiP)−1ΦT

i Φk(Φ
T
k Φk + λkP)−1φ(t)T

cov(x̂i (t), D̂xk(s)) = σikφ(t)T (ΦT
i Φi + λiP)−1ΦT

i Φk(Φ
T
k Φk + λkP)−1Dφ(t)T

cov(D̂xi (t), D̂xk(s)) = σikDφ(t)T (ΦT
i Φi + λiP)−1ΦT

i Φk(Φ
T
k Φk + λkP)−1Dφ(t)T ,

which allows us to construct the covariances above.

8.5.2 Example: Refinery Data

We will illustrate this process with the simplest example: the refinery data examined
above. Here we first use our estimated η(t) to obtain an estimate for R(u) plotted
on the bottom right panel in Fig. 8.3. We also need to calculate the variability of our
observations Y using

σ̂ 2 = 1

n − trS(λ)

n∑
j=1

(y j − ŷ j )
2

which comes out to 0.002 with λ being chosen to be essentially 0. Since our equation
is linear, we can readily calculate that

∂βf(t, x, u,β) = (1, x(t), u(t))

and we define the matrix X to have rows (1, x(tq), u(q)). Without using weights, it
is fairly easy to calculate that

H = XT X, J = XT

[
β1 I
I

]

applying our formulae above, Table 8.1 reports the variance due to the ε observation
errors, η(t) process errors and their combination as well as confidence intervals.
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Table 8.1 Variances and confidence intervals after gradient matching on the refinery data

Estimated variance Confidence intervals

Lower Upper

β0 0.137091 7.6932 9.1743

β1 0.000001 −0.0228 −0.0187

α 0.000059 −0.2101 −0.1795

8.6 Related Methods and Extensions

A number of related methods have been proposed which we will briefly outline here

8.6.1 Alternative Smoothing Methods

We have presented gradient matching using basis expansion methods as a means
to estimate x(t) and its derivative, partly because of their connection to profiling
methods (see Chap.9). However, as we have indicated, they are not the only tools
available.

Local linear regression has often been used, particularly since it is easier to analyze
mathematically. Briefly, this method fits a linear regression locally to the point t of
interest. That is we fit

(β0(t), β1(t)) = argmin
n∑
j=1

K (|t − t j |/h)
(
y j − β0 − β1(t − t j )

)2

where K (u) is a function that decreases as u gets large, down-weighting observations
far away from the point t . Constant h, referred to as the bandwidth controls how
quickly this down-weighting takes in; just like λ in the basis expansions above, as h
gets small we fit points only very near to t , when h is very large we tend to linear
regression. Here, β0(t) estimates x(t), but β1(t) provides an estimate of it’s slope,
i.e. Dx(t) that does not necessarily equate to the derivative of β0(t). Since these do
yield estimates that are linear in y, they can be plugged into our methods above.

A variety of other smoothing methods can also be used. Pascual and Ellner (2000)
used neural networks; earlier literature such as Varah (1982) or Bellman and Roth
(1971) used splines without a penalty, but in which the knots were chosen adaptively,
often by hand.

http://dx.doi.org/10.1007/978-1-4939-7190-9_9
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8.6.2 Numerical Discretization Methods

Wu et al. (2012) proposed that, rather than fit f(t, x, θ) to Dx(t), we could instead
consider finding parameters to make a numerical solution fit the smooth as well as
possible. To illustrate, they consider evaluating x(t) at points t1, . . . , tm which are h
units apart; they then try to make an Euler update fit this smooth as well as possible:

θ̂ = argmin
d∑

i=1

n∑
j=1

wi j
[
xi (t j + h) − xi (t j ) − h fi (t j , x, θ)

]2
. (8.8)

Beyond taking just a simple Euler update, they can also examine updates based
on Runge Kutta schemes. Using Runge Kutta methods, m can be taken to smaller,
relative to n, than for the gradient matching we have examined above. When m is
quite large (hence h is small), there is little difference in these objective functions
after re-scaling by 1/h2 so that the methods of inference described above can still
be employed.

A significant advantage of this approach is that it avoids having to estimate D̂x,
something that adds variability to parameter estimates. However, by dividing the
term inside the square by h in (8.8), we can see that we are essentially producing a
finite difference approximation to Dx̂ which may not perform much better. We also
do not so directly access the diagnostics discussed in Sect. 8.4.

8.6.3 Unobserved Covariates

One of the largest disadvantages of gradient matching is that we must have obser-
vations of every state variable, and we must observe these with enough frequency
and accuracy to be able to estimate derivatives. This is very often not the case. When
this happens there are two possible ways to deal with this (at least within gradient
matching):

1. Re-express the equation in terms of a higher-order equation. In principle, this
is always possible, according to the literature on attractor reconstruction (see
Arbabanel 1996; Kantz and Schreiber 2003). For example the FitzHugh-Nagumo
equations which we discussed in Chap.7 can be written either as

DV = c(V − V 3/3 + R)

DR = −(V − a − bR)/c

in which R is unobserved, or as

D2V = c(1 − V 2)DV − V + a + bR

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
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which we achieve by differentiating the first equation and substituting the second
for DR. However, this is not always algebraically so simple, and can require a
large number of derivatives.

2. We can also represent missing components via a basis expansion whose coeffi-
cients we optimize along with θ . That is, if we divide x(t) into (xo(t), xm(t)) to
represent observed and missing components, we can represent x̂m(t) = φ(t)TCm

and minimize ISSE(θ ,Cm) over both. This will bring x̂m(t) as much into line
with xo(t) and the ODE as possible.
Naturally, this involves a large number of additional parameters and so potentially
adds considerable uncertainty. Similar ideas have been explored in the integral
matchingmethods inSect. 8.7 below.These ideas have connections to the profiling
methods explored in Chap.9, which we think provides a better solution to these
problems.

There has been very little exploration of the relative benefits of these approaches. We
do note that they produce quite different representations of lack of fit in the ODE, and
therefore different degrees of uncertainty in parameter estimates if the trajectories
are treated as random.

8.6.4 Nonparametric Models

Besidesmissing state variables, basis expansions can also be used for non-parametric
components that vary either with time or with state variables. Often, the structure of
a model may be known, but we may be less sure of our ability to estimate a specific
component. For example, in the Rosenzweig–MacArthur model above, we might
be agnostic about the saturation effect of the prey: C/(χB + C), we could instead
replace this with a non-parametric estimate g(C) = φ(C)d, say, where d represents
a vector of coefficients. The model is then written as

DC = ρC(χC − C) − Bg(C)

DB = γ Bg(C) − δB .

This type of approach was taken in Ellner et al. (2002) and Cao et al. (2008) among
others.

We can also allow some parameters to vary over time. This can be parametric (see
Hooker et al. 2011, for an example) or it can be allowed to vary nonparametrically.
A particular example of this arises out of the Functional Data Analysis literature
(Ramsay and Silverman 2005). If we have multiple replicates of a process x1(t), . . . ,
xn(t), Ramsay (1996) described principal differential analysis as estimating a model
of the form

Dxi (t) = B(t)xi (t) + ηi (t) .

http://dx.doi.org/10.1007/978-1-4939-7190-9_9
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That is Dxi (t) is linear in xi (t) but the coefficients change over time. When we
have replicate observations, we can estimate B(t) through gradient matching just by
performing linear regression at each time point t1. This can be particularly useful as
a way of exploring dynamics as a means of developing a more mechanistic model.

Onedoesn’t have toperformgradientmatching inorder to estimate non-parametric
components. Paul et al. (2011) included non-parametric estimates of root-growth
responses while performing trajectory matching; see also Hooker (2009), Hooker
and Biegler (2007).

8.6.5 Sparsity and High Dimensional ODEs

Exploratory analyses of ODE models can also be conducted. Particularly in the
field of systems biology, hundreds of proteins, or even more, can be involved in
a complex dynamical network – some inhibiting or accelerating the production of
others. Because we don’t know a lot about these relationships, it makes sense to start
with linear model:

Dx(t) = Bx(t) .

However, we also don’t expect that any given protein is affected, or affects, verymany
others – ie, we expect most of the entries in B to be zero. The LASSO (Tibshirani
1996) is a statistical method designed to automatically set many parameters to zero;
in the context of gradient matching it involves minimizing the penalized squared
error

ISSE(B) + λ
∑
i

∑
k

|bik |

where the non-differentiability of the absolute value at zero tends to make many of
the minimizing values of B exactly zero. These ideas were explored in Lu et al.
(2011); one cannot simply import LASSOmethods to gradient matching directly but
they were able to identify relationships between groups of similar proteins.

There are many variants on the LASSO, few of which have been examined in the
context of dynamical systems, but many of which may potentially be applied where
high-dimensional measurements are made over time.

1Although Ramsay (1996) added some smoothing penalties to regularize B(t) and this can be
helpful
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8.7 Integral Matching

The idea of matching derivatives has a complement in that of matching integrals. We
can re-write the ODE specification by obtaining the indefinite integral on each side
of the equation:

x(t) = x0 +
∫ t

0
f(x(t), θ)dt .

Here we can approximate the integral in terms of either the smooth or the observed
data, yielding an objective one of the following forms, where we have also indicated
our numerical approximate to them

d∑
i=1

∫ T

0
wi (t)

(
x̂i (t) − xi0 −

∫ t

0
fi (x̂(s), θ)ds

)2

dt (8.9)

≈
d∑

i=1

(Xi − 1xi0 −UFi (θ))T Wi (Xi − 1x0i −UFi (θ))

or

n∑
j=1

d∑
i=1

w∗
j i

(
y ji − x0i −

∫ ti

0
fi (x̂(s), θ)ds

)2

(8.10)

≈
d∑

i=1

(
Yi − 1x0i −U ∗Fi (θ)

)T
W ∗

i

(
Yi − 1x0i −U ∗Fi (θ)

)

where x̂(t) is any approximation to x(t) from smoothing the data as above. In our
approximations,U andU ∗ are matrices whose rows calculate approximations to the
integral

∫ t
0 f j (x̂(s), θ)dswhere t is either a quadrature point in (8.9) or an observation

time in (8.10). As above, Wi is a diagonal weight matrix that both incorporates the
weight function wi (t) and the quadrature rule.

There are numerous variations on this method, dating back to Himmelblau et al.
(1967) – see Yermakova et al. (1982), Vajda et al. (1986), Font and Fabregat (1997),
Dattner and Klaassen (2015), Dattner and Gugushvili (2015), involving different
smoothing methods, different matching criteria and different means of performing
the integration. The method is often referred to as the direct integral approach or the
HJB method for it’s first originators; however, we like the term integral matching
to unify it with trajectory and gradient matching. The reader will note that it shares
many of the same advantages of gradient matching: we do not need to solve an ODE
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and the minimization task is often easier. Like gradient matching, if f is linear in
the parameters, we can obtain their estimates explicitly (up to evaluating integrals).
As a distinct advantage, it also avoids evaluating Dx, improving the stability of the
estimate. As a disadvantage, x0 must be estimated again – either as an intercept in
a nonlinear model, or from the smooth (we take the former option here) – and it is
difficult to perform visual diagnostics and model improvement without returning to
an estimation of Dx.

It is possible to conduct the same variance calculations as we performed above. In
this case, we need to calculate values for the second derivative with respect to both
θ and x0. We will do this by first writing

Gi (θ) = [
U∂θ Fi (θ) Ei

]

where Ei is a zero matrix apart from 1’s on the i th column do indicate the i th
component of xi . The second derivative is then

H(θ) =
d∑

i=1

Gi (θ)TWiGi (θ)

where an equivalent formulation for the second derivative of (8.10) can be obtained
by using the appropriate starred quantities.

Setting ϑ = (θ , x0) as in Chap.7, we can approximate

ϑ̂ ≈ ϑ − H(θ)−1
d∑

i=1

Gi (θ)TWi (X̂i − 1x0 j −UFi (θ)) ,

from which we can derive a variance as in Sect. 8.5 from the approximation

X̂i − 1x0i −UFi (θ) ≈ (X̂i − E X̂i ) −
d∑

k=1

diag([U∂xFj ]k)(X̂k − E X̂k) .

Thus writing

Ji (θ) = H(θ)−1

(
Gi (θ)Wi −

d∑
k=1

Gk(θ)Wkdiag([U∂xFk(θ)] j )
)

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
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we have

var(θ̂ |η) = V =
d∑

i=1

d∑
k=1

Ji (θ)T cov(X̂i , X̂k)Jk(θ) .

Our variance estimate is slightly different in the case of (8.10), where we write

Yi − 1x0i −UFi (θ) ≈ Yi −
d∑

k=1

diag([U∂xFi (θ)]k)(X̂k − E X̂k)

so that in this case we must account for

cov(Yi , X̂k) = σikΦ
(
ΦTΦ + λP

)−1
ΦT

if we employ a penalized smoothing method to estimate X̂k . We thus need to modify
our variance estimate var(θ̂) (with analogous starred quantities) to specify

J ∗
i (θ) = H∗(θ)−1

(
−

d∑
k=1

G∗
k(θ)W ∗

k diag([U ∗∂xFi (θ)]k)
)

d∑
i=1

d∑
k=1

[
G∗

i (θ)TW∗
i J ∗

i (θ)T
] [

cov(Yi ,Yk) cov(Yi , Xk)

cov(Xi ,Yk) cov(Xi , Xk)

] [
W ∗

k G
∗
k(θ)

J ∗
k (θ)

]
.

We illustrate this on our simple refinery data first. In this case, the system is
sampled very frequently and at unit intervals,meaning thatwe can use the observation
times as quadrature points and approximate the integral via a cumulative sum:

∫ t j

0
f(x̂(t), θ)dt ≈

i∑
i=1

f(x(t j ), θ)

thus writing Z to be the n × 4 matrix obtained by adding a column of 1’s to the
(column-wise) cumulative sum of X from Sect. 8.5, we have G(β) = Z and

J (β) = (ZT Z)−1ZT (I − diag(t))

where t, is the vector of observation times. Note that since we have just projected
the data onto a basis system, there is algebraically no difference between using (8.9)
and (8.10) (this is left as an exercise for the curious reader).
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In Fig. 8.6 we have compared plots of predicted versus fitted values for both
gradient and integral matching as well as their process residuals. Here we see
much better agreement on the integral than the derivative scale. Table 8.2 replicates
Table 8.1 but for integral matchingwhere we see similar results (with x0 an additional
estimated parameter) but with somewhat smaller variances.

Aswith gradientmatching,missing components can bemodeled via a basis expan-
sion using additional parameters; it is possible to convert an ODE to higher-order,
but the equivalent methods for higher-order ODEs are somewhat more complicated.
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Fig. 8.6 Integral matching on the refinery data. The left plot shows x̂(t) versus
∫

f (x̂, θ)dt . Here
we observe a much closer relationship than we had for gradient matching. The right plot shows
D̂x − f (x̂, θ) for both gradient and integral matching. These give virtually identical results

Table 8.2 Variances and confidence intervals after integral matching on the refinery data

Estimated variance Confidence intervals

Lower Upper

x0 2.592 × 10−4 215.2779 215.3423

β0 4.204 × 10−2 8.3517 9.1718

β1 3.422 × 10−7 −0.0225 −0.0201

α 1.629 × 10−5 −0.2128 −0.1967

8.8 Applications: Head Impacts

Here we re-examine the head impact data from Chap.7. Recall that these data are
described by a second-order system

D2x = β1x + β2Dx + β3u(t) (8.11)

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
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where u(t) is the indicator function for 14 < t < 17. W can also write this model as
a first order system, but with two state variables

D

(
x
v

)
=

(
0 1
β1 β2

) (
x
v

)
+

(
0

u(t)

)
.

However, in this representation, we only have measurements of x and not v.
Treating a second order system is relatively straightforward in gradient matching;

we simply estimate (̂D2x, D̂x, x̂) and treat (8.11) as a linear regression to estimate
(β1, β2, β3) = c(−0.062,−0.135,−7.757). Figure 8.7 shows the result of this. If we
wished to assess the variability of the resulting parameter estimates, the approaches
above can be readily extended for this case.

An alternative approach to this problem is to use the extended representation
of the system in terms of x and v. Here we face the problem that v is unobserved.
However, we can instead represent its value via a basis expansion: v̂(t, cv) = φ(t)T cv
inwhich cv are taken to be further parameters to estimatewithin the gradientmatching
criterion:

ISSE(β1, β2, β3, cv) =
∫ (

D̂x(t) − φ(t)T cv
)2
dt+

∫ (
Dc′

vφ(T ) − β1 x̂(t) − β2φ(t)T cv − β3u(t)
)2
dt .

Here, the terms in the integrals could beweighted differently, butwe have simply used
them together. The minimizers of ISSE(β1, β2, β3, cv) result in parameter estimates
(β1, β2, β3) = c(−0.062, ,−0.121,−7.749). and have been used to create the plots
in the bottom row of Fig. 8.7 where, our results are not too different to fitting the
second order model.

While these results are not very different in this case, it is important to note that
there are real differences between these choices. Most importantly, using a system
of equations relaxes two relationships: the equations for x and for v. Thus, model
errors can occur in both terms. In the second-order system, we only see model errors
in one equation. If these are treated as random forcing terms, as above, it could
have considerable impact on our estimates. Of course, if we give much more relative
weight to the first integral in ISSE(β1, β2, β3, cv)we could expect to return to fitting
̂D2x .

We have not included variance estimates here. These could be obtained by simu-
lation. In the case of fitting (8.11) directly, the approaches discussed for first-order
models can be readily extended. When estimating entire state vectors in our second
approach, the variance properties of this estimate are less clear.
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Fig. 8.7 Fitting the head impact data. Top panel fitting a second-order ODE. Left panel plotŝD2x
versus D̂x and x̂ ; right panel plots D̂x versus fitted values (top) and the process residuals (bottom).
Bottom panel fitting a two-dimensional first order ODE system with v unmeasured. Left panel plots
observed versus fitted values for D̂x and D̂z, right panel gives process residuals for both x̂ and ẑ.

Here the two methods mostly differ in whether there is one source of system error (on̂D2x), or two

Finally note that in our original development of the model, we knew the initial
conditions of the state x(0) and Dx(0) from the experimental setup. This information
is not available to gradient matching, but could be enforced in the smoothing step. In
the direct integral approach, we would have to evaluate nested indefinite integrals –
something that would be difficult – but could similarly hard-code initial conditions
if they are known.



Chapter 9
Profiled Estimation for Linear Systems
Estimated by Least Squares Fitting

9.1 Introduction and Chapter Overview

We now describe an approach to parameter estimation and statistical inference called
parameter cascading or generalized profiling that combines the virtues of both the
nonlinear least squares method or trajectory matching described in Chap. 7 and the
gradient matching approach in Chap. 8, but in a way that avoids the disadvantages
of both. We use θ and the term “parameters” for the vector of all the constants that
define the differential equation system and that must be estimated from the data. That
is, there may be other constants defining the equation(s) that are regarded as known
and held fixed in any analysis, and we ignore them as parameters.

Parameter cascading defines the estimation problem as a function of only the
unknown parameters in one or more differential equations, and yet simultaneously
estimates the solutions x as a byproduct of the computations. In comparison with the
nonlinear least squares method discussed in Chap. 7, the computational overhead is
greatly reduced; and unlike the derivative matching approach, differential equations
with partially observed or indirectly observed variables are accommodated. The
method shares with gradient matching in Chap. 8 the use of basis function expansions
to represent the solution functions xi . A number of other advantages come with
parameter cascading aswell, including having a continuumof choices between fitting
the data and solving the differential equation.

This chapter begins with a conceptual introduction to parameter cascading or
generalized profiling estimation. In this and the next next three sections only the
single equation case is considered in order to keep the notation as simple as possible.
Sections 9.3 and 9.4 look at the selecting the roughness penaltyρ and the computation
of confidence intervals for parameters. Up to this point only a single equation has
been involved, but the next Sect. 9.5 generalizes the parameter cascading estimation
strategy to the multiple equation context. Four case study sections follow illustrating
aspects of data fitting by linear dynamical systems. The final section shows how an
alternative compact shape-based basis system can be constructed once the dynamical
system is estimated.
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As a further aid to understanding how parameter cascading works, we will weave
into the narrative the account of an analysis of a single set of data generated from
the simplest unforced first order equation Dx = −βx , the solution to which is
x(t) = C exp(−βt). We remind ourselves here that the solution has two parameters
while the differential form has only one. That is, the differential equation defines a
linear space of solutions corresponding to the possible values of C . Scale parameter
C would be defined if we knew the initial value x(0) = C or, as is more usual in
statistical investigations we had a reasonable amount of noisy data distributed over
the observation interval. Our “data” here will be N = 21 values generated by adding
independent normally distributed errorswithmean 0 and standard deviation 0.1 to the
function exp(−βt) at 21 equally spaced locations over [0,4], so that β = C = 1.One
such simulated sample, the analysis of which we will consider in detail, is displayed
in Fig. 9.1.We, in fact, generated and analyzed 500 such samples, andwill also report
results averaged over these simulated data samples.
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Fig. 9.1 An exponential decay process x(t) = C exp(−βt) for which C = β = 1. The circles
are observations at 21 equally spaced time points simulated by adding independent Gaussian errors
with mean 0 and standard deviation 0.1. The solid curve shows a least squares fit constructed using
13 order 4 B-spline basis functions. The dashed curve is the errorless version
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9.2 The Parameter Cascading Strategy for Estimating
Parameters

The elements of parameter cascading in the context of a single differential equation
are:

• Approximate the solution x(t) to the differential equation by the basis function
expansion

x̂(t) =
K∑

k

ckφk(t) = cTφ(t) . (9.1)

• Constrain the coefficient vector c to be a smooth function c(θ) of the parameters
in vector θ that define the differential equation.

• Optimize the fit to observations y1, . . . , yn in vector y by x̂(t) = c(θ)Tφ(t) with
respect to θ by optimizing a fitting criterion H(θ |y).
Figure 9.1 shows the least squares fit to the data using K = 13 order 4 B-spline

basis functions with equally spaced knots at 0, 0.4, 0.8, . . . , 4.0. The recovery of
the true function in this way is poor, but this number of spline bases can fit the true
exponential curve with a maximum error of 0.00002.

9.2.1 Two Classes of Parameters

Parameter cascading pivots around the idea of replacing the coefficients ck in the
basis expansion by values of a smooth function of the parameters in θ . In effect, the
status of the K -dimensional coefficient vector c as a set of parameters is eliminated.
Instead, the coefficient estimates are actually the values of the function c(θ̂) at the
optimal value of the θ . But why would we want to do this?

The parameters in θ typically impact the trajectory over either the entire interval
[0, T ], or at least over large portions of it. As a rule we regard the number of such
parameters as fixed, and in our toy example we have only one parameter β. By
contrast, we have in our analysis 13 coefficients ck , and there is no particular reason
why this number might not be either larger or smaller.

The parameters also often stand for something substantively interesting in the
processes generating the data, as is the speed of decline in our simple example, and
their estimated values are therefore important to our clients and to understanding the
model. Statisticians refer to these as structural parameters, although the designation
global might also be appropriate.

By contrast, any of the K coefficients ck defining the basis function expansions of
the variable x usually defines only a small piece of the trajectory. For spline bases,
for example, each ck is approximately proportional to the height of xi at the center of
the small interval over which the kth spline basis function is positive. In our example,
the value of c6 contributes to the definition of the fitted curve only over the interval
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[0.4, 2.4]. Typically a client researcher would prefer to just examine a plot of the
estimated trajectory x rather than the sizes of each of the coefficients.

The number K of coefficients ck may be orders of magnitude larger than the
number of structural parameters, as it is in our demonstration example. Moreover,
the numbers of these coefficients tend to be tied to the amount of data collected for
each observed variable. It is common to place a spline function knot at the location of
each observation, so that if a client arrives with more data, the number of coefficients
will increase proportionately. In our demo example, this would increase the number
of coefficients from 13 to 23.

The coefficients ck are required in amodel to accommodate local variation so as to
leavemore global types of variation to be explained in terms of structural parameters.
Parameters like these are often referred to as incidental or nuisance parameters, but
the less pejorative term local seems appropriate, too.

The central problem for a model requiring large numbers of local parameters
is how to prevent over-fitting the data, so that enough variation is left to guarantee
useful and efficient estimation of the structural parameters that are of primary interest.
For example, we can always make the basis size K large enough to exactly fit each
observation; and indeed, we are here counsellingmaking Ki much larger on occasion
to capture sharp variation in the functions in the equation solution space. Moreover,
interpolating the datawould also interferewith the inspection of the shapes of the xi ’s,
and certainly with the usefulness of their derivatives. That is, a data–interpolation or
a high dimensional data smoothing of x when the data are noisy, cannot be close to
a solution of its corresponding differential equation because the equations imply a
much stronger type of smoothness. This is certainly so for the solid curve in Fig. 9.1,
which is a least squares fit to the data using only the 13 B-spline basis functions. The
data smooth does not look much like the true curve, and the fit of its first derivative
to the true derivative −β expβt is much worse.

A secondary but important reason for using parameter cascading is that the com-
putation required to optimize the fit of the model to the data is greatly reduced since
the final fit depends only on the smaller number of parameters, rather than on sum
of the number of parameters and the number of coefficients.

We will see over and over again that forcing c(θ) to be a smooth function of
the parameters will results in better parameter estimates with smaller confidence
intervals without seriously harming the fit to the data that c(θ) defines. For examples
in this Chapter, have a look at Figs. 9.5, 9.11 and 9.12 as well as our personal favorite
Sect. 1.6.

9.2.2 Defining Coefficients as Functions of Parameters

A natural approach to defining c(θ) is to define an inner fitting criterion J (c|θ) that
optimizes c given any candidate value for the parameters in θ , and that is re-optimized
each time θ is changed in order to optimize an outer fitting criterion H(θ). That is,
the functional relation is implicitly defined by specifying the c-optimality for J as

http://dx.doi.org/10.1007/978-1-4939-7190-9_1
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conditional on a prior choice for θ . We are, in effect, placing a higher priority on the
estimation θ and a lower priority on the estimation of c and the x(t) that it defines.

But there are common situations where this strategy can be short-circuited by
working out the optimizing coefficients in the function J explicitly, and one of these
is the use of penalized least squares for J (c|θ). Before we do that, however, we need
to look for a way of blending together the information in the data and the information
in the equation.

9.2.3 The Symmetric Relation Between the Data
and the Differential Equation

Most dynamic models for observed systems are only partially founded upon basic
scientific principles, usually because a complete model would be too complex to
identify given the amount of data that are available. The simple second order equa-
tion used for the head impact data, for example, ignores the wide variation in the
mechanical properties of the brain tissue being deformed, as well as the bonematerial
transmitting the shock to the soft tissue inside the skull.

Or it may be that many alternative processes, such as chemical reactions, can
lead to the same end result. Typically there are no data available to tease apart what
fraction of processes is due to any specific case. Or, finally, the goal of the modeller
may be fundamentally humble: Just capturing the prominent shape features can be
an important achievement. We see this often in physiological studies, such as the
Nobel Prize winning Hodgkins–Huxley neural spike potential model.

In these circumstances, we don’t wish to put all of our money on the equation. In
order to control this relative emphasis, we fix a value ρ ∈ [0, 1), called a smoothing
parameter or a bandwidth parameter, that modulates the relative emphasis on fitting
the data as opposed to satisfying the differential equation. By choosing ρ judiciously,
we can see how much of the variation in the data can be accommodated by what is
perhaps a too-simple dynamic model. If this is possible, then the residual variation
is apt to give important cues about either how the model is to be elaborated, or about
what kind and quantity of data would be more revealing.

9.2.4 Inner Optimization Criterion J

Our first task is to define the inner optimization function J (c|θ, ρ). If we choose to
use the familiar squared residual fit measures, then

J (c|θ, ρ) = (1− ρ)

n∑

j

[y j − x(t j )]2/n + ρ

∫ T

0
{Dmx(t) − f [x(t)]}2 dt/T . (9.2)
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The smoothing or bandwidth parameter ρ is in the half-closed interval [0, 1). If
ρ = 0, we are ignoring the differential equation entirely and concentrating solely
on data-fitting; which, depending on the number K of basis functions, can amount
to either least squares curve fitting or to data interpolation. But as ρ → 1, we place
more and more emphasis on x being close to a solution to the differential equation.
Whether the solution is exact or not will depend on whether the basis system is
powerful enough to capture all the shape variation that an exact solution will require.
We define the right side of the ρ-interval to be open since will surely not want to
ignore the data entirely, primarily because a solution to most differential equations
is not uniquely defined without some additional information, and the data provides
this information so long as ρ < 1.

9.2.5 The Least Squares Cascade Coefficient Function

As is usual in statistics, working with least squares criteria brings a lot of mathemat-
ical convenience. Let us assume for a couple of paragraphs that there are no forcing
functions, so that the differential equation residual function Dmx(t) − f [x(t)|θ] in
(9.2) can be re-expressed as Lx = 0 where L is the differential operator form of the
differential equation Dmx = f (x |θ).

Using matrix notation, the fitting function is x̂(t) = cTφ(t),where the coefficient
vector c and basis function vector φ are of length K . Let n by K matrixΦ contain the
values of the basis functions evaluated at the observation points. Then inner criterion
(9.2) becomes

J (c|θ) = (1 − ρ)(y − Φc)T (y − Φc)/n + ρ

∫ T

0
[cTLφ(t)][cTLφ(t)]T dt/T

= (1 − ρ)(y − Φc)T (y − Φc)/n + ρcT
( ∫ T

0
[Lφ(t)][Lφ(t)T ] dt

)
c/T

= (1 − ρ)(y − Φc)T (y − Φc)/n + ρcTR(θ)c/T (9.3)

where

R(θ) =
∫ T

0
[Lφ(t)][Lφ(t)T ] dt . (9.4)

Note that order K matrix R(θ) is a function of the parameter vector θ because the
linear differential operator L depends on θ through the right side function f (x |θ).

With R(θ) in hand as well as the last equation in (9.3) it is a simple exercise in
matrix calculus to work out that the minimizing value of c that satisfies the equation

c(θ) = [(1 − ρ)ΦTΦ/n + ρR(θ)/T ]−1(1 − ρ)ΦT y/n . (9.5)
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Only a minor extension of (9.5) is required for forced linear systems where the
differential equation has the operator form

Lx(t) =
L∗
∑

�

α�|θ (t)u�(t) .

The parameter vector θ now also contains whatever coefficients define the forcing
function rates α�. Along with the order K matrix R(θ), we now define K by L∗
matrix S(θ) to be

S(θ) =
∫ T

0
[Lφ(t)]uT (t) dt . (9.6)

The inner criterion is then

J (c|θ) = (1 − ρ)(y − Φc)T (y − Φc)/n + ρcTR(θ)cT /T + ρcTS(θ)/T , (9.7)

and we have that

c(θ) = [(1 − ρ)ΦTΦ/n + ρR(θ)/T ]−1[(1 − ρ)ΦT y/n + ρS(θ)/T ] . (9.8)

Equation (9.8) is a simple strategy for blending together two varieties of multiple
regression. BothΦTΦ andR(θ) arematrices of inner products, taken for the first term
with respect to values of φ at discrete sampling points and in the second term taken
with integration over all values of t . Each is an analogue of ZTZ in the conventional
regression problem E[y] = Zβ. Moreover, ΦTY and S(θ) are also cross-product
structures representing the inner products of covariateswith data. Themain difference
between the two problems is the source of the data. If the differential equation is
homogeneous, the analogue of Y in the second term of J is the zero function, since
in effect there are no external variables to approximate. If, on the other hand there
are one or more additive forcing functions, then the matrix S is the corresponding
data factor that corresponds to ZT y in conventional regression.

Figure 9.2 shows how the coefficients c3(ρ), c6(ρ), and c9(ρ) vary as β ranges
from 0.5 to 1.5 for the relatively low smoothing parameters ρ = 0.27, and for the
high value ρ = 0.98. As we move along these trajectories to find the minimizing
values of β, we automatically specify a varying set of coefficients that identify x .
That is, for any value of ρ, c(β) defines a space curve in 13-dimensional coordinate
space; and the larger ρ is, the smoother this curve will be. In the Figure we see a
sharper curvature for ρ = 0.27 than we do for ρ = 0.98, reflecting the goal of
defining c as a function of θ that becomes more and more smooth as we increase ρ.

From (9.8) we can now see more clearly the linear relation between the fitting
vector x̂(t) and the data in y, namely that

x̂(t) = Φc(θ) = M(θ)y + N(θ) (9.9)
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where
M(θ) = (1 − ρ)Φ[(1 − ρ)ΦTΦ/n + ρR(θ)/T ]−1ΦT /n

and
N(θ) = ρΦ[(1 − ρ)ΦTΦ/n + ρR(θ)/T ]−1S(θ)T /T .

0
0.35

0.02

0.04

0.06

0.3

 = 0.5

0.7

0.08

 c
9

0.1

0.25 0.68

0.12

 c6

0.14

0.66

 c3

0.2

0.16

0.64

 = 1.5

0.15

 = 0.5

0.62

 = 1.5

0.1 0.6

Fig. 9.2 The curves display three of the 13 coefficient functions c3(β), c6(β), and c9(β) defining
x(t) varying over values of β between 0.5 and 1.5 for the model and data in Fig. 9.1, and for values
of ρ of 0.27 (dashed) and 0.98 (solid)

The symmetric matrix functionM(θ), called the smoothing map, plays an impor-
tant role in defining an equivalent degrees of freedom measure, the GCV criterion,
and in computing confidence intervals for estimates of parameters in θ .

At first sight, the need for evaluatingR(θ) and S(θ) each time θ is changed by nu-
merical approximations of the integrals defining them implies a major computational
overhead. We will return to this problem later and show that almost all of the work
in computing these matrices can be completed once and for all prior to optimization
by a computational strategy called memoization.

The computation of c(θ) depends critically on the non-singularity of the matrix
(1 − ρ)ΦTΦ/n + ρR(θ)/T . There is usually little concern with the cross-product
matrixΦTΦ, and especially if B-spline basis functions are used, since in this case the
matrix is band-structured and well-conditioned. For example, in our demo example
this matrix is of order 13 and its eigenvalues range from 1.929 down to 0.89, and
therefore is well conditioned.
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But this is not so for R(θ). For an m-order linear differential operator L, the
equation Lx = 0 has a solution space of dimension m, and if our basis function
expansion is sufficiently powerful, it will come close to being able to approximate
functions in this solution set, called the kernel of operator L. For our demo example
withβ = 1, the smallest eigenvalue is about 10−8.5, the next largest is about 10−1, and
the largest is about 1, which is exceedingly dangerous when ρ → 1. Fortunately, as
we shall see, values such as ρ = 0.999 are well within what is tolerable and can also
give excellent approximations to exact solutions of the linear differential equation
and at the same time of the parameters in θ that define them.

9.2.6 The Outer Fitting Criterion H

We remain in the simpler single-equation context, where y is a vector of length n
containing the data and x(t) is a vector of length n containing the fitted values at
observations times t j .

To complete the parameter cascading strategy,we specify an outer fitting criterion,

H(θ |ρ) = G0[y, x(t)|θ, ρ] . (9.10)

If we stick with least squares as our criterion, then

H(θ |ρ) =
∑

j

[y j − x̂(t j )]2 =
∑

j

[y j − cT (θ |ρ)φ(t j )]2 . (9.11)

The least squares criterion will no longer be a simple quadratic function of the
unknown parameter values, but the optimization problem is nevertheless easier if we
use the Gauss-Newton algorithm. The shape of the criterion function also varies with
the level of ρ.

Figure 9.3 shows how H(θ |ρ) varies over β for our demo example using ρ =
0.5, 0.73, 0.88, 0.95, 0.98, 0.99. We see that the curvature is less and also more
quadratic for the bottom curve (ρ = 0.5). Aswe increase ρ the height of H increases,
its asymmetry increases, as does its curvature, but we also see that the minimizing
values moves closer and closer to the true value β = 1.

Ideally, the choice of fit measure G0 will depend on knowing something about
the distribution of the data in vector y, including how that distribution would depend
on the fit vector x(t). The choice of least squares is justified if:

1. The residual values e(t j ) = y j − x(t j ) have a Gaussian distribution given that
x(t j ) = E[y j ] and that these values are independently distributed but with the
same variance.

2. The differential equation correctly identifies the processes that have generated
the data.
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3. The basis system φ has sufficient fitting power to represent the function x and its
derivatives up to order m to a level of accuracy that allows us to ignore discrep-
ancies between the values of the equation’s right and left sides.

4. The smoothing parameter ρ has been set to a value that is sufficiently close to 1.

Then the single-equation least squares criterion is an optimal choice from the stand-
point of statistical theory.
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Fig. 9.3 Each curve shows the variation of values of H(β) over β for the demo data analysis of
the data in Fig. 9.1. The values of the ρ used in the same order as the heights of the curves are (0.5,
0.73, 0.88, 0.95, 0.98, 0.99)

These assumptions implying least squares are, needless to say, strong. The easiest
of these to fix in practice is the distributional assumption (1). We may prefer that G0

is the negative of the log of the likelihood function associated with associated with a
probability density function p(y|x) that is more appropriate for the data at hand. For
example, if the data are not independent, but are Gaussian, then it may be possible
to estimate a covariance matrix Σ̂ and use a weighted least squares criterion where
the weighting matrix is Σ̂−1.

Some common non-normal distributional situations are:

Positive data: The values x j are known to be positive, we may opt for a lognormal
density and its associated negative log likelihood (minus terms not depending
on x)

H(θ |ρ) =
∑

j

[log(y j ) − log(x̂(t j ))]2 . (9.12)
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If the odd y j is 0, such as is the case for counts of rare events over a large population,
we are apt to substitute a small positive value such as y = 1/(2N ) where N is
the population size. Alternatively, as we saw in Chap. 2, the differential equation
can itself be transformed to a nonlinear form so that x(t) > 0.

Non-negative data: If the number of zero y values is not negligible, we may opt for
more exotic distributions drawn from what is often called the zero-inflated class.

Binary data: If the data are binary with values zero or one, then a Bernoulli distrib-
ution is a logical choice with x constrained to satisfy the condition 0 ≤ x ≤ 1.

Nevertheless, when the differential equation is linear, as we assume in this chapter,
we can gain a great deal computational efficiency if inner criterion involves least
squared error measures for both terms. Non-normal distributions in the generalized
linear model (GLM) family can use iterated least squares solutions as a technique
for capitalizing on this efficiency.

On the other hand, if the type of data demand something other than a least squares
criterion for outer criterion H , it is only logical that the same applies to inner criterion
J . We have assumed in this section that the coefficient function c(θ) is explicitly
available, but it is not apt to be the case if J is other than a few simple cases, including
least squares. If an explicit expression for c(θ) is not available, the techniques in the
next Chap. 10 will have to be employed.

9.3 Choosing the Smoothing Parameter ρ

The choice ofρ value can dependonmany factors. Is our goal to estimate as efficiently
as possible the parameters in θ , or is it only to find a useful curve x that does a nice
job of fitting the data but has at least some relationship to the differential equation
defined by θ? Or is our focus a blend of the two where we are exploring a family
of differential equations, perhaps forced by data-defined exogenous terms u, hoping
that the data will help us to find the magic dynamic model that is the analogue of
Maxwell’s equations or Planck’s black-body radiation function upon which future
scientific advances will be based? A simple and effective answer to these questions is
to estimate both θ and x for a wide range of ρ values so as to calculate the functional
flow x(ρ) or parametric flow θ(ρ).

An important reason to take this approach is computational. As ρ approaches
one, the topology or curvature variation of the response surface defined by H(θ)

tends to be become more and more complex, with sharper and sharper curved ridges
and more and more possibilities for local optima. Consequently, it can be crucial to
have an initial value of θ that is close to the global optimum. Fortunately, we have
found, by contrast, that when ρ is smaller, the opposite holds: the topology of the
response surface becomes milder and milder, and more and more like a quadratic
surface for which the optimum can be located with only a few iterations. Therefore
a working strategy that we use routinely is to begin with a small value of ρ, and then
increase ρ relatively gently, optimizing θ for each increment, using that optimum as

http://dx.doi.org/10.1007/978-1-4939-7190-9_2
http://dx.doi.org/10.1007/978-1-4939-7190-9_10
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an initial value for the next increment. These increments can be conveniently defined
by constant increments of the log-odds or logit transformation γ = log[ρ/(1− ρ)].
Base-10 common logarithms are nice to work with in this regard; and, for example,
ρ = 0.9999 corresponds to the easily remembered value γ = 4 and γ = 0 means
that ρ = 0.5.

If the goal is more focussed on obtaining a nice fitting function x̂ , there are
various data-driven techniques for choosing an optimal ρ. In the interests of limiting
the discussion to one option among the many choices available, we develop theGCV
criterion. We define the equivalent degrees of freedom measure

d f (θ) = trace[2M(θ) − M(θ)M(θ)T ] . (9.13)

Here degrees of freedom refers to the effective dimensionality of the fitting function as
a function of ρ. For ρ → 0, it turns out that this measure converges to K , the number
of basis functions. But as ρ → 1, the measure converges to K − rank(M) = m,
which corresponds to the dimensionality of the solution space for the differential
equation. For more information, see Ramsay and Silverman (2005).

The GCV criterion is

GCV (ρ) = n

[n − d f (ρ)]2SSE(ρ) (9.14)

where SSE(ρ) is the residual sum of squares. Notice that GCV is same as the un-
biassed estimate of error variance used in linear and nonlinear squares analyses
SSE/(n − p) except for the multiplication by the factor n/(n − d f (ρ)). This fac-
tor represents an additional discounting of SSE over and beyond the division by
n − d f (ρ) to allow for the fact that we are optimizing with respect to both θ and
ρ. For theoretical reasons, and backed up by our experience, the value of ρ that
minimizes this GCVmeasure will provide a nearly optimal estimate of x most of the
time if the residuals are reasonably close to being uncorrelated.

Many other methods for selecting bandwidth or smoothing parameters have been
proposed and may be tried. Useful discussions of their relative merits and some
cautions against relying too heavily on automatic methods can be found in Ruppert
et al. (2005) and Ramsay and Silverman (2005).

It is important to emphasize, however, that a minimum-GCV estimate of x is not
necessarily associated with a best estimate of θ itself. In fact, it can often be better
to use a value of ρ close to one, and especially when the differential equation is
obviously doing a fine job of explaining the data.

When we analyzed the demonstration data, we found that the GCV criterion was
minimized for the largest value of ρ, which was 0.99, and where the estimated value
of β̂ = 1.019. For ρ = 0.5, on the other hand, β̂ = 0.923. The fit to the data is
shown in Fig. 9.4, and we see a nice approximation of the true curve value in the
upper panel. But of course the differential equation also defines a model for the first
derivative of the fitted function, so that we should see a close agreement between
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the left and right sides of the equation. The lower panel shows that this indeed is the
case.
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Fig. 9.4 The circles in the upper panel are observations at 21 equally spaced time points simulated
by adding independent Gaussian errors with mean 0 and standard deviation 0.1. The solid curve
shows the parameter cascaded least squares fit constructed using 13 order 4 B-spline basis functions
and for ρ = 0.99. The dashed curve is the errorless curve. The lower panel displays the estimates
of the derivative Dx(t) of the estimated x(t)’s at the observation points as circles and the fit−βx(t)
of the right side of the differential equation to these derivative estimates

9.4 Confidence Intervals for Parameters

The construction of confidence intervals for parameter estimates in θ̂ is an essential
sequel to the fitting of a model to data. We want to know how well the data define
these estimates, or how much latitude there is for alternative parameter values that
could also be seen to be adequate for characterizing the data. From a frequentist
statistician’s perspective, the question is, “If a new set of data were collected from the
same population that these were drawn from, how different could the results be?” A
Bayesian approachwould frame thequestiondifferently, “Given theprior information
thatwe had about the parameters, expressed as a prior density function, and nowgiven
the data that we observe, what posterior density function defined on parameter space
would characterize our revised knowledge?” Both reasonable questions, of course,
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but both fraught with issues. Is there such a thing as a “population” from which the
data were randomly drawn? Can a Bayesian really express prior knowledge in terms
of a probably density function, potentially over a high dimensional parameter space?
And, of course, both schools of thought assume that the right model has been fit to
the data.

But confidence intervals do give us vital information, and somewhat biassed con-
fidence intervals are far more useful than none at all, provided that we regard these
intervals with a healthy skepticism. One way to put it is, “I think that these intervals
may be a somewhat optimistic, but I can be pretty sure that the right limits are at least
this bad.” Statisticians who propose new methodology are now routinely required
to back up other checks on confidence interval quality such as asymptotic analyses
by simulated data studies, hopefully emulating a situation that reflects a real-life
estimation problem. Although these studies not infrequently provide discouraging
news suggesting that further research is needed, the larger picture is a fairly simple
one: confidence intervals of the kind we are now proposing are fairly reasonable, if
a touch optimistic; and both the frequentist and Bayesian approaches produce rather
similar intervals.

In the simplest case of a single equation and least squares data fitting, confidence
interval estimation closely follows linear regression analysis in how it works. That is,
it proceeds by approximating the relationship between the parameters and the data by
a linear relation, and then uses this approximating relation to construct intervals. We
now follow the frequentist path, not because we have any disdain for the Bayesian
perspective, but merely because this line of argument is well represented in the
textbook literature on nonlinear regression, such as Bates and Watts (1988).

In linear regression analysis, we fit data vector y by the linearmap of the regression
coefficient vector β into data space ŷ = Xβ. Estimating β in the least squares sense
requires that we construct the inverse to this map X, which is (XTX)−1XT , and
the estimate β̂ = (XTX)−1XT y is defined directly in terms of this “data—to—
parameter” inverse map.

The estimate β̂ defined in this least squares approach inherits the variation in
the data about the so-called “true” fit vector ypop = Xθ . Let’s denote the variance-
covariance matrix of the residuals as Σ . Then, because the variance–covariance
matrix of a linear transformation of a random variable is produced by the pre–
multiplication of the original variance–covariance matrix by the transpose of the
transformation followed by the post–multiplication of the transformation itself, we
have in the linear regression situation the result

Cov(β̂) = (XTX)−1(XTΣX)(XTX)−1. (9.15)

Now we frequently assume that the residuals are independently and identically dis-
tributed with mean 0 and variance σ 2, so that Σ = σ 2I, and then the right side
simplifies to

Cov(β̂) = σ 2(XTX)−1 .
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Scalar variance σ 2 is usually estimated from the data as

σ̂ 2 = 1

n − p

n∑

i

(y j − ŷ j )
2

where the number p of regression coefficients is subtracted from the number n of
data points to compensate for the fitted values ŷ j being optimizers of the fit of a
p-dimensional model.

With all this in place, and assuming that confidence intervals are symmetric about
the estimated parameter vector, which in turn is assumed to have a roughly normal
distribution (or the t-distribution if n = p is small), we can offer intervals β̂±1.96σ̂ β

where the parameter standard error vector

σ̂ β = σ̂

√
diag[(XTX)−1] .

Well, we confess, we often change 1.96 to 2.
Now let’s review all this, but after replacing the regression parameter β by our

general differential equation parameter θ . Our data–fitting function ŷ(θ) = Φc(θ) is
no longer linear since now c is not a linear function of θ , but we can use the Taylor
Series linear approximation

ŷ ≈ Φ
dc
dθ

. (9.16)

where Φ is the n by K matrix of K basis functions evaluated at n observation times,
and dc/dθ is a K by p matrix. The n by p composite matrix

J = Φ
dc
dθ

,

often called the Jacobian matrix, is the nonlinear regression analogue of the matrix
X in linear least squares regression. The standard error vector for θ is therefore

σ̂ θ = σ̂

√
diag[(JT J)−1]. (9.17)

The estimated standard error (9.17) for the analysis of the demonstration data was
0.1143, providing 95% confidence limits of β̂ = 1.019± 0.23, so that the true value
of 1.0 is well within the confidence limits.

9.4.1 Simulation Sample Results

The analysis of our demonstration data for the six values of ρ in Fig. 9.3 required
about 1/5 of a second on a typical desktop computer, and for all 3000 analyses for
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the 500 samples a minute or so. Some averages across the 500 samples are found
in Table 9.1. The standard deviations of the parameter estimates and the averages of
the estimates (9.17) improve steadily as ρ increases, and for larger values of ρ are
in close agreement. We pay a small amount in terms of bias, but the improvement
in RMSE more than offsets this. The average degrees of freedom move toward one
as ρ → 1, as they should since a first order system has a one-dimensional solution
space. Finally, the GCV values are minimized for the largest ρ’s as expected because
the data vary randomly about the true model defined by the differential equation.

Table 9.1 Averages across 500 simulated samples for various values of smoothing parameterρ. The
RMSE values are the square roots of the average variances of the parameter estimates β̂. The values
labelled df and GCV are for the average degrees of freedom and the generalized cross-validation
index

ρ RMSE Bias df GCV

Actual Estimated

0.50 0.1189 0.1605 −0.0017 2.860 0.0109

0.73 0.1140 0.1321 −0.0053 1.853 0.0102

0.88 0.1132 0.1208 −0.0066 1.349 0.0099

0.95 0.1131 0.1165 −0.0070 1.134 0.0098

0.98 0.1131 0.1149 −0.0072 1.050 0.0098

0.99 0.1131 0.1143 −0.0072 1.019 0.0097

9.5 Multi-variable Systems

The exposition in the last four sections assumed that the model involved only a single
equation in order tominimize themathematical detail. However, it is more frequently
the case that a linear system will involve multiple variables xi , i = 1, . . . , d > 1, so
that the general formulation is

DMi xi (t) =
d∑

k=1

Mk−1∑

j=0

bi jkβi jk(t |θ)D j xk(t) +

L∗
i∑

�

ai�αi�(t |θ)ui�(t), Mi ≥ 0, i = 1, . . . , d . (9.18)

That is, each equation can have contributions from any variable in the system, includ-
ing its own, as well as from any allowable derivative of a variable and, in addition,
from any number of forcing functions ui�.
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Recall that the bi jk’s and ai�’s are fixed known constants which are most often, if
not 0, either −1 or 1. Recall, also, that the term “rate parameter” or “rate function”
refers to the possibly time-varying functions β and α that multiply variables and their
derivatives as well as forcing terms in the linear differential equations described in
Chap. 3. A rate function may be expressed in terms of a linear combination of a set
of basis functions, in which case the coefficient vector for this linear expansion is
a component of the overall parameter vector θ . However, the user may also supply
code for evaluating the rate function and its first derivative, and this code will have
as an argument the subset of parameter values in θ that define the rate function.

Only some of these equations may be observed, and we will use the notation D
to indicate the subset of observed variables. Some or all of the observations may be
replicated N times.

The number Ki and the nature of the basis functions may vary from one variable
to another. Since the typical sizes of variables can vary substantially we need to allow
for a differential weighting of variables by weights ωi > 0. A natural consequence
of using differential weighting will be that residual variances σi must be assumed to
also vary over observed variables.

Nevertheless, the general form of the expressions involvingR(θ) and S(θ) remain
valid, except that these matrices will have a block structure. Using Ri1,i2(θ), i1, i2 =
1, . . . , d to indicate the matrix in (9.4) for variables i1 and i2, super–matrixR(θ)will
have

∑
i Ki rows and columns, with the matrices Ri1,i2(θ) in block (i1, i2). Super-

matrix S(θ) will have the analogous block structure with
∑

i Ki rows and number
columns determined by total number of forcing functions in the system.

The vector c(θ) will be composed of a stack of d coefficient vectors, one for for
each variable; and therefore also be of length

∑
i Ki . The sum of squared errors for

the data will be summed across all the observed variables as well as summed over
observations within a variable, as will the penalty terms. And of course there may
be d smoothing parameters ρi rather than only one.

The inner criterion J will now be

J (c|θ) = (y − Φc)TW1(y − Φc) + cTW2R(θ)c + ρcTW2S(θ) , (9.19)

where this time ywill be the stacked data vectors for only the observed variables and
Φ will be a block-diagonal super-matrix containing evaluations of basis functions in
the diagonal blocks. The diagonal weighting matrices W1 and W2 will containing
the variable weighting coefficients (1− ρi )ωi/ni and ρiωi/T along their diagonals,
respectively. Then we have that

c(θ) = [W1Φ
TΦ + W2R(θ)]−1[W1Φ

T y + W2S(θ)] . (9.20)

Finally, the parameter error variance vector becomes

σ̂
2
θ = diag[(JTΩJ)−1(JTΩW3J)(JTΩJ)−1] (9.21)

http://dx.doi.org/10.1007/978-1-4939-7190-9_3
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where J contains the stacked Jacobian matrices, diagonal matrix Ω contains the
variable weights ωi , and diagonal matrix W3 contains σ̂ 2

i in the diagonal of the i th
block, i ∈ D .

9.6 Analysis of the Head Impact Data

The data in Fig. 9.5 were collected in study to measure the effects of motorcycle
accident on the driver’s brain tissue. They are measurements of acceleration of brain
tissue within the cranium of a corpse which was struck by a blunt object with a force
chosen to be representative of that received by a motorcycle driver’s head colliding
with a hard surface. Analyses of the data have been reported by many authors,
including Härdle (1990) and Silverman (1985).
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Fig. 9.5 The circles indicate observations of acceleration of brain tissue from five replications of an
experiment involving striking the cranium of a corpse with a blunt object. The box was constructed
to represent the impact itself spread over one time unit. The dashed and solid lines indicate the fits
from the parameter cascading analysis of the data in Fig. 9.5 using the Eq. (9.22) and corresponding
to ρ = 0.5 and ρ = 0.998, respectively

The shape of the data closely resembles what we noted in Chap. 3 as the response
to a second order constant rate system to a point impulse. We therefore analyzed the
data using the three-parameter forced damped harmonic equation

http://dx.doi.org/10.1007/978-1-4939-7190-9_3
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D2x(t) = −β0x(t) − β1Dx(t) + αu(t) (9.22)

where the standardized forcing function u was a box function located at the impact
time and with unit height and width, which is displayed in the Figure.

Setting up the knot structure for this problem required some care. The box function
is discontinuous, and the additive nature of the forcing implies a discontinuity in
D2x . This can be achieved in a B-spline expansion by using multiple knots. In the
usual case when there is only one knot at each location, and order m B-spline has
a continuous derivative of order m − 2, so that a cubic B-spline (order four) has
a continuous second derivative, which is composed of piece-wise linear segments
that join at the knot locations. But each additional knot at a location decreases the
order of the continuous spline by one, so that two knots at a cubic spline location
would result in the second derivative being discontinuous at that location but with
a continuous first derivative. This would be useful, for example, in approximating a
first derivative system forced by a discontinuous function.

We used order six spline basis functions defined over [0,60], which have discontin-
uous fourth derivatives if all knots are singletons. To achieve curvature discontinuity
at the impact point t = 14 and at t = 15, we placed three knots at these locations, so
that the second derivative (acceleration) at these points was continuous. In addition,
we put no knots between the first observation and the impact point, where the data
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Fig. 9.6 The solid lines are the 21 order 6 B-spline basis functions active in a region around the
box forcing function for the head impact data. The vertical dashed lines indicate the two locations
of three coincident knots
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indicate a flat trajectory, and finally nine equally spaced knots between t = 15 and
t = 60. Figure 9.6 displays the B-spline basis functions, and shows that both the
basis functions and their derivatives are continuous at the edges of the box, even
though their second derivatives are discontinuous across locations.

Figure 9.7 shows how the parameter estimates vary over ρ values 0.50, 0.73, 0.88,
0.95, 0.98, 0.99 and 0.998. The values of parameters β0, β1, and α, along with two
standard errors at ρ = 0.998 are 0.056 ± 0.011, 0.128 ± 065 and 0.383 ± 0.101,
respectively. TheGCVcriterionwasminimized at 0.556 for ρ = 0.98, corresponding
to 10.3 degrees of freedom, and for ρ = 0.998, GCV = 0.574 corresponding to 6.4
degrees of freedom.
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Fig. 9.7 The three parameter values as a function ρ, the largest value of which is 0.998

Figure 9.5 displays the fits corresponding to ρ = 0.5 and ρ = 0.998. We see a
slightly better fit to the data by x for ρ = 0.5, but it is striking howwell the ρ = 0.998
solution fits these data. Figure 9.8 shows howwell the second derivative of the fitting
function at the observation points is approximated by the right side of the differential
equation, and the recovery is remarkable save for some small deviations near the
force pulse locations. The model seems quite satisfactory at both the function and
acceleration levels.
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Fig. 9.8 The circles indicate the second derivative of the fitting function for ρ = 0.998 evaluated at
the observation points. The solid curve is the right side of the equation,−β0x(t)−β1Dx(t)+αu(t)

9.7 A Feedback Model for Driving Speed

We now consider a two-variable stationary first order differential equation system
thatmodels a simple feedback process such aswhatmight roughly holdwhen a driver
regulates speed so as to respect posted speed limits. We first express the model in
terms of two variables, speed and a control level. Then we insert the solution for the
control level into the speed equation so as to produce a single second order equation.
In both cases, we will see how well the process can be estimated from noisy data.

9.7.1 Two-Variable First Order Cruise Control Model

The concept of process control in chemical engineering refers to constructing feed-
back loops in order to keep aspects of the output of a chemical reactor close to target
values, called set-points. A great deal of the modelling in this field involves using
first order linear stationary equations, Dx = −βx, to represent components of the
process, such has how the output responds to a step change in input. Feedback uses
a measurement of the output to modify some aspect of the input, and this feedback
process is itself often modelled using a first order equation.
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The law requires us to keep the speed of our car at or below a sign-posted limits,
plus or minus a small tolerance that we usually abuse to our advantage. We are the
control process, the input is the flow of the gas–air mixture to the cylinders; and,
when we press the accelerator, the output is speed.

Here is a simple pair of first-order forced differential equations that could be used
to represent the process, where S is speed, S0 is the target speed, C is the control
variable, and t is time in seconds:

DS(t) = −βS S(t) + αSC(t)

DC(t) = αC [S0(t) − S(t)] . (9.23)

There is only one external forcing function, the set–point S0, it affects only the control
variable C and its rate is αC . In the control equation S has the special constraint that
its rate is −αC , so that we have to effectively use this rate twice in the equations.

Parameter βS is 4/τS where τS is the time it takes a certain car to change the speed
to the new level. This is somewhat unrealistic for cars, since the time to reach 100
km/h is much longer than the time to reach 10 km/h; but for speeds in the normal
driving range, we tend to compensate for this by pressing the pedal to the floor when
entering a highway, and we apply only small pressures to reach low speeds. For
example, operating a small car on a snowy day in winter, one of the authors took
about 8 s to reach 60 km/h.

When S exceeds the set–point S0, the control levelC drops, and positive αC in the
control equation implies a corresponding drop in speed modulated by αS > 0. We
assume a black box that measures speed at frequent intervals with negligible noise.
The control levelC may also bemeasured, although typically the response time 4/βC

and forcing rate αC have already been determined in the controller–design phase.
Figure 9.9 displays as a dashed line the solutions of the differential equations

(9.23) corresponding to βS = 1, αS = 1/4 and αC = 1; these values produce speed
changes roughly consistent with what the author–driver observed. The set–point S0
is shown in Fig. 9.9 as the dotted line in the upper panel, and corresponds to the
situation where a driver is driving in a 60 km/h speed zone for 16 s, a 40 km/h school
zone for 16 s, an 80 km/h controlled-access street for 16 s, and finally returns to 60
km/h. The solution is computed for the initial conditions S(0) = C(0) = 0. With
these parameters, we see that the speed reaches the target speed, after each of three
set–point changes, in about 8 s. The control level change is proportional to the speed–
discrepancy since βC = 0. Figure 9.9 also shows a set of 41 simulated observations
produced by adding a mean–zero Gaussian random deviate with standard deviation
5.0 to the speed solution in Fig. 9.9 and with standard deviation 20 to the control
level.

The speed variable in the control equation has second order curvature because,
although it is has order 1 it is forced by a first order system. We used 51 order 6
splines defined by locating a knot at every other observation time, with the exception
of the times of the step changes, where added two additional knots to allow for

a discontinuity of the third derivative at these points. We used order 5 splines with
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Fig. 9.9 The upper panel shows as a dashed line the true speed solution to (9.23) for initial
conditions S(t) = DS(t) = 0, the data used to estimate the solution as circles, the estimated solution
as a solid line, and the set–point function S0 as a dotted line. The control level true solution, data
and the estimated solution for the control variable C are shown in the lower panel

the same knot sequence for the control variable, implying 50 basis functions. We
stepped ρ from 0.500 to 0.998 using the transform of the integer sequence 0:1:6.

The GCV index bottomed out at the highest level 0.998 of ρ, associated with 4.4
degrees of freedom. Figure 9.9 displays the fit to the data for this ρ, which produced
parameter estimates of 0.670 ± 0.029, 0.172 ± 0.054 and 0.858 ± 0.0140 for the
three estimated rates having true values 1, 1/4 and 1, respectively. The confidence
intervals given here are at the 95% level, and contain the true values for the two α

coefficients, but for the estimate of βS is biassed significantly downward.
We analyzed the same data using only the data for speed, and the result was

a disaster. But, when we fixed αC at its true value, as might be appropriate if the
controller were previously calibrated, we obtain results comparable to those with
observed control values.
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9.7.2 One-Variable Second Order Cruise Control Model

We can, without losing much modelling power, simplify the equations by assuming
that the gain K = α/β is fixed at 1.0 and the controller reaction speed is so large
that the controller responds virtually immediately to a change in speed/set–point
discrepancy. That is, DC = S0 − S, or

C(t) =
∫ t

0
[S0(u) − S(u)] du + C0 ,

whereC0 is an arbitrary constant of integration. Inserting the right side of this equation
into the DS equation in (9.23), and differentiating both sides of the result, we have
the single second order equation

D2S(t) = −αS S(t) − βSDS(t) + αS S0(t) . (9.24)

That the conversion of the two-variable equation implies a single second order equa-
tion implies that a first order process with a single first order feedback loop exhibits
second order behaviour.We can just see this reflected in the smooth take–off of speed
from 0 on the left of the upper panel of Fig. 9.9, even though the control level changes
its slope instantaneously, corresponding to βC = ∞.

The simplified equation (9.24) resembles the forced harmonic equation, but with
some interesting differences. Parameter α1 > 0 plays the role of the stiffness pa-
rameter β0 in the harmonic equation defining the natural sinusoidal response fre-
quency P = √

2π/α1, and β1 is the damping rate in both equations. The constraint
−β0 − α1 = 0 reduces the number of parameters by one. Figure 9.10 shows what
happens when β1 is set to the values 1/2, 1 and 2: the under–damped value of 1/2
results in an overshoot of the target, 1 is the critically damped solution displayed in
Fig. 9.9, and 2 produces an over–damped solution.

This single variable formulation of the cruise control model implicitly assumes
that we will only measure speed itself. We now analyze simulated data with the
same noise level that we used for Fig. 9.9, but we now assume that the data have
been collected for 10 independent occasions, with some variation as well in the
set–points, reflecting how different drivers interpret what will be tolerated rather
than recommended. Figure 9.11 displays the data and the estimated solutions to the
equations. Now we see an excellent recovery of the true solutions shown in Fig. 9.9
along with nice fits to the data. The two parameter estimates are 0.19 and 0.83,
respectively, which is rather closer to the true values of 1/4 and 1, respectively. The
minimum-gcv value of ρ was 0.99 and the equivalent degrees of freedom was 5.7,
which is consistent with what should happen when the right model is fit to the data.
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Fig. 9.10 The speed solution to (9.24) for initial conditions S(t) = DS(t) = 0 for various values
of damping rate β1. Moving from top to bottom for curve values at time 2, the values are 1/2, 1 and 2

9.8 The Dynamics of the Canadian Temperature Data

Solar radiation has both direct and indirect effects on temperature. The absorption
of heat by the atmosphere at ground level is a relatively immediate impact, and the
seasonal variation of this source can be crudely modelled by a constant α times
u(t) = cos[2π(t + 10)/365], where the translation by 10 days places the minimum
at the winter solstice.

But the sun also heats both land and sea surfaces, which continue to release heat
for a few weeks after the winter solstice, and the circulation of atmosphere tends to
bring heat from elsewhere, such as the Gulf of Mexico via the Mississippi valley
for locations in the St. Lawrence valley. That is, seasonal climate variation is a
buffered process which, to a first order, can be modelled by the differential equation
DT = −βT . We expect that this buffer is itself non-stationary, and therefore we
want to allow β to vary slowly over the year. We add to the homogeneous differential
equations two forcing functions: U1(t) = 1 to capture the annual mean temperature
variation, and U2(t) = cos[2π(t + 192)/365] because we want to highlight the
model’s performance in winter by starting the year at July 1. The equation is

DT (t) = −β(t)T (t) + α1(t)U1(t) + α2U2(t) . (9.25)
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Fig. 9.11 The upper panel contains the estimated speed solution to (9.23) provided by the parameter
cascading algorithm using the single second order equation (9.24) with ten replications of the noisy
observations

We used as data the 73 5-day averages that span a year’s observations. We repre-
sented T with an order five B-spline basis function expansion with 77 basis functions
resulting from placing a knot at the center of each block. For each station in turn we
stepped ρ through log[ρ/(1 − ρ)] values from 0 (ρ = 0.5) to 9 (ρ = 0.9998) and
selecting for display the ρ value corresponding to the minimum GCV measure.

Our preliminary investigations revealed, with no surprise, that the modulation
functions β, α1 and α2 varied substantially from one weather station to another. The
22 stations in the Arctic, the eastern maritimes, central Canada and the prairies all
displayed similar shapes, represented by seven Fourier basis functions for β and
constant functions for the α’s.

The results for the city of Montreal, Quebec, were typical, and are shown in
Figs. 9.12 and 9.13. As with most of these stations, one of the highest values ρ =
0.9991, minimized GCV and corresponded to a degrees of freedom value for the
fitting curve T (t) of about 7. We see in Fig. 9.12 that both the fitting function and
its derivative are smooth, that the fit tracks the data well, and that the difference
between the right and left sides of the differential equation is small everywhere.
The nine degrees of freedom for the parameters used to achieve the fit seems like a
remarkably compact model, and all nine parameters are defined well by the data.
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As expected, we see in Fig. 9.13 that the value of β(t) is positive. The value
τ(t) = 1/β(t) is the length of time for a buffered change in temperature to attain
about 2/3 of its value, and we see that this corresponds to about 30 days in the
summer months, but more like 100 days in late autumn and early winter when the
speed of reaction is more sluggish. The constant forcing rate is α1 = 0.23 with 0.01
representing two standard errors of estimate, reflecting the fact thatMontreal’s annual
average is greater than 0 ◦C. The cosine forcing modulation function is α1 = 0.56
with the same standard error indicating that radiative forcing is important throughout
the year.
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Fig. 9.12 The top panel displays the 5-day averages for Montreal as circles and the fitting function
T (t) corresponding to ρ = 0.9991 as a solid line. The solid line in the bottom panel is the derivative
function DT (t) and the dashed line is the value of the right side of the differential equation (9.25).
Day 0 is July 1st

The other 13 weather stations are located at or near coastal areas, including
Vancouver, Victoria and Prince Rupert on the west coast and Iqaluit on Baffin Island.
Each of these has lovely prairie-like summers with plenty of sun shine, but in the fall
descend into nearly non-stop drizzle as low-pressure ridges dominate the climate.
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Fig. 9.13 The solid line is the estimated reaction speed β(t) in equation (9.25), and the dashed
lines indicate two pointwise standard errors of estimate above and below the estimate itself. Day 0
is July 1st

We also noted that these stations had winter minimum temperatures rather earlier,
casting doubt on the proposition of the simple buffering hypothesis. The GCV cri-
terion selected a substantially lower value of ρ, implying more like 40 degrees of
freedom for T (t). We conjectured that the modulation function for radiative forcing
needed to reflect seasonal effects, so we chose Victoria, British Columbia, to develop
a model that did a better job. Figure 9.14 shows the result of expanding α2 using five
Fourier basis functions. We see that the shape of β is quite unlike that of Montreal,
and involves episodes of positive values. The radiative forcing modulation function
takes on negative values in the summer months and is positive over the winter. These
results are not easy to interpret, but at ρ = 0.9991 and the fit was associated with
only three degrees of freedom, the differential equation seems to do a fine job of cap-
turing the city’s temperature profile. Nearby inland weather stations like Kamloops
and Prince George responded similarly to making α2 seasonal, but required only
three Fourier basis functions to do so.
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Fig. 9.14 The upper panel contains the estimated value of β in Eq. (9.25) (solid line) and its 95%
pointwise confidence limits (dashed lines). The lower panel displays the corresponding rate of the
cosine radiative forcing function

9.9 Chinese Handwriting

We return now to the remarkably successful model in Sect. 1.1.6 in Chap. 1 for the
first of 50 replications of Chinese handwriting. Recall that the model was, for each
coordinate X and Y , one of passing a step function input through a harmonic buffer,

D2X (t) = −βX X (t) + αX (t)

D2Y (t) = −βY Y (t) + αY (t). (9.26)

An event in this handwriting is a stroke, a cusp or a lift off the page.We counted 46 of
these, and noted that they seemed to be at equally spaced time intervals. Section1.1.6

http://dx.doi.org/10.1007/978-1-4939-7190-9_1
http://dx.doi.org/10.1007/978-1-4939-7190-9_1
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is reproduced here in Fig. 9.15, but with circles at the boundaries of these subintervals
rather than numbers at their centers
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Fig. 9.15 The solid line segments show the position of a pen while on a writing surface during a
single writing of “statistics” in Chinese. The writing took 6 s, and the circles are displayed at the
boundaries between 46 equally spaced time intervals

The homogeneous portions of these equations define two sinusoidal variations;
and, viewed as a trajectory on the plane, we would see an ellipse. A physical re-
alization of this object would a rotating disk spinning at a certain angular velocity
and with a mass that we have to determine from the data. Moreover, the spinning
disk is free to move in a frictionless way over the writing surface. That is, as a hand
describing circular movements and suspended over the surface by an arm.

Each step in the second terms of the right sides of the equations represents a force
vector applied to the center of the rotating disk, lasting the duration of the step, which
we calculated be 130.4 ms. According to the model, the hand continues its eliptical
motion, but the short-lived force fields launch it in one new direction after another.
Because this disk (hand) has a substantial mass, the response to each new pulse of
force is smooth, like we saw in the head impact model, but without any damping.

The order 6 B-spline basis system for representing the two coordinate trajectories
assured a smooth second derivative.We used 197 basis functions with equally spaced
knots, which assigned 32 basis functions per second, or four for each 7.7 Herz cycle.
Preliminary smoothing of the data confirmed that this basis could track the data with
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sufficient potential accuracy. We used the sequence of ρ values em/(1 + em),m =
0, . . . , 7 so that ρ ranged from 0.5 to 0.999. We were specifically interested in
obtaining a solution to the equation, and therefore we displayed the results for the
highest value. Figure 9.16 shows the fits of the right sides of the equation to the left
sides, and these fits to the accelerations D2X (t) and D2Y (t) look quite satisfactory.

The two dynamic rate parameter estimates βX and βY along with two standard
errors were 0.0386 ± 0.0018 and 0.0284 ± 0.0027. Their periods of rotation, P =
2π/

√
β, were 319.6 and 373.1 ms, respectively. These values reflect that the fact

that the rotation of the wrist adds additional agility for the production of lateral
movements that is not available for vertical movements. The 95% confidence limits
quoted with the values of β suggest a small level of estimation error, that is, roughly
about 5%.

If we represent X (t) as aXS sin(ωX t)+aXC sin(ωY t) and then solve the equations
for the values of DX (0) and D2X (0) for constants aXS and aXC , respectively, and
then do the same for Y (t), we obtain a close approximation to the first stroke. This
is not exactly correct since we haven’t allowed for the force field applying over the
first stroke, but it is a useful check on results.

Figure 9.17 shows the two estimated forcing step functions αX (t) and αY (t) along
with their 95% confidence limits. These indicate that each of these steps is estimated
with considerable accuracy, as we would expect from the fact that each interval
contains at least 51 accurate observations of pen position. Figure 9.18 plots the
Y forcing function against its X counterpart, and see that this discrete trajectory
roughly follows that of the handwriting itself. This information is all that is required,
according to our model, for reproducing this script over and over again. It represents
a compression ratio of about 50–1 relative to recording rate of the cameras that
provided the data, and a 4–1 compression relative to the 197 basis functions that we
used to represent the curves themselves.

This analysis can be seen as a new form of data smoothing. Instead of applying
a smoothing operation directly to the data, we estimate a discrete low-dimensional
representation for the final smooth curve, and pass this low-dimensional representa-
tion through a pair of harmonic buffers to arrive at the final data smooth. We like to
think of this as dynamic smoothing. Its principal advantage, the compression ratio
with respect to the dimension of the spline basis, is achieved by knowing a consid-
erable amount about the neurology and physiology of the motor control system for
the human hand.
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Fig. 9.16 The top panel shows the right side of the equation for the X coordinate as a solid line, and
the actual acceleration D2X as a dashed line. The bottom panel displays these values for coordinate
Y

9.10 Exploring Complexity Through A Transformation
of Basis Functions

We emphasized the connection between the parameter cascading algorithm and con-
ventional regression in the context of a linear dynamic model. In particular we noted
that order K matrix R(θ) plays the same role as the covariate cross-product matrix
ZTZ in linear regression. We now ask, “Would an eigenanalysis be as revealing and
useful here as it has proven to be in regression analysis?” That is, given the decom-
position R = VDVT what can we learn from the eigenvectors in the columns of V
and the eigenvalues in the diagonal matrix D?
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Fig. 9.17 The top panel shows the estimated forcing function valuesαX (t), alongwith two standard
errors up and down, which provide about 95% confidence limits. The bottom panel displays these
values for coordinate Y

We call the basis system r = VTφ, where columns ofV are indexed in increasing
order of the eigenvalues in the diagonal ofD, R-functions. These new basis functions
are a rotation of the original φ-basis, and define a shape basis system that can have
many useful applications as an alternative way of decomposing the shape-variation
in the observed curves. These functions are defined by the homogeneous linear dif-
ferential operator L defining R(ρ) and, of course, by the basis system φ.

Matrix R is symmetric and positive semidefinite because it is a cross-product
matrix. That is, all of its eigenvalues will be either zero or positive. Also, for a linear
differential operator L of order m, we know that there is a linear space of functions
x0 of dimension m that satisfy Lx0 = 0., called the kernel of L. Consequently, if
the basis φ is sufficiently rich to capture the necessary detail in this kernel space,
the m smallest eigenvalues will be either near or at zero since, because any x0 in
this subspace can be represented by a set of coefficients c satisfying cTφ = 0, the m
eigenvectors associated with the smallest eigenvalues will span the same space.

If we define the complexity of a function x as the size of
∫ [Lx(t)]2 dt , then the

approximately zero eigenvalues corresponding to eigenfunctions satisfying LVT
j φ ≈

0 have near zero complexity. These eigenfunctions are a set of orthogonal functions
spanning the kernel of the homogeneous linear differential operator L. Therefore,
we get this space of solutions to the equation Lx = 0 for virtually free by simply
doing an eigenanalysis of R and using its eigevectors as coefficients in a set of K
basis function expansions,

∑
k vk, jφk = vTj φ, j = 1, . . . , K .
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Fig. 9.18 The Y forcing values plotted against the X values. This is a discrete and rough caricature
of the script

Figure 9.19 displays the common logarithms of the eigenvalues ofR(θ ) associated
with ρ = 0.9999 for the head impact data. The two smallest eigenvalues are 4 to 5
orders of magnitude smaller that the remainder, and as such are small enough to be
associated with zero complexity. Figure 9.20 displays the two zero-complexity basis
functions. We see that they are damped sinusoids.

How well do these R-basis functions manage to approximate the original data?
Fig. 9.21 plots the squared multiple correlation achieved by using the first k com-
plexity basis functions to approximate the data in y as a function of k = 1, . . . , 21.
We see that k = 13 achieves about all of the fit possible with this basis system,
correspond to R2 = 0.84.

Figure 9.22 shows how the complexity increases beyond these two kernel basis
functions, eachwith complexity values of about 10−4.Their shapes capture additional
low-frequency wobbles in the data, and permit us to capture about 40% of the data
variation. Adding a sixth basis would bring us to about 73% of a perfect fit. Figure
9.23 displays the three most complex basis functions. We see that the complexity
functions 19 an 21 represent sharp variation in the neighbourhood of the onset and
offset of the box function, while complexity function 20 captures variation near the
end of the observation interval.
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Fig. 9.19 The common logarithms of the 21 eigenvalues of the matrix R(θ) for the head-impact
data

It is a common practice in the analysis of functional data to use as a basis system
a small number of the dominant functional principal components computed from a
sample of N sets of observations (Ramsay and Sliverman 2005). A common com-
plaint from substantive area researchers is that these components are difficult to
interpret in terms of real-world processes, and at the same time statisticians can be
concerned that the number of principal components used (3 is the most common
choice) can give an overly optimistic impression of the dimensionality of the data.
These R-functions can offer a nice compromise, since they have only a light de-
pendency on the data via the estimation of operator L, while still offering a fairly
compact basis representation, and each R-function tends to have an easy description
of the shape that it captures. Finally, this basis system has written in its core the shape
of the dynamics of the process being analyzed.
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Fig. 9.20 The first two complexity basis functions, having complexity near zero and therefore
spanning the space of solutions to the homogeneous linear differential equation estimated for the
head impact basis

9.11 Notes on Software and Computation

The structure of the computation for linear systems is quite different than that for
the R package code CollocInfer and its Matlab version. This primarily due to
the elimination of the inner optimization loop in the least squares version, but is also
due to the fact that the parameters in θ play the much more specific role of defining
the rate functions β and α, rather the many possible ways that they could define a
nonlinear right side function f (x) in the next chapter. As a consequence, a separate
set of code Data2LD is used for linear systems.

9.11.1 Rate Function Specifications

A typical Data2LD analysis requires the user to supply a set of rate function speci-
fications, each by a list (R) or struct (Matlab) object. There need not be a one-to-one
correspondence between these specifications and the terms in the equations, since
some rate functions may appear in more than one term. The field names and contents
are;
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Fig. 9.21 The squared multiple correlation for approximations of the data based on an increasing
number of R-functions

fun: This field can be one of two types:

• a functional parameter object, defined in the functional data analysis code in the
R package fda or its Matlab equivalent. In this case, this object defines a basis
function expansion of the coefficient alongwith a possible smoothing or roughness
penalty.

• a list (R) or struct (Matlab) object, in which case, it contains three fields:

fn: a function object (R) or a function handle (Matlab) giving code for evaluating
the rate coefficient

Dfun: a function object (R) or a function handle (Matlab) giving code for evaluating
the derivative of the rate coefficient with respect to its parameters

more: a function object (R) or a function handle (Matlab) providing whatever addi-
tional information is required for evaluating the rate function or its derivatives

parvec: A vector of values for the parameters defining the rate function. These are
used either as initial values for optimization or as definitions of a fixed non-
estimated rate function

estimate: A logical value. TRUE (R) or a nonzero real number (Matlab) indicates
that the parameters defining the rate function are to be estimated from the data.
FALSE or zero indicates that this is a fixed rate function whose parameter values
will not be changed during computation.
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Fig. 9.22 The next three complexity basis functions after the two kernel functions for the head
impact basis

coeftype: A string, either ’beta’or ’alpha’, indicatingwhether the rate function
is for a rate function in the homogeneous part of the equation or for a forcing
function, respectively.

These rate functions are loaded into a list (R) or cell array (Matlab) with numbered
members, one for each rate function.

9.11.2 Model Term Specifications

The terms for each variable in the model must also be specified. These are supplied
in a list (R) or cell array (Matlab) with numbered members, one for each variable.

Each member or cell contains a specifications for the terms that appear in the right
side of that variable’s equation. These specifications are contained in a named list
(R) or a struct (Matlab) object. The field names and their contents are as follows,
using R terminology:

XList: A named list that in turn has these fields:
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Fig. 9.23 The three complexity basis functions having the highest complexity values for the head
impact basis

variable: An integer i, i = 1, . . . , d specifying the variable in the system for that
term.

derivative: A non-negative integer 0 ≤ j < Mi indicating the order of derivative
used for that variable and term

ncoef: An integer indicating which of the rate functions is to used.
factor: A real number that is used as a multiplier for that term. This is often -1.

FList: A named list that in turn has these fields:

Ufd: A functional data object, defined in the fda package, for the forcing
function..

ncoef: An integer indicating which of the rate functions is to used.
factor: A real number that is used as a multiplier for that term.

order: The order Mi of the derivative on the left side of the differential equation
for variable i .

name: An optional string specifying a name for the variable
weight: An optional positive weight to be applied to that variable in computing the

inner and outer criteria.
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9.11.3 Memoization

Rate functions are often defined as basis function expansions, and if so, this can be
used to considerably speed up computation. In this case the matrices R(θ) and S(θ)

are defined in terms of a set of four-way arrays or tensors involving the products of
two rate function basis functions and two variable basis functions. For large-basis
problems such as the handwriting example, computing these arrays needs only to
happen once. The first time the function Data2LD is invoked, this is done, and may
require considerable computing time. The arrays are then stored, and on subsequent
invocations of Data2LD they are read in from memory. This process is referred to
as memoization, and is often used to improve computation speed.



Chapter 10
Profiled Estimation for Nonlinear Systems

10.1 Introduction and Chapter Overview

We have seen in the last chapter that linear differential equations can provide nice
answers for awide variety of problems, in the sameway thatmultiple linear regression
is the workhorse of applied statistics. The versatility of linear equations becomes
especially obvious when we work with time-varying rate functions with values β(t)
and α(t), which themselves can have any internal structure that we desire, except
that they can not depend on the values of any of the variables in the model. An
especially useful example is where a rate function is required to be positive, and
therefore is represented as the exponential of the basis expansion of its logarithm.
Linear equations also can deal with the situation where a rate function is forced by
an known external variable, so that the notation β[t, u(t)] is appropriate.

We saw, too, that the special structure of a linear equation leads to important
computational strategies that make the calculations more reliable, faster, and more
accurate, and especially when least squares type criteria are involved. This is espe-
cially when we can provide an explicit algebraic expression for the optimizer of the
inner criterion J (c|θ).

All very nice, but what are we losing in exchange? The answer is in the concept of
interactions between variables. Our prototypical example has been the SIR infection
model, or its close cousin theLotka–Volterra predationmodel, where a product of two
variables is involvedwhich can produce a rapid increase in the sizes of some variables
coupled with rapid exhaustion of others. We saw, too, that powers of variables, as in
the Fitz–Hugh Nagumo model, can generate periodic spiky variation because a low
power term dominates change near zero but a higher power with an opposing sign
takes over for larger variable values. The class of equations involving products and
powers is probably the most common nonlinear equation category. Interactions like
these can be the primary focus of the investigation.

Linear equations cover the situation where one variable affects another by an
additive contribution, but often one variable also affects the rate function of another
variable directly, and in a way not representable by a product. An example is rate
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functions with a Michaelis-Menton structure such as β[T/(K + T )]where T > 0 is
another variable in the system, such as temperature in degrees Kelvin. If T is large,
β is nearly constant, but as T falls below K , β goes to zero and the reaction speed
becomes slower and slower.

In this chapter we extend our discussion to systems of differential equations in
general, that is, of the form

DMi xi (t) = fi (x,ui |θ), Mi ≥ 0, i = 1, . . . , d . (10.1)

The right-side function fi can now be a function of all variables in the system, as
well as of one or more forcing functions in vector ui . How x and ui are involved in
the equation is left open, so that, for example, a forcing function can directly affect a
rate function, rather than having only additive effects. If there are replications of the
observation process, for example, the forcing functions may vary from one replicate
to another.

We will also generalize the analysis by allowing the data to have complicated
relationships to the variables. In addition to only a subset of them being observed,
the data can be observations of functions of the xi , including sums, products, ratios
and more complex functional relationships. And the data may be such that a least
squares approximation does not make sense, such as when the data are counts or
binary. Outer fitting criterion H may, for example, be defined as a negative log
likelihood, computed either for a single variable, or for groups of variables, and may
involve only some of the parameters in θ .

This chapter therefore considers a potentially more challenging environment,
and some of the hazards in working with nonlinear systems have been reviewed in
Chaps. 4 and 6. Solutions may exist in only a small interval around the initial point,
local and global instabilities can occur, and parameters may not be defined by the
data at hand, or else be acutely sensitive to data values.

In the linear case, the user had to supply only a dictionary of rate functions β and
α along with a blueprint for how these entered into the linear equations, but in the
general case the user must supply actual computer code for computing the values of
each of the right-side functions fi and, optionally, the values of the partial derivatives
∂ fi/∂x, ∂ fi/∂θ , ∂2 fi/∂θ2, and ∂2 fi/∂x∂θ .

This additional setup effort is necessary because almost surely the inner criterion
J (c|θ) will require numerical optimization methods to calculate the new optimal c
after a change in θ . In the next section we first consider how the concept of parameter
cascading must be adapted to the nonlinear situation. At first sight this may seem
complicated, but we will try to show that, in fact, the modification is comparatively
minor. That is, if the reader has a grasp of how the parameter cascading algorithm
works in the linear case, this chapter will be an easy read. As we did in the previous
chapter, we will begin by using least squares data fitting in the context of a single
nonlinear differential equation before working with multivariable systems.

http://dx.doi.org/10.1007/978-1-4939-7190-9_4
http://dx.doi.org/10.1007/978-1-4939-7190-9_6
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10.2 Parameter Cascading for Nonlinear Systems

10.2.1 The Setup for Parameter Cascading

We saw in Chap.9 that parameter cascading involves inner and outer fitting criteria,
J (c|θ) and H(θ), respectively.

For J (c|θ) we will revert to the older and better known non-equilibrated formu-
lation of the penalized least square criterion as involving a data fitting term plus a
penalty term multiplied by roughness penalty or bandwidth constant λ. That is, in
the least squares data-fitting case,

J (c|θ , λ) =
n∑

j

[y j − x(t j )]2 + λ

∫ T

0
{Dmx(t) − f [x(t),u(t)|θ ]}2 Dt (10.2)

where the bandwidth or smoothing parameter λ > 0 controls the emphasis on fitting
the equation but the data-fitting first term remains fixed. We do this because the
existing package CollocInfer in the R language is set up this way. However,
future releases of our softwaremaywell switch to the (1 − ρ), ρ weighting structure.

The outer criterion H(θ |λ) defines fit in terms of only the parameter vector θ . The
total derivative of H with respect to θ must allow for the fact that H may depend
both directly on θ and indirectly via its dependency on c(θ):

dH

dθ
= ∂H

∂θ
+

(
∂H

∂c

)(
dc
dθ

)
, (10.3)

although for for most fitting criteria, including least squares, H has no direct depen-
dency at all on θ , so that ∂H/∂θ = 0 and can be dropped from the total derivative
equation. It is the derivative dc/dθ that is the missing link, since we no longer have
an explicit expression for c.

10.2.2 Parameter Cascading Computations

In the least squares fitting of linear systems in Chap.9, we worked out explicitly
the optimizing value of c, but in general, this will not be possible, and numerical
methods must be used to achieve the optimum of J . But this does not imply that we
know nothing about c(θ) or its gradient ∂c/∂θ with respect to θ .

We use implicit differentiation or the Implicit Function Theorem to calculate this
gradient. Let us suppose that we have optimized J using a high quality numerical
optimization strategy to obtain an optimum value c, so that we may now say that
∂ J/∂c ≈ 0 to a high level of accuracy. We now compute the total derivative d/dθ

of the gradient of J with respect to θ , which, since ∂ J/∂c = 0, will also be 0:

http://dx.doi.org/10.1007/978-1-4939-7190-9_9
http://dx.doi.org/10.1007/978-1-4939-7190-9_9
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d

dθ

(
∂ J

∂c

)
= ∂2 J

∂c∂θ
+

(
∂2 J

∂c2

)(
dc
dθ

)
= 0

so that
dc
dθ

= −
(

∂2 J

∂c2

)−1(
∂2 J

∂c∂θ

)

and, substituting this into (10.3) we see that

dH

dθ
= ∂H

∂θ
−

(
∂H

∂c

)(
∂2 J

∂c2

)−1(
∂2 J

∂c∂θ

)
. (10.4)

However, assuming that the inner optimization does proceed smoothly, then the
amount of computation involved in each re-iteration is apt to be small since the
outer optimization typically involves small changes in θ , and consequently a small
perturbation in J as the function to be optimized, so that only a few iterations will be
requiredwithin each outer optimization step. It is typical, too, that J is optimizedwith
respect to c conditional on whatever starting values are available for the parameters
in θ prior to commencing the H -optimization process.

Although we lose the explicit expression for c(θ) in the nonlinear system context,
we do not lose the other advantages of least squares estimation. If appropriate, least
squares objective functions for J and H can be optimized by the usually stable
and efficient Gauss–Newton process. Moreover, since the criterion H(θ) essentially
defines a nonlinear least squares problem in θ , we can use the same techniques for
computing confidence intervals that we used in the last chapter.

10.2.3 Some Helpful Tips

When λ is small, the data-fitting term dominates the derivative-fitting term in (10.2).
Since the data-fitting criterion is quadratic in c for each variable for a least squares
criterion and nearly so for other loss functions, the inner loop converges quickly and
reliably, and the outer fitting criterion is not especially sensitive to nonlinearities in
the differential equation, so that the optimization of H also goes well. But as we
increase λ, the greater and greater domination of the second term means that both
optimizations become more and more difficult, and therefore dependent on good
starting values. For this reason, we routinely step λ up by a uniform sequence in the
transformation log10 λ, and for each λ we start the optimization with the values of θ

and C achieved at the end of the previous optimization.
It can happen that the vital Hessian matrix ∂2 J/∂c2 will have negative or zero

eigenvalues, and especially for larger values of λ. This problem is often located in
the second penalty term, where, in the single equation case,



10.2 Parameter Cascading for Nonlinear Systems 205

∂2[Dx − f (x |θ)]2
∂c2

= 2

[
Dφ −

(
∂ f

∂x

)
φ][DφT −

(
∂ f

∂x

)
φT

]
− 2[Dx − f (x)]

(
∂2 f

∂x2

)
φφT .

(10.5)

The first term is automatically at least non-negative definite, but the second termmay
not be. However, the total contribution of the second term is usually small and dom-
inated by that of the first cross-product term, and a frequent fix is to just drop it. The
impact on the optimization of J is often only a few extra iterations when the Hessian
matrix is positive definite. The statistical community refer to this as optimization by
scoring. The coefficient gradient dc(θ)/dθ is now only an approximation, of course,
but we have found that this has little impact on the outer optimization of H with
respect to the parameter values beyond adding a few extra iterations. An example of
this scoring strategy will be illustrated in Sect. 10.7.

The R package CollocInfer, described in Hooker et al. (2014), and its Mat-
lab version use the parameter cascading approach described in this paper. The
CollocInfer program has a simple setup for least squares fitting, but requires
the user at a minimum to provide a function that evaluates the right side of the dif-
ferential equation f . The computation does require a reasonably accurate estimate
of the four partial derivatives ∂f/∂x, ∂f/∂θ , ∂2f/∂x2, and ∂2f/∂x∂θ . If these are
not provided, CollocInfer estimates them by differencing, a process that works
reasonably well most of the time, and certainly might serve in the preliminary stages
of investigating a model.

Providing explicit functions, however, assures a smoother andmore rapid progress
to final solutions, tends to avoid some computational issues on the way such as being
trapped in localminima, and yields better derivative estimates to be used in computing
confidence intervals.

We strongly suggest, as a consequence of much wastage of time in our early work,
that symbolic computation tools such as Maple, Mathematica, and the Symbolic
Toolbox in Matlab be used for this purpose no matter how simple the equation
system appears to be. To this end, a Matlab function called make_file_build
is supplied with the Matlab version of CollocInfer that only requires a few
arguments, including definitions in Matlab symbolic toolbox code of the equations,
and produces a .m file that can be invoked to compute the values of the right sides
of the equations and all the required derivatives.

10.2.4 Nonlinear Systems and Other Fitting Criteria

We use the following expression of the inner fitting criterion involving a general
data-fitting function GJ , in the special case where all xi trajectories are expanded
using the same set φ of K basis functions:
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J (c|θ, λ) = GJ [Y,C(θ |λ)φ] +
d∑

i

λi

∫ T

0
{Dxi (t) − f [x(t),ui (t)|θ]}2 Dt/T .

(10.6)

The coefficient matrix C will, in this simple case, have K rows and d columns. In
this formulation, also for simplicity, we retain the integrated squared residuals in the
penalty term, but we certainly envisage other penalty structures that might be more
appropriate. The corresponding expression for the outer criterion H is

H(θ |λ) = GH [Y,C(θ |λ)φ] . (10.7)

However, the two data fitting functions GJ and GH may in many applications be the
same.

10.3 Fitting the Lotka–Volterra Model to the Chemostat
Data

We now fit the simple Lotka–Volterra model to the chemostat data analyzed in
Chaps. 7 and 8:

DC = αC − βC BC

DB = βB BC − δB . (10.8)

In this application, variable C is the abundance of variety of single-cell algae called
Chorella, and B the abundance of a multi-cell rotifer called Brachionis that feeds on
algae cells. Parameter α is the birth rate of algae cells, βC is the rate of mortality of
these cells per unit of algae abundance, βB is the rate of mortality of these cells per
unit of rotifer abundance, and δ is the death rate of rotifer cells. Although this model
resembles the SIR model closely, notice that here we have two different populations
interacting rather than one, and this consequently requires two rate constants for the
effects of predation.

The nonlinearity in this model is due to the product BC appearing in both equa-
tions, and −βBC can be viewed as a mortality term for algae with a rate βB, that
is, as rate-forcing by rotifer abundance. Each of these parameters is nonnegative in
principle, so that we actually estimate the logarithms of the parameters, and convert
these estimates to their exponential values for display purposes. Even though the
amount of data available is modest and the model is elementary, we can still explore
a number of aspects of the profiling approach to data modelling.

Although a reader may be insulted if it is suggested that coding up the right sides
and their derivatives for a model as simple as this should be avoided, here are six
lines of code that will do the entire job in Matlab:

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
http://dx.doi.org/10.1007/978-1-4939-7190-9_8
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sysname = ‘Lotka_Volterra’;

filename = ‘make_Lotka_Volterra’;

xeqn = cell(2,1);

xeqn{1} = ‘exp(p{1})*x{1}

- exp(p{2})*x{1}*x{2}’;

xeqn{2} = ‘exp(p{3})*x{1}*x{2}

- exp(p{4})*x{2}’;

make_file_build(sysname, filename, xeqn, 3);

The result is a Matlab file with 62 lines of code, which we consider to be a useful
saving in effort.

A first design issue is data and model transformation. It is often desirable, when
there is large amplitude variation among variables, as there often is for spread of
disease and population dynamics models, to model the logarithm of the data. This is
achieved by dividing each equation’s right side by its variable value, so that

D lnC = α − βC B

D ln B = βBC − δ . (10.9)

Although this seems to render the equations linear,C and B are now the exponentials
of the corresponding log-variables, so that the equations remain nonlinear. The data
for variables ln(C) and ln(B) are in the panels of Fig. 10.1. We see that both popula-
tions oscillate in the manner predicted by the Lotka–Volterra model, which includes
the prediction that the predator population will lag the prey population by about five
time units. A warning, however, is that the domain over which the equations are
defined should not contain zero if either the data or the values of the variables are
zero at that time. This caution applies to any other time where a close approach to
zero by one of the populations happens.

We first had to set up a basis system for representing the two trajectories. We
used for each variable 34 order five B-splines with knots positioned at equal steps
of size one between times 15 and 45, so that each knot except the last was close to
an observation time. We chose splines of order five because we are using first order
differential equations and we want to ensure that the first derivatives are smooth.
We also needed quadrature points and weights for approximating the integrals, and
we used 150 equally spaced quadrature points, so that a point is positioned at each
knot and there are four points within each inter-knot interval. The quadrature weights
were those of Simpson’s Rule.

We noted above that fitting the model for an increasing sequence of values of λ

allows us to both examine the trade-off between fitting the data and satisfying the
equation, and generates better starting values for themore difficult situationwherewe
place heavy emphasis on fitting the equation. Consequently, we defined λ by setting
the sequence log10 λ to the 11 values from −2 to 3 with step size 0.5. Figure 10.1
displays the data along with estimated trajectories for values λ = 0.1, 3.2 and 1000.
The sum of the square roots of the mean squared residuals (RMSE) for the fit to the
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log abundance data for these values were 0.29, 1.06, and 1.48, where their increases
reflect increasing emphasis on fitting the equation. By contrast, the RMSE’s for the
differences between the right and left sides of the equation were 1.94, 0.46 and 0.05,
so that the trajectories for λ = 1000 were close to being solutions to the differential
equation (10.9).

The model that we are inclined to favour is indicated by the solid lines in
Fig. 10.1, where log10 λ = 1/2. It seems to provide a reasonable balance between
fitting the data and fitting the differential equation. But we were impressed by how
the best equation fit also gave a rather satisfactory account of the data as well. Lotka–
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Fig. 10.1 The upper panel and lower panels contain the observations on the prey (C) and predator
(B) abundances, respectively, indicated by circles. The lines in each panel indicate the fits to the
data from the model for a low, medium and high values of smoothing parameter λ

Volterra model fits to actual data are relatively rare in the ecology literature; and we
believe that the CollocInfer process, by sneaking up on a tight equation fit, has
managed be quite successful for these data.

Figure 10.2 shows how the parameter estimates vary across the values of log10 λ.
Beyond λ = 10, all four parameters are relatively stationary, except that the predator
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rate βB for predation declines and this is compensated for by a decrease in predator
morality.

Figure 10.3 shows how the logarithmof the root-mean-squared error for the data fit
increases for both variables as λ goes from −0.01 to 1000, which the corresponding
values for the left and right sides of the equation decline to the point where the
equation is fit precisely and the data are left to pick up what fit they can.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

 log10 lambda

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 P
ar

am
et

er
 E

st
im

at
e

C

B

Fig. 10.2 The parameter estimates for the Lotka–Volterra model for the chemostat data over a
range of values of log10(λ)

10.4 A CollocInfer Analysis of the Head Impact Data

We set up the analysis of these data in order to illustrate the use of two first order
linear equations to solve a second order linear equation. The equation D2x(t) =
−β0x(t) − β1Dx(t) + αu(t) can be solved by the equivalent system

Dx1(t) = x2(t)

Dx2(t) = −β0x1(t) − β1x1(t) + αu(t) (10.10)

where the forcing function u is the pulse function displayed in Fig. 9.5. In this setup
only variable x1 is observed.

http://dx.doi.org/10.1007/978-1-4939-7190-9_9
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Figure 10.4 contains the data and the fit to themoffered by variable x1 forλ = 100.
We see that the fit is almost identical to that in Chap. 9where ρ = 0.95. The estimated
parameters values are 0.060, 0.024 and 0.139 for β0, β1 and α, respectively, which
are close to those in the previous chapter. The bottom panel of the figures shows
the values of Dx2 = D2x1 at the observation times as points, and the right side of
the equation as a smooth curve. Clearly the differential equation is simultaneously
well satisfied by the estimated trajectory x2 and the data nicely fit by the estimated
trajectory x1.
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Fig. 10.3 The common logarithms of the root-mean-square errors for the data and for the equation,
and for the two chemostat variables C and B, over a range of values of log10(λ)

A small disclaimer is required, however. In principle the two variables should have
the same basis expansions, and hence the same coefficients. In fact, in this setup the
two variables are expanded independently, so that there is more fitting power in this
model than in that of Chap. 9. In fact, though, the two sets of coefficients are quite
similar, as they should be. One way to deal with this discrepancy is by requiring the
two coefficient vectors to be equal by using a linear constraint matrix.

http://dx.doi.org/10.1007/978-1-4939-7190-9_9
http://dx.doi.org/10.1007/978-1-4939-7190-9_9
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10.5 Fitting a Compound Model to Blood Alcohol Data

This and the next two examples are taken from the invaluable collection of differential
equation models in Schittkowski (2002). The systems in this collection includes
many types other initial value value problems, but these alone contain 232 examples
where data from actual experiments are provided, alongwith, inmost cases, literature
citations.Alongwith these data, the author also distributes a computer programcalled
EASYFIT that uses the trajectorymatchingmethods inChap.7 to compute parameter
estimates along with confidence limits. The text, in addition, offers a comprehensive
review of numerical methods for parameter estimation.
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Fig. 10.4 The upper panel displays the head impact data analyzed in Chap.9 along with the fit to
the data defined by the CollocInfer analysis for λ = 100. The lower panel shows the values of
the second derivative at the observation times as points along with the right hand function value as
a curve

Varah (1982) contains several interesting data sets fit by differential equations.
Among these is a set of block ethanol concentrations over a two hour period of
alchohol consumption followed by a 6.5 hour period of abstinence. Pharmacody-
namic data like these can bemodelled in variousways, butVarah selected a compound
Michaelis–Menton model that switched as follows at the two-hour point:

Dx = α + βx/(γ + x), t < 2

Dx = −βx/(γ + x), t ≥ 2. (10.11)

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
http://dx.doi.org/10.1007/978-1-4939-7190-9_9
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We can also set this up as a single equation with both additive- and rate-forcing:

Dx = α1u1 + u2βx/(γ + x)

where the additive forcing function u1 switches from 1 to 0 and the rate forcing
function switches from 1 to −1 at 2h.

As above we set up the analysis with order 5 B-splines with knots at observation
points and ranged log10 λ from −2 to 1 in unit steps. The four fits to the data and the
equation are shown in Fig. 10.5 in the top and bottom panels, respectively. Again we
see that the data and equationfits converge to a tight adherence to the differential equa-
tion. But a fair amount of fit is sacrificed along the way, and the fit at λ = 0.1 seems
to strike a good compromise. Moreover, there is little change in the three coefficients
over the λ range, and the values α = 0.34, β = 181, γ = 1981 can be considered as
quite satisfactory estimates when compared with α = 0.22, β = 183, γ = 1957 for
the tight fit to the equation.
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Fig. 10.5 The upper panel displays blood alcohol concentration as as circles, and the fit to the data
defined by the catalytic equation and λ = 0.01, 0.1, 0, 10 as solid lines. The lower panel displays
the corresponding derivatives of the fit as circles and the right sides of the equation as solid lines



10.6 Fitting the Catalytic Growth Model to the Root Length Data 213

10.6 Fitting the Catalytic Growth Model to the Root
Length Data

It is instructive to look at a bad idea now and then, as a warning that it is important
to consider whether the data at hand can define the model in mind.

Differential equations are natural for modelling growth, and we have noted that
most growth processes have upper limits defined by both internal structural factors
and external constraints. The catalytic equation4.4, which we express here as Dx =
βx(γ − x), is usually seen as the firstmodel to consider for limited growth processes.
We illustrate how we would use CollocInfer to estimate the rate parameter β

and the upper limit of root length parameter γ by using 11 observations of root length
of a fungus published by Buwalda et al. (1982).

The data, displayed in Fig. 10.6, involve root lengths ranging from 3.8 to 11591
centimeters, a dynamic range = 11591/3.8 of about 3000, and, as in the population
dynamics data above, it is usually wise to analyze the logarithm of the data with a
model altered to define this scale. Thus, we switched to log version D log x = β(γ −
x) as our differential equation for log root length. We also defined the parameters
to be estimated as the logarithms of β and γ so that their values would be positive.
We see that the two parameters have a trade-off relationship via their product, and
preliminary analyses revealed that an estimate β would be of the order of 10−5 while
the limit parameter γ be in the range of 104.We switched to estimating the logarithms
of the parameters after rescaling them, resulting the equivalent equation for log root
length D log x = β(10−4γ − 10x).

We used order five B-spline basis functions with knots positioned at the times
of observation and allowed log10 λ to step by 0.5 from 0 to 4. The optimizations
converged rapidly at each step with a maximum number of iterations being four.
Figure 10.7 displays these data in its upper panel and the values of derivative of the
fit (circles) and the right side of the equation (line) for λ = 104. We see that the data
are tightly fit, but that in the bottom panel the right and left sides of the differential
equation differ enormously on the right. Moreover, these fits prevailed nomatter how
high we set λ, indicating that the optimum parameters value fit the data tightly and
ignore the conflict between right and left sides of the equation.

We see what the problem is in both Figs. 10.6 and 10.7. The largest root lengths
are still a very long way from whatever maximum root length might hold for this
plant. There is simply no data to define γ , but the trade-off between β and γ in the
catalytic model means that β is therefore undefined by the data as well. We would be
better off to work with a unexciting first order unrestricted growth model Dx = βx
or D log x = −β, possibly with a little time variation in the rate parameter. You
can only estimate a model for the data that you have, and the catalytic model is an
over–parameterization in this case.

http://dx.doi.org/10.1007/978-1-4939-7190-9_4
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Fig. 10.6 The length of the root of a fungus as a function of days of growth

10.7 Chemical Reactions Among Aromatic Compounds

We turn now to a model involving rather more equations than we have seen so far and
with only partially observed variables. The system was proposed to H-G. Bock by a
chemical engineerworking in the Shell laboratory inAmsterdam as an interesting test
case for his multiple shooting algorithm PARFIT (Bock 1983) described in Chap.7.
The system, some new data and an analysis by the EASY-FIT algorithm were later
reported by Schittkowski (2005) and are available from that author. We report here
results for these data.

The nine equations are

Dx1 = −p1x1x2 + p2x3 + 105x3x7 − 103x1x8 + 7 × 104x6x7 − 1.4 × 103x1x9
Dx2 = −p1x1x2 + p2x3 − p5x2x5 + p6x6
Dx3 = p1x1x2 − p2x3 − p3x3 + p4x4x5 − 105x3x7 + 103x1x8 + 7 × 103x6x8

−1.4 × 104x3x9

http://dx.doi.org/10.1007/978-1-4939-7190-9_7
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Fig. 10.7 The upper panel displays the natural logarithm of root length as a function of days of
growth as circles, and the fit to the data defined by the catalytic equation and λ = 104 as a solid
line. The lower panel displays the derivative of the fit as circles and the right side of the equation
as a solid line

Dx4 = p3x3 − p4x4x5
Dx5 = p3x3 − p4x4x5 − p5x2x5 + p6x6
Dx6 = p5x2x5 − p6x6 − 7 × 104x6x7 + 1.4 × 103x1x9 − 7 × 103x6x8

+1.4 × 104x3x9
Dx7 = −105x3x7 + 103x1x8 − 7 × 104x6x7 + 1.4 × 103x1x9
Dx8 = 105x3x7 − 103x1x8 − 7 × 103x6x8 + 1.4 × 104x3x9
Dx9 = 7 × 104x6x7 − 1.4 × 103x1x9 + 7 × 103x6x8 − 1.4 × 104x3x9 . (10.12)

These equations are typical of those used to describe chemical reactions among
multiple reagents, where all variables are non-negative over all values of t . Each vari-
able represents the concentration of a chemical species called an aromate, a molecule
with a cyclic planar structure that is both highly stable and reactive. The terms are
either single variables or products of variables, so that the system is effectively
quadratic rather than linear. Thus, the equations are essentially extensions of the
Lotka–Volterra and SIR models, and can be viewed as an essentially linear network
but with rate-forcing of each variable by one or more other variables. The number of
linkages of each variable to the others in the system ranges from two for x4 to eight
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or all others for the lynch-pin variable x3. But, since x4 is additively forced by x3,
it, too, has a central role in the system. We know that rate-forcing is apt to make a
system twitchy in the sense that a variable may be highly sensitive to small changes
in other variables.

There are six parameters, p1, . . . , p6, that must be estimated from these data; and
they are rate constants for, respectively,:

1. x1x2 in equations 1, 2 and 3,
2. x3 in equations 1, 2 and 3,
3. x3 in equations 3, 4 and 5,
4. x4x5 in equations 3, 4 and 5,
5. x2x5 in equations 2, 5 and 6,
6. x6 in equations 2, 5 and 6.

The right sides of equations 7, 8 and 9 are entirely determined by known constants.
The EASY-FIT estimated parameter values were 0.037, 4.79, 47.4, 0.371, 0.217, and
49.3, respectively.

Only variables 4, 5, 7 and 8 are observed, and each at at 11 common time points,
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.9, 1.2, 1.8, 2.4, 3.0).

We tweaked the initial values xi (0) used in the original EASY-FIT NLS analysis
to (0.5, 3.0, 0, 0, 0.02, 0.01, 0.52, 0, 0.5), respectively. The approximation to the
solution of the initial value problem using and unweighted least squares criterion is
shown in Fig. 10.8, along with the data. The fit to the measurements seems quite
credible, although with some small bias in the fits to variables 5, 7 and 8. At the
scale of the plot, the variables seem to have a nice smooth exponential–like shape
that would not seem to require a lot of basis functions to approximate. Variables
x3, x4, x5, and x8 increase monotonically over the observation interval and have the
profile of outputs from the reaction. Variables x1, x6, and x9 look like chemical
species used up by the reaction, and variables x2 and x7 look like by-products that
will eventually return to zero values.

But there are indications that there might be problems. The approximation to the
solution of the equation for our initial values by Matlab function ode45 required
245,385 time steps over a range of error tolerance settings. Figure 10.9 shows a
close-up of the approximation of x3 over a sequence of 100 successive time points
near the end of the interval. Although we can’t be sure about how much of this high-
frequency variation is due to the Runge–Kutta algorithm used for the approximation,
this remains an impressive illustration of how a dynamic system that seems to have
a straightforward structure can in fact determine substantial variation on a very fine
time scale.
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Fig. 10.8 The panels show as solid lines the approximations to the solutions of nine equations
representing reactions of aromatic compounds. The initial values were chosen to provide a good fit
to the observations of variables x4, x5, x7 and x8 shown as circles

We also see a large variation in the sizes of the variables, amounting to four orders
ofmagnitude,whichwould suggest that eitherwe should switch to a logarithmic scale
for our CollocInfer analysis, or use different weightings for a least squares
analysis of the actual data. We opted for the second approach since one of the obser-
vations was zero, and therefore we multiplied the variable values by 10 to the powers
(1, 0, 4, 2, 1, 2, 1, 1, 1), respectively. We positioned knots at 0 and at each of the 11
observation points and used an order 5 B-spline basis, so that there 15 basis functions
used to approximate each variable.

We used as starting parameter values for our CollocInfer analysis those used
in the EASY-FIT analysis. After some experimentation, we found that a sequence
of smoothing parameter λ values on a common log scale beginning at -1 and with
step size 0.5 produced data and equation fits ranging from close for the data at
log10 λ = −1 to close for the fit to the first derivative by the right-side of each
equation at about log10 λ = 2. Along the way, we encountered serious problems
with the negativity of some eigenvalues of the coefficient Hessian matrix for higher
λ values until we switched to the simpler scoring-type Hessian matrix produced by
dropping the second partial derivative term. But, as in the numerical approximation
for the initial value problem, we noted that as much as 1000 iterations of the inner
coefficient loop were required for convergence.
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Fig. 10.9 The variation of variable x3 over 100 steps late in the entire sequence of length 245,385
of the Runge–Kutta initial value approximation

Figure 10.10 shows the solution at log10 λ = 2, where the fit to the data just
begins to deteriorate but the fit of the right side of the equation to the first derivative
is close. Also shown in each panel as a dashed line is the EASY-FIT approximation
in Fig. 10.8. The fits to the data are excellent, but the EASY-FIT and CollocInfer
solutions for unmeasured variables differ.Variables x1 and x2 differ primarily in terms
of a vertical shift, while the other unmeasured variables appear to differ primarily by
a multiplying factor. Otherwise the shapes of all variables are essentially the same.
We also started a CollocInfer analysis off by the optimal EASY-FIT values,
which produce only a small improvement in fit over that displayed in Fig. 10.8. The
converged values of outer function H were 0.00035 and 0.00039 for the EASY-FIT
and CollocInfer analyses, respectively. That is, the two solutions are nearly
identical in terms of how they fit the data.

Figure 10.11 displays the values at the observation times of the first derivative
of each variable along with the right side of the equation shown as a solid line. For
all but small-amplitude variable x3 these agree closely, so that we may say that the
differential equation model provides an excellent account of both the data and the
equations for either set of parameter values.
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Fig. 10.10 The panels show as solid lines the approximations to the solutions of nine equations
representing reactions of aromatic compounds computed a CollocInfer analysis. The observed
values are shown as circles. The dashed lines display the corresponding EASY-FIT solution in Fig.
10.8

How did the parameters change as we increased λ from 0.1 to 100? Figure10.12
displays this variation in common log terms, and we see that the amount of variation
is rather small, so that we see here as well as in our other sample analyses that
CollocInfer parameter estimates may be quite adequate without running the
value of λ to very high values. It is striking that the changes in initial values for
parameters p(2) and p(4) were essentially negligible. This is consistent with 95%
confidence limits reported by (Bock87) for these parameters that included zeros.
Moreover, when we replaced the values of log(0.01) that we used as initial values
by the corresponding EASY-FIT optimal values, we observed essentially the same
estimated solutions and fits to the data. When we re-analyzed the data by optimizing
only the other four parameters, we found no deterioration in fit and no change in
the values of the parameters. It would appear that values of these parameters have
no bearing on the fits to the four sets of observations. We may say, therefore, that
our CollocInfer estimates for p1, p3, p5 and p6 are 0.085, 82.3, 0.218 and 61.4,
respectively, but that we consider p2 and p4 as inestimable given the data at hand.
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Fig. 10.11 The panels show as solid lines the right sides of nine equations representing reactions
of aromatic compounds computed a CollocInfer analysis. The observed values of the first
derivatives at the observation points are shown as circles
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Fig. 10.12 The variation in estimated parameter values over the range of smoothing parameter λ

used in the CollocInfer analysis of the aromate data
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Notation, 17–30
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memoization, 200
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multi-variable systems, 176
outer criterion, 169
rate function specs, 196
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software and computation, 196
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nonlinear, 201–219
coefficient function c(θ), 203
helpful tips, 204
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T
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multivariate, 113
inference, 111
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