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Preface

In recent years, computational intelligence has attracted many researchers’ attention
and so became a consolidated methodology to automatically create new competitive
solution to complex real-world problems. Concise and efficient synthesis of a
variety of systems has been generated using computationally intelligent techniques.
This book puts together a set of chapters, in which some real-world applications of
interest are approached using computational intelligence. In the following, we give
a brief description of the main contribution of each of the included chapters.

In Chap. 1, which is entitled On Using Fuzzy Logic to Control a Simulated
Hexacopter Carrying an Attached Pendulum, the authors propose an approach
based on multiple interconnected fuzzy controllers, aiming at controlling the var-
ious aspects related to maneuverability of a hexacopter carrying a free payload
forming a pendulum. They simulated the behavior produced by the proposed
control system on a robotics simulation environment and analyzed the achieved
results in terms of flight stability, roll, pitch and yaw movements. The authors claim
that the results show the feasibility of the proposed approach, which allowed the
flight stability of the hexacopter.

In Chap. 2, which is entitled Monocular Pose Estimation for an Unmanned
Aerial Vehicle Using Spectral Features, the authors propose a visual position and
orientation estimation algorithm based on the discrete homography constraint,
induced by the presence of planar scenes and the so-called spectral features in the
image. The authors claim the their approach has some unique characteristics, which
are the selection of an appropriate distribution of the features, no requirement of an
initialization step nor a search for features and no impact of the presence of
corner-like features in the scene. The authors tested the proposed pose estimation
algorithm in a simulated dataset. They prove the robustness of the spectral features
in different conditions using a conveyor belt.

In Chap. 3, which is entitled Simultaneous Navigation and Mapping in an
Autonomous Vehicle Based on Fuzzy Logic, the authors present a navigation control
and mapping of an autonomous car using fuzzy logic, enabling automatic obstacle
avoidance in unknown environments. The author’s strategy is based on a map of the
environment to plan the trajectories avoiding obstacles through the search algorithm
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A*. They evaluated the proposed approach in a virtual environment, where the
autonomous car moves among different obstacles.

In Chap. 4, which is entitled Fully Scalable Parallel Hardware for Wheeled
Robot Navigation Using Fuzzy Control, the authors describe a reconfigurable-
efficient architecture for fuzzy controllers, suitable for embedding in final products.
They show that the architecture is parameterizable allowing the setup and config-
uration of the controller so it can be used as a control in many applications. The
authors present and evaluate an application of the fuzzy controller hardware
architecture in the supervision of a wheeled robot during navigation in an unknown
environment.

In Chap. 5, which is entitled Nonlinear Correction for an Energy Estimator
Operating at Severe Pile-Up Conditions, the authors describe how computational
intelligence can be used to assist during energy estimation performed by an optimal
linear method. They use an artificial neural network that is trained aiming at cor-
recting the nonlinearities introduced by the signal pile-up statistics. The authors
evaluate the efficiency of the various energy estimation methods using simulation
data under various signal pile-up scenarios.

In Chap. 6, which is entitled Non-supervised Learning Applied to Analysis of
Topological Metrics of Optical Networks, the authors offer a systematic method to
analyze different backbone optical networks, based on a non-supervised algorithm
for clustering. They investigate the power of a recently proposed topological
metrics, which along with three others are applied to identify the best canonical
model to represent real backbone optical networks. The authors claim that
according to the obtained results, the proposed clustering procedure that the
investigate metric is the best metric to explain the installed capacity for the analyzed
networks.

In Chap. 7, which is entitled Mole Features Extraction for a Melanoma
Recognition System, the authors propose three algorithms to extract features of skin
moles based on dermatological studies, using digital image processing techniques
existing in the lecture. They also evaluate these features as input to classifiers
creating a melanoma recognition, and indicating whether it is a melanoma or
normal mole. The authors analyze the obtained results, which are shown through
ROC curve and 10-fold cross-validation from two dermatological datasets Atlas of
Clinical Dermatology and DermNet NZ.

In Chap. 8, which is entitled Human–Machine Musical Composition in
Real-Time Based on Emotions Through a Fuzzy Logic Approach, the authors
present a method for representing human emotions in the context of musical
composition, which is used to artificially generate musical melodies using fuzzy
logic. They tested the generated melodies with listeners in an experiment aiming at
of verifying if these melodies can produce emotions in them and whether those
emotions match the emotional intentions captured by humans.

In Chap. 9, which is entitled A Recursive Genetic Algorithm-Based Approach for
Educational Timetabling Problems, the authors address the educational timetabling
problem for multiple courses, aiming at finding solutions that satisfy the hard
constraints and minimize the soft constraint violations. They propose a simple,
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scalable and parameterized recursive approach to solve timetabling problems for
multiple courses with genetic algorithms, which are efficient search methods used to
achieve an pseudo-optimal solution.

In Chap. 10, which is entitled Evolving Connection Weights of Artificial Neural
Network Using a Multi-Objective Approach with Application to Class Prediction,
the authors investigate the applicability of two novel multi-objective evolutionary
algorithms: Speed constrained multi-objective particle swarm optimization and
multi-objective differential evolution algorithm based on decomposition with
dynamical resource allocation. They compare the obtained results using the
hypervolume as quality indicator.

In Chap. 11, which is entitled Diversification Strategies in Evolutionary
Algorithms: Application to the Scheduling of Power Network Outages, the authors
propose different strategies to avoid and/or fix premature convergence of evolu-
tionary algorithms. They claim that high diversification level is maintained
throughout the evolution process, so that an adequate trade-off between solution
quality and computational cost is achieved. Through numerical results, they illus-
trate the application of the proposed strategies and respective impact on the quality
and computational cost of solutions.

In Chap. 12, which is entitled WBdetect: Particle Swarm Optimization for
Segmenting Weld Beads in Radiographic Images, the authors present an approach
for automatically segmenting weld beads in double wall double image X-ray
photographs by combining two known methods: Particle swarm optimization and
dynamic time warping. They show through experiments that the achieved results
are promising and outperform existing approach.

The editors are very much grateful to the authors of this volume and to the
reviewers for their tremendous service by critically reviewing the chapters. The
editors would like also to thank Prof. Janusz Kacprzyk, the editor-in-chief of the
Studies in Computational Intelligence Book Series and Dr. Thomas Ditzinger,
Springer Verlag, Germany for the editorial assistance and excellent collaboration to
produce this important scientific work. We hope that the reader will share our
excitement to present this volume and will find it useful.

Rio de Janeiro, Brazil Nadia Nedjah
Curitiba, Brazil Heitor Silvério Lopes
Rio de Janeiro, Brazil Luiza de Macedo Mourelle
May 2016
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Chapter 1
On Using Fuzzy Logic to Control a Simulated
Hexacopter Carrying an Attached Pendulum

Emanoel Koslosky, Marco A. Wehrmeister, João A. Fabro
and André S. de Oliveira

Fuzzy logic is used inmany applications from industrial process control to automotive
applications, including consumers trend forecast, aircraft maneuvering control and
others. Considering the increased interest in using of multi-rotor aircrafts (usually
called drones) for many kinds of applications, it is important to study new methods
to improve multi-rotor maneuverability while controlling its stability in a proper
way. Controlling the flight of multi-rotors, specially those equipped six rotors, is
not a trivial task. When considering the design of such a control systems, traditional
approaches such as PD/PID are very difficult to design, in spite of being easily
implementable. This work proposes an approach based on multiple interconnected
fuzzy controllers, aiming to control the various aspects related to maneuverability of
a hexacopter carrying a free payload forming a pendulum. The behavior produced
by such a control system has been simulated on a well-known robotics simulation
environment and analyzed in terms of flight stability, as well as roll, pitch and yaw
movements. The results show the feasibility of the proposed approach in keeping the
hexacopter flying in a stable way.
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1.1 Introduction

Nowadays, technology advances and cost reductions have popularized the use of
small electromechanical aircrafts in many distinct application fields, such as video
recording, plantation inspections, search-and-rescue assistance, military and civil
surveillance applications, among others. Multi-rotor helicopters (also known as
drones) are among the popular small electromechanical aircrafts that are being used
in such applications. Moreover, some of these new applications demand multi-rotor
helicopters that fly autonomously, as presented in [4, 7]. Thus, the multi-rotor heli-
copter must have additional computational systems on top of the more basic move-
ment and stabilization control systems. These computational systems provide higher
level capabilities to support themission accomplishment. Therefore, UnmannedAer-
ial Vehicles (UAV) are the preferred choice for these applications, due to the cost
reductions obtained from eliminating the need of high-skilled and trained pilots.

There are several topologies for multi-rotor helicopter, varying on the number of
rotors (i.e. motor and propeller), as well as on the position of these rotors onto the
aircraft frame. The most common multi-rotor helicopter has 4 rotors and is called
quadcopter. However, recently, other multi-rotor helicopter topologies are becoming
popular, such as those with 6 rotors, the so-called hexacopter, as discussed in [9].

The UAV stabilization is commonly performed by hybrid control approaches
(parallel, cascade) with multiple PID controllers, like works of [1, 2]. However,
these methods require a precise mathematical formulation or identification of UAV
dynamics to minimize the disturbance and stabilize the system, as discussed in [11].

Adaptive algorithms can be applied to establishmultivariable systems (likeUAVs)
with more efficiency which classical strategies. In [5] is discusses a approach based
on artificial neural networks to trajectory control of UAVs. In [6] the genetic algo-
rithm is applied to establish a hexacopter. In [3] a fuzzy logic method is used to
position control of a hexacopter. However, the main focus of previous works is the
UAV stabilization over linear disturbances and is not evaluate the proposed control
strategies over nonlinear disturbances, like a variable payload.

This work focuses on the control system for the movement and stabilization of a
Hexacopter, whose rotors have been configured as a “Hexa +” topology. A multi-
layer controller has been proposed and integrates multiple fuzzy controllers. The
outputs from these fuzzy controllers must be applied on each rotor accordingly, in
order to get the correct Hexacopter movements. A closed control loop is obtained by
reading of sensors that measure the position and the movements of the Hexacopter,
which, on the other hand, are used as feedback information to the proposed multi-
layer controller. The main goal is to create a robust and flexible controller that is able
to keep the Hexacopter stability when moving or hovering, even when it carries a
free or loose payload that changes its center of gravity.

Themajor challenge tackled in this work is the switching among fuzzy controllers
at the right moment. For instance, lets assume that a hexacopter starts on the ground
and receives a command to fly to a certain position, e.g. 2m in latitude, 5m in
longitude and 3m upward. To achieve the commanded position, every movement
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must be executed properly, and hence, all controllers must work cooperatively to
achieve the goal. In other words, the fuzzy controller that controls the longitudinal
position cannot override the other controllers actions. On the other hand, when the
fuzzy controllers do not work well together, a controller outputs can take the rotors
actuation over the outputs of the other controllers. In this case, there must exist a
high-level controller that performs the contention of misbehaved controllers.

The proposed approach has been validated through simulation. For that, amodel of
a hexacopter has been created in the V-REP simulation environment. A free payload
has been attached to the hexacopter forming a pendulum. Thus, the proposed multi-
layer controller must control the hexacopter movement when it is commanded to
move to another position, while keeping the its body stabilized during the flight.
Results indicate that the proposed approach is robust since it allows the hexacopter
move from one position to another, even though it must carry a moving payload.

The reminder of this chapter is organized as follows: Sect. 1.2 provides an
overview of the control problem; Sect. 1.3 presents the proposed stabilization and
movement multi-layer fuzzy controller; Sect. 1.4 provides details on each fuzzy
controller that comprises the proposed controller; Sect. 1.5 discusses the conducted
experiments and the obtained results; finally, Sect. 1.6 draws some conclusions and
presents future work directions.

1.2 Description of the Controlled Plant: The Hexacopter

This section describes briefly the system under control, i.e. the hexacopter, as a
control plant. Figure1.1 shows the hexacopter, which is composed by six rotors
organized as “Hexa +” topology.1

By activating the rotors accordingly, it is possible to control the hexacoptermaneu-
vering through the X, Y and Z axes.

In general, each plant must be analyzed to discover the interaction of each force.
In this case, the thrust force produced by speeding up or slowing down some rotors
leads the hexacopter toward the desired direction (on each axis), i.e. the vectors of
the forces acting on the plant.

To understand the movements performed by the hexacopter it is worth to take a
look at the forces acting in frame.

In the Figs. 1.2 and 1.3 show the forces the rotors imposed to the frame. If these
forces are unbalanced the hexacopter start a rotation around the Y-axis and therefore
this rotation makes the hexacopter to start a movement over the X-axis. The hexa-
copter moves forward (Fig. 1.2) if the rear rotor has a value greater than the front
rotor. If the front rotor has a value greater than the rear rotor, the hexacopter moves
backward or, if it is going forward in this situation, this rotation makes it to slows
down.

1See APM:Coter – Connect ESCs and Motors, http://copter.ardupilot.com/wiki/connect-escs-and-
motors/

http://copter.ardupilot.com/wiki/connect-escs-and-motors/
http://copter.ardupilot.com/wiki/connect-escs-and-motors/
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Fig. 1.1 The plant to be
controlled: (i) X axis angle is
the Roll rotation, (ii) the Y
axis is the Pitch rotation, and
(iii) the Z axis is the Yaw
rotation. The arrow direction
means positive

Fig. 1.2 The rear rotor has
greater value than front rotor,
the hexacopter moves
forward

Fig. 1.3 The front rotor has
greater value than rear rotor,
the hexacopter moves
backward
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Fig. 1.4 The left side rotors
have value greater than
applied on the right side
rotors, the hexacopter moves
to the right, or slows down if
it is moving to the left

Fig. 1.5 The right side
rotors have value greater
than applied on the left side
rotors, the hexacopter moves
to the left, or slows down if it
is moving to the right

The maneuvers to the right and to the left are achieved by applying forces on the
side rotors with different proportion. Thus, it makes the hexacopter rotate around the
X-axis and a movement over the Y-axis occurs. For moving to the right or to slow
down the movement to the left, the left side rotors have value greater than applied
on the right side rotors, as shown the Fig. 1.4. For moving to left or to slow down the
movement to right, these forces are inversely applied between the left and right side
rotors as shown in the Fig. 1.5.

To rotate the hexacopter in the Z-axis (the yaw movement) the forces are applied
alternating among the rotors, shown in Figs. 1.6 and 1.7. It is important to note that if
a rotor is set to rotate clockwise, therefore, the adjacent rotor is set to rotate counter-
clockwise. The real propellers are built with clockwise twist and counterclockwise. If
the forces are applied with some difference between the adjacent rotors, a gyroscopic
effect begin to act on the frame. This effect is used to rotate the hexacopter around
the Z-axis.
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Fig. 1.6 The different forces
applied to the adjacent rotors
to rotate the hexacopter
clockwise

Fig. 1.7 The different forces
applied to the adjacent rotors
to rotate the hexacopter
counter-clockwise

Finally, If all rotors receive the same force, the hexacopter could lift off, land or
keep hovering, depending of the intensity. The Figs. 1.8 and 1.9 shows this effect.
The hexacopter goes up when the force is high and it goes down when the force is
low.

1.3 Proposed Multi-layer Controller

The proposed controller implements a closed loop that comprises the three layers.
Data produced as output in one layer is passed as input to the next layer.
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Fig. 1.8 With high force,
the hexacopter goes up

Fig. 1.9 With low force, the
hexacopter goes down

The proposed multi-layer fuzzy controller is based on [12] and is depicted in
Fig. 1.10. The Control box is composed by a pre-processing phase (first layer), a set
of fuzzy controllers (second layer), and post-processing phase (third layer).

As one can observe, after the post-processing phase, the control outputs are applied
onto the plant by means of the hexacopter rotors that actuate on the hexacopter
movement and stabilization. The sensors perceive the changes on the plant controlled
variables, and hence, provide the feedback to the controller. The controller, in turn,
compares these input valueswith the reference values established as setpoints thereby
closing the control loop [8].

The pre-processing phase (first layer) is responsible for acquiring data from the
input sensors, process the input movement commands, as well as calculate the con-
trolled data used as input to the fuzzy controllers in second layer. Before the multi-
layer controller starts its execution, there is an initialization phase that is performed
within the first layer. The target position is set as the current position, so that the hexa-
copter does not move before receiving any command. Gyroscope and accelerometer
sensors are calibrated and the GPS sensor is initialized by gathering at least four
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Fig. 1.10 Inside the control box. Composed by preprocess, fuzzy controllers and postprocess

satellites. During the execution phase, the first layer is responsible to calculate the
input variables to the fuzzy controllers: (i) the angular and linear distance (delta error)
for X, Y, and Z axes between the current hexacopter position and the target position;
(ii) the rotation and translation movement matrices to translate 3 axes movement
into the speed related to the ground (i.e. X and Y axis). In addition, it is responsible
to convert the input movement commands into setpoints for X, Y and Z positions.
Movements commands are composed of three values representing the positive or
negative movement along X, Y and Z axes related to the current positions, i.e. a
command indicates a relative position. Thus, when a new command is received, the
first layer will convert it to a absolute position. Then, when the control system is
executing, this layer uses the GPS coordinates to determine the error in the distance
from the hexacopter to the target position. These calculated errors in position are the
inputs to the fuzzy controllers (Euler X, Euler Y and Euler Z errors).

The second layer contains five fuzzy controllers, which act on issues regarding the
hexacopter movement, namely hovering stabilization, vertical and horizontal move-
ment and heading. As mentioned, these controllers take as input the data produced in
the first layer and generate output for the third layer. The generated outputs represent
the actuation on the six rotors for performing pitch, roll, yawmoves for all maneuvers
necessary to reach the target position. The fuzzy controllers are discussed in details
in the next section.

The post-processing phase (third layer) is responsible for coordinating the fuzzy
controllers outputs. As mentioned, in order to perform a proper maneuver, the pro-
posed multi-layer controller establishes a priority on movements needed to complete
a maneuver. When a new command is received, i.e. a new target point is set, the
hexacopter must firstly reach the target altitude. Then, the hexacopter must turn until
its front aims the target position. Finally, the hexacopter moves horizontally towards
the target position. This layers also performs a threshold limits control by means
of output values saturation, in order to keep the hexacopter stability while flying or
hovering.
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1.3.1 Pre-processing Phase

In the pre-processing phase some calculations are applied onto the fuzzy controllers.
Each fuzzy controller (see Sect. 1.4) has at least two inputs [12]: the error e(t) and
some derivative variable such as speed.

The error is calculated according to Eq.1.1. In other words,e(t) is the difference
between the reference value r(t) and the current value of an sensor y(t).

The reference is a setpoint established by an operator or other controller. Some
inputs have the reference always set to zero so that the error e(t) is the opposite
value of sensor, i.e. -y(t).

e(t) = r(t) − y(t) (1.1)

The errors calculated in the pre-processing phase are related to the following
variables. The rotation around the three axes is the Euler angle (in radians) and it is
measured by a gyroscope. The following outputs are generated:

• Angle on X axis: Roll_error
• Angle on Y axis: Pitch_error
• Angle on Z axis: Yaw_error

The distance to the target position (i.e. the error between the current hexacopter
position and the setpoint on the three axes) is measured in meters using GPS and
calculated as described bellow.

The following outputs are generated:

• Horizontal distance on X axis: distX_error
• Horizontal distance on Y axis: distY_error
• Vertical distance on Z axis: distZ_error

The distance ds is calculated to determine the distance to the target position that
is decomposed by X and Y axes, as shown in Eqs. 1.2 and 1.3.

Then, the Euclidean Distance is calculated to obtain the real distance d to the
target (see Eq.1.4). Euclidean Distance d is also used in Eq.1.6 to calculate the
speed v(t).

� dsx = sxt − sx(t−1) (1.2)

� dsy = syt − sy(t−1) (1.3)

� d =
√

�d2x + �d2Y (1.4)

Moreover, the angle of the movement is determined by the arctangent as shown
in Eq.1.5. The angle a(t) is used as the new yaw setpoint.

a(t) = arctangent(
�dx
�dy

) (1.5)
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The linear speed is measured in meters per second and is calculated according to
Eq.1.6 as discussed bellow. The following outputs are generated:

• Horizontal speed on X axis: SpeedX_error
• Horizontal speed on Y axis: SpeedY_error
• Vertical speed on Z axis: SpeedZ_error

The distance ds and the time interval �t are used to determine the current speed
of the hexacopter.

The time interval �t is obtained by measuring the time instant on which two
consecutive values of Euclidian Distance are calculated.

v(t) = �d

�t
(1.6)

Despite of acceleration is a derivative of speed, such a variable is taken directly
from accelerometer sensor. The acceleration information is used together other others
measurements likeEuler angles in order to avoid oscillationmovements. For instance,
the acceleration measured over Y-axes is used together Euler angle error measured
around the X-axis. If the Euler angle erro is zero, it means the hexacopter is stabilized
accordingly to the X-angle. But it could be moving over the in Y-axis like drifting.
The controllermust to slow down thismovement. If not stop this drifting, a oscillation
begin appear. In order to the fuzzy controller realize this moment, the acceleration
measurement is used as input together with Euler angle to be processed by controller.
The controllers are described in detail in the Sect. 1.4.

Another calculation present in pre-processing phase is the rotation matrix [15]. It
is used to obtain the speed and distance error over the X and Y axes related the pose
of hexacopter and the inertial frame. In other words, the information from GPS tells
the hexacopter position on the world (the inertial frame) but nothing about the pose
of it. By applying the rotation matrix calculation, using the Euler Z-angle error, it is
possible to discover the pose of hexacopter on the world as well as the speed related
to its X and Y axis. With this information the controller can determine the correct
forces to be applied onto each rotor.

1.3.2 Post-processing Phase

The post-processing phase determines the movement sequencing, saturation and so
on. The output of fuzzy controllers are provided as the inputs to this phase. Such a
behavior is explained as the Finite State Machine (FSM) depicted in Fig. 1.11.

There are many approaches for controlling the movement of a hexacopter. For
instance, one could create an algorithm in which the hexacopter flies directly to the
target position in the three-dimensional space by changing the vehicle altitude and
horizontal position at same time.
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Fig. 1.11 FSM for sequencing the hexacopter maneuver process. (X, Y, Z) inputs represent the
new target position of the hexacopter

Due to the instability caused by the loose payload, the controller proposed in
this work adopts an approach that sequentializes the flying movements. As pre-
sented in Fig. 1.11, the first movement of hexacopter is to reach the desired altitude
(Z-axis position). Thereafter, the controller commands the hexacopter to aim directly
at the target position by rotating on the Y-axis. Finally, the controller commands the
hexacopter to move along with X and Y axes, in order to reach the target position.

After the initialization, the systems goes to the Hold Position state. In this state,
Roll, Pitch and Hovering movements are stabilized by their fuzzy controllers. Once
a new command is provided by the operator, it changes the X, Y and Z position
setpoints, leading to an increase on error values as described in Sect. 1.3.1. The proper
fuzzy controller is activated when the threshold of one of its input values is reached.
For instance,Horizontal Navigation fuzzy controller starts when the altitude and yaw
is under a certain threshold. Such thresholds controls the hexacopter stabilization. It
is important to note that if some external disturbance interfere with the hexacopter
stabilization, the controller stops the horizontalmovement until the input values reach
their thresholds.

The proposed multi-layer controller implements the saturation control in the
post-processing phase, in order to avoid an individual fuzzy controller to override
other fuzzy controllers outputs by means of dominating the actuation on the plant.
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Therefore, once the output of logic control is calculated, it is important to determine
the exact value that must be applied on each rotor.

When throttle value is the same to all rotors, the hexacopter keeps hovering on
the same position. On the other hand, the output from roll and pitch stabilization are
applied proportionally as a gain to the rotors throttle according to the Eqs. 1.7–1.12.

PropellerForceFRONT = Othrottle − Othrottle × Opitch; (1.7)

PropellerForceRIGHT_FRONT = Othrottle − Othrottle × (Oroll/2); (1.8)

PropellerForceRIGHT_REAR = Othrottle − Othrottle × (Oroll/2); (1.9)

PropellerForceREAR = Othrottle + Othrottle × Opitch; (1.10)

PropellerForceLEFT_REAR = Othrottle + Othrottle × (Oroll/2); (1.11)

PropellerForceLEFT_FRONT = Othrottle + Othrottle × (Oroll/2); (1.12)

In these equations, PropellerForce<Rotor Position> is the value
applied on the rotor, the Othrottle is the output from Hovering fuzzy controller,
and the Optitch and Oroll are the outputs from, respectively, Pitch and Roll
fuzzy controllers. It is worth mentioning that: (i) to maintain the opposite feedback
into the mesh, the output value is obtained by subtracting Oroll from the throttle
value for rotors at the right side of the hexacopter, as well as by subtracting Opitch
for the front rotor. Similarly, for the left-side and rear rotors, respectively, Oroll
and Opitch are added to the throttle value; and (ii) Oroll values are proportional
to the amount of rotors on the right/left sides of the hexacopter, i.e. Oroll value
is divided by two. Such proportional values avoid that right and left Othrottle
values do not override the front and rear Othrottle values.

1.4 The Fuzzy Controllers

1.4.1 The Fuzzy Method

A fuzzy controller can be created with a variety of types of membership functions
such as trapezoidal, triangle, Gaussian bell curve function, and others. In addition,
these function may be of receive many inputs and provide a simple output (MISO)
or receive many inputs and provide many outputs (MIMO).

The fuzzy controller proposed in this work are composed five independent fuzzy
controllers. These controllers are built from MISO membership functions defined
as trapezoidal and triangle forms. The min() operator has been used in the rule
inferences and the result is done by max() operator.
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Fig. 1.12 The roll stabilization fuzzy controller

Moreover, the defuzzification method used in this work is Center of Gravity
(COG). The next sections provides details on these five independent fuzzy controller.

1.4.2 Roll Stabilization

Roll is the movement obtained through the rotation around the X-axis, i.e. front-to-
back axis. The fuzzy controller named Roll Stabilization controls the stabilization of
the hexacopter while it is performing the roll maneuver. Figure1.12 shows the block
diagram of this controller.

This controller has two input data. The first input is error in roll angle Euler
approximation. The roll angle is calculated through the Euler approximation of the
current X angle and the target X-axis angle. Figure1.13 shows the linguistic vari-
able membership function representing the fuzzification of the error in the roll angle
Euler approximation. The second input is the perceived movement in Y-axis repre-
sented as the acceleration in Y-axis obtained from the accelerometer over the time.
Figure1.14 shows the linguistic variables and themembership functions representing

Fig. 1.13 Input linguistic variables and their membership functions for the roll angle, Euler approx-
imation error of X-axis angle
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Fig. 1.14 Input linguistic variables and their membership functions for: Y-axis accelerations

Table 1.1 Control rules for roll stabilization

Roll angle NFAR NNEAR NCLOSE ZERO PCLOSE PNEAR PFAR

AccelY

NFAST PMAX PMIN ZERO PMIN NMIN NMID NMAX

NSLOW PMAX PMIN ZERO ZERO NMIN NMID NMAX

ZERO PMAX PMID PMIN ZERO NMIN NMID NMAX

PSLOW PMAX PMID PMIN ZERO ZERO NMIN NMAX

PFAST PMAX PMID PMIN NMIN ZERO NMIN NMAX

Fig. 1.15 Output linguistic variables and their membership functions for: ORoll

the fuzzification of Y-axis acceleration. Its worth mentioning that the “N” and “P”
prefixes of variables names stand for, respectively, Negative and Positive.

The roll stabilization fuzzy controller is composed of 35 rules as show in Table1.1.
The output of this controller is the omega roll variable (ORoll), whose values are
depicted in Fig. 1.15. The defuzzification of ORoll variable creates the values that
control the rotation speed of right- and left-hand side rotors, which, in turn, produce
enough force to make the hexacopter rotate in the X-axis. It is important to highlight
that X-axis and Y-axis acceleration and also roll and pitch angle error variables are
used tominimize (or correct) the stabilization interference caused by pendulum effect
created by the free payload.
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Fig. 1.16 Fuzzy control surface for roll stability control

The fuzzy control surface graphic is shown in Fig. 1.16; it depicts the relationship
among inputs and output. It is possible to note that at near the point zero of roll
error the output is smooth. When the the roll error is far from zero the correction is
greater. Also we can see that acceleration over the Y-axis in all the surface plays a
important role: it avoids the oscillation. For instance, suppose the error is about 0.1,
a rotation to the right makes the hexacopter to fly to the right direction. When the
hexacopter is rotating and the angle error is reaching zero, the hexacopter starts to fly
faster. Without considering the information on acceleration, the hexacopter tends to
oscillate. Another way to see this effect is the following: the acceleration over Y axis
is negative when roll error is positive and vice-versa. However, there are situations
in which the hexacopter moves in positive direction in respect to the Y-axis, the roll
error is positive. This means that the hexacopter must start to fly slower and the angle
must be kept unchanged or raised. Without the acceleration information, the output
of this controller could become zero (when roll error is zero) and the hexacopter
might drift. Some derivative value in time, e.g. speed or acceleration, helps to avoid
oscillation or sliding.

1.4.3 Pitch Stabilization

Pitch is the movement obtained through the rotation around the Y-axis, i.e. side-to-
side axis. The pitch stabilization fuzzy controller holds the hexacopter stabilization
while it is performing the pitch maneuver. Figure1.17 shows the block diagram of
this controller.

This controller is very similar to the Roll Stabilization controller. It has two
input variables: (i) the error in pitch angle calculated through Euler approximations;
and (ii) X-axis acceleration to indicate a possible movement in the X-axis. The
linguistic variables and the membership function values for these two input variables
are depicted in Figs. 1.18 and 1.19, respectively. In the same way, pitch stabilization
is also defined by five rules as described in Table1.2, and has only one output the
omega pitch variable (OPitch) depicted in Fig. 1.20. The definition of these variables
and rules are exactly the same as in the Roll Stabilization fuzzy controller. However,



16 E. Koslosky et al.

Fig. 1.17 The pitch stabilization fuzzy controller

Fig. 1.18 Input linguistic variables and their membership functions for: Pitch angle, Euler approx-
imation error of Y-axis angle

Fig. 1.19 Input linguistic variables and their membership functions for: X-axis
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Table 1.2 Control rules for pitch stabilization

Roll angle NFAR NNEAR NCLOSE ZERO PCLOSE PNEAR PFAR

AccelY

NFAST PMAX PMIN ZERO PMIN NMIN NMID NMAX

NSLOW PMAX PMIN ZERO ZERO NMIN NMID NMAX

ZERO PMAX PMID PMIN ZERO NMIN NMID NMAX

PSLOW PMAX PMID PMIN ZERO ZERO NMIN NMAX

PFAST PMAX PMID PMIN NMIN ZERO NMIN NMAX

Fig. 1.20 Output linguistic variables and their membership functions for: OPitch

it is important to highlight that the defuzzification process onOPitch generates values
that control the speed of the front and read rotors making the hexacopter rotate on
the Y-axis. It is done by Horizontal navigation controller described later.

Similarly, the pendulum effect mentioned previously is minimized or mitigated
by means of using the pitch angle error and Y-axis acceleration variables. The roll
and pitch stabilization fuzzy controllers are key to maintain the hexacopter stabi-
lized while it is flying or hovering. Equally important is the way these controllers
actuate on the rotors. The correction applied to a controlled “defuzzified” variable is
proportional to its current value, see Eqs. 1.5–1.11. In other words, instead of simply
summing a new absolute actuation value to a variable (e.g. the rotor speed), the gain
is proportional to current value. This improves the controller efficiency in extreme
situations, e.g. when the corrective value is insignificant (compared to the current
value) or the correction value is too high, avoiding aggressive corrections, and hence,
improving stability. Finally, it is worth noting that the overall hexacopter stabilization
is performed by both roll and pitch stabilization fuzzy controllers.

The surface graphic about pitch stability control depicted in Fig. 1.21 shows the
relationship between pitch angle error and the accelerometer information over the
X-axis. Both input values work together to stabilize the hexacopter over the Y-axes
and avoid oscillation over the X-axis. For instance. Suppose the pitch controller
receive the pitch error as input value close to zero and as the acceleration input value
high. It means the hexacopter is in movement forward even though the pitch angle
error is zero. Thus, the controller must to slow down it. The control surface shows
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Fig. 1.21 Fuzzy control surface for pitch stability control

that the output pitch angle (Opitch) is greater than zero in this situation, it makes the
hexacopter rotate around Y-axis counter-clockwise causing it to slow down.

The forward movement is obtained by changing the Y-axis setpoint computed by
Horizontal navigation controller.

1.4.4 Heading to Goal (Yaw Controller)

Yaw is the rotation movement around the vertical axis, that is, the Z-axis. The yaw
controller (or heading goal controller) is responsible for pointing the hexacopter
front to the target position, keeping this position until it arrives at the destination.
Figure1.22 shows the block diagram of this controller.

To allow this controller to perform such a task, two input variables are needed.
The yaw angle is similar to roll and pitch angles, and hence, are calculated based on
the Euler approximation of Z-axis angle between the current angle position of the
hexacopter front and the target position. Figure1.23 shows the linguistic variable and
the membership function values of yaw angle. The distance to the goal is the second
input data utilized. It indicates how far the hexacopter from the target position. The

Fig. 1.22 The heading to goal stabilization fuzzy controller (The Yaw Stabilization)
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Fig. 1.23 Input linguistic variables and their membership functions for: Yaw angle error

Fig. 1.24 Input linguistic variables and theirmembership functions for: Goal distance to determines
the hexacopter heading

Table 1.3 Yaw control rules

Yaw angle NFAR NNEAR NCLOSE ZERO PCLOSE PNEAR PFAR

Distance

ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO

NEAR PMAX PMID PMIN ZERO NMIN NMID NMAX

MID PMAX PMID PMIN ZERO NMIN NMID NMAX

FAR PMAX PMID PMIN ZERO NMIN NMID NMAX

goal distance is calculated fromX- and Y-axis positions of the hexacopter and results
in a polar coordinate indicating the angle and the distance to the target point. Goal
distance linguist variable is depicted in Fig. 1.24.

This fuzzy controller has 28 rules as shown in Table1.3.
These rules define the value of the output variable omega yaw (OYaw), presented

in Fig. 1.25. OYaw is defuzzified and create actuation values that are applied on
all rotors or on only a few of them. Depending on which rotor are affected the
hexacopter turns clockwise or counter-clockwise. On the other hand, heading goal
(yaw) controller gains priority over the other controllers when the hexacopter reaches
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Fig. 1.25 Output linguistic variables and their membership functions for: OYaw

Fig. 1.26 Fuzzy control surface for Yaw stability control

a region within 70cm radius around the target point. Thus, rover and pitch controllers
are only responsible to main the hexacopter hovering stable on the target position.

Figure1.26 shows the surface graphic of the Yaw controller. It works only when
the goal distance is greater than the threshold, about 40cm or higher in the Goal
Distance anxis on the surface graphic. If the hexacopter is on the close to the target,
the Yaw controller must be disabled. Otherwise, he stay spinning indefinitely.

1.4.5 The Horizontal Navigation

Horizontal navigation fuzzy controller controls the hexacopter fly on the X- and Y-
axis. Figure1.27 shows the block diagram of this controller. It takes as input the goal
distance (see Sect. 1.4.4) and the horizontal speed.

The latter is calculated as traveled distance divided by time, i.e. the difference
between the goal distance of two consecutive polar coordinates divided by the time
elapsedbetween their calculation. Figure1.28 shows the linguistic variable associated
with the horizontal speed, while Fig. 1.29 shows the linguistic variable for the goal
distance.

The rules of the horizontal navigation fuzzy controller are presented in Table1.4.
This controller results in the pitch angle for navigation (OPitchNavigation) as depict
in Fig. 1.30 which, in turn, affects the pitch stabilization fuzzy controller. Specif-
ically, the pitch angle for navigation moves the stability point towards the target
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Fig. 1.27 The horizontal navigation fuzzy controller

Fig. 1.28 Input linguistic variables and their membership functions for: Horizontal speed

Fig. 1.29 Input linguistic variables and their membership functions for: Goal distance
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Table 1.4 Horizontal navigation control rules

Goal distance ZERO NEAR MID FAR

Horizontal speed

ZERO ZERO ZERO PMAX PMAX

SLOW NMIN PMIN PMAX PMAX

FAST NMID PMIN PMID PMAX

WARP NMAX NMIN PMIN PMAX

Fig. 1.30 Output linguistic variables and their membership functions for: OPitchNavigation (the
Pitch setpoint)

direction, making a hexacopter to fly forwards. It is important to note that, by using
the mentioned inputs, horizontal navigation fuzzy controller commands the horizon-
tal movement in a smooth way, i.e. as the hexacopter comes close to the target point,
its horizontal speed decreases in order to alleviate the control bounce produced by
the movement inertia.

The horizontal navigation control surface is depicted in Fig. 1.31. When the hexa-
copter is on the target position, the goal distance is near to zero and the horizontal
speed is zero, the pitch setpoint is zero. In this state the pitch controller stabilizes the
hexacopter on the current position, and hence, hexacopter is kept with pitch angle at
zero. When the goal distance is greater than zero, this controller changes the pitch
setpoint.

Fig. 1.31 Fuzzy control surface for horizontal navigation control
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Thus, the pitch controller stabilizes the hexacopter in new pitch angle, which
higher than zero, making the hexacopter to move forward.

When the goal distance is zero and the horizontal speed is high, the output is
negative. In this situation the vehicle is movingwhile passing over the target position,
and hence, it must slow down. This is the reason why this controller output must be
negative.

1.4.6 The Vertical Navigation

Vertical navigation fuzzy controller is similar to the horizontal navigation controller.
However, it controls the movement on the Z-axis. Figure1.32 shows the block dia-
gram of this controller. This controller takes as input the vertical distance to the target
point, as well as the vertical speed.

The first one is the error in the Euler approximation of Z-axis, while the second
one is the difference in distance (Z-axis). Linguistic variables for vertical distance
and vertical speed are presented in Figs. 1.33 and 1.34, respectively.

Fig. 1.32 The vertical navigation fuzzy controller

Fig. 1.33 Input linguistic variables and their membership functions for: Vertical distance



24 E. Koslosky et al.

Fig. 1.34 Input linguistic variables and their membership functions for: Vertical speed

Table 1.5 Vertical navigation control rules

V. dist. NFAR NMID NNEAR ZERO PNEAR PMID PFAR

V. speed

NFAST NMAX NMID NMIN PMIN PMID PMAX PMAX

NSLOW NMAX NMID NMIN PMIN PMID PMAX PMAX

ZERO NMAX NMID NMIN ZERO PMIN PMID PMAX

PSLOW NMAX NMAX NMID NMIN PMIN PMID PMAX

PFAST NMAX NMAX NMID NMIN PMIN PMID PMAX

Fig. 1.35 Output linguistic variables and their membership functions for: OThrottle

Table1.5 shows the 35 rules that compose the vertical navigation fuzzy controller.
As the result, this controller sets the omega throttle variable (OThrottle), presented
in Fig. 1.35 which is decomposed in the amount of power applied on all rotors,
increasing or decreasing the overall lift force making the hexacopter fly on higher or
lower altitude. It is worth noting that this presents a smooth control approach similar
to the horizontal navigation, i.e. the power applied on the rotors decreases along with
vertical speed as the hexacopter comes closer to target altitude.

The fuzzy surface control for vertical navigation and hovering is shown in
Fig. 1.36. The altitude is maintained by controlling the throttle applied onto the
all rotors. The input information is taken from the GPS sensor. The vertical speed is
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Fig. 1.36 Fuzzy control surface for vertical navigation and hovering control

used to avoid the hexacopter to oscillate up and down. It is similar as the acceleration
is used to avoid oscillation in the pitch and roll controller. It is worth to note that the
ZERO output not means zero value, but the value that the hexacopter is hovering. To
realize the relationship between altitude error and vertical speed, suppose the altitude
error is zero, the hexacopter is in the target vertical position, but also suppose the
vertical speed is positive, perhaps 0.4 or higher. It means the hexacopter reached the
target and goes beyond because it is in movement to up. It must be slowed down.
Therefore, the controller sets the output value to a value lower than the ZERO, caus-
ing the hexacopter to slow down. On the other hand, when the altitude is zero and the
vertical speed is negative it means the hexacopter is falling down. In this condition,
the controller must to set output to a value higher than the ZERO just to make the
hexacopter stop the falling.

1.5 Experiment and Results

1.5.1 Overview of the Experiment

The work has been validated through a case study by means of simulation. For
that, a model of a hexacopter has been created in the V-REP robotics simulation
environment. A free payload has been attached to the hexacopter forming a pendulum
as depicted in Fig. 1.37. In the simulated environment, the hexacopter weighs 980g
(mass = 0.1) and the payload weighs 49g (mass = 0.005). The hexacopter model
used is one that is already available on V-REP. Such a payload weight was defined
in 5% of the hexacopter weight due to limitations on the rotors model that cannot
provide enough thrust to allow the hexacopter takeoff. For simulation the V-REP
has been configured with “Dynamic engine” as “Bullet”, the “Dynamics settings” as
“Verry accurate” and “Simulation time step” as “dt = 10ms”.

Themajor challenge tackled in this work is the switching among fuzzy controllers
at the right moment. For instance, let us assume that a hexacopter starts on the
ground and receives a command to fly to a certain position, e.g. 3m in latitude, 3m
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Fig. 1.37 Moving carrying a
weight

in longitude and 3m upward. To achieve the commanded position, every movement
must be executed properly, and hence, all controllers must work cooperatively to
achieve the goal. In other words, the fuzzy controller that controls the longitudinal
position cannot override the other controllers actions. On the other hand, when the
fuzzy controllers do not work well together, a controller output could take the rotors
actuation over the output of the other controller controllers’ outputs might overlap
each other. In this case, there must exist a high-level controller that performs the
contention of misbehaved controllers.

The proposed approach has been validated through simulation. For that, amodel of
a hexacopter has been created in the V-REP simulation environment. A free payload
has been attached to the hexacopter forming a pendulum. Thus, the proposed multi-
layer controller must control the hexacopter movement when it is commanded to
move to another position, while keeping the its body stabilized during the flight. In
other words, the results indicate that the proposed approach is robust since it allows
the hexacoptermove fromone position to another, even though itmust carry amoving
payload.

The proposed multi-layer fuzzy controller has been implemented on Linux using
the C language and gcc compiler version 4.9.1. This software communicates with
V-REP environment, receiving the input sensor signals and sending the output com-
mands generated by the proposed fuzzy controller. The main idea was to develop
hybrid fuzzy controllers. The control system is composed of three threads: (i) a thread
for the main control loop; (ii) a thread to produce a data log which was used to create
the charts presented in this section; and (iii) another one to insert the user commands
as target point coordinates used as setpoints to the the proposed controller. Therefore,
the developed software acts as both the hexacopter movement and stability controller
and the interface between the operator and the hexacopter.

The experiment has been performed in two phases. The first one has concentrated
on calibrating the range of values for all linguistic variables of the five fuzzy con-
trollers. The results of this phase was described in see Sect. 1.4. Those values have
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Table 1.6 The position sent
to hexacopter as command

Commands X Y Z

1st +3 +3 +3

2nd −2 +1 +5

3rd +4 −2 +8

4th −2 −1 +2

5th 0 0 +2

6th 0 0 0

been defined in a manual and arbitrary way by means of an iterative trial and error
process. In this phase, the aim was to achieve a stabilized movement and hovering
for the hexacopter. For that, the hexacopter has flown without attached payload. The
hexacopter has been commanded to fly to six distinct positions from the origin point
(i.e. X = 0, Y = 0, Z = 0) by means of the following relative coordinates expressed
in meters shown in Table1.6.

The ranges for each value of all linguistic variables have been defined using an
intuitive try-and-error method. On each simulation round, threshold limits have been
tuned until the hexacopter was able to fly and hover on a fixed point in a stable way.

The second phase focused on evaluating how the proposed multi-level fuzzy
controller behaves when the hexacopter carries a free payload. In other words, this
phase assesses how the proposed controller behaves in situations of stress caused by
the pendulum effect created by the inertial movement of the free payload. The same
commands have been issue in the same order as described earlier. All data generated
during the simulation have been analyzed and the results are discussed in the next
section.

1.5.2 Results

This section presents the results in terms of how the values of the controlled variables
evolved during the experiment. As mentioned, once the hexacopter receives the
command to fly to a new position, it performs the following sequence of actions: (1)
the hexacopter flies up until reaching the target altitude; (2) the controller established
the new yaw angle in order to aim at the desired X- and Y-axis position; and, finally,
(3) the hexacopter flies horizontally toward the target position. This sequence of steps
is obtained by establishing thresholds in the transitions of motion events, as depicted
in Fig. 1.11. Figure1.38 shows the footprint of the trajectory flown by the hexacopter
during the experiment.
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Fig. 1.38 Flight footprint

Fig. 1.39 Movement and hovering stabilization control

Figures1.39 shows the error of the GPS coordinates that have been read during the
entire flight. Themoment when a new command has been received by the hexacopter,
please refer toTable1.6: (i) the 1st commandwas received at 0 s; (ii) the 2nd command
at 300s; (iii) the 3rd command at 800s; (iv) the 4th command at 1600s; (v) the 5th
command at 2500s;

Videos of the experiment can be seen on:
https://www.youtube.com/watch?v=dTJhH8lU6BY.
Flying data generated during the simulation can be observed on Figs. 1.40, 1.41,

1.42 and 1.43.

1.5.3 Discussion

It is worth noting that, despite some disturbance caused by the definition of a new
position, the hexacoptermoved smoothly and in a stableway from the current position
to the target position. In addition, the proposed multi-layer fuzzy controller has
responded properly to the control stress imposed by the free payload. Such a claim is

https://www.youtube.com/watch?v=dTJhH8lU6BY
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Fig. 1.40 Roll stabilization—inputs

Fig. 1.41 Roll stabilization—output

Fig. 1.42 Pitch stabilization—input

supported by the analysis of flying data plotted on the charts presented in Figs. 1.40,
1.41, 1.42, and 1.43.

In these charts, atmoments close to 300, 800, 1600 and2500s, the present variation
seems to indicate a poor stability.

However, at each time instant, a new target position is sent to the hexacopter,
disturbing the system. Therefore, the controllers must act to control the hexacopter
stability. The output variable value of these controllers varies around +/−0.08 rep-
resenting 8% variation within 150s, which is considered acceptable for a stable
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Fig. 1.43 Pitch stabilization—output

flight of a hexacopter carrying a free payload. A video of the simulation shows the
hexacopter flying stable, as well as it shows the hexacopter recovering from these
disturbances.

Furthermore, tuning membership functions took a considerable time. However,
once they are correctly calibrated with the unloaded hexacopter, the proposed fuzzy
controller was able to control the movement and the stability without modifications.
Thus, it was observed the flexibility of fuzzy logic for designing a complex control
systems as the one presented in this work. Other perceived advantage of fuzzy logic
is the handling of non-linear scale independently from input or output, for instance
the scale for the throttle output, goal distance, pitch navigation output.

During the calibration phase, various models have been tried in order to properly
control the hexacopter stability during horizontal and vertical navigation – the stabi-
lized hovering has been achieved easily. It was not enough to sum the value OPitch
and ORoll to the throttle variable (OThrottle). It has been observed that V-REP sim-
ulates random errors while the simulation is running as it happens in the real world.
Such errors affect the throttle proportionally, and hence, to keep the roll and pitch
stabilization the outputs of these fuzzy controllers must follow this growth. To cope
with this situation, outputs of pitch and roll controls were modified to represent a
gain based on a percentage of the current throttle (see Eqs. 1.7–1.12).

1.6 Conclusions and Future Work

This work proposes an approach that integrates several fuzzy controller that work
collaboratively to keep the stabilization and control the navigation of an Hexacopter
carrying a free payload while it is flying and hovering. This paper discusses how the
propose controller has been designed.

In order do evaluate the proposed approach, a simulation experiment has been
conducted. The proposed approachwas able to stabilize the hovering, control the alti-
tude, position, and navigation of the simulated hexacopter. Additionally, the proposed
multi-layer fuzzy controller has responded properly to the control stress imposed by
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the free payload. When the hexacopter has flown with the free payload, the control
system took more time to stabilize. By using fuzzy logic, it was possible to see the
flexibility of the proposed approach, since once the variables have been calibrated,
it was not necessary to change the systems to allow the hexacopter to fly stable car-
rying an attached free payload. However, on the other hand, the side-effect of this
flexibility is the difficult to tune the variables thresholds.

The next steps involve the implementation of the proposed multi-layer fuzzy con-
troller on a real Hexacopter. A computing systems with several distinct sensors is
envied so that it allows moving towards a fully autonomous UAV that executes local-
ization, map building, path planning and mission execution. In addition, considering
the difficult of tuning the proposed systems in the calibration phase, other future
work direction is to develop adaptive fuzzy control to assist in this task.
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Chapter 2
Monocular Pose Estimation
for an Unmanned Aerial Vehicle
Using Spectral Features

Gastón Araguás, Claudio Paz, Gonzalo Perez Paina and Luis Canali

Pose estimation of Unmanned Aerial Vehicles (UAV) using cameras is currently a
very active research topic in computer and robotic vision, with special application in
GPS-denied environments. However, the use of visual information for ego-motion
estimation presents several difficulties, such as features search, data association (fea-
ture correlation), inhomogeneous features distribution in the image, etc. We propose
a visual position and orientation estimation algorithm based on the discrete homog-
raphy constraint, induced by the presence of planar scenes, and the so-called spec-
tral features in the image. Our approach has the following unique characteristics:
it selects the appropriate distribution of the features in the image, it does not need
either initialization process or search for features, and it does not depend on the
presence of corner-like features in the scene. The position and orientation estimation
is made using a down-looking monocular camera rigidly attached to a quadrotor. It
is assumed that the floors over which the quadrotor flights are planar, and therefore
two consecutive images are related by a homography induced by the floor plane. This
homography constraint is more appropriate than the well-known epipolar constraint,
which vanishes for a zero translation and loses rank in the case of planar scenes. The
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pose estimation algorithm is tested in a simulated dataset, and the robustness of the
spectral features is evaluated in different conditions using a conveyor belt.

2.1 Introduction

In the last years quadrotors have gained popularity in entertainment, aero-shooting
and many other civilian or military applications, mainly due to their low cost and
great controllability. Between other tasks, they are a good choice for operation at low
altitude, in cluttered scenarios or even for indoor applications. Such environments
limit the use of GPS or compass measurements which are indeed excellent options
for attitude determination in wide open outdoor areas [1, 12]. These constraints have
motivated, over the last years, the extensive use of on-board cameras as a main sensor
for state estimation [5, 14, 16]. In this context, we present a new approach to estimate
the ego-motion of a quadrotor in indoor environments for smooth flights, using a
down-looking camera for translation and rotation calculation. As a continuation of
the work presented in [3], we propose the utilization of a fixed number of patches
distributed on each image of the sequence to determine the ego-motion of the camera,
based on the plane-induced homography that relates the patches in two consecutive
frames.

A number of spatial and frequency domain approaches have been proposed to
estimate the image-to-image transformation, between two views of a planar scene,
most of them limited to similarities. Spatial domain methods need corresponding
points, lines, conics, etc. [7, 9, 10], whose identification in many practical situations
is non-trivial, thereby limiting their applicability. Scale, rotation, and translation
invariant features have been popular facilitating recognition under these transforma-
tions. Geometry of multiple views of the same scene has been a subject of extensive
research over the past decade. Important results relating corresponding entities such
as points and lines can be found in [7, 9]. Recent work has also focused on more
complex entities such as conics and higher-order algebraic curves [10]. However,
these approaches depend on extracting corresponding entities such as points, lines or
contours and do not use the abundant information present in the form of the intensity
values in the multiple views of the scene. Frequency domain methods are in general
superior to methods based on spatial features because the entire image information
is used for matching. They also avoid the crucial issue regarding the selection of the
best features.

Our work proposes the use of a fixed number of patches distributed on each
image of the sequence to determine the pose change of a moving camera. The pose
of the camera (and UAV) is estimated trough dead-reckoning, performing a time
integration of ego-motion parameters determined between frames. We concentrate
in the XY-position and the orientation estimation in order to fuse these parameters
with the on-board IMU and altimeter sensors measurements. The camera ego-motion
is estimated using the homography induced by the (assumed to be flat) floor, and
the corresponding points needed to estimate the homography are obtained on the
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frequency domain. A point in the image is represented by the spectral information of
an image patch, which we call spectral feature [2, 3]. The correspondence between
points in two consecutive frames is determined by means of the phase correlation
between each spectral feature pair. These kind of features perform better than the
interest points basedon the image intensitywhenobserving afloorwith homogeneous
texture. Moreover, since their position in the image plane is previously selected, they
are always well distributed.

The transformation that relates two images taken from different views (with a
moving camera) contains information about the spatial rotation and translation of
the views, or the camera movement. Considering a downward-looking camera, and
assuming that the floor is a planar surface, all the space points imaged by the camera
are coplanar and there is a homography between the world and the image planes.
Under this constraint, if the camera center moves, the images taken from different
points of view are also related by a homography. The spatial transformation that
relates both views can be completely determined from this homography between
images.

The chapter is organized as follows: Sect. 2.2 details the homography-based pose
estimation, with a review of the so-called plane-induced homography. In this section
the homography decomposition used to obtain the translation and rotation of the
camera is also presented; and in order to estimate the homography, the so-called
spectral features are introduced in Sect. 2.3. The implementation details and the
results are presented in Sect. 2.4, and finally Sect. 2.5 remarks the conclusions and
future work.

2.2 Homography-Based Pose Estimation

The visual pose estimation is based on the principle that two consecutive images of
a planar scene are related by a homography. The planar scene corresponds to the
floor surface, which is assumed to be relatively flat, observed by the down-looking
camera on the UAV. The spatial transformation of the camera, and therefore of the
UAV, is encoded in this homography. Knowing the homography matrix that relates
both images, the transformation parameters that describe the camera rotation and
translation can be obtained.

In order to estimate the homography induced by the planar surface, a set of cor-
responding points on two consecutive images must be obtained. This process is
performed selecting a set of features in the first image and finding the corresponding
set of features in the second one. Then, the image coordinates of each feature in
both images conform the set of corresponding image points needed to calculate the
homography.

The image features used in our approach are the so-called spectral features, a
Fourier domain representation of an image patch. Selecting a set of patches in both
images (the same number,with the same size and position), the displacement between
them is proportional to the phase shift between the associated spectral features, and
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Fig. 2.1 Block diagram of the implemented visual pose estimation approach

can be obtained using the Fourier shift theorem. This displacement, in addition to
the feature center, determines the correspondence between features in both images:
that is, the set of corresponding points needed to estimate the homography.

InFig. 2.1 a blockdiagramof the estimation process is shown.Here, as an example,
nine spectral features in both images are used.

2.2.1 Review of Plane-Induced Homography

Given a 3D scene point P, and two coordinate systems,CSA andCSB, the coordinates
of the point P on each one can be denoted by XA and XB respectively. If RB

A ∈ SO(3)
is the rotation matrix that changes the representation of a point in CSA to CSB, and
TB ∈ R

3×1 is the translation vector of the origin ofCSA w.r.tCSB (expressed inCSB),
then the representations of the point P relate each other as

XB = RB
AXA + TB. (2.1)

We suppose now that the point P belongs to a plane π, denoted in the coordinate
system CSA by its normal nA and its distance to the coordinate origin dA. Therefore,
the following plane equation holds
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(nA)
TXA = dA ⇒ (nA)

TXA

dA
= 1, (2.2)

Plugging (2.2) into (2.1) we have

XB =
(
RB
A + TB

dA
(nA)

T

)
XA = HB

AXA, (2.3)

with

HB
A

.=
(
RB
A + TB

dA
(nA)

T

)
. (2.4)

The matrix HB
A is a plane-induced homography, in this case induced by the plane π.

As can be seen, this matrix encodes the transformation parameters that relate both
coordinates systems (RB

A and TB), and the structure parameters of the environment
(nA and dA).

Considering now a moving camera associated to the coordinate system CSA at
time tA and by CSB at time tB, according to the central projection model the relations
between the 3D points and their projections on the camera normalized plane are
given by

λAxA = XA; λBxB = XB (2.5)

where λA ∈ R
+ and λB ∈ R

+. Using (2.5) in Eq. (2.3) we have

λBxB = HB
AλAxA ⇒ xB = λHB

AxA, (2.6)

with λ = λA
λB
. Given that both vectors xB and λHB

AxA have the same direction

xB × λHB
AxA = x̂BHB

AxA = 0, (2.7)

with x̂B the skew-symmetric matrix associated to xB. The Eq. (2.7) is known as the
planar epipolar restriction, and holds for all 3D points belonging to the plane π.
Assuming that the camera is pointing to the ground (downward-looking camera) and
that the scene structure is approximately a planar surface, all the 3D points captured
by the camera will fulfill this restriction.

The homographyHB
A represents the transformation of the camera coordinate sys-

tems between instant tA and tB, hence, it contains the information of the camera
rotation and translation between these two instants. This homography can be esti-
mated knowing at least four corresponding points of two images. In our case the
correspondence between these points is calculated in the spectral domain, by means
of the spectral features. The complete process is detailed in Sect. 2.3.
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2.2.2 Homography Decomposition

Following [13] H can be decomposed in order to obtain a non-unique solution

(exactly four different solutions)
{
Ri,ni,

Ti
di

}
. Then, adding some extra data for dis-

ambiguation we can arrive to the appropriate
{
RB
A,nA,

TB
dA

}
solution.

Normalization

Given that the planar epipolar constraint ensures equality only in the direction of
both vectors (Eq. (2.7)), what is actually obtained after the homography estimation
is λH, that is1

Hλ = λH = λ

(
R + T

d
nT

)
. (2.8)

The unknown factor λ included inHλ can be found as follows. Consider the product

HT
λHλ = λ2 (I + Q) (2.9)

with I the identity, Q = anT + naT + ||a||2nnT and a = 1
dR

TT ∈ R
3×1. The vec-

tor a × n, perpendicular to a and n, is an eigenvector of HT
λHλ associated to the

eigenvalue λ2, being that

HT
λHλ(a × n) = λ2(a × n). (2.10)

So, if λ2 is an eigenvalue of HT
λHλ, then |λ| is a singular value of Hλ. It is easy to

show that Q in (2.9) has one positive, one zero and one negative eigenvalue, what
means that λ2 is the second ordereigenvalue of HT

λHλ, and |λ| will be the second
order singular value of Hλ. That is, if σ1 > σ2 > σ3 are the singular values of Hλ,
then

H = ±Hλ

σ2
(2.11)

To get the right sign of H, the positive depth condition in (2.6) must be applied. In
order to ensure that all the considered points are in front of the camera, all 3D points
in plane π projected in the image plane must fulfill

(xjB)
THxjA = 1

λj
> 0, ∀j = 1, 2, . . . , n. (2.12)

where
(
xjA, x

j
B

)
are the projections of all points {P}nj=1 lying on the plane π, at time

tA and tB respectively.

1To avoid the abuse of notation we do not use here the sub and supra indexes A and B that refer to
the corresponding coordinate systems.
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Estimation of n

The homography H induced by the plane π preserves the norm of any vector in the
plane, i.e. given a vector r such that nTr = 0, then

Hr = Rr (2.13)

and therefore ||Hr|| = ||r||. Consequently, knowing the space spanned by the vectors
that preserve the norm under H, the perpendicular vector n is also known.

The matrix HTH is symmetric, and therefore admits eigenvalue decomposition.
Being σ2

1,σ
2
2,σ

2
3 the eigenvalues and v1, v2, v3 the eigenvectors of HTH, then

HTHv1 = σ2
1v1, HTHv2 = v2,

HTHv3 = σ2
3v3

(2.14)

since by the normalization σ2
2 = 1. That is, v2 is perpendicular to n andT, so its norm

is preserved under H. From (2.14) it can be shown that the norm of the following
vectors

u1
.=

√
1−σ2

3v1+
√

σ2
1−1v3√

σ2
1−σ2

3

,

u2
.=

√
1−σ2

3v1−
√

σ2
1−1v3√

σ2
1−σ2

3

(2.15)

is preserved under H too, as well as all vectors in the sub-spaces spanned by

S1 = span {v2,u1} , S2 = span {v2,u2} (2.16)

Therefore, there exist two possible planes that can induce the homographyH, π1 and
π2, defined by the normal vectors to S1 and S2

n1 = v2 × u1, n2 = v2 × u2. (2.17)

Estimation of R

The action of H over v2 and u1 is equivalent to a pure rotation

Hv2 = R1v2, Hu1 = R1u1 (2.18)

since both vectors are orthogonal to n1. The rotation of n1 can be computed as

R1n1 = Hv2 × Hu1. (2.19)

Defining the matrix U1 = [v2,u1,n1] and W 1 = [Hv2,Hu1,Hv2 × Hu1], from
(2.18) and (2.19) we have
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R1U1 = W 1 (2.20)

and given that the set of vectors {v2,u1,n1} form an orthogonal base inR3, thematrix
U1 is non-singular, therefore

R1 = W 1UT
1 , (2.21)

that is

R1 = [Hv2,Hu1,Hv2 × Hu1][v2,u1,n1]T . (2.22)

Considering now the set {v2,u2,n2}, in the same way we arrive to

R2 = W 2UT
2 (2.23)

where U2 = [v2,u2,n2] and W 2 = [Hv2,Hu2,Hv2 × Hu2], that is

R2 = [Hv2,Hu2,Hv2 × Hu2][v2,u2,n2]T . (2.24)

Estimation of T
d

Once R and n are known, the estimation of T
d is direct, as

T1

d1
= (H − R1)n1, (2.25)

T2

d2
= (H − R2)n2, (2.26)

which completes both solutions of the H decomposition.

Desambiguation

However, it should be noted that the term T
d n

T in H introduces a sign ambiguity,
since T

d n
T = −T

d (−nT ), therefore the number of possible solutions rises to four,

{
R1,n1,

T1
d1

}
,

{
R1,−n1,

−T1
d1

}
,{

R2,n2,
T2
d2

}
,

{
R2,−n2,

−T2
d2

}
.

(2.27)

In order to ensure that the plane inducing the homography H appears in front of the
camera, each normal vector ni must fulfill nz < 0, and therefore only two solutions
remain. These two solutions are both physically possible, but given that most of the
time the camera on the UAV is facing-down, we choose the solution with the normal
vector n closest to [0, 0,−1]T in terms of the norm L2.
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2.3 Spectral Features Correspondence

The estimation of the homography given by two consecutive images from a mov-
ing camera requires a set of corresponding points. Classically, this set of points is
obtained by detecting features, such as lines and corners in both images, and deter-
mining correspondences. The feature detectors are typically based on image gradient
methods. An alternative to this approach is to use frequency-based features, or spec-
tral features, and to determine correspondences in the frequency domain.

The so-called spectral feature refers to the Fourier domain representation of an
image patch of 2n × 2n, where n ∈ N

+ is set accordingly to the allowed image dis-
placement [3]. The power of 2 of this patch size is selected based on the efficiency
of the Fast Fourier Transform (FFT) algorithm. The number and position of spectral
features in the image are set beforehand. Even though a minimum of four points are
needed to estimate the homography, a higher number of features are used to increase
the accuracy, and the RANSAC algorithm [8] is used for outliers elimination.

Consider two consecutive frames, where spectral features on each image were
computed. To determine the correspondence between features is equivalent to deter-
mine the displacement between them. This displacement can be obtained using the
spectral information by means of the Phase Correlation Method (PCM) [11]. This
method is based on the Fourier shift theorem, which states that the Fourier transforms
of two identical but displaced images differ only in a phase shift.

Given two images iA and iB of size N × M differing only in a displacement (u, v),
such as

iA(x, y) = iB(x − u, y − v) (2.28)

where

u ≤ x < N − u, v ≤ y < M − v, (2.29)

their Fourier transforms are related by

IA(ωx,ωy) = e−j(uωx+vωy)IB(ωx,ωy), (2.30)

where IA and IB are the Fourier transforms of images iA and iB, respectively; u
and v are the displacements for each axis. From (2.30), the amplitudes of both
transformations are the same and only differ in phase which is directly related to the
image displacement (u, v), and therefore this displacement can be obtained using
the cross-power spectrum (CPS) of the given transformations IA and IB. The CPS of
two complex functions is defined as

C(F,G) = F(ωx,ωy)G∗(ωx,ωy)

|F(ωx,ωy)||G∗(ωx,ωy)| (2.31)

where G∗ is the complex conjugate of G.
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Using (2.30) in (2.31) over the transformed images IA and IB, gives

IAI∗B
|IA||I∗B|

= e−j(uωx+vωy). (2.32)

The inverse Fourier transform of (2.32) is an impulse located exactly in (u, v), which
represents the displacement between the two images

F−1[e−j(uωx+vωy)] = δ(x − u, y − v). (2.33)

Using the discrete Fast Fourier Transform (FFT) algorithm instead of the continuous
version, the result will be a pulse signal centered in (u, v) [17].

2.3.1 Corresponding Points

The previous subsection describes how to calculate the displacement between two
images using PCM. Applying this method to each image patch pair, the displacement
between spectral features is determined. The set of corresponding points required to
estimate the homography can be constructed with the patch centers of the first image
and the displaced patch centers of the second one, that is

{xAi ↔ xAi + Δdi = xBi} (2.34)

where Δdi represents the displacement between the i-th spectral feature, and xAi

the center of the i-th spectral feature in the CSA. This is schematically shown in the
zoomed area of Fig. 2.2. As shown in Sect. 2.2.1, this set of corresponding points is

Fig. 2.2 Estimation of the rotation and translation between two consecutive images based on
spectral features
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Fig. 2.3 Displacements
between patches

related by a homography from which, using linear methods plus nonlinear optimiza-
tion, the associated homography matrix can be computed [9].

In Fig. 2.3 a real set of spectral features is shown,where the black crosses represent
each patch center and the yellow circles represent the output of PCM. It is important
to note that the number, size, and position of spectral features are set beforehand:
therefore, neither a search nor a correspondence process needs to be performed.

2.4 Implementation and Results

Summarizing,Algorithm1 shows the proposed procedure to estimate the position and
orientation, Algorithm 2 shows the procedure to determine the displacement between
patches, and in Algorithm 3 the homography decomposition process is detailed.

Algorithm 1 Position and orientation estimation: function poseEstimation(it, it−1)
Extract patches pi t and pi t−1 from it y it−1
for ∀{pi t, pi t−1} do
Δdi ← findDisplacement(pi t, pi t−1)

xi t ← xi t−1 + Δdi
end for
Hλ ← findHomography(xi t, xi t−1)

R, n, T/d ← getRtn(Hλ)

return R, n, T/d
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Algorithm 2 Patches displacement determination: function findDisplacement

(pi t, pi t−1)
Pi t ← FastFourierTransform(pi t)
Pi t−1 ← FastFourierTransform(pi t−1)

C ← CrossPowerSpectrum(Pi t,Pi t−1)

r ← InverseFastFourierTransform(c)
Δdi ← argmax r
return Δdi

Algorithm 3 Homography matrix decomposition: function getRtn(Hλ)

Uλ, Σλ, VT
λ ← SVDecomp(Hλ)

H ← Hλ/σ2
U, Σ , VT ← SVDecomp(H)[
v1 v2 v3

] ← V

u1 ← v1
√
1 − σ2

3 + v3
√

σ2
1 − 1√

σ2
1 − σ2

3

; u2 ← v1
√
1 − σ2

3 − v3
√

σ2
1 − 1√

σ2
1 − σ2

3
n1 ← v2 × u1 ; n2 ← v2 × u2
Choose only the two physically possible solutions (this ensures that n1 and n2 have nz positive
component)
U1 ← [

v2 u1 n1
] ; U2 ← [

v2 u2 n2
]

W1 ← [
Hv2 Hu1 Hv2 × Hu1

] ; W2 ← [
Hv2 Hu2 Hv2 × Hu2

]
R1 ← W1UT

1 ; R2 ← W2UT
2

T1/d ← (H − R1)n1 ; T2/d ← (H − R2)n2
Choose the solution with nz of each normal plane vector closest to zero
return R, n, T/d

2.4.1 Spectral Features Evaluation

In order to evaluate the performance of the spectral features in comparison with
the intensity features, we use Shi-Tomasi algorithm [15] to detect intensity fea-
tures in the first frame and Lucas–Kanade algorithm [4] to track these features
in the second frame. OpenCV implementations of these algorithms are called
goodFeaturesToTrack() and calcOpticalFlowPyrLK(). The evaluation
was done using a camera mounted on a conveyor belt, shown in Fig. 2.4a, simulating
a camera movement along Y axis at a constant height. In this way two frames differ
only on a pure translation, without changes in scale or angles that affect the test.
The displacement of the conveyor belt is measured with a laser telemeter, and the
running distance in all the tests is of 0.3m. The parameters estimated using spectral
features are plotted in red, and those estimated using optical flow are plotted in blue.
The texture of the floor seen by the camera is shown on Fig. 2.4b.

The performance of the algorithm with both types of features is tested using a
zone in the conveyor belt plenty of corner-like features. In this case both approaches
perform with low error and high stability. The results are shown in Fig. 2.5: the
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Fig. 2.4 a Camera mounting over a conveyor belt used to compare the performance of spectral
feature against Shi-Tomasi algorithm. b Floor texture

Fig. 2.5 Pose estimation using a textured floor. Plots are x, y, z in m and roll, pitch, yaw in rad
versus time in s. Red spectral features, Blue corner-like features

distance measurements along the Y , X and Z axes, and the calculated yaw, pitch and
roll angles using both types of features.

In Fig. 2.6 the estimated odometry using the conveyor belt texturewith less corner-
like features is shown, where the estimation with spectral features are plotted in red
and the remaining in blue. As can be seen, themeasurements calculated using spectral
features are more accurate and stable.

Figure2.7 shows a situation (pretty common when the floor contains low quality
of corner-like features) where the intensity features failed, making the computation
of the odometry totally incorrect. This failure is a consequence of a mismatch in the
correlation of features, and occurs evenmorewhen the image goes out of focus,which
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(a)

(b)

Fig. 2.6 Pose estimation using a floor with low number of corner-like features, similar to that
shown in Fig. 2.4a. Red spectral features, Blue corner-like features

is a very usual situation during a quadrotor flight. In the third image of the sequence
shown in Fig. 2.8 it is possible to appreciate this mismatch on the correlation of the
features used by the optical flow algorithm, which are drawn in blue. This sequence
corresponds to the pose estimation shown in Fig. 2.7d.

2.4.2 Pose Estimation in Simulated Quadcopter

The evaluation of the proposed visual pose estimation approach is performed with
synthetic images obtained from a simulated quadrotor. In order to generate a six
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(a) (b)

(d)(c)

Fig. 2.7 XY plot of the pose estimation in a floor with low corner-like features. Red spectral
features, Blue corner-like features

degrees of freedom motion similar to the motion of a real quadrotor, a simulated
dynamic model was used. The truth robot position and orientation obtained in this
way are then used to crop a sequence of images from a big one representing the
observed flat surface. The ground truth pose is also used for evaluation purposes.
The simulation of the quadrotor is based on Simulink, and the dynamic model is
presented in [6]. Figure2.9 shows an example of the path followed by the quadrotor
used to generate the synthetic dataset.

The path consists on a change of altitude followed by two loops maintaining
constant radius. During the loops, the heading angle, also called yaw angle, was set
to grow up to 2π radians.

The images were obtained from a virtual downward-looking camera following
the path described above, cutting portions of 640 × 480 from a bigger image of
uniformly distributed noise in order to simulate a carpet. The virtual camera was
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Fig. 2.8 Image sequence corresponding to a wrong pose estimation using intensity features. The
floor texture is a low quality corner-like features type, similar to that shown in Fig. 2.4a.Red spectral
features, Blue corner-like features

Fig. 2.9 Simulated position
of a quadrotor with a
six-degrees-of-freedom
motion

configured with a pixel size of 5.6µm and a focal length of approximately 1mm.
The algorithm was set with 42 patches of 128 × 128 pixels, equally distributed in
the image.
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Fig. 2.10 Estimation of the
XY-position and yaw angle
of the UAV during a 20 s
flight

In Fig. 2.10 the estimated parameters together with the ground truth are shown.
The graphic at the top shows the X position estimation of the UAV, which performs
a total of 2.5m of change in the complete trajectory. The Y position estimation is
plotted in the middle, and it has a similar behavior to the X one. As can be seen, the
estimation error remains bounded in both axes all the time. The last graphic shows
the yaw angle estimation, which follows the ground truth with a very small error.

2.5 Conclusions

In this work a new approach for visual estimation of the pose change of a quadrotor
with a down-looking camera was presented. The proposed algorithm is based on the
plane-induced homography that relates two views of the floor, and uses what we call
“spectral features” to establish point-correspondences between images.

The main advantage of using spectral features as in this implementation is its
robustness in low quality corner-like features floors. Evaluation of this was done
using a conveyor belt to simulate a displacement of the camera, and comparing
the performance of the spectral features with the Shi-Tomasi intensity features. The
spectral features have shown to bemore accurate and stable than the intensity features,
especially in those scenarios with low quality corner-like features which appears
frequently when the camera goes out of focus.

The evaluation of the visual algorithm using a synthetic dataset has shown that
the XY-position is estimated without significant absolute error, despite the typical
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accumulated error of the integration process. It is important to note that the view
changes introduced by the orientation change (roll and pitch) over the flight did not
induce any considerable error in theXY-position estimation. Likewise, the estimation
of the heading (yaw) angle has shown to be accurate enough to be used in an IMU-
camera fusion schema.
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Chapter 3
Simultaneous Navigation and Mapping
in an Autonomous Vehicle Based
on Fuzzy Logic

Álvaro Luiz Sordi Filho, Leonardo Presoto de Oliveira,
André Schneider de Oliveira, João Alberto Fabro
and Marco Aurélio Wehrmeister

This research presents the navigation control and mapping of an autonomous car
by fuzzy logic that enables automatic obstacle avoidance in unknown environments.
The strategy is based on amap of the environment, which is created according to nav-
igation, to plan the trajectories avoiding obstacles through the search algorithm A*.
The proposed approach is evaluated in a virtual environment, where the autonomous
car should move among different obstacles.

3.1 Introduction

Autonomy is the capability of a vehicle (or robot) to move around a known envi-
ronment, partially known or unknown, based on the perceptions of the environ-
ment(sensing), by building the map (mapping), making it possible to plan and replan
the routes to the destination point, maneuvering around the obstacles without any
interference from an outer source.
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The fuzzy logic is a tool used in the development of control strategies that allows
a higher level of flexibility in the rules of the controller, and so, allows the implemen-
tation of the autonomous capability. The operation mode of a fuzzy system allows
different approaches, like in [1], where the implementation of a fuzzy logic is used
in reconfigurable systems, used in the speed in a vehicle’s cruise control. Another
similar approach is found in [2]. The fuzzy logic can also be used to control the
motors in an electric vehicle as showed in [3].

Strategies for ADAS (advanced driving assistant systems) are also a reasonable
application for fuzzy systems. In [4], a Fuzzy approach to adjust a PID control is
discussed, to guide the vehicle to keep inside the lane. In [5], approach for collision
avoidance for autonomous vehicle is taken. In [6] fuzzy systems are used to control
the speed of a vehicle’s cruise control, with online learning.

The navigation in a dynamic environment, as roads and highways, is a complex
task due the amount of obstacles and environment changes that may happen (failures
in the road, lack of traffic signs, inter-vehicle interaction, animals, pedestrian cross-
ing, etc). The application of fuzzy systems is advised to situations like these, in [7],
for example, a method to navigate in unknown environments based on different type
of sensors is introduced. In [8], fuzzy systems are utilized in a autonomous vehicle’s
distributed control system.

This work focus on the capability of a vehicle to be autonomous, which means
nothing more than an agent that is able to extract the information of an environment
anduse it tomove around such environment in an efficientmanner. Thepossible appli-
cations for these robots is huge, they can be used in the industry (AGV - autonomous
guided vehicles), in the military (UAV - unguided autonomous vehicle), exploration,
among others [9].

This work proposes a fuzzy system to control the navigation of an autonomous
vehicle inserted in and static, partially observable (the sensing system cannot access
all the environment information at all times), deterministic, discreet, and single agent.
The validation experiments are developed in a simulation environment, and for these,
a realistic vehiclemodel with sensors and actuators available in themarket were used.

In the following sections, the concepts and the techniques used in the simulation
are going to be discussed (Sects. 3.2, 3.3 and 3.4), the methodology adopted in the
development (Sect. 3.5), the results and the final conclusions (Sects. 3.6 and 3.7).

3.2 Virtual Robot Experimentation Platform

The VREP (virtual robot experimentation platform) has resources to create, com-
pose, and simulate robots. It has verification systems and can monitor remotely the
actions performed by the robot under review [VREP 2015]. The VREP calculation
module can determine the optimal parameters of a mobile joint to achieve the correct
positioning, quickly calculates the possibility of a collision, allows planning a way to
run in finite space, operates and interacts with programmed mechanisms and scene
objects.
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Fig. 3.1 Software VREP

The scene’s objects can have cameras and lights, proximity sensors, force sensors,
image interpretation cameras, and paths defined on 2D and 3D graphics. The simula-
tion can be started, paused, and stopped at any instant of time and can be performed
in real time or by approximate running time. Figure3.1 illustrates the simulation
environment VREP and scene’s objects.

The self-guided car was imported and prepared from the robot library avail-
able in VREP. Environmental obstacles were inserted with properties “collidable,”
“detectable,” and “measurable”. The choice of the path to be traveled by the vehicle
considered a starting point, the properties of the chosen path, coordinate or objective
to achieve (meaning the goal location). Data was also inserted in the environment
as the minimum and maximum detection distance and the minimum diameter of
carriage movement.

The VREP has the application programming interface (API) that lets you access
your library and services available through another programming language or appli-
cation. It is possible to use C/C++, Java, Python, or mathematical software Matlab.

3.3 Autonomous Vehicle

Autonomous vehicles can have different topologies, which are dependent mainly of
the mobility and maneuvering necessary for the application. An autonomous car can
be considered as amobile robot with different sensing systems, used in the perception
of the environment. This robot is also able to move without the interference of an
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Fig. 3.2 Renault Fluence autonomous vehicle, and range of the sensing systems

extern operator. This vehicle uses a drive system called Ackerman geometry, which
hold four wheels, of which two are fixed and the other two are directional. A further
discussion about this geometry is available in [10].

The environment perception is acquired by sensors that measure the environ-
mental quantities. Autonomous vehicle, typically, use sensors to identify objects
(cameras, radars, LIDAR-light detection, and ranging, among others). In this con-
text, the current work utilizes a regular sedan vehicle, more specifically a Renault
Fluence, which was modeled in a virtual experimentation system V-REP (Virtual
Robot Experimentation Platform), of Coppelia Robotics [11]. In the vehicle, were
placed four radar systems (ultrasound) of medium range to identify possible objects
on the sides (typically used to lane change assistance, and automated parking). At
the front, a long range radar (ultrasound) was placed to detect object even in high
speed. At the rear, parking sensors (ultrasound) was placed and also a LIDAR sensor
(Hukuyo, a laser sensor) to help in the environment perception, as can be seen in
Fig. 3.2.

3.4 Navigation and Mapping

TheRenault Fluence’s autonomy is achievedwith a groupof techniques calledSLAM
(simultaneous localization and mapping), which allows that the building of the map
itself, is done during the robot’s navigation (a further discussion about this approach
is presented in [12]).

SLAM is one of the most addressed methods in the robotic area. This technique
refers to how the robot is going to behave in a unknown environment and how it
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Fig. 3.3 Simultaneous localization and mapping structure (SLAM)

is going to develop the knowledge, while it moves around in the environment. The
environment perception is performed by sensors that can be classified accordingly to
its measurement as: proprioceptives (measure the greatness of the vehicle’s inside)
or exteroceptives (measure environmental greatness). They can also be classified as:
passive (measure the environment energy) or active (they emit their own energy) [12].
There sensors detect the information that the robot needs to create its own navigation
map. Figure3.3 represents the inner structure of a SLAM system.

Sensors capture the perceptions of the environment and send them to theMapping
mechanism, which is responsible to create and update the knowledge map. The
environment information allows the robot to locate itself (inside the environment),
and then deliberate on how to act (navigate). This structure can also predicts the
presence of an object that is not currently present in the environment.

The constant updates on the map is a basic need of the SLAM technique, because
as the robot is moving around the map and detecting new obstacles on the map, in
a second pass through the same position the object might not be there anymore. Is
this case, if a static map was used, the robot will act as if the object was still there,
resulting in errors.

The creation of the knowledge map uses a data structure called costmap, in which
the robot define the cost of each point in themap. The costmap is used to calculate the
route to the destination (trajectory planning), which is going to be used as reference
to the navigation controller. The trajectory is calculated using the costmap, looking
for the path with the smallest cost [13].

The information added to the map have error in both position and size, due to the
face of measurement errors, which directly interfere in the navigation and might lead
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to collisions. Therefore, every object present in the map has a shadowed boundary,
with costs smaller than the obstacle itself, which lower the probability of the robot
choosing that region on its route. This a fundamental characteristic in situations
where the vehicle must calculate if it can move through a narrow pass.

3.4.1 Trajectory Planning

According to Delling [14], the A* algorithm search for and finds if possible, the path
with the smallest cost from a start to a goal node (of one or more possible goals).
To achieve this A* algorithm move through a graph (map) and follows the way with
the lower expected cost, holding a priority ordered queue, in which each elements
represents a piece of an alternate route along the way.

The A* algorithm uses a cost function of a node n (usually called f(n)), which is
defined by the cost already known, g(n), added to the cost of the estimated path, h(n)
(h for heuristic), to choose in which order each node is going to be visited in the tree.
This cost function is the sum of two functions: f(n) = g(n) + h(n).

Delling [14] also says that h(n) must be na admissible heuristic, it should not
overestimate the cost for the destination. Therefore, for the application that must
calculate the distance between two points, h(n) can represent the straight line between
start and objective, because this is always the smallest distance between two points
or nodes. This is also called the Euclidean distance.

If the heuristic h satisfies the additional condition h(x) = d(x, y) + h(y) for each
edge (x, y) of the graph (where d indicates the length of edge), h is the called consis-
tent. In this case, the A* algorithm can be implemented more efficiently, roughly, no
node needs to be processedmore than once andA* is equivalent to running Dijkstra’s
algorithm with reduced cost d ′(x, y) = d(x, y) − h(x) + h(y) [10].

The A* algorithm is responsible for allowing the autonomous vehicle plan the
optimal path between the point that it is up to the chosen goal. An adjustment was
made in the A* algorithm that instead of returning all points of the optimal path, the
A* algorithm returns only the conversion points present in the optimal path. It was
determined that conversion point is a point at which the car should make a turn, the
distance between two turning point should be done in a straight line. For example,
if the car is in the space (0, 0) (x, y); and must get to the point (10, 10). The A*
algorithm can return the following way: (0.1) (0.2) (0.3) (0.4) (0.5) (0.6) (0.7) (0.8)
(0.9) (0.10) (1.10) (2.10) (2.10) (4.10) (5.10) (6.10) (7.10) (8.10) (9.10) (10.10); in
all are 20 points. With the adjustment made the algorithm returns only (0, 0), (0, 10),
(10, 10). In this way, you can determine a straight line between the points (0,0) and
(0.10), and another straight line between the points (0.10), (10:10), and this will be
the path that the car will follow.
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3.4.2 Navigation

Fuzzy systems are based on fuzzy logic, which has different characteristics from
traditional logic. A traditional logical proposition has two specific situations: it is
completely true or entirely false. But in fuzzy logic, a premise can vary between true
or false, that is, instead of being only values 0 or 1, can occur in a premise assume a
value between 0 and 1. As can happen to a premise be partly true or false [15].

The process of a fuzzy system is based on fuzzy sets, the membership functions,
and the fuzzy rules. The sets are partitions of all the possible values for the input
variables. The membership functions define the fuzzy sets. The rules are used in the
system inference engine. They use complementary operators, union, and intersection
to establish the relationship between the input variables and system output [Coppin
2013].

The partition of a fuzzy set assigns degrees of relevance to the elements of this set.
The data used to create the rules were generated based on tests done on the platform.
Aspects were tested as braking and acceleration time of the simulated vehicle. From
these tests it was created a data table, which served as the entrance to the creation of
inference rules. To create the fuzzy inference rules were used the concepts of Wang
Mendel algorithm [16].

This Wang Mendel algorithm is used for the automatic extraction of the relevant
rules to a fuzzy systemand can be summarized in the following steps:Define the num-
ber of linguistic terms and partition the universe of all the input variables; Building
a fuzzy rule for each member of the set of training points—For each input variable,
select the higher level membership function; Calculate the degree of activation of all
rules using an appropriate operator.

In the autonomous vehicle, the fuzzy system is designed to control not only the
car’s speed, but also control the rotation of the wheels when it is needed. In all three
are applied Fuzzy controllers.

The first fuzzy system consists of two inputs (distance and speed of the front
wheels) and an output (speed). The goal of this fuzzy system is to ensure that the
car do not collide with the obstacle. Figure3.4 illustrates this system. The variable
“distance” ranges between 5 and 20 m, the “rotation” variable ranges between −40◦
(left oriented) and 40◦ (right oriented) and the output ranges between 15 and 40
km/h. Another simple control system complements the operation and ensures that if
the car is 0.5 m from the obstacle, a reverse maneuver is performed, since from that
position this is the only alternative.

When the car is at a shorter distance than 5 m, the control is based on the front
sensors and causes the car to turn to the side closest to the desired point. This control
determines the difference between the direction the car is and the direction it should
be to follow the optimal path. The output is the angle that the car should turn to follow
the desired path and varies from 180 (left) to 180 (right), as illustrated in Fig. 3.5.
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Fig. 3.4 Auxiliary control system that helps to avoid car collision with environmental obstacles

Fig. 3.5 Control system that determines the difference between the car’s direction and orientation
of the goal point
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Fig. 3.6 Fuzzy system to supervise the car turning, so that it reaches the correct orientation to reach
the goal

The third fuzzy control system (Fig. 3.6) oversees the car turning and determines
both rotation of the wheels, and the speed of movement. This control is important
because if the car is in a narrow place, the maneuver cannot be performed in a single
movement.

3.4.3 Decision Tree

Decision tree is the simplest form among the most used decision models, but is quite
effective. Among its main strengths, its transparency and the ease of developing are
highlighted.

The decision tree structure is very similar to the if-then structure, widely used in
expert systems and rating systems [17].

At the entrance of a decision tree are received attributes that can be continuous or
discrete, then the tree will reach a final decision based on their tests. In the tree struc-
ture, each node represents a different test and each leaf node of this tree represents
a value that is returned if this leaf node is reached.

In the decision tree, each node is the knowledge of the expert leading the search for
one of its child nodes. So as toumove down the tree, the desired system configuration
will be selected and thus choosing the desired behavior [18].

For the autonomous vehicle, the decision tree is used to select which group of
actions the agent must take, i.e., to decide if it should just follow the path determined
by the trajectory planner, dodge an obstacle, or to stop and make a reverse in case of
the available space is not sufficient to maneuver.
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Fig. 3.7 Architecture simulation

3.5 Simulation

Figure3.7 presents the architecture of the simulation to be developed.
The VREP is responsible for simulating the environment, the agent (vehicle), and

the navigation positioning information (which is calculated by MATLAB). Agent
perceptions (signals picked up by the sensors) are sent from VREP to MATLAB and
this in turn is responsible for performing the trajectory calculations (A*), determine
the correct speed that the car should be in accordance with the current situation
(Fuzzy), in addition to building the mapping and planning trajectories. MATLAB
then returns the commands, which are these trajectory and velocity information that
the vehicle must follow.

For the simulation to work correctly, there must be integration of code developed
in MATLAB, with the components created in VREP. Communication between the
two software is executed via socket, and to facilitate this, in this paper we chose to
use the API developed by Coppelia (company responsible for VREP).

The modeling agents is described in more detail in the online tutorial VREP;
however, it is required that each vehicle component is declared as a clear object
name, since to access these components via MATLAB the names that were defined
in VREP are used as unique identifiers.

For example, when you want to turn the front wheel 30◦ right, the following
command is sent.

• vrep.simxSetJointTargetPosition(clientID, RhtWheelHandle, −degtorad(30),
vrep.simx_opmode_oneshot);

The vrep.simxSetJointTargetPosition command is used to rotate a particular com-
ponent present in VREP. Arguments are, respectively, clientID − name of the simu-
lation; RhtWheelHandle − the name given to the right front wheel; −degtorad(30),
which converts 30◦ to its equivalent value in radians, and vrep.simx_opmode_oneshot
− representing that this command must be run only once. In this example, it is clear
that the choice of name facilitated in performing the function, as RhtWheel can be
easily associated with the front right wheel.
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3.6 Case Study

The case study is a Renault Fluence (Fig. 3.8) vehicle, which is placed in a virtual
environment with many obstacles. As defined by the Ackerman geometry, only the
front wheels determine the direction, i.e., the rear wheels are free. When the car
needs to make a turn, only the front wheels must be acted on. The car’s size is about
4 m long and 2 m wide.

The environment is a closed area of 100 m × 100 m, as illustrated in Fig. 3.9. In
this space were defined spaces by which the vehicle can follow and also obstacles
that it should divert. Altogether there are four obstacles in the shaped of cubes of
varying sizes. Besides the obstacles, there are walls which limit the passage of the
vehicle.

The side tracks (bounded by walls) are narrow to hinder a possible curve the car
must do. This difficulty requires the control to be more efficient because, depending
on the speed it is not possible that the car maneuver without having to move in the
opposite direction (reverse) or maneuver itself to fir the curve.

The experiment starts with the car stopped at a certain point and the map of empty
knowledge. At that moment, the objective point is designated for the autonomous
vehicle. The first task is to carry out the planning of the trajectory based on the
knowledge map, then the path is calculated by A* and then when the algorithm
returns the “sub-goals” (turning points) the car starts moving at the resulted path.
The fuzzy controllers are responsible formaking the car follow the planned trajectory.

Fig. 3.8 Autonomous vehicle—virutal Renault Fluence
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Fig. 3.9 A car that interact in this environment, which is unknown at first (but is being mapped),
whose object reaches a certain point, traversing the optimum path (derived from the A* algorithm)

The car follows the optimum path at the same time it updates the environment
map. When one eventually is very near or in the planned trajectory, the fuzzy control
action operates on the front sensor for the vehicle to deviate from obstacles.

Figure3.10 depicts the map of the environment being built as the car moves. The
brighter areas represents he position where the obstacle was encountered, while the
area in gray is the inflation that the car has to calculate around obstacles.

When the obstacle is overcome, the control indicates that the car should go back to
follow the path determined by the trajectory planner, but the car may not be oriented
in a way that is must only move forward. At this point, another fuzzy controller is
activated to correct the orientation of the vehicle according to the desired trajectory
(determined by the trajectory planner).

After adjusting the orientation of the vehicle to the optimum path, the car return
to the state of following the path determined by the trajectory planner to reach its
goal. Due to the car’s size, it was determined that the goal is any point in a distance
of 1 m from the goal point (tolerance range). This measure was taken to prevent the
vehicle to keep making small maneuvers to be exactly at the desired point, since
these maneuvers took a long time and are negligible, since the car was already above
the point and was just trying to align the car’s center with the goal point.
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Fig. 3.10 Environment
partially mapped by the
vehicles with help of the
perception system

The fuzzy controller for steering correction, used interactively, enables the direc-
tion (orientation) fine tuning. The fuzzy controller responsible for the vehicle’s speed
depending on the distance of the obstacles was important to ensure that the car does
not collide with objects.

The correction in the direction of the vehicle is an intrinsic difficulty to the prob-
lem, because as it is a regular vehicle, any direction adjustment requires continuous
forward and backward movements, until it reaches the desired angle.

The vehicle was also tested in a different scenario. This time the scenario is a bit
closer to a real-life situation. The car was placed inside a parking lot of a shopping
mall. Figure3.11 represents this scenario with an upper view. The whole scenario is
composed by the shopping mall at the middle, the vehicle at the left upper corner
and eight light posts, being 4 at the north and 4 at the south wall The textures
of the shopping mall exterior and the parking lot floor were removed to improve
performance of the simulation.

As the previous experiment, different positions were used as goal for the vehicle.
When the car reached its destination, another point was set as goal. By switching
destinations, it was nearly possible to map the entire parking lot with the shopping
mall at the middle. Figure3.12 contains the resulting map of the scene.

The places that were not mapped in Fig. 3.12 are spots where the vehicle did not
get close enough so its sensors were able to identify the walls. This happened because
during the path planning stage, the search algorithm was able to find a better path
that did not go through the unmapped spots.



66 Á.L. Sordi Filho et al.

Fig. 3.11 Shopping mall and parking lot scenario

Fig. 3.12 Partial map of the
shopping mall and parking
lot scenario
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3.7 Conclusions

The simulations show that the system responds effectively. Initially in a totally unfa-
miliar environment, with a goal position, the robot calculates the optimal route, this
being a straight line. As the robot detects objects and updates its knowledge map, as
soon as it finds an obstacle in its path the route is recalculated.

ThemethodA*wasused, despite producing the desired result, it requires relatively
much computational time, causing the car, in the simulation, stand still while the
trajectory planner find the optimal path. The fuzzy control systems (Fuzzy) have
proven their efficiency in relation to what was expected. The guidance control to the
next sub-goal returned valid responses to any situation where the car and the goal
met.

The SLAMused in thework also proved to be satisfactory tomap the environment.
The detail to be highlighted at this point is that inflation in the mapping area can
interfere decisively in the development of history. In the case of this work was
necessary to increase the inflation area to ensure that the car does not collide with the
corners in the environment. The autonomous vehicle is able to navigate in different
environments, with smoother curves, and less narrow lanes.

In addition to different environments, it is suggested to implement a control to
make the transition from the direction of the vehicle between softer sub-goals.

Acknowledgments To the Araucaria Foundation and the Renault of Brazil for partial funding from
the research project.
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Chapter 4
Fully Scalable Parallel Hardware
for Wheeled Robot Navigation Using
Fuzzy Control

Nadia Nedjah, Paulo Renato S.S. Sandres and Luiza de Macedo Mourelle

Process control is one of the many applications that took advantage of the fuzzy
logic. Controllers are usually embedded into the controller device. This chapter aims
at presenting the development of a reconfigurable efficient architecture for fuzzy
controllers, suitable for embedding. The architecture is parameterizable so it allows
the setup and configuration of the controller, so it can be used for various problem
applications. An application of fuzzy controllers was implemented and its cost and
performance have been evaluated.

4.1 Introduction

Computational systemmodeling is full of ambiguous situations, wherein the designer
cannot decide, with precision, what should be the outcome of the system. In [7],
L. Zadeh introduced for the first time the concept of fuzziness as opposed to crispiness
in data sets.

Fuzzy logic and approximate reasoning [6] can be used in system modeling and
control as well as data clustering and prediction, to name only few appropriate appli-
cations. Furthermore, they can be applied to any discipline such as finance, image
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processing, temperature and pressure control, robot control, among many others.
The fuzzy logic is a subject of great interest in scientific circles, but it is still not
commonly used in industry, as it should be. Eventually, we found some literature
containing practical applications that is being currently used in industry [3, 4].

There are many related works that implemented a fuzzy controller on a FPGA, but
most of thempresent controller designs that are only suitable for a specific application
[2, 4]. Mainly, the designs do not use 32-bit floating-point data. The floating-point
data representation is crucial for the sensibility of the controller design. In contrast,
all the required computation in the proposed controller are performed by a simple
precision floating-point coprocessor.

The purpose of the development of a reconfigurable hardware of a shell fuzzy
controller, which can include any number of inputs and outputs as well as any number
of rules, is the possibility of creating a device that can be used more widely and
perhaps spread the concept of fuzzy logic in the industrial final products.

This paper is divided into three sections. First, in Sect. 4.2, we introduce briefly
some concepts of fuzzy controller, which will be useful to follow the description
of the proposed architecture. Then, in Sect. 4.4, we describe thoroughly, the macro-
architecture of the fuzzy controller developed. After that, in Sect. 4.5, we give details
about the main components included in the macro-architecture. Subsequently, in
Sect. 4.3, we present the fuzzy model used to control the navigational process of a
wheeled robot. Then, in Sect. 4.6, we show, via the project of a the fuzzy controller
presented, that the proposed architecture is functionally operational and promising
in terms of cost and performance. Finally, in Sect. 4.7, we draw some conclusions
and point out some new direction for the work in progress.

4.2 Fuzzy Controlllers

Fuzzy control, which directly uses fuzzy rules, is the most important and common
application of the fuzzy theory [5]. Using a procedure originated by E. Mamdani [3],
three steps are followed to design a fuzzy controlled machine:

1. fuzzification or encoding: This step in the fuzzy controller is responsible of encod-
ing the crisp measured values of the system parameter into a fuzzy term using the
respective membership functions;

2. inference: This step consists of identifying the subset of fuzzy rules that can be
fired, i.e., those with antecedent propositions with truth degree not zero, and draw
the adequate fuzzy conclusions;

3. defuzzification or decoding: This is the reverse process of fuzzification. It is
responsible of decoding a fuzzy variable and compute its crisp value.

The generic architecture of a fuzzy controller is given in Fig. 4.1. The main com-
ponents of a fuzzy controller consist of a knowledge repository, the encoder or
fuzzification unit, the decoder or defuzzification unit and the inference engine. The
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Fig. 4.1 Generic
architecture of fuzzy
controllers

knowledge base stores two kind of data: the fuzzy rules that are required by the
inference engine to reach the expected results and knowledge about the fuzzy terms
together with their respective membership functions as well as information about
the universe of discourse of each fuzzy variable manipulated within the controller.
The encoder implements the transformation from crisp to fuzzy and the decoder
the transformation from fuzzy to crisp. Of course, the inference engine is the main
component of the controller architecture. It implements the approximate reasoning
process.

4.3 Fuzzy Models for Wheeled Robot Navigation

The control of a wheeled robot navigation uses a series of control loops to operate
on a surface following a predefined trajectory. Figure4.2 shows the schematics of
the used robot.

This application consists of three subcontrollers: (i) the steering control, which
uses two controllers requiring two inputs and one output, each; the linear and angular
speed controls, which use the same control process requiring two inputs and one
output. Although this application has four controllers, this paper will only show one
of them, because the drivers are identical in pairs, i.e., the membership functions and
rules of the controllers are the same for the the linear and angular velocity.

4.4 The Proposed Macro-architecture

The macro-architecture of the proposed fuzzy controller consists of three main units:
(i) the fuzzification unit (FU), which is responsible for translating the input values of
the system into fuzzy terms using the respective membership functions. This unit has
as many Fuzzy blocks as required in fuzzy systemmodel that is being implemented,
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Fig. 4.2 Model of the wheeled robot used in this application [1]

i.e., one for each input variable; (ii) the inference unit Inference, which checks
all the included fuzzy rules, verifying which membership function applies, and if any
is so, generating its value and thus identifying the membership functions to be used
in the sequel; (iii) the defuzzification unit (DU), which is responsible for translating
the fuzzy terms back so as to compute the crisp value of the fuzzy controller output.
The defuzzification unit includes as many Defuzzy blocks as required by the fuzzy
systemmodel that is being implemented, i.e., one for each output variable. The block
diagram of the proposed macro-architecture is shown in the Fig. 4.3, wherein N and
M represent the number of input and output variables, respectively.

Note that, besides the main units, the macro-architecture also includes a compo-
nent that allows to compute the membership function characteristics, which are used
by both the fuzzification and defuzzification units. This component will be called
membership function unit (MFU). It includes as many MF blocks as required input
variable of the fuzzy model. Note that all the membership function-related data are
stored in the membership function memory, called MF MEM. This memory is formed
by as many memory segments as required input variables, i.e., one for each mem-
bership function used. The rules used by the inference unit are stored in a read-only
memory block, called Rules. Component Controller, which in the sequel may
be calledmain controller, imposes the necessary sequencing and/or the simultaneity
of the required steps of the fuzzy controller via a concurrent finite state machine.
More details on this are given subsequently.
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Theproposed fuzzy controller is designed to begeneric andparametric, so it allows
configuring the number of input and output variables, the number of linguistic terms
used to model the membership functions, and the number of inference rules, so as the
fuzzy system model that is being implemented can fit in. Allowing the configuration
of these parameters makes it possible, as well as easy, to adjust the controller design
to any desired problem.

As it can be seen in Fig. 4.3, at configuration time, all the membership functions
used by the controller are computed and stored in the respective MF MEM segment
of the membership function memory. All the computed data will be readily available
to be used by the pertinent Fuzzy and/or Defuzzy block in the fuzzification and
defuzzification unit, respectively. Note that this configuration step is done only once.
During the operation step, the fuzzy controller iterates the required steps, triggering
the Fuzzy blocks then Inference unit then Defuzzy blocks in sequence. After
that, it waits for a new set of input data to be read by the system sensors and thus
arrive at the Fuzzy blocks input ports. The finite state machines that control the
Fuzzy blocks all run in parallel, so do those that control the Defuzzy blocks.

In the following sections of this chapter, more light will be shed on the internal
micro-architecture of the proposed design as well as the control used therein.

Fig. 4.3 Macro-architecture of the designed fuzzy controller
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4.5 Micro-architecture of the Functional Units

In this section, we describe the micro-architecture of the main components, included
in the macro-architecture of Fig. 4.3. These are the functional unit responsible for the
computation of the member function (MF), including the memory-based component
(MF MEM), the basic component responsible for the fuzzification process (Fuzzy),
the component that implements the inference process (Inference) using the avail-
able rule base (Rules), and the basic component that handles the defuzzification
process (Defuzzy). In general, all blocks that perform floating-point computations
include an FPU unit, which performs the main mathematical operations with simple
precision (32 bits). The operations needed are addition, subtraction, multiplication
and division.

4.5.1 Membership Function Unit

A membership function is viewed as a set of linguistic terms, each of which is
defined by two straight lines. In the proposed design, the triangular shape is used
to represent linguistic terms. Nevertheless, it is possible to adjust the design as to
accept other used shapes such as trapezes and sigmoid. Figure4.4 shows a generic
example of membership function with Q linguistic terms, wherein the horizontal
axis x represents the controller’s input, probably read from a sensor, and the vertical
axis y represents the truth degree associated with the linguistic terms. This is a real
value, between 0 and 1, handled as a simple precision floating-point number of 32
bits. Linguistic terms of triangular membership function are completely defined by
Max Point or mp and Range or r , as illustrated Fig. 4.4.

The MF block is designed to compute the values of any variable x , according
to y = ax + b of the two straight lines, that represent the linguistic term of the
membership function. The required basic data that completely define these shapes
need to be identified.

The input data of the MF block are MaxPoint – Mp, Left Interval – Li and Right
Interval – Ri for each straight line used to define the linguistic terms of the member-
ship function. The block utilizes them and precompute coefficients a and b accord-
ingly and stored them in themembership functionmemory segments. Three cases are
possible: the leftmost linguistic term (see linguistic term 0 in Fig. 4.4); An in-between
linguistic term (see linguistic term 1 and 2 in Fig. 4.4); and finally, the rightmost lin-
guistic term (see linguistic term Q in Fig. 4.4). The computation of a and b of the
straight lines of the leftmost, middle, and rightmost linguistic terms are defined as in
(4.1)–(4.3), respectively.

μL(x) =
⎧
⎨
⎩
1, if x ≤ Mp
− 1

Ri × x + Mp
Ri + 1, if Mp > x ≥ Mp + Ri

0, otherwise
(4.1)
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Fig. 4.4 Membership function of Q linguistic terms

μM(x) =

⎧
⎪⎨
⎪⎩

1
Li × x − Mp−Li

Li , if Mp − Li < x ≤ Mp

− 1
Ri × x + Mp

Ri + 1, if Mp > x ≥ Mp + Ri
0, otherwise

(4.2)

μR(x) =
⎧
⎨
⎩

1
Li × x − Mp−Li

Li , if Mp − Li < x ≤ Mp

1, if x > Mp
0, otherwise

(4.3)

Themicro-architecture of themembership function blocksMF is shown in Fig. 4.5.
It uses a floating-point unit to perform the required mathematical operations. The
obtained results are then stored in the MF MEM segments.

An MF block includes a controller that is implemented as a finite state machine.
It allows to synchronize the setting up of all the linguistic terms, necessary to the
complete definition of the membership function for each input variable. The control
sequence of this controller is given in Algorithm 1.

4.5.2 Membership Function Memory

As explained earlier, this memory block responds to write commands received from
the MF block and read commands issued by the FU. Each word of this memory
holds four data that allows the complete computation of the truth degree of a given
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Fig. 4.5 The micro-architecture of the membership function block

linguistic term. The four-fold memory word contains min: minimum limit of the
straight line; max : maximum limit of the straight line; a: angular coefficient of the
straight line; b: linear coefficient of the straight line.

So, every time the MF block requests a memory write, this memory block register
these values at an address, that represents the order number of the line within all
the line that need to be processed, starting from zero. This block also allows the
configuration of the number of lines that can be registered in the memory, which
will depend on parameter Q, which determines the number of linguistic terms per
membership function.

4.5.3 Fuzzification Unit

The Fuzzy block performs the necessary computation to obtain the fuzzy version
the input value. The computation consists of a comparison that may, in most cases, be
followed by a multiplication then an addition, depending on the comparison result.
This is repeated Q times for all the linguistic terms included in the membership func-
tion of the input variable under consideration. The Fuzzy block micro-architecture
is shown in Fig. 4.6. It includes a Comparator that determines in which linguis-
tic term range the input value falls, 2 sets of Q flip-flops to hold the result of the
comparison. Their contents identify which linguistic terms are actually active.
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Algorithm 1Membership function configuration
Require: Mpk , Lik and Rik , k = 1 . . . Q;
Ensure: mink ,maxk , ak e bk , k = 1 . . . 2 × Q;
Ensure: min,max, a and b;
if enable = 1 then
Address ← 0;
for k ← 1 to Q do
for FP ← 1 to 2 do
Write ← 0; Address ← Address + 1;
if k = 1 then
if FP = 1 then
min ← −∞; max ← Mpk ; a ← 0; b ← 1;

else
min ← Mpk ; max ← Mpk + Rik ;
a ← −1/Rik ; b ← (Mpk/Rik) + 1;

end if
end if
if 1 < k < Q then
if FP = 1 then
min ← Mpk − Lik ; max ← Mpk ;
a ← 1/Lik ; b ← −((Mpk − Lik)/Lik);

else
min ← Mpk ; max ← Mpk + Rik ;
a ← −1/Rik ; b ← (Mpk/Rik) + 1;

end if
end if
if k = Q then
if FP = 1 then
min ← Mpk − Lik ; max ← Mpk ;
a ← 1/Lik ; b ← −((Mpk − Lik)/Lik);

else
min ← Mpk ; max ← +∞; a ← 0; b ← 1;

end if
end if
wri te ← 1;

end for
end for

end if

The obtained results for the two straight lines modeling the linguistic term are
kept in two distinct 32-bit registers. These are the truth degrees, once it is delivered
by the FPU. The block includes two sets of 32-bit registers, namely TuFP1 and
TuFP2, one for each linguistic term modeling the membership function of the input
variable.

The inputs of a Fuzzy block are the characteristics of the linguistic terms of the
membership function associated with the input variable under consideration. These
characteristics are a, b, min and max stored in MF MEM segment corresponding to
the input variable, as explained in Sect. 4.5.2. The output of aFuzzy block are: signal
EnFi , for i = 1 . . . Q bits, i.e., one for each included linguistic term and signal uFi ,



78 N. Nedjah et al.

Fig. 4.6 Fuzzy block micro-architecture

for i = 1 . . . Q 32-bit floating-point values, each of which represents the truth degree
of the corresponding linguistic term. Note that linguistic terms that do not apply have
0 as a truth degree. When bit EnFi is activated, this indicates that linguistic term
number i of the membership function is valid with truth degree uFi �= 0. Recall that
the truth degree is the product of a and input value augmented by b. In Algorithm 2,
we give an overview on how the Fuzzy block operates.

4.5.4 Inference Unit

The inference unit main purpose is to identify, for each one of the output variables
of the fuzzy controller, the linguistic terms that are active as well as computing the
associated truth degrees.

Before describing the details of the inferenceunit, let usfirst introduce the structure
used to format the rules of the fuzzy system.A ruleRhas twodefiningparts: a premise
P and a consequent C as described in (4.4), wherein Ii , for i = 1 . . . N are the input
variables and T Ii

k for k = 1 . . . Q are the linguistic terms associated to it, O j , for

j = 1 . . . M are the output variables and T O j

k for � = 1 . . . Q are the linguistic terms
associated with it. Note that in general, the number of linguistic terms is distinct from
one variable to another. However, in this work, we assume, without loss of generality,
that all the variables, both of input and output, are modeled using the same number
of linguistic terms Q. A rule may check only few of of the N input variables, and it
may also, enable only few of the output variables.
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Algorithm 2 Operation of the Fuzzification block
Require: sensor,min,max, a e b;
Ensure: uFi e EnFi , i = 1 . . . 2 × Q;
if enable = 1 then
for i ← 1 to 2 × Q do
Address ← i ; read ← 1;
if min < sensor < max then
FPUouti ← sensor × a + b; COMPouti ← 1;

else
FPUouti ← 0; COMPouti ← 0;

end if
end for
read ← 0; k ← 1;
for i ← 1 to Q do
EnFi ← (COMPoutk OR COMPoutk+1);
if COMPoutk = 1 then
uFi ← FPUoutk ;

else if COMPoutk+1 = 1 then
uFi ← FPUoutk+1;

else
uFi ← 0;

end if
k ← k + 2;

end for
end if

R : P ⇒ C, where for j, k, � = 0 . . . Q :
P is I0 = T I0

j ∧ I1 = T I1
k ∧ · · · ∧ IN−1 = T IN−1

�

C is O0 = T O0
j ∧ O1 = T O1

k ∧ · · · ∧ ON−1 = T ON−1
�

(4.4)

The rule base memory Rules has a word size that allows to store one rule. All
the rules of the model have the same structure. They include all the input and output
variables. When a variable is not checked or inferred, the all the linguistic terms are
checked off.

A given rule fires when signal EnFi , as delivered by the FU, for every checked of
linguistic term of every input variable of the premise part of the rule under consider-
ation is set. Furthermore, every linguistic term of any output variable that is checked
in the consequent part of a fired rule need to be reported to the defuzzification unit
FU. Note that there are at most M , one for each output variable. Besides this, FU
needs also to receive the truth degree for each of these checked terms.

The truth degree of an output variable linguistic term is the smallest truth degree,
considering all those associatedwith the input variable linguistic terms in the premise
part of the fired rule. When the same output variable linguistic term appears on two
or more fired rules, the highest truth degree is used. Thus, this done considering all
the rules that fires. Recall that the truth degree of the input variable linguistic terms
are provided by the FU.
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Fig. 4.7 Inference block micro-architecture

Figure4.7 shows the micro-architecture of the Inference block. Its inputs
consist of the Q flags EnFi , for i = 1 . . . Q and the corresponding Q truth degrees
uFi , for i = 1 . . . Q, which are the resulting output of FU, as described in Sect. 4.5.3.
Its outputs are a set of M Q-bit signals EnDi , for i = 1 . . . M , that identify the
linguistic terms that were inferred and their respective truth degrees uDi , for i =
1 . . . M , which are signals of Q × 32 bits. Theand gate determineswither the current
rule can be fired. In Algorithm 3, we sketch how the operation of the inference block
is controlled. The M ANDQbits components are simply na and-arrays. In this
design, the process of min-max inference is used. So, components Minimum and
Maximum return the smallest of N floats and the highest of M floats, respectively.
Their internal structure is omitted here for a lack of space. TheInference includes
three memory blocks: the rule base Rules, a truth degree memory MEM floats
and a bit memory MEM bits.

4.5.5 Defuzzification Unit

The defuzzification unit’s main purpose is to compute the crisp value of the output
variables, given the fuzzy linguistic terms and their corresponding truth values, as
identified and computed by the inference unit. The centroid is used to perform the
defuzzification process. Recall that uDi for i = 1 . . . Q are the truth degrees of the
linguistic terms associated with the output variable O. The computation is done
according to the steps of Algorithm 4.
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Algorithm 3 Inference control and computation

Require: uF j
i , EnF j

i , i = 1 . . . Q, j = 1 . . . N and Ruleslr , r = 1 . . . P, l = 1 . . . (N +
M) × Q;

Ensure: uDk
i e EnDk

i , k = 1 . . . M, i = 1 . . . Q;
if enable = 1 then
for r ← 1 to P do
R ← Rulesr ;
if R Valid then
for j ← 1 to N do
I ← R j ; AndInput j ← I & EnF j ; MinInput j ← uF j ;

end for
RuleFired ← AND(And Input);
if RuleFired then
Min ← MIN(MinInput);
for k ← 1 to M do
O ← RN+k ;
for i ← 1 to Q do
if Oi = 1 then
MEMfloatsk×i

r ← Min; MEMbitsk
r ← O;

else
MEMfloatsk×i

r ← 0; MEMbitsk
r ← 0;

end if
end for

end for
end if

else
MEMfloatsr ← 0; MEMbitsr ← 0;

end if
end for
for k ← 1 to M do
for i ← 1 to Q do
uDk

i ← MAX(MEMfloatsk×i ); EnDk
i ← OR(MEMbitsk×i );

end for
end for

end if

Algorithm 4 Computation of the centroid
R0 ⇐ 0; R1 ⇐ 0; R2 ⇐ 0;
if EnD �= 00 . . . 0 then
for i := 1 to Q do
if EnDi = 1 then
R0 ⇐ uDi × mpi ;
R1 ⇐ R1 + R0; R2 ⇐ R2 + uDi ;

end if
end for
R0 ⇐ R1/R2;

end ifreturn R0;
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4.6 Performance Results

The application presented in the following is for the angular velocity control. It
requires two input variables that shape the radius and angle in polar form representing
the error and error variation of speed, 15 fuzzy rules as described in Table4.1, 5
linguistic terms and 1 output variable that represents the linear velocity of the robot
movement. Figure4.8 shows the membership functions used for each of the input
and output variables.

Table4.2 shows the sensor input values tested, the rules fired, according to
Table4.1. Also it shows the number of linguistic terms that were activated at the
start of the defuzzification process, the number of clock cycles, the execution time
in microseconds, based on clock of 112.410 MHz and the scalar value of the result
of the hardware controller.

Figure4.9 shows the control surface based on the configuration of the fuzzy con-
troller for this application. The computation of the quadratic error, as defined in (4.5),
is 3.1237 × 10−7, which shows an excellent accuracy in comparison to the software
implementation using MATLAB. In (4.5), xhi is the i th result returned by the recon-

Fig. 4.8 Membership function used

Table 4.1 Fuzzy rules for the autonomous robot navigation

Rule Radius

ZE PS PB

Angle PB r0: ZE r1: NM r2: NB

PM r3: ZE r4: PM r5: PB

ZE r6:ZE r7: PM r8: PB

NM r9: ZE r10: NM r11: NB

NB r12:ZE r13: NM r14: NB
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Table 4.2 The results obtained by the the reconfigurable hardware for the robot navigation control

Radius Angle Rules fired
defuzzy

Number of
defuzzy

Cycles
clock

Time (μseg) Velocity

0.00 +1.0 r3 e r6 1 1043 9.28 0.0000

0.80 −2.0 r11 e r14 1 1043 9.28 −3.0000

0.50 +2.5 r2 e r5 2 1090 9.70 −0.4286

0.05 −1.0 r6, r7, r9 e r10 3 1137 10.11 −0.1875

0.09 +2.0 r0, r1, r3 e r4 3 1137 10.11 +0.4545

0.30 +2.0 r1, r2, r4 e r5 4 1184 10.53 0.0000

0.20 −0.5 r7, r9, r11 e r12 4 1184 10.53 +0.4091

0.20 +2.5 r1, r2, r4 e r5 4 1184 10.53 −0.4091

Fig. 4.9 Control surface for the wheeled robot navigation

figurable controller hardware, xmi is the i th result of returned by the toolbox FIS of
MATLAB, and n represents the total number of obtained results. In this case, we use
17 distinct set of inputs.

Error =

n∑
i=1

(xhi − xmi )
2

n
(4.5)

Using a clock frequency of 100 MHz in FPGA, the entire controller runs, in the
worst case, with Defuzzy4 in 2,246 clock cycles, i.e., 22.46µs. The synthesis results
show that the maximum clock frequency accepted by the design developed for this
application is 112.410 MHz, which resulted in an execution time of 19.98 µs. As the
operation time of block FP is not accounted for in the normal cycle of the controller
loop, the latter will be at most of of 1,184 clock cycles, i.e., 10.53 µs, considering
the maximum allowable clock frequency. Figure4.10 displays the number of clock
cycles for each block of reconfigurable controller, including variations in numbers of
cycles for block Fuzzy. Figure4.11 shows the execution times of each block, using
the maximum clock frequency.
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Fig. 4.10 Number of clock
cycles required by the
reconfigurable controller

Fig. 4.11 Execution time, in
microseconds, of the blocks
in the FPGA

Fig. 4.12 Hardware area
usage in the FPGA

Figure4.12 shows the hardware area required in the FPGA to program the entire
fuzzy controller. Considering the 69,120 LuTs available in the FPGA, only 54.1%
and used.

4.7 Conclusion

This paper proposes a massively parallel completely configurable design for fuzzy
controllers. It is applicable to almost any applications in the industry that do not have
a prescribed solution. The proposed architecture is parametric so that any number of
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inputs, outputs, and rules can be accommodate with no extra effort. The design was
implemented on reconfigurable FPGA and the cost and performance requirements
analyzed.The fuzzy controller supervises the navigational process of awheeled robot.
The next steps in the design of this controller are to investigate the generalization
of the design so that to allow the use of trapezoidal and sigmoid the membership
functions.
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Chapter 5
Nonlinear Correction for an Energy
Estimator Operating at Severe Pile-Up
Conditions
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For systems operating at high event rates, the readout signal may be distorted by
the presence of information from adjacent events. The signal superposition, or pile-
up, degrades the efficiency of linear methods, which are typically used for signal
parameter estimation. In many applications, the estimation task reduces to determine
the amplitude of the incoming signal. In the context of high-energy calorimeters,
which aim at measuring the energy of high-energy subproducts of interactions, the
signal energy is measured by estimating the amplitude of the received digitized
pulse. Modern particle colliders may operate at an event rate much higher than
their calorimeter time response length and, as a result, the signal pile-up may be
observed. This chapter describes how a computational intelligence approach can
assist on the energy estimation performed by an optimal linear method. An artificial
neural network is trained aiming at correcting for the nonlinearities introduced by
the signal pile-up statistics. The efficiency of the various energy estimation methods
is evaluated from simulation data under various signal pile-up scenarios.
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5.1 Introduction

Parameter estimation has been used in several areas such as communication, econ-
omy and finance, instrumentation and experimental physics [8]. A signal, usually
corrupted from noise, must carry information that is usually related to one or a
set of signal parameters such as amplitude, phase, frequency, length, etc. Basically,
the parameter estimation task consists in accurately compute a physical quantity,
envisaging the extraction of the desired information from the signal. Particularly,
the problem of estimating the amplitude of a signal appears in various aspects in
signal processing [25]. Due to their simplicity, efficiency and fast response, linear
filters are extensively employed for parameter estimation tasks in online applications
[34, 40, 48]. However, under hash conditions, where additional nonlinear compo-
nents are strongly present in the noise, the performance of linear methods tends to
decrease, introducing bias and increasing uncertainties in the measure. The solution
often leads to nonlinear parameter estimation [7, 35, 51].

Computational intelligence techniques are widely applied in the context of para-
meter estimation in areas such as computer vision, biometrics, communication,
among others [26, 27, 29]. In experimental high-energy physics (HEP), the use
of computational intelligence is growing due to the increased complexity of the
modern experiments along with the advances in hardware processing capabilities
[24, 41, 49]. Among the most common computational intelligence techniques used
in HEP, Artificial Neural Networks (ANN) [22] can be found in numerous applica-
tions such as pattern recognition, track reconstruction, triggering and physics analy-
sis [2, 14, 42, 46, 47], as well as for energy estimation tasks [20, 38, 39].

Particle colliders are complex facilities used in experimental HEP [28]. They are
built to accelerate particles and perform collisions at very high energy levels (order
of Tera-electron Volts). Essentially, these experiments cover a large physics research
program, and the physicists are interested in explaining some of the fundamental
building blocks that have shaped the universe. To this end, two beams (or one beam)
of particles traveling at approximately the speed of light are put head-to-head (or
made collide with a fix target) and the subproduct of these collisions are measured
byhighprecision detectors. Several scientific discoveriesweremadepossible through
the use of particle accelerators including, more recently, the existence of the Higgs
boson, a particle that is foreseen in the Standard Model [13] but never observed until
2015 [45].

Since the physics of interest is rare, a massive quantity of data is needed in
order to infer any behavior in the data. Therefore, modern colliders tend to increase
their beam luminosity so that more signals become available and the probability
of observing a rare process increases. The beam luminosity is proportional to the
number of interactions per second divided by the beam cross section area [23]. With
the increase of the luminosity, the beam becomes denser, so more interactions may
occur at each beam (or bunch) crossing [36].

High-energy calorimeters play an important hole as they absorb and sample the
energy of the incoming particles, providing precise measurements of the energy
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flow and also being used for triggering and event selection tasks [33]. Particularly,
in high-event rate experiments, such as the Large Hadron Collider (LHC) [16], the
calorimeter response is usually slower than the event rate, so that the readout window
may comprise several bunch crossings. As a result, the effect of signal superposition
(also called signal pile-up) may be observed within the readout window, distorting
the signal of interest and degrading the final energy estimation [17, 31].

The classical methods used in calorimetry for online amplitude estimation are
based on linear filtering, whose coefficients are found by an optimization procedure
that minimizes the estimator variance [6]. They are simple, fast and operate in opti-
mal conditions when the calorimeter pulse shape must be fixed and corrupted from
additive Gaussian noise only. In cases where the pulse shape presents fluctuations
and/or the additive noise is not Gaussian (due to the presence of signal pile-up, for
instance), the efficiency of such methods is degraded.

An alternative technique uses a computational intelligence approach to estimate
the energy under conditions of high luminosity. In order to handle the nonlineari-
ties produced by signal pile-up, a ANN may be designed either to perform the full
amplitude (energy) estimation or to assist the linear energy estimation. In the case of
assisting the linear estimation, the energy is estimated by an optimal linear method
based on Maximum Likelihood Estimation (MLE) [25], and a feedforward Multi-
Layer Perceptron (MLP) [22] is trained to compensate for the error introduced by
the nonlinear component that is present in the noise due to the signal pile-up. In this
way, the ANN performs a fine adjustment to the linear estimate in order to correct for
it. The linear estimate (MLE) remains available and preserved in case the nonlinear
correction is needless.

The use of a ANN for nonlinear correction has been applied in other context as
well [30, 50]. Furthermore, the use of a simple (low computational complexity)MLP
for online amplitude estimation in calorimeters are particularly interesting, since one
of the requirements for this task is of the low computational cost as the estimation is
to be performed at high rates (tens ofMHz) and for hundred of thousand channels [12,
43, 44]. With the growing capacity of devices such as the ones from FPGA (Field
Programmable Gate Arrays) [32] technology, the use of neural networks for online
energy estimation has become feasible.

The text is organized as follows. In the next section, the high-energy calorimetry
environment is briefly introduced. In Sect. 5.3, the most commonly used algorithms
for online energy estimation are described. Section5.4 presents, in details, the use
of a ANN for energy estimation for a high rate general-purpose calorimeter system.
The simulation results, considering different signal pile-up conditions, are shown in
Sect. 5.5. Finally, the conclusions are outlined in Sect. 5.6.

5.2 High-Energy Signal Pile-Up

Calorimetry systems play an important role in high-energy colliders. The information
provided by the calorimeters is the key element to understand the physics processes.
Sampling calorimetry is themost used technology. These high-energy detectors are in
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charge of absorbing, sampling, and performing precise measurements of the energy
of the incident particles. Typically, they are finely segmented and present thousands
of readout channels. The particles that are produced from the collisions cross and
interactwith the calorimeter, and their energy is sampled and converted to an electrical
signal that is fed into a readout electronics.

The analog signal is conditioned in such away that its shape remains almost invari-
ant from channel to channel and the amplitude proportional to the signal energy [3].
Therefore, by estimating the signal amplitude, the energy can be found. The shaped
signals from readout channels are typically digitized at the same rate as the collision
rate.

The signal samples are sent to digital processors where the digital processing,
which computes the signal amplitude, is finally carried out. Figure5.1a shows a
typical asymmetric unipolar pulse (with approximately 150ns of width and sampled
at 100MHz) used in modern calorimeter systems as well as its digital samples.

Fig. 5.1 a Typical
asymmetric unipolar
calorimeter pulse sampled at
100MHz and b pile-up
signal at t = 50ns
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The effect of the signal pile-up in this type of readout pulse is seen in Fig. 5.1b,
where the signal of interest is distorted by the presence of an Out-Of-Time (OOT)
signal peaking at 50ns and within the same readout window of 150ns, resulting in a
deformed readout signal.

Typically, the energy estimation in modern calorimetry is carried out through a
linear combination of the received digital signal [6]. The noise covariance matrix
is usually used in the optimization process that computes the coefficients in order
to reduce the uncertainties in the measurements due to the electronic noise of each
readout channel. However, the information from the signal pile-up introduces non-
linearities in the background so that the noise distribution is no longer Gaussian.
Therefore, the efficiency of linear techniques is degraded and they become sub-
optimal. Recently, a new technique based on linear signal deconvolution has been
proposed [17]. However, it addresses offline energy reconstruction and it is designed
for signals that remain within the readout window.

5.3 Online Linear Estimation

In this section, the commonly used algorithms for online energy estimation in
calorimetry are described. The first one is the most employed algorithm in the area,
while the second one corresponds to an alternative design approach that may lead
to a similar estimator, depending on the assumptions that are made regarding the
signals involved.

5.3.1 Minimum Variance Linear Unbiased Estimator

In most modern calorimeters, noise comprises mainly electronic noise that is often
assumed stationary and modeled by a Gaussian distribution. Therefore, variance
minimization techniques for energy reconstruction are extensively employed as they
perform close to the optimal operation. It should be stressed that the parameters of
instability of the pulse, such as deformation, also introduce uncertainties to the final
energy estimation, and they are not taken into account in the design of typical energy
estimators.

Most algorithms for energy reconstruction in calorimeter systems are based on a
weighted sum [6]. The signal amplitude Â is estimated through a linear combination
of the discrete time window that contains the readout signal s[k] ofN samples, where
k corresponds to the time samples:

Â =
N−1∑
k=0

w[k]s[k] (5.1)
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The weights w[k] are obtained from the front-end pulse shape and the noise
covariance matrix. The procedure aims at minimizing the variance of the amplitude
distribution. Thus, they are optimal for deterministic signals corrupted by Gaussian
noise. The correct weights are computed by minimizing the effect of the noise in the
amplitude reconstruction.

In order to compute the weights w[k], the calorimeter signal can be modeled
through a first-order approximation, aiming at linearizing the pulse phase parameter:

s[k] = Ag[k] − Aτg′[k] + n[k] + ped k = 0, 1, 2, . . . ,N − 1 (5.2)

where s[k] represents the received digital time sample k and N is the total number
of samples available [18]. The amplitude A is the parameter to be estimated, while
n[k] is the background noise. The parameters g[k] and g′[k] are the reference pulse
shape and its derivative, respectively, while the parameter τ is the signal phase. The
variable ped corresponds to the signal pedestal and it is a constant value added to
the analog signal just before its analog-to-digital conversion.

For an unbiased estimator, it is required that the expected value of Â to be A.
Therefore, Eq. (5.3) can be derived for an optimal filter, when the noise is assumed
as a zero-mean random process (E[n[k]] = 0).

E[Â] =
N−1∑
k=0

(Aw[k]g[k] − Aτw[k]g′[k] + w[k]ped) (5.3)

The following constraints can be deduced in order to reach E[Â] = A [18]:

N−1∑
k=0

w[k]g[k] = 1 (5.4)

N−1∑
k=0

w[k]g′[k] = 0 (5.5)

N−1∑
k=0

w[k] = 0 (5.6)

These constraints are added to the minimization procedure in order to reduce the
uncertainties due to pedestal fluctuations and phase shifts. On the other hand, the
imposition of these constraints may increase the variance of the estimator. Thus, for
example, in cases where the electronic pedestal value can be accuratelymeasured and
subtracted from the incoming digitized signals, the constraint expressed in Eq. (5.6)
can be removed, increasing the number of degrees of freedom of the optimization
procedure [11].
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The variance of the estimator is given by,

var(Â) =
N−1∑
k=0

∑N−1

j=0
w[k]w[j]C[k, j] = wTCw (5.7)

where C corresponds to the noise covariance matrix and w is the vector of weights.
Hence, to find the optimal weights, Eq. (5.7) is often minimized subjected to the
constraints in (5.4), (5.5) and maybe (5.6) using Lagrange multipliers [6].

Most of the modern calorimeters uses the described algorithm to reconstruct the
signal amplitude [1, 6, 11]. However, each algorithm is slightly modified from one
system to another to estimate the final amplitude, particularly in the way the signal
baseline value is used.

5.3.2 Maximum Likelihood Estimation

In theMaximumLikelihood Estimator (MLE) [25] approach, the estimation problem
is formulated from the probability density functions of the random process. The first
step in theMLE design is to compute the probability density functions of the received
signal p(s|Âmle), given that it has an amplitudeA to be estimated and Âmle corresponds
to the MLE amplitude estimate. The best estimate of A is the value that maximizes
p(s|Âmle). Therefore, the amplitude estimate can be found by solving the following
equation for the Âmle:

∂p(s|Âmle)

∂A
= 0 (5.8)

The a priori knowledge of the random process described by the signal is necessary.
For the sake of simplicity, initially, the phase of the received pulse may be considered
fixed for each readout channel. Additionally, the baseline value may be subtracted
from each received digital sample before estimation. As a result, the input signal s
considered in the MLE design becomes:

s = Ag + n (5.9)

where A represents the amplitude of the received signal, the vector g corresponds to
the samples of the normalized reference pulse and n are the noise samples.

For the particular case where the noise samples can be modeled by a multivariate
Gaussian distribution with covariance matrix C, the probability density function is
given by the following expression:

p(s|Âmle) = 1√
2π det(C)

exp

(−(s − Ag)TC−1(s − Ag)
2

)
. (5.10)
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By extracting the logarithm in (5.10), we have:

log{p(s|Âmle)} = −1√
2π det(C)

(s − Ag)TC−1(s − Ag)
2

. (5.11)

Computing the derivative of (5.11), with respect to the amplitude, and setting the
result to zero, it leads to:

Âmle = sTC−1g

gTC−1g
= sTw =

N−1∑
k=0

s[k]w[k], (5.12)

where Âmle is the amplitude estimate that maximizes Eq. (5.10).
Similarly to other linear methods, for the considered constraints, the MLE can be

easily implemented in digital processors through a Finite Impulse Response (FIR)
filter. It should be pointed out that if the constraint expressed by Eq. (5.6) is sup-
pressed, the coefficients of the linear estimator described in Sect. 5.3.1 lead to the w
vector computed for the MLE in Eq. (5.12) [25].

The Gaussian noise hypothesis is valid for the case where the signal pile-up effect
is not likely to occur. However, as theMLEuses the joint probability density function,
the pile-up effect could be incorporated to its design. On the other hand, the use of the
correct signal pile-up model requires an a priori knowledge, which is not available
in the majority of the applications. Besides, it may result in a complex estimator that
does not have analytical solution or be difficult to implement.

5.4 Nonlinear Correction

The linear methods do not fully handle the nonlinearities introduced in the received
signal by signal pile-up. Therefore, a computational intelligence approach could
be used in order to assist the reconstruction of the energy performed by typical
linear techniques. A nonlinear corrector may be designed in order to provide a small
contribution to the linear estimate according to the pile-up condition. For this, the
MLE can be combined with a ANN.

Instead of using the actual pile-up noise statistics in the design of a non-Gaussian
MLE, a combinedmodel uses a standardMLE (designed for aGaussian noise approx-
imation) and a nonlinear corrector, which may be implemented through an ANN
(Fig. 5.2).

The goal of the nonlinear processing is to correct for the linear model. That is,
the nonlinear corrector does not estimate the signal energy itself, but it provides
an adjustment to the linear estimate already available. For the case where the noise
comes mainly from electronic noise, the nonlinear contribution should be minimal,
and the estimate is dominated by the linear method.
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Fig. 5.2 Block diagram
illustrating the combined
system to perform the energy
estimation under severe
signal pile-up conditions. A
linear estimator is combined
with a nonlinear corrector
that performs an adjustment
for the final estimate

The advantage of the combined system is that the estimation from the linear
estimator (MLE) is always available for use, and the correction is applied upon
the user decision. Furthermore, the nonlinear corrector aims at adjusting the energy
that has already been computed. Therefore, its design should be simpler in terms of
computational effort, which is attractive for online operation.

5.5 Performance Comparisons

For performance comparisons, general-purpose simulation data are used here. The
12-sample pulse shown in Fig. 5.1a was considered as the reference pulse shape com-
ing from the calorimeter electronics front-end. Additionally, the simulation considers
a collider operating at the same rate as the front-end ADC sampling frequency. It
is worth mentioning that the simulations use 64-bit floating-point numbers and no
quantization issues were considered.

In order to cover the main algorithms used in modern calorimeter system, two
different algorithms (linear filters) are considered. The first one, referred to here as
Method 1, does not use the pedestal constraint (Eq. (5.6) removed), but, instead, uses
a baseline value stored in a data base. The second one, called Method 2, applies
the pedestal constraint in its design. Additionally, a feedforward MLP designed to
provide the complete estimate of the energy is also used for comparison with the non-
linear correction approach. TheANNdesigned to perform the full estimation replaces
entirely the linear model aiming at approximating the optimum estimator [37]. This
will be referred to as ANNE (Artificial Neural Network Estimator).

5.5.1 Data Set

A data set was built considering only signals corrupted with a zero-mean Gaussian
noise (σ = 1 ADC count), which is typical in modern calorimeters [5, 15, 19]. The
amplitude of the signals was chosen randomly according to an exponential distribu-
tion having a mean value set to 300 ADC counts. In order to simulate real operation
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conditions, another two random parameters were considered when generating the
signals. An uniformly distributed variable ranging from 2% of the sampling rate
period simulates the phase shift due to the time-of-flight of the particle. Another
zero-mean Gaussian distributed variable (σ = 1%) emulates the pulse deformation
due to electronics aging and precision.

For the first scenario of study, the signal of interest will not be superimposed
with any other signal within the same readout window, i.e. no signal pile-up is taken
into account (0% of channel occupancy). Here, occupancy means the probability of
a collision to produce a valid signal that is read out by a given channel. In a high
signal occupancy channel, the signal of interest is likely to be corrupted with both
electronic noise and signal pile-up.

Figure5.3a shows the histogram of the signal samples along with a Gaussian fit.
The kurtosis for the noise distribution in the scenario of 0%of occupancy (no pile-up)
is 3.02 (a pure Gaussian distribution has kurtosis equal to 3.00) and the hypothesis

Fig. 5.3 Distribution of the
noise samples for the cases
of a 0% and b 50% of
occupancy
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that the noise is a normal distribution, measured from the χ2 test, can not be rejected
at a 5% level of significance.

Another data set was built aiming at evaluating the efficiency of themethods under
different conditions of signal pile-up. The signal pile-up is added on the top of the
electronic noise and it is modeled by an exponential distribution whose mean is set
to 30 ADC counts [4, 10]. This data set characterizes the readout channels that suffer
from the signal pile-up effect, either because they are close to the collision beam
spot, or are located in a region with high signal occupancy. Again, fluctuations due
to phase shift (2% of the original sampling frequency) and signal deformation (1%)
are taken into account in the signal generation. The considered occupancy is 50%.

Figure5.3b shows the histogram of signal samples as well as a Gaussian fit for
such 50% of occupancy data. Now, the kurtosis is 4.76 and the χ2 test rejects the
hypothesis that the noise is a random sample from a normal distribution at 5% of
significance level. It can be clear noticed a long positive tail due to the signal pile-up.
Thus, the Gaussian features are much less present when compared to non pile-up
data.

Each data set (0 and 50% of occupancy) contains 50,000 events, where half of
them (training set) were used to develop the linear methods and train the nonlinear
corrector. The second half was used for ANN overtraining control and validation
(test data set) of the considered algorithms.

5.5.2 Nonlinear Corrector Design

The nonlinear corrector based on ANN (Fig. 5.2) was implemented through a feed-
forward MLP, chosen due to its simplicity and successful use in similar applications
[30, 50]. The signal samples from the training data set were normalized so that the
values of the samples range from 0 to 1. It was used a single hidden layer (five
neurons) and a single neuron in the output layer, as it is shown in Fig. 5.4. The input
nodes are the normalized incoming digital samples.

The activation function used for the neurons in the hidden layerwas the hyperbolic
tangent, whereas for the output neuron, a linear function is employed. The training
algorithm was the Levenberg–Marquardt [21], given its efficiency in converging to
the minimal of Mean Squared Error (MSE) function.

The target vector for the training phase corresponds to the absolute difference
between the reference value (known from the simulation) and the MLE estimate, as
shown in Fig. 5.5.

The number of neurons in the hidden layer was chosen based on the disper-
sion (RMS) of the estimation error distribution when applied to the test data set.
Table5.1 shows the behavior of the estimation error when the number of neurons in
the hidden layer is varied for both cases of occupancy (0 and 50%). It can be noticed
tat the configuration with five neurons presents good tradeoff between complexity
and efficiency (estimation error).
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Fig. 5.4 Artificial neural
network topology used as a
nonlinear corrector

Fig. 5.5 ANN training
strategy used for the
combined method

Table 5.1 Estimation error (RMS) for different numbers of neurons on the hidden layer (in ADC
counts)

Occupancy Number of neurons

2 3 4 5 10

0% 0.9 0.9 0.9 0.9 0.9

50% 28.5 28.2 27.6 27.4 27.4

5.5.3 Efficiency Tests

In order to evaluate the efficiency of the considered methods, the estimation error,
implementation complexity and linearity are analyzed. The estimation error corre-
sponds to the absolute difference between the estimated value and the reference value
(from simulation). Figure5.6 shows the estimation error distributions using the 0%
of occupancy data set, and the ANN output. As expected, the contribution from the
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Fig. 5.6 Efficiency for the
0% of occupancy test data:
a estimation error for MLE
+ ANN (Mean = 0.0 and
RMS = 0.9), Method 1
(Mean = 0.0 and RMS =
0.9) and Method 2 (Mean =
0.0 and RMS = 1.3); b ANN
output (Mean = 0.0 and
RMS = 0.2)
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ANN to the final energy estimate is minimal (almost zero), as the nonlinearities due
to the signal pile-up are absent for this scenario of occupancy.

Concerning the data set for 50% of occupancy, Fig. 5.7 shows the estimation error
and the contribution from the nonlinear correction (ANN output). As the signal pile-
up introduces an additional energy to the signal of interest, as in Fig. 5.3b, the goal of
the ANN is to compensate for this effect. For the sake of comparison, the estimation
error for the MLEmethod without the ANN correction are 0.9 and 56.8 ADC counts
for the case of 0 and 50% of occupancy, respectively.

In both scenarios (occupancy of 0 and 50%), the noise covariance matrix was
used to design Methods 1 and 2 describing only the electronic noise (modeled by
a multivariate Gaussian distribution). It should be mentioned that, Method 1 and
MLE exhibit equivalent performance (same set of coefficients) and, although they
present the optimum efficiency for the case of 0% of occupancy, they do not take into
account the signal pile-up statistics in their design. Therefore, they tend to present
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Fig. 5.7 Efficiency for the
50% of occupancy test data:
a estimation error for MLE
+ ANN (Mean = 0.2 and
RMS = 27.4), Method 1
(Mean = 105.4 and RMS =
56.8) and Method 2 (Mean =
–0.5 and RMS = 55.5); b
ANN output (Mean =
–105.2 and RMS = 49.8)
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a positive bias as the superimposed signals introduce a positive offset energy to the
distribution,which explains themodel of the distribution from the nonlinear corrector
output. As forMethod 2, it presents an artifact (through an additional constraint in the
optimization procedure) that forces the estimation to be immune against any offset,
and its energy distribution tends to present a negative tail.

For the ANNE method, a MLP configuration with nine neurons is chosen (see
Table5.2). Figure5.8 shows the estimation errors from the combined (MLE+ANN)
and pure (ANNE) methods. It can be observed that the histograms are superimposed,
which points out the similar performance of both approaches.

Concerning the computational effort, Table5.3 shows the number of operations
needed by each method. Method 1 and Method 2 require a low computational effort
for operation, and they are suitable for online applications where resources are lim-
ited, as this is the case for most DSP (Digital Signal Processor) based systems.
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Table 5.2 Estimation error (RMS) from the test set for different number of neurons in the hidden
layer of the ANNE (in ADC counts), considering pile-up (50%) data

Occupancy Number of neurons

3 7 8 9 10 20

50% 31.6 30.1 28.6 28.5 28.7 28.9
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Fig. 5.8 Efficiency of the estimators based on ANN: estimation error for MLE + ANN (Mean =
0.2 and RMS = 27.4) and ANNE (Mean = O.2 and RMS = 28.5)

Table 5.3 Computational effort of different methods

Operation

Sum Product Table search

Method 1 11 12 0

Method 2 11 12 0

MLE + ANN 60 65 5

ANNE 108 117 9

Considering nonlinear processing, the MLE+ANN approach presents better effi-
ciency as it demands lower computational resources and the flexibility of having the
linear output (MLE) available for use (upon user decision). It is worth mentioning
that such combined method can be implemented and tested for online operation in
experiments where modern electronic devices such as FPGA are employed [9].
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Fig. 5.9 Linearity from the
combined method for non
pile-up data
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5.5.4 Bias and Linearity

The estimation error has to remain constant for a large operating dynamic range.
Figure5.9 shows the mean and the standard deviation of the absolute error using
the combined method considering the scenario where the noise comes only from the
electronic noise.

The data points and error bars remain both approximately constant along the
energy range considered, indicating that the combined method presents a linear
behavior and no bias is introduced in the final energy estimation.

5.5.5 Performance at Different Occupancy Levels

Let’s consider now different levels of pile-up noise in order to cover the full range of
channel occupancy. To this end, a data set for several levels of occupancy was built
in a similar way described in Sect. 5.5.1 in order to cover a large range of occupancy.
The case of 100% of occupancy is the worst scenario of occupancy and it means that
there is a valid signal in every bunch crossing. The ANN configuration and training
strategy are kept the same as described in Sect. 5.5.2 for each nonlinear corrector
associated to each occupancy level. Figure5.10a shows the behavior of the mean
and estimation error as a function of the occupancy for each of the methods. As
expected, Method 1 exhibits a bias that increases with the occupancy. This bias can
be parameterized and subtracted from each energy estimate according to the current
beam luminosity (proportional to the occupancy).

Figure5.10b shows the RMS value for the estimation error as a function of the
occupancy level. It can be noted that for all occupancy levels, theMLE+ANNmethod
presents better efficiency than Methods 1 and 2 showing that the nonlinearities are
being properly dealt with.
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Fig. 5.10 Estimation error
over different channel
occupancy levels: the mean
(a) and estimation error
(RMS) (b)
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5.5.6 Exploring the ANN Generalization

Because each collision reduces the density of the beam in real operation, typically the
luminosity decreases as a function of time, and so does the channel occupancy. There-
fore, an online application would require the set of ANN weights to be updated for
every given luminosity during operation. However, a single ANN could be designed
to generalize for all occupancy levels and the nonlinear corrector may become fully
luminosity independent, avoiding reloading a specific set ofANNweights. Again, the
ANN configuration and training strategy are kept the same as described in Sect. 5.5.2.
Figure5.11 shows the efficiency of such approach, called MLE+generalized ANN.
A comparison with the ANN trained for each occupancy (MLE+ANN) is also pro-
vided.
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Fig. 5.11 Estimation error
considering a large range of
channel occupancy
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The generalized ANN presents similar efficiency when compared to the ANN
trained individually for each level of occupancy. For the case of 0% of low channel
occupancy (smaller than 10%), the linear output may be indicated.

5.6 Conclusions

Due to simplicity, efficiency and fast response, linear filters have extensively been
used for online energy estimation in modern high-energy calorimetry. These type
of filters are suitable for calorimeters operating under low-luminosity, where the
noise is wide-sense stationary and mainly comprises Gaussian noise arising from the
electronic readout chain. They also meet implementation requirements when digital
processing resources are limited. However, modern colliders tend to increase their
luminosity, unavoidably leading to signal pile-up (higher channel occupancy). Since
linear techniques do not incorporate the signal pile-up statistics in their design, it has
been shown that they present large bias and low efficiency under pile-up conditions.

The noise corrupted by electronic noise plus signal pile-up is likely to present a
non-Gaussian distribution due to the out-of-time signals that are acquired within a
given readout window, resulting in a distribution with a larger positive tail. Besides,
the signal pile-up statistics presents a non-stationary behavior since the level of
luminosity often decreases with time during data taking. Therefore, linear methods
based on a closed-form solution fail to properly describe the noise, indicating that
the use of computational intelligence solutions may be appropriate for mapping the
nonlinearities due to signal pile-up.

It was shown that an optimum estimator could be achieved by combining a linear
estimator with a well-trained neural network, outperforming the usual linear tech-
niques when operating at severe signal pile-up conditions. In this approach, the linear
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estimate is preserved and the ANN functions as a nonlinear corrector in order to com-
pensate for the error introduced by the non-Gaussian components. Thus, the ANN
may present low complexity, becoming attractive for online operation.

Finally, due to advances in hardware processing capabilities, the implementation
of such sophisticated algorithms has become feasible in high-energy calorimetry,
allowing intelligent systems to take part in future generations of particle colliders.
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Chapter 6
Non-supervised Learning Applied
to Analysis of Topological Metrics
of Optical Networks

Danilo R.B. de Araújo, Joaquim F. Martins-Filho
and Carmelo J.A. Bastos-Filho

Graphs can be used to model many real-world problems, such as social networks,
telecommunication networks and biological structures. To aid the analysis of com-
plex networks, several topological metrics and generational procedures have been
proposed in the last years. This work offers a systematic method to analyse differ-
ent backbone optical networks, based on a non-supervised algorithm for clustering
and investigates the power of a recently proposed topological metrics, named I (F̂).
The metrics I (F̂) and three others are applied to identify the best canonical model
to represent real backbone optical networks. According to the obtained results, the
clustering procedure allows to indicate I (F̂) as the better metrics to explain the
installed capacity for the analysed networks.

6.1 Introduction

Network Science is an interdisciplinary area that studies the behaviour of complex
networks present in different application domains, such as telecommunication net-
works, biological networks, neural networks, social networks among others. The
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National Research Council defines network science as the study of networks to
represent physical, social and biological phenomena and the creation of models to
forecast these phenomena [9]. Significant advances in network science are related to
the proposition of generative procedures to create graphs with topological properties
similar to the properties usually exhibited by in real-world networks. In 1940, Erdos
andRenyi developed relevant studies related to randomnetworks [12]. In 1988,Watts
and Strogatz proposed the first generative procedures for networks that present the
small-world effect (SW) [23]. In 1999, Barabási and Albert presented a model based
on preferential attachment to generate scale-free networks (SF) [6]. Several variants
of these models were already proposed in the last years [19]. In most of the cases,
real-world networks do not present a topology with random properties, such as the
networks generated by the Erdos–Renyi (ER)model. In general, real-world networks
exhibit characteristics similar to ones observed in regular networks, small-world net-
works, scale-free networks or a mix of the properties from these models. Based on
this, the topological properties can be used to classify networks according to a given
family of graphs.

Besides, studies from European and American telecommunication backbone
networks indicate that there is a high correlation between economic and demo-
graphic aspects and the optical fibre topology deployed to serve for a given traffic
demand [20–22]. Moss and Townsend [20] studied the development of the Inter-
net in the United States between 1977 and 1999 and established that there exists
a correlation between the physical and logical topology of the transport networks
with the presence of companies that have information as their primary asset. More
recently, Tranos and Gillespie [22] studied the factor that drive the spatial distribu-
tion of the transport networks in Europe and they concluded that several variables
affect the physical topology, but in general, the nodes are more connected in large
metropolitan regions. Tranos [21] observed in Europe that the infrastructure of avi-
ation networks are scale-free, whereas the backbone infrastructure is more regular.
Cardenas et al. [8] presented a study in which they show that the node degree distri-
bution of the SDH networks owned by the Telefonica-Spanish also is a power law
curve. Knight et al. [17] performed a study on the emergence of canonical models in
physical topologies of the Internet from several countries. This study was not con-
clusive about the more suitable model to represent a given transport network since
some of the analysed networks present power law distribution, while others are more
regular.

The studies on topological analysis of backbone networks frequently use several
metrics aiming at identifying the best canonical model to explain the analysed back-
bone. However, there is no conclusive previous study offering a systematic approach
to cluster backbone networks considering the canonical model that best fits the back-
bone networks. This paper proposes the use of a well-known non-supervised algo-
rithm, called K-means [16], to group backbone networks according to the topological
properties. This procedure allows one to identify the most promising features to sug-
gest canonical models to better represent the deployed backbone networks.
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The remainder of this chapter is organised as follows: Sect. 6.2 provides a short lit-
erature review on network science and clustering algorithms; Sect. 6.3 shows the pro-
posed methodology to analyse data. Section6.4 presents and discusses the obtained
results. Finally, Sect. 6.5 gives the conclusions and suggestions for future investiga-
tions.

6.2 Theoretical Background

6.2.1 Network Science

This section aims to provide theoretical foundations related to topological metrics
of networks and generative procedures to create network topologies with specific
properties. A complete reference to Network Science can be found in [19].

Topological Properties of Networks

In this work, we consider a network as a graph G = (N , E), in which N and E are
the set of vertices and the set of edges, respectively. The amount of nodes and links
in a network are n = |N | and e = |E |, respectively. In this chapter, the graphs used
to represent networks are unweighted and undirected. We assumed this because the
maximum number of optical channels for each optical link is fixed and it is equal in
all links in the network. Besides, each connection between each pair of nodes has a
pair of optical fibres, one for transmission and another one for reception.

A typical representation for G is the adjacency matrix A. The elements of the
matrix A indicate a link between the nodes i and j if the element ai, j = 1 and indicate
the absence of connectivity if ai, j = 0. If the network G contains only bidirectional
connections (the case studied in this work), the A matrix is symmetric.

The node degree (d) represents the number of links that connects the node to the
neighbours nodes. The node degree distribution of G defines the likelihood Pr(d) of
a node randomly selected in the network to have a specific node degree d. The entropy
of a network I (G) is calculated using the node degree distribution and provides a
measure of randomness of the network.

The shortest path (SP) describes the minimum number of hops between a pair of
nodes.The averagepath length (c) is the averageof the SPs considering every source–
destination pair in the network. The clustering coefficient (ci ) of a node i is the rate
between the number of triangles that contains the node i and the number of possible
triangles if all neighbours of node i were connected. The clustering coefficient of the
entire network (CC) is the average value of ci considering all nodes of the network.
The assortativity coefficient (−1 ≤ r ≤ 1) provides a measure to evaluate if nodes
with similar degree are connected (r ≥ 0). If r ≤ 0, it is more likely to have links
between nodes with different degrees. Pr(d) and the other measures presented in
this section are frequently used in order to specify which canonical model better
represents a network of the real world.
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In the graph theory, a network can also be analysed by its adjacency matrix (A)
or the Laplacian matrix (L). The node degree matrix (D) is used together with A to
build L . In this case, L = D − A, in which the non-diagonal entries (i, j) are either
“−1” or “0”, depending on whether nodes i and j are adjacent or not, respectively,
and the diagonal entries (i, i) are equal to the degree of the nodes Di . The ordered
set of n eigenvalues of A or L is referred as the spectrum of the matrix. The second
smallest eigenvalue of L is denoted as the algebraic connectivity (λN−1). A graph
is disconnected if λN−1 = 0. Moreover, if λN−i+1 = 0 and λN−i �= 0, then a graph
has exactly i components [13]. Another important spectral metrics, called natural
connectivity (NC) [24], aims to characterise the redundancy of alternative routes
in a network. Both λN−1 and NC are commonly used to measure the robustness of
real-world networks. More recently, Araújo et al. [2] proposed a novel metrics I (F̂)

based on the entropy of the Fourier coefficients of the eigenvalues of L . According
to [2], I (F̂) can provide more information regarding the network structure than other
metrics. I (F̂) is detailed in the next subsection.

The Topological Metrics I (F̂): Recent works demonstrated that the use of the dis-
crete Fourier transform (DFT) over the Laplacian eigenvalues can help to identify
characteristics not shown by the original set of eigenvalues. Araújo et al. [1] pro-
posed the use of particular points of the DFT curve to classify networks according to
a given canonical model. However, the metrics proposed in [1] can be used only to
analyse sparse networks. The metrics I (F̂), proposed by Araújo et al. [3], is based
on the entropy of the coefficients of the DFT of the Laplacian eigenvalues and can be
used for sparse and dense networks. L provides a summary of the network topology
since it contains information regarding the degrees of the nodes and the established
links. Thus, a metrics obtained by the eigenvalues of L can correctly summarise the
network topology. This fact was already exploited to propose several topological
metrics [19], but most of them are not suitable for a large spread of link densities,
i.e. the classification rule does not hold for sparse and dense networks.

Thus, it is possible to use the entropy of the DFT of the Laplacian eigenvalues
to classify graphs according to the topology and the degree of randomness of the
network. One can calculate the metrics according to the Algorithm8. The Eq. (6.1)
summarises the numerical calculation of the measure.

Algorithm 8 The algorithm for I (F̂): Procedure CalculateIF.
1: Let A the adjacency matrix of a graph G
2: Calculate the degree matrix D
3: Calculate the Laplacian matrix L = D − A
4: Calculate the real eigenvalues of L and store it in E
5: Calculate the Discrete Fourier Transform (DFT ) over E and store values in F
6: Normalize the F set in order to obtain values between 0 and 1 and store it in F̂
7: Calculate the entropy of F̂ values using Eq. (6.1)
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I (F̂) = −
|F̂ |∑
i=1

(F̂i · log2 F̂i ). (6.1)

Equation (6.1) has a structure similar to the one presented by the traditional
entropy used in information theory. It also looks similar to the entropy of the node
degrees (well known in the network science literature). A metrics based on entropy
evaluates the amount of information, the level of uncertainty and the predictability
of the numerical value of some physical measure. However, the deployment of an
entropy concept to the normalised set ofF brings the uncertainty of the node degrees
and the assortativity of the network. It considers simultaneously: (i) themechanismof
linking nodes by the Laplacian matrix (this allows to obtain the idea of assortativity);
and (ii) the assessment of randomness by considering that entropy also acts over the
node degrees, present in the main diagonal of the Laplacian matrix.

The same motivation could be directly applied to the set of eigenvalues without
the necessity of an additional transform calculation (i.e. DFT ). However, the DFT
provides an ease of analysis of themetrics over a large range of densities and the direct
use of the entropy over the normalised set of eigenvalues does not offer the same
interpretation when considering different network densities. Figure6.1 illustrates the
use of three different measures of entropy versus link densities, for networks with
100 nodes that were generated by different canonical models. Figure6.1 reinforces
the arguments presented to justify the use of the F . For instance, for the entropy of
node degrees, presented in the Fig. 6.1a, there are different classification rules for
q < 0, 10; 0, 10 < q < 0, 96; and q > 0, 96. Besides, the entropy of the eigenvalues
of L, presented in Fig. 6.1b, do not provide a unique classification rule for all the
ranges of density.

Themetrics I (F̂)was used in [5] and in [4] to aid the process of estimate blocking
probability of optical networks. Another study has used the metrics I (F̂),CC , r and
c to analyse five different Brazilian backbones [2]. However, all those studies applied
I (F̂) to analyse a small set of scenarios. This work proposes a systematic method-
ology to evaluate the capacity of explanation of topological metrics and applies this
methodology to a set of 107 deployed optical networks of several countries.

Generational Methods to Create Networks

Random networks were the first intensely studied networks. However, random net-
works are not very useful to explain real network phenomena, since real-world net-
works always present some structure. However, random networks are often used as
a benchmark to evaluate the randomness degree of real networks. Random networks
show a high value for the entropy of the node degree and the clustering coefficient is
small when compared to structured networks. The assortativity coefficient for ran-
dom networks is approximately zero. The methods of Erdos–Renyi (ER) and Gilbert
are the two more popular generational methods to create random networks. The ER
model creates networks by including new random links until the target density is
achieved. The proposal of Gilbert starts with a fully connected network and removes
random links until the target density is achieved. The Pr(d) of a random network
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Fig. 6.1 Different entropy
measures for scale-free
networks, random networks
and small-world networks,
with 100 nodes

follows a Poisson distribution for large networks and follows a Binomial distribution
for small networks [19].

k-Regular networks are created by connecting each node i to the other nodes
j ∈ {i + 1, . . . , i + k}, for k ≥ 2. If k = 1, then the network is known as a ring
network. k-Regular networks are highly structured networks since all nodes have the
same degree d = 2k. Thus, Pr(d) for k-Regular networks is a Delta function. The
entropy of the node degree is zero for k-Regular networks. A k-Regular network is
sparse if k is small and is dense for a large value for k. The density of a k-regular
is given by 2k

n−1 . Besides, k-regular networks are connected and present a small
value for both diameter and average path length. The assortativity coefficient for
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k-Regular networks is equal to one. k-Regular networks can be used to approximate
the characteristics of some real networks.

Small-world networks present a high value for the clustering coefficient and a
small value for the average path length. The entropy of the node degree can be tuned
by adjusting the parameters of the models. Small-world networks can be classi-
fied between regular networks and random networks. Several models were proposed
to generate the small-world effect in networks and one of the most popular is the
Watts–Strogatz (WS) method. WS method is initialized by creating a 2-Regular net-
work. After this, one needs to establish pm links, in which p is called as the rewiring
probability. The rewiring of links adds a limited amount of randomness and allows
the emergence of the small-world effect related to the shortcuts. Shortcuts provide
a way to decrease the diameter and the average path length of 2-regular networks.
After the rewiring process, the diameter and the average path length are closer to the
values obtained for random networks, but the clustering coefficient and the entropy
are similar to the values obtained for regular networks. In general, the node degree
distribution of small-world networks can be approximated by a Poisson function.
Some previous studies established relationships between the small-world model and
several real-world networks, such as social networks [19].

A scale-free network presents a node degree distribution that obeys a power law
h(d) ∼ d−q , in which d is the degree and q is an exponent often in the range [2, 3].
A network that follows this model presents few nodes with many links (known as
hubs), but most of the nodes has just one or some few connections. Scale-free net-
works show a high value for the entropy, but below the values for equivalent random
networks. The diameter and average path length of scale-free networks are small
due to the presence of hubs. The Barabási–Albert (BA) method is the most popular
procedure to generate scale-free networks. The BA model initiates with a fully con-
nected graph with three nodes. Then, the other nodes are connected to the network
by using the preferential attachment mechanism. This means that each arriving node
is connected to the others according to a probability P(di ) = di∑n

j=1 d j
, i.e. the arriving

nodes have a higher tendency to connect to nodes with higher degree. Because of this,
the assortativity coefficient for scale-free networks presents a negative value. Previ-
ous studies demonstrated that several real-world networks, such as Internet, railroads
and biological systems, follows this model [19]. Dougherty et al. [11] proposed a
generalised form for the preferential attachment model in which the attractivity of a
node is given by

U (s, t) = M(s, t)kτ (s, t) + S(s, t). (6.2)

wherein U , M and S are functions that depend on the node s and time t . M is the
fitness value of node s at time t , and S is an additional attractiveness of node s at
time t . If we consider the generalised form, the probability for an arriving node to
be attached to an existing node i at time t is given by

P(i, t) = U (i, t)∑n
j=1U ( j, t)

. (6.3)
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Table 6.1 Comparison of some topological properties for networks with 50 nodes, 100 edges and
rp = 5 %

Property ER BA WS 2-regular

Assortativity −0.06 −0.24 0.07 1.00

CC 0.07 0.14 0.44 0.50

Distribution Poisson Power Poisson Delta(4)

Maximum degree 9 19 5 4

Average degree 4.0 3.96 4.0 4

c 2.83 2.68 4.54 6.63

I (F̂) 2.5 3.54 1.0 0.82

Using this generalised preferential attachment model, different variants of the
scale-free networks can be created. For example, if τ = 1, M(s, t) = 1 and S(s, t) =
0, then the generalised model becomes the BA model.

Table6.1 shows numerical examples of topological properties of 50-node net-
works built by each one of the models we have presented in this section.

6.2.2 Clustering Algorithms

A clustering algorithm takes a set of data points and group the points into clus-
ters (subsets). Several algorithms have already been proposed to group data. In this
section, we provide the main characteristics of several approaches. For a more broad
study about these algorithms, we recommend several references.

• K-means: it is one of the most common iterative algorithms [16], broadly used
because of its simplicity of implementation, its convergence speed and the sound
quality of the clusters (for a limited family of problems). In theK-means algorithm,
each vector is classified as belonging to a cluster, and the centroids are updated
based on the classified samples, according to some distance metrics (such as the
Euclidean distance).

• Fuzzy K-means: in the K-means algorithm, each vector is classified as belonging
to a unique cluster (hard cluster). In a variation of this approach, known as fuzzy
C-means [16], all vectors have a degree of membership to belong to each cluster,
and the respective centroids are calculated based on these membership degrees.

• SOM (Self-Organising Map): by applying an approach known as self-organizing
map, the clusters can be defined by the points of a grid adjusted to the data [18].
Usually, the algorithm uses a two-dimensional grid in the higher-dimensional
space, but it is usual to use a one-dimensional grid for clustering purposes.

• Hierarchical clustering (HC): creates a hierarchical tree of similarities between
the vectors, called dendrogram. The most common implementation of HC is the
agglomerative hierarchical clustering, which starts with a family of clusters with
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onevector each, andmerges the clusters iteratively basedon somedistancemeasure
until there is only one cluster left, containing all the vectors [16].

In this work, we adopt the K-means algorithm due to its simplicity and because
the first results obtained for our problem by this algorithm were satisfactory.

Assessment of Clustering Approaches

Despite the popularity of clustering, until very recently little attention has been paid
to measure the output of a clustering algorithm.

Quality indicators proposed for clustering algorithms can be classified into three
types. The first type is based on calculating properties of the resulting clusters,
such as compactness, separation and roundness. This approach is called internal
validation, because it does not require additional information about the data [14, 15].
The second approach is based on comparisons of the partitions generated by the same
algorithm with different parameters, or different subsets of the data. This procedure
is called relative validation, and also does not include additional information [7,
15]. In the third possibility, called external validation, the approach is also based on
the comparison of the partitions. The partitions consist of the one generated by the
clustering algorithm and a given partition of the data (or a subset of the data) [7, 11].
External validation corresponds to a kind of error measurement, either directly or
indirectly. Therefore, we should expect external methods to be better correlated to
the true error. However, this is not always the case since it depends on the external
validation procedure. It also depends on the random labelled point process being
applied and the particular clustering algorithm being tested.

In this work, we used a simple external validation indicator when labelled data
are available, i.e. when we use synthetic networks generated by the canonical model.
According to Brun et al. [7], based on their extensive simulations among varied mod-
els, the silhouette indicator almost always outperforms the other internal indices.
Thus, we used the silhouette indicator as an internal measure to analyse our exper-
iments. The higher the silhouette, the more compact and separated are the clusters.
The silhouette of a vector x of a cluster Ck is defined by the Eq. (6.4):

S(x) = b(x) − a(x)

max[b(x), a(x)] , (6.4)

wherein a(x) is the average distance between x and all the other patterns in Ck and
b(x) is the minimum of the average distances between x and the vectors of the other
clusters. S(X) ranges from−1 to+1. If the value is close to−1, then this means that
the vector is closer, on average, to another cluster than the one to which it belongs.
If the value is close to +1, then it means that its average distance to its cluster is
significantly smaller than to any other cluster. The global silhouette index is given
by the Eq. (6.5):

S = 1

K

K∑
k=1

⎡
⎣ 1

nk

∑
x∈Ck

S(x)

⎤
⎦ . (6.5)
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6.3 Our Methodology

The studied problem in this chapter can be described as follows: given a set of
topological properties of networks with different characteristics, the goal is to cluster
the topologies according to the canonical model that best fits each network. In this
work two canonical models are considered, i.e. the Barabási–Albert (BA) model
and the Watts–Strogatz (WS) model. Graphs generated by the BA model represent
typical scale-free networks and the graphs produced by the WS model present the
small-world effect as the main characteristic [19]. We generated several networks
using both models and next, those networks are clustered by using the K-means
algorithm [16]. The K-means allows the clustering of patterns in k groups according
to the previously chosen properties. Besides, several topological metrics are used
to evaluate the explanation capacity of each one of those metrics regarding the best
canonical model to represent the networks. Our implementation of the K-means
considers that the centroids are randomly initialized and the algorithm stops when
the centroids do not change in two subsequent iterations.

We considered different average degrees (d) for the networks generated by canon-
ical models. When we take into account the clusters to group sparse and dense net-
works and to group the networks generated by the BA andWS models, we think it is
necessary at least k = 4 clusters. The topological metrics used in the non-supervised
learning process are: average node degree d , entropy of the node degrees I (G), assor-
tativity coefficient r , degree of the largest connected node d(h) and the entropy of the
DFT of the Laplacian eigenvalues I (F̂). To identify the capacity of a set of metrics
to correctly cluster the networks according to the canonical model, we adopt some
definitions and procedures for the external analysis. For the internal analysis, we
used the silhouette indicator shown in the Sect. 6.2.2. We define preferential canon-
ical model as the model related to the generative procedure that creates the network
that is closer to the centroid of each cluster found by the K-means. We define the
success rate of a cluster as the percentage of networks of a cluster that are generated
by the preferential canonical model of the considered cluster. We define the capacity
of explanation of a set of metrics as the average of the success rate for the whole set
of K clusters. One of the goals of this study is to identify the best set of topological
metrics regarding capacity of explanation to discover which is the canonical model
that best fits a given real-world network.

Our study is divided into two main parts. In the first part, we generated several
physical topologies using canonical models. In this first step is considered the gen-
eration of different topologies for a 32-node network, which is the average number
of nodes found in our dataset of deployed networks. We consider 500 different net-
works for each one of the canonical models and we use the average degree between
2.0 and 5.0. Thus, the clustering procedure considers a set of 1000 networks. The
WS is set to use a rewiring probability rp = 0.10 and the k parameter of the regular
network used at the beginning of the procedure is chosen according to the specified
average degree. The BA model also considers an additional number of links Δm
proportional to the average degree determined for each network. The second part of
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the study consists in the analysis of the clustering procedure for a dataset with 107
optical networks deployed in different countries. The primary goal of the first step is
to understand the capacity of explanation of the metrics when the canonical model is
well-known (labelled data). The main objective of the second step is to understand
the general topological profile of the networks contained in a large dataset of real
optical networks and to check if the clustering algorithm and the metrics defined in
the first step can be applied to a real scenario (unlabeled data).

6.3.1 Data Collection and Analysis Tools

The physical topologies of the deployed networks were obtained from maps and
tables available both on printed data and in the Internet. We have selected a few
Brazilian national backbones available in [10] and several deployed optical net-
works around the world available in [17].We used optical networks from the original
datasets that are related to connected graphs and that present more than 12 nodes.
The next step after the collection of raw data was to build manually for each network
a structured file in the GML format (graph modelling language). The GML format
contains elements to represent the nodes, links and additional information regard-
ing the optical network, such as the geographical coordinates of the nodes and the
capacity of links. By using the GML file as an input, it is possible to calculate several
useful metrics to analyse the physical topology.

Webuilt a platform to examine complex networkswritten in the Java programming
language to allow the calculation of the topological metrics. This tool also enables the
generation of several networks using canonical models. Besides, it is also possible
to use the GML file to create geolocated graphs, i.e. it is possible to create maps with
the graph plotted in the correct geographical coverage. To help in this process, we
used the JXMapViewer API. Our dataset is now available on the Internet.1

6.4 Results

Table6.2 presents the summary of the clustering process obtained by theK-means for
1000network topologies thatwere generatedby theBAandWScanonicalmodels and
for a 32 node network. All the rows of Table6.2 uses the average degree measure (d)
to allow a separation between sparse and dense networks. The remaining metrics are
used to enable the clustering of network topologies according to the canonical model.
From the results, it is possible to notice that the clustering by d and I (F̂) provide the
highest capacity of explanation when it is compared with the other choices of two

1www.researchgate.net/publication/283727923_dataset_optical_networks_20151113?ev=prf_
pub.

www.researchgate.net/publication/283727923_dataset_optical_networks_20151113?ev=prf_pub
www.researchgate.net/publication/283727923_dataset_optical_networks_20151113?ev=prf_pub
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Table 6.2 Results of the clustering procedure obtained by the K-means for different sets of topo-
logical properties

Number of
Metrics

Metrics Capacity of expl. Silhouette index

Mean Std. dev. Mean Std. dev.

2 d, r 0.9311 0.0405 0.5219 0.0336

d, d(h) 0.8976 0.1617 0.6045 0.0473

d, I (G) 0.9432 0.0942 0.5653 0.0179

d, I (F̂) 0.9461 0.0514 0.5683 0.0595

3 d, I (F̂), r 0.9907 0.0288 0.5267 0.0423

d, I (F̂), d(h) 0.9902 0.0040 0.5615 0.0941

d, I (F̂), I (G) 0.9849 0.0270 0.5638 0.0632

4 d, I (F̂), I (G), r 0.9954 0.0088 0.4872 0.0758

d, I (F̂), I (G), d(h) 0.9925 0.0355 0.5330 0.0830

5 d, I (F̂), I (G), d(h), r 0.9969 0.0069 0.4738 0.0957

variables. The best clustering in terms of capacity of explanation occurs when all the
metrics are used, i.e. for the set {d, I (F̂), I (G), d(h)}. This best set of five metrics
provides an average capacity of explanation equal to 0.9969. The improvement on
the explanation capacity when several rows of Table6.2 are compared indicates that
themore important metrics to represent the canonical models are, in ascending order:
I (F̂), I (G), r and d(h). According to results shown in Table6.2, it is possible to
conclude that the best set of variables to separate networks with different densities
and according to the BA and WS canonical models are: d and I (F̂), when two
metrics are used; d, I (F̂) and r , when three metrics are used; and d , I (F̂), I (G)

and r , when four metrics are used. Besides, the improvement regarding capacity of
explanation when the clustering uses five metrics instead two metrics is only 5%.
Thus, the set d and I (F̂) can be viewed as a good choice to indicate the canonical
model of a real network when a simple mechanism of comparison is needed. The
standard deviation of the capacity of explanation is less than 4% when more than
three metrics is used and this reinforces the confidence of the obtained results.

The results for the silhouette indicator suggests that the clustering procedure was
successful regarding compactness and separation since it has obtained S > 0, 47 for
all the rows of the Table6.2. Individual values of the silhouette are between −1
and 1 and a positive value indicates that the patterns are located in a suitable cluster.
However, the correlation between the silhouette indicator and the external evaluation,
regarding the capacity of explanation, falls in some cases. For instance, S is very high
for the set {d, d(h)}, because it is easy to separate networks according to the presence
of hubs. However, the capacity of explanation of this set is small because it is not
possible to use just these variables to identify the canonical models. Thus, we can
use S only as an indicator that the clustering procedure is working, but we can not
ensure that each set of metrics is the best choice to identify the canonical models.
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Table6.3 presents examples of the obtained clusters for each set of variables
analysed in the Table6.2. When we consider the average degree of the networks
between 2 and 5, the average point of the groups related to sparse and dense networks
has a relation to centroids with average degrees of 2.75 and 4.25, respectively. Thus,
we can notice that most of the rows in Table6.3 presents four well-defined groups
related to BA sparse networks, BA dense networks, WS sparse networks and WS
dense networks. For instance, the first row in Table6.3 separatesWS sparse networks
in theCluster 1,BAsparse networks in theCluster 2,BAdense networks in theCluster
3 and WS dense networks in the Cluster 4.

Figure6.2 presents an analysis of the evolutionof the indicators along the iterations
for the K-means algorithm with the best set of metrics. Each point of Fig. 6.2 is an
average of 100 different executions of the K-means algorithm in the correspondent
stage of the clustering procedure. It is possible to notice that the K-means algorithm
converges very fast four our problem. The capacity of explanation is close to 0.92
after the first iteration and quickly grows toward 0.99 after few iterations. Besides,
the silhouette index starts close to 0.34 and also rises quickly to the asymptotic value,
that is approximately equal to 0.50.

Table6.4 presents a summary of the clustering procedure for a dataset of 107
optical networks [17], by using k = 8 and the variables n, q and I (F̂). Our hypothesis
is that goodmetrics used to analyse the synthetic networks in the first step of our study
are also suitable to analyse real-world networks. In this second step, we also used n
since the networks of the dataset present different number of nodes. The clustering
procedure for real optical networks is more challenging when it is compared with
the clustering of the synthetic networks. This occurs since the deployed networks are
not purely scale-free or exclusively small world. The average value of the silhouette
index was around 0.30 for the clustering of these 107 networks. The profile of the
networks was built by comparison of the metrics with the average value for the
dataset, i.e. it is considered that a given network has few nodes when the observed
amount is lower than the average value of the entire dataset (32 nodes). When we
consider that I (F̂) varies according to the number of nodes and the density of the
network to decide when the value is high or low, the numerical value is compared
with the value obtained for an ER network with the same number of nodes and the
same density, as suggested in [3].

Fig. 6.2 Average value of
the metrics based on 100
different executions for each
iteration of the K-means
algorithm
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Table 6.4 Results of the algorithm k-means using n, d and I (F̂), for a database of 107 optical
fibre networks [17]

Cluster Network profile Centroid

Network n d I (F̂)

1 Few nodes, sparse, low entropy BELNET 19 2.10 1.31

2 Few nodes, dense, low entropy HIBERNIA 20 2.70 1.36

3 Few nodes, dense, low entropy ATT 25 4.48 1.65

4 Few nodes, dense, large entropy RNP 28 2.21 1.77

5 Many nodes, dense, large entropy BICS 33 2.91 2.18

6 Many nodes, sparse, large entropy IRIS 51 2.51 2.80

7 Many nodes, sparse, large entropy FORTHNET 60 1.97 5.80

8 Many nodes, dense, large entropy EMBRATEL 76 2.63 3.46

From the results presented in Table6.4, we can notice that there are optical net-
works that present topological features ofBAandWSnetworks.However, the amount
of networks positioned in each group of the Table6.4 is not uniform. For instance,
the Cluster 1 has 27 networks and the Cluster 7 has only two optical networks.
The clusters that have high value for I (F̂) contain 29 networks. Thus, according
to the obtained results, it is possible to notice that 27% of the networks from the
analysed dataset are mainly scale-free networks that present few hubs. On the other
hand, 73% of the networks from the dataset are more regulars and do not present
hubs. Figure6.3 presents a geographical map of the optical networks related to the
centroids of Table6.4. It is possible to identify the presence of hubs in the maps
presented in Fig. 6.3c–e. In the other topologies, the node degree distribution is more
uniform. The American network ATT, as in Fig. 6.3c has a hub with degree equal
to 9 located in Dallas and other two important hubs in Chicago and San Francisco,
both with degree equal to 8. The Brazilian network RNP, as in Fig. 6.3d has a hub
with degree equal to 5 in Brasilia, that has an amount of links above the average of
the other cases (the average is two links per node). The FORTHNET Greek network,
as in Fig. 6.3e has several hubs, but the most important is located in Athens, with 17
links. An interesting analysis is a comparison between the RNP Brazilian network,
as in Fig. 6.3d and the EMBRATEL one, as in Fig. 6.3f. Although both networks
have national geographical coverage, the EMBRATEL network has more nodes and
a larger amount of links. However, although the I (F̂)metrics presents a higher value
for the EMBRATEL than for the RNP, it is possible to notice that this is due to the
additional number of links in the EMBRATEL network. Thus, it is necessary to use
an ER network as benchmarking when networks with a different number of nodes
are compared. The ER network related to the RNP and EMBRATEL has I (F̂) equal
to 1.70 and 4.02, respectively. As the RNP presents I (F̂) above the reference value,
and the EMBRATEL presents I (F̂) below the reference value; we can conclude that
these networks are best represented by the BA and WS models, respectively. In the
Fig. 6.3f it is possible to observe a more regular structure in the connections of the
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Fig. 6.3 Optical networks related to the centroids obtained by the k-means over a dataset of 107
optical networks using the metrics n, d and I (F̂)
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EMBRATEL network because there are interconnected rings in the Northeast, South
and Southwest regions.

We want to emphasise that the highlighted networks of the Fig. 6.3 are topolog-
ically distinct since it presents differences concerning the number of nodes, link
densities and the shape of the network. Thus, the set of networks related to the cen-
troids can be used in studies inwhich it is necessary to evaluate the impact of different
algorithms on different network topologies, such as for the proposal of a new routing
algorithm, for example.

6.5 Conclusions

In this chapter, we analysed the capacity of explanation of several topological metrics
regarding the canonical model that best fits a given real network. The proposed
methodology uses the non-supervised learning algorithmK-means. According to the
obtained results for several installed backbone networks, the clustering procedure
of the K-means provide an easy way to analyse the topological properties of the
networks. Besides, the I (F̂) metrics is the best one in terms of individual capacity
of explanation when it is compared with the entire set of metrics.

Future works aim to investigate other features of the backbone networks, such as
the geographical coverage and the capacity in terms of traffic load balance. Besides,
other canonical models that presents different topological characteristics can be
applied to evaluate the proposed methodology in different scenarios. At last, other
clustering algorithms can be evaluated, such as the fuzzy K-means, SOM approaches
and algorithms for hierarchical clustering.
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Chapter 7
Mole Features Extraction for a Melanoma
Recognition System

Henrique C. Siqueira and Bruno J.T. Fernandes

The cancer is a painful disease that kill too many people. Skin cancer is among the
most frequent types of tumors in the world, and melanoma is the most worrying
type of skin cancer due to its high metastasis chances. Its global occurrence index
is close to 133.000 people per year. Irresponsible exposure to the sun causes 40%
out of the total. Melanoma is fatal when not diagnosed it its initial stages. The
most common diagnosis method is done visually based on five features: asymmetry,
border, color, diameter and elevation, also kwon as ABCDE method. We propose
three algorithms to extract features of skin moles based on dermatological studies,
using digital image processing techniques existing in the lecture. The first feature
measures the asymmetry level of the mole; the second one calculates irregularity
of the edges, and the third one computes the color variance of the mole. We also
evaluate these features as input to classifiers creating a melanoma recognition model
that indicates whether is melanoma or normalmole. The analysis of results are shown
through ROC curve and 10-fold cross-validation from two dermatological datasets:
Atlas of Clinical Dermatology and DermNet NZ.
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7.1 Introduction

Nowadays, skin cancer is among the most common cancers in the world, especially
in tropical countries because of the high incidence of UV rays. In Brazil is the most
common tumor corresponding to 25% of all malignant tumors already registered
according to research conducted by INCA (National Cancer Institute of José Alencar
Gomes da Silva) [11]. Its incidence has rapidly increased approximately 3–7% rates
for people with light skin.

There are three main types of skin cancer: basal cell carcinoma (BCC), squamous
cell carcinoma (SCC) and melanoma. The last one represents 4% of disease diag-
nostics and its major incidence is in adults with light skins. However, it is the worst
case due to its high metastasis chances, the dissemination of the cancer lesion for the
other organs.

The successful treatment of this cancer increases considerably if the tumor is
identified in the early stages. As evidence, there was a great improvement in survival
of melanoma patients that had early diagnosis in the last years [11], and about 90%
of the cases have been completely cured when the tumors was found less than one
millimeter of diameter [15].

Scientific works have been developed with the objective to create support systems
for melanoma diagnosis since 1980s [3]. Nevertheless, there is not a definition about
the most precise model to diagnose this pathology. One reason is the difficulty to
compare the models, because are applied different statistical methods to validate,
and from different databases, some of these data sets created by their authors, like in
Manousaki et al. [12].

In this work, we propose three new algorithms capable to extract mole features
from the human skin based on real features, defined by themedical community, using
digital image processing techniques. We also propose a recognition model able to
distinguish whether a mole image is a melanoma or not based on such features, using
one of the following classifiers for decision-making: artificial neural network (ANN),
logistic regression (LR) and support vector machine (SVM).

The chapter is organized as follows. Firstly, we general explain the melanoma
disease. Thus, the features extraction algorithms are introduced, as well as the model
to classify melanoma using our features as input. Finally, the experimental study is
presented followed by some concluding remarks.

7.2 Melanoma

The melanoma is a type of skin cancer that affects the melanocytes cells, located in
the bottom of the skin’s epidermis as shown in Fig. 7.1. The melanocytes produce
the melanin, the pigment responsible for the skin color.

The melanoma may begin like a mole that grows over time, may appear in almost
any color (including red, blue, brown, black, gray, and tan), usually has irregular
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Fig. 7.1 Skin’s layers with a melanocyte cell and a melanoma. Adapted from The Skin and Can-
cer Foundation Inc. 2016, Retrieved from https://www.skincancer.asn.au/page/2149/learn-about-
melanoma

edges, may be flat or raised on skin, may be painless or form wound. His appearance
is independent of anywhere of the body, but it is more common in areas exposed to
the sun, such as shoulders, head, arms and legs [5].

The most common procedure for the melanoma identification is made by der-
matoscopy, an examination that usually performed through the dermatoscope, hand-
held microscope that magnifies the skin ten times. Thus, the analysis identifies five
main features, also kwown asABCDEmethod (Asymmetry,Border,Color,Diameter
and Elevation) [5], as illustrated in Fig. 7.2.

• Asymmetry: indicates the level of similarity between the two halves of the mole.
The Fig. 7.2a shows an asymmetrical melanoma on left and a symmetrical mole
on right;

• Border: melanoma presents irregularity on the edges. In Fig. 7.2b, the top pictures
show the border irregularity present in the melanoma, in opposite, the bottom
pictures shows the mole with smooth transition on the edges;

• Color: melanoma has more than one color in the samemole. The Fig. 7.2c presents
the histogram of the moles. In the top, melanoma case, the histogram shows the
wide range of intensities, while in the bottom, has a small range of intensities.

• Diameter: melanoma is usually larger than 6mm. Example of the melanoma case
with approximately 2cm of diameter in Fig. 7.2d.

• Elevation: It is more common to find melanoma which create a raised surface on
the skin Fig. 7.2e.

https://www.skincancer.asn.au/page/2149/learn-about-melanoma
https://www.skincancer.asn.au/page/2149/learn-about-melanoma
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Fig. 7.2 Illustration of mole
features: asymmetry (a),
border (b), color variance
(c), diameter (d) and
elevation (e)
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7.3 Melanoma Recognition Model

Figure7.3 presents the complete workflow of the melanoma recognition model. The
input of the model is a color image with any dimension, as illustrated in Fig. 7.4a.
Next, it is necessary to identify the mole in the picture. So, we assume that image
contains two classes: the first one is the mole defined as an object, and the other
is the skin defined as background. The choice of the segmentation algorithm is an
important decision because it contributes to the effectiveness of next steps. According
toBhuiyan et al. [2], which compares segmentationmethods applied to binary images
of a mole in the skin, the segmentation method by Otsu [14] achieves the best results.
Thismethod segments the grayscale image previous converted, as shown in Fig. 7.4b,
in two classes as in Fig. 7.4c, based on the calculation of the optimal threshold in
the image histogram that minimizes intra-class variance and maximize inter-class
variance. Furthermore, does not require to set any parameter for different skin colors
and moles.

Fig. 7.3 Workflow of
proposed model for
melanoma classification
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Fig. 7.4 Original image in (a). Converted grayscale image (b). The segmented image in (c). Image
of segmented mole without fails in (d)

After segmentation, we make post processing to correct any fails in the binary
image in Fig. 7.4d that has resulted of Otsu. Failures are skin areas that have been
identified as a mole or holes present in the mole. A hole is a background region
surrounded by pixels that represent the object. We used the algorithm of Suzuki et al.
[16] to find the contour of all the object regions, and adopted as amole the regionwith
the highest number of connected components. With possession of contour points we
perform the method fillpoly() of OpenCV [13] to fill the region, resulting in Fig. 7.4d,
a segmented mole image without fails, after used as mask. Finally, the features are
extracted and used as input to the supervised classifier. The output of the classifier
indicates the presence of melanoma or not.

7.3.1 Feature Extraction

Three methods to extract features of the mole have been created, where we believe
that they can be a good representation for the normal and the abnormal mole. The
algorithms measure three melanoma characteristics previously covered: the asym-
metry level, the border shape, and the color shades in the mole. The other features,
diameter and elevation, are disregarded because we have not possible to get the real
dimensions of the mole in the two-dimensional picture since the distance at which
the image was captured is unknown.

7.3.2 Asymmetry

The asymmetry is calculated with the alignment mole by rotating the segmented
image by an angle r between the mole orientation axis o and the x axis of the picture.
The Fig. 7.5 illustrates the mole, the axes and the relation between angles. To obtain
the r value, it is necessary to calculate the coordinates of the centroid point pc(lc, cc)
of the mole, given by,
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Fig. 7.5 Relation between
angles in the mole

pc(lc, cc) =
(
m10

m00
,
m01

m00

)
(7.1)

where mxy are the spatial moments of order xy.
According to Horn et al. [10], to trace the orientation axis through the centroid

we have to get two points: p0(l0, c0) and p1(l1, c1) based on angle s, obtained by:

s = 0.5 ∗ arctan

(
2 ∗ mu11

(mu20 − mu02)

)
(7.2)

p0(l0, c0) = (lc − (100 ∗ cos(s))), cc − (100 ∗ sin(s))) (7.3)

p1(l1, c1) = (lc + (100 ∗ cos(s))), cc + (100 ∗ sin(s))) (7.4)

where muxy are the central moments of order xy. Finally, r is obtained through the
law of tangents, trigonometric formula given by,

r = arctan
(a
b

)
(7.5)

being a the difference between c1 and c0, and b difference between l1 and l0. Then,
the mole is delimited with the smallest possible rectangle, resulting a new image
containing only the mole (Fig. 7.6).

The Fig. 7.7 shows that the asymmetry can happen in relation with axis y, ver-
tically, as well as in relation with axis x , horizontally. So, the both axis have to be
considered to calculate this feature.
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Fig. 7.6 Image containing only the aligned mole

Fig. 7.7 Asymmetrywith y axis (a) and (e), overlapping halves on the y axis (b) and (f), asymmetric
with x axis (c) and (g) overlapping halves on the x axis (d) and (h). Melanoma (a), (b), (c) and (d)
and normal mole (e), (f), (g) and (h)

It is possible identify the asymmetry difference between the melanoma, as illus-
trated in Figs. 7.7a–d and the normal mole, as shown in Figs. 7.7e–h by the analysis
of the white region, which represents the overlapping parts of the image divided by
the respective axis.
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It can be observed in the non-melanotic case that the white region is occupying
the largest relative area in the mole, whereas in the melanoma case this area is
proportionally smaller. Lastly, we measure the mole asymmetry in percentage by
the ratio between the number of pixels that do not coincide and the total number of
pixels in the mole.

7.3.3 Border

Tomeasure the irregularity of the border, the standard deviation σd of mole signature
is calculated. Shape signature is a set of distances di of centroid point pc(lc, cc),
to each point pi (li , ci ) of the mole contours. This distance is obtained applying the
Pythagorean theorem,

di =
√

(lc − li )2 + (cc − ci )2. (7.6)

Finally, the standard deviation of the signature is

σd =
√√√√

Nd∑
i=0

(di − μd)2, (7.7)

being Nd the number of calculated distances and μd is

μd = 1

Nd
∗

Nd∑
i=0

di . (7.8)

In melanoma cases this distance presents a large variance, as in Fig. 7.8a, whereas in
normal moles, as in Fig. 7.8b it tend to remain constant.

Fig. 7.8 Melanoma
segmented image in (a) and
the non-cancer mole in (b)
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7.3.4 Color

To quantify the non-uniformity of the mole color, the variance σ 2 of the mole’s
histogram is calculated. The grayscale image used in this process; besides reducing
the computational cost, the non-uniformity of the pixels intensity from the mole is
maintained.

Firstly, it is calculated the mean intensity μi of the mole,

μi = 1

L
∗

L−1∑
i=0

i ∗ p(i), (7.9)

where i is the intensity value that can vary from 0 to L − 1. Being L the maximum
number of the intensities which the pixel can represents; in case of grayscale image
with eight bits, this value is 256. Finally, p(i) is the probability for the intensity i is
included in the image. Thus, the variance is calculated by

σ 2
i =

L−1∑
i=0

(i − μi )
2. (7.10)

In order to have the color variation rate of the mole crate in the range of zero and
one, it was necessary normalize the result, applying the equation

crate = 1 − 1

1 +
(

σ 2
i
L2

) , (7.11)

according to Gonzalez et al. [9].

Fig. 7.9 Histogram of the
melanoma (a) and the
normal mole (b)
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Figure7.9a is a melanoma that presents the variance equal to 2141.9, while
Fig. 7.9b has variance equal to 165.1. Therefore, it is observed that the variances
of the histograms in the normal moles are usually small because the colors of the
moles tend to be uniform while they are usually high in cases of melanoma.

7.4 Experimental Results

The proposed algorithms for features extraction and the models for melanoma clas-
sification are tested using images from two dermatological databases: Atlas of Clin-
ical Dermatology and DermNet NZ. The first is a clinical dermatology atlas that
has approximately 3000 images of dermatological diseases, all obtained by Niels K.
Veien in his private dermatological clinic [1]. These images are intended for use in
the study of dermatology area. The second, available since 1996 by New Zealand
Dermatological Society Incorporated, has images and papers about skin. It is written
and reviewed by health professionals and medical writers, with free access to the
dataset via internet [6]. The Fig. 7.10 presents some image examples of these data-
bases. We extract features from 139 images of moles in the skin, where 105 of these
are cases of melanoma, and 34 are normal moles. All pictures are colors of 24-bit,
8-bit per channel in the RGB pattern (red, green and blue).

One way to demonstrate the antagonistic relationship between the melanoma and
the normal moles for each feature is the analysis of the receiver operating characteris-
tic (ROC) [8]. The ROC curve is a graph of true positive rates, that means the positive
diagnosis with the presence of the pathology, against false positive rates, that means
the negative diagnosis with the non existence of the pathology. In other words, the
first rate is the ratio between the number of melanoma cases correctly classified over
the total of melanoma images, while second rate is the relation between the number
of normal moles misclassified as melanotic over the total cases of the normal mole

Fig. 7.10 Examples of some images of theses databases: DermNet NZ and Atlas of Clinical Der-
matology
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Fig. 7.11 ROC curve of the
extracted features:
asymmetry, border and color

images. The quality of the result of the ROC curve is determined by the area under
the curve (AUC) [4].

The Fig. 7.11 shows the comparison between the extracted features. The highest
AUC obtained was 0.93 by the standard deviation of the edge of the mole. The asym-
metry rate and the color rate obtained 0.82 and 0.83, respectively. So, the standard
deviation of the edge can identify melanoma cases better than other features.

The results obtained using multilayer perceptron neural network (MLP), logistic
regression with ridge estimator (LRR) and support vector machine (SVM) for the
melanoma recognition problem are presented. We tested many different configura-
tions for each classifier. As an evaluation approach of the models, we use the 10-fold
cross-validation [7], where we divide the database into 10 sets mutually exclusive.
At each iteration, one set is used for testing and the remaining sets are used for
model training. The Tables7.1, 7.2 and 7.3 present the evaluated configurations and
accuracy obtained for each model, MLP, LRR and SVM, respectively. The accuracy
is defined by the number of images classified correctly divided by the total number

Table 7.1 Accuracy for
Melanoma classification
using MLP

MLP Configuration Accuracy (%)

MLP-1 nh = 3 | α = 0.3 | m = 0.2 81.3

MLP-2 nh = 10 | α = 0.3 | m = 0.2 84.9

MLP-3 nh = 20 | α = 0.3 | m = 0.2 83.5

MLP-4 nh = 10 | α = 0.2 | m = 0.1 79.9

MLP-5 nh = 10 | α = 0.35 | m = 0.2 80.6
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Table 7.2 Accuracy for
Melanoma classification
using logistic regression with
ridge estimator

LRR Configuration Accuracy (%)

LRR-1 ridge = 0.1 84.2

LRR-2 ridge = 0.3 85.6

LRR-3 ridge = 0.5 86.3

LRR-4 ridge = 0.8 85.6

LRR-5 ridge = 1 84.9

Table 7.3 Accuracy for
Melanoma classification
using SVM with sigmoid
kernel

SVM Configuration Accuracy
(%)

SVM-1 gamma = 2 | coe f = 2 | cost = 1 85.6

SVM-2 gamma = 2.5 | coe f = 2 | cost = 1 77.0

SVM-3 gamma = 2 | coe f = 1 | cost = 1 84.9

SVM-4 gamma = 2 | coe f = 1 | cost = 3 84.2

SVM-5 gamma = 2 | coe f = 3 | cost = 3 86.3

of images. The best configuration of each model was selected for a more detailed
study including theMLP-2 with 84.9% of accuracy, the LRR-3, and the SVM-5 with
86.3% of accuracy.

The Fig. 7.12 shows the ROC curves of the best configurations for each model.
The SVM-5 had the best performancewith 0.867 ofAUC in comparisonwithMLP-2,
which has 0.846 of AUC and e LRR-3 with 0.851 of AUC.

The Tables7.4, 7.5 and 7.6 represent the confusion matrix of the models. The
lines correspond to the real values (target) of classes and columns correspond to
the values of the output of the model (predicted). The analysis of the confusion
matrix in medical diagnostic systems is important to the detriment of the comparison

Fig. 7.12 Comparison of
MLP-2, LRR-3 and SVM-5
classifiers
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Table 7.4 Confusion matrix
of Melanoma classification
using MLP-2

Normal Melanoma

Normal 18 16

Melanoma 5 100

Table 7.5 Confusion matrix
of Melanoma classification
using LRR-3

Normal Melanoma

Normal 17 17

Melanoma 2 103

Table 7.6 Confusion matrix
of Melanoma classification
using SVM-5

Normal Melanoma

Normal 19 15

Melanoma 4 101

between false positive and false negative rates. Considering the problem of skin
cancer classification, we can say that the minimization of false negative rates is
crucial because it represents the reduction of the error where a skin cancer was
classified as a normal mole, not masking the presence of a malignancy in the patient.
This type of error must be avoided since the time is a critical factor in the success of
the treatment. Rather, a consider number of false positive is not considered a serious
mistake, since for the patient would generate only a warning about the presence of
disease.

Thus, despite not having the largest area under the curve, the model LRR-3 has
the lowest number of false negative, only 2 cases. While the SVM-5 has 4 cases and
the MLP-2, with the worst performance, 5 cases of cancer signs classified as benign.

7.5 Conclusion

This work introduced three algorithms for features extraction from images of moles
in human skin, capable to measure the asymmetry level, the border irregularity and
the non-uniformity of the color. It is important to notice that they are invariants for
scale, rotation and translation, important properties in features extraction tasks.

This work also presented models to classify the melanoma. The first was the arti-
ficial neural network multilayer perceptron, the second was the logistic regression
with ridge estimator, and the last was the support vector machine. All models used as
input the results of the algorithms developed here. The proposed models performed
well, especially the LRR-3, with 86.4% accuracy and only 2 instances of false neg-
ative. It was observed with the experiments that the extracted features can create a
good representation of classes: melanoma and normal mole.

Moreover, good rates obtained in the experiments motivate the creation a system
with user iteration, for that the diameter of features and elevation are taken into
account, and may improve the rates obtained in the experiments.
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Chapter 8
Human–Machine Musical Composition
in Real-Time Based on Emotions Through
a Fuzzy Logic Approach

Pedro Lucas, Efraín Astudillo and Enrique Peláez

In this chapter, a method for representing human emotions is proposed in the con-
text of musical composition, which is used to artificially generate musical melodies
through fuzzy logic.A real-time prototype system, for human–machinemusical com-
positions, was also implemented to test this approach, using the emotional intentions
captured from a human musician and later used to artificially compose and per-
formmelodies accompanying a human artist while playing the chords. The proposed
method was tested with listeners in an experiment with the purpose of verifying if the
musical pieces, artificially created, produced emotions in them and if those emotions
matched with the emotional intentions captured from the human composer.

8.1 Introduction

Emotions are particularly intrinsic to music composition and performance despite
composersmight have or not considered themwhile composing.Vickhoff [13] argued
thatwedonot have control over our emotions, because they are triggered involuntarily
and non-consciously by nature. This raised the scientists’ interest about finding ways
of modeling emotions computationally to drive them in musical composition.
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Bezirganyan [2] showed that a particular melody could provoke a variety of emo-
tions to different listeners at the same time.Vickhoff [13] also showed that an emotion
could be perceived distinctly by different listeners depending on who they are and
the situation involved; findings which are relevant for a system when composing
melodies and pretends to provoke similar effects on listeners according to the level
of emotions that a human composer would.

This work is intended to help musicians in their creative process of composing
musical pieces, but with a better understanding about the role emotions play in
music, through a set of synthetic intelligent partners. In contrast with previous work
presented in this introduction, our approach relates the corpus of melodies with the
emotions that could produce on people, considering a real-time environment.

8.2 Background

This section discusses previous work related to musical composition based on emo-
tions, and fuzzy logic applied to music.

8.2.1 Approaches for Music Composition Based on Emotions

There have been different approaches for developing systems that analyze the emo-
tions’ content on music composition. Xiao Hu et al. [8] developedMoody, a system
that classifies and recommends songs to users based on the mood they want to ex-
press or have in that particular moment, a solution that considers the use of support
vector machines and a Naive Bayes classifier.

Strapparava et al. [11] showed that music and lyrics are able to embody deep
emotions. They proposed syntactic trees for relating music and lyrics, annotated
with emotions on each lyric line; in this case, support vector machines were used to
classify and demonstrate that musical features and lyrics can be related emotionally.

Suiter [12] proposes a novel method using concepts of fuzzy logic to represent a
set of elements and rules, considering expressiveness to trace a trajectory of musical
details related to composition and establishing important points for the application
of fuzzy logic over musical parameters; also, Palaniappan et al. [4] used fuzzy logic
to represent musical knowledge, in which a fuzzy classifier was a component of a
system for knowledge acquisition intended to Carnatic musical melodies.

XiaoHu [7] andWieczorkowska et al. [14] used emotions as labels for organizing,
searching, and accessing musical information, whereas Misztal et al. [9] exposed a
different approach by extracting emotions content from text, which then are used as
inspiration for generating poems. The system proposed expresses its feelings in the
form of a poem according to the affective content of the text.
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8.2.2 Emotions

Finding a proper definition of emotion has been controversial and a notorious problem
[3, 10]. Biologists and neurologists differ in their definition and both refer to it as
a subjective quality of our present state. Emotions, according to biologists, are an
important steering mechanism for animals and humans. Neurologists believe that
conscious observation of emotion is specific to humans [13].

Scherer [10] claims that emotions are a reproduction of various events produced
by an external or internal stimuli. Those events could be measured by taking in
consideration the main following aspects.

1. Continuous changes in appraisal processes at all levels of the central nervous
system,

2. Motivational changes produced by the appraisal results,
3. Patterns of facial and vocal expression as well as body movements,
4. Nature of the subjectively experienced feeling state that reflects all of these com-

ponent changes.

X. Hu. [6] in his work mentions 5 fundamental generalizations of mood and their
relation with music, which tell us that:

1. Mood effect in music does exist.
2. Not all moods are equally likely to be aroused by listening to music.
3. There do exist uniform mood effects among different people.
4. Not all types of moods have the same level of agreement among listeners.
5. There is some relation between listeners’ judgments on mood and musical para-

meters such as tempo, dynamics, rhythm, timbre, articulation, pitch, mode, tone
attacks, and harmony.

8.2.3 Fuzzy Logic in Music

Palaniappan et al. [4] proposed a knowledge acquisition method using a fuzzy clas-
sifier with the goal of representing patterns, which then could be used to generate
style-based music. In this case, the notes from melodic samples are analyzed and
their membership degrees are obtained by the occurrences of established patterns
on each sample.

Suiter [12] also proposed to relate fuzzy logic principles withmusical elements. In
this work, the elements to represent knowledge are non-liner parameters like timbre,
rhythm, frequency, and amplitude more than linear elements like notes. The focus is
on expressiveness, where fuzzy sets are managed through a fuzzy controller.

In this work, fuzzy logic is used to represent melody patterns where emotions
are denoted as fuzzy sets with membership degrees in the interval [0, 100], where 0
means absence of feelings associated to an emotion, and 100 a complete match of
a feeling regarding an emotion, these values are subjective and assigned based on
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a human perception. Therefore, each melody pattern is labeled with emotions and,
their corresponding membership degree, will represent an emotional intention that
we will use in the fuzzification–defuzzification process.

8.3 Compositional Model Based on Emotions

The proposed model for musical composition will be used for producing melodies
artificially and accompanying a human artist during a musical performance.

8.3.1 Architecture for Musical Knowledge Elicitation
and Representation

The architecture for musical knowledge elicitation and representation proposed in
[1],was designed based on the criteria of two experimentalmusicians and algorithmic
compositional methods, as illustrated in Fig. 8.1, which emphasizes musical compo-
sition through a fuzzy logic approach. This architecture considers a knowledge base
that is composed by transition matrices, obtained through a Markov chain process
over melodies provided by human musicians and labeled with emotions by them.

MIDI 
Events Recorder

MIDI Keyboard 

Keynote

Tempo (BPM)
Emotions

Creation Process for
Markov Chains 

Transition Matrices

Transition Matrices

Notes Durations

Generated
Melody
Patterns Melody Patterns

Emotion X

Knowledge Base

Emotional
Degree per
Emotion

Synthesis Engine

Compositional
Process

(Defuzzification)

Fuzzy Classifier
for Emotions
(Fuzzification)

Fig. 8.1 Knowledge elicitation and representation, with compositional process
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From these matrices, new melody patterns are generated and emotions are assigned
through a fuzzy classifier implemented with a fuzzification process as described in
Sect. 8.3.2. These patterns are then stored in the knowledge base for later use in
the compositional process that produces musical pieces which are played back by a
synthesis engine through the speakers.

Based on this architecture, a software prototype was implemented. A human
musician trained the system for nurturing the knowledgebasebyperformingmelodies
and providing the corresponding entries as depicted in Fig. 8.1. The input parameters,
emotions and emotional degree per emotion, represent the emotional intention the
musician wants to provoke to the audience; for example, happiness(80), sadness(10),
and serenity(75) are three emotions weighted by the musician to express, between
0 and 100, different intentions to produce a particular emotion (0 represents no
intention and 100 represents an absolute intention to produce the emotion).

The knowledge base is nurtured with the melody patterns generated by the com-
position algorithm described in [1], which is based on Markov chains. As shown
in Fig. 8.1, the melody patterns generated are then labeled with the emotions and
their intentions, which are defined by the musician, through a fuzzification process
as described in Sect. 8.3.2.

For the compositional process, a real-time system was developed to support a
musical human–machine improvisation, in which the musician (human) plays the
chords for a piece that is composed while is playing, during this process the sys-
tem (machine) produces melodies that accompany those chords by “remembering”
the musical data from chords in the past (notes and durations) and stored in the
knowledge base; also, the musician provides the emotional intentions previous to
the composition; that is, the emotions that wants to produce in the audience with the
emotional degrees, as in the training process. All this data is used to select the right
melody patterns saved in the knowledge base, through a defuzzification process, as
described in Sect. 8.3.2, and produce music.

8.3.2 Fuzzy Logic Approach

Considering the emotional influence by music over humans, a linguistic variable
called emotions will be used to capture the emotions, which are fuzzy sets that the
musician provides to the model, as well as the corresponding weights to represent
the emotional intentions; therefore, the melodies provided by the musician to train
the model, will create a set of solutions (melody patterns) that can be recalled later
for music composition in real-time using the provided emotions.

The approach for musical composition entails two main processes. First, a fuzzi-
fication process which allows the classification of melody patterns; second a de-
fuzzification process, which selects the piece of melody that is played back during
real-time composition.
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Fuzzification Process: Classification Method

The melody patterns are generated applying Markov chains as described in the ar-
chitecture shown in Fig. 8.1 [1], and represented using Eq. (8.1), where note is an
integer between 0 and 127, representing a MIDI number for the musical note, and
duration is a relative time that is based on the tempo (beats per minute, BPM) which
marks the rhythm for the melody pattern.

Melody Pattern : (note0, duration0), (8.1)

(note1, duration1),

· · · , (noten, durationn)

The relative time durations (durationi ) that were described above, are taken from
this fixed array of float numbers [0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5,
2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5, 4.75], which are representations formusical du-
rations [5], where 1 is a quarter note ˇ “ , as a reference for obtaining other durations.

The subscript n from (8.1) represents the size and it is an input parameter that con-
trols the number of generated pairs (note, duration) that will compose the melody
pattern. In this approach, musical rests [5] (intervals of silence) are not considered
in the melody pattern because they are merged with their immediate previous note
in order to reduce the complexity of the representation for the pattern.

The transition matrices are built from the set of melodies played by a human
composer who provides the emotions and their corresponding emotional intentions,
these matrices do not use these intentions in the process of generating new melody
patterns, but they are used during the classification process, as a source for labeling
those new patterns of size n, with the emotions given by the musician, as described
below:

1. The process is applied to notes and their durations in an independent way, so a
melody pattern is split in two arrays; one for notes and the other for durations. An
x melody pattern generated fromMarkov chains will be named asMMx (melody
machine), and the corresponding arrays are MMnotesx and MMdurationsx

2. The melodies recorded by humans, have a size m, and will be named as MHy

(melody human) then, the two arrays will be split, following the previous proce-
dure; hence, we have MHnotesy and MHdurationsy . The next steps will get the
distance between MMx and MHy , which will be used in the emotion’s labeling
forMMx . An example for these first steps is showed in Fig. 8.2.

3. To calculate the difference between each element of theMMnotesx andMHnotesy
matrices, which contain MIDI notes numbers between 0 and 127, we use the
following equation:

Δnotei j = |MHnotesy[i] − MMnotesx [ j]| mod 12 , (8.2)
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Fig. 8.2 Example corresponding to the structure used in melody patterns for human and machine

These are musical notes, which are linear musical representations composed es-
sentially by 12 elements distributed in several octaves [5], so in this equation the
octaves are not relevant because of the mod operation.

4. Equation (8.2) will be applied for each element of MMnotesx and MHnotesy to
calculate the distance between MMnotesx and a segment Sy[k]. The segment
Sy[k] is a subset of size n, where k is positive integer between 0 and m − n, and
is included in MHnotesy . If m ≥ n, there will be m − n + 1 segments contained
in a melody created by a human, but ifm < n, then there will be just one segment
and the operations will not consider the entire MMnotesx array. Equations (8.3)
and (8.4) are used to calculate the distance between MMnotesx and a segment
Sy[k]. Figure8.3 shows the representation of segments for m ≥ n and Fig. 8.4
illustrates how the distance betweenMMnotesx and a segment Sy[0] is obtained;
in this case, each Δnoteik is calculated as an average, to get the required distance
ds[0], which in this example is 7, 00.

Δnoteik = |MHnotesy[i + k] − MMnotesx [i]| mod 12 , (8.3)

d(MMnotesx , Sy[k]) = ds[k] =

min (m,n)−1∑
i=0

Δnoteik

min (m, n)
, (8.4)

This model considers an average among the Δnoteik values in a segment Sy[k],
whose resultswill always be a number between0 and11, due to the mod operation.
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Fig. 8.3 Representation for segments in melody patterns

Fig. 8.4 Example for calculating for distance between segment 0 and a machine melody pattern

5. The number of distances obtained for each segment, between MMnotesx and
MHnotesy is m − n + 1; hence, to determine the minimum distance from all
segments inMHnotesy and MMnotesx , we use the following equation:
For m > n,
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d(MMnotesx ,MHnotesy) = dnotesxy = min{ds[k] : k ∈ [0,m − n + 1]} ,

(8.5)

For m < n there will be just one distance, that is, d(MMnotesx , MHnotesy) =
ds[0].

6. This calculation of the distance between a generated melody MMnotesx and a
human melody MHnotesy , has to be applied to all melodies in the knowledge
base; therefore, if p is the number of human melodies in the knowledge base,
then the closest human melody, in terms of distance and the related pattern, to
MMnotesx is given by Eqs. (8.6) and (8.7).

DNotesMinx = min{dnotesxy : y ∈ [0, p − 1]} , (8.6)

MHnotesmin = MHnotesy, such that: min{dnotesxy : y ∈ [0, p − 1]} ,

(8.7)
7. The human melody for notes MHnotesmin is related with a complete melody

(notes and durations) that we called NotesMHmin, which was one of the previ-
ous melodies that were labeled by a musician who established emotions and its
corresponding weights along the training. This set of emotions will be denoted
as E and have a size that we will call ne with a specific emotion Er , such that
r is an integer in the interval [0, ne − 1]. For each human melody MH , there
is a set of emotions E with their corresponding weights wr . Thus, the emotions
and its weights for NotesMHmin are used for labeling the new generated pattern
MMnotesx as described in Eq. (8.8).

EMMnotesXr = EMHnotesMinr

(
1 − DNotesMinx

11

)
, (8.8)

We use 11 to normalize the minimum distance DNotesMinx for each pattern, be-
cause this value is in a range between 0 and 11, as described in step 4) of this
process.
To assign weights to each emotion EMMnotesXr in the melody machine patterns
MMnotesx we use Eq. (8.8) where the emotions weights, that label the closest hu-
man melody to MMnotesx , come from NotesMHmin. These emotions weights
are denoted as EMHnotesMinr and are weighted by DNotesMinx as the equa-
tion describes. For example, if a generated pattern (MMnotesx ) has a distance of
3.5 (DNotesMinx ) regarding its nearest human melody (NotesMHmin), and the
emotions given by the musician to that melody are happiness(10), sadness(90),
and melancholy(75) (given that ne = 3 and r is in [0, 2]), then the generated
pattern will be weighted using EMHnotesMinr (1 − 3.5

11 ); therefore, the results
are happiness(6.82), sadness(61.36), and melancholy(51.14), for that generated
pattern (MMnotesx ).

8. This process is extrapolated todurations; therefore, the sameequations are applied
to the arrayMMdursx , but considering: First, the difference between elements of
MMdursx and MHdursy , which will be given by Eq. (8.9).
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Δduri j = min(
∣∣MHdursy[i] − MMdursx [ j]

∣∣ , 4) , (8.9)

Because durations are relative to the tempo (BPM), the value is fixed to 4 beats,
which allows us to have a numeric reference for the normalization factor when
the emotion weights are calculated. It is 4 because a complete rhythm measure
(bar) can be basically marked as 4 beats like a metronome does [5]; and, second,
the normalization factor of 4, as described before.

9. Finally, the process has to be applied to allMM patterns; that is, to all the generated
patterns produced by the Markov chains component. Therefore, the knowledge
base will have two kinds of weighted sets, one for notes MMnotes and another
for the durations MMdurs. Since these sets are not merged in a weighted MM, a
melody can be built with notes and durations that come from different generated
patterns when the defuzzification process acts, providing more flexibility in the
compositional process.

Defuzzification Process: Compositional Method

As in real-time musical composition (improvisation) [5], a human–machine musical
composition takes place when a humanmusician plays the chords for a musical piece
and it is accompanied by the machine or viceversa. The inputs involved are described
below:

Start Input Before initializing the system, the human musician must provide the
weights for the intended emotions. These values are related to the emotional
intention that the human composer wants to transmit to the audience. Also, the
tempo (BPM) and the keynote have to be given.

Real-Time Input While the musician is playing, the artificial agent gets the mu-
sical notes generated by the artist (chords), and produces new melodies in real
time, using the data stored at the knowledge base.

For the compositional process, we use ametronome to guide the human composer.
On every beat marked by the metronome, the system produces a melody pattern that
is the result from the compositional process. This process uses the acquired notes
from the previous period of time between the current beat and its predecessor, as
shown in Fig. 8.5.

Not all notes of a generated melody pattern of size n are played, because of
the overlapping notes in every beat. This overlapping will produce dissonance if
the playing notes are still being performed in the next chord, which means that, the
musician execution might not be congruent with the last set of notes [5]. To solve this
problem, the melody pattern only is executed in a random number of notes between
1 and the inputsi ze (notes played by human composer). For example, if we have a
melody pattern with n = 20 and it is received in a specific time, an input like this
(48, 50, 52, 55), in MIDI notation, represents the notes (C3, D3, E3, G3), then the
system will split the melody pattern in 1, 2, 3 or 4 notes. However, if the human
composer plays a lot of notes, all notes will be reproduced. This behavior produces
an interesting effect that makes the system generate harmonies more than melodies
along the composition; an effect that is not dissonant.



8 Human–Machine Musical Composition in Real-Time Based … 153

Beats

0 4 8 12 16 20 24

Metronome

Compositional
Execution Edge

Data Acquisition
(Musical Notes)

Fig. 8.5 Metronome model for data acquisition and compositional execution

To choose the melody pattern that best fits on every beat, we follow the next
defuzzification procedure:

1. Since the knowledge base can be very wide, we need a strategy to search the
best solution according to the input. Hence, the generated melody patterns are
organized in balanced binary trees.

2. In this approach, the knowledge base is structured inne balanced binary trees, such
that ne is the number of emotions that are involved for all the generated patterns,
where all these patterns have a certainmembership degree per emotion. Thus, each
tree will represent an emotion where the keys are the emotional degrees (weights
or membership degrees) and the values are the melody patterns associated with
that emotion. Although this representation requires some extra memory, because
of the keys, it is a worthy trade-off because it helps to reduce the search space to
find the right patterns and reproduce them, as we will see later.
For example, if the knowledge base is trained with three emotions happiness,
sadness, and melancholy, then we have three balanced binary trees, as illustrated
in Fig. 8.6. Then, each melody pattern is added to each of those trees, based on
its emotion and emotional degree; that is, if the degree of happiness is 20.0, then
a new node is created in the happiness tree with a key = 20.0, and, if there is
already a node with that key, then the pattern P is associated to a set of patterns
which belongs to that node, in order to share this same node as in Fig. 8.7. Since
the knowledge base have two kinds of weighted melody patterns, one for notes
and other for durations, we have to consider six binary trees in this example.

3. The emotions weights provided by the musician in the start input might not be
registered as keys in the trees, because it could not have appeared previously in
the training; for example if the musician enters happiness(10), sadness(90), and
melancholy(75), and there is not the key 10 in the tree for happiness, then we are
going to consider the nearer keys as shown in Fig. 8.8.
The nearer keys represent the nodes that meet these requirements:
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Happiness Sadness Melancholy

Fig. 8.6 Emotional trees examples

Node
for Emotional Tree         20.0

P1: (n1.1, d1.1), (n1.2, d1.2), ...
P2: (n2.1, d2.1), (n2.2, d2.d), ...
P3: ...
      ...

Key:
Melody Patterns:

Fig. 8.7 Node structure example for an emotional tree

Fig. 8.8 Nearer keys to 10
from a happiness tree

11.25

8.00

7.50 9.00

Happiness

8.50

Nearest to 10.0

• If the target emotion weight is found, then we will collect all the melody
patterns associated with this target node and its adjacent nodes; that is, the
parent and its children.

• If the target is not found, we will traverse the tree until a null leaf is found, we
will go up to its parent and as before, we will collect all the melody patterns
from this node and from its adjacent nodes.

The objective is to have a reduced solution space with the patterns that matters for
each emotion independently, which are closer to the emotion’s weights given by
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the musician in the start input. This procedure can take place during the system
initialization.

4. When the process is running and the human composer is playing, the system
receives the notes from a MIDI keyboard (real-time input). This input and the
reduced solution space trees are used for playing a melody through the speakers.
To get a melody pattern, the system iterates over the reduced solution space
looking for patterns whose notes meet the following two criteria:

• The set of weighted emotions Eh of size ne, which the human performer gave
at the initialization time, is compared against all the weighted emotions Em
for each pattern in the reduced space by using Eq. (8.10), which is a Euclidean
distance to take into account all the emotions we use.

Dhm =
√√√√

ne∑
r=1

(Emr − Ehr )
2 , (8.10)

The goal is to find the melody pattern that has the minimum emotional
distance and also is musically consistent with the input notes, as explained
below:

• The melody pattern to be chosen must be musically consistent with the har-
mony (chords) that the human composer is playing. Hence, we use the fol-
lowing criteria: If the first note in the candidate melody pattern is part of the
input provided by the human composer, then that melody pattern is consistent
with the received harmony. There could be other heuristic criteria; however,

Fig. 8.9 Generation for the new melody pattern
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we do not want to have a strong restriction that inhibits the artificial creativity
of the system.

These two criteria are merged by an and (∧) operator to shape one expression
and get the target melody pattern based only on notes. For durations, we just need
the first criteria.

5. Finally, the two chosen arrays, melody pattern for notes and melody pattern for
durations are putting together to generate a new melody. Therefore, from the
fuzzy sets for Emotions, we get a crisp value (melody pattern) as in Fig. 8.9.

8.4 The Experiment for Musical Intention and Perceptions

8.4.1 Procedure

Musicians with academic background trained the system with 15 melodies with
an average of 30.0 s per melody. The emotions selected by the artists were five:
happiness, serenity, sadness, nostalgia, and passionate, which were weighted with
emotional degrees between 0 and 100 for each melody, depending on the emotional
intention, also the keynote and tempo were provided during the training. The system
generated 30 melody patterns using Markov chains, which were weighted through
the fuzzification process.

The human musician performed the harmonic base (chords) for 15 musical pieces
approximately for 60 s, also provided the emotional intentions for each piece, such
that the system played melodies that were consistent with the provided harmony and
the emotional intentions using the defuzzification process.

These 15 musical pieces were then played to other people that listens western
music, hence the pieces were weighted with the emotional perceptions as they were
perceived, 30 people filled the assessment. A summary for this procedure is described
in Fig. 8.10.

8.4.2 Results

The results presented inFig. 8.11, as boxplots, showed that for themusical piece 1, for
example, the emotional intention from themusician and the perceived emotions by the
listeners differed from each other; however, the perception tilts toward the emotions
in a similar way as the intention. As seen in Fig. 8.11, there is more serenity and
nostalgia than happiness and passion in the perceptions, as well as in the intentions,
but sadness is not adjusted to this behavior. The plots fromothermusical pieces, for all
emotions behaved similarly, or have one emotion that is not adjusted. Other emotions
that were felt by the listeners, and not intended by the system where melancholy,
reminiscence, calm, relaxation, depression, hope, and anxiety.



8 Human–Machine Musical Composition in Real-Time Based … 157

Fig. 8.10 Elements for the procedure and their interactions

Fig. 8.11 Emotional intention and perceptions for Musical Piece 1

In Table8.1, we present the results for a Levene’s test that is used to assess the
equality of variances for a variable, calculated for two or more groups. In our case,
the test is applied to every song, and the groups per song are the emotions (happi-
ness, serenity, sadness, nostalgia, and passionate). This test was applied with 95%
confidence and tell us that the variability for each song, regarding the emotions, does
not differ significantly except forMusical Piece 5 andMusical Piece 6, which means
that listeners perceived each song with a similar degree of vagueness.
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Table 8.1 Levene’s test for the emotions’ variances on each musical piece

Songs W P-value

Musical Piece 1 1.731 0.146

Musical Piece 2 0.377 0.824

Musical Piece 3 1.833 0.125

Musical Piece 4 1.353 0.253

Musical Piece 5 3.289 0.0129

Musical Piece 6 2.816 0.0274

Musical Piece 7 1.952 0.104

Musical Piece 8 0.753 0.557

Musical Piece 9 1.120 0.349

Musical Piece 10 0.124 0.973

Musical Piece 11 1.460 0.217

Musical Piece 12 0.968 0.427

Musical Piece 13 0.412 0.799

Musical Piece 14 0.978 0.421

Musical Piece 15 1.599 0.177

Finally, despite these results, listeners did not report any comment that suggested
a random composition of melodies; though, they felt some pieces had similar melody
patterns.

8.5 Conclusions

This paper presents a musical composition approach based on human emotions as
fuzzy sets. The processes for fuzzification and defuzzification for these sets, were
implemented in the context of a real-time system, that performedmusical pieces along
with human partners, who felt awell-timing execution from the artificial agent, which
resulted in a proper synchronization between players, just like human musicians
playingwith an emotional connection. The humanmusicians reported that sometimes
the emotional intention changed a little in order to perform consistently with the
system; however, it did not affect the composition significantly, as stated by the
musicians. Thus, the system is not restricted to what is required to produce, but it
contributes with its own style to the compositional process.

This unexpected change of intentions could have caused that the emotional per-
ception did notmatch significantlywith the emotional intention as the results suggest.
Also, this experiment did not control the emotional status for each listener, so it could
have influenced in the answers; nevertheless, the variability regarding these answers
is similar on each musical piece, which means that there is a subjectivity degree to be
considered when people listen a song that avoids an expectation about the emotional
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intention. However, all the listeners reported that they felt the emotions that were
established for the testing, and even other distinct emotions. These results show that
the proposed method does influence on people’s feelings that listen Western music.

This research contributes to the creative compositional process, providing to mu-
sicians inspirational material that is generated from the same source from which the
system is trained, a style that is indeed preferred by them, based on their knowledge
during the process of composing music. This approach could also be applied to other
areas where real-time multimedia applications are needed; such as, video games or
interactive experiences that require dynamic sound design.
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Chapter 9
A Recursive Genetic Algorithm-Based
Approach for Educational Timetabling
Problems

Shara S.A. Alves, Saulo A.F. Oliveira and Ajalmar R. Rocha Neto

This chapter addresses the educational timetabling problem formultiple courses. This
is a complex problem that basically involves a group of agents such as professors and
lectures that must be weekly scheduled. The goal is to find solutions that satisfy the
hard constraints and minimize the soft constraint violations. Moreover, universities
often differ in terms of constraints and number of professors, courses, and resources
involved,which increases the problem size and complexity. In thiswork,wepropose a
simple, scalable, and parameterized recursive approach to solve timetabling problems
formultiple courses with genetic algorithms, which are efficient searchmethods used
to achieve an optimal or near optimal solution.

9.1 Introduction

Timetabling problems are present in several enterprises and institutions. The main
idea of this kind of problem is to set events into a number of time slots. Each event
involves agents and may require some resources. Moreover, assignments would not
violate institutions constraints that are categorized in soft and hard constraints [19].
The goal is to find solutions that satisfy the hard constraints andminimize the soft con-
straints violations. Educational timetabling problem is the most popular timetabling
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problem and is a NP-hard problem, which means that the amount of computation
required to find solutions increases exponentially with problem size [11]. Therefore,
efficient search methods to achieve an optimal or near optimal timetable are highly
desirable.

Educational timetabling problem is generally divided in three main types, to
wit [19]:

1. The school timetabling that is weekly for all school lessons and avoid agents
meeting two lessons at the same time;

2. The course timetabling that is weekly for all the lectures of a set of university
courses and minimize overlapping lectures of courses having common students;

3. The examination timetabling for the examsof a set of university courses, spreading
them for the students as much as possible and avoiding overlap of course exams
having common students.

Genetic algorithms (GAs) are a search meta-heuristic method inspired by natural
evolution, such as inheritance, mutation, natural selections, and crossover [12]. This
meta-heuristic can be used to generate useful solutions to optimization problems.
Due to the characteristics of GAs methods, it is easier to solve few kind of problems
by GAs than other mathematical methods, which do have to rely on the assumption
of linearity, differentiability, continuity, or convexity of the objective function [22].

Educational institutions’ environments differ in terms of constraints, classes
(group of students), rooms, concurrent courses, number of agents, and their unavail-
abilities. According to the institutions, some constraints are more important than the
others. The related works often focus on one of the three main types of problem and
on events involving some specific constraints, as an example the student constraints.
The student constraints are commonly contemplated because students cannot attend
to different events at the same time [4, 15, 21]. On the other hand, some works
presuppose classes to be disjoint [1]. Nowadays, a promising constraint is the agent
unavailabilities since it is common the agents work at different places [3, 8].

In this work, we proposed a simple, scalable, and parameterized model with
a recursive genetic algorithm approach to solve timetabling problem for multiple
courses. Such suitable model is capable to deal with different courses since univer-
sities differ from each other in number of courses and often courses lessons may
change depending on the shift. The constraints are embed in fitness function and can
be added or removed easily. The soft and hard constraints considered in this work
were defined after an environment analysis held at Federal Institute of Ceará. The soft
constraints are related to (i) adjacent lectures: more than 3 lessons in a row and (i i)
agents unavailabilities: agents unavailable due other activities. The hard constraints
comprehend (i) agents matches when agents are assigned to concurrent events and
(i i) same course semester lectures overlapping, whichminimize overlapping lectures
of courses having common students. Our model solves course timetabling problems
through GAs recursive executions, and as a result a global timetable is obtained.
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The remaining part of this chapter is organized as follows. In Sect. 9.2, we expose
some relevant related works. Then, we present our proposal in Sect. 9.3. After that, in
Sect. 9.4, we describe the experiments carried out. Finally, some conclusions remarks
and future works are represented in Sect. 9.5.

9.2 Related Work

Alargenumber of approaches havebeenproposed for solving educational timetabling
problems [18]. Most related approaches work on school and course timetabling.
Spreading exams is another interesting problem to be solved, but not often the focus
inmost educational institutions.We found solutionswith simulated annealing [1, 21],
Meta-heuristicmethods [7],Memetic algorithms [6, 15], genetic algorithms [2, 3, 8],
and Graph-based [4, 17].

As an example, Borges’s approach [3] addressed to the university timetabling
problem with 8 classes and 33 agents. In such work, a mechanism for avoiding
stagnation was employed, but the population size was 1000 and the time to achieve
the best solution was not informed. In addition, the same timetabling problem was
also covered by Ramos [8] with 14 classes, 21 agents and 10 rooms. We highlight
the number of generations and runtime necessary to carry out such model, which
was 15000 generations and 35 up to 90min, respectively. We draw attention to the
best fitness achieved by Ramos’ model, which was 0.5 in [0,1]. Furthermore, both
considered agents unavailabilities constraint.

9.3 Proposal

We aim to propose a simple, scalable, parameterized recursive genetic algorithm
approach to solve timetabling problem for multiple courses. Our model suits the
amount of courses, number of semesters, days and lessons per day. The global
timetable is the solution, which is obtained by applying genetic algorithms (GAs)
recursively so that each execution solves one course. We present our proposal from
this point on.

First, the agents inform their unavailabilities in terms of period of time. Each
course contains number of days and lessons per shift and a 2-tuple list [lecture,
agent]. The model receives as input a list of courses, the agent unavailabilities and
the GAs parameters, to wit, number of generations, mutation and crossover rate. The
global timetable is achieved by recursive executions. As stated before, each GAs
execution solves one course timetable and generates new assignments. These new
assignments are used to update the agent unavailabilities for the next execution. Thus,
after having several executions, we achieve a global timetable solution, which takes
into account each and every agent unavailabilities obtained as depicted in Fig. 9.1.
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Fig. 9.1 Overview of our model

9.3.1 Genetic Algorithm

Genetic algorithms (GAs) [14] are metaheuristics in the field of artificial intelligence
belonging to the larger class of evolutionary algorithms and can be used to solve
optimization problems. GAs are inspired by natural evolution and mimic the process
of inheritance, mutation, natural selection, and crossover. The population of species
(candidate individuals or solutions) is evolved toward better individuals so that the
fittest individuals remain in population. An individual has a set of chromosomes and
each chromosomea set of genes,which canbe changed throughmutationor combined
with other individual genes to generate new individuals by crossover process. The
standard GA flowchart is depicted in Fig. 9.2.

First, an initial population is created and evaluated by the fitness function. Then,
some selection operator is used to define which individuals are going to the repro-
duction step. The selected ones are crossed over and the remaining individuals may
suffer mutation at random. Finally, if some stop criteria is achieved the algorithm
returns its best solution or keeps evolving the population toward optimal or near
optimal solution.

There are a lot of approaches, heuristics, and operators available in literature for
GAs. Some main issues regarding to them require special attention, to wit, how the
problem are going to be designed, named the genetic representation; which selection,
crossover, andmutation operators will be chosen; and how to evaluate the individuals
fitness. The aforementioned issues impact the algorithm performance in its solution
search task. We present our approach design decisions in the next sections.

Fig. 9.2 Genetic algorithm flow chart
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Fig. 9.3 Genetic representation

9.3.2 Genetic Representation

In Brazil, a course is divided in semesters, for example, a undergraduated course that
lasts 4 years will have 8 semesters. Thus, our individual is composed by m chro-
mosomes, which each chromosome represents a course timetable. Each timetable is
divided into semesters which is a group of daily time slots as depicted in Fig. 9.3.

In our representation, we adopted integer genes to compose the chromosome and
the chromosome size is defined by the number of semesters and daily time slots.
Each time slot, which is a single gene, comprehends two periods of time since most
lectures has two lessons at least. The gene value is unique and refers to a 2-tuple
[lecture, agent] or a free time in timetable.

We designed this genetic representation due its simplicity and easy verification of
further restrictions, such as, agents matches. Moreover, it already avoids lectures of
a same semester overlap since each gene position is related to an unique time slot.

9.3.3 Genetic Operators

Our genetic representation does not allow repeated gene values, thus a crossover
operator that follows this restriction is appropriate. Among the popular crossover
operators, the single point [14], multipoint [12], and uniform crossover [20] opera-
tors violate this prerogative. However, there are operators that change the order or
arrangement of genes, such as OX [9], CX [16] and PMX [13]. This type of operator
is called permutation operator and generates feasible individuals. In a performance
comparison, it was found that OX works more effectively than the others for produc-
ing feasible course timetables [5]. We present how OX operator works in Fig. 9.4.

Nevertheless, for our genetic representation, the default OX implementation gen-
erates invalid individuals. Due to the operator to be applied to the whole individual,
it would blend [lecture, agent] tuples from different semesters. To overcome this
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drawback, we employed a slight modification by only crossing over semester block
pairs, so now it works properly. Our modification is depicted in Fig. 9.5.

As for the mutation operator, we carried out some modifications on the Swap
Mutation Operator [10]. This modified operator mutates only a random semester
block, swapping one gene to another as depicted in Fig. 9.6. Such behavior also
avoids mixture of [lectures, agent] tuples from different semesters.

9.3.4 Fitness Function

In GAs processes, it is necessary evaluate how good an individual (possible solution)
is relative to other in population. The fitness function performs an evaluation of
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each individual in population returning the fitness value. Depending on how fitness
function was designed, higher fitness values or lower ones mean good solutions.
This value is often used to choose individuals for selection and crossover stages, in
other words, a wrong designed function can produce bad decisions in these stages
generating worst individuals instead of better ones.

Our fitness function evaluates a course timetable based on its soft or hard con-
straints violations and it is defined as follows

F(C) = 1 − AMC + AUC + ALC

AMwc + AUwc + ALwc
, (9.1)

where the numerator (AMC , AUC and ALC ) indicates the constraints violated by C
and the denominator is the worst case of each constraint (AMwc, AUwc and ALwc).
AM stands for the number of agents matches, AU for agents unavailabilities and
AL for the adjacent lectures. The fitness value is ∈ [0,1], in which values close to 1
represent good solutions.

9.3.5 Algorithm

In this subsection, we present two algorithm versions of our proposal. The first one
is an iterative version, named Solve- Iterative- TP(.) and the second version is a
recursive one, called Solve- Recursive- TP(.).

The algorithm parameters for the Solve- Iterative- TP(.) are the list of courses
(LC), the GAs parameters (GAP) and the agent unavailabilities (U ). As a result, we
have a global timetable solution (T ). In the beginning, a courseC from LC is selected
and then solved by the GA. After that, we have a partial solution S and the new agent
assignments. These assignments are used to update the agent unavailabilities, as well
as the partial solution S is used to update the global timetable T . These steps are
executed until LC being empty.

Solve- Iterative- TP(LC,GAP,U )

LC : list of courses
GAP : parameters for Genetic Algorithm

U : agents unavailabilities

1 T ← empty � the global timetable solution
2 for j ← 1 to Length(LC)

3 do
4 C ← LC[ j] � course to be solved
5 S ← empty � timetable solution for C
6 S ← Genetic Algorithm(C,U,GAP)
7 U ← Extract- Assignments(S) ∪ U
8 T ← T ∪ S � adds the found solution S to T
9 return T
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The parameters for the Solve- Recursive- TP(.) are the list of courses (LC), the
GAs parameters (GAP), the agent unavailabilities (U ), and the global timetable (T ).
As a result, we have a global timetable solution (T ) filled with the partial solutions S
after each recursive execution. These recursive executions still until LC being empty.

Solve- Recursive- TP(LC,GAP,U, T )

LC : list of courses
GAP : parameters for Genetic Algorithm

U : agents unavailabilities
T : the global timetable solution

1 If Empty(LC)

2 return T
3 C ← Pop(LC)� course to be solved
4 S ← empty � timetable solution for C
5 S ← Genetic Algorithm(C,U,GAP)
6 U ← Extract- Assignments(S) ∪ U
7 T ← Solve- Recursive- TP(LC,GAP,U,T)∪ S
8 return T

The order the courses that are selected is based on its complexity in terms of how
many tuples it has. Thus, courses having more tuples are solved first.

9.4 Experiments and Discussion

To further validation of our proposal, we carried out some simulations using two
different environments from Federal Institute of Ceará, as presented in Table9.1. The
environments are divided in two cases, namely, simple and complex. The difference
is that in the simple case the agents unavailabilities were not informed.

9.4.1 Experiment Setup

In order to evaluate the GAs performance and find the its parameters, it was carried
out 10 executions of 15 tests in each environment by changingGAs parameters. Also,
we highlight that the stop criteria were: find fitness equals to 1 and stall time limit
of 10min. Furthermore, we analyze the fitness values over the generations and the
final population on the more complex scenario we have, the computer science course
(morning). All experimentswere conducted onCore 2Duo 2.26GHz processor, 4GB
memory RAM on Windows 7 32-bit operational system.
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Table 9.1 Environment: courses, shifts (morning, afternoon, and evening), number of semesters,
agents and number of unavailabilities in simple and complex cases

Course Shift #Semesters #Agents #Simple #Complex

Computer
science

M 8 21 0 28

Computer
network

M 1 5 0 8

Computer
science

A 1 4 0 12

Informatic A 4 10 0 13

Computer
network

E 2 5 0 2

Table 9.2 Simple case tests results

Test Mutation
rate (%)

OX
crossover
rate (%)

Population
size

µGenerations # f i tness = 1 µ

Runtime
(minutes)

Simple case

1 1/12 35 75 16.5 10/10 0.2

2 1/12 35 150 15.8 10/10 0.37

4 1/12 50 75 15.9 10/10 0.19

5 1/12 50 150 15.9 10/10 0.41

7 1/40 50 75 17.2 10/10 0.2

8 1/40 50 150 14.7 10/10 0.37

10 1/25 50 75 17.1 10/10 0.21

11 1/25 50 150 15.5 10/10 0.4

12 1/25 50 600 13.1 10/10 1.32

13 1/25 60 75 16.2 10/10 0.19

14 1/25 60 150 14.8 10/10 0.37

9.4.2 Discussion

Observing the tests performed on simple case (with no unavailabilities previously
informed by the agents), which some are presented in Table9.2, all of them achieved
the best solution. The average number of generations was up to only ≈18 and the
average runtime was no more than ≈0.41min, except the test numbered 9, which
took ≈1.32min, as we can see its average generation is the lower one ≈13.1 but the
population size parameter is very high, 600 against the others 75 and 150. Thus, we
can infer that large population is expensive.

Observing the complex case test results in Table9.3, the agents unavailabilities
previously informed increased the average generation number as well as the runtime
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Table 9.3 Complex case tests results

Test Mutation
rate (%)

OX
crossover
rate (%)

Population
size

µGenerations # f i tness = 1 µ

Runtime
(minutes)

Complex case

1 1/12 35 75 391.1 6/10 0.66

2 1/12 35 150 161.6 7/10 1.85

3 1/12 35 600 63.4 8/10 5.87

4 1/12 50 75 389.7 7/10 2.28

5 1/12 50 150 299.7 9/10 3.25

6 1/12 50 600 83.4 5/10 7.4

7 1/40 50 75 493 5/10 1.8

8 1/40 50 150 141.6 9/10 2.66

9 1/40 50 600 68, 9 6/10 6.33

10 1/25 50 75 493 10/10 3.7

11 1/25 50 150 222.2 8/10 4.5

12 1/25 50 600 78 6/10 7

13 1/25 60 75 510.1 6/10 4

14 1/25 60 150 191.3 8/10 3.25

15 1/25 60 600 75.5 6/10 6.16

average. Furthermore, not all of 10 executions achieved the best solution in most GA
parameters (see column # f i tness = 1).

In those ones with larger populations (600), not all of their 10 executions could
achieve the best solution, that is, even increasing the search space. Besides that, the
average runtime was not less than 5min for those who achieved it. Thus, we support
that such parameters are expensive.

Among other tests, the test numbered 10 achieved the best solution in all execu-
tions with a runtime average of ≈3.7min. Others results achieved best solution in
less runtime average, but they did not succeed in most of the executions. Therefore,
we support the test numbered 10 is more reliable, hence its parameters were defined
to GAs.

The simple case results are presented in Table9.2, they outperformed those ones
on complex case. The achieved results took less than a half-minute in average run-
time except in test numbered 10 which took 1.32. We can see through the 10th test
results in Fig. 9.7 that how the runtime average increased on complex case in con-
trast with the simple one. The results of the 10 and 12th tests on complex case in
which GA parameters differ in population size, 75 and 600, respectively, present how
population sized 600 impacted the GAs performance. Indeed, the agents unavailabil-
ities previously informed increase the problem complexity and large population is
expensive.
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Fig. 9.7 10 and 12th test
executions average runtime
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The initial population of the most complex scenario solved has already an indi-
vidual with fitness value of ≈0.81 and after only 30 generations the higher fitness is
increased to 0.98, see Fig. 9.8.

Furthermore, by investigating the final population, we found 5 individuals with
fitness equals 1 and the average fitness of each 5 ascendant ordered individuals was
≥0.98, as shown in Fig. 9.9. Actually, our model not only solves the problem, but it
also offers more than one feasible solution.

The effectiveness of our model is proved by its higher initial fitness average value
and its fast convergence as presented in Table9.4. Such model behavior is a conse-
quence of the chosenGAs configuration andmainly due to our genetic representation,
because it generates valid individuals that only violates some constraints.

It is difficult to compare our results with others due to environment complexity
divergence. However, we found two similar works in which the divergences in terms
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Fig. 9.9 Grouped
individuals fitness average of
43th population
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Table 9.4 Fitness average of population

Course Generation µ Fitness 13 Pop µ Fitness 23 Pop µ Fitness 33 Pop

Computer science
(Morning)

0 0.7614 0.7390 0.7136

10 0.9195 0.9138 0.9107

20 0.9590 0.9557 0.9536

30 0.9790 0.9776 0.9771

40 0.9880 0.9880 0.9880

43 0.9909 0.9895 0.9890

Computer
network
(Morning)

0 0.8577 0.7977 0.7303

1 0.96 0.9177 0.8711

Computer science
(Afternoon)

0 0.875 0.836 0.7875

2 0.9475 0.9425 0.9241

0 0.8090 0.7799 0.7453

10 0.9677 0.9677 0.9677

13 0.9703 0.9690 0.9686

Computer
network
(Evening)

0 0.8799 0.8466 0.7955

1 0.9500 0.9166 0.8888

of number of courses, classes, agents, and constraints are minimal [3, 8]. Both com-
paredworks solved complex and real course timetabling problem, taking into account
agents unavailabilities too. They also defined the GAs parameters after carrying out
some tests. We present such comparison in Table9.5.
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Table 9.5 Comparison with related work

Parameter Ours Borges’ [3] Ramos’ [8]

Number of classes 16 8 14

Number of agents 21 33 21

Number of rooms × × 10

Population size 75 1000 100

Crossover operator OX PMX Single point

Crossover rate 50% 50% 70%

Mutation rate 1/25 1/20 0.002

Selection strategy Random Roulette wheel Tournament

Elitism × 10% ×
Stagnation monitor × Yes ×
Generations 493 201 ≈15000

Runtime (in minutes) ≈3.7 × 35–90

Fitness [0, 1] 1 1 0.5

Based on Table9.5, we summarize the advantages and disadvantages of such
works. Concerning the population size, we reinforce that larger populations are very
expensive. This is confirmed through our small population size. Also, we highlight
that our crossover operator helped the fast convergence against Ramos’. Usually, the
number of generations is used to measure speed and robustness of discovering an
acceptable solution, such aspect implies directly on the runtime. Thus, we remark
those that require a higher number of generations require more runtime as well.
Even our model having a number of generations exceeding Borges’, the contrast of
population size confirms our effectiveness.

9.5 Conclusion

This chapter presented a simple, scalable, and parameterized model to solve
timetabling problems for multiple courses by applying genetic algorithms (GAs)
recursively so that each execution solves one course. Universities often differ to
another in number of courses and these to each other in terms of lessons per shift, for
example. Such model is capable to deal with different number of courses and their
features. It updates the agent unavailabilities with the new assignments after each
execution.

The model was compared to similar works and the results indicate that our model
took less time than the others. Also worth mentioning that the model not only repeat-
edly finds feasible solutions in the majority of the trials, but also finds more than one
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feasible solution. Future work will be aimed to enhance GAs processes, e.g., include
a stagnation monitor, a heuristic for initializing population, constraints weighted,
consider rooms and allow user interventions. Besides, we intend to improve our
model to be capable to also solve school timetabling problems.
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Chapter 10
Evolving Connection Weights of Artificial
Neural Network Using a Multi-Objective
Approach with Application to Class
Prediction

Andrei Strickler and Aurora Pozo

InArtificialNeuralNetwork (ANN), the selection of connectionweights is a key issue
and Genetic and Evolution Strategies have been found to be promising algorithms
to solve this important task. Motivated by that, this study investigates the applicabil-
ity of using two novel Multi-Objective Evolutionary Algorithms (MOEA): Speed
constrained Multi-Objective Particle Swarm Optimization (SMPSO) and Multi-
ObjectiveDifferential EvolutionAlgorithmbasedonDecompositionwithDynamical
Resource Allocation (MOEA/D-DE-DRA). ANNs are training to learn data classi-
fication using sensibility and specificity for different UCI databases. The results are
compared using the Hypervolume as quality indicator and statistical test.

10.1 Introduction

Most training algorithms, such as Backpropagation (BP) and conjugate gradient
algorithms, are based on gradient descent [15]. There have been many successful
applications of BP in various areas, but BP has drawbacks due to the use of gradi-
ent descent. It often gets trapped in a local minimum of the error function and is
incapable of finding a global minimum if the error function is multimodal and/or
non-differentiable.

In the other side, Evolutionary Algorithms (EAs) can help to avoid the problem
of convergence to local minima and explore global search for training MLP. EAs
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can be used effectively to find a near-optimal set of connection weights without
computing gradient information. The fitness of an ANN can be defined according to
different needs. Moreover, the task of learning the connection weights can be stated
as a Multi-Objective task and Multi-Objective Evolutionary Algorithms (MOEAs)
can be used to solve this task.

In this study, two different MOEAs are investigated: Speed constrained
Multi-Objective Particle Swarm Optimization (SMPSO) [8] and Multi-Objective
Differential EvolutionAlgorithmBased onDecomposition (MOEA/D-DE) [19]with
Dynamical Resource Allocation (DRA - MOEA/D-DE-DRA) [20].

The algorithmof Speed constrainedMulti-Objective Particle SwarmOptimization
(SMPSO) is a technique of optimization based on Particle Swarm Optimization
(PSO). PSO developed by Kennedy and Eberhart [8], is a population-based heuristic
inspired by the social behavior of bird flocking aiming to find food. PSO have some
similarities with evolutionary algorithms: both systems are initialized with a set of
solutions, possibly random, and search for optima by updating generations. Despite
these similarities, there are two main differences between them. First, there is no
notion of offspring in PSO, the search is guided by the use of leaders. Secondly,
PSO has no evolution operators such as crossover or mutation. In Particle Swarm
Optimization, the set of possible solutions is a set of particles, called swarms moving
in the search space, in a cooperative search procedure. Thesemoves are performed by
an operator that is guided by a local and a social component [9]. SMPSO algorithm is
an extension of PSO for solving Multi-Objective problem. Researchers like SMPSO
algorithmbecause this algorithm is easy to programwhen compared to otherMOEAs.

Multi-Objective Differential Evolution Algorithm based on Decomposition
(MOEA/D) is an evolutionary algorithm that optimize multi-objectives problems,
using the idea of decomposition [19].MOEA/D decompose themulti-objective prob-
lem into different sub-problems using scalar weight functions. Thus, the algorithm
solves these sub problems simultaneously evolving a population of solutions using
differential evolution operators. In each generation, the population is composed by
the best solution found so far for each sub-problem.The relation among sub-problems
are set based on the distances between their weighting vectors [19]. The MOEA/D-
DE-DRA algorithm [20] uses the same concepts of MOEA/D [19], but the amount
of computational resources (memory) reserved to solve each sub-problem is based
on a utility function. Nowadays, MOEA/D-DRA is a state of art on MOEAs.

These two MOEAs are used to train ANN to classify data. With this purpose,
two fitness functions are used: the sensitivity and specificity criteria that are directly
related to the quality of the classification. An empirical evaluation is made using dif-
ferent UCI databases and the comparison show the effectiveness of these algorithms.

This work is structured as follow: Sect. 10.2 present the basic concepts of ANN
(Sect. 10.2.1), Evolutionary Algorithms (Sect. 10.2.2), SMPSO (Sect. 10.2.2.1),
MOEA/D-DE-DRA (Sect. 10.2.2.2), Hypervolume (Sect. 10.2.3) and the classifi-
cation problem (Sect. 10.2.4); Sect. 10.3 describes the configuration of experiments
and the obtained results. Finally, Sect. 10.4 has the conclusion and future works.
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10.2 Elementary Concepts

In this section, we describe concepts of MLP, multi-objective optimization and the
algorithms used in the study. Moreover, elementary concepts of classification are
presented.

10.2.1 Artificial Neural Networks - ANN

Researches on neural networks look to the organization of the brain as a model
for building intelligent machines. Moreover, the human brain processes information
in an entirely different way than conventional digital computer [5]. The brain is a
highly complex computer, non-linear and parallel. It has the ability to organize their
structural components, known as neurons, in order to perform certain tasks, such as
pattern recognition, sense and motor control, much faster than the fastest existing
digital computer.

AnANN consists of a set of processing elements, also known as neurons or nodes,
which are interconnected. It can be described as a directed graph in which each node
i performs a transfer function fi as described by Eq.10.1

yi = fi

⎛
⎝

n∑
j=1

(wij · xj) + bias

⎞
⎠ (10.1)

where yi is the output of the node i, xi is the jth input to the node, andwij is the connec-
tion weight between nodes i and j. The threshold is the bias of the node. Usually, fi is
nonlinear, such as a heaviside, sigmoid, or Gaussian function. Equation10.2 shows
the sigmoid function.

out = 1

1 + e−net
(10.2)

A neural network topology represents the way in which neurons are connected
to form a network. In other words, the neural network topology can be seen as the
relationship between the neurons by means of their connections. The topology of
ANNs can be divided into feedforward (FFNN) and recurrent classes according to
their connectivity. AnANN is a feedforward if the information flow is unidirectional.
A unit sends information to another unit from which it does not receive any informa-
tion. There are no feedback loops. They are used in pattern generation, recognition
and classification. In recurrent ANNs, feedback loops are allowed. They are used in
content addressable memories.
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Fig. 10.1 Representation of an ANN - MLP

Basically, there are two kinds of FFNN: single-layer perceptron (SLP), and multi-
layer perceptron (MLP). The SLP networks consist of a single layer of output nodes,
which are fed directly by input layer via a set of weights. MLP networks consist of
multiple layers: an input layer, one or more hidden layers and an output layer. Each
layer has nodes and each node is fully weighted interconnected to all nodes in the
subsequent layer. Figure10.1 shows an illustration of an ANN of the type MLP.

Themost important feature of anANN is how its learning process occurs. Accord-
ing to Haykin [5], the learning is defined as a process where the free parameters of
a neural network are adjusted by a stimulation process by the environment where it
is inserted.

In supervised learning, training is performed by presenting a large set of examples,
called the training set, to the network. Each example consists of a set of inputs
presented to the input layer and the respective set of desired outputs. Although
training an ANN can be time-consuming, once this stage is successful completed,
the input–outputmapping is evaluated almost instantaneously.However, caremust be
taken to use an adequate training set, representative of the sampling space. In many
cases this is not feasible, and the sampling space must be restricted to a specific
sub-domain. This means that ANNs are best applied to specific well and defined
problems [3].

When using a MLP to solve a problem, the first activity is to train the MLP.
Training depends on chosen initial weights and usually applies gradient learning
algorithms to adapt weight values. Among these algorithms, error Backpropagation
(BP) method [15] is one of the most used. In BP, the weight adjustment starts in
the output nodes, where the measure of the error is available, and proceeds back-
propagating this error through the previous layers. BP is a method based in gradient
descendent, what means BP does not assure to find a global minimum and can get
stuck on local minima, where it will stay indefinitely. However, BP is popular and
widely used on ANN training [17].
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As alternative, evolutionary algorithms can be applied to global searches within
the weight space of a typical feedforward neural network (FFNN) and outline local
minima and enable adaptive selection of control parameters [7, 16].

10.2.2 Multi-Objective Evolutionary Algorithms-MOEAs

According to Yao [18], the EAs can be used in the global evolution, to find a set of
optimal (or near-optimal) weights of connections, and without gradient calculation.
The error value can be defined based on the specific needs of the task to run. A
commonly used factor in the formulation of the error function is the difference,
called the error between the expected output and the actual output.

Two MOEAs are chosen for this study: MOEA/D-DE-DRA a state of art on
MOEAs and SMPSO algorithm because this algorithm is easy to program when
compared to other MOEAs.

10.2.2.1 SMPSO

Particle SwarmOptimization (PSO) is a stochasticmeta-heuristic based on themove-
ment of bird flocks looking for food, created to optimize nonlinear functions. In this
method a swarm (population) of particles (solutions) moves across the search space
(evolves) guided by personal and social leaders. A particle as two components: posi-
tion and velocity. These components are updated at each generation.

Equations10.3 and 10.4 present the rules for updating the speed (vi) and posi-
tion (pi) of a particle i. The first member of the Eq.10.3 is the inertia term, the
second term is a movement to the personal best position pBestti and the third term is
a movement towards the global best position gBestti (social term).

To expand the PSO to solve multi-objective problems, and create a Multi-
Objective Particle Swarm Optimization (MOPSO) [14] algorithm, some modifica-
tions are needed. The first of them is the creation of an external archive (repository)
to store the better (non-dominated) solutions found so far, another modification is in
the leader selection scheme, which has to choose from a set of equally good leaders
according to some criterion. As the number of non- dominated solutionsmay become
very large, an archiving method is needed to prune the repository and keep only a
predefined number of solutions, discarding some non-dominated solutions according
to its criterion.

A MOPSO that has shown very good results in the literature is the Speed-
constrained Multi-objective PSO (SMPSO) [11]. It was noted that in some con-
ditions the velocity of the particles in a MOPSO can become too high, generating
erratic movements towards the limits of the decision space. To avoid such situations,
SMPSO presents a velocity constriction mechanism based on a factor χ that varies
based on the values of the influence coefficients of personal and global leaders (C1
and C2 respectively). In SMPSO, the (global) leader selection method uses a binary
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tournament based in the Crowding Distance metric from [2], and the archiving strat-
egy also uses the Crowing Distance.

vt+1
i =

inertia︷ ︸︸ ︷
ω · vt

i +
personal︷ ︸︸ ︷

c1 · rt1(pBestti − pti)+
social︷ ︸︸ ︷

c2 · rt2(gBestti − pti) (10.3)

pt+1
i = pti + vt+1

i (10.4)

Algorithm 9 Pseudocode of SMPSO algorithm
Require: swarm size;
Ensure: repository;
1: initialize(particles)
2: repository = initializeRepository(particles)
3: gen = 0;
4: while gen < max_generations do
5: for each particle in the repository do
6: selectGlobalLeader(particle, repository)
7: ComputeSpeed(particle)
8: updatePosition(particle)
9: mutation(particle)
10: evaluation(particle)
11: updatePersonalLeader(particle)
12: end for
13: repository = updateRepository(particles)
14: gen++;
15: end while
16: return repository;

At Algorithm 9 the pseudo-code of the SMPSO algorithm is presented. First the
swarm and leaders archive (repository) are initialized and the evolutionary process
begin. At each generation, for each particle in the population, the leaders are calcu-
lated and then the speed and position are updated. After, it is performed the Polyno-
mial mutation for each particle, and the particles are evaluated. Finally, the particles
update the leaders archive. The output of SMPSO is the leaders archive or repository.

10.2.2.2 MOEA/D-DE-DRA

The decomposition is another way to solve a problem with multi-objectives. The
MOEA/D-DE-DRA decompose one multi-objective optimization problem (MOP),
in many single-objective sub-problems.

There are two main components in MOEA/D. First, the mechanism to decom-
pose MOP into sub-problems. Normally weight vectors are generated randomly and
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each one defines a sub-problem. The objective of each sub-problem is a (linear or
nonlinear) weighted aggregation of all the individual objectives in the MOP.

The second main component is the neighborhood relations among these sub-
problems. The neighborhood relations are defined based on the distances between
their weight vectors. Each sub-problem (i.e., scalar aggregation function) is opti-
mized in MOEA/D by using information from its neighboring sub-problems.

TheMOEA/D-DEwithDynamical ResourceAllocation (DRA) is a versionwhere
different amounts of computational effort are allocated to different problems. In
MOEA/D with Dynamical Resource Allocation (MOEA/D-DE-DRA), the version
of MOEA/D used in this paper, the utility πi for each subproblem is used.

MOEA/D-DE and its variants can use any decomposition approach for defin-
ing their sub-problems. This work uses the Tchebycheff [20] approach. Using this
decomposition method, each sub-problem can be formulated as in Eq.10.5:

Min gte(x | λ, z∗) = max1≤j≤M {λj | fj(x) − z∗j | } (10.5)

subject to x ∈ Ω

wherein gte is the Tchebycheff function, f (x) = (f1(x), . . . , fM(x)) is the set of func-
tions that has to be minimized, and λ = (λ1, . . . ,λM) is the weight vectors.

The sub-problems are evolved using Differential Evolution(DE) operators. DE
uses a simple mutation operator based on differences between pairs of solutions
(called vectors) with the aim of finding a search direction based on the distribution
of solutions in the current population. DE also utilizes a steady-state-like replacement
mechanism, where the newly generated offspring (called trial vector) competes only
against its corresponding parent (old object vector) and replaces it if the offspring
has a higher fitness value.

TheMOEA/D-DE-DRA is presented atAlgorithm10.Thefirst steps ofMOEA/D-
DE-DRA is to initialize various data structures, analogous to most MOEA/D
variants. The weight vectors λi, i = 1, . . . ,N , representing coefficients associated
with each objective, are generated using a uniform distribution. The neighborhood
(Bi = i1, . . . , iC) of weight vector λi stores the indexes of the C weight vectors clos-
est to λi. The initial population is randomly generated and evaluated. Each individual
(xi) is associated with the ith weight vector. The empirical ideal point (z∗) is initial-
ized as the minimum value of each objective found in the initial population and the
generation (g) is set to 1.

After initialization steps, the algorithm enters its main loop. The first step of the
main loop is to determine which individuals from the population will be processed. A
10-tournament selection based on the utility value of each sub-problem (πi , calculated
accordingly toEq.10.6) is used to determine the individuals to evolve.Next, the scope
used during the generation of the individual and the population update is randomly
chosen. DE heuristics (mutation strategies and crossover) are applied considering
individuals randomly selected from scope. In this work, scope can swap from the
neighborhood to the entire population (and vice-versa) It is composed by the indexes
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Algorithm 10 Pseudocode of MOEA/D-DE-DRA algorithm
Require: Population size (N); number of objectives (M)
1: λi = genWeightVectors(N);
2: λi = (λi

1, ...,λ
i
M ); i = 1, ...,N

3: for i = 1, ...,N do
4: define the set of neighbor indexes Bi = {i1, ..., iC}, where {λi1 , ...,λiC } are C weight vectors

closest to λi (Euclidian Distance)
5: end for
6: pop ← initializeRandomly();
7: Evaluate each individual i ∈ pop and associate to its weight vector λi;
8: Initialize z∗ = (z∗1, ..., z∗M );
9: z∗j = min1≤i≤N fj(xi)
10: g = 1;
11: while g > max evaluations do
12: I = Select using 10-tournament with (πi);
13: for each Individual i ∈ I do
14: if rand < δ then
15: scope = Bi;
16: else
17: scope = {1, ...,N};
18: end if
19: y = Crossover(DE/Rand/1/bin, i);
20: y

′
= PolynomialMutation(y);

21: evaluate(y
′
);

22: update z∗; z∗j = min(z∗j , fj(y
′
))

23: for each subproblem k (k randomly selected from scope) do
24: if gte(y

′ |λk, z∗) < gte(xk |λk, z∗) then
25: if a new replacement may occur then
26: Replace xk by y

′
and increment nr ;

27: end if
28: end if
29: end for
30: g++;
31: end for
32: computeUtility();
33: end while

of chromosomes from either the neighborhood Bi (with probability δ) or from the
entire population (with probability 1 − δ). Based on the chosen strategy, a modified
chromosome y is generated in step 19 and modified by the polynomial mutation in
step 20, generating y

′ = (y
′
1, . . . , y

′
n) from y.

In step 22, if the new chromosome y
′
has an objective value better than the value

stored in the empirical ideal point, z∗ is updated with this value. The next steps
involve the population update process (steps 23–26) which is based on the com-
parison of the fitness of individuals. In the MOEA/D-DE framework, the fitness of
an individual is measured accordingly to a decomposition function. In this work the
Tchebycheff function is used (Eq.10.5) Accordingly to what is selected for the scope
(steps 15 or 17), the neighborhood or the entire population is updated.
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To avoid the proliferation of y
′
to a great part of the population, amaximumnumber

of updates (NR) is used. The population update is as follows: if a new replacement
may occur, (i.e., while nr < NR and there are unselected indexes in scope), a random
index (k) from scope is chosen. If y

′
has a better Tchebycheff value than xk (both

using the kth weight vector - λk) then y
′
replaces xk and the number of updated

chromosomes (nr) is incremented. If the current generation is a multiple of 50, then
the utility value of each sub-problem is updated using Eq.10.6. The evolutionary
process stops when the maximum number of evaluations is reached.

π2 =
{
1, ifΔi > 0.001

(0.95 + 0.05 ∗ Δi/0.001) ∗ πi, otherwise
(10.6)

10.2.3 Hypervolume

The performance comparison of one or more multi-objective optimization methods
is a complex task. Two goals of multi-objective optimization are: convergence and
diversity of solutions.

A widely used metric in the evaluation of multi-objectives algorithms is the indi-
cator of Hypervolume (HV). In HV, the volume of the covered area between the
points of the solutions on the Pareto front P (non-dominated solutions) and a ref-
erence point W is calculated. Each solution i ∈ P, constitutes a hypercube, vi with
reference to a point W [21]. This reference point can be found by building a vector
with the worst values of the objective function. The union of all hypercubes found is
the result of the metric and, as higher is the value of HV better are the results. Higher
values of HV indicate that there is a higher spreading between the solutions in P and
indicate that there is a better convergence to the Pareto front.

Hypervolume corresponds to the area formed by the union of all rectangles, as
shown in Fig. 10.2.

10.2.4 Classification Problem

Classification is one of the main tasks of Data Mining. According to Han and
Kamber [4] classification is the process of finding a model or function that describes
and distinguishes data elements or concepts in order to be able to use the model to
predict the class of an object whose class is unknown. The derived model is based
on analysis of a set of training data.

The training data consist of pairs of inputs (vectors) and desired outputs. For
example, in a classification problem, a hospital may want to classify medical patients
into those who have high, medium or low risk to acquiring a certain illness.
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Fig. 10.2 Hypervolume area

The model generated by a learning algorithm should both fit the input data well
and correctly predict the class labels of records it has never seen before. Therefore, a
key objective of the learning algorithm is to build models with good generalization
capability; i.e., models that accurately predict the class labels of previously unknown
records.

A general approach for solving classification problems consist of two steps. First,
a training set consisting of records whose class labels are known must be provided.
The training set is used to build a classification model, which is subsequently applied
to the test set, which consists of records with unknown class labels.

Evaluation of the performance of a classification model is based on the counts
of test records correctly and incorrectly predicted by the model. These counts are
tabulated in a table known as a confusion matrix (Table10.1).

From the confusion matrix (10.1) is possible to calculate measures such as: True
Positive rate (TP rate), True Negative rate (TN rate or specificity), False Positive
rate (FP rate) and False Negative rate (FN rate). TP rate, also called sensitivity, is
the precision between the positive examples (Eq. 10.7). Its complement is the FN
rate (i.e., FNrate = 1 − FPrate). Specificity is the precision between the negative
examples (Eq.10.8). Its complement is the FP rate.

Table 10.1 Confusion matrix

Class = 1 Class = 0 Predicted class

Class = 1 TP FP TP + FP

Class = 0 FN TN FN + TN

ActualClass TP + FN FP + TN N
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sensitivity = TP

TP + FN
(10.7)

specificity = TN

TN + FP
(10.8)

For several years, the most used performance measure for classifiers was the
accuracy [1]. The accuracy is the fraction of examples correctly classified, showed
on Eq.10.9. Despite of its use, the accuracy maximization is not an appropriate goal
for many of the real-world tasks [13]. A tacit assumption in the use of classification
accuracy as an evaluation metric is that the class distribution among examples is
constant and relatively balanced. In real world this case is rare, moreover, the cost
associatedwith the incorrect classification of each class can be different because some
classifications can lead to actions which could have serious consequences [12].

accuracy = TP + TN

TP + TN + FP + FN
(10.9)

Classification is one of the most dynamic exploratory and application areas of
ANNs. However, as mentioned before the selection of connection weights is a key
issue and here this issue is tackle with two MOEAs.

10.3 Experimental Evaluation and Results

The experimental evaluation aims at answering the following research questions:

RQ1: Is there difference of performance among the configurations of each algo-
rithm?

RQ2: Is there difference of performance between SMPSO andMOEA/D-DE-DRA?
RQ3: What are the advantages of the multi-objective versus mono-objective

approach for evolving connection weights of ANN for classification task?

To answer RQ1, first different configurations of the algorithms are used to learn
ANNs for each training database using sensitivity and specificity as fitness functions.
Second, the learned ANNs are applied into the test databases obtaining a new set of
values of sensitivity and specificity. Finally, the different configurations are compared
using the Hypervolume indicator and the Friedmann rank test [6].

The goal of RQ2 is to verify whether exists one algorithm with better results than
the other. The results obtained in RQ1 are now compared using the best configuration
obtained for each algorithm. Again the Friedmann rank test is used.

To answer RQ3, the results generated by applying the ANNs to each test databases
are analyzed using the accuracy, sensitivity and specificity.

In order to verify statistical difference among the results found by all algorithms
and settings, all of them were run 30 times and Friedmann [10] and Mann–Whitney
tests were executed with 0.05 significance level.
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This section explains the methodology adopted to evolve connection weights of
artificial neural network using a multi-objective approach and its application in class
Prediction. The Java language was used to implement the ANN and to compute the
two fitness functions: sensitivity and specificity. The implementation of SMPSO and
MOEA/D-DE-DRA available at the JMetal Framework were used.

The following databases were used:

1. Breast Cancer Wisconsin (Original) Data Set (called as Cancer);
2. Pima Indians Diabetes Data Set (called as Diabetes);
3. Glass Identification Data Set (called as Glass);
4. Statlog (Heart) Data Set (called as Heart).

Each database was divided into 2 groups of instances, each one corresponding to
training set and testing set. These groups were set up with different sizes depending
on the database as shown in Table10.2.

The topologies of the ANNs were defined according to the databases. The input
layers are defined according to the numbers of attributes and the output layer accord-
ing to the number of classes. The complete definition of the used topologies is
presented at Table10.3.

The topology defines the size of the individuals that were evolved by the algo-
rithms, one dimension for each connection plus the bias for each neuron, i.e., each
individual defines one ANN. The neurons used a sigmoid function.

The algorithms were executed with two different population sizes: 50 and 100 and
two different number of generations: 500 and 1000, given four different configura-
tions for each algorithm. C1 with a population size of 50 and number of generations
set to 500; C2 with a population size of 50 and number of generations set to 1000;
C3 with a population size of 100 and number of generations set to 500 and, C4

Table 10.2 Separation of databases

Data base Training Testing Total

Cancer 500 183 683

Diabetes 650 118 768

Glass 170 44 214

Heart 220 50 270

Table 10.3 Number of neurons of each layer

Base Attributes (Input) Classes (Output) Hidden

Cancer 9 2 5

Diabetes 8 2 10

Glass 9 7 10

Heart 13 2 5



10 Evolving Connection Weights of Artificial Neural Network … 189

Table 10.4 Parameters values used

Parameter Value

F 0.3

CR 0.7

NR 2

T 20

Δ (delta) 0.9

c1 [1.5:2.5]

c2 [1.5:2.5]

r1 [0.0:1.0]

r2 [0.0:1.0]

ω 0.1

with a population size of 100 and number of generations set to 1000. The remaining
parameters were set as presented at Table10.4 using the default values of the JMetal.

Next we present and discuss the results of the experiments in order to answer the
research questions.

10.3.1 RQ1 - Comparing Different Configuration of Each
Algorithm

As mentioned before, different configurations of each algorithm were compared to
set the values of the parameters: population size and number of iterations.

Table10.5 shows the mean values and standard deviation of Hypervolume indica-
tor. At the top of theTable, the results of the SMPSOare reported and at the bottom the
results of MOEA/D-DE-DRA. For SMPSO, the best configuration for Cancer is C1,
Diabetes is C4, Glass is C3 and for Heart is C4. In the case of MOEA/D-DE-DRA,
the best configuration for Cancer, Diabetes and Heart is C2 and for Glass is C4. How-
ever, the difference between the values of Hypervolume is not high. For a deep analy-
sis on these values the Kruskal–Wallis at 0.5 significance level was applied. These
results are reported at Table10.6, for SMPSO and MOEA/D-DE-DRA. Analyzing
the Kruskal–Wallis results, is possible to observe that for SMPSO the configuration
C4 always get best or equivalent results for all databases. For MOEA/D-DE-DRA,
the configuration C2 almost always get best or equivalent results for all databases,
with exception in Glass where C4 is the best configuration.

The confirmation of these findings is given by the average rankings of con-
figurations obtained using Friedman test. These results are showed for SMPSO
and MOEA/D-DE-DRA at Tables10.7 and 10.8 respectively. Summarizing, the
Friedman test point out configuration C4 for SMPSO and C2 for MOEA/D-DE-
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Table 10.5 Results of Hypervolume in each configuration

Algorithm Data Base Mean HV
C1 (Std)

Mean HV
C2 (Std)

Mean HV
C3 (Std)

Mean HV
C4 (Std)

SMPSO Cancer 0.99889
(0.002572)

0.99586
(0.008267)

0.99500
(0.013317)

0.99802
(0.005244)

Diabetes 0.81054
(0.075324)

0.85761
(0.038138)

0.85706
(0.039694)

0.85878
(0.050186)

Glass 0.99573
(0.001395)

0.99035
(0.003285)

0.99681
(5.8690E-4)

0.99672
(0.001294)

Heart 0.64645
(0.037708)

0.64999
(0.032952)

0.66789
(0.032417)

0.67879
(0.027469)

MOEA/D-DE-DRA Cancer 0.94478
(0.045548)

0.97901
(0.031272)

0.97803
(0.032959)

0.94298
(0.041491)

Diabetes 0.50173
(0.027114)

0.62406
(0.041031)

0.60731
(0.038475)

0.50856
(0.037513)

Glass 0.83237
(0.002012)

0.98992
(0.035803)

0.99217
(0.026678)

0.99849
(0.002765)

Heart 0.65033
(0.074096)

0.72171
(0.073602)

0.71988
(0.069996)

0.69071
(0.079847)

DRA as the better considering all databases. So, these configurations were chosen
for being used in the following experiments.

10.3.2 RQ2 - Comparing Different Algorithms

To answer RQ2, we compared the results from SMPSO algorithm with MOEA/D-
DE-DRA, using the configurations chosen according to the results presented previ-
ously. Table10.9 shows the results of the Wilcoxon test at 0.5 significance level and
the effect size. It possible to observe that the algorithms present significant differ-
ent results for each database. However, SMPSO presents better results for Cancer,
Diabetes and Glass. For Heart the best results are for MOEA/D-DE-DRA.

Figure10.3 depicts the obtained fronts using SMPSO andMOEA/D-DE-DRA for
Diabetes. Tables10.10 and 10.11 present the values of sensitivity and specificity of
each of the solutions in the fronts, for SMPSO andMOEA/D-DE-DRA respectively.
These fronts are the obtained fronts after executing 30 times the algorithms and
removing dominated and repeated solutions.

For Diabetes, SMPSO clearly outperforms MOEA/D-DE-DRA. The same hap-
pens for Heart but, in this case, is MOEA/D-DE-DRA that outperforms SMPSO.
Then, the average rankings was obtained using Friedman test. These results are pre-
sented at Table10.12, there is possible to observe that SMPSO is slightly better than
MOEA/D-DE-DRA considering the Hypervolume.
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Table 10.6 Kruskal–Wallis at 0.05 significance level for Hypervolume

Dataset Algorithm Conf. C1 C2 C3 C4

Cancer SMPSO C1 – TRUE TRUE FALSE

C2 TRUE – FALSE TRUE

C3 TRUE FALSE – TRUE

C4 FALSE TRUE TRUE –

MOEA/D-
DE-DRA

C1 – TRUE TRUE FALSE

C2 TRUE – FALSE TRUE

C3 TRUE FALSE – TRUE

C4 FALSE TRUE TRUE –

Diabetes SMPSO C1 – TRUE TRUE TRUE

C2 TRUE – FALSE TRUE

C3 TRUE FALSE – TRUE

C4 TRUE TRUE TRUE –

MOEA/D-
DE-DRA

C1 – TRUE TRUE FALSE

C2 TRUE – FALSE FALSE

C3 TRUE FALSE – TRUE

C4 FALSE FALSE TRUE –

Glass SMPSO C1 – TRUE TRUE TRUE

C2 TRUE – TRUE TRUE

C3 TRUE TRUE – FALSE

C4 TRUE TRUE FALSE –

MOEA/D-
DE-DRA

C1 – TRUE TRUE TRUE

C2 TRUE – FALSE TRUE

C3 TRUE FALSE – TRUE

C4 TRUE TRUE TRUE –

Heart SMPSO C1 – FALSE TRUE TRUE

C2 FALSE – FALSE TRUE

C3 TRUE FALSE – TRUE

C4 TRUE TRUE TRUE –

MOEA/D-
DE-DRA

C1 – TRUE TRUE TRUE

C2 TRUE – FALSE TRUE

C3 TRUE FALSE – TRUE

C4 TRUE TRUE TRUE –
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Table 10.7 SMPSO average rankings of configurations (Friedman)

Configuration Ranking

C1 3.0

C2 2.75

C3 2.5

C4 1.75

Table 10.8 MOEA/D-DE-DRA average rankings of configurations (Friedman)

Configuration Ranking

C1 3.75

C2 1.5

C3 2.0

C4 2.75

Table 10.9 Wilcoxon test at 0.05 significance level, SMPSO xMOEA/D-DE-DRA, Hypervolume
results

Dataset p-value Observation
diff.

Critical diff. Diff. Effect size

Cancer 0.0008472 16.62222 8.837967 TRUE 0.6822841
(medium)

Diabetes 0.0009271 14.93333 8.837967 TRUE 0.7488889
(large)

Glass 0.0009148 6.81322 8.837967 TRUE 0.573216
(small)

Heart 0.0071166 12.43255 8.837967 TRUE 0.421211
(small)

10.3.3 RQ3 - Advantages of a Multi-Objective Approach

In the task of learning classification algorithms as ANNs, the goal is to create algo-
rithms that have good performance for classification. Hence, the great majority of
the methods aims to optimize the performance of the classification by improving
the accuracy in the set. Despite of its use, the accuracy maximization is not an
appropriate goal for many of the real-world tasks [13]. A tacit assumption in the
use of classification accuracy as an evaluation metric is that the class distribution
among examples is constant and relatively balanced. In real world this is rarely the
case, because classification leads to actions which could have serious consequences.
Therefore, recent researches point out sensitivity and specificity as better metrics
to be used for induction of classification algorithms. Sensitivity is a relative mea-
sures of instances of the positive class that are well classified. Hence, the greater the
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Fig. 10.3 Obtained Fronts, SMPSO and MOEAD/D-DE-DRA for Diabetes

sensitivity, the greater the number of instances in the positive class that are correctly
classified. Specificity is the same measure of sensitivity, but for negative instances.
The greater its value, the lower the number of instances in the negative class that are
misclassified. Sensitivity and specificity are inversely proportional, meaning that as
the sensitivity increases, the specificity decreases and vice versa. For understanding
the advantages of a multi-objective approach based on these two metrics in the fol-
lowing the ANNs obtained by SMPSO for Diabetes are deeply analyzed. Table10.13
presents TP, FP, TN, FN and accuracy of the ANNs sorted by increased value of TP.
It possible to note that as TP increases, TN decreases. The best value of accuracy
achieved is 0.7288135593, with TP = 127, FP = 19, TN = 45 and FN = 45. Or
in other words, 127 patients that have diabetes were diagnostic as having diabetes
but 19 patients that have not diabetes were included in the diagnostic. In the other
hand, 45 patients that have not diabetes were confirmed as not having the diseases
but 45 patients that have diabetes were diagnostic as without diabetes. This can be
dangerous because a treatment at time can make a good difference on the quality of
life for these patients. Having access to all these informations another ANN could
be used. That is, the user as more freedom to adequate the ANN that is better for its
preference.

10.4 Conclusion

ANNs are specially used to find a general solution in problems where a pattern needs
to be extracted, such as data-mining. The main difficulty to apply ANN in some
domainproblem is to train theANNto learn andpredict.ANNprovides differentways
to solve many nonlinear problems that are hard to solve by conventional techniques.
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Table 10.10 SMPSO obtained Pareto Front for Diabetes

Solution Sensitivity Specificity

s1 0.9863013699 0

s2 0.9109589041 0.0111111111

s3 0.7808219178 0.0555555556

s4 0.7123287671 0.0777777778

s5 0.6849315068 0.0444444444

s6 0.6301369863 0.1222222222

s7 0.5890410959 0.1333333333

s8 0.5616438356 0.1666666667

s9 0.5410958904 0.1888888889

s10 0.4863013699 0.2111111111

s11 0.4452054795 0.2444444444

s12 0.4383561644 0.2555555556

s13 0.3493150685 0.2777777778

s14 0.3424657534 0.3111111111

s15 0.3219178082 0.3333333333

s16 0.2945205479 0.3555555556

s17 0.2671232877 0.3777777778

s18 0.2397260274 0.4111111111

s19 0.2054794521 0.4444444444

s20 0.1780821918 0.4666666667

s21 0.1301369863 0.5

s22 0.1095890411 0.6555555556

s23 0.0616438356 0.7222222222

s24 0.0410958904 0.8

s25 0.0273972603 0.8555555556

s26 0.0068493151 0.9

The use of evolutionary algorithms has excelled to problem solving that requires
space of global search optimization in several types problems. Theses algorithms
have also been used to train ANNs. This paper describes and compares the results
obtained in ANN training with two different algorithms: based on particle swarm
optimization (SMPSO) and differential evolution(MOEA/D-DE-DRA). ANNs are
trained for classification task, moreover, to properly tackle this task, ANNs need to
maximize two metrics: sensitivity and specificity.

An experiment was conducted using different benchmark databases. First the
goal was to determine the values of two important parameters of the algorithms: the
population size and number of generations. After then, the best configurations were
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Table 10.11 MOEAD obtained Pareto Front for Diabetes

Solution Sensitivity Specificity

S1 0.6643835616 0.2

S2 0.5684931507 0.3

S3 0.5547945205 0.3111111111

S4 0.5 0.3777777778

S5 0.4657534247 0.4222222222

S6 0.4520547945 0.4333333333

S7 0.4383561644 0.4444444444

S8 0.3904109589 0.5

S9 0.3835616438 0.5333333333

S10 0.3424657534 0.5666666667

S11 0.3082191781 0.5888888889

S12 0.2808219178 0.6

S13 0.2397260274 0.6222222222

S14 0.2123287671 0.6555555556

S15 0.1917808219 0.6777777778

S16 0.1643835616 0.7111111111

S17 0.1369863014 0.7222222222

S18 0.0890410959 0.7888888889

S19 0.0616438356 0.8666666667

S20 0.0547945205 0.8888888889

S21 0.0136986301 0.9777777778

S22 0.0068493151 1

Table 10.12 Average rankings of the algorithms (Friedman)

Algorithm Ranking

SMPSO 2.3125

MOEAD 2.6875

compared to answer which is the best algorithm for the task. Here, it was possible to
observe that the best algorithm depends on the database, however, SMPSO presented
slightly better results. Finally, using the results found for Diabetes the advantages of
using sensibility and specificity were illustrated.

Future works include analyzing the influence of other parameters of the algo-
rithms, for example to use an adaptive version of MOEA/D-DE-DRA. It is known
that an appropriate configuration of parameters can produce better results.
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Table 10.13 SMPSO obtained solutions for Diabetes

Solution TP FP TN FN Accuracy

S1 2 144 90 0 0.3898305085

S2 13 133 89 1 0.4322033898

S3 32 114 85 5 0.4957627119

S4 42 104 83 7 0.5296610169

S5 46 100 86 4 0.5593220339

S6 54 92 79 11 0.563559322

S7 60 86 78 12 0.5847457627

S8 64 82 75 15 0.5889830508

S9 67 79 73 17 0.593220339

S10 75 71 71 19 0.6186440678

S11 81 65 68 22 0.6313559322

S12 82 64 67 23 0.6313559322

S13 95 51 65 25 0.6779661017

S14 96 50 62 28 0.6694915254

S15 99 47 60 30 0.6737288136

S16 103 43 58 32 0.6822033898

S17 107 39 56 34 0.6906779661

S18 111 35 53 37 0.6949152542

S19 116 30 50 40 0.7033898305

S20 120 26 48 42 0.7118644068

S21 127 19 45 45 0.7288135593

S22 130 16 31 59 0.6822033898

S23 137 9 25 65 0.686440678

S24 140 6 18 72 0.6694915254

S25 142 4 13 77 0.656779661

S26 145 1 9 81 0.6525423729
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Chapter 11
Diversification Strategies in Evolutionary
Algorithms: Application to the Scheduling
of Power Network Outages

Rainer Zanghi, Julio Cesar Stacchini de Souza
and Milton Brown Do Coutto Filho

The design of evolutionary algorithms that efficiently solve complex optimization
problems can be considered a challenging puzzle. In complex and multimodal prob-
lems, premature convergence to a local optimumcan compromise the search for better
solutions. In this work, different strategies to avoid and/or fix premature convergence
of evolutionary algorithms are proposed. High diversification level is maintained
throughout the evolution process, so that an adequate trade-off between solution
quality and computational cost is achieved. A metric that addresses diversification
in evolutionary algorithms is employed. It is shown that this metric can be used
to drive the search process conveniently. The proposed diversification strategies for
evolutionary algorithms are tested in a real, complex, and epistatic scheduling prob-
lem concerned with the operation of power networks. Numerical results illustrate
the application of the proposed strategies and respective impact on the quality and
computational cost of solutions.
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11.1 Introduction

Since John Holland’s seminal work on genetic algorithms (GAs) [18], many tech-
niques have been proposed in the specialized literature aiming to improve the effi-
ciency of those algorithms by enhancing the search for the optimal solution in
optimization problems [13, 19]. The efficiency of the search process is usually
assessed in terms of the trade-off between solution quality and computational cost.
Difficult optimization problems, mainly those defined as NP-hard by the compu-
tational complexity theory [12], have encouraged researchers to propose several
approaches/techniques to increase the efficiency of algorithms. As a result, for
instance, GAswere encompassed by a broader terminology [19], named evolutionary
algorithms (EAs).

EAs are classified as metaheuristics, which are non-exact algorithms designed to
find solutions in a search space by hopefully exploring the best locations. That class of
algorithms is well suited for complex optimization problems, in which global optima
cannot be obtained by complete enumeration of all possible solutions, because of
the high computational cost involved [3]. Therefore, the trade-off between solution
quality and computational cost is an important measure to assess the performance
of metaheuristics such as EAs. In addition, many real world problems have some
characteristics that do not allow the use of exact optimization algorithms. Complex
interdependency of variables is an example of these characteristics, being called
epistasy in evolutionary computation (EC) jargon [7].

The scheduling of network outages (SNO) is a complex problem associated with
the operation of power networks. The SNO was previously addressed as an opti-
mization problem in [8]. The authors applied a simple elitist GA for the scheduling
of optimal network outages in a small test system. However, for large networks, the
computational cost of using a simple elitist GAbecome prohibitive, even for planning
studies.

The difficulty to solve the SNOproblem ismainly related to the problem instances.
In addition, the behavior of the objective function is strongly dependent on the out-
ages (to be scheduled) and power system characteristics. In this work, different
strategies are proposed to reduce the overall computational cost and to make the
search process more efficient, considering complex problem instances. The numeri-
cal results obtained show that the use of an EA to tackle epistasy and its adaptation
to several SNO instances is promising.

The remainder of the chapter is organized in sections comprising: literature review
on the application of diversification strategies; three strategies to improve the effi-
ciency of a simple elitist GA; presentation of the SNO problem; results obtained
with the application of the proposed strategies to solve the optimal SNO on IEEE
benchmark networks [5]; conclusions and remarks.
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11.2 Diversification Strategies and Techniques

Several authors proposed theoretical analyses on the process of an EA [13, 19, 24].
In such analyses, different optimization problems or different instances of the same
problem are considered. Typically, the main objective is to assess the influence of
a given strategy/technique on the quality of the obtained solution and/or the com-
putational cost to attain it. In order to classify this influence in the search process
of metaheuristics, [3] proposed a unifying view of diversification (ability to inves-
tigate unexplored areas of the search space) and intensification (the search for local
improvement, in the neighborhood of the current solution). According to [3], these
concepts should be considered asmediumand long-term strategies based on the usage
of memory acquired during the evolutionary process. The search process of an EA
should balance diversification and intensification, using different techniques, in order
tomeet efficiency and effectiveness requirements. Operators and techniques in a sim-
ple elitist GA can be interpreted via a diversification-intensification framework. The
selection operator chooses individuals for recombination based on their fitness val-
ues, favoring the intensification in the neighborhood of such individuals. The elitism
operator plays a similar role, by selecting individuals with best fitness values and
copying them in the next population. The crossover or recombination operator com-
bines genotypes of two individuals previously selected in order to create new indi-
viduals. Crossover disruptive power over the genotype can be calibrated to perform
intensification (small changes) or diversification (major changes). Mutation operator
usually changes only one gene of the individual chromosome, which may enable the
recovery of important information that was lost due to premature intensification. The
adopted encoding can also interfere with the diversification-intensification capabil-
ities of recombination and mutation operators. In Gray encoding [25], for example,
the modification of more than one bit of the chromosome can have a greater impact
in the decoded values than the adoption of the regular binary code, thus favoring
diversification.

The concept of genetic variation [17], borrowed from biology, can be redefined in
EC as diversification in the search process. This concept shares some key elements
with its biology counterpart. The genetic variation is a metric that indicates how dif-
ferent genotypes are in a given population. These differences may be translated into
different characteristics or traits, also called phenotype. In EC those differences may
share the same properties regarding the functional relationship between genotype
and phenotype. Depending on the nature of the problem, problem representation or
adopted encoding, the relation between genotype and phenotype may not be biu-
nivocal [24]. Additionally, some individuals may present the same fitness, despite
of the differences between their genotypes. This situation occurs in the problem of
scheduling outages addressed here; different schedules of network outages may have
similar impact on the performance of the power system, being associated with the
same fitness function value.
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Inmany problems, the evaluation of the fitness function is computationally expen-
sive, thus requiring implementation strategies that mitigate the overall computational
cost of an EA. Population-based algorithms generate a large number of individuals
to be assessed during the evolutionary process. Parallelization techniques—in which
the evaluation of the fitness function is treated as an independent task—can reduce the
overall computational cost of EAs [6]. The parallelization can occur inside the algo-
rithm for the fitness function evaluation or explore intrinsic independence between
solutions/individuals, thus placing the fitness calculation of solution candidates in
different processing units. Besides, it is possible to construct a list with all different
solutions already explored by the EA [24] and prevent the algorithm from evaluat-
ing several times the fitness function of the same individual. It is important to note
that those techniques enable a reduction of the computational cost without affecting
the solution quality. Similarly, a strategy commonly applied in discrete optimiza-
tion problems is to compute and store partial fitness values [24], associated with
the occurrence of specific genes, which are retrieved and used for the computation
of the fitness values whenever that particular sequence of genes occurs. However,
this strategy cannot be applied in epistatic problems in which a single gene can-
not be directly associated with an increase or decrease in the fitness value. In this
class of problems, due to dependency relations between genes, the fitness function
must be completely evaluated for each unique individual [7]. Those characteristics
are appealing for the use of stochastic algorithms that present high diversification
[7]. However, this results in an increase of the overall computational time, as much
more fitness function evaluations are necessary. In such case, the computational cost
can be reduced by shortening the diversification stage of the evolutionary process
(possibly compromising the solution quality) [3]. A hypothesis explored in different
metaheuristics, e.g. simulated annealing, GRASP [3] and many others, is that the
diversification phase should be the first one in a search process. This would allow
the exploration of particular places in the search space and should be followed by an
intensification phase, responsible for refining previous solutions by exploring their
neighborhood. Intensification techniques should be able to make the search process
converge quickly to local optima present in the neighborhood of the base solutions.

In problems that present several local optima, premature convergence can occur if
the diversification phase is prematurely interrupted. This situation can be prevented
in EAs with high selective pressure, when a diversification strategy may force the
exploration of many different spots of the search space, possibly escaping local
optima [24]. Repopulation techniques, such as the CHC algorithm proposed in [11],
introduce genotypic diversity in the evolutionary process by forcing the generation
of new individuals, which will be further combined. This feature is also explored
by the use of random immigrants mechanism [16], in which a portion of the GA
population is replaced by individuals that are randomly generated. In order to favor
diversification but at the same time preserve the genetic material of high-quality
individuals, elitism strategies are commonly used [19]. Some works in the literature
report that particular encodings can be conveniently adopted to favor diversification
in the evolutionary process [20, 30]. However, the benefits of many encodings, such
as the Gray code [25], need further investigation.
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In [1], a hierarchical distributed GA was applied to the solution of scheduling
problems having epistatic characteristics similar to those found in SNO. In such prob-
lems, the importance of epistasy could be neglected and approximate fitness function
evaluations were performed. However, such approach is not valid for the SNO, as
epistasy can not be disregarded. Other techniques proposed to solve expensive opti-
mization problems—by reducing the total number of fitness function evaluations or
its computational cost—can be found in [27].

Many real optimization problems (e.g., the SNO) show high epistasis and adopt
fitness functions whose evaluation is extremely costly. Strategies that enable the
control of the diversification and intensification phases in an evolutionary process
are helpful to achieve adequate algorithm performance, satisfying specific problem
requirements.

11.3 Proposed Diversification Strategies

Different strategies aiming to provide high-quality solutions in a reduced computa-
tional time are presented here. Such strategies employ techniques (guided by fitness
values) that promote high diversification. The proposed diversification strategies are
applied to the SNO problem. It is shown that they can be employed to achieve an
adequate balance between solution quality and computational efficiency. The use
of a distributed fitness evaluation technique [6] also contributes to reduce the com-
putational cost involved in the search process. This technique is also described as
master–slave parallel GA in [13], distributing the fitness evaluation step of the indi-
viduals of a population among all available processor cores. This is done by using
independent threads, one for the evaluation of the fitness of each individual. Further
computational cost reduction is achieved by keeping a list of all unique solutions
[24]. At the end of each generation, before evaluating the fitness of a given individ-
ual, its genotype is compared with those found in the list. If the individual is unique,
its genotype is added to the list and its fitness evaluated. If the individual genotype is
already in the list, fitness evaluation is not carried out and the individual fitness value
is directly retrieved from the list. As fitness evaluation is costly in many practical
problems (SNO included), this helps saving time without compromising the quality
of the solutions obtained through the search process.

11.3.1 Multi-encoding

The encoding process is the transformation of phenotypic information (i.e. set of
variables that constitutes an individual) into a chromosome. Figure11.1 illustrates the
SNOencoding, inwhichGray, binary and integer encoding are employed to represent
the situation of five different equipment out of service. In an EA, the chromosome is
a genotypic representation of an individual and it allows the delimitation of a known
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Fig. 11.1 Representation of a solution for SNO in Gray, binary and integer encodings

search space, facilitating the process of searching for an optimal solution. In [9], the
encoding choice is highlighted as a key element to avoid loss of relevant information
in this representation process.

The use of different encodings has been explored in the EC literature. Real encod-
ing, as a natural representation of real or integer phenotypes, was investigated in [9].
In that work, the difficulty of propagating meaningful blocks of parents’ chromo-
somes after crossover is discussed and a SBX crossover operator for real encoding
is proposed. In [20], delta coding and Gray coding are considered as remapping
strategies that can pose an easier search problem for a GA. It is also proposed, using
delta coding, to dynamically switch the representation to avoid biases that may be
associated with a particular search space representation. Reference [20] also cited the
benefits of Gray encoding and its use in previous works. The reflected binary code,
usually called Gray code, is a numeral system with Hamming distance always equal
to one, i.e. two successive values differ in only one bit. In this mapping, it is possible
to have a gradual change behavior in both genotype and phenotype, and to introduce
high order changes with one-bit mutations. Reference [4] evaluates alterations in
the neighborhood of an integer phenotype encoded in a Gray or binary genotype. In
multimodal fitness functions, a different ordering of the neighborhood, introduced
by the use of Gray encoding, can eliminate local optima that may be present in the
search space when using other encodings. In [25], it is demonstrated that, in the worst
case, a change to Gray encoding preserves the number of local optima present in the
previous encoding.

It is important to note that changing encodings demands different mutation and
recombination operators and their influence in the evolutionary process should also be
considered. In [9], it is pointed out that the GA performance is affected by the choice
of encoding and crossover operator pair, suggesting a harmonious combination of
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these two elements for the success of the optimization process. Similar recommen-
dation is also found in [4].

In the present work, a strategy called multi-encoding is presented. This technique
introduces changes in the search space representation by switching the genotype
encoding during the EA evolutionary process. It explores the diversification intro-
duced by the use ofGray encoding [31] and the computational cost reduction obtained
when using integer representation. In this work, Gray encoding is first adopted and
then replaced by the integer one.

Numerical results with the application of such a multi-encoding strategy to the
SNO problem are also included in this chapter.

11.3.2 Repopulation with Elite Set

The repopulation with elite set (RES) strategy presented here is in line with the gene
flow concept in biology. This concept [28], also calledmigration, denotes movement
of genetic information from one population to the other and can be a very impor-
tant source of genetic variation [17] over the migrated genes. According to Hartl
and Clark, “as an evolutionary process that brings potentially new alleles into a
population, migration is qualitatively similar to mutation”. The concept of repop-
ulation during EA evolutionary process was addressed by delta coding algorithm
[20, 30] and CHC adaptive search algorithm [11]. In delta coding, an interim solu-
tion obtained from the first phase of an evolutionary process is used to rescale the
fitness of new individuals after a reinitialization. In CHC approach, an elite mem-
ber of the population is selected to produce individuals in the next population via
a specially designed operator. The previous population is removed from the evolu-
tionary process and only new individuals generated by the operator will constitute
the new population. The RES strategy presented in this chapter preserves a set of
individuals from the last population, i.e., elite set, and populates remaining positions
with new individuals. Therefore, this strategy intends to produce innovation based
on interactions between a migrated elite set and a pool of new individuals. These
interactions are represented by genetic operators, such as selection, recombination
and mutation. In order to generate higher quality innovation from the interactions
between those two pools of individuals, the RES strategy aims to produce an elite
set that has individuals with a diversified genotype and good quality, measured by
their fitness.

The RES algorithm executes the following two-step procedure:

• STEP 1: Candidate Selection (fitness criterion): Form a list of individuals sorted
by their fitness. The set of individuals with better fitness values are selected as
candidates. They are selected based on the differences between their fitnesses and
the one of the best individual. The employed criterion is defined next, where p
is a predefined percentage value, FF(xi) is the fitness of the i-th candidate and
FF(xbest) accounts for the fitness function value obtained for the best individual.



206 R. Zanghi et al.

FF(xi) − FF(xbest) ≤ p × FF(xbest) (11.1)

• STEP 2: Elite Set Formation (diversity filter): The candidate list generated at Step
1 is scanned in order to check if there are individuals genotypically too similar. If
that is the case, only one of them is kept in the list. To do so, perform the following
tasks:

1. Select the next individual in the list and compare it to other candidate solutions;
2. If the selected individual is significantly different from the other solutions, it will

be moved to the elite set. Otherwise, it will be discarded. While the candidates
list is not empty, return to Task 1.

The criterion used to decide whether a selected individual is similar to any other is
problem-dependent. It should take into account the level of diversity to be sustained
during the evolutionary process.

The RES strategy is applied through the segmentation of the evolutionary process
in two nested loops: first, an internal generational loop with g generations, in which
a simple elitist strategy (preserving best solution only) is employed between two
generations; second, an external repopulation loop with r repopulations, in which
theRES strategy is implemented. The number of individuals selected as candidates—
which is dependent on the quality of the current population and the choice of the
offline parameter p—can be dramatically reduced, if a diversity filter criterion is
employed.

The RES technique aims to provide diversification, by introducing a pool of new
individuals in the population, which replace not only low quality solutions but also
good solutions that are not genotypically diverse. The same technique provides inten-
sification (somewhat weaker) by preserving phenotypically good solutions (elitism),
which may increase selection pressure.

11.3.3 Uniqueness Criterion

In [24], it is mentioned that a measure of population diversity is commonly employed
to dynamically stop the evolutionary process. However, there is no consensus on
diversity criteria and different methods of measuring diversity to be adopted, con-
sidering genotype, phenotype or fitness. The metrics of diversity based on genotype
statistics are the most common. There are few theoretical results in this field, such
as those found in [2, 10, 14, 15, 22, 29]. In [26], for example, an adaptive method
based on the probability of achieving significant changes in the next generations is
proposed. Many of these works have a common viewpoint, by associating GAs with
stochastic search. Others apply diversity measures to guide multi-objective GAs in
changing environments. Nevertheless, they all point out that threshold based meth-
ods, using statistics focused on diversification in genotypes, phenotypes or fitness
values are promising strategies to guide the optimization of multimodal functions
using EAs.
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The uniqueness criterion proposed here evaluates individual novelty by its fitness
value. Individuals with unique fitness values are considered new, and fitness novelty
is the desired diversification characteristic to differentiate problem solutions. That
criterion intends to stop the generational loop when a metric that quantifies novelty,
here called uniqueness, falls below a given threshold value (ut). In order to quantify
the uniqueness metric, the number of new individuals generated by the EA, accumu-
lated in a uniqueness counter uc, is divided by the total number of individuals (totind)
created in the evolutionary process, up to that point. The uniqueness stop criterion is
defined as: uc

totind
≤ ut (11.2)

By using the cardinality of unique solutions set, the uniqueness metric in (11.2) will
be resistant to scaling issues usually present when statistics (e.g., average) computed
in terms of the fitness values of the individuals are employed. There is no explicit
dependency between the fitness value and the number of individuals with unique
fitness values in a given pool. The uniqueness metric represents numerically the
diversification of the evolutionary process and holds important information that can
be used as a decision criterion to balance diversification and intensification. The
possible sources of new individuals are the pool of individuals generated using RES
and the output of genetic operations (recombination and mutation).

The uniqueness criterion adopted here is employed to calibrate automatically the
number of repopulations r of the RES technique. The objective is to gain computa-
tional efficiency by reducing the number of repopulations, while keeping a high level
of diversification in the evolutionary process. This approach does not require to set a
maximum number of generations during the evolutionary process and the number of
generations of each repopulation cycle is automatically determined. Whenever the
diversification level of the evolutionary process goes below the uniqueness criterion
threshold, a new repopulation cycle is triggered. Then, the number of generations in
each generational loop is not fixed, as it depends on the uniqueness criterion stated in
(11.2). As a result, the total number of generations in the evolutionary process tends
to diminish as compared with situations in which such criterion is not employed.

11.4 Power Network Outages Scheduling

In short-term operation of power systems, it is necessary to deal with the problem of
scheduling the outages of network elements, which are requested on a regular basis.
In an interconnected system with different agents maintaining transmission equip-
ment, the independent system operator (ISO) is responsible to analyze simultaneous
requests and take decisions, bearing in mind that proper operating conditions, as
well as system integrity, must be preserved. These analyses rely on the experience of
system experts and involve considerable human and computational effort. However,
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only a few scheduling possibilities are covered by such analyses, which are com-
monly concerned only with attending operational constraints and not meeting agents
requirements.

The problem of programming transmission equipment requested outages can be
seen as an optimal scheduling problem, in which the resources are violations of
operational constraints and deviations from the outage timetable requested by the
agents. However, the problem complexity in this case is higher than that usually
found in typical scheduling problems [23], owing to the interdependency between
variables. The occurrence of simultaneous outages, associated with different demand
profiles, can influence the network operating conditions and the representation of
constraint violations. The application of exact optimization methods is impractical,
due to the high computational cost to evaluate a huge number of scenarios, associated
with every possible outage schedule. Metaheuristics such as EAs [19] are able to
deal with both challenges (complexity and dimensionality) efficiently in complex
optimization problems.

This work approaches the SNO as a constrained optimization problem, in which
the objective function represents the rescheduling of a set of outages, aiming to
achieve minimal deviation of the initial schedule proposed by agents, satisfying
power network operational constraints. The priority of each outage, as defined by
Brazilian ISO regulation [21], is also taken into account when rescheduling. Then,
outages of higher priority tend not to be rescheduled or to present lower deviations
from the time it was initially scheduled (as requested by the agent). Power network
operational limits and the need to balance power generation and load demands are
modeled as problem constraints. The optimization problem can be formulated as:

min
n∑

t=1

(
Δh(t) × Ppri(t)

)
, (11.3)

subject to:
gk(θ, V ) = 0 k = 1, . . . , na; (11.4)

VHI
ik − Vik ≥ 0 i = 1, . . . , nb; k = 1, . . . , na; (11.5)

Vik − V LO
ik ≥ 0 i = 1, . . . , nb; k = 1, . . . , na; (11.6)

∣∣Pnom
jk

∣∣ − ∣∣Pjk

∣∣ ≥ 0 j = 1, . . . , nr; k = 1, . . . , na and (11.7)

∣∣∣Pemerg
jk

∣∣∣ − ∣∣Pjk

∣∣ ≥ 0 j = 1, . . . , nr; k = 1, . . . , na. (11.8)

In (11.3), Δh(t) is the deviation (hours), of the time scheduled to initiate the t-th
outage, in relation to the one proposed by agents; Ppri is the priority associated with
the t-th outage; and n is the number of outages to schedule. The equality constraint
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(11.4) represents active and reactive power balance equations at each node of the
network (i.e. load flow solution for the determination of complex voltages at all
nodes) for each of the na scenarios to be analyzed, represented by specific topology
and loading. Operational limits are represented by constraints (11.5)–(11.8), for each
scenario, denoted by index k; voltage magnitudes V of nb system nodes should not
violate upper and lower limits, VHI and V LO, respectively; and active power flows P
in nr branches should not be greater than emergency limits Pemerg or nominal limits
Pnom. The capability to withstand single contingencies is also taken into account, by
requiring that constraints (11.5)–(11.7) be satisfied.

The evolutionary process of an EA will search for the individual with best fitness,
by evaluating each proposed solution using a single fitness function, whose terms
include the rescheduling deviations and established constraints, which are weighted
by predefined penalty factors. Each individual of the SNO problem is represented
in the EA by a chromosome where each gene contains the initial time of a given
scheduled outage. The alleles of each gene are limited by the time window specified
for the analyzed event occurrence. Each solution is represented as an outage schedule
considering many scenarios and respective analyses, leading to high computational
cost of the fitness evaluation. In SNO, this evaluation requires several runs of a power
flow algorithm, which involves the solution of a set of nonlinear algebraic equations,
imposing a high computational cost for large power networks and intricate schedules.

The methodology presented in [8] addressed SNO in a systematic and effective
way. However, the employed optimization algorithm lacks efficiency, particularly
considering its application for outage scheduling in larger power networks. In addi-
tion, the complexity andmultimodality of thefitness function demands diversification
strategies. The diversification strategies proposed in this chapter aim to circumvent
these drawbacks, which is evidenced by the test results presented in the next section.

11.5 Simulation Results

The strategies proposed here have been incorporated in an EA to solve the SNO
optimization problem. Simulations considering outages to be scheduled in the IEEE
14-, 30-, 57-, and 118-bus systems [5] were performed. For each system, the EA
was executed 100 times, with initial populations randomly generated by means of
different seeds. The effectiveness of the proposed approach was assessed in terms of
the best solution (minimum) fitness observed in 100 executions of the EA, as well
as the average of the best solutions found and the associated standard deviation. The
computational efficiency was assessed in terms of the average execution time, which
represents the average of the execution times observed. The EA parameters adopted
were the same used in [8, 31].
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11.5.1 Repopulation with Elite Set

Table11.1 shows the results obtained for each test system, using Gray and integer
encodings, with and without the RES strategy. A percentage p set to 40% was used
in (11.1) when selecting candidates to form the elite set. Besides, two individuals
were considered significantly different when (in the corresponding schedules) the
scheduled time of any given outage differs at least in three hours. Each execution
of the EA consisted of 70 generational loops (repopulations), each one with 10
generations. When the RES strategy was not used, a single generational loop with
700 generations was considered in the evolutionary process.

The results inTable11.1 show that the best fitness values are improvedor preserved
when using the RES strategy. The RES strategy also improved the average fitness
values in all cases, meaning that it is more likely to obtain better solutions when such
strategy is employed. In addition to the solution quality improvement enabled by the
use of the RES technique, the results in Table11.1 also reveal that better solutions
are obtained by Gray than integer encoding. On the other hand, a faster convergence
is achieved with integer encoding. The use of the RES strategy and Gray encoding
favor diversity and allow the exploration of more unique and diverse individuals
during the evolutionary process. When the RES strategy and the Gray encoding are
not used, more individuals that are identical appear. The fitness functions of the same
individual do not need to be recalculated, resulting in computational gain. However,

Table 11.1 Repopulation with elite set and encodings

Test case Enc. RES Fitness Time (s)

Min. Avg. Std. dev. Avg.

IEEE14 Gray No 42.064 42.590 0.840 8

Gray Yes 42.064 42.354 0.576 22

int. No 42.064 46.108 2.647 1

int. Yes 42.064 42.933 0.788 14

IEEE30 Gray No 8.449 10.648 1.424 77

Gray Yes 8.449 10.432 1.263 108

int. No 8.748 18.269 4.667 5

int. Yes 8.720 13.712 2.604 60

IEEE57 Gray No 17.029 18.610 0.860 381

Gray Yes 17.029 18.382 0.865 508

int. No 17.564 23.464 4.109 16

int. Yes 17.029 20.317 1.553 322

IEEE118 Gray No 10.021 17.091 4.818 1777

Gray Yes 10.021 16.822 4.505 3239

int. No 19.714 33.600 9.028 87

int. Yes 19.714 28.054 4.793 2126
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it is important to stress that the solution quality brought by the use of the Gray
encoding and RES technique is positively affected.

11.5.2 Multi-encoding

Bearing in mind the benefits brought to the quality of the obtained solutions and
to the computational efficiency when using different encodings, a combination of
Gray and integer encodings is proposed. Therefore, Gray encoding, which naturally
favor diversification, was employed at the beginning of evolutionary process. In
a later stage, aiming to accelerate the convergence of the EA, that encoding was
replaced by the integer one. In all simulations, the Gray encoding was switched to
the integer one after performing 50% of the total number of generational loops of
the evolutionary process. As in the previous simulations, 70 generational loops, each
one consisting of 10 generations, were considered. The RES strategy was adopted
in all cases.

The results obtained using the multi-encoding approach are shown in Table11.2.
For the sake of comparison, results obtained with the use the RES strategy, but using
only Gray or integer encoding, extracted from Table11.1, are also shown.

The results show that the use of the multi-encoding strategy allows a significant
reduction in the computational time when compared to the use of the Gray encoding
only, being negligible the impact on the quality of the obtained solutions. This shows
that themulti-encoding approach can provide better trade-offs between solution qual-
ity and computational efficiency, if the diversification and intensification provided
by each encoding is conveniently explored during the evolutionary process.

Table 11.2 Multi-encoding 50%

Test case First encod. Sec. encod. Fitness Time (s)

Min. Avg. Std. Dev. Avg.

IEEE14 Gray – 42.064 42.354 0.576 22

int. – 42.064 42.933 0.788 14

Gray int. 42.064 42.430 0.645 18

IEEE30 Gray – 8.449 10.432 1.263 108

int. – 8.720 13.712 2.604 60

Gray int. 8.449 10.552 1.456 87

IEEE57 Gray – 17.029 18.382 0.865 508

int. – 17.029 20.317 1.553 322

Gray int. 17.029 18.470 0.856 418

IEEE118 Gray – 10.021 16.822 4.505 3239

int. – 19.714 28.054 4.793 2126

Gray int. 10.021 16.756 4.596 2852
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11.5.3 Uniqueness Criterion

The uniqueness criterion was also explored to enhance the computational efficiency
of the EA by monitoring the diversification and intensification stages during the evo-
lutionary process. This was accomplished by observing the uniqueness criterion in
order to decide when to interrupt each generational loop and repopulate again using
the RES strategy. Then, whenever the uniqueness defined in (11.2) falls below the
threshold value ut , the generational loop is interrupted. Considering the evolutionary
process as a whole, computational time savings are obtained whenever the genera-
tional loop is interrupted before the predefined number of generations (equals to 10)
is achieved. It is important to note that more emphasis is given to diversificationwhen
such uniqueness criterion is adopted, as it tends to preserve more diverse solutions
throughout the evolutionary process. Although in a less degree, intensification is also
achieved, as the diverse elite solutions that are preserved by the RES strategy tend to
be continuously enhanced after each generational loop. Since a high diversity level is
sustained until the end of the evolutionary process, a simple local search (LS) is exe-
cuted only once, at the end of the evolutionary process and having the best solution
as the starting point, thus favoring local search intensification. The employed LS is
a greedy algorithm in which new solutions are explored by changing the initial hour
of each outage. Whenever a better solution is found, it becomes the base for a new
local search cycle. The search stops when it is not possible to enhance the current
base solution after exploring its neighborhood.

Table11.3 presents simulation results obtained when using the uniqueness crite-
rion. In all the simulations, the Gray encoding was adopted. As previously discussed,
the number of generations in each loopwas not fixed and depended on the uniqueness
criteria stated in (11.2). In the performed simulations the threshold ut was set to 0.7.

Table 11.3 Uniqueness criterion with RES

Test case RES Uniq. Fitness Time (s)

Crit. Min. Avg. Std. dev. Avg.

IEEE14 No No 42.064 42.590 0.840 8

Yes No 42.064 42.352 0.574 22

Yes 70% 42.064 42.641 0.649 4

IEEE30 No No 8.449 10.433 1.263 77

Yes No 8.449 10.184 1.191 110

Yes 70% 8.449 10.769 1.780 20

IEEE57 No No 17.029 18.152 1.059 387

Yes No 17.029 18.030 0.964 512

Yes 70% 17.029 18.525 1.083 110

IEEE118 No No 10.021 16.840 4.652 1791

Yes No 10.021 16.605 4.403 3253

Yes 70% 10.021 16.945 4.679 703
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Table 11.4 Fitness
values—proposed (ideal)
versus optimized

Test case Solution fitness

Proposed Found

IEEE14 233.013 42.064

IEEE30 161.374 8.449

IEEE57 930.262 17.029

IEEE118 969.289 10.021

In Table11.3 the results obtained using the uniqueness criterion can be compared
with those in which the number of generations per generational cycle was fixed and
predefined. For the sake of comparison, the Gray encoding was adopted in all cases
and the same LS technique was applied at the end of evolutionary process.

The results in Table11.3 show that considerable gains in computational efficiency
are achieved when using the uniqueness criterion. The effect on the quality of the
final solution can be considered negligible, as shown by the minimum and average
fitness function values observed for each test system.

11.5.4 Effectiveness of the Optimization Process

As previously discussed, the optimal solution for the formulated SNO optimization
problem will be the schedule that does not lead to violations of power network
operational constraints, with minimal deviations from the ideal schedule—the one
requested by network agents. Table11.4 shows, for each test system, the fitness values
associated with the solution that represents the ideal schedule and the best solution
found by the EA (the one incorporating the strategies proposed here). Thus the
fitness values associated with the ideal schedules are only concerned with violations
of network operational constraints. It can be seen from Table11.4 that the fitness
values were substantially reduced during the evolutionary process, reflecting the
optimization carried out by the EA.

11.6 Conclusions

This chapter presented different strategies to explore the diversification and inten-
sification stages in an EA so that adequate trade-offs between solution quality and
computational efficiency can be achieved when solving complex optimization prob-
lems. A repopulation scheme is employed, in which a set of elite individuals (that are
also diverse among each other) are selected in the evolutionary process carried out by
the EA. A multi-encoding strategy and a criterion that measures uniqueness among
individuals are also proposed in order to drive the evolutionary process by favoring
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diversification or intensification. The proposed strategies were implemented in an
EA and applied to find optimal schedules of power network outages. Tests were per-
formed in different benchmark power networks and the obtained results reveal that
the proposed strategies can help to obtain high-quality solutions in reduced compu-
tational times. This feature is particularly useful when solving many real problems,
like the SNO, in which different suboptimal solutions are acceptable but one of them
should be obtained in a reduced computational time.
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Chapter 12
WBdetect: Particle Swarm Optimization
for Segmenting Weld Beads in Radiographic
Images

Rafael Miranda, Myriam Delgado, Tania Mezzadri,
Ricardo Dutra da Silva, Marlon Vaz and Carla Marinho

The radiographic inspection of weld beads is important to ensure quality and safety
in pipe networks. Visual fatigue, distractions, and the amount of radiographic images
to be analyzed can be listed as main factors for human inspection errors. This chapter
presents an approach for automatically segmenting weld beads in Double Wall Dou-
ble Image (DWDI) X-ray photographs by combining two known methods in the
literature: Particle Swarm Optimization (PSO) and Dynamic TimeWarping (DTW).
Vertical profiles of the weld beads are obtained from the windows’ coordinates
encoded by particles and compared, via DTW, with a predefinedmodel. Experiments
are performed considering two phases: first, tests are carried out to set the default
configuration, and second the configured system (named WBdetect) is evaluated,
including a comparison with another approach. Promising results show that WBde-
tect converges, most of the time, to the window that allows a proper segmentation of
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theweld bead, outperforming the compared approach (the average accuracy achieved
by WBdetect is 93.63 +−12.91, and 65.88 +−17.9% for the other approach).

12.1 Introduction

Petrochemical industries have networks of pipelines through which gases and liquids
are transported. These networks of fluid conductive pipes are constructed by attaching
pipes and other components by means of welded joints [17]. They are designed to
tolerate great efforts and critical pressure and temperature conditions, since failure
may cause serious damage to the environment, to the installations and processes.
However, the welding process is subject to defects and flaws during the formation
of the weld bead. Thus, in order to monitor the quality of weld beads, periodic
inspections by means of nondestructive testing techniques (NDT) help to prevent
such failures [1]. Radiography is a widely used method to inspect weld beads.

The inspection of weld beads is commonly performed by experts who, despite
all training and knowledge, are prone to make mistakes due to eyestrain, knowl-
edge level, number of images to be analyzed, fatigue, and distraction [8]. Because of
these considerations, research centers have been focusing their efforts on the devel-
opment of automatic or semiautomatic inspection systems for the interpretation of
radiographic images of welds. Segmentation followed by defects classification in
weld beads is an area that has attracted attention from the pattern recognition com-
munity. However, most approaches for classification of defects are associated with
manual or semiautomatic segmentation of the welded joints. The reason is the chal-
lenging aspects of theweld bead in the images, such as orientation, size, and form [4].
Many techniques are not totally automatic and, usually, too specific, i.e., they are
focused on the simplest cases (SingleWall Single Image (SWSI) or DoubleWall Sin-
gle Image (DWSI) radiographic images), and generally they can not handle Double
Wall Double Image (DWDI).

Such difficulties as well as the need of an effective method for automatic segmen-
tation of weld beads have motivated the proposition of the approach described in this
work. This chapter is an extension of the paper published in [10]. The approach pro-
posed in [10] also applies Particle SwarmOptimization (PSO) toDWDI radiographic
images and uses Dynamic Time Warping (DTW) as a fitness function that measures
the similarity between an ideal profile model and a profile extracted from the image.
In this work the same methodology is adopted to design the proposed system named
Weld Bead detector system (WBdetect) but the experiments have been extended to
include a more consistent parameter setting phase, result analysis and comparison
with another approach.

The association of PSO and DTW is incipient in the literature [11], and this
work contributes in this area of research. PSO has been chosen since it is easy to
implement and widely used for continuous optimization. Furthermore, PSO is able
to combine random components and historical knowledge to guide itself through the
search space, increasing the chances of the solution to be optimal [13, 18]. On the
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other hand, DTW is flexible to size and offset differences between two series being
compared [3]. DTW can also be used to identify corresponding points between two
series [2].

This chapter is structured as follows. In Sect. 12.2, the text describes the main
problem being addressed. Section12.3 provides an overview of the concepts used
in the proposed approach. Section12.4 presents the WBdetect: an approach to auto-
matically detect weld beads in oil pipes based on particle swarm optimization and
dynamic time warping. Experiments and results are described in Sect. 12.5. Finally,
Sect. 12.6 concludes the chapter and provides directions for future works.

12.2 The Addressed Problem

The DWDI radiographic technique uses a source of X-rays positioned outside the
pipe, at the location of the welded joint, and the radiation beam goes through the
two walls of the pipe (Fig. 12.1). This technique is used when it is not possible to
place the source or the film inside. The radiation source can be aligned to the weld,
creating an image with overlapping arcs, or inclined (as in Fig. 12.1), producing a
weld bead with elliptical shape on the radiographic film [1].

All the images considered in this work assumeweld beadswith the elliptical shape
depicted in Fig. 12.1c. Those images are provided by the Center for Research and
Development of Petrobrás (Centro de Pesquisas e Desenvolvimento da Petrobrás -
CENPES) and represent operating conditions with different levels of light, noise,
contrast, nonstandard formats, and dimensions in the weld beads.

Fig. 12.1 Radiographic image of type DWDI. Left DWDI technique; right DWDI result empha-
sizing a the pipe wall; b the image quality indicator; c the weld bead; d the landmark indicating the
exposition angle of welded joint
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12.3 Background

This section presents the basic concepts necessary to understand the work, including
related works (described in Sect. 12.3.1), fundamentals of Particle Swarm Optimiza-
tion (Sect. 12.3.2) and Dynamic Time Warping (Sect. 12.3.3).

12.3.1 Related Works

This section describes related approaches to segment weld beads based on Computa-
tional Intelligence (mainly PSO). One of the first works is the segmentation method
proposed in [9] which is based on the intensity of the pixels in the region of the weld
bead. The method proved to be effective only if the weld bead appears in the image
as a straight line. It was also observed that the intensity distribution of the weld bead
along the lines of the image resembled to be Gaussian. In [4], the authors propose a
method for extracting the weld bead in radiographic images using a Genetic Algo-
rithm (GA). The method computes geometric transformations on a weld bead model
looking for the best match with the weld bead in the image. It achieved good results
for SWSI and DWSI, however, it did not have the same performance for the DWDI
technique. A comparison between GA and PSO is presented in [8]. At first, the pipe
is delimited and then the weld bead detection is performed by means of deformable
masks. The approach obtained good results for DWSI and SWSI and for a specific
subset DWDI images. Comparisons showed that PSO outperformed AG. In [5], a
method to detect the central region of the weld bead in DWDI images is proposed.
The method is composed of three steps: preprocessing, for noise reduction; PSO-
based optimization, which searches for the best ellipse fitting the central region of
the weld bead; and, finally, the selection of the best candidate region, considering
similarity and focal length. A preliminary version of the proposed approach is pre-
sented in [10]. Some experiments were carried out and initial results were obtained.
This chapter is an extension of that previous work [10] with the addition of new
experiments, including the comparison with another approach [11]. The work pre-
sented in [11] served as an inspiration for [10] and this chapter. It can be divided into
three stages: pipe identification (based on the thresholding and labeling techniques),
detecting characters in the image which identify its quality (IQI) (this phase is also
based on labeling but uses models of the IQI characters to identify the region to be
eliminated from the original image), and finally the search for the weld bead that
also combines PSO and DTW. After the detection and elimination of the tube and
IQI characters, the method obtains the region of interest (ROI) which defines the
search space of PSO particles. The next step is where [10, 11] mostly differ since in
[11] the proposed approach was developed to find out only one arc at each time, so
PSO must run twice for the complete segmentation of the weld bead. Further, each
particle extracts a set of n profiles and the method calculates the similarity of these
profiles (via DTW) with the synthetic model (that is a single Gaussian curve). Thus,
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with the DTW cost calculated for each one of the n profiles, the average is computed
to measure the quality of the particle. Reference [11] represents a great contribution
to our approach: (i) it served as an inspiration since it was the first work to joint
PSO and DTW to detect weld beads in DWDI radiographic images; (ii) it provides
the ROI in which our approach performs the search for the weld bead. In order to
deal with some of the gaps left by previous works, we discuss in this chapter a new
method (WBdetect) for segmentation of weld bead in DWDI radiographic images.

12.3.2 Particle Swarm Optimization

The PSO algorithm was developed by Kennedy and Eberhart in 1995 [7]. The inspi-
ration came from the behavior of fish school and bird flock that use the strategy of
collaborating to evolve. PSO became a widespread technique for its low computa-
tional cost and for allowing the share of information inherent to the social behavior of
its individuals. The PSO algorithm randomly initializes its population over the search
space and each particle p is associated with a velocity vector v. The movement of the
particles enables the search for better positions within the search space. The process
is iterated until a stopping criterion is reached. The most commonly used criteria
are: maximum number of iterations and acceptable fitness value [7]. The quality of
each particle is measured by the fitness function. Particles store their experiences
throughout evolution. The best position found by a particle is stored in personal best
(PBest) and the best position found by the population is stored in global best (GBest)
or local best (LBest) if a neighborhood structure is considered. These information
are used to change the velocity that leads a particle toward a better fitness value
[7, 16]. Equation12.1 describes the velocity update performed at each iteration for
each particle:

vt+1
i = wvti + C1r1(PBestti − pti) + C2r2(GBestti − pti), (12.1)

such that vti is the current velocity of the i-th particle at iteration t,w is the moment of
inertia, which controls the search capability in particle space, pti is the i-th candidate
solution at the current iteration, r1 and r2 are random values uniformly distributed
in the range [0, 1] and C1 and C2 are two acceleration constants [13, 15, 16], which
dictate the portion of local and global memory information that will contribute to the
particle’s movement. High values ofw favor the previous move (global exploitation)
while lower values favor a local search. The constants C1 and C2 also influence the
search. Higher values diminish the influence ofw. It is common to control that situa-
tion by initializingwwith higher values which smoothly decay throughout iterations,
promoting a balance between global and local searches. The particle coordinates are
updated according to Eq.12.2:

pt+1
i = pti + vt+1

i , (12.2)

where vt+1
i is the updated velocity and pt+1

i is the updated position.
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In this work, the position of each particle defines the coordinates of the window
from which the weld bead profile will be extracted.

12.3.3 Dynamic Time Warping

The Dynamic Time Warping (DTW) algorithm searches for the best alignment
between two series of values. The algorithm uses dynamic programming to measure
the similarity between two series, minimizing the distance between them (commonly
the Euclidean distance). It is used in areas such as speech, signature and gestures
recognition, robotics, medicine, and data mining [2, 3, 14]. The use of DTW for
image processing is still not widespread. One of the first applications to weld beads
detection was presented in [11], work that has inspired the proposal presented in
this chapter. DTW operation can be described as follows. Given two time series
A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm} of sizes n and m, the algorithm con-
structs a n × m matrix such that each element stores the distance d(i, j) between
points ai and bj, corresponding to the alignment of the points of the two series. A
path is a contiguous set of elements of the matrix that defines the mapping between
the seriesA andB (Fig. 12.2). The path is subject to some restrictions [3, 6, 14], itmust
begin and end at diagonally opposite corners of the matrix (limit restriction); it must
not have leaps, ensuring the alignment does not omit important features (continuity
constraint); it must not go back, ensuring the features do not repeat (monotonicity
constraint).

The total cost of the path (alignment) is given by:

Cost(A,B) = 1

N

K∑
i=1

ei (12.3)

Fig. 12.2 Example of DTW. a Two series to be analyzed. b The distance matrix and the best path
are emphasized. c Resulting alignment. Font: adapted from [6]
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such that K is the number of elements in the path with elements ei, and N = n + m.
Out of many possible paths, the one that minimizes the cost function (3) is cho-
sen [14]. The path can be found with dynamic programming according to the fol-
lowing steps [14]:

1. Initial condition:

D(1, 1) = 2d(1, 1); (12.4)

2. Path equation:

D(i, j) = min[D(i, j − 1) + d(i, j),D(i − 1, j − 1)+
2d(i, j),D(i − 1, j) + d(i, j)]; (12.5)

3. Adjustment window:

|i − j| <= r, (12.6)

where r is a positive integer called adjustment window, i and j are the current
indexes of the matrix D. The adjustment window is used to speed up the running
of DTW by limiting the data that is analyzed.

12.4 WBdetect: The Proposed Method

In this section we present the proposed approach named WBdetect. It consists of a
PSO-based technique developed to automatically detect weld bead in radiographic
images of oil pipes, which is associated with DTW to calculate the particles’s fitness.

This work is part of a project developed by the Research Group on Images and
Computer Vision (Grupo de Pesquisas em Imagens e Visão Computacional – GIVIC)
of the Federal University of Technology, whose objective is to detect defects in weld
beads by using DWDI radiographic images. For this purpose, the work developed
in [11] performs a preprocessing to recognize the pipe, removes landmarks in the
image, and retrieves a region of interest (ROI) where possibly is the weld bead (see
Fig. 12.4, including the shaded area).

Our method performs a search in the ROI through a PSO algorithm with a DTW
cost-based fitness, which returns the similarity between a profile extracted by a
particle and a predefined model. WBdetect comprises three main steps to segment
the weld bead: the construction of the synthetic model, the optimization performed
by PSO and, finally, the fine-tuning process. The PSO optimization has two main
steps: the search and extraction of a profile by the particle, and the measuring of
similarity by means of DTW.
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(a) (b)

Fig. 12.3 Example of the adopted data reduction process: a before reduction, b after reduction

12.4.1 Synthetic Model

The distribution of intensities of pixels in a weld bead region of a DWDI image
resembles the one shown in Fig. 12.1c, whose profile has two intensity peaks, cor-
responding to the bead arches, and one intensity valley, corresponding to the central
region of theweld bead.Aprofile example (similar to themodel) is shown inFig. 12.3.
The model is constructed by using a Gaussian distribution of gray levels [0, 255].
Initially, the model was defined with a complete set of points (Fig. 12.3a), as the pro-
posal progressed, a reduction (Fig. 12.3b) was necessary based on a profile reduction
factor.

An average of every Z points of the original profile is computed to represent the
original points. The technique besides reducing the computational time, smooths
noise in the profile, as illustrated in Fig. 12.3.

12.4.2 PSO Optimization

One of the first steps to design WBdetect is to define the search space limits of
PSO particles. Due to the high processing time, it was observed the ROI needed to
be reduced by 50% in its size (i.e., number of pixels). The search space was also
reduced by eliminating the boarders of the image: a total of 20% of the image width
is removed from each side (highlighted region in Fig. 12.4), since the intensity of
the pixels in these regions is very homogeneous and would not resemble the pattern
generated. Thus only 60% of the image width is used as a valid search space. The
image height (HI) is not changed and the entire ROI height is considered a valid
search space. The search for the candidate region that mostly resembles the weld
bead model is performed by PSO, which randomly initializes the particles in the
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valid search space. The location of the window to extract the weld bead profile
associated to the i-th particle at iteration t is given by the particle position pti .

Assuming a general particle position given by p = (p1, p2, p3, p4), the location of
the associated window is defined based on the particle elements, where each element
is defined as:

• p1: position on the X axis of the profile extraction window;
• p2: position on the Y axis of the profile extraction window;
• p3: height H of window (the size of profile to be extracted);
• p4: width L of window (number of pixels considered, where L/2 are on the left
and L/2 are on the right side of the window central coordinate).

The values of p1 and p4 can be assumed in the valid search space (i.e., 60% of
the ROI width), p2 can assume values on the image height range (i.e., p2 ∈ [0,HI],
remembering HI is the image height (ROI)). Theoretically p3 could vary in [0,HI]
but we decided to reduce this range to [Hmin,Hmax]. Two possible ranges are going
to be tested [0.3, 0.5] ∗ HI and [0.2, 0.35] ∗ HI . The values of p1, p2, p3 and p4 are
randomly generatedwithin allowable limits. Particles that go beyond the search space
limits are set to the first valid position. After all iterations of PSO, the values of p1,
p2, p3, and p4 of GBest define the region of the candidate weld bead.

Vertical Profile Extraction

As previously discussed, the location of the window used to extract the weld bead
profile is basedon the particles encoding.An illustration of this association is depicted
in Fig. 12.4. The left upper side of the window is defined by p1 and p2 while p2 and
p3 define its final height. In this example, p4 is defined as 1.

The profile computed using 1 pixel wide window (i.e., p4 = 1) tends to be noisy
(Figs. 12.4a and 12.5a). In order to avoid this problem, we impose a minimum value
and the profile is computed using the average of p4 = L > Lmin pixels for each line of
a window centered at the vertical axis. Figure12.4b illustrates (with p4 = L = 100)
the advantage of using larger windows.

The profile values are normalized in the range [0, 255] depending on a threshold
computed as the difference between the maximum and minimum gray levels. The
normalization enhances the profile curves and its compatibility with the synthetic
model.

Similarity Computation

Given the profile computed as described in the previous section and the synthetic
model, the similarity between the series represented by the A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bm}, can be computed based on the cost of DTW (Eq.12.3). In this
work, a version of the cost without normalization is also tested, according to Eq.12.7,
to reduce elongated profiles:

Cost(A,B) =
K∑
i=1

ei. (12.7)
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Fig. 12.4 Illustration of vertical profile extraction for an outside weld region

The reason for changing the computation of the cost of DTW is presented as
follows. Assuming the cost of normalized DTW as Cost1, when the value of p3
(profile size) is increased, the new cost value, Cost2, tends to be lower even if there
is no target image resulting from this increment. This occurs mostly because the
increased part of the pipe has a small contribution to the sum, but the cost decreases
as the value of N increases - (see Eq.12.3). Thus, an increase in p3 usually produces
a smaller DTW cost (Cost2 < Cost1) with no guarantee of improving the weld bead
detection. As discussed in Sect. 12.4.1 we used in this work a technique to reduce the
profile data, that, associated with the use of Eq.12.7 can improve the segmentation
capabilities of the method (see Sect. 12.5 for more details).

A perfect DTW alignment of two series would be a path corresponding to the
diagonal of the distance matrix (see Fig. 12.2), but this perfect matching is so far to
be found here. The optimal alignment is found by a very time consuming analysis of
the whole matrix. In order to speed up the process, the search is performed inside a
restricted diagonal window, since the farther the path is from the matrix diagonal the
worse is the alignment. Our approach is based on the Sakoe–Chiba technique [14]
and the value for the adjustment window is defined empirically. This work uses a
modification to the technique proposed in [12] to ensure that the endpoints belong
to the path. Another technique used to improve the computational cost of DTW
was the inclusion of a lookup table that stores computations that have already been
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(a) (b)

Fig. 12.5 Profile extraction. a simple profile extraction b average-based profile extraction

performed. The DTW cost and coordinates of a particle (integer coordinates in an
image location) are stored so that if a particle goes to a previously visited location
(a common behavior when PSO is almost converging to a solution and particles are
close to each other) the fitness is not recomputed.

Fine-Tuning

A fine-tuning is performed after the PSO search if the output image requires adjust-
ments (an extra part of the pipe is present or part of the weld bead is missing).
Therefore, the region detected by a particle can be automatically incremented or
decremented as an attempt to find out higher similarities with the synthetic profile
model. The maximum amount of increment or decrement can be limited according
to the height of the detected profile. All possibilities (discrete steps of increment
or decrement) are performed and the one with the highest similarity (computed by
DTW) to the model is chosen. If no improvement is obtained, the profile found
originally by PSO is maintained.

By following the processes described in the previous sections the weld bead can
be segmented. Next section discussed the results obtained by the application of
WBdetect to a set of operating condition images.
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12.5 Experiments and Results

In this section, the proposed approach is applied on a set of 30 DWDI radiographic
images of welded joints. From the total of available images, 10 are selected to set the
configuration parameters and the remaining 20 are used to test the proposed approach.
For each image, PSO is executed 30 times (each round with a different random seed).
After each PSO run, the fine-tuning process can take place. In this work, the limit of
change (increase or decrease) in fine-tuning is chosen as a percentage (30%) of the
original profile size returned by PSO. A total of 6 possible increments and 6 possible
decrements is considered, ranging from 10 to 30% in the lower or upper part of the
profile.

At the end of the fine-tuning process, the expert analyzes and classifies the result
provided by the WBdetect, as follows. Similar to the methodology proposed in [10],
somenumerical criteria (grades) are established to differentiate the results.According
to the type of information that could be provided by the proposed approach to the
GIVIC system (i.e., the system that detects defect in weld beads, which is out of the
scope of this chapter), five quality levels are considered by the expert:

• in the case of a total error (i.e., the weld bead is not detected) the result can not be
accepted and the output receives grade 0 (zero);

• when the output contains only a portion (one arc of the weld bead - either the top
or bottom) it receives grade 25, indicating that even with a missing arc, this image
could be used as an input to the GIVIC system;

• if part of one arc is missing (part of top or part of bottom) it receives grade 50,
since we still have missing parts but we have more information than the previous
case;

• when the weld bead is segmented, but there is a great part of image with no target,
the result receives grade 75, indicating that now we have the total information
necessary to weld bead defect detection but the chance of false positives is higher
than that of correct segmentation;

• finally, when the weld bead is segmented properly it receives the maximum grade
100.

This results classification analysis is performed by the expert (for all the images and
rounds considered - in this work for example, a total of 30*30 = 900 images must
be analyzed for each approach). Some examples of final grades (one for each case)
are illustrated in Fig. 12.6.

In order to analyze the performance of the proposed approach considering dif-
ferent parameters to be set by the user, experiments have been carried out aiming
to define the default configuration. Next section details those experiments (named
configuration phase).
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Fig. 12.6 Examples of the proposed classification scheme for the weld bead detection: a unaccept-
able (grade 0); b partially acceptable (grade 25); c regular (grade 50); d acceptable (grade 75); e
totally correct (grade 100)

12.5.1 Setting Parameters of WBdetect

The following parameters are considered in the configuration phase: the swarm size
S; the inertia moment w, and acceleration constants C1 and C2 (Eq. 12.1); maximum
of iterations performed by PSO; the range Rp3 in which parameter p3 can vary (it is
measured proportional to the ROI height (HI)); the width L of the window provided
by each particle (this parameter is encoded in the element p4 of the particle); the
adjustment window r (Eq. 12.6) adopted in DTW to limit the computational time;
the form of computing DTW cost which can be normalized or not (Eqs. 12.3 and
12.7, respectively) and finally the reduction factor imposed to profile data in order to
reduce the processing time. Table12.1 shows the parameter values considered during
the configuration phase.

Due to the low budget available for computational time, a small swarm (S = 15)
and a larger value for C2 compared with C1 were adopted as an attempt to speed up
the PSO convergence.

Table 12.1 Tested parameters

PSO DTW Profile

S w C1 C2 p4
(L)

Rp3 Iter (max) Window Norm Reduction
factor

15 [0.9,
0.4]

0.7 1.2 100 [0.2, 0.35]*HI {25, 35, 40} {30, 50} yes/no {6, 10}

[0.3, 0.5]*HI

Evolve ∈ [0,HI]
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Assuming a fixed subset of configuration parameters given by

• FixSubConfig: {S = 15, w initialized as 0.9 and gradually decreased until it
achieves 0.4, C1 = 0.7, C2 = 1.2 and p4 = L = 100},

the sets of alternative configurations considered in this phase are:

• ConfigA: Fix + {max iter = 35; Rp3 = [0.2,0.35]*HI; r = 50; no normalization in
DTW; reduction factor = 6;}

• ConfigB: Fix + {max iter = 35; Rp3 = [0.3,0.5]*HI; r = 50; no normalization in
DTW; reduction factor = 6}, (i.e., ConfigA except for Rp3 );

• ConfigC: Fix + {max iter = 35; Rp3 = [0.3,0.5]*HI; r = 50; normalization in DTW;
reduction factor = 6}, (i.e., ConfigB except for DTW normalization);

• ConfigD: Fix + {max iter = 40; p3 evolve ∈ [0,HI]; r = 50; no normalization in
DTW; reduction factor = 6}, (i.e., ConfigA except for max iter and Rp3 );

• ConfigE: Fix + {max iter = 40; p3 evolve ∈ [0,HI]; r = 30; no normalization in
DTW; reduction factor = 10}, (i.e., ConfigD except for reduction factor and DTW
adjustment window r);

• ConfigF: Fix + {max iter = 25; p3 evolve ∈ [0,HI]; r = 50; no normalization in
DTW; reduction factor = 6}, (i.e., ConfigD except for max iter);

• ConfigG: Fix + {max iter = 25; p3 evolve ∈ [0,HI]; r = 30; no normalization in
DTW; reduction factor = 10}, (i.e., ConfigD except for max iter, reduction factor
and DTW adjustment window r).

Results provided by each configuration on a set of 10 images are illustrated in
Table12.2.

Configurations D to G are attempts to improve the flexibility of the model by
evolving the height of the profile extraction window. However, they do not provide
competitive results. To decide if there is significant difference among configura-
tions, we applied the Friedman statistical test with the level of significance α = 5%.
According to the Friedman analysis (we obtained p-value = 0.0010) there is differ-
ence in at least one pair of configurations. We applied a post hoc analysis (based on
Tukey–Kramer test) to verify which pairs are different from each other. Figure12.7
shows that configuration A (solid line—blue) is better than configurations E–G and

Table 12.2 Results of the configuration phase

Accuracy (%) average StDev (%) Average time (s)

ConfigA 93.40 10.38 28.47

ConfigB 89.38 10.11 26.52

ConfigC 81.39 9.89 23.78

ConfigD 82.15 10.82 16.72

ConfigE 80.83 14.17 8.48

ConfigF 80.77 11.36 12.19

ConfigG 82.64 10.19 6.44
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Fig. 12.7 Post hoc analysis
of Friedman test for the
different configurations

performs equal to configurations B-D. Although the lack of statistical difference in
the performances of configurations A, B, C, D, the WBdetect default configuration
is defined as ConfigA, due to its higher accuracy average.

In the next section, we present some results of WBdetect (i.e., the proposed
approach with ConfigA) applied to the set of 20 remaining images.

12.5.2 WBdetect Results

Whenapplied to the test set,WBdetect achieved an accuracy rate of 93.63+−12.91%,
demonstrating its capacity to perform well even for non trained patterns. With the
default configuration, WBdetect is capable of reducing the cost along iterations as
depicted in Fig. 12.8, which shows the result of one round for one specific image
among the set of 20 images and 30 rounds each.

Fig. 12.8 One example
(among 30 rounds) of GBest
evolution along iterations
with emphasis at some
specific points
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Fig. 12.9 Details of WBdetect information taken among evolution (for those points emphasized
in Fig. 12.7)

From the evolutionary process depicted in Fig. 12.8, some specific stages are
chosen to be scrutinized. Figure12.9 illustrates the details resulting from the solution
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provided by the best particle in the swarm at different stages of the evolutionary
process (e.g., at iterations 1, 7, 16, 23, 31). On the left side of Fig. 12.9, we have
the comparison between the profile obtained by the particle with that defined by the
synthetic model. On the right side we have the window location provided by the best
particle. In the middle we have the distance matrix resulting from this matching,
which is used during the DTW cost computation (i.e., the fitness computation).
We can notice that the best path in the distance matrix goes toward diagonal (the
perfect matching between profiles) along iterations. This process is accompanied by
improvements of the coordinates of profilewindow aswell as in the profilesmatching
(specially for the first part of the compared profiles which represents the half top of
the weld bead).

Table 12.3 Results for the test set

Image WBdetect Vaz (2015)

Accuracy (%) Time (s) Accuracy (%) Time (s)

1 94.17 12.87 26.67 57.5

2 96.67 20.7 69.17 54.77

3 75.00 25.5 70.00 53.77

4 100.00 16.17 80.83 54.4

5 100.00 16.53 76.67 56.7

6 100.00 19.33 75.83 57.37

7 95.00 25.77 72.50 56.4

8 50.00 16.67 63.33 64.33

9 100.00 15.77 69.17 57.33

10 89.17 18.53 43.33 57.8

11 100.00 14.83 40.00 58.43

12 100.00 18.5 10.00 58.03

13 99.17 24.23 75.00 59.93

14 100.00 33.8 72.50 54.47

15 100.00 40.27 90.00 53.97

16 100.00 30.77 75.00 57.27

17 74.17 31.1 77.50 55.13

18 100.00 43.07 80.00 58

19 100.00 44.1 75.00 58.2

20 99.17 47.5 75.00 54.1

Average (among
images)

93.63 25.8 65.88 56.9

StDev 12.91 10.47 17.84 2.5
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12.5.3 Comparison with the Literature

This section performs a comparison between WBdetect and the approach described
in [11] since it is the most related approach and one of the few works that also
addresses DWDI radiographic images. To perform a fair comparison, the same expert
analyzes the results of both approaches on the same set of 20 test images. Table12.3
shows the results of this comparison (computed over 30 runs of PSO) for each image,
indicating that WBdetect has a highly better performance when compared with the
approach proposed by [11] and besides it runs faster (practically takes half of the
time).

The superior performance of WBdetect in terms of accuracy can be explained
because it considers the whole weld bead in each particle. In [11] the weld bead
detection is decoupled for the top and bottom arcs which can provide inconsistent
results.

12.6 Conclusion

This chapter detailed WBdetect, an automatic weld bead detection approach, as
part of a support system for the inspection of welded joints in pipes used in the
oil industry. The main goal of the proposed approach is to combine two techniques
already known in the literature, PSO andDTW, both applied in a challenging problem
in the pattern recognition area: segmentation of weld beads in DWDI radiographic
images. Although the two techniques are quite known, their joint use is little explored
in the literature. The use of PSO can be justified by the fact that it is widely adopted in
continuous optimization (but achieved good results even for discrete optimization)
and uses information and historical knowledge to guide the search, in addition to
requiring low computational cost. DTW is suitable to handle the comparison between
series of different sizes.

Themethod forweld bead segmentation discussed in this chapter could be summa-
rized in three main steps: the design of synthetic model, the optimization performed
by the PSO particles, and the fine-tuning process. After the synthetic model phase,
PSO-based optimization (the most important step) was responsible for extracting
the image profile. The calculation of the quality of each solution was based on a
comparison with the synthetic profile model and took into account the cost function
calculated by DTW. The fine-tuning process was used as an attempt to find a better
similarity profile after the end of PSO search.

Experiments were divided in three parts: (i) configuration phase, (ii) exploring the
best configuration; (iii) comparing WBdetect with another approach. The configu-
ration tests considered a set of alternative parameters but two of them affected more
the results: (ia) the range of the height (encoded in p3 particle element) of the profile
extraction window and (ib) how to compute the particle’s fitness. In the first case,
we considered two main assumptions: ia1) element p3 of every particle is randomly
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initialized into the range Rp3 and remains fixed along evolution; ia2) element p3
evolves along evolution. In the second case, the fitness could be calculated in two
different forms: (ib1) based on a normalized version of the DTW cost, or ib2) based
on a non-normalized version of the cost. The configuration with nonadaptive height
(p3 does not evolve) associated with non-normalized version of the fitness com-
putation achieved the best results in terms of average accuracy during the training
phase. This configuration was chosen to set the standard proposed approach named
WBdetect.

WBdetect is capable to find out acceptable solutions with a reduced computa-
tional cost memory (few particles in a few iterations). This occurred partly because
the observed behavior regarding the limits of the search space and the profile size
helped in reducing the PSO search space. The proposed amendments to the DTW
allowed faster execution, reducing the average running time from 15min (in a very
preliminary version of WBdetect) to a maximum of 30s per image (the first set of
configurations A-C) and up to 17s (for the second group D-G).

Themain contribution of thiswork focuses on a little explored area in the literature:
the weld bead segmentation on DWDI radiographic images. In general, most of
approaches are semiautomatic or can be too specific (they can not be applied to
DWDI). An important aspect to be noted regarding the application context is that
few weld radiograph inspection works use images derived from actual operating
conditions with different levels of light, noise, contrast, nonstandard formats and
dimensions as the ones used in this work. It is valid to point out that the images used
in this work are challenging for most of standard solutions adopted in the literature,
that generally work well with uniform images, but are of little practical use in real
ones. The inspection of oil pipeline radiographic images is a subjective task and only
a qualified inspector can provide a technical report. Thus, the proposed approach
can support these professionals by automatically segmenting weld beads to which
subsequent defect detection can be performed.

For future work we intend to resume the version with the adaptive profile window
height aiming to evolve p3. One of the possibilities is to define a penalty if the fitness
exceeds a threshold height. However, other modifications can be handled in order
to achieve more competitive results, since the inclusion of this parameter allows
greater flexibility to the system. We also intend to perform a comparison between
other existing ways to calculate the path in DTW. Finally, we aim to expand the
image database and implement other DWDI weld bead detection techniques that can
serve as a comparison for this work, since the currently available references are more
specific to other types of images.
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