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2 Hovav Nechushtan et al.
Besides its enzymatic activity in aminoacylation of tRNA, LysRS

can produce dinucleotide diadenosine tetraphosphate (Ap4A).

Intracellularly, it is found mainly in the cytoplasm as a part of a

multisynthetase complex where it interacts with several proteins,

most notably AIMP2.

Besides its role in translation it has been demonstrated that LysRS

can act as a cytokine-like molecule, secreted by cells and having

distinct effects on macrophages. Moreover, LysRS can bind to the

transcription factors USF2 and MITF and can influence their

transcriptional activities following immunological stimulation of

mast cells.

In this review, we focus on the nontranslational functions of

LysRS related to the immune system. We begin with a short discus-

sion of ‘‘gene sharing,’’ proceed to a description of its structural and

enzymatic function and then describe some of the in vivo functions

of this enzyme.
Lysyl tRNA synthetase (LysRS) is an aminoacyl-tRNA synthetase (AaRS).
This ancient family of enzymes has diverged to take on alternate and very
diverse functions in the cell that extend well beyond their primary role in
protein synthesis. Modules of synthetase ancestors or paralogs have also
been adapted for other cellular purposes. One of these alternate roles
for an AaRS was discovered when it was shown that AlaRS could bind
to an upstream region of its own gene and autoregulate transcription
(Putney and Schimmel, 1981). Another example is that human TyrRS is
specifically cleaved to produce two distinct cytokines (Wakasugi and
Schimmel, 1999). The cleavage itself unmasks the cytokine activities that
are imbedded in the native protein, but not elucidated until cleavage
occurs. A further example has been described whereby a secreted
alternative splice fragment of TrpRS is a potent regulator of angiogenesis
(Wakasugi et al., 2002). Such observations have powerful implications on
a link between protein synthesis, the immune system, and apoptosis.

In this review, we focus on the nontranslational functions of LysRS
that are important to the immune system. We will first briefly discuss
‘‘gene sharing,’’ then describe the structural and enzymatic functions of
LysRS and finally examine the in vivo functions of this enzyme.
1. GENE SHARING AND NONCANONICAL PROTEIN ROLES

Although the initial paradigm relating genes and proteins was that one
gene encodes for one protein with one specific function, it has become
clear that through alternative splicing one gene can be the source of
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numerous, sometimes radically different, proteins. Piatigorsky was a
pioneer in the study of alternative functions of similar proteins. For
many years, he studied the crystallins, proteins with a critical role in the
lens and cornea. His group (Wistow et al., 1987) discovered that duck
e-crystallin was essentially identical to lactate dehydrogenase B4
(LDH64), an ancient, highly conserved glycolytic enzyme. Since e-crystal-
lin seemed to be confined to birds and crocodiles, it was possible that this
represented a recent, atypical event in evolution. These researchers later
revealed, however, this was not the case and sequence relationships have
been found between all crystallins and specific enzymes (Piatigorsky and
Wistow, 1989). The basic reason for the evolution of these enzymes into an
alternative role is still not obvious since no common catalytic function is
evident among these enzymes/crystallins. It seems that properties such
as the ability to accumulate to high intracellular concentrations without
precipitation, and thermodynamic stability, a characteristic of many
enzymes, are probably the basis for their selection as crystallins. Thus
this secondary protein function, which is not ‘‘stable’’ during evolution,
might seem unrelated to what we perceive as the main attributes of the
double function protein but nevertheless may play a critical role in certain
biological systems.

This phenomenon was termed ‘‘gene sharing,’’ which is defined as a
situation whereby a gene may acquire and maintain a second function
without duplication or loss of the primary function (Piatigorsky, 2007).
While the term gene sharing has been used to define the use of a single
protein for two different functions, other names for a similar phenomena
are also used such as ‘‘moonlighting’’ or noncanonical roles. Most people
describing the alternative roles of AaRSs tend to use these terms perhaps
due to the critical role of these proteins in translation.

It is important to note that the use of ‘‘off the shelf’’ proteins as
components of new complexes with novel functions has possible
important evolutionary advantages. It allows relatively rapid adaptation
for new roles without the need for the creation of totally new proteins.
Thus, it is not surprising that gene sharing or noncanonical roles of
proteins are widespread.
2. AMINOACYL-tRNA SYNTHETASES (AaRSs)
AND THE MULTISYNTHETASE COMPLEX

2.1. General description

The first function described for AaRSs was aminoacylation of their
specific tRNAs. AaRSs are essential for decoding the genetic code during
protein translation. Researchers trying to obtain insights as to the
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beginning of life have studied in great detail these ancient proteins in a
range of different organisms as probes for understanding basic aspects
relating to the evolution of the genetic code (Ataide and Ibba, 2004; Pezo
et al., 2004; Ribas de Pouplana and Schimmel, 2001; Schimmel and Ribas
de Pouplana, 2001; Stathopoulos et al., 2001). There are two classes of
tRNA synthetases, I and II, that are distinguished by the architecture of
their active-site catalytic cores.

The AaRSs are essential housekeeping genes and thus critical for
cellular survival. As mentioned earlier, many of these proteins have
additional role/roles. These are related either to their catalytic activity
or to an additional functional activity.

Decades ago, it was reported that during evolution many of the AaRSs
incorporated additional domains (Schimmel and Ribas de Pouplana,
1995). The initially recognized roles of those domains were tRNA recog-
nition and modification functions. However, later it was revealed that
these appended domains can help in the regulation of important
biological processes, including cell cycle control, tissue differentiation,
cellular cemotaxis, and inflammation (Park et al., 2005b, 2008; Ribas de
Pouplana and Geslain, 2008).

As described earlier for crystallins, the reason for the evolution of a
specific additional role of an ancient protein is not always obvious to us.
In many cases, it is not linked to the known enzymatic activity of that
specific protein. One suggestion has been that the critical role that AaRSs
play in translational regulation evolved to provide a link between trans-
lation and a regulatory process such as cell cycle progression. This might
be the case in some modes of regulation, but as will be described in the
following section, the relationship between LysRS’s noncanonical roles
and translation is not straightforward. The alternative functions of this
protein are probably related also to some other attributes of this protein
and not to its role in translation per se.

Already in the 1970s, it was reported that most AaRSs reside in large
protein complexes in the cytoplasm (Bandyopadhyay and Deutscher,
1971). A stable cytosolic complex of nine AaRSs (leucyl-, lysyl-, prolyl-,
isoleucyl-, methionyl-, glutamyl-, glutaminyl-, arginyl-, and aspartyl-
tRNA synthetases) was found in mammals (Mirande et al., 1985). More-
over, it was suggested that the AaRSs responsible for coupling to those
tRNA molecules that are charged hydrophobic and nonaromatic amino
acids, are all present within the complex, while those aminoacylating the
smallest and largest amino acids are absent (Wolfson and Knight, 2005).
In addition to the nine AaRSs, the complex contains three nonsynthetase
proteins: AIMP1, AIMP2, and AIMP3 (until recently, these proteins were
known as P43, P38, and P18, respectively).

A variety of tRNA synthetase complexes have been identified in
organisms varying from prokaryotes to archea and to eukaryotes, yet it
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seems that the larger multisynthetase complex appeared only later in
evolution and thus is found only in mammalians (Hausmann and Ibba,
2008a). It was postulated that the existence of the multisynthetase com-
plex is important for efficient translation. Since depletion of any of the
synthetases can cause a significant decrease in translation and cellular
viability assessing the physiological importance of the multisynthetase
complex for translation is difficult.

Only in 2008, there was more direct evidence for the importance of the
multisynthetase complex in translational regulation finally provided
(Kyriacou and Deutscher, 2008). Already in the 1980s, it was shown that
in addition to its role in translation, ArgRS has a role in posttranslational
modification, as it arginylates the NH2 terminus of some proteins, a
modification that can serve as a signal for ubiquitin-dependent protein
degradation (Ferber and Ciechanover, 1987). Interestingly, there are two
forms of ArgRS: one of around 72 Kd, which is found inside the multi-
synthetase complex, and the other of around 60 Kd found in the cyto-
plasm (Deutscher and Ni, 1982; Vellekamp et al., 1985). Both forms have
similar in vitro in catalytic activities (Vellekamp et al., 1985). Kyriacou and
Deutscher hypothesized that the shorter cytoplasmatic form is probably
important for protein arginylation, while the longer form found in the
multisynthetase complex is responsible for translation and the fact that it
is part of this complex is critical for this role. A Chinese hamster ovary
(Cho) cell line encoding temperature sensitive full-length arginine tRNA
synthetase was used in this study. ArgRS is nearly deleted at higher
temperatures in these cells. The cells were complemented with recombi-
nant DNA encoding either the short 60 Kd or the longer 72 Kd form of
ArgRS. They found that the shorter ArgRS, though just as active in vitro as
the longer form, was significantly less efficient in complementing the
translational activities of ArgRs in vivo. Although these results were
obtained only for one type of AaRS, they certainly support the notion
that the existence of the multisynthetase complex allows much more
efficient translational efficacy.

It is interesting to note here the two aspects of the study described
earlier. Firstly, in order to obtain insights about the specific function of
ArgRS, it was essential to use an approach of reconstitution of the endog-
enously depleted AaRS with transfected mutated forms of the same
plasmid. In recent experiments, we have used a similar approach to try
to delineate noncanonical roles of LysRS. Secondly, the protein modifier
role of ArgRS needs mention. In the same way that this enzyme can
arginylate certain proteins at their NH2 terminus, it has been postulated
that LysRS adenylates NH2 residues (Chou et al., 2007).

Whatever be the initial important evolutionary advantage of allowing
the formation of this multimeric complex, it is clear now that such a
complex has advantages for the cells besides its importance in translation.
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While the main role of the multisynthetase complex may have been
initially to enable efficient protein translation, perhaps through the
‘‘tRNA channeling,’’ there are other attributes to proteins found in a
complex such as this, for example, their stability might be totally different
(Han et al., 2008). The multisynthetase complex not only allows a more
efficient functioning of its enzyme components in translation, but can also
be viewed as a depot of 11 proteins.
2.2. The multisynthetase complex as a protein ‘‘depot’’

The depot hypothesis postulates that there are some common features of
macromolecular depots and their released daughter proteins (Lee et al.,
2004a; Ray et al., 2007). While the macromolecular depots may allow
efficient processes that demand close proximity of related proteins to
take place, the same proteins released from the multimeric complexes
(daughter proteins) commonly acquire a totally different role outside the
complex either as monomers or as parts of newly formed complexes. The
best studied example of a new complex which includes ‘‘daughter pro-
teins’’ released from a multimeric complex is that of the large protein
assembly called ‘‘interferon-g-activated inhibitor of translation’’ (the
GAIT complex) (Ray et al., 2007). This is an assembly of four proteins
that can bind specific structures at the 30 end of at least several scores of
messenger RNAs. The complex was initially identified through the study
of proteins bound to the 30-nucleotide untranslated region of the cerulo-
plasmin mRNA in human monocytic cells. This sequence was demon-
strated to be involved in the inactivation of translation following IFN-g
stimulation of those cells. The components of the GAIT complex assemble
in two steps: initially, GluProRS is released from the multisynthetase
complex and together with a known RNA binding protein: NS1-asso-
ciated protein-1 (NSAP1) form a pre-GAIT complex after around 2 h of
IFN-g treatment. The complex is inactive until approximately 14 h later in
human monocytes, when ribosomal protein L13a, which is released from
the large ribosome units, together with another protein which is known
mainly for its enzymatic roles, glyceraldehydes 3-phosphate dehydroge-
nase (GAPDH), join to form the active GAIT complex. Therefore, the
GAIT complex contains two daughter proteins each released from a
different depot of large multicomplex proteins that are involved in pro-
tein translation to ultimately regulate translational activity of several
mRNAs. Interestingly, the trigger for release of both GluProRS and ribo-
somal protein 13a from the large complexes seems to be specific phos-
phorylation of these proteins (Mazumder et al., 2003; Sampath et al., 2004).

MammalianGluProRS is unusual because it is a large protein containing
two different AaRSs. These AaRSs are linked by a linker containing three
homologous protein domains, called WHEP domains (Ribas de Pouplana
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and Geslain, 2008). The complex mechanism involved in the binding of
GluProRS to the GAIT element in mRNA and the translational inactivation
of the related mRNA was recently described in detail (Jia et al., 2008). It
seems that all the RNAbinding of the GAIT complex toGAIT element RNA
is directly mediated by the WHEP domains. The first two WHEP domains
are expressed in isolation and can compete with the GAIT complex for
binding to the GAIT element, however, these two domains are insufficient
for silencingmRNA translation since for that the whole complex is needed.
The second and thirdWHEPdomainswere found to be used for GluProRS–
NSAP1 binding, an association that later undergoes a conformational
switch with the addition of phospho-L13a and GAPDH. Thus, a complex
picture emerges in which WHEP domains change their interactions and
conformation over the period of time following IFN-g stimulation.

It seems that the important role in the GAIT complex is carried out
only by the AaRS appended domains and not by the AaRSs themselves.
In this regard, it is interesting to note that, so far, theWHEP domains have
only been found to AaRS and not to other proteins. Thus, the large
GluProRS released from the multisynthetase complex is used for cellular
regulation due to its appended domains and not for any enzymatic
activity. A further study identified the single site of L13a phosphorylation
responsible for its release from ribosomes and for activation of the GAIT
system in IFN-g-treated monocytic cells (Mukhopadhyay et al., 2008). This
site is phosphorylated by the death-associated protein kinase-1 (DAPK)
and zipper-interacting protein kinase (ZIPK), both of which contain a
functional 30UTR GAIT element. This study revealed the existence of an
RNA-based negative-feedback module.

It is interesting to note that the GAIT complex seems to have evolved
only later in evolution as it is not found in rodents. While the enzymatic
domains of tRNA synthetase are highly conserved through evolution, it
would seem that the acquisition of additional, more specific function
occurred later in evolution (Ribas de Pouplana and Geslain, 2008).

Several of the multisynthetase complex proteins have been demon-
strated to have additional roles besides those related to translation in the
multisynthetase complex. Thus, GlutRS and MetRS were shown to be
involved in antiapoptotic regulation and rRNA biogenesis (Kim et al.,
2000; Ko et al., 2001). Various roles have been described for the AaRS-
interacting factors AIMP1–3. AIMP1 acts have several roles as an extra-
cellular cytokine/hormone-like molecule (Kim et al., 2008a; Lee et al.,
2008; Park et al., 2006b). AIMP2 has important intracellular roles as a
downregulator of c-Myc during lung cell differentiation (Kim et al.,
2003) and also as a positive regulator of p53 (Han et al., 2008), while
AIMP3 is a tumor suppressor that activates ATM/ATR, which is required
for repair of DNA damage (Kim et al., 2008b; Park et al., 2005a, 2006a).
Although it would seem that the multisynthetase complex may be the
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source of these functional proteins, this has not yet been verified
experimentally for proteins other than GluProRS and LysRS. Of all the
multisynthetase complex proteins, the enzyme with the most diverse
activities besides translational regulation is LysRS on which the rest of
this review will focus.
3. LysRS

3.1. Structural and molecular characteristics

As mentioned earlier, the two classes of AaRSs are distinguished by the
architectures of their active-site catalytic cores. LysRS in mammals is a
class II synthetase, though there are some organisms whose LysRS is a
class I synthetase. Like all AaRSs, LysRS is also organized as a modular
arrangement of functional domains. The class II LysRS (and the closely
related AspRS and AsnRS) have an arrangement of functional domains in
which the order of the functional domains is the opposite of that found in
most AaRSs; that is, the catalytic domain is at the C-terminal end of the
polypeptide, whereas the anticodon-binding site is encoded by the
N-terminal part of the protein (Cusack, 1995; Guo et al., 2008). Class II
LysRS is one of the most conserved AaRSs (Guo et al., 2008). When human
and Escherichia coli enzymes are compared, the highest similarity exists for
the C-terminal aminoacylation domain (50%), while there is still 26%
similarity for the N-terminal anticodon-binding domain (Guo et al., 2008).

In eukaryotes, LysRS contains an N-terminal appendage which is
lysine-rich and has been shown to enable nonspecific tRNA binding and
thus allow increased catalytic efficiency of the enzyme, especially at the
low concentration of deacylated tRNA prevailing in vivo (Francin and
Mirande, 2003; Francin et al., 2002). Recently, the crystal structure of a
tetrameric form of LysRS has been described (Guo et al., 2008). The
crystals revealed an unusual tetramer, a structure not seen with any of
the other class II AaRS. This crystal structure has already revealed impor-
tant insights regarding possible interaction mechanisms between
LysLysRS and proteins such as AIMP2—one of the three nonenzymatic
components of the MSC complex (Guo et al., 2008). There are two
eukaryote-specific insertions, one of which is embedded in the tetramer
interface from the side of the catalytic domain. This seems to be a hotspot
for variations during evolution, and is different even from structures in
the related AspRS. This region could thus be involved in the building of
new protein interfaces during evolution (Guo et al., 2008).

Unlike several other AaRSs, both mitochondrial and cytoplasmatic
LysRS are encoded by the same gene, with the difference being the
inclusion of exon 2 between exons 1 and 3 for the mitochondrial isoform
encoding. In humans, it has been shown that themature LysLysRSmRNA
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consists of 70% of the cytoplasmic isoform and 30% of the mitochondrial
isoform (Tolkunova et al., 2000).

In summary, LysRS in mammalians is a class II AaRS, which has an
N-terminal appendage (lacking in LysRS of lower eukaryotes) allowing
higher catalytic efficiency due to nonspecific binding of tRNA, and
several other nonconserved regions, which allow new protein–protein
interactions.
3.2. Interacting proteins

LysRS is found in mammalian cells mainly as a part of the multisynthe-
tase complex. Numerous studies have been performed to map this
complex’s localization and binding partners (see, e.g., Han et al., 2006;
Quevillon et al., 1999) and it may also be found in a tetrameric form (Guo
et al., 2008) (Fig. 1.1).
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Besides these interactions, which are probably critical to the canonical
roles of LysRS, several other protein–protein interactions of LysLysRS
have been described over the years by different research groups.
The protein interactions of LysRS whose functional role has not yet been
studied in detail will be described now. Later in this review, we will detail
our ownwork regarding the function of the interactions of LysRS with the
transcription factor MITF (Carmi-Levy et al., 2008; Lee et al., 2004b) and
with components of the HIV virus in which it is packaged.

3.2.1. PDZ domain interactions
Proteins harboring the postsynaptic density-95/discs large/zonula
occludens-1 (PDZ) domain function as scaffolds in organizing multipro-
tein complexes (Nourry et al., 2003). The PDZ domain-containing proteins
have a critical role in the connections of various membrane proteins such
as cell adhesion molecules, receptors, and ion channels with downstream
signaling molecules (Nourry et al., 2003; Zimmermann, 2006). Interest-
ingly, PDZ-containing proteins usually contain more than just PDZ
domains and include other protein interaction domains, such as SH3,
PTB, and WW (Nourry et al., 2003). In most cases, the PDZ domains
recognize the C-terminus of their protein binding partners, though by
now it is known that some PDZ domains can recognize internal peptide
sequences and sometimes even lipids (Nourry et al., 2003). Specific roles
for PDZ domain-containing proteins have been described in various
biological systems. Of note is the particular role of some PDZ domain
proteins in cancer.

Two independent groups, who have tried to isolate proteins
interacting with the PDZ domain proteins, reported the specific binding
of LysRS to those proteins. We will now describe their findings in some
detail as they reveal a possible important connection between LysRS and
signal-transduction pathways.

The first group performed a yeast two-hybrid screen with HTLV-1
TAX as a bait and isolated a PDZ domain protein called TIP-15, which
harbors the first two PDZ domains of a larger protein known as PSD-95
(Rousset et al., 1998). TIP-15 was then used as bait itself in another
two-hybrid screen, resulting in the isolation of 12 proteins with high
affinity to this protein, including LysRS (Fabre et al., 2000). Coimmuno-
precipitation experiments in mammalian cells confirmed the interactions
of four of these proteins, one of them being LysRS. TIP-1, a truncated
protein containing only one PDZ domain, did not bind to LysRS.
A canonical PDZ domain binding motif at the C-terminus of LysRS was
identified in this study for the first time (Fabre et al., 2000).

Recently, another group (Meerschaert et al., 2008) independently
described an interaction of LysRS with a PDZ domain protein known
as both syntenin-1 (isolated as a protein that binds syndecan
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(Grootjans et al., 1997)) and as mda-9 (isolated as a melanoma differentia-
tion associated gene (Lin et al., 1998). This specific PDZ domain protein
has been shown to be overexpressed in breast and gastric cancer cells and
in melanoma, where it promotes the migration and metastasis of cancer
cells (Boukerche et al., 2005; Koo et al., 2002). Numerous proteins have
been found to be able to bind syntenin-1/mda-9 including various gluta-
mate receptors, the serine/threonine kinase Unc51.1 and rab5,19
(Meerschaert et al., 2008). Meerschaert’s group used mass spectrometry
to discover genes interacting in vivo with syntenin-1/mda-9 in mamma-
lian cells (Meerschaert et al., 2008). They identified several AaRSs derived
from the multisynthetase complex as binding partners of this protein.
Subsequent experiments identified LysRS as the direct syntenin-1/mda-
9 binding protein on which the binding of other multisynthetase complex
proteins is dependent. They also identified the PDZ domain binding
motif in the C-terminus of LysRS (Meerschaert et al., 2008).

As an initial functional assay, this group studied the effect of syntenin-
1/mda-9 binding on LysRS aminoacylation activity. They found that
recombinant syntenin-1/mda-9, when used at an equimolar ratio to
LysRS, inhibited LysRS activity by approximately 40%. This assay,
however, was performed in vitro without any further in vivo studies
(Meerschaert et al., 2008).

The findings that two different PDZ domain proteins bind specifically
to LysRS and not to other AaRSs, strongly suggest that LysRS–PDZ
interactions have a role in signal transduction. Syntenin-1/mda-9 binding
to LysRS seems to result in decreased translation rates (Meerschaert et al.,
2008), yet there might be other roles for this interaction, such as facilitat-
ing the interaction of LysRS with other signal-transduction molecules.
In this regard, it is interesting to note that syntenin-1/mda-9 was origi-
nally isolated as a melanoma differentiation gene and that LysRS binds to
the transcription factor MITF and is involved in its regulation. This
transcription factor has been shown to have an important role both as a
melanocyte differentiation regulation and as a melanoma oncogene. All
this suggests that the any connection between LysRS, MITF, and syntenin-
1/mda-9 in melanoma should be investigated.

3.2.2. Elongation factor 1A (EF-1A) and LysRS
A role for elongation factor 1A (EF-1A) in channeling the tRNA–aminoa-
cyl complex from the tRNA to the ribosome has been proposed
(Hausmann and Ibba, 2008b). The archeal multisynthetase complex,
which is much smaller than its mammalian counterpart and contains
only three synthetases, LeuRS, LysRS, and ProRS, was recently
investigated (Hausmann and Ibba, 2008b). EF-1A was found to bind to
LeuRS in a stable complex which increased Leu-tRNA synthesis to several
folds. The interaction of EF-1Awith the archaeal multisynthetase complex
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contributes to the translational process by enhancing the aminoacylation
rates of the AaRSs in the complex and by subsequent channeling of the
cognate tRNA–aminoacid complexes to the ribosome (Hausmann et al.,
2007). Interactions between EF-1A and various AaRSs have been
described in eukaryotes. Already in 1994, the importance of the
N-terminal appendage of human AspRS EF-1A was described (Reed
and Yang, 1994). It is important to mention that both LysRS and AspRS
are similar class II AaRSs with a terminal appendage to the original
structure which has a role in the binding of tRNA (Francin et al., 2002).
Yang and his colleagues in 2008 published their research regarding the
effect of EF-1A and AspRS on stimulated lysylation in vitro. They noted
that only upon the removal of the amino-terminal appendage from
human LysRS could it bind to EF-1A and its lysylation activity was
stimulated by this binding (Guzzo and Yang, 2008). The observed stimu-
lation of lysylation activity was unlikely due to stabilization of synthetase
by EF-1A since the half-life of LysRS under the assay conditions was
several hours while the aminoacylation assays were completed in
minutes. Since it was the truncated LysRS which was influenced by
EF-1A binding, the physiological relevance of EF-1A binding to LysRS
are still not clear. Furthermore, this group did not study any other activity
of LysRS such as its ability to synthesize Ap4A.

It is interesting to note that similar to LysRS, EF-1A has been impli-
cated in several critical biological processes. For example, a truncated
form of this enzyme has been found to be an important oncogene in
prostate cancer (Mansilla et al., 2005), and it has been claimed that the
effect of G-rich GT oligonucleotides on cellular cytotoxicity correlated
with their binding to nuclear EF-1A. We found strong binding of EF-1A
to MITF in a yeast two-hybrid screen (Razin, unpublished data). We have
not yet studied this in vitro interaction further, but it could be postulated
that under certain conditions not only LysRS but also an associated
elongation factor might have a role in transcriptional regulation.

3.2.3. Mutated superoxide dismutase
Amyotrophic lateral sclerosis or as it is popularly known, Lou Gehrig’s
disease, is a progressive motor neuron degenerative disease which invari-
ably results in death. The majority of the familial cases of this disease
were found to be related to mutations in the gene encoding Cu, Zn
superoxide dismutase. In 1997, mouse models of ALS were used to try
and locate the downstream effectors of mutated superoxide dismutase. It
was demonstrated that mutated superoxide dismutase can specifically
bind to mitochondrial LysRS (Kunst et al., 1997). More than 10 years later,
it was found that LysRS that is bound to mutated superoxide dismutase
displays a high propensity to misfold and aggregate prior to its import
into mitochondria (Kawamata et al., 2008). This misfolded LysRS can then
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undergo proteasomal degradation. Ultimately, the interactions between
mutated superoxide dismutase and mitochondrial LysRS result in mito-
chondrial morphological abnormalities and cellular toxicity. Thus, it
seems that mitochondrial LysRS is the first protein whose abnormal
binding to mutated superoxide dismutase leads to mitochondrial toxicity
and might play a significant role in the development of mutated
superoxide dismutase-related ALS.
3.3. LysRS and the autoimmune response

Autoantibodies can cause a variety of diseases. A surprising finding
regarding autoantibodies is that their repertoire is rather limited and
has been assessed as less than 2% of total human proteins (Plotz, 2003).
Interestingly, mouse models of autoimmunity have displayed similar
autoantibodies to those found in humans, again emphasizing the nonran-
domness of this repertoire. However, it seems that for most autoantigens,
the reason that specific proteins turn into antigens is far from obvious
since there is no clear cut functional relationship between the different
proteins. Several AaRSs have been found to be autoantigens. The most
studied are antibodies to HistRS (known as anti-Jo-1 antibodies), which
are characteristic of autoimmune inflammatory myopathy (myositis)
in humans (Nagaraju et al., 2000), and anti-IleRS (known as anti-OJ
antibodies). Patients with anti-OJ antibodies have been shown to have
antibodies to other constituents of the multisynthetase complex (Gelpi
et al., 1996; Targoff et al., 1993). The reason for the common occurrence of
AaRSs as autoantigens was postulated by Plotz and colleagues to be
linked to their ability to act as chemoattractants to immune cells
(Plotz, 2003). Unknown to Plotz at the time of writing of his review was
the possible activity of LysRS as a chemokine-like molecule. Autoantibo-
dies were isolated from the sera of patients who had developed trans-
plant-associated coronary artery disease (TxCAD) following cardiac
transplantation (Linke et al., 2001). They isolated a total of six positive
clones out of 40,000 clones from a HUVEC cDNA library, one of which
was LysRS, and two were ribosomal proteins. So, LysRS would also seem
to be an autoantigens, though it is not as prominent as several other
AaRSs.
3.4. Functional roles

A variety of roles for LysRS have been described. We will initially
describe some alternate biochemical roles and later its physiological
functions.
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3.4.1. Lysine residue adenylation
Wagner and colleagues recently described the ability of LysRS to
adenylate lysine residues (Chou and Wagner, 2007). They used both
human and E. coli LysRS to study adenylation of Hint. Hint-1 is a member
of the histidine triad (HiT) superfamily of proteins, all of which can bind
and hydrolyze nucleotides or their derivatives. It has great structural
similarity to the tumor suppressor FHIT, which can bind both Ap4A
and Ap3A, though it is much more efficient in the hydrolysis of Ap3A.
All the reactions were carried out in vitro with purified recombinant
proteins. The adenylated proteins are found for relatively short times
and that complicates any efforts to identify them in vivo. Radiolabled
nucleotides were added to the purified proteins to prove that the Hint is
labeled by the addition of AMP, in a manner that is dependent upon the
formation of lysyl-AMP. They found that Hint labeling was dependent on
Mg2þ, known to be required for aminoacyl–adenylate formation, whereas
addition of Zn2þ, which favors Ap4A formation, was inhibitory. Ap4A
inhibited the formation of lysyl-AMP with an IC50 value in the low
micromolar range. This in vitro study also revealed that the lysyl-AMP
intermediate formed by LysRS could be a natural substrate for the Hint
proteins. Therefore, the same protein that can be adenylated by LysRS can
also hydrolyze adenylated lysine residues.

The physiological importance of the adenylation of proteins at lysine
residues is still not clear. Asmentioned, this adenylation is short lived and
hence hard to detect in vivo. Further studies may reveal a very important
role for LysRS in this regard once in vivo studies can provide the hard
evidence.
3.4.2. Synthesis of dinucleotides
Already in the 1960s, Zamecnik demonstrated that under certain condi-
tions LysRS in purified E. coli could produce dinucleotides in vitro, and
characterized the important product of this reaction as adenosine tetra-
phosphate, a compound which had been synthesized chemically just a
short time before (Randerath et al., 1966; Zamecnik et al., 1966). Much later
in the 1980s, other groups studied the role of LysRS from mammalian
sources as a producer of Ap4A. At this time, they were limited to in vitro
studies due to their inability to efficiently knockdown LysRS. Zinc was
shown to be critical for the activation of the production of Ap4A via LysRS
and PhenylRS in sheep’s liver (Brevet et al., 1982). Zinc greatly stimulates
the initial rate of in vitro synthesis of Ap4A. Later, however, it was shown
that AMP can be omitted from the reaction and that zinc levels can be
markedly reduced provided catalytic amounts of LysRS are added to the
reaction mixture (Hilderman and Ortwerth, 1987). Therefore, the in vivo
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role of zinc in the production of Ap4A might be much less critical than
initially thought. As mentioned earlier, other AaRSs apart from LysRS
were able to produce Ap4A in vitro. Hilderman and colleagues demon-
strated that one type of tRNAlys (tRNALys) was much more efficient in
inducing Ap4A production by the ArgRS/LysRS complex than the more
common tNAlys and tRNALys (Hilderman and Ortwerth, 1987). These
experiments suggested a role for LysRS in efficient Ap4A synthesis. Fur-
thermore, two studies demonstrated the differential efficacy of LysRS in
the production of Ap4Awithin the complex and external to it (Wahab and
Yang, 1985a,b). According to their calculations, based on in vitro experi-
ments with purified multisynthetase complexes, LysRS was six times
more efficient in the production of Ap4A once unbound from the com-
plex. One must, of course, note that these are the results of in vitro studies
where different concentrations of reaction reagents, such as zinc, might
significantly alter the final results; but still one might expect an increase in
cellular Ap4A levels if free LysRS levels are increased intracellularly.
3.4.3. LysRS as a cytokine-like molecule
Several AaRSs have been implicated as having a possible role as secreted
extracellular modulators of cellular function (Kleeman et al., 1997;
Tolstrup et al., 1995; Wakasugi and Schimmel, 1999; Wakasugi et al.,
2002). Media was obtained from HEK293 cells overexpressing one of 11
different synthetases, and screened to determine which synthetases were
secreted (Park et al., 2005b). Only AlaRS and LysRS were detected in the
culture media. Various other cell lines were used to investigate whether
endogenous LysRS was secreted in a signal-dependent manner. HCT116
colon cancer cells, DU145, SKN-SH, and MCF-7 cells had substantially
increased LysRS secretion rates in response to treatment with TNF-a but
not TGF-b. Recombinant LysRS was shown to bind to the membranes of
two macrophage-like cell lines (RAW264.7 and THP-1). Following LysRS
stimulation, increased secretion of TNF by these two cell lines was
detected. Thus, it seems that LysRS and TNF-a form a positive feedback
loop in these cells. This study further demonstrated that RAW264.7 mac-
rophage-like cells had increased migrational capacity following LysRS
stimulation. The activity of MMP-9, but not MMP-2, was significantly
induced by LysRS in these cells. LysRS also induced the migration of
peripheral blood mononuclear cells. Selective inhibitors were used to
determine that the MAPK pathway has a pivotal role in this LysRS-
cytokine signal-transduction pathway. Altogether, the results of this
study suggest that LysRS can act as a cytokine-like molecule under certain
circumstances. This activity might be related to LysRS’s role as an
autoantigen (as mentioned earlier).
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3.4.4. Physiological roles of LysRS
LysRS is probably the AaRS to which the largest number of physiological
roles has been attributed in addition to aminoacylation (Freist and Gauss,
1995). One example is the unique heat shock inducible LysRS gene (lysU)
in bacteria (Charlier and Sanchez, 1987) and another is the existence of a
specific iron inducible LysRS in tomato roots with a role in plant
adaptation (Giritch et al., 1997). Here, we will focus on LysRS’s functions
in higher eukaryotes and then discuss in some detail the proposed role of
LysRS in transcriptional regulation.
3.4.4.1. LysRS and transcription factors We have been studying transcrip-
tion factor networks inmast cells for more than a decade (Nechushtan and
Razin, 1998). We began our studies by assessing the fate of c-Fos and c-Jun
proteins following IgE-Ag stimulation of mast cells. These proteins are
well known as both oncogenes and early response transcription factors.
Surprisingly, at the timewe found out that IgE-Ag stimulation leads to the
binding of c-Fos not to Jun but to what was then a newly discovered
transcription factor known at that time as Fos interacting protein (FIP)
and now known by the name of USF2 (Lewin et al., 1993). This transcrip-
tion factor is a bHLH-leucine zipper transcription factor found in most
cells that has an important role in many biological processes. The tran-
scription factor MITF was cloned around this time (Hodgkinson et al.,
1993; Tachibana et al., 1994). This is also a bHLH-leucine zipper transcrip-
tion factor, which is structurally most similar to the TFE transcription
factors. TFE transcription factors and MITF are now considered part of a
transcription factor family known as MiT (Hemesath et al., 1994). The
transcription factors with the highest similarity to this family are USF1
and USF2. Our special interest in MITF was due to the finding that mast
cells are depleted in MITF mutated mast cells and because of its similar
structure to USF2. Indeed, we found that IgE-Ag induction of mast cells
results in USF2 binding to MITF (Nechushtan et al., 1997). Since MITF was
demonstrated to have a critical role in mast cell physiology (Kitamura
et al., 2002; Nechushtan and Razin, 2002), we decided to try and isolate the
MITF binding proteins. We used the yeast two-hybrid assay as a screening
method, utilizing a truncated MITF lacking both transactivation domains
to probe a library from a mast cell line (Razin et al., 1999) (Fig. 1.2).

Several proteins were found to bind to MITF with high affinity. We
initially concentrated our efforts on the study of a protein known at that
time as PKCI (PKC interacting protein), but now known as Hint-1 (Razin
et al., 1999). We demonstrated that this HIT family protein can bind and
inhibit transcriptional activation by MITF. Interestingly, we also demon-
strated that Hint-1 could be released from MITF following IgE-Ag stimu-
lation of mast cells and that Hint-1 can bind to MITF in melanoma cells.
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FIGURE 1.2 A model of LysRS/Ap4A transcriptional regulation. We and others

demonstrated that in resting cells, MITF is inhibited by Hint-1. In activated cells, LysRS

starts to produce Ap4A which can bind to Hint-1 and release it from MITF (the best

studied example being IgE-Ag stimulated mast cells; similar findings in cardiomyocytes

have been described). The initial increase in Ap4A levels and activation of MITF is

followed by degradation of Ap4A by Ap4A hydrolase, and decreased production of Ap4A

by LysRS, which leads to the unassociated HINT being available to bind to MITF again and

so inhibit its transcriptional activity. This figure summarizes three articles on the role of

Ap4A in transcriptional regulation.
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Weinstein and colleagues have recently presented preliminary data at the
2008 AACR meeting whereby they corroborate our results regarding the
binding of Hint-1 to MITF and its ability to inhibit MITF (Genovese et al.,
2008). Their results were obtained with several types of human
melanocytes and human melanoma cell lines and they seem to suggest
that Hint-1 could modulate MITF activity in melanoma and might have a
role in the progression of this kind of tumor (Genovese et al., 2008).

One of the proteins found to be highly bound to MITF was LysRS
(Razin et al., 1999). We verified our observation from the yeast two-hybrid
assay with coimmunoprecipitation utilizing extracts from mast cells
(Lee et al., 2004b). We noted that several earlier studies from the 1980s
previously demonstrated that LysRS can produce the unique dinucleotide
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Ap4A.We found using Biacore that Hint-1 binds specifically to Ap4A (Lee
et al., 2004b). We then demonstrated in vitro that MITF could be
dissociated from Hint-1 by the application of Ap4A but not by other
dinucleotides, such as Ap3A, and Ap5A (Lee et al., 2004b). We therefore
hypothesized that the association of LysRS and MITF is not related to
LysRS’s role as a tRNA synthetase, but to one of its ‘‘moonlight’’ functions
as a producer of Ap4A (Lee et al., 2004b). We proposed that Ap4A
produced by LysRS played a critical role in the regulation of several
transcription factors through its ability to control gene expression. As an
initial in vivo assay to test this hypothesis, we introduced Ap4A into
cultured mast cells using the rather crude ‘‘cold shock’’ method, and
demonstrated that this introduction increased the expression of some
MITF-regulated genes (Lee et al., 2004b).

We later demonstrated that LysRS associates with USF2, which unlike
MITF, is ubiquitously expressed in eukaryotic cells. In mast cells, we have
found that similarly to MITF, USF2 is negatively regulated by Hint-1 and
Ap4A acts as a positive regulator of USF2 by a molecular mechanism
similar to that described for MITF (Lee and Razin, 2005). This finding lent
support to the notion that LysRS and Ap4Amay be involved in regulation
of gene transcription in many cell types and not limited to those where
MITF is expressed (Lee and Razin, 2005).

To elucidate the mechanisms involved in this transcriptional
regulation pathway, we decided to study the regulation of both the
synthesis of Ap4A by LysRS and its degradation. Interestingly, we
found that following IgE-Ag stimulation of mast cells, there is a transient
two- to threefold increase of intracellular Ap4A (Carmi-Levy et al., 2008).

Several enzymes that can degrade Ap4A have been described (Hankin
et al., 1997; Swarbrick et al., 2005; Vollmayer et al., 2003). However, only
one of these, NUDT2, which is a member of the Nudix family, has been
shown to reside intracellularly and has been proposed as the intracellular
enzyme responsible for the degradation of Ap4A (Abdelghany et al., 2001;
Hankin et al., 1997). We downregulated rat NUDT2 by electroporating
cultured rat mast cells with NUDT2 siRNA. This downregulation caused
significantly prolonged elevation of Ap4A following IgE-Ag stimulation
of mast cells (Carmi-Levy et al., 2008). This result was the first demonstra-
tion of a physiological role of NUDT2 in the regulation of the increase in
intracellular Ap4A levels in response to an immunological stimulus.

Following the initial characterization of Ap4A, various studies
demonstrated impressive increases in intracellular Ap4A levels following
a variety of external stimuli. However, most of these observations were
performed before modern techniques were available, such as siRNA
silencing of specific genes, and thus the enzymes responsible for the
production and degradation of Ap4A under various conditions have not
yet been delineated.
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As mentioned, we hypothesized that increased Ap4A levels should
allow the release of Hint-1 from MITF and so increase the transcriptional
activity of MITF. By blocking NUDT2, we managed to increase intracel-
lular Ap4A levels in a more physiological manner than with the cold
shock method (Carmi-Levy et al., 2008). This increase in Ap4A levels
resulted in an increase in the expression of some, but not all, USF2- and
MITF-regulated genes. The effect was not dramatic, with increases of up
to two-fold in most genes (Carmi-Levy et al., 2008). A limitation of this
approach is that the mast cells were stimulated in a way that was chosen
to achieve the maximal IgE-Ag response of the cells. Thus, inhibiting
the endogenous hydrolase, which basically prolongs the time that endog-
enous Ap4A levels are high, does not result in very large differences in
IgE-Ag-stimulated Ap4A peak levels. Such conditions might not be
typical of endogenous situations since IgE-Ag stimulation probably
happens at lower than optimal conditions in vivo.

It is important to note here that we did witness an increased release of
MITF from Hint-1 and increases in the expression of luciferase driven by
MITF responsive genes following inhibition of Ap4A hydrolase
expression (Carmi-Levy et al., 2008). Our study lends further support to
the notion that intracellularly produced Ap4A has a role in the regulation
of gene transcription.

3.4.4.2. LysRS and HIV tRNA is used as a primer to initiate the reverse
transcriptase (RT)-catalyzed synthesis of the minus-strand in retro-
viruses. Different retroviruses use different tRNAs as a primer. Kleiman
and colleagues defined the roles of lys tRNA and LysRS in retroviruses
and more specifically in HIV. In lentiviruses, including human immuno-
deficiency virus type 1 (HIV-1), tRNA3Lys serves as the primer tRNA
(Jiang et al., 1993;Mak andKleiman, 1997). In avian retroviruses andHIV-1,
the primer tRNAs are selectively packaged, and the percentage of the
tRNA population of the primer tRNA type increases in the virus. In HIV-1,
the relative concentration of tRNALys increases from 5% to 6% in the
cytoplasm to 50–60% in virus (Huang et al., 1994). Importantly in HIV-1,
increases in the concentration of primer tRNA3Lys in the viral population
is correlated with an increase in tRNA3Lys annealing and viral infectivity
(Gabor et al., 2002). In addition to tRNA3Lys it was found out that LysRS
is also selectively packaged into HIV-1 (Cen et al., 2001). It seems that the
main role of LysRS in HIV is the targeting of tRNALys for virion
incorporation (Cen et al., 2001; Gabor et al., 2002; Kovaleski et al., 2006).
Gag alone is sufficient for the incorporation of LysRS into Gag virus-like
particles (Cen et al., 2001), whereas GagPol is required in addition for the
incorporation of tRNALys (Huang et al., 1994) (Fig. 1.3).

Overexpression of LysRS in the cell results in a near doubling of the
incorporation of both tRNALys and LysRS into HIV-1 (Cen et al., 2004).



FIGURE 1.3 Roles of LysRS. LysRS is produced in two forms from the same gene—a

mitochondrial form, harboring a mitochondrial localization sequence, and a regular

form. The premitochondrial form of LysRS is cleaved once it enters the mitochondria

and 17 amino acids are lost and mitochondrial LysRS (mitoLysRS) is obtained. Besides its

role in translation, mitochondrial LysRS can specifically bind mutated superoxide

dismutase (mutSOD), an interaction which is proposed to have a role in the pathogenesis

of amyotropic lateral sclerosis. Mitochondrial LysRS has also been proposed as the

LysRS used by the HIV virion. It has proposed that a protein released from the HIV virion,

VPR leads to increased release of mitochondrial LysRS which can be incorporated into

HIV. Alternatively, it has been proposed that newly synthesized LysRS can be

incorporated into the HIV virions before incorporation into the multisynthetase com-

plex. LysRS is also secreted and has cytokine-like properties. In addition, LysRS has been

found to be an autoantigen in certain autoimmune disorders. LysRS has also been found

in the nucleus. LysRS is a producer of Ap4A, and can influence the dissociation of the

transcriptional inhibitor Hint-1 from transcription factors such as MITF.
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Thus, considering the huge clinical importance of HIV and the important
role of LysRS in the biology of HIV, it was interesting to try and locate the
source of LysRS in the virions. Regarding this question, there is currently
a heated debate in the literature. Kleiman’s group claim that the source for
viral LysRS is newly synthesized cytoplasmatic LysRS that binds to the
GAG molecule before it binds to the multisynthetase complex (Cen et al.,
2004). This claim is based on the use of truncated and tagged exogenous
LysRS. In contrast, Mirande and colleagues claim that the source for HIV
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LysRS is mitochondrial LysRS that is released in higher amounts from the
mitochondria following HIV infection and specific mitochondrial degra-
dation as a result of the action of HIV-derived VPR protein (Francin et al.,
2002). Their conclusions were based on the use of specific antibodies to
the mitochondrial LysRS. Neither of these research groups studied acti-
vated immune cells, in which there might be substantial release of LysRS
from the multisynthetase complex, and only used model cell lines in vitro
for their studies. Therefore, it seems that while the critical role of LysRS in
the life cycle of HIV is now supported by evidence from several
laboratories, the source of LysRS in HIV and its specific form in the
virus is still not clear.
4. CONCLUDING REMARKS

LysRS has several roles besides its function as a key enzyme involved in
translation. In the immune system, it may function both as an extracellu-
lar cytokine-like molecule and a signal-transduction protein in a signal-
transduction pathway ultimately regulating gene expression. It has a
critical role in HIV viral genesis. LysRS has been implicated as having a
role both in autoimmune disease and in amyotrophic lateral sclerosis. It is
found in cells in the cytoplasm mainly as part of the multisynthetase
complex, in mitochondria and in some cases has been found to be nuclear
or membrane bound. Studies of the regulation of LysRS function inside
the cells should provide us with critical insights as to the basic mechan-
isms of LysRS function in its various noncanonical roles. It seems that
much more work is needed to understand the complex regulation of
LysRS function and the involvement of LysRS in such seemingly unre-
lated processes such as HIV genesis and the response to external stimuli.
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that the host catabolism of a key microbial molecule is essential

for full recovery. As might be expected, it is the same bacterial

molecule that animals sense to detect the presence of Gram-

negative bacteria in their tissues, the cell wall lipopolysaccharide

(LPS). Here, we discuss current knowledge about LPS sensing with

emphasis on the host enzyme that inactivates this microbial

‘‘messenger’’ molecule. We also consider the possibility that the

rate at which stimulatory microbial molecules undergo inactiva-

tion may influence the duration and severity of diseases caused by

other infectious agents.
1. LIPOPOLYSACCHARIDE (LPS) SENSING BY MD-2–TLR4

All Gram-negative bacteria living in natural environments produce LPS,
a complex glycolipid that contributes to outer membrane impermeabil-
ity, confers resistance to detergents and cationic antimicrobial peptides,
provides cell-surface diversity, and prevents complement-mediated cell
death. Animals sense the lipid A moiety of LPS via MD-2–TLR4 recep-
tors on phagocytes and other cells, and much evidence suggests that
recognizing LPS in this way is essential for detecting the presence of
Gram-negative bacteria in tissues and mobilizing antibacterial defenses.
The structure of lipid A is not identical in different Gram-negative
bacteria, however, and not all lipid As can trigger inflammatory
responses via MD-2–TLR4. Extensive structure–activity studies have
shown that a bisphosphorylated, hexaacyl lipid A structure (Fig. 2.1) is
most stimulatory; removal or addition of a single acyl chain can dimin-
ish potency, as can the absence of either of the backbone phosphates.
Although many Gram-negative bacteria make LPSs that are poorly
recognized by MD-2–TLR4, with potentially important consequences
for disease pathogenesis (Munford, 2008), the aerobic commensals and
pathogens that colonize the mucosae of the upper respiratory and gas-
trointestinal tracts generally produce LPSs that have hexaacyl lipid
A moieties and are readily sensed by cells bearing MD-2–TLR4
(Munford and Varley, 2006). It is these bacteria that animals are best
equipped to defeat using TLR4-based inflammatory responses, and it is
the LPSs from these bacteria that are most likely to translocate into the
bloodstream to produce ‘‘endotoxemia.’’ These are also the LPSs that can
be inactivated by the unusual host lipase, acyloxyacyl hydrolase
(AOAH).
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2. ACYLOXYACYL HYDROLASE

AOAH was found during a search for human neutrophil enzymes that
could deacylate LPS (Hall and Munford, 1983). The ‘‘bait,’’ a biosyntheti-
cally labeled LPS that had 14C-glucosamine and 3H-fatty acyl chains
(Fig. 2.1), was opsonized with an anti-LPS antibody and fed to human
neutrophils in vitro. The 14C dpm, which marked the carbohydrate back-
bone, remained chloroform-insoluble during the next 6 h, whereas the 3H
in the LPS acyl chains gradually became chloroform-soluble and could be
recovered in cellular phospholipids. Further analysis showed that only the
nonhydroxylated fatty acids (myristate and laurate) were released from
the LPS—unexpectedly, all of the 3-hydroxymyristoyl chains remained
attached to the backbone, suggesting that neutrophils may lack the ability
to degrade lipid A completely. Correct interpretation of the sites of
enzymatic hydrolysis became possible when the existence of acyloxyacyl
linkages (Wollenweber et al., 1982) in lipid A and the first accurate lipid
A structure (Takayama et al., 1983) were published: the myristoyl and
lauroyl chains are attached to the hydroxyl functions of glucosamine-
linked 3-hydroxymyristoyl residues to form acyloxyacyl linkages
(Fig. 2.1, arrowheads). Denis McGarry suggested that the enzymatic activ-
ity be named ‘‘acyloxyacyl hydrolysis’’ and the enzyme(s) ‘‘acyloxyacyl
hydrolase(s)’’. A literature review revealed that enzymatic release of non-
hydroxylated fatty acids from LPSs had been reported previously in slime
molds (Dictyostelium discoideum, Nigam et al., 1970;Physarum polycephalum,
Saddler et al., 1979a) and a snail (Helix pomatia, Saddler et al., 1979b).
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In mammals, AOAH is produced by monocyte-macrophages and den-
dritic cells as well as neutrophils. Another prominent source, particularly
in rodents, is the renal cortical epithelial (proximal tubule) cell (Feulner
et al., 2004). Evidence that AOAH can inactivate LPS followed partial
purification of the protein (Munford andHall, 1986). Table 2.1 summarizes
the bioassays used to evaluate this point. Note that AOAH-treated LPS not
only lacks potency in these assays but it can also inhibit the ability of
untreated LPS to stimulate both human and murine cells. The species-
specific inhibition reported for tetraacyl lipid A structures (such as lipid
IVa) (Golenbock et al., 1990; Hajjar et al., 2002) does not necessarily apply to
tetraacylated LPSs, such as those produced by AOAH treatment, in
which tetraacyl lipid A is linked to a polysaccharide chain of variable
length; these tetraacyl LPSs are poor agonists for both rodent and human
cells. AOAH-treated LPS was the first lipid A derivative shown to inhibit
LPS (Pohlman et al., 1987); it and other tetraacylated lipid ‘‘A’’s can com-
petewith hexaacylated lipidAorLPS for bindingLBP,CD14 (Kitchens and
Munford, 1995), and, most importantly, MD-2 (Kim et al., 2007).
2.1. Structure, biosynthesis

Purification of the enzyme from HL-60 human promyelocytes revealed a
low abundance, glycosylated protein of Mr¼� 65 kDa that has two disul-
fide-linked subunits (Munford and Hall, 1989). The cDNA sequence indi-
cated that the enzyme is produced as a single polypeptide chain; proteolytic
cleavage is thus required to yield the two subunits (Hagen et al., 1991)
(Fig. 2.2). The larger subunit (50 kDa) has the GXSXG consensus motif
that has been found in serine-active site enzymes, and mutating the Ser to
Leu inactivated the enzyme (Staab et al., 1994). This subunit is now consid-
ered a GDSL or SGNH lipase (Akoh et al., 2004). The smaller subunit is a
member of the saposin-like protein (SAPLIP) family (Munford et al., 1995).
It shares six Cys residues and other featureswith several small proteins that
act as enzymes or cofactors for glycosphingolipid catabolism (the saposins,
acid sphingomyelinase), form pores in membranes (amoebophore,
NK-lysin), or act at lipid–air interphases in the lung (surfactant protein B).
The enzymatically active AOAH large subunit is thus armed with a cova-
lently linked ‘‘cofactor,’’ the saposin-like small subunit (Fig. 2.3).Without it,
the enzyme did not localize in intracellular vacuoles and had lower affinity
for LPS (Staab et al., 1994). AOAH and a closely similar Trypanosoma bruceii
inositol deacylase (Güther et al., 2001) are the only known lipases that have
this saposin–lipase combination, which has been very highly conserved in
AOAHs from D. discoideum to Homo sapiens (Munford and Varley, 2006).
Whereas saposin B may participate in NK-T cell activation by transferring
glycolipid antigens to CD1d (Zhou et al., 2004), several attempts identify a
similar role for AOAH have been unsuccessful.



TABLE 2.1 AOAH inactivates LPS

Animal host Assay LPS used

Reduction in activity after

AOAH treatment References

A. Evidence that AOAH-treated LPS has decreased bioactivity in vivo

Rabbit Dermal Shwartzman reaction Salmonella typhimurium � 100-fold Munford and Hall

(1986)

Rabbit CSF leukocytosis Haemophilus influenzae

type b

Syrogiannopoulos

et al. (1988)

Mouse Hepatomegaly Escherichia coli >10-fold Shao et al. (2007)

Mouse Polyclonal antibody
production

E. coli, Neisseria

meningitidis

� 100-fold Lu et al. (2005)

Cell

source Cell type Assay

Reduction in activity after

AOAH treatment References

B. Evidence that AOAH-treated LPS has decreased bioactivity in vitro

Human Umbilical vein

endothelial

cells

Leukocyte adhesion � 90% Pohlman et al.

(1987)

Human Umbilical vein

endothelial

cells

Production of prostanoids, plasminogen

activator inhibitor-1

� 90% Riedo et al. (1990)

Human Neutrophils Adherence, superoxide production,

secondary granule protein release,

CD11b expression

>95% Dal Nogare and

Yarbrough

(1990)

(continued)



TABLE 2.1 (continued )

Cell

source Cell type Assay

Reduction in activity after

AOAH treatment References

Human Monocyte (THP-

1 cell)

IL-1 production, NF-kB activation >95% Kitchens et al.

(1992)
Mouse Splenocytes Proliferation 10–500-fold Erwin et al.

(1991), Lu et al.

(2005),

Munford and

Hall (1986)

Mouse Macrophages,

dendritic cells

Cytokine production 50-fold or greater Lu et al. (2003,

2005)

Cell

source Cell type Assay

Inhibition by equimolar

concentration of dLPS (%) References

C. Evidence that AOAH-treated LPS can inhibit LPS-induced cell responses in vitro

Human Endothelial

cells

Neutrophil adhesion � 30% Kovach et al. (1990),

Pohlman et al. (1987)

Human Endothelial

cells

Prostanoid, plasminogen

activator inhibitor-1
production

� 60% Riedo et al. (1990)

Human Monocytes

(THP-1

cell line)

NF-kB activation 66% Kitchens and Munford

(1995), Kitchens

et al. (1992)

Mouse Splenocytes Proliferation, antibody

production

20–40% Erwin et al. (1991),

Lu et al. (2005)
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The human and murine AOAH genes have 21 small exons on chromo-
some 7p14-p12 and 13, respectively. In both species, the gene extends over
� 200 kb of genomic DNA. To prevent synthesis of AOAH in mice, the
starting ATG and the downstream 126 bp of the first exon were replaced
with a neomycin resistance cassette. Mice carrying this construct do not
produce AOAH protein (Shao et al., 2007) or have LPS-deacylating
activity (Lu et al., 2003; Shao et al., 2007).
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2.2. Enzymatic activity

As noted, AOAH removes secondary (piggyback, acyloxyacyl-linked)
chains from different positions on the diglucosamine lipid A backbone
without attacking any of the primary glucosamine-linked chains (Erwin
andMunford, 1990). Immunoadsorption of AOAH from leukocyte lysates
removed all enzymatic activity toward LPS, indicating that AOAH was
the only LPS-deacylating enzyme in these cells, and recombinant AOAH
can remove both of the secondary acyl chains from the LPS backbone.
It can also be a phospholipase A1/B, diglyceride lipase, and acyl transfer-
ase in vitro, and it has a preference for cleaving saturated (or mid-length)
acyl chains from both phospholipid and LPS substrates (Munford and
Hunter, 1992). AOAH can remove acyl chains that are attached to differ-
ent positions on the diglucosamine and glycerol backbones of LPS and
glycerolipids, respectively (Erwin and Munford, 1990; Munford and
Hunter, 1992). It thus has specificity for acyl chain character, not backbone
position. Transfected fibroblasts secrete the precursor, which can be taken
up by the same or different cells and proteolytically processed into the
mature enzyme (Feulner et al., 2004). The AOAH precursor peptide has
enzymatic activity toward both LPS and phosphatidylcholine (PC), yet
cleaving the precursor to form the mature enzyme increased its activity
toward LPS more than 10-fold without altering its ability to act on PC
(Staab et al., 1994).
3. LPS DEACYLATION IN VIVO

The double-radiolabeled LPS substrate can also be used to quantitate the
rate and extent of LPS deacylation in vivo. Whether the LPS is injected
subcutaneously (footpad, skin site), intraperitoneally or intravenously,
deacylation occurs over many hours (Lu et al., 2005; Shao et al., 2007).
Despite this seemingly sluggish performance, AOAH-mediated deacyla-
tion completely inactivated almost 80% of a subcutaneous dose of
LPS before the LPS could travel to draining lymph nodes (Lu et al.,
2005). No loss of the LPS secondary acyl chains was detected in Aoah�/�

mice, and in neither Aoah�/� nor Aoahþ/þ animals was there loss of
primary (3-hydroxymyristoyl) acyl chains from the backbone. LPS dea-
cylation in vivo is thus remarkably selective and limited. Of the various
LPS-catabolizing enzymes produced byD. discoideum (Verret et al., 1982a,b),
which eat bacteria as a foodstuff, only AOAH has been conserved during
animal evolution.

One important unresolved issue is the extent to which LPS deacylation
occurs inside and outside host cells. An intracellular site was suggested
by the enzyme’s acid pH optimum, its location in an intracellular vacuole
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(Staab et al., 1994), and the apparent colocalization of AOAH and deacy-
lated LPS in neutrophils (Luchi and Munford, 1993). Both rabbit macro-
phages and murine dendritic cells deacylate the LPS in phagocytosed
Escherichia coli in an AOAH-dependent fashion (Katz et al., 1999;
Lu et al., 2003). Moreover, AOAH does not act on LPS in buffered salt
solutions in the absence of a nonionic detergent such as Triton X-100,
suggesting that it may require an intracellular environment or factor(s) to
do its job. The enzyme can be secreted by rabbit neutrophils and mono-
cytes (Erwin and Munford, 1991), however, and extracellular deacylation
has been demonstrated in rabbit peritoneal exudate fluid (Katz et al.,
1999), a rich mixture of extravasated plasma, leukocyte products, and
other molecules. The AOAH secreted into the urine by renal cortical
epithelial cells can also deacylate LPS (Feulner et al., 2004). Gioannini
et al. recently reported that CD14 and LBP can bind LPS in a way that
allows AOAH to deacylate its lipid A moiety (Gioannini et al., 2007),
providing an attractive mechanism for extracellular LPS deacylation
(Weinrauch et al., 1999). The relative contributions of intra- and extracel-
lular deacylation to LPS inactivation in vivo remain uncertain.

Very little is known about how AOAH activity is regulated in vivo.
In part this reflects the enzyme’s low abundance, which has hindered
quantitative detection of both AOAH protein and mRNA. In addition, it
has not been possible to detect AOAH activity or protein in human
plasma or serum. Since the enzyme is easily measured in rodent and
rabbit serum, most studies of AOAH regulation have been performed in
these animals. In rabbits, plasma AOAH levels rise dramatically within a
few minutes of an intravenous injection of LPS and remain elevated for
many hours (Erwin and Munford, 1991). The increase in AOAH activity
was significantly less in animals that had been given methchlorethamine
to induce leukopenia, suggesting that much of the extracellular enzyme
is produced and released by neutrophils or monocytes. Indeed, rabbit
leukocytes released AOAH in response to stimulation by LPS ex vivo
(Erwin and Munford, 1991). In studies performed in mice, Cody et al.
found that AOAH mRNA and activity in liver and lung increased
several-fold following intraperitoneal treatment with LPS (Cody et al.,
1997). In addition, low concentrations of LPS and interferon-g induced
greater than 10-fold increases in AOAH mRNA in cultured murine
macrophages. Neither IL-10 nor dexamethasone prevented AOAH
mRNA accumulation in response to LPS, in keeping with the discovery,
many years later, that AOAH participates in the anti-inflammatory
(recovery) phase of local infection. Indeed, Mages et al. (2008) found an
approximately sixfold increase in AOAH mRNA abundance in LPS-
primed (tolerant) murine macrophages relative to unstimulated controls.
Immature murine dendritic cells also produce AOAH; cytokine-induced
maturation was associated with diminished LPS-deacylating ability,
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whereas exposure to LPS, CpG oligonucleotides, or staphylococci was
stimulatory (Lu et al., 2003). Unfortunately, it is uncertain that mice are
useful models for human AOAH regulation, since the tissue-specific
expression of the enzyme differs substantially (mice produce much
more AOAH in the kidney than do humans, and less in myeloid cells).
DeLeo and colleagues found that AOAH mRNA abundance decreased
approximately twofold in human neutrophils during the 6 h following
phagocytosis of latex beads, a time when many of the neutrophils were
undergoing apoptosis (Kobayashi et al., 2003). Further study of AOAH
regulation in human phagocytes is needed.
4. INACTIVATING LPS IN VIVO

Animals have several mechanisms for inactivating LPS (Munford, 2005),
including lipid A-neutralizing proteins (bactericidal permeability-
increasing protein, lactoferrin, lysozyme, collectins, etc. (Chaby, 2004)),
specific and cross-reactive anti-LPS antibodies, and sequestration of the
lipid A moiety within lipoprotein micelles. Although intestinal alkaline
phosphatase can inactivate LPS in zebrafish (Bates et al., 2007), a role for
endogenous alkaline phosphatase in LPS inactivation inmammals has not
been established. At present, AOAH is the only endogenous enzyme
known to inactivate LPS in tissues.

Early expectations that AOAH would protect animals from LPS-
induced inflammation met with disappointment when it was learned
that Aoah�/� and Aoahþ/þ mice had similar acute inflammatory
responses to LPS and indistinguishable survival outcomes following
LPS or Gram-negative bacterial challenge (Fig. 2.4A). In addition, macro-
phages and dendritic cells from wild-type and AOAH-deficient animals
had similar responses to LPS in vitro. On the other hand, the Aoahþ/þmice
that survived a Neisseria meningitidis challenge recovered more rapidly
than did the surviving Aoah�/� mice (Fig. 2.4B). Suspecting that the
enzyme’s role might be discernable only when late responses to LPS
and Gram-negative bacteria were studied, we began to look for long-
term abnormalities in LPS-treated mice. Three AOAH-dependent pheno-
types have now been identified, each of which reflects the ability of
persistently active (fully acylated) LPS to stimulate cells in vivo for long
periods of time. It seems that the enzyme’s low abundance and slow
deacylation rate are useful for a host defense that responds rapidly and
vigorously to LPS but then needs to inactivate this microbial ‘‘messenger’’
so as to avoid prolonged cell activation and possible immunosuppression.
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4.1. AOAH-dependent phenotypes

4.1.1. Prolonged elevations in polyclonal plasma
IgM and IgG3 antibodies

LPS is a B cell mitogen in mice, which express TLR4 on B cells. B cell
proliferation and polyclonal antibody production are thus quantitative
indices of LPS stimulation. Subcutaneous LPS inoculation elicits much
greater IgM and IgG3 responses in Aoah�/� mice than in wild-type mice,
suggesting that AOAH normally exerts a braking influence on B cell
stimulation by LPS in vivo (Lu et al., 2005) (Fig. 2.5A). Indeed, the presence
of the enzyme also prevents impressive, prolonged enlargement of the
lymph nodes that drain the site of inoculation. Tlr4�/�, Aoah�/� mice
developed neither lymphadenopathy nor elevated antibody titers, in
keeping with TLR4’s essential role in LPS signaling.
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4.1.2. Persistent hepatomegaly
Much of the LPS that enters the bloodstream from the gastrointestinal
tract travels via the portal venous system to the liver. Hepatic macro-
phages (Kupffer cells), which take up a large fraction of this LPS, are also
the major AOAH-producing cells in the liver (Shao et al., 2007). Small
intravenous doses of LPS induce prolonged, possibly irreversible, hepa-
tomegaly in Aoah�/� mice. This phenomenon was first noticed during
experiments performed to define the time-course of LPS deacylation in
the liver. In wild-type mice, the liver weight/body weight ratio increased
transiently, peaking 3 days after i.v. injection and returning to baseline by
day 7. In contrast, inAoah�/�mice the liver continued to enlarge, reaching
30–50% above baseline within 1 week of i.v. injection and remaining
enlarged for at least 3 weeks (Shao et al., 2007). Although the basis for
this striking phenomenon remains uncertain, it is associated with the
retention of fully acylated LPS by Kupffer cells and sinusoidal engorge-
ment with blood that contains neutrophils, B cells, CD4 and CD8 T cells,
and monocytes ((Shao et al., 2007); B.M. Shao, unpublished results). LPS
also induces impressive splenomegaly in Aoah�/� mice but this response
is transient, resolving within 2 weeks (Shao et al., 2007).
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4.1.3. Prolonged tolerance and immunosuppression
Another remarkable consequence of AOAH deficiency is the develop-
ment of prolonged endotoxin tolerance and immunosuppression follow-
ing exposure to very small amounts of LPS. In this context, tolerance
refers to the ability of a small priming dose of LPS to induce a state of
cellular reprogramming in which responses to subsequent, larger doses
of LPS and several other microbial agonists are altered. Endotoxin toler-
ance is known to occur in many animals, including humans; it is usually
considered an adaptation to prevent excessive inflammatory reactions to
invading microbes—as others have suggested, it may prevent ‘‘friendly
fire’’ while animals recover from infection (Cross, 2002; Medvedev et al.,
2006). The duration of the tolerant period is influenced by several fac-
tors, including LPS dose, the route of administration, and the animal’s
ability to deacylate the LPS. Whereas Aoahþ/þ mice recover from the
tolerant state within 5–10 days after intraperitoneal exposure to a small
dose of LPS or E. coli, Aoah�/�mice remain tolerant for at least 4 months!
Moreover, LPS-primed Aoah�/� mice were exquisitely sensitive to chal-
lenge with a virulent E. coli strain; susceptibility was associated with
delayed production of TNF and IL-6 and massive bacterial growth
during the first 24 h after inoculation (Lu et al., 2008). Initial analyses
of mRNA expression by LPS-primed Aoahþ/þ and Aoah�/� peritoneal
macrophages suggest that LPS exposure induces low-grade, persistent
activation in AOAH-deficient animals, largely in keeping with the
reprogramming phenomenon observed previously in macrophages
induced to develop tolerance in vitro (Foster et al., 2007; Mages et al.,
2008) but differing from those studies in many of the individual mRNAs
that are up- and downregulated during the tolerant period (A. Varley,
M. Lu, unpublished results). As with the other two phenotypes, pro-
longed tolerance in Aoah�/� mice is associated with the presence of fully
acylated LPS in cells for long periods of time (Lu et al., 2008).
4.1.4. Do AOAH-dependent phenotypes require exposure to LPS?
If these AOAH-dependent phenotypes result from the enzyme’s ability to
deacylate LPS, they should not occur inAoah�/� animals when theMD-2–
TLR4 signaling pathway is activated by a non-LPS agonist. We tested this
hypothesis using UT12, an agonistic monoclonal antibody to MD-2–TLR4
that was developed by Shoichiro Ohta and colleagues (Ohta et al., 2006).
For each of the phenotypes discussed above, Aoah�/� and Aoahþ/þ mice
had indistinguishable responses to UT12; an example is shown in
Fig. 2.5B, which should be compared with Fig. 2.5A. AOAH’s ability to
act on LPS, and not other potential substrates, is thus likely to account for
the prolonged LPS-induced responses observed in Aoah�/� mice.
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4.2. AOAH-dependent immunomodulation: Only in vivo?

Whereas LPS-injected Aoahþ/þ mice produce significantly less antibody
than do Aoah�/� mice, naı̈ve splenocytes from Aoah�/� and Aoahþ/þ

animals proliferate and produce antibody to the same extent when they
are exposed to LPS in vitro (Lu et al., 2005). AOAH thus has a strikingly
different influence on the in vivo and in vitro responses of splenocytes to
LPS. Similarly, whereas LPS-primed Aoah�/� peritoneal macrophages
retain their tolerant (reprogrammed) phenotype when they are removed
from the peritoneal cavity and grown for several days ex vivo, naı̈ve
Aoah�/� and Aoahþ/þ macrophages recover from tolerance at the same
ratewhen they are first exposed toLPS in vitro.Again, the in vivophenotype
cannot bemodeled in vitro. It should be interesting to define the properties
of the in vivo environment that allow LPS inactivation to have such an
important impact on the duration and nature of host responses to LPS.
4.3. Providing AOAH prevents prolonged
responses to LPS in vivo

The three AOAH-dependent phenotypes have been observed on two
widely different murine strain backgrounds, C3H/HeN and C57Bl/6,
indicating that these responses to LPS are not strain specific. Another
way to show that the observations in Aoah�/� animals are truly the result
of AOAHdeficiency is to prevent or ameliorate thembyprovidingAOAH.
We found that intravenous doses of recombinant human AOAH, given
prior to LPS injection, can prevent LPS-induced hepatomegaly (Shao et al.,
2007) and that producing AOAH in vivo using a gutted adenoviral vector
can prevent prolonged LPS-induced tolerance (Lu et al., 2008). Recombi-
nant adenoviruses produce their cargo proteins largely in hepatocytes,
whereas AOAH is made by phagocytic cells and renal cortical epithelial
cells. To study the effects of overproducing AOAH in cells that normally
make it, we also engineeredmice that produce large amounts of AOAH in
macrophages and dendritic cells. These mice express AOAH from the
human CD68 promoter in a cassette developed by David Greaves at the
University of Oxford (Gough et al., 2001). The transgenic mice recovered
from LPS challenge more rapidly than did wildtype mice and they were
protected from LPS-induced hepatosplenomegaly (N. Ojogun et al., in
press). The transgenic animals were also less likely to succumb to an E. coli
challenge, confirming the important role that LPS plays in Gram-negative
bacterial toxicity in vivo and raising the possibility that increasing AOAH
levels might ameliorate harmful responses to Gram-negatives in other ani-
mals, including humans (Munford, 2008). For example, early studies sug-
gested that AOAHmight play a protective role in bovine coliform mastitis
(Dosogne et al., 1998;McDermott et al., 1991).Engineering transgenic cattle to
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overproduce AOAH in myeloid cells or milk might thus be advantageous
for the dairy industry.
5. POTENTIAL CLINICAL CONNECTIONS

5.1. AOAH deficiency

Large-scale screens for AOAH-deficient humans have not been per-
formed. One group has reported an association between a particular
AOAH haplotype and risk of asthma (Barnes et al., 2006); whether or
not this haplotype is associated with altered AOAHproduction or activity
is not known. Screening for AOAH deficiency might also be fruitful in
individuals with viral, alcoholic or nonalcoholic steatohepatitis, for which
gut-derived LPS may be a contributing factor (Tilg and Diehl, 2000);
severe sepsis induced by Gram-negative bacteria that make hexaacyl
LPS (see Section 1); prolonged recovery from Gram-negative bacterial
diseases; autoimmune diseases in which a role for LPS has been suggested
(such as Guillain–Barre syndrome following exposure to Campylobacter
jejuni (Ang et al., 2002)); or patients with xanthogranulomatous pyelone-
phritis or malakoplakia, rare complications of bacterial infection in which
macrophages accumulate lipid and polysaccharides (Gregg et al., 1999).
A role for AOAH-mediated LPS inactivation might also be sought in
patients with HIV/AIDS, in whom immune dysfunction has been related
to the absorption of bacterial molecules, including LPS, from the gastro-
intestinal tract into portal blood (Brenchley et al., 2006; Jiang et al., 2009).
5.2. Host inactivation of microbial agonists other than LPS

Greater understanding of how animals inactivate other microbial mole-
cules could also have important consequences for patient care. For exam-
ple, some individuals who become infected with Borrelia burgdorferi
remain symptomatic despite having received effective antibiotic therapy;
it has not been possible to grow B. burgdorferi or detect their DNA in
inflamed tissues from such patients (Marques, 2008). Perhaps their per-
sistent symptoms are related to an inability to inactivate stimulatory
bacterial lipoproteins, which activate host cells via TLR2, or too-rapid
deacylation of the Borrelia glycolipid that stimulates protective NK-T
cells (Tupin et al., 2008). The same question might be raised regarding
recovery from staphylococcal and streptococcal diseases, which can be
very prolonged despite negative cultures; lipoproteins are the most
potent known immunostimulatory staphylococcal molecules. Recovery
from certain viral infections may also take a long time (Didierlaurent et al.,
2008), raising the possibility that hosts might differ in their ability to
degrade stimulatory viral nucleic acids or proteins. If they shorten the
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time to full recovery, measures that enhance the host’s ability to inactivate
stimulatory microbial molecules would be a useful adjunct to antimicro-
bial chemotherapy. Since recovery from infectious diseases can take many
weeks, with increased risk of another infection during that period (Yende
et al., 2008), further investigation of this possibility is clearly warranted.
6. CONCLUSION

Studies of LPS inactivation by an unusual host lipase have revealed that
killing Gram-negative bacteria does not prepare an animal to confront
another microbial invader: the major microbial ‘‘messenger’’ molecule
must also be inactivated. Although it seems likely that persistence of
microbial agonists other than LPS could also have long-term conse-
quences, much more work is required to test this notion and to identify
the important catabolic pathways. If the LPS-primed Aoah�/� mouse is a
fruitful model, eliminating bioactive microbial molecules should hasten
recovery from infection-induced immunosuppression (tolerance) and
possibly prevent other lingering symptoms and signs of disease.
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a family of molecules pivotal to this critical regulation. In this

review, we will discuss their structural components and functions

and our understanding of their impact on the systemic immune

response.
The immune system must mount an exponentially expanding attack to
counter the advances of pathogenic infections, which is coordinated by an
integrated response by the innate and adaptive immune systems. Danger
signals, such as pathogen-associated molecular patterns (PAMPs) on
the surface of invading organisms are sensed by pattern recognition recep-
tors (PRRs) on the surface of innate immune cells. The recognition of
these danger signals by innate immune cells triggers an inflammatory
cascade and, via the consequent interaction with cells of the adaptive
immune system, drives the generation of the specialized adaptive immune
response. An important method of communication between cells involves
the secretionof cytokines,whichhaveawell describedandpivotal role in the
defensive response. However, such a powerful tool is notwithout danger to
thehost, as it iswell knownthat if unfettered the immune response is equally
toxic tohost tissues.Toprevent excessivepathology, the immune systemhas
mechanisms in place to precisely regulate and extinguish the cytokine-
driven response. These systems are finely balanced to achieve protection
from intruders while avoiding excessive injury to the host.

The immune system has several regulatory systems that function to
limit cytokine responses. Regulation can occur by the action of protein
tyrosine phosphatases such as Src-homology-2 (SH2) containing phos-
phatase (SHP)-1 and SHP-2, which remove activating phosphate groups
from signaling molecules (Shuai and Liu, 2003) and thereby extinguish
downstream responses. Incomplete, nonfunctional versions of signaling
proteins can be produced that can be integrated into nascent signaling
complexes and act in a dominant negative manner to interrupt transmis-
sion of inflammatory signals (Hendry and John, 2004). Protein inhibitors
of activated signal transducer and activator of transcription (STAT)
(PIAS) are a family of proteins that contain E3 small ubiquitin-related
modifier (SUMO)-ligase activity. PIAS proteins ligate SUMO to target
signaling molecules, labeling the signaling molecules for degradation.
It has been postulated that PIAS proteins interfere with inflammatory
signal transduction in two additional ways: they may directly block
binding of signaling complexes to DNA and may also recruit separate
repressor proteins to the signaling complex (Lee et al., 2007). Additionally,
a family of molecules called the suppressor of cytokine signaling (SOCS)
family has been identified as the critical regulators of this system. In this
chapter, we will review aspects of the SOCS family with a particular focus
on their role in regulating atopic immune responses and aspects of the
innate immune system.



Role of SOCS in Allergic and Innate Immune Responses 51
1. ATOPIC IMMUNE RESPONSES

The careful regulation of immune responses prevents damage to the
organism from over exuberant as well as inappropriate inflammatory
responses. Allergic diseases, such as those responsible for atopic forms
of asthma, are an example of inappropriate inflammatory responses
directed at otherwise innocuous antigens. This inflammation results in
the clinical features characteristic of the allergic response. In asthma
patients develop shortness of breath and wheezing while pathological
samples reveal eosinophilic infiltration, mast cell degranulation, and
elevated mucus secretion. IgE antibodies specific to environmental
antigens are present in the blood as evidence of a systemic response.
The allergic immune response is dominated by antigen-specific CD4þ

T helper cells that produce type 2 cytokines, such as IL-4, 5, and 13.
These T helper 2 (Th2) cells drive an antigen-specific response that
involves a variety of inflammatory cells including B lymphocytes, mast
cells, and eosinophils (Corrigan and Kay, 1992; Wills-Karp, 1999).

The marked increased incidence of asthma and atopic diseases over
the past several decades has been well documented (Eder et al., 2006) as
has the profound cost to society. Asthma has become a major source of
disability and absenteeism from work, and asthma-related illnesses cost
an estimated 10 billion dollars per year in the US alone (Gergen, 2001).
Moreover, asthma is the most common childhood disease, afflicting
7–10% of children in this country (Bloom and Dey, 2006), and is a major
cause for school absenteeism (Dougherty and Fahy, 2009). Thus, it is
apparent that understanding the underlying mechanisms leading to
asthma and atopic disease with a goal of development of more effective
therapies or even prevention is of substantial interest.

Years of research have successfully elucidated many of the critical
cellular events key to the development of the allergic response. The
response begins, in the case of asthma, with inhalation of an allergen.
Most allergens are relatively small, highly soluble proteins that are
inhaled in desiccated particles such as pollen grains or dust mite feces.
The allergen is encountered and phagocytosed by antigen processing cells
(APCs) such as dendritic cells (DCs). The APC processes the antigen and
migrates to the lymph node, where it presents the antigen to T cells.
Antigens must be associated with MHC on the surface of an APC for
T cells recognition to occur. It is this direct recognition and specific
binding of the T cell, through its T cell receptor (TCR), to the complexed
peptide–MHC on the APC along with the second stimulatory signal
provided by costimulatory molecules that initiates T cell activation.
Mature APCs provide more than contact dependent stimulation to the
T cell; they secrete specific cytokines that have the pivotal role of driving
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the T cell along a particular differentiation pathway. When activated in
the presence of Th1 skewing cytokines such as IL-12, naı̈ve T cells
preferentially become Th1 effectors, while the Th2 cytokine IL-4 provides
the stimulation for the T cells to become Th2 effectors. On subsequent
exposure to the allergen, these effector Th2 cells in turn release the specific
cytokines that are critical to drive the activation of other cells associated
with allergic inflammation (reviewed in Eisenbarth et al., 2004).

Studies of the specific functions of the individual Th2 cytokines, IL-4,
IL-5, and IL-13, have revealed separate as well as overlapping roles. IL-4 is
key to the initiation of the Th2 response, while in humans both IL-4 and
IL-13 induce immunoglobulin class switching to IgE. These cytokines are
also important in the induction of cell adhesion molecules and
chemokines by endothelial and epithelial cells. IL-13 is important for the
propogation and the effector phase of atopic immune responses
(Wills-Karp et al., 1998), IL-5 plays an important role in eosinophil
development and maintenance. It is clear that the regulation of these
cytokines and their signaling is of paramount importance to generation
and thus control of allergic disease.

Cytokine signal transduction is a multistep process and can be
regulated at numerous different points. Signaling begins with the
cytokine binding the receptor, which triggers the assembly of the receptor
subunits. The receptor for IL-4 in hematopoietic cells is composed of a
heterodimer of the IL-4-specific a chain (IL-4Ra) and the common g chain.
IL-13 is also a heterodimer, sharing IL-4Ra but has a unique second
component, IL-13Ra. This complex may also play a role in binding IL-4
in cells that lack the common g chain. The receptors themselves do not
have enzymatic activity but are associated with a specific cytoplasmic
tyrosine kinase of the Janus kinase family (JAK), either JAK1, JAK2, JAK3,
or Tyk2. The common g chain is associated with JAK3, IL-4Ra is asso-
ciated with JAK1, and the IL-13Ra is associated with Tyk2. The receptor
chains undergo phosphorylation upon activation of the respective recep-
tor by binding of the cognate ligand. The phosphorylation of conserved
tyrosine residues in the cytoplasmic tail of the receptor recruits a member
of the STAT family of molecules via their SH-2 domains. The association
of differing STAT molecules allows individual cytokines their specific
transcriptional responses. In the case of IL-4 and IL-13, the STAT family
member recruited to the receptor is STAT6, which is also phosphorylated
by the JAK kinase. STAT6 dimerizes and translocates to the nucleus
where it regulates the transcription of numerous genes involved in the
Th2 response, including the Th2-specific transcription factor GATA3 and
the IE promoter, which is required for B cell immunoglobulin class switch
to IgE (Coffman et al., 1986; Nelms et al., 1999). The importance of IL-4 and
STAT6 in the generation of the Th2 response has been supported by the
analysis of responses in mice with genetic modifications in these
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pathways. IL-12 signaling involves similar specificity, activating JAK2
and Tyk2 which in turn drive STAT4 phosphorylation (Gately et al., 1998).
2. SOCS FAMILY

The SOCS family consists of eight members, SOCS1–SOCS7 and CIS
(cytokine-inducible SH2-containing protein) that share structural and
functional homology. CIS, the first family member identified, was identi-
fied based on its differential expression following IL-3 and erythropoietin
(EPO) exposure (Yoshimura et al., 1995). SOCS1, the next described family
member was identified simultaneously by three separate groups for its
inhibition of IL-6 (Starr et al., 1997), its binding to JAK2 in a yeast two-
hybrid screen (Endo et al., 1997), and by its homology to the SH2 region of
STAT3 (Naka et al., 1997). The remaining family members were identified
by their similar structural elements (Hilton et al., 1998; Minamoto et al.,
1997; Starr et al., 1997). They are expressed in response to different
inducers and function to inhibit specific signaling pathways. The different
inducers, pathways, and binding targets are shown in Table 3.1.

The structure of each family member consists of three regions, a
variable amino terminal region, a central SH2 domain and a SOCS box
at the carboxyl terminus (Fig. 3.1). The SH2 domain binds to phosphory-
lated tyrosines on subject proteins. While this domain is not responsible
for the actual degradation of the subject protein, it is responsible for the
specificity of the degradation. Binding of the SH2 domain to its specific
target brings the other domains in proximity to the target protein, keeping
their initiation of degradation directed at the appropriate protein. The
specific targets of the SH2 domains are shown in Table 3.1. The SH2
domain of SOCS1 and SOCS3 contains an extension of the N-terminus
called the N-terminal extended SH2 subdomain (N-ESS). Deletion of the
N-ESS interrupts the function of SOCS1 and SOCS3, thus while its role is
not clear it is known to be necessary for function (Sasaki et al., 2000;
Yasukawa et al., 1999). In some family members, the SH2 domain has
additional functions; in SOCS1, the SH2 domain binds to a specific phos-
phorylated tyrosine in the activation loop of JAK kinases (e.g., JAK2)
(Yasukawa et al., 1999) that is required for JAK function (Zhou et al., 1997).

The SOCS box is a 40-amino acid motif found not only in the eight
SOCS family members but also in more than 50 other proteins. The SOCS
box is a three-a-helical structure that functions to target proteins for
degradation by recruitment of the components of an E3 ubiquitin ligase
that in turn covalently binds ubiquitin to lysines in the target (reviewed in
Kile et al., 2002). The N-terminus of the SOCS box contains the B/C box
subdomain, also found in Von Hippel-Landau (VHL) tumor suppressor
protein (Spruck and Strohmaier, 2002; Zhang et al., 1999). The B/C box



TABLE 3.1 Each SOCS family member is coupled with its best defined inducers and the primary signaling pathways each is known to regulate

Inducers Regulates (primary) SH2 target

CIS IL-3, EPO, GH IL-3, EPO, prolactin,

GM-CSF

STAT5 recruitment sites on

receptors

SOCS1 IFN-a, IFN-g, IL-2, IL-3, IL-4,
IL-6, IL-7, IL-9, IL-10,

IL-13, IL-15, LPS, TNF-a,
GH, CpG DNA

IFN-a, IFN-g, IL-2, IL-3, IL-4,
IL-6, IL-7, IL-12, IL-13,

IL-15, prolactin, Epo,

OSM, TSLP, TNF-a, Tpo,
LIF, LPS

Binds the activation loop of JAK
kinases, phosphorylated

tyrosines on IFN-a and IFN-g
receptors

SOCS2 GH GH, IGF1 Phosphorylated tyrosines on

receptors

SOCS3 IL-1, TGF-b, IL-6, IL-10, GH,

LPS, epidermal growth
factor (EGF)

IL-1, TGF-b, IL-6, IL-11,
IL-12, IL-27, G-CSF, leptin,
leukemic-inhibitory factor

(LIF), ocostatin-M (OSM)

cardiotrophin-1 (CT-1),

ciliary neutrophic factor

(CNTF) cardiotrophin-like

cytokine (CLC)

Phosphorylated tyrosine of

gp130-related cytokine
receptors

SOCS4 EGF EGFR EGFR phosphorylated tyrosine

SOCS5 EGF EGFR ?
SOCS6 Insulin P85PI3K, IRS, INSR IRS

SOCS7 Insulin, IGF IRS, INSR, IGF IRS, INSR

The specific target of each SH2 domain is shown as well.
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serves to interact with Elongin C, which in turn is bound by Elongin B.
Together, the Elongin complex and a Cullin box motif of the SOCS box
associate with a Cullin scaffold protein that recruits Rbx1, completing the
Elongin C-Cullin-SOCS box (ESC)-type ubiquitin ligase. The carboxy
terminus of the SOCS box contains a Cul5 box that directs an association
with Cullin 5, in turn recruiting the stabilizing RING finger protein Rbx.

SOCS1 has been shown to be capable of driving the ubiquitination of
specific proteins including JAK2 (Ungureanu et al., 2002). Targeted dele-
tion of the SOCS box of SOCS1 results in partial loss of SOCS1 function,
supporting its importance in SOCS1 function (Zhang et al., 2001).

The third common domain of the SOCS family of molecules is the
N-terminal region. These regions are of variable length and sequence,
with SOCS5, SOCS6, and SOCS7 having extended regions, the
N-terminus of CIS, SOCS1, SOCS2, and SOCS3 are comparatively
truncated while the terminus of SOCS4 is intermediate.

In SOCS1 and SOCS3, the N-terminal region also contains a kinase-
inhibitory region (KIR) of 12 amino acids. This region is required for
inhibition of JAK kinases, perhaps functioning as a pseudosubstrate via
a conserved tyrosine. Removal of this tyrosine does not affect binding of
SOCS1 or SOCS3 to JAK but does prevent the inhibition of the kinase
(Sasaki et al., 2000). In addition, treatment of JAK2 with a KIR
peptide results in inhibition of kinase action (Flowers et al., 2004;
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Waiboci et al., 2007). The role of the N-terminus in the other SOCS family
members has yet to be elucidated.

Thus, the structural analysis of the SOCS family members reveal they
are able to influence signaling by a number of mechanisms. This is
accomplished by blocking the binding of signaling molecules to the
receptor through competition for binding sites, inhibition of activity of
the signalingmolecules as well as interruption of signaling by labeling the
signaling molecules for degradation (Fig. 3.2).

Crystal structure of SOCS family members using SOCS4 and SOCS2
has allowed increased insight into the function of these molecules. The
crystal structures have been analyzed in the context of Elongin B/C
binding, which have been shown to be strongly conserved between family
members (Bullock et al., 2006, 2007). Crystal structures have also revealed
significant differences between the family members, dividing the family
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into two groups: the first group contains CIS and SOCS1 through SOCS3
and the second group is SOCS4 through SOCS7. In the first group, the
short C-terminus is internal and is proposed to stabilize the SH2 and
SOCS box domains (Bullock et al., 2006). This organization of the protein
leaves the N-terminus, in particular the KIR domains of SOCS1 and
SOCS3, exposed and accessible for interactions. In contrast, the crystal
structure of SOCS4, representative of SOCS4-7, reveals the extended
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C-terminus is not internalized and rather the N-terminal seems to serve
the role of stabilizer for SH2 and the SOCS box (Bullock et al., 2007).
3. SOCS GENES

3.1. Evolution

Mammalian SOCS genes exhibit similarities in sequence and function,
implying an underlying redundancy. The strongest protein identities are
found in pairwise clusters between Socs1/Socs3, Cis/Socs2, Socs4/Socs5,
and Socs6/Socs7 (Rawlings et al., 2004) (Fig. 3.3). The sequencing of the
Drosophila genome revealed three SOCS genes, one homologous to SOCS4
and SOCS5 and two homologous to SOCS6 and SOCS7. The lone SOCS
gene identified in the Caenorhabditis elegans genome (CeSOCSa) is similar
to SOCS6 and SOCS7. Drosophila has a single cytokine receptor, with a
homolog of Jak and Stat proteins; in contrast, C. elegans lack both a
cytokine receptor and a JAK homolog but do have at least one STAT
molecule (reviewed in Zeidler et al., 2000).
3.2. SOCS1

The best studied of the family members, SOCS1, also called JAK-binding
protein (JAB)-1 or STAT-induced STAT inhibitor (SSI)-1, was simulta-
neously described by three groups (Endo et al., 1997; Naka et al., 1997;
Starr et al., 1997). Its structure contains the conserved SOCS box and SH2
domain, but in addition has a KIR domain also critical for its function
(Fig. 3.1). The importance of the SH2 domain for function has been
examined in SOCS1 via mutational analysis, demonstrating that both
the SH2 domain and the 24 amino acids N-terminal to the SH2 domain
are required for suppression of cytokine signaling (Narazaki et al., 1998).
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FIGURE 3.3 Protein sequence comparison of Drosophila and mouse SOCS. Based on

the protein alignments, the neighbor-joining method was used to construct a

phylogenetic tree of SOCS proteins.
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SOCS1 expression is induced by many cytokines (Table 3.1), most
notably IFN-g (Starr et al., 1997). In overexpression studies, SOCS1 has
been shown to interact with all four JAK kinases through its SH2 domain
as well as to inhibit their tyrosine kinase activity in vitro (Endo et al., 1997;
Naka et al., 1997; Yasukawa et al., 1999). SOCS1 overexpression in cell lines
inhibits STAT activation by multiple cytokines (Endo et al., 1997; Hansen
et al., 1999; Isaksen et al., 1999; Losman et al., 1999; Pezet et al., 1999; Song
and Shuai, 1998; Starr et al., 1997). Further overexpression studies have
shown that SOCS1 can also inhibit the activity of tyrosine kinase Tec and
the adaptor protein Vav (Yasukawa et al., 2000). Specific overexpression of
SOCS1 in T cells results in impaired T cell development, suggesting a role
for SOCS1 in the normal generation of thymocytes (Fujimoto et al., 2000).
3.2.1. Roles of SOCS1 domains
The precise function of the SOCS box in SOCS1 remains unclear, but
studies suggest this domain may play an important role in signal trans-
duction. Deletion of the SOCS box was first reported to result in signifi-
cantly lower expression of SOCS1 in M1 cells (Narazaki et al., 1998).
Expression levels of the SOCS1 mutant were restored by treatment with
proteasome inhibitors (Narazaki et al., 1998). A subsequent study found
that proteasome-dependent degradation of SOCS1 is blocked by interac-
tion with the Elongin B/C complex (Kamura et al., 1998). Together, these
studies suggest a role for the SOCS box in stabilizing SOCS1. However, in
a third study the interaction of the SOCS box of SOCS1 with Elongin B/C
was observed to accelerate SOCS1 degradation (Zhang et al., 1999).
Consistent with this observation, a recent report suggests that phosphor-
ylation of SOCS1 by Pim kinases stabilizes SOCS1 protein by decreasing
interaction with Elongin B/C (Chen et al., 2002). Considered together,
these findings have led to the model in which signaling proteins that
become associated with the SOCS box of SOCS1 are ubiquitinated and
thereby targeted for proteasome-mediated degradation.

The KIR domain of SOCS1 (also found in SOCS3) is a 12-amino acid
region between the variable amino region and the SH2 domain (Fig. 3.1)
that serves to inhibit JAK kinase ability. It may do so by binding the
catalytic cleft of the kinase and thus preventing access for the true sub-
strate. This was suggested by point mutational studies disrupting
the SOCS1 KIR that showed loss of JAK inhibition despite preservation of
binding through the SH2 domain (Sasaki et al., 1999; Yasukawa et al., 1999).
3.2.2. Knockout mouse studies
While in vitro studies have provided insights regarding SOCS1 function,
the generation of SOCS1-deficient mice has helped clarify its true
physiologic role. Although normal at birth, SOCS1�/� display stunted
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growth with a multiorgan disease that is characterized by lymphopenia,
fatty degeneration of the liver and macrophage infiltration of various
tissues followed by death before 3 weeks of age is reached (Alexander
et al., 1999; Marine et al., 1999b; Starr et al., 1998; Yasukawa et al., 2000).
These defects resemble those seen in wild-type mice given IFN-g as
neonates (Gresser et al., 1981). Interestingly, macrophages derived from
SOCS1�/� bone marrow are hyperresponsive to IFN-g; furthermore, the
injection of neutralizing anti-IFN-g antibody twice weekly from birth
can prevent disease in SOCS1�/�mice, thus demonstrating a requirement
for IFN-g in the observed perinatal lethality (Alexander et al., 1999).
Consistent with this observation, mice that are doubly deficient for
SOCS1 and IFN-g do not suffer perinatal lethality, further implicating
excessive IFN-g signaling in the disease observed in SOCS1�/� animals
(Alexander et al., 1999).

The lethality in SOCS1�/� mice is also significantly delayed in the
RAG2�/�, STAT1�/�, and STAT6�/� backgrounds, thus implicating
SOCS1 as a critical regulator of both the IFN-g and IL-4 signaling path-
ways (Alexander and Hilton, 2004). Many of the phenotypes associated
with SOCS1 deficiency can be reconstituted by transferring SOCS1�/�

bone marrow into JAK3�/� mice, suggesting that the pathology observed
is mediated by hematopoietic cells (Cornish et al., 2003a,b). However,
specific deletion of SOCS1 in the thymocyte/T/NKT cell compartment
is not sufficient to induce the lethal multiorgan disease, although it does
cause abnormalities that include increased numbers of CD8þ T cells and
increased sensitivity to common g-chain cytokines (Naka et al., 2001).
Consistent with the observation that specific deletion of SOCS1 in the
thymocyte/T/NKT cell compartment is not sufficient to cause the dis-
ease, SOCS1�/� DCs demonstrate increased IFN-g- and IL-4-induced
responses, suggesting an important role for SOCS1 in nonlymphoid cell
function. Furthermore, altered transcriptional activity of SOCS1may have
important ramifications for the cytokine unresponsiveness demonstrated
by many tumors, as it has been shown to be silenced by CpG methylation
in hepatocellular carcinoma and in multiple myeloma (Depil et al., 2003;
Galm et al., 2003; Yoshikawa et al., 2001). In addition, the ability of SOCS1
to inhibit signaling is reduced by the ABL oncogene (Chen et al., 2008).

As described earlier, the SOCS box appears to be important for
recruitment of the ubiquitin transferase apparatus that targets SOCS1-
interacting proteins for proteosomal-mediated degradation. Zhang et al.
(2001) generated mice in which sequences in the SOCS1 gene that encode
the SOCS box were deleted. Studies using these mice demonstrated the
in vivo importance of the SOCS box for inhibition of IFN-g signaling by
SOCS1 (Zhang et al., 2001). The SOCS1-SOCS box deletion mutant retains
the ability to bind JAK1, thus explaining why the phenotype of these mice
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is not as severe as that of SOCS1-deficient mice: the onset of disease is
later and its severity decreased in mice lacking the SOCS1-SOCS box
relative to mice lacking the entire SOCS1 protein. Nevertheless, like
SOCS1-deficient mice, SOCS box deletion mutant mice die prematurely
and suffer from reduced body weight (Zhang et al., 2001). Inflammatory
lesions are observed in skeletal and heart muscle, cornea, pancreas, and
dermis in these mice. On a molecular level, IFN-g-mediated STAT1 acti-
vation in the livers of mice lacking the SOCS1-SOCS box is prolonged.
This phenotype is intermediate to that observed in wild-type or SOCS1-
deficient mice. Interestingly, the SOCS box deletion mutant protein is
expressed at much lower levels than the wild-type SOCS1 protein in
heterozygote mice, supporting a role for the SOCS box, and, perhaps its
interaction with the Elongin B/C complex in SOCS1 protein stabilization.
It has recently been shown that the von Hippel-Lindau protein is pro-
tected from proteasomal degradation by its association with the Elongin
B/C complex and proteasomal degradation (Schoenfeld et al., 2000).

3.2.3. SOCS1 in innate immunity
SOCS1 has been associated with regulation of immune responses that
occur in the innate immune system as well. The toll-like receptors (TLRs),
the best characterized family of PRRs, bind PAMPs associated with
infectious invasion. TLR4 binds lipopolysaccharide (LPS) found on the
surface of Gram-negative bacteria and TLR9 binds CpG DNA found in
bacterial infections. These molecules signal through intracellular adap-
tors; for most TLRs, this is the molecule myeloid differentiation factor 88
(MyD88). TLR4 signals through MyD88 as well as TIR domain-containing
protein inducing IFN-b (TRIF), which TLR3 uses exclusively. The associ-
ation of TLR2 and TLR4 with MyD88 requires a secondary adaptor,
MyD88-adaptor-like protein (Mal). MyD88 signaling activates interleu-
kin-1 receptor-associated kinase (IRAK), which in turn lead to activation
of the MAP kinase pathway as well activation of nuclear factor kB (NFkB).
TRIF signaling activates interferon regulatory factor (IRF)-3 and results in
IFN-b production (reviewed in O’Neill, 2006). SOCS1 is induced by these
pathways and also regulates them. SOCS1 is induced in cells following
treatment with LPS (Stoiber et al., 1999) and similarly, SOCS1 (as well as
SOCS3) is expressed following TLR3 activation by CpG DNA (Dalpke
et al., 2001). Given the known induction of SOCS1 by inflammatory
cytokines, it was considered this induction might not be directly related
to TLR engagement but secondary to the inflammation generated by TLR
activation. However, the direct association of SOCS1 expression and TLR
signaling was supported by a number of studies, including a transwell
experiment showing soluble factors were not solely responsible for the
effects observed (Baetz et al., 2004).
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The inhibition of TLR signaling by SOCS1 was described in studies of
LPS response in SOCS1�/� mice that found they were profoundly sensi-
tive to LPS, showing increased lethality and generating elevated amounts
of the proinflammatory cytokines TNF-a and IL-12 (Kinjyo et al., 2002;
Nakagawa et al., 2002). Studies defining the mechanism of this inhibition
have shown a number of ways by which SOCS1 downregulates the
inflammatory response to TLR activation, including direct interference
with the signaling cascade and blockade of the signaling by cytokines
generated in response to TLR stimulation.

The first step in the TLR signaling pathway proposed to be targeted by
SOCS1 is the adaptor Mal. Mal is phosphorylated by Brutons tyrosine
kinase (BTK) after TLR stimulation, allowing binding by the SH2 domain
of SOCS1. It is believed this bindingmakesMal accessible to the SOCS box
of SOCS1, as the association of SOCS1 with Mal results in its ubiquitina-
tion and subsequent degradation (Mansell et al., 2006), blocking the
progression of the TLR signal to MyD88.

The protein IRAK that serves to bridge the activation signal from
MyD88 to NFkB is also a potential target of SOCS1. SOCS1 has been
shown to bind IRAK through its SH2 domain in cotransfection studies
(Nakagawa et al., 2002) and thus may do so in vivo as well. Binding to the
SH2 domain brings IRAK into range of the SOCS box and could result in
enhanced ubiquitination and proteasomal degradation. This blockade of
signaling beyond IRAK prevents activation of NFkB, effectively halting
the generation of inflammatory cytokines.

The final known interference of SOCS1 with TLR signaling occurs at
the level of NFkB activation. If the TLR signal proceeds through IRAK it
leads to removal of the inhibitory IkB from the p50 and p65 subunits of
NFkB, generating active NFkB which translocates to the nucleus and
drives the expression of proinflammatory cytokines. SOCS1 has been
shown to bind in vitro to the p65 subunit, leading to its polyubiquitination
and degradation by the p65 proteasome (Ryo et al., 2003). Thus, SOCS1
directly negatively regulates TLR signaling at multiple steps in the
pathway.

The TRIF pathway is also potentially a target of SOCS1, but indirectly
via the blockade of the response to the inflammatory cytokines produced.
TRIF stimulation culminates in release of type I interferons which act on
the same cell as well as neighboring cells via the IFN-a/-b receptor. This
activates STAT1 and results in upregulation of costimulatory markers
such as CD40 and release of numerous proinflammatory molecules.
In studies overexpressing SOCS1, this activation of STAT1 is inhibited
as shown by impaired phosphorylation (Nakagawa et al., 2002). In addi-
tion, there is inhibition of the upregulation of CD40 on the surface of
macrophages, further supporting blockade of the STAT1 pathway (Baetz
et al., 2004; Qin et al., 2006).



Role of SOCS in Allergic and Innate Immune Responses 63
3.2.4. SOCS1 in adaptive immune responses
The generation of the adaptive immune response is dependent on specific
cytokines driving the differentiation of naı̈ve T cells into the varied sub-
sets of effector T cells. As noted earlier, IL-4 binding its IL-4 receptor on
CD4 cells is critical to the generation of a Th2 response, much as IL-12
release by innate immune cells skews a CD4 cell to a Th1 response.
Presence of the Th1 cytokine IFN-g inhibits differentiation to Th2 cells
while IL-4 likewise blocks Th1 development. SOCS1 has been shown to
regulate all these cytokines, thus its ability to block generation of these
cytokines as well as to block their functions is critical in determining the
type of CD4 response that is generated. The role of SOCS1 in adaptive
immune responses has been studied using in vivo infection models.
Socs1þ/þ and Socs1þ/� mice were infected with the Th1 skewing bacteria
Listeria monocytogenes or the parasite Nippostrongylus braziliensis that
drives the adaptive immune system to a Th2 response. Upon restimula-
tion, CD4 cells from Socs1þ/� mice infected with L. monocytogenes
produced significantly higher levels of IFN-g than CD4 cells from simi-
larly treated Socsþ/þ mice, while IL-4 from Socsþ/� mice after infection
with N. braziliensis was significantly elevated in comparison to Socsþ/þ

mice (Fujimoto et al., 2002). This suggests that the adaptive immune
response, whether Th1 or Th2, is enhanced if triggered in the context of
lower levels of SOCS1. The application of this finding to human atopic
disease is intriguing; an environmental trigger generating low levels of
IL-4 in an individual with normal SOCS1 may be insignificant. However,
if that individual lacked full SOCS1 function the IL-4 response may be less
controlled, perhaps predisposing to atopic disease.

The association of the function of SOCS molecules in the allergic
response has been supported by human studies analyzing the association
of polymorphisms in SOCS genes with allergic disease in people.
Specifically, an association of a promoter polymorphism in SOCS1 has
been linked to adult asthma. The linked polymorphism leads to a
promoter with modified activity in vitro, suggesting changes in expres-
sion of SOCS1 can have appreciable effects on disease manifestations in
patients (Harada et al., 2007).
3.3. CIS

CIS was the first family member described. It was identified as induced
by IL-3 and found, via overexpression studies, to inhibit the response to
IL-3. The CIS SH2 domain is similar to the SH2 domain of STAT5 and
thus it may act by binding the tyrosine phosphorylated cytoplasmic tail of
the activated cytokine receptor, competitively inhibiting the binding by
STAT5 (Yoshimura et al., 1995). This is supported by studies
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overexpressing CIS in mice that recreate a phenotype quite similar to
STAT5-deficient mice with defects in natural killer, natural killer T cell
and T cell development. CD4 cells from mice overexpressing CIS
preferentially differentiated into Th2 cells, suggesting a role for CIS in
regulating adaptive immune responses (Matsumoto et al., 1999).
Intriguingly, mice lacking CIS do not display any overt abnormalities,
making the analysis of CIS as a critical regulator less straightforward
(Marine et al., 1999a).
3.4. SOCS2

SOCS2 shares structural homology with CIS and like CIS (as well as
SOCS1 and SOCS3) is induced by growth hormone (GH). In overexpres-
sion studies, all GH-induced SOCS family members are capable of bind-
ing the GH receptor, but only SOCS2 seems to exert a regulatory effect on
GH signaling in vivo (Greenhalgh et al., 2002). This is supported by
knockout studies as mice lacking SOCS2 develop accelerated growth
with gigantism, elevated levels of insulin-like growth factor (IGF)-1
mRNA which is upregulated by GH and enhanced responses to exoge-
nous GH (Greenhalgh et al., 2005; Metcalf et al., 2000). Enhanced GH
responses in mice lacking SOCS2 suggest the normal function of SOCS2
is to curtail GH response. The contradictory finding that SOCS2
overexpressingmice do not have impaired GH responses was unexpected
and makes the role of SOCS2 in regulation of GH less clear (Greenhalgh
CJ 2002 JBC). There have been no studies demonstrating a role for SOCS2
in the regulation of atopic immune responses.
3.5. SOCS3

SOCS3 has similarity in structure and function to SOCS1, and contains a
comparable KIR domain (Fig. 3.1). Additionally, the SH2 domain of
SOCS3 contains a 35-amino acid insertion with proline, glutamate, serine,
and threonine, or a PEST sequence. PEST sequences are believed to mark
proteins for accelerated proteolysis and thus deletion of the PEST inser-
tion of SOCS3 stabilizes the protein (Babon et al., 2006; Rogers et al., 1986).
The SH2 domain of SOCS3 binds specifically to phosphorylated tyrosines
in gp130, the common signaling subunit of the IL-6 receptor family
(Table 3.1).

Studies of SOCS3 have been hampered by the fact that SOCS3-
deficient embryos die by gestational day 16 due to anomalies in placental
and embryonic vessel formation (Roberts et al., 2001). Generation of
SOCS3-deficient embryos with SOCS3 sufficient placental tissues resulted
in the live birth of SOCS3-deficientmice, but all succumbedby25dayswith
cardiac defects unless the mice were also deficient in leukemia-inhibitory
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factor (LIF) (Robb et al., 2005; Takahashi et al., 2003). More recent studies
using tissue-specific knockout mice have greatly assisted our understand-
ing of the functions of SOCS3 in vivo.

Similar to SOCS1, SOCS3 has a role in regulating the immune response
to LPS. The mechanism of action of the two family members differs as
SOCS1 binds activated JAK kinases and inhibits them directly, SOCS3 acts
by binding the activated cytokine receptor and indirectly inhibiting JAK
kinases (Nicholson et al., 2000). This mechanistic difference may explain
how these proteins affect different components of signaling pathways.
For example, SOCS1 primarily regulates the signaling cascade for LPS
and TLR4, SOCS3 regulates the cytokines generated by the LPS response
(Table 3.1). The regulation by SOCS3 has been studied in detail for IL-10.
IL-10 acts to inhibit the inflammatory response to LPS; its importance is
shown by the exuberant inflammatory response to LPS seen in mice
lacking IL-10 (Rennick et al., 1997). While it had been known a portion
of the anti-inflammatory effect seen with IL-10 was due to inhibition of
the production of inflammatory cytokines, the mechanism by which this
occurred was not. It has now been suggested SOCS3 mediates this effect
as overexpression of SOCS3 in macrophages blocked the production of
TNF-a, GM-CSF, and IL-6 in macrophages in response to LPS at a
level similar to that seen in normal cells treated with LPS and IL-10
(Berlato et al., 2002).

An intriguing study by Yasukawa et al. suggests the inhibitory IL-10
effect is due to the sustained duration of STAT3 activation rather than an
IL-10-specific effect. They postulate STAT3 activation in response to
signaling by the IL-10 receptor is prolonged in duration, in contrast to
only brief and transient STAT3 activation following IL-6 binding the IL-6
receptor. The IL-6 receptor contains a gp130 site, absent in the IL-10
receptor and allowing the IL-6 receptor to be bound and inhibited by
SOCS3, resulting in a pulse of STAT3 activation. Without gp130, SOCS3
does not bind the IL-10 receptor and thus STAT3 activation following
IL-10 stimulation is not downregulated and is sustained, resulting in the
inhibition ascribed to IL-10 (Yasukawa et al., 2003).
3.5.1. SOCS3 in dendritic cells
DCs are key to transmitting the initial innate response to the adaptive
system. They perform this role by presenting peptides in class II MHC
molecules to naı̈ve CD4 T cells. The associated expression of costimula-
tory markers and release of specific cytokines results in differentiation of
the CD4 cell into distinct lineages of effector cells. The specific class of
resultant effector, Th1, Th2, Th17, or Treg, is dependent on precise
regulation of the cytokines and costimulatory molecules; modification in
these factors results in a profoundly variant adaptive immune response.
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SOCS3 has an intriguing role in the regulation of the DC. DCs with
constitutively expressed SOCS3 have reduced expression of MHC class II
molecules as well as impaired expression of costimulatory molecules.
These DCs drive CD4 cells to become Th2 effectors that in turn are capable
of suppressing the Th17-dependent mouse model of multiple sclerosis,
experimental autoimmune encephalitis (EAE) (Li et al., 2006). Additional
studies of the role of SOCS3 in DCs have used SOCS3-deficient cells.
Interestingly, these cells drive the generation of regulatory T cells,
suggesting that the regulation by SOCS3 in DCs has a critical role in
determining whether the adaptive response is inflammatory or tolerogenic
(Matsumura et al., 2007).

3.5.2. SOCS3 in adaptive immunity
While it is apparent the expression of SOCS3 in DCs drives the differenti-
ation of Th2 cells, it has been suggested SOCS3 expression is important in
CD4 cells. Analysis of in vitro generated Th2 and Th1 cells revealed
elevated SOCS3 mRNA in the Th2 cells. To assess if this applies in
humans, CD3þ cells were isolated from peripheral blood of patients
with or without asthma and were analyzed for SOCS mRNA. Asthmatics
had higher levels of SOCS3 than nonasthmatics and more severely
affected asthmatics had higher SOCS3 than those patients with milder
asthma. A causative role for SOCS3 in T cells was supported by the
overexpression of SOCS3 in naı̈ve CD4 cells, which upon stimulation
preferentially produced IL-4 (Seki et al., 2003). However, generation of
mice with selective loss of SOCS3 in T cells casts doubt on the requirement
for SOCS3 in T cells, as these deficient T cells are fully capable of normal
differentiation into Th2 cells (Chen et al., 2006). Further investigation is
needed to determine the true role of SOCS3 in T cells.

3.5.3. SOCS3 in cancer
Modified SOCS3 expression has been associated with carcinogenesis in a
number of studies. For example, samples of squamous cell cancer of the
head and neck have been found in the vast majority of cases to have
epigenetic silencing of the Socs3 gene (Niwa et al., 2005; Weber et al., 2005).
Mice generated with a specific deletion of Socs3 in hepatocytes have an
increased susceptibility to induction to hepatocellular carcinoma (Riehle
et al., 2008). Numerous additional studies, though, suggest an opposite
role for SOCS3 in the regulation of cancer. SOCS3 has been found to be
constitutively expressed in infiltrating ductal breast carcinomas (Raccurt
et al., 2003) and stabilized in certain myeloproliferative disorders
(Hookham et al., 2007). These authors offer a possible explanation for
this dichotomy; they note SOCS3, while stabilized, is also hyperpho-
sphorylated. They suggest the increasedphosphorylation,whileprolonging
SOCS3’s half-life, also interferes with its regulatory ability. Thus, despite
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increased levels of SOCS3 it is postulated there is in fact impaired SOCS3
function. While this theory awaits validation, it is an attractive explana-
tion for seemingly discordant data.
3.6. SOCS4

SOCS4 was first identified through a database search for SOCS box-con-
taining proteins (Hilton et al., 1998). The structure of SOCS4 is quite
homologous to SOCS5, particularly at their SH2 domains, suggesting
similarities in binding targets. SOCS4 and SOCS5 are orthologs of
Drosophila SOCS36E, which in overexpression studies suggest impair the
function of the epidermal growth factor receptor (EGFR) (Callus and
Mathey-Prevot, 2002; Rawlings et al., 2004). Thus, SOCS4 was proposed
as a regulator of EGFR signaling. This was supported by the induction of
SOCS4 in response to EGFR signals. The exact mechanism by which
SOCS4 could bind and thus regulate EGFR was unclear until additional
structural information was gained. Solving the crystal structure revealed
novel conformation of the SOCS box with a newly recognized binding
face which was shown to bind specifically to phosphorylated tyrosine of
EGFR, signaling its degradation (Bullock et al., 2007; Kario et al., 2005).
The role of SOCS4 in vivo, or in immune responses, is not known.
3.7. SOCS5

SOCS5 is also expressed following EGFR signaling and, like SOCS4, has
also been shown to facilitate the degradation of the EGFR. Unlike SOCS4,
the interaction by SOCS5 seems to be independent of phosphorylation
state of the receptor (Kario et al., 2005; Nicholson et al., 2005).

SOCS5 has been studied more extensively than SOCS4 andmay have a
role in adaptive immunity, as it has differential expression in T cells, with
a higher level in Th1 cells in comparison to Th2 cells. In addition, studies
of Th1 cells have shown SOCS5 is capable of binding to IL-4R and
suppressing STAT6 phosphorylation, potentially inhibiting development
along the Th2 pathway (Seki et al., 2002). Overexpression studies with
elevated SOCS5 specifically within T cells showed an enhanced Th1
response to a number of stimuli (Ozaki et al., 2005; Seki et al., 2002;
Watanabe et al., 2006). In contrast, mice overexpressing SOCS5 had
enhanced Th2 responses to inhalant antigens (Ohshima et al., 2007). Fur-
ther confounding results are seen in mice deficient in SOCS5 that appear
to have normal T cell development and differentiation to both Th1 and
Th2 cells, which casts into doubt a critical role of SOCS5 for the develop-
ment and function of CD4 T cells (Brender et al., 2004; Seki et al., 2002).

Recently, a role for SOCS4 and SOCS5 in pathogenesis of cancer has
been postulated. Analyzed human hepatocarcinoma samples were more
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likely to have inactivation of SOCS4 and SOCS5 than normal samples.
In addition, the inactivation of either gene was associated with a worse
prognosis (Calvisi et al., 2007).
3.8. SOCS6

SOCS6 and SOCS7 have the highest level of overall amino acid homology
of all the family members, with greater than 50% identity for both their
SOCS boxes as well as SH2 domains. Thus, it is not surprising that at least
some of their functions appear related; both have been implicated in
regulation of the insulin receptor (INSR). In vitro analysis of SOCS6
shows it is capable of binding to INSR and the INSR substrate protein
(IRS)-4 as well as inhibiting IRS-1. It also interacts with the p85 subunit of
phosphoinositol-3 (PI3) kinase following exposure to insulin. Overexpres-
sion of SOCS6 results in inhibited insulin signaling and improvement in
glucose tolerance, which is similar to the p85-deficient mouse that has
normalized glucose metabolism despite impaired PI3 kinase function
(Terauchi et al., 1999). However, mice deficient in SOCS6 had no signifi-
cant anomalies of insulin signaling, although demonstrated slight growth
defects compared to wild-type controls (Krebs et al., 2002; Li et al., 2004;
Mooney et al., 2001). This suggested that SOCS6may actually facilitate cell
growth. A role for regulating immune responses has not been delineated
for SOCS6.
3.9. SOCS7

SOCS7 is the largest human SOCS protein with 581 amino acids. It con-
sists of a central SH2 domain, the common carboxyl SOCS box that
contains a carboxyl terminal extension, as well as the longest amino
terminus (Fig. 3.1). SOCS7 is unique among the SOCS proteins in that it
contains multiple poly-proline regions that may allow association with
SH3 domain-containing proteins. SOCS7-interacting molecules were
identified both by mass spectrometry and in two independent yeast
two-hybrid screens. Both two-hybrid studies found interactions with the
adaptor molecule Nck and a single-hit identification of the signaling
molecules Grb-2 and STAT-3, the tyrosine kinases EGFR, Lck, Hck, the
lipase PLC-g, and the multiple SH3-domain-containing protein vinexin
(Martens et al., 2004; Matuoka et al., 1997). In addition, using mass spec-
trometry a GST-fusion protein of the SOCS7 SH2 domain was found to
associate with IRS4 and the regulatory subunit of PI3-kinase (p85PI3K)
(Krebs et al., 2002). Several of these SOCS7-interacting proteins were
also reported to bind other SOCS molecules. For example, Nck binds
SOCS1 and SOCS3 through its SH3 and SH2 domains, respectively
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(De Sepulveda et al., 1999; Sitko et al., 2004). SOCS1 can also bind to Grb2,
p85PI3K, and the EGFR (Xia et al., 2002). Many of these proteins act in
insulin or cytokine signaling pathways, thereby suggesting an interaction
between SOCS7 and the insulin-signaling cascade.

A regulatory role for SOCS7 in insulin signaling is supported by
knockout studies. SOCS7-deficient mice develop hypoglycemia and
have enhanced glucose metabolism. The INSR is normally tightly regu-
lated by multiple IRS proteins; loss of these regulators is associated with
insulin resistance and the disease noninsulin-dependent diabetes mellitus
(NIDDM). On a C57Bl6 background, loss of SOCS7 results in hydroceph-
alus and neonatal death (REF Hilton PNSA and Rothman JCI). However,
in a mixed 129/C57Bl6 background, the mice survive and reproduce
normally. In these mice lacking SOCS7, IRS levels are elevated and insulin
action is enhanced (Banks AS JCI 2005 115:2462-71). Validation of the role
of SOCS7 in glucose metabolism via overexpression studies will cast light
on the relevance of SOCS7 levels to NIDDM.

A seemingly separate role for SOCS7 has been proposed in the regula-
tion of allergic inflammatory disease. SOCS7-deficient mice have a
propensity toward spontaneous development of cutaneous disease with
infiltration of degranulated mast cells. In vitro, mast cells from these mice
release elevated amounts of IL-6, TNF-a, and IL-13 upon IgE receptor
ligation (Knisz et al., 2009). Interestingly, these mast cells also show
elevated mRNA expression for thymic stromal lymphopoietin (TSLP),
the expression of which has been previously described as a critical switch
for the initiation of allergic inflammation (Liu, 2006). These studies
suggest SOCS7 serves to dampen the development of allergic disease.
4. CONCLUSION

The SOCS family of molecules plays a critical and divergent role in
regulating immune responses as well as metabolic pathways. While
they utilize a common paradigm to bind and inhibit signaling molecules
their individual binding requirements result in fine specificity and, in
some cases, limited redundancy. Further studies using mice that lack
more than one SOCS gene may be important in further defining potential
roles and the possible redundant roles these proteins play. In addition,
conflicting results between studies relying on genetic deletion versus
those utilizing overexpression of these molecules need to be resolved in
order to understand how these proteins regulate the immune system and
metabolic pathways. The clear applicability of these molecules in
therapeutic regulation of the immune response remains to be explored.
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Abstract The MHC Class I-related receptor, FcRn, transports antibodies of
the immunoglobulin G (IgG) class within and across a diverse array

of different cell types. Through this transport, FcRn serves multiple

roles throughout adult life that extend well beyond its earlier

defined function of transcytosing IgGs from mother to offspring.

These roles include the maintenance of IgG levels and the delivery

of antigen in the form of immune complexes to degradative

compartments within cells. Recent studies have led to significant

advances in knowledge of the intracellular trafficking of FcRn and

(engineered) IgGs at both the molecular and cellular levels. The

engineering of FcRn–IgG (or Fc) interactions to generate antibodies

of increased longevity represents an area of active interest,

particularly in the light of the expanding use of antibodies in

therapy. The strict pH dependence of FcRn–IgG interactions, with

binding at pH 6 that becomes essentially undetectable as near

neutral pH is approached, is essential for efficient transport. The

requirement for retention of low affinity at near neutral pH

increases the complexity of engineering antibodies for increased

half-life. Conversely, engineered IgGs that have gained significant

binding for FcRn at this pH can be potent inhibitors of FcRn that

lower endogenous IgG levels and have multiple potential uses as

therapeutics. In addition, molecular studies of FcRn–IgG interac-

tions indicate that mice have limitations as preclinical models

for FcRn function, primarily due to cross-species differences in

FcRn-binding specificity.
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1. INTRODUCTION

The MHC Class I-related receptor, FcRn (n for neonatal), was originally
identified as the receptor that transports maternal IgG in mother’s milk
across the neonatal rodent gut during the suckling period (Brambell, 1970;
Rodewald and Abrahamson, 1982; Wallace and Rees, 1980). However,
more recent studies have not only shown that this receptor serves to
regulate IgG levels and distribution throughout adult life (Ghetie et al.,
1996; Israel et al., 1996; Junghans and Anderson, 1996), but also that it has
multiple other roles in diverse cell types and tissues (e.g., Akilesh et al., 2008;
Dickinson et al., 1999; Kim et al., 2008; Spiekermann et al., 2002; Zhu et al.,
2001). FcRn orthologs have been isolated from many species, including
mouse, rat, man, sheep, cow, possum, pig, and camel (Adamski et al.,
2000; Ahouse et al., 1993; Kacskovics et al., 2000, 2006; Kandil et al., 1995;
Mayer et al., 2002; Schnulle and Hurley, 2003; Simister and Mostov, 1989;
Story et al., 1994), indicating that this receptor is present in essentially all
mammalian species. The multiple functions of FcRn are dependent on its
ability to sort IgG away from lysosomal degradationwithin cells and release
bound cargo during exocytic events at the plasma membrane (Ober et al.,
2004a,b; Prabhat et al., 2007). Consequently, this receptor transports IgG
within and across cellular barriers for a diverse array of cell types (Antohe
et al., 2001; Claypool et al., 2004; Dickinson et al., 1999; Firan et al., 2001;
Haymann et al., 2000; McCarthy et al., 2000; Spiekermann et al., 2002;
Yoshida et al., 2004). More recently, FcRn has also been shown to control
albumin levels (Andersen et al., 2006; Chaudhury et al., 2003). How this
receptor behaves at the subcellular level of intracellular trafficking, and
what controls its intracellular routing are of fundamental relevance to
understanding its function. In addition, given the potential for modulating
IgG trafficking pathways and behavior in vivo, the earlier report of engineer-
ing of antibodies to increase their half-life in mice (Ghetie et al., 1997) has
expanded into an area of intense interest in the biopharma industry
(Dall’Acqua et al., 2006b; Hinton et al., 2004, 2006; Shields et al., 2001).

In the current review, we will describe the multiple functions of FcRn
and the intracellular trafficking pathways of this receptor and its ligand.
The modulation of FcRn–ligand interactions for the development of
therapeutics will also be discussed, with a particular focus on how the
complexity of the pH dependence of FcRn–IgG interactions and
cross-species differences in behavior impact this area.
2. FcRn: A HISTORICAL PERSPECTIVE

Neonatal rodents acquire the major portion of their maternal IgG from
mothers’ milk during the suckling period (Brambell, 1970). An early
model for the trafficking of IgG across the neonatal gut was originally
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proposed in the absence of specific knowledge of the receptor involved
(Brambell, 1970): IgGs are taken into enterocytes at the apical surface by
receptor-mediated uptake at the acidic pH in the small intestine. These
IgGs are then transcytosed across the cells and released at the basolateral
membrane which is at near neutral pH. A central feature of this early
model was that the unidentified receptor, which was later shown to be
FcRn (Rodewald and Abrahamson, 1982; Wallace and Rees, 1980), is a
salvage receptor which binds and transports IgG in intact form across
cells.

FcRnwas subsequently isolated from rodent gut as a heterodimer com-
prising 12 kDa and 40–45 kDa proteins (Rodewald and Kraehenbuhl,
1984; Simister and Rees, 1985). Significantly, in these early studies, the
FcRn–IgG interaction was shown to be highly pH dependent with rela-
tively tight binding at acidic pH (6) and very weak, if not negligible,
binding at near neutral pH (Rodewald and Kraehenbuhl, 1984; Simister
and Rees, 1985). The cloning of the gene for rat FcRn in 1989 unexpectedly
revealed that this receptor comprises an a-chain that is homologous to
MHC Class I a-chains, and the 12 kDa component is b2-microglobulin
(b2m) (Simister and Mostov, 1989). This was followed by the isolation of
orthologous FcRn a-chains from mouse and man (Ahouse et al., 1993;
Kandil et al., 1995; Story et al., 1994), and subsequently from multiple
other species (Adamski et al., 2000; Kacskovics et al., 2000, 2006; Mayer
et al., 2002; Schnulle and Hurley, 2003). Although FcRn orthologs share
some similarities, there are cross-species differences at the level of bind-
ing specificity that can have functional effects (Ober et al., 2001; Vaccaro
et al., 2006), in addition to variations in intracellular trafficking and
subcellular distribution (Claypool et al., 2002; Kuo et al., 2009) (discussed
further in Sections 5.5 and 8).
3. FcRn IS A MULTITASKING RECEPTOR

3.1. A role for FcRn in regulating IgG levels

At the time of the isolation of the gene encoding rat FcRn (Simister and
Mostov, 1989), the primary function of this receptor was believed to be to
deliver maternal IgG to offspring. Although Brambell and colleagues
proposed in the 1960s that the cellular processes involved in transporting
maternal IgG frommother to young and in regulating IgG levels through-
out life might be related (Brambell, 1970; Brambell et al., 1964), data to
provide direct support for the involvement of FcRn in both of these
processes were absent. However, in the mid-1990s, several observations
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led to the conclusion that FcRn exploits its capability to transport IgG
within and across cells to regulate IgG levels throughout adult life. First,
we demonstrated that the same IgG residues (on both CH2 and CH3
domains of the Fc region) are involved in controlling the in vivo half-life
of Fc fragments and their transport across the neonatal gut (Kim et al.,
1994a,b). Second, we observed that mice deficient in b2m that do not
express functional FcRn are characterized by abnormally rapid clearance
rates of IgG/Fc fragments (Ghetie et al., 1996, see also Israel et al., 1996;
Junghans and Anderson, 1996). Third, FcRn expression is not restricted to
the gestational or neonatal periods, but can be detected in multiple
tissues/cell types throughout adult life (Ghetie et al., 1996). Fourth, an
engineered Fc fragment with higher affinity for FcRn at pH 6, but with
retention of very low affinity at near neutral pH, was shown to have
increased in vivo persistence in mice (Ghetie et al., 1997).

The ubiquitous nature of FcRn expression leads to the question as to
which cell types are most relevant for the regulation of IgG levels in vivo?
Distribution studies of IgGs with different binding properties for FcRn
indicated that the (micro)vasculature, primarily in skin and muscle with
lesser amounts in liver and adipose tissue, contributes to IgG homeostasis
(Borvak et al., 1998), consistent with the earlier suggestion that this regu-
lation occurs at diffuse sites throughout the body (Waldmann and
Strober, 1969). More recent studies involving bone marrow transfers
indicate that FcRn expression in hematopoietic cells such as dendritic
cells, monocytes, and macrophages also contributes to the regulation of
IgG levels (Akilesh et al., 2007; Qiao et al., 2008). To delineate the role of
specific cell types in the maintenance of IgG concentrations in vivo, we
have generated a mouse strain in which FcRn can be conditionally deleted
(Perez-Montoyo et al., 2009). This strain harbors FcRn alleles (exons 5–7)
flanked by loxP sites, and in combination with Tie2-Cre mice which
express Cre recombinase under the control of the Tie2 promoter in endo-
thelial and hematopoietic cells (Kisanuki et al., 2001) can be used to
analyze the impact of site-specific deletion of FcRn in these cells. Analyses
of the clearance rates of IgGs in these mice demonstrate that endothelial
and hematopoietic cells are the primary sites responsible for
FcRn-mediated homeostasis of IgG (Perez-Montoyo et al., 2009).

Although targeted deletion of human FcRn is clearly not possible, the
analysis of archived human blood samples from patients with a defi-
ciency in b2m expression has provided a naturally occurring human
knockout for FcRn (Wani et al., 2006). These patients have abnormally
low IgG levels. Taken together with correlations between FcRn-binding
properties of an IgG and in vivo persistence in nonhuman primates (dis-
cussed further in Section 7.2), the available data therefore indicate that
FcRn is also a major contributor to IgG homeostasis in humans.
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3.2. FcRn-mediated transport of IgG across cellular barriers:
Opportunities for drug delivery

In addition to the role of FcRn in transporting maternal IgG across the
neonatal intestine (Rodewald and Abrahamson, 1982; Wallace and Rees,
1980), the central function of FcRn in transporting IgG across both the
mouse yolk sac and human placenta during gestation has been demon-
strated (Firan et al., 2001; Medesan et al., 1996). More recently, it has
become apparent that FcRn serves to deliver IgGs across cellular barriers
throughout life. Extensive analyses of FcRn-mediated trafficking of IgGs
and IgG–antigen complexes across epithelial cells in cell lines and in adult
mice/nonhuman primates provide insight into these transport processes
(Bitonti and Dumont, 2006; Bitonti et al., 2004; Dickinson et al., 1999;
Haymann et al., 2000; Kobayashi et al., 2002; Sakagami et al., 2006;
Spiekermann et al., 2002; Yoshida et al., 2004). For example, in transgenic
mice that are engineered to express mouse FcRn in adult intestinal epi-
thelium, FcRn can transport antigen bound to IgG from the intestinal
lumen into the lamina propria to elicit CD4þ T cell responses against
bacteria (Yoshida et al., 2006). Thus, FcRn can function as a scavenger of
luminal antigens in the gut, indicating that it can play an important role in
mucosal immunity.

Trans-epithelial transfer offers opportunities for the delivery of thera-
peutic proteins, and consistent with this, erythropoeitin–Fc fusions can be
transferred in an FcRn-dependent mode across the lung epithelium of
adult mice and nonhuman primates (Bitonti et al., 2004; Spiekermann
et al., 2002). Interestingly, a ‘‘monomeric’’ Epo–Fc fusion comprising a
single Epo molecule connected to one arm of the dimeric Fc molecule was
transported more efficiently than an Epo–Fc dimer containing two Epo
molecules per Fc (Bitonti et al., 2004). This enhanced transport was shown
to be due in part to an increased affinity for binding of the monomer to
FcRn, but in addition, size reduction and/or a change in charge might be
contributing properties (Bitonti and Dumont, 2006). Surfaces such as lung
epithelium that are bathed in mucus may be particularly susceptible to
such effects, indicating that it will be advantageous to design molecules
with optimized properties such as charge, size, and minimization of steric
hindrance on FcRn binding for a given delivery route. For lung delivery,
high potency of the biologic is also important since the volume of the
vehicle is, by necessity, relatively low (Wang et al., 2008). Although
transport across the intestine avoids this potential limitation, a major
challenge is to generate recombinant proteins that are resistant to the
hostile proteolytic and acidic environment of this locale. The targeting
of FcRn with Fc-fusion proteins to deliver therapeutics in utero is also
attractive and promise for this approach in a mouse model of the lyso-
somal storage disease, mucopolysaccharidosis, has been demonstrated
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(Grubb et al., 2008). Collectively, these studies indicate that the use of
FcRn as a drug delivery vehicle has multiple possible applications.
3.3. FcRn can deliver antigen for presentation

The earlier observation that FcRn is expressed in monocyte/macrophages
and dendritic cells led to the suggestion that this receptor might play a
role in antigen presentation (Zhu et al., 2001). More recent analyses have
shown that FcRn can direct immune complexes (ICs) into lysosomes in
dendritic cells, which in turn can enhance antigen presentation (Qiao
et al., 2008). Although FcRn was originally shown not to be expressed in
B cell lines and primary B cells (Akilesh et al., 2007; Ghetie et al., 1996; Zhu
et al., 2001), this receptor is present in splenic B cells inmice (Mi et al., 2008;
Perez-Montoyo et al., 2009). This extends the expression of FcRn to all
major subsets of professional antigen presenting cells (APCs). Taken
together with the report that invariant chain, for which the expression is
generally restricted to APCs, can associate with FcRn and direct it into
lysosomes (Ye et al., 2008), this suggests that the intracellular trafficking
pathways in these cells can be modulated to optimize antigen presenta-
tion (discussed further in Section 5.7). Interestingly, phagocytosis of
opsonized bacteria by human neutrophils is also increased by FcRn
expression, leading to the suggestion that the nascent phagocytic cup is
acidified to facilitate FcRn–IgG interactions during uptake (Vidarsson
et al., 2006). This might provide an explanation for the higher phagocytic
activity of monocytes relative to NK cells that do not express FcRn. Taken
together, the data therefore indicate that FcRn cannot only enhance
phagocytic uptake, but can also redirect antigen complexed with antibo-
dies into degradative compartments that are associated with the loading
of antigenic peptides onto MHC Class II molecules within cells.
3.4. Possible functions of FcRn in specialized cell types

FcRn expression in highly specialized cells such as podocytes in the
kidney plays an important role in removing IgG from the glomerular
basement membrane (Akilesh et al., 2008). Indeed, blocking of FcRn in
mice leads to serum-induced nephritis, suggesting that impaired function
of this clearance process could predispose toward glomerular disease.
This raises questions concerning whether FcRn (dys)function might
contribute to the pathology of diseases such as systemic lupus
erythematosus, in which IC-mediated kidney damage is common.

FcRn expression has also been demonstrated in multiple ocular tis-
sues, including the cornea, retina, conjunctiva, and the blood–ocular
barrier (Kim et al., 2008). The function of FcRn at these sites is currently
unknown, but may be related to the immune-privileged status of the eye.
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Similarly, FcRn is expressed at the blood–brain barrier (BBB) in both the
brain microvasculature and the choroid plexus epithelium (Schlachetzki
et al., 2002) where it might be important for maintaining low levels of
potentially inflammatory antibodies in the CNS. Consistent with this,
several studies demonstrate that IgG is transported by FcRn in the
brain-to-blood direction (Deane et al., 2005; Zhang and Pardridge, 2001).
This directional transport has specific relevance to the clearance of
amyloid b peptide (Ab) from the brain by Ab-specific IgG, which results
in a reduction of symptoms of Alzheimer’s disease in a mouse model
(Deane et al., 2005). Such studies indicate that it could be fruitful to explore
this pathway further for Ab-directed immunotherapy. However, others
have reported that the brain-to-blood exposure ratios for IgG are the same
in both wild-type and FcRn-deficient mice (Wang et al., 2008), indicating
that the role of FcRn at this barrier requires further investigation.
4. THE MOLECULAR NATURE OF FcRn–IgG
INTERACTIONS

4.1. The interaction site for FcRn on IgG

The molecular details of FcRn–IgG interactions have been extensively
analyzed. For example, site-directed mutagenesis of recombinant IgG or
Fc fragments has been used to identify residues that are involved in the
mouse FcRn–IgG interaction for both human and mouse IgG1 (Kim et al.,
1994b, 1999; Medesan et al., 1997). These studies have involved a combi-
nation of in vitro binding analyses and in vivo assays in mice, and demon-
strate that His310, Ile253, and His435 of IgG play a central role in these
interactions (Fig. 4.1). These same residues are involved in the human
FcRn–human IgG1 (Firan et al., 2001; Shields et al., 2001) and rat FcRn–IgG
(mouse, rat or human) interactions (Martin et al., 2001; Raghavan et al.,
1995). Residue 436 (His in mouse IgG1, Tyr in human IgG1) plays a minor
role in the binding of IgG to FcRn (Medesan et al., 1997; Shields et al.,
2001). The high-resolution X-ray crystallographic structure of rat FcRn
complexed with rat IgG2a clearly shows the direct involvement of resi-
dues 253, 310, 435, and 436 of IgG in binding (Martin et al., 2001). These
four residues are relatively well conserved across species and are located
at the CH2–CH3 domain interface of IgG (Deisenhofer, 1981) (Fig. 4.1).
The role of the highly conserved His433 of IgG in the interaction across
species is more uncertain: in some systems it has been proposed to play a
role (Martin et al., 2001; Raghavan et al., 1995; Shields et al., 2001), whereas
in others not (Kim et al., 1999; Medesan et al., 1997). Nevertheless, the
involvement of several histidines on IgG in complex formation that inter-
act with acidic residues on FcRn provides an explanation for the marked
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FIGURE 4.1 Structure (a-carbon trace) of the Fc region of human IgG1 (Deisenhofer,

1981) with the location of the key residues that are involved in binding to mouse or

human FcRn indicated. The same residues of mouse IgG1 are also involved in FcRn

binding, except that Tyr436 is replaced by histidine. The structure was drawn using

Rasmol (courtesy of Roger Sayle, Bioinformatics Research Institute, University of

Edinburgh).
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pH dependence of FcRn–IgG binding, with binding at pH 6–6.5 which for
most IgGs becomes progressively weaker as pH 7.4 is approached (Popov
et al., 1996; Raghavan et al., 1995; Rodewald, 1976; Wallace and Rees,
1980). This pH dependence is essential for FcRn to function as an IgG
transporter (see Section 7).
4.2. The interaction site for IgG on FcRn

Structure–function studies in the Bjorkman laboratory have identified
FcRn residues that are involved in the rat FcRn–rat IgG2a interaction
(Vaughn et al., 1997), and the results of these analyses have been con-
firmed by the solution of the high-resolution structure of this complex
(Martin et al., 2001). To date, structural studies of human FcRn in complex
with IgG have not been reported. Although the X-ray crystallographic
structure of human FcRn in the absence of ligand indicates that it is
structurally similar to rat FcRn, there are also some differences (West
and Bjorkman, 2000). Rat FcRn residues that interact with IgG(2a) include
Ile1 of b2m and Glu117, Glu118, Glu132, Trp133, Glu135, and Asp137 of
the FcRn a-chain (Fig. 4.2). These amino acids are generally well
conserved across species, although some notable exceptions exist. For
example, Asp or Glu137 of rodent FcRn is replaced by leucine in human
FcRn (Ahouse et al., 1993; Simister and Mostov, 1989; Story et al., 1994)
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FIGURE 4.2 Structure (a-carbon trace) of rat FcRn with the location of the key residues
that are involved in binding to rat IgG2a indicated (Martin et al., 2001). The structure

was drawn using Rasmol (courtesy of Roger Sayle, Bioinformatics Research Institute,

University of Edinburgh).
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(note that the numbering used throughout this review for human FcRn,
which is two residues shorter than mouse/rat FcRn, ignores this two
residue deletion and is based on the homology alignment of human and
rodent FcRn). This sequence variation accounts, in part at least, for
cross-species differences in binding specificity between rodent and
human FcRn (Zhou et al., 2003, 2005) (discussed in Section 8).

The ectodomains of FcRn also bear one or more potential glycosylation
sites, raising the question as to whether this might contribute to IgG
binding. It has been demonstrated that this is the case for rat FcRn, since
carbohydrate attached to an N-linked glycosylation site at residue 128 of
the receptor makes contacts with Val348, His433, Asn434, and Lys439 of
rat IgG2a (Martin et al., 2001). However, the relevance of an analogous
interaction for the mouse FcRn–mouse IgG1 or mouse FcRn–human IgG1
complex is made unlikely by our observation that mutation of His433 or
Asn434 individually to alanine in IgG1-derived Fc fragments does not
affect activity in mouse FcRn-mediated functions (Kim et al., 1999;
Medesan et al., 1997). Furthermore, human FcRn functions effectively in
binding to IgG without a potential glycosylation site at residue 128,
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suggesting that there may be differences at this level between rat and
human FcRn. It is, however, interesting to note that differences in glyco-
sylation between human and rat FcRn lead to variations in intracellular
trafficking (Kuo et al., 2009) and this is discussed further in Section 5.5.
4.3. The stoichiometry of the FcRn–IgG interaction

The presence of two possible binding sites for FcRn on IgG (or Fc) raises
questions concerning the stoichiometry of the interaction. By generating a
‘‘hybrid’’ Fc comprising one CH2–CH3 polypeptide with a defective FcRn
interaction site complexed with a wild-type CH2–CH3 polypeptide, two
functional sites per Fc (mouse IgG1- or rat IgG2a-derived) have been
shown to be essential for full activity in vivo in mice (Kim et al., 1994b,c)
and in vitro transport across rat FcRn-transfected epithelial cells (Tesar
et al., 2006). On the other hand, interaction analyses with soluble, recom-
binant FcRn demonstrated that the stoichiometry can be 2 FcRn:1 IgG or
1:1 (Martin and Bjorkman, 1999; Popov et al., 1996; Sanchez et al., 1999;
Schuck et al., 1999). This apparent discrepancy can be resolved by the
demonstration that two possible binding sites on IgG (or Fc) are not
equivalent (Sanchez et al., 1999; Schuck et al., 1999; Weng et al., 1998),
consistent with the concept that binding of FcRn to one site may reduce
the affinity for the second site, that is, negative cooperativity (Ghetie and
Ward, 1997). Whether this asymmetry is due to steric effects and/or some
longer range conformational changes at the CH2–CH3 domain junction is
currently unknown. However, the segmental flexibility of the IgG
molecule (Nezlin, 1990; Oi et al., 1978), together with the observation
that a hinge-less Fc has lower activity in FcRn-mediated functions (Kim
et al., 1995), would be consistent with conformational alterations.
5. THE INTRACELLULAR TRAFFICKING OF FcRn

5.1. A model for FcRn trafficking

The pH dependence of FcRn interactions with the majority of naturally
occurring IgGs is central to its function (Popov et al., 1996; Raghavan et al.,
1995; Rodewald and Kraehenbuhl, 1984; Simister and Rees, 1985; Zhou
et al., 2005). Earlier models for how FcRn traffics within cells suggested
that in most cell types, IgG is taken up primarily by fluid-phase processes
(Brambell et al., 1964; Ghetie and Ward, 1997), since the pH at most cell
surfaces is not favorable for binding. However, it is possible that for cells
such as those of epithelial origin, for which Naþ/Hþ exchanger activity
results in acidification of the local environment (Hattori et al., 2001), or in
the acidic environments of tumors or inflammatory sites (Edlow and
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Sheldon, 1971; Gerweck and Seetharaman, 1996; Tannock and Rotin, 1989;
Ward and Steigbigel, 1978), significant levels of uptake by receptor-
mediated processes can also occur. Whatever the route of uptake, entry
of IgG into cells is followed by accumulation in early endosomes for
which the acidic pH is permissive for binding (Fig. 4.3). If binding of the
IgG to FcRn occurs, then the IgG is recycled or transcytosed (Ober et al.,
2004b). By contrast, IgGs that do not bind to FcRn enter late endosomes
and are subsequently delivered to lysosomes (Ober et al., 2004b). The
predictions of this model are consistent with experimental observations:
first, IgGs that have reduced affinity for binding to FcRn have shorter
in vivo half-lives and are transported across cellular barriers less effec-
tively (Firan et al., 2001; Kim et al., 1999; Medesan et al., 1997; Spiekermann
et al., 2002). Second, reduced expression of FcRn within cells results in
increased degradation of IgG (Ghetie et al., 1996; Israel et al., 1996;
Junghans and Anderson, 1996; Roopenian et al., 2003). Third, engineered
IgGs that bind to FcRnwith increased affinity at near neutral pH are taken
into cells by receptor-mediated uptake and not released efficiently at the
cell surface following recycling or transcytosis (Vaccaro et al., 2005, 2006).
- FcRn

- IgG

Binding
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~pH 6.0

Release
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FIGURE 4.3 Schematic representation of FcRn-mediated recycling of IgG in a polarized

cell such as an endothelial cell. IgGs are taken into the cell by fluid phase and enter

early endosomes. The pH of the early endosome is permissive for FcRn binding, and

binding of the IgG to FcRn results in recycling (or transcytosis, not shown) and salvage

from lysosomal degradation. Conversely, unbound IgG enters the lysosome and is

degraded.
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5.2. Endosomal sorting of IgGs within endothelial cells

Live-cell-fluorescence imaging has been used to analyze several facets of
FcRn-mediated trafficking of IgGs in human endothelial cells (Ober et al.,
2004a,b; Prabhat et al., 2007; Ram et al., 2008; Gan et al., 2009). For example,
the intracellular trafficking of fluorescently labeled IgGs that have differ-
ent binding properties for FcRn have been compared to address the
question as to where and how IgGs are sorted within cells. These IgGs
include wild-type human IgG1 and a mutated derivative (H435A, His435
to Ala) that does not bind detectably to human FcRn (Firan et al., 2001;
Ober et al., 2004b). Treatment of human FcRn–GFP-transfected endothe-
lial cells with these two IgGs in fluorescently labeled form, followed by
live-cell imaging, has led to a dynamic picture as to how IgGs with
distinct binding properties for FcRn are sorted within cells. The wild-
type IgG1 leaves sorting endosomes in FcRn-positive tubules and vesicles
that are also involved in transferrin recycling (Ober et al., 2004b) (Fig. 4.4).
Recently, tubulovesicular, FcRnþ transport containers (TCs) have been
visualized using electron tomography of rat jejunal sections by Bjorkman
and colleagues (He et al., 2008) that are most likely analogous to the TCs
A hFcRn (green), hIgG1 (red) hFcRn (green), hIgG1 (red)

hFcRn (green), H435A (red)hFcRn (green), H435A (red)
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FIGURE 4.4 Individual frames from live-cell imaging of sorting endosomes in human

FcRn (hFcRn)–GFP-transfected endothelial (HMEC-1) cells pulse-chased with (A, B)

Alexa 546-labeled human IgG1 (hIgG1) or (C, D) Alexa 546-labeled H435A (His435 to Ala)

mutant that binds with immeasurably low affinity to human FcRn (Firan et al., 2001). Cells

were pulsed with labeled IgG and subsequently chased in medium at 37 �C. Images of

live cells were acquired and processed as described in Ober et al. (2004b). Arrowheads

indicate tubules (FcRnþIgGþ for A, B, FcRnþ only for C, D) and in (A) the tubule separates

from the endosome at � 20 s. The first frame for each dataset is arbitrarily labeled 0 s,

although the frames shown were taken at different times after the start of the chase

period. Bar¼ 1 mm.
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observed in transfected endothelial cells. By contrast with wild-type IgG1,
in endothelial cells the H435A mutant persists in the ‘‘vacuole’’ of sorting
endosomes while FcRn-positive tubules and vesicles segregate from these
compartments to enter the recycling/transcytotic pathway (Ober et al.,
2004b). Ultimately, the H435A mutant can be detected in the lysosomes of
these cells, through delivery processes that most likely involve different
types of fusion events of late endosomes and lysosomes (Gan et al., 2009;
Luzio et al., 2003). Thus, the intracellular trafficking behavior of the two
IgGs correlates with their in vivo properties: the IgG1 molecule has a long
persistence and is transported across cellular barriers, whereas the
half-life of the H435A mutant is short and its delivery across cells is at
background levels (Firan et al., 2001; Kim et al., 1999).
5.3. Exocytic processes that result in IgG release
from endothelial cells

The question as to how IgG molecules are released from cells during
exocytosis has also been addressed using total internal fluorescence
microscopy (TIRFM) combined with single molecule imaging in live
cells (Ober et al., 2004a). It is interesting to note that in most cell types
the steady state, cell-surface expression levels of FcRn are low (Antohe
et al., 2001; Dickinson et al., 1999; Ghetie et al., 1996; Kristoffersen and
Matre, 1996; Ober et al., 2004b; Roberts et al., 1990). This raises the question
as to whether FcRn ‘‘cohorts’’ bound IgG to the cell surface during
exocytosis or whether bifurcation of FcRn and ligand occurs prior to
fusion of exocytic compartments with the plasma membrane. Our live-
cell imaging data demonstrated that FcRn is delivered to the plasma
membrane during exocytic events (Ober et al., 2004a). Using electron
tomographic analyses, clathrin has been shown to be associated with
both exo- and endocytic processes involving FcRn (He et al., 2008).
This association provides a molecular mechanism by which FcRn can be
rapidly retrieved following exocytic fusion, which in turn results in low
steady-state levels on the plasma membrane.

In addition to the classic type of full fusion exocytic event, using
TIRFM, we observed processes in which IgG was released at the plasma
membrane of endothelial cells over relatively long time periods (up to
several minutes) in bursts of release, in a process that we named pro-
longed release (Ober et al., 2004a). Multiple other types of exocytic events
were also visualized, suggesting that exocytosis can occur via different
processes that fall on a continuum ranging from full fusion to prolonged
release. The molecular components that determine the type of exocytic
event are currently unknown, but most likely relate to the local concen-
trations of fusion and fission effectors at the exocytic sites. Importantly,
different types of exocytic processes can be observed for an individual cell
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(Ober et al., 2004a), indicating that these events are not predetermined by
the physiological state of the cell. The biological significance of these
exocytic pathways remains to be determined, and will need to be pre-
ceded by an analysis of the molecular components that regulate, for
example, prolonged release versus full fusion.

The implementation of single molecule analyses of FcRn and IgG
during exocytosis in endothelial cells has also allowed the behavior of
individual IgG and FcRn molecules, rather than bulk populations, to be
studied (Ober et al., 2004a). This led to the observation of retrograde
movement of IgG and FcRn molecules back to the exocytic site following
exocytosis, generating insight into the molecular nature of these
processes.
5.4. Imaging FcRn trafficking in three dimensions using
multifocal plane microscopy

The observation of multiple different types of exocytic events using
TIRFM at the plasma membrane (Ober et al., 2004a) leads to the question
as to which intracellular trafficking processes precede different types of
release mechanisms? To address this and other questions, we have
developed a multifocal plane microscopy (‘‘MUM’’) set up that allows
simultaneous visualization of multiple planes within the cell combined
with TIRFM imaging at the plasma membrane (Prabhat et al., 2004, 2007).
This approach has to date given insight into the intracellular events that
precede exocytosis: for example, the recycling tubulovesicular TCs that
leave sorting endosomes can be categorized into pathways of direct and
indirect recycling processes. In the most direct type of recycling, tubules
extend from sorting endosomes and undergo exocytosis while remaining
connected (Prabhat et al., 2007). By contrast, for less direct pathways, TCs
accumulate in ‘‘holding zones’’ in proximity to the plasma membrane
prior to exocytosis.

More recently, we have also used MUM to visualize endocytic events
involving FcRn and its IgG ligand (Ram et al., 2008). In these analyses, we
have utilized an engineered IgG–FcRn pair of high affinity to enable
receptor-mediated uptake at near neutral pH (Vaccaro et al., 2005; Zhou
et al., 2005). Reminiscent of the analyses of exocytic processes, these
studies demonstrate that endocytic processes can be broadly categorized
into two classes: ‘‘direct’’ in which the endocytic TC moves rapidly
toward a sorting endosome and fuses and ‘‘indirect’’ in which more
circuitous itineraries are taken within the cell prior to endosomal fusion.
Collectively, these studies of endo- and exocytosis have implications for
understanding the dynamics of FcRn-mediated trafficking and IgG
homeostasis, and may relate to the fast and slow recycling processes
that have been described for transferrin and its receptor (Sheff et al., 1999).
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5.5. FcRn trafficking in polarized epithelial cells

In addition to studies of endothelial cells, much information concerning
the intracellular trafficking of FcRn has been gleaned from analyses of
Madin–Darby canine kidney (MDCK) cells transfected with human or rat
FcRn (Claypool et al., 2004; Tesar et al., 2006), or with rat-derived inner
medullary collecting duct (IMCD) cells transfected with rat FcRn
(McCarthy et al., 2000). Using these cells as polarized monolayers, the
polarity of subcellular trafficking events such as transcytosis and recy-
cling, together with the molecular mechanisms, have been investigated.
IMCD cells express rat b2m, whereas it is essential to cotransfect human/
rat b2m into (canine) MDCK cells to analyze the trafficking of human/rat
FcRn in this heterologous system (Claypool et al., 2002; Praetor and
Hunziker, 2002; Tesar et al., 2006; Zhu et al., 2002). Comparison of the
distribution of human and rat FcRn in transfected, polarized cells has
shown that the distribution of the human receptor is strongly polarized
toward the basolateral surface, whereas this bias is reversed for rat FcRn
(Claypool et al., 2004; McCarthy et al., 2000). The distribution of human
FcRn is also biased toward the basolateral surface of untransfected Caco-
2 and T84 cells (both intestinal epithelial cells), indicating that its
basolateral bias in MDCK cells is not due to overexpression and/or
transfection (Claypool et al., 2004). Indeed, the cross-species difference
in basolateral bias has recently been demonstrated to be due to the
presence of four potential glycosylation sites in the ectodomains of rat
(mouse) FcRn, whereas human FcRn has only one such site (Kuo et al.,
2009). Engineering of the three additional glycosylation sites of mouse/
rat FcRn into human FcRn results in increased apical localization in
transfected MDCK cells (Kuo et al., 2009), consistent with earlier analyses
in which carbohydrate was shown to function as an apical targeting signal
(Scheiffele et al., 1995). The relative levels of apical and basolateral locali-
zation of FcRn impact the directionality of transcytosis. Specifically,
although bidirectional transcytosis of FcRn in both transfected IMCD
and MDCK cells occurs, for human FcRn more basolateral to apical
transcytosis is observed relative to apical to basolateral transport,
whereas this is reversed for rat FcRn (Claypool et al., 2004; Kim et al.,
2004; McCarthy et al., 2000; Tesar et al., 2006). Consistent with the redistri-
bution of a ‘‘rodentized’’ variant of human FcRn with four potential
glycosylation sites to the apical surface, this FcRn mutant shows the
directional bias observed for rodent FcRn, that is, preferential transcytosis
of IgG in the apical to basolateral direction (Kuo et al., 2009). However, in
the human trophoblast cell line, BeWo, greater transcytosis by endoge-
nous FcRn in the apical to basolateral direction occurs (Leitner et al., 2006),
suggesting that there may be fundamental differences in the regulation of
transcytosis between different cell types. In the case of BeWo cells, this
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directionality would be consistent with the role of FcRn in delivering
maternal IgG across the placenta (Firan et al., 2001; Story et al., 1994).
5.6. Molecular determinants and effectors of FcRn trafficking

The cytosolic tail motifs of rat FcRn that regulate endocytosis and
basolateral targeting have been identified by analyses of mutated FcRn
variants in transfected IMCD cells (Newton et al., 2005; Wernick et al.,
2005; Wu and Simister, 2001). Both tryptophan (W311; with tryptophan
replacing the more common tyrosine in the YXXtheta motif) and dileucine
(Leu322Leu323) motifs have been shown to play partially redundant roles
in endocytosis (Wu and Simister, 2001). Biochemical studies have shown
that the tryptophan motif directly interacts with the m subunit of AP-2
(Wernick et al., 2005). Taken together with the knowledge that dileucine
motifs interact with s and g subunits of the adaptor protein AP-2, this has
led to the suggestion that two subunits of AP-2 can bind simultaneously
to the two cytosolic tail motifs (Wernick et al., 2005). Both tryptophan and
dileucine motifs also play a role in basolateral targeting of rat FcRn
(Newton et al., 2005). The tryptophan and dileucine motifs are conserved
across species that range from camels to humans (Fig. 4.5), suggesting that
additional differences such as variations in glycosylation patterns (Kuo
et al., 2009) account for cross-species variability in trafficking. However, it
is interesting to note that some species (e.g., possum, cows, sheep,
dromedaries, pigs, and dogs) have cytosolic tails that are 10 residues
shorter than those of other species (e.g., humans, macaques, orangutans,
Human RRMRSGLPAPWISLR--GDDTGVLLPTPGEAQDADLKDVNVIPATA
Orangutan RRMRSGLPAPWISLR--GDDTGALLPTPGEAQDADSKDVNVIPATA
Macaque RRMRSGLPAPWISLR--GDDTGSLLPTPGEAQDADSKDINVIPATA
Ovine RRMRKGLPASWISFR--GEDVGALLPTPGLSKDGES----------
Bovine RRMRKGLPAPWISFR--GEDVGALLPTPGLSKDGES----------
Dromedary RR-RKGLPAPWIAFR--GDDIGALLPTPGLSKDAES----------
Swine RRMRKGLPAPWISFH--GDDVGALLPTPDLAKDAES----------
Canine RRMRKGLPAPWMSLR--GDDVGALLPTPGVPKDADS----------
Rat NRMRSGLPAPWLSLS--GDDSGDLLPGGNLPPEAEPQGVNAFPATS
Mouse GRMRSGLPAPWLSLS--GDDSGDLLPGGNLPPEAEPQGANAFPATS
Possum SRKRGARPAPWIFRRRAGDDVGSLLSAPASAQDSSP----------
Rabbit RRRR-GLPAPWVFLR--GDDIRTLLP-----QDEGPQDVSAFPATA
Consensus -R-R---PA-W------G-D---LL---------------------

FIGURE 4.5 Cytosolic tail sequences of FcRn from different species (Adamski et al.,

2000; Ahouse et al., 1993; Kacskovics et al., 2000, 2006; Kandil et al., 1995; Mayer et al.,

2002; Schnulle and Hurley, 2003; Simister and Mostov, 1989; Story et al., 1994). Identity is

indicated by red, and the first residue of the sequence corresponds to residue 301 of

mouse/rat FcRn. The consensus sequence is also shown, with the tryptophan (W311) and

dileucine (L322, L323) motifs that are important for intracellular trafficking indicated

in blue.
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rats, and mice) (Fig. 4.5). In addition, the cytosolic tail of possum has a
two-residue insertion, whereas rabbit has a five amino acid deletion
(Fig. 4.5). Whether these differences are functionally relevant remains to
be tested.

Recent studies have identified a motif in the cytosolic tail of human
FcRn encompassing Arg301, Arg302 (Fig. 4.5) that binds to calmodulin
(Dickinson et al., 2008). Ablation of this interaction by mutagenesis of
FcRn results in reduced transcytosis and decreased stability of this recep-
tor (Dickinson et al., 2008). Since calmodulin binding to FcRn would mask
a putative amphipathic a-helix that in other proteins can insert into the
membrane and induce or sense curvature (Ford et al., 2002; Lee et al., 2005;
McMahon and Gallop, 2005), this might provide a mechanism through
which calmodulin can affect endosomal sorting. Together with the knowl-
edge that calmodulin function is highly regulatable, this could constitute
an important pathway for the control of FcRn trafficking.

In the context of possible regulators of the intracellular pathways
taken by FcRn, several studies indicate that Rab proteins play a role
(Tzaban et al., 2009; Ward et al., 2005). These small Ras-like GTPases are
known to play regulatory functions in endocytic and exocytic trafficking
(Miaczynska and Zerial, 2002; Somsel and Wandinger-Ness, 2000). The
activity of this class of GTPases is controlled by GTP–GDP exchange
cycles, and such proteins exist in either membrane-bound or cytosolic
forms. In combination with proteins such as soluble NSF attachment
protein receptors (SNAREs) that usually exist as transmembrane recep-
tors ( Jahn et al., 2003), Rabs are key regulators of fusion events between
different membranous compartments (Grosshans et al., 2006; Miaczynska
and Zerial, 2002; Somsel and Wandinger-Ness, 2000). Due to the pivotal
role that Rabs play in intracellular trafficking, it is therefore of interest to
understand which of these proteins are associated with FcRn.

Using fluorescence imaging, we observed that Rab4(a), Rab5(a), and
Rab11(a) are all present on FcRnþ endosomes (Ward et al., 2005). Rab4 and
Rab11 are known to be involved in recycling cargo from sorting endo-
somes to the plasma membrane (Daro et al., 1996; Green et al., 1997;
Sönnichsen et al., 2000; Ullrich et al., 1996; van der Sluijs et al., 1992),
whereas Rab5 is an early endosomal marker (Christoforidis et al., 1999;
Simonsen et al., 1998). Although FcRn can be sorted into tubulovesicular
TCs in Rab4þRab11þ or Rab11þ compartments, only Rab11 but not Rab4
is associated with FcRn during exocytic events at the plasma membrane
(Ward et al., 2005). Rab4 depletion from these TCs occurs via the forma-
tion of discrete Rab4þ domains that can subsequently separate. The
distribution of Rab5, Rab11 and the late endosomal markers Rab7 and
Rab 9 (Bucci et al., 2000; Soldati et al., 1995) with tubulovesicular TCs that
transport IgG/Fc in the neonatal rodent gut has also been analyzed using
electron tomography (He et al., 2008). These studies demonstrate that
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compartments on the endolysosomal pathway cannot be segregated into
groups based on their Rab associations. Rather, there is overlap between
the Rabs that are associated with different compartments, consistent
with models of ‘‘Rab conversion’’ in which Rabs are gradually lost
and replaced by different Rab proteins as endosomes mature (Rink
et al., 2005).

Recently, we have analyzed the intracellular trafficking pathways,
including Rab GTPases, involved in the constitutive degradation of
FcRn in endothelial cells (Gan et al., 2009). Transfer of FcRn from late
endosomes to lysosomes occurs via kiss-and-linger-like processes (Bright
et al., 2005; Gandhi and Stevens, 2003; Ryan, 2003; Storrie and Desjardins,
1996) that frequently involve tubular extensions, whereas full fusion of
late endosomes and lysosomes is rarely observed (Gan et al., 2009). Unex-
pectedly, in our studies, the ‘‘early endosomal’’ marker Rab5 persists on
the limiting membrane of late endosomes until a relatively late stage in
maturation. This suggests that (late) endosomes have functional plasticity
due to the presence of both Rab5 and Rab7, allowing FcRn to leave these
compartments to enter the recycling or lysosomal pathways. Conse-
quently, this prolongs the time window during which FcRn (or other
receptors) can be sorted into distinct pathways during endosomal
maturation, and might provide a mechanism by which increased fidelity
in sorting can be achieved.

Given the potential of FcRn as a drug delivery vehicle, it is of consid-
erable interest to understand the molecular effectors that regulate recy-
cling versus transcytosis in polarized cells. Insight into this has recently
been generated by the observation that Rab25, a Rab GTPase that is
known to be involved in the transcytosis of IgA by pIgR (Casanova
et al., 1999; Wang et al., 2000), also regulates the transcytosis of human
FcRn in polarized epithelial (MDCK) cells (Tzaban et al., 2009). By
contrast, Rab11a is not involved in transcytosis but is an important player
in recycling to the basolateral, but not apical, membrane of polarized
MDCK cells (Tzaban et al., 2009). These observations are consistent with
the concept that in epithelial cells, at least, there are endosomal compart-
ments that have functional plasticity, insofar as sorting into both transcy-
totic and recycling pathways can occur from the same common endosome
(Casanova et al., 1999; Thompson et al., 2007; Tzaban et al., 2009; Wang
et al., 2000). These studies have significant potential for regulating the
directionality of FcRn-mediated transport.
5.7. Effects of ligand valency on intracellular trafficking

To date, the majority of studies of the cell biology of FcRn and its IgG
ligand have been carried out using monomeric IgG that has two possible
interaction sites for FcRn. Indeed, two active binding sites per IgG or Fc
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molecule have been shown to be important for activity in FcRn-mediated
functions that include transcytosis, recycling, and in vivo half-life (Kim
et al., 1994b,c; Tesar et al., 2006). It is interesting that a hybrid Fc with only
one functional FcRn interaction site is transported more efficiently into
lysosomes in rat FcRn-transfected MDCK cells relative to wild-type Fc
that has two possible interaction sites (Tesar et al., 2006). Whether this
effect is due to a higher off-rate of the Fc from FcRn in endosomes and/or
a difference in trafficking induced by FcRn dimerization is currently
unknown.

The ligand for FcRn can also be highly multimeric when IgGs form ICs
with cognate antigen. It is, therefore, of interest to compare the intracellu-
lar trafficking of monomeric IgGs with that of multivalent ICs. It has
recently been shown that ICs with the propensity to cross-link FcRn
preferentially traffic into lysosomes, thereby enhancing antigen presenta-
tion in dendritic cells (Qiao et al., 2008). It remains to be demonstrated
whether this trafficking pathway is specific for APCs. This might be the
case, since a recent report demonstrated that invariant chain, which is
expressed in professional APCs, directs the transport of FcRn into lyso-
somes (Ye et al., 2008). Such a process results in a pathway for the
enhancement of T cell responses by ICs, thereby providing an additional
link between humoral and cellular immunity. By contrast, the transport of
ICs in intact form across cells such as epithelial barriers (Yoshida et al.,
2004) might be enabled by the lack of invariant chain in these cells, at least
under steady-state, noninflammatory conditions.
6. REGULATION OF FcRn EXPRESSION

FcRn represents a receptor that is subject to both tissue-specific and
developmental regulation. For example, following the suckling period
of neonatal rodents, a dramatic decrease in FcRn expression in intestine
occurs (Ghetie et al., 1996; Martin et al., 1997). FcRn levels are down-
regulated by hormones such as corticosteroids and thyroxine that are
known to affect gastrointestinal adaptation during the neonatal period
(Capano et al., 1994; Martin et al., 1993; Morris and Morris, 1976). The
promoter regions for human and rodent FcRn have been analyzed and
indicate that the regulation of expression at the transcriptional level is
complex with sites for Sp-like transcription factors, AP-1, Ets, or NF-IL6
(Jiang et al., 2004; Kandil et al., 1995; Tiwari and Junghans, 2005). Given the
immunological relevance of FcRn, it is plausible that modulation of
expression and/or activity by inflammatory (or anti-inflammatory) med-
iators such as cytokines might occur. In this context, recent studies have
shown that the expression levels of human FcRn in in vitro cell lines can be
regulated by cytokines such as TNF-a and IFN-g (Liu et al., 2007b, 2008).
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Although these cytokines are classically associated with proinflammatory
effects, much data supports the concept that they can also be anti-inflam-
matory (Chu et al., 2000; Cope et al., 1997; Isomaki et al., 2001; Kassiotis and
Kollias, 2001; Liu et al., 1998; Willenborg et al., 1999a,b). It is, therefore,
interesting that while TNF-a and IL-1b upregulate the transcription of
FcRn through NFkB binding to intronic sequences of FcRn (Liu et al.,
2007b), IFN-g has the reverse effect by activating JAK/STAT-1 signaling
(Liu et al., 2008). Consequently, the factors that control the expression of
FcRn and MHC Class I molecules are distinct, since IFN-g is known to
upregulate the levels of the latter. How FcRn expression and function
might be modulated by both anti- and proinflammatory cytokines and
possibly other immune mediators such as chemokines has broad
implications for understanding the factors that regulate inflammatory
responses. This area offers multiple possibilities for further exploration.
7. THE COMPLEXITY OF ENGINEERING FcRn–IgG
INTERACTIONS

7.1. Antibody engineering: From variable to constant regions

Much of antibody engineering over the past two decades has been
directed toward the manipulation of antibody variable regions for both
targeting and blocking effects (Souriau and Hudson, 2003; Weiner and
Carter, 2005). By contrast, the modification of Fc regions to alter their
interactions with Fc receptors, particularly to impact FcRn function, is
relatively underdeveloped. Fc engineering has obvious implications for
the application of therapeutic antibodies (Carter, 2006; Ghetie et al., 1997),
and interest in this area is currently expanding (Dall’Acqua et al., 2006a;
Hinton et al., 2004; Lazar et al., 2006; Shields et al., 2001; Vaccaro et al., 2005,
2006). Although of considerable importance, recent studies describing the
engineering of Fc regions for the enhancement of FcgR binding (e.g., Lazar
et al., 2006; Shields et al., 2001) fall outside the scope of the current review
and will not be discussed further. However, it is important to point out
that the sites for FcRn and FcgR interactions on IgG are distinct (Duncan
et al., 1988; Jefferis et al., 1998; Kim et al., 1994b; Shields et al., 2001), so that
in general mutations that impact FcRn binding do not affect function in
FcgR-dependent assays and vice versa. In the cases where effects on both
functionalities are observed (e.g., Shields et al., 2001), this is most likely
due to longer range conformational perturbations.

We will first describe how FcRn–IgG interactions can be modified to
generate antibodies with altered pharmacokinetics and transport
properties, and subsequently discuss how FcRn itself can be targeted to
modulate IgG levels in vivo. The knowledge that albumin is dependent on
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FcRn for in vivo persistence (Andersen et al., 2006; Chaudhury et al., 2003)
can also be exploited by using therapeutic reagents fused to albumin
binding peptides or Ig domains with the aim of generating longer lived
therapeutics (Dennis et al., 2002; Holt et al., 2008; Nguyen et al., 2006; Stork
et al., 2007), but will not be discussed further here.
7.2. Modulating the pharmacokinetic properties
of IgG: The importance of pH dependence

The knowledge that FcRn regulates serum IgG levels (Ghetie et al., 1996;
Israel et al., 1996; Junghans and Anderson, 1996), together with structure–
function studies of FcRn–IgG interactions, presents possibilities for the
modulation of the in vivo persistence and/or transcellular transport of
(therapeutic) antibodies. The approach of ‘‘tuning’’ antibody half-lives by
altering FcRn–IgG interactions has obvious relevance to the successful use
of therapeutic and diagnostic antibodies. Mouse IgG1-derived Fc frag-
ments that are engineered and selected to have increased affinity for FcRn
at pH 6, but with retention of low affinity at near neutral pH, persist for
longer in the circulation of mice (Ghetie et al., 1997). This approach has
subsequently been used to generate engineered human IgGs that have
longer half-lives in primates (Dall’Acqua et al., 2006b; Hinton et al., 2004,
2006) and are transported more efficiently across the ex vivo human
placenta (Vaccaro et al., 2006).

Although several reports describe a correlation between FcRn-binding
properties of engineered IgGs and in vivo persistence/transport
(Dall’Acqua et al., 2006b; Ghetie et al., 1997; Hinton et al., 2004, 2006;
Vaccaro et al., 2006), other studies would appear to contradict this
(Datta-Mannan et al., 2007a,b; Gurbaxani and Morrison, 2006; Gurbaxani
et al., 2006). This apparently discordant data can be explained in several
cases by increased binding of engineered antibodies to FcRn at near
neutral pH, which in general occurs as the affinity at pH 6 is improved
(Dall’Acqua et al., 2002; Vaccaro et al., 2006). In this context, FcRn–IgG
interactions can be distinguished from the majority of other protein–
protein interactions by their marked pH dependence. Consequently,
there is not a linear relationship between increase in affinity and activity.
Gain of significant binding activity at near neutral pH results in reduced
release during exocytosis at the plasma membrane and enhanced traffick-
ing of the antibody into lysosomes (Gan et al., 2009). Furthermore, such
engineered IgGs accumulate very efficiently in cells since they are taken
up by receptor (FcRn)-mediated processes (Mi et al., 2008; Vaccaro et al.,
2005, 2006). As the affinity at pH 6 is increased, the concomitant improve-
ment in binding at near neutral pH therefore mitigates the factors such as
elevated recycling that lead to longer half-life. The difficulty in separating
enhancement in affinities at pH 6 and 7.4 during the engineering of FcRn–
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IgG interactions therefore limits the increase in in vivo persistence that is
achievable (discussed in Vaccaro et al., 2006), and this presents a signifi-
cant challenge in Fc engineering. It is also important to note that some
cases of apparent discrepancies between binding data and in vivo half-
lives could be due to the interaction models for FcRn–IgG complexes that
are used and/or the introduction of valency effects induced by immobili-
zation of FcRn on the sensor chip during SPR analyses (Datta-Mannan
et al., 2007a; Gurbaxani and Morrison, 2006).

In addition to the detrimental effect of gain of binding at near neutral
pH on in vivo persistence, shorter lived antibodies can alternatively be
generated by engineering IgGs or Fc fragments so that they do not bind
detectably to FcRn at any pH (Kim et al., 1994a; Medesan et al., 1997). Such
‘‘FcRn-null’’ antibodies also function poorly in other FcRn-mediated
functions such as transport across cellular barriers (Firan et al., 2001;
Spiekermann et al., 2002). Although in general not useful in therapeutic
settings, FcRn-null antibodies have uses in applications such as tumor
imaging where short persistence is desirable to minimize background
signal (Kenanova et al., 2005; Olafsen et al., 2006).
7.3. Generation of inhibitors of FcRn function to lower
endogenous IgG levels

A prediction of the model shown in Fig. 4.3 is that inhibition of FcRn
function will lead to enhanced degradation of IgGs and a reduction in IgG
transport. FcRn inhibition can be achieved by injecting relatively large
quantities of intravenous immunoglobulin (IVIG) (Akilesh et al., 2004;
Hansen and Balthasar, 2002; Jin and Balthasar, 2005). The IgG in these
high doses of IVIG competes with endogenous IgG for binding and can
reduce pathology in IgG-mediated disease (Akilesh et al., 2004; Hansen
and Balthasar, 2002; Jin and Balthasar, 2005; Masson, 1993). IVIG can also
be used following the delivery of radiolabeled antitumor antibodies to
increase their therapeutic and diagnostic efficacy (Jaggi et al., 2007),
resulting in enhancement of whole body clearance of radiolabeled IgG
and less nonspecific radiation damage.

In many applications in which IVIG is currently used to enhance the
clearance of endogenous IgGs, FcRn blockers that have higher affinity for
FcRn relative to endogenous wild-type IgGs could be used at substan-
tially lower doses. For example, anti-FcRn or anti-b2m antibodies that
block Fc/IgG binding to FcRn through variable region binding have been
shown to be effective in treating ITP and myasthenia gravis, respectively,
in rodent models by lowering the levels of pathogenic IgGs (Getman and
Balthasar, 2005; Liu et al., 2007a). We have also generated engineered IgGs
(‘‘MST-HN’’ and ‘‘HN’’) derived from human IgG1 that bind through
their Fc regions to FcRnwith increased affinity (� 200-fold at pH 6 relative
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to mouse IgG1) and reduced pH dependence (Vaccaro et al., 2005, 2006).
These engineered IgGs act as competitive inhibitors with wild-type IgGs
for FcRn binding and can enhance the clearance of endogenous IgGs in
mice (Vaccaro et al., 2005, 2006) (Fig. 4.6). Such engineered antibodies
(Abdegs, for antibodies that enhance IgG degradation) have potential
uses in modulating endogenous IgG levels. In support of this, a human
IgG1 variant (Thr307 to Ala/Glu380 to Ala/Asn434 to Ala) with increased
affinity for mouse/human FcRn at both pH 6 and 7.4 has been shown to
be effective in treating disease in a serum transfer model of arthritis
(Petkova et al., 2006). However, the relatively high doses needed in this
study were most likely due to retention of significant pH dependence for
binding to FcRn of this antibody, that is, low affinity at near neutral pH
(Petkova et al., 2006), which results in poor competitive activity (Vaccaro
et al., 2006).

The effects of Abdegs on endogenous IgG levels can be regarded to be
‘‘extrinsic,’’ in contrast to ‘‘intrinsic’’ effects that impact the half-life of the
engineered IgG itself. In this context, due to the loss of pH-dependent
binding to FcRn, both Abdegs and anti-FcRn antibodies (that bind to FcRn
*
* * * *

0 20 40 60 80

Time (h)

%
 in

je
ct

ed
 d

os
e

100

100

120

50%

200 µg MST-HN

500 µg MST-HN

500 µg wild type

20%

12%

140 160 180 200

80

60

40

20

0
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through their V regions) have short in vivo half-lives (Dall’Acqua et al.,
2002; Getman and Balthasar, 2005; Vaccaro et al., 2006). Consistent with
this, delivery of Abdegs results in a reduction of serum IgG levels that
lasts for several days prior to a rebound of IgG concentrations to their
original levels (Vaccaro et al., 2005). The ‘‘intrinsic’’ consequences of an Fc
mutation on the in vivo half-life of an IgG or Fc fragment itself will impact
the ‘‘extrinsic’’ effects of this engineered IgG/Fc on the lowering of
endogenous IgG levels, since they will determine the in vivo longevity of
a potential Abdeg.

Insight at the quantitative level as to how a change in pH dependence
of an IgG–FcRn interaction impacts in vivo persistence has been obtained
by comparing the properties of two engineered human IgG1 molecules,
HN and MST-HN (HN, His433 to Lys/Asn434 to Phe; MST-HN, Met252
to Tyr/Ser254 to Thr/Thr256 to Glu/His433 to Lys/Asn434 to Phe) (our
unpublished data). These two mutants have similar affinities for mouse
FcRn at pH 6, whereas the affinity of the HN mutant is about 10-fold
lower at pH 7.2 (Table 4.1). This has allowed the impact of differences in
pH dependence on intrinsic (in vivo half-life) and extrinsic (lowering of
endogenous IgG levels) properties to be assessed in mice. The HNmutant
is less effective in lowering endogenous IgG levels than MST-HN, but the
HN mutant has a longer in vivo persistence (Vaccaro et al., 2005, 2006)
(Table 4.1). Thus, there is a trade-off between activity as an FcRn inhibitor
and in vivo half-life. This indicates that, dependent on the situation, these
extrinsic and intrinsic properties need to be counterbalanced to optimize
the effect. For example, if a ‘‘one-off’’ rapid clearance of endogenous IgG
is needed, then an Abdeg with high affinities for FcRn in the range
pH 6–7.4 is expected to be optimal. Conversely, if treatment of an IgG-
mediated, chronic disease is required, then a balance between reduced
half-life and inhibitory activity needs to be achieved.

Synthetic peptides that block the binding of endogenous IgGs to FcRn
in nonhuman primates have also been described (Mezo et al., 2008). One
TABLE 4.1 The impact of pH dependence on in vivo half-life in mice of engineered

variants of human IgG1

Dissociation constant, KD (nM)a

Human IgG1 (mutant) pH 6 pH 7.2 b-Phase half-life (h)

Wild type 32 N.D.b 250.6� 15.3a

MST-HN 1.2 7.4 35.6� 1.1

HN 1.5 82 62.8� 2.7a

a Described previously in Vaccaro et al. (2005, 2006).
b N.D., not determined because affinity is too low to accurately estimate a dissociation constant.
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such peptide has been used to make a dimer that is active in reducing
serum IgG levels in cynomolgus monkeys (Mezo et al., 2008). The anti-
body levels rebound in peptide-treated monkeys, consistent with the
clearance of the peptide. FcRn-binding peptides, or engineered IgGs/Fc
fragments with increased affinity for FcRn, have multiple potential uses
and offer an alternative to the use of IVIG which needs to be delivered in
relatively high doses for efficacy. In addition, the sources of IVIG are
limited and its expense is high. However, in addition to FcRn blockade,
IVIG has multiple other possible modes of action that include FcgR-
mediated effects (discussed in Clynes, 2007). For example, in mice the
monomeric IgG component of IVIG can induce the upregulation of
FcgRIIB expression (Bruhns et al., 2003; Samuelsson et al., 2001; Siragam
et al., 2005). IVIG treatment can also result in signaling by ICs through the
activating receptor, FcgRIII, to inhibit IFN-g responses or regulate den-
dritic cell activity in mice (Park-Min et al., 2007; Siragam et al., 2006).
Recent studies have shown that monomeric IgGs with sialylated core
oligosaccharides, that constitute about 1–2% of IVIG, are responsible for
the upregulation of FcgRIIB expression through a mechanism that
involves binding to SIGN-R1 (in mice) or DC-SIGN (in humans)
(Anthony et al., 2008; Kaneko et al., 2006). For the treatment of
IgG-mediated, inflammatory diseases, it is therefore possible that due to
the induction of additional anti-inflammatory effects, the use of
(engineered) antibodies might be preferable over the use of FcRn-binding
peptides that solely target FcRn.
8. CROSS-SPECIES DIFFERENCES IN FcRn-BINDING
SPECIFICITY AND IMPLICATIONS FOR PRECLINICAL
MODELS

Despite the similarities of human and mouse FcRn at the sequence level
(Ahouse et al., 1993; Story et al., 1994), in addition to the conservation of
several key interaction residues on IgG across species, the binding speci-
ficity of human and mouse FcRn are distinct (Ober et al., 2001). For
example, mouse FcRn binds promiscuously to IgGs from multiple spe-
cies, whereas human FcRn is much more selective. Most notably,
although human FcRn interacts with relatively low affinity with mouse
IgG2b, it does not bind detectably to mouse IgG1, IgG2a, or rat IgGs. This
lack of binding provides a molecular explanation for the short in vivo
persistence of (therapeutic) mouse IgGs in humans (Frodin et al., 1990;
Saleh et al., 1992).

Using the earlier crystallographic structure of the rat FcRn–rat IgG2a
complex (Martin et al., 2001) as a guide, we have used site-directed
mutagenesis combined with interaction analyses to transfer the binding
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properties of mouse FcRn onto human FcRn (Zhou et al., 2003, 2005). With
this approach, several regions of sequence variation are responsible for
the specificity differences betweenmouse and human FcRn: first, residues
132–147, encompassing the nonconserved residue 137 (Leu in human
FcRn, Glu in mouse FcRn, Asp in rat FcRn) play a central role (Zhou
et al., 2003, 2005). The important role of residue 137, in particular, is
consistent with crystallographic and structure–function studies for rat
FcRn (Martin and Bjorkman, 2001; Vaughn et al., 1997). Second, residues
79–89 (which in human FcRn encompass a two-residue deletion) have a
lesser contribution to the difference in specificity and may modulate the
overall orientation of the interaction (Zhou et al., 2005). Residues 79–89
also contain a potential glycosylation site in rodent, but not human, FcRn,
leading to the possibility that this might contribute to the cross-species
difference in binding properties. However, recent studies (Kuo et al., 2009)
have shown that glycosylation at position 87 (numbering based on homol-
ogy alignment with rodent FcRn) of human FcRn, by mutation of Lys to
Asn, does not confer the binding properties of mouse/rat FcRn for mouse
IgG1 on the human ortholog (Kuo et al., 2009). It is interesting to note that
species such as pigs, sheep, camels, and cows have arginine at position
137 (Kacskovics et al., 2000, 2006; Mayer et al., 2002; Schnulle and Hurley,
2003), whereas dog, rat, and mouse have glutamic/aspartic acid (Ahouse
et al., 1993; Kacskovics et al., 2006; Simister andMostov, 1989) and possum
has the same residue as humans (leucine) (Adamski et al., 2000). Given the
central role of residue 137 in FcRn–IgG interactions, this leads to the
speculation that binding specificities might fall into three or more clades.

In general, the affinities of mouse FcRn for IgGs of multiple different
species such as human, rat, mouse, and rabbit are higher than the
corresponding human FcRn interactions (Ober et al., 2001). This is of
relevance when considering the preclinical analysis of human IgGs in
murine models since, for example, the affinity of mouse FcRn for
human IgG1 is about 10-fold higher than that of the corresponding
human FcRn interaction (Zhou et al., 2005). Consequently, although the
mouse FcRn–wild-type human IgG1 interaction retains sufficient pH
dependence for this IgG1 to have a relatively long half-life in mice, this
is not the case for multiple variants of human IgG(1) that have been
engineered to have higher affinity for FcRn (Dall’Acqua et al., 2002;
Vaccaro et al., 2006). Specifically, a higher affinity IgG mutant can acquire
significant binding to mouse FcRn at near neutral pH while retaining the
necessary low affinity for human FcRn to allow efficient recycling in
human systems (Vaccaro et al., 2006). Consequently, such IgGs have
shortened in vivo half-lives and inhibit FcRn function in mice
(Dall’Acqua et al., 2002; Vaccaro et al., 2005), whereas analyses in nonhu-
man primates (Dall’Acqua et al., 2006b) or the human placental transfer
model (Vaccaro et al., 2006) are predictive of longer half-lives in humans.
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Several engineered IgGs of this class have to date been described
(Dall’Acqua et al., 2002, 2006b; Datta-Mannan et al., 2007a,b; Vaccaro
et al., 2006), indicating the severe limitations of mice as models. Conse-
quently, there is a need for improved preclinical models that can recapit-
ulate human FcRn function. Although nonhuman primates represent
good models, their high cost makes them inaccessible for routine screens.
Alternatively, mice that transgenically express human FcRn (Chaudhury
et al., 2003; Petkova et al., 2006) are a step toward a suitable preclinical
model, but have low endogenous IgG levels due to poor binding of mouse
IgGs to human FcRn. Such mice combined with transgenic mice
expressing human IgGs (Jakobovits et al., 2007; Scott, 2007) might
therefore provide an attractive model.
9. CONCLUDING REMARKS

Much has been learnt about FcRn function during the past two decades.
Perhaps most importantly, a diverse array of activities at different body
sites can be attributed to this multitasking receptor. Furthermore, FcRn
impacts both the humoral and cellular arms of the immune response.
Consequently, understanding the molecular and cellular mechanisms
by which this receptor functions, combined with the engineering of
FcRn–IgG interactions, has relevance to fundamental aspects of the
immune system in addition to providing possible therapeutic routes for
multiple diseases.
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