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Preface 

The present text is the result of teaching a third year statistical course to 
undergraduate social science students. Besides their previous statistics courses, these 
students have had an introductory course in computer programming (FORTRAN, 
Pascal, or C) and courses in calculus and linear algebra, so that they may not be 
typical students of sociology. This course on the analysis of contingency tables has 
been given with all students in front of computer terminals, and, more recently, micro­
computers, working interactively with GLIM. 

Given the importance of the analysis of categorical data using log linear 
models within the overall body of models known as general linear models (GLMs) 
treated by GLIM, this book should be of interest to anyone, in any field, concerned 
with such applications. It should be suitable as a manual for applied statistics courses 
covering this subject. 

I assume that the reader has already a reasonably strong foundation in statistics, 
and specifically in dealing with the log-linearllogistic models. I also assume that he or 
she has access to the GLIM manual and to an operational version of GLIM itself. In 
other words, this book does not pretend to present either a complete introduction to 
the use of GLIM or an exposition of the statistical properties of log-linearllogistic 
models. For the former, I would recommend Healy (1988) and Aitkin et al (1989). Por 
the latter, many books already exist, of which I would especially recommend that of 
Pingleton (1984) in the present context. 

In this book, I attempt to show how the GLIM statistical system can easily be 
applied to a wide variety of log-linearllogistic models. i.e. the interface between 
statistical analysis and computer use. To get the most out of the book, it is important 
to try out the examples with GLIM as one proceeds. 

All of the present book, including the statistical analysis of all of the examples, 
using GLIM 3.77 update 2, and the word processing and page setting, using ProWrite 
and ProScript, was produced by the author on a 2.5 megabyte Commodore Amiga 
microcomputer. 

Many of the GLIM macros in Appendix III were originally written by various 
authors, cited therein. They have been modified to make them user-friendly and, 
hence, more accessible to someone not familiar with the details of GLIM 
programming. May the original authors be thanked for making their work public. 

I would like to thank my students over the past ten years who have suffered 
through this course and supplied invaluable reactions and comments and R. 
Doutrelepont who supplied the data for the example on the Belgian elections in 
Chapter 6. 
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CHAPI'ERI 

ONE-WAY FREQUENCY TABLES 

1. A Time Trend Model 

The simplest frequency tables concern a single variable and show the 
frequencies with which the various categories of that variable have been observed. 
Here, we shall be interested in frequency tables where the variable may be nominal, 
discrete, or continuous, but where the only assumption is that of a multinomial 
distribution. In those cases where the categories refer to some continuous measure, 
such as income, length of employment, etc. or are themselves counts, such as 
numbers of accidents per individual, number of children per family, etc., specific 
probability distributions can often be fitted to the data. However, this latter problem is 
not the subject of the present book. 

Having stated this restriction, we must immediately qualify it, since our tool of 
analysis, GUM, does not directly handle the multinomial distribution. Nevertheless, 
we can very simply demonstrate that models based on the multinomial distribution 

(1.1) 

where Fl'" FK are the frequencies and Pl'" PK the corresponding probabilities, can 
equivalently be analysed by models which GUM does treat, those based on the 
Poisson distribution 

-J..L F 
e L.l. 

F! 
(1.2) 

for each category, if we condition on the total number of observations. Let us recall 
two points of probability theory. First, a conditional distribution is defined by 

Pr(A/B) = Pr(A and B)JPr(B) (1.3) 

Second, if a set of frequencies, Fl'" FK, have a Poisson distribution with means III ••• 
ilK' then their sum F. also has a Poisson distribution with mean Il., the sum of the 
individual means. 

We are now in a position to demonstrate the relationship between the 
multinomial and the conditional Poisson distributions: 

-J..L. F. 

I e L.l.. 
F.! 
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Fk 

(Fl .~·FK)TI (~) 
so that Pk = f.lJf.l. and the two distributions are identical. 

Before going further, we shall consider our flrst example (Table 1.1). The tables 
for all examples, in a form ready for GUM, along with the GUM instructions to 
produce the output shown in the text, are also provided in Appendix II. 

Months Before I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 181 
Number 115 11 14 17 5 11 10 4 8 10 7 9 11 3 6 1 1 41 

Table 1.1 Subjects Reporting One Stressful Event (Haberman, 1978, p.3) 

Our variable is the number of months prior to an interview that subjects 
remember a stressful event. We wish to determine if the probability is the same for 
remembering such an event in all of these 18 months. If we look at Table 1.1, we see 
immediately that the number of events remembered seems, in fact, to decrease with 
time. 

GUM is an interactive system which reads and interprets each instruction as it 
receives it. As soon as it has obtained sufficient information, it executes the 
instruction. A question mark (?) usually indicates that it is ready for further input. A 
log or transcript of the entire session is normally produced on a me for the user. 

To s~art any analysis, GUM requires certain basic information. We must 

(1) define the standard vector length - $UNits n 

(This refers to the variables to be analysed.) 

(2) provide the list of names of variables or vectors into which the data are to be 
read - $DAta name list 

(3) read the values to be placed in the vectors with these names- $Read data list 

(4) specify which is the dependent variable - $Yvariate variable name 

(5) specify the probability distribution - $ERror distribution 

(6) flt the desired linear model - $Fit model 

From this flrst list of six instructions, we notice that all GUM instructions begin 
with a dollar sign ($). We may place as many instructions as we like on a line or one 
on each line. However, an important point, names in GLIM, including instructions 
and variables, have only four significant characters. Thus, it is sufflcient to type 
$UNI, $DAT, $REA, $YVA, $ERR, and $FIT. All subsequent characters are ignored 
until a blank or another $ is encountered. Many instructions may be even further 
shortened as can be seen in Appendix I. Throughout the text, the shortest allowable 
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form will be indicated by capital letters. Variable names must begin with a letter and, 
of course, cannot contain a $, or other punctuation or operators. They can contain 
numbers. Special care must be taken with the four character maximum since, for 
example, GUM does not distinguish between the variable names CLASS 1 and 
CLASS2. 

A model is specified in $Fit by the list of variables which it contains, each 
separated by an operator (+, -, ., *, /). The + may be used to add a variable to the 
previous model fitted and - to remove one. The . and * signify interactions (to be 
explained below). The I will not be used in this text. 

We can now construct our :fIrst program: 

$UNits 18 $DAta FREQ $Read 15 11 14 17 5 11 10 4 8 10 7 9 11 3 6 1 1 4 
$Yvariate FREQ $ERror P $Fit $ 

Most of this should be clear from what preceded. $ERror P specifies a Poisson 
distribution. $Fit followed by nothing but $ specifies the fit of a general mean. The 
output from our program is as follows: 

scaled deviance = 50.843 at cycle 4 
d.f. = 17 

The Poisson distribution in such models is fitted by successive approximations. 
Here, four iterations were required as indicated by the cycle. For such models, the 
scaled deviance yields a Chi-square with the degrees of freedom (d.f.) shown. If we 
look up this value in a table, we see that a Chi-square of 50.84 with 17 d.f. reveals a 
very significant lack of fit, indicating that the probability of recall is not the same for 
all of the months. 

With one additional instruction, we may go further in our study of this model 
applied to these data: 

(7) provide further information about the fitted model - $Display code for 
infonnation desired 

Then, after the $Fit of our program, we enter 

$Display ER 

This signifies that we desire the parameter estimates (E) and the fitted values and 
residuals (R). The output is: 

estimate s.e. parameter 
1 2.100 0.08248 1 
scale parameter taken as 1.000 

unit observed fitted residual 
1 15 8.167 2.391 
2 11 8.167 0.991 
3 14 8.167 2.041 
4 17 8.167 3.091 
5 5 8.167 -1.108 
6 11 8.167 0.991 
7 10 8.167 0.642 
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8 4 8.167 -1.458 
9 8 8.167 -0.058 

10 10 8.167 0.642 
11 7 8.167 -0.408 
12 9 8.167 0.292 
13 11 8.167 0.991 
14 3 8.167 -1.808 
15 6 8.167 -0.758 
16 1 8.167 -2.508 
17 1 8.167 -2.508 
18 4 8.167 -1.458 

We must now elaborate on the model which we have fitted. This is what is 
commonly called a log linear model, since it is linear in the logarithms of the 
frequencies. Specifically, we have fitted a common mean to all of the frequencies: 

for all k (1.4) 

The maximum likelihood estimate is ~ = 2.100 with standard error 0.08248. As 
a rough indicator, if the absolute value of a parameter estimate is at least twice the 
standard error, the estimate is significantly different from zero at the 5% level. This 
has little relevance in the present case, but is very useful when a large number of 
parameters are present in the model, since we then have a quick indication of which 
variables might be eliminated. 

We next note that all observations are estimated by the same fitted value, 8.167, 
since our model only contains the mean. The residuals are differences between 
observed and fitted values standardized by their standard errors. 

We should note that all of our analysis up until now applies to any set of 
frequencies whether structured or not. Our variable could have been nominal since we 
have not yet used the ordering of the months. 

Let us now examine the residuals more closely. We see that the :ftrst four are 
positive and the last five are negative, indicating that the probability of recalling an 
event is more than average in the recent months and less than average in the longer 
time period. 

We may now introduce this ordering so as to study the observed decrease in 
number of events remembered. Suppose that the probability of remembering an event 
diminishes in the same proportion between any two consecutive months: 

PJc!PK-l =~ (a constant for all k) (1.5) 

Then k-l 
Pk/Pl =~ (1.6) 

and 

IOg(PJc!Pl) = (k-l) log(~) 

but Pk FkIF. 

so that log (Pk/Pl) = log (FkIF1 ) 
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log (F0 = log (Pl) + (k-l) log (flt) 

= log (F l/flt) + k log (flt) 

which may be rewritten 

log (Fk )= Bo + Blk 

where 

(1.7) 

This is a log linear time trend model, a special case of linear regression. To 
perfonn the GUM analysis for this model, we must construct a variable for months. 
Any such arithmetic calculation may be perfonned in the following way: 

(8) perfonn an arithmetic calculation - $CAlculate arithmetic expression 

The standard arithmetic operators (+, -, *, /) may be used. Note, however, that they all 
have a different meaning than in $Fit. Note, also, that $CAlculate in GUM performs 
vector operations automatically in a way similar to the programming language APL. 
We, then, enter the following instructions: 

$CAlculate MON=%GL(18,1) $Fit MON $Display ER 

In our calculation, we have used one of the GUM functional operators, 
%GL(k,n), which fills a vector with integers from 1 to k in blocks of n. For example, 
with a vector of length 5, %GL(3,2) constructs the vector (1, 1,2,2,3). In our case, 
we obtain a vector of length 18 filled with the integers from 1 to 18, as required. We, 
then, fit the model and display the required information, as in the previous case. The 
output is: 

scaled deviance = 24.570 at cycle 4 
d.t. = 16 

estimate s.e. parameter 
1 2.803 0.1482 1 
2 -0.08377 0.01680 MON 
scale parameter taken as 1.000 

unit observed fitted residual 
1 15 15.171 -0.044 
2 11 13.952 -0.790 
3 14 12.831 0.326 
4 17 11. 800 1.514 
5 5 10.852 -1. 776 
6 11 9.980 0.323 
7 10 9.178 0.271 
8 4 8.440 -1.528 
9 8 7.762 0.085 

10 10 7.138 1.071 
11 7 6.565 0.170 
12 9 6.037 1.206 
13 11 5.552 2.312 
14 3 5.106 -0.932 
15 6 4.696 0.602 
16 1 4.318 -1.597 
17 1 3.971 -1.491 
18 4 3.652 0.182 
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By adding one parameter, and losing one degree of freedom, we have reduced 
our deviance by 50.84-24.57=26.27. This is a Chi-square with 17-16=1 d.f. which is 
highly significant, indicating that we must reject our equal probability model in favour 
of the one for constant reduction in probability. The remaining deviance of 24.57 is a 
Chi-square with 16 d.f., which is not significant at 5%, indicating that non-linear 
effects, a non-constant reduction in probability, need not be taken into account. 

It would be useful to have the Chi-square probability level directly on the 
screen instead of referring each time to a table. This is possible by means of a macro 
or small prefabricated program, supplied in Appendix III, written in the GUM 
programming language. This is a language very similar in syntax to the C language, 
but is interactive. 

To load and use such a macro, we need three new GUM instructions: 

(9) read one or more programs or program segments stored on file - $INput file 
number and program name(s) 

(10) specify information to be used in a macro - $Argument macroname and 
parameter list (max. 9 items) 

(11) execute a macro (program) - $Use macroname 

Instructions (10) and (11) may be combined by placing the parameter list after the 
macroname in $Use. 

To use the macro, the Chi-square value (the deviance) and the degrees of 
freedom must be supplied. After each fit, these are available in the scalars %DV and 
%DF respectively. At each new fit, the old values are lost if they are not stored in 
other scalars. At our present stage of analysis, we shall have %DV=24.57 and 
%DF=16. We enter the following instructions: 

$CAlculate %A=50.84-%DV $CAlculate %B=17-%DF $INput 12 CHIT 
$Use CHIT %DV %DF $Use CHIT %A %B 

The output is 

Chi2 probability = 0.0775 for Chi2 = 24.57 with 16. d.f. 

Chi2 probability = 0.0000 for Chi2 = 26.27 with 1. d.f. 

confirming the above results. 

We note, in the above instructions, that the macro is called CHIT and is found 
on a file referred to by the number 12. When this instruction is typed, an explanation 
of the use of the macro appears on the screen. 

In applying this macro, we have introduced the use of scalars. Two types exist 
in GUM. System scalars consist of the % with two or three letters and contain values 
produced by certain instructions. (Note, however, that system vectors are also 
represented by % with two letters.) They are listed in Appendix I. Ordinary scalars are 
% with one letter and are all initialised to zero. The user manipulates them with 
$CAlculate. 
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Our estimated model is 

log (Fk ) = 2.803 - 0.08377 k 

The negative value of B1 , the slope parameter for months, indicates decrease in 

probability with time elapsed. Since Bl = 10g(IIS), lIS = eBI so that lIS = 0.9196, the 
proportional decline in probability per month. If we rewrite our model (1.5) in terms 
of B1 , we have 

k-l Bl(k-l) 
Pk = P1JZ) = Pie (1.8) 

which is a model of exponential decay. If Bl were positive, it would be a model of 
exponential growth. 

It is now possible to plot our model with GUM. The instruction is 

(12) plot several variables on a scattergram - $Plot ordinates and abscissa 

The fitted values for the model are contained in the system vector called %FV. 
We plot observed and fitted values against the month using 

$Plot %FV FREQ MON 

where %FV and FREQ are variables for the ordinate and MON for the abscissa. This 
gives 

Observed and fitted va1ues 

19.00 
18.00 
17.00 
16.00 
15.00 
14.00 
13.00 
12.00 
11.00 
10.00 

9.00 
8.00 
7.00 
6.00 
5.00 
4.00 
3.00 
2.00 
1.00 
0.00 

2 
'Is 

F 

F 

F 
'Is 

'Is 
'Is 

F 

F 
'Is F 

'Is 
'Is 

F 

F 
F 

F 
2 

'Is 2 
'Is 'Is F 

'Is 'Is 
'Is 'Is 2 

F 

F F 

---------- ---------:---------:---------:---------:---------:---------
0.00 4.00 8.00 12.00 16.00 20.00 24. 

The observed values are represented by F (for FREQ) and the fitted values by % (for 
%FV). When two or more points fall at the same place, they are represented by a 
number between 2 and 9 instead of by the first character of the vector. The user also 
has the option of choosing any other symbol to represent each vector. 
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We see the fonn of the exponential decay in the curved line of %s. If we take 
logarithms of the observed and fitted values using $CAlculate and the function 
%LOG, and plot them, 

$CAlculate F=%LOG(FREQ) $CAlculate T=%LOG(%FV) $Plot T F MON 

we obtain 
Linear regression 

3.040 
2.880 
2.720 
2.560 
2.400 
2.240 
2.080 
1.920 
1.760 
1.600 
1.440 
1.280 
1.120 
0.960 
0.800 
0.640 
0.480 
0.320 
0.160 
0.000 

2 
T 
F 

F 

2 
T T F 

T 2 
T 2 

F 
F 

F 
F F 

T 2 
T T F 

T T 
T T F 

T 
F 

F F 
---------- ---------:---------:---------:---------:---------:---------

0.00 4.00 8.00 12.00 16.00 20.00 24. 

which is our linear model represented by the straight line of Ts (the slight wobble 
occurs because characters cannot be printed in between lines), surrounded by the 
observed points, F. 

We have seen the usefulness of interpreting the residuals of a model. We 
should note, however, that inspection of residuals only proves useful when we have a 
reasonable number of degrees of freedom. As the degrees of freedom approach zero, 
the model must necessarily represent the data more closely and the residuals cannot 
vary very much from zero. The task of inspecting residuals is also made easier if we 
plot them using GLIM. This time, we use a macro (found in Appendix III) to set up 
and do the plotting. The additional instructions to be typed are 

$INput 23 RESP $Use RESP 

A residual plot and a plot of a score test coefficient of sensitivity (see Gilchrist, 
1981 and 1982 and Pregibon, 1982) are provided for the model fitted immediately 
previously. Thus, at the point where we now are, we can only obtain plots for the 
linear trend model. To obtain those for the constant probability model, we must refit it 
by typing $Fit and then $Use RESP. The program RESP has already been loaded 
from the file number 23, so that $INput 23 RESP need not be repeated. This program, 
RESP, in contrast to CHIT, requires no supplementary infonnation, in the way of an 
argument list, for its use. 

The plots for the two models are as follows: 
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(1) constant probability model 
Poisson Residuals 

Score Teat Coefficient of Sensitivity 

0.0000 
-0.0400 
-0.0800 
-0.1200 
-0.1600 
-0.2000 
-0.2400 
-0.2800 
-0.3200 
-0.3600 
-0.4000 
-0.4400 
-0.4800 
-0.5200 
-0.5600 
-0.6000 
-0.6400 
-0.6800 
-0.7200 
-0.7600 

s 

s 

s 

s 

s 
s s 

s s 
s 

s s 
s 

s 
s 

s 

s s 

---------:---------:---------:---------:---------:---------
0.00 

Resi.dual Plot 

4.000 
3.600 
3.200 
2.800 
2.400 
2.000 
1.600 
1.200 
0.800 
0.400 
0.000 

-0.400 
-0.800 
-1.200 
-1.600 
-2.000 
-2.400 
-2.800 
-3.200 
-3.600 

Y 
2 

4.00 8.00 

Y 
Y Y 

2 
2 

2 

12.00 

2 
3 Y 

Y Y3 
Y 2 

2 
2 

16.00 20.00 24. 

2 

2 
2 Y 

A A A Y Y 
22 S 2 2 
YY Y 

----------.---------:---------:---------:---------:---------:---------
-2.400 -1.600 -0.800 0.000 0.800 1.600 2. ' 

Points Y represent 4S line 
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(2) time trend model 

Poisson Residua1a 

Score Test Coefficient of Sensitivity 

0.0000 
-0.0300 

s s s s s s 
s 

-0.0600 s 
-0.0900 s 
-0.1200 s s 
-0.1500 s 
-0.1800 
-0.2100 s 
-0.2400 
-0.2700 
-0.3000 
-0.3300 s s 
-0.3600 
-0.3900 s s 
-0.4200 
-0.4500 
-0.4800 
-0.5100 
-0.5400 
-0.5700 s 

----------:---------:---------:---------:---------:---------:---------
0.00 

Residua1 P10t 

2.750 
2.500 
2.250 
2.000 
1.750 
1.500 
1.250 
1.000 
0.750 
0.500 
0.250 
0.000 

-0.250 
-0.500 
-0.750 
-1.000 
-1.250 
-1.500 
-1.750 
-2.000 

2 
Y 

4.00 8.00 

Y 
Y Y S 

Y 2 A 

2 2 2 
A 

12.00 16.00 

2 
2 Y 

2 Y 
Y S 

2 2 33 2 
22 Y Y 
YY 

20.00 

3 

A 
S 
Y 

24. 

---------- ---------:---------:---------:---------:---------:---------
-2.400 -1.600 -0.800 0.000 0.800 1.600 2. < 

Points Y represent 45 1ine 

If a model is acceptable, the residual plot should be on a 45 degree straight line, 
coinciding with that represented by the Y points on the graph. We observe that the 
residual plot for the constant probability model has a slope greater than this, indicating 
the lack of fit whereas that for the log linear trend model has the required slope. The 
score test coefficient is a plot of the individual observations in order as against a 
modified residual. The model fits least well those observations with large negative 
values of this coefficient. For the constant probability model, we see that the first and 
last observations fit less well as we already noticed above. For the time trend model, 
no obvious pattern is observable, although the thirteenth month fits least well. From 
the list of residuals given above, we see that 11 recalls are recorded while only 5.6 are 
predicted. 

Finally, to terminate the session and exit from GUM, we use the instruction: 

(13) end the session - $STop 
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2. Further GLIM Instructions 

Before introducing the next model, we shall consider some further details about 
GUM which facilitate programming or improve presentation of results. Only the 
minimum details for directives are presented here; for a full presentation, see the 
GUM manual (Payne, 1985). 

A number of special symbols may be used. The $ alone means to execute 
immediately the preceding instruction; this is especially necessary when GUM does 
not know if the list of information after an instruction is complete or not. This is 
indicated by GUM reproducing the previous instruction on the screen, instead of 
simply a ? Such is the case, for example, with $CAlculate and $Fit, since the 
arithmetic expression or model definition may extend over several lines and execution 
may not begin before it is complete. In contrast, $Display may execute for each 
symbol (E, R, etc.) independently, so that the terminating $ is not required. In the 
same way, $INput may load each program separately. 

The symbol : indicates repetition of the immediately preceding command, 
perhaps with different information following it. For example, 

$CAlculate pW=l : X=2 

The symbol # attached to the name of a macro has the same effect as $Use 
when the macro contains a series of instructions. For example, 

$Use CHIT and #CHIT have the same effect. 

However, an argument list cannot follow when # is used in the way it can with $Use. 

The symbol, !, the end of line character, causes GUM to ignore everything 
which follows on the line. Its use can make programs much more efficient, since 
otherwise GLIM must read and check (interpret) every character on every line, even if 
most of it is blank, just to verify if there is something further along. Placing this 
symbol, !, after the last instruction on the line eliminates this verification. 

If an operator appears to the left of the leftmost equals sign in $CAlculate, the 
answer will be printed out. For example, $CAlculate 3+4 prints 7. Note that 
$CAlculate O+I=J+K will print out a column of all values assigned to the vector I. 

The instruction $INput may be used to load GUM instructions which the user 
has previously placed in a file. In the context of this book, this file will be number 5. 
The instructions may be placed directly in the file in the same way as if typed 
interactively on the screen, but the last line of the file must contain, starting in the first 
column, the instruction: 

(14) indicate the end of a program file - $FINish 



12 

If the instructions loaded by $INput 5 are not given a macro name. they are all read 
and immediately executed. as if typed to the screen from the keyboard. But they are 
not stored and cannot be reused in the way a macro is. In such files. the ! symbol may 
be used to indicate end of line so that descriptive information may be included in the 
file. as in the comments to the programs and macros in Appendices II and III. 

Often data are too voluminous to be simply typed after $Read or they already 
exist on a file (which must contain only numerical values. at least in the columns to be 
read by GUM). These may be read by 

(15) read numerical data from a file - $DINput file number 

Here. by convention in this book. the file number will be 1. As with $Read. $DINput 
must be preceded by $DAta with the list of variable names. If more than one variable 
name is listed. the values must be presented individual by individual. i.e. the first 
value in order for each variable. then the second and so on. In this way. the data are 
read in free format; they must have one or more spaces between each value. In such 
files. the! symbol may be used to indicate end of line so that descriptive information 
may be included in the file. as in the tables of Appendix II. 

If the data occupy consecutive columns of a file and. thus. do not have the 
necessary spaces. as is often the case for large data sets. a format. defining which 
columns are to be read. must be specified before $Read or $DINput: 

(16) format specification - $FOrmat FORTRAN format in parentheses 

The FORTRAN format specifies the columns where the values are found (F) and the 
columns to be ignored (X). For example. three variables. SEX. REVENUE. AGE, to 
be read in columns 3-6. 7 and 13-14. and other data not presently needed in the 
remaining columns. require the instructions 

$DAta SEX REV AGE 
$FOrmat (2X,F4.0,Fl.O,5X,F2.0) 
$DINput 1 

Any columns not specified by F are ignored. even if they contain values. The ! 
symbol may not be used in a data file to be read with $FOrmat unless it always 
appears in columns which are not read. 

The output from GUM instructions can be written on a file rather than 
appearing on the screen with the instruction: 

(17) write results on a file - $OUtput file number 

In the context of this book, the file number 6 will be used. After $OUtput 6. all results 
are written to the file until $OUtput 9 (the number for the terminal on the Commodore 
Amiga) is typed. at which time they begin again on the screen. The file produced will 
be clean. in that the GUM instructions are not mixed with the results. The programs 
in Appendix II. used to produce the output throughout the text. are presented in this 
way. However. use of this system may sometimes mean that one does not know to 
what the results refer. The accompanying GUM instructions may be printed on the 
file by the instruction 
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(18) print out all information received by GUM - $ECho 

before starting the output. The process is stopped by giving the same instruction a 
second time. This method will produce a file similar, in many respects, to the 
transcript file normally resulting from a GUM session. 

Titles and other indications may be written with the instructions 

(19) write a message - $PRint information 

(20) list values of scalars or vectors - $LOok scalar or vector names 

After $PRint, text must be included in quotes and must not contain a $. For 
example, $PRint 'This is the title'. The symbol/after $PRint will cause a new page to 
begin, if the file is printed on a line printer. Vectors and scalars may also be printed by 
listing their names after the instruction. These may be mixed with text. Vectors are 
printed in lines. In contrast, $LOok lists the values of the vectors in columns. Finally, 
$PRint may be used to print the contents of a macro, whether to the screen or to a file. 
The actual contents of the macro are printed, whether instructions or text, so that this 
method may be used to print repeatedly the same title, as in all examples of Appendix 
II. 

We have already mentioned several times the use of macros. An important 
application is to retain in memory a series of instructions which are to be used 
repeatedly instead of retyping them each time. The form of a macro is 

(21) define a macro or program segment - $Macro macroname space text $End 

If the text is a series of instructions, they are executed by typing $Use macroname or 
#macroname. Macros follow the same rules for naming as do vector variables, and 
compete for space in memory with them. 

System information, such as memory space available, may be obtained by 

(22) present system information - $ENVironment code for information desired 

The code D yields a list of vectors and macros defined with the space used by each, 
while U gives space available, S a list of the system structures, and I the special 
characteristics of your implementation of GUM. 

If GLIM gives an error message that too many structures are defined for the 
memory, the unnecessary ones may be removed by 

(23) delete unwanted user-defined structures - $DElete list of macronames and/or 
variable names 

The list of all such structures present may, of course, first be obtained by 
$ENVironment D. 
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Certain system vectors, such as the parameter estimates, are not directly 
available, but may only be obtained by the instruction 

(24) supply a system structure - $EXTract structure 

The following two instructions permit the construction of contingency tables 
from raw observations and their visualization. They will not be used in what follows, 
since the tables are already created. 

(25) create a table from raw data - $Tabulate For variable list separated by semi­
colons Using name of table to be created By new 
variables to be created separated by semi-colons 

After appropriately redefining $UNits and specifying $Yvariate as the table created, 
one may proceed to fit models containing the new variables. 

(26) display a table - $TPrint vector containing frequencies and list of variables 
classifying table separated by semi-colons 

Finally, to terminate analysis of a data set without leaving GUM 

(27) end a data analysis - $End 

This instruction deletes all vectors and macros previously defined in preparation for 
analysis of a new data set. Note that, because GUM only retains the first four 
characters, this instruction is the same as that used to terminate a macro, but is used in 
a different context, with different results. Beware of accidentally typing $Endmac 
twice for a macro; you will lose all of your data, macros, and model definitions. 

3. A Symmetry Model 

For our second example (Table 1.3), we shall study how subjects self-classify 
themselves into four social classes: lower, working, middle, or upper class. 

Lower Working Middle Upper 

72 714 655 41 I 

Table 1.3 Self-Classification of Individuals by Social Class (Haberman, 1978, p.24) 

Study of the table shows that many fewer people have chosen the two extreme 
categories than the central ones. We may ask if this aversion to the extremes is 
symmetrical for the top and the bottom. Thus, we are interested in determining if the 
table is symmetric, i.e. if PI = P4 and P2 = P3 . This can be translated into a log linear 
model in the following terms: 

log (Fk ) = J.l. + ex. 
= J.l. - ex. 

k=l or 4 
k=2 or 3 

(1.9) 
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In this example, and all that follow, the GUM instructions will be supplied in 
the corresponding section of Appendix II. 

For model (1.9), we require a new vector which may readily be created by the 
instruction 

(28) assign values to a vector - $ASSign name = values separated by commas 

This vector has + 1 for the first and last values and -1 for the second and third values. 

We fit tITSt the equiprobability model followed by the symmetry model. The 
results from GUM are as follows: 

SELF-CLASSIFICATION BY SOCIAL CLASS - HABERMAN (1978, P.24) 

scaled deviance = 1266.8 at cycle 4 
d. f. = 3 

Chi2 probability = O. for Chi2 = 1267. with 3. d.f. 

estimate s.e. parameter 
1 5.915 0.02594 1 
scale parameter taken as 1.000 

unit observed fitted residual 
1 72 370.50 -15.508 
2 714 370.50 17.846 
3 655 370.50 14.780 
4 41 370.50 -17.118 

scaled deviance = 11.158 at cycle 3 
d.f. = 2 

Chi2 probability 0.0038 for Chi2 11.16 with 2. d.f. 

Chi2 probability O. for Chi2 1256. with 1. d.f. 

estimate s.e. parameter 
1 5.281 0.04892 1 
2 -1.247 0.04892 CLAS 
scale parameter taken as 1. 000 

unit observed fitted residual 
1 72 56.50 2.062 
2 714 684.50 1.128 
3 655 684.50 -1.128 
4 41 56.50 -2.062 

As may be expected, the equiprobability model fits very badly. The residuals 
indicate the parabolic form of the relationship. However, the symmetry model, with a 
Chi-square of 11.16 for 2 d.f., is also to be rejected. The parameter estimate for CLAS 
is negative, reflecting the fact that fewer people choose the extremes (-1.247 x 1) than 
the middle (-1.247 x -1). A look at the residuals shows that more people than expected 
(for this model) classify themselves as lower class as compared to upper class. 

This symmetry model may be considered to be a quadratic model centred on 
the middle of the social class scale: 
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1 2 3 4 Social Class 

To account for the observed residual differences, it is necessary to shift the parabola, 
to the left in this case. In other words, we need to add a linear term to the quadratic 
term already in our model. We shall now have: 

(1.10) 

where X k1 = 2(k-2.5) and Xk2 = (k-2.5)2 -1.25. 

The reader may verify that B2 xk2 = ±(X for k=l, 2, 3,4 so that this parameter 
remains unchanged between the two models. The choice of 2.5 marks the centre of 
the scale for I to 4. The variables X k1 and Xk2 are called orthogonal polynomials, a 
subject to which we shall return in Chapter 3. 

When we fit this model, we see that the Chi-square test is now satisfactory: 

SELF-CLASSIFICATION BY SOCIAL CLASS - HABERMAN (1978, P.24) 

scaled deviance = 1.4458 at cycle 3 
d. f. = 1 

Chi2 probability 0.2292 for Chi2 

Chi2 probability o. for Chi2 

1. 446 

1265. 

estimate s.e. parameter 
1 5.271 0.04937 1 
2 -0.06409 0.02066 C1 
3 -1. 255 0.04922 C2 
scale parameter taken as 1.000 

with 

with 

An analysis of residuals is of little use, since only I d.f. is left. 

1. d.f. 

2. d.f. 
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4. Periodicity Models 

In the first section of this chapter, we have already encountered one simple 
example of changes in frequency of an event with time. We shall study others in 
subsequent chapters. However, all such changes are not simple linear trends with time. 
Just as the days of the week and the seasons show a periodicity, so do many social 
events. One classical object of sociological study is suicide. Consider, for example, 
the total number of suicides per month in 1968 for the USA (Table 1.4). 

IJan. Feb. Mar. Apr. May June July Aug. Sept.Oct. Nov. Dec.1 
11720 1712 1924 1882 1870 1680 1868 1801 1756 1760 1666 17331 

Table 1.4 Suicides in the USA, 1968 (Haberman, 1978, p.51) 

A glance at the table shows no systematic pattern: June and November have the 
least suicides and March the most. We may then first wish to test for the 
equiprobability of suicide throughout the year. But we must immediately face at least 
one minor problem: all months do not have the same number of days. The rate per 
day is the more pertinent statistic to study. However, our log linear model requires 
absolute frequencies, which rates are not. This factor may, however, be incorporated 
by including a constant term for days: 

(1.11) 

where dk is the number of days in the kth month. The constant term, log(dk ), is known 
as an offset, since it does not involve estimation of any unknown parameters. Another 
similar case would be if we have frequencies of occurrence of an event in various 
regions or cities, where the latter have different populations. Then the offset 
incorporates these populations. A new GUM instruction is required: 

(29) introduce a constant term in the linear model - $Offset vector 

which will be used in the program included in Appendix II. The results given below 
show that the equiprobability model must be rejected: 

SUICIDES, USA, 1968 - HABERMAN (1978, P.51) 

scaled deviance = 37.068 at cycle 3 
d.f. = 11 

Chi2 probability = 0.0001 for Chi2 = 37.07 with 

estimate s.e. parameter 
1 4.067 0.006840 1 
scale parameter taken as 1. 000 

unit observed fitted residual 
1 1720 1810. -2.120 
2 1712 1693. 0.452 
3 1924 1810. 2.675 
4 1882 1752. 3.111 
5 1870 1810. 1.406 
6 1680 1752. -1. 716 
7 1868 1810. 1.359 
8 1801 1810. -0.216 

11. d. f. 
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10 
11 
12 

1756 
1760 
1666 
1733 

1752. 
1810. 
1752. 
1810. 

18 

0.100 
-1.180 
-2.050 
-1.814 

The residuals seem to indicate that there are more suicides in spring and fewer in late 
autumn and winter, The residual plots (not shown) confirm this. 

As a second step, we shall set up a model to allow for differences by season: 

log (F0 = log (dk ) + J.L + Otj j = 1 for k = 1,2,12 (1.12) 
= 2 for k = 3,4,5 
= 3 fork = 6,7,8 
= 4 for k = 9,10,11 

Here, we allow four different probabilities of suicide, one for each season. However, 
as so described, our model has five parameters instead of the four required. We must 
add a constraint. This may be done in a number of ways, all of which are 
mathematically equivalent, but not all of which are as easily interpretable. By default, 
GUM sets at = 0 so that the other three <X.i are comparisons of these three seasons 
with the first. This is done by defining what is called a factor variable, i.e. a variable 
with a specific number of nominal levels or categories. These must be numbered from 
1 to the maximum. A further instruction tells GUM which variables, and these may 
not include the dependent variable, are nominal: 

(30) define nominal or factor variables - $FActor series of variables with their 
numbers of levels 

All other variables are taken by GUM to be measurements and not categorical. 
However, if necessary, they can be explicitly so defined by 

(31) define measured variables - $Variate variable names 

For our seasonality model, the results are as follows: 

SUICIDES, USA, 1968 - HABERMAN (1978, P.51) 

scaled deviance = 12.599 at cycle 3 
d.f. = 8 

estimate s.e. parameter 
1 4.039 0.01391 1 
2 0.08341 0.01923 SEAS(2) 
3 0.02408 0.01951 SEAS (3) 
4 0.003286 0.01966 SEAS(4) 
scale parameter taken as 1.000 

Chi2 probability 0.1256 for Chi2 12.60 

Chi2 probability 0.0000 for Chi2 24.47 

with 8. d.f. 

with 3. d.f. 

By the introduction of three new parameters, we obtain a very significant reduction in 
the Chi-square. And the remaining Chi-square is not significant. We see that 
significantly more suicides occurred in the spring and less in autumn and winter, while 
summer is in between: for winter (category 1), the estimate is 4.039 and for autumn 
(4.039 + 0.003 =) 4.042, while for spring, it is (4.039 + 0.083 =) 4.122. The residuals 
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and plots (not shown) no longer indicate any clear trend. Note that, while residual 
tables and plots will not always be included in the text, for lack of space, they should 
always be produced and inspected for regularities, if the degrees of freedom are not 
too small. 

An alternative, but equivalent, way of placing a constraint on our model is to 
have 

~(X.j = 0 

This is known as the conventional constraint and provides us with comparisons 
around the mean instead of with respect to one privileged category, the fIrst, as was 
the case in what just preceded. However, this is more complex with GUM, since it 
cannot be done automatically. Instead, what is known as a design matrix must be 
defined. This matrix is, in fact, a series of vectors, one for each parameter to be 
estimated. In our case, we have three parameters, the fourth being given by the sum to 
zero. To simplify matters, a general macro, called TRAN, is provided in Appendix III, 
which generates such vectors for any factor variable with up to 9 levels. This macro is 
loaded in the same way as CHIT and RESP, as can be seen from the program for this 
section in Appendix II. The results are: 

SUICIDES, USA, 1968 - HABERMAN (1978, P.51) 

scaled deviance = 12.599 at cycle 3 
d. f. = 8 

1 
2 
3 
4 

estimate 
4.066 

-0.02769 
0.05572 

-0.003618 

s.e. 
0.006845 

0.01199 
0.01162 
0.01185 

scale parameter taken as 

parameter 
1 
Sl 
S2 
S3 

1. 000 

We note immediately that the deviance is identical to the case when we used 
$FActor. This should not be surprising since we are fItting the same model, but simply 
with different constraints. We next note that the differences between seasons are the 
same in the two cases. For example, in the fIrst case, the contrast between spring and 
winter is given directly as 0.08341, while here it is 0.05572 - (-0.02769) = 0.08341. 
Thus, our interpretation does not change. In more complicated examples in the 
subsequent chapters, this second set of constraints will prove invaluable as an aid to 
interpretation. 

It is evident that we have here a cyclical phenomenon, but the choice of seasons 
as the period for the cycles may seem arbitrary for suicides. A more abstract and 
neutral model may be constructed using trigonometrical functions: 

log(Fk)=log(dk)+Bo + Blsin[(2k-l)n:/12] + B 2 cos[(2k-l)n:/12] (1.13) 

GUM has a function for the sine, %SINO, but none for the cosine, so that we may use 
the relationship sin2 a + cos2 a = 1. We note that this model has one less parameter 
than the seasonality one: two parameters in addition to the mean. The results are 

SUICIDES, USA, 1968 - HABERMAN (1978, P.51) 

scaled deviance 14.695 at cycle 3 
d. f. = 9 
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Chi2 probability 0.0990 for Chi2 14.70 with 9. d.f. 

Chi2 probability 0.0000 for Chi2 22.37 with 2. d.f. 

estimate s.e. parameter 
1 4.114 0.01638 1 
2 0.03376 0.009616 SIN 
3 -0.07312 0.02331 COS 
scale parameter taken as 1.000 

As in the fIrst time trend model. a plot of observed and fItted values is also useful 
here. The first plot shows the observed and fItted frequency of suicides over the 
twelve months. The second plot. obtained by taking logarithms of the observed and 
fitted values. shows the sine-cosine curve itself. 

SUICIDES, USA, 1968 - HABERMAN (1978, P.51) 

Observed and fitted values 

1952.0 
1936.0 
1920.0 2 
1904.0 
1888.0 F 
1872.0 F F 
1856.0 'Is 
1840.0 'Is 
1824.0 
1808.0 F 'Is 
1792.0 
1776.0 'Is 
1760.0 'Is 'Is F F 'Is 
1744.0 'Is 
1728.0 F 'Is 'Is F 
1712.0 F 
1696.0 'Is 
1680.0 F 
1664.0 F 
1648.0 

----------:---------:---------:---------:---------:---------:---------
0.00 

Harmonic mod 1 

7.56800 
7.56000 
7.55200 
7.54400 
7.53600 
7.52800 
7.52000 
7.51200 
7.50400 
7.49600 
7.48800 
7.48000 
7.47200 
7.46400 
7.45600 
7.44800 
7.44000 
7.43200 
7.42400 
7.41600 

2.50 

T 

T 
F F 

5.00 

2 

F 
F 

T 
T 

7.50 10.00 12.50 15. 

F 

F T 

T T F F T 
T 

T F 

T 

F 
F 

---------- ---------:---------:---------:---------:---------:---------
0.00 2.50 5.00 7.50 10.00 12.50 15. 

Although the deviance is somewhat higher than in the seasonality model. this is 
compensated by the gain of 1 d.f. The largest deviations between observations and 
model on the graphs occur in early summer. especially in June. This is confIrmed by 
the residuals and plots (not shown). However. both models. the seasonal and the 
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harmonic, do fit the data well. The test will be to apply them to similar data for other 
years to see which one maintains a reasonable fit in varying circumstances. 

5. Local Effects 

We shall now consider one final simple example with a one-way frequency 
table. At times, a model fits only a part of the observations and the rest must be 
ignored in constructing the model. Durkheim (1897, p.10 1) studied the suicide rate 
per day (Table 1.5). 

Monday Tuesday Wednesday Thursday Friday Saturday Sunday 
1001 1035 982 1033 905 737 894 

Table 1.5 Durkheim's Suicides (Haberman, 1978, p.87) 

In this table, more suicides seem to occur at the beginning of the week than at 
the end. We first test for equiprobability of suicide for all days of the week: 

SUICIDES (DURKHEIM) - HABERMAN (1978, P.87) 

scaled deviance = 74.918 at cycle 3 
d.f. = 6 

Chi2 probability = o. for Chi2 = 74.92 

estimate s.e. parameter 
1 6.847 0.01232 1 
scale parameter taken as 1.000 

unit observed fitted residual 
1 1001 941. 0 1. 956 
2 1035 941.0 3.064 
3 982 941. 0 1.337 
4 1033 941. 0 2.999 
5 905 941. 0 -1.174 
6 737 941. 0 -6.650 
7 894 941. 0 -1. 532 

with 6. d.f. 
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SUICIDES (DURKHEIM) - HABERMAN (197B, P.B7) 

poisson Residua1s 

Score Test Coeff~c~ent of Sens~t~v~ty 

0.000 
-O.SOO 
-1.000 
-1.S00 
-2.000 
-2.S00 
-3.000 
-3.S00 
-4.000 
-4.S00 
-S.OOO 
-S.SOO 
-6.000 
-6.S00 
-7.000 
-7.S00 
-B.OOO 
-B.SOO 
-9.000 
-9.S00 

S S 

S 
S 

S S 

S 

---------- ---------:---------:---------:---------:---------:---------
0.60 

Res~dua1 P10t 

3.600 
3.000 
2.400 
1.BOO 
1.200 
0.600 
0.000 

-0.600 
-1.200 
-1.BOO 
-2.400 
-3.000 
-3.600 
-4.200 
-4.BOO 
-S.400 
-6.000 
-6.600 
-7.200 
-7.BOO 

Y 

S 
A 

1.BO 3.00 

Y Y 
2 

2 

4.20 S.40 

A 
S 

2 
Y 

Y 

6.60 

2 

Y 

A 
S 

y 

7. 

----------.---------:---------:---------:---------:---------:---------
-1.BOO -1.200 -0.600 0.000 0.600 1.200 1.f 

Points Y represent 45 line 

The model is clearly rejected. We see from the residuals that it underestimates the rate 
during the first four weekdays and overestimates that for Friday and the weekend. 
Saturday especially stands out, with a much lower rate than any other day. 

In a second model, we construct a binary variable, with four ones and three 
minus ones, to distinguish between these two periods of the week: 

SUICIDES (DURKHEIM) - HABERMAN (1978, P.87) 

scaled deviance 23.351 at cycle 3 
d.f. = 5 

Chi2 probability 0.0003 for Chi2 23.35 with 5. d.f. 

Chi2 probability o. for Chi2 51.57 with 1. d.f. 
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estimate s.e. parameter 
1 6.830 0.01266 1 
2 0.09035 0.01266 DAYS 
scale parameter taken as 1.000 

unit observed fitted residual 
1 1001 1012.7 -0.369 
2 1035 1012.7 0.699 
3 982 1012.7 -0.966 
4 1033 1012.7 0.636 
5 905 845.3 2.052 
6 737 845.3 -3.726 
7 894 845.3 1.674 

SUICIDES (DURKHEIM) - HABERMAN (1978, P.87) 

Poisson Residuals 

Score Test Coefficient of Sensitivity 

0.000 
-0.600 
-1.200 
-1.800 
-2.400 
-3.000 
-3.600 
-4.200 
-4.800 
-5.400 
-6.000 
-6.600 
-7.200 
-7.800 
-8.400 
-9.000 
-9.600 

-10.200 
-10.800 
-11.400 

S S 
S 

S 

S 
s 

S 

---------:---------:---------:---------:---------:---------
0.60 

Residual Plot 

2.800 
2.400 
2.000 
1.600 
1.200 
0.800 
0.400 
0.000 

-0.400 
-0.800 
-1.200 
-1.600 
-2.000 
-2.400 
-2.800 
-3.200 
-3.600 
-4.000 
-4.400 
-4.800 

1.80 

y 

S 

A 

2 
A 

3.00 4.20 

2 

y 

3 

2 
Y 

5.40 

A 
S 

y 

6.60 

A 
S 
Y 

7. 

---------- ---------:---------:---------:---------:---------:--------~ 
-1.800 -1.200 -0.600 0.000 0.600 1.200 1. l 

Points Y represent 45 line 

Now, the residuals and plots indicate that reasonable estimates appear to be given for 
the four weekdays, but Friday and the weekend, especially Saturday, still pose a 
problem. The model is not yet acceptable. 

Let us then ignore completely these three days, which seem to vary among 
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themselves, and fit an equiprobability model to the four weekdays. To do this, we can 
introduce a weighting factor, with unit weight for the days of interest and zero weight 
for the others. The necessary GUM instruction is: 

(32) define weights for the observations - $Weight weight vector 

Such an instruction may also be used for grouped frequency data, where combined 
observations are given weights (greater than unity) equal to their observed numbers. 

We construct a vector with four ones and three zeroes as the weight and refit 
the equiprobability model: 

SUICIDES (DURKHEIM) - HABERMAN (1978, P.87) 

-- model changed 
scaled deviance = 1.9676 at cycle 3 

d.f. = 3 from 4 observations 

Chi2 probability = 0.5831 for Chi2 = 1.968 with 3. d.t. 

estimate s.e. parameter 
1 6.920 0.01571 1 
scale parameter taken as 1.000 

unit observed fitted residual 
1 1001 1012.8 -0.369 
2 1035 1012.8 0.699 
3 982 1012.8 -0.966 
4 1033 1012.8 0.636 
5 905 1012.8 0.000 
6 737 1012.8 0.000 
7 894 1012.8 0.000 

Our model now fits very well. Suicide is equally probable on the first four 
weekdays but varies among Friday, Saturday, and Sunday. We see that the residuals 
are zero for these three days, so that we are, in fact, fitting the model exactly to these 
three observations (although GUM prints out the general mean as the fitted value). 

Through this series of simple frequency tables, we have now encountered many 
of the basic principles of analysis with GUM, as well as all of the necessary 
instructions to be used in the following chapters. The only major new aspects of 
GUM still to be introduced are certain GUM macros for special applications. These 
macros, as those more general ones already introduced, CHIT, RESP, and TRAN, will 
be found in Appendix III. 

We are ready to proceed to more complex models involving frequencies 
classified by several variables. 



CHAPTER 2 

TIME AND CAUSALITY 

1. Retrospective Studies I 

An eternal problem in the social sciences is that of determining direction of 
causality. This is not unique to these disciplines, since it also appears with the same 
force, for example, in the medical sciences or in astronomy. Most of the natural 
sciences are able to resolve the problem through the application of experimental 
methods. Such is not possible for the human sciences. Thus, no unequivocal means is 
available to determine causality where experimentation must be excluded. Various 
indirect methods must be applied. The more mutually-confirming approaches used, 
the more confident may we become that we are perhaps succeeding in isolating a 
cause. 

One of the most useful approaches to the problem of studying causality in this 
context is the use of a time factor. Events which occur later in time cannot affect 
earlier events, or at least we may so suppose in many case. Two approaches to 
collecting chronological information may be distinguished: (1) we may choose a 
sample of individuals according to the criteria of certain explanatory variables and 
then follow them up in time to see what response variable, the variable to be 
explained, is obtained or (2) we may choose a sample according to the response 
variable and then investigate what values of the explanatory variables had previously 
(in time) existed. The first case is a prospective study. It includes panel studies and 
cohort studies. We shall consider it in later sections of this chapter. The second is a 
retrospective study. In the medical sciences, it is often called a case control study. A 
common example in the social sciences is the study of social mobility to which we 
now tum. We may note that the first approach resembles experimentation in the 
natural sciences, with, however, absence of random allocation of the explanatory 
variables. And, in fact, the methods of statistical analysis are often identical, although 
the strength of conclusions cannot be. In contrast, the second approach is specific to 
the human sciences and often requires special analytic procedures. 

In a social mobility study, as in many related social studies, we obtain a sample 
of people with their characteristics, and then retrospectively obtain information about 
their parents. For social mobility, the information is specifically about occupation, but 
the same principle applies for education, political beliefs, and so on. 

As the name implies, a retrospective study does things backwards. We have a 
certain number of children (almost invariably sons) of each occupational category, 
and we look back to see from which parental (father's) occupational category they 
came. We have a sampling structure which implies that we can calculate the 
probability of the father having any given occupation given the son's occupation. 
This is the exact opposite of what we want. In addition, our sample, if correctly 
chosen, will be representative of the sons' occupations but not of the fathers'. The 
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occupational structure may have changed between the two generations, but we are 
interested in mobility, not in these structural changes. 

Our observations take the form of a two-way table, cross- classifying the two 
occupational variables. Our two problems, the retrospective nature of the study and 
the changes in occupational structure, may be resolved by the same procedure: we 
study changes within the table given (conditional on the fact) that the marginal totals 
are fixed; we then apply the log linear model. It is possible to demonstrate that this is 
the only procedure which can resolve these two problems. 

Son 1 2 3 4 5 
Father Categories 

150 45 8 18 81 1 Professional, High Administrative 
128 174 84 154 551 2 Managerial, Executive, High Supervisory 
111 78 110 223 961 3 Low Inspectional, Supervisory 
114 150 185 714 4471 4 Routine Nonmanual, Skilled Manual 
I .3 ~2 12 .320 Ull 5 Semi- and Unskilled Manual 

Table 2.1 British Inter-Generational Social Mobility (Glass, 1954, as modified by 
Bishop et al, 1975, p.l00) 

We shall now briefly consider a classical social mobility table, derived from 
Glass (1954): Table 2.1. More detailed analyses of such mobility tables will be 
delayed until Chapters 5 and 6, where a number of specific models for such studies 
will be introduced. Here we shall only consider whether or not the son's occupation 
depends on the father's. If it does not, the two variables are said to be independent. 
For this example, we shall again fit the model in two ways, with factor variables 
($FActor) and by constructing our own design matrix. 

With GUM, a cross-tabulated table, to which log linear models are to be fitted, 
is stored in a single vector containing the observed frequencies. A series of other 
vectors must be defined to index the row, columns, and so on, of the multi­
dimensional matrix. Each of these latter vectors represents a variable to be fitted to the 
data. Thus, analysis of log linear models with GUM involves one more vector of 
values than the number of variables to be included in the model. Here, our two-way 
table has two variables, father's and son's occupation, but requires three vectors. 

We first fit the model where only the two sets of marginal frequencies are fixed: 

(2.1) 

This is the model for independence between the two occupational situations. Each of 
the (mean) parameter vectors is analogous to those already encountered in Chapter 1. 
The results show that this model cannot be accepted: 

BRITISH SOCIAL MOBILITY - GLASS (1954) 

scaled deviance 792.19 at cycle 5 
d.f. = 16 
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estimate s.e. parameter 
1 1.363 0.1300 1 
2 1.529 0.1071 SON(2) 
3 1.466 0.1077 SON(3) 
4 2.601 0.1006 SON(4) 
5 2.261 0.1020 SON(5) 
6 1.345 0.09884 FATH(2) 
7 1.390 0.09839 FATH (3) 
8 2.460 0.09172 FATH(4) 
9 1.883 0.09449 FATH(5) 
scale parameter taken as 1.000 

BRITISH SOCIAL MOBILITY - GLASS (1954) 

scaled deviance = 792.19 at cycle 5 
d.f. = 16 

estimate s.e. parameter 
1 4.350 0.02949 1 
2 -1.571 0.07919 SON1 
3 -0.04248 0.04290 SON2 
4 -0.1058 0.04382 SON3 
5 1. 030 0.03215 SON4 
6 -1. 416 0.07205 FAT1 
7 -0.07086 0.04188 FAT2 
8 -0.02544 0.04123 FAT3 
9 1.044 0.03064 FAT4 
scale parameter taken as 1.000 

unit observed fitted residual 
1 50 3.907 23.320 
2 45 18.023 6.354 
3 8 16.917 -2.168 
4 18 52.669 -4.777 
5 8 37.484 -4.816 
6 28 14.991 3.360 
7 174 69.159 12.607 
8 84 64.916 2.369 
9 154 202.101 -3.384 

10 55 143.833 -7.407 
11 11 15.688 -1.184 
12 78 72.372 0.662 
13 110 67.932 5.104 
14 223 211. 492 0.791 
15 96 150.516 -4.444 
16 14 45.731 -4.692 
17 150 210.969 -4.198 
18 185 198.026 -0.926 
19 714 616.511 3.926 
20 447 438.763 0.393 
21 3 25.682 -4.476 
22 42 118.478 -7.026 
23 72 111.209 -3.718 
24 320 346.226 -1. 409 
25 411 246.405 10.486 
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BRITISH SOCIAL MOBILITY - GLASS (~954) 

Poisson Residuals 
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The size of the Chi-square is such that it is not even necessary to check the level of 
significance. A glance at the residuals and at the coefficient of sensitivity shows that 
the diagonal residuals are large and positive; the model has underestimated these 
values. This model of independence does not predict the observed fact that many sons 
remain in the same occupational category as their fathers. 

An alternative is to fit what is known as the saturated model, a model with as 
many parameters as there are entries in the table: 

(2.2) 

This model must necessarily fit the data exactly. Here YIk is a matrix of parameters 
describing the mobility between generations under the conditions set forth above: a 
retrospective study with changing occupational structure. As with the mean parameter 
vectors, constraints must be applied to this parameter matrix in order to be able to 
estimate the model. As with factor variables in Chapter 1, GUM very simply sets the 
first row and the first column to zero so that all remaining values are comparisons with 
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the ('lISt category of each variable. Here the complications of interpretation begin. But 
the model may very easily be fitted by placing a dot between the two variable names 
which have been declared in $FActor: 

$Fit FATH + SON + FATH.SON 

The three tenns correspond exactly to the last three in the log linear model (2.2) 
above. GUM implicitly fits the mean. Another equivalent formulation is 

$Fit FATH * SON 

The use of the asterix implies that all lower order tenns are automatically included. 
Note that this is not the same as multiplying FATH*SON in $CAlculate and then 
fitting the result. The latter adds only one (linear interaction) term to the model, while 
the former adds a large number of main effect and interaction terms. 

In contrast to this, construction of a design matrix is considerably more 
complex. Each of the two variables must be translated into a series of variables (four 
in this case) using TRAN. Then, all possible products of these two sets of four 
variables, i.e. 16 new variables, must be calculated. This is possible by means of 
macros, but unfortunately, a different macro is required for each size of variable 
encountered (i.e. 2x2, 2x3, 2x4, ... ). One example of such a macro is given in 
Appendix III. Note also the insertion of the resulting term in the fit by means of a 
second macro with #. 

The results from GLIM by the two approaches are: 

BRITISH SOCIAL MOBILITY - GLASS (1954) 

scaled deviance = 0.00000000 at cycle 3 
d.f. = 0 

estimate s.e. parameter 
1 3.912 0.1414 1 
2 -0.1054 0.2055 SON(2) 
3 -1. 833 0.3808 SON (3) 
4 -1. 022 0.2749 SON(4) 
5 -1. 833 0.3808 SON(5) 
6 -0.5798 0.2360 FATH(2) 
7 -1. 514 0.3330 FATH(3) 
8 -1. 273 0.3024 FATH(4) 
9 -2.813 0.5944 FATH(5) 

10 1.932 0.2893 SON(2) .FATH(2) 
11 2.064 0.3820 SON(2) .FATH(3) 
12 2.477 0.3469 SON(2) .FATH(4) 
13 2.744 0.6319 SON(2) .FATH(5) 
14 2.931 0.4389 SON(3) .FATH(2) 
15 4.135 0.4950 SON(3) .FATH(3) 
16 4.414 0.4710 SON(3) .FATH(4) 
17 5.011 0.7016 SON(3) .FATH(5) 
18 2.726 0.3432 SON(4) .FATH(2) 
19 4.031 0.4135 SON(4) .FATH(3) 
20 4.953 0.3852 SON(4) .FATH(4) 
21 5.691 0.6419 SON(4) .FATH(5) 
22 2.508 0.4460 SON(5) .FATH(2) 
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23 3.999 0.4963 SON(5) .FATH(3) 
24 5.296 0.4676 SON(5) .FATH(4) 
25 6.753 0.6934 SON(5) .FATH(5) 
scale parameter taken as 1.000 

BRITISH SOCIAL MOBILITY - GLASS (1954 ) 

scaled deviance = 0.00000000 at cycle 3 
d.f. = 0 

estimate s.e. parameter 
1 4.184 0.04034 1 
2 -1. 508 0.1219 SON1 
3 0.2300 0.05778 SON2 
4 -0.04262 0.07480 SON3 
5 0.9506 0.05773 SON4 
6 -1.231 0.09987 FAT1 
7 0.2091 0.05917 FAT2 
8 0.1012 0.06850 FAT3 
9 0.9245 0.06098 FAT4 

10 2.467 0.1744 RR11 
11 0.4471 0.1720 RR12 
12 -0.3792 0.2251 RR13 
13 -0.9614 0.2066 RR14 
14 0.6231 0.1403 RR21 
15 0.5358 0.08532 RR22 
16 -0.1586 0.1050 RR23 
17 -0.3280 0.08848 RR24 
18 -0.8315 0.2428 RR31 
19 0.08016 0.1084 RR32 
20 0.4578 0.1092 RR33 
21 0.1543 0.09814 RR34 
22 -1.014 0.1780 RR41 
23 -0.3069 0.08685 RR42 
24 0.1713 0.08951 RR43 
25 0.5116 0.07700 RR44 
scale parameter taken as 1.000 

For this second approach, using the design matrix, the parameter values for the 
last line and column may be obtained through the constraint that each line or column 
sums to zero: the value is obtained by adding up the row or column and changing the 
sign. Here the matrix is 

2.467 0.4471 -0.3792 -0.9614 -1.5735 
0.6231 0.5358 -0.1586 -0.3280 -0.6723 

-0.8315 0.0802 0.4578 0.1543 0.1392 
-1.014 -0.3069 0.1713 0.5116 0.6380 
-1.2446 -0.7562 -0.0913 0.6235 1.4686 

The deviance for this saturated model is zero, corresponding to the fact that it 
fits perfectly. In this case, study of the residuals is of no use, since they are all zero. 

We see from our parameter matrix once again how the diagonal categories are 
over-represented. Members of the two extreme categories, professional and high 
administrative and semi- and unskilled have especially little mobility. We now have 
values which eliminate the bias from the retrospective method and from changes in 
occupational structure. 
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In Chapters 5 and 6, we shall study other intermediate models between the 
independence and saturated models for such square tables as this mobility table. 

2. Retrospective Studies n 

Our 'second example of a retrospective study is a typical case- control study 
(Table 2.2). The response variable of interest is use of a university contraceptive 
clinic. A sample of clinic users comprised the case group and a corresponding sample 
of non-users formed the control. The data were checked to verify that the two groups 
were similar for various background variables. Most often in case-control studies, the 
individuals are actually matched on these variables. 

Use Cl.inic 
Yes No 

Virgin Attitude to Sex 
Yes 
Yes 
No 
No 

Always Wrong 
Not Always Wrong 

Always Wrong 
Not Always Wrong 

I 23 231 
I 29 671 
1127 181 
1112 151 

Table 2.2 Clinic Use, Attitude to Extra-Marital Sex, and Virginity (Fienberg, 
177,p.92) 

The explanatory variables of interest are virginity and attitude to extra-marital 
sexual relations. Each of the three variables involved is binary or dichotomous. When 
the response variable is binary, analysis with GLIM may be simplified by using a 
binomial distribution instead of Poisson. For this example, we shall present the two 
approaches to demonstrate that the results are the same and to illustrate the 
relationships between them. We begin with the analysis using the Poisson distribution, 
that is with the log linear model: 

(2.3) 

We consider here only the conventional constraints of summation to zero and 
shall not use the GUM $FActor facility. For dichotomous variables, the design matrix 
can be constructed very simply without need for the macro TRAN, as seen in the 
program in Appendix II. 

We now have a much more complex model than previously since, with more 
than two variables present, they can interact in groups of two or more. The indices 
indicate which variables are interacting. 

For the log linear model, we must consider that the marginal totals for the three 
variables are fixed, as are the totals for the relationship between the two explanatory 
variables, attitude and virginity. Thus, our base model is 

(2.4) 
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After fitting, we see that this base model must be rejected: 

CLINIC USE (FIENBERG, 1976 P.92) 

scaled deviance 
d.f. 

Chi2 probability = 

121.34 at cycle 4 
3 

O. for Chi2 = 121.3 

estimate s.e. parameter 
1 3.770 0.05837 1 
2 -0.1508 0.05415 ATTI 
3 -0.3570 0.05415 VIRG 
4 0.4306 0.05376 USE 
5 -0.2171 0.05415 AV 
scale parameter taken as 1.000 

with 3. d.f. 

Clinic use depends either upon attitude or upon virginity or both. We now introduce 
the relationship between clinic use and virginity and immediately find that we have an 
acceptable model: 

CLINIC USE (FIENBERG, 1976 P.92) 

scaled deviance 5.1905 (change -116.1) at cycle 3 
d.f. 2 (change -1) 

Chi2 probability 0.0746 for Chi2 5.190 with 2. d.f. 

Chi2 probability o. for Chi2 116.1 with 1. d.f. 

estimate s.e. parameter 
1 3.629 0.06560 1 
2 -0.1508 0.05415 ATTI 
3 -0.1625 0.06560 VIRG 
4 0.3578 0.06365 USE 
5 -0.2171 0.05415 AV 
6 -0.6321 0.06365 UV 
scale parameter taken as 1.000 

Virgins have a lower probability of using the clinic, as indicated by the negative value 
of the parameter for the use/virginity interaction. If, instead of this relationship, we 
substitute that between clinic use and attitude, we see that the model is not acceptable: 

CLINIC USE (FIENBERG, 1976 P.92) 

scaled deviance 109.60 (change +104.4) at cycle 4 
d.f. 2 (change 0 ) 

Chi2 probability 0.0000 for Chi2 109.6 with 2. d.f. 

Chi2 probability 0.0006 for Chi2 11. 73 with 1. d.f. 

estimate s.e. parameter 
1 3.744 0.06040 1 
2 -0.2312 0.06040 ATTI 
3 -0.3570 0.05415 VIRG 
4 0.4598 0.05608 USE 
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6 

-0.2171 
0.1888 

0.05415 
0.05608 

scale parameter taken as 
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AV 
UA 

1.000 

Finally, if we include both relationships at the same time, we again have an acceptable 
model, but not significantly better than that with only the relationship between clinic 
use and virginity. 

scaled deviance = 2.9165 (change = -106.7) at cycle 3 
d.t. = 1 (change = -1) 

Chi2 probability 0.0877 tor Chi2 2.916 with 1. d.t. 

Chi2 probability 0.0000 tor Chi2 118.4 with 2. d.t. 

estimate s.e. parameter 
1 3.629 0.06548 1 
2 -0.1765 0.05727 ATTI 
3 -0.1593 0.06541 VIRG 
4 0.3746 0.06513 USE 
5 -0.1680 0.06286 AV 
6 0.09879 0.06553 UA 
7 -0.6162 0.06428 UV 
scale parameter taken as 1.000 

Thus, we can exclude the relationship between clinic use and attitudes to sex outside 
marriage. 

We now repeat the analysis using the binomial distribution. Our model is now 

(2.5) 

where the four parameter sets correspond to those with the same Greek letters in 
model (2.3) above. With the model presented in this way, we may interpret the 
relationship between the three variables at the same time (gamma), as the statistical 
interaction between the two explanatory variables with respect to the response variable 
(in the same way as for normal theory ANOV A or regression). 

In the case of the binomial distribution, $ERror requires specification of an 
additional vector, that of the binomial denominator. The data must be presented 
somewhat differently to those for the log linear model above, since we now have two 
vectors containing the observed frequencies, here users and the total for each 
combination of categories of the explanatory variables. This model with a binary 
response is often known as the logistic model. 

If we follow the same steps as above, GUM gives the following results: 

CLINIC USE (FIENBERG, 1976 P.92) 

scaled deviance = 121.34 at cycle 3 
d.t. = 3 

Chi2 probability = O. tor Chi2 = 121. 3 with 3. d.t. 



1 
estimate 

0.8611 
s.e. 

0.1074 
scale parameter taken as 
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parameter 
1 

1.000 

scaled deviance = 5.1905 (change = -116.1) at cycle 3 
d.f. = 2 (change = -1) 

Chi2 probability 

Chi2 probability 

1 
2 

estimate 
0.7157 
-1.264 

0.0746 for Chi2 5.190 with 

o. for Chi2 116.1 with 

s.e. 
0.1273 
0.1273 

parameter 
1 
VIRG 

scale parameter taken as 1.000 

CLINIC USE (FIENBERG, 1977, P.92) 

2. d.f. 

1. d.f. 

scaled deviance = 109.60 (change 
d.f. = 2 (change 

+104.4) at cycle 3 
o ) 

Chi2 probability 

Chi2 probability 

1 
2 

estimate 
0.9195 
0.3775 

0.0000 for Chi2 109.6 with 

0.0006 for Chi2 11.73 with 

s.e. 
0.1119 
0.1119 

parameter 
1 
ATTI 

scale parameter taken as 1.000 

2. d.f. 

1. d.f. 

scaled deviance = 2.9165 (change = -106.7) at cycle 3 
d.f. = 1 (change = -1) 

Chi2 probability 

Chi2 probability 

1 
2 
3 

estimate 
0.7492 
0.1976 
-1. 232 

0.0877 for Chi2 2.916 with 

0.0000 for Chi2 118.4 with 

s.e. 
0.1302 
0.1310 
0.1285 

parameter 
1 
ATTI 
VIRG 

scale parameter taken as 1.000 

1. d.f. 

2. d.f. 

We see that all of the deviances (and Chi-squares) are the same as for the log-linear 
model but that the parameter values of interest are twice as large for the logistic model 
(2.5) as for the log linear model (2.3). Model fitting is simpler and more efficient 
because the base model is the minimal model and the vectors are half as long in this 
case. 

We have analysed this example as if the relationship between response and 
explanatory variable were clear. A moment's reflection, however, shows that no 
specific time sequence necessarily holds among the variables. Anyone of the three 
might be the response, explained by the other two. Indeed, our first analysis, with the 
log linear model, permits anyone of the three interpretations, although the analysis 
would proceed slightly differently due to choice of the base model and the subsequent 
inclusion of the relationship between a different pair of variables in it. Or all three 
variables may be considered on the same level and their inter-relationships studied. In 
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this case, only the three main effects are included in the base model. Again, the log 
linear model permits this. Response and explanatory variables are distinguished only 
by the interpretation of the analyst and not by the statistics of the analysis. This is 
directly related to the fact that the log linear (and logistic) model may be equally well 
applied to prospective and retrospective studies. 

Our final model must include the relationships between attitude and virginity 
(the reader is invited to verify that this is necessary) and between virginity and clinic 
use. At least six distinct lines of causality may be imagined: 

(1) Attitude -> Virginity -> Clinic Use 

(2) 

(3 ) 

-> Attitude 
Virginity 

-> Clinic Use 

Virginity -> Clinic Use 
i 
J. 

Attitude 

(4) Clinic Use -> Virginity -> Attitude 

Attitude -> 
(5) Virginity 

( 6) 

Clinic Use -> 

Virginity 
i 
J. 

Clinic Use 

-> Attitude 

Here, a single-headed arrow indicates causality and a double-headed arrow a non­
causal relationship of association. In this series of causal models, we have not even 
considered the possibility that some other factor, not included in the study, 
personality, social class, biological makeup, etc., is, in fact, the underlying causal 
factor for two or all three of these variables. 

In no case, whether choice among the six or more alternative causal models or 
consideration of an external factor, can the analysis with the log linear model aid in 
making the decision. The choice must depend on other social information, perhaps 
combined with knowledge of the way the data were collected. Post hoc statistical 
analysis cannot resolve problems of causality. 

3. Panel Studies 

A panel study involves posing the same set of questions to the same individuals 
at several points in time. Here, we necessarily avoid the time-sequential ambiguity of 
the previous example, at least for relations between time points. The ambiguity may 
still remain for relationships among responses at the same time point. In this section, 
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we shall consider a classical example of a two-wave panel with two variables at each 
time point. This is a study of schoolboys, their membership in the "leading crowd", 
and their attitude to it (Table 2.3). 

As in the previous example, all variables are dichotomous, so that we may use 
the logistic model with the binomial distribution. This involves entering the table three 
times, after collapsing it over various variables. 

Attitude 2 
Favourable Unfavourable 

Attitude 1 Member 1 Member 2 
Favourable Yes Yes 1458 140 I 
Unfavourable Yes Yes 117l 1821 
Favourable No Yes 1184 751 
Unfavourable No Yes I 85 971 
Favourable Yes No 1110 491 
Unfavourable Yes No I 56 871 
Favourable No No 1531 2811 
Unfavourable No No 1336 SS~I 

Table 2.3 Members of the Leading Crowd at Two Points in Time (Coleman, 1964, 
p.I71) 

In the previous example, we studied all three variables simultaneously in the 
same model, since anyone could possibly influence the others. Here, the responses of 
the second time cannot influence those of the first so that we must analyze them in a 
model which does not include the second wave (Le. a table collapsed over the 
variables of the second time point). 

In general, in a panel study, it will not be possible to distinguish order of 
causality within a wave. In our case, self- evaluation of membership in the leading 
crowd and attitude to that crowd will be mutually influential. Thus, in the first wave, 
we take attitude towards the leading crowd and membership as mutually interacting. 
The relationship is very significant. Members are more favourable to the existence of 
a leading crowd than are non-members: 

MEMBERS OF THE LEADING CROWD (COLEMAN, 1964, P.171) 

Response variable: ATTI 

scaled deviance 35.163 at cycle 3 
d.f. = 1 

Chi2 probability = O. for Chi2 = 35.16 with 

estimate s.e. parameter 
1 0.1521 0.03441 1 
scale parameter taken as 1.000 

unit observed out of fitted residual 
1 757 1253 674.1 4.699 
2 1071 2145 1153.9 -3.592 

scaled deviance 0.0000000 (change -35.16) at 
d.f. 0 (change -1 ) 

1. d.f. 

cycle 3 



1 
2 

estimate 
0.2100 
0.2128 

s.e. 
0.03606 
0.03606 

scale parameter taken as 
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parameter 
1 
MEM 

1.000 

Note that, with one degree of freedom, study of residuals is not informative. 

We shall now rather arbitrarily take a first variable of the second wave, 
membership, as it depends on previous membership and attitude at the first time point. 
We fit the model with neither explanatory variable, then that with membership at the 
first wave added. The Chi-square is very greatly reduced, as might be expected with 
two so closely related variables, but a significant lack of fit still remains. We, then, 
add the attitude variable and obtain a very good fit of the model: 

MEMBERS OF THE LEADING CROWD (COLEMAN, 1964, P.171) 

Response variable: MEM2 

scaled deviance 1062.7 at cycle 2 
d.f. = 3 

Chi2 probability = O. 

1 
estimate 

-0.3654 

for Chi2 = 1063. with 

s.e. 
0.03487 

parameter 
1 

scale parameter taken as 1.000 

3. d.£. 

scaled deviance 27.183 (change = -1036.) at cycle 3 
d.f. 2 (change = -1 ) 

Chi2 probability 0.0000 for Chi2 27.18 with 2. d.f. 

Chi2 probability O. for Chi2 1036. with 

1 
2 

estimate 
-0.1023 

1. 249 

s.e. 
0.04248 
0.04248 

scale parameter taken as 

parameter 
1 
MEM 

1. 000 

1. d.£. 

scaled deviance 0.022439 (change = -27.16) at cycle 3 
d.f. = 1 (change = -1 ) 

Chi2 probability 0.8809 for Chi2 0.0224 with 1. d.f. 

Chi2 probability o. for Chi2 1063. with 2. d.f. 

estimate s.e. parameter 
1 -0.1260 0.04292 1 
2 1. 239 0.04266 MEM 
3 0.2183 0.04200 ATT 
scale parameter taken as 1. 000 

We still have one degree of freedom left, which corresponds to the interaction 
between attitude and membership at the first time point with respect to membership at 
the second time. This parameter is not necessary for our model. Membership at time 
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point 2 is more probable if one was already a member at point 1 and if one was 
favourable to the existence of a leading group at that time. 

We now take. in our third model. the second attitude as response. We fIrst fIt 
the base model with no explanatory variables. 

MEMBERS OF THE LEADING CROWD (COLEMAN, 1964, P.171) 

Response variable: ATT2 

scaled deviance 
d.f. 

323.80 at cycle 3 
7 

Chi2 probability = O. for Chi2 = 323.8 with 

estimate s.e. parameter 
1 0.2772 0.03464 1 
scale parameter taken as 1. 000 

unit observed out of fitted residual 
1 458 598 340.18 9.729 
2 171 353 200.81 -3.204 
3 184 259 147.34 4.600 
4 85 182 103.53 -2.774 
5 110 159 90.45 3.131 
6 56 143 81.35 -4.280 
7 531 812 461.92 4.895 
8 338 892 507.43 -11. 455 

MEMBERS OF THE LEADING CROWD (COLEMAN, 1964, P.171) 

B~nom~a1 Res~du&1s 

Score Test Coefficient of Sensitivity 

0.00 
-4.00 
-8.00 

-12.00 
-16.00 
-20.00 
-24.00 
-28.00 
-32.00 
-36.00 
-40.00 
-44.00 
-48.00 
-52.00 
-56.00 
-60.00 
-64.00 
-68.00 
-72.00 
-76.00 

s 

s S S S S 
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S 

s 
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Attitude at the second point in time depends on at least some of the other variables. 
The score test coefficient of sensitivity indicates that the fIrst and last categories are 
least well fItted by the model; the number favourable to membership at the second 
time point is under-estimated for the category, member at both times and favourable 
the first time, and over-estimated for the category, not member either time and 
unfavourable the first time. 

Next we fIt a model with the three main effects, attitude at point one and 
membership at the two points. 

MEMBERS OF THE LEADING CROWD (COLEMAN, 1964, P.171) 

scaled deviance 1.1868 (change = -322.6) at cycle 3 
d.f. 4 (change = -3 ) 

Chi2 probability 0.8805 for Chi2 1.187 with 4. d.L 

Chi2 probability o. for Chi2 322.6 with 3. d.f. 

estimate s.e. parameter 
1 0.3101 0.03815 1 
2 0.5792 0.03648 ATT1 
3 0.07604 0.04503 MEM1 
4 0.1680 0.04418 MEM2 
scale parameter taken as 1.000 

unit observed out of fitted residual 
1 458 598 452.36 0.537 
2 171 353 174.29 -0.350 
3 184 259 188.39 -0.612 
4 85 182 82.96 0.303 
5 110 159 109.62 0.066 
6 56 143 58.73 -0.464 
7 531 812 532.63 -0.121 
8 338 892 334.02 0.275 
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MEMBERS OF THE LEADING CROWD (COLEMAN, 1964, P.171) 

Binomial Residuals 

Score Test Coefficient of Sensitivity 

0.0000 
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This model fits very well, with four degrees of freedom left; no interaction effects are 
necessary. The coefficient of sensitivity indicates that the problem with the extremes 
persists but now both extremes are under-estimated. We shall treat problems with 
extremes in more detail in Chapter 6. 

We may now wonder if any of the main effects might be eliminated. Instead of 
removing each variable in tum, let us look at the relationships between the parameter 
estimates and their standard errors. We see that the ratio for membership at point one 
is considerably less than 2: (0.076/0.045), which is not the case for the other two 
variables. We shall eliminate it. 

MEMBERS OF THE LEADING CROWD (COLEMAN, 1964, P.171) 

scaled deviance 
d.f. 

4.0366 {change 
5 (change 

+2.850) at cycle 3 
+1 ) 



chi2 probability 

chi2 probability 

estimate 
1 0.2969 
2 0.5810 
3 0.2079 
scale parameter 

unit observed 
1 458 
2 171 
3 184 
4 85 
5 110 
6 56 
7 531 
8 338 

MEMBERS OF THE LEADING 

Binomial Residuals 

Score Test 

0.000 
-0.120 
-0.240 
-0.360 
-0.480 
-0.600 
-0.720 
-0.840 
-0.960 
-1.080 
-1.200 
-1.320 
-1.440 
-1.560 
-1.680 
-1.800 
-1.920 
-2.040 
-2.160 
-2.280 

Coeffi.cient 

S 
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0.5461 for Chi2 4.037 with 5. d.f. 

o. for Chi2 319.8 with 2. d.!. 

s.e. parameter 
0.03727 1 
0.03646 ATT1 
0.03737 MEM2 

taken as 1.000 

out of fitted residual 
598 447.06 1. 030 
353 169.78 0.130 
259 193.63 -1. 377 
182 87.53 -0.376 
159 105.18 0.808 
143 54.26 0.301 
812 537.13 -0.455 
892 338.43 -0.030 

CROWD (COLEMAN, 1964, P.171) 

of Sensitivity 
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The Chi-square is now larger, but not significantly so, and the model is still 
acceptable. Neither of the other variables can be eliminated. 

A look at the coefficient of sensitivity indicates that the extremes no longer pose 
a problem. Attitude is more favourable at point 2 if one is a member and if attitude 
was already favourable previously. Previous membership has no significant effect on 
current attitude when these other two variables are taken into account. 

In the analysis of the second wave of the panel, we might usefully have taken a 
different approach, by using the log linear, instead of the logistic, model and studying 
all inter-relationships at the same time, instead of in two steps as above. This would be 
justified by the impossibility of assigning priority to membership or attitude and would 
remove the arbitrariness noted above. Relationships in the final step above would not 
change, since parameter values for the log linear and logistic models are identical, but 
those of the second step (second wave membership as dependent variable) would. 
since this model does not include second wave attitude. 

We may now summarize our findings in a path diagram. as in the previous 
example: 

Time 
1 2 

Membership -> Membership 
i - i 
J, -/ J, 

Attitude -> Attitude 

In general, current membership positively affects current attitude, as does previous 
attitude. but not previous membership. Previous membership and attitude positively 
affect current membership. 

Such path diagrams as the two presented in this chapter are often useful in 
summarizing certain social relationships. However, their application is very limited, 
since all variables must be dichotomous and no interactions may be present. Such a 
situation is rarely the case in the study of any complex social phenomena. In addition, 
the user must be wary of interpreting such diagrams as demonstrating causality. 

4. First Order Markov Chains 

When panel observations are available over more than two time periods, it is 
possible to determine if the same pattern of change occurs in each period. Suppose 
that individual responses at a given time point depend only on those of the 
immediately preceding point. This is the hypothesis of a first order Markov chain. 
Then, the probability of an individual belonging to any given category depends only 
on his/her category for the immediately preceding time point. We have a square 
transition matrix of probabilities. If the rows are the categories at the previous time 
point and the columns are the present categories. then the row probabilities sum to 
one. This matrix represents the pattern of change; if it is the same over each period. 
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we have stationarity. In this section, we shall test the stationarity of a first order 
Markov chain, assuming the fIrst order hypothesis. In the next section we shall test the 
latter hypothesis. 

Party 
Republican Democrat Undecided 

June 
Party 

Republican 1125 5 161 
May Democrat I 7 106 151 

Undecided I 11 18 1421 

July 

Republican 1124 3 161 
June Democrat I 6 109 141 

Undecided I 22 9 1421 

August 

Republican 1146 2 4 j 
July Democrat I 6 111 41 

Undecided I 40 36 961 

September 

Republican 1184 1 71 
August Democrat I 4 140 51 

Undecided I 10 12 821 

October 

Republican 1192 1 51 
September Democrat I 2 146 51 

Undecided I 11 l2 711 

Table 2.4 One Step Transitions for Voting Intentions in the 1940 US 
Presidential Elections, Erie County (Goodman, 1962) 

A common application of Markov chains is to voting behaviour. Here, we 
consider successive monthly expressions of intention to vote in the 1940 US 
presidential elections for Erie County (Table 2.4). The data consist of a series of fIve 
two-way tables, yielding a three-way table over the five time periods. 

We have three variables: the voting intention at the beginning of any period (3 
categories), the voting intention at the end of any period (3 categories), and the time 
periods themselves (5 categories). The test for stationarity is a test of independence 
between time period and intention to vote at the end of the period; this relationship is 
omitted from the model. Thus, the model will contain the three sets of mean 
parameters and those for the relationships between intentions at the beginning and end 
of a period and for those between intentions at the beginning of a period and the 
period itself. A macro, MPCT, calculates the transition matrix (assuming stationarity) 
and tests for stationarity. 
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ONE STEP TRANSITIONS - VOTERS IN ERIE COUNTY, 1940 (GOODMAN, 1962) 

First Order Markov Chain 

Estimated Stationary Transition Probabilities 

0.92780 
0.03676 
0.13165 

0.01444 
0.90000 
0.12185 

0.05776 
0.06324 
0.74650 

Test for Stationarity 

scaled deviance = 101.51 at cycle 4 
d.f. = 24 

Chi2 probability = 0.0000 for Chi2 = 101.5 with 

estimate s.e. parameter 
1 4.909 0.08332 1 
2 -3.360 0.2308 T1(2) 
3 -1. 795 0.1484 T1(3) 
4 -4.163 0.2909 T2(2) 
5 -2.776 0.1488 T2 (3) 
6 -0.02076 0.1177 TIME(2) 
7 0.04027 0.1159 TIME(3) 
8 0.2739 0.1098 TIME (4) 
9 0.3047 0.1091 TIME(5) 

10 7.361 0.3553 T1 (2) .T2 (2) 
11 3.319 0.2922 T1 (2) .T2 (3) 
12 4. 085 0.3267 T1(3) .T2(2) 
13 4.512 0.1861 T1 (3) .T2 (3) 
14 0.02854 0.1715 T1(2) .TIME(2) 
15 -0.09651 0.1718 T1 (2) .TIME(3) 
16 -0.1220 0.1630 T1 (2) . TIME (4) 
17 -0.1263 0.1620 T1(2) .TIME(5) 
18 0.03239 0.1596 T1(3) .TIME(2) 
19 -0.03444 0.1584 T1 (3) .TIME(3) 
20 -0.7712 0.1659 T1(3) .TIME(4) 
21 -0.9030 0.1685 T1(3) .TIME(5) 
scale parameter taken as 1.000 

ONE STEP TRANSITIONS - VOTERS IN ERIE COUNTY, 1940 

unit observed fitted residual 
1 125 135.458 -0.899 
2 5 2.108 1.992 
3 16 8.433 2.606 
4 7 4.706 1.058 
5 106 115.200 -0.857 
6 15 8.094 2.427 
7 11 22.513 -2.426 
8 18 20.836 -0.621 
9 142 127.651 1.270 

10 124 132.675 -0.753 
11 3 2.065 0.651 
12 16 8.260 2.693 
13 6 4.743 0.577 
14 109 116.100 -0.659 
15 14 8.157 2.046 

24. d.f. 

(GOODMAN, 1962) 
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16 22 22.776 -0.163 
17 9 21. 080 -2.631 
18 142 129.144 1.131 
19 146 141.025 0.419 
20 2 2.195 -0.132 
21 4 8.780 -1. 613 
22 6 4.449 0.736 
23 111 108.900 0.201 
24 4 7.651 -1.320 
25 40 22.644 3.647 
26 36 20.958 3.286 
27 96 128.398 -2.859 
28 184 178.137 0.439 
29 1 2.773 -1.065 
30 7 11.090 -1.228 
31 4 5.478 -0.631 
32 140 134.100 0.509 
33 5 9.422 -1. 441 
34 10 13.692 -0.998 
35 12 12.672 -0.189 
36 82 77.636 0.495 
37 192 183.704 0.612 
38 1 2.859 -1.100 
39 5 11.437 -1.903 
40 2 5.625 -1.528 
41 146 137.700 0.707 
42 5 9.675 -1.503 
43 11 12.375 -0.391 
44 12 11. 454 0.161 
45 71 70.171 0.099 

ONE STEP TRANSITIONS - VOTERS IN ERIE COUNTY. 1940 (GOODMAN. 1962) 

Poisson Residuals 

Score Test Coefficient of Sensitivity 
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We see that the hypothesis of stationarity is decisively rejected. The process of 
changing intentions to vote varies over the months. The score test coefficient of 
sensitivity indicates that the diagonal elements for the first two periods (1, 5, 9; 10, 14, 
18) and those for Democrat to Undecided and Republican to Democrat for the last two 
periods (29, 33; 38,42) are poorly estimated. The table of residuals shows that they 
are allover-estimated except Undecided-Undecided (9; 18). We may conclude that 
intentions are more stable in the last two periods since the diagonal (no change) is 
larger then, and that the main differences in changes in intentions between the first 
and last two periods are the two just mentioned. 

One important piece of information is that the Democratic convention was held 
during the third period. We reconstruct separate tables for the first two time periods 
and for the last two and apply the macro successively to each: 

ONE STEP TRANSITIONS - VOTERS IN ERIE COUNTY, 1940 (GOODMAN, 1962) 

May-June-Ju1y Period 

First Order Markov Chain 

Estimated Stationary Transition Probabilities 

0.86159 
0.05058 
0.09593 

0.02768 
0.83658 
0.07849 

0.11073 
0.11284 
0.82558 

Test for Stationarity 

scaled deviance 7.4120 at cycle 3 
d.f. = 6 

Chi2 probability = 0.2838 for Chi2 = 7.412 with 

estimate s.e. parameter 
1 4.835 0.08605 1 
2 -2.967 0.2971 T1 (2) 
3 -2.037 0.2015 T1(3) 
4 -3.438 0.3591 T2(2) 

6. d.f. 
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5 -2.052 0.1878 T2 (3) 
6 -0.02076 0.1177 TIME(2) 
7 6.244 0.4588 T1 (2) .T2 (2) 
8 2.854 0.3830 T1(2) .T2(3) 
9 3.237 0.4430 T1 (3) .T2 (2) 

10 4.204 0.2628 T1 (3) .T2 (3) 
11 0.02854 0.1715 T1 (2) .TIME(2) 
12 0.03239 0.1596 T1(3) .TIME(2) 
scale parameter taken as 1.000 

ONE STEP TRANSITIONS - VOTERS IN ERIE COUNTY, 1940 

August-September-October period 

First Order Markov Chain 

Estimated Stationary Transition Probabilities 

0.964103 
0.019868 
0.106061 

0.005120 
0.947020 
0.121212 

Test for Stationarity 

0.030769 
0.033113 
0.772727 

scaled deviance = 1.4992 at cycle 3 
d.f. = 6 

Chi2 probability = 0.9583 for Chi2 = 1. 499 with 

estimate s.e. parameter 
1 5.221 0.07283 1 
2 -4.136 0.4185 T1(2) 
3 -2.820 0.2398 T1 (3) 
4 -5.236 0.7081 T2(2) 
5 -3.445 0.2932 T2 (3) 
6 0.03077 0.1013 TIME(2) 
7 9.101 0.8193 T1 (2) .T2 (2) 
8 3.956 0.5936 T1(2) .T2(3) 
9 5.370 0.7686 T1 (3) . T2 (2) 

10 5.431 0.3743 T1 (3) • T2 (3) 
11 -0.004280 0.1533 T1(2) .TIME(2) 
12 -0.1319 0.1747 T1 (3) . TIME (2) 
scale parameter taken as 1. 000 

(GOODMAN, 1962) 

6. d.f. 

In each separate table. stationarity is no longer rejected. We note. as expected. that the 
diagonal transition probabilities are considerably smaller before the convention than 
after. In the fIrst table (May-July). 86% of those intending to vote for the Republicans 
and 84% of those for the Democrats do not change their minds over a month's period. 
whereas, after the convention (August-October). the percents are 96 and 95 
respectively. The coeffIcients of sensitivity (not shown) no longer exhibit any 
consistent trend. 

Remember, however. that this analysis supposes that intentions at one point in 
time only depend on intentions one month before. This is the hypothesis of a first 
order Markov chain. 
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5. Second Order Markov Chains 

In order to test whether a series of observations is a first order Markov chain or 
one of higher order, we require the details of changes for individuals over successive 
periods, and not only over one period at a time, as in the preceding section. We can, 
then, simply test if the categories at the present time point are independent of those 
two time periods before. If so, the process is of first order. If not, it is at least of 
second order. 

We consider again data from the same study as in the previous example. This 
time, we assume stationarity of second order and collapse the tables (Table 2.5) over 
the four three-month periods (May-July, June-August, July-September, August­
October). This table cannot be obtained from the one in the previous section which 
only covers two month periods. Note that we could, and should, test for second order 
stationarity in a way very similar to that of the preceding section. 

More concretely, we are assuming that the sequence of changes in voting 
intentions is identical over any consecutive three month period (stationarity) and we 
test if current intentions in any month depend only on intentions in the previous 
month (first order) or depend also on intentions two or more months before (second 
order or more). 

Time t 
Time t-2 'lima t-l Republican Democrat Undecided 

Republican 1557 6 161 
Republican Democrat 18 0 51 

Undecided 71 1 111 
Republican 3 8 01 

Democrat Democrat 9 435 221 
Undecided 6 63 61 
Republican 17 5 211 

Undecided Democrat 4 10 241 
Undecided 122 .:2~ 3~fil 

Table 2.5 Two Step Transitions for Voting Intentions in the 1940 US Presidential 
Elections, Erie County (Goodman, 1962) 

We have a three-way table with intentions to vote at times t, t-l, and t-2. We 
test to see if intentions at time t are independent of those at time t-2: 

TWO STEP TRANSITIONS - VOTERS IN ERIE COUNTY, 1940 (GOODMAN, 1962) 

scaled deviance = 63.498 at cycle 4 
d.f. = 12 

Chi2 probability = 0.0000 for Chi2 = 63.50 with 

1 
2 
3 

estimate 
6.303 

-3.226 

s.e. 
0.04261 

0.2126 
0.1174 

parameter 
1 
T1(2) 

-1.942 T1 (3) 

12. d.f. 
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4 -7.328 0.3824 T2(2) 
5 -4.420 0.1878 T2(3) 
6 -4.525 0.3800 T3(2) 
7 -3.005 0.1810 T3(3) 
8 6.972 0.371 7 T1(2) .T2(2) 
9 3.102 0.3078 T1 (2) .T2 (3) 

10 3.862 0.3434 T1 (3) .T2 (2) 
11 4.317 0.1980 T1(3) .T2(3) 
12 7.861 0.4492 T2(2).T3(2) 
13 3.447 0.3520 T2 (2) .T3 (3) 
14 4.340 0.4135 T2(3) .T3(2) 
15 4.555 0.2176 T2 (3) • T3 (3) 
scale parameter taken as 1.000 

unit observed fitted residual 
1 557 546.035 0.469 
2 6 5.917 0.034 
3 16 27.048 -2.124 
4 18 21.691 -0.792 
5 0 0.235 -0.485 
6 5 1. 074 3.787 
7 71 78.274 -0.822 
8 1 0.848 0.165 
9 11 3.877 3.617 

10 3 0.359 4.410 
11 8 10.083 -0.656 
12 0 0.558 -0.747 
13 9 15.196 -1. 589 
14 435 427.167 0.379 
15 22 23.638 -0.337 
16 6 2.446 2.273 
17 63 68.750 -0.693 
18 6 3.804 1.126 
19 17 6.573 4.067 
20 5 5.464 -0.199 
21 21 30.963 -1.791 
22 4 5.808 -0.750 
23 10 4.829 2.353 
24 24 27.363 -0.643 
25 62 70.619 -1. 026 
26 54 58.707 -0.614 
27 346 332.674 0.731 
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TWO STEP TRANSITIONS - VOTERS IN ERIE COUNTY, 1940 (GOODMAN, 1962) 

poisson Residuals 

Score Test Coefficient of Sensitivity 
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The hypothesis is rejected. The score test coefficient of sensitivity shows no pattern. 
As expected with a large Chi-square, the residual plot deviates from the 45 degree 
line. But, in addition, the residuals do not form a straight line, indicating that the 
second order model assuming stationarity is poorly chosen. The deviation from 45 
degrees results primarily from the poor fit of a second order model, while nonlinearity 
of the residual plot arises primarily from lack of stationarity. 

Given stationarity, present voting intentions depend on more than just those of 
the preceding time point. They depend, at least, on the two previous points. With 
sufficient data, higher order Markov hypotheses could be tested in the same manner. 



CHAPI'ER3 

METRIC V ARIABLFS 

1. Time Trends 

In Chapter I, we studied how recall of an event varied in time. There, we had a 
simple frequency table. We shall now consider a more complex case, where we have 
a vector of responses at each time point. Our example concerns the attitude towards 
treatment of criminals by the courts in the USA between 1972 and 1975 (Table 3.1). 
The five attitudes are: (1) too harshly, (2) not harshly enough, (3) about right, (4) 
don't know, and (5) no answer. We have the number of responses to each category 
over a period of five years. Note that this is not a panel, since the same individuals 
were not asked each time. Thus, we have no indication of how individual opinions 
change. 

1972 1973 1974 1975 

Too Harshly I 105 68 42 611 
Not Harshly Enough 11066 1092 580 11741 
About Right I 265 196 72 1441 
Don't Know I 173 138 51 1041 
No Answer I ~ 1Q a 11 

Table 3.1 Changes in Attitudes to Criminals, 1972-1975 (Haberman, 1978, p.128) 

We are interested in time trends in opinion, but relative to other opinions. Thus, 
increase in one category must be studied in relation to a corresponding reduction of 
other categories. This is exactly what our log linear model does, since marginal totals 
are fixed with this model. 

We first test independence between attitude and year - attitudes do not change 
over the years: 

ATTITUDE TO CRIMINALS 1972-1975 - HABERMAN (1978, P.120) 

scaled deviance = 87.051 at cycle 3 
d.£. = 12 

Chi2 probability = O. for Chi2 = 87.05 with 12. d.£. 

The relationship is strongly significant: we must reject independence. Attitudes do 
change over the years. 

We shall now fit a linear trend. To do this, we shall use orthogonal 
polynomials. These are simply a recoding of the metric variable, here years, as a 
series of vectors, linear, quadratic, cubic, ... The sum of the product of the elements of 
any two vectors is zero, the definition of orthogonality. In addition, although not 
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strictly necessary, the sum of the squares of the elements of any such vector is defined 
as one. The required vectors may be constructed by a macro, found in Appendix III, 
called ORTH, which creates linear, quadratic, and cubic orthogonal polynomials. 

We introduce the linear polynomial for years into our model: 

ATTITUDE TO CRIMINALS 1972-1975 - HABERMAN (1978, P.120) 

scaled deviance = 13.871 (change -73.18) at cycle 3 
d.f. = 8 (change -4 ) 

Chi2 probability 0.0846 for Chi2 13.87 with 8. d.f. 

Chi2 probability o. for Chi2 73.18 with 4. d.f. 

estimate s.e. parameter 
1 4.149 0.2427 1 
2 0.1004 0.1600 YEAR(2) 
3 -0.4316 0.3148 YEAR(3) 
4 0.4014 0.4685 YEAR (4) 
5 2.681 0.06406 ATTI(2) 
6 0.8790 0.07399 ATTI(3) 
7 0.5171 0.07847 ATTI(4) 
8 -2.228 0.1963 ATTI(5) 
9 -1.468 0.8234 ATTI(l) .YRL 

10 -0.5129 0.7835 ATTI (2) . YRL 
11 -1. 750 0.7990 ATTI(3) .YRL 
12 -1. 579 0.8066 ATTI(4) .YRL 
13 0.000 alia sed ATTI(5) .YRL 
scale parameter taken as 1.000 

unit observed fitted residual 
1 105 98.409 0.664 
2 68 81.121 -1.457 
3 42 35.532 1.085 
4 61 60.938 0.008 
5 1066 1079.176 -0.401 
6 1092 1076.787 0.464 
7 580 570.897 0.381 
8 1174 1185.140 -0.324 
9 265 257.949 0.439 

10 196 200.975 -0.351 
11 72 83.203 -1.228 
12 144 134.873 0.786 
13 173 170.641 0.181 
14 138 137.572 0.036 
15 51 58.934 -1.034 
16 104 98.853 0.518 
17 4 6.825 -1.081 
18 10 7.546 0.893 
19 8 4.433 1.694 
20 7 10.196 -1. 001 
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ATTITUDE TO CRIMINALS 1972-1975 - HABERMAN (1978, P.120) 

Poisson Rea~dua1a 
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In this case, since the linear effect of the year (YRL) is not included among the main 
effects, but only as an interaction, GLIM fits the parameters with respect to the last 
category of attitude, set to zero. We see that, in relation to the last attitude (no answer), 
the other four attitudes all decrease with time, but that the second attitude, that 
criminals are not treated harshly enough, decreases less than the other three. 

A close inspection of the residuals for the independence model (not shown) 
would already have indicated that the observations for this attitude fitted that model 
most poorly. This is still evident in the graph giving the score test coefficient of 
sensitivity for this model. 

Instead of attempting to fit a more complex time trend, let us then eliminate this 
attitude from the model by giving it zero weight in order to see if the remaining 
attitudes are independent of time: 
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ATTITUDE TO CRIMINALS 1972-1975 - HABERMAN (1978, P.120) 

scaled deviance = 16.575 at cycle 4 
d.f. = 9 from 16 observations 

Chi2 probability = 0.0555 for Chi2 = 16.58 with 9. d.f. 

estimate s.e. parameter 
1 4.647 0.06900 1 
2 -0.2834 0.06523 YEAR (2) 
3 -1.151 0.08723 YEAR (3) 
4 -0.5487 0.07066 YEAR (4) 
5 0.000 aliased ATTI(2) 
6 0.8973 0.07142 ATTI(3) 
7 0.5238 0.07595 ATTI(4) 
8 -2.253 0.1952 ATTI(5) 
scale parameter taken as 1.000 

unit observed fitted residual 
1 105 104.262 0.072 
2 68 78.530 -1.188 
3 42 32.975 1.572 
4 61 60.232 0.099 
5 1066 104.262 0.000 
6 1092 78.530 0.000 
7 580 32.975 0.000 
8 1174 60.232 0.000 
9 265 255.745 0.579 

10 196 192.627 0.243 
11 72 80.885 -0.988 
12 144 147.743 -0.308 
13 173 176.037 -0.229 
14 138 132.591 0.470 
15 51 55.675 -0.627 
16 104 101.696 0.228 
17 4 10.955 -2.101 
18 10 8.251 0.609 
19 8 3.465 2.436 
20 7 6.329 0.267 
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ATTITUDE TO CRIMINALS 1972-197S - HABERMAN (1978, P.120) 

Poisson Residuals 

Score Test Coefficient of Sensitivity 
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The model is just non-significant so that all attitudes except "not harshly enough" do 
not appear to change with time. Inspection of the residuals for this model indicates, 
however, that the "no answer" response may also be varying with time. Elimination of 
this category significantly improves the fit and leaves a very acceptable model: 

ATTITUDE TO CRIMINALS 1972-1975 - HABERMAN (1978, P.120) 

scaled deviance 5.7700 at cycle 3 
d.f. 6 from 12 observations 

Chi2 probability 0.4502 for Chi2 5.770 with 6. d.f. 

Chi2 probability 0.0129 for Chi2 10.81 with 3. d.f. 

estimate s.e. parameter 
1 4.660 0.06899 1 
2 -0.3007 0.06580 YEAR (2) 
3 -1.191 0.08889 YEAR (3) 
4 -0.5638 0.07126 YEAR(4) 
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scale parameter taken as 
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ATTI(2) 
ATTI(3) 
ATTI(4) 
ATTI (5) 

1.000 

The categories (1) too harshly, (3) about right, and (4) don't know apparently do not 
vary, with respect to each other, over the four years. Inspection of the residuals and 
plots (not shown) indicates no systematic patterns. 

Our two approaches are complementary. Introduction of orthogonal 
polynomials indicates how certain attitudes change, while elimination of these attitude 
categories allows a test isolating those attitudes which have not changed among 
themselves. We conclude that the attitudes "too harshly", "about right", and "don't 
know" remain relatively stable in relation to each other and are all losing ground to the 
"not harshly enough" attitude. 

2 Model Simplification 

Any metric variable may always be treated as a nominal variable. This, 
however, can involve several disadvantages. A large number of categories may be 
required to represent the relationship adequately, with a correspondingly large number 
of parameters in the model. At the same time, a nominal representation does not 
exploit the structure of the data as fully as is possible. Models may be simplified and 
interpretation aided by the use of metric variables. 

Consider an example concerning the study of the attitude towards women 
staying at home (agree/disagree) as it depends on education and sex (Table 3.2). Here, 
the education variable has 21 categories, giving a table with 84 frequencies and, 
hence, the possibility of a model with as many parameters. 

With a binary response, we use the binomial distribution. However, attempting 
to fit the data as they stand immediately poses a problem with GLIM: there are no 
women at education level 2. GLIM gives an error that the binomial denominator 
cannot be zero. This may be circumvented by giving an arbitrary value to this 
denominator (for women with education level 2) and specifying a weight of zero, so 
that this observation is ignored (see the program in Appendix II). 

The base model, with only a general mean, is highly significant: 

ATTITUDE TO WOMEN STAYING AT HOME - HABERMAN (1979, P.312) 

scaled deviance = 451.72 at cycle 3 
d.f. = 40 from 41 observations 

Chi2 probability = O. 

1 
estimate 

-0.5959 

for Chi2 = 451.7 with 

s.e. 
0.03899 

parameter 
1 

scale parameter taken as 1.000 

40. d.f. 
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Attitudes to women staying at home depend either on sex or on education or on both. 

Agree Disagree Sex Education 

4 2 M 0 
4 2 F 0 
2 0 M 1 
1 0 F 1 
4 0 M 2 
0 0 F 2 
6 3 M 3 
6 1 F 3 
5 5 M 4 

10 0 F 4 
13 7 M 5 
14 7 F 5 
25 9 M 6 
17 5 F 6 
27 15 M 7 
26 16 F 7 
75 49 M 8 
91 36 F 8 
29 29 M 9 
30 35 F 9 
32 45 M 10 
55 67 F 10 
36 59 M 11 
50 62 F 11 

115 245 M 12 
190 403 F 12 

31 70 M 13 
17 92 F 13 
28 79 M 14 
18 81 F 14 

9 23 M 15 
7 34 F 15 

15 110 M 16 
13 115 F 16 

3 29 M 17 
3 28 F 17 
1 28 M 18 
0 21 F 18 
2 13 M 19 
1 2 F 19 
3 20 M 20 
2 ~ Ii: 20 

Table 3.2 Attitude to Women Staying at Home with Respect to Sex and Educational 
Level (Haberman, 1979, p.312) 

A model with only sex as the explanatory variable must also be rejected. At this 
point, differences by sex appear not to be important, since the fit is not improved over 
the independence model: 
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ATTITUDE TO WOMEN STAYING AT HOME - HABERMAN (1979, P.312) 

scaled deviance = 451.71 (change -0.011) at cycle 3 
d.f. = 39 (change -1 ) from 41 observations 

Chi2 probability 

Chi2 probability 

1 
2 

estimate 
-0.5955 

0.004181 

o. for Chi2 451.7 with 

0.9150 for Chi2 0.0114 with 

s.e. 
0.03915 
0.03915 

parameter 
1 
SEX 

scale parameter taken as 1.000 

39. d.f. 

1. d.f. 

Introduction of a nominal education variable in place of sex explains a lot of 
the variability and leaves a non-significant lack of fit, but we have a very complex 
model: 

ATTITUDE TO WOMEN STAYING AT HOME - HABERMAN (1979, P.312) 

scaled deviance = 27.657 (change -424.1) at cycle 9 
d.f. = 20 (change -19 ) from 41 observations 

Chi2 probability 

Chi2 probability 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

estimate 
0.6931 
8.514 
8.866 

0.4055 
0.4055 

-0.03637 
0.4055 

-0.1568 
-0.02381 
-0.7745 
-0.9457 
-1. 035 
-1. 447 
-1.910 
-1.940 
-1.964 
-2.777 
-2.944 
-4.585 
-2.303 
-2.262 

0.1174 for Chi2 27.66 with 

o. for Chi2 424.1 with 

s.e. 
0.6124 

34.97 
36.11 

0.8416 
0.8010 
0.6953 
0.6857 
0.6528 
0.6267 
0.6384 
0.6288 
0.6284 
0.6163 
0.6340 
0.6348 
0.6746 
0.6443 
0.7478 
1.181 

0.8803 
0.7853 

parameter 
1 
EDUC(2) 
EDUC(3) 
EDUC(4) 
EDUC (5) 
EDUC (6) 
EDUC (7) 
EDUC(8) 
EDUC (9) 
EDUC (10) 
EDUC (11) 
EDUC(12) 
EDUC(13) 
EDUC (14) 
EDUC (15) 
EDUC(16) 
EDUC(17) 
EDUC (18) 
EDUC (19) 
EDUC (20) 
EDUC (21) 

scale parameter taken as 1.000 

20. d.f. 

19. d.f. 

From the parameter estimates, we see that, in general, it is more probable for those 
with lower education levels to be favourable to women staying at home. In the 
binomial model, we are studying the relation agree/disagree. The larger parameter 
estimates at low education levels than at high indicate more chance of agreeing than 
disagreeing at these low levels as compared to the higher education levels. 
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We shall now try the linear trend variable for education completed, using the 
macroORTH: 

ATTITUDE TO WOMEN STAYING AT HOME - HABERMAN (1979, P.312) 

+36.37) at cycle 4 scaled deviance 
d. f. 

64.025 (change 
39 (change +19 ) from 41 observations 

Chi2 probability = 0.0070 for Chi2 64.03 with 

1 
2 

estimate 
-0.2032 
-10.62 

s.e. 
0.04606 

0.6048 
scale parameter taken as 

parameter 
1 
EDL 

1.000 

39. d.f. 

Although the model is very significantly improved over the base model and the model 
with only sex, the Chi-square for lack of fit with respect to the saturated model is still 
very significant. From the negative parameter estimate, we now see more clearly that 
agreeing that women should stay at home decreases with increasing education: the 
ratio of the number of people agreeing to disagreeing decreases as education 
increases. 

We next put sex back into the model and add an interaction between sex and 
the linear effect of education. Note that, since no factor variable is involved, this must 
be calculated as a new variable before introducing it into the $Fit. 

ATTITUDE TO WOMEN STAYING AT HOME - HABERMAN (1979, P.312) 

scaled deviance 57.103 (change -6.9225) at cycle 4 
d.f. 37 (change -2 ) from 41 observations 

Chi2 probability 0.0185 for Chi2 57.10 with 37. d.f. 

Chi2 probability 0.0314 for Chi2 6.922 with 2. d.f. 

estimate s.e. parameter 
1 -0.1966 0.04634 1 
2 -10.78 0.6101 EDL 
3 -0.04545 0.04634 SEX 
4 1. 597 0.6101 ESL 
scale parameter taken as 1. 000 

ATTITUDE TO WOMEN STAYING AT HOME - HABERMAN (1979, P.312) 

unit observed out of fitted residual 
1 4 6 5.344 -1.759 
2 4 6 5.716 -3.301 
3 2 2 1. 732 0.557 
4 1 1 0.936 0.261 
5 4 4 3.345 0.885 
6 0 1 0.915 0.000 
7 6 9 7.214 -1.015 
8 6 7 6.206 -0.246 
9 5 10 7.617 -1.943 

10 10 10 8.509 1.324 
11 13 20 14.334 -0.662 
12 14 21 16.931 -1.619 
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13 25 34 22.673 0.847 
14 17 22 16.549 0.223 
15 27 42 25.747 0.397 
16 26 42 28.935 -0.978 
17 75 124 68.976 1.089 
18 91 127 78.443 2.293 
19 29 58 28.883 0.031 
20 30 65 35.163 -1.285 
21 32 77 33.863 -0.428 
22 55 122 56.398 -0.254 
23 36 95 36.401 -0.085 
24 50 112 43.168 1.327 
25 115 360 118.645 -0.409 
26 190 593 186.137 0.342 
27 31 101 28.286 0.601 
28 17 109 27.275 -2.272 
29 28 107 25.186 0.641 
30 18 99 19.383 -0.350 
31 9 32 6.268 1.217 
32 7 41 6.183 0.356 
33 15 125 20.202 -1.264 
34 13 128 14.681 -0.466 
35 3 32 4.235 -0.644 
36 3 31 2.677 0.207 
37 1 29 3.124 -1.272 
38 0 21 1.354 -1.203 
39 2 15 1.308 0.633 
40 1 3 0.144 2.315 
41 3 23 1.617 1.129 
42 2 6 0.212 3.950 

ATTITUDE TO WOMEN STAYING AT HOME - HABERMAN (1979, P.312) 

Binomial Residuals 
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The model is significantly better but still not sufficiently good. We may note that 
agreement with women staying at home is about the same, on average, for the two 
sexes (-0.045), that it decreases with education (-10.78), but that it decreases less 
quickly for men (-10.78 + 1.597 = -9.68) than for women (-10.78 - 1.597 = -12.38): 
the interaction effect. 

If we add the quadratic main effect and its interaction with sex, the Chi-square 
virtually does not change at all. If we want a simple model, we seem to be left with 
one which does not fit the data sufficiently well. However, if we look at the residuals 
for our model, we see that observation 18 (female education level 8) fits the data 
much less well than the others. This may be what is known as an outlier. We may 
have an anomaly in the data which should be checked with the original coding sheets 
and questionnaires. Unfortunately, this is not possible in the secondary analysis of 
data which we carry out here. 

Study of the list of residuals for our linear model also shows that the large 
residuals are primarily for education levels less than six. This is not obvious from the 
score test coefficient of sensitivity, because of the scale imposed by the large value for 
observation 18. We may try eliminating these lower levels from our model: 

ATTITUDE TO WOMEN STAYING AT HOME - HABERMAN (1979, P.312) 

scaled deviance 
d.L 

Chi2 probability = 

estimate 
1 -0.1489 
2 -0.03546 
3 -11. 63 
4 1.508 

36.018 at cycle 3 
26 from 30 observations 

0.0911 for Chi2 = 36.02 

s.e. parameter 
0.04959 1 
0.04959 SEX 

0.6891 EDL 
0.6891 ESL 

scale parameter taken as 1.000 

with 26. d.L 

We now have a simple model which fits very well. The parameter estimates have 
changed very little from the previous model. Our conclusions above, that agreement 
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with women staying at home decreases with education (above 5 years), but less 
quickly for men than for women, now holds in a model which fits well. A last graph 
shows how fitted and observed values change with educational level. 

Observed and Fitted Values 
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This graph presents two curves, one for men (m) and another for women (f) with the 
corresponding observed values (M and F) around them. Such curves of fitted values 
are known as logistic curves. Notice how they flatten off on top at one without quite 
reaching it and the same at the bottom before reaching zero. The curve for men starts 
off lower than that for women and ends higher, i.e. is flatter. The contrast between low 
and high education is greater for women than for men, as was already indicated by the 
parameter values. 



CHAPfER4 

ORDINAL VARIABLES 

1. The Log-Multiplicative Model I 

In the analysis of categorical data, one commonly encountered type is the 
ordinal variable. The categories are known to have an order but knowledge of the 
scale is insufficient to consider them to form a metric. Thus, ordinal variables lie in 
between nominal and metric variables. In this chapter, we shall employ several 
approaches to such variables. The first, and perhaps most obvious, is to estimate a 
scale upon which the values of the variable lie. However, such a scale is never unique. 
It must always be calculated in relation to one or more other variables. In this way, the 
choice of criterion variables determines the resulting scale, which varies with the 
choice. The scale is estimated by successive approximations and then, finally, fitted as 
if it were a metric variable. In this section, we consider the case of a table with one 
ordinal variable and one or more nominal variables. In the next section, we apply the 
same principle to tables with two ordinal variables. 

When the scale for a nominal variable is estimated, the model is called log­
mUltiplicative, since it is no longer linear in the unknown parameters, but 
multiplicative on the log scale for these parameters. Two unknown parameters are 
multiplied together: 

(4.1) 

Both (Xi' indexing the nominal variable(s) and 'U, the scale to be estimated, are 
unknown parameters. Since the model is not linear in these parameters, estimation 
cannot be done directly with the existing GUM algorithm, but must proceed 
iteratively, by successive approximations. A macro, LI0V, provided in Appendix III, 
performs the required calculations and prints out the scale. 

We shall apply the model to data on criminal cases in North Carolina (Table 
4.1). The ordinal variable is the outcome of the case and the three explanatory 
variables are race, type of offence, and county. In order to be able to apply the macro, 
these three variables must combined as one complex variable with 20 categories. This 
is equivalent to including all possible interactions among these variables, in relation to 
the ordinal variable, in the model. After we have obtained the scale, we shall verify if 
all such interactions are necessary, or if some may be eliminated. Thus, our nominal 
scale will be constructed in relation to this set of three variables. 
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outcome 
Offence Race County Not Prosecuted Guilty Not Guilty 

Drinking Black Durham 33 8 4 
Violence Black Durham 10 10 3 
Property Black Durham 9 8 2 
Traffic Black Durham 4 2 1 
Speeding Black Durham 32 3 0 
Drinking Black Orange 5 10 1 
Violence Black Orange 5 5 5 
Property Black Orange 11 5 3 
Traffic Black Orange 12 6 1 
Speeding Black Orange 20 3 2 
Drinking White Durham 53 2 2 
Violence White Durham 7 8 1 
Property White Durham 10 5 2 
Traffic White Durham 16 3 2 
Speeding White Durham 87 5 3 
Drinking White Orange 14 2 0 
Violence White Orange 1 5 7 
Property White Orange 5 4 0 
Traffic White Orange 13 13 1 
Speeding White Orange 98 16 7 

Table 4.1 Outcomes of Criminal Case in North Carolina. Classified by Type of 
Offence. County. and Race (Upton. 1978. p.104) 

The macro first fits the usual model for independence. This is independence 
between the ordinal variable. outcome of the case. taken as a nominal variable. and 
the three explanatory variables: 

CRIMINAL CASES IN N. CAROLINA, OFFENCE, COUNTY, RACE (UPTON, 1978, P. 

Independence Model 

scaled deviance 156.23 at cycle 5 
d.f. = 38 

Chi2 probability = O. for Chi2 = 156.2 

estimate s.e. parameter 
1 3.483 0.1511 1 
2 -0.6712 0.2563 IND(2) 
3 -0.8622 0.2736 IND(3) 
4 -1. 861 0.4063 IND(4) 
5 -0.2513 0.2254 IND(5) 
6 -1.034 0.2911 IND (6) 
7 -1.099 0.2981 IND(7) 
8 -0.8622 0.2736 IND(8) 
9 -0.8622 0.2736 IND (9) 

10 -0.5878 0.2494 IND(10) 
11 0.2364 0.1994 IND (11) 
12 -1. 034 0.2911 IND(12) 
13 -0.9734 0.2847 IND(13) 
14 -0.7621 0.2643 IND(14) 
15 0.7472 0.1810 IND(15) 
16 -1.034 0.2911 IND (16) 
17 -1.242 0.3147 IND(17) 

with 38. d.L 



18 
19 
20 
21 
22 

-1. 609 
-0.5108 

0.9891 
-1.286 
-2.248 

0.3651 
0.2434 
0.1746 
0.1019 
0.1534 

scale parameter taken as 
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IND (18) 
IND (19) 
IND (20) 
OUT(2) 
OUT(3) 

1.000 

We see that this independence is decisively rejected. The outcomes of criminal cases 
in North Carolina depend on one or more of the variables, county, race, and type of 
offence. 

The macro then continues automatically and treats the variable of interest as 
metric and linear. This is equivalent to assuming that the ordinal scale has equal 
intervals for its categories: 

Linear Effects Model 

scaled deviance = 40.201 at cycle 4 
d.f. = 19 

Chi2 probability = 0.0031 for Chi2 = 40.20 with 19. d.f. 

estimate s.e. parameter 
1 3.816 0.2849 1 
2 -0.3148 0.3150 IND(2) 
3 -0.5445 0.3383 IND(3) 
4 -1.588 0.4928 IND(4) 
5 -1. 375 0.5906 IND(5) 
6 -0.6520 0.3431 IND (6) 
7 -0.6660 0.3399 IND (7) 
8 -0.5837 0.3455 IND(8) 
9 -0.7562 0.3803 IND (9) 

10 -0.7508 0.4020 IND (10) 
11 -0.7071 0.4416 IND (11) 
12 -0.7208 0.3569 IND(12) 
13 -0.7392 0.3665 IND(13) 
14 -0.8048 0.3997 IND(14) 
15 -0.1142 0.3585 IND (15) 
16 -1. 830 0.6942 IND (16) 
17 -0.9988 0.3987 IND(17) 
18 -1.471 0.4904 IND (18) 
19 -0.2523 0.3166 IND (19) 
20 0.7380 0.2744 IND (20) 
21 -1. 466 0.1903 OUT(2) 
22 -3.161 0.3873 OUT(3) 
23 0.1791 0.1550 IND(1).ZZ4 -24 0.5440 0.1662 IND(2).ZZ4 -25 0.4867 0.1811 IND (3) . ZZ4 -26 0.4297 0.2801 IND(4) .ZZ4 
27 -0.5150 0.2988 IND (5) . ZZ4 
28 0.5904 0.1871 IND (6) .ZZ4 -29 0.7902 0.1881 IND(7) .ZZ4 -30 0.4370 0.1846 IND (8) .ZZ4 -31 0.2656 0.2018 IND (9) . ZZ4 
32 0.05981 0.2084 IND(10) .ZZ4 
33 -0.4154 0.2199 IND (11) . ZZ4 -
34 0.4806 0.1936 IND(12) .ZZ4 -35 0.3874 0.1970 IND(13) .ZZ4 -



36 
37 
38 
39 
40 
41 
42 

0.1465 
-0.3693 
-0.3323 

1.184 
0.2938 
0.4140 

0.000 

0.2098 
0.1740 
0.3594 
0.2241 
0.2717 
0.1642 

aliased 
scale parameter taken as 
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IND(14).ZZ4 
IND (15) . ZZ4-
IND(16) .ZZ4-
IND (17) . ZZ4 
IND(18) .ZZ4-
IND (19) . ZZ4 
IND (20) . ZZ4 

1.000 -

The macro has created a new variable, called ZZ4_, identical in value to the variable 
outcome (OUI), but defined as a metric variable instead of as a factor variable. Thus, 
both OUT and ZZ4_ are included in the model, the first as a main effect and the 
second in the interaction. 

The fit is improved, showing that outcome is related to race, county, and type 
of offence, but the lack of fit is still significant. The ordinal scale appears not to be 
equally spaced. As for one example in the previous chapter, comparisons are with 
respect to the last category of the complex independent variable (IND). We see that 
every fifth parameter estimate is negative (-0.515, -0.369) or about zero (0.0598, 
0.000). This indicates that the slope for speeding offences is smaller than that of the 
other offences: this offence is less often prosecuted that the other four. As well, the 
slopes for drinking for Whites are also negative (-0.415, -0.332). 

Finally, the macro fits the log multiplicative model: 

Log Multiplicative Model 

scaled deviance = 23.85 at cycle 5. 
d.f. = 18. 

Scale for ordinal variable 
o. 0.8966 1.000 

Chi2 probability = 0.2015 for Chi2 = 23.85 with 19. d.f. 

estimate s.e. parameter 
1 3.494 0.1743 1 
2 -1.183 0.3595 IND(2) 
3 -1.286 0.3742 IND(3) 
4 -2.112 0.5302 IND (4) 
5 -0.02536 0.2481 IND(5) 
6 -1. 834 0.4687 IND (6) 
7 -1. 930 0.4885 IND(7) 
8 -1.104 0.3491 IND(8) 
9 -1.000 0.3360 IND (9) 

10 -0.5019 0.2838 IND (10) 
11 0.4745 0.2220 IND(l1) 
12 -1. 523 0.4114 IND(12) 
13 -1.192 0.3609 IND (13) 
14 -0.7260 0.3052 IND(14) 
15 0.9709 0.2046 IND(15) 
16 -0.8506 0.3186 IND (16) 
17 -3.862 1.188 IND(17) 
18 -1. 860 0.4745 IND(18) 
19 -0.9034 0.3243 IND (19) 
20 1. 090 0.2014 IND (20) 
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21 -1. 731 0.2294 OUT(2) 
22 -2.824 0.2796 OUT (3) 
23 0.4784 0.4413 IND (1) • ZZl -
24 1.828 0.5170 IND (2) • ZZl -
25 1.653 0.5544 IND (3) • ZZl -
26 1.262 0.8603 IND (4) • ZZl 
27 -1. 035 0.7087 IND(5).ZZl -
28 2.332 0.6243 IND (6) • ZZl -
29 2.381 0.6457 IND(7).ZZl -
30 1.237 0.5596 IND(8) .ZZl -
31 0.9535 0.5726 IND (9) • ZZl 
32 0.08274 0.5931 IND (10) • ZZl -
33 -1.204 0.6089 IND(ll) .ZZl -
34 1. 783 0.5963 IND(12) .ZZl -
35 1.177 0.5875 IND (13) . ZZl -
36 0.3249 0.6052 IND(14) .ZZl -
37 -1. 006 0.4701 IND (15) . ZZl -
38 -0.5802 0.8660 IND (16) . ZZl -
39 4.658 1.318 IND (17) . ZZl -
40 1.259 0.7680 IND (18) . ZZl -
41 1.588 0.4844 IND (19) . ZZl -42 0.000 aliased IND (20) . ZZl -
scale parameter taken as LOOO 

:RIMINAL CASES IN N. CAROLINA, OFFENCE, COUNTY, RACE (UPTON, 1978, P.l0 

Poisson Residuals 

Score Test Coefficient of Sensitivity 
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We see that the scale places the two prosecution outcomes close together, separated 
from the no prosecution outcome. Now, the fit is good, perhaps too good, since a 
large number of parameters have been included to represent all the interactions. In 
fact, the residual plot has a slope of less than 45 degrees (whereas poorly fitting 
models have plots with slopes greater than 45) and the score test indicates the 
categories with large frequencies as fitting poorly. 

The pattern of values for the estimates remains the same. Blacks are 
proportionately less prosecuted for speeding than for other offences (negative or near 
zero values: -1.035,0.083), while Whites are less prosecuted for both drinking 
(-1.204, -0.580) and speeding (-1.006, 0.000). Orange county prosecutes speeding, 
independent of race, (0.083,0.000) proportionately more than does Durham (-1.035, 
-1.006); the slope is flatter in the first as compared to the second. 

The estimated ordinal scale variable is contained in the vector ZZC. We try the 
main effects model, i.e. the relation between this ordinal variable and each of the 
explanatory variables, but none of the interactions among them, although we may 
suspect, from what preceded, that an interaction, between type of offence and race, 
will be necessary. 

CRIMINAL CASES IN N. CAROLINA, OFFENCE, COUNTY, RACE (UPTON, 1978, P. 

scaled deviance 
d.f. 

50.895 at cycle 4 
32 

Chi2 probability = 0.0183 for Chi2 = 50.89 with 

estimate s.e. parameter 
1 3.575 0.1575 1 
2 -2.303 0.2687 OUT(2) 
3 -3.441 0.3216 OUT(3) 
4 -1. 415 0.3110 IND(2) 
5 -1.133 0.2963 IND (3) 
6 -2.009 0.4175 IND(4) 
7 -0.1437 0.2305 IND (5) 
8 -1.263 0.3009 IND (6) 
9 -2.419 0.3888 IND(7) 

32. d.f. 
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10 -1.534 0.3282 IND(8) 
11 -1.343 0.3108 IND (9) 
12 -0.6154 0.2585 IND (10) 
13 0.2~62 0.2033 IND (11) 
14 -1. 585 0.3385 IND(12) 
15 -1.127 0.3063 IND(13) 
16 -0.8172 0.2785 IND(14) 
17 0.8881 0.1886 IND(15) 
18 -1.153 0.3016 IND (16) 
19 -2.310 0.4015 IND(17) 
20 -2.098 0.4067 IND (18) 
21 -0.8363 0.2772 IND (19) 
22 1.028 0.1869 IND (20) 
23 0.7374 0.3132 ZZl .OFF(l) -24 2.733 0.3539 ZZl .OFF(2) -25 1.732 0.3488 ZZl .OFF(3) -26 1.357 0.3251 ZZl .OFF(4) -27 0.000 a1iased ZZl .OFF(5) -
28 0.8749 0.2257 ZZl .COUN(2) -
29 -0.3574 0.2266 ZZl .RACE(2) -scale parameter taken as 1. 000 

The fit is not sufficiently good. We gain 14 d.f., but have eliminated too many 
parameters. We see that, on average, speeding is less often prosecuted than the other 
offences, that Orange county prosecutes more, on average, than Durham, and that 
Whites are less often prosecuted than Blacks. 

The different interactions might now be tried, but we quickly discover that it is 
sufficient to add the interaction between type of offence and race in relation to 
outcome in order to obtain a satisfactory model: 

CRIMINAL CASES IN N. CAROLINA, OFFENCE, COUNTY, RACE (UPTON, 1978, P. 

scaled deviance = 35.226 (change = -15.67) at cycle 4 
d.f. = 28 (change = -4 ) 

Chi2 probability = 0.1631 for Chi2 35.23 with 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

estimate 
3.416 

-2.539 
-3.712 
-1.045 

-0.9386 
-1.758 

0.04069 
-1. 376 
-1.990 
-1. 324 
-1. 034 

-0.4069 
0.5572 
-1. 724 
-1.013 

-0.7063 
1. 041 

-0.7942 

s.e. 
0.1736 
0.3926 
0.4540 
0.3257 
0.3130 
0.4283 
0.2443 
0.3119 
0.4131 
0.3533 
0.3388 
0.2764 
0.2198 
0.4134 
0.3294 
0.2914 
0.2015 
0.3120 

parameter 
1 
OUT(2) 
OUT(3) 
IND(2) 
IND(3) 
IND(4) 
IND(5) 
IND (6) 
IND(7) 
IND(8) 
IND (9) 
IND (10) 
IND (11) 
IND(12) 
IND (13) 
IND (14) 
IND(15) 
IND (16) 

28. d.f. 
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19 -2.540 0.4933 IND(17) 
20 -2.015 0.4461 IND (18) 
21 -0.7614 0.3009 IND (19) 
22 1.174 0.2008 IND (20) 
23 1. 659 0.5106 ZZl .OFF(l) -24 2.607 0.5546 ZZl .OFF(2) -25 1.896 0.5481 ZZl .OFF(3) -26 1.270 0.6083 ZZl .OFF(4) -27 0.000 aliased ZZl .OFF(5) -28 0.8820 0.2309 ZZl .COUN(2) -29 -2.050 0.5463 ZZl • RACE (2) -30 2.619 0.7988 ZZl .OFF(2) . RACE (2) -31 1. 941 0.7868 ZZl .OFF(3) • RACE (2) -32 2.240 0.7758 ZZl .OFF(4) . RACE (2) -33 2.030 0.7181 ZZl .OFF(5) . RACE (2) -scale parameter taken as 1.000 

Again, we see that offences of violence (2.607) are more often at the high end of the 
scale (i.e. most prosecuted) and speeding (0.000) at the low end, that Orange County 
prosecutes more (0.882), and that Whites are prosecuted less (-2.050). The interaction 
now shows that Whites are prosecuted proportionately less than Blacks for 
drunkenness; for Whites (race 2), the four interaction parameters are all positive as 
compared to zero for the first category, drinking. 

The score test and residual plots (not shown) are now as expected for an 
acceptable model: no obvious pattern in the score test coefficient of sensitivity and the 
residual plot lying at 45 degrees. 

2 The Log-Multiplicative Model n 

When a table contains two ordinal variables, a scale may be estimated for each 
of them in relation to the other. We still have a log-multiplicative model: 

(4.2) 

but now with three unknown parameters multiplied together. The unknown scales are 
'\) and co, while ex is a regression parameter estimated once the scales are calculated. 

Here we shall take a much simpler table as illustration, the relationship between 
length of stay for schizophrenic patients in London mental hospitals and frequency of 
visit (Table 4.2). 

Goes Home or Visited Less Than Never Visited 
Years Visited Regularly Once a Month and and Never 

Does Not Go Home Goes Home 

2-10 43 6 9 
10-20 16 11 18 

>20 ;3 1Q lfi 

Table 4.2 Schizophrenic Patients in London (Fienberg, 1977, p.55) 
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The macro L20V fits a series of models, the fIrst of which is again 
independence: 

SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.55) 

Independence Model 

scaled deviance = 38.353 at cycle 4 
d.f. = 4 

estimate s.e. parameter 
1 3.305 0.1606 1 
2 -0.8313 0.2305 VIS(2) 
3 -0.3659 0.1984 VIS(3) 
4 -0.2538 0.1987 LENG(2) 
5 -0.6931 0.2273 LENG(3) 
scale parameter taken as 1.000 

This model must be rejected. Frequency of visit depends on years of internment; the 
question is, how? 

The second model takes both variables as metric and linear, i.e. as equally 
spaced scales. 

SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.55) 

Linear Effects Model 

scaled deviance 7.1192 at cycle 3 
d.f. = 3 

estimate s.e. parameter 
1 2.894 0.1820 1 
2 -0.5215 0.2506 VIS(2) 
3 -0.08883 0.2301 VIS(3) 
4 -0.007450 0.2193 LENG(2) 
5 -0.6458 0.2574 LENG (3) 
6 0.1971 0.03962 ZZ6 
scale parameter taken as 1. 000 

Again, the fit is improved, but just barely acceptable. The macro has created the new 
variable, 'ZZ6_, which is the product of the two linear variables. The parameter 
estimate is the slope, which, being positive, shows that the two variables vary 
together. However, frequency of visit decreases from left to right in the table, so that it 
decreases with increasing length of stay. 

The following two models fit, the first successfully, one variable as metric and 
linear and the other as nominal, then the reverse: 
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SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.55) 

Column (K) Effect Model 

scaled deviance = 0.019817 at cycle 3 
d.f. = 2 

estimate 
1 2.129 
2 -0.3743 
3 0.08700 
4 0.6561 
5 0.5674 
6 -0.8152 
7 -0.01298 
8 0.000 
scale parameter 

s.e. 
0.3173 
0.2769 
0.2500 
0.3097 
0.4096 
0.1653 
0.1634 

aliased 
taken as 

parameter 
1 
VIS(2) 
VIS(3) 
LENG(2) 
LENG(3) 
VIS(l) .ZZ4 
VIS(2) .ZZ4-
VIS(3) .ZZ4-

1.000 -

SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.55) 

Row (I) Effect Model 

scaled deviance 6.4589 at cycle 3 
d.f. = 2 

estimate s.e. parameter 
1 2.175 0.3134 1 
2 0.1653 0.3541 VIS(2) 
3 1.276 0.4857 VIS(3) 
4 0.02758 0.2283 LENG(2) 
5 -0.5594 0.2749 LENG(3) 
6 -0.7668 0.1589 LENG(l) .YY4 
7 -0.2899 0.1483 LENG(2) .YY4 
8 0.000 aliased LENG(3) .YY4 
scale parameter taken as 1.000 

-
-
-

In the fIrst of these models. when length of stay is metric and linear. the fIt is very 
acceptable. while it is not in the second. where frequency of visit has the equal 
interval scale. YY 4_ and ZZ4_ are the new linear variables created by the macro. In 
the column effect model. we see that longer length of stay is less probable for the first 
category of visits (-0.815) as compared to the other two categories with more or less 
zero slopes. 

A fIrst row and column effect model combines the previous two models and. of 
course. fIts well since the first of these did. 

SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.55) 

Rowand Column Effect Model (1) 

scaled deviance = 0.0024777 at cycle 3 
d.f. = 1 

1 
2 
3 

estimate 
2.148 

-0.3618 
0.1182 

s.e. 
0.3467 
0.2927 
0.3441 

parameter 
1 
VIS(2) 
VIS(3) 



4 
5 
6 
7 
8 
9 

10 
11 

0.6217 
0.5085 

-0.7743 
0.001469 

0.000 
-0.03278 

0.000 
0.000 

0.4051 
0.6069 
0.3495 
0.1969 

aliased 
0.2485 

aliased 
aliased 

scale parameter taken as 
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LENG(2) 
LENG(3) 
VIS(l) .ZZ4_ 
VIS (2) . ZZ4 
VIS (3) . ZZ4-
LENG(l) .YY4_ 
LENG(2) .YY4_ 
LENG(3) .YY4 

1.000 -

However, it is not acceptable, since it is more complex than that with length of stay on 
a linear metric scale. 

Finally, the model with the two ordinal variable scales estimated is fitted. 

SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.55) 

Rowand Column Effect Model (2) 

Scale for First Ordinal Variable 
O. 0.9837 1.000 

Scale for Second Ordinal Variable 
O. 0.5116 1.000 

scaled deviance 
d.f. = 

0.0115 at cycle O. 
1. 

1 
2 
3 
4 
5 
6 

estimate 
3.761 

-1.986 
-1. 552 

-0.9871 
-2.666 

3.236 

s.e. 
0.1505 
0.3190 
0.3019 
0.2459 
0.4895 
0.6062 

scale parameter taken as 

parameter 
1 
VIS(2) 
VIS(3) 
LENG(2) 
LENG(3) 
ZZ6 

1. 000 

SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.55) 

Analysis of Association Table 

Effect Chi2 df Prob 
General Effect 31.23 1. O. 
Column Effect 7.099 1. 0.0077 
Row Effect 0.6603 1. 0.4165 
Other Effects(l) 0.0025 1. 0.9603 
Other Effects(2) 0.0115 1. 0.9145 

The analysis shows that, as already concluded, the scale for length of stay has 
virtually equal intervals, while we now see clearly what we suspected from the column 
effect model: the scale for frequency of visit contrasts "goes home or visited regularly" 
with the two cases of few or no visits and not going home. These results are 
summarized in the analysis of association table which partitions the Chi-squares. The 
"general effect" refers to the lack of independence between the two variables while the 
"column effect" refers to the lack of linearity of the frequency of visit variable. Both 
are significant, as we have seen. "Row effect" tests for linearity of length of stay. The 
two "other effects" are interchangeable and only one should be interpreted. They 
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concern any lack of fit remaining when both row and column effects are included in 
the model. 

We shall now study the same table with two other approaches to ordinal 
variables. 

3. The Proportional Odds Model 

Since the categories of an ordinal variable are, by definition, ordered, 
frequencies of response in successive categories may be compared. This and the 
following section present two common approaches to such comparisons. 

In the proportional odds model, each category is considered in tum and the 
frequency of response at least up to that point on the ordinal scale is compared to the 
frequency for all points higher on the scale. The fIrst category is compared to all the 
rest combined, then the first and second combined are compared to all the rest 
combined, and so on. In this way, the original table with a K category ordinal scale is 
converted into a series of K-l subtables, each with a binary categorization, 
lower/higher than the point on the scale. We then have three types of variables, the 
binary dependent variable indicating more or less on the ordinal scale, a variable 
indexing the subtables corresponding to the points on the ordinal scale, and the 
explanatory variables. 

It might appear from the construction of this table that we now have a simple 
case where the logistic model could be applied to the binary response variable. 
However, if the observations in the original table were independent, the categories in 
the new reconstructed table no longer will be. A more complex analysis is called for, 
one which does not fall into the standard GUM distributions. A series of macros are 
necessary to defIne the resulting distribution, with what is known as a composite link 
function. GUM provides facilities for such applications, but the technical details are 
beyond the scope of this book. The analysis is set up and applied through the macro 
POOV. One restriction is that the explanatory variables may not be defmed by 
$FActor. If such a setup is required, the macro TRAN may be used instead. 

We now apply the proportional odds model to our data on schizophrenic 
patients of the previous section. The macro first prints out the reconstructed table, with 
ZZC the index of subtables and ZZ2_ the rows of the (complex) explanatory 
variable, then the approximate analysis using the binomial distribution and the logistic 
model, and fInally the proportional odds model. Since we have already seen that 
length of stay may be treated as an equal interval (linear metric) scale, we use that 
here. 
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SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.55) 

Proportional Odds Model 

R N ZZl ZZ2 
43.000 58.00 1.000 1.000 
16.000 45.00 1.000 2.000 
3.000 29.00 1.000 3.000 

49.000 58.00 2.000 1.000 
27.000 45.00 2.000 2.000 
13.000 29.00 2.000 3.000 

Approximate Analysis 

scaled deviance 3.5486 at cycle 3 
d.f. = 3 

Chi2 probability = 0.3143 for Chi2 = 3.549 with 

estimate s.e. parameter 
1 -0.4543 0.2029 C1 
2 0.5948 0.2058 C2 
3 -3.089 0.4745 C3 
4 0.000 aliased C4 
5 0.000 aliased C5 
6 0.000 aliased C6 
7 0.000 aliased C7 
8 0.000 aliased C8 
9 0.000 aliased C9 
scale parameter taken as 1.000 

Exact Analysis 

scaled deviance 
d.f. 

6.6864 at cycle 2 
6 

-
-

-

-
-

Chi2 probability = 0.3507 for Chi2 = 6.686 with 

estimate s.e. parameter 
1 -0.3863 0.1994 C1 -2 0.6635 0.2051 C2 -3 -3.047 0.5859 C3 
4 0.000 aliased C4 
5 0.000 aliased C5 -
6 0.000 aliased C6 
7 0.000 aliased C7 -
8 0.000 aliased C8 
9 0.000 aliased C9-
scale parameter taken as 1. 000 

3. d.f. 

6. d. f. 

The model fits very well. The negative value for C3_ indicates that the odds of 
receiving more rather than less visits decreases with increasing length of stay, 
confirming the previous results. CC and C2_ give the parameters for the two 
subtables, which are not interpreted. 
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4. The Continuation Ratio Model 

The continuation ratio model resembles closely the proportional odds model. A 
series of subtables is also constructed here. But now for each category of the ordinal 
variable considered in tum, the frequency of response at least up to that point on the 
ordinal scale is compared only to the frequency for the immediately following 
category. The flI'St category is compared to the second, the flI'St and second combined 
to the third, and so on. Given that the response is at least at a given level, what is the 
chance of continuing to the immediately following level? Again, the original table 
with a K category ordinal scale is converted into a series of K-I subtables. However, 
here the macro, CROV, requires that all explanatory variables be treated as one 
complex variable, in the same way as in the flI'St section of this chapter for the macro 
LIOV. Then again, as for the proportional odds model. we have three distinct types of 
variables: the binary dependent variable, the variable indexing subtables. and the 
(complex) explanatory variable. 

In contrast to the proportional odds model, with the continuation ratio model, 
independence is retained when the table is reconstructed. and the logistic model may 
be directly applied. The macro, CROV, simply reconstructs the table and fits this 
model. When applied to our schizophrenic data, the model fits very well: 

SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.55) 

Continuation Ratio Model 

R N ZZl ZZ2 
43.000 49.00 1.000 1.000 
16.000 27.00 1.000 2.000 

3.000 13.00 1.000 3.000 
49.000 58.00 2.000 1.000 
27.000 45.00 2.000 2.000 
13.000 29.00 2.000 3.000 

scaled deviance = 1.9695 at cycle 4 
d.f. = 2 

Chi2 probability = 0.3735 for Chi2 = 1.969 with 2. d.f. 

estimate s.e. parameter 
1 1. 745 0.3260 1 
2 0.1287 0.3264 ZZl (2) -3 -1. 432 0.3694 ZZ2 (2) -4 -2.320 0.4266 ZZ2 (3) -scale parameter taken as 1.000 

However. here we have length of stay as a nominal factor variable. In order to 
compare our results with those for the proportional odds model of the previous 
section. we refit the continuation ratio table with the equal interval scale for length of 
stay. We keep the variable ZZC. which indexes the tables. and replace the new 
complex variable. ZZ2_. created by the macro, with the linear orthogonal polynomial. 
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SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.55) 

scaled deviance = 2.6856 at cycle 4 
d.f. = 3 

Chi2 probability = 0.4447 for Chi2 = 2.686 

estimate s.e. parameter 
1 0.4700 0.2557 1 
2 0.1261 0.3261 ZZl (2) 
3 -2.357 0.4220 LENL 
scale parameter taken as 1.000 

with 3. d.f. 

The result is very similar to that for the previous section. with the same interpretation. 

The choice among the three approaches to the analysis of ordinal variables 
presented in this chapter is rarely obvious. As seen here. the three are often mutually 
reinforcing. and not all would be necessary in most situations. The log-multiplicative 
model is often attractive because it provides a scale. The continuation ratio model is 
perhaps most specialized. being applicable where one is interested in continuation to 
each successively higher point on a scale. but it is the most easily fitted in terms of 
computing time. 



CHAPrERS 

ZERO FREQUENCIES AND INCOMPLETE TABLES 

1. Sampling Zeroes 

When several categorical variables are cross-tabulated to fonn a table of several 
dimensions, some cells often contain zero frequencies of response. Such a situation 
may arise in at least three ways. The zero may have occurred simply because the 
sample is not large enough and that combination of categories is not represented. A 
large enough sample would theoretically include such combinations. In the other two 
cases, the combination of categories is actually impossible or is excluded from the 
model for some theoretical reason. In the first case, the expected frequencies or fitted 
values should be positive. In the latter two cases, the expected frequencies for any 
model must be zero. In this section, we consider the first case, that of sampling zeroes. 
In subsequent sections, various possibilities of incomplete tables with structural zeroes 
will be covered. 

If a saturated model is to be fitted, even one sampling zero will create problems 
for estimation of the parameters. GUM will only estimate as many parameters as there 
are non-zero entries in the table. The last parameters encountered in the list will not be 
estimated, even although they may have no actual relationship to the location of the 
zeroes in the table. 

For an unsaturated model, all of the parameters may most often be estimated, as 
long as the number of non-zero frequencies is at least as large as the number of 
parameters to be estimated. However, unexpected exceptions to this may occur, 
depending on the location of the zeroes in the table. GUM provides no systematic 
warning of a problem being encountered, but goes ahead and estimates the parameters 
anyway. The user must beware, especially if GUM has also tabulated the table so that 
it has not been inspected beforehand. The most reliable indication that a problem has 
occurred is if certain standard errors of parameter estimates (with SDisplay E) are 
greatly inflated. This does not, however, indicate which zeroes are causing the 
problem. The solution is to eliminate those zero cells for which the estimated 
frequencies (given by SDisplay R) are either very large or very small. (Remember 
that, in the situation of sampling zeroes, the estimated frequencies should be positive.) 
These cells are removed by giving them a weight zero. In this way, the degrees of 
freedom are reduced (corrected) by the number of cells eliminated. Note that the cells 
to be eliminated will depend on the model fitted to the data and not simply on the 
location of the zeroes in the table. A macro, DFCT, performs the two tests and the 
elimination automatically. 

A simple example illustrates the problem. Table 5.1 gives changes in vote 
between the Swedish elections of 1964 and 1970. No one changed between 
Communist and Conservative, in either direction, so that the table contains two 
sampling zeroes. 
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Corrununist Social Centre People's Conservative 
Democrat Party 

Corrununist 22 27 4 1 0 
Social Democrat 16 861 57 30 8 
Centre 4 26 248 14 7 
People's Party 8 20 61 201 11 
Conservative Q ~ 31 32 UQ 

Table 5.1 Swedish Elections, 1964 and 1970 (Fingleton, 1984, p.138) 

We first apply a saturated model, which we know GUM cannot fit 
completely. 

SWEDISH ELECTIONS 1964 AND 1970 (FINGLETON, 1984, P.138) 

scaled deviance =******** at cycle 9 
d.f. = 1 

(change in d. f.) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

estimate 
3.091 

0.2049 
-1.705 
-3.091 
0.9253 

-0.3183 
-1. 705 
-1.011 
0.9253 

3.781 
1.667 

0.7114 
-2.835 

2.975 
5.832 
3.736 
1.122 
3.720 
4.344 
6.315 
2.540 

-1.618 
-0.3657 
-0.6069 

0.000 

s.e. 
0.2132 
0.2872 
0.5436 

1.022 
54.60 

0.3286 
0.5436 
0.4129 
54.60 

0.3823 
0.6091 
0.5074 

54.60 
0.6128 
0.7413 
0.6609 
54.60 
1.068 
1.169 
1.084 
54.61 
54.60 
54.60 
54.60 

aliased 
scale parameter taken as 

parameter 
1 
V70(2) 
V70(3) 
V70(4) 
V70(5) 
V64(2) 
V64(3) 
V64(4) 
V64(5) 
V70(2) .V64(2) 
V70(2) .V64(3) 
V70(2) .V64(4) 
V70(2) .V64(5) 
V70(3) .V64(2) 
V70(3) .V64(3) 
V70(3) .V64(4) 
V70(3) .V64(5) 
V70 (4) . V64 (2) 
V70(4) .V64(3) 
V70(4) .V64(4) 
V70(4) .V64(5) 
V70(5) .V64 (2) 
V70(5) .V64(3) 
V70(5) .V64(4) 
V70 (5) . V64 (5) 

1. 000 

SWEDISH ELECTIONS 1964 AND 1970 (FINGLETON, 1984, P.138) 

unit observed fitted residual 
1 22 21. 998 0.000 
2 27 27.000 0.000 
3 4 4.000 0.000 
4 1 1.000 0.000 
5 0 55.494 -7.449 
6 16 16.000 0.000 
7 861 861.000 0.000 
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8 57 57.000 0.000 
9 30 30.000 0.000 

10 8 8.000 0.000 
11 4 4.000 0.000 
12 26 26.000 0.000 
13 248 248.000 0.000 
14 14 14.000 0.000 
15 7 7.000 0.000 
16 8 8.000 0.000 
17 20 20.000 0.000 
18 61 61.000 0.000 
19 201 201.000 0.000 
20 11 11.000 0.000 
21 0 55.494 -7.449 
22 4 4.000 0.000 
23 31 31.000 0.000 
24 32 32.000 0.000 
25 140 139.998 0.000 

We see that 8 parameters have inflated standard estimates while only one is not 
estimated. An additional indication of the problem, one which occurs less frequently, 
is the loss of degrees of freedom: one degree of freedom remains when none should. 
The two zero cells both have very large fitted values. We apply the macro to eliminate 
the two cells. 

SWEDISH ELECTIONS 1964 AND 1970 (FINGLETON, 1984, P.138) 

Model with corrected df 

-- model changed 

scaled deviance = 4.983e-11 at 'cycle 1 
d.f. = 0 from 23 observations 

estimate s.e. parameter 
1 3.091 0.2132 1 
2 0.2048 0.2872 V70(2) 
3 -1.705 0.5436 V70(3) 
4 -3.091 1.022 V70(4) 
5 0.3185 0.4647 V70(5) 
6 -0.3185 0.3286 V64(2) 
7 -1. 705 0.5436 V64(3) 
8 -1. 012 0.4129 V64(4) 
9 1.532 0.5182 V64(5) 

10 3.781 0.3823 V70(2) .V64(2) 
11 1.667 0.6091 V70(2) .V64(3) 
12 0.7115 0.5074 V70(2) .V64(4) 
13 -3.442 0.7454 V70 (2) • V64 (5) 
14 2.975 0.6128 V70(3).V64(2) 
15 5.832 0.7413 V70 (3) • V64 (3) 
16 3.736 0.6609 V70 (3) • V64 (4) 
17 0.5155 0.7421 V70 (3) • V64 (5) 
18 3.720 1.068 V70(4) .V64(2) 
19 4.344 1.169 V70 (4) .V64 (3) 
20 6.315 1.084 V70(4) .V64(4) 
21 1.934 1.140 V70(4) .V64(5) 
22 -1. 012 0.6351 V70 (5) • V64 (2) 
23 0.2412 0.7802 V70 (5) . V64 (3) 
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24 0.000 aliased V70(5) .V64(4) 
25 0.000 aliased V70(5) .V64(5) 
scale parameter taken as 1.000 

SWEDISH ELECTIONS 1964 AND 1970 (FINGLETON, 1984, P.138) 

unit observed fitted residual 
1 22 22.000 0.000 
2 27 27.000 0.000 
3 4 4.000 0.000 
4 1 1.000 0.000 
5 0 30.250 0.000 
6 16 16.000 0.000 
7 861 861.000 0.000 
8 57 57.000 0.000 
9 30 30.000 0.000 

10 8 8.000 0.000 
11 4 4.000 0.000 
12 26 26.000 0.000 
13 248 248.000 0.000 
14 14 14.000 0.000 
15 7 7.000 0.000 
16 8 8.000 0.000 
17 20 20.000 0.000 
18 61 61.000 0.000 
19 201 201.000 0.000 
20 11 11.000 0.000 
21 0 101.818 0.000 
22 4 4.000 0.000 
23 31 31. 000 0.000 
24 32 32.000 0.000 
25 140 140.000 0.000 

GUM does not estimate the last two parameters. Note that those estimates which 
already had small standard errors have changed very little after the correction. 

Consider now a model where the parties are placed on an equal interval scale. 
This model is introduced primarily for illustrative purposes and is not meant to be 
realistic. If we actually wished to place the parties on an ordered scale, we should 
consider the log-multiplicative model. We fit a model with linear interaction between 
the votes at the two elections. 

SWEDISH ELECTIONS 1964 AND 1970 (FINGLETON, 1984, P.138) 

scaled deviance = 665.42 at cycle 5 
d.f. = 15 

estimate s.e. parameter 
1 0.7553 0.1820 1 
2 -0.1618 0.1892 V70(2) 
3 -4.812 0.3161 V70(3) 
4 -10.64 0.5521 V70(4) 
5 -18.08 0.8596 V70(5) 
6 -0.2462 0.1864 V64(2) 
7 -5.206 0.3180 V64(3) 
8 -10.26 0.5305 V64(4) 
9 -17.16 0.8195 V64(5) 
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10 1.570 0.06681 V704 
scale parameter taken as 1.000 

SWEDISH ELECTIONS 1964 AND 1970 (FINGLETON, 1984, P.138) 

unit observed fitted residual 
1 22 10.229 3.680 
2 27 41.823 -2.292 
3 4 1.921 1.500 
4 1 0.027 5.886 
5 0 0.000 -0.009 
6 16 38.435 -3.619 
7 861 755.285 3.847 
8 57 166.733 -8.498 
9 30 11.393 5.513 

10 8 0.154 20.004 
11 4 1.296 2.375 
12 26 122.406 -8.714 
13 248 129.876 10.365 
14 14 42.654 -4.387 
15 7 2.768 2.543 
16 8 0.040 39.905 
17 20 18.064 0.455 
18 61 92.121 -3.242 
19 201 145.414 4.610 
20 11 45.361 -5.102 
21 0 0.000 -0.014 
22 4 0.422 5.506 
23 31 10.349 6.420 
24 32 78.513 -5.249 
25 140 117.716 2.054 

This time, the standard errors are not inflated and it is not clear whether the two 
sampling zeroes are affecting the model fit. However, the estimated frequencies are 
very small for the two zero cells. so we eliminate them by applying the macro. 

SWEDISH ELECTIONS 1964 AND 1970 (FINGLETON, 1984, P.138) 

Model with corrected df 

-- model changed 
scaled deviance = 665.42 at cycle 2 

d.f. = 13 from 23 observations 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

estimate 
0.7553 

-0.1617 
-4.812 
-10.64 
-18.08 

-0.2462 
-5.206 
-10.26 
-17.16 

1.570 

s.e. 
0.1820 
0.1893 
0.3164 
0.5528 
0.8606 
0.1865 
0.3183 
0.5311 
0.8205 

0.06689 
scale parameter taken as 

parameter 
1 
V70(2) 
V70(3) 
V70(4) 
V70(5) 
V64(2) 
V64(3) 
V64(4) 
V64(5) 
V704 

1.000 
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SWEDISH ELECTIONS 1964 AND 1970 (FINGLETON, 1984, P .138) 

unit observed fitted residual 
1 22 10.229 3.680 
2 27 41. 823 -2.292 
3 4 1. 921 1.500 
4 1 0.027 5.886 
5 0 0.000 0.000 
6 16 38.435 -3.619 
7 861 755.285 3.847 
8 57 166.733 -8.498 
9 30 11.393 5.513 

10 8 0.154 20.004 
11 4 1.296 2.375 
12 26 122.406 -8.714 
13 248 129.876 10.365 
14 14 42.654 -4.387 
15 7 2.768 2.543 
16 8 0.040 39.904 
17 20 18.064 0.455 
18 61 92.121 -3.242 
19 201 145.413 4.610 
20 11 45.361 -5.102 
21 0 0.000 0.000 
22 4 0.422 5.506 
23 31 10.349 6.420 
24 32 78.513 -5.249 
25 140 117.716 2.054 

The deviance remains unchanged, but the degrees of freedom are reduced by two. 

It cannot be emphasized too much that great care must be taken with sampling 
zeroes when using GUM. Several of the examples in this and the following chapter 
contain them. They have been left uncorrected for the reader to discover. 

2 Incomplete Tables and Quasi-Independence 

When a table involves structural zeroes, these are simply not included in the 
data and GUM fits the model without problem. Note however that %GL may not be 
used to calculate the variables, since the table is no longer symmetric. 

Since, with variables defined by $FActor, GUM performs the analysis 
automatically, it will be more useful to apply the macro TRAN; as well, this will 
provide more easily interpretable estimates. Our example (Table 5.2) involves health 
problems, sex, and age of young people. The combination male with menstruation 
problems is impossible. 

The base model has the three sets of mean parameters and the sex -age 
interaction between the two independent variables. When some cells are missing in a 
table, such a model is called quasi-independence. 
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Beal.th Probl.em 
Sex Aqe Sex & Menstruation How Healthy Nothing 

Male 
Male 
Female 
Female 

12-15 
16-17 
12-15 
16-17 

Reproduction I Am 

4 
2 
9 
7 

4 
B 

42 
7 

19 
10 

57 
20 
71 
31 

Table 5.2 Health Problems of Young People (Fienberg, 1977, p.116) 

HEALTH PROBLEMS (FIENBERG, 1977, P.116) 

scaled deviance = 22.025 at cycle 4 
d.f. 7 

Chi2 probability = 0.0026 for Chi2 = 22.02 with 7. d.f. 

estimate s.e. parameter 
1 2.435 0.1026 1 
2 -0.8492 0.1792 PR01 
3 -0.8145 0.2295 PR02 
4 0.4165 0.1257 PR03 
5 -0.1253 0.06792 SEX 
6 0.4692 0.06697 AGE 
7 0.1645 0.06697 SA 

scale parameter taken as 1.000 

The model is rejected; type of health problem depends on age or sex or both. 

We introduce the effect of sex. Note that sex cannot interact with the second 
type of problem, menstruation, so this is not included in the model. 

HEALTH PROBLEMS (FIENBERG, 1977, P .116) 

scaled deviance = 9.4260 (change -12.60) at cycle 4 
d.f. = 5 (change -2 ) 

Chi2 probability 0.0922 for Chi2 9.426 with 5. d.f. 

Chi2 probability 0.0018 for Chi2 12.60 with 2. d.f. 

estimate s.e. parameter 
1 2.379 0.1119 1 
2 -0.9074 0.1892 PR01 
3 -0.8275 0.2314 PR02 
4 0.4400 0.1377 PR03 
5 -0.1944 0.09768 SEX 
6 0.4692 0.06697 AGE 
7 0.1645 0.06697 SA 
8 -0.3675 0.1662 SP1 
9 0.3852 0.1144 SP3 
scale parameter taken as 1.000 

The model now fits satisfactorily and is a significant improvement on complete quasi­
independence. Boys have fewer problems of sex and reproduction (-0.3675) than 
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girls. and relatively more with general health (0.3852). while about the same 
proportion of each sex state that they have no problem (0.3675 - 0.3852 = -0.0177). 

We continue by replacing the effect of sex by that of age. 

HEALTH PROBLEMS (FIENBERG, 1977, P.116) 

scaled deviance = 13.447 (change = +4.021) at cycle 3 
d.f. = 4 (change = -1 ) 

Chi2 probability - 0.0094 for Chi2 

Chi2 probability 0.0349 for Chi2 

13.45 with 4. d.f. 

8.577 with 3. d.f. 

estimate s.e. parameter 
1 2.434 0.1054 1 
2 -0.7616 0.1846 PR01 
3 -0.8170 0.2431 PR02 
4 0.3293 0.1414 PR03 
5 -0.1161 0.06851 SEX 
6 0.2797 0.1054 AGE 
7 0.1359 0.06851 SA 
8 -0.08026 0.1846 AP1 
9 -0.4904 0.2431 AP2 

10 0.3747 0.1414 AP3 
scale parameter taken as 1. 000 

This model does not fit sufficiently well and must be rejected. Apparently, the type of 
health problem does not depend on age, at least for the two age groups considered 
here. It is not necessary to continue. Our second model, with sex, but not age, 
influencing health problems, will be retained. Males have relatively fewer problems 
with sex and reproduction and more with general health. 

Note that if the interaction between sex and age with respect to health problems 
were to be included, it would also contain two parameters, as for sex with problems, 
since, again, the second problem does not interact with sex. 

3.Population Estimation 

A special case of an incomplete table occurs with the problem of population 
estimation. Suppose that we have several estimators of a population and that we know 
which individuals are touched by each estimator. Then we have a series of 
dichotomous variables indicating whether or not an individual is included in each 
estimator. The cell categorizing all individuals not included in any estimator is 
missing. We wish to estimate the frequency in this missing cell and, hence, obtain an 
estimate of the total population. Since we cannot estimate a saturated model when one 
category is missing, we must make some assumption of independence among the 
different types of estimators used. Under high order independence 

nll1n122n212n221 = 1 
n222nl12n121n211 

(5.1) 
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for example, with three population estimates. Then, if n222 is the frequency for the 
missing cell, 

fi222 = filUfiJ22fi212fi221 

fi122fi121fi211 

(5.2) 

Since we shall require an interval of plausible values for the total population estimate, 
N, we need an estimate of the variance (or standard deviation): 

var(N) = Nn2 22Z-__ _ (5.3) 

fil12+n121 + fi211 +nll1 

These quantItles are easily obtained with GUM. The mIssmg frequency may be 
obtained directly from the fitted values if any arbitrary value is supplied and given a 
zero weight for the fit. The variance must be calculated from the formula (5.3). 

As an example, we take the estimation of the number of formal volunteer 
organizations in Massachusetts towns (Table 5.3). The three estimators are 
newspapers, telephones, and a census. 

Newspaper Telephone Census 
Yes No 

Yes Yes 1 4 1 1 
No Yes 1 8 2 1 
Yes No 1 16 49 1 
No No 1113 - 1 

Table 5.3 Estimation of the Number of Formal Volunteer Organizations (Bishop et aI, 
1975, p.243) 

The model with no three-factor interaction fits perfectly and we easily discover 
that the interaction between census and newspapers may be eliminated. We fit this 
model and use a specially constructed macro to calculate the population estimation 
and its standard deviation. 

FORMAL VOLUNTEER ORGANIZATIONS (BISHOP ET AL, 1975, P.243) 

scaled deviance = 0.0000000 at cycle 5 
d.f. = 1 

Chi2 probability = 1. 000 for Chi2 = o. with 

estimate s.e. parameter 
1 1.386 0.4655 1 
2 -1.386 0.6455 CENS(2) 
3 0.6931 0.5477 NEWS(2) 
4 1.386 0.5284 TELE(2) 
5 2.506 0.7068 CENS(2) .TELE(2) 
6 1.262 0.6094 NEWS (2) .TELE(2) 
scale parameter taken as 1. 000 

unit observed fitted residual 
1 4 4.000 0.0000 

1. d.f. 
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2 1 1.000 0.0000 
3 8 8.000 0.0000 
4 2 2.000 0.0000 
5 16 16.000 0.0000 
6 49 49.000 0.0000 
7 113 113.000 0.0000 
8 0 346.100 0.0000 

Estimated total = 539. with s.d. = 80. 

From the fitted values, we see that the number of missing organisations is estimated as 
346. With asymptotic nonnality, a 95% interval covers two standard deviations, 
giving (379, 699) for the total number of organisations. If we also eliminate the 
newspaper/telephone interaction, the model is still very acceptable: 

scaled deviance = 3.8244 (change = +3.824) at cycle 4 
d.f. = 2 (change = +1 ) 

Chi2 probability = 0.1478 for Chi2 3.824 with 2. d.f. 

estimate s.e. parameter 
1 0.5596 0.3521 1 
2 -1. 386 0.6455 CENS(2) 
3 1. 768 0.2361 NEWS(2) 
4 2.375 0.3018 TELE(2) 
5 2.344 0.6967 CENS(2) .TELE(2) 
scale parameter taken as 1. 000 

unit observed fitted residual 
1 4 1. 750 1.701 
2 1 0.437 0.850 
3 8 10.250 -0.702 
4 2 2.562 -0.351 
5 16 18.810 -0.648 
6 49 49.000 0.000 
7 113 110.200 0.268 
8 0 287.000 0.000 

Estimated total = 480. with s.d. = 66. 

One important result of simplifying the model is that the standard deviation is always 
smaller (Bishop et aI, 1975, p.242). Of course, we must still keep an acceptable 
model. Here our interval becomes (347,611). Further simplification of the model, by 
eliminating the census/telephone interaction, is not possible. 

The parameter estimates indicate that there is a positive association between 
being covered by the census and being listed in the telephone directory, while 
coverage by newspapers is relatively independent of both of these. 

4. Social Mobility 

A series of standard social mobility models have been described by Duncan 
(1979). These may all easily be fitted with GLIM. The most important ones involve 
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elimination of specific cells from the table for theoretical reasons. yielding an 
incomplete table. 

A mobility table is a square two-dimensional table with the same categorical 
variable observed at two points in time. If the same individuals are involved. it is a 
form of panel study. Examples include the British social mobility table of Chapter 2 
and the voting change table of the first section of this chapter; the second is a panel 
study. as is a further common example. used here. migrant behaviour (Table 5.4). 

1971 
Central Urban Lancashire West Greater 

1966 Clydesdale and Yorkshire Midlands London 

Central Clydesdale 1118 12 7 23 
Urban Lanc. & York. I 14 2127 86 130 
West Midlands I 8 69 2548 107 
Greater London I l2 llQ BB ]7l2 

Table 5.4 Migrant Behaviour in Britain between 1966 and 1971 (Pingleton, 1984, 
p.142) 

We wish to test if position at the second point in time depends on that at the first 
point in time, whether it be profession, vote, place of residence, or whatever. This is 
the standard model of independence which we have encountered many times. 
However, here, as we have already noted with such tables, the problem is that too 
many individuals do not change position between the two time points for such 
independence to be acceptable. Too many observations appear on the diagonal. The 
simple solution is to eliminate these diagonal elements and test for quasi­
independence. More theoretically, this approach assumes that the diagonal contains 
two types of individuals, the movers, who might have moved, but did not happen to in 
the observed time interval, and the stayers who never change. Hence, the name of the 
model: the mover-stayer model. 

Duncan's (1979) other standard mobility models assume an ordering for the 
categories and fit an equal interval scale. Although the five models may easily be 
fitted by the usual GUM procedures, for facility, they have been assembled in a 
single macro called SMCT. We apply the macro to the migration table, where we note 
that the geographical locations are ordered from north to south of Britain. We also 
observe the exceptionally high values on the diagonal. 

The first model fitted is the usual one for independence: 

MIGRANT BEHAVIOUR - FINGLETON (1984, P.142) 

1. Independence Model 

scaled deviance 
d.f. 

19884. at cycle 6 
9 

Chi2 probability = O. for Chi2 19884. with 9. d. f. 
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estimate s.e. parameter 
1 0.6134 0.1126 1 
2 2.690 0.08165 M66(2) 
3 2.838 0.08129 M66(3) 
4 3.902 0.07981 M66(4) 
5 2.725 0.08327 M71 (2) 
6 2.888 0.08288 M71 (3) 
7 3.960 0.08141 M71 (4) 
scale parameter taken as 1.000 

unit observed fitted residual 
1 118 1.847 85.476 
2 12 28.159 -3.045 
3 7 33.152 -4.542 
4 23 96.843 -7.504 
5 14 27.203 -2.531 
6 2127 414.815 84.067 
7 86 488.365 -18.207 
8 130 1426.619 -34.329 
9 8 31.531 -4.191 

10 69 480.812 -18.781 
11 2548 566.064 83.302 
12 107 1653.595 -38.033 
13 12 91.430 -8.307 
14 110 1394.214 -34.393 
15 88 1641.420 -38.342 
16 7712 4794.941 42.126 

As would be expected. this model is definitely not acceptable. We note the very large 
underestimation of all diagonal cells. 

The second model. called row effects (assuming that the first time point forms 
the rows of the table) takes the second position as a linear equal interval scale and the 
first position as a nominal variable and fits the interaction between them. 

MIGRANT BEHAVIOUR - FINGLETON (1984, P.142) 

2. Row Effects Model 

scaled deviance = 4155.6 (change = -15728.) at cycle 6 
d.f. = 6 (change = -3 ) 

Chi2 probability = o. for Chi2 4156. with 6. d.f. 

estimate s.e. parameter 
1 4.194 0.1217 1 
2 0.2487 0.1603 M66(2) 
3 -4.568 0.2012 M66(3) 
4 -15.75 0.2892 M66(4) 
5 11. 00 0.1588 M71 (2) 
6 17.40 0.2346 M71 (3) 
7 20.49 0.2647 M71 (4) 
8 -10.66 0.2191 M66 (1) . ZZl -9 -7.911 0.1125 M66 (2) . ZZl -

10 -4.717 0.07763 M66 (3) . ZZl 
11 0.000 aliased M66(4) .ZZl -
scale parameter taken as 1. 000 
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unit observed fitted residual 
1 118 66.302 6.349 
2 12 92.400 -8.364 
3 7 1.301 4.996 
4 23 0.001 887.022 
5 14 85.026 -7.703 
6 2127 1858.305 6.233 
7 86 410.360 -16.012 
8 130 3.325 69.466 
9 8 0.688 8.814 

10 69 366.729 -15.547 
11 2548 1974.478 12.907 
12 107 390.105 -14.334 
13 12 0.000 3883.525 
14 110 0.569 145.045 
15 88 342.862 -13.764 
16 7712 7578.569 1.533 

Although a slight improvement, the model is still not acceptable. The diagonal 
estimates are, however, much better. The parameter estimates are the slopes for each 
category of origin, each calculated in relation to the last category. As can also be seen 
from the table, all slopes are negative relative to the last line of the table. However, 
migration both ways between Clydesdale and London is especially underestimated. 
This is due to the linear scale which should continue to decrease from Clydesdale, 
through Lancashire, Yorkshire, and the West Midlands to London, but increases for 
London in the table. 

The macro now gives a zero weight to the diagonal eiements and refits the 
(quasi-) independence model: 

MIGRANT BEHAVIOUR - FINGLETON (1984, P.142) 

3. Quasi-independence (Mover-Stayer) Model 

scaled deviance = 4.3666 at cycle 3 
d.f. = 5 from 12 observations 

Chi2 probability = 0.4994 for Chi2 = 4.367 with 5. d.f. 

estimate s.e. parameter 
1 0.4615 0.2345 1 
2 2.010 0.1705 M66(2) 
3 1. 724 0.1728 M66(3) 
4 2.124 0.1742 M66(4) 
5 2.085 0.1890 M71 (2) 
6 1.914 0.1886 M71 (3) 
7 2.455 0.1865 M71 (4) 
scale parameter taken as 1. 000 

unit observed fitted residual 
1 118 1.586 0.000 
2 12 12.758 -0.212 
3 7 10.757 -1.145 
4 23 18.485 1.050 
5 14 11.836 0.629 
6 2127 95.185 0.000 
7 86 80.252 0.642 
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8 130 137.912 -0.674 
9 8 8.892 -0.299 

10 69 71.505 -0.296 
11 2548 60.287 0.000 
12 107 103.603 0.334 
13 12 13.272 -0.349 
14 110 106.736 0.316 
15 88 89.991 -0.210 
16 7712 154.648 0.000 

This mover-stayer model fits very well. For the movers, those individuals who are 
susceptible to migrate, new place of residence does not depend on original residence. 
The fitted values for the diagonal (1.6, 95.2, 60.3, 154.6) are estimates of the numbers 
of movers in each category who did not happen to move in the period under 
observation. The number of stayers is obtained by subtracting these values from the 
observed diagonal values (116.4, 2031.8, 2487.7, 7557.4). We see that 92.6% 
(12193.3/13171) of the population is estimated as not being susceptible to migration. 

Since the remaining two models are both based on the quasi- independence, but 
with additional parameters, we may expect that they will provide acceptable fits. The 
next model assumes both variables to have equal interval scales and fits the interaction 
between them. 

MIGRANT BEHAVIOUR - FINGLETON (1984, P.142) 

4. Uniform Association without Diagonal 

scaled deviance = 4.3618 at cycle 3 
d.f. = 4 from 12 observations 

Chi2 probability = 0.3594 for Chi2 = 4.362 with 4. d.f. 

estimate s.e. parameter 
1 0.4803 0.3582 1 
2 2.001 0.2119 M66(2) 
3 1. 702 0.3613 M66(3) 
4 2.099 0.4099 M66(4j 
5 2.077 0.2220 M71 (2) 
6 1.893 0.3581 M71 (3) 
7 2.431 0.4050 M71 (4) 
8 0.004893 0.07077 YY1 
scale parameter taken as 1. 000 

The macro has created a new variable, YY1_, which is the product of the two linear 
scales. The parameter estimate gives the slope of the relationship between the two 
scales. Here, the zero slope reflects the independence of new residence from place of 
origin for the movers. 

Finally, the row effects model is refitted, but now without the diagonal. 
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MIGRANT BEHAVIOUR - FINGLETON (1984, P.142) 

5. Row Effects Model without Diagonal 

scaled deviance = 1.5164 at cycle 3 
d.f. = 2 from 12 observations 

Chi2 probability = 0.4685 for Chi2 = 1.516 with 2. d.f. 

estimate s.e. parameter 
1 -0.05341 0.5039 1 
2 2.755 0.5297 M66(2) 
3 2.042 0.4808 M66(3) 
4 2.521 0.5024 M66(4) 
5 2.237 0.2602 M71 (2) 
6 2.008 0.2879 M71 (3) 
7 2.611 0.4889 M71 (4) 
8 0.1708 0.2485 M66(1).ZZl -
9 -0.1437 0.2002 M66(2).ZZl -10 0.02345 0.1710 M66(3).ZZl -

11 0.000 alia sed M66 (4) . ZZl -scale parameter taken as 1.000 

When the diagonal is eliminated, the slopes are greatly reduced as compared to 
model 2. 

In both of these last models, the fit is very good, but too many parameters are 
included in the model. The mover-stayer model is retained as that best describing the 
data. The most important conclusions are the small proportion of movers in the 
population and the independence of arrival point from origin for these movers. 

5. The Bradley· Terry Model 

Occasionally, people may be asked to make a series of comparisons between 
pairs of objects, stating which is preferred. We have a square table showing how 
many individuals prefer each object as opposed to each other. The two variables are 
"prefer" and "not prefer", each with as many categories as there are objects to 
compare. The idea is to rank the objects in order of global preference for the group of 
people. If all people rank all objects. the rank is simply obtained from the number of 
positive preferences expressed (as in the ranking of teams in some sport). With 
unequal numbers. the problem is more complex. 

Since we are concerned with ranking preferences. all ties may be ignored. 
Although we now have an incomplete table, with the diagonal missing, our problem is 
not resolved. We may construct a new table with one dimension being the object 
preferred and the other being the pair compared. For example, with four objects, we 
have 



(1,2) 
(1,3) 
(1,4) 
(2,3) 
(2,4) 
(3,4) 
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123 4 
fi12 fi21 -

fi13 - fi31 -

fi14 - - fi41 

- fi23 fi32 -

- fi24 - fi42 

- fi34 fi43 

This is now an incomplete table to which a model of quasi-independence may be 
fitted. We are testing to assure that general ranking of all objects does not depend on 
the specific pairs of comparisons made by the individual. If this model is acceptable, 
the parameters for the variable, object preferred (the columns of the table), give the 
rank. 

This same model may also be developed in another way which does not require 
the table to be reconstructed. Instead, aspects of its symmetry are used. We construct a 
symmetric factor variable for the original table in the following way, here with six 
objects: 

1 2 3 4 5 
1 6 7 8 9 
2 6 - 10 11 12 
3 7 10 - 13 14 
4 8 11 13 - 15 
5 9 12 14 15 

The factor variable has as many levels as there are possible paired combinations. Each 
symmetric pair has the same level. The diagonal will be eliminated by means of a zero 
weight, so that the values given to it are irrelevant, but must lie between 1 and the 
number of factor levels for the variable to be acceptable in $Fit. The reader may 
check that this new factor variable is identical to that for the rows of the reconstructed 
table above. The macro BTCT creates this symmetry variable and fits the model. We 
shall return to further applications of this symmetry variable in the next chapter. 

Anderson (1980, p.357) provides a table of preferences expressed for a series 
of six collective facilities in a Danish municipality (Table 5.5). Unfortunately, he does 
not include information about which facilities are compared. 

Not Preferred 
Facility Facility Number 

Number 1 2 3 4 5 6 

1 - 29 25 22 17 9 I 
2 49 - 35 34 16 14 I 

Preferred 3 50 42 - 40 22 15 I 
4 54 43 37 - 33 16 I 
5 61 61 54 44 - 27 I 
6 69 6~ 63 62 5l - I 

Table 5.5 Preferences for Various Collective Facilities in Denmark (Andersen, 1980, 
p.357) 
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We shall apply the macro to this table: 

PREFERENCE FOR COLLECTIVE FACILITIES IN DENMARK (ANDERSEN,1980,P.357) 

scaled deviance = 6.0721 at cycle 3 
d.f. = 10 from 30 observations 

Chi2 probability = 0.8102 for Chi2 = 6.072 with 10. d.f. 

estimate s.e. parameter 
1 3.404 0.1442 1 
2 0.4662 0.1454 PREF(2) 
3 0.6927 0.1464 PREF (3) 
4 0.8179 0.1465 PREF (4) 
5 1.434 0.1522 PREF(5) 
6 2.084 0.1652 PREF (6) 
7 -0.1844 0.1851 ZZl (2) -
8 -0.2563 0.1857 ZZl (3) -
9 -0.6944 0.1927 ZZl (4 ) -10 -1. 248 0.2057 ZZl (5) -

11 -0.3387 0.1757 ZZl (6) -
12 -0.4103 0.1770 ZZl (7 ) -
13 -0.8156 0.1862 ZZl (8) -14 -1. 312 0.2001 ZZl (9) -
15 -0.5102 0.1905 ZZl (10) -16 -0.8963 0.1945 ZZl (11) -17 -1.353 0.2036 ZZl (12) -
18 -0.9254 0.1936 ZZl (13) -
19 -1.379 0.2028 ZZl (14) -
20 -1.551 0.1996 ZZl (15) 
scale parameter taken as 1. 000 

The model fits very well. From the parameter estimates for PREF, the preferences are 
found to be ranked in the same order as they are presented in the table, with facility 6 
most preferred. 

6. Guttman Scales 

A Guttman scale is constructed from a series of ordered yes/no questions such 
that once an individual replies yes (or no) to one question in the series, he/she should 
also reply yes (or no) to all subsequent questions. A typical series of questions to 
measure racial prejudice would be: 1) do you have immigrant friends? 2) would you 
buy a house next to an immigrant? 3) would you let your daughter marry an 
immigrant? The problem is that, most often, all people do not reply on the scale. The 
ordering is not respected and these individuals are unscalable. 

With Q questions, a Guttman scale has Q+l categories. We add another 
category, those who are not scalable. We then make the hypothesis that the responses 
to the Q questions for these unscalable individuals are independent. Note that 
unscalable individuals may fall on the scale by chance, in the same way as movers 
may stay put in the observed time interval. The sum of the probabilities for the Q+2 
categories must be one; represent them by Pk (k=O, ... , Q+ 1). For the unscalable 
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individuals, each question, i, has a probability, qli, of reply yes ('hi = l-qli). Then, 
with Q = 3, we have 

PIll = PI + Poqllql2ql3 
Pl12 = P2 + Poql lql 2q23 
Pl22 = P3 + POqllq22~3 
P222 = P4 + PO~I~2~3 

for individuals replying on the scale and 

(5.4) 

(5.5) 

for all responses not on the scale. As with the mover-stayer model, we eliminate those 
categories which are heterogeneous, i.e. contain both scalable and unscalable 
individuals - those on the scale by chance - by giving them zero weights and fit a 
quasi-independence model. 

H the parameter estimates have been standardized to sum to zero (using the 
macro TRAN, for example), the probabilities of (5.5) are given by 

qji = 1/(1 + exp(2*%PE» (5.6) 

where %PE is the parameter estimate supplied by GUM. The probability, Po' of being 
unscalable can now be directly calculated from (5.5) using any fitted value supplied 
by GUM. 

(5.7) 

Since the Pjkl of (5.4) are simply the observed relative frequencies for these 
categories, the Q+ 1 probabilities of replying on the scale may be calculated by 
subtracting fitted from observed values. 

Rep1y to Question 
1 2 3 4 Frequency 

1 1 1 1 42 
1 1 1 2 23 
1 1 2 1 6 
1 1 2 2 25 
1 2 1 1 6 
1 2 1 2 24 
1 2 2 1 7 
1 2 2 2 38 
2 1 1 1 1 
2 1 1 2 4 
2 1 2 1 1 
2 1 2 2 6 
2 2 1 1 2 
2 2 1 2 9 
2 2 2 1 I 2 
2 2 2 2 I~ 

Table 5.6 Guttman Scale for Role Conflict (Fienberg, 1977, p.126) 
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The model will be applied to a scale of four questions indicating universalistic 
or particularistic values when confronted by four situations of role conflict (Table 
5.6). We note the large numbers replying on the scale and the scattering of individuals 
off the scale, but also the combination (1212) which has a very large frequency. 

The analysis is as follows: 

ROLE CONFLICT (FIENBERG, 1977, P.126) 

scaled deviance = 0.98849 at cycle 3 
d.f. = 6 from 11 observations 

Chi2 probability = 0.9844 for Chi2 = 0.9885 with 6. d.f. 

estimate s.e. parameter 
1 1. 788 0.1411 1 
2 -0.5919 0.1446 Q1 
3 0.2356 0.1757 Q2 
4 0.1164 0.1746 Q3 
5 0.7092 0.1534 Q4 
scale parameter taken as 1.000 

Probability of replying by chance is 0.6826 

Probabilities of replying yes to each question by chance are 
0.7656 0.3843 0.4421 0.1949 

Probabilities of replying on the Guttman scale are 
0.1771 0.0350 0.0255 0.0314 0.0484 

The model fits very well. However, the large number of persons replying off the scale, 
with 24 in the one specific way (1212), has already placed the original construction of 
the questions under suspicion. The results, indeed, indicate the probability of an 
unscalable reply to be 0.68. The probabilities of replying on the scale do not change 
regularly, and are all small, again placing the scale in question. 

With data following a well-constructed Guttman scale, the probability of 
replying by chance should be very small so that the sum of probabilities of replying 
on the scale would be almost one. These probabilities would, then, indicate to which 
end of the scale individuals tend to lean. 
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PATfERNS 

1. Extremity Models 

In this chapter, we study a number of special models applicable especially to 
square tables. In the previous chapter, we already encountered certain such models 
which applied to social mobility. The models of Markov chains in Chapter 2 also 
require square tables although in more than two dimensions. Here, we shall 
concentrate on certain patterns which may occur in such tables. 

The simplest models for patterns may apply to any table, even if not square, 
since they only involve the symmetry of a very few cells, especially the comer cells. If 
the variables have an order, as is often the case in such tables, the comers are the 
extremes, hence the name of this class of models. 

Consider a simple 2-way table relating opinions on whether or not grocery 
shopping is tiring to availability of a car (Table 6.1). 

Grocery Shopping is Tiring 
Disagree Tend to In Tend to Agree 

Avai1abi1ity of a Car Disagree Between Agree 

No Car Available 1 55 11 16 17 100 
Sometimes Car Available 1101 7 18 23 103 
Car Always Available 1 ~l 2Q 25 16 11 

Table 6.1 Oxford Shopping Survey (pingleton, 1984, p.lO) 

We first fit the independence model to verify if there is a relationship between 
the two variables. 

OXFORD SHOPPING SURVEY (FINGLETON, 1984, P.10) 

Independence Model 

scaled deviance = 23.871 at cycle 3 
d.f. = 8 

Chi2 probability = 0.0025 for Chi2 = 23.87 with 8. d.f. 
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estimate s.e. parameter 
1 4.281 0.08719 1 
2 -1.872 0.1739 TIRE(2) 
3 -1. 432 0.1449 TIRE(3) 
4 -1.484 0.1480 TIRE(4) 
5 0.1254 0.08729 TIRE (5) 
6 0.2361 0.09482 CAR(2) 
7 0.1404 0.09689 CAR(3) 
scale parameter taken as 1. 000 

unit observed fitted residual 
1 55 72.284 -2.033 
2 11 11.121 -0.036 
3 16 17.266 -0.305 
4 17 16.388 0.151 
5 100 81.941 1.995 
6 101 91. 535 0.989 
7 7 14.082 -1. 887 
8 18 21. 865 -0.827 
9 23 20.753 0.493 

10 103 103.765 -0.075 
11 91 83.181 0.857 
12 20 12.797 2.013 
13 25 19.869 1.151 
14 16 18.859 -0.658 
15 77 94.294 -1. 781 

OXFORD SHOPPING SURVEY (FINGLETON, 1984, 

Poisson Residuals 

Score Test Coeffi.cient of Sensitivity 
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This model is rejected. From the score test coefficient of sensitivity, we see that two of 
the observations fitting most poorly are the two extremes, those in the upper left and 
lower right comers. One possibility is that these two conflictual extremes, disagree that 
shopping is tiring when no car is available and agree that shopping is tiring when a car 
always available, are the exceptions to independence, since they should have a lower 
probability of occurring. 

We shall construct a factor variable with two levels, contrasting these extremes 
to the rest of the table: 

and add this to the model. 

2 1 1 1 1 
11111 
1 1 1 1 2 

OXFORD SHOPPING SURVEY (FINGLETON, 1984, P.10) 

Extreme Ends Model 

scaled deviance 10.205 (change -13.67) at cycle 3 
d. f . 7 (change -1 ) 

Chi2 probability = 0.1763 for Chi2 10.21 with 7. d.f. 

1 
2 
3 
4 
5 
6 
7 
8 

estimate 
4.425 

-1. 978 
-1.538 
-1. 590 
0.1453 
0.1064 
0.1623 

-0.4007 

s.e. 
0.09761 

0.1761 
0.1473 
0.1504 

0.08831 
0.1001 

0.09803 
0.1102 

scale parameter taken as 

parameter 
1 
TIRE(2) 
TIRE (3) 
TIRE (4) 
TIRE(5) 
CAR(2) 
CAR(3) 
EX2 (2) 

1. 000 

The model now fits very well and the score test coefficients (not shown) no longer 
indicate a problem with the extremes. The parameter value (-004007) confirms that the 
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two comers have lower probability. Finding grocery shopping tiring does not depend 
on having a car, except for the two extreme responses, which occur relatively too 
infrequently. 

In principle, we do not need to continue. However, in other cases, an additional 
step might be required. The opposite extreme comers, the concordant ones, might 
have too high a probability of occurrence. We then set up a three-level factor variable: 

2 1 1 1 3 
1 1 1 1 1 
3 1 112 

and refit the model to the data. 

OXFORD SHOPPING SURVEY (FINGLETON, 1984, P.10) 

Four Corners Model 

scaled deviance = 9.6469 (change = -0.5585) at cycle 3 
d.f. = 6 (change = -1 ) 

Chi2 probability = 0.1393 for Chi2 = 9.647 with 6. d. f. 

estimate s.e. parameter 
1 4.556 0.2023 1 
2 -2.072 0.2184 TIRE(2) 
3 -1. 632 0.1959 TIRE(3) 
4 -1.684 0.1982 TIRE(4) 
5 0.1439 0.08823 TIRE(5) 
6 -0.005965 0.1820 CAR(2) 
7 0.1608 0.09794 CAR(3) 
8 -0.5307 0.2070 EX4(2) 
9 -0.1497 0.2012 EX4 (3) 
scale parameter taken as 1. 000 

For our present example, the model must fit well since the two comer model did. No 
significant improvement occurs. Surprisingly, the parameter value (-0.1497) indicates 
that the two concordant corners also have lower probability than the body of the table, 
although this time the difference is not significant. 

If a single cell is an extreme case, the easiest way to account for it in a model 
with GUM is by giving it a zero weight. Paradoxically, this is equivalent to creating a 
two-level factor variable, where only that one cell has the second factor level, but 
gives a neater result. 

2. Symmetry Models 

The remaining models in this chapter apply only to square tables. All exploit 
the symmetry of such tables; in fact, a near relative of them was already encountered 
in the preceding chapter, the Bradley-Terry model. All of these models, except one, 
are provided by a single macro, SYCT. We present them in three sections, using three 
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different examples. Only the relevant parts of the output of the macro will be 
presented for each example. 

A completely symmetrical table is one in which the probabilities in opposing 
cells across the diagonal are equal: 

Pik = Pki (6.1) 

The corresponding log linear model is 

log (Fik) = Otik 'With ~ = ~ (6.2) 

Note that mean parameters for the margins are not fitted. The factor variable (ZZI-> 
used to fit this model is that used in the Bradley-Terry model: 

1 2 3 4 5 
1 6 7 8 9 
2 6 - 10 11 12 
3 7 10 - 13 14 
4 8 11 13 - 15 
5 9 12 14 15 

with weight zero for the diagonal. However, the Bradley-Terry model contained one 
mean parameter, that for preferences. 

1981 
1985 PS PRL PSC Ecolo PCB BB 

Socialist (PS) 1281 14 9 16 4 4 
Liberal (PRL) 1 12 164 13 4 1 6 
Social-Christian (PSC) 1 5 10 121 8 1 1 
Ecology (Ecolo) 1 6 0 1 50 0 1 
Communist (PCB) 1 1 0 0 2 14 0 
Blank Ballot (BB) 1 2 l Q Q Q II 

Table 6.2 Voting Changes between Belgian Elections, 1981-1985 (R. Doutrelepont) 

We shall fit this model to data on how voters, interviewed outside the polling 
station in the October 1985 Belgian election, stated they had just voted and how they 
had voted in the previous election (Table 6.2). This is a retrospective study, rather 
than a panel. 

The relevant sections of the output from the macro are as follows: 

BELGIAN ELECTIONS - 1981-1985 - VOTING CHANGES 

2. Symmetry Model 

scaled deviance = 33.054 at cycle 7 
d.f. = 15 from 30 observations 

Chi2 probability = 0.0047 for Chi2 = 33.05 with 15. d.f. 
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estimate s.e. parameter 
1 2.565 0.1961 1 
2 -0.6190 0.3315 ZZl (2) -
3 -0.1671 0.2897 ZZl (3) -
4 -1. 649 0.4883 ZZl (4) -
5 -1.466 0.4529 ZZl (5) -
6 -0.1226 0.2863 ZZl (6) -
7 -1.872 0.5371 ZZl (7) -
8 -3.258 1. 019 ZZl (8) -
9 -1.312 0.4258 ZZl (9) -

10 -1. 061 0.3867 ZZl (10) -
11 -3.258 1. 019 ZZl (11) 

-
12 -3.258 1.019 ZZl (12) -
13 -2.565 0.7338 ZZl (13) -14 -3.258 1.019 ZZl (14) -
15 -10.26 20.09 ZZl (15) 
scale parameter taken as 1. 000 

Since the model is rejected, the probability of changing vote in either direction 
between each pair of parties is not the same. 

A weaker hypothesis is that of quasi-symmetry: the table would be symmetric if 
it were not for the distorting effect of the marginal totals. In our example, this is the 
effect of a changing proportion of votes received by the different parties between the 
two elections. We simply add the two mean parameters to the model (6.2). (In a sense, 
the Bradley-Terry model lies between symmetry and quasi-symmetry, since it contains 
one set of mean parameters.) 

BELGIAN ELECTIONS - 1981-1985 - VOTING CHANGES 

3. Quasi-symmetry Model 

scaled deviance = 10.101 (change = -22.95) at cycle 9 
d.t. = 10 (change = -5 ) from 30 observations 

Chi2 probability = 0.4319 for Chi2 10.10 with 10. d.f. 

estimate s.e. parameter 
1 2.587 0.2496 1 
2 -0.7439 0.3763 ZZl (2) -
3 -1.189 0.4546 ZZl (3) -
4 -2.353 0.7509 ZZl (4) -
5 -2.510 0.7065 ZZl (5) -
6 -0.2275 0.3445 ZZl (6) -
7 -2.886 0.6379 ZZl (7 ) 

-
8 -3.951 1.167 ZZl (8) -
9 -2.348 0.6932 ZZl (9) -

10 -2.122 0.5214 ZZl (10) -
11 -4.016 1.158 ZZl (11) -
12 -4.340 1.148 ZZl (12) -
13 -3.894 0.8486 ZZl (13) -
14 -4.783 1. 097 ZZl (14) -
15 -13.59 54.27 ZZl (15) 
16 -0.04484 0.3158 V8f(2) 
17 0.1959 0.3554 V81(3) 
18 1.490 0.4259 V81(4) 
19 1. 084 0.7559 V81(5) 
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20 1.516 0.6797 V81(6) 
21 0.000 aliased V85(2) 
22 0.000 aliased V85(3) 
23 0.000 aliased V85(4) 
24 0.000 aliased V85(5) 
25 0.000 aliased V85 (6) 
scale parameter taken as 1.000 

This model fits the data very well. The probability of shifting in either direction 
between each pair of parties is the same after taking into account the overall change in 
voting behaviour between the two elections. Change between Socialist and Liberal is 
most probable (all other estimates are negative with regard to it) and between 
Communist and blank ballot least (there are none). 

A further model, marginal homogeneity, is closely related to the previous two. 
Suppose the marginal totals are symmetric but the body of the table is not. The 
distribution of votes at the two elections is identical but the probability of shift 
between each pair of parties is not the same in both directions. Marginal homogeneity 
plus quasi- symmetry equals symmetry; the Chi-squares of these models obey this 
equation. Symmetry obviously implies marginal homogeneity. A special macro, 
MHCT, is required for this model. 

BELGIAN ELECTIONS - 1981-1985 - VOTING CHANGES 

Marginal Homogeneity Model 

scaled deviance = 23. at cycle 10. 
d.t. = 5. 

(no convergence yet) 

Chi2 probability 0.00 for Chi2 = 23. with 5. d.t. 

estimate s.e. parameter 
1 -0.59 1.5 C1 -2 -0.66 1.5 C2 -
3 -0.55 1.7 C3 -4 0.032 1.7 C4 -
5 -0.063 2.5 C5 -
6 0.0 aliased C6 -7 0.0 aliased C7 
8 0.0 aliased C8 -
9 0.0 aliased C9 
scale parameter taken as 33-:-

As might be expected, this model is not acceptable for these data, since symmetry was 
not, while quasi-symmetry was. 

We may note that marginal homogeneity is not a log linear model (hence, the 
special macro), the third we have encountered in this book; the first two were the log­
multiplicative and proportional odds models. 

In terms of Markov chains, quasi-symmetry is known as reversibility, since the 
same proportion of individuals is changing position in each direction, while marginal 
homogeneity is the equilibrium state, since the margins are not changing over time. 
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3. Diagonal Models 

Several models take into account the diagonal symmetry of square tables. A 
ftrst model bears some similarity to the mover-stayer model. We differentiate those 
who do not change from those who do, i.e. the diagonal from the rest. However, in 
distinction to the mover-stayer model, we here consider the diagonal members to be 
homogeneous. This is the main diagonal or loyalty model, since, in voting behaviour, 
we are distinguishing those who are loyal to a party (those on the diagonal) from those 
who are not. The factor variable (ZZ2..J is 

211 
121 
112 

We apply this model to the two 1974 British elections (Table 6.3). 

October 
February Conservative Liberal Labour 

Conservative 
Liberal 
Labour 

170 
22 

6 

20 
70 
12 

3 I 
28 I 

227 I 

Table 6.3 Changes in Vote between the Two British Elections of 1974 (pingleton, 
1984, p.131) 

The macro gives the following results: 

BRITISH ELECTION VOTE 1974 (FINGLETON, 1984, P.131) 

5. Main Diagonal (Loyalty) Model 

scaled deviance = 53.175 at cycle 4 
d.f. = 3 

Chi2 probability = 0.0000 for Chi2 = 53.17 with 3. d.f. 

estimate s.e. parameter 
1 2.791 0.1251 1 
2 -0.6495 0.1755 OCT(2) 
3 0.2078 0.1477 OCT(3) 
4 -0.01844 0.1694 FEB(2) 
5 0.07539 0.1506 FEB(3) 
6 2.312 0.1186 ZZ2 (2) -scale parameter taken as 1.000 

Although the Chi-square is greatly reduced from that for the independence model 
(613.1 with 4 d.f.), the model is not satisfactory. Loyalty is an important factor, 
especially with two so closely spaced elections, but it is not a sufficient explanation of 
the pattern in the data. 

We now take into consideration the idea that the parties may be ordered and 
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that changing vote by one step in either direction on the scale has a different 
probability than that for two steps, and so on, for greater distances. The factor variable 
(ZZ3 --> is now 

123 
212 
321 

the symmetric minor diagonal model. 

6. Symmetric Minor Diagonal Model 

scaled deviance = 4.0486 (change = -49.13) at cycle 3 
d.f. = 2 (change = -1 ) 

Chi2 probability = 0.1321 for Chi2 4.049 with 2. d.f. 

estimate s.e. parameter 
1 5.148 0.07518 1 
2 -0.6112 0.1655 OCT(2) 
3 0.2496 0.1897 OCT(3) 
4 -0.2885 0.1663 FEB(2) 
5 0.01777 0.1935 FEB(3) 
6 -1. 773 0.1305 ZZ3 (2) -7 -3.784 0.3372 ZZ3 (3) -scale parameter taken as 1. 000 

This model fits the data very well. The parameter estimates of ZZ3_ (0.000, -l.773, 
-3.784) indicate that the probability of changing vote decreases steeply with distance 
between the parties, in the order presented in the table. 

If the model did not fit, we could extend it further and take steps with different 
probabilities in each direction, the asymmetric minor diagonal model, with factor 
variable (ZZ4--> 

123 
412 
541 

As expected, for these data, the model fits well, since the preceding one did. 

BRITISH ELECTION VOTE 1974 (FINGLETON, 1984, P.131) 

7. Asymmetric Minor Diagonal Model 

scaled deviance = 1.4032 (change = -2.645) at cycle 3 
d.f. = 1 (change = -1 ) 

Chi2 probability = 0.2362 for Chi2 1.403 with 1. d.f. 

estimate s.e. parameter 
1 5.151 0.07513 1 
2 1. 081 0.2427 OCT(2) 
3 3.622 0.4136 OCT(3) 
4 -1. 983 0.2478 FEB(2) 
5 -3.359 0.4151 FEB(3) 
6 -3.371 0.2637 ZZ4 (2) -



7 -7.674 0.7143 
8 -0.1977 0.2737 
9 0.000 a1iased 
scale parameter taken as 
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ZZ4 (3) 
ZZ4 (4) 
ZZ4- (5) 

1. 000 

With only three parties, not all parameters can be estimated, hence the alias. 

Another possibility is to combine the minor diagonals model with symmetry. 
When this model fits, it indicates that we would have symmetry if it were not for the 
unequal probabilities of larger and smaller steps. In this case, a full factor variable is 
not necessary because of the effect of the symmetry variable in the model. It is 
sufficient to define a variable (YYI~ 

123 
112 
111 

and fit it with the symmetry factor variable, but with no mean parameters. 

4. Minor Diagonals-Symmetry Model 

scaled deviance = 4.2759 at cycle 3 
d.f. = 1 from 6 observations 

Chi2 probability = 0.0387 for Chi2 = 4.276 with 1. d.t. 

estimate s.e. parameter 
1 2.857 0.2025 1 
2 0.3448 0.2241 YY1 (2 ) -3 -0.6931 0.7071 YY1 (3) -4 -1. 066 0.4557 ZZl (2 ) -5 -0.04879 0.2209 ZZl (3) -scale parameter taken as 1. 000 

As in Section 2 above, ZZC is the symmetry variable; here, YYI_ is the new minor 
diagonal variable. (The macro, SYCT, prints out a list of the values of all variables 
created at the end of its output, so that the user can verify to what each variable 
corresponds.) 

This model is the similar to the symmetric minor diagonal model, but without 
the margins fixed. The fit is reasonably good, but we retain the symmetric minor 
diagonals model, since it fits better and has more degrees of freedom. It would appear 
that the symmetric minor diagonals model has more parameters, but here the diagonal 
of the table has been eliminated for symmetry. 

4. Distance and Loyalty Models 

Diagonal models assume an equal distance among all adjacent pairs of 
categories. Distance models relax this assumption to allow different intervals among 
the categories. A distinct variable is introduced for each adjacent interval, i.e. K-I 
variables for K categories. A model with these variables plus the two mean variables 
may be called a pure distance model. For a 4x4 table, the series of variables (CI_, 
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C2_, ... ) is 

2 1 1 1 2 2 1 1 2 2 2 1 
1 2 2 2 2 2 1 1 2 2 2 1 
1 2 2 2 1 1 2 2 2 2 2 1 
1 2 2 2 1 1 2 2 1 1 1 2 

In the macro, SYCT, these are modified to sum to zero, as if by the macro, TRAN. 

We fit the model to voting changes between the 1966 and 1970 British 
elections (Table 6.4). 

1970 
1966 Conservative Liberal Labour Abstention 

Conservative 68 1 1 7 
Liberal 12 60 5 10 

Labour 12 3 13 2 
Abstention 8 2 3 6 

Table 6.4 Voting Changes between 1966 and 1970 British Elections (Upton, 1978, 
p.1l9) 

The results which interest us from the macro are given below: 

BRITISH ELECTION VOTE 1966 AND 1970 (UPTON, 1978, P.119) 

8. Pure Distance Model 

scaled deviance 
d.f. 

Chi2 probability = 

64.230 at cycle 5 
6 

0.0000 for Chi2 = 64.23 

estimate s.e. parameter 
1 3.099 
2 -0.8883 
3 -1. 839 
4 -1. 601 
5 0.4428 
6 -0.4539 
7 -0.8267 
8 -0.7572 
9 -0.2691 

10 -0.09417 
11 0.000 
12 0.000 
13 0.000 
14 0.000 
15 0.000 
16 0.000 
scale parameter 

unit 
1 
2 
3 

observed 
68 

1 
1 

0.1928 
0.2172 
0.2916 
0.3273 
0.2129 
0.2718 
0.3273 
0.1031 

0.09916 
0.1473 

aliased 
aliased 
aliased 
aliased 
aliased 
aliased 

taken as 

fitted 
68.000 

6.153 
1. 388 

1 
V70(2) 
V70(3) 
V70(4) 
V66(2) 
V66(3) 
V66(4) 
C1 
C2 -
C3 
C4 
C5 
C6 
C7 
C8 -
C9 

1. 000 

residual 
0.000 

-2.077 
-0.329 

with 6. d.f. 
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4 7 1.459 4.588 
5 12 23.290 -2.339 
6 60 43.557 2.491 
7 5 9.827 -1. 540 
8 10 10.326 -0.101 
9 12 5.546 2.741 

10 3 10.372 -2.289 
11 13 6.867 2.341 
12 2 7.215 -1.942 
13 8 3.164 2.718 
14 2 5.918 -1.611 
15 3 3.918 -0.464 
16 6 6.000 0.000 

BRITISH ELECTION VOTE 1966 AND 1970 (UPTON, 1978, P.119) 

Poisson Residuals 

Score Test Coefficient of Sensitivity 
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Points Y represent 45 line 

The model is rejected. However, the problem with such a model for voting data is that 
it does not take into account party loyalty. If we inspect the residual table and the 
score test coefficient, we see that this is only important for the interior diagonal 
elements (2 and 3), and not for the two extremes. The stability of the Liberal vote is 
particularly under-estimated. 
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We add the loyalty variable ('Z:Z2-.J, the main diagonal factor of the previous 
section, to obtain the loyalty-distance model. 

BRITISH ELECTION VOTE 1966 AND 1970 (UPTON, 1978, P.119) 

9. Loyalty-Distance Model 

scaled deviance = 6.0702 (change -58.16) at cycle 4 
d.f. = 5 (change -1 ) 

Chi2 probability = 0.2989 for Chi2 6.070 with 5. d. f. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

estimate 
2.331 

-1. 063 
-1. 560 
-1. 505 
0.9108 

0.02230 
-0.9232 
0.06429 

0.3150 
0.4398 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
2.708 

s.e. 
0.2340 
0.2632 
0.2996 
0.3109 
0.2584 
0.2866 
0.3109 
0.1541 
0.1577 
0.1786 

aliased 
aliased 
aliased 
aliased 
aliased 
aliased 

0.3966 
scale parameter taken as 

parameter 
1 
V70(2) 
V70(3) 
V70(4) 
V66(2) 
V66(3) 
V66 (4) 
C1 
C2-
C3-
C4 
C5 
C6-
C7 
C8-
C9-
ZZ2 (2) 

1. 000 

The model now fits very well. (In fact, the symmetric minor diagonal model also fits 
these data well; it too takes party loyalty into account.) On the ordered party scale, 
Conservative and Liberal are closest neighbours (0.0643) and Labour and abstention 
are most distant (0.4398). 

Another possibility to accommodate the inflated main diagonal elements is to 
combine the pure distance model with the mover-stayer model to give a distance 
model without main diagonal. 

BRITISH ELECTION VOTE 1966 AND 1970 (UPTON, 1978, P.119) 

10. Distance without Main Diagonal 

scaled deviance = 4.2995 at cycle 4 
d.f. = 4 from 12 observations 

Chi2 probability = 0.3673 for Chi2 = 4.300 with 4. d.f. 

estimate s.e. parameter 
1 2.015 0.4357 1 
2 -1.473 0.4581 V70(2) 
3 -1. 348 0.4196 V70(3) 
4 -0.6278 0.3413 V70(4) 
5 0.6938 0.4075 V66(2) 
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6 0.1263 0.4582 V66(3) 
7 -0.02927 0.4937 V66 (4) 
8 0.000 aliased Cl 
9 0.2525 0.1527 C2 -

10 0.000 aliased C3 
11 0.000 aliased C4 
12 0.000 aliased C5 -
13 0.000 aliased C6 
14 0.000 aliased C7 -15 0.000 aliased C8 -
16 0.000 aliased C9 
scale parameter taken as 1. 000 

This model also fits the data very well, but with one less degree of freedom than the 
previous model. Whereas the main diagonal variable gives a constant factor level to 
the whole diagonal, eliminating the diagonal is equivalent to giving each category of 
the diagonal a different level. This is evidently unnecessary for these data. 

Several remarks should be made in conclusion. All of the models of this chapter 
are suitable for the study of social mobility tables, already introduced in the previous 
chapter. However, care must be taken with small tables, especially 3x3, since in this 
case, a number of the models are identical. We already noted the problem of aliased 
parameter estimates in one model of Section 3 above. Note, also, that all of these 
models may be relatively easily extended to multi-dimensional tables covering more 
than two time points, although the supplied macros no longer apply, and suitable 
variables must be constructed. 



APPENDIX I 

GLIM COMMANDS 

The following table is adapted to GUM 3.77 from the Hull University GUM 

card for GUM 3.12 published in the GUM Newsletter Number 3 (1980). 

Implementation details: 
Site 
Machine 
Operating system 
Mark of GLIM 
O.S. GLIM entry command 

Special symbols ($ENV I) : 
Directive 
Repetition 
Function 
Substitution 
End of record 
Quote (Text) 
Separator 
Output request 
Greater than 
Less than 
And 
Or 
Not 

Liege 
Amiga 
AmigaDOS 
3.77 Update 
GLIM 

$ 

% 
# 

[] 

> 
< 
& 

? 
/ 

Query ? 
Modulus I 
Largest Integer 2147483639 

Input/Output channel numbers: 
Default input (keyboard) 9 
Default output (screen) 9 
Secondary input (data) 1 
Secondary input (program) 5 
Secondary output (listing) 6 

Full character set: 
A ... Z a... z 0 ... 9 underline 
space newline comma special symbols 
operators: + - * / ** 
brackets: ( ) 

Names: 
Not more than 4 characters of a 
name are significant. The directive 

Directives: 
In a description of a directive, 
"int" specifies an integer value and 
"number" a value that may contain a 

2 sign and a decimal point. "scalar" 
must be a scalar identifier but "id" 
may be a scalar or variate identifier 
in context. "macro" is a macro 
identifier. "option-list" is 
directive specific keywords. Items in 
[ ] are optional. 

$ACcuracy int No. of digits for 
output 

$ALias Switch to include/ 
exclude intrinsically 
aliased parameters 

$Argument macro items 
Define up to 9 
arguments for macro. 
Item may be name, 
%int, %scalar, or * 

$ASSign vector1 = id [,id]s 
Concatenate list of 
values. 

$CAlculate expression 
Evaluate and 
optionally print 
value 

$Comment string Non-executable 
text 

$CYcle [int1[int2[number1[number2]]] 
No. of cycles and 
printing frequency 

$DAta [length] id's Define names for 
$Read or $DINput 

$DElete id's 
$DINput channel [width] 

Read data from file 
$Display letters Use after fitting 

model. Letters: A C 
DEL MRS T U V W 

$ 
$DUmp [channel] 
$ECho 

Dummy directive 
Save current state 
Switch to print 
back input 



symbol is the first significant 
character of a directive. Directives 
may therefore be type in full, as 
just the symbol plus 3 characters, 
or they may be further shortened 
to the portion capitalized in the 
list of directives. Lower case 
letters are interpreted as the 
upper case equivalent. 

These names are system defined: 
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$EDit [intl[int2]] vectors numbers 
$End End of job. Clears 

user space. Does not 
reset pseudo-random 
numbers 

$Endmac End of macro 
definition 

$ENVironment [channel] letters 
Letters: C D E G I 
P R S U : Channels/ 
Direct./ Pass/ 
Graphics/Imp./PCS/ 

Scalars: Random Seeds/System 
%A %B ... %Z Ordinary scalars struct./usage 
%IN Job number. Incremented by $End $ERror letter [id] Letters: B GNP 
%NU No. of UNITS Binomial (needs id)/ 
%DV Scaled deviance after fit Gamma/Normal/Poisson 
%DF Degrees of freedom after first $EXit [int] Pop program control 

cycle stack 'int' levels. 
%X2 Generalized Pearson Chi-square See $SKip 

%SC 
%CL 
%ML 

after each cycle $EXTract id's Assign values from 
SCALE or mean deviance SSP to identifiers 
Program control stack level %VC, %PE, or %VL 
No. of elements in (co)variance $FActor [length] [id level]s 
matrix of parameters. Length of $FINish End of file marker 
vector %VC after subfiles. May 

%PL No. of non-intrinsically aliased cause file to be 
parameters. Length of vector %PE rewound 

%PI Pi to machine accuracy $Fit [model formula) 
%HEL 1 if $Help on, else 0 $FOrmat FREE or FORTRAN format 
%ECH 1 if $ECho on, else 0 $GRAph not implemented 
%WAR 1 if $WArning on, else 0 $GROup [vector2 =] vectorl [Values 
%VER 1 if $VErify on, else 0 vector4][Interval [*] vector3 [*] 
%PAG 1 if $PAGe on, else 0 Regroup values in 
%PIC primary input channel number vectorl with vector3 
%PIL record length of prim. inp. ch. as domain and vector2 
%CIC current input channel as range 
%CIL record length of curro inp. ch. $Help Switch to give 
%POC primary output channel number extended error 
%POL record length of prim. out. ch. messages 
%POH height of prim. out. channel $HIstogram [option-list] [vectorl 
%COC current output channel number [/vector2]]s ['string' [vector3]] 
%COL record length of curro out. ch. Plot histogram(s) 
%COH height of curro out. channel vectorl, with weight 
%PDC primary dump channel number from vector2 for each 
%PLC primary library channel number factor level of 
%ACC accuracy setting vector3 
%IM 1 if GLIM in interactive mode $Input channel [width] [subfiles] 
%TRA transcription code $ LAyout Not implemented 
%ERR error distribution code $LInk letter [number] 
%LIN link code Declare link 
%YVF 1 if y-variate specified, else 0 function. Letters: C 
%BDF 1 if binomial denom. specified E GIL P R S : Compo 
%PWF 1 if prior weight specified log-log/Expo (needs 
%OSF 1 if offset specified, else 0 no.)/Logit/Identity/ 
%Al ... %A9 1 if nth argo of macro set Log/Probit/Recip./ 
%Zl ... %Z9 scalars reserved for macros Square root 
%CYC maximum number of cycles $Look [option-list] vectors or scalars 
%PRT printing frequency $LSeed [in1[in2[in3]]] 



%CC convergence criterion 
%TOL aliasing tolerance 
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%S1 %S2 %S3 seeds for random num.gen. 
$Macro macro space string $Endmac 
$MANual Not implemented 
$MAP [vector2=] vector1 [Values 

vectors (length in brackets) : 
%FV Fitted values (%NU) 
%LP Linear predictors (%NU) 
%WT Iterative weights (%NU) 
%WV Working vector for iterative 

models (%NU) 
%YV Dependent variate (Y) values 

(%NU) 
%BD Binomial denominator (%NU) 
%PW Prior weights (%NU) 
%OS Offset (%NU) 
%DR Derivative d(eta)/d(mu) (%NU) 
%VA Variance function values (%NU) 
%DI Deviance increment (%NU) 
%GM Grand mean used in FITs (%NU) 
%VC Non-intrinsically aliased 

parameter (co)variance 
matrix (%ML) 

%PE Non-intrinsically aliased 
parameter estimates (%PL) 

%VL Variances of linear predictors 
(%NU) 

%RE Weights for Plotting or DISplay 
(%NU) 

Functions: 
x is a variate or scalar, depending 

upon context and k, n integer 
scalars 

%ANG(X) arcsin(sqrt(X» 
%EXP(X) 
%LOG(X) 
%SIN (X) 
%SQRt(X) 
%NP (X) 

%ND(X) 

%TR(X} 

e**X 
In(X) base e 
sin (X) 
square root 
Normal probability integral 
infinity to X 

Normal deviate, inverse of 
%NP O<X<1 

Integer X, truncated toward 
o 

%GL(k,n) Factor levels 1 to k in 
blocks of n 

%CU(X} 
%SR(O} 
%SR(n} 

%LR(O) 
%LR(n) 

Logical 
< <= 

Dyadic 
Dyadic 
Monadic 

Cumulative sums of X 
Pseudo-random real on [0,1] 
Pseudo-random integer on 

[O,n] 
Pseudo-random real on [0,1] 
Pseudo-random integer on 

[0, n] 

operators: 
/= >= > 

AND & 
OR ? 
NOT / 

vector4] [Interval [*]vector3[*]] 
values of vector1 
mapped with vector3 
as domain and vector2 
as range 

$Offset rid] Declare a priori 
known component in 
fit 

$OUtput [channel[width[height]] 
If channel=O, 
switches off output 

SOWn macr01 macr02 macr03 macr04 
macr01: produce %FV 
from %LP 

$ PAGe 

$PASs 
$PAUse 

macr02: produce %DR 
macr03: produce %VA 
macr04: produce %DI 
Switch to pause 
output 
Not implemented 
Open a new multi­
tasking Command 
Line window 

$Plot [option-list] yvectors xvector 
[' string' [vector] ] 

Up to 9 yvectors. 
Vector specifies 
factor levels 

SPRint [option-list] [item]s 

$Read numbers 

Item is identifier. 
string, *int or / 
Read values to id's 
named in $DAta 

$RECycle[int1[int2] [number1[number2]]] 

$REInput 
$REStore 
$RETurn 

As cycle, but starts 
with %FV 

channel [width] [subfiles] 
[channel] Restart from DUMP 

Pop input channel 
stack by 1 level 

$REwind [channel] 
$SCale [number] If number>O, use as 

scale factor; else 
estimate scale 
Specify batch or 
interactive mode 
Pop program counter 
stack 'int' levels 
unless in $WHile 

$SET option 

$SKip int 

$Sort vector1 
or int3]] 

[vector2 or int2[vector3 
Sort vector2 into 
vector1 based on 
vector3. Use int2 for 
ranks and int3 for 
circular lags 
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%LT %LE %EQ %NE %GE %GT 
These take 2 arguments: e.g. %LT(X,y) 

TRUE=l. FALSE=O. 
%IF(conditional expression,Xl,X2) 

Returns Xl if true, X2 if false. 
Logical values may be combined: 

%opl AND %op2 by %opl*%op2 
NOT %opl by l-%opl 
%opl NOR %op2 by %EQ(%opl+%op2,O) 
%opl OR %op2 by %NE(%opl+%op2,O) 
%opl EOR %op2 by %NE(%opl,%op2) 

Formal arguments: 
%1 ••• %9 
%scalar e.g. %%A 

Operators in precedence order: 
1. functions, monadic operators, 
2. ** 
3. * and dyadic / 
4. dyadic + and dyadic -
5. relational operators 
6. & 
7. ? 
8. 

Layout: 
Items must be separated by space or 
newline. $SUbfile or $FINish must be 
the first directive on any line in 
which they occur. Text following 
$End, $FINish or $RETurn 
on the same line is ignored. 

$SSeed [intl[int2[int3]]] 
$STop End of session 
$SUBfile id space text $RETurn 

External object 
$ SUSpend Temporary reversion 

to primary input 
$SWitch scalar macros 

Conditionally 
execute macro 
from list 

$Tabulate [option-list] [THE (vectorl 
or *) statistic [number]) [WITH 
vector2 or *) [FOR (vector3 [; 
vector4) s) or *) [INTO (vectorS) or 
output-request or *) [USING (vector6) 
or output-request or *) [BY (vector? 
[; vector8)s) or (scalarl [; 
scalar2)s) or *] 

where output-
request is [). For 
each FOR vector, the 
statistic weighted by 
WITH vector2 is 
calculated from the 
THE vectorl output 
classification is 
stored in BY vectors 
or scalars, the 
resultant weight in 
USING vector6 and the 
calculated statistic 
values in the INTO 
vectorS. Output­
request prints a 
table. Statistic may 
be Mean, Total, 
Variance, Deviation, 
Smallest, Largest, 
Fifty, Percentile, 
Interpolate. 

$TPrint [option-list] vectorl [; 
vector2)s [«vector3 [; vector4)s) or 
(numberl [; number2)) or *) 

Print values of 
vectorl and vector2 
as body of table 
classified by 
vector3 and vector4 

$TRanscript [Input) [Verify) [Warn) 
[Fault) [Help) [Ordinary) 

Specify what is 
written to 
transcript file (Must 
have spaces between 
option letters) 

$UNits int Define standard 
length 

$Use macro [items] Invoke macro if not 
empty where items 
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$Variate [length) 
$VErify 

$WArning 

$Weight lid) 

are its arguments 
id's 
Switch to write each 
line of executing 
macro to current 
output channel 
Switch to print 
warnings 

$WHile scalar macro 
Execute macro 
repeatedly while 
scalar is not 0 

$Yvariate id Name independent 
variable 



APPENDIXn 

DATA AND GLIM PROGRAMS FOR THE EXAMPLES 

The data which appear at the beginning of each section below should be placed 

in a separate file to be read by the corresponding $DINput instruction. 

The instructions. which always begin with the definition of a macro called 

TITL and end with $FINish. and which produce the output found in the 

corresponding chapter and section of the book. may either be typed in directly to 

GUM or placed in a program file which is then read by the instruction $INput 5. 

$DINput 1 is used as the default data input channel and $OUtput 6 as the secondary 

output channel for text. If the user wishes to have the output directly on the screen, 

instead of written to a text file, the instructions $OUt 6 80 and $CAlculate %0=6 

should be omitted. On the Commodore Amiga the primary input and output channels 

are both 9. 

Chapter lOne-Way Frequency Tables 

1.1 A Time Trend Model 

! STRESSFUL EVENTS - HABERMAN (1978, P.3) 
!SUBJECTS REPORTING ONE EVENT 
!1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 MONTH 
15 11 14 17 5 11 10 4 8 10 7 9 11 3 6 1 1 4 

$Macro TITL define title 
STRESSFUL EVENTS - HABERMAN (1978, P.3)! 

$Encimac! 
$UNits 18! read data 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! define model 
$ERror P! 
SPRint 'Load CHIT (TESTSTAT.glim), ! 
$INput 12 CHIT! 
SPRint 'Load RESP (GLIMPLOT.glim), ! 
$INput 23 RESP! 
$CAlculate MON=%GL{18,1)! create required variables 
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: %0=6! send macro output to text file 
send output to text file $OUt 6 80! 

SPRint TITL :! 
$Fit! 
$Use CHIT %DV %DF! 
$CAlculate %D=%DV! 
: %E=%DF! 

fit independence model 
calculate Chi-square 

save values for difference in Chi-squares 

$Display ER! 
SPRint / TITL :! 
$Use RESP! 
SPRint / TITL :! 
$Fit MON! 
$Use CHIT! 
$CAlculate %DV=%D-%DV! 
: %DF=%E-%DF! 
$Use CHIT! 
$Display ER! 
SPRint / TITL :! 
$Use RESP! 
SPRint I TITL :! 

display and plot residuals 

fit linear time trend model 
calculate Chi-squares 

display and plot residuals 

SPRint 'Observed and Fitted 
$Plot %FV FREQ MON! 
$CAlculate F=%LOG(FREQ) ! 

Values' :! plot regression 

: T=%LOG(%FV)! 
SPRint : 'Linear Regression' :! 
$Plot T F MON! 
$FINish 

1.3 A Symmetry Model 

SELF-CLASSIFICATION BY SOCIAL CLASS - HABERMAN (1978, P.24) 
LOWER WORKING MIDDLE UPPER CLASS 

72 714 655 41 

$Macro TITL ! define title 
SELF-CLASSIFICATION BY SOCIAL CLASS - HABERMAN (1978, P.24) 

$Endmac! 
$Macro UCHI ! 

$Use CHIT! 
$CAlculate %DV=%D-%DV! 
: %DF=%E-%DF! 
$Use CHIT! 

$$Endmac! 
$UNits 4! 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput I! 
$Yvariate FREQ! 
$ERror P! 

macro for repeated instructions 
calculate Chi-squares 

read data 

define model 

SPRint 'Load CHIT (TESTSTAT.glim)'! 
$INput 12 CHIT! 
$ASsign CLAS=I,-I,-I,I! 
$CAlculate Cl=2*(%GL(4,1)-2.5)! 
: C2=(CI/2)**2-1.25! 
$OUt 6 80! 
SPRint TITL :! 
$Fit! 

create 

send 

required variables 
linear effect 

quadratic effect 
output to text file 

fit independence model 
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$Use CHIT %DV %DF! 
$CAlculate %D=%DV! 
: %E=%DF! 

calculate Chi-square 
save values for difference in Chi-squares 

$Display ER! 
$Fit CLAS! 

display parameter estimates and residuals 
fit pure quadratic model 

$Use UCHI! 
$Display ER! 
SPRint / TITL! 
$Fit C1+C2! 

display parameter estimates and residuals 

$Use UCHI! 
$Display E! 
$FINish 

1.4 Periodicity Models 

fit linear+quadratic model 

display parameter estimates 

SUICIDES, USA, 1968 - HABERMAN (1978, P.51) 
JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT OCT. NOV. DEC. 
1720 1712 1924 1882 1870 1680 1868 1801 1756 1760 1666 1733 

31 29 31 30 31 30 31 31 30 31 30 31 DAYS IN THE MONTHS 
1 1 2 2 2 3 3 3 4 4 4 1 SEASONS 

$Macro TITL define title 
SUICIDES, USA, 1968 - HABERMAN (1978, P.51)! 

$Endmac! 
$Macro UCHI ! 

$Use CHIT! 
macro for repeated instructions 

calculate Chi-squares 
$CAlculate %DV=%D-%DV! 
: %DF=%E-%DF! 
$Use CHIT! 
$Display ER! 
SPRint / TITL :! 
$Use RESP! 

$$Endmac 
$UNits 12! 
$DAta FREQ! 
SPRint 'Load data'! 
$DINput 1! 
$DAta DAYS! 
$DINput 1! 
$DAta SEAS! 
$DINput 1! 
$Yvariate FREQ! 
$ERror P! 
$Offset DAYS! 
$FActor SEAS 4! 
SPRint 'Load CHIT (TESTSTAT.glim)'! 
$INput 12 CHIT! 
SPRint 'Load TRAN (DESIGN.glim)'! 
$INput 13 TRAN! 
SPRint 'Load RESP (GLIMPLOT.glim)'! 
$INput 23 RESP! 
$Use TRAN SEAS Sl S2 S3! 
$CAlculate DAYS=%LOG(DAYS)! 

SIN=%SIN«2*%GL(%NU,1)-1)*%PI/12) ! 

display and plot residuals 

read data 
since data file has 

variables by line 
instead of column, 

must read each 
variable separately 

define model 

constant term 

create required variables 

COS=%SQR(l-SIN*SIN) ! 
%0=6! send macro output to text file 



119 

send output to text file $OUt 6 80! 
SPRint TITL :! 
$Fit! 
$Use CHIT %DV %DF! 
$CAlculate %D=%DV! 
: %E=%DF! 

fit independence model 
calculate Chi-square 

save values for difference in Chi-squares 

$Display ER! 
SPRint / TITL :! 
$Use RESP! 

display and plot residuals 

SPRint / TITL :! 
$Fit SEAS! 
$Display E! 
$Fit Sl+S2+S3! 
$Use UCHI! 
SPRint / TITL :! 
$Fit SIN+COS! 

fit seasons model using factor variable 
display parameter estimates 

fit seasons model with conventional constraints 

fit sine-cosine model 
$Use UCHI! 
SPRint / TITL :! 
SPRint 'Observed and Fitted Values' :! 
$CAlculate N=%GL(12,1)! 
: T=%LOG (%FV) ! 
: F=%LOG (FREQ) ! 
$Plot %FV FREQ N! 
SPRint 'Harmonic Model' :! 
$Plot F T N! 
$FINish 

1.5 Local Effects 

SUICIDES (DURKHEIM) - HABERMAN (1978, P.87) 
MON. TUES WED. THUR FRI. SAT. SUN. 
1001 1035 982 1033 905 737 894 

$Macro TITL 
SUICIDES (DURKHEIM) - HABERMAN (1978, P.87)! 

$Endmac! 
$UNits 7! 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! 
$ERror P! 
SPRint 'Load CHIT (TESTSTAT.glim)'! 
$INput 12 CHIT! 
SPRint 'Load RESP (GLIMPLOT.glim)'! 
$INput 23 RESP! 

plot regression 

define title 

read data 

define model 

$CAlculate DAYS=2*(%GL(7,1)<=4)-1! 
: WEEK=(%GL(7,1)<=4)! 

create required variables 

: %0=6! 
$OUt 6 80! 
SPRint TITL :! 
$Fit! 
$Use CHIT %DV %DF! 
$CAlculate %D=%DV! 
: %E=%DF! 
$Display ER! 
SPRint / TITL :! 

send macro output to text file 
send output to text file 

fit independence model 
calculate Chi-square 

save values for difference in Chi-squares 

display and plot residuals 



$Use RESP! 
SPRint / TITL :! 
$Fit DAYS! 
$Use CHIT! 
$CAlculate %DV=%D-%DV! 
: %DF=%E-%DF! 
$Use CHIT! 
$Display ER! 
SPRint / TITL :! 
$Use RESP! 
SPRint / TITL :! 
$Weight WEEK! 
$Fit! 
$Use CHIT! 
$Display ER! 
$FINish 
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fit model with 2 periods within the week 
calculate Chi-squares 

display and plot residuals 

eliminate Friday and the weekend 
refit independence model 

calculate Chi-square 
display parameter estimates 

Chapter 2 TIme and Causality 

2.1 Retrospective Studies I 

!BRITISH SOCIAL MOBILITY - GLASS (1954) - BISHOP ET AL (1975, P .100) 
! 1 

50 
28 
11 
14 

3 

2 3 4 5 SON 
45 8 18 8 FATHER 1 : 1 PROFESSIONAL & HIGH ADMINISTRATIVE 

174 84 154 55 FATHER 2 : 2 MANAGERIAL, EXEC. & HIGH SUPERVIS. 
78 110 223 96 FATHER 3 : 3 LOW INSPECTIONAL & SUPERVISORY 

150 185 714 447 FATHER 4 : 4 ROUTINE NONMANUAL & SKILLED MANUAL 
42 72 320 411 FATHER 5 : 5 SEMI- & UNSKILLED MANUAL 

$Macro TITL ! define title 
BRITISH SOCIAL MOBILITY - GLASS (1954)! 

$Endmac! 
$UNits 25! read data 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! define model 
$ERror P! 
$FActor SON 5 FATH 5! 
SPRint 'Load TRAN (DESIGN.glim)'! 
$INput 13 TRAN IN44! 
SPRint 'Load RESP (GLIMPLOT.glim)'! 
$INput 23 RESP! 
$CAlculate SON=%GL{5,1)! create required variables 
: FATH=%GL{5,5)! 
: %0=6! send macro output to text file 
$Use TRAN SON SON1 SON2 SON3 SON4! conventional constraints 
$Use TRAN FATH FAT1 FAT2 FAT3 FAT4! 
$Use IN44 SON1 SON2 SON3 SON4 FAT1 FAT2 FAT3 FAT4! interaction 
$OUt 6 80! send output to text file 
SPRint TITL :! 
$Fit SON+FATH! fit independence model 
$Display E! display parameter estimates 
SPRint / TITL :! refit independence model 
$Fit SON1+S0N2+S0N3+S0N4+FAT1+FAT2+FAT3+FAT4! 



$Display ER! 
SPRint / TITL :! 
$Use RESP! 
SPRint / TITL :! 
$Fit SON+FATH+SON.FATH! 
$Display E! 
SPRint / TITL :! 
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display and plot residuals 

fit interaction: saturated model 
display parameter estimates 

$Fit SON1+S0N2+S0N3+S0N4+FAT1+FAT2+FAT3+FAT4+#I44! refit 
! interaction model 
$Display E! display parameter estimates 
$FINish 

22 Retrospective Studies n 

USE (FIENBERG, 1977, P.92) CLINIC 
YES NO 

23 23 
29 67 

127 18 

USE ATTITUDE VIRGIN 
ALWAYS WRONG YES 

NOT ALWAYS WRONG YES 
ALWAYS WRONG NO 

112 15 NOT ALWAYS WRONG NO 

$Macro TITL ! define title 
CLINIC USE (FIENBERG, 1977, P.92)! 

$Endmac! 
$Macro UCHI ! 

$Use CHIT! 
macro for repeated instructions 

calculate Chi-squares 
$CAlculate %DV=%D-%DV! 
: %DF=%E-%DF! 
$Use CHIT! 

$$Endmac! 
$UNits 8! 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! 
$ERror P! 

read data 

define model 

SPRint 'Load CHIT (TESTSTAT.glim)'! 
$INput 12 CHIT! 
$CAlculate USE=3-%GL(2,1)*2! create required variables 

using conventional constraints ATTI=3-%GL(2,2)*2! 
VIRG=3-%GL(2,4)*2! 
UA=USE*ATTI! 
UV=USE*VIRG! 
AV=ATTI*VIRG! 

$OUt 6 80! 
SPRint TITL :! 
$Fit ATTI+VIRG+USE+AV! 
$Use CHIT %DV %DF! 
$CAlculate %D=%DV! 
: %E=%DF! 
$Display E! 
$Fit +UV! 
$Use UCHI! 
$Display E! 
SPRint / TITL :! 
$Fit -UV+UA! 

send output to text file 

fit independence model 
calculate Chi-square 

save values for difference in Chi-squares 

display parameter estimates 
fit virgin effect 

display parameter estimates 

fit attitude effect 



$Use UCHI! 
$Display E! 
$Fit +UV! 
$Use UCHI! 
$Display E! 
$OUt! 
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display parameter estimates 
fit virgin+attitude effect 

display parameter estimates 

$DElete FREQ ATTI VIRG USE! 
$UNits 4! reread data after going to top of file 
$DAta USE N! 
$REWind 1! 
$DINput 1! 
$Yvariate USE! 
$ERror B N! 
$CAlculate N=USE+N! 
: ATTI=3-%GL(2,1)*2! 
: VIRG=3-%GL(2,2)*2! 
$OUt 6 80! 
SPRint / TITL :! 
$Fit! 

redefine model 

create required variables 

send output to text file 

fit independence model 
$Use CHIT! 
$CAlculate %D=%DV! 
: %E=%DF! 

save values for difference in Chi-squares 

$Display E! 
$Fit +VIRG! 
$Use UCHI! 
$Display E! 
SPRint / TITL :! 
$Fit -VIRG+ATTI! 
$Use UCHI! 
$Display E! 
$Fit +VIRG! 
$Use UCHI! 
$Display E! 
$FINish 

2.3 Panel Studies 

MEMBERS OF THE LEADING 
FAV UNF - ATTITUDE 1 
757 496 

1071 1074 
YES NO - MEMBER 2 
598 159 
353 143 
259 812 
182 892 
FAV UNF - ATTITUDE 2 
458 140 
171 182 
184 75 

85 97 
110 49 

56 87 
531 281 
338 554 

display parameter estimates 
fit virgin effect 

display parameter estimates 

fit attitude effect 

display parameter estimates 
fit virgin+attitude effect 

display parameter estimates 

CROWD - BOYS (COLEMAN, 1964, P.l71) 
MEMBER 1 

YES 
NO 

ATTITUDE 1 MEMBER 1 
FAV YES 
UNF YES 
FAV NO 
UNF NO 

ATTITUDE 1 MEMBER 1 MEMBER 2 
FAV YES YES 
UNF YES YES 
FAV NO YES 
UNF NO YES 
FAV YES NO 
UNF YES NO 
FAV NO NO 
UNF NO NO 
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$Macro TITL ! define title 
MEMBERS OF THE LEADING CROWD - BOYS (COLEMAN, 1964, P.l?l)! 

$Endmac! 
$Macro UCHI ! 

$Use CHIT! 
$CAlculate %DV=%D-%DV! 
: %DF=%E-%DF! 
$Use CHIT! 

$$Endmac! 
$UNits 2! 
$DAta Al A2! 
SPRint 'Load data' ! 
$DINput l! 
$DAta 4 Ml M2! 
$DINput l! 
$DAta 8 AAl AA2! 
$DINput l! 
$Yvariate Al! 
$ERror B N! 

macro for repeated instructions 
calculate Chi-squares 

read data 

define model 

SPRint 'Load CHIT (TESTSTAT.glim)'! 
$INput 12 CHIT! 
$Variate 8 ATTl MEMl MEM2! 
$CAlculate ATT1=3-%GL(2,1)*2! 

MEM1=3-%GL(2,2)*2! 
MEM2=3-%GL(2,4)*2! 
MEM=3-%GL(2,1)*2! 
N=Al+A2! 
%0=6! 

$OUt 6 80! 
SPRint TITL :! 
: 'Response Variable: ATT1' :! 
$Fit! 
$Use CHIT %DV %DF! 
$Display E! 
$Fit +MEM! 
$Display E! 
SPRint / TITL :! 
: 'Response Variable: MEM2' :! 
$OUt! 
$DElete MEM N! 
$UNits 4! 
$ERror B N! 
$Yvariate Ml! 
$CAlculate MEM=3-%GL(2,2)*2! 
: ATT=3-%GL(2,1)*2! 
: N=Ml+M2! 
$OUt 6 80! 
$Fit! 

create required variables 

send macro output to text file 
send output to text file 

fit independence model 
calculate Chi-square 

display parameter estimates 
fit membership effect 

display parameter estimates 

redefine model 

create required variables 

$Use CHIT! 
$CAlculate %D=%DV! 
: %E=%DF! 

save values for 

send output to text file 
fit independence model 

calculate Chi-square 
difference in Chi-squares 

$Display E! 
$Fit +MEM! 
$Use UCHI! 
$Display E! 
$Fit +ATT! 
$Use UCHI! 
$Display E! 
SPRint / TITL :! 

display parameter estimates 
fit membership effect 

display parameter estimates 
add attitude effect 

display parameter estimates 
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: 'Response Variable: ATT2' :! 
$OUt! 
$DElete N! 
$UNits 8! 
$ERror B N! 
$Yvariate AAl! 
$OUt 9! 
SPRint 'Load RESP (GLIMPLOT.glim)'! 
$INput 23 RESP! 
$CAlculate N=AA1+AA2! 
$OUt 6 80! 
$Fit! 

redefine model 

$Use CHIT! 
$CAlculate %D=%DV! 
: %E=%DF! 

save values for 

create required variables 
send output to text file 

fit independence model 
calculate Chi-square 

difference in Chi-squares 

$Display ER! 
SPRint / TITL :! 
$Use RESP! 
SPRint / TITL :! 
$Fit +ATT1+MEM1+MEM2! 
$Use UCHI! 
$Display ER! 
SPRint / TITL :! 
$Use RESP! 
SPRint / TITL :! 
$Fit -MEM1! 
$Use UCHI! 
$Display ER! 
SPRint / TITL :! 
$Use RESP! 
$FINish 

24First Order Markov Chains 

display and plot residuals 

fit attitude + 2 memberships 

display and plot residuals 

remove membership 1 from fit 

display and plot residuals 

ONE STEP TRANSITIONS 
1962) 

- VOTERS IN ERIE COUNTY, 1940 (GOODMAN, 

R D U 
JUNE 

125 5 16 R 
7 106 15 D MAY 

11 18 142 U 
JULY 

124 3 16 R 
6 109 14 D JUNE 

22 9 142 U 
AUGUST 

146 2 4 R 
6111 4 D JULY 

40 36 96 U 
SEPTEMBER 

184 1 7 R 
4 140 5 D AUGUST 

10 12 82 U 
OCTOBER 

192 1 5 R 
2 146 5 D SEPTEMBER 

11 12 71 U 

PARTIES: D - DEMOCRAT 
R - REPUBLICAN 
U - UNDECIDED 
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$Macro TITL define title 
ONE STEP TRANSITIONS - VOTERS IN ERIE COUNTY, 1940 (GOODMAN,! 
1962) ! 

$Endmac! 
$UNits 45! 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! 
$ERror P! 
$FActor T1 3 T2 3 TIME 5! 
SPRint 'Load CHIT (TESTSTAT.glim)'! 
$INput 12 CHIT! 
SPRint 'Load MPCT (CONTTAB.glim)'! 
$INput 15 MPCT! 
SPRint 'Load RESP (GLIMPLOT.glim)'! 
$INput 23 RESP! 
$CAlculate T1=%GL(3,3)! 

T2=%GL(3,1) ! 
: TIME=%GL (5,9) ! 
: %0=6! 
$OUt 6 80! 
SPRint / TITL :! 
$Use MPCT T1 T2 TIME! 
$Use CHIT %DV %DF! 
$Display E! 
SPRint / TITL :! 
$Display R! 
SPRint / TITL :! 
$Use RESP! 
$OUt! 
$DElete PW %RE T1 T2 TIME! 
$UNits 18! 
$ERror P! 
$Yvariate F! 
$FActor T1 3 T2 3 TIME 2! 
$Weight PW! 
$Variate 45 K! 
$CAlcu1ate K=%GL(45,1)! 

F(K*(K<=18»=FREQ! 
T1=%GL(3,3) ! 
T2=%GL (3,1) ! 
TIME=%GL(2,9) ! 
PW=l! 

$OUt 6 80! 
SPRint / TITL :! 

: ! 

read data 

define model 

create required variables 

send macro output to text file 
send output to text file 

test for stationarity 
calculate Chi-square 

display and plot residuals 

stop output 

redefine model 

define variable with old size 
create required variables 

first 3 months 

send output to text file 

: 'May-June-July Period' 
$Use MPCT T1 T2 TIME! 
$Use CHIT! 
$Display E! 

test stationarity of first 3 months 
calculate Chi-square 

display and plot residuals 
SPRint / TITL :! 
$Display R! 
SPRint / TITL :! 
$Use RESP! 
$OUt! 
$CAlculate F«K-27)*(K>=28»=FREQ!create variable: last 3 months 
$OUt 6 80! 
SPRint / TITL :! 
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: 'August-September-October Period' :! 
$Use MPCT! test for stationarity of last 3 months 
$Use CHIT! calculate Chi-square 
$Display E! display and plot residuals 
SPRint / TITL :! 
$Display R! 
SPRint / TITL :! 
$Use RESP! 
$FINish 

2.5 Second Order Markov Chains 

TWO STEP TRANSITIONS - VOTERS IN ERIE COUNTY, 1940 (GOODMAN, 
1962) 

TIME T 
R 0 U 

557 6 16 
18 0 5 
71 1 11 
380 
9 435 22 
6 63 6 

17 5 21 
4 10 24 

62 54 346 

TIME T-2 
R 
o 
U 
R 
o 
U 
R 
o 
U 

TIME T-1 

R 

o 

U 

PARTIES: 0 - DEMOCRAT 
R - REPUBLICAN 
U - UNDECIDED 

$Macro TITL define title 
TWO STEP TRANSITIONS - VOTERS IN ERIE COUNTY, 1940 (GOODMAN,! 
1962) ! 

$Endmac 
$UNits 27! 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! 
$ERror P! 
$FActor T1 3 T2 3 T3 3! 
SPRint 'Load CHIT (TESTSTAT.glim), ! 
$INput 12 CHIT! 
SPRint 'Load RESP (GLIMPLOT.glim), ! 
$INput 23 RESP! 
$CAlculate T1=%GL(3,3)! 
: T2=%GL (3,9) ! 
: T3=%GL(3,1)! 
: %0=6! 
$OUt 6 80! 
SPRint TITL :! 
$Fit T1*T2+T2*T3! 
$Use CHIT %DV %DF! 
$Display ER! 
SPRint / TITL :! 
$Use RESP! 
$FINish 

read data 

define model 

create required variables 

send macro output to text file 
send output to text file 

test if first order process 
calculate Chi-square 

display and plot residuals 
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Chapter 3 Metric Variables 

3.1 Time Trends 

ATTITUDE TO CRIMINALS 
1972 1973 1974 1975 

105 68 42 61 
1066 1092 580 1174 

265 196 72 144 
173 138 51 104 

1972-1975 - HABERMAN (1978, P .120) 
ATTITUDE 

TOO HARSHLY 
NOT HARSHLY ENOUGH 
ABOUT RIGHT 
DON'T KNOW 

4 10 8 7 NO ANSWER 

$Macro TITL define title 
ATTITUDE TO CRIMINALS 1972-1975 - HABERMAN (1978, P.120)! 

$Endmac! 
$Macro CH1 ! 

$Use CHIT 
$CAlculate %D=%DV! 
: %E=%DF! 
$Display ER! 
SPRint / TITL :! 
$Use RESP! 

$$Endmac! 
$Macro CH2 ! 

$Use CHIT! 
$CAlculate %DV=%D-%DV! 
: %DF=%E-%DF! 
$Use CHIT! 
$Display ER! 
SPRint / TITL :! 
$Use RESP! 

$$Endmac! 
$UNits 20! 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! 
$ERror P! 
$FActor YEAR 4 ATTI 5! 

macro for repeated instructions 
calculate Chi-squares 

display and plot residuals 

macro for repeated instructions 
calculate Chi-squares 

display and plot residuals 

read data 

define model 

SPRint 'Load CHIT (TESTSTAT.glim)'! 
$INput 12 CHIT! 
SPRint 'Load ORTH (DESIGN.glim)'! 
$INput 13 ORTH! 
SPRint 'Load RESP (GLIMPLOT.glim)'! 
$INput 23 RESP! 
$CAlculate YEAR=%GL(4,1)! 
: ATTI=%GL(5,4)! 
: PW=l! 
: %0=6! 
$Use ORTH YEAR YRL YRQ YRC! 
$Argument CHIT %DV %DF! 
$OUt 6 80! 
SPRint TITL :! 
$Fit YEAR+ATTI! 
$Use CHI! 
SPRint / TITL :! 

create required variables 

send macro output to text file 

send output to text file 

fit independence model 
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$Fit +ATTI.YRL! fit linear effect of year 
$Use CH2! 
$CAlculate W=(ATTI/=2) !eliminate attitude 2 (not harshly enough) 
$Weight W! 
SPRint / TITL :! 
$Fit -ATTI.YRL! refit independence model 
$Use CH1! 
$CAlculate W=W*(ATTI/=5)! eliminate attitude 5 (no answer) 
SPRint / TITL :! 
$F.! refit independence model 
$Use CH2! 
$FINish 

3.2 Model Simplification 

! ATTITUDE TO WOMEN STAYING AT HOME - HABERMAN (1979, P .312) 
!AGREE DISAGREE ATTITUDE SEX EDUC 

4 2 M 0 
4 2 F 0 
2 0 M 1 
1 0 F 1 
4 0 M 2 
0 0 F 2 
6 3 M 3 
6 1 F 3 
5 5 M 4 

10 0 F 4 
13 7 M 5 
14 7 F 5 
25 9 M 6 
17 5 F 6 
27 15 M 7 
26 16 F 7 
75 49 M 8 
91 36 F 8 
29 29 M 9 
30 35 F 9 
32 45 M 10 
55 67 F 10 
36 59 M 11 
50 62 F 11 

115 245 M 12 
190 403 F 1~ 

31 70 M 13 
17 92 F 13 
28 79 M 14 
18 81 F 14 

9 23 M 15 
7 34 F 15 

15 110 M 16 
13 115 F 16 

3 29 M 17 
3 28 F 17 
1 28 M 18 
0 21 F 18 
2 13 M 19 
1 2 F 19 



3 
2 

20 
4 
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M 20 
F 20 

$Macro TITL define title 
ATTITUDE TO WOMEN STAYING AT HOME - HABERMAN (1979, P.312)! 

$Endrnac! 
$Macro UCHI 

$Use CHIT! 
macro for repeated instructions 

calculate Chi-squares 
$CAlculate %DV=%D-%DV! 
: %DF=%E-%DF! 
$Use CHIT! 
$CAlculate %D=%D-%DV! 
: %E=%E-%DF! 
$Display E! 
SPRint / TITL :! 
$Display R! 
SPRint / TITL :! 
$Use RESP! 

$$Endrnac 
$UNits 42! 
$DAta A D! 
SPRint 'Load data' ! 
$DINput I! 
$Yvariate A! 
$ERror B N! 
$FActor EDUC 21! 
SPRint 'Load CHIT (TESTSTAT.glim)'! 
$INput 12 CHIT! 
SPRint 'Load ORTH (DESIGN.glim)'! 
$INput 13 ORTH! 
SPRint 'Load RESP (GLIMPLOT.glim)'! 
$INput 23 RESP! 
$Weight PW! 
$CAlculate SEX=3-2*%GL(2,1)! 

EDUC=%GL(21,2) ! 
N=A+D! 
PW=l! 

display and plot residuals 

read data 

define model 

create required variables 

PW(6)=0! 
N(6)=1! 
%0=6! 

eliminate category with no observations 

$Use ORTH EDUC EDL EDQ EDC! 
$CAlculate ESL=SEX*EDL! 

send macro output to text file 
calculate orthogonal polynomials 

interactions 
: ESQ=SEX*EDQ! 
$OUt 6 80! 
SPRint TITL :! 
$Fit! 
$Use CHIT %DV %DF! 
$CAlculate %D=%DV! 
: %E=%DF! 
$Display ER! 
SPRint / TITL :! 
$Use RESP! 
SPRint / TITL :! 
$Fit +SEX! 
$Use UCHI! 
SPRint / TITL :! 
$Fit -SEX+EDUC! 
$Use UCHI! 
SPRint / TITL :! 

send output to text file 

fit independence model 
calculate Chi-square 

save values for difference in Chi-squares 

display and plot residuals 

fit sex effect 

fit complete education effect 



$Fit -EDUC+EDL! 
$Use CHIT! 
$CAlculate %D=%DV! 
: %E=%DF! 
$Display E! 
SPRint / TITL :! 
$Display R! 
SPRint / TITL :! 
$Use RESP! 
SPRint / TITL . I 

$Fit +SEX+ESL! 
$Use UCHI! 
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fit linear education effect 
calculate Chi-square 

save values for difference in Chi-squares 

display and plot residuals 

add sex + sex x linear education interaction 

$CAlculate PW=(EDUC>=7) ! 
$Weight PW! 

eliminate lower levels of education 

SPRint / TITL :! 
$Fit SEX+EDL+ESL! 
$Use CHIT! 
$Display E! 

refit sex + linear education + interaction 

SPRint / TITL :! 
$Display R! 
SPRint / TITL :! 
$Use RESP! 
SPRint / TITL :! 
: 'Observed and Fitted Values' 
$CAlculate F=%FV/%BD! 

O=A/%BD! 

display and plot residuals 

plot regression 
: ! 

: EDUC=EDUC-l! 
: SEX=%GL(2,1)! 
$FActor SEX 2! 

reset education to initial values 
setup for different characters for 2 sexes 

in plot 
$Plot 0 F EDUC 'MF mf' SEX! 
$FINish 

Chapter 4 Ordinal variables 

4.1 The Log Multiplicative Model I 

CRIMINAL CASES IN N. CAROLINA, OFFENCE, 
1978, P.104 

OUTCOME OF CASE 
NO PROS. GUILTY NOT GUlL. OFFENCE 

33 8 4 DRINKING 
10 10 3 VIOLENCE 

9 8 2 PROPERTY 
4 2 1 TRAFFIC 

32 3 0 SPEEDING 
5 10 1 DRINKING 
5 5 5 VIOLENCE 

11 5 3 PROPERTY 
12 6 1 TRAFFIC 
20 3 2 SPEEDING 
53 2 2 DRINKING 

7 8 1 VIOLENCE 
10 5 2 PROPERTY 
16 3 2 TRAFFIC 
87 5 3 SPEEDING 

COUNTY, RACE (UPTON, 

RACE COUNTY 
BLACK DURHAM 
BLACK DURHAM 
BLACK DURHAM 
BLACK DURHAM 
BLACK DURHAM 
BLACK ORANGE 
BLACK ORANGE 
BLACK ORANGE 
BLACK ORANGE 
BLACK ORANGE 
WHITE DURHAM 
WHITE DURHAM 
WHITE DURHAM 
WHITE DURHAM 
WHITE DURHAM 



14 2 
1 5 
5 4 

13 13 
98 16 

$Macro PRES 
$Display E! 
SPRint / TITL :! 
$Display R! 
SPRint / TITL :! 
$Use RESP! 

$$Endmac! 
$UNits 60! 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! 
$ERror P! 

0 
7 
0 
1 
7 
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DRINKING WHITE ORANGE 
VIOLENCE WHITE ORANGE 
PROPERTY WHITE ORANGE 
TRAFFIC WHITE ORANGE 
SPEEDING WHITE ORANGE 

macro for repeated instructions 
display and plot residuals 

read data 

define model 

$FActor OUT 3 IND 20 OFF 5 COUN 2 RACE 2! 
SPRint 'Load L10V (ORDVAR.glim)'! 
$INput 16 L10V! 
$Macro TITL ! define title 

CRIMINAL CASES IN N. CAROLINA, OFFENCE, COUNTY, RACE! 
(UPTON, 1978, P.104)! 

$Endmac! 
$CAlculate OUT=%GL(3,1)! 

OFF=%GL(5,3) ! 
COUN=%GL(2,15) ! 
RACE=%GL(2,30) ! 
IND=%GL(20,3) ! 
%0=6! 
%R=1! 

$Use L10V IND OUT! 
SPRint / TITL :! 

create required variables 

send macro output to text file 
display and plot residuals in macros 

fit log multiplicative model 

$Fit OUT+IND+ZZ1 .OFF+ZZ1 .COUN+ZZ1 .RACE! refit without 

$Use CHIT %DV %DF! 
$Use PRES! 
SPRint / TITL :! 
$Fit +ZZ1 .OFF.RACE! 
$Use CHIT! 
$Use PRES! 
$FINish 

4.2 The Log Multiplicative Model II 

interactions 
calculate Chi-square 

add offence x race interaction 
calculate Chi-square 

SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.55) 
1 2 3 - VISITS LENGTH (YEARS) VISITS: 

43 6 9 2-10 GOES HOME OR VISITED REGULARLY 
16 11 18 10-20 VISITED < ONCE A MONTH & DOES 

NOT GO HOME 
3 10 16 >20 NEVER VISITED & NEVER GOES HOME 

$UNits 9! 
$DAta FREQ! 
SPRint 'Load data' ! 

read data 



$DINput 1! 
$Yvariate FREQ! 
$ERror P! 
$FActor VIS 3 LENG 3! 
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SPRint 'Load L20V (ORDVAR.glim)'! 
$INput 16 L20V! 

define model 

$Macro TITL ! define title 
SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.SS)! 

$Endmac! 
$CAlculate VIS=%GL(3,1)! 

LENG=%GL(3,3) ! 
: %0=6! 
: %R=l! 
$Use L20V VIS LENG! 
$FINish 

send macro output to text file 
display and plot residuals in macros 

fit log multiplicative model 

4.3 The Proportional Odds Model 

$UNits 9! read data 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! 
$ERror P! 
$FActor VIS 3! 
SPRint 'Load ORTH (DESIGN.glim)'! 
$INput 13 ORTH! 
SPRint 'Load POOV (ORDVAR.glim)'! 
$INput 16 POOV! 
$Macro TITL ! define title 

SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.SS)! 
$Endmac! 
$CAlculate VIS=%GL(3,1)! create required variables 

LENG=%GL(3,3) ! 
%N=l! 
%K=3! 
%L=3! 
%0=6! send macro output to text file 

$Use ORTH LENG LENL LENQ! 
$OUt 6 80! send output to text file 
SPRint TITL :! 
$Use POOV FREQ LENL! fit proportional odds model 
$OUt 9! 
SPRint 'Load RESP (GLIMPLOT.glim)'! 
$INput 23 RESP! load macro now, since model changed by POOV 
$OUt 6 80! 
SPRint / TITL :! plot residuals 
$Use RESP! 
$FINish 

4.4 The Continuation Ratio Model 

$UNits 9! 
$DAta FREQ! 

read data 



SPRint 'Load data' ! 
$DINput I! 
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SPRint 'Load ORTH (DESIGN.glim)'! 
$INput 13 ORTH! 
SPRint 'Load LI0V (ORDVAR.glim)'! 
$INput 16 CROV! 
SPRint 'Load RESP (GLIMPLOT.glim)'! 
$INput 23 RESP! 
$Macro TITL ! define title 

SCHIZOPHRENIC PATIENTS IN LONDON (FIENBERG, 1977, P.SS)! 
$Endmac! 
$CAlculate VIS=%GL(3,1)! 

LENG=%GL{3,3) ! 
%L=3! 

: %K=3! 
: %0=6! 
$OUt 6 80! 
SPRint TITL :! 
$Use CROV! 
$Display R! 
SPRint / TITL :! 
$Use RESP! 
$Use ORTH ZZ2 LENL LENQ! 
SPRint / TITL-:! 

create required variables 

send macro output to text file 
send output to text file 

fit continuation ratio model 
display and plot residuals 

calculate orthogonal polynomial 

$Fit ZZl +LENL! 
$Use CHIT! 
$Display ER! 

fit model with linear length of visit 
calculate Chi-square 

display and plot residuals 
SPRint / TITL :! 
$Use RESP! 
$FINish 

Chapter 5 Zero Frequencies and Incomplete Tables 

5.1 Sampling Zeroes 

SWEDISH ELECTIONS 1964 AND 1970 
COMM SD C P CON - 1970 

22 27 4 1 0 COMM 
16 861 57 30 8 SD 

(FINGLETON, 1984, P.138) 
PARTIES: COMM - COMMUNIST 

SD - SOCIAL DEMOCRAT 
C - CENTRE 

4 26 248 14 7 C 1964 P 
CON 

- PEOPLE'S 
8 20 61 201 11 P - CONSERVATIVE 
o 4 31 32 140 CON 

$Macro TITL 
SWEDISH ELECTIONS 

$Endmac! 
$Macro DIER 

$Display E! 
SPRint / TITL :! 
$Display R! 

$$Endmac! 
$UNits 2S! 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput I! 

define title 
1964 AND 1970 (FINGLETON, 1984, P.138)! 

macro for repeated instructions 
display parameter estimates and residuals 

read data 
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$Yvariate FREQ! define model 
$ERror P! 
$FActor V70 5 V64 5! 
SPRint 'Load DFCT (CONTTAB.glim)'! 
$INput 15 DFCT! 
$CAlculate V70=%GL(5,1)! create required variables 
: V64=%GL(5,5)! 
: PW=l! 
: V704=V64*V70! 
$OUt 6 80! send output to text file 
SPRint TITL :! 
$Fit V70+V64+V70.V64! fit saturated model 
$Use DIER! 
SPRint / TITL :! 
$Use DFCT! correct d.f. 
$Use DIER! 
$Weight PW! 
SPRint / TITL :! 
$Fit V70+V64+V704! fit linear interaction model 
$Use DIER! 
SPRint / TITL :! 
$Use DFCT! correct d.f. 
$Use DIER! 
$FINish 

5.2 Incomplete Tables and Quasi-Independence 

! HEALTH PROBLEMS (FIENBERG, 1977, P.116) 

4 
42 
57 

2 
7 

20 
9 
4 

19 
71 

7 
8 

10 
31 

PROBLEM SEX AGE 
1 1 1 
3 1 1 
4 1 1 
1 1 2 
3 1 2 
4 1 2 
1 2 1 
2 2 1 
3 2 1 
4 2 1 
1 2 2 
2 2 2 
3 2 2 
4 2 2 

$Macro TITL 

PROBLEMS: 

SEX: 

AGE: 

1 - SEX & REPRODUCTION 
2 - MENSTRUATION 
3 - HOW HEALTHY I AM 
4 - NOTHING 
1 - MALE 
2 - FEMALE 
1 - 12-15 
2 - 16-17 

define title 
HEALTH PROBLEMS (FIENBERG, 1977, P.116)! 

$Endmac! 
$Macro UCHI ! 

$Use CHIT! 
$CAlculate %DV=%D-%DV! 
: %DF=%E-%DF! 
$Use CHIT! 

$$Endmac! 
$UNits 14! 
$DAta FREQ PROB SEX AGE! 
SPRint 'Load data' ! 
$DINput 1! 

macro for repeated instructions 
calculate Chi-squares 

read data 



$Yvariate FREQ! 
$ERror P! 
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$PRint 'Load CHIT (TESTSTAT.glim)'! 
$INput 12 CHIT! 
$PRint 'Load TRAN (DESIGN.glim)'! 
$INput 13 TRAN! 
$PRint 'Load RESP (GLIMPLOT.glim)'! 
$INput 23 RESP! 
$Use TRAN PROB PR01 PR02 PR03! 
$CAlculate SEX=3-2*SEX! 

AGE=3-2*AGE! 
SA=SEX*AGE! 
AP1=AGE*PR01! 
AP2=AGE*PR02! 
AP3=AGE*PR03! 
SP1=SEX*PR01! 
SP3=SEX*PR03! 
%0=6! 

$OUt 6 80! 
$PRint TITL :! 

define model 

create required variables 
using conventional constraints 

interactions 

send macro output to text file 
send output to text file 

$Fit PR01+PR02+PR03+SEX+AGE+SA! fit independence model 
calculate Chi-square 

save values for difference in Chi-squares 
$Use CHIT %DV %DF! 
$CAlculate %D=%DV! 
: %E=%DF! 
$Display ER! 
$PRint / TITL :! 
$Use RESP! 
$PRint / TITL :! 
$Fit +SP1+SP3! 
$Use UCHI! 
$Display ER! 
$PRint / TITL :! 
$Use RESP! 
$PRint / TITL :! 
$Fit -SP1-SP3+AP1+AP2+AP3! 
$Use UCHI! 
$CAlculate %D=%D-%DV! 
: %E=%E-%DF! 
$Display ER! 
$PRint / TITL :! 
$Use RESP! 
$FINish 

5.3 Population Estimation 

display and plot residuals 

fit sex effect 

display and plot residuals 

fit age effect 

display and plot residuals 

! FORMAL VOLUNTEER ORGANIZATIONS (BISHOP ET AL, 1975, P.243) 
!NO. CENSUS NEWSPAPER TELEPHONE 

4 1 1 1 
1 2 1 1 1 - YES 
8 1 2 1 2 - NO 
2 2 2 1 

16 1 1 2 
49 2 1 2 

113 1 2 2 
a 2 2 2 
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$Macro TITL ! define title 
FORMAL VOLUNTEER ORGANIZATIONS (BISHOP ET AL, 1975, P.243)! 

$Endmac! 
$Macro EST ! macro for repeated instructions 

$CAlculate %F=%CU(%FV)! calculate population estimate 
: %V=%SQR(%FV(8)*%F/(%FV(1)+%FV(2)+%FV(3)+%FV(5»)! 
SPRint 'Estimated total =' *-4 %F ' with s.d. =' %V:! 

$$Endmac! 
$UNits 8! read data 
$DAta FREQ CENS NEWS TELE! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! 
$ERror P! 
$Weight PW! 

define model 

$FActor CENS 2 NEWS 2 TELE 2! 
SPRint 'Load CHIT (TESTSTAT.glim)'! 
$INput 12 CHIT! 
$CAlculate PW=l! 
: PW(8)=0! 
$OUt 6 80! 
SPRint TITL :! 

create required variables 
eliminate impossible category 

send output to text file 

$Fit CENS*NEWS*TELE-CENS.NEWS.TELE-CENS.NEWS! fit full model 
except 

$Use CHIT %DV %DF! 
$Display E! 
$Use EST! 
$Fit -NEWS.TELE! 
$Use CHIT! 
$Display E! 
$Use EST! 
$FINish 

for newspaper x census and 3-way interactions 
calculate Chi-square 

display parameter estimates 

remove newspaper x telephone interaction 

display parameter estimates 

5.4 Social Mobility 

! 
! 

MIGRANT BEHAVIOUR - FINGLETON (1984, P.142) 
1 2 3 4 REGION - 1971 

118 12 7 23 1 1 - CENTRAL CLYDESDALE 
14 2127 86 130 2 - 1966 2 - URBAN LANCASHIRE AND YORKSHIRE 

8 69 2548 107 3 3 - WEST MIDLANDS 
12 110 88 7712 4 4 - GREATER LONDON 

$UNits 16! read data 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! define model 
$ERror P! 
$FActor M66 4 M71 4! 
SPRint 'Load SMCT (CONTTAB.glim)'! 
$INput 15 SMCT! 
$Macro TITL ! define title 

MIGRANT BEHAVIOUR - FINGLETON (1984, P.142)! 
$Endmac! 
$CAlculate M71=%GL(4,1)! create required variables 

M66=%GL (4,4) ! 
: %R=l! display and plot residuals in macros 



: %0=6! 
$OUt 6 80! 
$Use SMCT M66 M71! 
$FINish 

55 The Bradley-Terry Model 
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send macro output to text file 
send output to text file 

fit mobility models 

PREFERENCE FOR COLLECTIVE FACILITIES IN DENMARK (ANDERSEN, 1980, 
P.357) 

1 2 3 4 5 6 NOT PREFERRED 
o 29 25 22 17 9 1 

49 0 35 34 16 14 2 
50 42 0 40 22 15 3 PREFERRED 
54 43 37 0 33 16 4 
61 61 54 44 0 27 5 
69 64 63 62 51 0 6 

$Macro TITL ! define title 
PREFERENCE FOR COLLECTIVE FACILITIES IN DENMARK (ANDERSEN,! 
1980, P.357)! 

$Endmac! 
$UNits 36! 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! 
$ERror P! 
$FActor NOT 6 PREF 6! 
SPRint 'Load BTCT (CONTTAB.glim)'! 
$INput 15 BTCT! 
SPRint 'Load RESP (GLIMPLOT.glim)'! 
$INput 23 RESP! 
$CAlculate PREF=%GL(6,6)! 
: NOT=%GL(6,1)! 
: %0=6! 
$OUt 6 80! 
SPRint TITL :! 
$Use BTCT NOT PREF! 
SPRint / TITL :! 
$Display R! 
SPRint / TITL :! 
$Use RESP! 
$FINish 

5.6 Guttman Scales 

read data 

define model 

create required variables 

send macro output to text file 
send output to text file 

fit Bradley-Terry model 
display and plot residuals 

! ROLE CONFLICT (FIENBERG, 1977, P.126) 

42 1 1 1 1 
23 1 1 1 2 

6 1 1 2 1 
25 1 1 2 2 

6 1 2 1 1 
24 1 2 1 2 
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7 1 2 2 1 
38 1 2 2 2 

1 2 1 1 1 
4 2 1 1 2 
1 2 1 2 1 
6 2 1 2 2 
2 2 2 1 1 
9 2 2 1 2 
2 2 2 2 1 

20 2 2 2 2 

$Macro TITL define title 
ROLE CONFLICT (FIENBERG, 1977, P.126)! 

$Encimac! 
$UNits 16! 
$OAta FREQ! 
SPRint 'Load data' ! 
$OINput 1! 
$Yvariate FREQ! 
$ERror P! 
SPRint 'Load CHIT (TESTSTAT.glim)'! 
$INput 12 CHIT! 
SPRint 'Load RESP (GLIMPLOT.glim)'! 
$INput 23 RESP! 
$Weight PW! 
$CAlculate Q1=2*%GL(2,8)-3! 

Q2=2*%GL(2,4)-3! 
Q3=2*%GL(2,2)-3! 
Q4=2*%GL(2,1)-3! 
PW=l! 
PW(l) =O! 
PW(2)=0! 
PW(4)=0! 
PW(8)=0! 
PW(16)=0! 
%0=6! 

$OUt 6 80! 
SPRint TITL :! 
$Fit Q1+Q2+Q3+Q4! 
$Use CHIT %OV %OF! 
$Oisplay E! 
$EXTract %PE! 
$CAlculate P=1/(1+%EXP(2*%PE»! 

read data 

define model 

create required variables 

eliminate individuals on scale 

send macro output to text file 
send output to text file 

fit independence model 
calculate Chi-square 

%A=P(2)! probability of chance yes to each question 
%B=P (3) ! 
%C=P (4) ! 
%0=P(5)! 
%N=%CU(FREQ) ! 
%E=%FV(3)/%N/%A/%B/(1-%C)/%0! 
%F=(%YV(l)-%FV(l»/%N! 
%G=(%YV(2)-%FV(2»/%N! 
%H=(%YV(4)-%FV(4»/%N! 
%I=(%YV(8)-%FV(8»/%N! 
%J=(%YV(16)-%FV(16»/%N! 

probability of chance answer 
probabilities on scale 

SPRint : 'Probability of replying by chance is' %E :! 
'Probabilities of replying yes to each question by chance are' 
%A %B %C %O:! 
'Probabilities of replying on the Guttman scale are'! 
%F %G %H %I %J! 



SPRint / TITL :! 
$Display R! 
SPRint / TITL :! 
$Use RESP! 
$FINish 

Chapter 6 Patterns 

6.1 Extremity Models 
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display and plot residuals 

! OXFORD SHOPPING SURVEY (FINGLETON, 1984, P.10) 
!DISAGREE TEND TO IN TEND TO AGREE - GROCERY SHOPPING 

IS TIRING 
NO CAR AVAILABLE 
SOMETIMES CAR 

DISAGREE BETWEEN AGREE 
55 

101 

91 

$Macro TITL ! 

11 16 17 
7 18 23 

20 25 16 

100 
103 

77 
AVAILABLE 

CAR ALWAYS 
AVAILABLE 

define title 
OXFORD SHOPPING SURVEY (FINGLETON, 1984, P.10)! 

$Endmac 
$UNits 15! 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! 
$ERror P! 
$FActor TIRE 5 CAR 3 EX4 3 EX2 2! 
SPRint 'Load CHIT (TESTSTAT.glim)'! 
$INput 12 CHIT! 
SPRint 'Load RESP (GLIMPLOT.glim)'! 
$INput 23 RESP! 
$CAlculate TIRE=%GL(5,1)! 

CAR=%GL(3,5) ! 
EX2=1! 
EX2(1)=EX2(15)=2! 
EX4=EX2! 
EX4(5)=EX4(11)=3! 
PW=l! 
%0=6! 

$OUt 6 80! 
SPRint TITL :! 
: ' Independence Model' :! 
$Fit TIRE+CAR! 
$Use CHIT %DV %DF! 
$Display ER! 
SPRint / TITL :! 
$Use RESP! 
SPRint / TITL :! 
: ' Extreme Ends Model' :! 
$Fit +EX2! 
$Use CHIT! 
$Display ER! 
SPRint / TITL :! 

read data 

define model 

create required variables 

2 diagonal corners 

opposite 2 corners 

send macro output to text file 
send output to text file 

fit independence model 
calculate Chi-square 

display and plot residuals 

calculate Chi-square 
display and plot residuals 



$Use RESP! 
SPRint / TITL :! 
: ' Four Corners Model' :! 
$Fit -EX2+EX4! 
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$Use CHIT! 
$Display ER! 

calculate Chi-square 
display and plot residuals 

SPRint / TITL :! 
$Use RESP! 
$FINish 

6.2 Symmetry Models 

! BELGIAN ELECTIONS -
! PS PRL PSC ECO PCB 
281 14 9 16 4 

12 164 13 4 1 
5 10 121 8 1 
6 0 1 50 0 
1 0 0 2 14 
2 1 000 

$UNits 36! 
$DAta FREQ! 
SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! 
$ERror P! 
$FActor V81 6 V85 6! 

1981-1985 
BN 

4 PS 
6 PRL 
1 PSC 
1 ECO 
o PCB 

11 BN 

- VOTING CHANGES 
PARTIES: 
SOCIALIST 
LIBERAL 
SOCIAL-CHRISTIAN 
ECOLOGY 
COMMUNIST 
BLANK BALLOT 

SPRint 'Load SYCT (CONTTAB.glim)'! 
$INput 15 SYCT MHCT! 
$Macro TITL ! 

BELGIAN ELECTIONS - 1981-1985 - VOTING CHANGES! 
$Endmac 

read data 

define model 

define title 

$CAlculate V81=%GL(6,1)! 
: V85=%GL(6,6)! 

create required variables 

: %0=6! 
: %R=l! 
$OUt 6 80! 
$Use SYCT V81 V85! 
SPRint / TITL :! 
$Use MHCT V81 V85! 
$FINish 

6.3 Diagonal Models 

! BRITISH 
C LIB 

170 20 
22 70 

6 12 

ELECTIONS 
L 

$UNits 9! 
$DAta FREQ! 

3 C 
28 LIB 

227 L 

SPRint 'Load data' ! 

send macro output to text file 
display and plot residuals in macros 

send output to text file 
fit symmetry models 

fit marginal homogeneity model 

1974 (FINGLETON, 1984, P.131) 
PARTIES: C - CONSERVATIVE 

LIB - LIBERAL 
L - LABOUR 

read data 



$DINput I! 
$Yvariate FREQ! 
$ERror P! 
$FActor OCT 3 FEB 3! 
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SPRint 'Load SYCT (CONTTAB.glim)'! 
$INput 15 SYCT! 

define model 

$Macro TITL ! define title 
BRITISH ELECTION VOTE 1974 (FINGLETON, 1984, P.131)! 

$Endmac! 
$CAlculate OCT=%GL(3,1)! 
: FEB=%GL(3,3)! 
$OUt 6 80! 
$Use SYCT OCT FEB! 
$FINish 

6.4 Distance and Loyalty Models 

create required variables 

send output to text file 
fit symmetry models 

BRITISH ELECTIONS 1966 AND 1970 (UPTON, 1978, P .119) 
C LIB 
68 1 
12 60 
12 3 

8 2 

$UNits 16! 
$DAta FREQ! 

L A 
1 7 
5 10 

13 2 
3 6 

SPRint 'Load data' ! 
$DINput 1! 
$Yvariate FREQ! 
$ERror P! 
$FActor V70 4 V66 4! 

1970 PARTIES: 
C 
LIB 1966 
L 
A 

C - CONSERVATIVE 
LIB - LIBERAL 
L - LABOUR 
A - ABSTENTION 

read data 

define model 

SPRint 'Load SYCT (CONTTAB.glim)'! 
$INput 15 SYCT! 
$Macro TITL ! define title 

BRITISH ELECTION VOTE 1966 AND 1970 (UPTON, 1978, P.119)! 
$Endmac! 
$CAlculate V70=%GL(4,1)! 
: V66=%GL(4, 4)! 
: %R=1! 
$OUt 6 80! 
$Use SYCT V70 V66! 
$FINish 

create required variables 

display and plot residuals in macros 
send output to text file 

fit symmetry models 



APPENDIXm 

GLIMMACROS 

This macro library is grouped into files by the function of the macros: 

test statistics: 

variable transfonnations: 

contingency tables (general): 

ordinal variables: 

plotting: 

CInT - Chi square probability 

TRAN - conventional constraints 

ORTH - orthogonal polynomials 

IN44 - interactions 

MPCT - Markov chain stationarity 

DFCT - correct d.f. 

SMCT - social mobility tables 

BTCT - Bradley-Terry model 

SYCT - symmetry models 

MHCT - marginal homogeneity model 

LIOV -log multiplicative model 

L20V -log multiplicative model 

POOV - proportional odds model 

CROV - continuation ratio model 

RESP - residual plots 

The vectors YYe, YY2_, YY3_, YY4_, YYS_, ZZe, ZZ2_, ZZ3_, ZZ4_, 

'ZZ5_, and ZZ9_, as well as any extra ones noted below, are used in these macros and 

should be avoided when using them. All such vectors end with an underscore as has 

become the convention for GLIM macros. 

The filenames and input channels given below refer to my GLIM macro library 

on the Amiga and may, of course, be changed to suit the local site. 

GLIM is an interpreter, not a compiler, and rereads all characters of every 

macro every time it executes it. In the interest of efficiency all lower case letters and 

all unnecessary blank spaces should be eliminated from the following macros in the 
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running version. An example of one such modified macro is given at the end of the 

appendix. 

Macro loaded by SINput 12 from fIle TFSTSTAT.glim. 

$SUBfile CHIT! 
$ECho! 

The macro CHIT calculates the probability level for a given Chi­
square test. 

Type $Use CHIT followed by the scalars containing the Chi-square 
value and the d.f. 

The values of chi-square and d.f. are contained in %OV and %OF 
which may be used with $CAlculate to obtain differences of Chi­
square. 

The probability value is returned in %P . 
Macro used: CHIT 

$ECho! 

$Macro CHIT ! 
$CAlculate %P=(%2==1)*(2-2*%NP(%SQR(%1») !calculate 2 special cases 

+(%2==2)*(%EXP(-%1/2» ! 
+(%2>2)*(1-%NP«(%1/%2)**(1/3)-1! calculate general case 
+2/(9*%2»/%SQR(2/(9*%2»» ! 

SPRint 'Chi2 probability ='%P' for Chi2 ='%1' with'*-4 %2' d.f.' :! 
$$Endmac! 
$RETurn! 

Macros loaded by SINput 13 from fIle DFSIGN.glim. 

$SUBfile TRAN! 
$ECho! 

The macro TRAN constructs K-1 dummy contrast variables to 
replace a K level (max 9) factor variable, giving deviations from 
the mean instead of comparisons with the first category of the 
variable. 

Type $Use TRAN with the factor variable and the list of K-1 new 
dummy variable names. 

Macros used: TRAN, TRAO 
$ECho! 

$Macro TRAN ! 
$Argument TRAO %1 %2 %3 %4 
$CAlculate %Zl=%l(l)! 
: %Zl=%IF(%l>%Zl,%l,%Zl)! 
: %Z2=2! 
: %Z3=%Zl-1! 
$WHile %Z3 TRAO! 
$$Encimac! 

%5 %6 %7 %8 %9! 
find number of factor levels 

set first argument vector to be created 
number of vectors to be created 

call macro to create vectors 
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$Macro TRAD ! 
$CAlculate %%Z2=(%1==%Z2-1)-(%1==%Zl)! fill vector with values 
: %Z2=%Z2+1! augment counter to next vector 
: %Z3=%Z3-1! number of vectors left to do 
$$Endmac! 
$RETurn! 

$SUBfile ORTH! 
$ECho! 

The macro ORTH generates linear, quadratic, and cubic orthogonal 
polynomials for any variable, which need not have equally spaced 
factor levels. 

Type $Use ORTH with the variable name and 3 new variable names 
for the orthogonal polynomials (only 1 or 2 are required if the 
variable has only 2 or 3 levels). 

See Robson, D.S. (1959) "A simple method for constructing 
orthogonal polynomials when the independent variable is unequally 
spaced." Biometrics 15: 187-191. 

$ECho! 

$Macro ORTH 
$DElete ZZ9 
$CAlculate %Z3=%CU(1+0*%1) ! 

%Z2=%CU (%1) ! 
%Z2=%Z2/%Z3! 
%2=%1-%Z2! 
%Z4=%CU(%2*%2) ! 
%Z4=1/%SQR(%Z4) ! 
%2=%2*%Z4! 

calculate length of vector 
calculate linear polynomial 

%Z4=%CU(%1*%1) ! 
%Z5=%CU(%1*%1*%2) ! 

calculate quadratic polynomial 

ZZ9 =%1*%1-%Z4/%Z3-%2*%Z5! 
%Z4~%CU(ZZ9 *ZZ9 )! 
%Z1=%Z4<. 00"(51! -

$EXit %Z1! 
$CAlculate %Z4=1/%SQR(%Z4)! 

%3=ZZ9 *%Z4! 
%Z4=%CUI(%1*%1*%1) ! 
%Z5=%CU (%1*%1*%1*%2) ! 
%Z6=%CU(%1*%1*%1*%3) ! 
ZZ9 =%1*%1*%1-%Z4/%Z3-%2*%Z5-%3*%Z6! 
%Z4~%CU(ZZ9 *ZZ9 )! 
%Zl=%Z4<.000l! -

$EXit %Zl! 
$CAlculate %Z4=1/%SQR(%Z4)! 
: %4=ZZ9 *%Z4! 
$DElete ZZ9 ! 
$$Endmac! -
$RETurn! 

$SUBfile 1N44! 
$ECho! 

stop if only two levels 

calculate cubic polynomial 

stop if only three levels 

The macros 1N44 generates all first order interactions between 
!two sets of four vectors. 

Type $Use 1N44 with 4+4 variable names, then put #144 as a term 
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lin $Fit. #144 can then be reapplied in $Fits without retyping 
!$Use. 

When finished, delete macros and interaction variables by typing 
!$Use 044, then $OElete 044. 

Macros used: 1N44, 144, 044 
Extra variables used: RR11 RR12 RR13 RR14 RR21 RR22 RR23 RR24 

!RR31 RR32 RR33 RR34 RR41 RR42 RR43 RR34 
$ECho! 
! 
$Macro 1N44 ! 
$CAlculate RR11=%1*%5! 

RR12=%1*%6 
RR13=%1*%7 
RR14=%1*%8 
RR21=%2*%5 
RR22=%2*%6 
RR23=%2*%7 
RR24=%2*%8 
RR31=%3*%5 
RR32=%3*%6 
RR33=%3*%7 
RR34=%3*%8 
RR41=%4*%5 
RR42=%4*%6 
RR43=%4*%7 
RR44=%4*%8 

$$Endmac! 

calculate all possible interactions 

$Macro 144 
(RR11+RR12+RR13+RR14+RR21+RR22+RR23+RR24+RR31+RR32+RR33+RR34! 
+RR41+RR42+RR43+RR44) ! 

$Endmac! 

$Macro 044 
$DElete 1N44 144 RR11 RR12 RR13 RR14 RR21 RR22 RR23 RR24 RR31 RR32! 

RR33 RR34 RR41 RR42 RR43 RR34! 
$$Endmac! 
$RETurn! 

Macros loaded by SINput 15 from file CONTT AB.glim. 

$SUBfile MPCT! 
$ECho! 

The macro MPCT calculates the first order transition 
probabilities for a Markov chain and tests for stationarity. 

Set up a log linear model as usual with $UNits, $Yvariate, 
$ERror P, $FActor. Define three factor variables: (1) the states 
at the start of a transition, (2) the states at the end of a 
transition, and (3) the time of transition. This third factor 
variable must vary most slowly. 

Type $Use MPCT with the above three factor variables in order. 
Macros used: MPCT 

$ECho! 
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$Macro MPCT ! 
$DElete YY1 YY2 ZZl ZZ9! 
$CAlculate %Z2=%1(%NU)! 
: %Z3=%Z2*%Z2! 

calculate size of matrix 
length of vector containing probabilities 

$Variate %Z2 ZZl ! 
: %Z3 YY1 YY2 ! 
$CAlculate ZZl-=O! 

YY1 =O! -
ZZ9-=%GL(%Z3,1) ! 
YY1-(ZZ9 )=YY1 (ZZ9 )+%YV! 
ZZl-(%l)~ZZl (%l)+%YV! 
%Zl~%IF(%1(1)==%1(2),%Z2,1) ! 
YY2 =%GL(%Z2,%Zl)! 
YY1-=YY1 /ZZl (YY2 )! 

SPRint 'First Order Markov Chain' 
: 'Estimated Stationary Transition 
$TPrint (S=-l) YY1 %Z2;%Z2! 
SPRint : 'Test for-Stationarity'! 
: $F %1*%2+%1*%3! 
$$Endmac! 
$RETurn! 

$SUBfile DFCT! 
$ECho! 

initialize 

calculate marginal sums 

check order of table in vector 

calculate and print probabilities 
: ! 
Probabilities' :! 

fit stationarity model 

The macro DFCT refits a log linear model to correct the d.f. 
!when there are zero cell estimates. 

Type $CAlculate PW=prior weights (=1 if weights not used) . 
Fit the model, then type $Use DFCT 

! Note that the prior weights (but not the vector PW) have been 
!changed after using the macro DFCT and must be reset with $weight. 

Macro used: DFCT 
$ECho! 
! 
$Macro DFCT ! 
$DElete ZZ9 ! calculate number of valid observations 
$CAlculate ZZ9 =«%FV>.OOl)* «%YV-%FV) **2*PW/%FV/%SC<16)+! 

(%YV/=O»=l)! 
%T=%CU(ZZ9 )! 
ZZ9 =ZZ9 *PW! 
%T=(%T==%NU) ! if all valid, exit 

$EXit %T! 
SPRint 'Model with corrected df' :! 
$Weight ZZ9 ! refit model eliminating observations 
$RECycle loT 
$Fit .! 
$CYcle 10! 
$$Endmac! 
$RETurn! 

$SUBfile SMCT! 
$ECho! 

The macro SMCT fits Duncan's 5 mobility models to any square 2-
!way mobility table. 
! Set up the table as a log linear model with $UNits, $Yvariate, 
!$ERror P, $FActor. Then type $Use SMCT with the father's 
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!occupation variable and the son's occupation variable. 
! To write a title at the top of each page, create a macro called 
TITL : $Macro TITL text of title $Endmac. 

To obtain plots of residuals, type $CAlculate %R=l. 
See Duncan, O.D. (1979) "How destination depends on origin in 

the occupational mobility table." American Journal of Sociology 
84: 793-803. 

Macros used: SMCT, TITL, PRC3, CHIT, RESI, RESP, POIS, NORM 
Extra variable used: PW , ARE , SRE 

$ECho! - - -

$Macro SMCT ! 
$DElete ZZl YY1 
$Use PRC3! -
: '1. Independence Model' :! fit and print out all models 
$Fit %1+%2! 
$Use CHIT %DV %DF! 
$Display E! 
$SWitch %R RESI! 
$CAlculate %Z2=%1(%NU)! check if page full; if so, print title 
: %Zl=«%Z2>7)+(%R==1»=1)! 
$SWitch %Zl PRC3! 
SPRint '2. Row Effects Model' :! 
$CAlculate ZZl =%2-1! 
$Fit +ZZl . %1!-
$Use CHIT! 
$Display E! 
$SWitch %R RESI! 
$CAlculate PW =(%1/=%2) ! 
$Weight PW ! -
$Use PRC3!-
SPRint '3. Quasi-independence (Mover-Stayer) Model' :! 
$Fit %1+%2! 
$Use CHIT! 
$Display E! 
$SWitch %R RESI! 
$CAlculate %Zl=«%K>6)+(%R==1»=1)! 
$SWitch %Zl PRC3! 
SPRint '4. Uniform Association without Diagonal' :! 
$CAlculate YY1 =(%1-1)*(%2-1)! 
$Fit %1+%2+YY1-! 
$Use CHIT! 
$Display E! 
$SWitch %R RESI! 
$Use PRC3! 
SPRint '5. Row Effects Model without Diagonal' :! 
$Fit %1+%2+ZZ1 .%1! 
$Use CHIT! -
$Display E! 
$SWitch %R RESI! 
$$Endmac! 

$Macro RESI 
$CAlculate %Zl=(%PL+%NU>40)! check if page full; if so, print title 
$SWitch %Zl PRC3! 
$Display R! display residuals and plot 
$Use PRC3! 
$Use RESP! 
$$Endmac! 
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! 
$Macro TITL blank title to be filled by user if desired 

$Endmac! 

$Macro PRC3 
SPRint / TITL :! 
$$Endmac! 

print title at top of new page 

SPRint 'Load RESP (GLIMPLOT.glim) and CHIT (TESTSTAT.glim)'$! 
SOOt! stop output while loading macros 
$TRanscript! 
$INput 23 RESP! load required macros 
$DElete BINO GAMM OWN! 
$INput 12 CHIT! 
SOOt 9! restart output 
$TRanscript F H I 0 W! 
$RETurn! 

$SOBfile BTCT! 
$ECho! 

The macro BTCT fits the Bradley-Terry model to any square (KxK) 
!table where preferences have been expressed for K items. 

Set up the log linear model as usual with $ONits, $Yvariate, 
!$ERror P, $FActor. 

Type $Ose BTCT with the 2 factor variables, where the first 
!varies most quickly. 
! The ranking is given in ascending order as the parameter 
!estimates for the second factor variable. 

See Fienberg, S.E. (1977) The Analysis of Cross-Classified 
!Categorical Data. Cambridge: MIT Press, pp.118-121. 
! Macros used: BTCT, CHIT 
$ECho! 

$Macro BTCT ! 
$DElete YY1 YY2 ZZl ZZ9! 
$CAlculate %Zl=%l(%NO)! 

ZZ9 =%Zl*(%1-1)+%2! 
ZZl-=(%1>%2) ! 
ZZl-=ZZl *%CO(ZZl )! 
YY1-= (%i<%2) ! -
YY2-(ZZ9 )=%CO(YY1 (ZZ9 »*YY1 (ZZ9 )! 
ZZl-=ZZl-+YY2 +(%1~=%2)! 
zZ9-=(%17=%2)! 
%Z2~%Zl*(%Zl-1)/2! 

$DElete YY1 YY2 ! 
$FActor ZZl- %Z2! 
$Weight ZZ9-! 
$Fit %2+ZZ1-! 
$Ose CHIT %DV %DF! 
$Display E! 
$$Endmac! 

SPRint 'Load CHIT (TESTSTAT.glim)'$! 

number of items (K) 
calculate indices 

first term 

second term 
factor variable to fit 

calculate weight 

fit model 

SOOt! stop output while loading macros 
$TRanscript! 
$INput 12 CHIT! load required macro 



$OUt 9! 
$TRanscript F H lOW! 
$RETurn! 

$SUBfile SYCT! 
$ECho! 
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restart output 

The macro SYCT fits symmetry models to square 2-way tables (max 
IOxIO). 

Set up the log linear model as usual with $UNits, $Yvariate, 
$ERror P, $FActor. 

Type $Use SYCT with the 2 factor variables, where the first 
varies most quickly. 

To write a title at the top of each page, create a macro called 
TITL: $Macro TITL text of title $Endmac. 

To obtain plots of residuals, type $CAlculate %R=1. 
See Fingleton, B. (1984) Models of Category Counts. Cambridge: 

Cambridge University Press, pp.130-147. 
Macros used: SYCT, OIST, PRC3, TITL, CHIT, RESI, RESP, POlS, 

NORM 
Extra variables used: C1_, C2_, C3, C4_, C5_, C6_, C7_, C8_, 

C9 , PW , ARE_, SRE 
$ECho! -
! 
$Macro SYCT 
$OElete ZZ1 ZZ2 ZZ3 ZZ4 YY1 YY2 ZZ9! 
$CAlculate %Z5=%I(%NU)! 

ZZ9 =%Z5*(%1-1)+%2! 
ZZ1-= (%1>%2) ! 
ZZ1-=ZZ1 *%CU(ZZl )! 
ZZ2-=(%1<%2) ! -
YY2- (ZZ9 ) =%CU (ZZ2 (ZZ9 » *ZZ2 (ZZ9 )! 
ZZl-=ZZl-+YY2 +(%1~=%2)! 
%Z4~%Z5*(%Z5-1)/2! 
ZZ2 =(%1==%2)+1! 
ZZ3-=%SQR«%1-%2)**2)+1! 
ZZ4-=%1-%2+1! 
ZZ4-=%IF(ZZ4 <=0,-ZZ4 +%Z5+1,ZZ4 )! 
%Z6~%Z5*2-1! - -
YY1 =(ZZ4 -1)*(%1-%2>0)+1! 
YY2- =%1!-
ZZ9-=%2! 
%Z2~%Z5! 

create required vectors 
symmetry 

loyalty 

symmetric minor diagonal 
asymmetric minor diagonal 

minor diagonals (symmetry) 

C1 =C2 =C3 =C4 =C5 =C6 =C7 =C8 =C9 =O! 
$Argument OIST cI C2 C3 C4 C5 C6 C7 C8 
$WHile %Z2 OIST! -

C9 ! 
pure distance 

$FActor ZZl %Z4 ZZ2 2 ZZ3 %Z5 ZZ4 %Z6 YY1 U5! 
$Use PRC3! -
SPRint '1. Independence Model' :! 
$Fit %1+%2! 
$Use CHIT %OV %OF! 
$Oisplay E! 
$SWitch %R RESI! 
$CAlculate PW =(%1/=%2) ! 
$Weight PW ! -
$CAlculate-%Z3=«%Z5>6)+(%R==1»=1) ! 
$SWitch %Z3 PRC3! 
SPRint '2. Symmetry Model' :! 

fit and print out all models 

check if page full; 
if so, print title 



$Fit ZZl ! 
$Use CHIT! 
$Disp1ay E! 
$SWitch %R RESI! 
$Use PRC3! 
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SPRint '3. Quasi-symmetry Model' :! 
$Fit +%1+%2! 
$Use CHIT! 
$Display E! 
$SWitch %R RESI! 
$CAlculate %Z3=«%Z5>4)+(%R==1»=1)! 
$SWitch %Z3 PRC3! 
SPRint '4. Minor Diagonals-Symmetry Model' :! 
$Fit YY1 +ZZl ! 
$Use CHIT! -
$Display E! 
$SWitch %R RESI! 
$CAlculate PW =1! 
$Use PRC3! -
SPRint '5. Main Diagonal (Loyalty) Model' :! 
$Fit %1+%2+ZZ2 ! 
$Use CHIT! -
$Display E! 
$SWitch %R RESI! 
$CAlcu1ate %Z3=«%Z5>6)+(%R==1»=1)! 
$SWitch %Z3 PRC3! 
SPRint '6. Symmetric Minor Diagonal Model' :! 
$Fit +ZZ3 -ZZ2 ! 
$Use CHIT! -
$Display E! 
$SWitch %R RESI! 
$Use PRC3! 
SPRint '7. Asymmetric Minor Diagonal Model' :! 
$Fit +ZZ4 -ZZ3 ! 
$Use CHIT! -
$Display E! 
$SWitch %R RESI! 
$CAlculate %Z3=«%Z5>5)+(%R==1»=1)! 
$SWitch %Z3 PRC3! 
SPRint '8. Pure Distance Model' :! 
$Fit %1+%2+C1 +C2 +C3 +C4 +C5 +C6 +C7 +C8 +C9 ! 
$Use CHIT! - - - - - - -
$Display E! 
$SWitch %R RESI! 
$Use PRC3! 
SPRint '9. Loyalty-Distance Model' :! 
$Fit +ZZ2 ! 
$Use CHIT! 
$Display E! 
$SWitch %R RESI! 
$CAlculate PW =(%1/=%2) ! 
$SWitch %Z3 PRC3! 
SPRint '10. Distance without Main Diagonal' :! 
$Fit -ZZ2 ! 
$Use CHIT! 
$Display E! 
$SWitch %R RESI! 
$ACcuracy 2! print out values of all vectors created 
$Use PRC3! 
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$Look %1 %2 ZZl ZZ2 ZZ3 ZZ4 YY1 ! 
$CAlculate %Zl=(%Z5>5)! 
SPRint! 
$SWitch %Zl PRC3! 
$Look %1 %2 C1 C2 C3 C4 C5 ! 
$CAlculate %Zl~(%Z5<=6)! 
$ACcuracy 4! 
$EXit %Z1! 
$ACcuracy 2! 
$Use PRC3! 
$Look %1 %2 C6 C7 C8 C9! 
$ACcuracy 4! -
$$Endrnac! 

$Macro DIST iterative calculation of vectors for pure distance 
model 

$CAlculate %%Z2=«ZZ9 <=%Z2)*(YY2 >%Z2)+(ZZ9 >%Z2) * (YY2 <=%Z2»! 
*2-1! - - - -

: %Z2=%Z2-1! 
$$Endrnac ! 

$Macro RESI 
$CAlculate %Zl=(%PL+%NU>40)! check if page full; if so, print title 
$SWitch %Zl PRC3! 
$Display R! display residuals and plot 
$Use PRC3! 
$Use RESP! 
$$Endrnac! 

$Macro TITL 

$Endmac! 

$Macro PRC3 
SPRint / TITL :! 
$$Endmac! 

blank title to be filled by user if desired 

print title at top of new page 

SPRint 'Load RESP (GLIMPLOT.glim) and CHIT (TESTSTAT.glim)'$! 
$OUt! stop output while loading macros 
$TRanscript! 
$INput 23 RESP! 
$DElete BINO GAMM OWN! 
$INput 12 CHIT! 
$OUt 9! 
$TRanscript F H I 0 W! 
$RETurn! 

$SUBfile MHCT! 
$ECho! 

load required macros 

restart output 

The macro MHCT fits a marginal homogeneity model to a square 2-
way table (max. 10x10). 

Set up the log linear model as usual with $UNits, $Yvariate, 
$ERror P, $FActor. Type $Use MHCT with the 2 factor variables. 

To $OUtput results to a file, type $CAlculate %0=6. 
Macros used: MHCT, MARG, ITMH, PRCY, CHIT 
Extra variables used: C1 , C2 , C3 , C4_, CS_, C6_, C7 , C8 , 

C9 - - -
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$ECho! 

$Macro MHCT ! 
$OUt! stop output during iterative calculations 
$TRanscript! 
$OElete YY1 ZZ1 ZZ2 ZZ3 ZZ4 ZZS! 
$CAlculate %Z6=%1(%NU)! size of table 

ZZl =%1! initialize vectors 
ZZ2-=%2! 
ZZS-=ZZ3 =%YV! 
Cl ~C2 =C3 =C4 =CS =C6 =C7 =C8 =C9 =O! 
%zI=10T - - - - - number of iterations 
%ZS=O! 
%0=%IF(%0==6,6,9)! check where to send output 

$Argument ITMH C1 C2 C3 C4 CS C6 C7 C8 C9! 
: MARG %1 %2 %3 %4 %S-%6 %7 %8 %9T 
$ERror N! 
$Weight ZZ4 ! 
$FActor ZZ1- %Z6 ZZ2 %Z6! 
$WHile %Z1 ITMH! 
$CAlculate YY1 =%GL(%NU,1)! 

%OV=2*%CU(ZZ3 *%LOG(ZZ3 /ZZS »! 
: %OF=%Z6-1! - --
: ZZ3 =(%YV-ZZS )/%SQR(ZZS )! 
$OUt to! - -
$TRanscript F H I 0 W! 
SPRint 'Marginal Homogeneity Model' :! 
: 'scaled deviance ='%OV' at cycle '*-2 %ZS! 
: ' d.f. = '*-2 %OF :! 
$SWitch %Z4 PRCY! 
$Use CHIT %OV %OF! 
$Oisplay E! 
$PRint' unit observed fitted residual'! 
$Look (S=-1) YY1 %YV zzs ZZ3! 
$$Endmac! -

$Macro ITMH 
$CAlculate ZZ4 =1/ZZ5 ! 
: %ZS=%ZS+1! -
: %Z2=%Z6-1! 
$WHile %Z2 MARG! 
$Fit C1 +C2 +C3 +C4 +CS +C6 +C7 +C8 +C9 -%GM! 
$CAlculate ZZ5 ~ZZ3--%FV! 

%Z3=%OV-%Z2!- -
: %Z2=%OV! 
: %Z1=%IF(%Z4=(%Z3*%Z3>.0001),%Z1-1,0)! 
$$Endmac! 

$Macro MARG 

set up model 

iterate 
calculate unit numbers 

calculate deviance 
calculate d.f. 

calculate residuals 
restart output 

print model 

iterative fitting 

calculate vectors 
$CAlculate %%Z2=«ZZ1 ==%Z2)-(ZZ2 ==%Z2»*ZZS ! 
: %Z2=%Z2-1! -
$$Endmac! 

$Macro PRCY 
SPRint ' 
$$Endmac! 

message to print if no convergence 
(no convergence yet)' :! 

SPRint 'Load CHIT (TESTSTAT.glim)'$! 
$OUt! stop output while loading macros 



$TRanscript! 
$INput 12 CHIT! 
$OUt 9! 
$TRanscript F H lOW! 
$RETurn! 
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Macros loaded by SINput 16 from (de ORDV AR.glim. 

$SUBfile L10V! 
$ECho! 

load required macro 
restart output 

The macro L10V calculates the appropriate scale for the 
relationship between a (combination of) nominal and an ordinal 
variable in a log-linear model. 

Set up the model as usual with $UNits, $Yvariate, $ERror P, 
$FActor. The two variables concerned must both be declared in 
$FActor. Type $Use L10V with the two variable names (second one 
ordinal) . 

The scale is returned in a new quantitative variable, ZZ1 , 
which may be used in subsequent $Fits, for example, if a combined 
nominal variable is fitted as separate variables. 

To obtain plots of residuals, type $CAlculate %R=1. 
To $OUtput results to a file, type $CAlculate %0=6. 
To write a title at the top of each page, create a macro called 

TITL: $Macro TITL text of title $Endmac. 
See Anderson, J.A. (1984) "Regression and ordered categorical 

variables." Journal of the Royal Statistical Society (B) 46: 1-30. 
Macros used: L10V, PRC1, PRC3, ITER, CHIT, RESI, RESP, POlS, 

NORM, TITL 
Extra variables used: PW_, ARE_, SRE 

$ECho! 

$Macro LlOV ! 
$DElete YY1 YY2 YY3 YY4 ZZ1 ZZ2 ZZ3 ZZ4 ! 
$CAlculate %ZS=%1(1) ! calculate dimensions of table 

%ZS=%IF(%1>%ZS,%1,%Z) ! 
%Z9=%2 (1) ! 
%Z9=%IF(%2>%Z9,%2,%Z9) ! 
%Z4=%Z6=0! initialize counters 
%Z2=10! 
%0=%IF(%0==6,6,9)! check where to send output 
YY4 =2*%1-%Z8-l! calculate 2 linear variables 
ZZ4-=2*%2-%Z9-1! 

$OUt %O! 
SPRint / TITL :! 
: 'Independence Model' :! 
$Fit %1+%2! 
$Use CHIT %DV %DF! 
$Display E! 
$SWitch %R RESI! 
$CAlculate %Zl=«%PL>16)+(%R==1»=1)! 
$SWitch %Z1 PRC3! 
SPRint 'Linear Effects Model' :! 
$Fit %1+%2+%1.ZZ4 ! 
$Use CHIT! -
$Display E! 

check if page full; 
if so, print title 
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$SWitch %R RESI! 
$OUt! 
$TRanscript! 

stop output during iterative calculations 

$Variate %Z8 YY2 YY3 ! 
: %Z9 ZZ2 ZZ3! 
$CAlculate YY1-=%1! 
: YY3 =%GL(%Z8~1)+%Z8! 
: ZZ3-=%GL(%Z9,1)+%Z9! 
$Argument ITER %1 %2! 
$WHile %Z2 ITER! 
$Fit %1+%2+%1.ZZ1 ! 
$CAlculate %Z4=%DF-%Z9+2! 

final fit for scale 
d.f. 

%Z3=ZZ2 (1)! standardize scale to lie between 0 and 1 
: %Z7=ZZ2-(%Z9)-%Z3! 
: ZZ2 =(ZZ2 -%Z3)/%Z7! 
$OUt %O! -
$TRanscript F H I 0 W! 
SPRint / TITL :! 

'Scale for ordinal variable'! 
ZZ2 :! 

restart output 

, Log Multiplicative Model' :! print out model 
'scaled deviance ' *4 %DV ' at cycle' *-2 %Z6! 

d.f. = , *-2 %Z4 :! 
$SWitch %ZS PRC1! 
$Use CHIT! 
$Display E! 
$SWitch %R RESI! 
$DElete YY1 YY2 YY3 YY4 ZZ2 ZZ3 ZZ4! 
$$Endmac! -

$Macro ITER ! 
$CAlculate %Z6=%Z6+1! 
: %ZS=%DV! 
$Fit YY1 +%2+YY1 .%2! 
$EXTract-%PE! -
$CAlculate %Z3=%PE(2)! 

ZZ2 =(ZZ3 /=%Z9+1)*%PE(ZZ3 )+%Z3! 
ZZl-=(%2/~1)*%PE(%2+%Z9)+%Z3! 
%Z3~ZZ2 (1)! 
%Z7=ZZ2-(%Z9)-%Z3! 
ZZl =(ZZ1 -%Z3)/%Z7! 

$Fit ZZl +%I.ZZ1 +%1! 
$EXTract-%PE! -
$CAlculate %Z3=%PE(2)! 

YY2 =(YY3 /=%Z8+1)*%PE(YY3 )+%Z3! 
YY1-=(%1/~1)*%PE(%1+%Z8)+%Z3! 
%Z3~YY2 (1)! 
%Z7=YY2-(%Z8)-%Z3! 
YY1 =(YY1 -%Z3)/%Z7! 
%ZS~(%ZS-%DV)/%DV! 
%Z2=%IF(%Z5=(%ZS*%Z5>.OOOOl),%Z2-1,O) ! 

$$Endmac! 
! 
$Macro RESI 

iterative fitting macro 

estimate first scale 

estimate second scale 

test for convergence 

$CAlculate %Zl=(%PL+%NU>40)! check if page full; if so, print title 
$SWitch %Zl PRC3! 
$Display R! display residuals and plot 
$Use PRC3! 
$Use RESP! 
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$$Endmac! 

$Macro TITL 
! 

blank title to be filled by user if desired 

$Endmac! 

$Macro PRC1 
SPRint ' 
$$Endmac! 

message to print if no convergence 
(no convergence yet)' :! 

$Macro PRC3 
SPRint / TITL :! 
$$Endmac! 

print title at top of new page 

SPRint 'Load RESP (GLIMPLOT.glim) and CHIT (TESTSTAT.glim)'$! 
$OUt! stop output while loading macros 
$TRanscript! 
$INput 23 RESP! load required macros 
$DElete BINO GAMM OWN! 
$INput 12 CHIT! 
$OUt 9! restart output 
$TRanscript F H lOW! 
$RETurn! 

$SUBfile L20V! 
$ECho! 

The macro L20V calculates the appropriate scores for the 
relationship between two ordinal variables in a log-linear model. 

Set up the model as usual with $UNits, $Yvariate, $ERror P, 
$FActor. The two variables concerned must both be declared in 
$FActor. Type $Use L20V with the two variable names. 

The scales are returned in two new quantitative variables, YY1 
and ZZl 

To obtain plots of residuals, type $CAlculate %R=l. 
To $OUtput results to a file, type $CAlculate %0=6. 
To write a title at the top of each page, create a macro called 

'TITL: $Macro TITL text of title $Endmac 
See Goodman, L.A. (1979) "Simple models for the analysis of 

association in cross-classifications having ordered categories." 
Journal of the American Statistical Association 74: 537-552 and 
Goodman, L.A. (1981) "Association models and canonical correlation 
in the analysis of cross-classifications having ordered 
categories." Journal of the American Statistical Association 76: 
320-334. 

MACROS USED: L20V, PRC1_, PRC3, ITER, RESI, RESP, POlS, NORM, 
CHIT, TITL 

Extra variables used: PW , ARE , SRE 
Extra scalars used: %M, %N, %P~ %Q, %S, %T, %U, %V, %X, %Y, %Z 

$ECho! 
! 
$Macro L20V ! 
$DElete YY1 YY2 YY3 YY4 ZZl ZZ2 ZZ3 ZZ4 ZZ9! 
$CAlculate %ZS=%l(l) ! calculate dimensions of table 

%ZS=%IF (%l>%ZS, %1, %ZS) ! 
%Z9=%2 (1) ! 
%Z9=%IF (%2>%Z9, %2, %Z9) ! 
%Z4=%Z6=O! initialize counters 



%Z2=10! 
%O=%IF (%0==6, 6, 9) ! 
YY4 =2*%1-%Z8-1! 
ZZ4- =2*%2-%Z9-1! 

$OUt %O! 
SPRint / TITL :! 
: 'Independence Model' :! 
$Fit %1+%2! 
$Display E! 
$SWitch %R RESI! 
$CAlculate %Y=%DV! 
: %X=%DF! 
: %Zl=«%PL>20)+(%R==1»=1)! 
$SWitch %Zl PRC3! 
SPRint 'Linear Effects Model' :! 
$CAlculate ZZ9 =YY4 *ZZ4 ! 
$Fit %1+%2+ZZ9-! - -
$Display E! -
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check where to send output 
calculate 2 linear variables 

print out all models 

check if page full; 
if so, print title 

$SWitch %R RESI! 
$OUt! stop output during iterative calculations 
$TRanscript! 
$CAlculate YY1 =%1! 
: %M=%DV! -
: %N=%DF! 
$Variate %Z8 YY2 YY3 
: %Z9 ZZ2 ZZ3!-
$CAlculate YY3-=%GL(%Z8,1)+%Z8! 
: ZZ3 =%GL(%Z9;1)+%Z9! 
$Argument ITER %1 %2! 
$WHile %Z2 ITER! 
$OUt %O! 
$TRanscript F H I 0 W! 
SPRint / TITL :! 
: 'Column (K) Effect Model' :! 
$Fit %1+%2+ZZ4 .%1! 
$Display E! -
$SWitch %R RESI! 

restart output 

$CAlculate %Zl=«2*%PL-%Z8+%Z9>40)+(%R==1»=1)! 
: %Z=%DV! 
: %Q=%DF! 
$SWitch %Zl PRC3! 
SPRint 'Row (I) Effect Model' :! 
$Fit %1+%2+YY4 .%2! 
$Display E! -
$SWitch %R RESI! 
$CAlculate %V=%DV! 
: %S=%DF! 
SPRint / TITL :! 
: 'Rowand Column Effect Model (1)' :! 
$Fit %1+%2+%1.ZZ4 +YY4 .%2! 
$Display E! -
$SWitch %R RESI! 
$OUt! 
$TRanscript! 
$CAlculate ZZ9 =YY1 *ZZl ! 
: %T=%DV! - -
: %U=%DF! 
$Fit %1+%2+ZZ9 ! 
$CAlculate %Z4~%DF-%Z9-%Z8+4! 

stop output during during fit 
and Chi-square 

final fit for scale 
d.f. 
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%Z3=ZZ2 (l)! 
%Z7=ZZ2-(%Z9)-%Z3! 
ZZ2 =(ZZ2 -%Z3)/%Z7! 
%Z3-;-YY2 (1)! 
%Z7=YY2-(%Z8)-%Z3! 
YY2 =(YY2 -%Z3)/%Z7! 
%X=%X-%N!-

standardize scale to lie between 0 and 1 

%Y=%Y-%M! 
%Q=%N-%Q! 
%Z=%M-%Z! 
%S=%N-%S! 
%V=%M-%V! 

$Use CHIT %Y %X! 
$CAlculate %Z2=%P! 
$Use CHIT %Z %Q! 
$CAlculate %Z3=%P! 
$Use CHIT %V %S! 
$CAlculate %M=%P! 
$Use CHIT %T %U! 
$CAlculate %N=%P! 
$Use CHIT %DV %Z4! 
$OUt %O! 
$TRanscript F H lOW! 
$PRint / TITL :! 

'Rowand Column Effect Model (2)' :! 
'Scale for First Ordinal Variable'! 
YY2 :! 
'Scale for Second Ordinal Variable' :! 
ZZ2 :! 

calculate Chi squares 

restart output 

print out model 

'scaled deviance 
d.f. 

$SWitch %ZS PRC1! 
$Display E! 

, *4 %DV ' at cycle' *-2 %Z6! 
, *-2 %Z4:! 

$SWitch %R RESI! 
$CAlculate %Zl=«%PL>36)+(%R==1»=1)! 
$SWitch %Zl PRC3! 
$PRint 'Analysis of Association Table' :! 

Effect Chi2 df Prob' ! 
'General Effect '*4 %Y *-3 %X *4 %Z2! 
'Column Effect '*4 %Z *-3 %Q *4 %Z3! 
'Row Effect ' *4 %V *-3 %S *4 %M! 
'Other Effects (1) , *4 %T *-3 %U *4 %N! 
'Other Effects (2) , *4 %DV *-3 %Z4 *4 %P! 

$DElete YY2 YY3 YY4 ZZ2 ZZ3 ZZ4 ZZ9! 
$$Endmac! 

$Macro ITER ! 
$CAlculate %Z6=%Z6+l! 
: %ZS=%DV! 
$Fit YYl +%2+YYl .%2! 
$EXTract-%PE! 
$CAlculate %Z3=%PE(2)! 

ZZ2 =(ZZ3 /=%Z9+l)*%PE(ZZ3 )+%Z3! 
ZZl-=(%2/-;-1)*%PE(%2+%Z9)+%Z3! 
%Z3-;-ZZ2 (l)! 
%Z7=ZZ2-(%Z9)-%Z3! 
ZZl =(ZZl -%Z3)/%Z7! 

$Fit ZZl +%I.ZZl +%l! 
$EXTract-%PE! -

iterative fitting macro 

estimate first scale 

estimate second scale 
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$CAlculate %Z3=%PE(2) ! 
YY2 =(YY3 /=%ZS+1)*%PE(YY3 )+%Z3! 
YY1-=(%1/~1)*%PE(%1+%ZS)+%Z3! 
%Z3~YY2 (1)! 
%Z7=YY2-(%ZS)-%Z3! 
YY1_=(YY1_-%Z3)/%Z7! 
%Z5=(%Z5-%DV)/%DV! 
%Z2=%IF(%Z5=(%Z5*%Z5>.00001),%Z2-1,0) ! 

$$Encimac! 

$Macro RESI 

test for convergence 

$CAlculate %Zl=(%PL+%NU>40)! check if page full; if so, print title 
$SWitch %Zl PRC3! 
$Display R! display residuals and plot 
$Use PRC3! 
$Use RESP! 
$$Encimac! 

$Macro TITL blank title to be filled by user if desired 

$Endmac! 

$Macro PRC1 
SPRint ' 
$$Encimac! 

message to print if no convergence 
(no convergence yet)' :! 

$Macro PRC3 
SPRint / TITL :! 
$$Encimac! 

print title at top of new page 

SPRint 'Load RESP (GLIMPLOT.glim) and CHIT (TESTSTAT.glim)'$! 
$OUt! stop output while loading macros 
$TRanscript! 
$INput 23 RESP! 
$DElete BINO GAMM OWN! 
$INput 12 CHIT! 
$OUt 9! 
$TRanscript F H I 0 W! 
$RETurn! 

$SUBfile POOV! 
$ECho! 

load required macros 

restart output 

The macro POOV fits a proportional odds model for an ordinal 
dependent variable with grouped frequency data. 

Type $CAlculate %N=number of independent variables, %K=number 
of categories of the dependent variable (%N+%K <= 10), and 
%L=number of lines in the table (table size = %Lx%K). Type $Use 
POOV with the names of the frequency vector and up to 7 
independent variables 

The ordinal dependent variable must vary most quickly in the 
frequency vector. All independent variables must be continuous or 
binary ($FActor cannot be used; instead, apply the macro TRAN). 

The first %K-1 parameter estimates refer to the odds for 
categories of the dependent variable, the last %N to the 
independent variable. 

To $OUtput results to a file, type $CAlculate %0=6. 
To write a title at the top of each page, create a macro called 
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!TITL: $Macro TITL text of title $Endmac 
! See Hutchison, D. (1985) "Ordinal variable regression using the 
!McCullagh (proportional odds) model." GLIM Newsletter 9: 9-17. 
! Macros used: POOV, INDV, IND1, STEP, CM, MEXT, ETML, WHO, PARA, 
!FV, DR, VA, 01, PRC3, TITL, CHIT 
! Extra variables used: C1 , C2 , C3_, C4_, C5_, C6_, C7_, C8_, 
!C9 - -
$ECho! 

$Macro POOV ! 
$OUt! 
$TRanscript! 
$DElete YY2 YY3 YY5 ZZl ZZ2 ZZ5 ZZ9 C1 C2 C3 C4 C5 C6 

C7 C8 <:9 
$CAlculate %Z7=9! 
: %Z2=%K*%L! 
: %O=%IF (%0==6, 6, 9) ! 
$Argument STEP %1! 
: INDV %2 %3 %4 %5 %6 %7 %8 %9! 

check where to send output 

: IND1 C1 C2 C3 C4 C5 C6 C7 C8 C9! 
$CAlculate YY5 =%GL (%L, %K)! create-indIces to manipulate vectors 
: %Z4=(%K-1)*%L! 
$Variate %L ZZ5 ! 
: %NU ZZ9! -
$UNits %Z4! 
$CAlculate ZZ5 =o! 

ZZ5 (YY5 )=ZZ5 (YY5 )+%1! 
: ZZ2-=%GL(%L,1)! -
: %Z1;;%K-1! 
: YY2 =o! 
$WHile %Zl STEP! 
$DElete YY5 ZZ9 

calculate totals 

calculate dependent variable 

$CAlculate %Z4=%NU*%Z7! initialize to create independent variables 
$Variate %Z4 ZZl YY3 YY5 ZZ9! 
$CAlculate YY5 =%GL(%Z7,1)! 

YY3 =(YY5 ==%GL(%K-1,%Z7*%L»! 
: ZZ9-=(%GL(%L,%Z7)-1)*%K+%GL(%K,%L*%Z7)! 
: %Z8;;%N! 
$WHile %Z8 INDV! 
$Variate %NU C1 C2 C3 
$CAlculate %Z8=%Z7! 
$WHile %Z8 IND1! 

set up independent variables in new vectors 
C4 C5 C6 C7 C8 C9 ! - - - - -

$DElete YY3 YY5 ZZl ZZ9 
$CAlculate YY3 =ZZ5 (ZZ2 )! 
: ZZl =%GL(%K-I,%L)! -
$ERror B YY3 ! 
$Yvariate YY2 ! 
$OUt %O! -
$TRanscript F H I 0 W! 
SPRint 'Proportional Odds Model' :! 
: ' R N ZZl ZZ2 '! 
$Look (5=-1) YY2 YY3 ZZl -ZZ2 ! 
$DElete ZZl ZZ2-! 
SPRint : 'ApproxImate Analysis' :! 

transform totals vector 

set up approximate model 

print transformed table 

$Fit C1 +C2 +C3 +C4 +C5 +C6 +C7 +C8 +C9 -%GM! fit approximate model 
$Use CHIT %OV %OF! - - - - - for initial estimates 
$Display E! 
$OUt! 
$TRanscript! 
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$EXTract %PE! 
$DElete YY2 YY3 C1 C2 C3 C4 C5 C6 C7 CS_ C9 ! 
$UNits %Z2!- -
$CAlculate %Z4=%Z2*%Z7! initialize to create independent variables 
$Variate %Z4 YY3 YY5 ZZ1 ZZ9! 
$CA1culate YY5 =%GL(%Z7,1)! 
: YY3 =(YY5 ==%GL(%K,%Z7»*(YY5 <%K)! 
: ZZ9-=%GL(%NU,%Z7)! -
: %ZS~%N! 
$WHi1e %ZS INDV! set up independent variables in new vectors 
$DE1ete ZZ9 ! 
$CA1cu1ate ZZ9 =%GL(%L,%K)! 
: YY2 =ZZ5 (ZZ9 ) ! 
: ZZ9-=%GL(%NU,1)! 
$DElete YY5 ZZ1 ZZ5 
$Yvariate %1! set up exact model 
SOWn FV DR VA DI! 
$SCale 1! 
$Argument FV C1 C2 C3 C4 C5 C6 C7 CS C9 ! 
: WMU %2 %3 %4 %5 %6 %7 %S %9 %1! 
$CAlcu1ate %LP=C1 =C2 =C3 =C4 =C5 =C6 =C7 =CS =C9 =O! 
: %Z1=(%L*(%K-1»~S)!- - - - - - - -
$OUt %O! 
$TRanscript F H I 0 W! 
$SWitch %Z1 PRC3! 
SPRint 'Exact Analysis' :! fit exact model 
$Fit C1 +C2 +C3 +C4 +C5 +C6 +C7 +CS +C9 -%GM! 
$Use CHIT! - - - - - - - -

$Disp1ay E! 
$OUt 9! 
$$Endrnac! 

$Macro STEP fills new vector with values 
$CA1cu1ate ZZ9 =(%GL(%K,1)<=%K-%Z1)*(%GL(%L,%K)+(%K-1-%Z1)*%L)! 
: YY2 (ZZ9 )=YY2 (ZZ9 )+%1! 
: %Z1~%Z1-1! - -
$$Endrnac! 

$Macro INDV first step to create new independent variables 
$CA1cu1ate ZZ1 =(YY5 ==%K+%ZS-1)*ZZ9 ! 
: YY3 =YY3 +%%ZS(ZZ1-)! 
: %zS~%zS-1! -
$$Endrnac! 

$Macro IND1 second step to create new independent variables 
$CA1cu1ate ZZ1=(YY5 ==%ZS)*%GL(%NU,%Z7)! 
: %%ZS(ZZ1 )=YY3 ! 
: %ZS=%ZS-1! -
$$Endrnac! 

$Macro FV 
$CA1cu1ate %Z3=(%PL/=0)! 
: %Z6=%Z7! 
: ZZ2 =40*(%GL(%K,1)==%K)! 

fitted values for own 

$SWitch %Z3 MEXT! skip extraction of estimates the first time 
$WHile %Z6 ETML! 
$CAlculate ZZ5 =%EXP(ZZ2 )/(1+%EXP(ZZ2 »! 
! - - -

YY5_=ZZ5_/(1+%EXP(ZZ2 »! 

transform previous 
estimates 



: US=l! 
$Use CM ZZS %FV! 
$CAlculate %ZS=2! 
$Use CM ZZ2 %LP! 
$CAlculate %Z6=%Z7! 
$Use WHO! 
$$Endmac! 

$Macro DR 
$CAlculate %DR=l! 
$Endmac! 

$Macro VA 
$CAlculate %VA=%FV! 
$Endmac! 

161 

calculate fitted values vector 

calculate linear predictor vector 

calculate deta by dgamma for own 

calculate variance function for own 

$Macro DI calculate increase in deviance for own 
$CAlculate %DI=2*(%YV*%LOG«%YV+(%YV==O»/%FV)-(%YV-%FV»! 
$Endmac! 

$Macro ETML calculate eta 
$CAlculate ZZ2 =ZZ2 +%PE(%Z6)*YY3 (%Z7*(ZZ9 -1)+%Z6)! 
: %Z6=%Z6-l! -
$$Endmac! 

$Macro MEXT 
$EXTract %PE! 
$$Endmac! 
! 

obtain parameter estimates 

$Macro CM set up fitted values and linear predictor 
$CAlculate %1=«%Z5==1)+(%ZS==2)*YY5 )*%l! 
: %2=(%1-%1(ZZ9 -1)*(%GL(%K,1)/=1»*YY2 ! 
$ $Endmac ! - -

$Macro WHO ! calculate new parameter estimates 
$CAlculate ZZl =YY3 «ZZ9_-l)*%Z7+(%Z7-%Z6+l»! 
$Use CM ZZl %9! 
$CAlculate %Z8=«%Z6=%Z6-l»O)! 
$SWitch %Z8 WHO! 
$$Endmac! 

$Macro TITL blank title to be filled by user if desired 

$Endmac! 

$Macro PRC3 
SPRint / TITL :! 
$$Endmac! 

SPRint 'Load CHIT (TESTSTAT.glim)'$! 

print title at top of new page 

$OUt! stop output while loading macros 
$TRanscript! 
$INput 12 CHIT! 
$OUt 9! 
$TRanscript F H I 0 W! 
$RETurn! 

load required macro 
restart output 



$SUBfile CROV! 
$ECho! 
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The macro CROV fits a continuation ratio model for an ordinal 
!dependent variable with grouped frequency data. 
! Set $UNits and read frequency data as for a log-linear model 
!into a vector, where the dependent ordinal variable varies most 
!quickly. Use $CAlculate to set %K=number of categories of ordinal 
!variable and %L=product of number of categories of all independent 
!variables. Then type $Use CROV with the frequency vector. 
! ZZI is the vector defining the series of continuation ratio 
!models. ZZ2 is the vector defining the combination of independent 
!variables. ZZ2 may be replaced by these variables, if they are 
redefined by %GL and $FActor. The model may then be refitted with 
them and ZZI . 

To $OUtput-results to a file, type $CAlculate %0=6. 
To write a title at the top of each page, create a macro called 

TITL: $Macro TITL text of title $Endmac 
Macros used: CROV, PRC3, STEP, TITL, CHIT 
Extra variables used: PW 

$ECho! 

$Macro CROV ! 
$OUt! 
$TRanscript! 
$DElete PW ZZ1 ZZ2 ZZ3 ZZ4 
$CAlculate-%0=%IF(%O~=6,6~9) ! 

YY1 =%GL(%L,%K)! 
ZZ3-=%GL(%K,1) ! 
%NU~(%K-1)*%L! 
ZZ4 =O! 
%Z1~%K-1! 

$UNits %NU! 
$ERror B YY2 
$Yvariate YY3 ! 
$FActor ZZ2 %L ZZ1 %Z1! 
$Weight PW T 
$CAlculate-ZZ2 =%GL(%L,1)! 

ZZ1 =%GL(%Zl,%L)! 
YY2- =O! 
YY3-=0! 
PW =1! 

$Argument STEP %1! 
$WHile %Z1 STEP! 
$CAlculate YY3 =YY2 -YY3 ! 
$DElete YY1 ZZ3 ZZ4! 
$OUt %O! -
$TRanscript F H I 0 W! 

ZZ5 YY1 YY2 YY3 ! 
-check where to send output 

create indices 

set up model 

create new table 

SPRint 'Continuation Ratio Model' :! print table 
: ' R N ZZ1 ZZ2 '! 
$Look (S=-1) YY3 YY2 ZZ1 ZZ2! 
$CAlculate %Z1=(%NU+%PL>=40)! 
SPRint! 
$SWitch %Z1 PRC3! 
$Fit ZZ1 +ZZ2 ! 
$Use CHIT %DV-%DF! 
$Display E! 
$$Endmac! 

fit model 
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$Macro STEP ! creates new vectors 
$CAlculate ZZ4 =(ZZ3 <=%K-%Z1+1)*{YY1_+%L*{%K-%Z1-1»! 

YY2 {ZZ4 )=YY2 (ZZ4 )+%1! 
ZZ4-=ZZ4-*{ZZ3-==%K=%Z1+1) ! 
YY3-{ZZ4-)=YY3-{ZZ4 )+%1! 
%Z1~%Z1-I! -

$$Endmac! 

$Macro TITL blank title to be filled by user if desired 

$Endmac! 

$Macro PRC3 
SPRint / TITL :! 
$$Endmac! 

print title at top of new page 

SPRint 'Load CHIT (TESTSTAT.glim)'$! 
$OUt! stop output while loading macro 
$TRanscript! 
$INput 12 CHIT! 
$OUt 9! 
$TRanscript F H lOW! 
$RETurn! 

Macro loaded by $INput 23 from tile GLIMPLOT.gIim. 

$SUBfile RESP! 
$ECho! 

load required macro 
restart output 

The macro RESP plots standardized and adjusted residuals against 
the normal order statistic and the score test coefficient of 
sensitivity for any GLM. 

Note that prior weights are defined as 1 with $Weight when this 
macro is loaded. 

After fitting a model, type $use RESP. 
To $OUtput results to a file, type $CAlculate %0=6. 
See Gilchrist, R. (1982) "GLIM syntax for adjusted residuals." 

!GLIM Newsletter ~: 64-65. 
Macros used: RESP, NORM, BINO, POlS, GAMM, OWN 
Extra variables used: ARE , SRE_, PW 

$ECho! -

$Macro RESP ! 
$EXTract %VL! 
$DElete ARE SRE YY5 ZZ5! 
$CAlculate %0=%IF{%0=~6,6,9)! check where to send output 
$OUt %O! 
$TRanscript F H lOW! 
$SWitch %ERR NORM POlS BINO GAMM OWN OWN OWN OWN OWN! 
$OUt! 
$TRanscript! 
$CAlculate ZZ5 =%WT*%VL/%SC! 

ARE =(%YV-%FV)*%SQR{%PW/YY5 /%SC/{1-ZZ5 »! adjusted residuals 
SRE-=ARE *ARE *ZZ5 /(ZZ5 -1)! coefficient of sensitivity 
YY5-=%GL(%NU,I)! - - observation number 
%RE~(%PW/=O)! eliminate observations with zero weight 



$OUt %0 80! 
$TRanscript F H lOW! 
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SPRint 'Score Test Coefficient of Sensitivity' :! 
$Plot SRE YY5! 
$OUt! - -
$TRanscript! 
$CAlculate SRE =ARE *%SQR(1-ZZ5 ) ! 
: YY5 =%ND«%GL(%NU~1)-.5)/%NU)! 
$Sort-%RE %RE ARE! 
: ARE ! 
: SRE-! 
$OUt %0 SO! 
$TRanscript F H lOW! 
SPRint : 'Residual Plot' :! 
$Plot ARE SRE YY5 YY5 
SPRint : 'Points Y represent 45 line'! 
$DElete ARE SRE YY5 ZZ5 %RE! 
$$Endmac! -

standardized residuals 
normal order statistic 

$Macro NORM ! macros to calculate appropriate variance function 
$CAlculate YY5 =1! 
SPRint 'Normal-Residuals' :! 
$$Endmac! 

$Macro POlS 
$CAlculate YY5 =%FV! 
SPRint 'Poisson Residuals' :! 
$$Endmac! 

$Macro BINO 
$CAlculate YY5 =%FV*(%BD-%FV)/%BD! 
SPRint 'Binomial Residuals' :! 
$$Endmac! 

$Macro GAMM 
$CAlculate YY5 =%FV*%FV! 
SPRint 'Gamma Residuals' :! 
$$Endmac! 

$Macro OWN 
$CAlculate YY5 =%VA! 
SPRint 'Own Residuals' :! 
$$Endmac! 

$CAlculate PW =1! 
$Weight PW 
$RETurn! -

weight must be defined to calculate residuals 
so give default value which may subsequently 

be changed by user 

An example of a macro (LIOV) with all unnecessary characters eliminated in 

the interest of efficiency: 

$M L10V $DE YY1 YY2 YY3 YY4 ZZ1 ZZ2 ZZ3 ZZ4 $CA %ZS=%1(1) ! 
:%ZS=%IF(%1>%ZS~%1,%Z) :%Z9=%2(1) :%Z9=%IF(%2>%Z9,%2~%Z9) :%Z4=%Z6=0! 
:%Z2=10:%0=%IF(%0==6,6,9) :YY4 =2*%1-%ZS-1:ZZ4 =2*%2-%Z9-1$OU %O! 
$PR/TITL::'Independence Model' :$F %1+%2$U CHIT %DV %DF$D E! 
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SSW %R RESI$CA %Z1=«%PL>16)+(%R==1»=1)$SW %Z1 PRC3! 
$PR'Linear Effects Model' :$F %1+%2+%1.ZZ4 $U CHIT$D E$SW %R RESI 
$OU$TR$V %Z8 YY2 YY3 :%Z9 ZZ2 ZZ3 $CA YY1 =%1! 
:YY3 =%GL(%Z8,1)+%Z8:ZZ3 =%GL(%Z9,1)+%Z9$A ITEIR %1 %2! 
$WH %Z2 ITER$F %1+%2+%1.ZZ1 $CA %Z4=%DF-%Z9+2:%Z3=ZZ2 (1)! 
:%Z7=ZZ2 (%Z9)-%Z3:ZZ2 =(ZZ2 ~%Z3)/%Z7$OU %O$TR F H lOW! 
$PR/TITL::'Scale for ordinal-variable' :ZZ2 :! 
:'Log Multiplicative Model':! -
:'scaled deviance = ' *4 %DV ' at cycle' *-2 %Z6! 
., d.f. = ' *-2 %Z4 :$SW %Z5 PRC1$U CHIT$D E$SW %R RESI! 
$DE YY1 YY2 YY3 YY4 ZZ2 ZZ3 ZZ4 $$E! 
$M ITER$CA-%Z6~Z6+1:%Z5~%DV$F YYl +%2+YY1 .%2$EXT %PE! 
$CA %Z3=%PE(2) :ZZ2 =(ZZ3 /=%Z9+1)*%PE(ZZ3 )+%Z3! 
:ZZ1 =(%2/=1)*%PE(%2+%Z9)+%Z3:%Z3=ZZ2 (1) :%Z7=ZZ2 (%Z9)-%Z3! 
:ZZ1-=(ZZ1 -%Z3)/%Z7$F ZZ1 +%1.ZZ1 +%I$EXT %PE$CA-%Z3=%PE(2)! 
:YY2-=(YY3-/=%Z8+1)*%PE(YY3 )+%Z3:YY1 =(%1/=1)*%PE(%1+%Z8)+%Z3! 
:%Z3~YY2 (1) :%Z7=YY2 (%Z8)-%Z3:YY1 =(YY1 -%Z3)/%Z7! 
:%Z5=(%Z5-%DV)/%DV:%Z2=%IF(%Z5=(%Z5*%Z5>~00001),%Z2-1,O)$$E! 
$M RESI $CA %Z1=(%PL+%NU>40)$SW %Z1 PRC3$D R$U PRC3$U RESP$$E! 
$M TITL $E! 
$M PRC1 $PR ' (no convergence yet)' :$$E! 
$M PRC3 $PR / TITL :$$E! 
$PR'Load RESP (GLIMPLOT.glim) and CHIT (TESTSTAT.glim)'$OU$TR! 
$IN 23 RESP$DE BINO GAMM OWN$IN 12 CHIT$OU 9$TR F H lOW! 
$RET! 



REFERENCES 

Agresti, A. (1984) Analysis of Ordinal Categorical Data. New York: Wiley. 

Aickin, M. (1983) Linear Statistical Analysis of Discrete Data. New York: Wiley. 

Aitkin, M., Anderson, D., Francis, B. & Hinde, 1. (1989) Statistical Modelling in 
GLIM. Oxford: Oxford University Press. 

Andersen, E.B. (1980) Discrete Statistical Models with Social Science Applications. 
Amsterdam: North Holland. 

Anderson, J.A. (1984) "Regression and ordered categorical variables." Journal of the 
Royal Statistical Society (B) 46: 1-30. 

Baker, RJ. & NeIder, 1.A. (1978) The GLIM System. Release 3. Oxford: NAG. 

Bishop, Y.M.M., Fienberg, S.E., & Holland, P.W. (1975) Discrete Multivariate 
Analysis: Theory and Practice. Cambridge: MIT Press. 

Coleman, I.S. (1964) Introduction to Mathematical Sociology. Glencoe: The Free 
Press. 

Cox, D.R (1970) Analysis of Binary Data. London: Methuen. 

Dobson, A.J. (1983) An Introduction to Statistical Modelling. London: Chapman & 
Hall. 

Duncan, O.D. (1979) "How destination depends on origin in the 
mobility table." American Journal of Sociology 84: 793-803. 

occupational 

Everitt, B.S. (1977) The Analysis of Contingency Tables. London: Chapman & Hall. 

Everitt, B.S. & Dunn, G. (1983) Advanced Methods of Data Exploration and 
Modeling. London: Heinemann. 

Fienberg, S.E. (1977) The Analysis of Cross-Classified Categorical Data. Cambridge: 
MIT Press. 

Fingleton, B. (1984) Models of Category Counts. Cambridge: Cambridge University 
Press. 

Gilchrist, R (1981) "Calculations of residuals for all GLIM models." GLIM 
Newsletter 4: 26-27. 

Gilchrist, R (1982a) "GLIM syntax for adjusted residuals." GLIM Newsletter 6: 64-
65. 

Gilchrist, R (1982b, ed.) GLIM82. Berlin: Springer. 



167 

Gilchrist, R., Francis, B., & Whittaker, 1. (1985, ed.) Generalized Linear Models. 
Berlin: Springer. 

Glass, D.V. (1954, ed.) Social Mobility in Britain. Glencoe: The Free Press. 

Goodman, L.A. (1962) "Statistical methods for analyzing processes of change." 
American Journal of Sociology 68: 57-78. 

Goodman, L.A. (1979) "Simple models for the analysis of association in cross­
classifications having ordered categories." Journal of the American Statistical 
Association 74: 537-552. 

Goodman, L.A. (1981) "Association models and canonical correlation in the analysis 
of cross-classifications having ordered categories." Journal of the American 
Statistical Association 76: 320-334. 

Haberman, S.l. (1974) The Analysis of Frequency Data. Chicago: University of 
Chicago Press. 

Haberman, S.l. (1978) Analysis of Qualitative Data. Vol. I. Introductory Topics. New 
York: Academic Press. 

Haberman, S.l. (1979) Analysis of Qualitative Data. Vol. n. New Developments. New 
York: Academic Press. 

Healy, M.J.R. (1988) Glim: An Introduction. Oxford: Oxford University Press. 

Hutchison, D. (1985) "Ordinal variable regression using the McCullagh (proportional 
odds) mode1." GLIM Newsletter 9: 9-17. 

Kroke, D. & Burke, P.J. (1980) Log-Linear Models. Beverley Hills: Sage. 

Lindsey, J.K. (1973) Inferences from Sociological Survey Data: A Unified Approach. 
Amsterdam: Elsevier. 

Lindsey, 1.K. (1975) "Likelihood analysis and test for binary data." Applied Statistics 
24: 1-16. 

McCullagh, P. & NeIder, J.A. (1983) Generalized Linear Models. London: Chapman 
& Hal1. 

NeIder, J.A. (1974) "Log linear models for contingency tables: a generalization of 
classical least-squares." Applied Statistics 23: 323-329. 

NeIder, J.A. & Wedderburn, R.W.M. (1972) "Generalized linear models." Journal of 
the Royal Statistical Society A 135: 370-384. 

Payne, C.D. (1985) The GLIM System. Release 3.77. Oxford: NAG. 

Plackett, R.L. (1974) The Analysis of Categorical Data. London: Griffin. 



168 

Pregibon, D. (1982) "Score tests with applications." in Gilchrist (1982b), pp. 87-97. 

Reynolds, H. Y. (1977) The Analysis of Cross-Classifications. New York: Free Press. 

Robson, D.S. (1959) "A simple method for constructing orthogonal polynomials when 
the independent variable is unequally spaced." Biometrics 15: 197-191. 

Upton, G.J.G. (1978) The Analysis of Cross-Tabulated Data. New York: Wiley. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>


    /HRV <>
    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>

    /RUS <>
    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




