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PREFACE

The Fourth Workshop on Maximum Entropy and Bayesian
Methods in Applied Statistics was held in Calgary, Alberta, at the
University of Calgary, August 5-8, 1984. The workshop continued a
three-year tradition of workshops begun at the University of Wyoming, in
Laramie, attended by a small number of researchers who welcomed the
opportunity to meet and to exchange ideas and opinions on these topics.
From small beginnings, the workshop has continued to grow in spite of
any real official organization or basis for funding and there always
seems to be great interest in "doing it again next year."

This volume represents the proceedings of the fourth workshop and
includes one additional invited paper which was not presented at the
workshop but which we are pleased to include in this volume (Ellis,
Gohberg, Lay). The fourth workshop also made a point of scheduling
several exceptional tutorial lectures by some of our noted colleagues,
Ed Jaynes, John Burg, John Shore, and John Skilling. These tutorial
lectures were not all written up for publication and we especially
regret that the outstanding lectures by John Burg and John Shore must go
unrecorded.

The depth and scope of the papers included in this volume attest, I
believe, to the growing awareness of the importance of maximum entropy
and Bayesian methods in the pure and applied sciences and perhaps serve
to indicate that much remains to be done and many avenues are yet to be
explored. At the same time, it should be clear that significant inroads
are being made and the results give credence to both the importance and
the practicality of these methods.

In organizing this volume, I have tried to place papers of a general or
tutorial nature first, followed by papers related to theoretical consid-
erations, and finally papers dealing with applications in the applied
sciences, more or less grouped by application, and a reasonable order
for logical development of content.

I would like to express my sincere thanks to a number of people whose
devotion and efforts made the workshop a success and the preparation of
this volume possible. First among these was surely Mrs. Esther Cockburn



Preface viii

who handled all arrangements, mailing, and organization for the
conference, and much of the work related to the preparation of this
volume• Her efforts assured our success. Pat Foster handled all of our
accounting and insured our solvency. Special thanks are also due to
Bonnie Sloan who expertly handled all of the typing for this volume and
who met all deadlines with work of the highest quality.

Finally, but certainly not least, go our deepest expressions of
gratitude to those donors in Calgary and Ottawa who answered our call in
a time of need to generously provide all the funding required to insure
the success of our efforts. The following section is set aside to call
attention to these organizations and to express our thanks to them.
It is my hope that this volume will be of use not only to researchers in
many scientific disciplines but also to those whose aspirations are to
join their ranks and to carry on this tradition.

James H. Justice
Calgary, Alberta
April 24, 1986
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BAYESIAN METHODS: GENERAL BACKGROUND
An Introductory Tutorial

E.T. Jaynes
St. John's College and Cavendish Laboratory
Cambridge CB2 1TP
England

We note the main points of history, as a framework on which
to hang many background remarks concerning the nature and
motivation of Bayesian/Maximum Entropy methods. Experience
has shown that these are needed in order to understand
recent work and problems. A more complete account of the
history, with many more details and references, is given in
Jaynes (1978).

The following discussion is essentially nontechnical; the
aim is only to convey a little introductory "feel" for our
outlook, purpose, and terminology, and to alert newcomers to
common pitfalls of misunderstanding.

INDEX

Herodotus 1
Bernoulli 2
Bayes 5
Laplace 6
Jeffreys 8
Cox 11
Shannon 12
Communication Difficulties 13
Is our Logic Open or Closed? 18
Downward Analysis in Statistical Mechanics 20
Current Problems 21
References 24

HERODOTUS

The necessity of reasoning as best we can in situations
where our information is incomplete is faced by all of us, every waking
hour of our lives. We must decide what to do next, even though we
cannot be certain what the consequences will be. Should I wear a rain-
coat today, eat that egg, cross that street, talk to that stranger, tote
that bale, buy that book?

Long before studying mathematics we have all learned, necessarily, how
to deal with such problems intuitively, by a kind of plausible reasoning
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where we lack the information needed to do the formal deductive reason-
ing of the logic textbooks. In the real world, some kind of extension
of formal logic is needed.

And, at least at the intuitive level, we have become rather good at
this extended logic, and rather systematic. Before deciding what to
do, our intuition organizes the preliminary reasoning into stages: (a)
try to foresee all the possibilities that might arise; (b) judge how
likely each is, based on everything you can see and all your past
experience; (c) in the light of this, judge what the probable conse-
quences of various actions would be; (d) now make your decision.

From the earliest times this process of plausible reasoning preceding
decisions has been recognized. Herodotus, in about 500 BC, discusses
the policy decisions of the Persian kings. He notes that a decision
was wise, even though it led to disastrous consequences, if the
evidence at hand indicated it as the best one to make; and that a
decision was foolish, even though it led to the happiest possible
consequences, if it was unreasonable to expect those consequences.

So this kind of reasoning has been around for a long time, and has been
well understood for a long time. Furthermore, it is so well organized
in our minds in qualitative form that it seems obvious that: (a) the
above stages of reasoning can be reproduced in a quantitative form by a
mathematical model; (b) such an extended logic would be very useful in
such areas as science, engineering, and economics, where we are also
obliged constantly to reason as best we can in spite of incomplete
information, but the number of possibilities and amount of data are far
too great for intuition to keep track of.

BERNOULLI

A serious, and to this day still useful, attempt at a
mathematical representation was made by James Bernoulli (1713), who
called his work "Ars Conjectandi", or "The Art of Conjecture", a name
that might well be revived today because it expresses so honestly and
accurately what we are doing. But even though it is only conjecture,
there are still wise and foolish ways, consistent and inconsistent
ways, of doing it. Our extended logic should be, in a sense that was
made precise only much later, an optimal or "educated" system of
conjecture.

First one must invent some mathematical way of expressing a state of
incomplete knowledge, or information. Bernoulli did this by enumera-
ting a set of basic "equally possible" cases which we may denote by
(x^, X2 ••• x N ) , and which we may call, loosely, either events or
propositions. This defines our "field of discourse" or "hypothesis
space" H0. If we are concerned with two tosses of a die, N = 6^ -
36.

Then one introduces some proposition of interest A, defined as being
true on some specified subset H(A) of M points of H0, false on the
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others. M, the "number of ways" in which A could be true, is called
the multiplicity of A, and the probability of A is defined as the
proportion p(A) = M/N.

The rules of reasoning consist of finding the probabilities p(A), p(B),
etc., of different propositions by counting the number of ways they can
be true. For example, the probability that both A and B are true is the
proportion of H0 on which both are true. More interesting, if we learn
that A is true, our hypothesis space contracts to H(A) and the probabil-
ity of B is changed to the proportion of H(A) on which B is true. If we
then learn that B is false, our hypothesis space may contract further,
changing the probability of some other proposition C, and so on.

Such elementary rules have an obvious correspondence with common sense,
and they are powerful enough to be applied usefully, not only in the
game of "Twenty Questions", but in some quite substantial problems of
reasoning, requiring nontrivial combinatorial calculations. But as
Bernoulli recognized, they do not seem applicable to all problems; for
while we may feel that we know the appropriate H0 for dice tossing, in
other problems we often fail to see how to define any set H0 of element-
ary "equally possible" cases. As Bernoulli put it, "What mortal will
ever determine the number of diseases?" How then could we ever calcu-
late the probability of a disease?

Let us deliver a short Sermon on this. Faced with this problem, there
are two different attitudes one can take. The conventional one, for
many years, has been to give up instantly and abandon the entire theory.
Over and over again modern writers on statistics have noted that no
general rule for determining the correct H0 is given, ergo the theory is
inapplicable and into the waste-basket it goes.

But that seems to us a self-defeating attitude that loses nearly all the
value of probability theory by missing the point of the game. After
all, our goal is not omniscience, but only to reason as best we can with
whatever incomplete information we have. To demand more than this is to
demand the impossible; neither Bernoulli1s procedure nor any other that
might be put in its place can get something for nothing.

The reason for setting up H0 is not to describe the Ultimate Realities
of the Universe; that is unknown and remains so. By definition, the
function of H0 is to represent what we know; it cannot be unknown. So a
second attitude recommends itself; define your H0 as best you can — all
the diseases you know — and get on with the calculations.

Usually this suggestion evokes howls of protest from those with conven-
tional training; such calculations have no valid basis at all, and can
lead to grotesquely wrong predictions. To trust the results could lead
to calamity.

But such protests also miss the point of the game; they are like the
reasoning of a chess player who thinks ahead only one move and refuses
to play at all unless the next move has a guaranteed win. If we think



Jaynes: Bayesian Methods: General Background

ahead two moves, we can see the true function and value of probability
theory in inference.

When we first define H0, because of our incomplete information we cannot
be sure that it really expresses all the possibilities in the real
world. Nor can we be sure that there is no unknown symmetry- breaking
influence at work making it harder to realize some possibilities than
others. If we knew of such an influence, then we would not consider the
x^ equally likely.

To put it in somewhat anthropomorphic terms, we cannot be sure that our
hypothesis space H0 is the same as Nature's hypothesis space HN. The
conventional attitude holds that our calculation is invalid unless we
know the "true" HN; but that is something that we shall never know. So,
ignoring all protests, we choose to go ahead with that shaky calculation
from H0, which is the best we can actually do. What are the possible
results?

Suppose our predictions turn out to be right; i.e. out of a certain set
of propositions A^, A2, ••• Am the one A^ that we thought highly
likely to be true (because it is true on a much larger subset of H0 than
any other) is indeed confirmed by observation. That does not prove that
our H0 represented correctly all those, and only those, possibilities
that exist in Nature, or that no symmetry-breaking influences exist.
But it does show that our H0 is not sufficiently different from Nature's
HN to affect this prediction. Result: the theory has served a useful
predictive purpose, and we have more confidence in our H0. If this
success continues with many different sets of propositions, we shall end
up with very great confidence in H0. Whether it is "true" or not, it
has predictive value.

But suppose our prediction does indeed turn out to be grotesquely wrong;
Nature persists in generating an entirely different Aj than the one we
favoured. Then we know that Nature's HN is importantly different from
our H0, and the nature of the error gives us a clue as to how they
differ. As a result, we are in a position to define a better hypothesis
space HI, repeat the calculations to see what predictions it makes,
compare them with observation, define a still better H2, ... and so on.

Far from being a calamity, this is the essence of the scientific method.
H0 is only our unavoidable starting point.

As soon as we look at the nature of inference at this many-moves-ahead
level of perception, our attitude towards probability theory and the
proper way to use it in science becomes almost diametrically opposite to
that expounded in most current textbooks. We need have no fear of
making shaky calculations on inadequate knowledge; for if our predic-
tions are indeed wrong, then we shall have an opportunity to improve
that knowledge, an opportunity that would have been lost had we been too
timid to make the calculations.
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Instead of fearing wrong predictions, we look eagerly for them; it is
only when predictions based on our present knowledge fail that probabil-
ity theory leads us to fundamental new knowledge.

Bernoulli implemented the point just made, and in a more sophisticated
way than we supposed in that little Sermon. Perceiving as noted that
except in certain gambling devices like dice we almost never know
Nature's set HN of possibilities, he conceived a way of probing HN, in
the case that one can make repeated independent observations of some
event A; for example, administering a medicine to many sick patients and
noting how many are cured.

We all feel intuitively that, under these conditions, events of higher
probability M/N should occur more often. Stated more carefully, events
that have higher probability on H0 should be predicted to occur more
often; events with higher probability on HN should be observed to occur
more often. But we would like to see this intuition supported by a
theorem.

Bernoulli proved the first mathematical connection between probability
and frequency, today known as the weak law of large numbers. If we make
n independent observations and find A true m times, the observed
frequency f(A) = m/n is to be compared with the probability p(A) = M/N.
He showed that in the limit of large n, it becomes practically certain
that f(A) is close to p(A). Laplace showed later that as n tends to
infinity the probability remains more than 1/2 that f(A) is in the
shrinking interval p(A) + q, where q̂  = p(l-p)/n.

There are some important technical qualifications to this, centering on
what we mean by "independent"; but for present purposes we note only
that often an observed frequency f(A) is in some sense a reasonable
estimate of the ratio M/N in Nature's hypothesis space HN. Thus we
have, in many cases, a simple way to test and improve our H0 in a
semiquantitative way. This was an important start; but Bernoulli died
before carrying the argument further.

BAYES

Thomas Bayes was a British clergyman and amateur mathemat-
ician (a very good one - it appears that he was the first to understand
the nature of asymptotic expansions), who died in 1761. Among his
papers was found a curious unpublished manuscript. We do not know what
he intended to do with it, or how much editing it then received at the
hands of others; but it was published in 1763 and gave rise to the name
"Bayesian Statistics". For a photographic reproduction of the work as
published, with some penetrating historical comments, see Molina (1963).
It gives, by lengthy arguments that are almost incomprehensible today, a
completely different kind of solution to Bernoulli's unfinished
problem.

Where Bernoulli had calculated the probability, given N, n, and M, that
we would observe A true m times (what is called today the "sampling
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distribution"), Bayes turned it around and gave in effect a formula for
the probability, given N, n, and m, that M has various values. The
method was long called "inverse probability". But Bayes1 work had
little if any direct influence on the later development of probability
theory.

LAPLACE

In almost his first published work (1774), Laplace redis-
covered Bayes1 principle in greater clarity and generality, and then for
the next 40 years proceeded to apply it to problems of astronomy,
geodesy, meteorology, population statistics, and even jurisprudence.
The basic theorem appears today as almost trivially simple; yet it is by
far the most important principle underlying scientific inference.

Denoting various propositions by A, B, C, etc., let AB stand for the
proposition "both A and B are true", A = "A is false", and let the
symbol p(A:B) stand for "the probability that A is true, given that B is
true". Then the basic product and sum rules of probability theory,
dating back in essence to before Bernoulli, are

p(AB|C) = p(A|BC)p(B|C) (1)

p(A|B) + p(A|B) = 1 (2)

But AB and BA are the same proposition, so consistency requires that we
may interchange A and B in the right-hand side of (1). If p(B|c) > 0,
we thus have what is always called "Bayes1 Theorem" today, although
Bayes never wrote it:

P(A|BC) = P(A|C) P(B|AC)/P(B|C) (3)

But this is nothing more than the statement that the product rule is
consistent; why is such a seeming triviality important?

In (3) we have a mathematical representation of the process of learning;
exactly what we need for our extended logic. p(A|c) is our "prior prob-
ability" of A, when we know only C. p(A|BC) is its "posterior probabil-
ity", updated as a result of acquiring new information B. Typically, A
represents some hypothesis, or theory, whose truth we wish to ascertain,
B represents new data from some observation, and the "prior information"
C represents the totality of what we knew about A before getting the
data B.

For example — a famous example that Laplace actually did solve —
proposition A might be the statement that the unknown mass Ms of
Saturn lies in a specified interval, B the data from observatories about
the mutual perturbations of Jupiter and Saturn, C the common sense
observation that Ms cannot be so small that Saturn would lose its
rings; or so large that Saturn would disrupt the solar system. Laplace
reported that, from the data available up to the end of the 18th
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Century, Bayes' theorem estimates Ms to be (1/3512) of the solar mass,
and gives a probability of .99991, or odds of 11,000:1, that Ms lies
within 1 per cent of that value. Another 150 years1 accumulation of
data has raised the estimate 0.63 per cent.

The more we study it, the more we appreciate how nicely Bayes' theorem
corresponds to — and improves on — our common sense. In the first
place, it is clear that the prior probability p(A|C) is necessarily
present in all inference; to ask "What do you know about A after seeing
the data B?" cannot have any definite answer — because it is not a
well-posed question — if we fail to take into account, "What did you
know about A before seeing B?".

Even this platitude has not always been perceived by those who do not
use Bayes' theorem and go under the banner: "Let the data speak for
themselves!" They cannot, and never have. If we want to decide between
various possible theories but refuse to supplement the data with prior
information about them, probability theory will lead us inexorably to
favour the "Sure Thing" theory ST, according to which every minute
detail of the data was inevitable; nothing else could possibly have
happened. For the data always have a much higher probability on ST than
on any other theory; ST is always the maximum likelihood solution over
the class of all theories. Only our extremely low prior probability for
ST can justify rejecting it.

Secondly, we can apply Bayes1 theorem repeatedly as new pieces of
information B^, B2> ••• are received from the observatories, the
posterior probability from each application becoming the prior probabil-
ity for the next. It is easy to verify that (3) has the chain consist-
ency that common sense would demand; at any stage the probability that
Bayes1 theorem assigns to A depends only on the total evidence B t o t

- B^ •.. B^ then at hand, not on the order in which the different
updatings happened. We could reach the same conclusion by a single
application of Bayes' theorem using B t o t

#

But Bayes1 theorem tells us far more than intuition can. Intuition is
rather good at judging what pieces of information are relevant to a
question, but very unreliable in judging the relative cogency of
different pieces of information. Bayes' theorem tells us quantitatively
just how cogent every piece of information is.

Bayes' theorem is such a powerful tool in this extended logic that,
after 35 years of using it almost daily, I still feel a sense of
excitement whenever I start on a new, nontrivial problem; because I know
that before the calculation has reached a dozen lines it will give me
some important new insight into the problem, that nobody's intuition has
seen before. But then that surprising result always seems intuitively
obvious after a little meditation; if our raw intuition was powerful
enough we would not need extended logic to help us.
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Two examples of the fun I have had doing this, with full technical
details, are in my papers "Bayesian Spectrum and Chirp Analysis" given
at the August 1983 Laramie Workshop, and "Highly Informative Priors" in
the Proceedings Volume for the September 1983 International Meeting on
Bayesian Statistics, Valencia, Spain (Jaynes, 1985). In both cases,
completely unexpected new insight from Bayes' theorem led to quite
different new methods of data analysis and more accurate results, in two
problems (spectrum analysis and seasonal adjustment) that had been
treated for decades by non-Bayesian methods. The Bayesian analysis took
into account some previously neglected prior information.

Laplace, equally aware of the power of Bayesf theorem, used it to help
him decide which astronomical problems to work on. That is, in which
problems is the discrepancy between prediction and observation large
enough to give a high probability that there is something new to be
found? Because he did not waste time on unpromising research, he was
able in one lifetime to make more of the important discoveries in
celestial mechanics than anyone else.

Laplace also published (1812) a remarkable two-volume treatise on
probability theory in which the analytical techniques for Bayesian
calculations were developed to a level that is seldom surpassed today.
The first volume contains, in his methods for solving finite difference
equations, almost all of the mathematics that we find today in the
theory of digital filters. An English translation of this work, by
Professor and Mrs. A.F.M. Smith of Nottingham University, is in prepara-
tion.

Yet all of Laplace's impressive accomplishments were not enough to
establish Bayesian analysis in the permanent place that it deserved in
science. For more than a Century after Laplace, we were deprived of
this needed tool by what must be the most disastrous error of judgement
ever made in science.

In the end, all of Laplace's beautiful analytical work and important
results went for naught because he did not explain some difficult
cpnceptual points clearly enough. Those who came after him got hung up
on inability to comprehend his rationale and rejected everything he did,
even as his masses of successful results were staring them in the face.

JEFFREYS

Early in this Century, Sir Harold Jeffreys rediscovered
Laplace's rationale and, in the 1930's, explained it much more clearly
than Laplace did. But still it was not comprehended; and for thirty
more years Jeffreys' work was under attack from the very persons who had
the most to gain by understanding it (some of whom were living and
eating with him daily here in St. John's College, and had the best
possible opportunity to learn from him). But since about 1960 compre-
hension of what Laplace and Jeffreys were trying to say has been
growing, at first slowly and today quite rapidly.
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This strange history is only one of the reasons why, today, we Bayesians
need to take the greatest pains to explain our rationale, as I am trying
to do here. It is not that it is technically complicated; it is the way
we have all been thinking intuitively from childhood• It is just so
different from what we were all taught in formal courses on "orthodox"
probability theory, which paralyze the mind into an inability to see the
distinction between probability and frequency. Students who come to us
free of that impediment have no difficulty in understanding our ration-
ale, and are incredulous that anyone could fail to comprehend it.

My Sermons are an attempt to spread the message to those who labour
under this handicap, in a way that takes advantage of my own experience
at a difficult communication problem. Summarizing Bernoulli's work was
the excuse for delivering the first Sermon establishing, so to speak,
our Constitutional Right to use H0 even if it may not be the same as
HN.

Now Laplace and Jeffreys inspire our second Sermon, on how to choose H0
given our prior knowledge; a matter on which they made the essential
start. To guide us in this choice there is a rather fundamental
"Desideratum of Consistency": In two problems where we have the same
state of knowledge, we should assign the same probabilities.

As an application of this desideratum, if the hypothesis space H0 has
been chosen so that we have no information about the x-£ beyond their
enumeration, then as an elementary matter of symmetry the only consist-
ent thing we can do is to assign equal probability to all of them; if we
did anything else, then by a mere permutation of the labels we could
exhibit a second problem in which our state of knowledge is the same,
but in which we are assigning different probabilities.

This rationale is the first example of the general group invariance
principle for assigning prior probabilities to represent "ignorance".
Although Laplace used it repeatedly and demonstrated its successful
consequences, he failed to explain that it is not arbitrary, but
required by logical consistency to represent a state of knowledge.
Today, 170 years later, this is still a logical pitfall that causes
conceptual hangups and inhibits applications of probability theory.

Let us emphasize that we are using the word "probability" in its
original — therefore by the usual scholarly standards correct —
meaning, as referring to incomplete human information. It has, funda-
mentally, nothing to do with such notions as "random variables" or
"frequencies in random experiments"; even the notion of "repetition" is
not necessarily in our hypothesis space.

In cases where frequencies happen to be relevant to our problem,
whatever connections they may have with probabilities appear automatic-
ally, as mathematically derived consequences of our extended logic
(Bernoulli's limit theorem being the first example). But, as shown in a
discussion of fluctuations in time series (Jaynes, 1978), those
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connections are often of a very different nature than is supposed in
conventional pedagogy; the predicted mean-square fluctuation is not the
same as the variance of the first-order probability distribution.

So to assign equal probabilities to two events is not in any way an
assertion that they must occur equally often in any "random experiment";
as Jeffreys emphasized, it is only a formal way of saying "I don't
know". Events are not necessarily capable of repetition; the event that
the mass of Saturn is less than (1/3512) had, in the light of Laplace's
information, the same probability as the event that it is greater than
(1/3512), but there is no "random experiment" in which we expect those
events to occur equally often.

Of course, if our hypothesis space is large enough to accommodate the
repetitions, we can calculate the probability that two events occur
equally often.

To belabour the point, because experience shows that it is necessary:
In our scholastically correct terminology, a probability p is an
abstract concept, a quantity that we assign theoretically, for the
purpose of representing a state of knowledge, or that we calculate from
previously assigned probabilities using the rules (1) - (3) of probabil-
ity theory. A frequency f is, in situations where it makes sense to
speak of repetitions, a factual property of the real world, that we
measure or estimate. So instead of committing the error of saying that
the probability ±a^ the frequency, we ought to calculate the probability
p(f)df that the frequency lies in various intervals df — just as
Bernoulli did.

In some cases our information, although incomplete, still leads to a
very sharply peaked probability distribution p(f); and then we can
indeed make very confident predictions of frequencies, in these cases,
if we are not making use of any information other than frequencies, our
conclusions will agree with those of "random variable" probability
theory as usually taught today. Our results do not conflict with
frequentist results whenever the latter are justified. From a pragmatic
standpoint (i.e., ignoring philosophical stances and looking only at the
actual results), "random variable" probability theory is contained in
the Laplace-Jeffreys theory as a special case.

But the approach being expounded here applies also to many important
real problems — such as the "pure generalized inverse" problems of
concern to us at this Workshop — in which there is not only no "random
experiment" involved, but we have highly cogent information that must be
taken into account in our probabilities, but does not consist of
frequencies.

A theory of probability that fails to distinguish between the notions of
probability and frequency is helpless to deal with such problems. This
is the reason for the present rapid growth of Bayesian/ Maximum Entropy
methods — which can deal with them, and with demonstrated success. And
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of course, we can deal equally well with the compound case where we have
both random error and cogent non-frequency information.

COX

One reason for these past problems is that neither Laplace
nor Jeffreys gave absolutely compelling arguments — that would convince
a person who did not want to believe it — proving that the rules (1) -
(3) of probability theory are uniquely favoured, by any clearly stated
criterion of optimality, as the "right" rules for conducting inference.
To many they appeared arbitrary, no better than a hundred other rules
one could invent.

But those rules were — obviously and trivially — valid rules for
combining frequencies, so in the 19th dentury the view arose that a
probability is not respectable unless it is also a frequency.

In the 1930's the appearance of Jeffreys1 work launched acrimonious
debates on this issue. The frequentists took not the slightest note of
the masses of evidence given by Laplace^ and Jeffreys, demonstrating the
pragmatic success of those rules when applied without the sanction of
any frequency connection; they had their greatest success in just the
circumstances where the frequentists held them to be invalid.

Into this situation there came, in 1946, a modest little paper by R.T.
Cox, which finally looked at the problem in just the way everybody else
should have. He issued no imperatives declaring that rules (1) - (3)
were or were not valid for conducting inference. Instead he observed
that, whether or not Laplace gave us the right "calculus of inductive
reasoning", we can at least raise the question whether such a calculus
could be created today.

Supposing that degrees of plausibility are to be represented by real
numbers, he found the conditions that such a calculus be consistent (in
the sense that if two different methods of calculation are permitted by
the rules, then they should yield the same result). These consistency
conditions took the form of two functional equations, whose general
solution could be found. That solution uniquely determined the rules
(1) and (2), to within a change of variables that can alter their form
but not their content.

So, thanks to Cox, it was now a theorem that any set of rules for
conducting inference, in which we represent degrees of plausibility by
real numbers, is necessarily either equivalent to the Laplace-Jeffreys
rules, or inconsistent. The reason for their pragmatic success is then
pretty clear. Those who continued to oppose Bayesian methods after 1946
have been obliged to ignore not only the pragmatic success, but also the
theorem.
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SHANNON

Two years later, Claude Shannon (1948) used Cox's method
again. He sought a measure of the "amount of uncertainty" in a prob-
ability distribution. Again the conditions of consistency took the form
of functional equations, whose general solution he found. The resulting
measure proved to be - £ p^ log p^, just what physicists had long
since related to the entropy of thermodynamics.

Gibbs (1875) had given a variational principle in which maximization of
the phenomenological "Clausius entropy" led to all the useful predic-
tions of equilibrium thermodynamics. But the phenomenological Clausius
entropy still had to be determined by calorimetric measurements-
Boltzmann (1877), Gibbs (1902) and von Neumann (1928) gave three
variational principles in which the maximization of the "Shannon
entropy" led, in both classical and quantum theory, to a theoretical
prediction of the Clausius entropy; and thus again (if one was a good
enough calculator) to all the useful results of equilibrium thermo-
dynamics — without any need for calorimetric measurements.

But again we had been in a puzzling situation just like that of Bayesian
inference. Also here we had (from Gibbs) a simple, mathematically
elegant, formalism that led (in the quantum theory version) to enormous
pragmatic success; but had no clearly demonstrated theoretical justifi-
cation. Also here, acrimonious debates over its rationale — among
others, does it or does it not require "ergodic" properties of the
equations of motion? — had been underway for decades. But again,
Shannon's consistency theorem finally showed in what sense entropy
maximization generated optimal inferences. Whether or not the system is
ergodic, the formalism still yields the best predictions that could have
been made on the information we had.

This was really a repetition of history from Bernoulli. Shannon's
theorem only established again, in a new area, our Constitutional Right
to use H0 based on whatever information we have, whether or not it is
the same as HN. Our previous remarks about many-moves-ahead perception
apply equally well here; if our H0 differs from HN, how else can we
discover that fact but by having the courage to go ahead with the calcu-
lations on H0 to see what predictions it makes?

Gibbs had that courage; his H0 of classical mechanics was "terrible" by
conventional attitudes, for it predicted only equations of state
correctly, and gave wrong specific heats, vapor pressures, and equilib-
rium constants. Those terribly wrong predictions were the first clues
pointing to quantum theory; our many-moves-ahead scenario is not a
fancy, but an historical fact. It is clear from Gibbs' work of 1875
that he understood that scenario; but like Laplace he did not explain it
clearly, and it took a long time for it to be rediscovered.

There is one major difference in the two cases. The full scope and
generality of Bayesian inference had been recognized already by
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Jeffreys, and Cox's theorem only legitimized what he had been doing all
along. But the new rationale from Shannon's theorem created an enormous
expansion of the scope of maximum entropy.

It was suddenly clear that, instead of applying only to prediction of
equilibrium thermodynamics, as physicists had supposed before Shannon,
the variational principles of Gibbs and von Neumann extended as well to
nonequilibrium thermodynamics, and to any number of new applications
outside of thermodynamics. As attested by the existence of this Work-
shop, it can be used in spectrum analysis, image reconstruction,
crystallographic structure determination, econometrics; and indeed any
problem, whatever the subject-matter area, with the following logical
structure:

We can define an hypothesis space H0 by enumerating some perceived
possibilities (x^ ... XJJ); but we do not regard them as equally
likely, because we have some additional evidence E. It is not usable as
the "data" B in Bayes' theorem (3) because E is not an event and does
not have a "sampling distribution" p(E|c). But E leads us to impose
some constraint on the probabilities P^ « P(x^) that we assign to
the elements of H0, which forces them to be nonuniform, but does not
fully determine them (the number of constraints is less than N ) .

We interpret Shannon's theorem as indicating that, out of all distribu-
tions P-£ that agree with the constraints, the one that maximizes the
Shannon entropy represents the "most honest" description of our state of
knowledge, in the following sense: it expresses the enumeration of the
possibilities, the evidence E; and assumes nothing beyond that.

If we subsequently acquire more information B that can be interpreted as
an event then we can update this distribution by Bayes' theorem. In
other words, MAXENT has given us the means to escape from the "equally
possible" domain of Bernoulli and Laplace, and construct nonuniform
prior distributions.

Thus came the unification of these seemingly different fields.
Boltzmann and Gibbs had been, unwittingly, solving the prior probability
problem of Bernoulli and Laplace, in a very wide class of problems. The
area of useful applications this opens up may require 100 years to
explore and exploit.

But this has only scratched the surface of what can be done in infer-
ence, now that we have escaped from the errors of the past. We can see,
but only vaguely, still more unified, more powerful, and more general
theories of inference which will regard our present one as an approxi-
mate special case.

COMMUNICATION DIFFICULTIES

Our background remarks would be incomplete without taking
note of a serious disease that has afflicted probability theory for 200
years. There is a long history of confusion and controversy, leading in
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some cases to a paralytic inability to communicate. This has been
caused, not only by confusion over the notions of probability and
frequency, but even more by repeated failure to distinguish between
different problems that happen to lead to similar mathematics. We are
concerned here with only one of these failures.

Starting with the debates of the 1930fs between Jeffreys and Fisher in
the British Statistical Journals, there has been a puzzling communica-
tion block that has prevented orthodoxians from comprehending Bayesian
methods, and Bayesians from comprehending orthodox criticisms of our
methods. On the topic of how probability theory should be used in
inference, L.J. Savage (1954) remarked that "there has seldom been such
complete disagreement and breakdown of communication since the Tower of
Babel".

For example, the writer recalls reading, as a student in the late
1940fs, the orthodox textbook by H. Cramer (1946). His criticisms of
Jeffreys1 approach seemed to me gibberish, quite unrelated to what
Jeffreys had done. There was no way to reply to the criticisms, because
they were just not addressed to the topic. The nature of this commun-
ication block has been realized only quite recently.

For decades Bayesians have been accused of "supposing that an unknown
parameter is a random variable"; and we have denied hundreds of times,
with increasing vehemence, that we are making any such assumption. We
have been unable to comprehend why our denials have no effect, and that
charge continues to be made.

Sometimes, in our perplexity, it has seemed to us that there are two
basically different kinds of mentality in statistics; those who see the
point of Bayesian inference at once, and need no explanation; and those
who never see it, however much explanation is given.

But a Seminar talk by Professor George Barnard, given in Cambridge in
February 1984, provided a clue to what has been causing this Tower of
Babel situation. Instead of merely repeating the old accusation (that
we could only deny still another time), he expressed the orthodox
puzzlement over Bayesian methods in a different way, more clearly and
specifically than we had ever heard it put before.

Barnard complained that Bayesian methods of parameter estimation, which
present our conclusions in the form of a posterior distribution, are
illogical; for "How could the distribution of a parameter possibly
become known from data which were taken with only one value of the
parameter actually present?"

This extremely revealing — indeed, appalling — comment finally gave
some insight into what has been causing our communication problems.
Bayesians have always known that orthodox terminology is not well
adapted to expressing Bayesian ideas; but at least this writer had not
realized how bad the situation was.
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Orthodoxians try to understand Bayesian methods have been caught in a
semantic trap by their habitual use of the phrase "distribution of the
parameter" when one should have said "distribution of the probability".
Bayesians had supposed this to be merely a figure of speech; i.e. that
those who used it did so only out of force of habit, and really knew
better. But now it seems that our critics have been taking that phrase-
ology quite literally all the time.

Therefore, let us belabour still another time what we had previously
thought too obvious to mention. In Bayesian parameter estimation, both
the prior and posterior distribution represent, not any measurable
property of the parameter, but only our own state of knowledge about it.
The width of the distribution is not intended to indicate the range of
variability of the true values of the parameter, as Barnard's terminol-
ogy led him to suppose. It indicates the range of values that are
consistent with our prior information and data, and which honesty
therefore compels us to admit as possible values. What is "distributed"
is not the parameter, but the probability.

Now it appears that, for all these years, those who have seemed immune
to all Bayesian explanation have just misunderstood our purpose. All
this time, we had thought it clear from our subject-matter context that
we are trying to estimate the value that the parameter had when the data
were taken. Put more generally, we are trying to draw inferences about
what actually did happen in the experiment; not about what might have
happened but did not.

But it seems that, all this time, our critics have been trying to inter-
pret our calculations in a different way, imposed on them by their
habits of terminology, as an attempt to solve an entirely different
problem.

With this realization, our past communication difficulties become under-
standable: the problem our critics impute to us has — as they correct-
ly see — no solution from the information at hand. The fact that we
nevertheless get a solution then seems miraculous to them, and we are
accused of trying to get something for nothing.

Re-reading Cramer and other old debates in the literature with this in
mind, we can now see that this misunderstanding of our purpose was
always there, but covertly. Our procedure is attacked on the overt
grounds that our prior probabilities are not frequencies — which seemed
to us a mere philosophical stance, and one that we rejected. But to our
critics this was far more than a philosophical difference; they took it
to mean that, lacking the information to solve the problem, we are
contriving a false solution.

What was never openly brought out in these frustrating debates was that
our critics had in mind a completely different problem than the one we
were solving. So to an orthodoxian our denials seemed dishonest; while
to a Bayesian, the orthodox criticisms seemed so utterly irrelevant that
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we could see no way to answer them. Our minds were just operating in
different worlds.

Perhaps, realizing this, we can now see a ray of light that might, with
reasonable good will on both sides, lead to a resolution of our differ-
ences. In the future, it will be essential for clear communication that
all parties see clearly the distinction between these two problems:

(i) In the Bayesian scenario we are estimating, from our prior informa-
tion and data, the unknown constant value that the parameter had
when the data were taken.

(ii) In Barnard's we are deducing, from prior knowledge of the frequency
distribution of the parameter over some large class C of repeti-
tions of the whole experiment, the frequency distribution that it
has in the subclass C(D) of cases that yield the same data D.

The problems are so different that one might expect them to be solved by
different procedures. Indeed, if they had led to completely different
algorithms, the problems would never have been confused and we might
have been spared all these years of controversy. But it turns out that
both problems lead, via totally different lines of reasoning, to the
same actual algorithm; application of Bayes' theorem.

However, we do not know of any case in which Bayes1 theorem has actually
been used for problem (ii); nor do we expect to hear of such a case, for
three reasons: (a) in real problems, the parameter of interest is
almost always an unknown constant, not a "random variable"; (b) even if
it is a random variable, what is of interest is almost always the value
it had during the real experiment that was actually done; not its
frequency distribution in an imaginary subclass of experiments that were
not done; (c) even if that imaginary frequency distribution were the
thing of interest, we never know the prior frequency distribution that
would be needed.

That is, even if the orthodoxian wanted to solve problem (ii), he would
not have, any more than we do, the information needed to use Bayes1

theorem for it, and would be obliged to seek some other method.

This unfortunate mathematical accident reinforced the terminological
confusion; when orthodoxians saw us using the Bayesian algorithm, they
naturally supposed that we were trying to solve problem (ii). Still
more reinforcement came from the fact that, since orthodoxy sees no
meaning in a probability which is not also a frequency, it is unable to
see Bayes' theorem as the proper procedure for solving problem (i).
Indeed for that problem it is obliged to seek, not just other methods
than Bayes' theorem; but other tools than probability theory.

For the Bayesian, who does see meaning in a probability that is not a
frequency, all the theoretical principles needed to solve problem (i)
are contained in the product and sum rules (1), (2) of probability



Jaynes: Bayesian Methods: General Background 17

theory. He views them, not merely as rules for calculating frequencies
(which they are, but trivially); but also rules for conducting inference
— a nontrivial property requiring mathematical demonstration.

But orthodoxians do not read the Bayesian literature, in which it is a
long since demonstrated fact, not only in the work of Cox but in quite
different approaches by de Finetti, Wald, Savage, Lindley, and others,
that Bayesian methods yield the optimal solution to problem (i), by some
very basic, and it seems to us inescapable, criteria of optimality.
Pragmatically, our numerical results confirm this; whenever the Bayesian
and orthodoxian arrive at different results for problem (i), closer
examination has always shown the Bayesian result to be superior (Jaynes,
1976).

In view of this, we are not surprised to find that, while orthodox
criticisms of Bayesian and/or Maximum Entropy methods deplore our
philosophy and procedure, they almost always stop short of examining our
actual numerical results in real problems and comparing them with
orthodox results (when the latter exist).

The few who take the trouble to do this quickly become Bayesians them-
selves. Today, it is our pragmatic results, far more than the
philosophy or even the optimality theorems, that is making Bayesianity a
rapidly growing concern, taking over one after another of the various
areas of scientific inference.

So, rising above past criticisms which now appear to have been only
misunderstandings of our purpose, Bayesians are in a position to help
orthodox statistics in its current serious difficulties. In the real
problems of scientific inference, it is almost invariably problem (i)
that is in need of solution. But aside from a few special (and to the
Bayesian, trivial) cases, orthodoxy has no satisfactory way to deal with
problem (i).

In our view, then, the orthodoxian has a great deal to gain in useful
results (and as far as we can see, nothing to lose but his ideological
chains) by joining the Bayesian camp and finally taking advantage of
this powerful tool. Failing to do this, he faces obsolescence as new
applications of the kind we are discussing at this Workshop pass far
beyond his domain.

There have been even more astonishing misunderstandings and misrepre-
sentations of the nature and purpose of the Maximum Entropy principle.
These troubles just show that statistics is different from other fields.
Our problems are not only between parties trying to communicate with
each other; not all readers are even trying to understand your message.
It's a jungle out there, full of predators tensed like coiled springs,
ready and eager to pounce upon every opportunity to misrepresent your
meaning, your purpose, and even your results. I am by no means the
first to observe this; both H. Jeffreys and R.A. Fisher complained about
it in the 1930's.
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These are the main points of the historical background of this field;
but the important background is not all historical. The general nature
of Bayesian/Maximum Entropy methods still needs some background clarifi-
cation, because their logical structure is different not only from that
of orthodox statistics, but also from that of conventional mathematical
theories in general.

IS OUR LOGIC OPEN OR CLOSED?

Let us dwell a moment on a circumstance that comes up
constantly in this field. It cannot be an accident that almost all of
the literature on Bayesian methods of inference is by authors concerned
with specific real problems of the kind that arise in science, engineer-
ing, and economics; while most mathematicians concerned with probability
theory take no note of the existence of these methods. Mathematicians
and those who have learned probability theory from them seem uncomfort-
able with Bayesianity, while physicists take to it naturally. This
might be less troublesome if we understood the reason for it.

Perhaps the answer is to be found, at least in part, in the following
circumstances. A mathematical theory starts at ground level with the
basic axioms, a set of propositions which are not to be questioned
within the context of the theory. Then one deduces various conclusions
from them; axioms 1 and 2 together imply conclusion A, axioms 2 and 3
imply conclusion B, conclusion A and axiom 4 imply conclusion C, - - -,
and so on. From the ground level axioms one builds up a long chain of
conclusions, and there seems to be no end to how far the chain can be
extended. In other words, mathematical theories have a logical struc-
ture that is open at the top, closed at the bottom.

Scientists and others concerned with the real world live in a different
logical environment. Nature does not reveal her "axioms" to us, and so
we are obliged to start in the middle, at the level of our direct sense
perceptions. From direct observations and their generalizations we can
proceed upward, drawing arbitrarily long chains of conclusions, by
reasoning which is perforce not as rigorous as that of Gauss and Cauchy,
but with the compensation that our conclusions can be tested by observa-
tion. We do not proceed upward very far before the subject is called
"engineering".

But from direct observations we also proceed downward, analyzing things
into fundamentals, searching for deeper propositions from which all
those above could have been deduced. This is called "pure science" and
this chain of interlocking inferences can, as far as we know, also be
extended indefinitely. So the game of science is, unlike that of
mathematics, played on a logical field that is open at both the top and
the bottom.

Consider now the two systems or probability theory created by mathemati-
cians and scientists. The Kolmogorov system is a conventional mathemat-
ical theory, starting with ground axioms and building upward from them.
If we start with probabilities of elementary events, such as "heads at
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each toss of a coin", we can proceed to deduce probabilities of more and
more complicated events such as "not more than 137 or less than 93
occurrences of the sequence HHTTTHH in 981 tosses"• In content, it
resembles parts of the Bernoulli system, restated in set and measure-
theory language.

But nothing in the Kolmogorov system tells us what probability should,
in fact, be assigned to any real event. Probabilities of elementary
events are simply given to us in the statement of a problem, as things
determined elsewhere and not to be questioned. Probabilities of more
complicated events follow from them by logical deduction following the
postulated rules. Only one kind of probability (additive measure)
exists, and the logical structure is closed at the bottom, open at the
top. In this system, all is safe and certain and probabilities are
absolute (indeed, so absolute that the very notion of conditional
probability is awkward, unwanted, and avoided as long as possible) •

In contrast, the Bayesian system of Laplace and Jeffreys starts with
rules applied to some set of propositions of immediate interest to us.
if by some means we assign probabilities to them, then we can build
upwards, introducing more propositions whose probabilities can be found
as in the Kolmogorov system. The system is, as before, open at the
top.

But it is not closed at the bottom, because in our system it is a
platitude that all probabilities referring to the real world are, of
necessity, conditional on our state of knowledge about the world; they
cannot be merely postulated arbitrarily at the beginning of a problem.
Converting prior information into prior probability assignments is an
open-ended problem; you can always analyze further by going into deeper
and deeper hypothesis spaces. So our system of probability is open at
both the top and the bottom.

The downward analysis, that a scientist is obliged to carry out,
represents for him fully half of probability theory, that is not present
at all in the Kolmogorov system. Just for that reason, this neglected
half is not as fully developed, and when we venture into it with a new
application, we may find ourselves exploring new territory.

I think that most mathematicians are uncomfortable when the ground opens
up and that safe, solid closed bottom is lost. But their security is
bought only at the price of giving up contact with the real world, a
price that scientists cannot pay. We are, of necessity, creatures of
the bog.

Mathematicians sometimes dismiss our arguments as nonrigorous; but the
reasoning of a physicist, engineer, biochemist, geologist, economist —
or Sherlock Holmes — cannot be logical deduction because the necessary
information is lacking. A mathematician's reasoning is no more rigorous
than ours when he comes over and tries to play on our field. Indeed, it
has been demonstrated many times than an experienced scientist could
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reason confidently to correct conclusions, where a mathematician was
helpless because his tools did not fit the problem. Our reasoning has
always been an intuitive version of Bayes* theorem,

DOWNWARD ANALYSIS IN STATISTICAL MECHANICS

To illustrate this open-ended descent into deeper and
deeper hypothesis spaces, a physicist or chemist considering a common
object, say a sugar cube, might analyze it into a succession of deeper
and deeper hypothesis spaces on which probabilities might be defined.
Our direct sense perceptions reveal only a white cube, with frosty
rather than shiny sides, and no very definite hypothesis space suggests
itself to us. But examination with a low power lens is sufficient to
show that it is composed of small individual crystals. So our first
hypothesis space HI might consist of enumerating all possible sizes and
orientations of those crystals and assigning probabilities to them.
Some of the properties of the sugar cube, such as its porosity, could be
discussed successfully at that level.

On further analysis one finds that crystals are in turn composed of
molecules regularly arranged. So a deeper hypothesis space H2 is formed
by enumerating all possible molecular arrangements. Before an x-ray
structure determination is accomplished, our state of knowledge would be
represented by a very broad probability distribution on H2, with many
arrangements "equally likely" and almost no useful predictions. After a
successful structure analysis the "nominal" arrangement is known and it
is assigned a much higher probability than any other; then in effect the
revised probabilities on H2 enumerate the possible departures from
perfection, the lattice defects. At that level, one would be able to
say something about other properties of sugar, such as cleavage and heat
conductivity.

Then chemical analysis reveals that a sucrose molecule consists of 12
carbon, 22 hydrogen and 11 oxygen atoms; a deeper hypothesis space H3
might then enumerate their positions and velocities (the "phase space"
of Maxwell and Gibbs). At this level, many properties of the sugar
cube, such as its heat capacity, could be discussed with semiquantita-
tive success; but full quantitative success would not be achieved with
any probability distribution on that space.

Learning that atoms are in turn composed of electrons and nuclei
suggests a still deeper space H4 which enumerates all their possible
positions and velocities. But as Arnold Sommerfeld found, H4 leads us
to worse inferences than H3; fabulously wrong specific heats for metals.
In this way Nature warns us that we are going in the wrong direction.

Still further analysis shows that the properties of atoms are only
approximately, and those of electrons are not even approximately,
describable in terms of positions and velocities. Rather, our next
deeper hypothesis space H5 is qualitatively different, consisting of the
enumeration of their quantum states. This meets with such great success
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that we are still exploring it. In principle (i.e. ignoring computa-
tional difficulties) it appears that all thermodynamic and chemical
properties of sugar could be inferred quantitatively at that level.

Our present statistical mechanics stops at the level H5 of enumerating
the "global" quantum states of a macroscopic system. At that deepest
level yet reached, simple counting of those states (multiplicity
factors) is sufficient to predict all equilibrium macrostates; they are
the ones with greatest multiplicity W (thus greatest entropy log W)
compatible with our macroscopic data. Thus while "equally likely" on H2
had almost no predictive value, and "equally likely" on H3 was only
partially successful, "equally likely" on H5 leads to what is probably
the greatest predictive success yet achieved by any probabilistic
theory.

Presumably, simple counting of quantum states will also suffice to
predict all reproducible aspects of irreversible processes; but the
computations are so huge that this area is still largely unexplored. We
cannot, therefore, rule out the possibility that new surprises, and
resulting further analysis, may reveal still deeper hypothesis spaces
H6, H7, and so on (hidden variables?). Indeed, the hope that this might
happen has motivated much of the writer's work in this field.

But the fact that we do have great success with H5 shows that still
deeper spaces cannot have much influence on the predictions we are now
making. As Henri Poincare put it, rules which succeed " — will not
cease to do so on the day when they become better understood". Even if
we knew all about H6, as long as our interest remained on the current
predictions, we would have little to gain in pragmatic results, and
probably much to lose in computational cost, by going to H6. So,
although in principle the downward analysis is open ended, in practice
there is an art in knowing when to stop.

CURRENT PROBLEMS

In newer problems (image reconstruction, spectrum
analysis, geophysical inverse problems, etc.), the analysis of deeper
hypothesis spaces HI, H2, , is still underway, and we don't know how
far it will go. It would be nice if we could go down to a space Hx deep
enough so that on it some kind of "symmetry" points to what seems
"equally possible" cases, with predictive value. Then prior probabili-
ties on the space M of the observable macroscopic things would be just
multiplicities on the deeper space Hx, and inference would reduce to
maximizing entropy on Hx, subject to constraints specifying regions of
M.

The program thus envisaged would be in very close analogy with thermo-
dynamics. Some regard our efforts to cling to this analogy as quaint;
in defense we note that statistical mechanics is the only example we
have thus far of that deeper analysis actually carried through to a
satisfactory stopping point, and it required over 100 years of effort to
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accomplish this. So we think that we had better learn as much as we can
from this example.

But in the new problems we have not yet found any Liouville theorem to
guide us to the appropriate hypothesis space, as Gibbs had to guide him
to H3 and was then generealized mathematically to H5. For Gibbs,
invariance of phase volume under the equations of motion and under
canonical transformations — which he took great care to demonstrate and
discuss at some length before entering into his thermodynamic applica-
tions — meant that assigning uniform prior probability, or weight, to
equal phase volumes had the same meaning at all times and in all canon-
ical coordinate systems. This was really applying the principle of
group invariance, in just the way advocated much later by the writer
(Jaynes, 1968).

Specifying our deepest hypothesis space, on which we assign uniform
weight before adding any constraints to get the nonuniform MAXENT prior,
is the means by which we define our starting point of complete ignorance
but for enumeration of the possibilities, sometimes called "pre-prior"
analysis. Long ago, Laplace noted this problem and stated that the
exact appreciation of "equally possible" is "one of the most delicate
points in probability theory". How right he was! Two hundred years
later, we are still hung up on this "exact appreciation" in every new
application.

For a time, writers thought they had evaded this delicate point by
redefining a probability as a frequency; but in fact they had only
restricted the range of applications of probability theory. For the
general problems of inference now being attacked, the need to define
what we mean by "complete ignorance" — complete, that is, but for
enumeration of the possibilities to be considered in our problem —
cannot be evaded, any more than the notion of zero could be evaded in
arithmetic.

Today this is not just a puzzle for philosophers. It is crucially
important that we learn how to build more prior information into our
prior probabilities by developing that neglected half of probability
theory. All inverse problems need this, and the possibility of any
major progress in pattern recognition or artificial intelligence depends
on it.

But in each area, pending a satisfactory analysis to a satisfactory
stopping point, we can take some comfort in Tukey pragmatism (don't
confuse the procedure with the reason):

"A procedure does not have hypotheses. Rather, there are
circumstances where it does better, and others where it does
worse". (John W. Tukey, 1980)

Our present maximum entropy procedure is supported by many different
rationales, including:
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(1) Combinatorial Boltzmann, Darwin, Fowler
(2) Information Theory Shannon, Jaynes
(3) Utility Good, Skilling
(4) Logical Consistency Shore, Johnson, Gull
(5) Coding Theory Rissanen
(6) Pragmatic Success Gibbs, Papanicolaou, Mead

Of these, (1) is easy to explain to everybody, while (2) is more
general, but hard to explain to those with orthodox statistical train-
ing, (3) and (4) are currently popular, and (5) shows great long-range
theoretical promise, but is not yet well explored.

Most of the writer's recent discussions have concentrated on (1) rather
than (2) in the belief that, after one has become comfortable with using
an algorithm in cases where it has a justification so clear and simple
that everybody can understand it, he will be more disposed to see a
broader rationale for what he is doing.

It might be thought that, if many rationales all point to the same
procedure, it is idle to argue about their relative merits. Indeed,
if we were to stay forever on the current problems, different rationales
would be just different personal tastes without real consequences.

But different rationales generalize differently. In the current
problems all these rationales happen to come together and point to the
same procedure; but in other problems they would go their separate ways
and point to different procedures. Therefore we think it is important
in each application to understand the rationale and the circumstances as
well as the procedure.

Of course, in case of doubt one can always fall back on (6). Doubtless,
those who write the specific computer programs have done this a great
deal, sometimes just trying out everything one can think of and seeing
what works. We agree with Tukey that the theoretical justification of a
procedure is often a mere tidying-up that takes place after the success-
ful procedure has been found by intuitive trial and error.

But too much of that basically healthy Tukey pragmatism can lead one to
take a negative view of theoretical efforts in general. The excessive
disparagement of all theory, characteristic of that school, has been
very costly to the field of data analysis; for Bayesian theory has a
demonstrated ability to discover — in a few lines — powerful and
useful procedures that decades of intuitive ad hockery did not find.

We have already noted the writer's "Bayesian Spectrum and Chirp
Analysis" given at the 1983 Laramie meeting on Maximum Entropy, where
the Schuster periodogram acquires a new significance, leading to a very
different way of using it in data analysis. Basically the same thing
was noted by Steve Gull, who perceived the real Bayesian significance of
the "dirty map" of radio astronomy (a two-dimensional analog of the
periodogram), and therefore the proper way of using it in data
analysis.
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Other examples are Litterman's (1985) Bayesian economic forecasting
method and the writer's Bayesian seasonal adjustment method noted above,
both of which process the data in a way that takes into account
previously neglected prior information.

G.E.P. Box (1982) also observes: " recent history has shown that it
is the omission in sampling theory, rather than the inclusion in
Bayesian analysis, of an appropriate prior distribution, that leads to
trouble."

In our next talk, "Monkeys, Kangaroos, and N," we want to continue this
line of thought, with more specific details about hypothesis spaces and
rationales, for the particular case of image reconstruction. We want to
make a start on the question whether some of that deeper analysis might
have helped us. Our hypothesis spaces are still at the "Boltzraann
level"; if we can understand exactly what is happening there, it might
become evident that we need to go down at least to the "Gibbs level" and
possibly beyond it, before finding a satisfactory stopping point for
current problems.
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ABSTRACT

We examine some points of the rationale underlying the
choice of priors for MAXENT image reconstruction. The
original combinatorial (monkey) and exchangeability
(kangaroo) approaches each contains important truth. Yet
each also represents in a sense an extreme position which
ignores the truth in the other. The models of W.E. Johnson,
I.J. Good, and S. Zabell provide a continuous interpolation
between them, in which the monkeys1 entropy factor is always
present in the prior, but becomes increasingly levelled out
and disappears in the limit.

However, it appears that the class of interpolated priors is
still too narrow. A fully satisfactory prior for image
reconstruction, which expresses all our prior information,
needs to be able to express the common-sense judgment that
correlations vary with the distance between pixels. To do
this, we must go outside the class of exchangeable priors,
perhaps into an altogether deeper hypothesis space.
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INTRODUCTION

Image reconstruction is an excellent ground for illustra-
ting the generalities in our Tutorial Introduction. Pedagogically, it
is an instructive and nontrivial example of the open-ended problem of
determining priors which represent real states of knowledge in the real
world. In addition, better understanding of this truly deep problem
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should lead in the future to better reconstructions and perhaps improve-
ments in results for other problems of interest at this Workshop.

In discussing the various priors that might be used for image recon-
struction, it should be emphasized that we are not dealing with an
ideological problem, but a technical one. We should not think that any
choice of prior hypothesis space and measure on that space is in itself
either right or wrong. Presumably, any choice will be "right" in some
circumstances, "wrong" in others. It is failure to relate the choices
to the circumstances that gives the appearance of arbitrariness.

In a new problem, it is inevitable that different people have in the
back of their minds different underlying hypothesis spaces, for several
reasons:

(1) Different prior knowledge of the phenomenon.
(2) Different amounts or kinds of practical experience.
(3) Some have thought more deeply than others.
(4) Past training sets their minds in different channels.
(5) Psychological quirks that can't be accounted for.

Therefore, rather than taking a partisan stand for one choice against
another, we want to make a start on better relating the choices to the
circumstances•

This means that we must learn to define the problem much more carefully
than in the past. If you examine the literature with this in mind, I
think you will find that 90% of the past confusions and controversies in
statistics have been caused, not by mathematical errors or even ideolog-
ical differences; but by the technical difficulty that the two parties
had different problems in mind, and failed to realize this. Thinking
along different lines, each failed to perceive at all what the other
considered too obvious to mention. If you fail to specify your sample
space, sampling distribution, prior hypothesis space, and prior informa-
tion, you may expect to be misunderstood — as I have learned the hard
way.

We are still caught up to some degree in the bad habits of orthodox
statistics, taught almost exclusively for decades. For example,
denoting the unknown true scene by [p(i), Ki<n], we specify the mock
data

M = EA(k,i)p(i),
R i=l

confidently, as if the point-spread function A(k,i) were known exactly,
and pretend it is a known, "objectively real" fact that the measurement
errors were independent gaussian with known standard deviation.
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But we say nothing about the prior information we propose to use — not
even the underlying hypothesis space on which the prior probabilities
are to exist. Then in applying Bayes1 theorem (I = prior information):

p(Scene|Data,I) = p(Scene|l) P(Data|Scene,I)/p(DatafI) (2)

the likelihood of a scene,

m 2 2 2
p(Data Scene,I) = exp[- I (d -M. ) /2a ]=exp[- Chi /2]

k=l k k O)

has been fully specified in the statement of the problem; while its
prior probability p(Scene | I) is left unspecified by failure to complete
the statement of the problem.

In effect, we are claiming more knowledge than we really have for the
likelihood, and less than we really have for the prior; just the error
that orthodox statistics has always made. This makes it easy to say,
"The data come first" and dismiss p(Scene | I) by declaring it to be
completely uninformative. Yet in generalized inverse problems we
usually have prior information that is fully as cogent as the data.

We need a more balanced treatment. A major point of Bayesian analysis
is that it combines the evidence of the data with the evidence of the
prior information. Unless we use an informative prior probability,
Bayes' theorem can add nothing to the evidence of the data, and its
advantage over sampling theory methods lies only in its ability to deal
with technical problems like nuisance parameters.

To repeat the platitudes: in image reconstruction the data alone,
whether noisy or not, cannot point to any particular scene because the
domain R of maximum likelihood, where Chi^ = 0, is not a point but a
manifold of high dimensionality, every point of which is in the "feas-
ible set" R1 (which we may think of as R enlarged by adding all points
at which Chi^ is less than some specified value). An uninformative
prior leaves us, inevitably, no wiser. So if entropy is denied a role
in the prior probability, it must then be invoked in the end as a value
judgment in addition to Bayes1 theorem, to pick out one point in Rf.

This does not necessarily lead to a difference in the actual algorithm,
for it is well known that in decision theory the optimal decision
depends only on the product of the prior probability and the utility
function, not on the functions separately. But it does leave the
question of rationale rather up in the air.

We want, then, to re-examine the problem to see whether some of that
deeper analysis might have helped us; however, the following could
hardly be called an analysis in depth. For lack of time and space we
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can indicate only how big the problem is, and note a few places where
more theoretical work is needed.

This is, in turn, only one facet of the general program to develop that
neglected half of probability theory. We are not about to run out of
jobs needing to be done.

MONKEYS

In the pioneering work of Gull and Daniell (1978) the
prior probability of a scene (map of the sky) with n pixels of equal
area and N^ units of intensity in the ifth pixel, was taken propor-
tional to its multiplicity:

N!
p (Scene (Io) « * = ---------

1 n- <4>

One could visualize this by imagining the proverbial team of monkeys
making test maps by strewing white dots at random, Nj[ being the number
that happen to land in the i'th pixel.

If the resulting map disagrees with the data it is rejected and the
monkeys try again. Whenever they succeed in making a map that agrees
with the data, it is saved. Clearly, the map most likely to result is
the one that has maximum multiplicity W, or equally well maximum entropy
per dot, H =* (log W)/N, while agreeing with the data.

If the Nj[ are large, then as we have all noted countless times, H goes
asymptotically into the "Shannon entropy":

H -> - Z (N./N) log (Ni/N) (5)

and by the entropy concentration theorem (Jaynes, 1982) we expect that
virtually all the feasible scenes generated by the monkeys will be close
to the one of maximum entropy.

Mathematically, this is just the combinatorial argument by which
Boltzmann (1877) found his most probable distribution of molecules in a
force field. But in Boltzmann1 s problem, N = £Nj_ was the total number
of molecules in the system, a determinate quantity.

In the image reconstruction problem, definition of the monkey hypothesis
space stopped short of specifying enough about the strewing process to
determine N. As long as the data were considered noiseless this did no
harm, for then the boundary of the feasible set, or class C of logically
possible scenes, was sharply defined (the likelihood was rectangular, so
C = R = Rf) and Bayes1 theorem merely set the posterior probability of
every scene outside C equal to zero, leaving the entire decision within
C to the entropy factor. The value of N did not matter for the actual
reconstruction.
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But if we try to take into account the fact that real data are contamin-
ated with noise, while using the same "monkey hypothesis space" HI with
n^ elements, the most probable scene is not the one that maximizes H
subject to hard constraints from the data; it maximizes the sum (NH +
log L) where L(Scene) « p(Data | Scene, I), the likelihood that allows
for noise, is no longer rectangular but might, for example, be given by
(3). Then N matters, for it determines the relative weighting of the
prior probability and the noise factors.

If L is nonzero for all scenes and we allow N to become arbitrarily
large, the entropy factor exp(NH) will overwhelm the likelihood L and
force the reconstruction to the uniform grey scene that ignores the
data. So if we are to retain the hypothesis space HI, we must either
introduce some cutoff in L that places an upper limit on the possible
noise magnitude; or assign some definite finite value of N.

Present practice — or some of it — chooses the former alternative by
placing an upper limit on the allowable value of Chi^. Although this
leads, as we all know, to very impressive results, it is clearly an ad
hoc device, not a true Bayesian solution. Therefore we ought to be able
to do still better — how much better, we do not know.

Of course, having found a solution by this cutoff procedure, one can
always find a value of N for which Bayes1 theorem would have given the
same solution without the cutoff. It would be interesting, for diagnos-
tic purposes, to know what these after-the-fact N values are, particu-
larly the ratios N/n; but we do not have this information.

In different problems of image reconstruction (optics, radio astronomy,
tomography, crystallography) the true scene may be generated by Nature
in quite different ways, about which we know something in advance. In
some circumstances, this prior information might make the whole monkey
rationale and space HI inappropriate from the start; in others it would
be clearly "right".

In a large class of intermediate cases, HI is at least a usable starting
point from which we can build up to a realistic prior. In these cases,
multiplicity factors are always cogent, in the sense that they always
appear as a factor in the prior probability of a scene. Further consid-
erations may "modulate" them by additional factors.

What are we trying to express by a choice of N? There can be various
answers to this. One possible interpretation is that we are specifying
something about the fineness of texture that we are asking for in the
reconstruction. On this view, our choice of N would express our prior
information about how much fineness the data are capable of giving. We
discuss only this view here, and hope to consider some others else-
where .

A preliminary attempt to analyze the monkey picture more deeply with
this in mind was made by the writer at the 1981 Laramie Workshop. If
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the measurement errors a are generated in the variability of the scene
itself:

N. + v^rr
i — i

there is a seemingly natural choice of N that makes Na2 = const.
Varying N and a then varies only the sharpness of the peak in the
posterior probability space, not its location; with more accurate
measurements giving smaller a and larger N, we do not change our recon-
struction but only become more confident of its accuracy, and so display
it with a finer texture.

However, it appears that in the current applications we are closer to
the truth if we suppose that the errors are generated independently in
the measurement apparatus. Then there is a seemingly natural choice of
N that expresses our prior information about the quality of the data by
making the typical smallest increments in the mock data M^ due to
changes in the scene, of the same order of magnitude as the smallest
increment a that the real data could detect.

If p^ - Nĵ /N, this increment is dM^ z A/N, where A is a typical
large element of A; and Na ~ A. Smaller values of N will yield an
unnecessarily coarse reconstruction, lacking all the density gradations
that the data give evidence for; while larger values in effect ask for
finer gradations than the data can justify. The reconstruction depends
on o for the intuitive reason that if, for given data, we learned that
the noise level is smaller than previously thought, then some details in
the data that were below the noise level and ignored, now emerge above
the noise and so are believed, and appear in the reconstruction.

At present, we have no actual reconstructions based on this idea, and so
do not know whether there are unrecognized difficulties with it. In one
highly oversimplified case, where the data give evidence only for p^,
John Skilling concludes that the Na z A choice leads to absurd conclu-
sions about (p2~P3)« Yet there are at least conceivable, and
clearly definable, circumstances in which they are not absurd. If the
true scene is composed of N^ quanta of intensity in the ifth pixel
(whether placed there by monkeys or not) then p^ cannot be measured
more accurately — because it is not even defined more accurately —
than dM^/A a N~*. It is not possible to measure p^ to one part
in 100 unless N^ is at least 100.

Then if we specify that p^ is measured more and more accurately
without limit, we are not considering a single problem with fixed N and
a sequence of smaller and smaller values of a parameter a. We are
considering a sequence of problems with different N, in which we are
drawing larger and larger samples, of size N^ • Np^. From this one
expects to estimate other quantities to a relative accuracy improving
like 1/2
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This is not to say that we are "measuring" (p2"P3) more and more
accurately; we are not measuring it at all. In a sequence of different
states of knowledge we are inferring it more and more confidently,
because the statement of the problem — that p^ was measured very
accurately — implies that N must have been large.

Doubtless, there are other conceivable circumstances (i.e., other states
of knowledge about how Nature has generated the scene) in which our
conclusion about (p2~P3) would indeed be absurd. Any new informa-
tion which could make our old estimate seem absurd would be, to put it
mildly, highly cogent; and it would seem important that we state explic-
itly what this information is so we can take full advantage of it. But
at present, not having seen this information specified, we do not know
how to use it to correct our estimate of (p2~P3)> n o alternative
estimate was proposed.

This situation of unspecified information — intuition feels it but does
not define it — is not anomalous, but the usual situation in exploring
this neglected part of probability theory. It is not an occasion for
dispute, but for harder thinking on a technical problem that is qualita-
tively different from the ones scientists are used to thinking about.
One more step of that harder thinking, in a case very similar to this,
appears in our discussion of the kangaroo problem below.

In any event, as was stressed at the 1981 Laramie Workshop and needs to
be stressed again, the question of the choice of N cannot be separated
from the choices of m and n, the number of pixels into which we resolve
the blurred image and the reconstruction, and u, v, the quantizing
increments that we use to represent the data d(k) and the reconstruction
p(i) for calculational purposes.

In most problems the real and blurred scenes are continuous, and the
binning and digitization are done by us. Presumably, our choices of (N,
m, n, u, v) all express something about the fineness of texture that the
data are capable of supporting; and also some compromises with computa-
tion cost. Although computer programmers must necessarily have made
decisions on this, we are not aware of any discussion of the problem in
the literature, and the writer's thinking about it thus far has been
very informal and sketchy. More work on these questions seems much
needed.

In this connection, we found it amusing to contemplate going to the
"Fermi statistics" limit where n is very large and we decree that each
pixel can hold only one dot or none, as in the halftone method for
printing photographs.

Also one may wonder whether there would be advantages in working in a
different space, expanding the scene in an orthogonal basis and estima-
ting the expansion coefficients instead of the pixel intensities. A
particular orthogonal basis recommends itself; that generated by the
singular-value decomposition of the smearing matrix A ^ . Our data
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comprise an (m x 1) vector: d = Ap + e, where e is the vector of "random
errors". Supposing the (m x n) matrix A to be of rank m, it can be
factored:

A = V D UT (7)

where U and V are (n x n) and (m x m) orthogonal matrices that diagonal-
ize ATA and AAT, and D 2 = VT AATvis the positive definite (m x
m) diagonalized matrix. D = VT A U is its square root, padded with
(n-m) extra columns of zeroes. Label its rows and columns so that
Dll^ 2l D 2 2 ^ 2. * * * T n e n i f w e u s e t n e columns of U as our
basis:

p. = Z U..a., l < i < n /o\

our data equation d = Ap + e collapses to

m
d 1 - e 1 = I V . D . . a . l < k < m /q\
k k .^ kj jj j - - V*;

Only the first m expansion coefficients (a^ ... a^) appear; in this
coordinate system the relevance of the data is, so to speak, not spread
all over the scene, but cleanly separated off into a known m-dimensional
subregion. The likelihood (3) of a scene becomes

m 2 2 2
L(Scene)=L(a1...a ) = exp[- Z D.. (a.-b.) /2a ] (10)

1 m j = 1 JJ J J v '

where b = dVD~"̂  is the data vector in the new coordinates. The
expansion coefficients aj belonging to large eigenvalues of AA^ are
determined quite accurately by the data (to + a/Djj). But the data
give no evidence at all about the last (n-m) coordinates

There might be advantages in a computational scheme that, by working in
these coordinates, is able to deal differently with those aj that are
well determined by the data, and those that are undetermined. Perhaps
we might decree that for the former "the data come first". But for the
latter, the data never come at all.

In any event, whatever our philosophy of image reconstruction, the
coordinates (a.xst¥l • • #an) m u s t be chosen solely on grounds of prior
information. If (a^.^.^) are specified first, the problem reverts
to a pure generalized inverse problem (i.e., one with hard constraints).
The scene which has maximum entropy subject to prescribed (a^.
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is determined without any reference to N. Computational algorithms for
carrying out the decomposition (7) are of course readily available
(Chambers, 1977).

As we see from this list of unfinished projects, there is room for much
more theoretical effort, which might be quite pretty analytically and
worthy of a Ph.D. thesis or two; even the specialized monkey approach is
open-ended.

KANGAROOS

A different rationale for maximizing entropy was illus-
trated by Steve Gull, on the occasion of a talk in Australia in 1983, by
supposing it established by observation that 3/4 of the kangaroos are
left-handed, and 3/4 drink Foster's; from which we are to infer what
fraction of them are both right-handed and Foster's drinkers, etc.; that
is, to reconstruct the (2 x 2) table of proportions p(i,j)

L R

(11)

F

no F

p( l l )

p(21)

3/4

p(12)

p(22)

1/4

3/4

1/4

from the specified marginal row and column totals given to the right and
below the table.

It is interesting to compare the solutions of this problem given by
various algorithms that have been proposed. Gull and Skilling (1984),
applying the work of Shore and Johnson, find the remarkable result that
if the solution is to be found by maximizing some quantity, entropy is
uniquely determined as the only choice that will not introduce spurious
correlations in the matrix (11), for which there is no evidence in the
data. The maximum entropy solution is then advocated on grounds of
logical consistency rather than multiplicity.

I want to give an analysis of the kangaroo problem, with an apology in
advance to Steve Gull for taking his little scenario far more literally
and seriously than he ever expected or wanted anybody to do. My only
excuse is that it is a conceivable problem, so it provides a specific
example of constructing priors for real problems, exemplifying some of
our Tutorial remarks about deeper hypothesis spaces and measures. And,
of course, the principles are relevant to more serious real problems —
else the kangaroo problem would never have been invented.

What bits of prior information do we all have about kangaroos, that are
relevant to Gull's question? Our intuition does not tell us this
immediately, but a little pump priming analysis will make us aware of
it.
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In the first place, it is clear from (11) that the solution must be of
the form:

(.50 + q) (.25 - q)

(.25 - q) q
0 < q < .25 (12)

But, kangaroos being indivisible, it is required also that the entries
have the form p(i,j) = N(i,j)/N with N(i,j) integers, where N is the
number of kangaroos. So for any finite N there are a finite number of
integer solutions N(i,j). Any particular solution will have a multi-
plicity

W
N!

(13)

This seems rather different from the image reconstruction problem; for
there it was at least arguable whether N makes any sense at all. The
maximum entropy scene was undeniably the one the monkeys would make; but
the monkeys were themselves only figments of our imagination.

Now, it is given to us in the statement of the problem that we are
counting and estimating attributes of kangaroos, which are not figments
of our imagination; their number N is a determinate quantity. Therefore
the multiplicities W are now quite real, concrete things; they are
exactly equal to the number of possibilities in the real world, compat-
ible with the data. It appears that, far from abandoning monkeys, if
there is any place where the monkey (combinatorial) rationale seems
clearly called for, it is in the kangaroo problem!

Let us see some exact numerical solutions,
are only two solutions:

Suppose N - 4; then there

2

1

1

0
9

3

0

0

1

(14)

with multiplicities W = 12, 4 respectively. The solution with greater
entropy comprises 75% of the feasible set of possibilities consistent
with the data.

If N = 16, there are five integer solutions:

8

_4

4

0_
9

9

_3

3

9

10

2

2

2__
9

11

_1

1

3_
9

12

0

0

4_
(15)

W = 900900, 1601600, 720720, 87360, 1820
36%, 64%, 29%, 3.5%, .07%
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The single maximum entropy solution comprises nearly two-thirds of the
feasible set.

But there are many kangaroos; when N » 1 the multiplicities go
asymptotically into W ~ exp(NH) where from (12), the entropy is

H - - (.5+q)log(.5+q) - 2(.25-q)log(.25-q) - qlogq (16)

This reaches its peak at q = 1/16, corresponding as noted to no correla-
tions between the attributes of kangaroos. For q < 1/16 we have nega-
tive correlations (drinkers tend to be right handed, etc.); while the
solutions with q > 1/16 give positive correlations. Near the peak, a
power series expansion yields the asymptotic formula

W^exp [- (128N/9)(q -

which would lead us to the (mean +_ standard deviation) estimate of q:

q(est) = (1/16) (1 + 3/v^) (18)

Thus if there are N = 900 kangaroos the last factor in (18) is (1 +
0.1); if N = 90,000 it is (1 + 0.01); and if there are N = 9,000,000
kangaroos it becomes (1 + 0.001). These are the predictions made by
uniform weighting on our first (monkey) hypothesis space HI.

Here we can start to discover our own hidden prior information by intro-
spection; at what value of N do you begin feeling unhappy at this
result? Most of us are probably willing to believe that the data
reported by Steve Gull could justify an estimate of q for which we could
reasonably claim 10% accuracy; but we may be reluctant to believe that
they could determine it to one part in 1,000, however many kangaroos
there are.

Eq. (18) is essentially the same kind of result discussed above, that
John Skilling called "absurd"; but he could dismiss it before on the
grounds that N was only an imagined quantity. Now that argument is
unavailable; for N is a real, determinate quantity. So what has gone
wrong this time? I feel another Sermon coming on.

SERMON ON THE MULTIPLICITY

However large N, it is a combinatorial theorem that most
of the possibilities allowed by the data are within that shrinking
interval (18). But at some point someone says: "This conclusion is
absurd; I don't believe it!" What is he really saying?

It is well established by many different arguments that Bayesian infer-
ence yields the unique consistent conclusions that follow from the
model, the data, and the prior information that was actually used in the
calculation. Therefore, if anyone accepts the model and the data but
rejects the estimate (18), there are two possibilities: either he is
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reasoning inconsistently and his intuition needs educating; or else he
has extra prior information•

We have met nobody who claims the first distinction for himself,
although we all have it to some degree. Many times, the writer has been
disconcerted by a Bayesian result on first finding it, but realized on
deeper thought that it was correct after all; his intuition thereby
became a little more educated.

The same policy — entertain the possibility that your intuition may
need educating, and think hard before rejecting a Bayesian result — is
recommended most earnestly to others. As noted in our Tutorial, intui-
tion is good at perceiving the relevance of information, but bad at
judging the relative cogency of different pieces of information. If our
intuition was always trustworthy, we would have no need for probability
theory.

Over the past 15 years many psychological tests have shown that in
various problems of plausible inference with two different pieces of
evidence to consider, intuition can err — sometimes violently and in
opposite directions — depending on how the information is received.
Some examples are noted in Appendix A.

This unreliability of intuition is particularly to be stressed in our
present case, for it is not limited to the untrained subjects of
psychological tests. Throughout the history of probability theory, the
intuition of those familiar with the mathematics has remained notorious-
ly bad at perceiving the cogency of multiplicity factors. Some exposi-
tions of probability theory start by pointing to the fact that observed
frequencies tend to remain within the + n""*'* "random error"
bounds. This observed property of frequencies, to become increasingly
stable with increasing number of observations, is seen as a kind of
Miracle of Nature — the empirical fact underlying probability theory —
showing that probabilities are physically real things.

Yet as Laplace noted, those frequencies are only staying within the
interval of high multiplicity; far from being a Miracle of Nature, the
great majority of all things that could have happened correspond to
frequencies remaining in that interval. If one fails to recognize the
cogency of multiplicity factors, then virtually every "random experi-
ment" does indeed appear to be a Miracle of Nature, even more miraculous
than (18).

In most of the useful applications of direct probability calculations —
the standard queueing, random walk, and stochastic relaxation problems
— the real function of probability theory is to correct our faulty
intuition about multiplicities, and restore them to their proper
strength in our predictions. In particular, the Central Limit Theorem
expresses how multiplicities tend to pile up into a Gaussian under
repeated convolution.
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Present orthodox statistics takes multiplicity into account correctly in
sampling distributions, but takes no note of multiplicity on parameter
spaces. This can lead to very bad estimates of a parameter whose multi-
plicity varies greatly within the region of high likelihood. It
behooves us to be sure that we are not committing a similar error here.

Bear in mind, therefore, that in this problem the entire population of
kangaroos is being sampled; as N increases, so does the amount of data
that is generating that estimate (18). Estimates which improve as the
square root of the number of observations are ubiquitous in all statist-
ical theory.

But if, taking note of all this, you still cannot reconcile (18) to your
intuition, then realize the implications. Anyone who adamantly refuses
to accept (18) is really saing: "I have extra prior information about
kangaroos that was not taken into account in the calculation leading to

TW7
More generally, having done any Bayesian calculation, if you can look at
the result and know it is "wrong"; i.e., the conclusion does not follow
reasonably from your information, then you must have extra information
that was not used in the calculation. You should have used it.

Indeed, unless you can put your finger on the specific piece of informa-
tion that was left out of the calculation, and show that the revised
calculation corrects the difficulty, how can you be sure that the fault
is in the calculation and not in your intuition?

HIDDEN PRIOR INFORMATION

The moral of the Sermon was that, if we react to (18) by
casting out the whole monkey picture and calculation, and starting over
from the beginning without asking what that extra information is, we are
losing the whole value and point of the calculation. The monkey calcu-
lation on HI has only primed the mental pump; at this point, the deep
thought leading us down to H2 is just ready to begin:

What do we know about kangaroos, that our
common sense suddenly warns us was relevant,
but we didn't think to use at first?

There are various possibilities; again, intuition feels them but does
not define them. Consider first an extreme but conceivable state of
prior knowledge:

(H2a): If we knew that the left-handed gene and the Foster's gene were
linked together on the same chromosome, we would know in advance that
these attributes are perfectly correlated and the data are redundant:
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q = 1/4. In the presence of this kind of prior information the "logical
consistency" argument pointing to q = 1/16 would be inapplicable.

Indeed, any prior information that establishes a logical link between
these two attributes of kangaroos will make that argument inapplicable
in our problem. Had our data or prior information been different, in
almost any way, they would have given evidence for correlations and
MAXENT would exhibit it.

The "no correlations" pheraonenon emphasized by the kangaroo rationale is
a good illustration of the "honesty" of MAXENT (i.e., it does not draw
conclusions for which there is no evidence in the data) in one particu-
lar case. But it seems to us a useful result — a reward for virtue —
rather than a basic desideratum for all MAXENT.

Of course, if we agree in advance that our probabilities are always to
be found by maximizing the same quantity whatever the data, then a
single compelling case like this is sufficient to determine that
quantity, and the kangaroo argument does pick out entropy in preference
to any proposed alternative. This seems to have been Steve Gull's
purpose, and it served that purpose well.

The H2a case is rather unrealistic, but as we shall see it is neverthe-
less a kind of caricature of the image reconstruction problem; it has,
in grossly exaggerated form, a feature that was missing from the pure
monkey picture.

(H2b); More realistically, although there are several species of
kangaroos with size varying from man to mouse, we assume that Gull
intended his problem to refer to the man-sized species (who else could
stand up at a bar and drink Foster's?). The species has a common
genetic pool and environment; one is much like another. But we did not
have any prior information about left/right-handedness or drinking
habits.

In this state of prior knowledge, learning that one kangaroo is
left-handed makes it more likely that the next one is also left-handed.
This positive correlation (not between attributes, but between kangar-
oos) was left out of the monkey picture.

The same problem arises in survey sampling. Given that, in a sample of
only 1,000 kangaroos, 750 were left-handed, we would probably infer at
once that about 3/4 of the millions of unsampled kangaroos are also
left-handed. But as we demonstrate below, this would not follow from
Bayes' theorem with the monkey prior (13), proportional only to multi-
plicities. In that state of prior knowledge (call it I o ) , every
kangaroo is a separate, independent thing; whatever we learn about one
specified individual is irrelevant to inference about any other.

Statisticians involved in survey sampling theory noticed this long ago
and reacted in the usual way: if your first Bayesian calculation
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contradicts intuition, do not think more deeply about what prior infor-
mation your intuition was using but your calculation was not; just throw
out all Bayesian notions• Thus was progress limited to the bits of
Bayesian analysis (stratification) that intuition could perceive without
any theory, and could be expressed in non-Bayesian terms by putting it
into the model instead of the prior probability.

Following Harold Jeffreys instead, we elect to think more deeply. Our
state of knowledge anticipates some positive correlation between
kangaroos, but for purpose of defining H2, suppose that we have no
information distinguishing one kangaroo from another. Then whatever
prior we assign over the 4N possibilities, it will be invariant under
permutations of kangaroos.

This reduces the problem at once; our neglected prior information about
kangaroos must be all contained in a single function g(x^,X2,X3)
of three variables (the number of attributes minus one) rather than N
(the number of kangaroos). For it is a well-known theorem that a
discrete distribution over exchangeable kangaroos (or exchangeable
anything else) is a de Finetti mixture of multinomial distributions, and
the problem reduces to finding the weighting function of that mixture.

For easier notation and generality, let us now label the four mutually
exclusive attributes of kangaroos by (1, 2, 3, 4) instead of (11, 12,
21, 22), and consider instead of just 4 of them, any number n of mutual-
ly exclusive attributes, one of which kangaroos must have. Then de
Finetti1s famous theorem (Kyburg and Smokier, 1981) says that there
exists a generating function G(x^...xn) such that the probability
that Ni of them have attribute 1, and so on, is

N N
x n G ( x X ) d x d x (19)

where W(N) is the monkey multiplicity factor (4). Normalization for all
N requires that G contain a delta-function:

= 6 (Zxi - Dg(x1 ... xn) (20)

Since g need be defined only when Zx]_ a 1, It really depends only on
(n-1) variables, but it is better for formal reasons to preserve
symmetry by writing it as in (20).

As it stands, (19) expresses simply a mathematical fact, which holds
independently of whatever meaning you or I choose to attach to it. But
it can be given a natural Bayesian interpretation if we think of
(x^...Xfl) as a set of "real" parameters which define a class of
hypotheses about what is generating our data. Then the factor

N Nn
p(N...N X....X ) = W(N) x. 1... x

1 n .-IN
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is the multinomial sampling distribution conditional on those para-
meters; the hypothesis indexed by (x^...xn) assigns a probability
numerically equal to x^ that any specified kangaroo has attribute 1,
and so on.

This suggests that we interpret the generating function as

G(x1...xn) = p(Xl-..xn | I), (22)

the prior probability density of those parameters, following from some
prior information I. Note, to head off a common misconception, that
this is in no way to introduce a "probability of a probability"• It is
simply convenient to index our hypotheses by parameters x^ chosen to
be numerically equal to the probabilities assigned by those hypotheses;
this avoids a doubling of our notation. We could easily restate every-
thing so that the misconception could not arise; it would only be rather
clumsy notationally and tedious verbally.

However, this is a slightly dangerous step for a different reason; the
interpretation (21), (22) has a mass of inevitable consequences that we
might or might not like. So before taking this road, let us note that
we are here choosing, voluntarily, one particular interpretation of the
theorem (19). But the choice we are making is not forced on us, and
after seeing its consequences we are free to return to this point and
make a different choice.

That this choice is a serious one conceptually is clear when we note
that (22) implies that we had some prior knowledge about the x±. But
if the x^ are merely auxiliary mathematical quantities defined from
p(N^...Nn I I) through (19), then they are, so to speak, not real at
all, only figments of our imagination. They are, moreover, not neces-
sary to solve the problem, but created on the spot for mathematical
convenience; it would not make sense to speak of having prior knowledge
about them. They would be rather like normalization constants or MAXENT
Lagrange multipliers, which are also created on the spot only for
mathematical convenience, so one would not think of assigning prior
probabilities to them.

But if we do consider the x± as "real" enough to have some independent
existence justifying a prior probability assignment, (19) becomes a
standard relation of probability theory:

p(Nr..Nn|l) = / d
nx p(N1...Njx1...xn) p(xr..xn|l) (23)

in which the left-hand side has now become the joint predictive prior
probability that exactly N^ kangaroos have attribute i, l<i<n.

This choice is also serious functionally, because it opens up a long
avenue of mathematical development. We can now invoke the Bayesian
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apparatus to calculate the joint posterior probability distribution for
the parameters and the posterior predictive distribution for
(N^...Nn) given some data D. Without the choice (22) of interpreta-
tion it would hardly make sense to do this, and we would not see how
(19) could lead us to any such notion as a posterior predictive distri-
bution • Any modification of (19) to take account of new data would have
to be done in some other way.

But let us see the Bayesian solution. Suppose our data consist of
sampling M kangaroos, M<N, and finding that Mi have attribute 1, and
so on. Then its sampling distribution is

M M
p(D|x1...x ) = W(M) Xl ...x n (24)

I n 1 n \*-^/
where W(M) is the multiplicity factor (4) with Nfs replaced by Mfs
everywhere. The posterior distribution is

p(x1...xn|DI) = p(x1-..xn|l)p(D|x ...x )/p(D|l)

(25)
M M

= A G(x....x ) x1 ...x n

1 n 1 n

where A is a normalizing constant, independent of the x^, and by G we
always mean g with the delta function as in (20). This leads to a
predictive posterior distribution for future observations; if we sample
K more kangaroos, the probability that we shall find exactly K\ with
attribute 1, and so on, is

M-+K- M +K
P0C...K |DI) = A W(K)/ G(Xl...x ) x / \..x n n dn

XIn1 1 n 1 n

These generalities will hold in any exchangeable situation where it
makes sense to think of G as a prior probability.

Now, our aim being to relate the choices to the circumstances, we need
to think about specific choices of g to represent various kinds of prior
information. Some suggestions are before us; a generating function of
the form

k-1 k-1 k-1
g = A X][ x2 ...xn (27)

is often called a "Dirichlet prior", although I do not know what
Dirichlet had to do with it. For the case k=l it was given by Laplace
(1778) and for general k by Hardy (1889). However, they gave only the
choices, not the circumstances; intuitively, just what prior information
is being expressed by (27)?
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A circumstance was given by the Cambridge philosopher W.E. Johnson
(1924); he showed, generalizing an argument that was in the original
work of Bayes, that if in (19) all choices of (Ni...Nn) satisfying
NJ2>0, ZNJ[ - N are considered equally likely for all N, this uniquely
determines Laplace's prior. In a posthumously published work (Johnson,
1932) he gave a much more cogent circumstance, which in effect asked
just John Skilling's question: "Where would the next photon come
from?".

Defining the variables: y^ = i if the k'th kangaroo has attribute i,
(l<k<N, l<i<n), Johnson's "sufficientness postulate" is that

Let us state what this means intuitively in several different ways:
(a) The probability that the next kangaroo has attribute i should depend
only on how many have been sampled thus far, and how many had attribute
i; (b) If a sampled kangaroo did not have attribute i, then it is
irrelevant what attribute it had; (c) A binary breakdown into
(i)/(not i) captures everything in the data that is relevant to the
question being asked; (d) Before analyzing the data, it is permissible
to pool the data that did not yield (i).

Johnson showed that if (28) is to hold for all (N,Ni), this requires
that the prior must have the Dirichlet-Hardy form (27) for some value of
k. For recent discussions of this result, with extensions and more
rigorous proofs, see Good (1965), Zabell (1982). In particular, an
extension we need is that the function f(N,N^) need not be the same
for all i; we may express prior information that is not symmetric over
all attributes, without losing either Johnson's basic idea or the sym-
metry over kangaroos, by using n different functions fi(N,Nj[), which
leads to n different values (k^...^) of k in the factors of (27).

This intuitive insight of Johnson still does not reveal the meaning of
the parameter k. Most discussions have favored small values, in
(0<k<l), on the grounds of being uninformative. Let us look at the
specific details leading to the function f(N,Ni) in (28). Analytical-
ly, everything follows from the generalized Beta function integral

k -l k -l r(k )...r(k )
/d X l .../dx X / . . . X 1 1 6(Zx.-a)= ~ 7 i - x ZrVo 1 o n 1 n I r(k.+. . ,+k )1 n

where K = £k^. Thus a properly normalized generating function is

r(K) k-i k -l
e ( x x ) = x 1 x n

1 n
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Denote by I]) the prior information leading to (30). Conditional on
ID, the probability of obtaining the data (N^...Nn) in N observa-
tions is given by (19); using (29) and rearranging, we have

-k ) T(N +k )
1 n n

T(N+K) N !T(k )
n n

(31)

Note that the monkey multiplicity factor W(N) is still contained in
(31). For Laplace's prior (all kj[ = 1) it reduces to

( 3 2 )

independent of the N^, in accordance with Johnson's 1924 circum-
stance.

This is the reciprocal of the familiar Bose-Einstein multiplicity factor
(number of linearly independent quantum states that can be made by
putting N bosons into n single-particle states). Indeed, the number of
different scenes that can be made by putting N dots into n pixels or N
kangaroos into n categories, is combinatorially the same problem; one
should not jump to the conclusion that we are invoking "quantum stat-
istics" for photons. Note that the monkey multiplicity factor W(N) is
the solution to a very different combinatorial problem, namely the
number of ways in which a given scene can be made by putting N dots into
n pixels.

In the "uninformative" limit where one or more of the kj[ -> 0, the
integral (29) becomes singular. However, the relevant quantity (31) is
a ratio of such integrals, which does not become singular. In the limit
it remains a proper (i.e., normalized) distribution, for a typical
factor of (31) behaves as follows: as k -> 0,

T(N+k)

Nir(k)

k/N, N > 0

1, N = 0
(33)

Therefore, for example, as k^ -> 0, (31) goes into

0, N > 0

p ( H 2 . . . N n | l ] ) ) f H j - 0 J

The probability is concentrated on the subclass of cases where N^ =
In effect, attribute #1 is removed from the menu available to the
kangaroos (or pixel #1 is removed from the set of possible scenes)
Then if any other k* -> 0, attribute i is removed, and so on.

(34)

0.
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But if all kj[ tend to zero simultaneously in a fixed proportion; for
example, if we set

ki = k ai, ai > 0, 1 <: i ̂  n (35)

and let k -> 0+, (31) goes into

a./£a. if N. = N, all other N. = 0
1 1 1 ' J

0, otherwise

(36)

and the probability is concentrated entirely on those cases where all
kangaroos have the same attribute (or those scenes with all the intens-
ity in a single pixel); i.e., the extreme points of the sample space
which have the minimum possible multiplicity W = 1.

But these results seem even more disconcerting to intuition than the one
(18) which led us to question the pure monkey rationale. There we felt
intuitively that the parameter q should not be determined by the data to
an accuracy of 1 part in 1000. Does it seem reasonable that merely
admitting the possibility of a positive correlation between kangaroos,
should totally wipe out multiplicity ratios of 10100:l, as it
appears to be doing in (32), and even more strongly in (36)?

In the inference called for, relative multiplicities are cogent factors.
We expect them to be moderated somewhat by the knowledge that kangaroos
are a homogeneous species; but surely multiplicities must still retain
much of their cogency. Common sense tells us that there should be a
smooth, continuous change in our results starting from the pure monkey
case to a more realistic one as we allow the possibility of stronger and
stronger correlations. Instead, (32) represents a discontinuous jump to
the opposite extreme, which denies entropy any role at all in the prior
probability. Eq. (36) goes even further and violently reverses the
entropy judgments, placing all the prior probability on the situations
of zero entropy.

In what sense, then, can we consider small values of k to be "uninforma-
tive"? In view of (34), (36) they are certainly not uninformative about
the % .

A major thing to be learned in developing this neglected half of prob-
ability theory is that the mere unqualified epithet "uninformative" is
meaningless. A distribution which is uninformative about variables in
one space need not be in any sense uninformative about related variables
in some other space. As we learn in quantum theory, the more sharply
peaked one function, the broader is its Fourier transform; yet both are
held to be probability amplitudes for related variables.

Our present problem exhibits a similar "uncertainty relation". The
monkey multiplicity prior is completely uninformative on the sample
space S of nN possibilities. But on the parameter space X of the x-£
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it corresponds to an infinitely sharply peaked generating function G, a
product of delta functions 6(x£ - n""*). Conversely, small values
of k are uninformative about the x^ but highly informative about the
different points in S, in the limit (36) tying the sample numbers Ni
rigidly together.

It is for us to say which, if either, of these limits represents our
state of knowledge. This depends, among other things, on the meaning we
attach to the variables. In the present problem the Xj are only
provisionally "real" quantities, introduced for mathematical conven-
ience, the integral representation (19) being easy to calculate with.
But we have avoided saying anything about what they really mean.

We now see one of those inevitable consequences of assigning priors to
the xj[, that the reader was warned he might or might not like.

In the kangaroo problem it is the N^ that are the truly, unquestion-
ably real things about which we are drawing inferences. Prior to de
Finetti, nobody's intuition had perceived that exchangeability alone,
without knowledge of the x^, is such a strong condition that a broad
generating function can force such correlations between all the N^.

If our prior information was that the Xj are themselves the "real
physical quantities" of interest and the Nj[ only auxiliary quantities
representing the exigencies of real data, then a prior that is uninform-
ative about the x^ might be just what we need. This observation opens
up another interpretive question about the meaning of a de Finetti
mixture, that we hope to consider elsewhere.

Now let us examine the opposite limit of (31). As k -> °°, the LHS of
(33) goes into kN/N!. Thus as kx -> », (31) goes into

1, N- = N, all other N. = 0
1 x \ (37)

0, otherwise

All categories except the first are removed from the menu. But if all
k± increase in a fixed proportion by letting k -> °° in (35), the
limiting form of (31) is

p(N..,.N |ln) + W(N) (k17K)
Nl...(k 7K)Nn (38)

l n JJ l n
just the multinomial distribution with selection probabilities kj/K.
If the kj[ are all equal, this reverts to a constant times the pure
monkey multiplicity from whence we started. So it is the region of
large k, not small, that provides the smooth, continuous transition from
the "too good" prediction (18).

One way to define an intuitive meaning for the parameters kj[ is to
calculate Johnson's predictive function f(N,Nj[) in (28) or its gener-
alization fi(N,Ni). With any initial generating function G, (26)
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shows that, having observed M kangaroos and finding sample numbers
(M^...^), the probability that the next kangaroo sampled will be
found to have attribute i is proportional to

/ G x1 l...x. ! ...x n d x (39)
1 1 n N '

but for the particular generating function (30) the result is given,
with the correct normalization factor, by the RHS of (31) after the
appropriate changes of notation:

k. -> k. + M.; N. = 1, all other N. = 0
1 1 1 1 J

We find
T(M+K) r(M.+k.+i) M.+ k.

f.(M,M.) = ~~ = ~ i (40)
1 X T(M+K+1) T(M.+k.) M + K

a generalized form of Laplace's famous Rule of Succession; it has a
strange history.

THE RULE OF SUCCESSION

Given by Laplace in the 18th Century, this rule came under
scathing attack in the 19th Century from the philosopher John Venn (here
in Cambridge, where his portrait can be seen in the Caius College Hall).
Although the incident happened a long time ago, some comments about it
are still needed because the thinking of Venn persists in much of the
recent statistical literature.

With today's hindsight we can see that Venn suffered from a massive
confusion over "What is the Problem?" Laplace derived the mathematical
result as the solution of one problem. Venn (1866), not a mathema-
tician, ignored his derivation — which might have provided a clue as to
what the problem is — and tried to interpret the result as the solution
to a variety of very different problems. Of course, he chose his
problems so that Laplace's solution was indeed an absurd answer to every
one of them.

Apparently, it never occurred to Venn that he himself might have mis-
understood the circumstances in which the solution applies. R.A. Fisher
(1956), pointed this out and expressed doubt as to whether Venn was even
aware that Laplace's Rule had a mathematical basis and like other math-
ematical theorems had "stipulations specific for its validity".

Fisher's testimony is particularly cogent here, for he was an under-
graduate in Caius College when Venn was still alive (Venn eventually
became the President of Caius College), and they must have known each
other. Furthermore, Fisher was himself an opponent of Laplace's
methods; yet he is here driven to defending Laplace against Venn.
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Indeed, it apparently never occurred to Venn that no single result —
Laplace's or anybody else's — could possibly have provided the solution
to all of the great variety of problems where he tried to use it. Yet
we still find Venn's arguments repeated uncritically in some recent
"orthodox" textbooks; so let the reader beware.

Now in the 1910's and 1920's Laplace's result became better understood
by many: C D . Broad, H. Jeffreys, D. Wrinch, and W.E. Johnson (all here
in Cambridge also). Their work being ignored, it was rediscovered again
in the 1930's by de Finetti, who added the important observation that
the results apply to all exchangeable sequences, de Finetti's work
being in turn ignored, it was partly rediscovered still another time by
Carnap and Kemeny, whose work was in turn ignored by almost everybody in
statistics, still under the influence of Venn.

It was only through the evangelistic efforts of I.J. Good and L.J.
Savage in the 1950's and 1960's and D.V. Lindley in the 1960's and
1970's, that this exchangeability analysis finally became recognized as
a respectable and necessary working part of statistics. Today,
exchangeability is a large and active area of research in probability
theory, much as Markov chains were thirty years ago.

We think, however, that the autoregressive models, in a sense intermedi-
ate between exchangeable and markoffian ones, that were introduced in
the 1920's by G. Udny Yule (also here in Cambridge, and living in the
same room that John Skilling now occupies), offer even greater promise
for future applications.

In the 1980's, more than 200 years after Laplace started it, great
mathematical generalizations are known but we are still far from under-
standing the useful range of application of exchangeability theory,
because the problem of relating the choices to the circumstances is
only now being taken seriously and studied as a technical problem of
statistics, rather than a debating point for philosophers. Indeed, our
present problem calls for better technical understanding than we really
have at the moment. But at least the mathematics flows on easily for
some distance more.

Thinking of the x± as "real" parameters, we have a simple intuitive
meaning of the hyperparameters (k^...kn) if we denote the observed
proportion of attribute i in the sampled population by p^ = Mj/M,
and define a fictious prior proportion by g^ = k^/K. Then (40) can
be written

Mp. + Kg.

f (M,M ) =
M 4- K

a weighted average of the observed proportion and an initial estimate of
it. Thus we may regard K = E k^ as the "weight" we attach to our prior
information, measured in equivalent number of observations; i.e., the
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prior information ID that leads to (30) has the same cogency as would
K observations yielding the proportions g^ = kj/K, starting from a
state of complete ignorance about the x^.

We may interpret the k's also in terms of the survey sampling problem.
Starting from the prior information ID and considering the data
(Ml..•Ha) to be the result of a survey of M<N kangaroos as in
(24)-(26), what estimate should we now make of the proportion of
kangaroos with attribute i? What accuracy are we entitled to claim for
this estimate?

The answer is given by (26) with L = N-M, L^ - N^-M^ Substitu-
ting (30) into (26), sum out (L2«»«Ln) before doing the integrations
using (29). The probability that exactly I4 unsampled kangaroos have
attribute 1 is found to be a mixture of binomial distributions:

- fQ pCLjx) g(x) dx (42)

where

L l L " L 1
x ( 1 - x ) ( 4 3 )

and a generating function

/ N r(b) a-l .. vb-a-1
g ( x ) ~ r(a)r(b-a) x ( 1~x)

Where a = (M^ + k^), b » (MfK). The first two factorial moments of
(42) are then

<L > = L flx g(x) dx = L a7b
1 0 1 2

<L 1 (L-1 )> = L(L-l) / x g(x) dx
1 1 0

(46)

from which the (mean) 4̂  (standard deviation) estimate of the number
of unsampled kangaroos with attribute 1 is

'p(l-p) (M+K+L)

M+K+l N
2 (47)
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where p • a/b • (Mi + ki)/(M*-K). Comparing with (40) we see that
the Rule of Succession has two different meanings; this estimated
fraction p is numerically equal to the probability that the next
kangaroo sampled will have attribute 1. As we have stressed repeatedly,
such connections between probability and frequency always appear auto-
matically, as a consequence of Bayesian theory, whenever they are
justified.

Generally, the results of survey samplings are reported as estimated
fractions of the total population N, rather than of the unsampled part
L - N-M. Since (Ni)e s t - (L1)est + Mi, we find from
(17), after a little algebra, the estimated fraction of all kangaroos
with attribute 1:

= p + p1 + /p(l-p) (N+K) (N-M)" (48)
esz "¥~ TT~

where pf - (Kp-k^/N.

Examining the dependence of (48) on each of its factors, we see what
Bayes1 theorem tells us about the interplay of the size of the popula-
tion, the prior information, and the amount of data.

Suppose we have sampled only a small fraction of the population, M<<N»
If we also have relatively little prior information about the x^,
K«N, the accuracy of the estimate depends basically on (MfK+1), the
number of actual observations plus the effective number implied by the
weight of prior information; and depends little on N. Thus the "too
good" estimates implied by (18) as N -> «• are now corrected.

But if K » N (the monkey multiplicity factor limit), the accuracy goes
into the limiting form p(l-p)/N and a result like (18) is recovered.
The changeover point from one regime to the other is at about K^N.
Note, however, that (48) is not directly comparable to (18) because in
(18) we used Steve Gull's data on kangaroos to restrict the sample space
before introducing probabilities.

Now suppose we have sampled an appreciable fraction of the entire popu-
lation. Our estimates must perforce become more accurate, and the
(N-M)/N • 1 - (M/N) factor so indicates. When we have sampled the
entire population, M-N, then we know the exact Ni, so the error
vanishes, the prior information becomes irrelevant, and the RHS of (48)
reduces to Mi/M + 0, as it should.

Thus if we admit the x^ as real quantities, so that it makes sense to
apply Bayes1 theorem in the way we have been doing, then Bayes1 theorem
tells us in quantitative detail — just as it always does — what our
common sense might have perceived if our intuition was powerful enough.
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THE NEW KANGAROO SOLUTION

We started considering Steve Gull's kangaroo problem on
the original monkey hypothesis space HI, were somewhat unhappy at the
result (18), and have now seen some of the general consequences of going
down into H2. How does this affect the answer to the original kangaroo
problem, particularly in the region of large N where we were unhappy
before?

When the N-£ and k± are large enough to use the Stirling approxima-
tion for all terms, a typical term in the exchangeable prior (31) goes
into the form

L = log [r(N+k)7N!r(k)]^log [(N+h)N+h/NNhh] + const. (49)

where h = k - (1/2). Thus, when N and k are quite different we have for
all practical purposes

(50)
N log(ke/N), N << k

k log(NeVk), k « N

So if Nj[«ki, call it prior information I2, the prior (31) is
given by

log p(N1...Njl2) * - Z®i log(Ni/ki) + const. (51)

and the most probable sample numbers (Ni«..Nn) subject to any data D
that imposes a "hard" constraint on them, are the ones that maximize the
entropy relative to the "prior prejudice" (k^/K) • With no prior
prejudice, kj[ = k, this will just lead us back to the original solu-
tion (18) from the pure monkey multiplicity factors, confirming again
that the region of large k is the one that connects smoothly to the
previous solution.

When N»k, call it prior information I2?, instead of (51) we have the
limiting form

log p(N-...N |lo
!) ^ Ilk.log N. + const. (52)

l n ' z 1 1 v /

and the solution will be the one that maximizes this expression, which
resembles the "Burg entropy" of spectrum analysis.

So applying Bayes' theorem with n «• 4, the exchangeable prior (52) and
Steve Gull's hard constraint data

D: Nx + N « N + N = 3N/4

the posterior probability of the parameter q • N4/N can be read off
from (12):
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k k +k k
p(q|DI2

t) - (0.5 + q) l (0.25 - q) 2 3q 4 (53)

When a l l kj[ = k, th i s i s proportional to

p(q |DI 2
! ) cc (q - 6q2 + 32q 4 ) k (54)

This reaches its peak at q = 0.0915, and yields the (mean) + (standard
deviation) estimate

q(est) = 0.0915(1 + 0.77//k~). (55)

The "too good" estimate (18) where we had the accuracy factor (1 +
3/ /If), is indeed corrected by this prior information on H2; however
large N, the accuracy cannot exceed that corresponding to an effective
value

Ne f f = (3/.77)
2 k = 15.2 k = 3.8 K . (56)

These comparisons have been quite educational; we had from the start the
theorem that maximizing any quantity other than entropy will introduce
correlations in the 2x2 table (12), for which there is no evidence in
the data D. That is, starting from the pure monkey solution with
q - 1/16, learning that one kangaroo is left handed makes no difference;
the odds on his being a Foster's drinker remains 3:1.

But now, admitting the possibility of a positive correlation between
kangaroos must, from the theorem, induce some correlation between their
attributes. With the new solution, q is increased to about 1/11; so
learning that a kangaroo is left-handed increases the odds on his being
a drinker to 3.73:1; while learning that he is right-handed reduces them
to only 1.73:1.

At this point our intuition can again pass judgment; we might or might
not be happy to see such correlations. Our first analysis of the monkey
rationale on HI was a mental pump-priming that made us aware of relevant
information (correlations between kangaroos) that the monkey rationale
did not recognize, and led us down into H2. Now the analysis on H2 has
become a second mental pump-priming that suddenly makes us aware of
still further pertinent prior information that we had not thought to
use, and leads us down into H3.

When we see the consequences just noted, we may feel that we have over-
corrected by ignoring a nearness effect; it is relevant that correla-
tions between kangaroos living close together must be stronger than
between those at opposite ends of the Austral continent. In the U.S.A.
there are very marked differences in the songs and other behavior of
birds of the same species, living in New Hampshire and Iowa. But an
exchangeable model insists on placing the same correlations between all
individuals.
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In image reconstruction, we feel intuitively that this nearness effect
must be more important than it is for kangaroos; in most cases we surely
know in advance that correlations are to be expected between nearby
pixels, but not between pixels far apart. But in this survey we have
only managed to convey some idea of the size of the problem. To find
the explicit hypothesis space H3 on which we can express this prior
information, add the features that the data are noisy and N is unknown;
and work out the quantitative consequences, are tasks for the future.

CONCLUSION: RESEMBLANCE TO THE TRUTH

However far we may go into deeper spaces, we can never
escape entirely from the original monkey multiplicity factors, because
counting the possibilities is always relevant to the problem, whatever
other considerations may also be relevant. Therefore, however you go at
it, when you finally arrive a satisfactory prior, you are going to find
that monkey multiplicity factor sitting there, waiting for you. This is
more than a mere philosophical observation, for the following reason.

In image reconstruction or spectrum analysis, if entropy were not a
factor at all in the prior probability of a scene, then we would expect
that MAXENT reconstructions from sparse data, although they might be
"preferred" on other grounds, would seldom resemble the true scene or
the true spectrum.

This would not be an argument against MAXENT in favor of any alternative
method, for it is a theorem that no alternative using the same informa-
tion could have done better. Resemblance to the truth is only a reward
for having used good and sufficient information, whether it comes from
the data or the prior. If the requisite information is lacking, neither
MAXENT nor any other method can give something for nothing.

But if the MAXENT reconstruction seldom resembled the truth, neither
would we have a very good argument for MAXENT in preference to alterna-
tives; there would be small comfort in the admittedly correct value
judgment that MAXENT was the only consistent thing we could have done.

More important, the moral of our Sermons on this in the Tutorial was
that if such a discrepancy should occur, far from being a calamity, it
might enable us to repeat the Gibbs scenario and find a better hypoth-
esis space. In many cases, empirical evidence on this resemblance to
the truth or lack of it for image reconstruction can be obtained.

It might be thought that there is no way to do this with astronomical
sources, since there is no other independent evidence. For an object of
a previously uncharted kind, this is of course true, but we already know
pretty well what galaxies look like. If Roy Frieden's MAXENT recon-
struction of a galaxy was no more likely to be true than any other, then
would we not expect it to display any one of a variety of weird struc-
tures different from spiral arms?
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We need hardly ask whether MAXENT reconstructions of blurred auto
license plates do or do not resemble the true plates, or whether MAXENT
tomographic or crystal structure reconstructions do or do not resemble
the true objects. If they did not, nobody would have any interest in
them.

The clear message is this: if we hold that entropy has no role in the
prior probability of a scene, but find that nevertheless the MAXENT
reconstructions consistently resemble the true scene, does it not follow
that MAXENT was unnecessary? Put differently, if any of the feasible
scenes is as likely to be true as the MAXENT one, then we should expect
any feasible scene to resemble the truth as much as does the MAXENT one;
resemblance to the truth would not be ascribable to the use of MAXENT at
all.

It seems to us that there is only one way this could happen. As the
amount of data increases, the feasible set contracts about the true
scene, and we might conjecture (by analogy with John Parker Burg's
shrinking circles for reflection coefficients in spectrum analysis) that
eventually all the feasible scenes would resemble the true one very
closely, making MAXENT indeed superfluous; any old inversion algorithm,
such as the canonical generalized inverse matrix R • AT(AAT)"^
for eq. (1), would do as well. If so, how much data would we need to
approach this condition?

In March 1984 the writer found, in a computer study of a one-dimensional
image reconstruction problem, that when the number of constraints was
half the number of pixels the feasible set had not contracted very much;
it still contained a variety of wildly different scenes, having almost
no resemblance to the true one. The canonical inverse (which picks out
the feasible scene of minimum Efj^) w a s about the wildest of all,
grossly underestimating every pixel intensity that was not forced to be
large by the data, and having no aversion to negative estimates had the
program allowed them.

So this amount of data still seems "sparse" and in need of MAXENT; any
old algorithm would have given any old result, seldom resembling the
truth. Perhaps the conjecture is wrong; more ambitious computer studies
and analytical work will be needed to understand this*

To say: "The MAXENT reconstruction is no more likely to be true than
any other" can be misleading to many, including this writer, because it
invites us to interpret "likely" in the colloquial sense of the word.
After months of puzzlement over this statement, I finally learned what
John Skilling meant by it, through some close interrogation just before
leaving Cambridge. Indeed, it requires only a slight rephrasing to
convert it into a technically correct statement: "The MAXENT recon-
struction has no more likelihood than any other with equal or smaller
Chisquared." Then it finally made sense.
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The point is that "likelihood" is a well-defined technical term of
statistics. What is being said can be rendered, colloquially, as "The
MAXENT reconstruction is not indicated by the data alone any more
strongly than any other with equal or smaller Chisquared." But that is
just the statement that we are concerned with a generalized inverse
problem, from whence we started.

In any such problem, a specific choice within the feasible set must be
made on other considerations than the data; prior information or value
judgments. Procedurally, it is possible to put the entropy factor in
either. The difference is that is we consider entropy only a value
judgment, it is still "preferred" on logical consistency grounds, but we
have less reason to expect that our reconstruction resembles the true
scene because we have invoked only our wishes, not any actual informa-
tion, beyond the data.

In my view, the MAXENT reconstruction is far more "likely" (in the
colloquial sense of that word) to be true than any other consistent with
the data, precisely because it does take into account some highly cogent
prior information in addition to the data. MAXENT images and spectrum
estimates should become still better in the future, as we learn how to
take into account other prior information not now being used.

Indeed, John Skilling's noting that bare MAXENT is surprised to find
isolated stars, but astronomers are not; and choosing "prior prejudice"
weighting factors accordingly, has already demonstrated this improve-
ment.

Pragmatically, all views about the role of entropy seem to lead to the
same actual class of algorithms for the current problems; different
views have different implications for the future. For diagnostic
purposes in judging future possibilities it would be a useful research
project to explore the full feasible set very carefully to see just how
great a variety of different scenes it holds, how it contracts with
increasing data, and whether it ever contracts enough to make MAXENT
unnecessary as far as resemblance to the truth is concerned. We conjec-
ture that it will not, because as long as m<n it has not contracted in
all directions; i.e., the coordinates (&xit*-l • • *an) o f Ecl# (8)
remain undetermined by the data, and confined only by nonnegativity.

In the meantime, we think there is still some merit in monkeys, and no
one needs to be apologetic for invoking them. If they are not the whole
story, they are still relevant and useful, providing a natural starting
point from which to construct a realistic prior. For very fundamental
reasons they will continue to be so.

APPENDIX A: PSYCHOLOGICAL TESTS

Kahneman and Tversky (1973) report on tests in which
subjects were given the prior information: I = "In a certain city, 85%
of the taxicabs are blue, 15% green"; and then the data: D = "A witness
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to a crash who is 80% reliable (i.e., who in the lighting conditions
prevailing can distinguish correctly green and blue 80% of the time)
reports that the cab involved was green." The subjects are then asked
to judge the probability that the cab was actually blue.

From Bayes' theorem, the correct answer is

p(B | DI) = .85 x .2/(.85 x .2 + .15 x .8) = 17/29 = .59

This is easiest to reason out in one's head in terms of odds; since the
statement of the problem told us that the witness was equally likely to
err in either direction (G -> B or B -> G), Bayesf theorem reduces to
simple multiplication of odds. The prior odds in favor of blue are
85:15, or nearly 6:1; but the odds on the witness being right are only
80:20 = 4:1, so the posterior odds on blue are 85:60 = 17:12.

Yet the subjects in the test tended to guess p(B I DI) as about .2,
corresponding to odds of 4:1 in favor of green, thus ignoring the prior
information. For them, "the data come first" with a vengeance, even
though the prior information implies many more observations than the
single datum.

The opposite error — clinging irrationally to prior opinions in the
face of massive contrary evidence — is equally familiar to us; that is
the stuff of which fundamentalist religious/political stances are made.
The field is reviewed by Donmell and Du Charme (1975). It is perhaps
not surprising that the intuitive force of prior opinions depends on how
long we have held them.

Persons untrained in inference are observed to commit wild irrationali-
ties of judgment in other respects. Slovic et al (1977) report experi-
ments in which subjects, given certain personality profile information,
judged the probability that a person is a Republican lawyer to be
greater than the probability that he is a lawyer.

Hacking (1984) surveys the history of the judicial problem and notes
that the Bayesian probability models of jury behavior given by Laplace
and long ignored, account very well for the performance of modern
English juries. L.J. Cohen (1984) reports on controversy in the medical
profession over whether one should, in defiance of Bayesian principles,
test first for rare diseases before common ones.

Such findings not only confirm our worst fears about the soundness of
jury decisions, but engender new ones about medical decisions. These
studies have led to proposals — doubtless 100 years overdue — to
modify current jury systems. The services of some trained Bayesians are
much needed wherever important decisions are being made.
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THE THEORY AND PRACTICE OF THE MAXIMUM ENTROPY FORMALISM

R.D. Levine
The Fritz Haber Research Center for Molecular Dynamics
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Jerusalem 91904, Israel

1 INTRODUCTION AND OVERVIEW

We consider three aspects of the maximum entropy formalism
[1-3] . Our purpose is to dispel the three more common objections raised
against the rationale and results of the approach. To do so we restrict
the scope of the formalism: We consider only such experiments that can
be repeated N, (N not necessarily large), times.

(a) Consistent inference: The probabilities determined using the
maximum entropy formalism are shown to have the interpretation of the
mean frequency. Their value is independent of the number, N, of repeti-
tions of the experiment. What very much does depend on N is the
variance of the frequency. The larger N is, the smaller is the variance
and the less likely are the actual, observed, frequencies to deviate
from the mean. Here (following [4]), we shall show that the maximum
entropy formalism does have the stated consistency property. Elsewhere
[5,6] we have shown that it is the only algorithm with that property.
In Ref • 6 there are additional arguments which are also based on the
need for consistency of predictions in reproducible experiments.

The maximum entropy approach dates at least as far back as Boltzmann
[7]. He showed that, in the N -> °° limit, the maximum entropy formalism
determines the most probable frequencies. Ever since, the approach has
been plagued by the criticism that it is only valid in the N •> °° limit.
The present [4-6] results should put an end to such arguments. What we
show here is the following. Consider an experiment with n mutually
exclusive and collectively exhaustive outcomes. Let there be many
experimentalists. Each one repeats the experiment N times and thereby
observes the number, N^, £N^ = N, of times that the specific outcome
i i=l,...,n, occurs. For any finite N, the frequencies f^ = NjVN
reported by the different experimentalists can be somewhat different.
Our best bet is then to average the results of the different experiment-
alists. The rationale here is the same as always - the average is the
best estimate (in the sense of least square error). What is provided by
the maximum entropy formalism is shown (in Section 2) to be precisely
that average frequency <f^>. This conclusion is independent of the
number N of repetitions of the experiment by any individual experiment-
alist. What will depend on N is the extent to which the results obtain-
ed by any particular experimentalist deviate from the mean (over all
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experimentalists). Such deviances are shown to diminish as N increases.
We need a large N not for the validity of the predicted probabilities
but only for an agreement between the measured frequency and the
theoretical probability. Moreover, for any finite N, we can compute the
variance (and higher moments) of the predicted results.

Keeping a clear distinction between theoretical probabilities and
measured frequencies allows one also to consider other sources (beside
the finite value of N) of uncertainty in the input (the 'constraints1).
Some remarks on that point are provided in Section 3 and elsewhere
[6,8,9].

There are two additional criticisms, both related to the 'subjective1

label which is sometimes attached to the formalism, which are refuted by
the present point of view. The first objection concerns the use of
entropy as a measure of 'uncertainty' or of 'missing information'. The
question is why should the description of a system which can be measured
in somebody's laboratory be dependent in any way on the uncertainty of
the person doing the prediction. We have shown elsewhere [5,6] that one
need not invoke any extremum property in deriving the maximum entropy
formalism. One can, of course, incorporate the axioms used (e.g., in
[10]) to define entropy as part of a set of axioms which are then used
to characterize the formalism. But the approach used in the past (e.g.,
in [11]) did assume that some functional need be extremized. It does
not therefore address the objection. The second objection in the same
vein is more subtle. Constraints are central to the maximum entropy
formalism. We are to maximize the entropy subject however to con-
straints. Nowhere however is the origin of the constraints spelled out.
Different people may therefore legitimately impose entirely different
constraints. The approach is subjective in that you impose your own
constraints. That is not quite possible in the present approach.
Constraints are (sample) average values as measured by any one of the
experimentalists mentioned above. This point is further discussed in
Ref. 6.

(b) The adjoint problem: One of the central applications of the maximum
entropy formalism is to thermodynamics [12,13]. Yet in classical
thermodynamics the constraints and their Lagrange multipliers appear on
a much more 'symmetric' footing. One considers, for example [14], the
fluctuation in the energy or the fluctuation in the corresponding
Lagrange multiplier which in this case is known as the temperature.
This complementarity is absent in the strict maximum entropy formalism.
Given are the constraints and from them one is to compute the Lagrange
multipliers which will have sharp values. That there is indeed a
conjugate relationship between the constraints and their multipliers is
shown in Section 3. The approach presented therein can also be used to
advantage as a computational tool and to place error bars (due to
experimental uncertainty in the values of the constraints) on the values
of the Lagrange multipliers or vice versa.
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(c) Novel applications: The claim is frequently made that in the
natural sciences the maximum entropy point of view is a useful didactic
approach in the teaching of statistical mechanics but that it has
provided no new results. For over a dozen years we have provided many
diverse applications to problems as far removed from equilibrium thermo-
dynamics as one could possibly expect [15-18]. Both experimental
results and computer simulation were used for comparison with the
results of the maximum entropy formalism. A survey of such applications
is given in Section 4.

The road ahead. There are (at least) two major problems to tackle
before one could be satisfied that the formalism is ready to address
most of the relevant questions which can be raised about it in the
natural sciences. The two that we identify are:

(a) Chaos and the origin of the constraints. The discussion of Section
2 and elsewhere [4-6] shows that the 'entropy1 in the maximum entropy
formalism comes in not via the 'physics1 of the problem but from
consistency considerations for a reproducible experiment. The physics
is introduced via the constraints. To understand 'why1 the formalism
works we have to understand the constraints rather than the entropy.
What we have to ask is why is it that in many interesting and relevant
situations very few constraints completely govern the distribution. To
show that this is the valid question we have shown that with the proper
choice of constraints, the maximum entropy formalism is strictly equiva-
lent to solving the problem exactly using quantum (or classical) mechan-
ics [17-20]. We hasten to caution the reader that the statement above
is not trivial. The number of constraints required can be much smaller
than the number required to uniquely determine the state of the system.
What determines then the number of required constraints? Two aspects:
The first is the initial state [19,20,21]. To see this consider the
evolution in time of a (closed or open) system which is not in equil-
ibrium. The subsequent evolution must surely depend on the initial
state. A limiting case is a system at equilibrium. The very few
constraints which specify the initial state will continue to suffice to
specify the system at any future time. Now let's displace the system
somewhat from its equilibrium distribution. Does it now follow that
very many additional constraints are required to specify its evolution?
For some concrete examples that this is not the case see Refs. 17-20.

The second aspect which governs the number of effective constraints is
the nature of the interaction. Even fully deterministic (e.g.,
Hamiltonian) systems can have a chaotic time evolution. Speaking
loosely, this means that details of the initial state get erased in the
course of the time evolution [22]. Unless the initial state is speci-
fied with infinite precision then fewer details of the initial state
remain relevant as time progresses. The stability of the initial
constraints and their relevance to predictions at later times is a
subject of our current research [23,24].

(b) Interacting systems. The technical discussion in this review is
limited to such experiments where the individual repetitions are
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independent of one another. (So called, Bernouli trials.) Say our
interest is in the distribution of states of a molecule in a non ideal
gas. Then the molecule is not independent of its neighbours and the
entire volume of gas in the system. The outcomes in any particular
repetition refer therefore to the states of the entire gas rather than
to the states of a single molecule. Yet on practical grounds what we
really wish to know are the distribution of the latter rather than of
the former. Proving that the states of the whole gas have a distribu-
tion of maximal entropy is therefore not quite enough. Assuming that
the molecules are hardly interacting simply avoids the problem. What is
missing is a theory for a subsystem of a system whose entropy is
maximal•

2 REPRODUCIBLE EXPERIMENTS

The purpose of this section is twofold: To show that the
maximum entropy probabilities are the mean frequencies in a reproducible
experiment and to show that the inference is consistent [4]• That it is
the only consistent inference is shown elsewhere [5,6].

Consider N sequential but independent repetitions of an experiment which
has n mutually exclusive and collectively exhaustive alternatives. (We
shall refer to these n alternatives as states.) The result is a
sequence of N entries, each entry being the index i, i=l,...,n of the
particular state that did occur. The sequence can be thought of as a
word of length N in an alphabet of n letters.

Different experimentalists may observe different sequences. Designating
a particular sequence by N, our problem is to determine its probability,
P(N). Given that probability we can compute the mean number of times,

<NI>,
<N.> = EN.P(N) (2.i)

N

that the ifth outcome occurred in N repetitions. Summation in (2.1) is
over all possible sequences. Note that any possible sequence must
satisfy

n
EN. = N (2.2)

i-1 X

and that there will be g(N),

n
g(N) = N!/ n N.! (2.3)

i=l X

distinct sequences which correspond to a given distribution {N}=
(Ni,...,Nn) of events. Of course,



Levine: Theory & Practice of Maximum Entropy Formalism 63

(N) = 1 . (2.4)

Let pi be the probability that event i might occur. For a reproduc-
ible experiment we take it that

P. = <N£>/N . (2.5)

Those in favor of a frequency interpretation of probability [25], will
regard (2.5) as essentially self evident. To see this recall that when
the probabilities are given then [25]

n KL
P(N) = g(N) n P i X • ( 2- 6 )

1=1

The equality in (2.5) follows then directly from the definitions (2.1)
and (2.3) and the multinomial theorem (cf. (2.4))

n N.
( n p )N = E g(N) n p. L

i£i x {N> ~ 1"i

(2.7)

n N.

It is important however to note that one can also understand (2.5) as
the mean being the best estimate in the sense of least square error.

2.1 Equality of the mean and the most probable inference
The probabilities p^ are not however given. Hence one

cannot use (2.6). What are given are m expectation values <Ar>,

n
<A > = E A .p., r=l,...,m. /">$
r . ri l U«o

i=l

of the observables Ar which obtain the value Ari for the state i.
Since m <̂  n-1 and typically m « n, (2.8) cannot be inverted so as to
uniquely determine the probabilities.

In view of (2.5) we can write

n

N<A> = Z( E A N )P(N) (2.9)
r ^ i = 1 ri i

In other words, <Ar> is, in a reproducible experiment, equal to the
mean of the 'sample average1 Ar,
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A = i .ZN.A . . (2'10)

r N i=l 1 ri

Here Ar is the average value of the observable Ar as measured by
some particular experimentalist. (2.9) is the condition that <Ar>
equals the value of Ar averaged over all experimentalists,

<Ar> = EA^PCN), r=l,...,m. (2.11)

We determine P(N) by the procedure of maximum entropy subject to normal-
ization, (2.4),"and the m constraints (2.11). The result, as usual, is

m
P(N) = exp(-yQ- r Z x

(2.12)

Here PQ i s ttie Lagrange multiplier for the normalization constraint
and is a function (determined by the normalization condition (2.4)) of
the other m Lagrange multipliers. Explicitly

exp(y0) = £exp{- ^

(2.13)

ra n
= E g(N)exp{- I y [ I A .(N./N)]}

{N} ~ r=l r i=l r i L

Note that in the second line of (2.13) we have made explicit use of the
observation that P(N) as given by (2.12) is independent of the order of
the N repetitions. P(N) depends only on the number, N^, of times that
event i, i=l,...,n, occurred. All sequences which correspond to the
same set of 'occupation numbers1 (N) = (N^,...,Nn) have therefore
the same probability. Rather than considering the probability P(N) of a
sequence we can consider the probability P({N}) of the distribution

P({N}) = g({N})P(N)

m n (2.14)
= g({N})exp { -yQ- E y [ E A .(N./N)]}.

r=l r i=l r i 1

It is important to note that the dependence of P(N) only on the distri-
bution and not on the order is a direct result of our assumption of
independent repetitions of the experiment. Elsewhere [4] and in future
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publications we consider the more general case where the events are
correlated.

To evaluate the 'partition function' exp (HQ) we define

1 m (2.15)
Y. = - E-y A . .
l N r=l r ri

Then (2.13) is just a multinomial expansion (cf. (2.7))

or

exp(yn) = E g(N) n [exp(-y.)] i ( 2 # 1 6 )

0 {N} ~ i=l X

exp(X ) = E
i l

m
E exp(- E X A .) .
• i , r ri
1=1 r=l

Here

so that

with

s
 N I Ni

= exp(-X()-Yi) •

(2.17)

X = N Xy r = 0,1,...,m. (2.18)

P(N) = exp(-NXQ- E NiYi) (2.19)
i l

exp(NX ) = Eexp(- .E N.Y-). (2.20)

It follows from (2.17), (2.19) and (2.20) that

N ~ N ^ x i

(2.21)
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The final result for the mean occupation number (2.21), is
(using (2.15) and (2.18))

m
<N.>/N = exp(-X - I A A .) .

l 0 =1 r ri (2.22)

But (2.22) is precisely the result of directly determining p^ as the
normalized probability distribution subject to the m constraints (2.8)<
Determining the probability of the different events by maximizing the
entropy of the distribution {pj_} subject to m constraints (given by
2.8)) yields the very same values as determining the Pi's as the mean
frequency. That the values of the Lagrange multipliers are the same
follows from p-̂  and <f±> = <N^>/N being consistent with the same
data. Since

EPi£n(p./<f.>) ^ 0

(2.23)

with equality iff p£= <fA> it follows, using (2.22) in (2.23), that
the pi's obtained directly by the procedure of maximum entropy are not
only equal to the <fi>'s but are the unique and only distribution
which satisfies the m constraints (2.8) and which equals the <f^>fs.
Q.E.D.

2.2 The variance
Given the distribution P(N) of the results obtained by

different experimentalists one can compute not only <Nj[> but other
averages as well. Foremost amongst those is the variance

2
a.
I

?> - <N.>2)/N2 (2.24)

Proceeding as in the derivation of (2.21) one readily establishes that

(2.25)

In contrast to the probabilities p± whose value is independent of the
value of N, the variance does very much depend on N. The dependence is
in the expected direction, with N^ having a sharper distribution about
<N-£> as N increases. For a finite value of N it is possible, for a
particular experimentalist to observe a value of Nj[ which differs from
<N^>. But his probability of doing so diminishes (by the Chebychev
inequality, see for example [25]) as N increases. The law of large
numbers is not required to conclude that p^ = <N^>/N. That is true
for any value of N. Where the law is required is for the secondary
conclusion that the sample frequency approaches the probability as N
increases.

One can equally consider the variance in other observables.
example, from (2.11), (2.12) and (2.18),

For
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a=l (A__-<A__>)2P(N)

(2.26)

= N" 1E(A .-<A > ) 2
P . .ri r *i

1

Since the summation on the right hand side of (2.26) is independent of N
and hence remains finite as N^ °° , we have that ar -> 0 as 1/N. That
is a key practical conclusion^since it enables us in the large N limit
to use the m sample averages Ar (defined in (2.10)) in place of the m
averages <Ar> to compute the numerical values of the Lagrange multi-
pliers. See also [26].

In practice we almost always have only sample averages. We must there-
fore be prepared for the possibility (further discussed in Sec. 3.4
below) that our input data (i.e., the values of the constraints) has
some experimental uncertainty. What (2.26) guarantees is that as the
sample size increases, using the observed sample averages is an increas-
ingly better approximation.

A special case of our considerations is when the experimentalist actual-
ly measures the frequency of the different states. Then the number m of
observables equals the number n of states Ar^ - r̂ i* Then
Xj[i the sample average (cf. (2.10)) is obviously just f^ = N^/N,
the sample frequency and <A^> = <Ni>/N. It might appear then that
there is no need for the maximum entropy formalism for there are enough
equations in (2.8) to solve for a unique probability distribution p^.
On the one hand that is indeed so but on the other, it is not. By using
the mean frequencies <N-£>/N as constraints on the distribution P(N) we
get more than just the Pi's. We get, for example, the variance of the
Pi's and hence of the mean frequency.

Finally, we turn to the entropy itself. Consider the entropy per
repetition

N " ~ (2.27)

For the distribution P(N) of maximum entropy we have, using (2.19) and

n
S = X + I Yi<Ni>/N

i=l

(2.28)

m
X + I X <A >.
0 r-1 r r
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The result (2.28) is also the entropy of the distribution p-£ =
<Nj[>/N. In other words, the maximum entropy inference insures that
the entropy per repetition of the experiment equals (for any N) the
entropy of the distribution of states.

The result (2.28) for the maximal entropy enables us to compare it with
the information provided by a particular experimentalist [27] . Consider
a measurement (by N repetitions) of a set of occupation numbers (Nj_}.
The information provided (per repetition) is (using (2.12) and (2.18))

-N'"1toP(N) = -E(N./N)£np.

= Z Ar I A (N /N) ( 2 . 2 9 )

r=0 i=l

m

r=0 r r

Here any particular experiment leads to an entropy which upon averaging
over all experiments yields (2.28). The difference between (2.29) and
(2.30) is 0(N"1).

2.3 Discussion
The derivation of Sec. 2.1 showed an equivalence between two

routes for the determination of the probabilities, p£, of n states
given m average values <Ar> measured in a reproducible experiment
which was repeated N times. In one route the Pi's were computed as
the average frequency. Note that since N is finite there is, in a
sense, a 'double1 average. First we consider one experimentalist who
has repeated the experiment N times. We count the number of times,
% , that outcome i occurred and take Nj/N as the frequency of
outcome i. Then we average this 'sample average' over all possible
experimentalists to obtain <N^>/N which we take to be p^. To
perform the latter average we need the distribution P(N) of the (ordered
in a sequence) results as measured by different experimentalists. That
distribution is determined by maximizing the entropy subject to the m
average values N<Ar>.

In the second route we took the m average values (per repetition)
<Ar>, and determined the p^'s directly, by the procedure of maximal
entropy. The two routes gave the same result for the Pi's and the
result is independent of the value of N.

Applying the maximum entropy formalism directly to the pi's is usually
described as 'determining the most probable distribution'• The reason
is well known. As N -*• °̂ , P(N) has an increasingly (with N) sharp
maximum and the values N^ of the occupation numbers at the maximum are
readily computed (using the Stirling approximation) to be

N£ = Np. . (2.30)
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What we have shown is that the p-̂  computed via the reasoning leading
to (2.30) is the very same p-[ computed via (2.5). It is not necessary
to have a large value of N to assign a significance to the p^'s
computed via maximum entropy.

Whether we first use the maximum entropy formalism (to obtain the
distribution P(N)) and then take an average over all possible experi-
ments (to determine the mean frequency <N^>/N) or first take an aver-
age over all experiments (to obtain the ra <Ar>

fs) and then use the
maximum entropy formalism (to determine the state probabilities Pi) was
shown to lead to the same results for the state probabilities. Else-
where [5,6] we have argued that maximum entropy is the only method of
inference that will satisfy this requirement. Other considerations, all
of which pertain to the relation between the sample average Ar and the
mean over all samples, <Ar> will also be found therein.

3 THE ADJOINT PROBLEM

So far in the development, the Lagrange multipliers and
the constraints appear on unequal footing. The values of the Lagrange
multipliers are to be determined in terms of the values of the con-
straints. Furthermore, while the variance in the values of the
constraints can be readily computed (e.g., as in (2.26)), the Lagrange
multipliers appear to have sharp given values. This asymmetry is
however only skin deep. It is possible to formulate the problem so that
the strictly equivalent role of the constraints and the Lagrange multi-
pliers is explicitly apparent. This reformulation will be carried out
in this section. The two sets of variables will be shown to be 'conju-
gate1 to one another in the usual sense of that terminology in science.
In particular, the Lagrange multipliers do not have sharp values (only
their mean values are sharp, cf. [9]). Indeed the variance in the
Lagrange multipliers and the variance in the constraints satisfy a
('Heisenberg type1) uncertainty relation (i.e., one is the inverse of
the other [8,9]).

3.1 The Lagrangian
Let {A} be a set of m mean values, <A^> to <Am>, of the

constraints. Furthermore, let {p} be the normalized distribution of
maximal entropy subject to these constraints. (We assume throughout
that {A} is a feasible set of constraints and that the same is true for
the set {A1}.) The entropy of p is then a function of {A> (cf. (2.28)),
denoted here by S({A}). For a different distribution the mean values of
the constraints may be different, say {A1}. Let p1 be the normalized
distribution whose entropy is maximal subject to {A1}. Rather than
using the set of m mean values we shall now use the set of m values of
the corresponding Lagrange multipliers, {A1},

p! = exp[-A'({*M) - Z *'/ J (3-D
r=l
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In (3.1) we have explicitly indicated that AQ1 is a function, deter-
mined by the normalization condition

n m
exp[A'({A1})] = £ exp(- £ A! A .) , (3.1)

U ~ i-1 r=l r r i

of the m values, {X1}, of the Lagrange multipliers. As usual (and as
follows from (3.1)"and (3.2))

0 ^ = <^Ar>
! . (3.3)

The Lagrangian of the problem (first introduced in [28]) is

L = A0
T({A!})-S({A})+A\A . (3.4)

That L 2. 0 with equality if and only if pi=Pif for all i follows
from the equivalent form

L = Zp.ta(p./p!) .

i (3.5)

The equivalence of (3.5) and (3.4) is shown directly by substituting
(3.1) in (3.5). The thermodynamic interpretation of the Lagrangian
(3.4) as the maximal available work is provided in [28,29].

3*2 Variational principle
Two (conjugate) variational principles follow from the

inequality L >̂  0 which implies the bounds

^ A (3.6)

and

A^({Af}) ^ S({A})-Af-A . (3.7)

In (3.6) it is the m Af fs (or the m mean values (A1}) which are
arbitrary while in (3.7) it is the m mean values (A) (or the conjugate m
Lagrange multipliers) which are arbitrary. Note also the direction of
the inequalities. The familiar maximum entropy variational principle is
complementary to (3.6). If q is a normalized distribution which is
consistent with the set of m mean values {A}, then S({A}) is an upper
bound

-Zq.toq. ^ S({A}) .

i X X ~ (3.8)

In (3.6), S({A}) is the lower bound.

To find the set of m values of the Lagrange multipliers corresponding to
the set of m mean values, {A}, of the constraints, we use (3.6).
Reeardine the m A1 's as subiect to arbitrarv variation we have
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[ ( { } ) ]
X- ° - ~ ~ (3.9)

The variational principle is then that the set of m Af fs are to be
varied until \)(^f)+^f.A n a s i t s minimal value. In Section 3.3 it
will be shown that there are no local minima. There is only one
(global) minimum and it is the required solution.

It should be noted that: (a) The only input required in (3.9) about the
'unknown1 distribution p are the ra expectation values, A over that
distribution. It is not necessary to know the actual distribution. The
most direct proof of this result is using (3.5) and (3.1). (3.6) is
seen to be true for any distribution pf which is consistent with the
constraints (i.e., has the set {A} of expectation values). What
distinguishes the particular distribution p which is both consistent
with the constraints and of maximal entropy is that equality in (3.6)
can be obtained; (b) Varying the Lagrange multipliers is varying the
distribution pf (cf. (3.1)). What the minimum in (3.9) seeks to locate
is that distribution p1 which is identical to p.

To show that (3.9) does yield the desired solution consider the varia-
tion with respect to Ar

f. At the extremum, (using (3.3))

0
U ~ r r (3.10)

= <A >-<A >f .
r r

At the extremum p1 is of maximal entropy and has the same set of m
expectation values as p. The Lagrange multipliers at the extremum have
therefore the required values.

That the extremum (3.10) is indeed a minimum will be shown in Section
3.3.

The adjoint problem is that of determining the set of expectation values
(A1) corresponding to a given set of m values, {^'}, for the Lagrange
multipliers. Now it is the m expectation values ik) (or, equivalently
the distribution p) which is subject to variation.~ From (3.7) the
optimal set is given by

A'({Af})= max[S({A})-Xf.A] .
U A ~ ~ (3.11)

The right hand side of (3.11) is to be evaluated for different sets {A}
and the one that gives rise to the (one and only) minimum is the desired
set.

The extremum of (3.11) is determined by

0 =
r r (3.12)

= X -A* .X A
r r
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That the extremum is a minimum follows from the proof in Sec. 3.3.

3.3 Computations
The variational principle of Sec. 3.2 (proposed in [28]) has

been applied as a computational tool in [30]. The essential point is
the proof that if there is a feasible solution then the Lagrangian is a
function which is everywhere convex (for (3.9)) or concave (for (3.11))
as a function of the variational parameter. Hence there is one and only
one extremum and steepest descent (or ascent) can be readily used to
numerically determine the optimal set of values.

We present the proof for the case where the Lagrange multipliers are the
variational parameters: That the true minimum is unique follows from
the result that L >_ 0 with equality if and only if p.̂  = p^f , for all
i. Now at any set of {A1}

(3.13)= -3<A

E MT

rs

etric

M! E
rs

in

=

>

M1

-

—

Zp
i

79X1
g

matrix is

3<A >f/3Af

r s

s r

!(A .-<A >
1 ri r

(3.14)

si

Now AQ'+A1.A is everywhere convex (as a function of the m values (Af })
if Mf is a positive definite matrix, i.e., if for any non-null vector x
(of m components)

xTM'x> 0. (3.15)

Now

xTMfx = £ x Mf x
~ ~ „ r rs s

r S (3.16)

n m ?

= £ p![ E x (A .-<A .>)] .
i«l x r-1 r r l r i

M1 is thus positive definite (being the expectation value of a non
negative quantity) provided that there is no non-null vector x such
that
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m
Z x (A .-<A £>) = °> m < n-1 . (3.17)

r=l

But (3.17) is the condition that the constraints (for each i, i=l,...m,
m>n) are linearly independent, which we take to be always the case. If
in practice it is not, then the dependent constraints should be elimin-
ated. fNearf linear dependence is also unwelcome in practice (since the
minimum then is very shallow [31]). Hence our computer algorithm ([30],
actual program available upon request) begins by orthogonalizing the
constraints.

3.4 Surprisal analysis
The practical situation is often somewhat different than

that considered so far. The experimental distribution p^ is often
directly measurable and is available as a table of numerical entries
(vs. i). The real question is then what constraints govern that distri-
bution, i.e, which observables Ar are such that the 'theoretical

1

distribution p^f as given by (3.1) fits the data. If m < n-1 such
constraints can be found then the observations can be accounted for
using fewer constraints than data points via the procedure of maximal
entropy. If m « n, the compaction that can be achieved is consider-
able. (Imagine the radio or tv announcer who has to read the population
in each and every quantum state of the molecules in the air rather than
to merely state the temperature.)

Of course, the compaction is only the first step. Since, as was argued
in Section 2, the physics enters in via the specification of the
constraints, the next step is to understand on physical grounds why it
is that those m constraints govern the distribution (in the sense that
they suffice to specify the p^'s.)

The Lagrangian (3.5) with the p-£f fs given by (3.1) provide again the
required theoretical framework. Using (3.1)

L = -(£p.£np.)
i

(3.18)

The difference between (3.4) and (3.18) is that here there is no assump-
tion about the distribution p-̂ . It is simply given to us in numerical
form. Hence all terms in (3.18) can be computed, once the set of m
observables has been specified. In practice, the first term in (3.18)
is just a number which will not change as we vary the Ar

f fs (or
change m) hence one might just as well work only with the other two
terms.
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One now selects a set of m observables Ar, an arbitrary set of m trial
Lagrange multipliers Ar

ffs and computes XQ1 via (3.2). As before,
we vary the trial distribution p^1 by varying the ra trial multipliers
Xr* (recomputing XQ1 after each variation). The extretnum of L is at
(cf. (3.3))

9L/8X - 0 r=l,...,m
r

n n (3.19)
= - E A ,p.'+ E A . p . ,

r l L r l L

i.e., at the point where p^f and p^ have the same expectation values
for all m constraints. The derivation of Sec. 3.3 insures that the
extremum is a minimum.

Having reached the minimal value of L does not necessarily imply a
perfect fit. At the minimum, the experimental (pi) and theoretical
(p^1) distributions yield the same expectation values for m con-
straints, (3.19), but m < n-1. Hence the two distributions can still
yield different results for other observables (linearly independent on
the ra A r

f s ) . Only if at the minimum L = 0 is the fit perfect.

Should one then increase m (i.e., add more constraints) until the fit is
perfect? In practice, the answer is not necessarily. The experimental
distribution p^ will invariably not be known with perfect numerical
accuracy. There are experimental uncertainties (+6pi) in the values
of the pi's. By increasing m there will always come a point when we
are no longer fitting the real data but the noise [32].

The real world situation is then that one should compute not only the
values of the Lagrange multipliers (at the minimal value of L) but also
their uncertainty, +6Xr

f . Those observables for which |Ar
f| <J<5Xr|

should be assigned the numerical value zero for their Lagrange multi-
plier (i.e., they should not constrain the distribution at the stated
level of experimental accuracy)• There is only one problem: how to
compute the 6Ar

fs, since we do not know now to assign signs to the
6pi

fs. That is the topic of the next section.

3.5 Experimental and inherent uncertainties
Consider an observable Ar (which can but need not be the

indicator function, &v ^, for the state i). The experimental
uncertainty in <Ar> is*

n
6<Ar> = I A r i 6 P i . (3.20)

i=l

Since we do not know the absolute sign of the <Spi
ls, (3.20) cannot be

used to compute <$<Ar>. Putting 6pj[ = Pi6^np^ and using the
normalization condition (£6p£ = 0)
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6<A > = I (A .-<A .>)6£np.p. (3.21)
r . , ri ri 1 1

The C a u c h y - i n e q u a l i t y can now be invoked [ 8 ] to y i e l d

(6<A > ) 2 < [ E (A -<A > ) 2
P ] • [ E p . ( 6 p . / p . ) 2 ] . ( 3 . 2 2 )

JL • 1 JT J_ Li 1 • i 1 1 i.

Everything in (3.22) can now be computed! The first term on the right
is the variance of Ar and the second is the mean squared error in the
data*

The result (3.22) is a practical bound on 6<Ar>. A simple route
(which turns out to be correct [8,9]) for estimating the ^ r

f s is,
when m=l,

SA £ (3A /3<A >)6<A >
r r r r

2 2 ~1 (3 .23)
= ( - 3 X / d \ p 6 < A >

= (variance of A ) 6<A >
or r r

6<Ar>6Ar < ?pi(6pi/p.)
2 . (

If m > 1, one needs to invert the matrix 3^Ao/9Ar8As to compute
3Ar/3<As>.

Does it then follow that as the data becomes more accurate we know the
Ar

fs perfectly? The answer is yes but only in a limited sense. Yes,
we can know precisely the numerical value of Ar but it will always
have a finite variance [9]. Indeed, the theoretical inherent variance
of Ar can be shown to be (m=l)

A(A ) = -3X /8<A >
r r r

and, since for m^l the variance of Ar is

A(A ) = -3<A >/3A
r r r

it follows that [8,9]

A(Ar)A(Ar) = 1. (3.25)

For a detailed derivation (also for the case m>l) we refer to Ref. 9.
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4 APPLICATIONS

Many of our applications (for reviews see Refs. 15-18)
have been to a situation which is as removed from classical thermodyn-
amics as one can possibly get in the physical sciences. This is to
collisions of composite projectiles (be they molecules or nuclei).
These collisions are studied in the laboratory where each collision
event is isolated and hence independent of all others. Yet to get good
counting statistics many collisions are allowed to happen. The point is
that when the colliding particles have internal structure there are very
many possible final states and the experiment is to measure the distri-
bution over these final states. But because there are very many access-
ible final states, the computation of their distribution using a
conventional dynamical theory is exceedingly time consuming even on our
fastest computers and has only been implemented for the simplest
problems.

The experimental setup is thus precisely that described in Section 2.
Yet if you hold the view that entropy is relevant only for a system of
very many degrees of freedom (and some will further say, and at equil-
ibrium) then you will clearly not apply the formalism for such problems.
First, while the particles may be composite the number of degrees of
freedom is very small. Three, in our first example below and several
hundreds in the next one. Both are very finite. We also show a predic-
tion for a problem with a few tens of degrees of freedom. Then, the
system is very far removed from equilibrium however you choose to define
the term. Yet if the discussion of Section 2 makes sense then we have
an ideal testing ground: very many (in a sense that Ar 1 <Ar>, cf.
(2.26), i.e., N > » n) independent repetitions.

^# 1 The prior distribution
The key to our successful application is the recognition

(which essentially goes back to Planck [33] and later to von Neumann
[34]) that in physics entropy is always the entropy of the distribution
over quantum states. In a technical language their work identified the
measure to be used (see also [35] and references therein). If the
experimentalist at his convenience groups quantum states together into
more coarse resolution then one is to use the grouping property of the
entropy (see [36] or, in the present context, [16-18]) to determine the
form of the entropy. The technical argument is, in brief, as follows.
Let y be a group of quantum states and p^ the probability of the group.
Then the entropy of the distribution of quantum states is

S = -Ep £np + T,p S .
v Y Y v Y YY Y (4.1)

Here S is the entropy of the distribution of quantum states within the
group y. Introducing the 'degeneracy1 of the group Y, g by

0 (4.2)
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we can write (4.1) as

S = -Ip to(p /g ) .

Y Y r (4.3)

It proves convenient to rewrite (4.3) in terms of the normalized prior
distribution p°

(4.4)

(4.5)

(4.6)

(4.7)

It then

where DS

o
P
Y

N

follows

S =

y

= g /N
Y

= Eg
Y Y

that

£nN-DS

DS = Ep £n(p /p°)
Y Y Y

is referred to, in our work, as 'the entropy deficiency1. The reason is
that for a fixed values of the S 's, the maximal value of S is £nN.
(Maximum over all possible variations in the p 's.) Since DS ^ 0 (with
equality if and only if p = p°), DS measures how far is the entropy
below its maximal value. Y Y

The prior distribution enters the present problem on physical grounds,
but on the basis of symmetry considerations. (This is particularly
obvious in von Neumann's work where the rationale was Mnvariance under
all unitary transformations.1 For the question of why the 'classical'
form of a sum rather than the quantum mechanical trace is appropriate in
collision experiments, see [18,37]).

Note that (4.3) or (4.6) is to be used for the entropy even when all that
was experimentally measured is the distribution p .

4.2 Surprisal analysis
Surprisal analysis has been discussed in principle in

Section 3.4. Consider first the simplest case where there is only one
constraint (m=l). The Lagrangian to be minimized, (3.18), can then be
written as

L = -[-Ep
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It follows that the minimization of L (with respect to V ) can be done
by graphical means. Plot -£n(py/g ) vs. A . If the plot is linear L =
0 and the slope of the line is ^f• If duetto experimental scatter (see
Figure 1) the line is not quite straight - do not try a simple least
square routine. The reason is that L is a weighted (by the p 's) sum of

Figure 1. Surprisal plot (-£n[p(v,J)/p°(v,J)] vs. the
constraint, gR) for the rotational state distribution of
HD in the v=0 (ground) vibrational manifold of states in the
single collision H+D2 •* HD+D. The plot and data are from
D.P. Gerrity and J.J. Valentini, [40]. The constraint,
gR, is the fraction of the available energy which is in
the rotation of HD. By definition therefore the range of
gR is [0,1].

0.5 0.6 0.7 0.8

the deviations of -£n(p /g ) from the straight line. It is imperative
to use weighted least squares, where points of higher p fs are to be
closer to the line. Y

If one constraint does not suffice, then Ar''s are to be determined
numerically as was discussed in Section 3.4. (Of course, for the
present problem, if summation in (3.18) is over y then £np^ is to be
replaced by £n(p /g ).)

Our first example is for a 'state of the art' experiment [38,39,40].
Measured is the vibrational and rotational state distribution of the HD
molecule following the rearrangement collision H + D2+ H D + D . (D is
the heavier isotope of hydrogen, H is the lighter one.) This is the
simplest chemical reaction and earlier quantum mechanical computations
[41] have already demonstrated that a single constraint suffices to
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describe the rotational state distribution. The experiment was at a
higher energy where since many more states are accessible, the exact
quantal computation is prohibitive. Figure 1 shows a surprisal plot
(adapted from the experimental paper) for the rotational state distribu-
tion in the ground vibrational state v=0. The plot, as implied by
(4.8), is against the constraint (which is the fraction g of the total
energy present as rotational energy of HD). Figure 2 is the fit to the
actual distribution. It is for an experiment at a higher energy so that
more states are accessible. The solid line is the distribution of
maximal entropy determined by two constraints: one on the rotational
state distribution and one of the vibrational one. To within the exper-
imental error bars (also shown) two numbers (e.g., the two Lagrange
multipliers) suffice to characterize the distribution.

Figure 2. The measured [40] rotational state distribution
of HD in three different vibrational manifold (points with
error bars) vs. the rotational quantum number J of HD. The
solid line is the fit by a linear vibrational and rotational
surprisal. Plot and data from D.P. Gerrity and J.J.
Valentini, [40].

As already mentioned, computer solutions of the Schrodinger equation
also lead to rotational state distributions which can be well character-
ized as having a linear surprisal [41]. That only a single constraint
is relevant is not due therefore to any 'relaxation1 (by secondary
collisions) of the real nascent experimental data. Many many additional
applications to molecular collisions are available [15-18]. But could
the simplicity be due to molecules being more amenable to the concept of
entropy? Let's raise the energy by eight orders of magnitude.
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Our next example is nucleon transfer in a heavy ions collision at 105
MeV [42,43]. Shown in the top panel of Figure 3 is the surprisal plot
for the distribution of the kinetic energy in the nucleon transfer
process. The bottom panel shows the fit to the observed data. Note
that the scale is 'counts1 which is precisely the N^'s of Section 2.

Many more examples will be found in [42,43]. One can also consider the
branching ratios amongst different transfer processes [44]•

Figure 3. Surprisal plot (top panel) and fit (continuous
line) to the observed (histogram) distribution of the
ejectile kinetic energy in the nuclear transfer reaction at
105 MeV. Adapted from [42].
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4.3 Prediction
Can one predict and not merely analyze? The answer is yes

and for the general question we refer to the literature [17-20]. Here
we consider only a very simple case [45] which did however suggest a
number of new experiments (see Refs. 46 and 47 and also 48.)

Using a high power laser an isolated molecule can be made to absorb
several photons in the visible/UV wavelengths. Such photons carry a
significant amount of energy. Hence the molecule is very rich in energy
and fragments, often to small pieces. What constraints govern the frag-
mentation pattern? The remarkable and, at the time [45], unexpected
result is that these are very few in number, being just the conserved
quantities: energy and chemical elements. But the number of elements
in a given molecule is known (that is, after all, its chemical formula).
Hence one can readily compute the fragmentation pattern as a function of
the energy, <E>, absorbed per molecule. A typical result, including a
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comparison with experiment is shown in Figure 4. Note that this is a
strict prediction. Of course, now that one knows the constraints one
can try to devise ways of experimentally introducing additional con-
straints. There is no reason however why such additional constraints
cannot be incorporated while maximizing the entropy. When this is done
[48], agreement with experiment can again be established.

Figure 4. Computed (via maximal entropy) fragmentation
pattern of C5H5 at several energies, <E>. The middle
panel shows a comparison with experiment. The molecule is
pumped by several (over a dozen) photons at a wavelength of
X = 504 nm. It both ionizes and fragments. Shown is the
distribution of ionic fragments vs. mass. Adapted from
[45].
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5 CONCLUDING REMARKS

The maximum entropy formalism has been discussed as a
method for inducing a probability distribution for reproducible experi-
ments. The resulting probabilities are well defined and independent of
the number of times N the experiment has been repeated. Of course, for
any finite N the observed (the 'sample averaged1) frequency of event i
need not numerically equal the probability p^. In the limit N •* °° the
probability, the observed frequency and the 'most probable1 frequency
all have the same value, but the probabilities induced by the maximum
entropy formalism have a well defined meaning for any value of N.

It is time therefore to stop arguing about 'why' maximum entropy and
address instead the really open question: why, for a wide variety of
circumstances, do very few constraints suffice to determine the prob-
ability distribution.
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ABSTRACT

We consider the application of Bayes1 theorem and the
principle of maximum entropy to some problems that fall into
the branch of statistics normally described as "non-para-
metric". We show how to estimate the quantiles and moments
of a probability distribution, making only minimal assump-
tions about its form.

1 INTRODUCTION

In all experimental sciences there occur problems that
involve interpreting and comparing samples of data from a probability
distribution function (p.d.f.) whose form is unknown. Examples (taken
from observational cosmology) might be to estimate the redshift distri-
bution of quasars from a sample, or to compare the redshift distribu-
tions of two samples. We do not yet know enough about the physics of
quasars or of the Universe to be able to predict the theoretical form of
these distributions and there is certainly no reason to assume the
distribution has some simple form, such as a Gaussian. When dealing
with problems of this type there is a need for "non-parametric"
statistical methods (see, for example, Siegel, 1956), which do not
depend on the functional form of the underlying p.d.f. This
independence is usually achieved by working with the cumulative
probability distribution, q, where q(x) = /^dx1 prob(x'). This has
given rise to some powerful tests (e.g., the Kolmogorov-Smirnov test),
but there are pathological distributions for which these tests are not
suited and they do not generalize easily to multivariate distributions.

Another approach that is often used in such problems is that of binning
the data. This throws away information, especially for small samples.
Binning also introduces problems of deciding where to place the bin
boundaries; the results will clearly depend on such decisions.

This paper forms part of a programme to apply Bayesian methods to
problems of this type, without either introducing unjustified assump-
tions about the p.d.f. or ignoring relevant information such as the
ordering of a variable. As a modest step towards these general problems
we consider here some simple examples where we make only minimal assump-
tions about the nature of the underlying p.d.f.
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2 ESTIMATING THE POSITION OF THE MEDIAN

We will first consider the apparently simple problem of
estimating the position of a quantile (e.g., the median of a p.d.f.).
We emphasize that we are talking about estimating properties of the
p.d.f. prob(x) such as:

x where / dx? prob(xf) = q,
a

and not just computing properties of the sample (e.g., the sample
median).

Suppose that we have N samples, {x^}, taken from a probability distri-
bution prob(x), where x e [a, b]. Denote by Mx the hypothesis that
the median lies at x:

M : /X dx? prob(xf) = 1/2
x a

Our object is to use Bayes1 theorem to calculate the posterior probabil-
ity of Mx:

prob(M | {x.}) oc prob(M ) prob({x.} | M ).
x JL x l x

The hypotheses Mx (for different x) are exclusive and exhaustive,
since the median certainly lies in the interval [a, b]. We will there-
fore take the prior prob (Mx) to be uniform for all x in this
interval. In any case our results depend only very weakly upon this
assumption.

We are now face to face with the real problem: the likelihood
prob({ x-ĵl I Mx) is not uniquely determined by the position of the
median. We merely know that equal amounts of probability lie to either
side of the position x. But hypothesis Mx does constitute TESTABLE
information (Jaynes, 1968) about prob(x); i.e., given any prob(x) we can
decide immediately whether it is consistent with information M ^
Further, if the samples are EXCHANGEABLE, then Mx is testable
information about the joint p.d.f. prob ({x^}). If we seek a p.d.f.
that incorporates the information available, yet is maximally
non-committal about other parameters of the distribution, then we should
use the distribution that has MAXIMUM ENTROPY under the constraint Mx*
Hence we maximize:

S = - / dNx prob({x}) log(prob({x})/m({x}))

under the constraints of normalization and the conditions (for all I):

/ d x prob( x ) = 1/2, where D is the domain: x e [a,x].

For one sample and a uniform measure on [a, b] this has the simple form
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1
prob(xf)

prob(xf)

2(x-a)
for xT < x and

for xf > x.

87

For multiple, exchangeable samples, again with uniform measure m({x}),
the MAXENT distribution is necessarily independent because the
constraints all take the form of separate equalities on each of the
marginal distributions. We thus obtain the likelihood:

M )
X

N>

where N< is the number of data points x^ < x, and N> is the number
of data points x^ > x. Using Bayes' theorem above, this is also the
posterior prob(Mx | { x} ) when viewed as a function of x.

The argument is easily generalized to other quantiles; if the proposi-
tion Qx means that quantile q lies at position x:

prob(Q | {x})
N<

Before giving examples, it is worth examining again the principles that
underlie our calculation. We wish to estimate, from a sample, the
position of the median making only minimal assumptions about the form of
the distribution. Apart from our desire for a sensible average
estimate, we would expect our uncertainties about the nature of the
p.d.f. to be reflected as a relatively large uncertainty in the position
of the median, that is, in the width of the posterior distribution. The
MAXENT likelihood function we have calculated is, in a sense, the
broadest p.d.f. that satisfies all the constraints that are available,
and so helps us achieve our goal of making minimum assumptions. On the
other hand, we are NOT necessarily claiming that the MAXENT distribution
for some x is in fact the underlying p.d.f. Indeed, we are not even
assuming that the joint p.d.f. is independent, though the MAXENT
distribution happens to have this property.

2.1 Examples

For our first example we created 39 samples uniformly
spaced between -1 and +1, with a prior range [-1.5,1.5]. Figure 1 shows
the posterior p.d.f. of the lower quartile, the median and the upper
decile. The distributions are extremely plausible, being centred about
the appropriate positions and of widths that are comparable with
(variance / N)^'2 ancj also in agreement with the values obtained by
previous binning methods (e.g., Yule & Kendall, 1946). The detailed
structure, however, has an unfamiliar appearance, because the
distributions are piece-wise inverse polynomials, with discontinuities
at the sample points. These discontinuities may cause some surprise,
and other workers have gone to considerable lengths to produce
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Figure 1. Posterior p.d.f. of quantiles q=0.25, 0.5 and 0.9
for 39 uniform samples.

.04

-1.5

continuous p.d.f.s (even sometimes to the extent of tolerating a
negative prob(x)!). We do not in fact find these discontinuities
unaesthetic: it is the job of a p.d.f. to tell us how much probability
falls into any interval of x, and hence it must certainly be integrable.
But we cannot see any good reason why a p.d.f. should also be
continuous•

An interesting feature of our solution is that the prior range [a, b]
still appears in the posterior distribution no matter how many samples
one has. In order to investigate this, Figure 2 shows the posterior
p.d.f. of the median position for prior ranges of +1, +2 and +5. As we
expect, the distribution gets wider as the range is increased, but not
proportionally. Again, we feel that this behaviour is entirely
reasonable when we consider how little has been assumed about the
distribution.

Pathological multi-modal p.d.f.s cause problems for many statistical
tests, and in Figure 3 we show an example where 36 samples are
concentrated into 2 equal groups near HH0.95. The p.d.f. of the median
is itself bi-modal, falling sharply towards the middle. In this case,
we believe that our answer is superior to that given by any previous
method and to conform completely to common sense. We note in passing
that whilst the median must almost certainly lie in a region where there
are many samples, the mean does not have this property (see Section 3).
For this case the p.d.f. of the mean is uni-modal and centred at x=0.
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Figure 2. Median p.d.f. for prior ranges +1, +2 and +5.
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As a final, operational test we turn to observational cosmology. The
median angular size of extragalactic radio sources in various luminosity
classes has been much studied over the last 20 years. It may provide
information on the evolution of the population of radio sources or,
perhaps more interestingly, if the population of radio sources is much
the same at all epochs then the apparent size of sources may indicate
geometry of the Universe. Figure 4 is the distribution of the median
angular size of 40 sources from a sample studied by Fielden et al.
(1980). For this case we use a prior uniform in log (angular size) for
small angles, varying between 10 milliarcsec (the approximate size of
jets emanating from quasars) to a few arcmin (the size of the largest
sources). The p.d.f. of the median for this sample is very reasonable,
but its width (a factor of 10) warns us that we should not jump to hasty
conclusions about the Universe from these data alone!

Figure 4. Median angular size for the 5C12 sample of radio
sources.
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3 ESTIMATING THE POSITION OF THE MEAN

In a similar way to the estimation of the position of the
median, we can also estimate parameters such as the mean or variance
without assuming a detailed functional form for the probability
distribution. Consider these two problems:

1) Proposition y: "The mean lies at y" .

2) Proposition ]io: "The mean lies at y and the variance is a"-
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3.1 Estimation of the mean only

The posterior probability distribution is

prob(y I {x.}) « prob(y) prob({x.} | y) .

The solution has a strong dependence on the prior because of our weak
assumptions and because the mean is very sensitive to small variations
and asymmetries in the wings of the distribution. For this reason the
problem is not soluble for a flat prior on (-oo,+°o). If we restrict
ourselves to a finite interval with a uniform prior, we get
transcendental equations which can be solved numerically. However, for
the purposes of illustration we will choose a prior that allows a simple
analytic form for the solution. We shall take the prior on P to be a
Gaussian with variance M^ and zero mean:

prob(y) = (2TT M 2 ) ~ * exp - (y2/ 2 M2) .

Again we derive the likelihood by maximizing entropy, taking as measure
m({x}) an independent Gaussian form:

m({x}) « exp - (Ex2 7 2 M2) .

We see that our prior can also be viewed as the MAXENT distribution
without extra constraints. The likelihood is then:

probQx^ I y) « exp -(£ (x. - y) 2 J 2 M2) .

We see again that the MAXENT solution is independent. Hence the
posterior p.d.f. is:

prob(y I {Xi}) oc exp -( N (y - x ) 2 / 2 M2) .

where x = 1^ x£ / (N+l).

The factor N+l appears in the denominator of x (rather than N) because
the prior chosen is equivalent to one zero sample. The distribution is
a Gaussian of width M / N1/^. Notice that this width depends only
on the prior range and on the number of samples. In particular, it does
not depend at all on the sample values! The reason for this is that the
mean is very sensitive to outliers and, without the extra information
that the variance exists, only the prior range gives a reliable estimate
of the width.

3.2 Estimation of the Mean and Variance Together

The joint posterior probability distribution for the two
parameters is:

prop(ya | {x^) <* prob(y a) prob({x.} | y a) .

The additional assumption of finite variance makes this problem better
behaved than the previous one. We take as prior the form derived by
Jeffreys (1939):
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prob(y a) dy da = dy da / a; y e (-«>, +») , a e (0,

Once more we compute the likelihood by the use of maximum entropy:

prob({x.} I yo) « a exp - E. (x. - y) / 2 a .

and yet again the maximum entropy solution is independent. Hence the
posterior probability becomes:

prob(ya | {x.}) <* a exp -N (y - x) / 2 a .

where x = E. x. / N (the sample mean).

For comparison with the results of the previous section we can integrate
out o* to get an estimate for y alone, which has the form of Student's
"t" distribution:

prob(y I {X i» - ( V + N (y - x ) 2 ) " N 7 2 .

o
where V = E. (x. - x) .

We should not be surprised to see that this is different from the
estimation of y alone, because in this later problem we have included
the additional information that the variance exists.

If we instead integrate out y we find that V/a^ is distributed as x^
with N-l degrees of freedom.

4 TURNING THE PROBLEM AROUND

We have shown above how we can compute the posterior
p.d.f. of a set of parameters {A} from some observations of
exchangeable quantities {x-̂ } . Can we now use our estimated parameters
to compute the probability of future samples from the distribution? We
can certainly write:

prob(x I {Xi}) = / d{A} prob(x,{A} | {x.})

= / d{A} prob(x I U},{Xi}) prob({A} | {x.}).

We cannot go further without making assumptions about the meaning of the
parameters. After all, why were we interested in the parameters {A} in
the first place? We presumably consider them relevant to the p.d.f. and
that they contain the information necessary to make REPRODUCIBLE
predictions of x. If this is indeed the case, then the parameters {A}
subsume all the detailed information contained in the sample {x^},
which can then be dropped from the conditioning statement:
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prob(x I {xj) = / d{A} prob(x | {A}) prob({A} | {x.}).

The term prob(x |{X}) is found by MAXENT as before. This step is, of
course, a "leap in the dark", but as Ed Jaynes has often pointed out, we
have nothing to lose by going on with the calculation. If our
predictions are useful, then so much the better; if they are completely
wrong, then we have learnt that our assumptions about the parameters
governing the probability distribution were incorrect, and this should
help us to reformulate the problem.

This topic will be discussed further by Gull later in this conference,
but we conclude by showing the result of assuming that the mean and
variance are the relevant parameters. It should come as no surprise to
statisticians or to physicists, being distributed about the sample mean
as Student's "t" with N d.f. and having a width about equal to the
sample standard deviation:

prob(x) ex ((x - x )
2 + V)"~N / 2.

5 CONCLUSIONS

We have come only a very small way towards our goal of
providing Bayesian equivalents for non-parametric statistical tests.
Our one new result is the estimation of the position of a quantile of a
one-dimensional p.d.f. To achieve even this modest result we have had
to use Bayes1 theorem to estimate parameters from data and the principle
of maximum entropy to assign probability distributions (likelihoods)
given those parameters. When used together in this way we see clearly
that MAXENT is not just a limiting form of Bayes1 theorem, nor
vice-versa; the two tools are complementary and the choice of which to
use depends on the type of information available.

Our exercise has, however, shown where the real problem lies; there are
no really "non-parametric" distributions, rather, it is our job to
identify the parameters (or testable information) that are relevant to
making reproducible predictions in any given case. This choice of a
hypothesis space in which to work is our most difficult task and we have
at present no systematic way of generating it. We can summarize our
present understanding as follows:

1) We use Bayes1 theorem to manipulate probabilities given conditioning
data once those probabilities have been assigned.

2) It is the job of the MAXENT principle to assign probabilities given
testable information once the appropriate hypothesis space has been
defined.

3) It is for the moment left to our own information and common sense to
determine which hypothesis space or parameters to use. We expect
(Jaynes, 1985) that this process will involve an iterative improvement
as we gradually learn the deficiencies of our earlier, simpler choices.
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GENERALIZED ENTROPIES AND THE
MAXIMUM ENTROPY PRINCIPLE

J. Aczel and B. Forte

Apart from Physics, the first entropy measure was introduced
by Hartley [8]. Here, as in what follows, we consider the entropy as
measure of uncertainty about which of n events occurs from a partition
Ei>E2> • • »,E]yj of the sure event. Hartley's entropy is just

log2 N (1)

which looks pretty primitive, but is the only reasonable measure if we
know only the number of events* Hartley has indeed consciously refused
to work with probabilities. If we know at least how many (say, n)
events have nonzero probabilities, we get the modification

log2 n (2)

of Hartley's entropy used by Aczel, Forte and Ng [4].

If the probabilities Pi»P2>-»«>PN °f E1>E2>###>EN are known,
we arrive at the Shannon entropy [11]

N

" E Pk log p (3)
k=l K Z R

(extended by O.log 0 = 0 by def. if some p^ a 0 is permitted)

or at its generalizations, for instance the Renyi entropies [10]

(with 0a=0 by def. if p^ = 0 permitted), where ex jfe l

(they have the Shannon entropy as limit when a -+ 1 and have other
desirable properties). The Hartley entropy log N is the special case of
PI = P2 " ••• = PN = !/N o f b o t h (3) a n d (*) without 0 probabilities,
as is log n if 0 probabilities are permitted. Each is also the maximum
of such Shannon and Renyi (a>0) entropies.
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The Shannon and Renyi entropies for a>0 (a fi 1) are (in a sense exact)
lower bounds for average codeword lengths

or for exponential mean codeword lengths

N

k=l

.. (l-a)n /a
log £ p 2 k ,

respectively, (where the individual codeword lengths % are positive
integers and

N _n

I 2 k £ 1)
k=l

These facts are related to other inequalities associated with these and
other entropies, for instance the "how to keep the expert honest"
inequality (see, e.g., [3]): An expert gives q^,q2,•••,q^ as
probabilities of the events (weather, market situations, etc.) E^,
E2»*-#>EN which in reality (or to the best of his knowledge) are
Pl>P2>•'•>PN* ^t *s a8re ed that he gets paid the amount f(qk)
if Efc happens. So his expected gain is

N
1 p f(q ).

k=l R R

How should the 'payoff function' f be chosen so that the expert's
expected gain be maximal if he told the truth? Clearly f should then
satisfy the inequality

N N
2 Pk

 f < V 1 £ PU
 f(Pu>- (6)

k=l K R k=l k k

It turns out that, without any further supposition on f, this inequality
is satisfied for variable N or for fixed N>2 if, and only if, f(p) =
c Iog2 Irt-b (c>0) so that the right hand side of (6) will be

N

C
k ^

 Pk l o g2 Pk + b>

linking the subject to the Shannon entropy. Indeed, the "if" part of
the above statement is equivalent to what is sometimes called the
Shannon inequality:



Aczel-Forte: Maximum Entropy Principle 97

N
- E p l o

k=l
g q > -

N

k=l k
Log2 p k

N

k=l
P k

N

k=l

which in turn implies the above result that the Shannon entropy is a
lower bound of the average codeword length

N
E pk V

k=l k k

There exist similar results with regard to the Renyi entropies.

— n o w we know about the events Ei,E2 >•••,EJJ more than just their
probabilities, we arrive at inset entropies

N N

V , p*log p*+ /, p
k=l k=l

where g is an arbitrary real valued function of the events, while c is
an arbitrary constant (also the Hartley, Shannon and Renyi entropies
could be multiplied by constants for most purposes). We can get to (7)
among others again by the "how to keep the expert honest" method [1]:
If we allow the payoff functions f to depend also upon the events E^
(not just their probabilities), then the previous 'keeping the expert
honest1 inequality is replaced by

N N
1 pk f ( v V i z pk f ( v V (8)

and the general solution (again also for fixed N>2 and without further
suppositions on f) will be f(p,E) = c log p + g(E) so that the right
hand side of (8) becomes exactly (7).

Examples of other applications of inset entropies can be found, for
instance, in the theory of gambling where Meginnis [9] interprets the
second sum in

N N
c E p log p + E p g(E ) ( 7 )

k = 1 k k k = 1 k k;

as the expected gain and the first as the "joy in gambling". Also, for
the so-called continuous (partial) analogue of the Shannon entropy

N 3
- E p log p , that is , for - / p(t) log p(t) dt,

= 1 a
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(where P is the probability density function), the approximating sums of
the integral are not Shannon entropies but inset entropies (7):

N
E

k=l

t

p l o g

- 1

P k
+

• JLUj

N
E

k=l
p

t k "

l o g

V i

A(E ) ,
K

where F is the probability distribution function, so
F(t^-i) (k * l,2,...,n) are the probabilities, E^
and £(Ek) - tk'tk-l [2]. For applications of (8) to
geographical and economical analysis, see for instance [5, 6].

Further generalizations to entropies associated with random variables
have been made by Forte (for instance, [7]).

Here we draw two consequences from the above:

(i) All (above) entropies are conditional on what we know about the
events, the entropies being the measures of the remaining uncertainty
about which of the events will happen. It is remarkable that, while
each of the Hartley, modified Hartley, Shannon and inset entropies
contains the previous ones as special cases, also each corresponds to
more knowledge, that is, more conditions on the events.

(ii) All these entropies are connected to inequalities (and equations,
see for instance [3]).

In another sense, the maximum entropy principle, of course, also relies
on inequalities: we are looking among probability distributions
(Pl>P2>•••>PN)» satisfying certain conditions (equations) for the
one which maximizes a "suitable" entropy (makes it the largest, hence
satisfying an inequality).

Perhaps the best known example is that the normal distribution maximizes
the Shannon entropy

N
- £ p log p
k=l k k

under the conditions p ^ P2+- • •+ PN
=1> aiPi + a

2 P 2
 +-•-+ aMpN=0 >

ai Pl + a2 P2 +-"+ 4 PN = Q2'
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where ai,a2>**'>aN are the possible (real) values of a random
variable, while cr2 is its variance (also given). So, the Shannon
entropy is a "suitable" entropy. Equations like (10) are again
conditions representing our (partial) knowledge, this time about the
otherwise unknown probabilities Pi,P2>•••>PN# I n other words,
there are two interpretations of the above argument: (i) It is usually
considered to 'justify1 the normal distribution, because the normal
distribution maximizes the Shannon entropy (under appropriate condi-
tions) . (ii) We say that it can be interpreted also as 'justification*
of the Shannon entropy, because the Shannon entropy is maximized by the
normal distribution which is what we should get (under the same condi-
tions), based on experience and usefulness.

We propose that "suitable" entropies should be introduced preferably as
expressions, the maximization of which gives "useful" probability
distributions. Entropies as measures of conditional uncertainty must
take into account all kinds of informations provided by the problem, be
they mathematical, scientific or "real life". The maximum entropy
principle can be used to define some of those entropies. There remains
much to do in this respect, even with regard to the above and other more
or less generally used entropies•

This research has been supported in part by Natural Sciences and
Engineering Research Council of Canada grants.
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THE PROBABILITY OF A PROBABILITY

John F. Cyranski
Physics Department
Rockhurst College
Kansas City, Missouri

ABSTRACT

MAXENT (MAXimum ENTropy principle) is a general method of
statistical inference derived from and intrinsic to statist-
ical mechanics. The probabilities it produces are "logical
probabilities" — measures of the logical relationship
between hypothesis and evidence. We consider the signifi-
cance and applications of the "logical probability" of such
probabilities. The probability of a "logical probability"
is shown to be the probability of the evidence used for the
"logical probability". This suggests a hierarchy of logics,
with "evidences" defined as sets of probabilities on the
preceding "logic". Applications to reliability theory are
described. We also clarify the meaning of MAXENT and
examine arguments in a recent article in which temperature
fluctuations are introduced in thermal physics.

1 INTRODUCTION

A method fundamental to statistical physics is the maximi-
zation of entropy. In recent years, this method has been recognized as
a general procedure for statistical inference based on the fact that
"entropy" is essentially a measure of information uncertainty [1]. The
probabilities one obtains using MAXENT (as the "Maximum Entropy
Principle" is now called) have a natural interpretation which has not
been generally recognized, even by advocates of the procedure. This is
the "degree of belief" (DOB) interpretation [2] — that "probability" is
a measure of the logical relationship between two propositions: p(H | E)
expresses a (normalized) "degree of belief" (DOB) in the relationship of
hypothesis H to evidence E. Indeed, MAXENT asserts precisely the
(statistical) consequences of assumed evidence since it is based on the
idea that one should choose as probability one which maximizes "uncer-
tainty" consistent with the evidence. (See below.)

Within the DOB interpretation, it is meaningless to proclaim a "prob-
ability of a probability": "A question about the probability of a
probability has no more point than a question about the probability of
the statement that 2+2=4 or that 2+2=5, because a probability statement
is, like an arithmetical statement, either (logically) true or (logical-
ly) false; therefore, its probability with respect to any evidence is
either 1 or 0." [2]
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While it is possible to interpret "probability of a probability" to mean
the DOB of a relative frequency (RF), there are reasons to do otherwise.
First, this does not seem to be the intent of Bayesians whose probabili-
ties are exclusively DOB's or subjective [3]. Second, there is neither
necessity for nor any reality to relative frequencies. For, it is known
that given evidence that defines a RF (over a finite number of trials,
naturally; a true RF demands an infinite number of trials which is why
no such thing exists) MAXENT yields as DOB based on this evidence
precisely the given RF [4,5]. Thus, the DOB concept is more general
than RF, including the latter as a special case. It follows from this
brief review that exclusive use of the DOB interpretation with MAXENT as
DOB calculus permits greater generality and flexibility, and is logical-
ly more consistent than the so-called "objective probabilities"• (Lest
the reader mistake DOBfs for "subjective probabilities", we need only
point out that given the same evidence, all will calculate the same DOB
using MAXENT. "Logical probabilities" are not subjective!)

The purpose of this paper is to extend the understanding of the deeper
implications of this MAXENT-DOB scheme of statistical inference. Our
focus on the DOB of a DOB issue reveals a novel interpretation for
"evidence" (entirely consistent with MAXENT usage) which at the same
time suggests how "logic" can be built from the bottom up (as opposed to
the abstract formal logic, which is difficult to relate to concrete
realizations — semantics). Our approach sets the stage for more
rigorous generalizations of MAXENT. We indicate some possibilities in
passing. What is perhaps more of interest is the immediate application
of the abstraction to problems related to the "reliability" of DOB
assignments. In particular, we apply our approach to examine issues
raised in Ref. [6], wherein a combination of MAXENT and Bayesian
parameter estimation is used to derive some surprising results. (While
many practitioners of MAXENT believe that MAXENT is an intimate part of
Bayesian methodology, we feel that MAXENT is logically more consistent
than Bayesian methods and can reproduce the correct results of Bayesian
statistics: Indeed, Bayes conditionalization is a special case of
MAXENT [7].) It is only, however, by examining MAXENT in the abstract
context of measure theory — rather than by looking at discrete case
examples — that one begins to appreciate the generality of the method.
Thus, rather than following the tradition of trying to convince skeptics
that MAXENT can be derived from game theory [8a] or as a consequence of
Laplace's Principle of Indifference [8b], or from combinatorics [9a], or
as an "optimal algorithm" [9b] — among others! — we will proceed from
a relatively general perspective. The reader is asked to set aside all
prejudices and allow our arguments if not to persuade, at least to
stimulate fresh thinking.

Probability functions have as domain some type of "logic" — usually a
Borel algebra of subsets of a set [10,11]. While formally one may
consider a logic as including all statements of ordinary language, a
prerequisite of Bayesian methods [12], when one makes inferences it is
typically about a particular class of objects! Thus, one may be
concerned about the attributes of a gas. The set of attributes of a
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such class of objects is a "sublogic" in the sense that propositions
about the color of your eyes are not in this logic. In physics the
attributes necessarily form a Borel algebra of subsets of the class of
all the objects because physical attributes must concern measurable
properties of the objects. Thus, if we define a "scale" — a function
T:0-̂ R (random variables=measurable functions are distinguished
throughout in boldface print) where 0 is the object class and R the real
line — then every Borel set A of reals (corresponding to precision
limits) must be the image of an "attribute" H in the logic. (While many
physicists ignore this, one can never measure a real number, only an
interval [13].) This induces a Borel structure on the logic, which we
denote by B(0) . Much more general possibilities exist [14], but in
(classical) physical applications ordinary measure theory suffices for
our arguments. Note that if one has a list of measurable functions that
are independent and characterize the physical system (such as position,
momentum, energy, and time characterize a "free particle"), the
"hypotheses" or propositions in the logic define subsets of particles
sharing common value ranges of these variables. In the infinitely
precise limit (classical mechanics), specific values of position, time,
momentum, and energy, uniquely select a singleton — that "free
particle" having precisely these values of the variables. These, then,
are the types of hypotheses relevant to physics.

Clearly, in order to develop a complete "natural language", the starting
point of Bayesians, one must develop the individual logics of different
object types and find a consistent scheme of imbedding these sub-logics
in the larger scheme, where different objects can interact. This is
usually done (in physics) using some form of "tensor product" [15], but
a complete "bottoms up" approach to logic remains to be done. One step
in the construction is to determine the relation of the logic of attri-
butes of a system to the logic of evidence statements about the system.
In particular, if a hypothesis is realized as a set of objects (that
satisfy the hypothesis), what is an "evidence"?

Our answer to this question evolves from the MAXENT procedure. Typical-
ly, evidence for MAXENT is a statement that the expected value of a
random variable (RV) takes on a certain value. (The expected energy of
a gas molecule is specified, for example.) THIS EVIDENCE DEFINES A SET
OF PROBABILITIES ON B(0) consistent with the constraint defined by the
statement. Note that the "object class" of such evidence statements is
never the same as that defined by the hypotheses. Thus, although
formally — as we show below — it is possible to consider the set of
evidence statements as a Borel algebra, just as is the set of hypo-
theses, these algebras are distinct. Since statements such as "H&E" —
the conjunction of hypothesis H with evidence E — cannot be interpreted
isomorphically as a set of objects HflE, such statements are nonsense in
Boolean logic [16a]. Another way to see the problem is to note that
evidence E is a semantic statement and thus is necessarily in a "meta-
language" (outside the language containing the hypotheses) [16b].
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One consequence of this observation is that MAXENT is carefully distin-
guishing between hypothesis and evidence — in perfect agreement with
the DOB concept of probability [18]. However, the fact that "H&E" has
no interpretation (in the sense of realization as a set of objects)
suggests that Bayesian statistics rests on extremely insecure founda-
tions for it is based entirely on the formal equality of all logical
propositions. In particular, Bayes1 Theorem (which is perfectly correct
if applied to attributes from a single Borel algebra of subsets [11])
states that p(H&E) = p(H|E)p(E) = p(E|H)p(H); the validity of this basic
relation depends on the meaningfulness of "H&E"! [19].

Thus, MAXENT clearly is doing something different from Bayesian statist-
ics. Moreover, it is much more careful. In the next section we will
analyze in more detail the structure of "evidences" — including "prior
evidence". In effect, we identify evidence with a subset of measures.
Just as not every set of objects is "measurable" (Borel), not every
evidence statement is meaningful to MAXENT. We suggest, however, that
only evidence that can be expressed as a Borel set of probability
measures is valid evidence for inference. This, it turns out, is not as
restrictive as it appears, as MAXENT can be applied to a wide variety of
evidence sets. In Section 3 we will consider some applications of the
DOB of a DOB (reliability).

2 EVIDENCES AND INFORMATIONS

Let M(0) represent the space of all sigma-finite measures
on B(0). One subset of M(0) is the class of measures m which satisfy
certain prior constraints: e.g., m(A)=0 for certain A1s in B(0) (a
priori "impossible" properties: A physical example would be a statement
that a particle can travel faster than light). Also, invariance proper-
ties of ra under certain a priori "degrees of freedom" can be imposed
[20]. One thus finds that prior evidence effectively defines a
sub-class MQ(0)£_M(0). This has a most important consequence, namely
that the class MQ(0) consists of mutually equivalent (m«mf and
m f « m — " « " means absolutely continuous with respect to) measures [21].
Thus, any m in MQ(O) asserts the same basic prior knowledge. Note
that "There exists o satisfying H" corresponds to m(H)>0. Prior knowl-
edge effectively determines existential quantifiers for the logic B(0).

We assume that a posteriori evidence provides us with a DOB consistent
with our prior assertions (otherwise, these prior arguments must be
reconsidered). This means that we must consider M^(0)c_M(0) defined
by

M1(0)= { pe M(0) | p(0)=l,p«m, any m in MQ(0)} (1)

The potential DOB's thus are normalized measures which vanish for a
priori "impossible" hypotheses. Beyond this we note that the effect of
evidence is to narrow-down the class of admissable representative prob-
abilities. For example, if we consider a hypothesis H then if E is the
statement "H is definitely true", then E requires a DOB satisfying
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P(H|E)=1. However, unless only H and its negation are in the logic,
many probabilities satisfy this condition — in fact, the set

E= {p MAO) I p(H)=/dm[dp/dm]C (o) = 1} (2)
1 n

where CJJ(O) = 1 if o is in H, = 0 otherwise.

We are thus led to identify the evidence statement with the subset of
^i(O) containing all probability measures consistent with the
statement* In effect, then, the "object class" of (posterior) evidence
statements is the set M^(0), and the statements form an algebra (not
necessarily Boolean) defined by the subsets E£Mi(0) that are allowed.
As M^(0) can be identified with the space of functions (f :0->[0,°°] |/dm
f=l} and this space has a natural topology [22] which can be used to
generate a Borel algebra, we assume the logic of evidences to be Borel
— B[M^(0)]. (One often uses the "weak topology", applicable when 0
is a metric space [33] •)

Note that the construction can continue: Let M[M^(0)] be the class of
all sigma-finite measures on B[M^(0)]. This includes "probabilities"
of sets of probabilities. One can impose prior conditions on M[M^(0)]
to obtain M0[M1(0)] and M1[M1(0)] (probabilities in M[M1(0)]
consistent with the prior). Evidence at this level is a subset
E?cLMi[Mi(0)] and represents, in words, evidence about the original
evidences (sets of probabilities on B(0)). In this sense, "probability
of a probability" has meaning: Explicitly it means a DOB assigned to
the evidences (Borel sets of probability measures) on which the original
DOB's are based. This is not quite the same as a DOB of a DOB:
However, dpl(p)/dmf, the Radon-Nikodym probability density, has
precisely the interpretation of a probability function on the space of
probability measures (not necessarily DOBfs).

Schematically we thus are led to a logical hierarchy generated by LQ =
B(0): LQ, L1 (=B[M (0)]), L (=B[MX[^(0)]] ) , . . . Here LQ is
the original logic, L^ is a class of evidences for LQ, L2 is a
class of evidences about the evidences in L^ (reliability of the
evidences in L^ based on "external" knowledge), and so on. We shall
not pursue this provocative connection with the theory of logic here.

At this point we note that given a "prior measure" m:B(0)-^[0,°°] , the
information embodied in a "probability" measure p on B(0) is defined by

S(p,m) = /dp ln(dp/dm), p<<m
(3)

= °° otherwise

This "relative entropy" or "cross-entropy" (among numerous aliases) has
been justified in various ways as an appropriate measure of information
[23] and we shall accept it without question. Note that we only require
that m be a sigma-finite measure in general. The negative of (3) is
"uncertainty" (entropy).
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What is the information content, I(E), of the evidence? Clearly, if
EcE1, I(E) > I(Ef), since E constrains the probabilities more than does
Ef and is thus "more informative". The extreme case is I(O) = °°. If
one further requires that 1(E) = F[ {S(p,m) | peE }], then one func-
tional form is I(E) = inf {S(p,m) | p£E }. A consistent and reasonable
way to define the measure p(H|E) is to identify it with that p in E (if
it exists) for which I(E) = S(p,m). Note that (a) this method avoids
the questionable Bayesian method and (b) this method (essentially
liAXENT, as "information", eq.(3), is the negative of the usual entropy
[23]) is extremely conservative, for precisely the information content
of the evidence — no more, no less, is assumed [4]. In effect, MAXENT
is a method for obtaining the logical consequences of the "evidence",
assuming it is "total" and that no irrelevant or extraneous information
is included [24a].

We remark that MAXENT makes no claim to obtain "the probability under-
lying the process"• Indeed, there is no such thing, according to the
DOB viewpoint. Rather, MAXENT tells us which probability measure most
conservatively represents the actual evidence we used. It is therefore
a kind of "evidence tester", for the MAXENT predictions based on E can
be compared with experimental data (new E). If there is good agreement
between predictions and experiment, this means that the original E is
all the evidence needed to make accurate predictions. (This is a
remarkable feature of thermodynamics, where evidence about very few
variables is sufficient to determine all the macroscopic features of the
system.) More often, the new evidence refines or contradicts the
original evidence, in which case one must recalculate the DOB using
MAXENT and the new evidence [24b].

We have suggested above that the evidences form the Borel algebra
B[M]_(0)]. Do MAXENT solutions exist on arbitrary Borel sets of
measures? Relatively little work has been expended on characterizing
the existence of MAXENT solutions [23,25,26,27]. One of the most
general criteria, perhaps, is the following: If M^(0) is a metric
space, suppose E is closed in the weak topology and that I(E)>-°°. Then
a MAXENT solution exists in E [26]. (E must be convex to ensure unique-
ness.) Typically, evidence has the form E={p |/dpT^x} where T is
bounded and continuous. If I(E)>-°°, such evidences have MAXENT solu-
tion. More generally, if G(p) is convex and lower semicontinuous (weak
topology) then E=(p |G(p)<j} is convex and closed, admitting MAXENT
solution when I(E)>-<». MAXENT clearly imposes minimal restriction on
the evidences. Also, since the closed sets generate the algebra,
appropriate limiting properties should permit extension of MAXENT to
open sets. Thus, the union of N closed sets is open in the limit N-*»,
and if the sequence of MAXENT solutions thus defined has a limit, then
this limit is reasonably the DOB for the open set. On the other hand,
the intersection (conjunction) of infinitely many closed sets may be a
singleton, (p*) • In this case we say we have total knowledge since any
other evidence either changes nothing or contradicts the total knowl-
edge. An interesting example of total knowledge is given by the
sequence E N = (p|/dpXN(o) - (l/N)S<X(oi)>}, where X(oi)
= 1 if hypothesis H occurs in the ith trial (oi), 0 otherwise; where N
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is the number of samples, and XN(o) is the sample average [11].
Then MAXENT yields [4]

p(H|E )=<X >=No. of times H occurred in N trials (4)

Provided the sequence converges to {p*}, this limit p* defines the
"objective probability" as "total knowledge" based on counting the
frequency of H in N-*°° trials.

Finally, we note that the MAXENT DOB explicitly depends on the prior
measure m. This suggests that we generalize MAXENT to seek
(p*,m*)eExMo(O) such that S(p*,m*)«If(E)=inf(s(p,m)|(p,m)eExMo(O)>.
We conjecture that the usual arguments for the prior select m that
satisfies If(E) ~inf(S(p,m)|peE}. Not only would this explain the
success of the usual MAXENT applications, but this would also explain
why MAXENT solutions are relatively insensitive to "reasonable choices
of prior [28]. (This could also happen if E is "close to" total knowl-
edge.)

3 APPLICATIONS TO "RELIABILITY"

As illustration of the consequences of the logical
hierarchy we have established, we consider application of MAXENT at the
secondary level: Find p'^lE 1 ) , where E1 is in L2, for all E in L\•
Since p(H|E) is presumably given (by applying MAXENT on E in L^), this
(effectively) amounts to calculating the DOB of a DOB. Assume m1 is a
fixed prior over L2 and let p1 be any probability in Mi[Mi(0)].
Then E'£Mi [Mi(0)]={pf on L i J p ^ m 1 } .

To be explicit, we first treat a case suggested by S. Gull. Assume as
evidence Ef in L2 that the relative information is no greater than W
(with m(0)=l so S(p,m)>0 for all p):

ET = {p'e M1[M1(0)]|/S(p,m) dp
?(p)<W } (1)

MAXENT yields for p1 on Li the density:

dp'fpl/dm' = exp{- bS(p,m)}/Z(b) a.e.[mf] (2)

Z(b) = / dm1 exp{- bS(p,m)} (3)

W = -d ln(Z[b])/db [condition for b] (4)

from which we see that

S(pT,m) = - bW - ln(Z[b]) (5)

Suppose that the bound W is lowered by AW<0. Then, as A[lnZ]=-WAb and
the functional form of S is fixed, we obtain

AI(Ef) - - bAW (6)
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so that provided b>0, the minimal information about the evidences is
increased. If mf is itself a probability, then this clearly indicates
that a decrease in the average information content of the evidences
increases the minimum information about the evidences. Put another way,
our uncertainty about the original set of evidences is smaller than our
uncertainty about the new set, defined by the lower average cross-
entropy. The lower intrinsic average uncertainty of the evidences is
compensated by an increase in the uncertainty about the choice of
evidence. This suggests a kind of complementarity between the types of
evidence.

Let us now consider a potentially practical application of "probability
of a probability": What is the DOB that a weather forecaster is
"correct" in his predictions? (This problem was suggested in different
form by A. Russell.) Let us assume for simplicity that there are two
mutually exclusive alternatives only one of which is valid on a given
day — e«g«, "it rains" = H and "it does not rain = Hc. The fore-
caster attempts to classify the days o 0 as to whether they are in H or
not. This can be viewed as a communication problem between the
sub-algebra K={ {}, H, Hc, 0}cB(0) and B(0) (generated by the atoms
(o)), wherein the communication channel linking days with outcomes is a
probability measure p:KxB(0)->[0,l] [30]. Thus, Mi(OxO) is the space
of such "channels". The forecaster supplies, based on his evidence E,
the conditional probability measure p[(H | |o )]. While how he
determines this is irrelevant to the evaluation of his "reliability", we
note that the process ultimately involves a kind of "regression"
analysis [29].

Now an error in classification defines distortion [30] . A natural
measure of this is

d(H!),o)=C (o); HTeK (7)
Hf

which, for example, assigns unit distortion if oeH is misclassified as
being in "not H", and zero distortion if o is correctly classified. If
one calculates the expectation of (7) based on any "channel" p one
obtains the probability of mis-classification using p:

M1(0x0)->[0,l]

which, as we have noted, is a linear functional on Mi(OxO), assumed to
be measurable. This expectation is a natural criterion for evaluating
the forecaster.

Let us assume that we observe the forecaster on a set 0f£0 of N days.
To estimate the probability of mis-classification we employ the predic-
tions, p[(Hf| | o)] (oeOjH'eK) and assume that all days in 01 are equi-
probable: p[{o}]=l/N for oeO1. Post facto we know which oeO1 are in H
or not. Thus, we readily calculate
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D=E n,p(H',{o})d(H\o) = (l/N)^ , c Pt(H||o)]
O £ U O £ U iitl

With perhaps some kindness, we finally assume that the expected prob-
ability of misclassification not exceed this estimate. Thus, our
evidence for "reliability" is:

;P) x(p) £ D a.e.[mf] (9)
-•- J.

Applying MAXENT to this we obtain

dpT(p)/dmf = exp[-bx(p)]/Z(b)

Z(b)=/dmT(p) exp[-bx(p)]

D=-d(ln[Z(b)])/db

It is reasonable to assume that the prior mf defines a distribution
function for x that has uniform density on [0,1]:

F T(x)=m
l{peM (0x0)|x(p)l x}=

 / X d v Crn 1 1 ( v ) }
m L ' J (13)

Using this, (11) becomes

Z(b) = Z1 dx exp[-bx]=[l-b]/b ( 1 1i)

and using (12) we find

D=l/b - exp(-b)/[l-exp(-b)] (14)

We can now determine the probability that the probability of misclassi-
fication not exceed q:

F(q) = pT{p|x(p)<q}= 0/ dx e~
bX/Z(b)=[l-e"bq]/[l-e"b] (15)

Using these formulae we can calculate for a given D the confidence level
[l-F(q)] x 100% that the probability of a correct forecast be at least
1-q. For example, if we wish to determine our confidence that the prob-
ability of a correct forecast is at least l-q=.8, we obtain the follow-
ing confidence levels for various estimates of the distortion (D):

D = .98 .90 .80 .72 .58 .46 .34 .23 .19 .05

% Confidence = 0 .003 1 4 13 24 38 56 64 98
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In particular, if during the test period the sample probability of mis-
classification, D, is .05, then we are 98% confident that the probabil-
ity that this forecaster will be correct is .8 (loosely, that the fore-
caster is right at least "80% of the time"). If instead we are only
interested in the confidence that the forecast is right at least "half
the time", q=.5 and we get

D = .98 .90 .80 .72 .58 .46 .34 .23 .19 .05

% Confidence = 0 .6 8 18 38 56 73 88 96 98

Thus, if the sampled probability of forecast error during the test
period is .46, we have 56% confidence that the forecasts are right at
least "half the time".

The above can easily be extended to the case of N alternative (but
exclusive) hypotheses: Simply replace x(p) by the sum of
p(Hn,Hn | E) over n. With Hn defining a precision interval for a
physical quantity (such as the concentration of chromium in a sample as
determined by a laboratory [31]) one can determine the "reliability" of
laboratories or instruments by obtaining D from a sequence of tests with
known values of the quantity.

As a final illustration, we examine the arguments of Ref. 6 from our
perspective. In thermodynamics, extensive and intensive variables are
on an equal footing, thanks to the Legendre transformations. However,
in statistical physics, some variables (such as energy E) can
fluctuate (have non-zero variance Q2=<[E-<E>]2>), but the
conjugate variables (inverse temperature 3 in this case) are determined
without dispersion. The stated goal of [6] is to achieve "democracy" at
the statistical level by deriving a dual distribution (on temperature)
that reflects reliability of the assignment <E>,3 (3=l/kT, where k
is Boltmann's constant and T is absolute temperature). An intriguing
consequence of the arguments of [6] is the existence of an "inherent"
uncertainty relation, "a^a^-l".

E 0

Since "temperature" is a quantity that characterizes the "equilibrium
ensemble" [32] it appears that [6] is seeking a way to treat the prob-
ability of the ensembles which, as each ensemble defines a Maxwell-
Boltzmann distribution of molecular energies, amounts to the DOB of a
DOB. Unfortunately, the authors of [6] do not recognize the unique
thermodynamic significance of the Boltzmann distribution: Derived from
maximum entropy given fixed expected energy, it is necessarily a DOB
that defines a logical relation between hypotheses H (Borel sets of
energies) and evidence E (defined by the Lagrange parameter 3). One
cannot use parameter estimation methods for 3 because these require that
P(H|E) be either a joint probability or a conditional probability
measure (as assumed in [6]). In other words, while it is possible (the
arguments are far from being simple) to formally estimate 3 under the
assumption that the ensemble is drawn from a Maxwell-Boltzmann popula-
tion, such an approach is inconsistent with thermodynamics [24a]. In
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particular, the original problem of thermodynamic "democracy" may not be
addressed by this altered theory of thermodynamics.

It is actually easy to see that "democracy" already exists in statisti-
cal thermodynamics without recourse to Bayesian arguments. In what
follows, 0 is the set of micro-systems (molecules, etc.) whose thermo-
dynamics is being considered.

To begin with, we note that at the thermodynamic level all variables are
measurable functions on M^[0] . For example thermodynamic energy is
the expected energy <E>=Fg(p) = / dp E(o) — clearly a
functional of the probability measures. Also, the inverse temperature,
P, is defined by the average energy (using MAXENT). The evidence is,
with e- <E>

E[E,e]={p|/dp E = e} (16)

and 3-3(e) is defined via

e=-81n Z[B]/3B;Z[g]=/ dm{exp - gE} (17)

The Boltzmann distribution that results is simply

dp(o)/dm=exp{-gE(o)}/Z(B) a.e.[m] (17b)

This suggests that as a random variable,

JE[p) = 6(e) for peE[E,e:] (18)

which defines B:M^(O)^R provided M^(0) equals the union of all
E[E, e] for e in the range of £• In other words, temperature
depends on the probabilities through its dependence on the evidence
<E>; and MAXENT relates all probabilities defining the same <E>
to the same value 3(e). From this viewpoint, there is no_ asymmetry
between ensemble energy Fg(p) and "temperature" &g(p), but
there is an essential asymmetry between E(o) and gg(p) — the
energy random variable is a function of the objects (molecules in a gas)
while the temperature is a function of the probabilities over the Borel
sets of the objects! Thermodynamics deals with the variables Fg
and $g, not E and 8g.

Fluctuations in "temperature" clearly refer to the statistics of the
equilibrium systems: i.e., we may not know e=<E> (as opposed to
E) accurately. (In practice, we seek B directly with a thermometer
and use (17) to estimate e.) Ref. 6 employs a subtle combination of
MAXENT (over M^[0], although not stated) and Bayesian parameter esti-
mation (which requires a "joint probability" on B(O)xB(Mi[O]) to be
consistent! [19]) in order to ascertain the "best" value for g based on
the average energy of a small sample of the gas molecules. A key step
is the (traditional Bayesian) requirement that this choice minimize the
"expected loss" for a loss function (shown by consistency arguments to
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be quadratic in 3). Such a requirement is, we feel, alien to the
conservative spirit of MAXENT in that it imposes optimism on physics.
Why, in other words, should the physical temperature minimize "average
loss"? (The same criticism applies in general to Bayesian methods —
another argument in favor of exclusive use of MAXENT!) While ordinarily
"reliability" can only be tested by sampling many such estimates to see
the variation in <K>, apparently "optimism" in [6] supplants such
sampling*

Let us consider I trials in which £± = (l/N)^<E(ojc(ip> is
the sample average on the ijth trial and <E(ok(i))> is the value
of the estimate (^observed value) of E(o) for trie kth molecule on
trial i. (We follow the prescription of [6] in estimating average
energy by observing the energy of a small number N of molecules allowed
to escape through a hole in the vessel holding the gas.) On each trial,
MAXENT determines the estimate <$(p)>i=$(ei) (see above), so we may
use the average of these estimates as evidence:

El[e,b]={pleM1[M1(O)]|/dp
l(p) 6E(p)=b} (19)

where b=(l/l)^P(ei). Using MAXENT we find

dp1(p)/dmf=exp{-Y(b)6E(p)}/Z[y(b)] a.e.[m1] (20a)

Z[Y(b)]= /dm!(p) exp{-Y(b)BE(p) } (20b)

b=-81n Z(Y)/3Y [for Y*Y(b)] (20c)

Using (20) one can calculate (in principle)

4= MP'(P) [FE(P) - <FE>]
2 (21a)

XL

<F£> = / dp
!(p) FE(p) (21b)

which define the variance and the expected average energy (- thermo-
dynamic energy) and

a2 = / dp'(p) [IL(P) - b]2

\ E

which defines the temperature fluctuation. It appears from the
formalism of [6] that one must formally define

(22)

dp(o)/dm = exp{-<B|E(o)}/Z[<B>] (23a)

dpf(p)/dmf=exp{-<F>BE(p)}/Z[<FE>} (23b)

in order to obtain agog = 1 of [6]. More feasible than (23a) is
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to replace the usual MAXENT-Boltzmann ensemble by

<dpydm>(o)=/dp!(p)[exp{-eE(p)E(o)}/Z(eE(p))] (24)

However, neither option is required in order to understand the nature of
thermodynamics, "fluctuations" and reliability.

4 CONCLUSIONS

In this paper we have attempted to motivate interest in
the deeper implications of the MAXENT principle of inference. Realizing
that the method remains controversial, we believe that part of the
controversy is due to the absence of a reasonable exposition of the
entire inference process. By this we mean a careful explanation of the
domain of the method (a Borel algebra of subsets of a particular class
of objects), the nature of "evidence" in (at least) statistical infer-
ence (subset of probability measures consistent with the verbally
expressed constraint), and a motivation for the procedure divorced from
both Bayesian and frequentist concepts. What the method is really
trying to accomplish simply cannot be discovered by examining special
cases and discrete examples — welcome as these are to indicate the
usefulness of the procedure. There remains a need for a more general
mathematical analysis of issues such as the existence of MAXENT solu-
tions based on evidences that are not simply linear, convex sets. We
have suggested some of the possibilities in this paper — possibilities
that indicate even wider application of the method. In particular, we
considered how the DOB of a DOB — an apparently philosophical "pseudo-
problem" to some — actually leads to simple and general ways of discov-
ering the reliability of DOB assignments. In so doing, we have had to
criticize an article by proponents of MAXENT for the casual mixing of
Bayesian and MAXENT formalisms. We hope that our results will stimulate
further careful investigation of this most promising method of
inference.
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ABSTRACT

Unknown prior probabilities can be treated as intervening
variables in the determination of a posterior distribution.
In essence this involves determining the minimally informa-
tive information system with a given likelihood matrix.

Some of the consequences of this approach are non-intuitive.
In particular, the computed prior is not invariant for diff-
erent sample sizes in random sampling with unknown prior.

1 GENERALITIES

The role of prior probabilities in inductive inference has
been a lively issue since the posthumous publication of the works of
Thomas Bayes at the close of the 18th century. Attitudes on the topic
have ranged all the way from complete rejection of the notion of prior
probabilities (Fisher, 1949) to an insistence by contemporary Bayesians
that they are essential (de Finetti, 1975). A careful examination of
some of the basics is contained in a seminal paper by E.T. Jaynes, the
title of which in part suggested the title of the present essay (Jaynes,
1968).

The theorem of Bayes, around which the controversy swirls, is itself
non-controversial. It is, in fact, hardly more than a statement of the
law of the product for probabilities, plus the commutativity of the
logical product. Equally straightforward is the fact that situations
can be found for which representation by Bayes theorem is unassailable.
The classic classroom two-urn experiment is neatly tailored for this
purpose. Thus, the issue is not so much a conceptual one, involving the
"epistemological status" of prior probabilities, as it is a practical
one. In practice, the required prior probabilities are often unknown,
or poorly known.

The present paper presents an approach to the estimation of prior
probabilities when these are unknown. The approach is a generalization
of maximum entropy methods. It was derived with a quite different
rationale, and thus represents a convergence of two different streams of
thought.
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2 FIGURES OF MERIT

As a foundation for a theory of estimation, it is necess-
ary to introduce a figure of merit, a measure of the excellence of an
estimate.

Figures of merit are commonly some form of discrepancy measure, e.g., if
I am asked to guess the height of a distant tree, the excellence of my
guess is determined by comparing it with the actual height. In the
measurement literature a wide variety of scores can be found — absolute
difference, squared difference, percentage difference, and the like.

Estimates of probabilities have the difficulty that the true or actual
probability is rarely available for comparison. An ingenious way to
sidestep this difficulty has been found in the theory of proper scores
(Savage, 1971). Let E be a partition on an event space, and e an
unspecified member of E. Let R be an estimate of the probability
distribution on E. Finally, let S(R,e) be a function which assigns the
score (rating, reward, payoff, etc.) if R is the estimated probability
distribution on E and the event e occurs. If P(E) is the actual probab-
ility distribution on E, the expected score for the estimate R is
£ P(e)S(R,e). Notice that the score S(R,e) can be assigned knowing only

E

the estimate R and the event e that actually occurs, without knowing the

actual probability P.

A score rule is called proper (reproducing, honesty- promoting, admiss-
able, etc.) if it fulfills the condition

E P(e)S(R,e) ^ Z P(e)S(P,e) (1)
E E

i.e., a score is called proper if the expected score is a maximum when
the estimate is the same as the distribution which determines the expec-
tation. (1) is analogous to the requirement for a discrepancy score
that the "error" be a minimum when the estimate is precisely the same as
the actual quantity.

It is convenient to introduce some definitions:

G(P,R) = 2 P(e)S(R,e)
E

H(P) = G(P,P) = Z P(e)S(P,e)
E

N(P,R) = H(P) - G(P,R)

G(P,R) is the expected (discrepancy) score if R is the estimate and P is
the actual distribution. H(P) plays a special role for probabilistic
scores. For error measures that are analogous to a distance, e.g., the
absolute difference, H(x) • |x-x| =* 0 for all x. However, for proper
scores, H(P) represents a measure of the excellence of a distribution P
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on its own so to speak. N(P,R) is the net score if R is estimated and P
obtains. Note that from (1) N(P,R) is always non negative.

Since G(P,R) is an expectation, it is linear in P. An important
property of H(P) is that it is convex (Dalkey, 1982).

There is a very large family of scores that fulfill (1). They range
from scores derived from decisional payoff matrices to scores appropri-
ate primarily for scientific contexts (Dalkey, 1980). The most widely
used of the latter is the logarithmic score, S(R,e) = log R(e). Note
that -H(P) for the logarithmic score is precisely the Shannon entropy
for the distribution P.

proper scores can play the same role in inductive logic that truth-value
plays in traditional logic. In fact, the truth-value is a form of
proper score. If an individual believes a given statement is true, but
asserts the negation, his expected "score" is false, clearly less
excellent than if he had asserted what he believed.

Proper scores enable the verification of statements of the probability
of a single case, a possibility usually denied in the literature of
probability theory. If an estimator asserts "P(e) = p", where e is a
specific event such as "rain tomorrow", one need only wait until tomor-
row and (for the logarithmic score) award the prediction with the score
log p if it rains, or log (1-p) if it doesn't. The dependence upon the
occurrance of a specific event gives the requisite tie to reality needed
for a verification procedure, and the dependence on the asserted probab-
ility furnishes the requisite dependence on the content of the asser-
tion.

3 MIN-SCORE INDUCTION

Given an appropriate figure of merit, it is feasible to
formulate an inductive logic that is an extension of classical logic. A
general structure for a logic is a collection of rules which transform a
set of premises into a conclusion. In the classical case, if the
premises are true and the inference is valid (i.e., follows the rules),
then the conclusion must be true. That simple guarantee is, of course,
precisely what makes classical logic useful in inquiries. As might be
expected, the nature of the guarantee is somewhat more complex in induc-
tive logic.

In the most elementary case, consider a partition E on an event space,
where E represents the events of interest, i.e., E specifies the events
for which a probability distribution is desired. We assume that there
is a probability distribution on the event space, and thus, in particu-
lar, there is a distribution P(E) on the partition E. In the relevant
case, P(E) is unknown, but there may be some (partial) information
concerning P(E). Suppose the partial information consists of knowing
that P(E) is in some class K of distributions on E. In the extreme case
of no information, K is the set of all possible distributions on n
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events, where n is the number of events in E; i.e., K is just the
simplex Zn of all probability distributions on n events. If K is a
unit class, then P(E) is completely known. In intermediate cases, K is
some subset of Zn.

We can take the specification of K as the premises of an inference.
What is desired as a conclusion is some estimate R(E) of the distribu-
tion on E. Since by assumption the actual distribution P is in K, it
might be supposed that R must be selected from K. However, there is no
formal constraint that R be in K; it could be any distribution in Z.
Assuming that a score rule S has been adopted, the actual expectation
is G(P,R). The inductive rule to be employed in this paper is derived
from two postulates: PI - the selection rule should guarantee at least
the expected score of R, i.e., it should guarantee H(R). Formally this
requires G(P,R) ^ H ( R ) , for any P in K; P2 - the selection rule should
assure the positive value of information, i.e., if additional informa-
tion is obtained, then the expected score should not decrease. Formal-
ly, if K! C K, then H(R?) >̂ H(R) .

These two postulates lead to a specific selection rule which could be
called the min-score rule: select the R in the closure of the convex
hull of K that minimizes H(R) (Dalkey, 1982). If K is convex and
closed, then R will be in K; if K is not convex and closed, then R may
not be in K, but will be in the closure of the convex hull of K (Dalkey,
1985).

PI appears to be essential for any kind of inference. The user of the
conclusion must be confident that he will achieve at least as high an
expected score as the conclusion promises. P2 is more germaine to
induction. In the case of complete information, the positive value of
information is a theorem (Lavalle, 1978). It appears a-fortiori plaus-
ible that additional information should be constructive in the case of
incomplete information.

If the score rule adopted is the logarithmic score, then for the
elementary case under consideration, the min-score rule is precisely the
maximum entropy procedure. As noted above, the expected log score is
just the negative of the entropy. Minimizing the log score is equiva-
lent to maximizing the entropy. For more highly structured problems,
the min-score approach may lead to a different analysis than current
practice with maximum entropy methods. This divergence will show up in
the analysis of unknown prior probabilities.

4 PRIOR PROBABILITIES

The elementary min-score rule does not involve the
distinction between prior and posterior probabilities. The information
class K does represent "prior information", but is not expressed as a
probability.
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Historically, the notion of prior probability has been employed in the
context of "updating". A probability distribution is known for an event
set E. New evidence I, either planned as in an experiment, or fortuit-
ous as in casual observation, comes to attention, and the problem arises
of revising the probability distribution on E to reflect the new
evidence. In this case, the old distribution P(E) is the prior and the
new distribution P(E|I) is the "posterior". Of course, P(E|l) can
operate as a new prior if further evidence arises. The distinction is
significant only for a given instance of updating. Another way of
putting the same point is that the distinction between primary events
and evidence is not a formal aspect of the calculus of probabilities.

As long as the updating is conducted with complete information (all the
relevant probabilities known), there is no conceptual difficulty. A
variety of updating procedures is available, depending on what is known
concerning the relationships between the evidence and the primary
events. The one most frequently employed is the theorem of Bayes,

| |

Difficulties do arise, of course, if the relevant probabilities are not
completely known. Essentially, what the analyst needs to know for the
updating step is the joint distribution P(E.I). A frequent situation is
that in which the likelihoods P(l|E) are known, but not the joint
distribution. In the context of min-score inference, the class K can be
taken to be a set of joint distributions, constrained by the requirement
that they generate the known likelihoods, i.e., P(E.I) is in K if
P(E.I)/ E P(E.I) = P(l|E).

I

In the given instance, the class K can be characterized equivalently by
the set of joint distributions P(E.I) = P(E)P(l|E) where P(E) can be any
distribution on n events (since P(E) is totally unknown). However, it
is clearly incorrect to select the min-score distribution in Zn for
P(E) since this ignores the role of the score rule. The score for the
updating problem is related to the posterior probability P(E|l), not to
the prior. In colloquial terms, the analyst is not being paid to
estimate the prior, or, from the standpoint of the decisionmaker, his
payoff will be determined by implementing the posterior, not the prior.

A further complication arises in imposing the score rule for the case of
incomplete information. With complete information, it is legitimate to
ignore all potential evidence except the specific item that actually
obtains. Considering I as a set of possible items of evidence (observa-
tions, data, signals, etc.), and i as a member of I, then in practice
what is wanted is P(E|i) when i is known. This feature has been
elevated to the status of a principle by some writers — the posterior
determined by an item of evidence i should be a function solely of i and
not of any other potential evidence that might have been observed.

That principle cannot be maintained in the case of incomplete informa-
tion. For the illustrative case where the likelihoods, but not the
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prior, are known, the information in the likelihood matrix concerning
potential (but not observed) evidence is relevant to the assessment of
the observed evidence. As a simple example, consider the case of two
events e and e (the bar indicating negation). Suppose there are two
possible pieces of evidence, i and i. Let P(i|e) = q and P (i|e) = r.
Without loss of generality, we can let q>r. (If q = r, the evidence is
trivial.) Set P(e) = p. With p = r/(q+r), P(e|i) = 1/2. Thus,
whatever q and r, a prior probability can be assigned that makes the
evidence completely uninformative (at least for any symmetrical score
rule).

The example clearly generalizes to several events and several potential
items of evidence. Thus, for the assessment of evidence in the case of
incomplete information, it is necessary to treat the evidence and the
events of interest as an information system, and the selection of a
prior probability as the design of a min-score information system. For
the logarithmic score, this requirement can be restated as designing a
minimally informative information system (Dalkey, 1980).

Summarizing: for the updating problem, the probabilities of interest
are the posterior conditional probabilities P(E|l); it is the expected
score of these probabilities which determines the value of the new
evidence. However, there is a separate posterior for each potential
item of evidence; thus, the complete assessment consists of the average
of these expectations over the potential items of evidence. Denoting
the average expected score by H(E|l), we have

H(E|l) = £ P(i) Z P(e|i)S(i,e) (2)
I E

where S(i,e) is shorthand for "the score given that P(E|i) is the
estimate, and e occurs".

For the logarithmic score, (2) can be unpacked in the form of a well-
known formula in information theory

= H(E) + H(l|E) " H(I) (3)

That is, the average information furnished by an information system
(E,I) is the information contained in the prior distribution P(E), plus
the average information in the likelihood matrix P(I|E) minus the
information in the initial distribution on the evidence P(I). Notice
that there is a simple duality between events and evidence. From (3)

| ) - H(E).

If the prior probabilities P(E) are not known, the min-score inference
rule prescribes minimizing H(E|l) as a function of the distribution P(E)
over the class K of joint distributions P(E.I) constrained by the like-
lihood matrix P(I|E). The maximum entropy rule (for the log score) is
now extended to a maximum expected entropy rule.
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For the illustrative case of two events described above: H(E) = plogp +
(l-p)log(l-p), H(l|E) = p(qlogq + (l-q)log(l-q)) + (l-p)(rlogr +
(l-r)log(l-r)), H(I) = (pq + (l-p)r)log(pq + (l-p)r) + (p(l-q) +
(l-p)(l-r))log(p(l-q) + (l-p)(l-r)). (I've expanded this elementary
case in somewhat tedious detail because the role of the prior probabil-
ity p is different from the usual form of max entropy analysis). H(E|I)
can be minimized as a function of p by elementary differentiation and
setting the result equal to 0. The solution is obtained by solving for
p the implicit equation

p H(q)-H(r) , pq + (l-p)r .q-r

(1-p) S>(l-q)+(l-p)(l-r); (4)

The solution is not particularly intuitive. If q and r are symmetric,
i.e., r * 1-q, the min-score p is the classic uniform distribution, p =
1/2. However, if q and r are not symmetric, and each is rather far from
1/2, the min-score prior is not uniform. For example, if q = .9 and r =
.025, the min-score prior is about .63. Roughly speaking, the min-score
solution puts greater weight on the "less informative" prior event.

An even less intuitive result is obtained if the observation is iter-
ated, e.g., if two independent observations are made. The min-score
prior computed from the extension of (4) to two observations is not the
same as the prior computed for one observation; e.g., the min-score
prior for q = .8, r » 0, is .625 for one observation and is .69 for two
independent observations. The "discounting" of the more informative
event is more drastic for the two-observation case; the difference
between q and r has a more pronounced effect on the likelihoods for two
observations.

In the classic calculus of probabilities, the effect of an additional
observation can be computed by "updating", i.e., by using the posterior
probability for one observation as the new prior for an additional
observation. This procedure is not valid for the case of an unknown
prior. One way of expressing what is going on is to note that in the
min-score analysis, the solution is sensitive not only to the inputs,
but also to the precise question being asked. As remarked above, the
question being asked in the case of additional evidence is the posterior
probability given the evidence. If the evidence changes, then a new
prior must be computed. Another way of saying the same thing is that
the relevant K for the case of one observation is a set of joint
distributions of the form P(E.I); for two observations the relevant K is
a subset of distributions of the form P(E.Ii.l2)« This character-
istic of the min-score rule has serious implications for general purpose
inference mechanisms, e.g., expert systems. In a medical expert system,
for example, there is a basic difference between the diagnostic and the
prognostic use of data from the rain-score point of view. A system could
not use the same set of "best-guess priors" for both types of estimate.

Some readers may find this dependence on the specific question being
asked a serious drawback to min-score procedures. There is no question
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but that it is a serious practical complication. A single prior distri-
bution cannot be computed and then plugged into each new problem.
However, the "difficulty" serves to emphasize the basic difference
between complete and partial information. In the case of partial
information and updating on new evidence, the prior probabilities are
"intervening variables", serving to complete the analysis, not to
advance knowledge. The new knowledge is contained in the posterior
estimates.

5 RANDOM SAMPLING WITH UNKNOWN PRIOR

The classroom example of the previous section has a highly
structured frame of reference. In practice most problems are not so
neatly packaged. A case in point is random sampling with unknown prior.
An elementary example is an exotic coin with unknown probability of
heads. Another example is the case of the possibly loaded die treated
by Jaynes (Jaynes, 1968). In the classroom example, there are two
well-defined "states of nature" and a fairly clear interpretation of the
prior probability — someone presumably selected one of the two states,
e.g., one of two urns, according to a specific probability distribution.
In the case of the exotic coin, the states of nature are not "given" and
a mechanism to incarnate a prior probability is even less apparent.

A frame of reference for such problems was devised by Laplace. For the
exotic coin, each potential probability of heads is considered to be a
separate state. For the loaded die, each potential probability distri-
bution on the six faces is a state. The prior probability, then, is a
distribution on these states. If it is assumed for the coin that any
probability of heads from 0 to 1 is possible, then a prior probability
would be a density on the interval 0—1. For the die, with similar
freedom, a prior probability is a density on the simplex of distribu-
tions for six events.

The model is illustrated in Fig. 1 for the coin. There is a continuum
of states, labelled by the probability p of heads. The prior is a
density D(p) whose integral is 1; and the likelihoods are just the
probabilities p for a single flip of the coin. For multiple flips,
assuming independence, the likelihoods are the Bernoulli probabilities
P(p,n,m) =s^n)D

mn-D<)n""m ^o r t*ie c a s e °f m heads in n flips of the coin.

For the logarithmic score, the continuous version of (3) holds, where

l
H(E) = / D(p)logD(p)dp

o
l n

H(l|E) = / D(p)[ I P(p,n,m)logP(p,n,m)]dp
o m=o

n l i
H(l) = £ / D(p)P(p,n,m)dp log / D(p)P(p,n,m)dp

m=0 ° °
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Figure 1. Laplace model for binary-event random sampling
with unknown prior.

D(p)

1

Heads

Tails

The min-score problem, then, is to find D°(p) which minimizes H(E|l).

Because of the symmetry of the state space — for every state p there is
an antisymmetric state 1-p — we can expect the min-score D°(p) to be
symmetrical in p. For one observation, symmetry implies that P(I) is
uniform, i.e., P(heads) = 1/2. Thus, the term H(I) is invariant under
changes in D(p), and we have

D°(P) - e ~
H ( p ) (5)

and since - H(p) « Entropy(p), equivalently

° . Ent(p) (5f)

D (p) a e ^

The posterior density of p, given the observation i, is then

pe dp
(6)
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In Fig. 2, the prior and posterior densities are drawn for the case of a
single observation. Also shown in dashed lines are the uniform prior
and the posterior density for the uniform prior. If we take the average
of p for the posterior distribution as the "best guess" p, then, for the
uniform prior it is 2/3, and for the min-score prior it is .64. The
difference is not large for a single observation.

Figure 2. Min-score prior density D°(p), and min-score
posterior density D°(P|i) for single observation (solid
lines), with uniform prior Du(p) and corresponding poster-
ior density Du(p|i) (dashed lines).

1.5

1.0 -

1.0

For multiple observations, it is no longer the case that H(I) is invar-
iant under changes in D(P). It is instructive, however, to glance at
the result if H(I) is assumed to be invariant. In that case we would
have

-nH(p)
(7)D (p)
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i.e., the prior density becomes increasingly concentrated around 1/2
with increasing n, where n is the number of observations. Fig. 3 shows
this "first approximation" D°(p) for several n. It is clear that for
this approximation, D°(p) converges to a distribution concentrated at
p » 1/2 as n -* oc.

Figure 3. Approximate min-score priors, ke~nH(P), for
various sample sizes n.
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I do not have an exact solution for the case of n>l. If we consider two
extreme distributions, the uniform distribution Du(p) = 1, and the
distribution D^/2^P) concentrated at p = 1/2, we can say that
H(l|E) - H(I) for D]72(p), i.e., H(l|E) - H(I) = 0, and H(E) = °°.
At the other extreme, Du(p), H(E) - 0, H(I|E) = -n/2 and H(I) =

log l/(n+l) - l/(n+l) l log (n). Since H is convex, and H(I|E) is an
m=0 m

average while H(I) is an H of averages, H(l|E) is always greater than
H(I), but the difference is concave. Thus D° is intermediate between
D u and Di/2. HU(I|E) - HU(I)+ °° as n •> °°, thus D° ->• D. •
as n + °°.

Even without an exact solution, then, we can conclude that as n •*" °°, the
asymptotic D° is massed at 1/2. Qualitatively, this implies that the
amount of information in large samples with unknown prior is less than
classical theory would imply. For binary events, this implies that the
best guess is closer to 1/2 than the classic m/n guess, where m is the
observed frequency of an event in n trials. This result is compatible,
e.g., with the observation that opinion polls are, on the average, too
extreme, i.e., they tend to predict a larger margin of winning than is
actually observed (Dembert, 1984). Of course, political polls involve
potential forms of error other than the statistical analysis, and thus
the compatibility with our present result is only suggestive.

The present treatment of random sampling with unknown prior deals with
fixed-sample experiments. The number n of samples is fixed beforehand,
and a posterior distribution, P°(E|i), is computed for each potential
sampling pattern i. Furthermore, the computation is conducted under the
supposition that the score will be determined by the posterior distribu-
tion P°(E|i). In effect, this requires that the actual probability p
be observed before the score can be awarded. For the textbook two-urn
case there is no difficulty; determining which urn was selected is
straightforward. However, in more realistic contexts, this requirement
may not be implementable. For the possibly biassed coin case, there is
no way to directly observe the actual probability.

What can be observed (in theory, at least) is further samples. It might
be supposed that an operational scoring mechanism could be devised by
using the computed posterior to predict the probability of further
observations, and base the score on the occurranee or non-occurranee of
these observations. However, as we have seen, to introduce further
observations requires expanding the frame of reference to (E.I^.^)*
where 1^ is the initially observed sample, and I2 is the predicted
sample. This analysis can, of course, be carried out, and is a legiti-
mate application of the min-score formalism; but, as seen earlier, this
requires, in essence, computing a new best guess prior. In the former
case, the figure of merit is H(E|li); in the latter case, the figure
of merit is H(l2lli), and these two may appear to give divergent
results.



Dalkey: Prior Probabilities Revisited 129

6 CONSTRAINTS AND STATISTICS

The justification of the rain-score rule assumes that the
unknown probability function P is contained in the knowledge set K. In
other words, it is assumed that whatever constraints delimit K are
categorical. In contrast, it is common in applications of raaxent
methods to introduce constraints that do not have this property. A
frequently used form of constraint is one derived from an observed
statistic, i.e., given a statistic S, with observed value s, it is
assumed that the class K consists of those probability distributions
whose expectation for S is the observed value s. As an example, in the
case of the biased die analyzed by Jaynes, he assumes that the probabil-
ity distribution under investigation has a theoretical average equal to
the observed sample average.

It is clear that such statistical constraints are not categorical. For
the die example, any distribution within the interior of the simplex of
all distributions on six events could give rise to the observed statist-
ic. Many of these would have very small likelihoods of generating a
sample with the observed average, but that is a fact to be exploited by
the analysis, not ignored. The justification of the step from sample
data to theoretical expectations is somewhat obscure in the literature.
Jaynes uses terms such as "compatible with the given information"
(Jaynes, 1968) or "allowed by the data" (Jaynes, 1982), but in light of
the compatibility of the observed statistic with any underlying distri-
bution, it is not clear how these terras are being used.

If the complete frequency table arising from a random experiment is
available to the analyst then the maxent procedure becomes irrelevant.
The constraint convention — expectation - observed value — leads to
P^ = fj/N where fj[ is the observed frequency for event i, and N is
the total number of sample points. Some obscurity arises in this regard
concerning the question whether the justification of the procedure is
intended to be asymptotic (infinite sample) or not. But in practice, it
seems clear that the procedure is intended to apply to finite samples.

In the min-score approach, observations are not considered as con-
straints on the knowledge class K, but rather are elements of an
information system. In the case of the loaded die, what is sought is
the best-guess posterior density on probability distributions on the
faces of the die given the observed average. The class K is all joint
densities D(P.A), where P is a probability distribution on six events,
and A is a potential observed average over N tosses of the die.
Analysis consists of finding the minimally informative information
system with this structure. As in the case of the binary event sampling
analyzed in the previous section, there is no constraint on the possible
probability distributions P.

If it is presumed that uncertainty arises in a given experiment, not
from "error" but from the fact that the expectation of a statistic need
not be the same as the observed value, then the min-score procedure is a
way to deal with uncertainty without the addition of an error term.
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7 COMMENTS

The analysis of unknown prior probabilities presented
above leaves a great deal to be desired as far as mathematical imple-
mentation is concerned; but there does not appear to be any deep
mathematical issues involved.

The same cannot be said for logical issues. One that appears particu-
larly critical is the fact that a min-score estimate is simply a best
guess that depends on the score rule and on the specific question being
asked. This characteristic seems to deny the possibility that min-score
inference can be used to add to the store of knowledge. In a sense,
this result is inherent in the formalism. By definition, all that is
known is the class K and observations I.

This issue will be explored at somewhat greater depth in an upcoming
paper (Dalkey, 1985).
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ABSTRACT

This paper explains the connection between the basic
theorem of the well-known maximum entropy method and the
following extension problem for band matrices. Let R be an
nxn band matrix with bandwidth m. We seek an nxn positive
definite matrix H whose band is the same as that of R and
whose inverse is a band matrix with bandwidth m. The matrix
H has the property that its determinant is larger than the
determinant of any other nxn positive definite matrix that
agrees with R in the band. An important role is played by a
permanence principle that allows us to reduce the size of
the matrix in the band extension problem.

INTRODUCTION

The maximum entropy method was introduced by J. Burg In
connection with problems in signal processing and is extensively used in
applications. It is based on the following theorem [2]:

Theorem A. Let r_m> r«m+i,..•,rm be given complex numbers such that
the corresponding (m+1) x (m+1) Toeplitz matrix

is positive definite. There is a unique function

h(e ) = I h e
= -00

with

oo , ,

Z h, <
i k

and with the following properties:

(i) h^ = r^ for |k| _< m.
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(ii) h is a positive function and 1/h has the form

T ,, io)s v i i k ^
l/h(e ) = I bke

k=-m

(iii) For any positive function g whose Fourier coefficients
satisfy

and gk = rk for |k| <_ m> we have

-^ log g(e ;dw <-^r log h(e ;dco (1)

- I T - I T

with equality if and only if g = h.

The inequality in (1) expresses the fact that h has maximum entropy.
Generalizations of this theorem exist for the block, discrete and
continuous cases [3,4,5]. Recently a theorem that may be viewed as an
analog of the preceding theorem for finite matrices was proved [6]. The
simplest version of the theorem for finite matrices is the following:

Theorem B. Let

be a Toeplitz matrix with rk = 0 for |k| > m. Suppose the principal
submatrix

r -,111
lrj-k'j,k=O

is positive definite. There is a unique positive definite Toeplitz
matrix

H - {Vk}j,k=o

with the following properties:

(i) hk = rk for |k| £ m.

(ii) Let H l = { Sjkl Ĵ k̂ l • T h e n sjk =

for | j-k| > m.

(iii) For any positive definite Toeplitz matrix

= {Sj-k^j k=0 t^t sa
for |k| ̂  m, we have

G = {Sj-k^j k=0 t^t satisfies the condition
|| ^
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det G < det H (2)

with equality if and only if G = H.

The matrix H is called the band extension of R.

In order to explain the connections between these two theorems, we show
that the inequality in (2) can be replaced by the following condition:

det G(l,...,k) < det

det G(l,...,k-1) ~ det H(l,...,k-1)

where G(l,...,k) denotes the kxk leading principal submatrix of G.

It turns out that Theorem A can be viewed as a restatement of Theorem B
for infinite Toeplitz matrices with (2) replaced by (3). Let

be a semi-infinite Toeplitz matrix with r^ = 0 for |k| > m and with
the matrix

r -,111

^j-k'j.k-O

positive definite. We seek a positive definite Toeplitz matrix

H - {Yk}J,k=o
with hk = r^ for |k| < m such that (3) holds for k >̂  1 and for any
other positive definite semi-infinite Toeplitz matrix G with gk " rk
for |k| <_ m. In this analog, the matrix H in Theorem B corresponds to
the function h in Theorem A. To establish the connection between (1)
and (3), we will first show that

det H(l,...,k) 1 - ,,

det H(l,...,k-1) = eXp 27 j l o g h ( e

-IT

For any other positive function g as in Theorem A and its corresponding
Toeplitz matrix G, a theorem of Szego states that

det G(l,...,k)

The connections between Theorem A and Theorem B are established in the
last section of this paper, where a complete proof of Theorem A based on
its finite dimensional analog is presented. To make the paper self-
contained, we prove Theorem B in the first section.
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There is another connection between the finite and infinite cases that
is used in the proofs. If a band matrix R admits a positive definite
band extension H, then each principal section of R admits its own
positive definite band extension, and the extension of a principal
section of R coincides with the corresponding principal section of H,
even though H is computed from the larger matrix. This permanence
principle reduces the band extension problem for infinite matrices to
that for finite matrices, and for finite matrices it reduces the problem
to one-level extensions. Section 2 is devoted to the permanence
principle, and Section 3 concerns one-level extensions.

Finally, although Toeplitz matrices are at the heart of the problems we
consider, the basic results in the finite dimensional case are valid for
all positive definite matrices.

1 FINITE-DIMENSIONAL BAND EXTENSIONS

An nxn matrix R = (r-ĵ ) is called a band matrix withj
bandwidth m if r-ĵ  = 0 for | j-k | > m. Here m satisfies
0 <̂  m £ n - 1. The elements r-ĵ  for | j-k | £ m form a "band" of
2m + 1 diagonals surrounding the main diagonal of R. An nxn matrix H
(hjk) is an extension of R if H agrees with R in the band, i.e., if
n.jk = r jk for | j-k | _< m. An extension H of R is a band
extension if H is invertible and H~* is a band matrix with bandwidth
m. For any nxn matrix G, and for 1 <̂  j <̂  k <̂  n, we let G(j,...,k)
denote the principal submatrix of G given by

Gkj • • • Gkk

Theorem 1. Let R be an nxn band matrix with bandwidth m. Then R admits
a positive definite band extension if and only if

R(j,...,j+m) is positive definite for 1 £ j £ m (1.1)

In this case the positive definite band extension of R is unique.

Proof. Suppose that H is a positive definite band extension of R. Then
R( j,..., j+m) • H( j,..., j+m) for 1 < j £ n - m . These matrices are
positive definite because H is. Using an LU factorization of H""*,
we have

H"1 = XX* (1.2)

where X is lower triangular with positive real entries on its diagonal.
Then X = H^X*""1, which shows that X is a lower triangular band
matrix. Now let X = (XJM) and take 1 jC j j< n - m. Since H is an
extension of R, X*"1 is upper triangular, and
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HX = X

it follows that

(1.3)

or

X . .

JJ
=

-1
X . .

JJ
0

0

(1.4)

2
x. .

JJ
X . . X .

JJ J + l ,

X . .X . ,
JJ J+m, j

1

0

0

(1 < j < n-m). (1-5)

But R(j,•••,j+m) is positive definite, so R(j,...,j+m) is invertible and
the upper left entry of its inverse is positive. Therefore (1.5) deter-
mines Xjj,«,.,Xj_|nn j uniquely. For n - m < j ^ n , it follows
similarly from (lA) that

2
x. .
JJ

X. .X.
JJ

X. .X

L JJ n
and this determines

(n-m < j £ n) (1.6)

Thus the band of X and hence Xana c m s aetermines Xj j, • •.,xnj. rnus une Dana or A ana nence A
itself is determined by (1.2) and the requirement that X be lower
triangular and have positive entries on the diagonal. This shows that
if R has a positive definite band extension, then the extension is
unique.

For the converse, suppose that (1.1) holds. Then we may define an
invertible lower triangular band matrix X = (XJJ) by (1.5) and
(1.6). In order to define a positive definite extension of R, we intro-
duce the notation {A}^ to stand for the matrix in fi that coincides with
a matrix A in ft below the band and whose entries inside and above the
band are zero. Then we define an extension H of R by first defining

.-1

and then setting

H =
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Clearly H is a selfadjoint extension of R. Next, we observe that

HX = ~{RX}£ + RX + {H}*X.

From the definition of X in (1.5) and (1.6), we see that the entries of
RX inside the band are zero below the diagonal and coincide with the
entries of X*""* on the diagonal. Hence -{RX} + RX has zero entries
below the diagonal and agrees with X*"~̂  on the diagonal. Therefore
HX is upper triangular and agrees with X*""̂  on the diagonal. Since
X* is upper triangular, it follows that X*HX is a selfadjoint upper
triangular matrix with diagonal entries equal to one, so X*HX=I, which
is equivalent to (1.2). Hence H is positive definite and H~*̂  is a
band matrix with bandwidth m.

From equation (1.3) it is possible to obtain recursion formulas for the
elements of H outside the band. I f l £ j < i _ £ n and j < n - m, then
the product of row i of H and column j of X is zero because HX is upper
triangular. Therefore

H..x..+ H. . n x . _.+...+ H. . x. . = 0

so that

H.. = -(H. . x . +...+ H. . x. .)x~] (j < j -
IJ i,j+l J+1,J i,J+m j+m,j JJ J J - -

Also, since H is selfadjoint,

H = "XT}(X +-..+X _-H ) (1 < j, i l n - m ) . (1.8)

Theorem 2. Let R be an nxn band matrix with bandwidth ra that admits a
positive definite band extension H, and let G be any positive definite
extension of R. Then

det G(l,...,k) < det H(l,...,k) (9<v<^ (1.9)
det G(l,...,k-1) ~ det ( l ) {2lkln)

with equality for all k if and only if G = H.

Proof. We may write

H = LDL and G = MEM

where L and M are lower triangular matrices with diagonal entries equal
to one, and D and E are positive definite matrices. Then

and therefore
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det H(l,.
det G(l,.

Consequently,

.,k) = det D(l,...,k)

.,k) = det E(l,...,k)

and

= det H(l,...k) E = det G(l,...k)
detH(l k-1) k det

Thus (1.9) is equivalent to stating that
2 £ k 1 n-

for

Since H"1 is a band matrix and IT1 = (DL*)!!"1, it follows that
L""l is a (lower triangular) band matrix. Writing

we obtain

H + (G-H)

-1 * *-l -1, x
L MEM L = D + L (G-H)L

Let
-1 *-1

A = D + 1 (G-H)L
(1.11)

Then A is positive definite because E is positive definite and A =
(L~1M)E(L"1M)*. Let us partition A and write

'A,

A
12

12 22

where A]^ is a positive definite (n-l)x(n-l) matrix and A22 is a
(positive) scalar. In fact, since G - H has zeros in the band and since
Ifl and L*~l are triangular and banded, it follows that L~1(G-H)L*~1
has zeros on the diagonal. Thus the diagonal entries of A are just the
entries of D, and so A22 = Dnrt. Factoring A, we have

X

where

N =

—

k

-v

I 0

I

N

All

0 D
nn

0

k
- A12AX 1A12

N
(1.12)
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Then

(N lL 1M)E =

11

0 D

0

* -1
nn " A12A11A12

(N LL M)

Since E is diagonal and N~1L""1M is lower triagular with l's on the
diagonal, it follows that

nn
~~ 1 1 1 1 1 O

nn 12 11 12

Since kn is positive definite, we conclude that E n n <_ Dn n, with
equality if and only if k\2 - 0. From this and (1.12), it follows
that E

n n
D n n only if

a" = 0 (1 < j < n-1)

To verify (1.9) for 2 < ^ k < ^ n - 1, we use (1.10) and repeat the argument
above with G(l,...,k) and H(l,...,k) in place of G and H, respectively.
Notice that equality holds in (1.9) for all k if and only if

*~ U " (1 < j < k-1) .(L V, = 0
We have already observed that the diagonal entries in I
are zeros. Since L~1(G-H)L*""1 is self ad joint and L is nonsingular,
it follows that G = H if and only if equality holds in (1.9) for all k.

Corollary 3. Let R be an nxn band matrix with bandwidth m that admits a
positive definite band extension H, and let G be any positive definite
extension of R. Then det G £ det H, with equality holding if and only
if G = H.

Proof. Note that det H is the product of H;Q and the quotients on the
right side of (1.9), with a similar formula for det G. By Theorem 2,
each term in the product giving det H dominates the corresponding term
in the product giving det G. Hence det G <̂  det H, and equality holds if
and only if equality holds in (1.9) for all k, in which case G must
equal H, by Theorem 2.

2 THE PERMANENCE PRINCIPLE

Let R be an nxn band matrix with bandwidth m that admits a
positive definite band extension H. For any principal submatrix
R(j>»-«>k) of R with k - j > m, it is possible to apply Theorem 1 with n
replaced by k - j + 1 to obtain a (k-j+l)x(k-j+l) band extension of
R(j,...,k). Unexpectedly, it turns out that the entries of this
extension coincide with the corresponding entries of H. Essentially,
this is due to the fact that each entry Hj ^ in H is determined by the
entries in the band of R(j,...,k), as follows from (1.7) and (1.8)

Theorem 4. (The Permanence Principle.) Let R be an nxn band matrix
with bandwidth m that admits a positive definite band extension H. Then
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H(j,...,k) is the unique positive definite band extension of R(i,...,j)
for 1 _< j £ k _< n.

Proof. First suppose 1 < k £ n. Then H(l,...,k) is a positive defin-
ite extension of R(l,...,k). To prove H(l, ... ,k)""^ is a band
matrix, we write

-1 *
H = YY

where Y is an invertible upper triangular band matrix with bandwidth m.
Since Y*~* is lower triangular and Y"~* is upper triangular, it
follows that

k)

Consequently,

so that H(l,...,k)""l is a band matrix. Therefore, H(l,...,k) is
the unique positive definite band extension of R(l,...,k), by Theorem
1.

Now suppose 1 £ j < n. Then H(j,..-,n) is a positive definite exten-
sion of R(j,...,n). Using the factorization H"1 = XX*, where X is
an invertible lower triangular band matrix and proceeding as before, we
find that

C j . . . ^ ) " 1 = [X(j,...,n)][X(j,...,n)]* .

It follows that H(j,...,n) is the unique positive definite band exten-
sion of R(j,...,n) .

Finally, suppose 1 _< j < k £ n and apply the second case discussed
above with n replaced by k and R replaced by R(l,...,k). Since

with a similar formula for H(j,...,k), we obtain the conclusion of the
theorem.

Let R be an nxn band matrix with bandwidth m < n - 1. We define as
follows an nxn selfadjoint band matrix Rf that has bandwidth m+1 and
extends R. For l £ k < ^ n - m - 1, Theorem 1 guarantees an (m+2)x(m+2)
positive definite ¥and extension of R(k,..•,k+m). The entry in the
upper right corner of this matrix is taken as the entry in position k,
m+k+1 of R1. In this way, we determine the entries of Rf that lie on
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the diagonal just above the band of R. Since R* is to be selfadjoint,
this also determines the entries of Rf that lie on the diagonal just
below the band of R. The extension Rf is called the one-level extension
of R. The next theorem reduces the problem of obtaining the positive
definite band extension to constructing a series of one-level exten-
sions.

Theorem 5. Let R be an nxn band matrix with bandwidth m that admits a
positive definite band extension H. Then H is the result of n-m
one-level extensions starting with R.

Proof. It follows from Theorem 4 that the entries in the band of Rf

coincide with the corresponding entries of H. Since H"-*- is a band
matrix with bandwidth m (and hence also bandwidth m+1), it follows from
the uniqueness in Theorem 1 that H is the positive definite band
extension of R1. Applying this result again, we see that H is the
positive definite band extension of (R1) 1, the one-level extension of
R1. The theorem follows by finite induction.

Corollary 6. Let R be a Toeplitz band matrix that admits a positive
definite band extension H. Then H is Toeplitz.

Proof. By Theorem 5, it suffices to prove that the one-level extension
of a Toeplitz band matrix R is Toeplitz. But this is clear since
R(k, •.. ,k-hn) is independent of K.

Although the extension H in Corollary 6 is Toeplitz, the matrix X in
(1.2) need not be Toeplitz. However, it is "almost Toeplitz". It
follows from (1.5) that the first m+1 entries in the first column of X
are independent of n. (The rest of the entries in the first column are
zero.) Also, since R( j, ..., j+m) is independent of j for 1 <_ j _< n - m,
the first n - m columns of X form a Toeplitz band matrix, say T(n).
Therefore, X has the form

T(n)

I N

(2.1)

where N is an mxm invertible lower triangular matrix.

The permanence principle in its simplest form is implicitly contained in
Burg's dissertation [2]. It is also a topic of discussion in a paper of
van den Bos [9], who suggested that it does not hold in full generality.
We also mention a preprint of Feder and Weinstein [7], who have a
version of the permanence principle, but still doubt its full gen-
erality.
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3 ONE-LEVEL EXTENSIONS

Let R be an nxn band matrix with bandwidth n-2 and assume
that R(l,...,n-1) and R(2,...,n) are positive definite. For any complex
number w let H(w) be the selfadjoint nxn matrix that agrees with R in
the band and whose entry in the lower left corner is w. Write H(w) in
the form

H(w) =
A d

d R

/C s

where A = R(l,...,n-1) and d = [w,Rn2,•••,Rn n-ll' Then

H(w) =

dA
-1

A 0

0 v

(3.1)

where

-1 *
v = R -dA d

nn

We will first find the values of w for which H(w) is positive definite,
Since R(l,...,n-1) is positive definite, H(w) is positive definite if
and only if det H(w) > 0, which by (3.1) is equivalent to v > 0, i.e.,

dA d < R

This inequality can be rewritten as

<A~V\d'

Let us write

nn

(3.2)

where

Then

d = we.. + b

e i =

1

0 and b =

n-l,n

<A d ,d > = aww

= a (w + -) (w + -) + y -
a a a
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where

a = <A -,e->

3 = <A~1b,e1>

y = <A~1b,b> .

Since A"1 is positive definite, we have a > 0 and y ̂> 0. We can
rewrite (3.2) in the form

w <
1 a'

R -y
nn '

(3.3)

Therefore, H(w) is positive definite if and only if (3.3) is satisfied.
By Theorem 1, there are solutions of (3.3), so the right side of (3.3)
is positive. Thus the set of all w for which H(w) is positive definite
is an open disk with center

Let

W0 = - a *

Then

n-1
a = s n and 3 =

Therefore

n-11 LL J.

wn = - — I R
11 k=2

nkSkl
(3.4)

Similarly, if we partition H(w) in the form

R-,

H(w) =
11

g

and let R(2,...,n)"1
» w e obtain

wo = nn k=2
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By comparing (3.4) with (1.7) with j = 1 and i = a we see that H(WQ)
is the positive definite band extension of R. These results are sum-
marized in the following theorem.

Theorem 7. Let R be an nxn band matrix with bandwidth n-2 such that
R(l,...,n-1) and R(2,...,n) are positive definite. For any complex
number w, let H(w) be the selfadjoint matrix that agrees with R in the
band and whose lower left entry is w. Let

and

= (tjk;j,k=2 *

(a) The values of w for which H(w) is positive definite form an open
disk with radius p and center WQ given by

P
,...,n-l)det

det
(3.5)

W0 "

n-1
y R.S,
k=2 nk *

n-1
(3.6)

11 k=2

(b) H(WQ) is the positive definite band extension of R

Proof. All of the theorem has been proved except for (3.5). Since
R(l,...,n-1) and R(2,...,n) are positive definite, there are unique
numbers x2,...,xn_1, Pn-1, w2,...,wn.1> and qn^1 with ?n^l * 0 and Q
+ 0 such that

1

"2

X T

n-1

=

"Pn-l"

0

0

(3.7)

and
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W2

w n - l

1

0

0

V i
From (3.7) and (3.8) it follows that

P = det R(l n-1)
n-1 det R(2,...,n-1)

(3.8)

(3.9)

T = det R(2,...,n)
V-l det R(2,...,n-l;

(3.10)

In particular, Pn-i > 0 and Qn-i > 0. We define

n-1
A? = w + 7 R .x.
n j 2 n j J

(3.11)

(3.12)

A1
n

(3.13)

A"
n

"n-1
(3.14)

P = P n + c
TA"

n n-1 n n

Q = c"Af + Q nn n n xn-l

From (3.11)-(3.16) it follows that

P = P .. (l-cTcfl)
n n-1 n n

Q = Q , (l-cfclf)
n xn-l n n'

(3.15)

(3.16)

(3.17)

(3.18)
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H(w)

1 "

x 2

X n - 1

_ 0

4- c1

n

" 0

w2

Wn-1

1 )

~P "
n

0

0

(3.19)

H(w) c"n

" 1

•

x nn-1

0

+

" 0

w2

•

n-1

1

=

" 0"

0

•

0

\

(3.20)

If H(w) is positive definite, then it follows from (3.19) that Pn is
not 0 and

= det H(w)
n det R(2,...,n)

(3.21)

which implies that Pn > 0. On the other hand, if Pn > 0, then it
follows from (3.19), and the fact that R(2,...,n) has rank n-1, that
H(w) has rank n. Then (3.21) holds, so det H(w) > 0, which implies that
H(w) is positive definite. Therefore, H(w) is positive definite if and
only if Pn > 0, which by (3.17) is equivalent to

cTc"
n n (3.22)

Similarly, H(w) is positive definite if and only if Qn > 0 and in that
case

det H(w)
n̂ det R(l,...,n-l; (3.23)

Suppose again that H(w) is positive definite. From (3.7) and (3.8) it
follows that

s... t
x. = -J__ and w. =
J S J

(2 < j < n-1) .

nn

Comparing (3.11) and (3.12) with (3.6), we find that
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n-1 n-1 s
A1 = w + T R . x . = w + Y R . -J— = w - w (3.24)

j£ 2
 nJ J j=2 nJ Sll °

Therefore

and

From (3.13),

Combining (3

n-1
A" = y R-
n j-2 2

(3.14)

•ll)-(3

and

.14),

.w. + w =
-J J

A

n-1
y R.. .w

j=2 ±J

(3.26) we

we have

n-1 t

j=2 J

" = Af
n n

n-1

. = y R

find that

- P- V l
n Pn-1

.x.

+ w = w - wn (3.25)
0

(3.26)

(3.27)

( 3 - 2 8 )

n-1

w = - y R .x. - cf Q - (3.29)
j = 2 nj j n n-1

n-1

w = - y R- .w. - cft P n . (3.30)
.^2 lj j n n-1 v

Then by (3.27), (3.29) and (3.30),

n-1 2
|w + y R .x.| = cfc" Q ,P - . (3.31)

•=? n j J n n n~l n~1

Therefore if H(w) is positive definite, then by (3.31) and (3.22) w must
satisfy

n-1
|w + y R .x. I < /Q _ X P _± . (3.32)

j=2

Conversely, suppose w is a complex number that satisfies (3.32). Define

n-1
• w + y R .x.

c1 = - i=2 n j J

Cn ^ (3.33)
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n-1

+ y R .x.
— J ^ (3.34)

n-1

Then (3.32)-(3.34) imply that cnc'n < 1. If we now define An,
An> pn> a n d Qn hY (3.11), (3.12), (3.15) and (3.16), then (3.19)
and (3.20) are satisfied. Since cnc'n < 1, it follows from an
earlier comment that H(w) is positive definite. Thus we have proved
that H(w) is positive definite if and only if w satisfies (3.32), i.e.,
w lies in the open disk with center WQ and radius p given by

n = /n P = /det R(l,...,n-l)det R(2,...,"n7
P % - l n - l det R(2,...,n-1)

This completes the proof of the theorem.

Suppose the matrix R in Theorem 7 is Toeplitz. Then R(l,...,n-1) =
R(2,...,n), so it follows Irom (3.9) and (3.10) that Pn_i = Qn-i
and from (3.28) that cn = cn. Then (3.17) and (3.18) become

Thus the numbers cn and c^ may be regarded as generalizations of the
reflection coefficients that appear in the modern version of the
Levinson algorithm employed by Burg [2].

4 INFINITE-DIMENSIONAL BAND EXTENSIONS

In this section we give a new proof of Theorem A, the
maximum entropy theorem. Our proof will clarify the connection between
this theorem and the matrix result in Theorem B.

A doubly infinite Toeplitz matrix

R = (r. , ) . ,

is called a band matrix with bandwidth m if r^ = 0 for |k| > m. The
following two theorems summarize our finite-dimensional results in the
context of extensions of infinite Toeplitz band matrices.

Theorem 8. Let R = (rj_k)j k=«oo^e a Toeplitz band matrix with
bandwidth m, and suppose tnat the principal section (rj-^)j^=o
is positive definite. Then there exists a unique Toeplitz matrix
H = (hj-k)j k=-~ with the property that h^ = r^ forn

|k| £ m, an£ for n > m the principal section (hj..^) j^=0 i s a

positive definite Toeplitz band extension of (rj-^
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Proof. For n > m, let Hn be the unique positive definite Toeplitz
band extension of (rj-k.)*j k=0* Theorem 1 and Corollary 6
guarantee that Hn exists. *By the permanence principle, there is a
unique sequence (h^ : -°° < k < °°} such that Hn = (hj-k)j k=0

 f o r

each n > m. Clearly the matrix H = (hj-k^j k=- n a s the'desired
properties.

By Theorem 5, the matrix Hn in the proof above may be obtained as a
one-level extension of Hn_i, if one so desires. In this way one
may view H as constructed from R by a sequence of one-level extensions.
(This approach to the maximum entropy extension was already taken by
Burg [2, pages 31-36].)

The next theorem gives an extremal characterization of the matrix H
constructed in Theorem 8. Later we shall show how this extremal
property translates into the maximum entropy statement in Theorem A.

Theorem 9. Let R and H be as in Theorem 8, and let Hn = j ^ j ^
Let G = (gj-k)j,k=-oo be a n v Toeplitz matrix such that g^ = r^ for
|k| <_ m and such that the principal sections Gn = (gj-k)^ k=0

 a r e

positive definite. Then

det 0 det H

n-1 n-1

with equality holding for all n if and only if G = H.

Proof. For n <̂  m, Gn = Hn. For n > m, Hn is the positive definite
band extension of (*j-k)j k=o> an<* Gn is any positive definite
extension. Since Gn is an (n+l)x(n+l) matrix, Gn = Gn(l,...,n+l) and
Gn-l

 = Gn«^(l,...,n), in the notation of Section 1, with similar
formulas for Hn and Hn_i. Thus (4.1) is just a restatement of (1.9).

We shall now derive Theorem A from Theorems 8 and 9. Given r_m,...,rm,
as in Theorem A, let r^ = 0 for k > m, let R = (^j-k)j k=-« and
let H = (nj-^)^ k=-«> be the extension of R described in fheorem 8.
The proof will now consist of two steps. The first step is to show that
21 h^ I < °° and that the function h defined by

h ( z > = k L k

has the properties listed in (ii) of Theorem A. The second step in the
proof will be to derive the inequality (iii) of Theorem A.

Step 1. We begin by extending the principal sections Hn (n>m) to be
bounded invertible operators on £̂ -(-oo,oo) as follow^. It suffices to
consider only odd values of n, say n = 2k+l. Let Hn be the operator
that acts as Hn on vectors in &

1 of the form (...,0, £_k, ...,
SQ,...,?k,0,...) and acts as the identity on vectors of the form
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( •• •>£-k-l»0>•••»0>£k+l»5k+2>
block matrix of the form

Thus we may represent Hn by a

H =
n

I

0

0

0

H
n

0

0

0

I

Next, as in the proof of Theorem 1, let Xn be the lower triangular
band matrix with positive entries on the diagonal* Then H^ = XnX^ and
this factorization leads to

H
n

= X X*
n n (4.2)

where Xn is represented by a block matrix partitioned in the same way
as the matrix for Hn, namely,

(4.3)X =
n

I

0

0

0

X
n

0

0

0

I

From (2.1) we see that Xn itself has the form

(4.4)

where Tn is an (n-m+l)x(n-m+l) lower triangular Toeplitz band matrix,
N is a fixed lower triangular mxm matrix, and the nonzero columns of
Mn are independent for n for n ̂  2m. Furthermore, if we denote the
part of the first column of Tn that lies in the band by the vector

b =

0

(4.5)

then this vector is independent of n for n >̂  2m. It follows from (4.3)
and (4.4) that the operator Xn converges pointwise on £l(-°°,°°) to a
bounded linear operator X. The matrix representing X is an infinite
lower triangular Toeplitz band matrix whose nonzero entries in each
column are given by the vector b in (4.5). Recall from the construction
of Xn that b satisfies the equation

R b =
m

-1
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where HL^ = (rj-k)j k=0 *s positive definite. We shall show that the
zeros of the polynomial

b(z) b-.z +...+ b zm

all lie outside the unit disk |z| <̂  1. Observe that the vector bgb is
the first colum of R^ • Using the standard formula for the entries in
R^l, we see that

bob(z)
1

det R
m

det

1

rl

•

r
m

z ...

ro
ri

Vi

m
z

r-m+l

r-m+2

ro

Reversing the order of the rows and the order of the columns of the
matrix above, we have

b(z) =
det R

. det

r-m+l r-m+2

m-1

m

Lm-1

Since Rm is positive definite, a result of Szego shows that b(z) ^ 0
for |z| <̂  1. (See [1], pages 14-15 0 Hence l/b(z) is analytic in

IzI < 1 and has the form

l/b(z) = 2, cv z

k=0 ^
(|z < 1) (4.6)

for some sequence (c^) such that

k=0

Set c^ = 0 for k < 0. Then a direct calculation using (4.6) shows
that X has the bounded inverse
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In particular, X~"l is a lower triangular Toeplitz matrix.

We now claim that X^ converges pointwise on %)• to X"~̂  • Since we
already have Xn converging pointwise to X, it suffices to show that the
norms of the X^ , as operators on £*, are bounded as n -> °°. By £4.3),
it suffices to show that the £*• operator norms of the matrices Xn^ are
bounded. Observe from (4.4) that Xn has the form

-1
rT-l
n

0

where U " Since N"1 and the nonzero columns of VL^ are
independent of n, it suffices to show that the 9?- operator norms of the
matrices T^ are bounded, for then the same will hold for U« and hence
for Xn section*n . Clearly Tn is a
triangular, T^ is a principal section of X
£ ||X"~1|| for n > m. Hence the sequen f""
that X^ converges pointwise to X~*.

X. Since X i is lower
_"1. It follows that ||T̂  II

Hence the sequence {||Xn ||} *s bounded. We conclude

Since Xn and X correspond to band matrices, the conjugate transposes
o£ these matrices determine bounded operators on V-, which we write as
(Xn)* and X*, respectively. An argument similar to that given above
will show that (X^)*""1 converges^pointwise on I1 to X*"1.finally,
from the factorization (4.2) of Hn we conclude that the Hn converge
pointwise on &1 to the bounded linear operator XX*. From this and the
fact that 1^ converges to H, it follows that H is an invertible bounded
operator on 0- and

= XX* H = (4.8)

The fact that H « (hj-k)j k=-°° i s bounded a s an operator on
is equivalent to the condition

I k
k=-°

Thus we may define

h(z) = I h k z
k (|z| = 1 ) .

k=-°°

A routine calculation using (4.8), (4.7) and (4.6) shows that

00 00

h ( z ) - 1 ( 1 c .c ) z
k = 0 j=0 J J + k
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b(z)f
2 > o (|z| = i)

Hence h has the properties listed in (ii) of Theorem A. It is easily
shown that H is positive definite as an operator on &̂ (-«>,«>), and
hence it is appropriate to refer to H as the positive definite Toeplitz
band extension of R.

Step 2. Now we shall use Theorem 9 to derive the extremal characteriza-
tion of the function h in Theorem A. From (4.4) it is clear that

det X

x 2 - = bo (n

n-1

Since Hn - XnXTl9 it follows that

det H ,detX .,2 o

' - bo (n

r
n-1 Idet X

I nwhich shows that the right side of (4.1) is independent of n. Now let g
be any function as in (iii) of Theorem A. That is, g(z) > 0 for |z| = 1
and there exists a sequence (g^) such that g^ = r^ for |k| _< m, with
| i < °° and

g(z) = Z gkz
k (|z| = 1)

k=-°°

Then the matrix G = (gj-k) j,k=-°° satisfies the conditions of
Theorem 9. We shall prove that the left side of (4.1) is a decreasing
function of n.

For n > 1, we apply a Hadamard-Fischer inequality to the (n+l)x(n+l)
positive definite matrix Gn and find that

det G (l,...,n) . det G (2,...,n+l)
n n — -- G (l,...,n

Hence

detGn(2,...,n) ± d e t G n (

det G (l,...,n) det G (l,...,n+l)
n > n

det G (2,...,n) - det G (2,...,n+l)

that is,



Ellis: Band Extensions and the Permanence Principle 153

det G - det G
n-1 n

det G o "" det G -
n-2 n-1

because Gn is a Toeplitz matrix. Thus the left side of (4.1) is a
decreasing function of n.

Suppose g ^ h. Then G ^ H, and so a strict inequality holds in
(4.1) for some n. By what we have proved, it follows that

det G det H
-, . n n . n
lim < lim

det G ^ det H
n 1 n*» n

The maximum entropy inequality (iii) in Theorem A now follows from a
theorem of Szegb' that says that

det G f 1

i

An analogous formula holds for the function f. A proof of this is in
[8, pages 77-78]. We shall describe a variation of this proof in order
to illustrate the connection between the finite- and infinite-dimension-
al situations.

Since (gj-k)j k-0 ^s positive definite for each n, the system of
equations

(4.10)

has a unique solution. If XQ denotes the first coordinate of the
solution of (4.10), then

. , det G -

det G
n

The properties assumed for g imply that G is positive definite as an
operator on £^(0,oo)# From this it is a standard fact that as n •> °°,
X Q ^ converges to the first coordinate of the solution (x]c)g

)
=Q

in ^(O,^) of

X 8j-kxk= 6j0 (j = O'1"--) ' (4.11)

See [8, page 74] for a proof. Thus
det G -

- . n-1
xn = lim , —
0 det G // 11\

n-x» n (4.12)
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Since the solution (x^) to (4.11) is in &^(0,°°), we may define a
function

00

x(z) = £ x, z (|z | < 1)
k=0

Then (4.11) is equivalent to

g(z)x(z) = 1 + y(z) (|z| = 1) (4.13)

where

-1 k -1
y(z) = I ykz , I |yk| < °° .

k=-°° k=-°°

Observe that x(z)g(z) = x(z)g(z) = 1 + y(z), because g(z) > 0 for |z
1. hence

(1 + y(z))x(z) = x(z)g(z)x(z) = x(z)(l + y(z)), (|z| = 1) (4.14)

Since z = 1/z when |z| = 1, the left side of (4.14) is represented by an
absolutely convergent series with nonnegative powers of z. Also, the
right side of (4.14) is represented by an absolutely convergent series
with nonpositive powers of z.

It follows that

(1 + y(z))x(z) = xQ (|z| = 1) (4.15)

In fact, y(z) has an extension to an analytic function on |z| < 1, which
we again denote by y(z). Then (1 + y(z))x(z) is identically equal to
XQ for | zl < 1. If XQ were zero, then x(z) would be identically
zero for |zj <_ 1 (since 1 + y(z) is not zero for z sufficiently close to
z = 0). This is impossible, so XQ ^ 0 and x(z) ^ 0 for |z| <̂  1.
This implies that l/x(z) is analytic for |z| £ 1 and

Thus (4.13) may be written in the form

-1,
g(z) = (1 4- y(z))x0 (1 + y(z)) |z| = 1. (4.16)

We may take the logarithm of both sides, since g(z) > 0 for |z| = 1.
Since 1 + y(z) is analytic and does not vanish for |z| < 1, there is a
branch of log(l + y(z)) that is analytic for |z| < 1. Therefore it
follows from (4.16) that
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if'.. , iah , T -1
— log g(e )da) = log xQ .

Combining this with (4.12), we obtain Szego's result (4.9).
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ABSTRACT

We address the problem of reconstructing an image from
incomplete and noisy data.

Maximum entropy is to be preferred to the direct Bayesian
approach, which leads to impossibly large problems of compu-
tation and display in the space of all images. The "monkey"
approach to maximum entropy, in which N balls are thrown
randomly at the cells of an image, invites us to interpret
entropy as the logarithm of a prior probability. Such an
interpretation leads to severe difficulties with the
parameter N, as well as leaving unsolved the problem of
selecting a single image for final display.

It is better to justify maximum entropy by the "kangaroo"
argument. This shows that maximum entropy is the only
generally applicable technique which will give the correct
answer to certain simple problems.

As originally presented, maximum entropy fails to incorpor-
ate many types of prior knowledge. This defect can be
remedied by a small change of interpretation, with great
potential benefit for the quality of reconstructed images.

1. Introduction 1
2. The Direct Bayesian Method 3
3. The Monkey Approach 5
4. Difficulties with N 9
5. The Kangaroo Approach 13
6. Incorporating Prior Knowledge 17
7. Conclusions 21

1 INTRODUCTION

In this paper, I shall discuss the theory of using maximum
entropy to reconstruct probability distributions. This involves out-
lining the related Bayesian approach, and also involves developing a way
of incorporating relevant prior knowledge. To make the arguments less
abstract, I shall discuss the techniques in the light of one particular
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application, that of reconstruction of an image from incomplete and
noisy data. Readers should be aware that my comments are necessarily
biassed by my current thinking, and that not all the ideas are univers-
ally accepted. I am very conscious that the good ideas are due to other
people, in particular Jaynes, Gull, Shore and Johnson: I shall be
responsible for any wrong ones.

Let us start by setting up some formalism. An "image" p bears a very
close relationship to a probability distribution function (pdf) . It can
be divided into cells 1=1,2,... and described by assigning a number p^
to each cell. This number can be identified with the intensity of light
relating to the ith cell. Because light intensities are positive and
are additive between cells, the p^ are also positive and additive

p. > 0 , p.TT.TT = p. + p. +.. • (1)
ri — ' IUJU *i *j '

If, furthermore, we decide that our results should be independent of the
physical units of the image, we may normalise p to

= 1 , (2)

Technically, p is now the set of proportions (of total flux) describing
the normalised image, but it also obeys the Kolmogorov axioms and can be
legitimately treated as a probability distribution in the space S of
pdf's describing single samples. Proportions and probabilities are
isoraorphic. Specifically, p^ can be identified with the probability
that "the next photon" to be received from the image would have come
from cell i (Skilling and Gull, 1984a). This gives a very natural and
convenient way of thinking about the abstract problem of drawing samples
from a pdf, though in other applications such as spectral analysis, the
identification can seem somewhat forced.

Later, we shall need to consider drawing many samples from the pdf p.
Successive samples from any particular pdf would be independent (the iid
assumption), so that the probability of drawing samples from cells
i,j,k... successively would be

which is a distribution from a larger space S® of pdf's describing
multiple samples. (Here one has to be a little careful with the photon
model. Successive photons could physically interfere with each other in
the receiver if the image were too bright. This would alter the
response functions of the detectors and hence the numerical values of
the data, but it would not alter the algebra of abstractly drawing
samples from that pdf which is isomorphic to the image. An opposing
view has been developed by Kikuchi and Soffer (1977) and by Frieden
(1983).)

Individual samples may be combined to give the histogram n describing
the frequency n^ of occurrences of cell i in the multiple sample.
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When the number N of samples exceeds the number of cells, the histogram
becomes a recognisable, though quantised, image, and as N -*», we may
expect the normalised histogram nj/N to approach the original
distribution p (Figure 1).

Figure 1. Sampling from an "image".

Image p

i

N large

Histogram =
quantised image

description

1 cell i

repeat
independently

i

Sequence of
cells i,j,..

Prob p. in S

/1 sample
/

assume
, iid

Prob Pj. =

pjp j . . . inSN

/ i sample

2 THE DIRECT BAYESIAN APPROACH

In practical image reconstruction, we do not have complete
knowledge of the image p. All we have are constraints given by some
form of data D^ (k=l,2,...), which may be Fourier transform compon-
ents, line integrals, convolution averages or indeed almost anything
else. Usually the constraints are "soft" being given to us in the
"noisy" or probabilistic form of likelihoods

L, (p) = prob( D i p ) .

These are often taken to be of Gaussian form

,-1/2L k ( p) exp(- (p)-Dk)
2/ 2a^)

(4)

(5)

where M^(p) is t n e mock datum which would have been observed from p in
the absence of noise (having standard deviation a^). "Hard"
constraints, by contrast, are absolute restrictions on the mock data,
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such as definitive equality or inequality constraints. These constitute
"testable" information in the sense of Jaynes (1978) on the space S of
pdf's of single samples i, and also on the space SN if we allow
independent sampling. It is possible to determine unambiguously whether
or not p is consistent with a hard constraint, but not with a soft
constraint. Technically, soft constraints are not testable.

If, as in many practical cases, the "soft" noise residuals ^ ^
are independent between successive measurements k, the probability of
obtaining the entire dataset D from an image p is

L(p) = prob( D | p II L (p) <x exp(- chisquared /2) ,

chisquared = Z (M. (p) - D )2/a1
2

k R k k

( 6 )

(7)

Hard constraints can be subsumed in this treatment by requiring L(p) to
be zero for images which would break the constraints.

As happens in inverse problems, the probability we have is the wrong way
round. We want to draw conclusions about p, given D, but we are given
prob(D I p) instead. Bayes1 theorem is the standard tool for inverting
probabilities, and it gives us the posterior probability distribution
(Figure 2)

post( p | D ) oc prob( D | p ) prior(p) = L(p) prior(p) (8)

relative to some assigned prior distribution prior(p).

Figure 2. Bayesian procedure.

Prior prob (p)

L(p) Data

Posterior prob (p)

It may be difficult to assign a useful prior to the space of all
possible images p, and we will return to this question later. The
serious difficulty, seen as soon as practical computations are attempt-
ed, is that the space of all possible images is enormous, having a
degree of freedom for each and every cell of the image. Corresponding-
ly, we may expect an enormous number of images p to have substantial
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posterior probability. Remember that any collection of data is finite,
whereas an image may be defined with an arbitrarily large number of
cells.

As a matter of practical necessity, we must present just one image p (or
at most a few) as "the result" of the experiment which gave us the data
D. The straightforward Bayesian approach, however appealing it may be
from an Olympian viewpoint, does not tell us which single p to select.
This simple point is crucial.

3 THE MONKEY APPROACH

Here, we take the idea of sampling pdffs seriously, by
considering a team of monkeys throwing balls (i.e., classical distin-
guishable particles) randomly (i.e., independently from some distribu-
tion) at the cells of the image (Gull and Daniell, 1978). Our monkeys
cannot throw their balls in accordance with the pdf of the actual image,
because we do not know what the true image is. Instead, they throw
their balls in accordance with some pre-assigned model m for the image.
Quite often, our prior state of knowledge about the object is transla-
tion invariant among the cells i, so that m would have to be merely a
constant, independent of i. For clarity of presentation, I shall at
first adopt this simplification: the generalization to include m is
straightforward.

Suppose that the monkeys throw N balls at the image. In any given
realization of N throws, there will be a corresponding histogram n of
the numbers of balls reaching the various cells. The number of ways of
reaching a particular histogram is the corresponding classical
degeneracy

= N! / n ru! . (9)
i

The "monkey" approach is to identify this with the prior probability
required by Bayes1 theorem,

prior(p) *Q (n) , p. = n./N (10)

which leads to the probabilistic conclusion

post(p) <* L(p) tt (Np) .

I shall argue against this probabilistic approach.

For the simple case of hard constraints, where L(p) is either a constant
(for "feasible" images which are consistent with the data) or zero, the
probabilistic conclusion is

for feasible p
post(p) - } m (12)

otherwise
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We are still required to select a single image from this distribution,
but the choice is compelling. We must choose the maximum. The maximum
is the only choice which is independent of the undefined number N-
Moreover, as N -^ to reduce the quantisation of the monkey-generated
histogram to invisibility, the degeneracy becomes more and more sharply
peaked about the maximum, so that the maximum is favoured more and more
strongly. As N -*», the degeneracy logarithm from (9) becomes

= N H H - E p. log p. entropy
(13)

so that we are required to select that single feasible image which has
maximum entropy.

This prescription of maximizing entropy under hard constraints can be
represented pictorially by drawing contours of constant entropy H
through the set of feasible images. Sometimes the constraints are
linear, as in the following diagram (Figure 3) for a three-cell image.

Figure 3. Maximum entropy with hard linear constraints.

Maximum
entropy image

Sometimes the constraints are nonlinear. The technique still works
although if the set of feasible images is not convex, there may be more
than one local maximum of entropy, as in the next diagram (Figure 4).

Although it would presumably be wise in this case to display both the
local entropy maxima A and B as alternative reconstructions, with image
A of larger entropy preferred, this procedure presents a conceptual
difficulty which foreshadows deeper difficulties with the parameter N.
The difficulty is that of quantifying our preference for image A.
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Figure 4* Maximum entropy with hard nonlinear constraint.

Maximum
entropy image A

Maximum entropy
image B

The monkey approach treats exp(NH) as a probability, but if we let N
become large we reach the conclusion

post(B) / post(A) -+ 0, (14)

so that image B is effectively contradicted. Nobody is going to believe
this. Although one can simply avoid saying it, the conclusion is clear
nevertheless. Unfortunately, if N is finite, the degeneracy no longer
acts as an absolute selector of images. It is merely a probability
modulator and we are still faced with making a selection. Selecting the
maximum becomes merely ad hoc, plausible but not compelling. Selecting
the ensemble average of post(p), for example, might appear even more
plausible. But if the set of feasible images is not convex, the
ensemble average image might easily lie outside it, and it would be
awkward to justify choosing an image which was contradicted by the
data.

In practice, our difficulties are likely to be compounded because the
constraints will be soft, and the posterior distribution (11) will be
continuous. The selection of an image clearly depends upon the value we
give to N. If N is too large, post(p) will be strongly peaked around
the uniform image (Figure 5). Although the likelihood will not prohibit
this absolutely and categorically, because the constraints are soft, the
experimenter who provided the data would usually be most unhappy with
such an uninformative result. Indeed, if he had useful data, he would
wish to reject the uniform image at a high (though finite) significance
level. If a theorist told him to accept an image which he wished to
reject at the 99.9% significance level, he would justifiably reject the
theorist instead.
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Figure 5* Probability patch for N large
post(p) +6 (p-uniform),

Contours
of constant L(p)

Probability patch
for N large
post (p) - • 6 (p - uniform )

If, on the other hand, N is too small, post(p) reduces to L(p), and the
experimenter has been told nothing fresh, apart from enforced positivity
of p (Figure 6).

Figure 6. Probability patch for N small
post(p) + L(p).

Probability patch
for N small
post (p) -^ L(p)
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N must be given some intermediate value, which then gives a probability
patch overlapping the uniform side of the tolerably feasible images
(Figure 7).

Figure 7. Probability patch for N intermediate.

Probability patch
for N intermediate

Although it may be good pragmatism to choose N this way, it is bad
theory. It leaves the following difficulties.

4 DIFFICULTIES WITH N

1) We STILL have to select an image from post(p). Altering the form
of the probability distribution does not absolve us from the necessity
of making a selection. The image of maximum posterior probability (11)
is perhaps the most plausible choice, but it can only be fully justified
if N -*», which is not the case.

2) To fit the data tolerably, neither under-fitting nor over-fitting, N
will have to be chosen differently for each dataset. It is difficult to
reconcile this with the view that the degeneracy is a prior, assigned
before the data were measured.

3) Having fitted the data tolerably by choice of N, the degeneracy
factor now tells us that the maximum entropy selection from post(p) is
quantifiably more probable than any other choice. This is unreasonable.
Suppose we have the following data on three cells:
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PI + P2 "*" P3 = 1 (hard constraint on normalization)
(15)

Pi - 2/3 _+ o (soft Gaussian constraint on p^),

so that the likelihood is (Figure 8)

L(p) ex exp( - (Pl-2/3)
2/2a2) 6 ( Ep - 1 ) . (16)

Figure 8. Soft data (15).

tolerably feasible images

Uniform
image

To fit the data tolerably, neither under-fitting nor over-fitting, we
must take N of the order of I/a. However, the degeneracy factor is then
peaked in the horizontal (P2~P3) direction as well as in the
vertical (p^) direction, roughly with width /a • This means that by
measuring p^ to one part in a million (say), we are also claiming to
measure the difference (P2~P3) to about one part in a thousand.
This claim is surely absurd, yet it is forced on us if we treat the
degeneracy as a probability.

4) It may not be possible to find ANY value of N for which the maximum
of post(p) is tolerably feasible, neither grossly under-fitting nor
over-fitting. Maximizing post(p) at a given value of N is equivalent to
maximizing its logarithm (NH + log L), which is achieved by the image
which lies on the highest line of slope 1/N in the (H, -log L) plane
(Figure 9).

Now consider the following data

Pi + p2 + P 3 = i

pl (p2 " P3) = 0 +

p2 - p3 = 1/2 + 1/2
 ( 1 7 )
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Figure 9. Maximizing NH + log L for given N selects the
image marked with a star.

Entropy H

slope 1/N

- log L
•

which are equivalent to the likelihod (Figure 10)

L(p) oc exp(-2(p -p -1/2)2) 6 (p,+po+p, (18)

Figure 10. Feasible images (17) lie along the dashed line
in image space.

E D

The feasible images lie along the following curve (Figure 11) in the
(H, -log L) plane.

Values of N which are too large produce images between A and B which
underfit the data. Values of N which are too small produce images
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Figure 11. Entropy as a function of log-likelihood for
feasible images (17).

Entropy H

B

- log L
"chisquared"

Unacceptably
close to data.
Overt it.

Tolerably feasible Unacceptably
far from data.
Underfit.

between D and E which overfit. No value of N gives the expected level
of misfit near C. Although overfit is not a serious difficulty in such
a small problem, it becomes very serious in practical problems with many
degrees of freedom, because noise is then being interpreted as true
signal, and the results of this can be disastrous (Gull and Daniell,
1978).

In a constrained maximization problem, a Lagrange multiplier (which is
how N is being used here) may or may not lead to a solution with an
acceptable value of the constraint. It depends on the problem.

5) Even if the practical difficulties could be surmounted, there is
still the theoretical point that the degeneracy is not the true prior.
The true prior may be quite different. A strong candidate (generalizing
Jaynes, 1968) is

prior(p) n (i/pi) . 6( (19)

corresponding to ignorance of the scale of each component of p. With
this prior, the proper Bayesian solution for post(p) is fully defined as
L(p)prior(p). There is no place for an entropy or "monkey" argument.

We may conclude that although the monkey approach affords an interesting
categorization of probability distributions (which are isomorphic to
images), it does not help us to make a selection. Furthermore, it
invites us to consider the degeneracy exp (NH) as a prior, when the true
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prior is actually quite different. We need to focus more clearly on the
selection procedure. Probabilistic arguments have not helped us to
select a single image.

5 THE KANGAROO APPROACH

The following argument is essentially due to Gull, and has
appeared in the proceedings of a conference in Sydney (Gull and
Skilling, 1984), hence its antipodean flavour. It was inspired by the
far more careful and formal work of Shore and Johnson (1980, 1983), and
I hope they will forgive this whimsical presentation. Tikochinsky,
Tishby and Levine (1984) have given a closely related result, and a
proof of intermediate formality is given by Livesey and Skilling
(1985).

In the course of our Australian travels, we observed the following.

Information:
(1) One quarter of kangaroos have blue eyes.
(2) One quarter of kangaroos are left-handed.

Question:
On the basis of this information alone, estimate the propor-
tion of kangaroos that are both blue-eyed and left-handed.

The joint proportions of left-handedness and incidence of blue eyes can
be represented as a little 2 by 2 contingency table with one degree of
freedom among the 4 entries. Acceptable solutions are positive through-
out, and we show three examples, the independent case and those cases
which display the maximum amount of positive and negative correlation.

Blue
eyes

T

T
F

1/4
0

F

0
3/4

T
F

Left-handed

T F

1/16 3/16
3/16 9/16

Uncorrelated

T
F

T

0
1/4

F

1/4
1/2

Positive Negative

Suppose, though, that we must choose only ONE answer - which is the
best? Clearly, the answer we select cannot be thought of as being any
more likely than any other choice, because there may well be, and
presumably is, some (small?) degree of genetic correlation between eye
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colour and handedness. However, it is nonsensical to select either
positive or negative correlations without having any relevant data. Our
prior knowledge should not lead us to expect any particular sign of
correlation. Although the independent choice

prob(blue and left) = 1/16 (20)

is not quantifiably more probable than any other, it is certainly to be
preferred. Here is a selection problem for which we know the answer in
advance. Let us use it to test our theory.

Suppose that we seek an optimal, or "best" solution, presumably by a
variational principle, maximizing some functional

H(p) = I h(p.)
X (21)

which defines what we mean by "best". The table shows the results for a
few currently recommended functionals (Nityananda and Narayan, 1982;
Frieden, 1983).

Function

Shannon entropy

Burg entropy

Intermediate form

Least squares

- I

I

I

" I

P log p

log p

Pi

P2

prob(blue eyes
& left-handed)

1/16 = 0.0625

0.09151

0.07994

0

Correlation

uncorrelated

positive

positive

maximally negative

With one notable exception, these results are very peculiar: for
example the least squares form predicts that no left-handed kangaroo has
blue eyes.

This presentation in terms of contingency tables of probabilities is, of
course, equally applicable to images. Consider the following
re-statement of the problem.

Information (data):
(1) One quarter of the flux comes from the top half of the

image•
(2) One quarter of the flux comes from the left half of the

image•

Question:
What proportion of the flux comes from the top left
quadrant?
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Here again is a problem for which there is a single compelling candidate
(answer = 1/16) for selection. Most selection procedures, though, give
different answers. The least squares form, for instance, says that all
the flux which comes from the top half of the image is concentrated on
the right-hand side. Without further data, it is difficult to imagine
any sensible basis for this general decision.

Every variational functional except - £p log p fails to be consistent on
even this simplest non-trivial image problem. This result was already
implicit in the work of Kullback (1959). Inconsistency will certainly
not disappear just because practical data are more complicated: the
only way to avoid it is to use maximum entropy. Four axioms are needed
to prove this.

1) The form of H should not depend on the type of data being analyzed.
2) H should depend on the proportions, not the units, of the image.
3) Extra knowledge about the relative proportions within one area of the

image should not affect the image elsewhere.
4) Independent data should give images which combine multiplicatively,

as in the kangaroo example above.

This theorem is very important. It deals directly with the basic prob-
lem of selecting a single distribution p, given incomplete data. The
proof uses a simple type of incomplete data for which there is one
compelling selection. The only general way of obtaining this selection
is to use maximum entropy.

The formal theorem explicitly requires hard constraints. Jaynes (1978)
specifically warned against using maximum entropy with non-testable
(soft) constraints, so that soft constraints must be made hard if the
kangaroo approach is to be justified. To do this, we shall decide to
accept any tolerably feasible distribution (say at 90% significance in
some statistical test), and to use membership of this "feasible set" as
a hard constraint C(p). By doing this, we will never be able to reach a
reconstruction which is in serious disagreement with the experimental
data. The data come first. They tell us which images are permitted,
and which are not. They can do no more. Maximum entropy then tells us
which image we should prefer.

There is an unexpected advantage to be gained from the apparently
dubious step of forcing the soft likelihood function L(p) into a hard
equality or inequality constraint C(p). Only the 2-norm (chisquared =
total variance) of the residuals enters L(p), assuming Gaussian noise on
the data. It may well be that only the total variance is important in
the large space of all possible images. However, when a single image is
selected, its residuals could be markedly non-Gaussian, even though the
total variance is correct. If that is perceived as damaging, we could
re-define C(p) to put a limit on the 1-norm or the oo-norm of the
residuals instead. Indeed we could apply any statistical test we liked
to ensure that the residuals become "acceptably random". There is more
information in the residuals than appears in the overall likelihood L(p)
and the freedom to use it can be useful (Bryan and Skilling, 1980).
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Yet more flexibility comes from invoking prior information. The simpli-
fied "kangaroo" derivation of entropy ignores any prior information one
might have about the image. However, entropy is a relative quantity.
It is always measured relative to some initial model or measure m, and
the true generalized formula (Jaynes, 1968) is

H = - £ pilog(pi/mi)

(22)

as derived axiomatically by Shore and Johnson (1980, 1983). We shall
discuss prior information in more detail later.

Summary of Kangaroo Approach
We are led to prefer the maximum entropy distribution on

grounds of consistent reasoning. We can quantify this preference by
evaluating differencees of entropy between different distributions, but
we are not led to quantify this preference probabilistically. Returning
to the earlier example (15) of a specific dataset {pi+P2+P3~l>
Pl=B2/3+a with a small}, we are led to prefer the symmetric solution p
- (2/3,1/6,1/6) over others such as (2/3,1/3,0). This preference can be
quantified as H = 0.8675-0.6365 - (0.3333 bits) In2, but we need not
and do not claim that (P2=P3) has effectively been measured to any
particular accuracy (such as /a). The preference is well founded: the
claim would be false.

Maximum entropy is seen to be very different (Figure 12) from the direct
Bayesian approach. The Bayesian analysis is performed in the enormous
space of all possible images p. In this space, results cannot be
displayed and computations cannot be performed (except in specially
simple cases). The maximum entropy analysis is performed with only a
few images, in principle just m and p. The result can be displayed and
the computations can be performed (except for pathologically difficult

Figure 12.
entropy.

Bayesian procedure contrasted with maximum

Bayes Maximum entropy

prior (p)

Soft
data L(p)

post (p)

model m

Hard data
constraint C(p)

distribution p
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data constraints). However, the soft constraint L(p) has to be replaced
by a hard constraint C(p) before maximum entropy can be applied.

There is a Bayesian approach that is connected to maximum entropy. It
is the "monkey" argument, which ranks distributions according to their
Bayesian degeneracy factors

prob(histogram n | model m) <* ft = exp (NH) (23)

This is a probability distribution in the space of N samples from a
model. It is not a distribution in the space of all images, and we must
not confuse the two spaces.

6 INCORPORATING PRIOR KNOWLEDGE

The maximum entropy method is a good, general-purpose tool
capable of reconstructing images from a wide variety of types of data.
We gave a review (Skilling and Gull, 1981) at the first Laramie meeting,
and a second review is published elsewhere (1984b). The method as
developed above ignores many important types of prior knowledge. Of
course, a maximum entropy image always uses an initial model m, but it
appears at first that this can only incorporate simple prior knowledge.
If, for example, we expected a particular part of the image to be
bright, we could allow the model to take correspondingly large values
there, and this would be reflected in the reconstruction (provided the
data permitted).

However, although we might expect to find a bright object somewhere in
the field of view, we might not know beforehand where it is to be found.
This state of knowledge is translation invariant across the image, and
it would seem that we must assign a uniform model m = constant in the
entropy expression (22). I shall call this the austere model. It fails
to encompass general prior knowledge.

We argued last year at Laramie that this difficulty can be resolved by
using a larger space SN of multiple-sample distributions. Maximum
entropy can be applied to S^ just as well as to S. Only the interpre-
tation is different, because a single sample from a distribution in S^
represents a sequence of N samples from a distribution in S. The model
^ijk... (** suffices) now represents the measure assigned to a
sequence of N individual samples i,j,k,...: it will be symmetric on the
indices. This allows a far richer encoding of prior knowledge than is
possible in S alone.

To illustrate this, consider the very simplest example. We are told
that one cell out of the M cells in our image is believed to be six
times brighter than the mean of the others. If this cell were the
first, we would assign an initial model or measure

m± = (6,1,1,1,..) = 5 S n + l (24)
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on single samples. Likewise, we would assign a measure

mij = (5 « n + D(5 6j]L + 1) (25)

on double samples, and so on, up to

." ( 5 6il + 1 ) ( 5 6jl + 1 ) ( 5 6kl + 1)-#- = ^ ( 2 6 )

for N samples, where n^ is the number of "1" suffices in the sequence
i,j,k,... However, we do not know that the cell in question is the
first. It could be any of the cells, say the rth. This state of knowl-
edge is encoded by adding the measures for the individual possibili-
ties.

For single samples, we get

m. = s (5 6.r + 1) = 5 + M , ( 2 7 )

which is independent of i, and hence uninformative as expected. For two
samples, though, we get

m.. = E (5 6.r + 1) (5 6jr + 1) = 25 6.. + 10 + M , ( 2 g )

which is not constant, and hence is informative. The first sample i
helps to indicate where the second sample j may be found. Continuing to
N samples, the measure becomes

M n
m . =

 rf x
 6 r ' (29)

where nr is the number of occurrences of "r" in the suffix list,
defining the histogram of the samples.

Clearly, many other forms of prior knowledge can be coded likewise. N
samples allow us to code correlations up to Nth order.

We are now in a position to use maximum entropy to find a distribution

P i in S, or Pij in S
2, up to Pijk... *n SN, by

maximizing
H = I P

1JK. .

subject to data constraints. We should remember that we are aiming to
select one single image p^ in the single space S. In other words, we
wish to present our "result" as a simple set of proportions p^,
isomorphic to a pdf from which successively independent samples i could
be taken. Accordingly, we set
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in accordance with independent sampling, because this is our definition
of an image in S^. Note that the prior model m does not factorize,
but our result p in S must.

Maximizing the austere entropy expression (22) in S using a model y,
over the constraint C(p), would have yielded the variational equation

- log p. + log y. = A 30/9p. + a (32)

with Lagrange multipliers X for the constraint and a for normalization.
Maximizing H(N) from (30) instead gives

- log ? i + ^ £ PjPfc.. log m _ k ^ = A 8C/8Pi + a •
jk. .

This is so similar to the austere equation (32) that we can think of it
(and compute with it) in terms of a result-dependent model

p.(p) = exp( Z p.pk.. logm..k#i )
JK. .

in the single space S.

For the specific illustrative example above, the measure (29) becomes

as N-*30, where g is the greatest number of occurrences of any individual
cell in the sequence ijk... The jk.. summation involved in the result-
dependent model (34) is dominated by histogram values n near Np..
Hence g, which includes a single "i" in its defining sequence, may be
replaced by

N p(max) , largest p not in cell i

g
N p(max) + 1 , largest p in cell i ^ '

Finally, the result-dependent model (34) is

constant , largest p not in cell i

(37)
6 . constant , largest p in cell i ,

which is an eminently reasonable way of encoding the prior knowledge.

The procedure can work in practice as well as in theory. The following
graph (Figure 13) shows a noisy set of data for a one-dimensional
64-cell image, blurred by convolution with a 3-cell square wave.

Austere maximum entropy, with a uniform model, gives the reconstruction
(Figure 14), containing a bright point on a relatively smooth
background.
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Figure 13• Blurred and noisy data.

figure 14, Austere maximum entropy reconstruction.
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The neighbourhood of the bright point shows the oscillatory behaviour
known as "ringing" in deconvolution problems. Ringing occurs because
the austere entropy imposes a severe penalty on any point which is
unusually bright (or faint). In trying to reduce the intensity of the
bright point, the entropy damages the reconstruction of the local back-
ground. Of course, if our prior ignorance was such that we really did
not expect to find a bright point, then this reconstruction would be
perfectly defensible.

If we do know that such a point may exist, we should use the result-
dependent model. It gives the next reconstruction (Figure 15), in which
the point is reproduced cleanly, without badly corrupting the local
background.

Figure 15. Maximum entropy reconstruction using result-
dependent model (37).

We hope that this almost trivial example will foreshadow much more
powerful future results.

7 CONCLUSIONS

The maximum entropy principle gives us a powerful and
general method of assigning distributions of probability or proportion
(images) on the basis of incomplete data. An appealing way of deriving
the entropy formula is to use the "monkey" argument in which N quanta
are thrown randomly at the cells of an image. It is tempting to use the
associated degeneracy tt* exp(NH) of a histogram n of occupation numbers
as a prior probability for the corresponding distribution p = n/N of
proportions. However, this leads to increasingly severe difficulties
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over the role and meaning of N, and the probabilistic identification
becomes untenable. The degeneracy is not the prior probability.

Fortunately, probabilistic reasoning can be bypassed entirely. There
are some particularly simple problems, such as the "kangaroo" example,
where the choice of distribution is compelling. The only generally
applicable selection procedure which will give the correct answer for
these simple problems is the maximum entropy method. Maximum entropy
now appears as part of a hierarchical method of analysis. The data
comes first. They are subsumed in a hard constraint which defines those
images which are consistent with the data, and those which are not.
(Incidentally, we are allowed a useful flexibility of choice of
constraint function.) Only after applying the data constraint do we
express our preference for images with larger entropy. Such images are
not more probable than the others - they are merely to be preferred.

In the austere "kangaroo" approach, the parameter N effectively
disappears from the theory. Most forms of prior knowledge are also
absent from the theory, even though we know they can be useful in
practice.

By retrieving N and working with N samples from our distribution instead
of just one, it turns out that we can incorporate and use general prior
knowledge in our reconstructions. N now measures the level of complex-
ity (order of correlation) of prior knowledge which we are prepared to
encode. We remain entitled to use maximum entropy. These more general
calculations are equivalent to austere calculations with single samples,
except that the "initial" model now depends on the reconstruction
itself. Effectively, the computer programs which do the reconstructions
can learn as they iterate towards the maximum entropy image, by recog-
nizing and incorporating features expected on the basis of the prior
knowledge.
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ABSTRACT

The Cambridge algorithm is designed to compute high
resolution maximum entropy images from large datasets. The
underlying ideas are presented, together with recent devel-
opments which improve the algorithm's treatment of nonlinear
data, for which there may be no unique maximum of entropy.

1 INTRODUCTION

This paper describes our work in Cambridge on practical
methods for computing maximum entropy images. It divides into two main
parts. The first part describes the technique of setting up an iterated
subspace of search directions within which entropy is maximized. This
multiple search direction method was originally reported at the first
Laramie workshop (Skilling, 1981), and is now published as Skilling and
Bryan (1984). The second part of the paper describes our recent ideas
on how the image increment should be controlled within the subspace.
For linear data (related to the object by a linear transformation), this
new control algorithm effectively reduces to the method outlined in the
1981 and 1984 papers. For the more difficult problem of nonlinear data,
such as the Fourier intensity data found in crystallography, the new
control algorithm supersedes the old. It deals with the maximum entropy
problem directly, instead of relying explicitly on Lagrange multipliers.
These new ideas were first reported in Livesey and Skilling (1984).

The formal problem is to compute a maximum entropy image f^ (i =
1,2,...,N) from a practical dataset D^ (k=l,2,...,M). The data are
related to the object by some transformation

Fk = Fk (f) (1)

which defines the "mock" data F which would have been produced if the
object were correctly represented by the image f. To use the data, we
set up a constraint function C(f) such as chisquared (Gull and Daniell,
1978)

C(f) = £ (F - D )2/o2
R K * (2)
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which measures the misfit between the mock data and the actual data.

The computational problem is then to find that image f which maximizes

S(f) = - H . log(f /eA) (3)
i

(where A is a constant defining the normalization of f) over a
constraint

C(f) < C (4)
o v '

(such as chisquared not exceeding the number M of observations). A
severe restriction on programming is that the size of the problem
precludes any explicit matrix operations in the mega-dimensional image
or data space. We can, for example, Fourier transform between the two
spaces in 0(N log N) operations, but we must not attempt any O(N^)
matrix operations. Since the entropy is nonlinear, the algorithm is
necessarily iterative, and usually the computing time is dominated by
the transforms.

2 SUBSPACE

Simple optimization algorithms such as steepest ascents or
conjugate gradients (Fletcher and Reeves, 1964; Powell, 1977) normally
maximize a single function Q(f) of the image by selecting a single
direction e in which to increment the image:

fi(new) " f l + X ^ (i=l,2,....,N) ( 5 )

(note the contravariant indices, for consistency with later notation).
The coefficient x which defines the new image is determined by maximiz-
ing Q along e, either using local gradient and curvature information
near f or by an explicit line search. Conjugate gradient is a more
powerful technique than steepest ascent because the search direction e
is chosen more intelligently, but it relies on Q being a quadratic
function, to at least a reasonable approximation. This means that the
Hessian matrix 3^Q/3f^3fJ must be effectively constant over
several iterates of the algorithm. Unfortunately, if Q involves the
entropy - Ef logf, the curvature involves terms like 1/f. Such terms
are actually very sensitive to changes in f, especially when components
of f are small. Thus Q ceases to be reasonably quadratic precisely when
the nonlinearity in the entropy should be most useful. We have found it
impossible to construct a robust single-search-direction algorithm for
maximum entropy.

We recommend always using several search directions e (yal,2,•••,n) and
exploring images within the corresponding n-dimensional linear subspace

n
f1, v = f1 + Z xy e1

 /6N

(new) y vo;
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(Greek indices denote subspace quantities)• With linear data, we
usually use n=3.

However, it is not always possible to find a maximum entropy image on a
given constraint surface by maximizing a single function Q=NS-C/2,
whatever value of N is chosen. Accordingly, we model the entropy and
the constraint by separate functions

S(f + Exe) = s(x) (7)

C(f + Exe) = c(x) (8)

within the subspace. For computational convenience, the particular
functions we use are quadratic

s(x) = 8(0) + Z Syx
P - Sv gyv x V / 2 (9)

c(x) = c(0) + I cyx
u + 2v hyv x V / 2

corresponding to the first terms in the local Taylor series expansions
of S(f) and C(f) . Thus

s = E e1 aS/Sf1 = E e1 (log A - log f1) (11)
y . y . y

c = E e1 SC/Bf1 = Z Ek 8C/8Fk (12)
y y y

g = - S e V 32S/8f18fj = I e1e1/f1 (13)
&yv y v . y v

h = S e V 32S/3fi8fj = E Ek E1 82S/8Fk3F1
yV ij y V kl y V (14)

where we have written the transform of the search direction e into data
space as

Ek = E e1 3Fk /3fX . r i5^

Since the constraint function C is a sum of contributions from each
datum separately, its gradients c^ and curvatures h^v are more conven-
iently evaluated in data space: the major computing cost involved is
then the transformation of each search direction e.
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Distance limit

Quadratic models are only reliable in the vicinity of the
current image f, where cubic and higher terms are negligible. Hence we
should only use the models within a "trust region" of images within some
distance r of the current image. This raises the question of choosing
an appropriate metric on image space. The most natural measure of
separation is the cross-entropy (Kullback, 1959)

AS = E (f1 + Af1) log (f1 + Af1)/f1 (16)

which gives the entropy loss (or information gain) involved in changing
one's knowledge of the image from f to f+Af. For small Af, this becomes
(at fixed normalization)

AS = I (Af1)2/ 2fX (17)

which we now use in our definition of distance

% = ( 2AS )lJ1 (18)

The metric tensor corresponding to this definition is the entropy metric
(Bryan, 1980)

otherwise (19)

The same tensor appeared as the entropy curvature in (13), and we are
led to define distances and angles in the subspace with g as the
metric. Specifically, the length-squared of an image increment Exe is
defined to be

*2 - h V v • < 2 0 )

and the distance limit we impose is

I % x . (21)

On dimensional grounds, r^ is set to some fraction (typically 1/5) of
the total image intensity Ef.

Search directions

The success of this algorithm is, of course, crucially
dependent on choosing useful search directions. Obvious first choices
are the gradients of the entropy (to increase entropy) and of the
constraint function (to alter the constraint value). However, the
differential operator 9/3fi produces covariant vectors, which should
not be used directly as increments to a contravariant image f*. We
use the entropy metric g and consider contravariant gradients
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2- = E g1^ 8S/Bf^ = f18S/3f1 (22)
1 J

^ (23)

as search directions.

Quite apart from the aesthetic attraction, several practical advantages
follow from using contravariant directions.

1) These are the directions which maximize the changes in entropy and
constraint per unit distance, as defined by the entropy metric.

2) The metric-derived factors of f* in the search directions
discriminate in favour of high values (which presumably represent
the most important parts of the image) and against low values, and
this helps to keep all values positive from one iteration to the
next.

3) Multiplication by f in image space corresponds to a nonlinear mixing
in data space, so that the algorithm easily and naturally combines
the information given by different data, incidentally allowing
estimates of unmeasured data to be made.

Even for simple linear data, though, the two search directions (22) and
(23) are in themselves barely adequate if the required image has high
dynamic range f(max)/f(min). Algorithms such as quasi-Newton methods
(Gill, Murray and Wright, 1981) and conjugate gradient obtain their
power by using information from previous search directions, but we have
not found it helpful to retain such memory. This is because the entropy
curvature changes so much from iterate to iterate that old directions
are useless: in fact if old directions are useful, we take this to mean
that the distance limit r has been set too small.

However, we can look ahead to some extent by calculating from local
information what the two search directions should become after the image
has been incremented by x̂ -ê  + ^e2* The entropy direction (22)
would change by

x1f1 S e] 82S/9f19f^ 4- x2fX E e^ 82S/9f13fJ . (24)

Since a2S/3fi8fJ - g-y - 1/f1, this is simply the original
increment, so it gives us nothing new. The constraint direction (23)
would change by

Xlfl Eej 82C/8fi3f:i + x2fX Zej 82C/8f18fj . (25)
j l j

This does give us new directions, which we may select as
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e1 = f1 E ej 3 C/8f18fJ (26)

j

Each of these can be evaluated at a cost of two image/data transforms,
and the resulting family of four search directions gives a very robust
algorithm for linear data. One can recurse the lookahead procedure to
generate more pairs of search directions, but the extra cost usually
outweighs the benefits (one does not extend the radius of convergence of
a series by taking more terms!).

Whatever search directions are used we always recommend checking that
the final image one produces is indeed a maximum entropy image, and not
merely an artefact of algorithmic inefficiency. This is done by
calculating the angle

6 = cos"1 ( S . C ) (28)

between the unit gradient vectors S and C of entropy and constraint (for
consistency of approach, we use the entropy metric to define lengths and
scalar products). Only if this angle is a reasonably small fraction of
a radian is the image acceptable. It is, unfortunately, quite easy to
write programs which purport to maximize entropy, but do not.

3 CONTROL

Within each iteration, we have now reduced the problem
from an optimization in the full megadimensional image space to an
optimization within a subspace of n search directions. Our standard
programs for linear data use only three, but if the data are nonlinear
functions of f, we may need more. Also, if the data are nonlinear,
there need be no unique maximum of S for given constraint C. Especially
in this case, we must control the increments of f with care.

To simplify the following algebra, we diagonalize g and h
simultaneously: this is equivalent to choosing base vectors for the
subspace with respect to which g is the identity and h is diagonal with
eigenvalues h . The reduced problem is then to maximize the quadratic
entropy approximation

n
s(x) = s(0) + Z (sx - x x /2 ) (29)

y=l y y

over an appropriate limit on quadratically approximated constraint
values

n
c(x) = c(0) + Z (ex + h x x /2) < constant , (30)



Skilling: The Cambridge Maximum Entropy Algorithm 185

within a trust region given by

n

£2(x) = I x x ^ r2 , (31)
y=l M M

where r has a preassigned value- Even this smaller problem is tricky to
analyze correctly.

Since s, c and ^ are all differentiable in x, any constrained maximum
of s must lie at an extremum

6q = 0 ,

q(x) = as - c - (b-aH2/2 ( 3 2 )

for Lagrange multipliers which we choose to write as a and (b-a)/2. All
the extrema may be parameterized by just two variables a and b, but not
all these extrema of q(x) correspond to maxima of s. We now proceed to
retrict the possible values of a and b.

Clearly a>0, because reducing c at constant ^ must decrease s, if the
entropy is to be truly maximized. Likewise we must have a^b because
reducing &*- at constant c must also decrease s: the special case a=b
holds in the interior of the trust region, where the distance constraint
is not operating. Thus

0 < a < b if I =r

(33)
0 < a = b if I <r ,

which incidentally requires b to be positive.

The solution of (32) for x is

x = ( c - a s ) / 6 , 6 = -h - b (34)
y y y y y y K '

This is, of course, only relevant within the trust region

%1 = i ( v a \)2/i =r2
and we may use this as a restriction on the permitted values of a.

If A=r, a is restricted to either of the two roots

a = ( ^s c fi"2 + D ) / Es2 6~2 (36)
± y y y — y y \JU^

2 2 2 - 2 2 - 2 2 - 9 -? 9
D = r Es 6 - Es 6 . Zc 6 + (Zs c 6 Z ) Z . (37)

y y v^ v^ v v u u \i
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On the other hand, if &<r we must have a=b. All relevant extrema are
now parameterized by one positive variable b, and it is feasible to
instruct a computer to investigate a sufficiently dense set of its
values directly.

If D^<0, the trial value of b can be rejected immediately, since no
relevant point can be inside the trust region. Otherwise, there are up
to two choices for a:

a = a is allowed if 0 < a < b ,

a = a is allowed if 0 < a <b , (38)

a = b is allowed if b is between a_ and a .

For each value of b and each choice of a, we must now investigate
whether the corresponding extremum is a true maximum of s. The analysis
is in two parts.

Distance limit not operating, K r, a = b > 0.
the stationary point (

As = £ (t y - y y /2)

Perturbing the stationary point (34) by y = Ax yields changes

Ac = I (a t y + h y y /2)

where

is the local gradient of the entropy model. Since Ac=0, we may take As
to be purely second order

As = Z 6pyyyu/2a . (41)

For the entropy to be a maximum, we require A s<0 whenever Ac=0.

As y varies around a small perturbation sphere, the stationary points of
As at fixed Ac occur when

<5( (l+a7p)As + Ac + a(l-q/p) Ey^2/2 ) = 0 (42)

for suitable Lagrange multipliers related to p and q. The solution of
(42) is

The coefficient p is merely a scaling factor relating to the perturba-
tion radius, but q is determined by the condition
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Zt y = 0 / / / N

y y (44)

that there be no first order change in the constraint. This condition
reduces to

f(q) = Zt^2/(q-6^) = 0 . (45)

Correspondingly, the change in s is

As = (q/2a) E y 2 (46)

(after using (45)). It follows that s has the sign of q. Hence s will
be a maximum if and only if all the roots of (45) for q are negative.

Fortunately, it is not necessary to solve (45) to determine whether or
not its roots are all negative. Define the following functions of q.

Tr(q) = n (q-6 )
y y

 9 (47)
F(q) = ir(q) f(q) = E t II (q-6 )

F (q) is clearly a polynomial of degree n-1, so that it has at most n-1
real roots. At q=6^, it takes the following values

1 v*i (48)

Assuming the eigenvalues h (and hence also 6) to be ordered with
h^<h2< ••• <hn, we see that F(6i) has alternating sign in i
(i=l,2,...,n).

sign(F(6i)) = (-1)
1"1 (49)

Hence the n-1 roots of F must all exist, and interleave the values 6^.
In particular, the rightmost (most positive) root of q lies between 62
and 6^, and is the only root in that interval.

\ 63 62 61

0 + + + + + + 0 0 + + + + + + : Sign of F(q)

i) If, for our choice of b and a, we have 6^ ^0, then all roots q
must be negative and s is maximized. This always happens for
convex constraints because these have positive eigenvalues h and
hence negative 6.

ii) Conversely, if 62 >P, then the rightmost root must be positive,
and s is not maximized.
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iii) The intermediate case ^ < 0 < \ can be dealt with by
inspecting the sign of F(0). If F(0) is positive, all the roots
are negative and s is maximized: if F(0) is negative, s is not
maximized.

This simple computational test tells us whether or not we have a true
maximum of the entropy model.

Distance limit operating, & = r, 0 < a < b .

Perturbing the extremum point (34) by y yields

As = S ( (sp-xy)yy - yyyp/2 ) ( 5 0 )

as before, but now there is an additional restriction on

A£2/2 = Z ( xyyy + y ^ / 2 ) . ( 5 1 )

The corresponding change in the constraint function near the stationary
point x is

Ac = £ ( a(s -x )y - (b-a)x y + h y y /2 ) . (52)

Since A& and Ac must both be zero, AS is again of second order

As = I 6 y y /2a . (53)

y y y y

The stationary values of this, subject to first order contraints

Ex y = E s y = 0 (54)

from A&2 an(j Ac, and to

2
Z y = fixed (55)

from restriction to a small sphere around x, are at points of the form

y V r V ' (q~V (56)

where p, q, and r are related to the three Lagrange multipliers. Using
(54), the corresponding entropy change is

As = (q/2a) I y^ (57)

which again has the sign of q. The allowed values of q are obtained
from the condition
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#(q)

X X S S
y y y y

y y
q -6, q -6,

S X
y y

= o (58)

that (54) allows a solution with non-trivial p and r. A little algebra
converts this to the form

4>(q) = o

(s x - x s )'
y v y v (59)

2 y*v (q -6 ) (q -i

from which we see that

Tr(q) (60)

is a polynomial of degree n-2. Accordingly there are at most n-2 real
roots of <Kq)=0. Now define functions

G(q) = 7r(q) E x x /(q-6 )

H(q) = 7r(q) £
(61)

As above, G and H are polynomials of degree n-1, whose n-1 real roots
interleave the values 6^. Furthermore whenever G is zero, $(q) is
seen from (58) to be negative, so that the sign of $(q) alternates
between successive zeros of G, and similarly for zeros of H. Conse-
quently, the n-2 roots of 0 are all real, and interleave both the n-1
zeros of G and the n-1 zeros of H.

0 + + + + + + + + + + 0 0 + + + + + : Sign of G(q)

0+ + + + + + 0 0 + + + + + + + : Sign of H(q)

+ + + + + + + + + + 0 0 + + + + + + + + + + : Sign of

We can now test whether or not all the roots of <(> (or <f>) are negative,

i) If ^ ^ 0, all roots are certainly negative. This always
happens for convex constraints.

ii) If 62 1 ° > a 1 1 roots are negative if and only if $(0)>0.



190 Skilling: The Cambridge Maximum Entropy Algorithm

iii) If S3 < 0 < &2» a t l e a s t o n e root is positive if and only if
G(0) > 0 or H(0) > 0 or ( G(0) < 0 and H(0) < 0 and $(0) < 0 ) .

iv) If 63 >̂  0, at least one root is certainly positive.

These straightforward tests tell us whether or not we have indeed
maximized the entropy model,

4 FINAL SELECTION OF IMAGE INCREMENT

We can now instruct a computer to run through all positive
values of b (using reasonably dense sampling with perhaps a hundred or
so values), to calculate each possible value of a (a+ or a_ or b),
and to discard any pair which does not give a maximum of s. The
surviving pairs form one or more sequences of permitted values, each
with its own subspace increment x and entropy and constraint values s(x)
and c(x).

Figure 1 shows a typical plot of s against c, for entropy and constraint
models

2 2 2
S ( *v} = cfO^ -I- S Y -4- S Y — f "v -4- -v 4-v ^ /9 /£o\
VXy — b\UJ T JX. T JX_ V, X- T X- T X^ ) I Z \OZ.)

c(x) = c(0) - (63)

Figure 1. Entropy s as a function of constraint c for
the model defined by equations 62 and 63, within the
trust region. AB outlines the constrained entropy maxima.

•'. V- .--.'; ' ."•..'
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with the axes plotted through (c(0),s(0)). The curved line AB is the
locus of points produced by the control algorithm, and the isolated
points correspond to image increments x randomly scattered within the
trust region

2 2 2 2
Z (x) = xl + x2 + x3 ^ 1 . (64)

AB accurately outlines the upper left boundary of the plotted points,
which verifies that s(x) is indeed being maximized over c(x)<^ constant
within the relevant trust region. The algorithm rejected points on the
upper right boundary beyond B because s could be further maximized
(towards B) by allowing c to decrease. The particular model (63) had a
convex constraint function c(x), for which the eigenvalues were all
positive. Accordingly, there was a unique maximum of s for each value
of c, and only one trajectory AB from the overall minimum of c to the
overall maximum of s.

We still need to select a single image increment to be the output of the
control algorithm. Although we usually wish to keep reducing the
constraint value until the data are fitted correctly, our experience
with such problems suggests that one should not try to reduce c more
than about 4/5 of the way from the existing value c(0) to the overall
minimum at A. Trying to reduce the constraint value faster is actually
inefficient because the entropy s no longer has enough influence on the
iterations. There seems to be no compelling logical reason favouring
any particular compromise value: it is a matter for common sense and
experience.

With nonlinear data, by contrast, there may be more than one local
maximum of s at constant c. An example of this is the model

s(x) = s(0) + 5x2 + 5x3 - ( x^ + x2 + x3 )/2 (65)

c(x) = c(0) - xx + x3 + ( 2x^ - 5x3 )/2 (66)

The corresponding plot of s against c, with axes plotted through
(c(0),s(0)) is shown in Figure 2.

There are now two separate trajectories AB and PQ of local entropy
maxima, which indicates a real ambiguity in the solution to be chosen.
This may reflect a bifurcation in the locus of entropy maxima for given
constraint values in the full image space, or it may not. In fact the
multiplicity of solutions in the subspace bears no particular relation
to the multiplicity in the full space. Separate maxima can develop in
the full space, either in directions which are not spanned by the search
directions or at distances greater than the trust limit. Equally, a
bifurcation in the subspace can be merely an artefact of inadequate
search directions. It is impossible to decide.

Returning of necessity to the subspace, an ideal computer program would
investigate each branch separately. This may be impractical if there is
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Figure 2. Entropy s as a function of constraint c for
the model defined by equations 65 and 66. AB and PQ are
two separate branches of constrained entropy maxima.

a high level of ambiguity. We may have to restrict our programs to the
"most promising" branch, however that is to be defined, but allow the
possibility of changing to alternative branches if the solution we
obtain is physically unrealistic. This is not an easy problem. In
Figure 2, for instance, should we select the upper branch AB because it
has greater entropy, or the lower end of PQ because it fits the data
better?

5 CONCLUSIONS

Programming maximum entropy is not trivial. This paper
has outlined the "Cambridge algorithm", which deals reliably with linear
data, and has discussed our latest ideas on controlling it for non-
linear data. We see no rigorous way of treating all the ambiguities
which might occur in the latter case, but we have realistic hopes of
constructing maximum entropy programs which will be of value even for
badly nonlinear data. The development of such programs is one of the
frontiers of our current research.
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MAXIMUM ENTROPY AND THE MOMENTS PROBLEM:
SPECTROSCOPIC APPLICATIONS
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ABSTRACT

A classic inverse problem, arising in many contexts, is to
determine a distribution function I(co), given its moments
Mn =/ do)I(u))(jo

n, n • 0,1,2, ... If all the moments are
known, the complete set {Mn} uniquely determines I(co),
provided the M^ do not increase with n faster than n! In
many applications, such as spectroscopy, we can calculate
from statistical mechanics only a finite number of the
moments. The problem then is: what is our best estimate of
^(a))> given this finite amount of information about it.
Standard maximum entropy arguments give us a simple solution
to the problem, where 'best1 is interpreted as 'least
biased'. Examples to be discussed include infrared absorp-
tion in liquid and gaseous nitrogen. The N2 molecule is
nonpolar, so that isolated N2 molecules do not absorb
infrared radiation. In condensed phases, however, inter-
molecular forces induce dipoles in the molecules, thereby
rendering the vibrational, rotational and translational
motions of the molecules infrared-active. Theory and
experiment agree in all cases qualitatively, and in many
cases quantitatively.

1 INTRODUCTION

The moments problem is a classic inverse problem which has
been studied for over a century.l~"20 ye a r e given some moments
Mn of a distribution function I(a)), where

M
n
 = /I da)I(a))o)n , n = 0,1,2,... , (1)

and asked to find the distribution function. If the moments MQ do not
increase with n faster than n!, then the complete set of {MQ} for n «
0,1,2,.. .°° determines I(OJ) uniquely. Equivalently, I(co) is determined
uniquely by its moments if it decays at large GO no more slowly than
exp(-o)). Otherwise,5>6 m o r e than one distribution can correspond
to the same set of moments. In the present context, that of trying to
determine spectral line shapes from spectral moments, this theorem is of
limited interest, since what we can calculate from statistical mechanics
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number of the moments, for n = 0,1,2, ... nmax« For
gases, typically nm a x ^ 6 or 8, and for liquids n m a x ^ 2. The
problem then is: What is our best estimate of I(co) given the finite
amount of information {MQ, M^, ..., Mnmax} about it? In what
follows we review recent work in which maximum entropy/information
theory methods^1 have been applied to this problem.

2 MOMENTS OF ABSORPTION SPECTRA

Absorption of radiation at angular frequency co is measured
by the absorption coefficient A(co) . An isolated molecule in the gas
phase experiences only the electric field EJQ of the exciting radia-
tion, and in this case one can derive from statistical mechanics a
rigorous expression for A(^). In the classical (h -> 0) limit, to which
we restrict ourselves here, the standard Kubo-type linear response
calculation yields^

K( \ 4 TT2 3 2 T / N
(a)) = 3cV -a) I(a)) (2)

where V is the system volume, c the speed of light, 3 = (kT)"1 with
T the temperature and

Ko,) = L- £ dt e"
iwt

 C(t) <3>
where

C(t) = < JJ(O) . y_(t) > (4)

with V_ the total dipole moment of all the molecules. The brackets
< ...> denote an equilibrium (canonical) ensemble average. For liquids
(2) must be multiplied by a correction factor*6 K - ĵ  ^

where n is the optical refractive index, which takes into account
(approximately) the fact that the local field Ê  seen by a molecule
differs from the externally applied field E<o*

Eq. (3) is a Wiener-Khinchin type relation between the spectrum I(co) and
the time correlation function C(t) for the system dipole moment y. By
expanding the exponential exp(io)t) in the inverse Fourier transform
relation

c(t) = C da) ela)t I((J°> (5)
we get the series expansion for C(t),

C(t) = Jo Mn ̂  (6)
where MQ are the moments defined by (1). The moments are thus related
to C(t) by

Mn - i - C<»>(0,
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where c(n>(0) E (dnC(t)/dtn)t=0
# F r o m ( 7 ) a n d ( 4 ) w e g e t

M = I"11 < y • u(n ) > (8)
n — —

In the classical limit I(o)) is an even function, so that the odd moments
vanish. Using the standard relation^ < AB> = - < AB > , where A =
dA/dt, we rewrite the even moments M2n as

M2n = < y(n ) > (9)

In particular we have

MQ = <J£2>, M2 = < j£2 > , M4 = < jJ2> (10)

Note the immense simplification in the expressions (10) for the moments,
as compared to the expressions (4) and (3) for C(t) and I(w); (10)
involves only static (t=0) equilibrium averages, whereas (4) involves
the dynamical quantity JM_( t) , the determination of which involves solving
the equations of motion for the full many-body system•

The system dipole moment _u = J±(r^ w^) depends on the positions r^
= ri ... Yj$ and orientations 0)**"""= a)]_ .. • coN of the N ~~
molecules, and can be written

+ I JM_(ij) + I jKijk) + ... (ID
j j

The first term is a so-called one-body term, and involves a sum of all
the permanent dipole moments y(i) of all the N molecules. This term is
the dominant one for polar systems such as HC1 and H2O, but is absent
for nonpolar species such as Ar, N2 and CH4 with which we shall be
concerned. For a pair i,j of interacting nonpolar molecules, the pair
moment y(ij) = y Cr^4 ud± ux) arises due to mutual distortion of
the charge clouds or the two molecules. Specific distortion mechanisms
are considered in Section 4. The three-body term y(ijk) in (11) is the
additional dipole in a triplet i,j,k not already accounted for by the
sum of the three pair terms, jj(ij) + jj(ik) +J£(jk)* The effect of this
nonadditive term on the spectrum has been studied very little, and will
be neglected, as will the higher terms in (11). For nonpolar molecules
we therefore approximate (11) by

y. = I ji(ij) , (12)

where the sum £. . is over all N(N-l)/2 pairs of molecules.

If we now substitute (12) in (10) we find, for example for MQ

M0 = iZ < i i a 2 ) 2 >
J

+
l

E <JM.(12) .

two-body three-body four-body
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Similarly M2> M4 etc. will contain two-, three-, and four-body
terms. Evaluation of (13) for liquids and dense gases requires the
pair, triplet and quadruplet distribution functions for the liquid.
Theoretical and computer simulation methods are available^ for
obtaining these distribution functions. For low density gases, where
binary interactions predominate, only the first term in (13) contributes
significantly, and the l^ become proportional to p , where p = N/V is
the fluid number density. The details of the calculations of the
moments are given in refs. 12-19 and 24.

3 MAXIMUM ENTROPY RECONSTRUCTION OF A SPECTRUM
FROM ITS MOMENTS

Given the moments (1) for n = 0, 2, 4, ... nmax>
 w e

wish to estimate I(co). A least-biased estimate is obtained^! if we
maximize the information entropy Sj,

S-j. = - /" dco I(OJ) £n I(OJ) , (14)

subject to the constraints (1) for n = 0, 2, 4, ... n^^* Solution

of this standard variational problem yields

1 -\ ^ 1 -v 4 , , , max

0 2 4 max I /1C\
-x-7 ^ * f (15)

where the Xn are Lagrange multipliers. These are determined from the
constraint conditions. For r ^ ^ <6> t h e solution is readily
obtained!2-19 ^y standard numerical methods.

4 APPLICATIONS TO COLLISION-INDUCED ABSORPTION SPECTRA

Collision-induced absorption (CIA) is the standard name
used for infrared absorption by nonpolar molecules. It is not entirely
appropriate, since we are interested in absorption in liquids, as well
as in gases, and even in gases there is absorption by pairs of molecules
in bound states (dimers), as well as by pairs in collision. For general
reviews, see refs. 24-26. We discuss in turn absorption by monatomic,
diatomic and polyatomic species.

(a) Monatomics

When two nonidentical spherical atoms (e.g. Ar-Xe) inter-
act, mutual distortion of the two charge clouds produces a pair dipole
moment JJ(12) = ̂ (£^2) which lies along the line of centres r\9.
The main effect occurs at short-range, when the two clouds overlap.
Experimental and theoretical studies have shown that the short-range
overlap dipole moment can be well represented by an exponential model

U(r) = MQ e"r/p (16)

where PQ is the amplitude and p the range. Typically p ̂  0.1a , where
a is the diameter of the atoms, i.e. the length parameter in the
Lennard-Jones intermolecular potential model,
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u(r) = 4 e —ar

12
a
r

6

(17)

where e is the well depth. Also typically u(r ^o ) ^ 10 3 D; for
comparison purposes the permanent dipole moment of a polar molecule such
as HC1 is of order ID.

Figure 1. Maximum entropy/information theory and experi-
mental^ normalized line shapes I(v) = I(v)// dv I(v)
for Ar-Xe gas mixtures at T - 295 K.

experiment

Information theory

100 150

v/cm -1
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For gaseous Ar-Xe mixtures at T = 295 K moments MQ for the model (16)
have been calculated12*27 up to n ^ " 8- T h e maximum entropy
reconstruction of the spectrum using the set { MQ, M2, M,, KA is shown
in Fig. 1, along with the experimental data. Theory and experiment are
in good qualitative agreement. The parameters in (16) and (17) were not
adjusted to get good agreement; the parameters were simply taken from
the literature. The small discrepancies in the range (50 - 150)
cm"1 are probably due to small deficiencies in the models (16) and
(17), or to the neglect of quantum effects, rather than to deficiencies
in the maximum entropy method at the nm a x ~ 6 level.

For rare gas liquid mixtures, the moments MQ, M2 have been calcu-
lated2^, but have not yet been applied to spectrum reconstructions.

(b) Diatomics

When two homonuclear molecules (e.g. N2) interact, the
main contribution to the induced dipole moment of the pair arises from
the quadrupolar fields surrounding the two molecules. The two molecules
mutually polarize each other, with total pair moment JJ(12) given by

The first term is the dipole moment induced in molecule 1 via its
polarizability £i due to the electric field JE = ^ Z^3^(£l2) •
Q2 of the quadrupole moment Q2 of molecule 2 at position ryi
relative to molecule 1. Here T ( 3 ) ( £ ) = V_ V_ V^l/r) is a third-rank
tensor and the dots denote tensor contractions2^. Similarly the
second term in (18) is the dipole induced in molecule 2 due to molecule
1. The dipole moment y(12) is modulated due to changes in the Qx anc*
_ot£ (arising from molecular rotations) and in ̂ ^ ( £ 1 2 ) (due
to molecular translational motions), giving rise to an induced rotation-
al-translational spectrum in the far infrared. (There is also an
induced vibrational spectrum, in the infrared, due to vibrational
modulations of the a± and Q|£. We shall not discuss the vibrational
spectrum here.) In addition to the quadrupolar-induced moments, there
are overlap-type terms2^, similar to those of the preceding section,
but whose effect on the N2 spectrum is smaller than that of the quadru-
polar terms.

In calculating the correlation function (4), we shall assume, as a first
approximation, that the molecules are freely rotating. There are in
reality angle-dependent intermolecular forces2^ which couple the
rotational and translational motions, but, for CIA spectra in N2> we
expect these effects could be included later as a smaller perturbation.
We thus use the same model (17) for the intermolecular forces as was
used for atoms. The correlation function now factorizes^-^>^^»^"
into rotational and translational parts

C(t) = Cro(.(t) Ctr(t) (19)
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where Cj.^^ ~ <P2(cos6(*)> i s known exactlyl5,16 f o r

freely rotating molecules; here 6(t) is the angle through which a N2
molecule rotates in time t, and P2 is a Legendre polynomial. For
gases Ctr(t) is given by

Ctr(t) = iga
2Q2N(N-l) <T( 3 ) (£12(0)) I T

O) (L±2 (t) )> (20)

where Q is the scalar quadrupole moment as normally defined23, and a
is the isotropic part23 of ̂  (we have neglected the anisotropic
part, which is small23 for N2). For liquids16, Ctr(t)
contains three-body terms such as <T^^(r|2(Q)) •
( 3 ) , as well as the two-body terms (20)'.

Corresponding to (19), the spectrum (3) can be written as a convolution
of rotational and translational spectra,

where I (w) and ltr(w) a r e the Fourier transforms of
)rand Ctr(t) respectively.

Since C ^^ anc* * t(
w) a r e ^ n o w n exactly, it is necessary

to apply maximum entropy only to the estimation of Itr(a)). Its
moments Mn

tr have been calculated for n = 0, 2, 4, 6 for the
gas1^ and for n = 0, 2 for the liquid16. Itr(o)) is then
given by (15), and the total spectrum by (21). Theory and experiment
are compared in Figs. 2 and 3. The agreement is again impressive. In
particular the qualitative difference between the gas and liquid spectra
(note the shoulder in the gas spectrum) seen experimentally is explained
by the theory. The shoulder arises in the gas spectrum because the
component spectra Itr(o)) and I r o t ^

 h a v e d * f f e r e n t widths f o r

the gas. For the liquid the two widths are about the same, and no
shoulder arises. Similar results are found at other temperatures. As
before, no adjustable parameters were used in the calculations; the
parameters Q, a etc. were obtained from other sources.23

When the absolute absorption coefficients A(o)) (see (2)) are calculated,
it is found that they are underestimated by the theory1^*16 by
about 10% in the gas and 30% in the liquid. Possible reasons for this
discrepancy are discussed in refs. 14 and 16, and include: (i) omission
of shorter-range (e.g. overlap) induction mechanisms, (ii) omission of
quantum effects, (iii) use of the simplified model (17) for the inter-
molecular potential.

(c) Polyatomics

For molecules with tetrahedral symmetry (e.g. methane
CH4), the first nonvanishing multipole moment is the third-rank octo-
pole Q (i.e. y. = 0 and (£ = 0, see (23)). The pair moment analogous to
(18),""due to mutual octopole (& = 3) induction is
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Figure 2. Normalized theoret ical ( ) and experi-
m e n t a l ^ ($) spectra I(v) = I ( v ) / / dv I(v) for gaseous
N2.
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Figure 3 * Normalized theoretical ( ) and experi-
mental^ (<£>) spectra I(v) = I("v)// dv I(v) for liquid
N2.
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Figure 4. Normalized^ theoretical ( ) and experi-
mental^" ($) spectra I(v) = I(v)// dv I(v) for gaseous
CH4 at T - 296 K.
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y(3)(12) = i, a T(4)(r19) \ fi, + i= a T(4)(r19) I fl. (22)
— 13 — —1Z . —Z 13 — —1Z . —1

where a is the polarizability (isotropic for tetrahedral molecules) and
T(n)(r) = ̂ 7n(l/r). It turns out that mutual induction due to the
next multipole (hexadecopole $, £ = 4) is also important. The
corresponding pair moment jy(^5(i2) is

"(4)(12) = ^ a T(5)(r12) I '. *2 - - ^ a T(5)(rio) ! : *, (23)

Assuming again freely rotating molecules we can again factorize C(t)
analogously to (19) for both the octopole and hexadecapole contributions
to C(t). Calculation of the spectrum1' parallels that for quadru-
polar induction. Calculations were done for gaseous CH4 and CF4 for
various temperatures. A typical result is shown in Fig. 4. Theory and
experiment are again in good agreement for the line shape. Absolute
intensities are again underestimated, probably for the same reasons as
in the preceding section.

Calculations for liquid tetrahedral molecules (CH4, CCI4, CBr4)
are currently being carried out.1**

5 CONCLUSIONS

We have demonstrated that maximum entropy methods give a
simple and accurate line shape for a variety of collision-induced
absorption spectra. Particularly noteworthy are the features that (a)
the theory is free of adjustable parameters, and (b) the solution of the
difficult dynamical problem is avoided by judicious use of the spectral
moments, which can be calculated from equilibrium statistical
mechanics.

We note that it is also possible to close the Mori hierarchy equations
for C(t) by using maximum entropy closures.1^>1~ This is useful in
particular in cases where the moments ratio W^/VL^ indicates that
the line is more lorentzian-like (64/^2^ >:> ^) than gaussian-like
(M4/M22 = 3 for a Gaussian). Here Mn - Mn/MQ is the reduced
moment. In such cases one can sometimes use Mori/maximum entropy
methods based on the moments {Mo, M2> M4}, or alternatively, pure
maximum entropy methods based on {MQ, M2, M4, M5} .
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MAXIMUM-ENTROPY SPECTRUM FROM A NON-EXTENDABLE
AUTOCORRELATION FUNCTION

Paul F. Fougere
AFGL/LIS
Hanscom AFB, MA. 01731

INTRODUCTION

In the first "published" reference on maximum entropy
spectra, an enormously influential and seminal symposium reprint, Burg
(r967) announced his new method based upon exactly known, error free
autocorrelation samples. Burg showed that if the first n samples were
indeed the beginning of a legitimate autocorrelation function (ACF) that
the next sample (n+1) was restricted to lie in a very small range. If
that (n+1) sample were chosen to be in the center of the allowed range,
then the sample number (n+2) would have the greatest freedom to be
chosen, again in a small range. In the same paper, Burg also showed
that the extrapolation to the center point of the permissable range
corresponds to a maximum entropy situation in which the available data
were fully utilized, while no unwarranted assumptions were made about
unavailable data. In fact unmeasured data were to be as random as
possible subject to the constraint that the power spectral density
produce ACF values in agreement with the known, exact ACF.

Some time later it was recognized that the realization of exactly known
ACF values rarely if ever occurs in practice and that the ACF is usually
estimated from a few samples of the time series or from some other
experimental arrangement and is therefore subject to measurement error.
Thus the concept of exact matching of given ACF values was weakened to
approximate matching: up to the error variance. Since then there have
been several extensions of the Maximum Entropy Method (MEM) to include
error prone ACF estimates. Abies (1974) suggested an extension but gave
no practical method or results. The earliest practical extension was
due to Newman (1977) who showed that with a slightly generalized
definition, one could obtain maximum entropy spectra given noisy ACF
estimates.

The Newman method appeared to work well - at least for small problems.
I am very much indebted to Bill Newman for sending me a copy of his
FORTRAN program which I compiled to run on the AFGL CYBER - 750
computer. The problems that Newman had written-up as test cases worked
very nicely. However, when I attempted to use the method on larger
problems involving noisy ACF measurements, obtained from an inter-
ferometer (an interferogram), I had difficulties. For example, if we
ignore errors in the ACF and simply solve the Yule-Walker equations
using the simple program of Ulrych and Bishop (1975), at order 20 the
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Yule-Walker equations failed, i.e., produced a reflection coefficient
greater than one and a resultant negative error power.

Now applying Newman's program, I was able to extend the valid range to
30 or so but with difficulty. The program allows an initial adjustment
of the zero-order correlation (p0) upward until a solution is obtained
and then tries to lower this value of po as much as possible. In
order to obtain convergence for Newman's iterative procedure, increas-
ingly large p 0 values were required and even so convergence was
painfully slow. I then decided that it is really improper to vary the
p o lag, because the entropy will increase without bound as p0 is
increased and thus there will be no maximum entropy solution.

Other methods have appeared in the literature, notably Schot and
McLellan (1984). This paper was written in such a general fashion, to
allow for application to multichannel and/or multidimensional data, that
I have been unable to utilize it properly for a test. Also the program
was written in "C" programming language (not spoken by the CDC Cyber):
an additional roadblock; even if the authors had made the program
available it would have been a great labor to convert it to FORTRAN.

In addition the paper by Schot and McLellan mentioned the use of "mean
lagged products as estimates of the ACF". The use of such estimates in
any connection is decidedly "anti Maximum-Entropy" in a most fundamental
way. Unmeasured data are assumed to be zero! This assumption is
unjustified and completely contrary to the letter and the spirit of the
Maximum Entropy Principle - which requires maximum use of known input
data and maximum randomness of unmeasured data.

It was then decided to search for some viable and simple alternative to
the above mentioned methods.

THE NEW METHOD

At the very heart of the maximum entropy method of Burg is
the Fundamental Autocorrelation Theorem. This theorem, announced in the
1967 paper and proved by Burg in his Ph.D. thesis (1975), can be stated
"the first n numbers po, pi,... pn constitute the beginning of an
Autocorrelation Function (ACF) if and only if the Toeplitz autocorrela-
tion matrix is non-negative definite. If we now write down the modern
Yule-Walker equations as:

P p . . . .
1 2

Po If » 1 f o 1 (1)
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the square matrix is the Toeplitz autocorrelation matrix where the
prediction error filter is written 1, gnl>8n2>

--# Snn a n d

the error power at stage n is Pn+l • The numbers gn,g22>
... gnn are the so-called reflection coefficients (due to a
geophysical analogy involving seismic reflection at interfaces). The
fundamental ACF theorem is completely equivalent to the statement that
the first (n+1) numbers, po>Pi,«*- pn> are the beginning of an ACF
if and only if the reflection coefficients: (gjj> j=l, n) are all of
magnitude less than or equal to unity. That is: | gjj | <1. This
extremely powerful and simple condition was the basis for the successful
and optimal non-linear methods of Fougere (1977, 1978), for real and
complex data respectively, which solve the line splitting and line
shifting problem associated with the Burg technique. We will now
proceed to derive the new technique using a method which parallels the
non-linear methods exactly. For if we have been given some numbers
Po>Pl)##* Pn anc* w e u s e the Yule-Walker equations (see for example
the extremely simple program in Ulrych and Bishop (1975)) and find any
gjj>l, we know that there are errors in some or all of the pfs. The
given numbers simply cannot be the beginning of an ACF! But if we look
at our Yule-Walker equations again we can see that using the bottom row,
a very simple recursion for the ACF can be derived.

k

Pk = - Z Pk-j \ j ; k-1,2 ... J-l ( 2 )

For example p̂  = -pQ g-^; P2 = ~(Pi821
 + po^22^ e t c* Given the predic-

tion error filter (PEF) and using the simple Levinson Recursion:

j=2,3,...,n

gik = gi-l k "" 8iigi-l i-k ; ( 3 )

we can obtain the PEF directly from the set of reflection coefficients.

Thus we now see that as long as we begin with reflection coefficients,
all of which lie in the range ~Kgjj<l w e will always get an ACF.

This condition is trivial to enforce if we simply set gjj = Usin$j
where U is a constant, very slightly less than 1, and Oj is any real
angle. This is the nub of the extremely simple new method. We start
off by setting all gjj = Usin$j and then find the ACF given by
these numbers. We then minimize the distance, R, between our new
acceptable ACF, (pk)> and the given unacceptable ACF (pk)> where:

R2 = I ( pk " pk >
2

k=l

The result will always be a legitimate ACF and the extension (from n
lags to oo lags) via the maximum entropy method will always produce a
Maximum Entropy Spectrum.
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It might now be argued that we have never written down an expression for
entropy and maximized it. This is true but the extension of the allow-
able ACF will always be a "Maximum Entropy Extension". If our original
given ACF were badly in error then our new ACF will fit the old ACF, but
not very well. Nevertheless, the fit will always be as good as is
allowed by the given ACF when the new method is allowed to converge.

The starting guess for the iterative solution is obtained by extrapola-
ting the last acceptable ACF of order j up to the full length of the
original given ACF, using equation (5) also to be found in Ulrych and
Bishop (1975):

P-i. J k=l ,2 , • . . ,m

The method, which has been programmed in FORTRAN, utilizes the IMSL
subroutine ZXSSQ, which is a non-linear least squares routine. The
required subroutine ZXSSQ can be obtained from IMSL; note that many
computer libraries subscribe to IMSL and have copies of ZXSSQ already.

The program is available on 9 track tape on request by seriously
interested scientists. Please do not send a blank tape but do include
the required tape density, either 800 or 1600 BPI and the required code,
either EBCDIC or ASCII.

ACKNOWLEDGEMENT

I am very grateful to Dr. William I. Neuman for letting me
use his program and to Ms. Elizabeth Galligan and Mrs. Celeste Gannon
for their excellent typing of this manuscript.

REFERENCES

1 Abies, J.G. (1974). Maximum Entropy Spectral Analysis. Astron.
Astrophys. Suppl. Series \5_, 383-393 (1972), Proc. Symp. on
the Collection and Analyses of Astrophysical Data.

2 Burg, J.P. (1967). Maximum Entropy Spectral Analysis. Reprinted
in Modern Spectrum Analysis (1978), D.C. Childers (ed.),
IEEE Press, N.Y.

3 Burg, J.P. (1975). Maximum Entropy Spectral Analysis. Ph.D.
Thesis, Stanford University, Palo Alto, CA, 123 pp.

4 Fougere, P.F. (1977). A Solution to the Problem of Spontaneous
Line Splitting in Maximum Entropy Power Spectrum Analysis.
J. Geophys. Res. ̂ , 1051, 1054.

5 Fougere, P.F. (1978). A Solution to the Problem of Spontaneous
Line Splitting in Maximum Entropy Power Spectrum Analysis of
Complex Signals. Proc. RADC Spectrum Estimation Workshop,
Rome, N.Y.



Fougere: Maximum-Entropy Spectrum from Non-Extendable ACF 211

6 Neuman, W.I. (1977). Extension to the Maximum Entropy Method. IEEE
Trans. Inform. Theory, IT-23, 89-93.

7 Schott, J.P. and J.H. McClellan (1984). Maximum Entropy Power

Spectrum Estimation with Uncertainty in Correlation Measure-
ments. IEEE Trans. ASSP, 32_> 410-418.

8 Ulrych, T.J. and T.N. Bishop (1975). Maximum Entropy Spectral
Analysis and Autoregressive Decomposition. Rev. Geophys.
and Space Phys. 13, 183-200.



MULTICHANNEL MAXIMUM ENTROPY SPECTRAL ANALYSIS
USING LEAST SQUARES MODELLING

P.A. Tyraskis (*) * Presently at: Public
Dome Petroleum Limited Petroleum Corporation of
P.O. Box 200 Greece S.A.
Calgary, Alberta, Canada 199 Kifissias Av.
T2P 2H8 Maroussi, Greece 15124

ABSTRACT

Autoregressive data modelling using the least-squares
linear prediction method is generalized for multichannel
time series. A recursive algorithm is obtained for the
formation of the system of multichannel normal equations
which determine the least-squares solution of the multi-
channel linear prediction problem. Solution of these multi-
channel normal equations is accomplished by the Cholesky
factorization method. The corresponding multichannel
Maximum Entropy spectrum derived from these least-squares
estimates of the autoregressive model parameters is compared
to that obtained using parameters estimated by a multi-
channel generalization of Burg's algorithm. Numerical
experiments have shown that the multichannel spectrum
obtained by the least-squares method provides for more
accurate frequency determination for truncated sinusoids in
the presence of additive white noise.

1 INTRODUCTION

Multi-channel generalizations of Burg's1""-* now-class-
ical algorithm for the modelling of data as an auto-regressive sequence
and therefore estimation of its equivalent maximum entropy spectrum have
been obtained independently by several authors (Jones^, Nuttal^,
Strand^, Morf et al.?, Tyraskis^ and Tyraskis and Jensen^). For
single-channel data, Ulrych and Clayton11 have also introduced an
alternative procedure which is commonly described as 'the exact-least-
squares method' for the estimation of the autoregressive data model
parameters from which a spectrum can be directly obtained. This method
has been further developed and extended and efficient recursive computa-
tional algorithms have been provided by Barrodale and Errickson1^
and Marple1?. The exact least-squares method has been demonstrated
to allow much improved spectral resolution and accuracy when compared to
Burg's algorithm for single-channel time series although Burg's algor-
ithm requires somewhat less computational time and storage. In particu-
lar, sDectral estimates based upon the Burg algorithm are now
known1^"1^ to be susceptible to significant frequency shifting and
spectral line splitting in certain circumstances while the exact



Tyraskis: Multichannel Maximum Entropy Spectral Analysis 213

least-squares method is much less affected by these problems. In their
original paper, Ulrych and Clayton11 compared the performance of
their exact least-squares method for autoregressive spectral estimation
with respect to these effects with the performance of Burg - MEM
spectra. Using a straightforward matrix inversion solution they showed
that the exact least-squares method always leads to more stable
frequency estimates. Barrodale and Errickson1^ have obtained a
recursive algorithm for the formation of the normal equations obtained
in the exact least-squares solution for the autoregressive parameters
using forward and/or backward prediction. Marpie1' introduced a
recursive algorithm for the solution of the normal equations in the
autoregressive data-model parameters obtained via the exact-least-
squares method using both forward and backward linear prediction.

Fougere1" has studied several of the multichannel generalizations of
the Burg algorithm^""' and has shown that they are also susceptible
to serious frequency shifting and line splitting especially in the case
of sinusoidal data in the presence of white additive noise.

With the intention of relieving the unsatisfactory performance of multi-
channel Burg-like algorithms for multichannel data, we, here, shall
generalize the exact-least-squares linear prediction method for auto-
regressive data modelling to multichannel time series and examine the
performance of this method in spectral estimation. We shall first
develop the multichannel system of normal equations using the exact-
least-squares modelling and then generalize the recursive algorithm of
Barrodale and Errickson1^ for multichannel data. We shall solve the
multichannel normal equations so-obtained using straightforward matrix
inversion procedures based upon the Cholesky factorization. Later, we
will compare multichannel maximum Entropy spectra derived from the
solution of the multichannel normal equations obtained using the
generalizations of Burg's algorithm and the generalization of the
exact-least-squares method extended to multichannel data, presented
here. The related problem of the selection of the order (or the length)
of the autoregressive operator for multichannel time series is
discussed; three different criteria are presented. Finally we shall
present the results of a comparison between a generalization of Burg's
algorithm to multichannel time series^, and the multichannel least-
squares linear prediction method, when they are used for the spectral
estimation of multichannel sinusoidal data in the presence of additive
Gaussian noise.

2 THEORY

Given a multichannel time series Xj, j-1, •••, M of the
form Xj=[x^, ..., x^J^j where the superscript T denotes the
transpose operation and k is the number of channels, the one point
prediction convolutional formula can be described as
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T
- X M -

(1)

where G-j's are the k x k matrix-valued coefficients of the one-point
forward prediction filter (henceforth, PF).

It is convenient for the following analysis to rewrite this system (1)
in matrix form as

X ' G = Y (2)

where X is the (M-N)x(N.k) matrix containing the input series, G is the
(N.k) x k matrix of the one-point forward PF and Y is the (M-N) x k
matrix of the input series as shown in the right hand side of the system
(1).

If M-N>Nk (which is usually the case) the system is overdetermined and
no G generally exists which satisfies equation (2), so it is useful to
define a (M-N) x k matrix-valued residual vector

E = Y - X ' G

having the form N+l

"N+2

A least squares (henceforth, LS) solution to equation (2) is then
defined as any G which minimizes the sum of the squares of the residu-
als, equivalently the trace of

P = P (G) = ETE

The LS solution to equation (2) is given from the solution of the
(N.k)x(N.k) system of normal equations^

XTXG = XTY (3
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and it is unique if the matrix for the system is of full rank (equal to
Nk for equation (2), assuming that M-N>Nk). We may adopt a more concise
notation and refer to G as the solution to an (N.k)x(N.k) system of
equations (usually called 'normal equations1)

R • G = S (4)

where

R = [r. ,]
1 , J

XTX and S = [S.] =
1

The residual sum of squares is defined as

P (G) = ETE = (Y-XG)T(Y-XG) =
fTI PTI rTI i l l i I \ i l l

= YTY - YT(XG)- (GX)Y + GT(XTX) G

Since the LS solution G satisfies the normal equations we obtain

P (G) = YTY - YT XG (5)

Similarly, the backward problem is described by the system of equations

XG = Y (6)

,,T WT WT

where X

2 X 3
T T T

XN+2

T T" T
XM-N+lXM-N+2 XM

G being the backward PF.

, G= and Y=

xT

XM-N

The LS solution to equations (6) is characterized by the (N.k) x (N.k)
system of normal equations

R • G = S (7)

where and § = <§•> =

Also, the residual sum of squares using the backward PF is obtained as
follows:

P (G) = YTY - YTX G (8)

It is commonly known that the LS solution of an overdetermined system
can lead to nontrivial difficulties since the matrices R and R of the
normal equations (4, 7) can be difficult to invert accurately. The book
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by Lawson and Hanson^O provides a very detailed coverage of this
topic, complete with overall useful computer programs. Let us briefly
summarize the current developments for the LS computations.

In general, for an overdetermined system of n equations in m unknown
parameters, forming the normal equations requires nm2/2 operations
(an operation is a multiplication or division plus an addition or sub-
traction, and when comparing operation counts, only the highest powers
of n and m are given) and solving them by the Cholesky method^
requires m^/5 operations. However, numerical analysts generally
prefer to avoid this approach, since forming the normal equations
considerably worsens the numerical condition of any LS problem for which
the corresponding overdetermined system of equations is itself ill-
conditioned.

Instead, it is usually advised that the LS solution be computed directly
from the n x m overdetermined system by an orthogonalization method.
Some popular algorithms of this type are the modified Gram-Schmidt
process (nm^ operations), Householder triangularization (nm^ ~
^ operations), and singular value decomposition (at least nm^ +

operations)^, in a given precision floating-point
arithmetic, these orthogonalization methods successfully process a wider
class of LS problems than the normal equation algorithm.

For the applications in which we are primarily interested, it is
frequently the case that n>10m in which case the normal equations method
involves less operations than any orthogonalization method. In addi-
tion, if the normal equations can be formed directly from the data
rather than from an overdetermined system, then the normal equations
algorithm requires only about m(m+l)/2 storage locations.

For the examples later in this paper, we use the normal equations method
and we solved them using the Cholesky factorization (or decomposition)
method which is known to possess remarkable numerical stability^!.

According to this method, for the inversion of any positive definite
matrix, it is convenient to factor it into the product of a lower
triangular matrix and its transpose, since it is a simpler matter to
invert a triangular matrix. Use of the Cholesky factorization method
can be made, since any normal equations matrix is positive definite
provided the corresponding overdetermined system of equations is of full

20

For the formation of the normal equations, the algorithm proposed by
Barrodale and Erickson1^ can be used, provided that it is extended
to account for multichannel time series.

Before summarizing the algorithm we first show how R3 and S3
(corresponding to N = 3) can be obtained from R2 and §2 (correspond-
ing to N = 2). In the case when N = 2 we have



Tyraskis: Multichannel Maximum Entropy Spectral Analysis 217

R9 = X X H

S2 = X'Y =

Ll 1 1 2

2 2
:2,1 r2,2

M-2 M-2

- " " E x.^.x:

M-2 M-2
E X. . X.§1 E X. . XT

-M-2
y Y Y

M-2

Z X. X

-j-1 J

M - 2 R(D

R(2)

where R(t)

is an estimate of the multichannel autocorrelation coefficient at lag t,
using a finite summation of L terms, with starting term involving the
input vector series at time index K, and r and S are variables for
referring to the elements of the R and S matrices.

In the case when N = 3, and suppressing the elements above the diagonal

(since KR(-t) = RR
T(t)), we have

3 3
r2,l r2,2 *

3 3 3
r3,l r3,2 r3,3

-M-3

V2
M-3 M-3

j+l j+2 . J+1 j+1

M-3

j=l J J + 2

M-3 M-3

z x. x:,. E x.x .
+1 J

M-3.

M-3

'R(O)

R(l)

R(0)
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Notice that the leading 2 x 2 submatrix R3 can be obtained from R2
by subtracting the first term in each summation which defines an element
of R2> i.e.,

3 2 T
rf . = rT . - XQ • X, . for 1 ^ i < 2
i,J i,J 3-i 3-j

The last row of R3, apart from its first element, can be obtained from
the last row of R2 as follows,

and r° = c - X X
3,1 2 V-2 \

Finally, S3, apart from its last element, can be obtained from $2 as
follows

3 2 T
Si = Si " X3-i X3 for 1 i i i 2

3 M~3 T
and S3 = z X X* .

3
Thus only one inner product S3> has to be calculated again when we
derive the normal equations for N = 3 from the normal equations for N
2; each of the remaining elements of R3 and S3 is obtained at the
cost of one operation.

This scheme generalizes so that R^+i ami S^+l c a n ^e obtained
from Rw and Sw as

rN+1

N+l
rN+l,j
N+l

N+l'
S.

N

N
rN
gN

Si

,j-l " XM-N X

x xT

XN+l-i X

xXN+l-j
T
M+l-j

T
N+l

for 1

for 2

for 1

= j

^ j

^ i

^ i ^ N,

^ N+l,

^ N,

N+l M" N 1

For the better understanding of the relation between multichannel linear
prediction and the corresponding maximum entropy spectrum using exact
least-squares modelling with the maximum entropy spectral analysis using
generalized Burg algorithms, it is useful to extend the present analysis
one step further.

In the case when N = 3 the residual sum of squares P(G) c a n be easily
shown to take the form
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P(G) = YTY - YTXG = YTY -

The forward system of normal equations (4), using the analytical form of
R and S> and augmented by the equation of the residual sum of squares
can be written as follows

M-3

M-3
3

M-3
2

M-3.

R(0)

R(D

R(2)

R(3) |

2

M-3
1R(2)

I

- G l

~G2

-s

0

0

0

In general for the forward system of order N we have,

M-N.
N+l

M-N.

R(0)

!R(D

M-N
2

M-N.

R(N-l)}

R(N)

M-N M^R(-N+2) M-N R (_ N + 1 )

I

; G i

" G N - 1

~GN

P N + 1

0

0

0

(9a)

where I, -G« , ..., -GN is the (N+l)th order forward PEF.

Following the same procedure for the backward problem we obtain

IM-N

M-NB

M-N.R(0)

-GN

-[
I

0

0

0

PN+1

(9b)
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where I, -G^, ... -GN is the (N+l)th order backward PEF. The matrix
equations (9a,b) can be written together.

M-N.
N+l
M-N.

N'

R(0)

"R(D

M-N.R(N)

M-N.
N'R(-D

2

M-N.
1
R(N-l)

M-N.
2

M-N.
1

R(0)

R(D

M-N
1

M-N
R(0)

I -Gv

~G N-1

-Gm.

0 0

0 0

0 P
N+l

(10)

This last system of equations (10) is similar to, but not identical
with, the usual multichannel prediction-error system (see Appendix, Al),
whose autocorrelation matrix has block-Toeplitz form. In this case the
elements on each diagonal of the autocorrelation matrix are not equal
resulting in a non-Toeplitz matrix. Each diagonal of the autocorrela-
tion matrix contains estimates of the autocorrelation coefficients at
the same lag, and although the order of the summation is the same, the
starting data point in each summation is different resulting in a
different estimate for every element of each diagonal. As the length of
the input series M becomes much greater than the length of the PF, (N),
and also much greater than the longest period of the input data, the
contribution of the end points of the input series in the estimation of
the autocorrelation matrix becomes less significant and the resultant
spectra become practically identical to the spectra obtained from the
solution of the usual multichannel prediction error system using any of
the generalized Burg algorithms.

In the case of short-length data series the contribution of the
end-points does become significant and where the Burg-like multichannel
algorithms often produce appreciable line shifting effects the LS linear
prediction method is much less sensitive. Line shifting effects using
the LS method have only been observed in the spectral estimation of data
for which the true mean of the signal is unknown and from which sample
mean has been removed. Even in these cases the order of the frequency
shift using the LS method is always much smaller than the frequency
shift observed using multichannel generalizations of the Burg
algorithm^.

3 THE MULTICHANNEL MAXIMUM ENTROPY SPECTRUM

A principal use of the solution of the multichannel
prediction error system using either generalized Burg algorithms or the
LS modelling method, is for the maximum entropy spectral estimation.
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Given a multichannel time series X^, X2, •••, XM, the forward PEF
and the corresponding prediction error power Pjg+1 (or residual sum
of squares), we may obtain the spectral density matrix as (see, for
example, (22)),

S(f) = G"1(f).PN+1.(Gt(f))-l (lla)

where G(f) is the Fourier transform of the forward PEF I, -G^, ...,
-GJJ, and t denotes the complex conjugate transpose operation. Since
the direction of time has no fundamental importance in spectral analysis
of stationary time-series data, the maximum entropy spectrum can be
derived in terms of the backward PEF and the backward prediction error
power QN + 1 as

S(f) = G~l(f) . QN+i'^Cf))" 1 (lib)

where G(f) is the Fourier transform of the backward PEF (-%, ...,

-61, I).

The estimation of the multichannel maximum entropy spectral density
(lla,b) reduces to the determination of the appropriate length of the
PEF, N or equivalently to the determination of the order of the corre-
sponding autoregressive process that would best fit the given multi-
channel time series.

To select the order of the autoregressive model, Akaike^^ introduced
the final prediction error criterion (FPE) and later generalized it for
multichannel time series^. This criterion chooses the order of the
autoregressive model so that the average error for a one-step prediction
is minimized. Following our notation this criterion obtains minimiza-
tion of the measure

' N1 "I M - 1 - kN

through selection of the length of the PEF, N. Here, M is the length of
the input time series, k the number of channels of the multichannel time
series, and PN is the determinant of the prediction error power or
equivalently the determinant of the residual sum of squares in the
one-point prediction problem.

obtained a second criterion based upon the maximization of
the likelihood function. Given a sample of size M

xl> X2» •'•» X
M

that have been drawn from a population characterized by AR parameters
al> a2> •••> aN> N < M t h e likelihood function L (a^, ..., aN |
x^, ..., x^) is equal to the joint probability density function for
the x, P (xi, ..., xM I ai, ..., a N ).
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The identification procedure based on the maximization of the likelihood
function is referred to as Akaike's information criterion (AIC) and has
the form:

(AIC)N = 2 In [max(L(a1, ..., a^ | xx, ..., xM))] + 2N.

Ulrych and Bishops show that the likelihood function for a series
that is generated by an autoregressive process of order N is a function
of the residual sum of squares. Thus, for multichannel autoregressive
time series with Gaussian errors the (AIC) criterion reduces to

(AIC)N - M In |pNl + 2k2N-

For both (FPE) and (AIC) criteria, the order selected is the value of N
for which they are minimized. The two criteria are asymptotically
equivalent, and tests using both have shown that they almost invariably
select the same order^ for the autoregressive model of the data.

introduced a third method known as the autoregressive
transfer function criterion (CAT) and later also generalized if for
multichannel time series^. According to this criterion the order
of the autoregressive model is determined when the estimate of the
difference of the mean square error between true, infinite length
filter, which must exactly provide the true prediction-error power as
residual and the estimated finite length filter is minimized.
Parzen^9 showed that this difference can be estimated without
explicitly knowing the exact infinite filter, rather replacing it with
the current longest (N-length) filter available on

(CAT)X7 = trace
N

The (AIC) and (CAT) criteria have been tested on synthetic Gaussian data
sets and found to produce their minimum at the same value N ^ .

Lander and Lacoss^O have also studied the behavior of the three
criteria (FPE, AIC and CAT) when applied to harmonic analysis of
single-channel time series. They have reached the conclusion that all
criteria give orders which produce acceptable spectra in the case of low
levels of additive noise although they all underestimate the order for
high noise levels.

4 NUMERICAL EXPERIMENTS USING SYNTHETIC DATA SETS

The Burg algorithm for the autoregressive spectral
estimation of single-channel time series data is known to yield poor
results for sinusoidal signals in presence of additive white noise under
certain conditions.
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Chen and Stegan10, Ulrych and Clayton11, Fougere et al.12,
Swingler14, have noted: (a) a line splitting effectimd (b) a
frequency shifting effect of the spectral line. Line splitting effect
is the occurrence of two or more closely-spaced peaks, in an autoregres-
sive spectral estimate where only one spectral peak should be present.
Frequency shifting effect is the bias in the positioning of a spectral
peak with respect to the true frequency location of that peak.

As demonstrated by Chen and Stegan, for data consisting of 15 points of
a sinusoid sampled 20 times per second with 10% additive white noise,
the line shifting effect as a function of initial phase reached its
maximum when the initial phase was an odd multiple of 45°.

Fougere1** has studied the multichannel generalizations of the Burg
algorithm (4) - (7) and has shown that they also produce line shifting
for multichannel sinusoidal data in white additive noise.

Figure la. Frequency of the spectral peak as a function of
the length of the data using Tyraskis algorithm with mean of
the data sample removed, symbol (x), and with mean not
removed, symbol (+). Initial phase in channels #1 and #2 is
45° and 135°.
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To compare the behavior of the multichannel generalization of the Burg
algorithm with the LS method presented here, we shall use synthetic data
similar to that employed by Fougere1^ in his analysis. For the
multichannel generalization of the Burg algorithm, we use Tyraskis1 (8)
- (9) algorithm. An overview of this algorithm is presented in the
Appendix.

The 3-channel input series consists of a single lHz sine wave sampled
every 0.05 seconds to which has been added pseudo-gaussian white noise:

fl(n) = sin [(n-l)7r/10 + 4^] + gx (n)
f2(n) = sin [(n-l)ir/10 + <|>2] + g2 (n)
f3(n) = g3 (n).

The $i and ^ are the initial phase of each channel and g^(n),
g2(n), g3(n) are independent realizations of a zero mean pseudo-
gaussian process with standard deviation 0.01 units of amplitude.

Figure lb. Frequency of the spectral peak as a function of
the length of the data using the LS method with mean of the
data sample removed, symbol (x), and with mean not removed
(+). Initial phase in channels #1 and #2 is 45° and 135°.
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In the first case, we study the location of the spectral peak as a
function of the length of the data with initial phases in channel #1
$1 = 45° and in channel #2, <j>2 = 135°. Figure la shows the location
of the spectral peak using the multichannel generalization of the Burg
algorithm when the mean of the data sample has not been removed

(symbol, +) . Figure lb shows the location of the spectral peak using
the LS method when the mean of the data sample has been removed (symbol,
x) and when the mean of the data sample has not been removed (symbol,
+ ) . Note that both procedures place the spectral peaks at identical
frequencies for channels #1 and #2 even though different noise
realizations were used in the two channels-

Similarly, Figures 2a and 2b show the results of the two procedures when
the initial phases in channel #1 is -45° and in channel #2 is -135°.

Figure 2a. Frequency of the spectral peak as a function of
the length of the data using Tyraskis algorithm with mean of
data sample removed, symbol (x), and with mean not removed,
symbol (+) • Initial phase in channels #1 and #2 is -45° and
-135°.
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Figure 2b* Frequency of the spectral peak as a function of
the length of the data using the LS method with mean of the
data sample removed, symbol (x) and with mean not removed
(+). Initial phase in channels #1 and #2 is -45° and
-135°.
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Finally, Figures 3a and 3b show the results when the initial phases are
0° and 90° for channel #1 and #2 respectively.

In all cases the estimation of the spectral density was determined using
a 2-points length PEF.

For the three cases studied it is evident that the multichannel
generalization of the Burg algorithm (see Figures la, 2a and 3a) produce
significant line shifting when the length of the data sample is less
than a full cycle (i.e., 21 points) and especially when the mean of the
data sample has been removed. In this case, the frequency shift
observed is of the same order as previously reported by Fougere1®.
When the mean of the data sample was not removed again we observe a
systematic frequency shift although of much smaller order. Note that as
the length of the input series is increased the line shift decreases;
this result was anticipated from the analytical development of the two
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methods as presented previously. The location of the spectral peak
using the LS method (see Figures lb, 2b and 3b) was shown to be much
less sensitive with respect to the length of the data sample. When the
mean of the data sample was not removed the location of the spectral
peak was always found at exactly lHz. When the mean of the data sample
was removed the LS method sometimes produced slight line shifting when
the length of the data was much less than a full cycle. Generally it
was observed that the spectral line widths obtained using the LS method
were extraordinarily narrower than those obtained using the generalized
Burg algorithms.

Channel #3 contained only pseudo-gaussian white noise. However, the
spectral density estimates always showed a small spectral peak at the
same frequency as those peaks in channels #1 and #2 in all cases and
with both methods. This is the effect of 'cross-talk1 between the
channels which has been previously observed by Fougere^. However,
the amplitude of the 'cross-talk* peak in channel #3 is so much smaller

Figure 3a. Frequency of the spectral peak as a function of
the length of the data using Tyraskis algorithm with mean of
data sample removed, symbol (x), and with mean not removed
(+). Initial phase in channels #1 and #2 is 0° and 90°.
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Figure 3b. Frequency of the spectral peak as a function of
the length of the data using the LS method with mean of the
data sample removed, symbol (x), and with mean not removed
(+). Initial phase in channels #1 and #2 is 0° and 90°.
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than the harmonic amplitudes in channels #1 and #2, that it may be
regarded as a negligible problem. Using the above data, no line split-
ting has been observed. These results clearly demonstrate that the LS
method leads to more stable frequency determination for the case of
truncated sinusoids in presence of additive white noise.

We have not, here, demonstrated that the LS method is necessarily
superior to the multichannel generalization of the Burg algorithm in all
cases.

As the length of the data is much increased, the spectral estimates
obtained from both methods usually approach one another. (See also:
(16).)
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5 CONCLUSIONS

We have presented a generalization of the 'exact least-
squares' linear prediction method of Ulrych and Clayton11 for
multi-channel time series. We have further described a method of solu-
tion of the systems of normal equations derived in forward and backward
prediction based upon the Cholesky factorization method. Employing
synthetic data with additive white noise, we compared the multichannel
Maximum Entropy spectra obtained by this method to those obtained using
autoregressive parametric estimates as determined by Tyraskis'8>9
generalization of Burg's1^ ,3 r e c u r s i v e algorithm. We showed that
the spectra obtained via the new 'exact least-squares' formation were
better than those derived from the Tyraskis estimates in two ways:

(1) The exact least-squares modelling provided much greater accuracy in
the determination of the frequency of harmonic components in short
data sets.

(2) Spectral estimates obtained by this new method were more stable;
that is, the estimated power densities of harmonic components were
much less dependent on the length of the data sequence.

Fougere1^, in his analysis of a multichannel data sets having
similar properties to those employed in this analysis, showed that other
multichannel generalizations of Burg's algorithm also lead to frequency-
shift effects and unstable power density estimates. We, therefore,
believe that this generalized exact least squares method offers a
material advantage in the spectral and autoregressive parametric analy-
sis of multichannel geophysical data. For short data sequences where
this method shows its greater advantage, the additional computational
costs involved in the 'exact least-squares' solution will not often
prove to be significant.
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APPENDIX

Given the multichannel time series Xj, j = 1 •.., M as
previously defined in Section II, the multichannel system of normal
equations describing the forward and backward PEF's can be written (g)
in the matrix form.

R(0)

R(D R(0)

R(N) R(N-l)

R(-N)

R(l-N)

R(0)

•

I BN

F l •

• •

• •

' B l

FN l

=

0

(Al)

where F^, B^, i = 0,..., N are the forward and backward PEF's,

^N+l> QN+1 a r e t^ie f°rwar(i and backward prediction error
powers and R(t), the multichannel autocorrelation coefficient at lat t
defined as:

R(t) = E [XjX^] = Rt(-t)

where the symbol E denotes the statistical expectation.

The solution of these normal equations when the autocorrelation matrix
is known, is provided by the multichannel Levinson-Wiggins-Robinson
(LWR) algorithm.

Briefly, this algorithm relates the solution of order N + 1 to the
solution of order N according to the recursions:

N
Fk,N

-1

N+1,N+1

PN+2

QN+2

PN+1

"N+l

[1 - B

ri - F

JN+1

UN+1

N+l,N+l

N+l,N+l

F 1 XT.1 = F 1 XT

k,N+l k,N
N+l-k,N N+l,N+l

BN+l-k,N + Fk,N
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with initial conditions

?l = Q1 = R(0)

A o , k = B o , k = I f o r 1

In the case where "a priori" estimates of the autocorrelation coeffic-
ients are not available, the last coefficient of the forward and back-
ward PEF's, %+i N + 1 and B^+i N+^ must be otherwise

* Q ' Q

calculated. Tyraskis0, Tyraskis and Jensen* obtained an initial
estimate of FN+1 N + 1, B N + 1 N + 1 by separately minimizing the
forward and backward prediction error powers:

N+l,N+l ^ N+l' U

and B N + 1 ) N + 1 = - ( G ^ ) " 1

where
M-N-l N+l N+l t

C £ e (b )
N+l j=l j j

M-N-l N+l N+l t
D = I b (b )
N+l j=l j j

M-N-l N+l N+l t
G £ e (e )
N+l j=l j j

N+l N+l t
and e = v F X

j N+l-k,N j+k
k=0

N+l N+l t
b - E B X
j k,n j+k

k=0

These estimates allow for the two estimates of the autocorrelation
coefficient at log N+l

— N+l —
= - ̂  R (N+l-k) . [F + B F ]

and R (-N-1

A unique autocorrelation coefficient at log N+l is defined as the arith-
metic mean of these two estimates:

R (N+l) = R (N+l) + Rf(-N-1)
2
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where, necessarily

R (-N-1) - R1" (N+l)

The final estimates of the last coefficients of the forward and backward
PEF's are those obtained as follows:

N+l -1 N+l
F = - v R (N+l-k) B £ R (N+l-k) F
N+l, N+l l N+l-k, N k=0 k,N

N+l -1 N+l
and B y R (k-N-1) F £ R (k-N-1) B

N+l,N+l N+l-k,N k=0 k,N
k=l

The remaining coefficients of the forward and backward PEF's, and the
forward and backward prediction error powers are calculated using the
recursions of the multichannel LWR algorithm•
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ABSTRACT

A new relative-entropy method is presented
for estimating the power spectral density
matrix for multichannel data, given correlation
values for linear combinations of the channels,
and given an initial estimate of the spectral
density matrix. A derivation of the method
from the relative-entropy principle is given.
The basic approach is similar in spirit to the
Multisignal Relative-Entropy Spectrum Analysis
of Johnson and Shore, but the results differ
significantly because the present method does
not arbitrarily require the final distributions
of the various channels to be independent. For
the special case of separately estimating the
spectra of a signal and noise, given the
correlations of their sum, Multichannel
Relative-Entropy Spectrum Analysis turns into a
two stage procedure. First a smooth power
spectrum model is fitted to the correlations of
the signal plus noise. Then final estimates of
the spectra and cross spectra are obtained
through linear filtering. For the special case
where p uniformly spaced correlations are
known, and where the initial estimate of the
signal plus noise spectrum is all-pole with
order p or less, this method fits a standard
Maximum Entropy autoregressive spectrum to the
noisy correlations, then linearly filters to
calculate the signal and noise spectra and
cross spectra. An illustrative numerical
example is given.

1 INTRODUCTION

We examine the problem of estimating power spectra and
cross spectra for multiple signals, given selected correlations of
various linear combinations of the signals, and given an initial
estimate of the spectral density matrix. We present a method that
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produces final estimates that are consistent with the given correlation
information and otherwise as similar as possible to the initial
estimates in a precise information-theoretic sense• The method is an
extension of the Relative-Entropy Spectrum Analysis (RESA) of Shore [1]
and of the Maximum-Entropy Spectral Analysis (MESA) of Burg [2,3]. It
reduces to RESA when there is a single signal and to MESA when the
initial estimate is flat.

MESA starts with a set of p known data correlations. It then estimates
a probability density for the signal that has as large an entropy as
possible (is maximally "flat") but still satisfies the known correla-
tions. Intuitively, the method seeks the most "conservative" density
estimate that would explain the observed data. The resulting algorithm
fits a smooth pth order autoregressive power-spectrum model to the known
correlations. This technique gives good, high-resolution spectrum
estimates, particularly if the signal either is sinusoidal or has been
generated by an autoregressive process of order p or less.

RESA [1] is based on an information-theoretic derivation that is quite
similar to that of MESA, except that it incorporates an initial spectrum
estimate. This prior knowledge can often improve the spectrum estimates
when a reliable estimate of the shape of the overall signal spectrum is
available. In the case where the initial spectral density estimate is
flat, RESA reduces to MESA.

In this paper we derive a multichannel RESA method that estimates the
joint probability density of a set of signals given correlations of
various linear combinations of the signal and given an initial estimate
of the signal probability densities. The estimator was briefly
presented in [4]. Our basic approach is similar in spirit to the
multisignal spectrum-estimation procedure in [5,6], but the result
differs significantly because that paper not only assumed that the
initial probability-density estimates for the various signals were
independent, but in effect imposed the same condition on the final
estimates as well. We show that if this assumption is not made, the
resulting final estimates are in fact not independent, but do take a
form that is more intuitively satisfying. When applied to the case of
estimating the power spectra and cross spectra of a signal and noise
given selected correlations of their sum, our method first fits a smooth
power spectrum model of the signal plus noise spectrum to the given
correlations. It then uses a smoothing Wiener-Hopf filter to obtain the
final estimates of the signal and the noise spectra. This Multichannel
Relative-Entropy Spectrum Analysis method thus represents a bridge
between the information theoretic methods and Bayesian methods for
spectrum estimation from noisy data.

In certain filtering applications such as speech enhancement, relatively
good estimates of a stationary noise background can be found during
quiet periods when no signal is present. However, the signal spectrum
may be changing relatively rapidly so that good initial estimates for
this spectrum are not found as easily. Unfortunately, our technique,
like the Bayesian methods, requires good initial estimates of both the
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signal and noise spectra. The simplest fix in the Bayesian estimation
problem is to estimate the signal spectrum by spectral subtraction [7].
More sophisticated Bayesian methods estimate the signal model along with
the signal and iterate between filtering steps and spectrum estimation
steps [8,9]. With these methods in mind, we could consider several
modifications to our Multichannel RESA method when a good initial signal
estimate is not known. We could let the initial signal spectrum
estimate be infinite or flat, we could try special subtraction, or we
could try estimating the initial signal density along with the final
joint signal and noise density. Unfortunately, none of these approaches
gives a truly convincing solution to the problem, and so the issue
remains open.

2 RELATIVE ENTROPY

The Relative-Entropy Principle [10] can be characterized
in the following way. Let v be a random variable with values drawn from
a set v£D with probability density q^(v). We will assume that this
"true" density is unknown, and that all we have available is an initial
estimate p(v). Now suppose we obtain some information about the actual
density that implies that q^, though unknown, must be an element of
some convex set, Q, of densities. Suppose psj:Q. Since Q may contain
many (possibly infinitely many) different probability densities, which
of these should be chosen as the best estimate q of q'? And how
should the initial estimate be incorporated into this decision?

The Relative Entropy Principle states that we should choose this final
density q(v) to be the one that minimizes the relative entropy;

H(q,p) = / q(v)log ^ M dv (1)
D P(v^

subject to the condition qeQ. It has been shown [10] that minimizing
any function other than H(q,p) to estimate q must either give the same
answer as minimizing relative entropy or else must contradict one of
four axioms that any "reasonable" estimation technique must satisfy.
These axioms require, for example, that the estimation method must give
the saire answer regardless of the coordinate system chosen. The
function H(q,p) has a number of useful properties: it is convex in q,
it is convex in p, it is positive, and it is relatively convenient to
work with computationally. If the convex set Q is closed and contains
some q with H(q,p)<°°, then there exists a qeQ that minimizes (1) [11].
This solution is unique up to a set of measure zero.

Relative-entropy minimization was introduced as a general method of
statistical inference by Kullback [12] and has been advocated by a
variety of authors [13,14,15] under a variety of names, including
cross-entropy [16], expected weight of evidence [17,p.72], directed
divergence [12,p.7], discrimination information [12,p.37], and relative
entropy [18,p.19]. The principle of Maximum Entropy [19,20,21] is a
special case of the Relative-Entropy principle [10,22] where the initial
density is "flat" over the domain D.
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One application in which we can explicitly state the form of the
relative-entropy solution q is where we observe the expected values
of a finite set of known functions gfc(v) given the actual density
q'(v). Then the set Q of possible densities is defined by the
constraints:

g,(v)q(v)dv = g for k =1,. . . ,M

In addition, the density q(v) must be properly normalized:

/ q(v)dv = 1
D

(2)

(3)

Because the constraints (2) and (3) are linear in q, the set Q of all
probability densities satisfying these constraints must be convex. If
the gfc are bounded functions, then Q is closed, and therefore there
exists a density q that minimizes H(q,p) subject to the constraints
(provided these are compatible with H(q,p)<°°). In fact, even when the
gk are unbounded, the minimum-relative-entropy density q can be shown
to exist under fairly general conditions; see [11] for a statement of
such results.

Given the constraints (2) and (3), we wish to choose the final estimate
q(v) of q1"(v) by minimizing the relative entropy (1) subject to (2)
and (3). To do this, we introduce Lagrange multipliers A^, and construct
the Lagrangian:

M
H(q,p) + / q(v)dv - 1

D k=l D
g^(v)q(v)dv - g

(4)

and set the variation with respect to q to zero. We obtain:

r M
q(v) = p(v) exp - A - £ A g (v)

o k = 1 k k
(5)

It can be shown that if there is a solution q(v) to the constrained
minimization problem, then it must have the form (5) with the possible
exception of a set of points on which the constraints imply that q
vanishes [12,p.38; 11]. Conversely, if there are multipliers Afc such
that q(v) in (5) satisfies the constraints (2) and (3), then q(v) must
be the unique element of Q that minimizes the relative entropy subject
to the constraints [11]. When the gfc are complex functions, (2) is
equivalent to two real constraints for each k. We then write (5) with
complex Lagrange multipliers, define complex conjugate quantities
g-r = gr, X-k = X£, and let k in the sum range over
negative as well as positive values. In general, it is difficult to
find closed-form solutions for the A^ in terms of the constraints
gfc. Computational methods using gradient search have been developed,
however [23].
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3 MULTICHANNEL RELATIVE-ENTROPY SPECTRUM ANALYSIS

Let us apply this theory to estimating the spectra and
cross-spectra of a set of L signals, or "channels", xo(t), ...,
X, i(t), which we collect into a single vector-valued "multi-
channel" signal x(t)=(xo(t) ... xL-^(t))

T. (In what follows,
superscripts T and H denote the transpose and the Hermitian adjoint, and
a star denotes the complex conjugate.)

We assume that x(t) is a bandlimited stationary random complex process.
To simplify the mathematics, we will assume that x(t) is a finite sum of
complex exponentials at frequencies WQ with random vector amplitudes
cn:

N-l iw t
x(t) = £ c e n

n (6)
n=o v '

This involves no essential loss of generality, since an arbitrary
stationary complex random processes may be approximated by the form (6)
with arbitrarily small mean square error on arbitrarily large finite
intervals by choosing the number of frequencies large enough and their
spacing close enough [24,p.36].

Let q+(cQ, ..., cN-1) be a joint probability density for the
vector amplitudes cn. We can express the correlation matrix of the
signal as

r i T H
R(T) = E lim ± / x(t)xH(t-T)dt

m . „ T 0

iw
E Z c cHe

 n

L n n

J

iw T

(expectation with respect to qt). Fourier transformation gives the
power spectral matrix

,r HI
: c c

S(w )
n l (7)

= / c c q+(c ,...,c.7 ,)dc ...dc.T .n n1 o N-l o N-l

Let us choose an initial probability density estimate p of q̂" such
that the cn are independent Gaussian random variables with zero mean
and covariance P(wn):

N-l
p(c ,... ,c ) = n p(c )

0 N - 1 n=o n

1 I H -1 i ( 8 )

p(c ) = N(O,P(w )) = — exp -c P(w ) c
n n uLdetP(w ) 1 n n n

n
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This choice of p corresponds to choosing the initial power spectrum
estimate of S(wn) to be P(wn):

P(w ) =
n

TJ

c c p(c
n nK o

c -)dc .
N-l o

c
N-l

This Gaussian assumption is usually considered reasonable and is often
implicit in spectrum-analysis approaches such as Blackman-Tukey
periodograms [25] or estimation procedures such as Wiener-Hopf filters
[26]. For further discussion of the assumed form, see [27].

Now suppose we learn correlations R^ at various lags T^ of various
pairs of linear combinations a^x (t), $pc (t) of the vector signal
components:

R k = E lim i
T

ojx(t) dt

(9)

1 WnTk

This rather general form includes measurements of correlations of pairs
of single signal components - individual matrix elements of R(Tk)* As
another special case, treated in the next section, it includes
measurements of autocorrelations of the sum of the signal components.
With the help of (7), this gives constraints in the standard form of (2)
as follows:

R = /k
H

a,
k

E
n

H
c c en n

iw T,
n k

k
q(c ,c )dc . ..dc

N-l o N-l (10)

The Relative-Entropy final estimate of the probability density of the
cn coefficient given the initial estimate (8) and constraints (10) is
then:

q (V"-'CN-l)= p ( Co'--"CN-l)e X p -X - Z X, Z c V â c e n

o k kn n k k n (11)

for some set of Lagrange multipliers X^, which are chosen so that q(v)
satisfies the constraints and is normalized (2). (Again we use the
device of setting X-̂  = \^ and letting k in the sum run over
negative values as well as positive. With the definitions T ^ =
-Tk» a-k = $k> ft-k - ak> this ensures a real result.)
Substituting the formula (8) for p(co, ..., c™_ ̂ ) into (11) and
simplifying puts the probability density estimate into the following
elegant form:

N-l

(12)
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where

Q(wn)

q(c ) = N(O,Q(w )
n n

and where the unknowns Afc must be determined from the constraints.
Substituting this probability density into (10) and simplifying reduces
the constraints to the form:

\
Z Q(wn)e
n

1W T,
n k

(13)

Adjusting the A^ until the latter equations are satisfied with Q(wn)
> 0 is a non-linear problem that must be solved, in general, by a
non-linear gradient search technique.

The amplitudes cn are a posteriori independent Gaussian random
variables (i.e., have independent Gaussian final densities). Even if
the channels of x(t) are a priori independent (i.e., have independent
initial densities), so that the P(wn) matrices are all diagonal, the
observation information concerns linear combinations of the channels,
and as a result the covariance of the final density, Q(wn), will
generally not be diagonal. Thus the final estimates of the various
channels, unlike those in [5], will generally be correlated with each
other.

4 SPECTRUM ESTIMATION FROM CORRELATIONS OF SIGNAL PLUS NOISE

A special case of great practical interest is that in
which we observe autocorrelations only for the sum of the signal
components

L-l
y(t) = I

T
e x(t)

i=o
(14)

where e = (1 1 ... 1 ) T . We then have:

R,
1W T

J z Q(wn)e e
 n k

n
(15)

These constraints are identical in form to those in (13) withot^ =
3^ = e for all k. We may often take the signal components x^(t) to
be a priori uncorrelated, so that the power spectral density matrix
P(wn) is diagonal for all wn. This restriction, however, is not
necessary.

The Multichannel Relative-Entropy Spectrum Analysis estimate for x(t)
from (12) is given by:
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Q(wn) P(w
n

1W T.n k
(16)

where the Lagrange multipliers ^ are chosen to satisfy (15). The
structure of this estimate is quite similar to the single-channel
Relative-Entropy Spectrum Analysis (RESA) estimate given by [1] except
that the quantities involved are matrices. Namely, the second term
inside the brackets is the product of a scalar E, the summation, with
e eT, a square matrix of all lfs. In the single-signal case, P(wn)
and Q(wn) become scalars, and we can replace e EeT with E; the
result is just the RESA estimate. On the other hand, there is also a
close formal connection with the Multisignal RESA estimate given in [5]
That is equivalent to the result of replacing e EeT in (16) by El,
where I is an identity matrix.

The expression (16) can be put into another interesting formby_ using
the Woodbury-Sherman formula (A + BCD)""1 - A "1 -A"1B(CA">1B+D l) XCA 1

Q(w
n

P(w )e e P(w )
n n

T 1
e P(w )e + -.

E X.e1WnTk

(17)

Defining initial and final power-spectrum estimates for the summed
signal y(t) by

P (w ) = eTP(w )e
yy n n

Q (w ) = eTQ(w )e
yy n n

we o b t a i n from ( 1 7 ) :

Q (w ) = P (w ) -
yy n yy n

P (w )4

yy n

P (w ) +
yy n

(18)

and thus

Q (w )
yy ny

p ( w )
yy n

Z Xke
iwnTk (19)

This is precisely the form of the single-signal RESA final estimate with
initial estimate Pyy(wn). We can write (15) as

1W T ,

R V = I Q (w ) e n

K n yy ~
(20)
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The Lagrange multipliers in (19) must be chosen to make Qyy(wn)
satisfy the correlation constraints (20). We can thus determine Xk *n

(16) by solving a single-channel problem. That provides everything
necessary to determine the solution Q(wn) of the multichannel problem.
We can in fact express Q(wn) directly in terms of Qyy(wn) and
P(wn); from (17) and (18) we obtain

Q(wn) = P(wn)
(w )-P (w )
n yy n
P (w )2

yy ny

P(w )e e P(w )
n n (21)

These equations summarize the Multichannel Relative-Entropy Spectrum
Analysis method for correlations of a sum of signals. The calculation
of the final spectral matrix proceeds in two steps. First we must find
Lagrange multipliers such that the final estimate of the power spectrum
of the sum of signals, Qyy(wn) in (19), has the observed
correlation values (20). Computationally, this generally requires a
nonlinear gradient search algorithm to locate the correct A^ [23]•
Next the final spectral density matrix, Q(wn) in (21), containing the
cross-spectra as well as the power spectra of the individual signals, is
formed by combining a linear multiple of the fitted power spectrum
Qyy(wn) with a constant term that depends only on the initial
densities.

Frequently the multichannel signal x(t) will comprise just two
components, a signal s(t) and an additive disturbance d(t):

x(t) =
s(t)

d(t)

N-1
= Z
n=o n

iw t
n

(22)

The initial estimate takes the form

Psd(V
Pdd(wn>

P(wn) = E

The expression for Pyy(wn) specializes to:

Pyy(wn) = |1 1|P(W_) Kl = E o + 6
n n

We also define the in i t ia l cross-power spectra of s( t ) and d(t) with
respect to y(t) as follows:

Psy( wn)

P (w )ys v n ,(w ) l|P(wn)

We define the components Qss(wn),Qsd(wn)^Qdd(wn),Qyy(wn),Qsy(wn), and
Qdy(wn) similarly. Then (21) becomes:
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Q(wn) = P(wn)
Q (w )-P (w )
xyy n yy n

P (w
yy n

P (w )
sy n

^,> )
P (w ) P ,(w )
ys n yd n'dy n

An alternative formula for Q(wn) in terms of Qyy(wn) is:

(23)

P (w )
sy n

P (w )
yy n'

VA (w )
dyv n

P (w ) P ,(w )
ysv n yd n

P (w ) P (w )
yy n yy n

detP(w
n

P (w )
yy n

-l
l -l

(24)

P (w )
I yy n'j

5 INTERPRETATION OF MULTICHANNEL RESA

The formulas defining Multichannel RESA have an
interesting and profound structure that may not be obvious at first
glance. First of all, as we show below, formula (21) makes it easy to
state conditions under which the matrix estimate Q(wn) is positive
definite. Next, the appearance of Qyy(wn) in the constraint
equation for the A^ is actually something we should have expected by
the property of subset aggregation that Relative-Entropy estimators
satisfy [28]. Furthermore, formula (24), which builds the spectral
density matrix estimate Q(wn) by linearly filtering the fitted model
spectrum Qyy(wn) is identical in form to the standard Bayesian
formula for the final expected power and cross-power in two signals
given the value of their sum. In particular, the first term in (24)
applies the well-known Wiener-Hopf smoothing filter [26] to
QyV(wn), while the second term can be interpreted as the expected
final variance of an and 6n. Finally, as we will show, the relative
entropy H(q,p) has the same form as a generalized Itakura-Saito
distortion measure [29]. Thus minimizing relative entropy in this
problem is equivalent to finding the spectral matrix Q(wn) with
minimum Itakura-Saito distortion.

A. Positive Definiteness

Assume that the initial spectral density matrices are positive
definite, P(wn)>0; then Pvy(wn)>0 also for all wn. This
implies that Q(wn) in (21; is at least well-defined, provided we can
find some Qyy(wn) that satisfies the correlation constraints.
Assume moreover that Qyy(wn) is strictly positive,
QyV(w^)> 0. Let u be any nonzero vector. Since P(wn) is
positive definite, we can write u = ae + v for some scalar a and some
vector v such that vHP(wn)e = 0. Then (21) implies uHQ(wn)u =

I a pQyy(wn) + vHp(wn)v> a n d a t least one of the two terms
on the right-hand side must be positive. Thus uHQ(wn)u>0 for every
nonzero vector u; that is, Q(wn) is strictly positive definite,
Q(wn)>0.

**• Generalized Itakura-Saito Distortion Measure

If we substitute any zero-mean, Gaussian densities

q(cn) = N(0,Q(wn))
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and

p(cn) = N(O,P(wn))

into the relative-entropy formula we get:

H(q,p) = E tr <Q(w )P(w
n n n

- log det(Qw )P(w )
n n

This is just a generalized version of the Itakura-Saito distortion
measure [29]. We therefore could have derived the same spectrum
estimate by minimizing the Itakura-Saito distortion measure over all
possible spectral matrices Q(wn) subject to the constraints (13).

6 COMPUTATIONAL CONSIDERATIONS

The difficult step in the Multichannel RESA procedure is
to solve for the Lagrange multipliers that will give Qyy(wn) the
appropriate correlations in (20). Gradient search algorithms for
computing this in general are given by Johnson [23] . Once Qyy(wn)
is known, the components of Q(wn) may be easily found by filtering
Qyy(wn) and adding in the final covariance estimate, an amount of
computation that is linear in the number of frequency samples.

Once special case is particularly easy to solve. This is when
correlations of y(t) are given for uniformly spaced lags xk = ~P>"P*"1>
..., p and when the initial spectral density of the signal plus noise,
Pyy(wn) = (1 l)P(wn)(l 1)

T is autoregressive of order at most
p. Let us take the limiting form of our equations for equispaced
frequencies as the spacing becomes extremely small, so that we can treat
the spectral densities as continuous functions of w. Then because
PyV(wn) is autoregressive (all-pole), the term l/PVy(wn) in
the denominator of

V*) -
pyy(w)

 +
kS_p V

has the same form as the sum over k. We can therefore combine
coefficients in the two sums and write

Q (w) =
P fl iwk
Z P-i_e

k=-p

where 3_p, •••, 3p are to be determined so that:

71 iwk
/ Q (w)e K dw
-* yy 2?
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This, however, is the standard Maximum Entropy Spectrum Analysis
problem (MESA), and can be solved with O(p^) calculation by Levinson
recursion [30,31,32]- Thus in this special case, the power spectrum of
the signal plus noise Qyy(w) will be set to the MESA estimate. The
initial estimate Pyy(w) will be completely ignored in this step.
(This is an example of "prior washout", as discussed by Shore and
Johnson [28].) The spectral density matrix estimate Q(w) for s(t) and
d(t) will then be formed as the appropriately filtered function of this
MESA spectrum. In this case, therefore, the prior information is used
solely to control how the estimates for the signal and the disturbance
are to be obtained from the MESA estimate. Note that although
Pyy(w) and Qyy(w) will both be autoregressive spectra, the
individual components of the spectral density matrices P(w) and Q(w)
will generally not be autoregressive.

7 EXAMPLE

We define a pair of spectra, Sg and Sg, which we think
of as a known "background" and an unknown "signal" component of a total
spectrum. Both are symmetric and defined in the frequency band from -TT
to TT, though we plot only their positive-frequency parts. (The
abscissas in the figures are the frequency in Hz, W/2TT, ranging from 0
to 0.5.) Sg is the sum of white noice with total power 5 and a peak
at frequency 0.215x2TT corresponding to a single sinusoid with total
power 2. Sg consists of a peak at frequency 0.165x2TT corresponding to
a sinusoid of total power 2. Figure 1 shows a discrete-frequency
approximation to the sum Sg + Sg, using 100 equispaced frequencies.
From the sum, six autocorrelations were computed exactly. Sg itself
was used as the initial estimate Pg of Sg - i.e., Pg was Figure 1
without the left-hand peak. For Pg we used a uniform (flat) spectrum
with the same total power as Pg. Figures 2 and 3 show multisignal
RESA final estimates Qg and Qg by the method of [5] - independence
was assumed for the final joint probability densities of the two
signals. Figures 4 and 5 show final spectrum estimates obtained by the
present method from the same autocorrelation data and initial spectrum
estimate. The initial cross-spectrum estimates were taken to be zero (P
was diagonal). No such assumption was made for the final estimate, of
course, and indeed the final cross-spectrum estimates (not shown) are
non-zero•

In the results for both methods, the signal peak shows up primarily in
Qg, but some evidence of it is in Qg as well. Comparison of Figures
4 and 5 with Figures 2 and 3 shows that both final spectrum estimates by
the present method are closer to the respective initial estimates than
are the final estimates by the method of [5].

In view of the fact that the present method has the logically more
satisfying derivation and is computationally cheaper, the comparison of
Figure 5 with Figure 3 is somewhat disappointing; the signal peak shows
up less strongly in Figure 5. It must be pointed out, however, that in
this example the signal and noise are truly uncorrelated. Our technique
does not use this information, and in fact estimates a non-zero
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Figure 2. Final spectrum estimate Qg by the method of
[5].
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Figure 3* Final spectrum estimate Qs by the method of
[5 ] .
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Figure 5. Final spectrum estimate Qs by the method of
this paper.
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cross-correlation between the signal and noise. The method in [5],
however, uses this additional knowledge and therefore, in this case, is
able to produce better estimates than our technique.

8 DISCUSSION

In this paper we have derived a Multichannel
Relative-Entropy Spectrum Analysis method that estimates the power
spectra and cross-spectra of several signals, given an initial estimate
of the spectral density matrix and given new information in the form of
correlation values for linear combinations of the channels. Both this
method and the multisignal method of [5] will estimate the power spectra
of a signal and noise when prior information Is available in the form of
an initial estimate of each spectrum and given selected correlations of
the signal plus noise. The present method can accept more general forms
of correlation data and also produces cross-spectrum estimates, which
are implicitly assumed to be zero in [5]. Even when the only
correlation data are for the signal plus noise, and cross-spectrum
estimates are not desired, there is a persuasive argument for preferring
the present method to that of [5] - if the discrepancy between the given
correlation values and those computed from the initial estimates can be
accounted for in part by correlations between the signal and noise, then
the correlation data should be regarded as evidence for such
correlations, and correlated final estimates should be produced.

Estimates by the present method are considerably more economical to
compute than estimates by the method of [5]. The algorithm first fits a
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smooth model power spectrum to the noisy signal using the given
correlations. The available prior information is then used to linearly
filter this spectrum estimate in order to obtain separate estimates for
the signal and the noise. This allocation formula is virtually
identical to that used by the usual Bayesian formula in which the signal
and noise power spectra are estimated from the observed signal plus
noise spectrum. The difference between the Multichannel RESA and
Bayesian methods is that the relative-entropy technique starts by
fitting a smooth power spectrum model to the observed correlations,
while the Bayesian approach starts with the directly observed power
spectrum. This Multichannel Relative-Entropy technique thus provides a
smooth model fitting spectrum analysis procedure that is closely
analogous to the Bayesian approach. If p uniformly spaced correlations
are given, and if the prior information suggests that the power spectrum
of the signal plus noise is autoregressive of order at most p, then the
step of fitting a smooth model spectrum to the noisy signal is identical
to using a standard MESA algorithm to fit a smooth autoregressive model
to the given correlations.

In general, the method presented in this paper yields final spectral
estimates that are closer to the initial estimates than those of [5].
This is not surprising. Our method starts with an initial estimate of
the signal and noise spectra, and uses correlations of the signal plus
noise to get better power spectra estimates. The method in [5] uses the
same information, but also assumes that the signal and noise are
uncorrelated. This additional knowledge further restricts the
constraint space Q in which the probability density is known to lie,
effectively leaving less unknown aspects of the density to estimate, and
thus improving the final spectra. In general, the resulting spectral
estimate will have higher relative entropy than the solution from our
method, and will thus be "farther" from the initial density p than the
solution from our method.

Our estimate of Qyy(wn) can be improved by observing more and more
correlations of the signal plus noise. Regardless of how much data is
gathered, however, our method relies exclusively on the initial estimate
of the signal and noise spectra and cross spectra to allocate
Qyy(wn) between the signal, noise, and cross terms. The
fundamental difficulty is that observing correlations of the signal plus
noise gives no insight into how this observation energy should be
partitioned between the signal and the noise. Achieving accurate
estimation of the signal and noise spectra separately requires a
different type of observation data. Learning that the signal and noise
are uncorrelated as in [5], for example, will improve our spectral
estimates. The best solution, of course, would be to use an accurate
model of the signal and noise processes, or to directly observe the
signal and/or noise correlations.
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MAXIMUM ENTROPY AND THE EARTH'S DENSITY

E* Rietsch
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Houston, Texas 77215-0070

ABSTRACT

The maximum entropy approach to inversion appears at its
best when conclusions are to be drawn from very limited
information• An example is the estimation of the density
profile of the earth (assumed to be spherically symmetric)
on the basis of only its mean density and its relative
moment of inertia. With conventional methods giving rather
unsatisfactory results, the maximum entropy method provides
a density profile which agrees surprisingly well with the
one presently considered to be the best.

1 INTRODUCTION

Inverse problems in geophysics frequently confront us with
one of two extreme situations. While we generally have a large number
of unknowns to estimate, we may also have a tremendous amount of data -
actually, more data than we can reasonably process - and more or less
elaborate data reduction schemes are employed to reduce the wealth of
data to a more manageable size. Of course, this reduction is performed
in a way which improves the quality of the retained data in some sense
(e.g., increases the signal-to-noise ratio).

At other times we may still have large numbers of unknowns to contend
with but very few data. In fact, the data may be so inadequate that any
attempt at estimating the unknowns appears bound to fail. It is this
situation which I now want to address by means of an example.

We are given the radius, the mass, and the moment of inertia of the
earth and are asked to determine its density as a function of depth.
The assumption, of course, is that the earth can be considered to be
spherically symmetric. From radius, mass, and moment of inertia we can
derive two relevant data, the mean density pTand the relative moment of
inertia y.

p = 5.517 g/cm3, y = 0.84. (1)

The latter is the ratio of the actual moment of inertia to the moment of
inertia of a homogeneous sphere with the same size and mass. Slightly
different values of P" and y are given by Romanowicz and Lambeck (1977).
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The fact that y is less than 1, i.e., that the moment of inertia of the
earth is lower than that of a homogeneous sphere of the same size and
mass indicates that the density of the earth tends to increase with
depth; but, of course, we would like to make more quantitative state-
ments*

2 THE BACKUS-GILBERT TECHNIQUE

Most geophysicists can be expected to be familiar with the
Backus-Gilbert technique (Backus and Gilbert, 1967, 1968, 1970). It is,
therefore, sufficient to say that this technique produces weighted
averages of the unknown function - in this case the density as a func-
tion of radius. We would like these averaging functions (called resolv-
ing kernels) to be non-negative and highly localized. However, with the
information we have, this turns out to be impossible (a brief outline of
the application of the Backus-Gilbert technique to this problem is given
in Appendix A ) . Figure 1 compares what is believed to be a good
estimate of the density as a function of depth (Bullen, 1975) with the
averages obtained by this technique. To illustrate the reason for this
poor match, this figure also shows the resolving kernel for a depth of
2000 km. While indeed having a maximum at about 2000 km, the kernel is
by no means localized, and the average does, therefore, include also the
high densities in the core. It is thus significantly higher than the
actual density at this depth. The density estimate for the center of
the earth, on the other hand, is much lower than what we believe to be
correct. The Backus-Gilbert technique fails to give us reasonably
accurate answers; we are not supplying enough information for the
construction of sufficiently localized resolving kernels which would
allow one to equate the averaged density with its value at the location
of the "peak" of the kernel.

3 EXTREME MODELS

In 1972, Parker suggested that bounds on parameters of
interest were the appropriate information that should be extracted from
so little information. For this particular example he showed that no
earth model can have a density which is everywhere lower than p0,
where

pQ = p/y
3/2 = 7.166 g/cm3. (2)

It is interesting to note that the highest density obtained with the
Backus-Gilbert technique is 7.20 g/cm^, and thus barely higher than

Parker's equation can be generalized to allow one to specify a minimum
density P! (Rietsch, 1978).

po = Pl + (p - Pl)
5/2/(yp - P l ) 3 / 2 . (3)

If we assume that the density in the earth is at least 1 g/cur*, then
po, the lower bound on the largest density, turns out to be 7.26
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g/cm^; it is thus higher than the highest average density predicted by
the Backus-Gilbert technique.

While Parker's approach provides us with rigorous constraints that have
to be satisfied by the density in the earth, these constraints are less
restrictive than we would like them to be.

4 PARAMETERIZATION

A very popular approach to inversion involves parameter-
ization. There are many different ways to parameterize this problem,
and I will just concentrate on one.

Let us subdivide the earth into a number of concentric shells and assume
that the density is contant in each shell. If N is the number of
shells, then there are N unknown densities pn and N-l unknown radii
rn. Mean density and relative moment of inertia are connected with
these parameters by

I PnVn = p (4)

I pnin= yp" . (5)

Here and in the following, summations are performed from n=l to N. The
factors Vn are proportional to the volume of the n-th shell

Vn " (rn " rn-l>/R3 <6>

and the In are proportional to the contribution to the moment of
inertia of the n-th shell

Of course, r^ = R is the radius of the earth and r0 = 0.

For N=2, the smallest meaningful number of shells, we have a total of
three unknowns (the two densities and the outer radius of the inner
shell) and thus more unknowns than data.

But actually, for N=2, the model - while overparameterized with respect
to the data - is definitely underparameterized with regard to the
density distribution in the earth. We need many layers, and this
suggests that we resort to the either generalized inverses or to prob-
abilistic methods.

5 THE GENERALIZED INVERSE

In the generalized inverse method the desired parameters -
in this case the function P(r) - are represented in terms of eigen-
vectors (or eigenfunctions) in the so-called model space (Jackson, 1972;
Parker, 1975). This approach is sketched in Appendix B. For N = 100,
the density distribution turns out to have the form
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p = 10.15 - 4.63 {[n5/3 - (n-l)5/3]/N2/3l (8a)
n

in units of g/cm^. For N -> °° we get

p(r) = 10.15 - 7.72(r/R)2 [g/cm3 ] (8b)

Both, the discrete and the continuous density distribution, are shown in
Figure 2. While it most certainly represents an improvement over the
results obtained with the Backus-Gilbert technique, the agreement with
Bullen1s density is far from satisfactory.

6 THE MAXIMUM ENTROPY APPROACH

In this approach we look for a probability density
function p(p) = p(pi,P2> •••*Pfl) (in the following called prob-
ability distribution to avoid using the term "density" for two different
things). While satisfying certain conditions, this probability distri-
bution should be as non-committal, as unspecific as possible; in other
words, it should have higher entropy than all other probability distri-
butions that satisfy the same constraints. One of these constraints is,
of course, the normalization condition

p(p)dp = 1 (9)

where dp denotes the N-dimensional volume element. Here and in the
following, the integration is performed over all positive values of the

Pn-

The easiest way to include the information about mean density and
relative moment of inertia is to request that the expectation values of
these quantities agree with the corresponding measurements. Thus
equations (4) and (5) are replaced by

(1 P V )p(o)dp = p (10)
u n n -

(I pnln)p(p)dp = yp , (11)

respectively.

Maximizing the entropy

H = f P(p)log[p(p)/w(p)]dp , (12)

n n

and

subject to the above three constraints leads to the desired probability
distribution.

Before we can do this, we have to find the prior distribution w(£) which
appears in the expression for the entropy. This prior distribution is
actually an "invariant measure" function, and, as discussed previously
(Rietsch, 1977), there are reasons to assume that it is constant
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provided all the shells have the same volume. Thus the radii of the
shells are given by

r = (n/N)l/3R. (13)
n

The probability distribution which maximizes the entropy subject to
conditions (9)-(ll) with constant w(p) turns out to have the form

p(p) = n (l/pn)exp(-pn/pn) (14)
n

where Pn is the expectation value of the density in the n-th shell
(Rietsch, 1977)

pn = 1/(X1 + In X2) . (15)

I = N(r5 - r5 W R 5 = [n5/3 - (n-1)5/3]/N2/3 (16)
n n n-1

The Lagrange multipliers X^ and X2 are determined in such a way that
the Pn satisfy conditions (10) and (11). For N=100 they turn out to
be (Rietsch, 1977)

Xl = 0.0667, X2 = 0.13640 (17)

in units of cm^/g. Passing to the limit N -** °°, we get

p(r) = 1/[X1 + I X2(r/R)
2] (18)

with

Xx = 0.06674, X2 = 0.13633 (19)

Both, the discrete and the continuous density distribution, are shown in
Figure 3. This Figure illustrates the surprisingly good match between
J5(r) and our best estimate of the density in the outer part of the
mantle. The agreement deteriorates for greater depths. This is, of
course, due to the fact that the influence of the density on the moment
of inertia increases with increasing distance from the center of rota-
tion.

It is worth pointing out that the generalized inverse solution given in
Eq. (8) is related to the density determined by means of the maximum
entropy method (Eq. (18)) in exactly the same way the power spectrum
based on the autocorrelation function is related to the maximum entropy
spectrum.

7 RELATED RESULTS

In maximum entropy power series analysis, it is customary
to represent the entropy in terms of the expectation value of the power
spectrum
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H oc log[P(a>)]du>

An analogous formula can be derived from the probability distribution
for the density. As shown in Appendix C, for practical purposes

H « I log[p(r)]r2dr (20)

Maximizing this expression subject to the conditions

p(r)r2dr = p (21)

^ | p(r)r\ir = yp, (22)

which are the continuous analogs of Eqs. (4) and (5), leads to p(r) as
defined in Eq. (18). This is less cumbersome than going through the
probability distribution formalism. It is, however, not clear whether
(20) would still be equivalent to (12) if different constraints
(constraints non-linear in the Pn, for example) were present.

It has become very popular to regard an unknown, non-negative parameter
as a probability. This parameter is then used in the definition of the
entropy which in this case would have the form

H = -J p(r) ln[p(r)]r2dr (23)

For some parameters this may be justifiable, for others it appears quite
artificial. In any case, the above definition has been used by Graber
(1977) to derive the density distribution within the earth based on the
same information. Since he realized that the entropy in this formula-
tion depends on the scale or the units of measurements, he introduced a
scale parameter k. Maximizing the modified entropy

H = -j p(r) ln[p(r)/k]r2dr (24)

subject to the conditions

/p(r)f1(r)r
2dr = p f^r) = 3/R3 (25)

/p(r)f2(r)r
2dr = yp f2(r) = 5r

2/R5 , (26)

which are essentially identical with Eqs. (21) and (22), leads to the
representation

p(r) = £ exp[-k - ̂  fx(r) - -^ f2(r)]. (27)

And now there is a little problem - at least in principle. There are
three unknown parameters, namely the Lagrange multipliers ^1^2 and
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the scale factor k, but only the two equations (25) and (26) for their
computation. However, since f^(r) does not depend on r, \ and k
are not independent, and (27) can be written as

p(r) = A exp[-A(r/R)2] (28)

and so there are only two independent parameters.

The two new parameters A and X can be determined from Eqs. (25) and (26)
and turn out to be

A = 12.14 g/cm3, X = 1.435. (29)

The resulting density distribution is shown in Figure 4. It agrees
quite well with Bullen1s density but appears to be somewhat poorer than
(18) near the surface of the earth.

It should, however, be borne in mind that the parameters in (27) could
only be determined because f^(r) happened to be constant. If no
non-trivial linear combination of f^(r) and f2(r) were constant
(i.e., independent of r), then the parameters in (27) could not have
been determined without additional information.

8 EPILOG

It is worth mentioning that Graber has done more than I
have shown here. In addition to radius, mass and moment of inertia he
also used three zero-node torsional normal modes. His results are quite
interesting but outside the scope of what I intended to discuss here. I
wanted to demonstrate the remarkable ability of the maximum entropy
method to extract information from very few data, a feat that becomes
particularly remarkable when compared with the results of more conven-
tional methods. I also wanted to show one more example that is not
related to either time series analysis or image enhancement, and finally
I wanted to use this opportunity to humbly suggest not automatically
regarding unknown physical parameters as probabilities simply because
they happen to be non-negative.
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APPENDIX A

The Backus-Gilbert Approach

The information about the earth's density can be written
in the form

yP =-f / r4p(r)dr (A_2)

A linear combination of (A-l) and (A-2) has the form

(Ml + u2y)p = / K(r)p(r)dr (A-3)

where

K(r) = [3y1(|)
2 + 5y2(|)

4]/R (A-4)

and P^, ^2 a r e v e t undetermined parameters.

The right hand side of (A-3) can be regarded as a weighted average of
the density with weight function K(r). The parameters \*i and V^ are
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now chosen in such a way that K(r), the so-called "resolving kernel", is
unimodular and resembles the Dirac 6-distribution 6(r-rf) for some
radius r1. With r1 included in the argument list, the first condition
reads

r
K(r,rf)dr = 1. (A-5)

The requirement that K(r,rf) be peaked at radius rf is usually formu-
lated as

r
(r - r 1 ) 2 K2(r,rf)dr = minimum. (A-6)

The functional in (A-6) attains its minimum subject to condition (A-5)
for

yi( rT) = [ f l - T x + l l x

( f ) [ | X + ^ 2 ] / ( 5 D ) ( A " 8 )

where

9 2__ 1 x
2 xD 231 2 x + 315 X ^A y ;

x = rf /R (A-10)

These values of y^ and ]i2 have been used to compute the density
estimate

P(rf) = Ptu^r') + y2(r')y] (A-ll)

shown in Figure 1, The graph of the resolving kernel for rf * 4371 km
(x = 0.686 illustrates its resolving power - or rather the lack of it.

APPENDIX B

The Generalized Inverse Method

Let A^ denote a matrix with M rows and N columns. Such a
matrix can be represented in the form (Lanczos, 1961)

A = U E> V (B-l)

where U is an M x p matrix whose columns are the eigenvectors _uj[ of
the "data space". These eigenvectors are defined by

A A u . = y . 2 u . i = l , . . . , p (B-2)
— — —2. x —X
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where p denotes the number of non-zero eigenvalues of AA and AA.
Similarly, V is an N x p matrix whose columns are the eigenvectors
of the "model space". They are defined by

A A v4 = y? v4 i = l,...,p,A A v.
— — —1

? v.1 —I (B-3)

and I) denotes the p x p diagonal matrix of non-zero eigenvaluesy
The tilde denotes transposition.

The generalized inverse A1 of the matrix A_ can then be expressed in
the form

and a solution of

is

I -l ~
A = V D U ,

A x = b

- 1 rsj

x = V D U b .

Let JE_j denote the j-th row vector of the matrix Â . Then

A A = y f.f.

(B-4)

(B-5)

(B-6)

(B-7)

Similarly

A A =

kk lih .. 'f f
1

(B-8)

According to (B-7) the matrix AA is the sum of the M matrices of rank 1,
and its eigenvectors vj^ can be represented as a linear combination of
the M vectors £^.

Substituting (B-7) and (B-9) in (B-3), we get

= 4 c. . (B-10)

which shows that the £^, the vectors whose components are c^, are
proportional to the eigenvectors _û « From the normalization condition
v-fVi « 1 follows that the factors of proportionality are l/\i±*
Thus
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and V can be written as

V = A C

where C denotes the matrix whose columns are the vectors
of (B-Tl)

C = U D
-1

V = A U D
-1

and

— 1 — 9

V D U = A U D U

(B-ll)

(B-12)

Because

(B-13)

(B-14)

Substituting (B-14) in (B-6), we find that the desired solution x_ of
(B-5) can be represented as a linear combination of the row vectors
of A

The A^ are the components of a vector A_ given by

A = U D"2 U b.

(B-15)

(B-16)

Equations (4) and (5) represent a linear system of two equations (M=2)
of the form (B-5). The vectors £± and _f2 have components Vn and
In, respectively.

As a specific example, let us assume that the shells have all the same
volume. Then rn is given by Eq. (13), and

(B-17)

(B-18)

(B-19)

• I n J-/X1> ^ 2 n

1

y r

n *
For N = 100, the eigenvalues of AA turn out to be

y2 = 2.09975/N, y2 = 0.09070/N .

Since they are non-zero, the two vectors fj and f^ are linearly
independent (which in this case was, of course, obvious), and

U =
0.67276 0.73986

0.73986 -0.67276

From (B-16) follows then with b^ = P, b2 = YP

Xl = 1.8401 Np, A = -0.8401 Np

(B-20)

(B-21)
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and thus

Pn = {1.8401 - 0.8401[n
5/3

(B-22)

The generalized inverse method is, of course, also applicable for N-*
In this case the sums in Eqs. (4) and (5) are replaced by integrals

/ f.(r)p(r)r2dr = b. i = 1,2 (B-23)

where

fx(r) = 3/R
3, f2(r) = 5r

2/R5, = p, b2 = yp (B-24)

According to (B-15), P(r) can be expressed as a linear combination of
and f2(r), and

AA = -
1

25/21
(B-25)

The eigenvalues of this matrix turn out to be

y2 = 2.09976(3/R3), y2 = 0.09071(3/R3) (B-26)

which, apart from a different scale factor, are close to those obtained
for N - 100 (Eq. (B-19)). Similarly

U =
0.67275 0.73987

(B-27)
0.73987 -0.67275

is close to (B-20), and the generalized inverse solution for the density
is

p(r) = [1.84 - 0.84 • |(r/R)2]p (B-28)

APPENDIX C

Entropy Expressed in Terms of Expectation Values

The probability distribution for the density values pn

is (Eq. (14))

p(p) = •) hpL n n
(C-l)

where

Z = exp(-Y h p )dp = n 1/h
I n n n

(C-2)

(C-3)

and sums and products over n extend from 1 to N.
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Equations (C-l) and (C-3) have the forms generally found when the
entropy of a probability distribution is maximized under linear con-
straints. Substitution of (C-l) for p(pj in expression (12) for the
entropy (w(p) is constant and can be set to unity) leads to

H = j [exp(-X hnPn)/Z][£ hnpn + In Z]dp (C-4)

= T h p + In Z

Because of (C-2) and (C-3)

H = N - I ln(hn) (C-5)

= I ln(e/hn)
For N •> °°, that is when the number of shells goes to infinity, the
expression (C-5) for the entropy diverges in general. Replacing the
entropy by the entropy rate H/N (the entropy per shell) while retaining
the same symbol we get

H = I ln(e/hn) i (C-6)

For large N

h n = X, + A2[n
5/3 - (n-l)5/3]/N2/3

(C-7)
, 2/3 -1/3

= Al + X2 3 0 + °(<nN2) >

For N ->• °° and (see Eq. (13))

(§) -»• x = (|) (C-8)

we get

H = ln(e/[X1 + | X2x ' ]dx = -^ \ ln(eP(r))r dr (C-9)
J R J

Since scale factors and additive constants have no influence on the
maximum of H we get the same result independent of whether

H = j ln[p(r)]r2dr (C-10)

or (C-9) is maximized.
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Figure 1. Comparison of the density distribution within the
earth obtained with the Backus-Gilbert technique (solid
line) with Bullen's density profile (dashed line). The
dotted line represents the shape of the resolving kernel for
a depth of 2000 km.

16-

14-

12-

10-

8 -

6 -

4-

CM

o-

1 1

MANTLE

1 i i

\ OUTER
\ CORE

_

-

INNER .
CORE

— *'v- -
1000 2000 3000 4000 5000 6000

DEPTH (KM)

Figure 2. Comparison of the discrete (100 shells) and
continuous density distribution within the earth obtained by
the generalized inverse method (solid line) with Bullen's
density profile (dashed line).
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Figure 3. Comparison of the discrete (100 shells) and
continuous density distribution within the earth obtained by
the maximum entropy method with Bullen's density profile
(dashed line).
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Figure 4. Comparison of the density distribution obtained
with Graber's approach (solid line) with Bullen's density
profile (dashed line).
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ENTROPY AND SOME INVERSE PROBLEMS IN
EXPLORATION SEISMOLOGY

James H. Justice

1 INTRODUCTION

The ultimate problem in exploration seismology is the
reconstruction by inference of the structure of portions of the earth's
crust to depths of several tens of kilometers from seismic data recorded
on the earth1s surface. These measurements represent data obtained by
recording the arrival of wave fields which are reflected back to the
earth's surface due to variations in acoustic impedance within its
interior. This data is complicated by multiple travel paths, conversion
of wave modes (compressional or shear) at boundaries between homogeneous
layers, and is corrupted by additive noise.

Over a long period of development, various procedures have been con-
ceived which, when applied sequentially to seismic data, attempt to
accurately reconstruct an earth model which most likely generated the
observed data. This process is hampered not only by the complications
mentioned above but also by the severely band-limited nature of seismic
data (typically 5 to 100 Hz with most energy concentrated around 30 hz,
for example) which introduces limitations on resolution, and difficult-
ies in applying certain operators to the data in an attempt to improve
resolution.

Most inverse procedures applied to seismic data today are deterministic
procedures whose derivation is based on the "convolution model" to be
introduced later. Recently, however, some new approaches to inversion
of seismic data have been suggested. In contrast to previous methods
devised for inverting data, these methods do not rely on operators
applied directly to the data but rely instead on directly estimating an
earth model which would generate data consistent with the observed data
(which may still require some processing).

In recent years, significant results have been obtained by applying this
kind of approach to the problem of image reconstruction. One principle
which has met with some success in estimating the most probable (true)
image which generated a blurred or noisy observed image is the principle
of maximum entropy.

Certain inverse problems in exploration seismology can be formulated,
based on the convolution model which is analogous to the model used in
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image reconstruction. In keeping with the idea of estimating a most
probable earth model which generated an observed data set (which is
dangerous to operate on directly, due to its inherent limitations), the
principle of reconstruction based on maximizing certain probabilities
subject to constraints imposed by prior knowledge suggests itself as a
reasonable avenue for seismic inversion.

In this paper we shall suggest a variety of approaches to formulating
certain inverse problems in exploration seismology consistent with the
point of view outlined above.

2 PLANE WAVES AND LAYERED MEDIA

In our discussion, we shall restrict our attention to a
special case of wave propagation in a heterogeneous medium. In particu-
lar, we shall restrict our attention to plane waves normally incident on
a stack of plane layers. The velocity and density within each individ-
ual layer will be assumed to be constant and we shall consider only
compressional waves, that is waves in which particle motion is in the
direction of wave propagation (a similar analysis could be carried out
for the shear wave field as well).

Assuming that the medium of interest (the earth) is an elastic solid
satisfying the conditions of linearity in the stress-strain relationship
for small displacements, the elastic wave equation [27]

P — - 2 = (X+y) V6 + yV2
u

3 t •

may be derived where p is the density, u the displacement vector, X and
P are the Lame (elastic) constants of the medium and 0 = div u.

When u can be expressed in the form (Helmholtz Theorem)

u = V <(> - V X i|>
with V- ip = 0

we find that the scalar wave potential (J), sat is f ies the equation (by
substitution above)

324> _ c2V2<f>
at2

where the displacement

w = V cf)

is in the direction of wave propagation and the velocity c is related to
the Lame constants by

c = ((A + 2y)/p)*
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cf)is called the scalar or compressional wave potential.

We now restrict our attention to a plane wave potential propagating in a
vertical direction in our layered earth model

<f>(z,t) = exp (j(wt ± 2Tfkz))

where k is the wave number and the + sign determines propagation down-
ward or upward through the medium.

Since we are interested in a layered medium, we must consider what
happens at a boundary between layers. We require that pressure and the
normal component of displacement w = VcJ) be continuous across a boundary.
Since elastic waves suffer both reflection and transmission at any
boundary where acoustic impedance (the product of density and velocity)
changes, we must account for the amplitudes of the incident, reflected,
and transmitted waves.

Assuming a downward propagating incident wave, (z positive downwards)

(f) = exp (j(wt - 2Trkz))

the reflected and transmitted waves at the boundary can be denoted by

<(>R = R exp (j(wt + 2irkz))

(J) = S exp (jOt - 27Tkz))

Using our boundary conditions, with density and velocity Pi and V^
above the boundary and P2 and V2 below the boundary, we obtain

- 5 - (cf) + (f) ) = 3 cj)
dz -L K. dz T

Now it can be checked that

R = pressure of reflected wave
pressure of incident wave

and

S = pressure of transmitted wave
pressure of incident wave

(where pressure • -p —
3t2
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If we wish to keep track of pressures in the medium due to passage of
the waves then we can easily derive (substituting our wave potentials
into the boundary conditions and solving)

R =

P2V2V2
and P2 2p, V,

T = — S = 1 + R = I L
Pl P2V2 + P1V]_

where T is called the (pressure) transmission coefficient. Note that we
could also derive similar coefficients for particle displacement or
velocity if these are the quantities of interest. We simply replace R
by -R above to obtain the coefficients for these other two cases.

R is called the reflection coefficient for the boundary between the two
media and the product Z = pv is called the acoustic impedance. In terms
of acoustic impedances, we may write

R -
R "

T =
2Z2

z2
3 RESPONSE OF A LAYERED MEDIUM AND THE INVERSE PROBLEM

Let us now consider a layered medium sandwiched between
two half spaces. The medium will be assumed to have constant density
and velocity (i.e., acoustic impedance will be constant) within each
layer, and reflection and transmission coefficients are computed from
our previous equations at each boundary. We shall abstract our results
from plane waves and identify each (normally propagating) plane wave by
its amplitude and direction of propagation. In accordance with our
previous derivations, we shall take acoustic pressure as the measurement
of interest. Let us introduce a unit pulse (unit amplitude normally
propagating plane wave) into the first layer of the medium and follow
its progress through the medium, accounting for our measurement
(pressure) along the way. Our medium shall be set up as shown in
Figure 1 (AT is a fixed travel time between layers). The sequence
{c^}, 0<k<N is the sequence of reflection coefficients derived
earlier.

If we take c0 = -1 (a free surface) then we may write, (taking AT =
1/2) using z-transforms

" 1
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Figure 1.

RECORD TIME

2AT 4AT 2NAT

•* AT

where % ( z ) is the z-transform of the downgoing acoustic pressure
response in layer 1 for an N-layer medium [15]. The polynomials G
and AJJ are given recursively by

= Fk(z) -

F k ( z ) -

G k ( z ) =

with F0(z)

V Gk-i

k-1

1

0

also satisfies the recursion

V z ) • \-i(z) " ck zk V i (z-1)

We see then, that given this rather ideal model and the known reflection
coefficients, we can quickly generate the response in the first layer
which we may take to be a model or synthetic seismogram for an impulsive
source in this medium.

It is easy to verify, using the principle of superposition, that if we
introduced a time varying disturbance w (a wavelet) into the medium in
place of the impulse, our observed seismogram would take the form

or

S(z) = W(z)

s(t) = w* r

(frequency domain)

(time domain)
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Since a real seismogram always contains additive noise, we may modify
our ideal seismogram to the form

s(t) = (w*rXt) + n(t)

where n(t) is noise.

This simple model for a seisraogram generated by the response of an ideal
layered earth to a normally incident plane wave field is called the
convolution model for reflection seismology. This model is widely used
and though it appears to be rather far removed from reality in many
situations, data is processed in exploration seismology so that this
model is often closely approximated.

An interesting inverse problem now presents itself; that is, to infer
the reflection coefficient sequence {c^}, l<k<N from an observed
response in the first layer.

Though our model may take other (similar) forms with analogous recursive
formulae for the response (|c0| < 1, for example), we have chosen this
particular representation for discussion here because there is an
elegant and simple direct inversion procedure available in the ideal
case.

In particular, if the noise-free response to an ideal impulse has been
observed, then % ( z ) can be inverted to obtain the reflection coef-
ficients, {ck}, l<k<N by the procedure [15]:

Cl = V

\ Z" Vl
= "(3, -, r. + a, o r, _+...+ a, , r.kl k k2 k-1 kk 1

k

k+1
k 2c . = (r. ,- - r. .J/.IL (1-cf )

k+1 k+1 k+1 j=l j

We begin with k=l and stop when CJJ has been calculated.

While this inversion procedure solves the ideal inverse problem in the
noise-free case for a plane wave normally incident on a stack of plane
layers, the procedure is extremely sensitive to noise and has not found
widespread practical application.

We may now pose the inversion problem which we wish to discuss in the
remainder of this paper: Given an observed seismogram representing the
(assumed) acoustic pressure response of a horizontally layered medium to
an input wavelet (pressure wave field) corrupted by additive noise,
infer the reflection coefficient sequence, {c^} or, equivalently, the
acoustic impedances {Z^} of the individual layers comprising the
model.
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Acoustic impedances may be obtained from the reflection coefficients
using the relation

(1 + c )

\ = Vi ~

or, equivalently

k-1
(1+ e.)

£=1 (1- C£)

where Z^ is assumed known and c^ ^ 1 for any k, k>l.

4 DECONVOLUTION AND INVERSION

We shall now direct our attention to the convolution model
for a seismic trace (seismogram) and the related inversion problem of
estimating the reflection coefficients for this model. The direct
inversion procedure referred to earlier, to be successful, would require
perfect noise suppression on the data followed by a perfect (non band-
limited) deconvolution. These requirements exceed our reasonable expec-
tation in dealing with real data. As a result, we must look further to
identify procedures which are robust in the presence of insufficient
information or data from which information has been irretrievably lost
due to band width constraints.

Let us review the approach which is widely used to deconvolve seismic
data, and discuss its effect on subsequent attempts at inversion. Given
the convolution model for a seismic trace,

s = w * r + n

where s is the trace, w is the source wavelet input into the earth, r
the impulse response (not to be confused with the reflection coefficient
sequence c^ which it may approximate) and n is additive noise.

Depending on the form and coherency of the noise, various procedures may
be applied to the trace (or traces) to enhance signal-to-noise ratio.
No matter how effective these may be, however, we may always assume that
some residual noise remains on the traces and it is this residual noise
which appears in the remainder of our discussions.

Standard procedure is then to estimate in some fashion a deconvolution
filter which, ideally, both removes the smearing effect of the wavelet
and minimizes the error due to noise. There is usually a trade-off
between these two criteria, and doing well with one usually implies a
poorer performance with the other.

A simple and widely used procedure is to correlate the seismic trace, s,
with itself. Under the assumptions that noise is white and uncorrelated
with w and r, and further that r is white we obtain
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S © S = (w ® w)

= (w(7)w)

where <̂ r and vn are the energy associated with the r and n
sequences. The result is a scaled and biased estimate of the wavelet
autocorrelation. If we now assume that the wavelet is minimum phase
(not a bad assumption for dynamite sources, for example) we can uniquely
infer the wavelet, w, provided that estimates of or and an are
available.

Many other procedures have been suggested and are used including direct
monitoring of the wavelet, which is possible in marine work. In any
event, if the wavelet is minimum phase, we may use a variety of proce-
dures to obtain an approximation of any desired length to its inverse,
f=w~*. Applying f̂ w"̂ - to the original trace yields

f * s = f * w * r + f * n = 6 * r + f * n

= r + f * n

Of course, we would like to estimate r but the factor f*n can be quite a
large error. The error due to the term f*n manifests itself especially
at the higher frequencies. In terms of z-transforms we have

F ( Z ) s(Z) S +W(z)

If W(z) has low power in the high frequencies (as is usually the case)
and N(z) does not, the quotient , N(z), can be quite large at high

! l
frequencies. The deconvolution filter is most often estimated by seek-
ing a least-squares approximation of a given length to the inverse of w
(Wiener "spiking" filter). This process tends to be reasonably robust
in practice and it may be modified to include a factor to control noise
amplification, a procedure which necessarily degrades its performance.

We may also note that deconvolution carried out by convolving the trace
with a deconvolution operator cannot increase the bandwidth of the
original data and so a perfect impulse response { rjj is simply not
achievable in practice using this procedure, no matter how the deconvo-
lution filter, f, may have been arrived at. We may now inquire what
effect an imperfect (and band-limited) estimate of the impulse response
r^ may have on a subsequent inversion. There are several approaches
to direct inversion of an impulse response but all are similar in spirit
to the solution given earlier and all exhibit sensitivity to error
(either from imperfect deconvolution or from additive noise) which may
render the results useless if the deconvolved data is not essentially
perfect, a case not likely to be met in practice. A good comparison of
a variety of approaches to inversion along the lines discussed here may
be found in [22].
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An analysis of the error which may occur in a direct inversion of this
kind may be found in [1]. In this study it is shown first that
multiples (events which have reflected more than once in the medium as
opposed to "primaries") in general cannot be ignored in the inversion
process (as is often done by attempting to remove all multiple
reflections before inversion). Second, it is shown that even when the
full impulse response (assumed to be properly corrected to fit the
assumptions) is used, then even under the assumption that all previous
reflection coefficients have been estimated with an accuracy of .025 and
that no errors at all have been made in deconvolution, the uncertainty
in estimating the next reflection coefficient may significantly exceed
its expected value. This error increases as the index of the reflection
coefficient increases (see also [la]).

Finally, it should be pointed out that, in conversion to acoustic
impedance, the low frequency component which is missing in seismic data
must be estimated. This is often done using estimated velocities from
move-out characteristics of offset seismic data together with an assumed
relationship between velocity and density which may take the form

p = KV*

for example [13] where K is a constant (K = .31, for example, if V is in
m/sec and p is in g/cm^).

We have pointed out a few of the errors associated with deconvolution
and with the attempt to apply direct inversion algorithms to less-than-
perfectly deconvolved data. It seems reasonable to seek approaches
different from those described thus far, but before abandoning the
concepts of deconvolution and direct inversion, let us consider some
applications of the maximum entropy concept to these problems.

5 APPLICATIONS OF THE BURG ALGORITHM IN

DECONVOLUTION AND INVERSION

The first applications of maximum entropy analysis to
deconvolution and inversion were developed through use of the Burg
algorithm [5].

If we recall our earlier discussion, it was pointed out that one of the
most widely used deconvolution procedures in seismic data processing is
to obtain an approximate least-squares inverse of a fixed length for the
estimated source wavelet. One procedure for doing this was based on
estimating the autocorrelation coefficients of the wavelet directly from
the seismic trace under the assumption that the noise and reflectivity
sequences are white and uncorrelated with each other.

Under these assumptions, let us now estimate a prediction error filter
{1, -a^, , -ajj} of some fixed length for the trace. We may then
write
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st = * ak st-k + ett 1 k t k t

where et is the prediction error. Let us further assume that the
trace satisfies the convolution model

M
S = y r. w . + n
t £ j t-j t

where rt is the impulse response of the medium and nt is noise.
We shall now apply the prediction error filter for the trace to the
convolution model obtaining, after some computation:

M N N
y r . [ w . - y a, w , . ] + n - Y a . n . = e
o J t-j J k t-k-j t £ j t-j t

we recognize the first term on the left as a convolution of the sequence
{rt} with the term in brackets, i.e., r*(w-a*w).

Under our previous assumptions (white reflectivity sequence, r; white
noise sequence, n; r, n and w uncorrelated), the trace autocorrelation
is a scaled version of the wavelet autocorrelation with an additive term
at the origin, i.e.,

<J> = a2 <f) (t) + a2 6
ss r ww n t

But this tells us that the prediction error filter which we have esti-
mated for the trace is actually a scaled version of the prediction error
filter of the wavelet plus uncorrelated white noise. This means that
there is a prediction error sequence et satisfying

N
(nt + V " I \(n't-k + V k } • £t

where n1 is a scaled version of n.

Substituting this expression into our previous expression for the
prediction error of the trace, we obtain

M N N

y r. {e . - [nf . - Y a, n1 , . ]} + n - Y a.n . = e
Q j t^ ^ j £ k ^ k - j ^ t j J ^ t

The presence of noise obviously obscures the interpretation of the
prediction error sequence, et , but at least its influence on the
output from our deconvolution with the prediction error operator is
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clear. If we now make the assumption that the noise can be assumed to
be zero (the ideal case) the above formulation reduces to

M

I r. e . = e

where

wt " l \

since the prediction error operator for the trace is now the prediction
error operator of length N+l for the wavelet, we conclude that et = 0,
Kt< N .

This in turn, implies

M
I r, e . = e r , 0 < t < N
£ k t-k o t * — —

In other words, in the noise-free case, our deconvolution with the
prediction error filter is a scaled version of the impulse response of
the medium for the first N+l output values. Beyond this point, the
output is a weighted average of the true response.

If the wavelet itself were, in fact, an autoregressive process satisfy-
ing the prediction equation

N

t j* k t-k o

then it is clear that (in the noise-free case)

M
Y r, £ , = w r
o k t"k ° t

for all t. For this reason, it is obviously advantageous to assume that
the wavelet is an autoregressive process and some inversion procedures
model it as such.

To obtain the prediction error filter, we may solve the traditional
Yule-Walker equations, or use the Burg algorithm to obtain increased
accuracy. Having obtained the (noise-free) deconvolution, we may
proceed with inversion as described earlier.



280 Justice: Entropy and Problems in Exploration Seismology

A direct approach to inversion using the Burg algorithm results from
noting that the transmission response of our N-layer model satisfies
[21]

N
n (l-c.)

T(z) = j=l J

A (z)
n

where T(z) is the z transform of the wave transmitted into the lower
half-space. An(z) satisfies

A.(z) = A.^Cz) + c.zj A.__1 (z"1)

A (z) = 1
o

where we have assumed co=l in this case.

Clearly the transmission response is an autoregressive process. We may
either use a Yule-Walker approach or the Burg algorithm to invert the
transmission response for the reflection coefficients. If we use the
Burg algorithm to estimate the successive approximations to AJJ(Z) then
the reflection coefficients may be obtained from [21]

-21 ( I a,(j 1} i- ) ( I a, (j l) t. ,, )
c. = n=0 L * fc*i k jk+nj

I j-1 (. . 2 j-1 (. )

~ , ^ k k+n \ ^ k j-k+n
n=0 L k=0 k=0 J

where tj is the impulse response of the seismogram. Aj(z) is
obtained from the recursion above.

Another use of the Burg algorithm in inversion for the acoustic impe-
dance has been suggested by Walker and Ulrych [32]. In this approach it
is assumed that the data has been corrected to remove all effects of
multiples and that transmission effects have been corrected as well, so
that the impulse response in the convolution model actually coincides
with the reflection coefficient sequence { c ^ . They further assume
that the data has been perfectly deconvolved within the bandwidth of the
wavelet. The result, then, is a noisy bandlimited estimate of the
reflection coefficients. The problem is to remove the band limited
constraint by predicting information in the missing bands, hopefully in
a manner not too sensitive to noise.

Under these assumptions, the Fourier transform of the seismogram takes
the form

Y = CW + N
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where Y is the transformed seismogram, C is sum of weighted exponentials
(transform of reflection coefficients) W is 1 on some portion of the
frequency band (determined by the wavelet) and zero elsewhere and N is
the noise transform. The method is based on the fact that C (the trans-
form to be extended to the full band by prediction) is an ARMA process
which may be approximated by an AR process. To extend C over the low
frequency end of the band, Yule-Walker equations or Burg estimation may
be used. Walker and Ulrych [32] state a preference for a modified
minimum entropy extension for the high frequency band. The acoustic
impedance is obtained from our previous equations once the reflection
coefficient sequence has been estimated.

6 ALTERNATIVE APPROACHES TO INVERSION

In our previous discussions, we have considered applica-
tions of an algorithm derived from the maximum entropy principle but we
have not considered the application of that principle directly to the
inversion problem. The maximum entropy principle provides us with a way
to infer a solution to our problem which, ideally, honors only con-
straints resulting from prior knowledge. These may be imposed, for
example, by the convolution model.

It seems appropriate, then, to formulate direct approaches to inversion
which may avoid the problems associated with deconvolution but which
honor the type of model such as the convolution model on which such
procedures are based.

The band-limited nature of seismic data poses problems in inversion as
we have seen and implies a non-uniqueness to the solution. As a result,
it seems reasonable to seek a solution which satisfies the usual
constraints but which in some sense either makes no unwarranted assump-
tion about the solution or is the most probable by some reasonable
criterion.

While we may begin directly with the definition of an entropy measure
which we seek to maximize, we might better be guided by probabilistic
considerations in formulating our model as is commonly done in image
reconstruction, for example.

In image reconstruction, we imagine that every possible picture can be
obtained by assigning silver grains to pixels in every possible way.
The probability of occurrence of a particular image is then determined
by the number of different ways in which it can be formed. Maximizing
the probability of occurrence of an image, subject to constraints, leads
in a natural way to maximizing the entropy measure.

subject to these constraints [11]
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We might follow a similar analysis for the reflection coefficient
sequence in the geophysical inverse problem but there are some differ-
ences between this problem and the image reconstruction problem though
the models are identical.

In the geophysics case, it does not seem warranted to assign probabili-
ties as it is done in image reconstruction since many reflection
coefficient sequences, while being theoretically possible are highly
improbable on physical grounds. This is to say that not every possible
assignment of reflection coefficients should be equally probable with
any other. To assume this would surely result in many physically
unacceptable inversions. In addition, reflection coefficients unlike
reflectances, are not constrained to be positive, but they are bounded
I ck I HJ-* anc* ra r ely exceed a few tenths in magnitude.

As a result, it seems reasonable to look for a new approach to assigning
probabilities to reflection coefficient sequences in which we have more
control over what is probable and what is not.

In an effort to find a reasonably simple approach which will agree with
the limitations mentioned above, we might assign probabilities to
reflection coefficient sequences as follows.

Let us imagine the reflection coefficient sequence as a series of bins
to which may be added various small (but equal) quanta of "reflectiv-
ity", much as is done in image analysis. We are therefore selecting
reflection coefficients from a finite set which simplifies the problem
somewhat. We shall fill each bin separately based on a fixed number L
of trials of a Bernoulli experiment. The outcome for each bin is
assumed to be independent of the other outcomes and the probability of
success may vary from bin to bin to reflect prior geological knowledge.

The probability that n^ quanta will be assigned to bin k is, therefore
(the kth reflection coefficient will eventually be determined by n^)

\ nk L"nk

where P^ is the probability of success assigned to the kth bin, and
this single probability is all that needs to be determined if prior
information is available. For example, if it is known that

E(n^) = ne, where E is expected value,

then pk = ne/L

We may now infer the probability of occurrence of a particular sequence
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N ^ n, L-r
P(ni....,nN) - k 2 l

TO
n n., CL-n ) !

k=l K- R

n

k=l
pk

and so

in KPl,..., pN) = N £n L! - I Hn nfc! - £ in (L-r^) ! + ̂  nfc £n Pfc

+ I (L-nk) In (l-pk)

We now invoke Stirlings formula (for large L and n^) In n! = (n £n n)-n.
After some algebraic manipulations this reduces to

-L { I _^ £nr \ .+ I (1- \) £n 1- \ - J \ £n Pk
1 L L ^ l L ^ L ) 1 L

N

- I in U-Pk)

The ratio n̂  satisfies

IT

0 £ \ £ 1

There are now a variety of ways in which we could relate the ratio
n^/L to the reflection coefficient, c^, and our choice might better
be left open in any particular case.

A simple and reasonable approach, however, might be to assign

|ck I - Ji
L

and let the sign of c^ be determined by the constraints. By doing
this we allow the possibility that if p^ is small, c^ will be
expected to be small but may be either positive or negative with equal
probability. With this assignment, then, our probability becomes
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N N

In P(cr-....,cn) = -L { I |ck| In | o^ | + I (1- |cj Hn (1- | o^ | ))

N N
™" / c, X/n y K. % "" / x»n \ l^ p . / j

1 ^ ^ 1-p^ 1

Maximizing the probability of occurrence (without regard to con-
straints), we may ignore the last term above so that the expression to
be maximized is

N N

F(cr....,cn) = - I |ck| In |ck| - I (1-lcJ ) In (l-jc^l )

An alternative definition of

2 \

which satisfies -1

results in the symmetric form

- - f1+ Ck An ^

+ f 1+Ck In Pk

In this latter case, assigning p^ = 1/2 to insure E(c^) = 0 for
l<k<N causes the last term to vanish, leaving us with a much simpler
result, and one which would not be unreasonable in many geophysical
situations. This particular choice of p^ is the only one in this case
which will not bias the sign of the reflection coefficient to be either
positive or negative.

If we now add a set of constraints (convolution model, etc.)

gj = o

then we may solve for the reflection coefficients which maximize the
objective function F, subject to the constraints, using Lagrange multi-
pliers, for example.
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In the latter (simplest) case we arrive at:

1 - exp [2 I Xk ]

c. =
J 1 + exp [2 I Xk ^ k ]

Before looking further into the form of the constraints, let us delve
more deeply into the assignment of prior probabilities in our objective
function.

We would like in particular, to investigate the implications which
result from treating the vertical lithologic sequence as a Markov
process. Geologically this seems most reasonable and has been supported
by some field studies [31] . Assignment of transitional probabilities
for a Markov process is clearly dependent on the depositional environ-
ment and may change with both spatial location as well as depth. That
is to say that the site of a deltaic sequence on a continental margin at
one era of geologic time, may have been an area of carbonate build-up
accompanied by anhydrite sequences in another era of time. These
scenarios would each determine its own set of transitional probabilities
within its section of the vertical sequence.

In cases such as these, assignment of transitional probabilities would
be most effectively aided by well control, and the concept of inversion
being discussed here would depend on the successful integration of
geological and geophysical data. We must re-emphasize that this
approach lends strong credence to the point of view that probabilities
associated with reflection coefficients should be assigned on an
individual basis depending on the position of their occurrence within
the stratigraphic section.

With these thoughts in mind, let us suppose that M distinct lithologies
&1» •••» £M (associated with different values of velocity, density
and/or Q for example) have been identified in a particular section of
the stratigraphic column. We assign a set of transition probabilities
to all possible pairs,

_ .. I 9 v _ probability that lithology £^

J J is followed by lithology SL.

There are M^ of these transition probabilities which we may envision
as an array

.1 q12 •••' qlM

q21 q22 •*•• q2M
I » »
f I I

qMl qM2 •••• qMM
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with qjj = 0 1<J<M (we shall not allow a lithology to succeed
itself; and

M

I \; = 1 , 1 < K < M

Again, based on prior information (well data, geophysical/ geological
data, etc.) an expected or average reflection coefficient is calculated
for each transitional state:

= normal incidence pressure reflection coefficient
at the boundary when lithology Z^ is followed by
lithology Zy

We recall from our previous discussions that if velocity and density of
each lithology can be estimated, then

p. v. - p. v.

KJ p. v. + p, v.
J J k k

(normal incidence pressure reflection coefficient),
where p = density and v = velocity.

If only velocity is known, then density can be estimated from Gardner's
relation [13] given earlier

p = kv*

Finally, we must assign a set of probabilities to the M lithologies in
the sequence, again, consistent with whatever prior knowledge is avail-
able

qj = probability of occurrence of lithology ZA

with M

We are now in a position to estimate the expected value of reflection
coefficients in this sequence

M M
E(c) = 1 I c q . q

j=l k=l RJ kJ J

using the fact that the transitional sequences are mutually exclusive
and account for all possibilities.
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We may now use these expected values to assign the probabilities in our
binomial distributions introduced earlier for determining the function
to be maximized for the reflection coefficient sequences.

Given the procedure just outlined, the choice

2IL
Ck k - 1

L

would again be a good choice since assignment of p^ (probability of
success for the kth reflection coefficient) allows us to clearly
bias the probabilities for c^ to be either positive or negative
depending on the expected values obtained above.

We may now go one step further, if desired, and consider expected thick-
nesses of each of the identified lithologies, &j•

If lithology &j has an expected "thickness", T^, (in terms of two
way travel time) then we may also calculate an expected value of
thickness

E ( T ) - f T.q.

This expected value together with its inferred distribution function may
be used to determine the probable placement of reflection coefficients
(which we have been analyzing) on the two-way time axis.

At this point, let is re-emphasize that we are not building reflection
coefficient sequences! We are simply building constraints based on
prior knowledge to help guide in the selection and placing of these
sequences subject to the ultimate constraint which is that the inferred
inversion must be consistent with the observed data (we still have not
discussed this constraint).

Before going on, a few remarks are in order. We have confined our
attention thus far to a rather particular approach to a formulation of
the inversion problem based on some rather general principles. These
same principles can be used to construct other implementations which may
in some ways be more desirable than the one outlined here.

For example, the binomial distribution was arrived at from simple
assumptions assuming very little prior knowledge. It affords a
simplistic approach to the problem with a single parameter (pfc) to
control. In the absence of any information at all, it was suggested
that Pk = 1/2 would be a reasonable choice if

c.
k

is used.
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In areas which have been well studied, other distributions such as the
normal distribution involving a larger number of parameters may be
preferred [31] • In these cases, we may choose to take any preferred
form for the measure to be maximized• Finally, we may combine these
other approaches with the Markov chain concepts, for example, and even
these may be replaced by other possibly preferable constructs- The
point is that prior knowledge may affect not only the assignment of
probabilities but the formulation of the inversion problem itself.

In the absence of strongly compelling reasons to do otherwise, however,
the approach we have outlined here may be as far as we dare to go in
most areas where more reliable information is won at high cost.

Finally, let us consider the ultimate constraint, that the solution
arrived at must be in some acceptable way consistent with the observed
data. We re-emphasize that all of our discussion to this point has been
directed at the possibility of obtaining the highest possible and most
probable resolution in the solution of the inversion problem which is,
at the same time, consistent with our observations.

The primary constraint which we wish to impose on a solution to our
inversion problem, as we have approached it, is that the convolution
model shall provide predictions consistent with the data.

If the wavelet and noise are perfectly known, then our constraint would
take the form

where s is the observed seismogram, w the wavelet, r the impulse
response of the medium derived from the estimated reflection coeffic-
ients and n is the noise. In this formulation, r could be obtained from
the forward modelling approach for plane waves normally incident on a
horizontally stratified medium given earlier:

= z" G N
 (z-1) . I ek z

k

for example.

Rarely would we expect to know the wavelet and noise well enough to
justify the use of the equality constraint above. Instead, it seems
reasonable to require that this constraint be approximately satisfied by
requiring, for example

| | S- (w * r + n) | | < e

where w, r and n may all be estimated, and the choice of norm is to be
specified. While procedures do exist in geophysical data analysis for
estimating w and n, it would seem that a maximum probability estimate
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for the noise might result in a "cleaner" inversion. If we therefore
use a similar model for the noise as we developed for the reflection
coefficients, but uniformly set p^ = 1/2 to provide a symmetric prob-
ability distribution about zero (assuming that the noise has zero mean)
then we would find that we must maximize the quantity

N

1

1+ Ck
2

In

N

I
1

l+ck _

( 2 )

v + v

2v

N

1
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2

:k £n (
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subject to the constraint

E(S - Y w, r , - v ) = 0
t" K t~K. t

where vt is the estimated noise and

_ V < V < V
-~ t —

The factor a is used to control the emphasis given to noise versus
reflection coefficients in the optimization process.

An alternative to the convolution model constraint suggested above would
be the constraint used by Gull and Daniell [14] (see also [4]).

t ** t

where N is the number of data points, s is the observed seisraograra, S is
the predicted seismogram,

S = E w. r . + v
t k t-k t

and o"t = estimated error in the observed seismogram.

Needless to say there are many variations possible for quantities to be
represented by entropy-like expressions and for constraints. We shall
not dwell further on this topic here, but surely some possibilities will
prove to be more suitable than others when applied to inversion
problems.

The inversion method developed above is motivated by the geological fact
that, at any particular site on the earth, the probability distribution
for each reflection coefficient is very much a function of the deposi-
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tional history of the site. The approaches which we have discussed
allow us to directly apply knowledge of the geology of the area, data
from well logs, etc., to the determination of the probability distribu-
tion of each individual reflection coefficient. The inversion is then
effected by determining that reflection coefficient sequence which is
compatible with the observed data (the constraints) and which is the
"most probable" of all reflection coefficient sequences which are
compatible with the data, based on our assignment of probabilities. We
have seen that this approach results in the problem of maximizing
"entropy-like" measures subject to constraints.

Our purpose here has been to examine the relationship of the maximum
probability estimators, which result from assuming certain probability
distributions, to the maximum entropy estimator. Our discussion has
been motivated, in part, by a very few published studies which have
examined the statistical distribution of reflection coefficients in
geological settings.

There is, of course, essentially only one function which may properly be
referred to as the "entropy" of a probability distribution if we impose
the usual conditions required of the entropy measure [24].

An alternative inversion procedure using the entropy measure

H = - I P(ck) In P(ck)

where {c^} is the reflection coefficient sequence (or its equivalent),
could be formulated in the classical manner [16], allowing the maximiza-
tion of the entropy function, subject to constraints, to determine the
required probability distribution. That is to say that the (unknown)
probability distribution of the reflection coefficients is taken to be
the one which maximizes the value of H subject to the constraints. The
expected value of each reflection coefficient could then be taken as the
solution to the inverse problem, for example. A nice example of this
approach to inversion is given in [24] where the procedure is used to
estimate the density structure of the earth.

Finally, we should like to point out that the random variables chosen
for the inversion analysis need not be restricted to the reflection
coefficients but could be taken to be interval velocities, densities, or
both, for example, and there may be advantages in choosing the random
variables to be one or more of these alternatives [26].

7 OTHER APPROACHES TO DIRECT INVERSION

Having outlined an approach to direct inversion based on
maximum probability or entropy considerations, we shall now consider
several other approaches which have been suggested for direct
inversion.

Bamberger et al [1, 2] consider a similar inversion problem to the one
considered here. They assume that the wavelet is known and seek an
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impedance function from a set of impedances with finite total variation
which minimizes the objective function

J (a) = || Y(a) - Yd \\
2
2

where Y is the synthetic seismogram resulting from the impedance
estimate,a , and Y^ is the observed seismogram.

Obviously the problem is posed in a similar way to the maximum entropy
problem just outlined with the major constraint (convolution model)
built directly into the objective function to be minimized. They state
that if the data can be modeled closely enough by the convolution model,
then the problem admits a unique solution which depends in a continuous
way on the data. The method is claimed to be very robust in the
presence of noise. It is noted that the missing low-frequency component
of the impedance curve cannot be reconstructed with this procedure
alone.

The objective function for this approach is basically the same as some
of the constraints mentioned above for the maximum entropy formulation*
A comparison of the methods would tend to suggest that with the proper
constraint, the maximum entropy approach would tend to approach a
minimum of this objective function but with potentially higher resolu-
tion in the reflection coefficient sequence.

Maximum probability (or maximum likelihood) estimators have also been
suggested as the basis for several other formulations of the inverse
problem. In particular, we mention the work of Mendel [19,22a] and
Theriault and Baggeroer [28].

In the maximum likelihood approach to deconvolution developed by Kormylo
and Mendel [19], they assume the usual model for the observed seismo-
gram

S = w * r + n

where s is the observed seismogram, w the wavelet, r the impulse
response of the layered earth and n is noise. In this very general
approach, n and w are not assumed known, but they do assume something
about the structure of r. In particular, r is assumed to be of the
form

r(k) = a(k) x(k)

where a is a zero mean Gaussian white noise process determining the
amplitude of the spike and T(k) is a Benoulli process taking the values
0 or 1 which determines the spacing of the spikes in the impulse
response. It is further assumed that the wavelet, w, can be modeled by
an ARMA (n,n) process
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I b
W (z) = k = 0
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j=0 J

Statistics, including the variance, c, of a, the probability, A, of
success in the Bernoulli process,T , and the variance of the noise, R,
are to be estimated (n is also assumed to be a Gaussian white noise
sequence).

Given N observations from the seismogram, s, the problem is to estimate
the parameter vector,0 , containing the ARMA model coefficients, for the
wavelet, and the parameters R, C, and A . in addition, we must estimate
a and x .

Using Bayesian principles, they point out that to estimate 0, given s,
we might observe

p(e|s) = p(s|e) p(e)7p(s)

and so we might choose to maximize

F(0|S) = p(s|e) p(e)

To estimate 0, a, and T they suggest integrating out a and estimating 0
and T by maximizing FI(T,6|S) = p(s|T,0).p(x|0)

a is then estimated from

F2(a|s,f,0) = p(s|a,t,0) P(a|?,0)

/\
where the estimates, f and 0 are taken as known from the first step. In
various publications, Mendel et_ al̂  have considered many variations on
this theme from "everything known" to "nothing known".

Theirault & Baggeroer [28] also consider a maximum likelihood approach
to estimate the reflection coefficients. In this approach, it is
assumed that the data has not been deconvolved, but that the source
waveform is known and the Goupillaud model is assumed to be the genera-
tor of the seismogram which contains additive noise. The reflection
coefficient sequence, g, is chosen to be that estimate, g, which maxi-
mizes an assumed conditional probability, p(s|g), where s is the
observed seismogram, subject to the constraints

They obtain the Cramer-Rao bound on performance of the estimator and
give some reason to believe that the estimator is robust in the presence
of noise by carrying out Monte Carlo simulations.
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Wiggins [33] introduced yet another direct approach to seismic inversion
which uses the varimax norm from statistics in place of the entropy
measure. Wiggins1 goal was to derive a sparse spike train approximation
to the impulse response of our layered earth model consistent with the
observations. His method is to find a deconvolution operator for the
observed data which will yield as its deconvolved output (the estimated
impulse response) a sequence which minimizes the varimax norm and which
would tend, therefore, to resemble a sparse spike train with relatively
large spikes.

In the derivation of the deconvolution operator, Wiggins assumed that
several traces were available with the same source wavelet but with the
spikes in the impulse response separated by varying time increments.
These requirements are met in a standard field gather where the shot is
recorded at several receiver locations, each at a different offset, for
example.

Let {Sij} be the set of signals with l<i<Ns, l<J<Nt where Ns

is the number of trace segments or sample signals and Nj- is the number
of time samples per segment.

If {ffc} is the deconvolution operator, then

Nf
Yij = I fk Si,j~k

k=l

is the deconvolved output from each segment or trace.

The method for finding the operator {f^} is to select it in such a way
that the varimax norm, V, is minimized, where

and

v = 1 v.

vi • ? A\' (l ylp

Solving the equations obtained by setting derivatives with respect to
the coefficients "ff̂ J equal to zero leads to a set of nonlinear
equations which can be solved iteratively.

We might raise the objection that the approach outlined above ignores
many constraints which might reasonably be imposed on the solution and
so we would like to consider a reformulation of the problem which allows
for the incorporation of constraints on prior information.

Let is simplify our notation, for the sake of discussion, by working
with a single trace segment. In this case, we may drop one index in the
formulation above (it can be easily replaced later, if desired). Our
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problem then is to estimate the impulse response, {y-j} using the
principle of minimizing the varimax norm while requiring as a constraint
that {y.;} should, in some sense, generate the observed seismogram.
This means that we shall require an estimate of wavelet and noise, if
available, but if not, they could be estimated using maximum entropy,
for example, subject to suitable band-width, etc., constraints•

We recall that

v - Iy* / <Xy?>2

j J j J

(other authors have used different normalizations, but these are
unimportant to the problem).

We shall assume that the impulse response iy\^ which is to be
estimated satisfies the convolution model

S = V w. y . + n
t j j *t-j t

Rather than treat the problem as an unconstrained optimization problem
as originally proposed, it seems reasonable to formulate constraints and
to incorporate them into the solution as appropriate. In particular,
the wavelet, w, may have a known phase structure in bandwidth and these
should be incorporated. We may even have a reasonable estimate of w or
its statissics. We may also wish to incorporate constraints which
acknowledge the noise term and which incorporate its statistics into the
solution.

For the sake of illustration, now, we shall consider a particularly
simple case in which an estimate of the wavelet is available and the
expected value and variance of the noise are known. Making the simplest
assumptions (w, y, and n are pairwise uncorrelated) we would then wish
to minimize the varimax norm subject to the constraints

(A) E(st - st) = E(nt)

where (B) §t = I wj yt-j

and Wj is the (known) wavelet estimate, and

(C) Var (st - st) = aQ
2

2
where a n is the variance of the noise.

Rewriting our constraint equations (A)-(C) in the form g^ = 0

and introducing Lagrange multipliers, our problem reduces to solving the
following equations for the impulse response, ty^):
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4yk ^ k y n 9gi

-==L - — + X X. — 2 = 0
(y2)2 ( ? ) 3 J 3yk

and gk = 0 for all k.

The first equation suggests the additional constraint y2 = 1 where our
notation is defined by

~~4 „ 4 T 2
y - £yk , y = £yk

If the constraint y2 = 1 is incorporated, then the impulse response
must be re-scaled after solving. This could be done by calibrating the
subsequent inversion to either known reflection coefficients or acoustic
impedance using the formulations in Section 3, for example.

Other types of constraints would lead to corresponding alternative
formulations of the problem. These alternative formulations may or may
not be easy to solve in practice.

Deeming [8] suggests the general measure V = zF(z) (Wiggins' original
measure results from this if we take F(z) = z) , and suggests several
choices for F(z). If we take F(z) = &n z, then V = z £n z where

I l^ * n z k and zfc = y^/ y
2

In this case,

If we normalize so that

~~2 - 1 V 2 i
y = u 2, yk = i

IN tv

then this becomes suggestive of an entropy measure on the square of the
estimated impulse response, {y^}

2,
V = i I yk

2 *n (y2)

Deeming points out that Ooe and Ulrych's exponential transform method
[23] corresponds approximately to the choice

F(z) = 1 - exp (- az)

and this could be treated by our direct approach as well.
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A few comments now seem to be in order. Wiggins' approach, while
suffering the disadvantages of requiring a deconvolution of the (noisy)
seismic trace with its attendant problems, does appear to be attractive
since so little is assumed. However, we might suggest that a solution
as unconstrained as this is might conceivably have little relation to
reality when the solution is non-unique. Thus, in spite of its apparent
attractiveness, we would suggest that opting for the direct solution
with appropriate constraints (even if these involve prior knowledge) may
be preferable, particularly in cases where prior knowledge may be
reliable or reasonably so.

8 SUMMARY

In this paper we have reviewed a particularly simple form
of inversion for seismic traces based on the response of a horizontally
layered earth to normally incident plane waves, a commonly used model in
seismic data processing.

Our purpose here has not been to review the very extensive literature
related to this problem, but to present a particular approach to it
based on maximizing probabilities or entropy. While much more work
remains to be done, this approach seems well founded in view of the
problems associated with purely deterministic methods and in view of the
successes which have been obtained by using this kind of analysis in
image reconstruction.

Several similar approaches to this problem have also been discussed
which lead to different formulations of the inverse problem. We have
also pointed out that minimum entropy deconvolution, as formulated by
Wiggins and others, while attractive in some ways, is a highly uncon-
strained problem which relies on deconvolving the seismic trace with a
suitable operator to obtain an estimate of the impulse response. We
have suggested alternative approaches which incorporate constraints and
which may avoid deconvolution of the seismic trace.

Finally, many issues, particularly the best choices for constraints,
have been treated lightly, in passing. This comprises a very large
topic in itself and should form a part of more detailed analyses to
follow.
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ABSTRACT

Using the principle of maximum entropy, a procedure is
outlined to study some aspects of the inverse scattering
problem. As an application we study a) the quantum mechan-
ical inverse scattering problem using the Born Approxima-
tion, b) the electromagnetic inverse problem, and c) the
solutions to the Marchenko equation of inverse scattering.

1 INTRODUCTION

Following the pioneering work by Jaynes [1], concerning
the information theoretic approach to statistical mechanics, there have
been several novel applications of the principle of maximum entropy in a
number of areas such as image processing, and geophysical data analysis
[2]. Of particular importance to the present work is a paper by Jaynes
on time series analysis using the principle of maximum entropy in which
Jaynes [3] derived Burg's [4] spectral method. The main goal of this
paper is to demonstrate the applicability of the maximum entropy method
for analyzing the generalized inverse problem. In Section 2 we develop
the formulation for tackling generalized inverse problems suitable for
the case when the available information is either incomplete or noisy.
The efficacy of the formulation of Section 2 is demonstrated in Section
3 by studying its application to the inverse problem in quantum mechan-
ical scattering theory. We present two more examples in Sections 4 and
5 where we present a solution to the inverse problem associated with the
Marchenko integral equation of scattering theory and the electromagnetic
inverse problem. Finally, in Section 6 we make some concluding
remarks.

2 PRINCIPLE OF MAXIMUM ENTROPY AND

THE LINEAR INVERSE PROBLEM

We consider the inverse problem consisting of the solution
of the following set of integral equations

fQ°° ak(r)F(V(r))dr = Afc (2.i)

k=l,2, M
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where V(r) is the unknown function of r for which a solution is desired,
F(r) is some functional of the unknown V(r) and ̂ (r) is a known
function of r. An example of F(V(r)) is the linear inverse problem in
which

F(V(r)) = V(r) (2.2)

The quantities (A^,...Aj^) are assumed to be given. We are particu-
larly interested in the case where the available information on A-£
is noisy. In this later case it is well known that in general there is
no unique solution to the inverse problem of Eq. (2.1).

We consider the following discretized version of Eq. (2.1)

? ( r l ' r2' ' V (2.3)
OL ( r ) (OL - , OL _ , OL _ . . . OL ) /o n

IV. IV. J. J\.^. IV J 1V1N \ '

v (vlfv2,v3,...,vH) ( 2 . 5 )

F(V(r)) [F (V),F0(V), FM(V) ] (2 6)

N
.Z OL .F.(V)=A1 ; k = l , 2 , . . , M / 9 7 N

J = 1 kj J He ( 2 . 7 )

The available information on A^ apart from being noisy may also be
insufficient to carry out the inversion indicated in Eq. (2.7), i.e.,
M « N. We now outline a procedure for inverting Eq. (2.7) to obtain an
estimate for the vector V using the principle of maximum entropy adapt-
ing a method given earlier by Jaynes for time series analysis. We treat
the vector V as a random vector allowing V^ to take any values lying
in the interval

-B SV£ <~ i=l,2,.....,N (2.8)

where B is a finite positive semi-definite constant. We next define
P(V) = P(VlfV2,...VN) by

P(V) = The probability for the occurrence of (2.9)
the sequence (Vi,V2,.

The information entropy of this probability distribution is defined by

S = - E P(V)lnP(V) (2.10)

Following Jaynes we maximize the information entropy of Eq. (2.10)
subject to the following constraints, to obtain P(V)
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E P(V) = 1 , (2.11)
V

N

<F.(V)> = E P(V)F.(V) . (2.13)
J V J

The maximization of S is conveniently carried out using Lagrangefs_
method of undetermined multipliers. The resulting equation for P(V) is
given by

- i M N

P(V) = Z exp{- E A E a i n V V ) } (2.14)
k=l k j=i kJ J

where

M N
Z = E exp{- E X E a F (V)} (2.15)

V k=l K j=l KJ J

= Z (A jX^,•..A )

In Eqs. (2.14) and (2.15) A^...AM are Lagrange multipliers to be
determined by the constraint conditions of Eq. (2.12). We rewrite Eqs.
(2.14) and (2.15) as

(2.16)

(2.17)
1 M - j J J

where

M

(2.18)

(2.19)

In particular the solution of the inverse problem posed by Eq. (2.7) is
now given by

<V. > = E V.P(V) (2.20)
V L

p(v) = z l

1* " ' M

M

r. = E x
J k-i

on for any

<G(V)> =

N
exp{- E r.F.

= E exp{-E T.
V j J

, a, . ;

quantity G(V)

E G(V)P(V)
V

(V)}

F.}

j = l,

is

2,..,N

given
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Our procedure for solving the inverse problem defined by Eq. (2.7) can
now be summarized as follows. The M pieces of data A^...A^ (which
may or may not be noisy) provide M constraints given in Eq. (2.12) to
determine the probability distribution. The coupled system of non-
linear equations

N N

Z £ OL.F.(V) exp{- E T.F.(V)} = A (2.21)

k=l,2,..,M

is solved to obtain A^..,A^.

Once the set C^l••*^M^ *s obtained one can then obtain V(r), the
solution to the inverse problem is obtained from Eq. (2.20). The
special case of the linear inverse problem is of great interest and our
results are summarized below.

F.(V) = V. (2.22)
J J

-1 N

P(V) = Z exp{- £ r.V.} (2.23)

N
Z = I exp{- E r.V.} (2.24)

V i=l X X

Replacing the summations over V^.. .V^ by integrations we obtain

N
p(v) = n r. exP{-ri(vi-B)} (2.25)

i=l

Using Eq. (2.25) we obtain the following estimate for <V^> from Eq.
(2.20)

-1
<V.> = T. -B (2.26)

Thus the solution to the linear inverse problem is given by

<v(r)> = rC?)"1 -B

- Ea(J)X (2-28)

The Lagrange multipliers A^...XM are now determined from solutions
of the M nonlinear equations given by
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-i
1 \i r i = \ ; k = 1 ' 2 ' " M (2.29)
1 = 1

From Eqs. (2 .25)-(2.29) we note that the linear inverse problem is
particularly simple to implement numerically. In the next section we
present an application to scattering theory in the Born Approximation.
In a recent paper the formulation outlined in this section has been
successfully applied to the problem of interpolation and extrapolation
of noisy data.

3 INVERSE PROBLEM IN APPLICATION

TO QUANTUM SCATTERING

In this section we apply the formulation given in Section
2 to study the problem of extraction of information on the potential
from scattering measurements. We consider for simplicity only potential
scattering [3].

We begin with a summary of the relevant results from potential scatter-
ing theory. We focus our attention on the quantum mechanical problem of
collision of two spinless particles described by the time independent
Schroedinger equation. The interaction between the particles V(r) is
assumed to be energy independent and is considered to be a function only
of the magnitude relative distance of the particles (spherically
symmetric central potentials). The differential scattering cross
section (the ratio of the outgoing flux to the incoming flux in scatter-
ing measurement) is given by

»| (3.U

where dQ, is the solid angle. In Eq. (3.1) k and 0 are the center of
mass momentum and the scattering angle respectively. The quantity
f(k,©) in Eq. (3.1) is the scattering amplitude given by

f(k,0) = F(k,lf) = - |n /d
3reik'rV(?)o)k(?) ^^

where k, kf are the center of mass momenta before and after the
collision. The wave function (^(r) is the solution of the
Schroedinger equation in the center of mass system

; (V2+ k 2 W (?) = V(?)a) (?) (3.3)

where y is the reduced mass.

For the case of spherically symmetric potentials it is convenient to
make the partial wave decomposition defined by
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o)(r) = - £ (2L+1)R_ (r)P_ (cos0)
r L=0 X L

(3.4)

The scattering amplitude f(k,0) is identified from the asymptotic
behaviour of w(r):

(r) (3.5)

Then the partial wave decomposition of f(k,0) is given by

f(k,0) = Z(2L+l)P (cos0)el6LSin6T
Li

where the quantities 6̂  are the phase shifts and are given by

*O)

V ( r ) ^

where jj/kr) are the spherical Bessel functions in order L. The
differential scattering cross sections do_ is related to the phase

dft
shifts via (3.1) and (3.7). From scattering cross sections one can
extract information on the phase shifts corresponding to the lowest few
partial waves (L=0,l,2...). From Eqs. (3.1) and (3.7) it is clear that
the extraction of phase shifts from scattering cross sections is a
nontrivial problem and we do not dwell on this aspect any further
however. We assume hereafter that &L,(k) are available from measure-
ments.

Since data is available for 6^(k) only for a limited range of energies
and a few partial waves, the inversion of Eq. (3.7) to obtain V(r) is
highly nonunique, a point discussed earlier, also by Chadan and Sebatier
[6] . Moreover the right side is a complicated nonlinear functional of
V(r) which makes the inversion even more difficult. In the high energy
limit under the so called Born Approximation one makes the approx-
imation

to obtain

= JL(kr) (3.8)

A - e L S m
2y. 2y

m 6 = - ^ 0

2 2
V(r)r j_ (kr)dr

L
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This is a linear inverse problem to obtain V(r) and can be handled by
techniques given in Section 2. Identifying the quantity otj(r) of Eq.
(2) by

aL(r) - " | ^ r 2 jj(kr) (3.10)

we obtain the following system of equations to obtain an estimate for
V(r)

<vi> = ri"
1 -B (3.11)

M
r = £ aLi AL (3.12)
1 L=l

aLi = "2y k^"2 JL(k ri) (3.13)

N -1
A. = 2 a [T -B] (3.14)

J i=l J 1 X

The reconstructed potential V(r) is given by

V(r)=[r(r)]"1-B (3.15)

To test this procedure we have first calculated phase shifts at various
values of L for standard potentials such as exponential and Yukawa
potentials. We then used the resultant phase shifts to carry out the
inversion to obtain <V(r)>. In Figures 1-2 we give the results for
exponential and Yukawa potentials. As we note from these figures the
reconstruction is satisfactory. Next we took the calculated values of
the phase shifts at various L and added gaussian noise up to 50% to each
data point. We then carried out the above procedure for this noisy
data. Again the reconstructions as seen from Figures 3-6 are quite
good. This shows the efficacy of our method. Work on applying this
formulation to extract information on nucleon-nucleon potentials using
the nucleon-nucleon scattering data is in progress.

We conclude this section by making a few comments on the problem of
obtaining the inverse from Eq. (3.7) without making the Born approxima-
tion. From the right hand side of Eq. (3.7) we note that one needs a
procedure for handling the radial wave function R(r). One method would
be to carry out a perturbation expansion keeping the next order term
(second Born approximation) and develop an iterative procedure to
extract <V(r)> by generalizing the above procedure. A more interesting
approach would be to start with an expression for R(r) from variational
methods or other considerations. Once a form for R(r) as a guess is
available one can again use an iterative procedure to extract V(r).
Thus one would first solve a linearized inverse problem using the known
R(r). In the second stage one would obtain a better Rj/r) by solving
the radial Schroedinger equation for Rj/r), i.e.,
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+ [k2 -
dr

]}RL(r) = 0 (3.16)

using the V(r) obtained in the first approximation. The resulting
RL(T) could then be used to repeat the whole procedure until a
convergent solution is obtained for <V(r)>. These and other similar
techniques are currently under investigation to improve the Born
inversion.

Figure 1. The method developed in Sec. 3 was applied to the
Born Approximation (Eqn.(3.7)) when the phase shifts were
first calculated exactly. In this case the potential is
V(r) - r2exp(-r), the exact solution is plotted in the
solid line, the reconstructed solution in the dashed line.
(Note: the factor of r2 is absorbed into the potential
and not a).
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4 MARCHENKO EQUATION OF INVERSE SCATTERING

In this section we study the inverse problem in scattering
theory via the Marchenko integral equation and the principle of maximum
entropy [6].

The inverse problem in scattering theory for one-dimensional potential
problems can be recast into an integral equation for the scattering
function. An excellent review of this formulation is available in
reference [7]. In this formulation one relates the reflection coeffic-
ient for waves incident from the right or left (rR(x) or rL(x)) to
the scattering functions from the right or left (AR(x,ct) or
AL(x,ct)) as a function of the position variable and time t. The
Marchenko integral equations are given by
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Figure 2. Same as Fig. 1, but for the Yukawa potential
V(r)-r exp(-4).
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Figure 3* A simulated exponential potential with Gaussian
noise added.
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Figure 4. The reconstructed potential of Fig. 3 using the
Born Approximation.
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Figure 5. A simulated Yukawa potential with Gaussian noise
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Figure 6 * The reconstructed potential of Fig. 5 using the
Born Approximation. GflUSSIflN NOISE
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rR(x+y)4AR(x,y)+ / dx
frR(x

fy)AR(x,x
!) = 0 (x<y)

x (4.1)

r (x+y)+A (x,y) + / dxfr (xf+y)A (x,xf) = 0 (x>y)
•LJ i_i 0 ° \ t \,

where xf - ctf, y=-ct (c is the speed of light). Eq. (4.1) is also
valid when there are bound states present except that r(x) then becomes
a function which includes information on the bound states (see Eqs.
(3.2.7) and (3.2.8) of reference [7]). Once the A(x,ct) are known then
the potential V(x) is given by

V(X) = -2

We now discretize the left hand side of Eq. (4.1) as

r. . + A. . + Z A., r, .
lj ii , lk kiJ k J

(4.2)

(4.3)

Following the analysis of Section 2 we now treat A as a matrix of random
variables A^j and introduce the probability distribution P(A) and
define the entropy of the probability distribution by
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S(A) = - /P(A)lnP(A) n dA
\\r J ^ (4.4)

we maximize S of Eq• (4.4) subject to the following constraints

;P(A) ndA.k = 1 ( 4 - 5 )

<A..> + £ < A-V
> r, • = "r-« (4.6)

<A. > = /A.,P(A) ? d A (4.7)
lk lk j 1 j 1

The resulting solution to P(A) is given by

P(A) = z" exp{ - £ A Tlk> (4.8)
lk

rik = Z[rkm + V X, (4'9>
m lm

Z = exp{- E A L } n dA.. (4.10)
- lm lm . . IJ
lm ij J

Performing the integrations in (4.10) we obtain

P(A) = n r exp{- £ T1 (A1 -B) (4.11)
. . . . n lm lm
ij ij lm

The matrix of Lagrange multipliers can be determined by solving the
coupled system of nonlinear equations

I rik[rk} "B] " " rij (4.13)

Once the Lagrange multipliers ^ j are determined <Aij> can be
obtained and hence the reconstruction of V(r) is then straightforward.
The discussion at the end of Section 2 would equally well apply here.
Further work on the analysis of the inverse problem using the Marchenko
equation is in progress.

5 ELECTROMAGNETIC AND ACOUSTIC INVERSE PROBLEMS

Optical properties of heterogeneous media in which the
scale of the inhomogeneties is small relative to the wavelength reveals
anomalous properties that do not exist in homogeneous systems [8-10].
Some systems of interest are aggregated materials such as metallic
films, suspensions of fine metal particles in colloidal media, and
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layered composite materials. The study of dielectric properties of
heterogeneous media has become important in recent years [8]. The study
of wave propagation in random media is also receiving a great deal of
attention. In this section we set up the general study of inverse
problems associated with this area.

We consider a two dimensional network with nodes labelled by a pair of
integers ( n ^ , ^ ) . A resistive element of admittance enn

f

connects the nodes (n,nf) and £nn» -
 e

n
fn* At every site

(node) there can be a current In. If In > 0 then the node is a
source of current In. If In is negative then the node acts as a
sink for current In. The potential at the nth node is denoted by
Vn. It is easily shown that Ohm's Law for this lattice takes the
form

Z e f(V - V ,) = I
t nn n n n • c i \

n (5-1;

The central problem of interest in the study of heterogeneous media is
the calculation of the effective dielectric constant of the medium.
Thus we are interested in finding the effective resistance Rn between
any two nodes say between (0,0) and (n^ , ^ ) . The effective resist-
ance Rn is given by

for the case where there is a source current I at the node o and a sink
current -I at the node n and all other currents are zero. The calcula-
tion therefore involves the inverse problem of obtaining Vn. Defining
a vector F by

(5.3)

(5.4)

(5.5)

Unless the matrix [B - e] is square it is not possible to obtain V from
Eq. (5.4) by matrix inversion. The example of Eq. (5.5) is a typical
inverse problem of the type discussed in Section 2 and the principle of
maximum entropy can be used to invert Eq. (5.4). A similar treatment
can be used to solve the inverse problem posed by Poisson's equation

? ? 4n p(?) (5.6)

we can

where

F -=
n

rewrite (5

[B -

nnT

Z
nT

•1)

e]

= F

enn

as

V =

6
n

t

I

nn
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Discretization converts Eq. (5.6) to a form similar to Eqs. (5.1-5.6)
and the same techniques can be used to obtain the effective medium
properties.

An inverse problem of great interest is the following. Given the
potential distribution $(r) one requires information on the source P(r)
in Eq. (5.6). We study here the case when e is a constant. The
solution to Poisson's equation is given by

-/4dV (5.7)
V |r-r |

with appropriate boundary conditions. In practice the information
available on $ is limited and noisy making the inverse problem for P(r)
nonunique. We can again apply the techniques of Section 2 treating P(r)
as a random variable to obtain information regarding P(r) (Note that the
function ot(r) of Eq. (2.7 Section 2) now contains the factor
1/\T-P\.).

The same techniques can be used to handle the inverse problem posed by
the time dependent wave equation [11] (or any other equation which can
be put in the form of Eq. (5.9))

(5.8)

As in the preceding paragraph one has limited information on f(r,t) and
one wants to invert for the sources p(r,t). Such a situation exists for
example in sound propagation in heterogeneous media and electromagnetic
waves generated by sources.

The solution of Eq. (5.8) (apart from surface contributions) is given by
the standard form

f(?,t)= /dV/dtfG(r?t ; ?!,t?) p(rV) (5.9)

where G(r,t,?1 ,tf) is the Green function satisfying the differential
equations

2

[V2 -i-^_]G(?tt,?;t
f) = 5(t-t')6(?-r"!) (5.10)

v 9t

The form of Eq. (5.9) for f(r,t) is similar to the linear inverse
problem discussed in Section 2 except that the weighting function °<r)
of Section 2 now depends on time (i.e., = a(r,t)). These problems are
currently under investigation.
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6 CONCLUSIONS

A general method to study inverse problems for the case
when the available data is incomplete and/or noisy is proposed (see
Section 2) by adapting a method proposed earlier by Jaynes. The case of
linearized inverse is studied in detail with applications to quantum
scattering problems and the electromagnetic inverse problem. A prelim-
inary analysis of the inverse problem associated with the Marchenko
integral equation in scattering theory has been presented. The results
of this work show, in our opinion, the versatility of the method
outlined in Section 2. We believe that this method can be applied in
several problems involving the computation of an inverse in integral or
integrodifferential equations, for example in other quantum mechanical
problems, geophysical inverse problems.
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