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Preface 

Mathematical modeling has become a staple in the inferential tool kit used by 
microbial ecologists to discern patterns in data. The wide availability of powerful 
microcomputers and statistical software have contributed to this development. 
Microbial ecologists can now easily explore the opportunities offered by mathe
matical modeling such as using models as (1) heuristic devices, (2) means of 
generating hypotheses about biological systems, and (3) aids in making decisions 
(i.e., the testing of hypotheses statistically). The chapters in this text provide 
examples of each of these different, but complementary aims of mathematical 
modeling. 

For microbial ecologists, the range of systems being subjected to modeling 
analyses runs the gamut from subcellar systems to ecosystems. Throughout, the 
objective is to express the system of interest in mathematical terms and to test 
whether the model provides an adequate representation of the system, depending 
on the researcher's objectives. The path between this objective and the develop
ment of a parsimonious mathematical model winds through various techniques, 
including parameter estimation, sensitivity analysis, model discrimination, and 
experimental design. It is hoped that the readers of this text will be served well 
by the information contained herein such that the biology remains the focus, 
when that focus is appropriate, and is not lost among the mathematical and 
statistical tools. 

The editors wish to thank Mr. Greg Payne and Mr. Henry Flesh of Chapman 
and Hall for their exceptional patience during the long gestation period required 
for this text. 
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What Is Happening to 
Microbial Ecology? 

Arthur L. Koch 

1. Introduction 

This is a time in which very important advances are occurring on many fronts 
to change the field of microbial ecology. These include new experimental ways 
to measure and identify organisms in natural samples, methods and approaches 
for modeling rate processes in complex systems, ways of combining the various 
kinetic processes into comprehensible approximate equations and graphical repre
sentations, computer applications for the simulation of overall processes, and 
statistical methods for the reduction and analysis of data. We now have increased 
ability to analyze the microbe's real environment-the microenvironment. More 
important is the convergence of methodologies from the many and varied different 
field toward the multidisciplinary analysis of microbial ecology. Most impor
tantly, although microbial ecology has been the invisible part of almost all 
ecosystems, it is crucial that ecologists come to recognize that more than half 
of any ecosystem is its microbial component. 

At this time there are radical changes in microbiological ecology. At a number 
of levels new methods have been developed that can and are now being applied 
to both old and new topics in ecology. Past and current pollution of the environ
ment is driving an interest, active work, and a need to understand the role of 
microbes in our biosphere and how the metabolic versatility of procaryotes can 
be modified to serve a key function in bioremediation. An appreciation of what 
has been tried and what has failed to solve environmental problems is now 
growing. This chapter lists some kinds of approaches that might work; some of 
these approaches are topics in this book. 

This chapter, which presents an overview of the general problem, is divided 
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into four parts: Section 2 lists new analytical approaches and techniques, Section 
3 discusses ways to model ecosystems, Section 4 reports developments in statis
tics; and Section 5 considers the use of Dutch uncle techniques to define and 
teach approaches that employ the scientific method to treat problems in microbial 
ecology. The rest of this book consists of chapters devoted to the current state of 
the art in different areas of microbial ecology with emphasis on the mathematical 
methods; the book as a whole; it is hoped, may help to lead to the future maturation 
of this very crucial intradisciplinary area. 

2. Analytical Methods 

Sometimes it is possible to focus on only a portion of a system and draw 
general conclusions about some particular process taking place in it. At other 
times it may be necessary to identify many of the types of organisms in an 
ecosystem and to ascertain the individual biomasses, the biological components, 
and the viability of the different species. Further, it may be necessary to estimate 
the collective living biomass and nonliving organic substances in the system. 
The partitioning of the biomass into living and nonliving is a very difficult feat. 
In many cases, the relevant chemical components of the ecosystem and the 
physical and geologic conditions must also be tracked. 

There have been many advances in methodologies to establish, enumerate, 
and identify the organisms that grow and persist in various ecosystems. Better 
methods are becoming available to measure the pollutants, their metabolic prod
ucts, and their metabolism in natural environments, which means that there are 
many new opportunities to analyze life processes in totality in a given habitat. 
This section just lists our new abilities and mentions a few of the virtues and 
limitations of these techniques. 

2.1. Ribosomal RNA probes 

Because the 16S ribosomal genes have now been sequenced for many organ
isms, it is possible to design probes to screen for broad and narrow groups of 
microorganisms in natural samples. This can be done even if the organisms 
cannot be cultivated. Probes can be labeled with radioactive tracers or they can 
be attached to fluorescent molecules. The latter strategy enables deeper and more 
detailed localization in both terrestrial and aqueous habitats. One goal of these 
procedures is to distinguish indigenous (autochthonous) classes of organisms 
from organisms that are not indigenous (allochthonous); for example, organisms 
introduced by man. The major impetus is to access microbial biodiversity. The 
merit of the these hybridization techniques is that organisms need not be cultured 
to carry out their identification; however, the question of the degree to which 
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the response to ribosomal probes actually represents living biomass, biomass that 
had been living a short time previously, or that which was living a long time 
beforehand is very important. 

2.2. Polymerase Chain Reaction (PCR) 

The power of the peR is immense and its applicability is great and is growing. 
The availability of this technique means that extremely rare organisms in an 
ecosystem can be detected and identified in an analysis that can be carried out 
quickly. Once the gene has been amplified, part or all of the genome of the 
organism of interest can be quickly isolated for laboratory study. There are, 
however, many technical problems. Further progress is needed to improve ways 
to isolate essentially all the DNA of an ecological sample and purify it from the 
humic acid components that are a dominant part of many ecosystems and interfere 
with the peR. There are many other problems with the peR; most of these are 
understood, can be anticipated, and can be at least partially guarded against. 

2.3. Fluorescent In Situ Hybridization (FISH) 

With fluorescent-labeled probes, we can now target cells and identify the 
morphological shape of the organisms that contain the DNA that complements 
and hybridizes to the probe. This method also provides an opportunity to measure 
the distribution of a class of organisms within the ecosystem. Often patches or 
colonies of organisms are spottily distributed. Knowledge of such heterogeneity 
in space may be important to the proper analysis of a system. 

2.4. Progress in Analytical Chemistry 

Extensive progress has recently occurred in this field. Some of the advances 
depend on newer chemical methods, but others depend on the development of 
very sensitive physical methods. Particularly, the newer physical detection meth
ods enable the measurement of classes and individual components rapidly and/or 
frequently in time and/or closely spaced in the physical system. High-performance 
liquid chromatography (HPLC) with different kinds of detectors and mass spectro
graphic methods with the many variations make it possible to learn very much detail 
very rapidly. A worker in this field has to deal with acronyms such as phospholipid 
ester-linked fatty acids (PLFA), gas chromatography (GC), Iontrap mass spectrom
eter (ITMS), mass spectrometry (MS), and electro spray (ES). 

Among the classes of organic species, there are three groups of biocompounds 
that must be particularly highlighted. The first group consists of the phospholipids; 
these compounds are essential to the formation of the membranes of all cells. 
Polar lipids may be a measure of viable biomass because they are particularly 
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rapidly degraded. Because specific types of lipoidal molecules identify particular 
types of organisms, the measurement of these molecules and their degradation 
products can be very useful. The second class are the teichoic acids, which are 
constituents of the walls of Gram-positive bacteria. These are unique enough 
from their chemical constituents that it is possible to measure them by High 
Pressure Liquid Chromatography (HPLC) and deduce the level of Gram-positive 
organisms in the ecosystem; particularly this method has been applied to marine 
sediments. The third biochemical is adenosine triphosphate (ATP). By chemilumi
nescence methods, with luciferase and luciferin, it is possible to make ultrasensi
tive assays of ATP. ATP has a turnover time in living organisms of seconds; 
consequently the ATP level can be assumed to be a measure of something related 
to the totality of the living biomass in the sample. All three of these highlighted 
types of measurements, like those of many other chemical species, have advan
tages and limitations as measures of biological activity in the environment, and 
they all depend on the validity of the assumption made about their turnover in 
the environment. 

2.5. Flow Cytometric Methods 

Instruments of two different forms are commercially available for these meth
ods. The early flow cytometers were originally developed by biophysicists and 
engineers working in conjunction with the Hertzenbergs to help them explore 
some questions in immunology, but now the commercial instruments have a 
much wider sphere of applicability. Originally, with good signal-to-noise ratios, 
this technique could detect particles of the size of animal cells, but would fail 
with smaller cells, such as bacteria of the size of Escherichia coli. Instruments 
of this type are now better and can be aligned and operated so that they can be 
used to measure even very small bacteria. The second type of instrument is 
constructed with a commercial inverted microscope as an essential constituent 
part. It was designed specifically to be capable of counting and measuring bacteria. 
These two types of instruments, of course, have different limitations, but both 
have some of the same strong advantages. One important advantage of flow 
cytometry over other approaches is that it is capable of counting a large number 
of particles within a short time. This is done by detecting light-scattering pulses 
such that the intensity is related to the biomass of the particle passing in a flowing 
stream through the laser beam or illuminated by a high-pressure mercury arc. 
Simultaneously, fluorescent light from suitable probes can indicate some other 
parameter (or parameters) of the same particle. 

In practice, bacteria are often stained with fluorescent molecules. By using a 
probe that binds to double-stranded nucleic acid (largely DNA), the lack of 
fluorescent signal can be used to identify and eliminate non biological particles. 
Such "dirt" particles are then excluded as not being biological particles. Additional 
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variation of these techniques can be used to estimate the internal pH and to 
estimate the viability of the bacteria. 

2.6. Microelectrodes 

Microelectrodes can be used to measure very local pH, redox, and other 
properties of natural environments. The development of these procedures has 
been extensive and they can now be considered available, reputable, and mature 
techniques. In many ecosystems, the pH and oxidation/reduction potential change 
micrometer by micrometer. Measuring these spatially changing relationships 
is key to understanding processes in many ecosystems. Although such spatial 
microheterogeneity is frequently ignored while analyzing ecosystems, generally 
it is where two adjacent or overlapping physical or chemical gradients meet that 
biomass formation is greatest and of most interest. In fact, it is the core fact of 
ecology that ecosystems flourish at the boundaries where one environment joins 
another. For microbial ecosystems, these boundaries are just as important as the 
interface where rivers run into oceans bearing nutrients and pollutants, but the 
relevant distance scales frequently are only micrometers instead of kilometers. 

2.7. Fumigation Incubation (Fl) and Fumigation Extraction (FE) 

This technique is now becoming popular and, to some degree, has been quantita
tively justified. The execution of it is simple: The environmental sample is treated 
with excess chloroform. This substance destroys living cells, but leaves enzymes 
functional so that they can degrade the biomass of the previously living cell. 
After 10 days the biomass has been reduced, possibly eliminated, and a corres
ponding amount of CO2 is liberated. It seems surprising that such methods work 
at all, but they apparently do work surprisingly well, although there are many 
detractors among microbial ecologists. Some believe that fumigation does not 
kill all the bacteria and that the living cells mineralize the dead cells. With more 
understanding of the capabilities and the pitfalls, these methods may become the 
workhorses of microbial ecology. 

2.S. Fluorescent Antibodies and Other Probes 

Monoclonal antibodies, labeled with fluorescent molecules, can be sufficiently 
specific to identify and localize particular bacteria in a natural sample. Probe 
molecules can contain biotin or many other tags that can be used with ingenious 
techniques to sense the processes going on in these microcosms. 
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2.9. Confocal Microscopy 

Together with old-fashioned staining, now phase, differential interference con
trast (DIC), and fluorescence microscopy offer important tools. The most recently 
added and a very powerful tool is confocal microscopy. It enables one to focus 
on a narrow layer within a thicker sample and to do many other elegant tricks. 

2.10. Modern Versions of Old-fashioned Microbiological Methods 

Because the shapes of bacterial cells and their appendages are the only morpho
logical characteristics readily accessible, more characteristics were needed as 
microbiology developed; it was the metabolic capabilities that became critical 
for taxonomic purposes. Today a variety of multitests are available. The most 
extensive system is BIOLOG®, which uses many test wells, has an elaborate 
computer backup, and can be used to quickly identify strains from nature. 

3. Kinetic Aspects 

It is not enough to measure the biology and chemistry of an ecosystem at an 
instant of time, it is also necessary to measure how the system progresses with 
time. The time in question includes the seasons and the time since humanity 
made changes in that environment. There are only a few conditions in nature 
where the biosystem approaches a steady state. When this does occur it is valid 
to assume that all the fluxes-chemical, geologic, and biological-in the ecosys
tem are constant and production and degradation balance. Then it is reasonable 
to measure the time-independent concentration of components and infer the rates 
of reaction based on the hypotheses that the net fluxes within the ecosystem 
creating and destroying every component and organism are equal. This, however, 
is only of a special and limited occurrence. More generally, the amounts of 
various components change with time, and from the time-dependencies (or in 
some cases concentration dependencies) information it becomes possible to mea
sure the properties of the ecosystem. As in the previous section, I just list 
(inclusively) the general categories of phenomena that must be taken into account. 

3.1. Growth Kinetics 

Growth includes the utilization of environmental resources and the production 
of cell components, such as proteins, nucleic acids, etc. It also includes the 
production of waste products and the production of resources utilizable by other 
biological components of the ecosystem. The analysis of ecosystems involves 
many types of kinetic processes. The primary kinetic concepts are the first-, 
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second-, and, occasionally, third-order chemical reactions. For these, the reaction 
rate depends on the products of the concentration of one, two, or three constituent 
species or groups of species in the system with the appropriate numerical rate 
constants. Using only such terms then, the integration of the full rate expression 
with appropriate boundary conditions leads to a mathematical description of the 
development of the system. 

Quite often cellular growth in isolated laboratory conditions depends on auto
catalytic kinetics (exponential growth). This occurs when the rate of formation 
of a component is proportional to the concentration of that component. But the 
simple exponential expression is sufficient only in the most elementary approxi
mate treatments of an ecosystem. Frequently it is necessary to complicate and 
expand the formulation that led to the autocatalytic model to include lag phases, 
the approach to stationary phases, death phases, and many others. One hundred 
and twenty years ago, the approach to stationary phase would have been modeled 
according to the Verhulst model (i.e., the logistic model). This symmetric curve 
clearly is unsatisfactory for microbial cases, as first shown by Jacques Monod, 
but the Verhulst formulation is still the theoretical backbone of the ecology of 
higher plants and animals. Kinetic treatments of microbial populations, certainly 
of monocultures, could be approximated by the integrated Monod model. In the 
differential form, the Monod law is a hyperbolic equation identical in form to, 
but different in significance from, the Michaelis-Menten equation of enzyme 
kinetics. This Monod law relationship is the most used equation in microbial 
ecology. Possibly more relevant is the Blackman model, and even more realistic 
than either the Monod model or the Blackman model is the Best model. The 
Blackman and Best formulations enable a more accurate estimation of the growth 
of organisms in natural environments. I suggest switching to their use. 

3.2. Diffusion 

Much of biology depends on the kinetic process of diffusion. This is particularly 
relevant to microbiology because microbes may not be motile and certainly do 
not have kidneys, hearts, and lungs and therefore have few alternatives to move 
themselves or their internal parts and components around. Analysis of diffusion 
in the environment, through the cell wall (including facilitated and active trans
port) has occupied a good deal of interest in microbial physiology and gradually 
is becoming more appropriately taken into account in microbial ecology. An area 
of current interest has to do with the influence of glycocalyxes and capsules in 
isolating and separating organisms from other organisms (e.g., potential predators) 
and from the effects of convection and stirring in the environment. As important 
is the effect of grouping or aggregation of microorganisms interfering with 
uptake of each other and of the positive and negative factors associated with a 
microorganism inhabiting a nonbiological surface. A cell so attached may experi-
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ence a different physical environment (such as a different pH), have a different 
supply of nutrients, cofactors, inhibitors, etc. 

3.3. Intermediary Metabolism 

For our purposes, the metabolism of microbes can be divided into three do
mains. First is metabolism for energy generation through a variety of largely 
understood pathways of intermediary metabolism. Most often, consideration of 
the availability in any environment of substances that can be used to generate 
biologically useful energy is the dominant ecological problem. Categorizing 
bacteria on the method of energy trapping is high on the list of topics in any 
microbiology text. Choice of resources to be converted into biomass is often a 
close second topic of interest and occasionally it is the prime problem. Natural 
ecosystems start with plant materials, which may be passed through animals, 
insects, and protozoa, before they are finally metabolized through a series of 
fungi and procaryotes. Thus successively different members of the microbial part 
of the ecosystem work and rework the biomass until it is all mineralized (assuming 
that current coal and petroleum generation is completely negligible in today's 
world). The farther along the food chain the biomass moves, the more recalcitrant 
are the residual molecules and the more drastic the methods required to metabolize 
it further. Especially significant in today's environments are the recalcitrant 
pollutants made by humans; some of these are very difficult to metabolize for 
evident chemical and biochemical reasons. Sometimes in a metabolically active 
ecosystem these recalcitrant molecules may be consumed by what is termed 
"secondary substrate metabolism," which is the term used if the bioprocesses of 
normal metabolism can also handle the pollutant. 

Another process, categorized as "cometabolism," occurs when an enzyme or 
enzyme system is generated by an organism for one purpose and incidentally 
can act on the pollutant. This difference is subtle, but important. Cometabolism 
is especially significant for the process of transformation, or possibly, destruction 
of aromatic and chlorinated compounds. In many cases, the amount of resource 
that the actual pollutant represents is negligible from the point of view of the 
generation of microorganismal biomass. Thus only if there is some more massive 
resource that can facilitate the destruction of the pollutant by either of these two 
processes can degradation of a pollutant be accomplished. 

3.4. Geologic and Hydrologic Considerations 

In soil ecosystems, the key problem that needs to be appreciated and continu
ously considered is the movement of water through them. Availability, percola
tion, state of aeration, and flow are important. The fluxes of water, either down
ward or laterally, bear with them the chemical resources for the development of 
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biomass or bring kinds of biomass than then are remodeled. For terrestrial bio
masses, it is necessary to consider the geologic makeup of the soil, its components, 
the surface area of the particles, their absorptivity, and their exchange properties. 
How water percolates through the soil, how air moves through it, how substances 
differentially bind to the soil components, and the location of microbes in the 
soil particles are all important. Soil particles may be very complex structures. 
An important point, and one frequently overlooked, is that in the neighborhood 
of charged surfaces, where inorganic molecules are adsorbed, the effect of the 
surface charges on organic molecules, or living cells, can be very large, and can, 
for example, alter the effective pH by as much as several units. 

4. Principles of Kinetic Modeling 

This section presents a qualitatively different kind of list than is presented in 
Sections 2 and 3. It is comprised of stages or steps that need to be considered 
in analyzing a microbial ecosystem. I formulate this in the second person. You 
have a problem, maybe you have some data, you would like to be able to describe 
the relevant phenomenon and hopefully estimate some important parameters. 
You hope that the values of the parameters and the qualitative conclusions will 
be significant to more than just the few examples for which you have data and that 
you have studied and fitted. What shall you do? A clear and critical formulation of 
the detailed situation together with the appreciation of the general problem is 
the first, middle, and last step. All your background should be brought to bear, 
but that is not enough. Use friends, colleagues, biologists, and other experimental 
scientists mercilessly. Utilize statisticians; their knowledge of the analytical meth
ods of data reduction and their ability to estimate the validity of conclusions can 
be most helpful and usually is essential. If you are an experimentalist, being 
associated with them is critical to the reliable and speedy solution of the type 
of problems you have likely encountered. On the other hand, often the statistician 
has difficulty in appreciating the biological problem and he or she is of no help 
when the problem is not understood. Sometimes this is actually the statistician's 
fault, but in any case, you (the experimentalist) are at fault and must not have 
clearly explained and formulated the situation and the biological principles. 

Formulate a mathematical model that is more general than your favorite intu
ition permits. Then you may be able to exclude models instead of just showing 
consistency with your gut feeling. This is key to the analysis. Science is no good 
if it does not exclude certain hypotheses that are reasonable a priori. Make a 
decision as to whether to require that the fitting procedure estimate a given 
parameter or, as an alternative, choose its value from the literature or from other 
experience; thus the other parameters can be more critically and accurately 
determined. As far as possible, you should adopt constants from outside your 
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data to be inserted into the model; choose those that are reasonable and are 
known to apply in other cases (later you will check to see whether this was a 
reasonable move). Use mathematical insight (yours or somebody else's) as to 
what parameters are only marginally relevant. Look at the mathematics and 
choose which factors to lump, which to neglect, and which to treat as being 
critical. Fit the model to the data. Compared with an earlier time, this fitting is 
now trivial because of the speed of personal computers and the availability of 
application programs that can be applied directly to a vast variety of cases. 

Having carried out the preceding process, do not think that the project is 
finished. Indeed, you are not done, you have only begun. Besides restating your 
model with the perspective of having fitted the data, now it is incumbent on you 
to isolate the key factors, identify what circumstances control their variability, 
and reconsider whether the points that you glossed over really should have been 
given short shrift. Now is the time to see if the other models have been falsified 
by the data and now can be excluded and discarded. 

5. Progress in Statistical Methods 

5.1. Variability Varies from Situation to Situation 

Physicists, chemists, and molecular biologists can often count on precise meth
ods so that the experiments that they carry out do not have to be replicated either 
often or at all. Their measurement methods may be very precise, the experimental 
system accurately defined, and the experiment may be always reproducible. But 
often, even in these fields, this presumption of precision and accuracy is not wise 
or valid because many systems are much more complicated than intuition or 
hope may have presumed. On the other hand, no one thought that a vast range 
of biological situations would be trivially constant. Because of their inherent 
variability, it is not surprising that statistics emerged from the study of agricultural 
problems and in attempts to understand the abilities and behaviors of samples 
of people for eugenics purposes. Experimental microbial ecology is usually closer 
to the latter camp than to a rigidly reproducible field of "hard" science. This 
means that experiments must be repeated more often; but they must be repeated 
in a reasonable way to assess the variability appropriate for the purposes of the 
study. The Latin square arrangement is appropriate when the source of variability 
is not known. Pairing the treatments to give equal weight to known or assumed 
sources of variability, such as using equal numbers of males and females, has 
much merit. An alternative approach is to use only one sex, one strain, one 
growth environment, etc. However, then it is necessary to point out that although 
the conclusion is clearer and more valid, it has a restricting range of applicability. 
There are a large number of statistical tests that can compare two or more groups. 
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These methods must be used correctly and appropriately. But most important is 
the assessment and the validation of when variability from other causes is large 
or small. 

5.2. Mathematical Form of Models for Processes 

Most often one assumes (rightly or wrongly) that an adequate number of 
groups, treatments, strains, or conditions have been used and that the average 
values will serve to factor out the underlying biology. The usual question is 
"What is the temporal course?" or "What is the concentration dependence?" or 
"What is the role of the type of product being tested in a plus and minus fashion?" 
Here is where my opinion commonly diverges quite a lot from that of many 
professional statisticians. Rather than choose a model because it has good statisti
cal properties, I insist on a model that is biologically relevant from a global 
(biological) point of view. Fitting the data to a hyperbola, as in the Monod 
equation, may be slightly in error, but it has the global biological features that 
(1) if there is no substrate, there will be no product and (2) if there is a very 
large substrate concentration, only a certain maximum level of product formation 
would be formed. If one substitutes infinity into a formula that is supposed to 
model and describe a biological situation and the result is plus or minus infinity 
or a negative number, then it is "no go," and one should go back to the drawing 
board. Power laws and various formulas or transformations of the data often 
correspond to an irrational and inappropriate biological model at extreme values 
of independent variables. One must insist that substitutions into the fitted expres
sions of zero and infinity and other conditions outside the range of the actual 
experiment make reasonable sense. 

5.3. The Necessity of Experimenter and Statistician Planning Together before 
the Experiments are Conducted 

Forethought is the most critical shortage in science. I tell my students that a 
day at the beach and lolling in the sun can speed the research immeasurably; 
that is, if as they lolled, (1) they were to think through the experiment to be 
performed or the data to be collected; (2) they were to think of the possible 
outcomes and what additional data will be needed in such cases to have a valid, 
interpretable, unambiguous result; (3) they considered that they should, and must, 
anticipate the necessary controls to verify conclusions; and (4) they realized that 
they should have tried to anticipate what part of the proposed experiment should 
be tightened down and then tighten it down before conducting the experiment 
or sampling a natural ecosystem. Students should then consider revising the 
experimental design so that certain possible sources of variability are eliminated 
before they can become a questionable factor that causes the final conclusion to 
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be doubted. In addition to the other merits of lolling, giving one's time to 
anticipating contingencies and then seeking all the intellectual help you can to 
guard against possibilities is important. This is so even though you know that 
this will not be enough. But statisticians are generally past masters at this type 
of game. Moreover, when the experimenter has to explain and rationalize what 
is to be done and tested to another willing, sentient human being who will think 
with him or her, then the holes in the protocol become clear. With adequate 
forethought, science will move much faster and more surely. 

One can wonder how many highly productive individuals and research groups 
were able to create and analyze a phenomenon so effectively. I'll consider here 
only one creative individual: Max Delbriick. Truthfully he never did much, but 
he is the father of molecular biology, largely because he made grunts and criticized 
his colleagues and students because he could, or would, see what these other 
had not, or could not, see. He would notice that inclusive thoughts had not been 
formulated and that generalization was needed before the research experiment 
was to be conducted or the data collected. By the way, he taught me what a 
standard deviation was from first principles when I had only the foggiest idea 
of statistical concepts. 

My next learning experience in statistics came from Snedecor's book. This 
book was awesome. Although I knew nothing about com, pigs, or chickens, he 
propounded the ideas that enabled me (and many others) to understand how to 
deal with real problems. I hope the present book will serve as a primer for the 
next generation of researchers in microbial ecology no matter how their predilec
tion bends them between the execution of experiments or the entirely different 
question of what the results mean after they have been obtained. 

6. Conclusions 

Microbial ecology is now undergoing a convergence of the developments of 
its own character and by the infusion from developments in other field. The same 
process has taken place for human biology. It is worthwhile noting the rays 
of that convergence. These fields include progress in biochemistry, analytical 
chemistry, molecular biology, medicine, genetics, statistics, mathematics, and 
the sequence of the human genome. I want to focus on the cooperative role of 
these disciplines. Medicine may produce the naturally occurring mutants; molecu
lar biology supplies the markers for finding genetic regions in all parts of the 
human genome; genetics proscribes how pedigrees can be used; and finally, a 
new kind of mathematics, only a decade or so old, enables us to find the genetic 
target of interest. It is possible to find a gene that is part of a many gene system 
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or variable in its expression (multifactorial) for a disorder that is poorly defined 
and poorly recognized. In spite of these difficulties, when the rest of the procedure 
involves up-to-the-minute technology, it can be done. In this human case, all 
this has happened because the need to know is there. The same thing is happening, 
or is about to happen, in microbial ecology. 
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Modeling Microbial Processes: 
An Overview of Statistical 
Considerations 

Joseph A. Robinson 

1. Introduction 

The development of a mathematical model is often a goal of experiments in 
which a dependent variable is measured as a function of other explanatory 
or independent variables (e.g., time, substrate concentration, dilution rate, pH, 
temperature). Models of interest to microbial ecologists run the gamut from linear 
ones, such as those used in linear regression and the general mixed linear model 
analysis of variance, to models that are nonlinear in their parameters or simply 
put, nonlinear models. Examples of nonlinear models include one-tenn exponen
tial decay, Michaelis-Menten, Monod, and variants of these simpler equations. 
The methodology for fitting data to linear models is described in a multitude of 
statistics textbooks, for beginners to advanced practitioners alike, and is not dealt 
with herein. Rather, the focus of this chapter is the fitting of data to models that 
are nonlinear in their parameters. 

Data are fit to nonlinear models using regression or nonlinear parameter estima
tion (NPE) methods. The purpose of this chapter is to highlight the theory 
of NPE and to illustrate the possibilities offered through use of the statistical 
methodology. This chapter is not a substitute for more thorough treatments of 
NPE such as those provided by Bates and Watts (1988), Ratkowsky (1983), and 
Ratkowsky (1990). The reader is advised to consult these texts for details on 
implementing the methods and assumptions of NPE. 

NPE has its roots in regression theory, although many of the statistical results 
are approximate (Bates and Watts 1988; Draper and Smith 1981; Ratkowky 
1983). The degree to which linear regression results are approximated depends 
on the combined effects of the nonlinear model being used and the dataset to be 
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fit to the model (Ratkowsky 1983). The more nonlinear the nonlinear model 
dataset combination, the more approximate the results. The uncertainties are 
compounded by the fact that there exists literally an infinite number of nonlinear 
models of potential interest. The practical result of this situation is that the 
methods of NPE should not be relied on to lead to a single mathematical function 
that best describes the ecological system of interest. For this reason, Ratkowsky 
(1983) argues that since many models can be found to describe a given dataset 
equivalently, it is important that models that exhibit close-to-linear behavior 
should be preferred over those with far-from-linear behavior, unless practical 
reasons dictate otherwise. The use of models with close-to-linear properties helps 
to ensure that the results of NPE more closely approximate linear regression re
sults. 

More often than not, the nonlinear model builder is left with a subset of models 
that fit the data equivalently. Practical criteria (i.e., what makes scientific sense) 
must then be used for model discrimination and/or selection. This situation is 
particularly true for nonlinear models that are not simple subsets of one another 
(i.e., non-nested), because the number of methods available for discriminating 
between competing models is limited or nonexistent. As Bates and Watts (1988) 
point out, "if there are scientific reasons for preferring one model over the others, 
strong weight should be given to the researcher's reasons because the primary 
aim of data analysis is to explain or account for the behavior of the data, not 
simply to get the best fit." Alexander (1994) extends this concern by asserting 
that it "is not always possible to distinguish among models, even with nonlinear 
regression techniques, so that the final choices among models are arbitrary." Thus, 
although this chapter closes with recommendations for statistically distinguishing 
between competing models, the recommendations should not be adopted blindly 
without consideration of their limitations and intended scope. 

2. Model Identification versus Discrimination 

Model identification is the process of fitting data to the model(s) of interest. 
The objective is to estimate the parameters of the model given a dataset. Model 
identification is sometimes referred to as the inverse problem (Robinson 1985). 
The use ofNPE to estimate the parameters ofthe differential form of the Michaelis
Menten model, given initial velocity data, is an example of the model identification 
or inverse problem. In contrast, model discrimination is the process of eliminating 
candidate models to derive the subset of models (ideally one) that best describes 
the fitted dataset. The problem of model discrimination can be solved by applying 
various statistical criteria, although in some cases (e.g., non-nested models) 
appropriate methods may be lacking or even nonexistent (Bates and Watts 1988). 

The problems of model identification and discrimination may be investigated 
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before or after collection of a dataset. Issues relevant to model identification are 
presented first in this chapter, since models that cannot be identified should 
not be considered in the model discrimination phase of model building. Model 
discrimination is discussed second, and two sets of criteria are proposed: one 
for comparisons between models that are nested and one for models that are 
not nested. 

2.1. Model-Building Goals 

The approach taken to mathematically represent microbial processes in the 
form of regression models depends on the researcher's goals (Fig. 2.1). In many 
situations, the experimenter has already decided to use a model which is identifi
able and is supported by experimental evidence. One example is the pseudo
first-order rate model used by investigators to estimate a second-order rate coeffi
cient for biodegradation (Paris and Rogers 1986). Such a model may be applied 
without considering whether the dataset collected supports an alternative equation. 
This assumes, of course, that the dataset generally supports the form of the model. 
One would not choose a model whose mathematical behavior was grossly at 

Approaches to Model Building 

1. Collect initial data set 

2. Fit a priori identifiable models 

3. Select a subset of • good- models 
using a posteriori methods 

4. Design discrimination 
experiments using a priori 
methods as aids 

5. Collect discrimination data set 

6. Select -best- model using a 
posteriori methods 

7. Design optimal experiments for 
parameter estimation 

8. Collect data for precise estimation 
of parameters of best model 

9. Analyze data and summarize 
parameter estimates 

Complete 
characterization; 
precision of 8 

important 

Exploratory 
] work; routine 

estimation of e 

Partial 
Characterization; 
precision of 8 less 
important 

Figure 2.1 The model-building process. The number of steps completed depends on the 
researcher's goals. The algorithm shown is meant to highlight concepts and not to serve 
as a strict recipe to be followed. Theta (8) is the 2 x 1 vector that includes the initial substrate 
concentration (So and the first-order rate coefficient (k1) for the one-term exponential decay 
model. 
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odds with the data. As another example, Michaelis-Menten-type models are often 
used to assess the affinity of microbially catalyzed processes (Robinson 1985). 
In both of these situations, it is the routine estimation of a parameter such as the 
second-order rate constant or a Km that is the goal; deciding whether or not the 
data support other models is not the goal. 

Model discrimination experiments (Fig. 2.1) can be designed and conducted 
when a more thorough characterization of the microbial process is of interest. 
Once the best model is selected (assuming this can be done), experiments can 
be designed to estimate the parameters of the best model with the highest possible 
precision (i.e., lowest variance) (Fig. 2.1). Experiments to estimate the parameters 
of a model with the highest possible precision should follow the discrimination 
phase (Fig. 2.1), and designing these optimal experiments is discussed later in 
this chapter. The approach shown in Figure 2.1 is not intended to be a recipe to 
be adhered to strictly. Rather, it suggests the elements of an approach that can 
be used in different phases of the model-building process. The value of the 
algorithm depicted in Figure 2.1 lies in the concepts identified not in its use as the 
only means of building parsimonious mathematical representations of microbial 
processes or systems. 

2.2. Limits to Model Discrimination 

It is often unrealistic to expect a single model to emerge from a collection of 
equations as the best one for a given dataset. This dilemma stems from the fact 
that it is easy to detect model failures, but a model is not correct merely because 
it provides a good fit to a dataset. Practically, one can use statistical criteria 
for model discrimination up to a point; beyond that, nonstatistical information 
regarding the ecological system or process of interest must provide the answer. 
The point is again that, in many cases, it is the researcher or subject-matter 
specialist who must decide between competing regression models using informa
tion outside of that obtained from the NPE analyses (Bates and Watts 1988). 

3. The Least-Squares Criterion 

The ordinary (unweighted) least-squares criterion generally is used when data 
are fit to either linear or nonlinear regression models (Bates and Watts 1985; 
Draper and Smith 1981; Robinson 1985). This criterion is satisfied when a set 
of unique parameter estimates are found that minimize the sum of the squared 
errors about the best fit curve. Other criteria such as weighted least-squares and 
maximum likelihood exist, but they are used less frequently, presumably because 
of lack of specific knowledge regarding the error structure in the data (Robin
son 1985). 
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For models that are nonlinear in their parameters, initial estimates of the 
parameters are needed to minimize the sum of the squared errors. This situation 
does not exist for linear regression models. The need for initial estimates for 
NPE and means of obtaining these for some models of microbiological interest 
have been highlighted elsewhere (Robinson 1985). Most computer programs in 
current use for fitting data to nonlinear models allow the user to either specify 
initial estimates or employ a routine for searching a grid of parameter estimates 
to obtain more reliable starting values for the NPE routine. For some nonlinear 
models, success or failure in minimizing the sum of the squared errors is largely 
dependent on how close the initial estimates of the parameters are to the best 
estimates. This situation is another reason why nonlinear models with close-to
linear behavior are preferred over models with far-from-linear behavior (Ratkow
sky 1983). 

3.i. Weighting 

Weighted least-squares analysis can be used when the variance of the measure
ment errors depends on the magnitude of the measured variable (Li 1983; Robin
son 1985; Bates and Watts 1988; Silvert 1979). The exact form of the weighting 
function, i.e., whether the weighting function should be lIY or 1If2 may have 
little effect for some models. One means of checking this assumption is to use 
various weighting functions in the range from lIY to 1IJ"2 to assess the extent to 
which the values of the estimated parameters are influenced by the value of the 
exponent in the denominator of the weighting function. Practical experience 
suggests that, when weighted least-squares analysis is appropriate, either lIYor 
1If2 is adequate. However, the researcher is urged to verify the appropriateness 
of this recommendation for the model dataset combination being studied. One 
should not ignore means of incorporating information on the error structure 
of the data, when it is known, into the routine used to minimize the sum-of
squares function. 

4. Model Identification 

4.i. A Priori identifiability 

A model is identifiable if the parameters in the model (such as Vmat and Km in 
the differential form of the Michaelis-Menten equation) can be uniquely estimated 
from a dataset. If unique parameter estimates cannot be obtained for a nonlinear 
model dataset, then little (or no) statistical significance should be given to their 
estimated values (Robinson 1985). The following nonlinear model is not identifi
able (based on a single substrate depletion curve): 
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This equation is the integrated form of the Michaelis-Menten model, but only 
for the first-order region of substrate concentration. It describes S as a function 
of time, t, given the initial substrate concentration, So. The ratio VmaJKm is 
equivalent to a first-order decay coefficient in a one-term exponential decay 
equation. Model (1) is not identifiable because an infinite combination of Vmax 
and Km values can describe the same substrate concentration-versus-time curve. 
Thus, it is impossible to estimate these two parameters simultaneously from a 
single substrate depletion curve that exhibits first-order decay behavior. 

In contrast to Equation (1), the integrated form of the Michaelis-Menten equa
tion, solved for the complete range of substrate concentrations, can be identified. 
This implicit nonlinear equation has the following form: 

Vmax x t = (So - S) + Km x In (SolS). (2) 

If Vmax is decreased by 50%, for example, the same substrate concentration
versus-time curve cannot be produced by decreasing Km (within biologically 
meaningful limits). Thus, unique estimates of Vmax and Km may be obtained 
theoretically by fitting substrate depletion data to Equation (2). 

4.2. Sensitivity Equations 

Sensitivity equations provide an analytical assessment of whether or not a 
nonlinear model is identifiable. These equations describe how sensitive the mea
sured variable (such as substrate utilization in the case of the Michaelis-Menten 
equation) is to changes in each of the parameters of the model (Robinson 1985). 
If the solutions to the sensitivity equations are proportional to one another, then 
the model cannot be identified regardless of how precisely the dependent variable 
(i.e., initial velocity) is measured (Robinson 1985). In other words, if one of the 
sensitivity equations for a two-parameter model can be converted to the second 
sensitivity equation simply by multiplying by a constant, then the model is not 
a priori identifiable. 

Sensitivity equations also provide a definition for what constitutes a nonlinear 
model (Robinson 1985). When the sensitivity equations depend on the parameters 
of a model, then the model is said to be nonlinear in its parameters. In contrast, 
the sensitivity equations of linear models do not depend on the model parameters, 
only on the independent variable(s). A model is nonlinear even if only a single 
parameter in the model is a function of one or more of the other parameters in 
the model. 

Consider the sensitivity equations for the first-order version of the integrated 
Michaelis-Menten model (Equation [1]), 



20 J. A. Robinson 

dln(S)/d(Vmax) = - (l/Km) x t, 
dln(S)/d(Km) = -Vmax X t. 

(3) 
(4) 

These equations describe the sensitivity or rate of change (first derivative) of the 
dependent variable (substrate concentration, S) to changes in the parameters of 
the nonlinear model, Vmax and Km in this case. Equation (4) can be obtained from 
Equation (3) if Equation (3) is multiplied by VmaxKm. Thus, Equations (3) and (4) 
illustrate that unique (statistically reliable) estimates of Vmax and Km can not be 
obtained by fitting substrate depletion data to Equation (1). 

In contrast to Equation (1), the sensitivity equations for the integrated Michae
lis-Menten Equation (2) support an interpretation that the parameters of this 
nonlinear model can be uniquely estimated. These equations have the follow
ing forms: 

dS/d(Vmax) = t/[1 + (Km/So)], 
dS/d(Km) = -In(So/S)/[1 + (Km/So)]. 

(5) 
(6) 

Neither Equation (5) nor Equation (6) can be obtained from the other by multiply
ing by a constant. Thus, the sensitivity equations for the integrated Michaelis
Menten model support an interpretation that unique estimates of Vmax and Km can 
be obtained by fitting substrate depletion data to Model (2). Whether unique 
parameter estimates can be obtained in practice is another matter. The latter 
depends on the measurement errors, and is the subject of the next section of 
this chapter. 

4.3. A Posteriori Identifiability 

Often a model that is a priori identifiable cannot be identified after data are 
collected. This is because dependent variables are not free of error. Noise in data 
is the bane of modelers everywhere. This issue can be illustrated by considering 
the following expression: 

Response variable = Mechanistic model + Variance model. (7) 

In Equation (7), the response variable is the measured quantity (substrate or 
product concentration, growth rate, etc.). The mechanistic model could be Equa
tion (2), for example. The variance model is generally unknown and practically 
impossible to identify, and if it dominates the mechanistic model, then the parame
ters of the mechanistic model can not be uniquely estimated regardless of whether 
a model is a priori identifiable. The only solution in this case is to improve the 
precision with which the dependent variable is measured. 
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4.4. Limits to Identifiability 

There is a practical limit to the number of parameters that can be estimated 
from measurements on a single response variable. For example, consider the 
following equation: 

[S] = So[exp(- kl x t) + exp(-k2 x t) + exp(-k3 x t)]. (8) 

Equation (8) describes the disappearance of a substrate, S, resulting from three 
separate exponential decay processes as a function of time, t. Equation (8) has 
a total of four parameters, including the initial condition, i.e., the initial substrate 
concentration. If kj, k2' and k3 equaled 1000, 100, and 10, respectively, then this 
model could likely be identified from a single substrate depletion curve. However, 
if these parameters equaled 5, 2, and 1, then it is unlikely that unique estimates 
of the parameters could be obtained from fitting Equation (8) to substrate concen
tration-versus-time data. In the latter case, a single first-order decay equation 
would accurately summarize the data. This result can be extended to models that 
are functionally different from Equation (8) but have a comparable number of 
parameters. In practice, it may not be possible to identify a nonlinear model that 
has four or more parameters from measurements made on a single response 
variable. This practical limit depends on whether the model exhibits close-to
linear versus far-from-linear behavior. Of course, the practical limit of how 
many parameters can be uniquely estimated depends on the magnitude of the 
measurement errors as well. 

The integrated version of the Monod equation is an example of a model that 
approaches the limits of identifiability (Robinson 1985; Robinson and Tiedje 
1983). This model, equivalent to the integrated Michaelis-Menten model, is an 
implicit nonlinear function and it has the following form: 

/lmax X t = C1 x In{[Y(So - S) + Xo]/Xo} - C2 x In(S/So), (9) 

where C1 = (YK, + YSo + Xo)/(YSo + Xo) and C2 = (YK),/(YSo + Xo). 
Estimates of /lmax (maximum specific growth rate), K, (half-saturation coefficient 

for growth), Y (yield coefficient), So, and Xo (initial biomass concentration) ob
tained using Equation (9) may be suspect because the sensitivity equations are 
nearly proportional to one another (Robinson and Tiedje 1983). Some nonlinear 
models proposed to describe the kinetics of degradation of xenobiotics have five 
or more parameters (Alexander 1994; Brunner and Focht 1984; Schmidt et al. 
1985; Simkins and Alexander 1984). These models can be difficult to identify 
statistically unless the number of data points is large (e.g., four to five times the 
number of parameters) and the response variable is measured with a high degree 
of precision. Alexander (1994) has succinctly described the difficulties associated 
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with the use of these multiparameter biodegradation models and pointed out the 
arbitrariness associated with attempts to distinguish one from another using 
substrate depletion or product formation data alone. 

One means of improving the identifiability of a nonlinear model is to make it 
less nonlinear, i.e., reparameterize the equation into a form such that it exhibits 
more close-to-linear behavior. Ratkowsky (1983) presents a thorough treatment 
on how to assess the nonlinearity of a nonlinear model using Monte-Carlo methods 
and transformations (reparameterizations) that can improve the identifiability of 
a nonlinear model. In a second treatise, Ratkowsky (1990) provides an excellent 
compilation of various nonlinear models with recommendations on which ones 
to use, based on consideration of their intrinsic and parameter-effects-associ
ated nonlinearities. 

As an illustration of Ratkowsky's approach (1983), Equation (9) can be repa
rameterized to a model that exhibits improved estimations properties. This can 
be shown by considering first the differential form of Equation (9) and a reparame
terized version. The differential form of equation (9) is 

dS/dt = -[(/lmax X S)/(K, + S)] x ([Y(So - S) + Xo]/Y}. (10) 

Equation (10) can be reparameterized (algebraic rearrangement) to yield the 
following differential equation: 

(11 ) 

where kl = /lma" k2 = (/lmaxXO)/Y, and k3 = Ks. The integrated form of Equation 
(11) is 

kl X t = [k/(So + k2)] x In{[(So + k2 - S) x So]/(k2S)} (12) 

+ In [(So + k2 - S)/k2]' 

Equation (12) exhibits less nonlinearity than Equation (9) because it has one 
fewer parameters. With fewer parameters, Equation (12) will exhibit more close
to-linear behavior, depending on the dataset fit to it. The only disadvantage here 
is that independent estimates of Xo and Y can not be obtained by fitting substrate 
concentration-versus-time data to Equation (12), however, an improvement in 
the estimation properties of this model is probably a greater advantage than being 
able to obtain unique estimates of the original parameters (/lma" K" Y, So, and Xo). 

Microbial ecologists need to strive for simplicity in attempts to mathematically 
define processes and systems of interest because of the aforementioned limits to 
model identifiability. Adding more and more terms to a nonlinear model can 
only lead to an equation that can not be identified. Such a model is a poor 
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hypothesis about the wayan ecosystem is presumed to function, particularly if 
it is based on measurements of a single variable. The need for parsimonious 
models is reinforced when the model discrimination problem is considered next. 
It is in this setting that the value of Occam's razor (plurality or complexity should 
not be assumed without necessity) is most evident. 

5. Model Discrimination 

A thorough modeling investigation should include a model discrimination 
phase (Fig. 2-1). To assume that a given dataset can be ascribed to a single 
nonlinear model is wishful thinking. As noted in the Introduction, there are 
essentially an infinite number of nonlinear models that may be of potential 
interest. Statistically defensible models can be developed through the use of 
model discrimination criteria (Bates and Watts 1988; Robinson 1985). But statisti
cal criteria alone should not be relied on to lead to a single nonlinear model, 
particularly in the case of nonlinear models that are not nested within one another. 
The statistical criteria only inform. The researcher should decide which model 
fills the need for a mathematical description of the process of interest (Bates and 
Watts 1988). 

5.1. A Priori Discrimination 

The model discrimination problem entails answering the following question: 
How do we decide which model of several candidate models best describes a 
given dataset? An answer to this question can be approached prior to collecting 
data by plotting discrimination functions (Mannervik 1981). An initial dataset is 
needed since the model discrimination functions will depend on the estimates of 
the parameters of the competing models. However, guesses of the parameter 
values may be sufficient at this stage. The simplest type of discrimination function 
equals the absolute value of the differences in the predicted values of the response 
variable for two models (Mannervik 1981). The absolute difference between 
competing models can be compared against what is known regarding errors 
associated with measurements of the dependent variable. This process is particu
larly useful for deciding whether differences in models can be discerned in 
future studies. 

Plotting discrimination functions underscores the difficulty of statistically dis
criminating between multiparameter models hypothesized to describe microbial 
processes or systems. As was true for model identification, discriminating between 
competing nonlinear models becomes more difficult as the number of parameters 
increases. Practically speaking, measuring the response variable precisely enough 
to distinguish between models with more than four or five parameters may be 
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difficult, unless the models describe dissimilar types of curves (e.g., S-shaped 
versus exponential). 

Discrimination functions, although useful, suffer from the same limitation 
suffered by a priori methods of assessing model identifiability. The discrimination 
function ignores the variance model. If the variance model dominates the mecha
nistic model then discriminating among competing models may not be possible. 
Another limitations is that the number of discrimination functions that must be 
considered, in a pairwise fashion, grows rapidly as the number of nonlinear 
models of interest increases. But despite these limitations, the examination of 
discrimination functions can offer insights into predictions made by dissimilar 
models. 

The following example illustrates an extreme situation in which dissimilar 
processes lead to models that are functionally equivalent. Consider two variations 
on the integrated Michaelis-Menten model, Equation (2). The following differen
tial form of Equation (2) incorporates a term describing a threshold effect at 
which the rate of substrate utilization becomes zero: 

dS/dt = -[(VrnaxS)/(Km + S)] x [(S - Sr)/S], (13) 

where Sr is the threshold concentration at which dS/dt = O. The integrated form 
of Equation (13) describes a substrate concentration-versus-time curve that ap
proaches an asymptote equal to the threshold concentration, Sr. The integrated 
form of Equation (13) is 

Vrnax X t = (So - S) + (Km + Sr) x In[(Sr - So)/(Sr - S)]. (14) 

Now consider an alternative model that instead assumes no threshold effect, 
however, substrate is produced endogenously and constantly during Michaelian 
utilization of exogenously added substrate (Robinson and Characklis 1984). The 
differential form of this second modification of the integrated Michaelis-Menten 
equation is 

dS/dt = -[(VrnaxS)/(Km + S)] + R, (15) 

where R is the assumed constant rate of endogenously produced S. The integrated 
form of Equation (15) is 

-<1> x t = So - S + [(Km<1> - RKm)/<1>] 
x In [(RKm + <1>So)/(RKm + <1>S)], 

(16) 
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where <I> = R - Vrnax • Equation (16) is the correct integrated form of model (15) 
and not the integrated form shown in Robinson and Characklis (1984). Like 
Equation (14), Equation (16) describes a substrate depletion curve that approaches 
a nonzero asymptote. Thus, the integrated versions of both models describe 
similar types of curves. Indeed it can be shown that Sr is equivalent to (RKm)/ 
(Vrnax - R). Both Equation (14) and Equation (16) simplify to the integrated 
Michaelis-Menten equation, Equation (2), when Sr and R equal zero, respectively. 
Discriminating statistically between models (14) and (16) would require addi
tional experimental evidence, for example, controls to eliminate the possibility 
of substrate being produced endogenously during the concomitant utilization of 
exogenously added substrate. The preceding example illustrates the value of 
comparing predictions made by competing models, using discrimination functions 
or simple algebraic comparisons, prior to wasting time with regression analyses. 

5.2. A Posteriori Discrimination 

Once a dataset is in hand, various methods can be used to decide which of 
the candidate models best describes the data statistically. The first set of criteria 
presented herein are those for comparisons between models with different num
bers of parameters that are nested. A model is nested within another more complex 
model if the simpler model can be obtained by setting a parameter(s) in the 
complete (more complex) model equal to zero. More theoretical work exists on 
this problem than on the problem of deciding which of two models is best when 
the models have the same number of parameters, or for models with dissimilar 
numbers of parameters that are not nested. The practical considerations associated 
with the a posteriori discrimination problem are covered in greater detail by 
Bates and Watts (1988). 

The F test for model discrimination (Bates and Watts 1988; Robinson 1985) 
can and has been used to discriminate between models with different numbers 
of parameters (Bates and Watts 1988; Robinson and Characklis 1984; Robinson 
1985; Simkins et al. 1986). The calculation of the F statistic is straightforward 
and has been reported elsewhere (Robinson 1985). This statistical test, however, 
has some weaknesses. First, it cannot be used to discriminate between models 
with the same number of parameters or models that are not nested (Bates and 
Watts 1988). A second limitation of the F test is that the significance of the test 
is approximate for nonlinear models (Bates and Watts 1988; Draper and Smith 
1981; Ratkowsky 1983). The actual significance level of the test may not equal 
the a value presumed, such as 0.05 or 0.01. The more nonlinear a nonlinear 
model is, the more approximate the significance level (Ratkowsky 1983). Third, 
indiscriminate use of the F test for model discrimination leads to over-parameter
ized models, i.e., models with more terms and parameters than are necessary. 

Two other easily calculated summary statistics can be used to discriminate 
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between models with different numbers of parameters. The first is the coefficient 
of determination (r). This statistic has its usefulness but it is limited since it is 
constrained to vary between zero and one. With precise data, and where the 
number of data points is high (greater than 50, say), r values may range from 
only 0.90 to 1.00 depending on the model. The second easily calculated summary 
statistic is the Akaike information criterion (AIC) (Akaike 1974). The AIC is 
calculated using the following equation: 

(17) 

where n is the number of data pairs, RSS i is the sum of squared errors for the 
ith model of interest, and ei is the number of parameters of the ith nonlinear 
model. The model that gives the lowest AIC value for a given dataset is considered 
the best. The limitation of the AIC is that it is not a probabilistic model selection 
method. It is not clear what constitutes a significant difference in AIC values, 
however, the AIC does offer the researcher the ability to compare the quality of 
fits empirically between models that have dissimilar numbers of parameters that 
are not nested. There is no advantage to calculating values of AIC for comparisons 
between models with the same number of parameters, because this simplifies to 
merely ranking the mean square errors (sum of the squared errors divided by n 
minus the number of parameters in the model). 

A model can be judged inferior statistically if the standard errors of the 
estimated parameters are high (Mannervik 1981; Bates and Watts 1988). Most 
nonlinear regression packages approximate the standard errors of the parameter 
estimates in addition to calculating values for the parameters themselves. If the 
respective standard errors are greater than 50% of the parameter estimates, then 
the fitted model can be discriminated against (Mannervik 1981). 

One useful tool for model discrimination is residuals analysis (Bates and 
Watts 1988; Cook and Weisberg 1982; Draper and Smith 1981; Robinson 1985). 
Residuals analysis allows one to check whether the model does an accurate job 
of describing the data over the range of the measurements of the dependent 
variable. Further, residuals analysis provides clues to the types of measurement 
errors present in an experiment. A residual equals the observed value of the 
measured variable minus the value predicted by the fitted nonlinear model. There 
is one residual for each value of the measured variable and typically these are 
presented graphically. When a model does a poor job of describing the data, 
systematic trends exist in the data. In contrast, those models that more accurately 
reflect the behavior of the data yield residuals plots with no systematic behavior. 
Ideally, the residuals plot should show a random scattering of points above and 
below the zero line (observed minus predicted = zero). The other type of useful 
residuals plot is the one in which the residuals are plotted versus the predicted 
values of the dependent variable. This plot indicates whether the measurement 
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errors vary with the magnitude of the measured variable. If some correlation 
exists, then weighting the data should be considered (Bates and Watts 1988). 

Cross-validation (Picard and Cook 1984; Snee 1977; Stone 1974) is a computer
intensive method that when applied may reduce the likelihood of building over
parameterized models. The F test for model discrimination can lead to overpara
meterized models since the addition of one more parameter to a model can make 
the F test significant statistically, if enough data are collected. Cross-validation 
emphasizes the predictive nature of the model instead of focusing on reducing 
the sum of squared errors about the fitted equation. 

In the simplest implementation of cross-validation, the data are split into a 
"fit" set and a "test" set. The fit set is then fitted to the models of interest. The 
values of the test set are then predicted from each of the fitted models, and a 
prediction error is calculated (observed minus predicted value). Each prediction 
error (one for each value of the measured variable) is dependent on the rest of 
observations in the fit set. In its most intensive form, a single value of the 
measured variable becomes the test set. The fitted models are used to predict the 
point left out, and a prediction error is calculated. This datum is returned to the 
fit set, the next point is placed in the test set, the models are refit to the new fit 
set, and the value of the second measured point is predicted from the candidate 
models. This process continues until the last point in the curve takes its tum in 
the test set. In the end, there are a number of prediction errors for each model 
equal to the number of data pairs (e.g., substrate concentration versus time) 
collected. Histograms of the prediction errors for the models can be compared 
and the best model selected based on these empirical prediction-error distributions. 
The technique is clearly computer intensive, however, it can be implemented on 
microcomputers. 

For models with an equal number of parameters, the discrimination statistics 
and approaches mentioned are all applicable except for the F test for model 
discrimination. This test is appropriate only for comparisons of models with 
different numbers of parameters that are nested. As an example, a one-term first
order decay model is not nested within the integrated Michaelis-Menten equation, 
Equation (2). This result is not at first obvious for this example since the first
order model is a simpler version of the Michaelis-Menten equation when S « 
Km, however, the first-order model can not be obtained by setting Km equal zero. 

In place of the F test, ranking the residual mean squares (RMS) obtained for 
each model can be used (Mannervik 1981) for comparisons of models with the 
same number of parameters or for models with different numbers of parameters 
that are not nested. The weakness of this approach is the same as that of the 
AIC: what constitutes a significant difference in RMS values for fits of several 
models to a given dataset? For these situations, common sense and the practical 
needs of the researcher come to the forefront (Bates and Watts 1988). 

Based on the respective strengths and weakness of the a posteriori discrimina-
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tion methods discussed, minimal sets of criteria can be suggested. The following 
list of criteria should provide a solution to the discrimination problem involving 
models with different numbers of parameters: 

1. F test for model discrimination (nested models only), 
2. lack of systematic trends in residuals, 
3. parameter standard errors that are 50% or less of the parameter estimates 

themselves. 

For models with the same number of parameters, a suggested list of discrimina
tion criteria would omit the F test and replace it with ranking of RMS values. 
Cross-validation is not listed because it is computer intensive. Comparisons of 
much more than two to three models presumably would require an inordinate 
amount of effort. But its use could prevent the selection of overparameterized 
models. 

No single summary statistic can, or should, be used to decide which of several 
nonlinear models best describes a given dataset. Each technique tells us different 
things about the data. If all of the discrimination criteria point to the same 
model, for several data sets, then the experimentalist should consider himself or 
herself fortunate. 

6. Optimal Experiments for Parameter Estimation 

If the precision of the parameters of the best model is important, then the 
microbial ecologist can proceed to that phase of model building (Fig. 2.1). In 
this phase, values for the independent variable (e.g., time, dilution rate, pH, 
substrate concentration) are chosen that yield parameter estimates with the lowest 
possible variances. Some statistical work done in this area has focused on the 
Michaelis-Menten equation and the resulting recommendations are dependent on 
the variance model (Currie 1982; Duggleby 1979; Endrenyi and Chan 1981). To 
obtain minimum variance estimates of Vmax and Km, only two substrate concentra
tions are replicated, one equal to the Km value and the other as high as is 
practically possible. 

This two-point experimental design for the Michaelis-Menten model produces 
minimum-variance estimates of V max and Km only if the measurement errors are 
independent of the measured variable (substrate utilization rate, in this case) 
(Endrenyi and Chan 1981). A different variance model, such as when the variance 
of the measurement errors is proportional to the magnitude of the initial velocity, 
changes the second design point to the lowest substrate concentration that can 
be measured experimentally (Endrenyi and Chan 1981). This change is not 
obvious from the sensitivity equations of the model. This difference emphasizes 
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the importance of knowing the variance model for optimal experimental design. 
Obtaining this knowledge may be difficult because of the large number of data 
points presumably required to elucidate the variance mode (e.g., 50 or more). 

Aside from accurate knowledge of the variance model, optimal experimental 
design for parameter estimation has a drawback when models are considered 
that have time as the independent variable. As an example, a model that does 
not have time as an independent variable is the model that predicts the steady-state 
substrate concentration (S,,) as a function of the dilution rate, D, in a chemostat: 

Sss = (KsD)/(/lmax - D). (18) 

There are two optimal design points for this model (as there are for all two
parameter models) and the experimentalist could readily obtain replicate estimates 
of Sss at these points merely by setting the dilution rate equal to the optimal 
design points in tum and replicating the study. However, the researcher cannot 
control time or "dial it in" to obtain replicate estimates of the substrate concentra
tion at the optimal design points for the integrated Michaelis-Menten model, 
Equation (2). For this reason, the application of optimal design criteria may be 
limited to situations where the microbial ecologist is working with models that 
contain controllable variables, such as dilution rate. 

If the variance of the measurement errors is constant, then the sensitivity 
equations can be used to predict the optimal design points for a nonlinear model. 
As noted, the number of optimal design points for parameter estimation equal 
the number of parameters in a model. These points are found by finding the 
values of the independent variable where the sensitivity equations are maximal. 
These can either be determined from plots of the sensitivity equations (Robinson 
1985; Robinson and Characklis 1984; Robinson and Tiedje 1983), or analytically 
by differentiating each sensitivity equation with respect to the independent vari
able, setting the derivatives equal to zero, and solving for the independent variable. 
Either way the assumption of constant variance for the measurement errors may 
be critical, depending on the model, and this assumption is rarely true. 

7. Concluding Remarks 

This chapter has highlighted the use of NPE methods for identifying and 
discriminating among nonlinear models of interest to microbial ecologists. Much 
of the emphasis has been on the model discrimination aspects of the problem. 
However, no apologies are offered for this emphasis, because model discrimina
tion forces the model builder to consider differences in predictions made by 
competing models and whether the estimation properties of individual models 
are acceptable. Ratkowsky (1990) reinforced this sentiment in his statement that 
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"a far greater threat to valid nonlinear regression modeling is the belief that a 
complicated model is superior to a simple model." The model discrimination phase 
ofNPE compels us to use Occam's razor and to not build a Rube Goldberg shaver. 
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Analysis of Repeated Measures Data 
Using Nonlinear Models 

George A. Milliken and April J. Milliken-MacKinnon 

1. Introdnction 

Many microbiological studies involve repeatedly measuring the same system, 
process, sample, or experimental unit several times or in several places, thus 
generating a repeated measures dataset. For example, an experiment, here called 
an experimental unit, is set up. A number of such experiments are run simultane
ously. Consider just one unit, it may be observed at a number of times or a 
number of different aspects of it may be measured, but it is a single unit because 
the experiment is only observed and not interfered with in any way. These 
observations and measurements are called repeated measures. In contrast, repeated 
measures are to be distinguished from replication or replicate measures in which 
the same set of conditions are observed to the best of the experimenters ability 
on additional occasions. Repeated measures are observed on each of these repli
cates, but the setup of the experiment itself provides the replication of the treatment 
or set of conditions. The repeated measures are not replications. More specifically, 
you can measure the size of a bacterial colony as a function of time on a given 
substrate by measuring the size at several selected time points. That is, these 
measurements at different time points on the same bacterial colony are repeated 
measures on that colony. Such experiments generally consist of comparing several 
treatments or conditions or treatment combinations. In the example, the treatments 
can be several different growth substrates. The typical experiment is to obtain 
several replicate runs or observations or experimental units from the same condi
tion or set of conditions. The observations within a run from a repeated measures 
dataset are correlated and the methods derived based on an independent errors 
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assumption for modeling and comparing the models across conditions are not 
appropriate. For the bacterial growth example, several petri dishes (more than 
one) would be assigned to each substrate and the size of the colonies in each 
petri dish would be measured at several predetermined times. The usual methods 
of analysis are derived based on the assumptions that the observations within a 
run are independently distributed, i.e., not correlated. The measurements made 
on the same petri dish are correlated, thus the usual methods of modeling the 
growth and comparing the models across substrates are not applicable. 

The situation discussed in this chapter consists of an experiment or study with 
t treatments, where each treatment is applied to m experimental units with n 
observations or repeated measures measured on each experimental units. The 
observations between runs or experimental units should not be correlated if an 
experimental design using proper randomization is utilized. The measured re
sponse variables are to be modeled as functions of independent or regressor 
variables measured within each run, process, or experimental unit. Time or 
depth are two possible regressor variables. For example, the integral form of the 
Michaelis-Menten enzyme kinetic equation may be appropriate to describe the 
decrease in concentration of a herbicide as a function of time. The analysis is 
to select a model that describes the repeated measures data collected from each 
experimental unit and then fit that model to the data from each experimental 
unit. The model is most likely selected to be representative of the biological 
process (rather than a polynomial regression model) where the parameters are 
of interest to the researcher. Parameters such as growth rates, decay rates, extent 
of growth or decay, etc. may be of interest to the biologist, rather than the data 
collected at each time point or depth. The parameters of the Michaelis-Menten 
enzyme kinetic equation are more likely to be of interest to the biologist than 
the amount of residual herbicide that has accumulated at a particular time. The 
process starts by fitting a model to the data from each experimental unit to 
provide estimates of the models parameters. The estimated parameters from each 
experimental unit's model, or some other characteristic of the model, are to be 
used as data for further statistical analyses. Several procedures are described for 
comparing the models across treatments including, comparing specific parameters 
of the models, comparing models evaluated at specific values of the independent 
or regressor variables, and comparing predicted values of the regressor variables 
required to provide a specified level of response. The treatments can also be 
compared by constructing confidence intervals for individual parameters and 
functions of parameters, constructing confidence bands for individual models, 
and constructing confidence bands for the difference of models from two different 
treatments. The next section discusses the assumptions, the data collected on 
each experimental unit, and the type of model needed to adequately describe 
that data. 
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2. The Model 

The number of treatments to be compared are denoted by t, which can be 
different levels of the same type of factor (levels of nitrogen) or could be levels 
of different items such as different management systems or different processes 
to treat a soil sample. The experiment consists of randomly assigning ri experimen
tal units to the ith level of the treatment and making n repeated measurements 
on the jth experimental unit assigned to the ith level of the treatment. Let Yijk 

denote the observed response or dependent variable, and Xlijb X2ijb ... Xpijk denote 
the independent or regressor variables from the kth repeated measurement on the 
jth experimental unit assigned to the ith level of the treatment. A model to 
describe the relationship between the response variable and the regressor variables 
for each level of the treatment is 

Yijk =!(Xijb ~J + eij + Eijb i = 1,2, ... t, j = 1,2, ... ri, (1) 
k = 1,2, ... n, 

where Xijk is the p x 1 vector of the independent variables; ~i is the q x 1 vector 
of unknown parameters corresponding to the model !(Xijb ~J, a known function 
of Xijk and ~i' eij is the error term representing the variability of the experimental 
units assumed to be identically independently distributed (iid) N(O, aD and Eijk 

is the error term representing the variability in the repeated measures obtained 
from a given experimental unit. The n x 1 vector of errors Eij = (Eij], Eij2' . . . , 

Eijn) , are assumed to be identically independently distributed as N(O,L.). The 
covariance matrix of the repeated measures, I., can be of any form as long as 
it is a positive definite matrix. 

The major assumption is the application of the levels of the treatment can 
have an effect on the mean of the model, but the application of the treatment 
cannot have an effect on the variance of the experimental units or on the covariance 
matrix of the repeated measures. (If the levels of the treatment have an effect 
on the variance as well as on the mean, an unequal variance procedure would 
have to be developed to solve the problem.) Here we consider only a univariate 
case of that very important problem. The n x 1 vector of repeated measurements 
on ijth experimental unit, denoted by Yij = (Yijh Yij2, ... Yijn), can be expressed as 
the model 

Yij = !(Xij, ~J + eijjn + Eij' i = 1, 2, ... t, j = 1, 2, ... ri (2) 

where jn is a n X 1 vector of l' s and Xi) is the n x p matrix of the regressor 
variables with the vectors Xijk as rows. The variance of Yij is var(Yi;) = a; In + I., 
where I n is an n X n matrix of 1 'So Thus observations from the same experimental 
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unit are correlated because they are all measured on the same experimental unit 
(through eij or a; In) and because they are repeated measures (through Ejjk or IE)' 
The usual assumption is IE = a; In and, if Model (2) contains an intercept, the 
usual least-squares estimation procedures yield appropriate estimators for the 
model's parameters and provide suitable procedures for comparing treatments 
through regression models. If the form of IE, is unknown or is more complicated 
than a; 1m the usual least-squares procedures will not provide suitable results for 
comparing characteristics of the treatments' models. Methods that do not rely 
on knowing the form of IE are desirable. One such strategy is described in the 
next section. 

3. Parameter Estimation 

The strategy for carrying out the analysis of the data for Model (1) is to use 
ordinary least squares to obtain estimates of the parameters of the model fit to 
the data from each experimental unit and then use those estimates or functions 
of those estimates in an analysis of variance setting to compare the treatments. 
If the model is linear in the parameters, a linear least-squares computer code can 
be used to estimate the model's parameters for each experimental unit. If the model 
is a nonlinear function of the parameters, a nonlinear least-squares computer code 
can be used to estimate the model's parameters for each experimental unit. For 
example, a Michaelis-Menten model can be fit to the data from each experimental 
plot and an analysis of variance can be conducted on the integrated Michaelis
Menten constants to compare the treatments. 

Ordinary least-squares estimators of the parameters of the model for the ijth 
experimental unit having rj repeated measures are obtained by selecting the values 
of flij that minimize the quantity 

Q(flij) = t~ij - f(Xij,flJ r i = 1, 2, ... t, j = 1, 2, ... rj (3) 

producing estimates ~ij i = I, 2, ... t, j = 1, 2, ... rj. The asymptotic sampling 
distributions of the 

where 

~ij, i = 1,2, ... t,j = 1,2, ... rj, are flij - N(flj, Iij), 
i = 1, 2, ... t, j = 1, 2, ... rj 
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The n X q matrix Zij consists of the derivatives of the ijth model with respect 
to the q x 1 vector of parameters, Jli, computed as 

O!(XijhJli) O!(Xi;hJli) 
OJlil oJli2 

o!(xijz,JlJ O!(Xi;2,JlJ 
OJlil oJli2 

O!(Xij.,Jli) O!(Xij.,JlJ 
OJlil OJli2 

O!(XijhJli) 
OJliq 

O!(Xij2,JlJ 
OJliq 

O!(XijlnJli) 
OJliq 

, i = 1, 2, ... t, j = 1, 2, ... rio 

The preceding information can be used to construct a model for the estimates 
of the parameters from each experimental units model as the Jlij = ~i + aij' i = 
1, 2, ... t, j = 1, 2, ... ri, where the aij - N(O,Iij). The covariance matrices of 
the ~ij are not necessarily equal. This is the case since the covariance matrices 
Iij i = 1, 2, ... t, j = 1, 2, ... ri, depend on the values of the matrix of derivatives, 
Zij' which are functions of the independent variables evaluated at Jli. Since the 
values of the parameters are likely to be different and the values of the independent 
variables for each experimental unit are likely to be different, the covariance 
matrices are likely to be different. If the values of the independent variables 
are similar from experimental unit to experimental unit within a treatment, the 
covariance matrices of experimental units from the same treatment should be 
approximately equal. (You should plot the values of the response variable against 
the value of each of the independent variables to check for outliers. Also you 
could use multivariate outlier techniques if the number of independent variables 
is quite large.) The covariance matrices between treatments are most likely not 
equal since the parameters between treatments are not necessarily equal. The 
assumption made for the remainder of this chapter is that the independent variables 
for experimental units within a treatment group are similar. This assumption 
enables us to assume the covariance matrices of the repeated measures within a 
treatment group are equal. 

4. Comparing the Treatments 

There are many ways to compare the treatments. The method of comparison 
depends on the objective of the experiment. A general comparison is described, 
followed by examples to demonstrate specific types of comparisons. Let g(X,Jli) 
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be a known function of the unknown parameters Ili and of the specific values 
for the vector of independent variables x, where it is of interest to test the 
hypothesis Ho:g(x,lll) = g(X,1l2) = ... = g(x,llt) versus Ha: not Ho. For each 
experimental unit estimate g(X,lli) by evaluating the function at Ili = ~ij, i.e., by 
computing the values of gij = g(X'~ij)' i = 1,2, ... t, j = 1,2, ... rio The asymptotic 
sampling distributions of the gij' i = 1, 2, ... t, j = 1, 2, ... ri are independent 
N(lli,a;i), where Ili = g(x,IlJ, a;i = h; Iijhi' and h; = [ag(X,lli)/apiI' ag(X,lli)/api2, 
... , ag(X,lli)/apiq], i = 1, 2, ... t. The values of the parameter vectors Ili are 
unknown and the values of the variances a~ and IE are unknown, so the values 
of the a;i are unknown. 

To circumvent not knowing the values of the parameters, construct a new 
model for the gij using the preceding information. The model for the gij is 

gij = Ili + aij' i = 1, 2, ... t, j = 1, 2, ... ri (4) 

where the aij are independently distributed N(O,a;;). Model (4) is that of a one
way treatment structure in a completely randomized design structure with possibly 
unequal variances for each level of the treatment. The gij are independently 
distributed since each gij is computed from a different experimental unit and 
we have assumed the experimental units are all independent. The hypothesis 
Ho:g(x, Ill) = g(X,1l2) = ... = g(x,llt) versus Ha: (not Ho) is equivalent to the 
hypothesis Ho: III = 112 = ... Ilt versus Ha: (not Ho), which can be tested using 
the F test from an unequal variance the analysis of variance (see Chap. 2 of 
Milliken and Johnson (1992). Before the unequal variance analysis of variance 
procedure is used, the equal variance hypothesis should be tested. If the F test 
for equal treatment effects indicates there is sufficient evidence to believe the 
null hypothesis is false, i.e., reject Ho, the treatments can be compared through 
the g(x ,Ili) by constructing contrasts of the treatments or by constructing a mUltiple 
comparisons procedure to make pairwise comparisons. 

The beauty of this procedure is that the form of the covariance matrix IE does 
not need to be known, nor does the value of a;, to compare the treatments through 
the g(X,lli), i.e., using the assumed form of the model between the response 
variable and the independent variables. 

The preceding discussion is general in that the form of g(X,lli) is general. Some 
specific forms of g(x,ll;) that may be of interest to the researcher are as follows: 

1. If you want to compare the treatments through one specific parameter, such 
as the growth rate, select g(X,lli) = Ilis> i = 1, 2, ... , t, j = 1, 2, ... ri, i.e., 
select the sth parameter from each Ili to provide a comparison of individ
ual parameters. 

2. If you want to compare the models evaluated at a specific value of the vector 
of independent variables x, such as the amount of estimated residual herbicide 
after 10 days, select g(x,IlJ = !(X,lli), i = 1, 2, ... t, j = 1, 2, ... rio 



38 G. A. Milliken and A. J. Milliken-MacKinnon 

3. If your theory suggests some important nonlinear or linear function of the 
parameters is an interpretable function, then select that function as a basis 
for comparing the treatments. For example, that interesting function might be 

4. If you want to use the slopes of the regression models in the xp direction 
evaluated at a specific value of x as a basis for comparing the treatments 
then select 

( u.) = df(x,~J g x, .... , :I' 
oXp 

i = 1, 2, ... t, j = 1, 2, ... rio 

5. If you want to use the values of x that will yield a specific value of the 
model, say the 50th percentile, as the basis for comparing the treatments 
then select 

This choice includes using the lethal dose 50% (LD50s or some other LD 
percentiles) to compare the models. LD (lethal dose) or ED (effective dose) 
is the dose or x value at which a given percent of the population will respond. 
Thus LD50 is the dose at which 50% of the popUlation will respond. 

Most any function of x and Pi can be selected as the basis for comparing the 
treatments' models. The important aspect of this process is to choose functions 
that relate to the objectives of the study or experiment. 

5. Constructing Confidence Bands for the Models 

The estimates of the parameters from the model fit to the data from each 
individual experimental unit can be used to construct confidence intervals about 
the functions of the model's parameters, induding the models. Let Pi} denote the 
q x 1 vector of estimates of the parameters from the jth experimental unit from 
the ith treatment group. The estimates from the ith treatment group Pij' j = 1, 2, 
... ri, are independently identically distributed as a multivariate normal with 
mean Pi and variance covariance matrix :Ii, denoted by Pij' j = 1, 2, ... ri -
iidN(Pi' :IJ The sample mean of the individual parameter estimates and their 
sample covariance matrix are the estimates Pi and :Ii. Let hi denote the vector 
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of sample means and Sj denote the matrix of sample variances and covariances 
computed as 

Sjll Si12 ... Silq 

Si2I Sm ... Sag 

SjqI Sjq2 ... Sjqq 

where 

'i 'i 

Let g(x,fl;) be a known function of the unknown parameters flj and of the specific 
values for the vector of independent variables x. We want to provide an estimate 
of g(x,fl;) and an estimate of an approximation to its standard error. The estimate 
of g(x,flj) is obtained by evaluating the function at flj = bj as g(x,flj) = g(x,b;). 
The asymptotic sampling distribution of the g(x,b;) is iid N [g(x,fl;), cri;], where 
cr;j = h~ Ijhj and h; = [ag(x,fl;)/a~j], ag(x,fl;)/a~a" ... , ag(x,flj)/a~i2] and iid 
denotes "independently identically distributed." The estimate of l;j is Sj and a 

I I .. h . f 2' A 2 h~ Sihi 2 h hA 

arge samp e approxImatIOn to t e estImate 0 crgi IS crgi = -- = Sgj were i 
fi 

is the vector of derivatives evaluated at fli = bi' An approximate (1 - a) 100% 
confidence interval about g(x,l3i) is g(x,bi) ± taJ2,(,i-l)Sgi, where taJ2,(,i-I) is the al2 
upper percentage point from a Student's t distribution with ri - 1 degrees of 
freedom. An assumption that is tacitly made is the variances, cr;i, i = 1, 2, ... t, 
are not necessarily equal and they have not been pooled. If the variances are not 
significantly different (using a test such as Levene's; see Chap. 2 of Milliken 
and Johnson (1992), the variances are poolable and they should be pooled into 
a single estimate and the pooled degrees of freedom should be pooled when 
selecting the percentage point. If the choice of g(x,fl;) is a function of x and you 
wish to construct a confidence band about g(x,flJ for a range of values of x 
construct the preceding interval for a grid of x values, compute the confidence 
interval about g(X,fli) for each x and connect the dots to provide the confi
dence band. 

Confidence intervals and bands can be constructed about the difference of two 
treatments' models as g(x,I3J - g(X,flh) for i * h by 
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where tal2(r,-I) and tal2(rh- l ) are the al2 upper percentage points from a Student's t 
distribution with ri - 1 and rh - 1 degrees of freedom, respectively, and S;i = 
var[g(x,b)] and S;h = var[g(x,bh)]. 

The confidence interval about the difference can be expressed as 

where tal2(V) is the al2 upper percentage points from a Student's t distribution 
with v degrees of freedom. v is the approximated degrees associated with Sii + 
Sih computed using the Satterthwaite approximation, as described in Milliken and 
Johnson (1992). The value of v is computed as 

v= 
(S;i + S;h)2 

S:i S:h --+-
ri - 1 rh - 1 

The confidence intervals can be extended to provide interval estimates for a 
t 

linear combination of the g(x ,~J as L Ci g(x '~i)' where the Ci are known constants. 
i=1 t 

An approximate (1 - a) 100% confidence interval about L Ci g(X'~i) is 

t 

L cig(x,bJ ± tal2,(V) 
i;1 

t 
~ 22 £..J CjSgi , 

i=l 

i;] 

where v is the approximate degrees of freedom computed as 

v = t 44 L CiSgi 

i;1 ri - 1 

If the covariance matrices are not significantly different, the sample covariance 
matrices can be pooled by pooling the elements as 

Sll S12 Slq 

S21 S22 S2 

s= q 

Sq/ Sq2 ... Sqq 
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where 

Using the pooled estimate of "1, S, the large sample approximation to the estimate 
of cr~i is 

where hi is the vector of derivatives evaluated at J3i = bi' An approximate (1 -
a) 100% confidence interval about g(x,J3J is g(x,bJ ± taJ2(v)Sgi, where taJ2(V) is the 

t 

al2 upper percentage point from a Student's t distribution with V = L(ri - 1) 
i=1 

degrees of freedom. 
Confidence intervals and bands can be constructed about the difference of two 

treatments' models as g(X,J3i) - g(X,J3h) for i "# h by g(x,bi) - g(x,bh) ± taJ2(V) 

>JS~i + S~h' An approximate (1 - a) 100% confidence interval about 
t L Ci g(x,J3J, where the Ci are known constants is 

i=l 

t rt~--

L Ci g(x,bi) ± taJ2.(v) L CrS~i' 
~1 ~1 

The preceding procedures are demonstrated using two examples. The first 
example is from bakery science where characteristics of the cookie development 
curve are evaluated and compared for several cookie formulations. The second 
example compares three soil-handling and pesticide application methods by mod
eling the radioactive CO2 production over time. For both of these examples 
the data collected from each experimental unit are repeated measures, but the 
experimental units are independent. 

6. Example 1: Growing Cookies 

The data in Table 3.1 are from an experiment involving the development of 
cookies where the cookies are from different cookie formulations or recipes 
(Doescher (1986». The process is to (1) mix ingredients for a given formulation 
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Table 3.1 Data for the cookie development example where the columns under each 
formulation correspond to the three cookies. 

Soft Winter Wheat and Soft Winter Wheat and 
Time Granular Sucrose Time Fructose Syrup 

0 62.10 61.72 61.96 0 59.41 60.31 60.62 
63.08 62.21 63.19 63.76 62.31 62.31 

2 66.99 67.31 67.59 2 67.66 66.65 67.39 
3 72.86 72.90 74.18 3 72.51 72.21 72.69 
4 76.28 76.79 78.08 4 77.36 76.79 78.00 
5 80.68 79.95 81.74 5 79.78 79.93 81.14 
6 85.57 84.08 85.89 6 80.75 82.11 82.83 
7 91.44 87.24 90.52 7 80.99 82.11 83.07 
8 94.13 88.69 92.48 8 80.51 82.11 83.07 
9 94.62 89.18 92.72 9 80.02 81.14 82.59 

10 94.62 89.18 92.72 10 78.33 80.18 81.14 

Soft Winter Wheat and Hard Red Winter Wheat and 
Time Glucose Syrup Time Granular Sucrose 

0 59.65 61.34 61.23 0 60.61 60.94 61.74 
62.08 63.27 62.92 62.05 62.62 63.21 

2 65.47 66.17 68.00 2 65.42 65.49 67.13 
3 70.81 70.76 74.29 3 70.71 71.19 72.52 
4 76.14 76.55 78.89 4 74.79 74.57 76.19 
5 80.D2 80.90 82.04 5 76.96 77.44 79.13 
6 81.96 82.35 83.97 6 78.40 79.35 81.83 
7 82.45 82.83 84.94 7 80.09 80.06 82.56 
8 82.69 82.83 84.94 8 79.36 80.06 82.56 
9 82.45 82.83 84.94 9 79.36 79.83 82.32 

10 82.21 82.35 84.94 10 79.36 79.83 82.32 

Soft Winter Wheat and 
Time Granular Sucrose 

0 60.98 60.11 
63.19 61.47 61.79 

2 68.07 64.85 65.14 
3 72.96 71.15 71.13 
4 78.81 77.20 76.88 
5 83.94 82.28 81.91 
6 87.59 87.36 85.50 
7 90.52 90.02 87.42 
8 91.25 91.96 89.09 
9 91.25 91.23 89.81 

10 91.25 91.96 89.81 
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into a cookie dough; (2) measure out a specified amount of cookie dough; (3) 
put the cookie dough in the oven with preset conditions; and (4) watch it bake, 
i.e., track the diameter of the cookie as it develops or grows. A camera was 
mounted on the oven door focused through the door's window with a calibration 
bar behind the cookie dough. A picture was taken every minute for 10 min, 
starting with zero time thus there are 11 measurements made on each cookie. 
The pictures were used to measure the diameter of the cookie after each minute 
of exposure to the baking temperature. The graph in Figure 3.1 displays the 
general pattern of diameter growth of a cookie, called the cookie development 
curve. The development curve shows that the cookie grows for a certain length 
of time, at which point it stops expanding or sets. The time at which the cookie 
stops expanding is called the set time. The slope of the first segment of the model 
is called the expansion rate or growth rate of the cookie, and the second segment 
or plateau part of the model is at a height of the maximum diameter. Once the 
cookie sets, the diameter changes very little (those cookies that set early, they 
started to burn, thus reducing the diameter a little bit). These 11 measurements 
on the same cookie are repeated measures and are highly correlated with each 

o 1 2 345 
Time 

6 

Maximum Diameter 

Set Time 

7 8 9 10 

Figure 3.1 Graph of the cookie development function with important characteristics noted. 



44 C. A. Milliken and A. }. Milliken-MacKinnon 

other, but are independent of the measurements made on other cookies. The 
repeated measurements are also not equally correlated, because those measure
ments of the growth stage of the process are not as highly correlated as those 
on the plateau stage of the process. The variability of the measurements is larger 
for the growth stage than for the horizontal stage. A repeated measures analysis 
of variance could be used to compare the cookie formulations at each time of 
exposure to the oven temperature. Such comparisons are not of interest to the 
bakery scientists. The bakery scientist is interested in the growth rates, the set 
times, and the maximum diameters of the cookies and comparisons of those 
characteristics among the formulations. Thus a model was constructed to describe 
the development pattern of each cookie. The two-stage linear-plateau model was 
selected to describe the observation from the jth cookie of ith formulation mea
sured at the kth time point denoted by th which can be expressed as 

_ {Oi + ~lYi - t k) + Eijk if tk ::; Yi 
Yijk - s: if ' Ui + Eijk I tk > Yi 

i = 1, 2, 3, 4, 5, j = 1, 2, 3, k = 1, 2, ... 10. 

The model parameter OJ denotes the maximum diameter for the ith cookie formula
tion, the model parameter ~j denotes the growth rate for the ith cookie formulation, 
and the model parameter Yi denotes the set time for the ith cookie formulation. 
The estimation procedure described by Hudson (1966) was used to fit the model 
to the data from each cookie of each formulation. Hudson's method is a search 
procedure consisting of partitioning the dataset into all possible sets of two 
adjacent partitions and then fitting a linear regression model to the first partition 
and a mean or model with zero slope to the second partition. If the two lines 
intersect in the interval separating the two partitions, the fits provide a possible 
solution. If the two lines do not intersect in the interval separating the two 
partitions, the two models are fit to the data where they are forced to intersect 
at one of the boundaries of the interval separating the two partitions. The partition 
of the data and the corresponding model with the smallest residual sum of squares 
is selected as the model to provide the least squares estimates of the parameters 
of the model. The cookie development experiment consisted of comparing five 
cookie formulations. Three cookies from each cookie formulation were baked 
for 10 min, thus the cookie is the experimental unit for cookie formulation. For 
each formulation, three batches of cookie dough were mixed, each independently 
of the others, and one cookie was extracted and baked from each batch. Thus 
each cookie was mixed and baked independently of the other cookies. There 
were 15 cookies, 3 from each formulation, and they were baked in a completely 
random order. Therefore the design structure of the experiment is a completely 
randomized design. The data are in Table 3.1. 
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Table 3.2 contains the estimates of the model parameters for each cookie, 
where Hudson's method was applied to obtain ordinary least-squares estimators 
(we did not attempt to determine the form of the covariance matrix). Since 
the cookies are mixed and baked independently of each other the estimated 
characteristics of the models are independent between cookies. Consequently, 
the slopes are all independently distributed, the set times are all independently 
distributed and the maximum diameters are all independently distributed. The 
analysis to compare the cookie formulations continues by comparing each of the 
model's characteristics using the analysis of variance procedure. The first step 
is to test the equality of the within cookie formulation variances for each character
istic using Levene's test. Levene's test (see Chap. 2 of Milliken and Johnson 
1992) consists of (1) fitting the one-way analysis of variance model to the dataset, 
(2) computing the residuals for each observation in the dataset, (3) computing 
the absolute value of the residuals, and (4) performing a one-way analysis of 
variance on the absolute values of the residuals. If the resulting F test for 
treatments is significant at a preselected significance level, then reject the equal 
variance hypothesis and use a weighted analysis to compare the treatment means 
based on the original observations. 

The results of the analysis of the three estimated parameters, the estimated 
slopes, the estimated set times, and the estimated maximum diameters are con
tained in Tables 3.3, 3.4, and 3.5, respectively. The top section of each table is 
the analysis of variance for that variable, the middle section of each table titled 

Table 3.2 Estimates of the linear plateau model parameters for each cookie made from 
each formulation 

Formulation Slope or Growth Rate Set Time Maximum Diameter 

Soft winter wheat with 4.30 8.09 94.6 
granular sucrose 3.93 7.32 89.0 

4.28 7.53 92.6 
Soft winter wheat with 4.21 4.88 80.1 

fructose syrup 4.16 5.33 81.5 
4.43 5.25 82.5 

Soft winter wheat with 4.27 5.62 82.4 
glucose syrup 4.06 5.65 82.6 

4.52 5.49 84.7 
Hard red winter wheat with 3.58 5.54 79.3 

granular sucrose 3.54 5.64 79.8 
3.75 5.79 82.3 

Soft winter wheat with 5.01 6.55 91.1 
sucrose syrup 4.66 7.21 91.7 

4.58 6.77 89.0 
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Table 3.3 Analysis of the slopes for the cookie fonnulation example 

Slopes 

Source DF Sum of Squares Mean Square F Value Pr> F 

Fonnula 4 1.93677333 0.48419333 13.32 0.0005 
Error 10 0.36340000 0.03634000 
Corrected total 14 2.30017333 

Absolute Value of Slope Residuals 

Source DF Sum of Squares Mean Square F Value Pr > F 

Fonnula 4 0.01749926 0.00437481 0.67 0.6245 
Error 10 0.06482222 0.00648222 
Corrected total 14 0.08232148 

T tests (LSD) for variable: Slope 
Least significant difference = 0.3468 

Means with the same letter are not significantly different 

TGrouping Mean N Fonnula 

A 4.7500 3 Sucrose syrup 
B 4.2833 3 Glucose syrup 
B 4.2667 3 Fructose syrup 
B 4.1700 3 Granular sucrose 
C 3.6233 3 Hard red winter 

"Absolute Value of the Residuals of (variable name)" is the Levene's test for 
that variable, and the last section of each table consists of the means and compari
sons of the means for the cookie formulations. 

The results of Levene's tests indicate there is not sufficient evidence to conclude 
the variances are not equal (p = 0.6254 for slopes, p = 0.1296 for set times, and 
p = 0.3973 for maximum diameters). Thus, the one-way treatment structure 
in a completely randomized design structure model was used to compare the 
formulations through the characteristics. The top section of Tables 3.3, 3.4, and 
3.5 displays the analysis of variance tables for each characteristic. There is strong 
evidence to conclude the formulations are different for all three characteristics 
(p = 0.0005 for slopes, p < 0.0001 for set times, and p < 0.0001 for maximum 
diameters). The formulations are compared using the 5% LSD (least significant 
difference) (see Chap. 3 of Milliken and Johnson 1992) values, which are in the 
bottom sections of Tables 3.3, 3.4, and 3.5. From Table 3.3, we see the sucrose 
syrup formulation grows significantly faster than glucose syrup, fructose syrup, 
granular sucrose, all of which grow faster than hard red winter wheat. From 
Table 3.4 we see the granular sucrose grows longer than sucrose syrup, which 
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Table 3.4 Analysis of the set times for the cookie formulation example 

Set Time 

Source DF Sum of Squares Mean Square F Value Pr> F 

Model 4 12.81316000 3.20329000 45.49 0.0001 
Error 10 0.70413333 0.07041333 
Corrected total 14 13.51729333 

Absolute Value of Residuals of Set Time 

Source DF Sum of Squares Mean Square F Value Pr> F 

Model 4 0.11713778 0.02928444 2.31 0.1296 
Error 10 0.12703704 0.01270370 
Corrected total 14 0.24417481 

T tests (LSD) for variable: Set Time 
Least significant difference = 0.4828 

Means with the same letter are not significantly different. 

TGrouping Mean NFormula 

A 7.6467 3 Granular sucrose 
B 6.8433 3 Sucrose syrup 
C 5.6567 3 Hard red winter 
CD 5.5867 3 Glucose syrup 
D 5.1533 3 Fructose syrup 

grows longer than the other three formulations. Hard red winter wheat also grows 
longer than fructose syrup, which does not grow significantly slower than glucose 
syrup. From Table 3.5, we see the maximum diameters of granular sucrose and 
sucrose syrup are not significantly different, but are significantly larger than the 
other three formulations. The other three formulations are not significantly differ
ent in the maximum diameter. 

For the cookie development process, we learned a lot about the relationships 
between the five cookie formulations by using ordinary least squares to fit a 
simple, reasonable, and interpretable model to the data from each cookie. We 
are in essence letting the model fitting procedure provide the data that are used 
to compare the cookie formulations. This is the major point of the presentation. 
Even though the individual diameters measured over time from each cookie are 
highly and unequally correlated we can use the model to extract information 
about the growth process or about interesting characteristics of the growth curve, 
and then use the estimated characteristics to compare the cookie formulations. 

Another possible approach is to use a multivariate analysis of variance to 
compare the formulations. For the multivariate analysis of variance to be applica-
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Table 3.5 Analysis of the maximum diameters for the cookie formulation example 

Source 

Model 
Error 
Corrected Total 

Source 

Model 
Error 
Corrected total 

Maximum Diameter 

DF Sum of Squares Mean Square F Value 

4 350.03066667 87.50766667 27.83 
10 31.44666667 3.14466667 
14 381.47733333 

Absolute Value of Residuals of Maximum Diameter 

DF 

4 
10 
14 

Sum of Squares 

2.70696296 
6.00518519 
8.71214815 

Mean Square 

0.67674074 
0.60051852 

T tests (LSD) for variable: MAX DIA 
Least significant difference = 3.2261 

F Value 

1.13 

Means with the same letter are not significantly different. 

T Grouping Mean N Formula 

A 92.067 3 Granular sucrose 
A 90.600 3 Sucrose syrup 
B 83.233 3 Glucose syrup 
B 81.367 3 Fructose syrup 
B 80.467 3 Hard red winter 

Pr > F 

0.0001 

Pr > F 

0.3973 

ble, there must be more multivariate observations per treatment group than 
characteristics measured. For the cookie example there are three characteristics 
and three cookies per formulation, thus the multivariate analysis of variance is 
not applicable. It should be noted that the maximum diameter is a function of 
the growth rate and set time. That is evident from the analysis as granular sucrose 
cookies grew longer than the sucrose syrup cookies, but the sucrose syrup cookies 
grew faster. But, the maximum diameters of the two sucrose cookie formulations 
were not significantly different. The dimension of this process in most likely 
two, i.e., knowing two of the characteristics, you will know about the third. 

7. Example 2: Cumulative Radioactive CO2 Production 

The purpose of this laboratory study was to develop a method to investigate 
soil and environmental factors influencing spatial and temporal variability of 
pesticide degradation in field soils. Two specific factors were considered in the 
method development: (1) soil-handling process and (2) pesticide application 
technique. Three soil-handling/pesticide treatment combinations were evaluated 
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where treatment A was sieved soil/spray pesticide application, treatment B was 
injected pesticide application/sieved soil, and treatment C was injected pesticide 
application/intact core incubation. For treatment A, intact core segments sieved 
and carbofuran solution was applied using an atomizer. For treatment B, intact 
core segments injected with carbofuran at one location then sieved resulting in 
a more heterogeneous dispersion of pesticide. For treatment C, intact core seg
ments were injected with carbofuran then incubated to more closely mimic field 
conditions by preserving soil structure and creating localized concentrations of 
carbofuran similar to the field result of banding of granular material at planting 
time. Ten replications of each treatment were prepared and the daily cumulative 
amount of radioactive CO2 was measured. A plot of the cumulative CO2 production 
data for each replication, revealed a sigmoidal type of relationship between the 
cumulative CO2 production and the number of elapsed days. The treatments could 
be compared using a repeated measures analysis of variance where the daily 
measurements on each replication are the repeated measurements. But a more 
meaningful approach is to use a mathematical model to reduce dimensionality 
of the data from the number of repeated measures to the number of parameters 
in the model. This reduction enables the statistical evaluation of the treatments 
to be preformed in a more meaningful way by comparing the parameters of the 
models, where the parameters of the selected model have a direct biological or 
physical interpretation. 

The logistic growth nonlinear model was used describe cumulative CO2 produc
tion data for each replication as a function of number of elapsed DAYS. The 
logistic growth model used is 

P;;k = ~A;i DAYS) + rij + Eijb i = A, B, C, j = 1, 2, ... 10, (5) , l+e ui + i * 

DAYS = 1, 2, ... , 11, 14, 16, 21, 28, 

where Pijk is cumulative CO2 formation at the kth day of the jth replication of 
the ith treatment, MAXi is the asymptote for the ith treatment, (J.i is the location 
parameter for the ith treatment, and ~i is the rate coefficient for the ith treatment. 

Radioactively labeled CO2 production from all of the replications of the treat
ments exhibited sigmoidal kinetics. The process reaction was virtually complete 
after day 14 of a 3~-day study and recovery of CO2 ranged from 78% to 100%. 
Assessment of treatment differences by looking at the graphs of the data and 
fitted models were inconclusive, thus additional analyses of the data were required 
to enable decisions to be made about the models. 

Model (5) was fit to the data for each replication of each treatment using 
PROC NUN of the SAS® system to obtain the ordinary least-squares estimates 
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of the parameters of the logistic model. Table 3.6 contains the estimates for each 
replication of each treatment. The data from each replication is independently 
distributed from the data of all other replicates, thus the estimates of the parameters 
of the logistic model from each replication are independently distributed from the 
estimates of the parameters from all other replicates. Thus, a one-way treatment 
structure in a completely randomized design structure analysis of variance model 
in Equation (4) was used to compare the treatments through the characteristics 
of the model. The results of the analysis of variance for the parameter estimates are 

Table 3.6 Estimates of the model's parameters for each replication of each treatment 

Parameters 

Treatment Replication ex ~ MAX 

1 5.l3927 -1.17853 64.0932 
2 5.27761 -1.00071 87.0985 
3 5.01829 -1.12973 87.0698 
4 4.94114 -1.08457 92.6543 

A 
5 3.74832 -0.65412 78.9885 
6 5.03412 -1.06527 88.3552 
7 3.78861 -0.59266 84.0725 
8 4.47711 -0.75757 97.8895 
9 4.74424 -0.82437 98.6647 

10 5.46320 -1.06944 86.1166 

3.69605 -1.05086 82.1051 
2 4.60804 -0.87880 92.2226 
3 4.59524 -0.64630 90.1819 
4 4.26751 -0.84761 90.9165 

B 
5 3.90064 -0.76050 89.0598 
6 5.30245 -0.97201 94.2029 
7 5.76957 -1.10222 88.5235 
8 5.31191 -1.00131 89.4742 
9 4.03774 -0.58230 84.3643 

10 4.43914 -0.71483 92.0224 

4.66019 -0.84229 89.6435 
2 4.09142 -0.64356 86.7260 
3 4.97761 -0.80121 91.8231 
5 3.69313 -0.59847 76.5151 

C 6 5.05195 -0.64119 78.3523 
7 3.63259 -0.48560 76.4144 
8 4.55604 -0.63734 86.6247 
9 4.53587 -0.74446 86.6653 

10 4.09640 -0.70131 91.0353 
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in Table 3.7, where there are no significance differences between the treatments for 
parameters a and MAX (p = 0.3688 and p = 0.3956, respectively). There are 
significant differences between the treatments for parameter ~ where treatments 
A and B are not different, but they are both significantly different from treatment C. 

Predicted values for each replication of each treatment were computed at a 
selected set of DAYS using 

MAX· 
Pijk = 1 + e«i;+~i:DAYS)' i =A, B, C, j = 1,2, ... 10. (6) 

Again, since the data from each replication are independently distributed from 
the data from all of the other replications, the predicted values for each replication 
evaluated after a specific number of elapsed DAYS are independent. Thus a one
way analysis of variance using Model (4) can be used to compare the treatments 
at each of those selected number of elapsed DAYS. The treatments are compared 
at each of the numbers of elapsed DAYS displayed in Table 3.8. Models for 
treatments A and B are significantly larger than the model for treatment C for 
DAYS 4 through 9 and the treatments are not significantly different for the 
other DAYS. 

The number of DAYS of exposure required to yield 10%, 25%, 50%, and 
75% of the estimated MAX for each replication was predicted using 

A (MAXii) 
A -aij + loge o/tCO - 1 

DA YSijk = 0 2 , i = A, B, C, j = 1, 2, ... 10 (7) 

~ij 
The estimated numbers of days are in Table 3.9 and the analysis of variance 
results for comparing the treatments are in Table 3.10. The number of days to 
achieve 25%, 50%, and 75% cumulative CO2 production are not significantly 
different for treatments A and B, which are significantly less than required by 

Table 3.7 Comparisons of the treatments for the model parameters 

Significance 
Parameter Level Treatment A Treatment B Treatment C 

(J. 0.3688 4.7632 4.5928 4.3661 

f3 0.0102 -0.93570a -0.8557a -0.6773b 

MAX 0.3956 86.5002 89.3073 84.8666 

aValues within a row with different letters are significantly different (p = 0.05). 
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Table 3.8 Comparisons of the treatments for the models evaluated at specific values of 
number of DAYS 

Models Evaluated Significance 
at DAYS Level Treatment A Treatment B Treatment C 

0.6603 1.960 2.390 2.211 
2 0.5251 4.640 5.360 4.200 
3 0.2135 10.800 11.500 7.844 
4 0.0442 23.120a 22.250" 14.166b 
5 0.0077 40.950a 37.590a 24.000b 
6 0.0038 58.320a 54.340a 36.811b 
7 0.0059 70.690" 67.960" 50.355b 
8 0.0143 78.070" 77.000a 62.044b 
9 0.0378 82.120a 82.450a 70.711 b 

10 0.0898 84.240ab 85.580" 76.467b 

11 0.1708 85.350 87.300 80.055 
12 0.2456 85.900 88.260 82.122 
15 0.3651 86.430 89.150 84.367 
20 0.3925 86.510 89.300 84.822 
25 0.3941 86.520 89.310 84.856 
30 0.3941 86.520 89.310 84.856 

aValues within a row with different letters are significantly different (p = 0.05). 

treatment C. The treatments were not significantly different at p = 0.05 for the 
number of days required for 10% cumulative CO2 production. 

The information in Table 3.11 provides additional analyses for parameter ~. 
This additional set of analyses provides tests for equality of variances among 
the treatment groups and then an analysis that fits an unequal variance model to 
the estimates of the ~ parameters. The SAS® system code in part (l) of Table 
3.11 fits the one-way analysis of variance model to the estimated values of ~, 
computes the residuals, indicated by the variable "rb," and stores the residuals 
in a data set called "res." The code in part (2) computes the absolute value of 
the residuals for each observation and the code in part (3) carries out the one
way analysis of variance on the absolute value of the residuals. The F value in 
the second section of Table 3.11 (dependent variable: ARB) corresponds to 
Levene's test of equality of variances, indicating the variances are most likely 
different (p = 0.0403). The Levene's test was used to test the equality of variances 
for all of the computed characteristics of the model and only the test for the 
estimates of ~ indicated a significant difference between the treatment variances 
(p = 0.05). The code in part (4) of Table 3.11 fits the unequal variance model 
to the data using the MIXED procedure of the SAS® system. The statement 
"REPEATED/GROUP=TRT" tells PROC MIXED to fit a different variance for 
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Table 3.9 Estimates of the numbers of days required to achieve a specified percentage 
of CO2 accumulation for each replication 

Replication Time to 10% Time to 25% Time to 50% Time to 75% 

Treatment A 2.93 3.98 5.44 
2 3.23 4.36 5.57 7.10 
3 2.63 3.64 4.71 6.06 
4 2.61 3.64 4.70 5.89 
5 2.78 4.55 6.56 10.20 
6 2.79 3.85 4.97 6.35 
7 3.01 4.94 7.04 9.96 
8 3.04 4.50 5.97 7.48 
9 3.11 4.44 5.79 7.15 

10 3.21 4.27 5.41 6.89 
Treatment B 1.64 2.73 3.94 5.76 

2 2.85 4.12 5.44 6.92 
3 3.89 5.63 7.45 9.58 
4 2.57 3.89 5.27 6.86 
5 2.41 3.89 5.45 7.33 
6 3.26 4.41 5.58 6.86 
7 3.36 4.39 5.47 6.79 
8 3.23 4.36 5.54 6.95 
9 3.49 5.45 7.58 10.51 

10 3.27 4.83 6.45 8.28 
Treatment C 1 3.07 4.40 5.81 7.47 

2 3.19 4.95 6.84 9.24 
3 3.59 4.99 6.44 8.08 
5 3.00 4.96 7.23 12.69 
6 4.88 6.70 8.76 12.73 
7 3.58 6.00 8.79 15.66 
8 3.95 5.73 7.64 10.07 
9 3.36 4.88 6.51 8.59 

10 2.86 4.46 6.12 8.04 

each level of TRT or each level of the GROUP=variable. The option DDFM= 
SATTERTH requests that PROC MIXED use the Satterthwaite approximation 
to the degrees of freedom for all statistics concerning the comparison of the 
means of the treatments. 

The results from PROC MIXED are in the bottom three sections of Table 
3.11. The center section provides estimates of the variances for each of the 
treatments as 0.0443, 0.0313, and 0.0118 for treatments A, B, and C, respectively. 
The "Tests of Fixed Effects" provides a test of the equality of the treatment 
means of the estimated ~ values where the approximate degrees of freedom for 
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Table 3.10 Comparisons of the treatments for numbers of days required for a given 
percent of CO2 to accumulate 

Amount of 
Cumulative CO2 Significance 
Production Level Treatment A Treatment B Treatment C 

10% 0.0587 2.934 2.997 3.498 
25% 0.0082 4.217a 4.370a 5.230b 
50% 0.0052 5.616a 5.817" 7.127b 
75% 0.0088 7.456" 7.584" 10.286b 

Values with a row with different letters are significantly different (p = 0.05). 

the denominator are 19.5, the F statistic is 7.53, and the significance level is 
0.0038. This test for the equality of the treatment means indicates that the 
estimated ~ treatment means are most likely different. The fourth section contains 
the adjusted means for the treatments and the corresponding estimated standard 
errors. The degrees of freedom associated with each of the estimated standard 
errors corresponds to the sample size minus one, i.e., the degrees of freedom 
associated with the estimated of the variance from each of the treatments. The 
bottom section of Table 3.11 displays the pairwise comparisons of the treatments, 
indicating treatments A and B are not different, whereas both are significantly 
less than treatment C. The degrees of freedom were are computed using the 
Satterthwaite approximation discussed in Section 5. 

As a contrast to the unequal variance model fit above, the estimates of ~ were 
analyzed using an equal variance model and the results in Table 3.12. The 
significance level of the equal variance F test for equality of treatment means is 
0.0102, which is less than the significance level of the corresponding unequal 
variance F test, 0.0403. But, the major differences between the two analyses are 
in the estimated standard errors of the treatment effects. The estimated standard 
errors in Table 3.12 are equal (except treatment C's mean is based on 9 observa
tions, whereas treatments A and B means are based on 10 observations). The 
estimated standard errors for the treatment effects in Table 3.11 reflect the 
magnitude of the respective estimates of the variances. When the variances are 
unequal, the unequal variance analysis of variance is the appropriate method to 
compare the treatments. 

Tables 3.13, 3.14, and 3.15 contain the sample means, standard deviations, 
and covariance matrices of the estimates of ex, ~, and MAX from each replication 
for treatments A, B, and C, respectively. These statistics were used to construct 
confidence bands for each treatment's model and to construct confidence bands 
for the differences for each pair of models, using the methods in Section 5. The 
models are graphed in Figure 3.2 where MODA, MODB, and MODe are the 
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Table 3.11 Analysis of the estimates of ~ using the unequal treatment variance model 

(I) proc glm data=est; class trt rep; model b = trt/solution; output out=res r=rb; 
(2) data res; set res; arb=abs(rb); 
(3) proc glm; clas trt; model arb=trt; 
(4) proc mixed data=est; class trt; model b=trtlddfm=satterth; repeatedJgroup=trt; 

Ismeans trtldiff; 

Dependent Variable: ARB 

Source OF Sum of Squares Mean Square F Value Pr> F 

Model 2 0.04634296 0.02317148 3.64 0.0403 
Error 26 0.16536060 0.00636002 

Covariance Parameter Estimates (REML) 

Cov Parm Estimate Std Error Z Pr> 121 
DIAG TRT A 0.04430749 0.02088675 2.12 0.0339 
DIAG TRT B 0.03129916 0.01475457 2.12 0.0339 
DIAG TRT C 0.01183279 0.00591639 2.00 0.0455 

Tests of Fixed Effects 

Source NDF DDF Type III F Pr > F 

TRT 2 19.5 7.53 0.0038 

Least-Squares Means 

Level LSMEAN Std. Error DDF T Pr> IT! 
TRTA -0.93569631 0.06656387 9 -14.06 0.0001 
TRT B -0.85567437 0.05594565 9 -15.29 0.0001 
TRT C -0.67726959 0.03625954 8 -18.68 0.0001 

Differences of Least Squares Means 
Levell Level 2 Difference Std. Error DDF T Pr> ITI 

TRTA TRT B -0.08002194 0.08695208 17.5 -0.92 0.3699 
TRT A TRT C -0.25842672 0.07579910 13.8 -3.41 0.0043 
TRT B TRT C -0.17840478 0.06666836 15.1 -2.68 0.0172 

estimated models for treatments A, B, and C, respectively. Confidence bands for 
the models for treatments A, B, and C shown in Figures 3.3, 3.4, and 3.5, 
respectively. The confidence band for the model becomes a confidence interval 
about the MAX parameter as the number ofDA YS becomes large. The confidence 
band for the differences of models for treatments A and B is in Figure 3.6, the 
band for the differences of models for treatments A and C is in Figure 3.7, and 
the band for the differences of models of treatments Band C is in Figure 3.8. 
The treatments are declared to produce different levels of the response at a 



56 G. A. Milliken and A. }. Milliken-MacKinnon 

Table 3.12 Analysis of the estimates of ~ using the equal treatment group variance model 

Dependent Variable: ~ 

Source DF Sum of Squares Mean Square F Value Pr> F 

TRT 2 0.32812028 0.16406014 5.50 0.0102 
Error 26 0.775122l3 0.02981239 
Corr Total 28 l.l0324242 

Std. Err., LSMEAN 
TRT ~, LSMEAN LSMEAN Number 

A -0.93569631 0.05460072 1 
B -0.85567437 0.05460072 2 
C -0.67726959 0.05755422 3 

Pr > ITI HO: LSMEAN (i) = LSMEAN U) 
//j I 2 3 

I 0.3096 0.0031 
2 0.3096 0.0332 
3 0.0031 0.0332 

Table 3.l3 Means, standard deviations, and covariances of the set of estimated 
parameters for treatment A 

&. ~ MAx 

MEAN 4.7632 -0.9357 86.5003 
STD 0.5896 0.2105 9.9120 
COy &. 0.3476 -0.1114 -0.0160 
COy ~ -0.1114 0.0443 0.5135 
COy MAx -0.0160 0.5l35 98.2474 

Table 3.14 Means, standard deviations, and covariances of the set of estimated 
parameters for treatment B 

&. ~ MAx 

MEAN 4.5928 -0.8557 89.3073 
STD 0.6771 0.1769 3.6545 
COy &. 0.4585 -0.0605 1.2390 
COY ~ -0.0605 0.03l3 0.0157 
COy MAx 1.2390 0.0157 13.3556 
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Table 3.15 Means, standard deviations, and covariances of the set of estimated 
parameters for treatment C 

a ~ MAX 

MEAN 4.3661 -0.6773 84.8666 
STD 0.5166 0.1088 6.1509 
Cova 0.2669 -0.0375 1.4345 
COy ~ -0.0375 0.0118 -0.5375 
COy MAX 1.4345 -0.5375 37.8339 

specific number of DAYS when the confidence band does not include zero. From 
Figure 3.6, there is possibly a difference between treatments A and B around 
DAYS = 5, but the models are not different elsewhere. The graph in Figure 3.7 
shows that treatment A produces a larger response for DAYS 2 to 10 and from 
Figure 3.8, treatment B produces a larger response than treatment C for DAYS 
2 through 13. 

The preceding discussion of this example demonstrate several possible paths 
to take to compare the three treatments. The important aspect of this discussion 
is you should compute those characteristics of the model that are meaningful 
to your being able to understand the process being studied. Compute those 
characteristics and carry out an appropriate analysis on those characteristics. 
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Figure 3.3 The 95% confidence band for treatment A. 
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Figure 3.4 The 95% confidence band for treatment B. 
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Figure 3.5 The 95% confidence band for treatment C. 
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Figure 3.6 The 95% confidence band for the difference between treatments A and B. 
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Figure 3.7 The 95% confidence band for the difference between treatments A and C. 
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8. Summary 

Methods are described for analyzing data consisting of repeated measures from 
each of several experimental units subjected to one of a set of treatments under 
study. The process consists of fitting a model to the repeated measures obtained 
from each experimental unit using ordinary least squares. The important character
istics of the models are then computed for each experimental unit and the treat
ments are compared using an appropriate analysis of variance. Procedures are 
described for both equal treatment variances and unequal treatment variances. 
The unequal treatment variance case is expected to be the case for most situations, 
thus a test of the equal variance hypothesis is required. A confidence band for 
a model and a confidence band for the difference of two models are constructed 
for both the equal and unequal variance cases. The procedures are demonstrated 
by analyzing the data from two examples. 
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The Monod Model and Its Alternatives 

Arthur L. Koch 

1. Jacques Monod: His Life and Work 

1.1. The Logistic Equation 

Jacques Monod started life as an ecologist. Logically, he follows after the 
Belgian ecologist, Verhulst. Verhulst (1838) developed the logistic equation for 
the growth of populations. It can be derived in a variety of contexts. Possibly 
the simplest way to understand his model of the mathematics of the population 
growth process is to think of a trypsinogen solution being converting into trypsin. 
If completely pure, the solution would be stable, but if one molecule of trypsin 
were present as a contaminant, then it would convert trypsinogen into trypsin 
and that would produce trypsin faster and faster-a simple autocatalytic process. 
Finally, production would be slowed by the consumption of the trypsinogen. 
These stages could be collectively modeled: 

dTldt = rTS or dTldt = rT(K - Do (1) 

where T is the concentration of trypsin; S is the substrate concentration, which 
in this special case is the concentration of trypsinogen; r is the second-order 
rate constant for the conversion of trypsinogen to trypsin; and K is the initial 
concentration of the substrate, trypsinogen. On integration and evaluation of the 
boundary conditions, one obtains 

(2) 
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where To is the initial concentration of trypsin. After a long time, T becomes 
equal to the initial trypsinogen concentration K. I have used K because ecologists 
use this symbol and call it the carrying capacity. This equation is the famous 
autocatalytic, "logistic" equation that Raymond Pearl (Pearl and Reed 1920) used 
to successfully predict the population growth of the United States. A plot of it 
gives a symmetrical S-shaped curve. It is the basis, moreover, of much modem 
ecological thought, with r now equal to the maximal rate of net population growth 
and K, as mentioned, equal to the carrying capacity of the ecosystem; i.e., the 
population level when birth and death are equal (see, for example, Ricklefs 1990). 

Different fields have a fixity on which symbols to use; here we deal with 
several fields so first we rewrite the logistic in symbols more common in bioengi
neering, where the biomass is taken to be X. The logistic becomes in differential 
and integral form: 

dX/dt = rX(K - X)/K, 
X = XoKert/(K + Xoe't), 

and has limiting expressions of 

X = XoKe rt at early times, 
X = K at late times. 

This is shown in Figure 4.1. 

(3) 
(4) 

(5) 
(6) 

1.2. Monod's Doctoral Thesis (Part 1): The Electronic Photometer; Bacteria 
Instead of Plants and Animals 

In the late 1930s, Monod attempted to experimentally test this equation for 
his dissertation in zoology under Teissier at the Sorbonne. For plants or animals, 
the time scale was too long, but for bacteria a few hours would suffice. The 
number of plants or animals could be counted at different time intervals, but 
bacteria, being small, could not. Monod seized on the photoelectric colorimeter, 
which fortunately had recently become available. Although the instrument was 
made to measure the absorption of light by colored solutions, the light scattered 
by the turbid solution of bacteria was a signal that could be related to the mass 
of bacteria. This gave an additional advantage over counting individual organisms 
in a microscope counting chamber or enumerating colony forming units on petri 
plates. In turbidity measurements, since millions and millions of organisms were 
present in the sample, no random error from this source would accrue. 

Using the primitive photometer, he studied the growth of assorted bacteria by 
inoculating various media with an infinitestimal number of bacteria and following 
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Figure 4.1 The logistic and Monod integral equations. Theoretical growth curves are 
shown for the logistic equation by a thicker line and the Monod model with thinner lines 
for various choices of the value of Km. The Monod model approaches the logistic when 
Km is large so that Il = IlmaxS/(Km + S) approaches the first-order relationship, Il = (IlmaJ 
Km)S, where growth is directly proportional to substrate concentration. The Km values for 
the first three curves are 10-6, 10-5, and 10-1• The thick line is for Km = 104 and also for 
Km equal to infinity. 

the growth until a stable population was reached. This plateau was due to the 
consumption in a minimal medium of a limiting single substance present in the 
medium, such as, for example, glucose. To his surprise growth did not follow 
the logistic equation. Instead the curve was not symmetrical, and growth continued 
at the same exponential rate well past the consumption of half of the glucose; 
then, however, it did abruptly slow and stop. World events temporarily slowed 
the experiments, but not the thinking about their significance. 

1.3. Bacterial Population Growth 

Perhaps the analogy to the trypsin/trypsinogen case was not carried far enough. 
In 1838, Verhulst had only a simplistic idea of the possible interactions, and, of 
course, had never heard of trypsinogen. We imagined earlier that the interaction 
of the substrate and the enzyme was a second-order process. But Michaelis and 
Menten (1913) had shown that invertase action on sucrose was only first order 
in the substrate at low concentrations and that the rate saturated (zero order in 
substrate) at high concentrations. Monod, a passionate Frenchman of Huguenot 
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ancestry by way of Milwaukee, Wisconsin, and Geneva, Switzerland, preferred 
to attribute the idea of enzyme kinetics to the nineteenth-century Frenchman, 
Henry. (My reading, however, gives Michaelis and Menten clear priority). With 
the enzyme as the paradigm, now we would attribute a maximum velocity, Vmax. 
and a MichaelislMenten constant, Km, to the enzyme trypsin. Note that Km is a 
constant for fixed conditions for a given simple irreversible enzyme and numeri
cally is that concentration that gives half the maximal reaction velocity. Then r 
in Equations (1) through (5) is replaced with Vm..J(Km + S), where S is the substrate 
concentration. Since if S is small this reduces to a constant VmaxlKm, the Verhulst 
equation would apply when very low amounts of trypsinogen were initially 
present. Conversely, it would give the property to the system that when a high 
initial concentration of trypsinogen was initially present there would be two 
stages of growth: exponential growth followed by quick slowing and stopping 
of further growth. This mathematical treatment of the improved model required 
more elaborate algebra (presented below), but did lead to results that fitted the 
data. Monod's idea and treatment became very popular and it is the Michaelis
Menten enzyme kinetic equation with new symbols and new meaning to the 
application to bacterial growth that is the Monod growth equation (Monod 1942, 
1949); perhaps it is most commonly symbolized in microbiology, microbial 
ecology, and bioengineering by 

Il = IlmaxS/(K + S), (7) 

where Il is variously called the specific growth rate or growth rate constant. Here 
Ilmax has the units of the amount of product created per unit time per unit amount 
of enzyme, since, in the case of bacterial growth, the product is the equivalent 
of more enzyme, the amounts cancel, and the dimensions are usually expressed 
as per hour, but other reciprocal units of time as well. Also, Ilmax is the maximum 
growth rate at high, saturating substrate concentration. 

By substituting this equation into the Verhulst equation (in doing so we equate 
Il for r, use X for the biomass of the system, and assume a yield coefficient of 
Y, equal to the ratio of dry weight of cells produced per gram of growth substrate), 
using the partial fraction technique and again substituting limits Monod (1942; 
or see Koch 1985) obtained the equivalent of 

tllmax = [(Km + So + XofY)/(So + XofY)] In(X/Xo) (8) 
- [Km/(So + XofY] In[(So + XofY - X/y)/Sol 

Note that it is not possible to rewrite this equation to calculate the time course 
of X; rather we must try different values of X and calculate the times that 
correspond to them. Methods to fit this equation to parameters and their errors 
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have been developed by Robinson and Tiedje (1983) and by Simkins and Alexan
der (1985). The limiting forms ofthis equation are 

dXldt = ).tmax Sof(Km - So) (9) 

and 

(10) 

at early times, and 

X=K, (11) 

at late times. In any case, the problem is solved and solutions for various values 
of Km are shown in Fig. 4.1, with the simplistic assumption that a bacterium 
behaves like a hydrolytic enzyme. 

1.4. Monod's Thesis (Part II): Diauxie 

Maybe the analogy between trypsin/trypsinogen and bacteria/glucose was too 
simplistic and a more diverse environment of substrates was appropriate. So 
Monod studied a variety of two-carbon-source media, and again he found unex
pected results-not those anticipated from the results with single carbon sources 
nor from the logistic equation. 

With two sources, such as lactose and glucose, Escherichia coli first consumed 
the glucose and then after an interval started to consume the lactose. This kind 
of result he observed with a number of carbon source pairs. With B. subtilis the 
result was even more dramatic. This is because starvation can lead this organism's 
autolysins to cause self-destruction of the bacteria (it is starting to sporulate). 
Thus, after the consumption of the one carbon source instead of having a hiatus 
in which the turbidity remained constant until new growth was commenced, there 
was a dip in the turbidity curve. These led Monod to coin a new term, "diauxie," 
meaning two foods. This was the phenomenon where the organism fully consumed 
one "preferred" source before starting on the "less palatable" resource. Although 
this is a very human response, unraveling the mechanism for it required the rest 
of Monod's lifetime with the help of enumerable colleagues and workers in 
other laboratories. However, this elucidation led to the foundations of modem 
molecular biology. 
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1.5. World War 11 and the Resistance Movement 

Monod earned his doctorate in late 1940 during the Gennan occupation of 
Paris. He became a serious worker in the resistance movement in the spring of 
1943 largely because it took that time after the occupation for an effective 
movement to develop. He joined the Communist party to become active in the 
Franc-Tireurs et Partisans until the liberation. The work was dangerous, but 
important (see Judson 1996), but he retained bench space in Lwoffs laboratory 
at the Pasteur Institute, well away from the Sorbonne where the gestapo were 
looking for him. 

1.6. The Origins of Molecular Biology 

The phenomena of induced enzyme fonnation and the idea of messenger RNA 
came in good part from his studies with the lactose operon. The work demonstrated 
the existence of operator regions in the DNA, repressor genes, DNA promoter 
regions (Jacob and Monod 1961). All were discovered and the basis understood 
(wholly or in part) with the lac system. I will briefly recount only those develop
ments relative to uptake and growth because the audience of this chapter is 
presumed not to be committed bacterial physiologists but committed microbial 
ecologists and biostatisticians. But the physiological basis in the various cases 
greatly affects the shape of the growth curve at both the populational and at the 
single-cell level, and defines and constrains the type of mathematical fitting to 
experimental data. 

First, since the cells could "learn" to grow on lactose, it should be possible 
to find mutants that fail to do so, and vice versa. Actually it was known that 
such variants do occur naturally. Such strains were called E. coli mutable because 
frequently lac-positive cells were thrown off as the cells grew. 

Initially Monod selected noninducible strains from populations of inducible 
cells. In fact, Monod isolated E. coli strains from the feces of his graduate advisor, 
Andre Lwoff (Monod and Audureau 1946). One strain, the third isolate was 
naturally lac negative, did not exhibit diauxie, and was revertible to lac positivity. 
It was designated ML3 (merde Lwoff #3). He isolated from ML3 a lactose
positive mutant, ML30, which was inducible for lactose utilization and exhibited 
diauxie. When grown on lactose, like most E. coli strains, it created ~-galactosi
dase, which splits lactose into the readily utilizable sugars, galactose and glucose. 
~-galactosidase was readily shown to be a soluble enzyme that could be isolated, 
purified, and had the properties generally associated with proteins and enzymes. 

Now he looked for mutants of ML30 that lacked the enzyme; i.e., revertants 
that were not lac positive on indicator (dye containing) petri plates also containing 
lactose and enough other substances so that all cells fonned colonies. Most of 
these were indeed deficient in ~-galactosidase. This was confinnation for bacteria 
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of the "one-gene:one-enzyme" hypothesis of Beadle and Tatum in 1940 formu
lated based on types of mutations in Neurospora crassa. 

1.7. Discovery of Permease 

During the war, with the help of his coworkers, Monod, went on to notice 
that there were a subset of the lac-negative strains that were different from the 
majority type. Although the colonies had the appropriate color on special plates, 
which showed that they did not ferment lactose, they did contain ~-galactosidase. 
When grown on lactose, ~-galactosidase could be demonstrated by lysing the 
cells in a mixture containing toluene to destroy the integrity of the cell envelope 
to a sufficient degree that it lets the substrates for ~-galactosidase into the cell. 
What could this class of mutant be? The answer came in the key papers of 
Rickenberg et al. (1956) and Cohen and Monod (1957): There was a second 
protein, an integral membrane protein, necessary for the transport of lactose 
through the cell membrane. This protein did not chemically alter the lactose. 
Monod had a knack for words (his addition to the words now integral to the 
biological sciences include diauxie, induced enzyme, gratuity, permease, cryptic
ity, operon, promoter, and allosteric enzyme) and dubbed this protein "permease" 
and the strains with this character as being "cryptic." 

1.B. Gratuitous 1nducers and Nonmetabolizable Substrates: Thiogalactosides 
And Uptake Kinetics 

The problem of induced enzyme synthesis (then called "adaptive enzymes") 
was obscure until inducers were developed that could not be metabolized by the 
bacteria. Monod reasoned that if the critical oxygen glycosyl bridge between the 
two saccharides was replaced with a sulfur atom, the structural chemistry would 
be almost the same, but the biochemistry would be different and ~-galactosidase 
would not be able to act to produce consumable sugars. Even though not sub
strates, some of these synthetic compounds made by Monod's colleague, Mel 
Cohn, served to induce the formation of ~-galactosidase (Monod, Cohen-Bazire, 
and Cohn, 1951). Thus, such compounds would serve as "gratuitous" inducers; 
i.e., they would enable the study of induction without the complication of their 
serving also as an energy source. We do not follow the consequence of these 
studies in the development of molecular biology, but note that radioactive mole
cules of this class enabled the study of permease action. It was found that 
radioactive thio-methyl-galactoside, made by Georges Cohen (Rickenberg et al. 
1956; Cohen and Monod 1957), was concentrated hundreds of times above the 
concentration in the medium by cells containing the permease, but the cellular 
concentration was not higher than that in the medium with the cryptic lac
negative mutants. Moreover, the galactoside was in a dynamic equilibrium in 
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that nonradioactive galactosides would cause the efflux of the radioactive galacto
side, even if the non galactose part was chemically different. 

With two genes, ~-galactosidase and permease, serving in the same metabolic 
pathway, Monod's group went on to find the nature and organization of these 
two and regulatory genes that grouped together and allowed coordinate function; 
again we do not pursue the spin-off from these findings and the operon concept. 

2. The Monod Model and Its Derivations 

2.1. Uptake Kinetics 

At the supply level, the organism must have uptake systems on its periphery 
to bring necessary substances inside in sufficient amounts for growth. The elemen
tary formulation for the permease model can be made as follows: the substrate 
outside the cell, at concentration So, binds to the cytoplasmic-membrane-bound 
permease, P, to form a complex that "resolves" to become the product, which 
is the same substrate molecule but is now present inside the cell. The concentration 
of galactoside inside the cell is designated by Sj. This reaction could be studied 
because the workers now had in hand radioactive thiomethyl-galactoside which, 
like lactose, is a substrate for the permease, but is not cleaved by the ~-galactosi
dase (because, as explained, of its sulfur-containing analogue of oxygen at the 
critical glycoside bond). The Institut Pasteur workers also had ways (by membrane 
filtration) to separate the cells from the medium faster than substrates could 
permeate the cell membrane. 

The gene for permease, lacY, has since been cloned, sequenced, mutated, and 
the version in other organisms studied. It has also been the subject of many other 
kinds of studies. Today we understand that the protein is a membrane protein 
that coils through the bilayer 10 times with its sequence of 200 amino acids. 
This structure has the properties of binding a galactoside with any of a range of 
aglycone residues in either the ex or ~ configuration and binding stoichiometrically 
a proton on the same face of the cytoplasmic membrane as the galactoside binds. 
This form converts to the same structure; i.e., one with both the proton and the 
galactoside still in the cis arrangement but now on the opposite side of the inner 
membrane. The rule of the permease is that neither a proton by itself nor a 
galactoside molecule by itself can traverse the membrane. In effect, the galactoside 
permease is a machine that normally functions to pump galactosides from outside 
to inside powered by the protonmotive force; i.e., by the excess of protons pumped 
outside the cell by an electrogenic process of proton extrusion (chemiosmosis). 
But that was not known in the middle 1950s and the kinetics appeared to Monod 
and his colleagues as follows: 
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k] k3 

So + P ¢::> SP => P + Sj. 
k2 

(12) 

This is very closely the case if the protonmotive force is constant. This mechanism 
translates into mathematics as 

(13) 

In the steady state (technically a quasi-steady state) where the rate of entry is 
balanced by outflow, the two terms on the righthand side are equal and this 
expression for the rate of entry can be set to zero, yielding 

Ken = [So][P]/[SP], (14) 

where Ken = (kz + k3)/kb with the subscript "en" designating the entry process. 
By calling the total amount of permease, p; i.e., p = [P] + [SP], we can then add 
[So] to both sides of the second form of the equation, and write 

Ken + [So] = [So]([P]/[SP] + 1) = [So]([P] + [SP])/[SP], (15) 
= [So]p/[SP], (16) 

or 

[SP] = [So]p/(Ken + [So] (17) 

The rate of the entry process is equal to the rate of dissociation of the complex 
to yield the internal galactoside as a product, therefore, 

(18) 

Then by calling k3P as Yen , again with the subscript designating the entry process, 
we obtain 

(19) 

In this way, we have rederived the classical 1913 Michaelis-Menten equation in 
the 1924 Briggs and Haldane elaboration in the context of bacterial uptake as 
proposed in the 1956 derivation by Monod (Rickenberg et al. 1956). Again it 
can be written with the microbiologist's symbols as 

f.l = f.lmaxS/(K + S). (20) 
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The point of the 1913, 1924, and 1956 derivations of the basic law of enzyme 
and microbial growth kinetics is that useful results are obtained even though we 
have no idea of actual concentrations of enzymes or membrane-bound compo
nents. This is in spite of the fact that we have used square brackets, such as [Sa, 
to indicate concentrations as is the convention of chemists. Actually, in many 
cases today, we can know the concentrations for soluble enzymes of known 
molecular weight and known weight concentrations, but this is still actually a 
presumptuous symbol to be used for a material embedded in the cytoplasmic 
membrane. That, however, was the important point, our ignorance does not matter 
because we end up with an expression in which all the quantities are measurable, 
the concentration of substrates and rates of reaction, so that the useful and 
significant quantities, Ven and Ken. can be extracted from well-designed experi
ments. 

2.2. Elementary Derivation of Hyperbolic Dependency of Growth on Substrate 

Let me give one more derivation and unfortunately one more symbol: we have 
used X for the collective biomass. But the X concept does not relate to the number 
of cells and their surface; so let us chose B for the number of bacteria, it is both 
the product and the catalyst. So we can write the quasi-chemical process as: 

B + S ¢::> SB ¢::> B + B. (21) 
"'-- ./ 

Thus 1 B becomes 2 Bs, and S is converted to B (with a conversion factor of Y). 
This scheme suggests that a bacterium is a catalyst that binds to the substrate 

and converts it into a product, just as an enzyme does, only the product is another 
bacteria. We assert that the many reactions of intermediary metabolism are 
irrelevant; we will need a strong defense to maintain these theses, not for low 
substrate concentration, but for high concentrations. Thus we assert with confi
dence that a bacterium will be limited in finding substrate at low concentrations 
and with less confidence be limited by the rate it can convert it into the newly 
created product bacterium at high concentrations. Then our argument is just the 
same as in the Michaelis-Menten formulation for enzymes. Now, however, the 
possibility of a connection between growth and the uptake capability is clear. 
But at this point, the reader should be confused about the whole cell being the 
equivalent of an enzyme and at the same time each permease molecule in the 
cytoplasmic membrane being an enzyme. 
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3. Limitation of the Hyperbolic Model 

The formulation Il = IlmaxS/(K + S) should strictly apply only if a single 
irreversible transport system exhibiting saturation kinetics limits growth at all 
substrate concentrations. The Monod equation would not apply when multiple 
transport systems function; then a composite with several Michaelis-Menten 
constants would be needed. Nor would it apply for a single transport process 
that exhibited kinetics more complex that those of a one-way carrier model. 
Finally, and most commonly, it would not apply if other secondary processes 
besides transport limit growth at high substrate. From this point of view and 
because of other restrictions to be mentioned soon, it is perhaps surprising that 
hyperbolic kinetics fit so many sets of growth rate data as well as they do. 

Questions about the applicability of simple hyperbolic kinetics to bacterial 
growth were raised by Powell (1967); Koch (1972); and Dabes et al. (1973). 
These workers derived alternate models applicable when the maximum transport 
capability for the growth resource under study exceeds the cell's needs for 
maximal growth in that environment. Powell (1967) and Dabes et al. (1973) 
performed statistical tests showing that most sets of experimental data did not 
fit the Monod model well. The approach in all these studies was to assume that 
the specific growth rate is a hyperbolic function of the internal concentration of 
the nutrient, but that as an alternative kinetic model for the transport of the 
nutrilite into and out of the cell and that transport was of the passive diffusion type. 

3.1. Evolution and Uptake Systems 

The extensive use of the Monod hyperbolic simple model has been particularly 
noteworthy in the fields of microbial ecology and in biotechnology. A hyperbolic 
relationship for growth/transport has been used in many thousands of publications 
describing complex ecosystems or considering the design and operation of fermen
tation systems. It has been particularly useful to dissect multiple processes. 
Although it is satisfactory and useful in many cases, it is theoretically and actually 
wrong in almost all cases! 

It is right for transport in the restricted case in which proton extrusion (or 
other source) is never limiting, the permease is always limiting, and the permease 
molecules do not complete with each other on the surface of the cell. (It also 
requires that the diffusion up to the cell, that the surface to volume ratio, and 
that the concentration of permease per unit of cell surface are not factors. These 
effects are considered later.) But imagine that it was once right in an earlier eon; 
how would evolutionary forces respond and modify the process? Whenever the 
permease's substrate was limiting, selection would favor better or more numerous 
permeases (Koch, 1972). Eventually the transport capability would become so 
great that the entry rate would be magnified and that entry at low substrate 
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Figure 4.2 Evolution of an uptake process. The thick line describes a hyperbolic Monod
type dependency on substrate concentration. During times of stress selection would act 
to increase the quality and/or quantity of permease systems in the membrane, as shown 
by the upper curve. However, during times when substrate is abundant, growth has an 
upper bound limited by other cellular processes. This will result in a discontinuity or a 
near discontinuity as the substrate is increased to the point where uptake yields a rate 
satisfies the cell's needs. This is the basis of the Blackman law. 

concentrations would be very steeply proportional to substrate concentration 
(compare the original lower hyperbola to the upper curve corresponding to in
creased transport ability in Fig. 4.2). Then even at a quite low concentration, the 
substrate would be taken into the cell at the rate that more than suffices for all 
the cell's needs (Koch 1967, 1972, 1996). The cell would need ways to shut off 
the uptake or let the excess pass out of the cells. 

4. The Blackman (1905) Model and the Best (1954) Model 

4.1. Diffusion Enzyme Model 

These ideas fit into a model devised by Blackman (1905) even before the 
concepts of enzyme kinetics had been formulated. For Blackman limitation, 
uptake is characterized by a second-order rate constant for uptake (first order in 
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the substrate); i.e., k, in the preceding formulation. But then there is a discontinuity 
and uptake is squared off when v = V, where V refers to the maximum ability 
of the organism to grow given an unlimited internal supply; i.e., there is no 
longer a supply-sided limitation, but a limitation on the demand side (see Fig. 
4.2). Note that V must be less than Ve", but otherwise is unrelated to it. The 
equations of the two branches of uptake are then 

v = k,S, S ~ Vlk,: Blackman, low S, 
v = V, S> Vlk,: Blackman, high S. 

(22) 
(23) 

The first branch is the substrate-limited case (supply-side limitation) and the 
second branch the growth is limited by the cell's internal physiology (demand-side 
limitation). Of course, we do not know a priori how far evolutionary processes for 
any given case in any given organism have gone, so therefore we must resort to 
refined experiments to establish the kinetics in particular cases. 

But before we consider experimental results, we first consider an intermediate 
formulation by Jay Boyd Best (1955), which was developed a year before the 
"Monod permease" equation (Rickenberg et al. 1956). It considers an enzymatic 
process in tandem following a diffusion process. I'll not go through the algebra, 
which is also given in Koch and Coffman (1970) and Koch (1985), but the Best 
solution is 

v = V(S + K + .I){ 1 - [1 - 4SJ/(S + K + .1)2] 112}/2J. (24) 

Equation (24) is called the diffusion:enzyme model as well as the Best equation. 
This is more complex than the "Monod permease" uptake equation but much 
simpler than models considered next. The extra parameter is J, which is defined 
as J = Vrna/(AP) , where A is the surface area of the bacteria and P is the 
permeability constant, i.e., the diffusion constant in the membrane divided by 
the thickness of the membrane. When J is very small the equation reduces to 
the Monod equation and when J is very large it becomes the two limbs of the 
Blackman equation (see Fig. 4.3). This same equation was later independently 
derived by Powell (1967), by Koch and Coffman (1970), and Koch (1972) and 
by Dabes et al. (1973) and applied to microbial growth and by Zimmermann 
and Rosselet (1977) for a pharmacological application. Sample curves for the 
gradation between the extreme Blackman and Monod models are shown in 
Fig. 4.3. 

4.2. Alternative Couplings of Uptake with Consumption 

The two cases considered so far have a natural coupling of uptake to consump
tion. In the Monod case, uptake is linked to consumption because the hypothesis 
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Figure 4.3 Dependence of uptake rate on concentration for the Best equation. The specific 
growth rate is shown for a number of cases for growth in which a pure diffusion process 
through the wall is followed by irreversible hyperbolic consumption for growth. The Best 
equation (Eq. [24]) via its parameter J, ranges from the Monod case when J is small 
(lowest lines) to the two branches of the Blackman case when J is large (uppermost line). 

is that uptake system at the cell surface always limits growth and that all molecules 
taken up by the cell will be converted into cytoplasm no matter how many enter. 
If entry is by passive reversible diffusion, as in the Best case, there is a natural 
coupling between uptake and growth. If uptake should exceed need, then the 
internal concentration of substrate, waiting to be used, would increase and this 
would increase efflux and slow net diffusion. This is probably the reason that 
this model best fits the experimental data. But then it is inconsistent with the 
fact that uptake is a process that is catalyzed by an enzyme-like permease in 
many cases. 

Logic therefore compels us to assume that an additional element is needed to 
do this. I proposed in accordance with ideas of Cohen and Monod (1957) an 
enzyme, leak:enzyme model in which uptake had the hyperbolic kinetics of a 
permease followed by irreversible consumption for growth, but the system was 
self-regulated because there was also a passive leakage, or efflux, through the 
cytoplasmic membrane. Thus when the internal concentration is high, substrate 
would go back to the outside. We see that this does not fit the data quite as well 
as the diffusion:enzyme model of Best. 
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Other types of regulation are imaginable and their kinetics are illustrated in 
Figures 4.4, 4.5, 4.6, and 4.7. They involve more parameters that the four of the 
Best or the enzyme, leak:enzyme models. These are all variants on the reversible 
permease process preceding an enzymatic consumption process. In the steady
state net entry and consumption are equal. The rate of a reversible enzymatic 
process is given by 

(25) 

Where "en" stands for entry and "ef' stands for efflux, and S is the internal 
concentration. In terms of consumption by an irreversible process, S is given by 
the inversion of the standard MichaelislMenten expression as 
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Figure 4.4 Simulated facilitated diffusion. The rate of entry (and hence the specific 
growth rate) dependence for a model of passive reversible carrier preceding irreversible 
consumption is shown; results calculated from Eq. (27). When Ken and Kef are chosen 
large, the equation simplifies to the Best case Eq. (24). Curves for high and low membrane 
capacity are shown. For a reversible catalyzed, but non-energy-requiring transport through 
the cytoplasmic layer, Ven and Vel were varied together, while Ken and Kef were kept constant 
at 1. Here V and K for consumption were both fixed at 1. It can be seen that whether 
transport limits growth or consumption limits uptake and growth, the curves are nearly 
hyperbolic and differ only slightly from the Monod model. 
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Figure 4.5 Simulated active transport. Uptake rates or growth rate dependencies for a 
type of energy coupled of transport kinetics proceeding to an irreversible hyperbolic 
consumption process are shown. This corresponds to the transition between the Monod 
case and the Blackman case during evolutionary course in the development of an uptake 
system. As the rate of entry increases the hyperbolic (Monod type) kinetics changes to 
the case where entry can be rapid so that the internal substrate concentration is so high 
as to achieve the maximum specific growth rate, giving nearly the two-phase (Blackman
type) growth kinetics. The figure shows from lowest to highest the effect of increasing 
Ven from much less than V to greater than V. 

S = vK/[V - v]. (26) 

Between the two expressions S can be eliminated to give 

(-Kef Ken + KKen - KefSO)V2 (27) 
+ (VKenKef + VefKKen + VenKefSO + VefSO)v - Ven VKefSO = 0 

This quadratic expression is reprinted from Koch (1972) because there were 
typographical mistakes in the previous publication. Figures 4.4 to 4.7 were 
calculated for appropriate values of the parameters by a program that solved the 
quadratic equation and selected between the two roots, based on the requirement 
that the value of S be positive and that the value of y could not exceed the smaller 
of V and Ven. 
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Figure 4.6 Simulated variable amounts of active transport. By maintaining the ratio of 
entry rate to efflux rate at 100 and the Michaelis constants for entry and efflux equal, 
active transport is simulated (see Fig. 4.5). As the level of the permease system is varied, 
the curves vary from hyperbolic at 0.1 to nearly the Blackman case at 100. 

Figure 4.4 shows this reversible carrier-catalyzed process preceding irreversible 
hyperbolic uptake with the constants chosen so that the kinetics of entry would 
be exactly those of efflux; i.e., Ven = Vef and Ken = Kef, but the ratio of the transport 
process to the consumption varies from curve to curve. This is the case of 
facilitated diffusion. It is apparent that no matter whether transport or consumption 
limits growth the specific growth rate is almost hyperbolic in external substrate 
concentration. The half-saturating concentration varies from that of the Km of 
the consumption process at low and high values of the transport capability upward 
by a factor of less than 2 at intermediate values of the transport capability. Figure 
4.5 shows the effect of energy coupling, simulated by increasing the entry rate 
alone; similar curves (not shown) result if either Vef or Kef progressively decrease. 
Figure 4.6 shows the effect of varying the transport capability relative to the 
consumption process in an energized system. Finally Figure 4.7 shows the effect 
of product inhibition on an irreversible permease system. 

It would be possible when still better data are available to fit these formulations 
to the experimental results and analyze the problem further; however, since the 
number of independent parameters is six in Figures 4.4 through 4.7, it is doubtful 
that further analysis of growth curves alone could possibly distinguish the cases. 
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Figure 4.7 Simulated product inhibition. Reaction products must necessarily inhibit the 
enzyme that produces them. By setting V,I = 0, an active transport system was simulated, 
and by varying Kel various degrees of product inhibition were produced; Ven = 10; Ken = 
1; V = 1; and K = 1 were the other parameters, as in most of the cases in Figs. 4.4 to 4.7. 

The results of actual experiments of the most extensive and accurate experimental 
measurements of growth where independent rates of growth are presented as a 
function of residual glucose concentration are shown in Figures 4.8 and 4.9. 
These data were fitted to a variety of possible models. Note that in the analysis 
(shown in Fig. 4.8) the fitting was marginal for a model with only four independent 
parameters. Data much more precise would be needed to make more elaborate fits. 

An extended treatment of the coupling of consumption with uptake has recently 
appeared (Koch, 1997). 

S. Still More Complication: The Phosphotransferase System 

Although lactose is accumulated inside of permease-containing cells through 
the use of energy generated directly from chemiosmosis in the form of a protonmo
tive force or a proton electrochemical gradient, some of the other small molecules 
are accumulated by the cell with energy provided directly from high energy 
phosphate bonds. The most energy-consuming case is that involved in the phos-



80 A. L. Koch 

u 
o 
G> 
> 

I·O.-------------------------------------------~ 
('J 

0·9 ('J 
('J('J 

I!I 
('J 

6 [!] 

" 
I!I 

""" I!I 
('J 

-O·I~~~~~~~~~~~~~~~~~~~~~~~ 
o 2 4 6 8 10 12 14 16 18 20 22 24 26 

Concentrotion 

Figure 4.8 Glucose consumption by E. coli. Experimental data first published in Koch 
and Wang (1982) are reproduced. In this experiment, growth was measured by computer 
regression of absorbance measurements in a double-beam spectrophotometer. The glucose 
concentration was calculated for each point by subtracting from the original concentration 
the amount consumed in forming the bacteria that were then present. Curves for the best 
fits to the Blackman and Monod models and the intermediary Best model that could 
encompass them both are shown. The models are: 1, Michaelis-Menten; 2, diffusion:en
zyme (this is the Best equation); 3, enzyme, leak:enzyme; 4, concomitant enzyme (positive); 
5, 2 commitant enzymes; 6, bilinear (Blackman mode); 7, trilinear through the origin; 8, 
Hill equation (allosteric case). 

photransferase system (PTS) (see Postma et al. 1992, Medow et al. 1990). It 
starts with phospho-enol-pyruvate (PEP). The free energy of hydrolysis of this 
compound is due to the fact that after the phosphate is removed the resultant 
enol pyruvate tautomerizes to the more stable keto form, thus pulling the reaction. 
The negative free energy of hydrolysis of PEP is greater than that of ATP. In 
fact, there is an important pathway that generates ATP from PEP. For the PTS 
transport process, PEP's phosphate is transferred first to Enzyme I (a soluble 
protein) and then to HPR (a small heat-stable protein), which in tum phosphory
lates one of a number of different Enzyme II species. Each of these is specific 
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Figure 4.9 Glucose consumption after selection by chemostat growth. After extensive 
selection for growth in the chemostat under glucose limitation a new strain (probably an 
ompR) mutant was selected for that led to only the formation of ompF. Its ability to 
consume glucose at very low concentrations was enhanced (see text). Reproduced from 
Koch and Wang (1982). 

for a different individual sugar. These proteins are membrane bound and carry 
out "group translocation" and "vectorially phosphorylate" sugars. These terms 
mean that the sugar is not only transported across the cytoplasmic membrane 
into the cell, it is also esterified to become, for example, glucose-6-phosphate. 
As such it is immediately available to enter into the metabolism of the cell via 
the Embden-Myerhof-Parnas lactic acid fermentation pathway and into several 
other pathways as well. 

There is still one more component of the PTS and from the point of view of 
this article it is this one that is most relevant. This is Enzyme I1IOlu, a soluble 
protein which is specific for glucose. When it is phosphorylated as part of the 
chain, it directly inhibits the galactoside and other permeases and thus prevents 
accumulation of galactosides and other inducing sugars. This is the phenomenon 
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of inducer exclusion and is the mechanistic explanation of diauxie because this 
inhibition prevents cells growing in a mixture of lactose and glucose from acquir
ing the lactose needed to induce the transcription of the lac operon to produce 
the galactoside permease to become further induced. (Another part of the story 
has to do with the role of the ~-galactosidase in the induction process; see Koch 
1996a). The ~-galactosidase is necessary to convert some of the lactose into a 
compound that is actually the inducer). The kinetics of the PTS system at low 
substrate in vivo were hard to establish and various estimates have been published 
(see Koch and Wang 1982). This discrepancy in the literature is part of the reason 
for assembling and using the apparatus described in Section 7. 

6. Still More Complications: The Kinetic Contribution of Porins and 
Passage through the Outer Membrane 

The outer membrane of gram negative organisms is organized so that one 
leaflet has a hydrophilic covering, whereas the phospholipids in the other leaflet 
are hydrophobic. Seemingly this sandwich should prevent small molecules 
whether they are hydrophobic or hydrophilic from penetrating. However, to 
selectively allow the entry of certain compounds, bacterial cells have devised 
porins that allow water soluble molecules with molecular weights of up to 700 
to pass through. In E. coli there are two porin proteins regulated by ompR, which 
controls production of the products of genes ompF and ompC. The pore produced 
by the latter is somewhat smaller than the former. 

The simple fact of an additional barrier is important because it impedes transport 
even though the molecular weight of glucose (180) is much smaller than the 
sieving size of the porins. Also the switch between the two porin types has 
profound influence on the kinetics at low substrate. These two effects will be 
analyzed in Section 11. 

7. The Experimental Measurement of Glucose Consumption 

In the late 1970s Koch and Wang (1982) carried out experiments to actually 
measure the growth kinetics at very low limiting carbon source concentrations. 
To do this we employed a device previously built (Wang and Koch 1978). 
This was a 10ng-patl1-length (lO-cm) flow through cuvette maintained at constant 
temperature with water flowing through its jacket as well as in the walls of the 
spectrophotometer chamber. The apparatus was arranged so that the growing 
culture was circulated through the cuvette into a small reservoir by an air lift 
system in such a way that air bubbles did not enter the optical path. The spectro
photometer was a highly precise double-beam Cary 16 spectrophotometer that 
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was very stable. The absorbance signal was sampled more than once a second 
and sent to a minicomputer. The system was so sensitive, precise, and accurate 
that in only 200 sec, it could calculate the growth rate to better than one percent. 
For the actual experiments, a culture of a derivative of ML30; i.e., ML308, was 
grown and subcultured in a minimal (mineral salts) medium in 0.02% glucose. 
This is indeed a low concentration of carbon source and the lO-cm-light-path 
cuvette was needed to achieve adequate sensitivity, but even a forty fold dilution 
of this was made into medium containing no carbon source at all. After this 
dilution the final glucose concentration equivalent was only 27 flm, was so low 
that the growth rate progressively decreased. We could show that the yield of 
bacteria per unit amount of glucose was the same as at higher glucose concentra
tions so we could use the turbidity data to calculate the residual glucose concentra
tion. Our actual data for one case for glucose consumption by E. coli ML 308 
are shown in Figs. 4.8 and 4.9 (Koch and Wang 1982; Koch 1982ab). The 
experimental data was fitted to a variety of models which are discussed later. 

8. Selection of a Mutant Growing More Avidly at Low Glucose 
Concentrations 

An important facet to the problem of growth at low substrate is the diffusion 
of substrate through the medium up to the cell. There is, consequently, a maximum 
rate that cells could grow at low substrate concentration even if they had infinitely 
great and avid transport capabilities. If every molecule of glucose colliding with 
a bacterium was taken up and consumed, then no faster growth would be possible 
unless the culture medium was super efficiently stirred. It could be shown (Koch 
1971) that the cell's own motility would not aid significantly and that very strong 
shear forces would be needed to increase uptake sufficiently. The question then 
is How close to the diffusion limit do, or can, cells operate? For this reason, the 
strain used in Figs. 4.8 and 4.9 was grown in a chemostat with a dilution rate 
of D = 0.06 hour-1 (doubling time = 11.56 hour) for 34 days. In the chemostat 
the actual concentration of the nutrient in the growth medium is extremely small 
due to the consumption. As a result a mutant with a more avid uptake system 
will take over the culture. The results of growth measurement on this culture are 
shown in Fig. 4.9. It can be seen that the initial slope is greater than in the 
un selected culture. The interpretation of these findings is presented in Section 10. 

9. The Data Fitting: The Role of Models 

The word "models" has quite different connotations to workers in different 
fields. On one hand, a model is a mathematical formalism that may describe the 
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actual data reliably and, on the other, it is an abstraction for a real physical or 
biological situation. Both types are needed. Thus faced with the data of which 
a sample is shown in Figure 4.8, there are two types of approach that can be 
made. We could say that the specific growth rate versus substrate concentration 
could be modelled as a polynomial and that the statistical job is to try to fit, by 
the method of least squares, the data with a series of polynomials each extending 
to higher and higher powers. Then it is by the use of statistical criteria that a 
decision can be made as to which is the smallest polynomial that reflects the 
data sufficiently accurately. In the same vein, we could try other mathematical 
equations and again choose the one that performed the best statistically. 

Alternatively, we can frame biological models such as the Monod, the Black
man, and the Best, but not those used to produce Figures 4.4 through 4.7 because 
they have too many parameters. The diffusion:enzyme or Best formulation is an 
example in which the underlying mechanism of action was imagined and trans
lated into equations. Its fit to the data is shown by the curve marked 2 in Figure 
4.8 and by the dashed line in Figure 4.9. However, this general approach is 
limited: (1) because we can not imagine all the relevant details, although in fact, 
many of them are irrelevant to the understanding of the general process; (2) 
because generating a mathematical description may be difficult, exceed our mathe
matical capability, or it may be impossible to write the model down in mathemati
cal terms; and (3) because we may not be able to execute the statistical fitting 
of the available data to the model if they have too many parameters. 

Perhaps the most important constraint in this type of model is that the sample 
of data does not cover the range of dependent variables sufficiently. Thus, in the 
sample depicted in Figure 4.8, the data do not show whether or not there is a 
lower limit to the glucose concentration at which growth stops. We tacitly assumed 
that growth stopped when the glucose concentration became zero and supported 
the assumption in a variety of ways. However, a threshold has been observed 
with a number of oligotrophs (see Button 1985) and even with E. coli in slow 
chemos tat culture (Koch and Coffman 1970). Evidently important biology is 
related to this possibility. 

A major problem with the first modeling procedure is that the mathematical 
form is generally chosen both for ease of fitting and appropriateness to the 
sample of data at hand and usually independent of more general properties of 
the experimental system. Thus, for example, on the high substrate end of the 
growth curve of the experiment shown in Figure 4.8 the glucose concentration 
is less than 27 f..lM, and although a power series fits this limited range of data 
well, it is known from other experiments that at 100 or a 1000 times larger 
glucose concentration the growth rate would be nearly the same. If that fact is 
added as a constraint then no power series is appropriate because none reach a 
positive constant value at a very large value of the independent variable. This 
is a sufficient reason to reject the power series fitting for this type of problem. 
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Actually to extend the argument further, at very high concentrations of sugars 
osmotic effects would become evident and growth would be inhibited and then 
none of the models considered in this paper would be counted acceptable. 

So I argue that for my purposes, and probably those of many microbiologists, 
the data need to be interpretable in terms of some biological mechanisms (entry 
into cells and to cell metabolism) but not others (thresholds, osmotic effects). In 
this way, I would justify using the simple Monod formulation to interpret many 
ecological studies, with the recognition that it is only approximate and that there 
are many various ways to generate curves, as shown above, that are nearly 
hyperbolas. I also point out that deviations can be important under certain condi
tions, especially when the problem at hand is to delve deeper into the cell's physi
ology. 

What should we do? We wish to study the substrate dependence of growth 
and wish to isolate and interpret the dominant features of the process. We should 
admit to the possibilities of a threshold concentration of nutrient for growth and 
that high concentrations may be inhibitory and work between these limits. Doing 
this does include the idea that at low concentrations, the limiting process is the 
organism finding the substrate and is therefore basically a second order-reaction, 
and that at high substrate, the growth rate should saturate because finding the 
substrate is no longer the limiting step, whereas processing the substrate or other 
cellular constraints are. In the paper in which the data were treated statistically 
(Koch 1982a), nonsaturable models were discarded with the justification just 
given even though they fitted the sample of data better than other models. Then 
in a comparison of available "saturable" models, the Blackman was picked as 
second best and the Best model as the most satisfactory choice. It turned out 
that the J parameter was of a size that made the fit nearer to that of the Blackman 
formulation and farther away from the Monod formulation. 

10. The Statistical Fitting 

Our actual data for two cases of glucose consumption by E. coli ML 308 are 
shown in Figures 4.8 and 4.9 (Koch and Wang 1982; Koch 1982ab). In the late 
1970s the data were analyzed by a subroutine ZXSSQ of an early version of the 
numerical package IMSL. The fitting used a modified Levenberg-Marquardt 
algorithm to find the minimum of the sum of squares. It was allowed to terminate 
when all parameters agreed to four significant figures on two successive iterations. 
Although the fitting was very much more cumbersome than it would be with 
newer software these early fittings should be reliable. Table 4.1 lists the fit of 
the data to 11 models for the data for the original strain of ML308. Five of these 
models were nonsaturable and of these the quartic and bilinear fits gave R2 values 
of 0.960, indicating a very good fit, better than any of the saturable models. But 
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Table 4.1 Parameters to a variety of models from a least-squares fit of the data of a 
single run in the double-beam spectrometer linked to a computer 

RSS RZ 

Nonsaturable 

Linear, Equation (9) of Koch (l982a) 
0.1145 (ao) 0.0308 (al) 0.9303 0.86030 

Quadratic, Equation (10) of Koch (1982a) 
-0.0130 (ao) 0.0738 (al) -0.0017 (a2) 0.3404 0.94820 

Cubic, Equation (11) of Koch (1982a) 
-0.0592 (a) 0.1029 (al) -0.0048 (a2) 0.000 077 (al) 0.2954 0.95444 

Quartic, Equation (12) of Koch (1982a) 
-0.0034 (ao) 0.0511 (al) 0.0050 (az) 
-0.000524 (a3) 0.000012 (a4) 0.2542 0.96024 

Bilinear, Equation (15) of Koch (l982a) 
-0.0l33 (ao) 0.0642 (al) 0.5625 (~) 0.0075 (a;) 0.2564 0.96046 

Saturable 

l. Michaelis-Menten, Equation (7) 
l.2250 (/-lmax) 12.9675 (K) 0.3829 0.94251 

2. Diffusion: enzyme, Equation (24), the Best equation 
0.7794 (V) 0.3965 (K) 1l.4789 (1) 0.2850 0.95663 

3. Enzyme, leak.:enzyme, Equation (5) of Koch (1982a) 
12.739 (V) 14.2969 (Ken) 37.640 (Ven) 342.31 (Kk) 0.38285 0.94096 

5. Two concomitant enzymes, Equation (8) of Koch (l982a) 
363.91 (VI) 109.31 (KI) -38l.08 (V2) 117.25 (K2) 0.3316 0.94885 

6. Bilinear (Blackman), Equations (22) and (23) 
0.0609 (al) 0.7403 (a;;) 0.3058 0.95407 

8. Hill equation, Equation (17) of Koch (1982a) 
0.8392 (V) 26.1968 (K) l.7850 (n) 0.28524 0.95660 

Seventy-eight pairs of growth rate versus dry weight concentration were obtained from 
a single growth experiment with strain ML 308 depleting a very low level of glucose, 
designated as run VI in the original work (Koch 1982a) and the data are shown in Figure 
4.8. The turbidity values converted to dry weight were subtracted from 30.8 to give the 
residual glucose concentration in terms of bacterial dry weight. This was multiplied by 
0.9026 to convert to micromolar concentrations. This yielded the data analyzed. The 
curves in the figure are identified with numbers that correspond to the fitted equations 
shown above in bold face. Lines 4 and 7 in Figure 4.8 are for models that can be rejected 
on other grounds (see Koch 1982a). None of the nonsaturable entries, whose parameters 
are given in the top part of this table are presented in Figure 4.8. The error of the individual 
estimates of growth rate derived from 300 turbidity measurements over a 200-sec interval 
was ± 0.03 to 0.08/hour. 
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as noted, we rejected them because they did not predict zero growth rate at zero 
substrate nor did they predict a substrate independent growth rate at very high 
substrate concentration. The other six models did have these properties and the 
Best equation with three parameters being statistically more acceptable than 
the two-concomitant enzymes and the Best diffusion:enzyme model with four 
parameters each. The Best equation is superior to the Monod and Blackman. The 
value of J (11.4789, in this example) fitted from such data, because of its meaning 
of V/(AP), can be useful in dissecting the value of the three factors that make it 
up. More extensive use of the "diffusion:enzyme" equation of Best, will be 
invaluable to the next generation of microbial physiologists and microbial ecolo
gists. 

11. Diffusion Limitation and Effect of Multiple Layers 

To enter the cell, a small molecule, such as glucose, needs to face a number 
of diffusion problems. If dq/dt is the rate of transport for each of the diffusion 
steps in the steady state, then diffusion up to the cell given by 

dq/dt = 4nRD(So - C1), (28) 

where D is the diffusion constant of the substance in the aqueous environment; 
So, as earlier, is the concentration in the bulk phase of the growth medium; and 
C1 is the concentration at the outer surface of the cell. At best, C1 would be zero 
for an infinitely avid cell. This formula assumes that the cell is spherical with a 
radius R (see Koch 1971, 1990, 1996b). 

For the next step, diffusion through the porins follows a simple form of 
Fick's law: 

dq/dt = (AnjDlx)(C1 - C2), (29) 

where Cz is the concentration just inside the outer membrane, A is the collective 
area of pores in the entire membrane, and x is the thickness of the outer membrane. 
Here D/x is the permeability constant, P, such as used in the given Best formula
tion. The Renkins factor, f, corrects for the chance that the molecule hits the 
wall of the pore and bounces back and also the resistance to flow due to the fact 
that fluid must move in accommodation to the passage of the molecule through 
the porin. 

For the third step, diffusion through the periplasmic space would follow an 
even simpler case of Fick's diffusion law: 

dq/dt = (4nRD/y)(Cz - C3), (30) 
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where y is the thickness of the aqueous path through the periplasm and we neglect 
the effects of objects in the path such as the murein layer and periplasmic proteins. 
Here C3 is the concentration immediately outside of the cytoplasmic membrane. 

For the fourth step (i.e., transport through the membrane), we need to choose 
an equation from the many given in an earlier section. We also need to consider 
that the concentration, C3, may vary from the immediate vicinity of a permease or 
PTS transport site (see Koch 1990) to other points equally close to the cytoplasmic 
membrane but farther from the source of entry. After transport through the 
cytoplasmic membrane, the consumption process can start to take place. We can 
easily take this to be due to an irreversible enzymatic action. After this step, it 
is assumed that consumption will be complete even though much biochemistry 
remains to be done, and we assume that these steps have no regulatory effect 
on any of this "front end" series of processes. 

In Koch and Wang (1982) these various terms were evaluated from data of 
our experiments and those in the literature. The intermediate concentrations, Cj, 
C2, and C3, can be eliminated by combining the equations, which results in the 
conclusion that the resistance to flow of a series of processes is the resistance 
to flow of a combined process whose resistance is the combination of those of 
the component parts, mathematically related like the resistance of a set of linked 
electrical resistors when they are connected in paralleL It was shown in Koch 
and Wang (1982) that diffusion through the periplasmic space would contribute 
the least restriction to flow and that the most significant term is the diffusion 
through the porins. 

The latter is an interesting and surprising result. Thus even though glucose 
can readily pass through the porins, at low external glucose concentrations with 
glucose entry limiting growth, the porins in the outer membrane slow the uptake 
very significantly. The porin limitation was less after the strain was selected for 
growth under chemostat conditions. Analysis of these data showed, however, 
that if one could remove the outer membrane of such organisms without impairing 
them, then indeed diffusion up to the cytoplasmic membrane would be limiting. 
This implies that the transport through the cytoplasmic layer with these chemostat
adapted cells was so effective that essentially every glucose molecule hitting the 
cytoplasmic membrane anywhere would be taken up. It could be that more or 
better permease molecules could exit, but there would never be a biological 
situation that would select for them. 

12. The Effect of the Variation of the Surface Area to Volume during the 
Cell Cycle 

A very thin rod-shaped organism that grows by elongation and binary fission 
is about the only case where a microbe maintains a virtually constant surface 
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area to volume (SIV) ratio as it grows and divides. Neglecting the ends, the SN 
is 2nrl/nrl or 21r, where r is the radius and I is the length. At the other extreme 
is the hypothetical case of a spherical organism that grows bigger and suddenly 
(instantly) divides into two spherical cells with half the volume, the SN ratio is 
4nr(4/3)ln,-3 or (3Ir) at birth. Just before division, the radius, r, has increased 
by 2113 , or 1.2599-fold, and the surface to volume ratio is lower by the same 
factor. Variations within this 26% range mayor may not be important biologically. 

Clearly much more important is the fact that r in these cases appear in the 
denominator of these expressions which shows that with small objects of the 
same general shape the SN will be higher. This, of course, is the key point in 
microbiology: Microbes are small so that transport can be simple and still be 
adequate. This is their essential strategy; it also leads to the generality that small 
organisms can grow faster (von Bertalanffy 1968; Kooijman 1993). 

No doubt as evolution has tuned organisms to their chosen niches, being able 
to grow as fast as possible is the key issue for many growth strategies under 
many circumstances. Does the growth rate vary during the cell cycle because of 
systematic variations in the SN for a typical gram-negative rod-shaped organism? 
From Figure 4.10 it can be seen that for a culture of E. coli growing in minimal 
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Figure 4.10 Surface-limited growth through the cell cycle. The open squares show the 
rate of growth based on the assumptions that the concentration of uptake sites on a unit 
area of the cell envelope is constant and that the cell is a cylinder of constant radius with 
hemispherical poles. The dimensions for a particular strain and growth conditions were 
taken from Woldringh et al. (1987). The solid line corresponds to exponential growth. It 
can be seen that the deviations caused by surface area are very small. 
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medium with an adequate level of nutrient, changes in the aspect ratio are almost 
without effect. They would be even less for very thin or long rods, and a little 
more evident for coccal type growth. I had hoped that this effect would be more 
profound and might lead to an understanding of the experiments of Kepes and 
Kepes (1981) in which cultures propagated in a special machine in a way so that 
at the end of each nominal doubling time, half the culture was removed and 
replaced with fresh medium containing a limiting amount of phosphate. If this 
S/V effect were of sufficient magnitude, it could have led to a synchronizing 
effect because cells in an unfavorable stage of growth would not have been as 
efficient as some others in scavenging the phosphate. Unfortunately, the calcula
tions showed that the changes in the length to width or the S/V ratio were 
inadequate to account for the synchrony. (A good explanation of how this cycling 
technique functions to synchronize a growing culture has not been forthcoming, 
and because the technique is not sufficiently reproducible, its use has been discon
tinued.) 

13. Grave Omissions 

This chapter on the Monod model is very incomplete. First, there are the 
myriad of uses of the Monod equation in microbial ecology that have not been 
mentioned at all. Such a listing would include several of the chapters in this book. 
Moreover, the formulation of fermentation processes commonly uses Monod's 
concept. There is a vast body of work carried out by the school started by 
Frederickson in the Chemical Engineering Department at Minnesota. His col
leagues there and his students now at a number of universities and even their 
students continue on in this tradition. The English school started at Porton by 
Herbert led to many studies of continuous culture. The Czechoslovakian school 
was important up until 1968 and the Dutch school still remains vital. 

14. Conclusions 

A detailed look at the mechanism of transport and consumption of even a 
single limiting substance whose metabolism is reasonably well studied showed 
that there are many facets that modify the growth process. A simple hyperbola 
describes uptake quite generally as a first approximation. Many times this will 
be approximately true, not because of the kind of explanations that Monod made, 
but because of a more general explanation; namely, that in a plot of specific 
growth rate versus substrate concentration the graph must go through the origin, 
be initially linear, and become horizontal at large substrate concentrations. The 
only question is just how the two branches join. Probably either the Monod 
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model, or better, the Blackman model will continue to be of great use in microbial 
ecology only because the exact shape in the intermediary region is usually 
unimportant. On the other hand, further analysis of the exact dependency backed 
up with measurements of other physiological variables and processes will be 
important in obtaining a deeper understanding of bacterial physiology. It can be 
expected that with more precise data, the Best model will come to more common 
usage as will detailed modeling of transport and its linkage to cell metabolism 
(Koch 1997). 

References 

Best, J. B. 1955. The inference of intracellular properties from observed kinetic data. J. 
Cell Compo Physiol. 46:1-27. 

Blackman, F. F. 1905. Optima and limiting factors. Ann. Botany. 19:281-295. 

Briggs, G. E. and J. B. S. Haldane. 1925. A note on the kinetics of enzyme action. 
Biochem. J. 19:338-339. 

Button, D. K. 1985. Kinetics of nutrient-limited transport and microbial growth. Microbiol. 
Rev. 49:270-297. 

Cohen, G. N., and J. Monod. 1957. Bacterial permeases. Bacteriol. Rev. 21:164-194. 

Dabes, J. N., R. K. Finn, and C. R. Wilke. 1973. Equations of substrate-limited growth: 
The case for Blackman kinetics. Biotechnol. Bioeng. 15: 1159-1177. 

Jacob, F., and J. Monod. 1961. Genetic regulatory mechanisms in the synthesis of protein. 
J. Mol. Bioi. 3:318-356. 

Judson, H. F. 1996. The Eighth Day of Creation: The makers of the revolution in Biology. 
expanded edition. Simon and Schuster, New York. 

Kepes, F., and A. Kepes. 1981. Long-lasting synchrony of the division of enteric bacteria. 
Bioche. Biophys. Res. Commun. 99:761-767. 

Koch, A. L. 1967. Kinetics of permease catalyzed transport. J. Theor. BioI. 14: 103-130. 

Koch, A. L. 1971. The adaptive responses of Escherichia coli to a feast and famine 
existence. Adv. Microb. Physiol. 6: 147-217. 

Koch, A. L. 1972. Deviations from hyperbolic dependency of transport processes. J. 
Theor. Bioi. 36:23-40. 

Koch, A. L. 1982a. Multistep kinetics: Choice of models for growth of bacteria. J. Theor. 
BioI. 98:401-417. 

Koch, A. L. 1982b. Diffusion limit and bacterial growth. In V. Krumphanzl, B. Sikyta, 
and Z. Vanek (eds.), Overproduction of Microbial Products, pp. 571-580. Academic 
Press, London. 

Koch, A. L. 1985. The macroeconomics of bacterial growth. In M. M. Fletcher and G. D. 
Floodgate (eds.), Bacteria in Their Natural Environment, pp. 1-42. The Society for 
General Microbiology, London. 



92 A. L. Koch 

Koch, A. L. 1990. Diffusion: The crucial process in many stages of the biology of bacteria. 
Adv. Microb. Ecol. 11:37-70. 

Koch, A. L. 1993a. Biomass growth rate during the cell cycle. CRC Crit. Rev. 19:17-42. 

Koch, A. L. 1993b. The growth law of Bacillus subtilis. Antonie van Leeuwenhoek 63:45-
53. 

Koch, A. L. 1996. What size should a bacterium be? A question of scale. Annu. Rev. 
Microbiol., 50:317-348. 

Koch, A. L. 1997. The microbial physiology and ecology of slow growth. Microbiol. and 
Mol. Bioi. Rev., September. 

Koch, A. L., and R. Coffman. 1970. Diffusion, permeation, or enzyme limitation: A probe 
for the kinetics of enzyme induction. Biotech. Bioeng. XII:651-677. 

Koch, A. L., and C. H. Wang. 1982. How close to the theoretical diffusion limit do 
bacterial uptake systems function? Arch. Microbiol. 131 :36-42. 

Kooijman, S. A. L. M. Dynamic Energy Budgets in Biological Systems. Cambridge 
University Press, Cambridge. 

Medow, N. D., D. K. Fox, and S. Roseman. 1990. The bacterial phosphoenol pyruvate:gly
cose phosphotransferase system. Ann. Rev. Biochem. 59:497-542. 

Michaelis, L., and Menten, M. M. 1913. Die Kinetik der Invertinwirkung. Biochem. 
Z. 49:333-369. 

Monod, J. 1942. Recherches sur las croissance des culture bacteriennes. Herman et 
Cie, Paris. 

Monod, J. 1949. The growth of bacterial cultures. Ann. Rev. Microbiol. 3:371-394. 

Monod, J., and A. Audureau. 1946. Mutation et adaptation enzymatique chez Escherichia 
coli-mutabile. Ann. Inst. Pasteur 72:868-867. 

Monod, J., G. Cohen-Bazire, and M. Cohn. 1951. Sur la biosynthese de la ~-ga1actosidase 
(lactase) chez Escherichia coli: 1a specificite de l'induction. Biochim. Biophys. Acta 
7:585-599. 

Pearl, R., and L. J. Reed. 1920. On the rate of growth of the population of the United States 
since 1790 and its mathematical representation. Proc. Natl. Acad. Sci. USA 6:275-288. 

Postma, P. W., G. J. G. Ruijter, J. van der Vlog, and K. van Dam. 1992. Control of 
carbohydrate metabolism in enteric bacteria: qualitative and quantitative aspects. In E. 
Quagliariello and F. Palmieri (eds.), Molecular Mechanisms o/Transport, pp. 97-105. 
Elsevier, New York. 

Powell, E. O. 1967. Growth rate of microorganisms as a function of substrate concentration. 
In E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest (eds.), Microbial 
Physiology and Continuous Culture, pp. 34-55. Her Majesty's Stationery Office, 
London. 

Rickenberg, H. V., G. N. Cohen, G. Buttin, and J. Monod. 1956. La galactoside permease 
d'Escherichia coli. Ann. Inst. Pasteur 91:829-857. 

Ricklefs, R. E. 1990. Ecology, 3rd ed. W. H. Freeman, New York. 



The Monad Model and Its Alternatives 93 

Robinson, J. A., and J. M. Tiedje. 1983. Nonlinear estimation of Monod growth kinetic 
parameters from a single substrate depletion curve. Appl. Environ. Microbial. 45: 1453-
1458. 

Simkins, S., and M. Alexander 1985. Non-linear estimation of the parameters of Monod 
kinetics that best describe mineralization of several substrate concentrations by dissimilar 
bacterial densities. Appl. Environ. Microbial. 50:816-824. 

von Bertalanffy, L. 1968. General Systems Theory. George Braziller, New York. 

Verhulst, P. F. 1838. Notice sur la loi que la population suit dans son accroissement. 
Carr. Mat. et Phys. 10: 113-121. Reprinted in Readings in Ecology (ed. E. J. Kormondy), 
pp. 64-66. Prentice Hall, Englewood Cliffs, N.J., 1956. 

Wang, C. H., and A. L. Koch. 1978. Constancy of growth on simple and complex media. 
J. Bacterial. 136:969-975. 

Woldringh, C. L., P. Huls, E. Pas, G. H. Brakenhoff, and N. Nanninga. 1987. Topography 
of peptidoglycan synthesis during elongation and polar cap formation in a cell division 
mutant of Escherichia coli MC43100. J. Gen. Microbial. 133:575-586. 

Zimmermann, W., and A. Rosselet. 1977. Function of the outer membrane of Escherichia 
coli as a permeability barrier to beta-lactam antibiotics. Antimicrob. Agents Chemother
apy 12:368-372. 



5 

Using Transport Model Interpretations 
of Tracer Tests to Study Microbial 
Processes in G rou ndwater 

Richard L. Smith and Stephen P. Garabedian 

1. Introduction 

It has long been known that microorganisms affect the geochemistry of ground
water. But despite this recognition, little detailed information is available regard
ing the rates and the factors controlling microbial processes in groundwater. Part 
of the reason stems from the relatively inaccessible nature of most groundwater 
and the difficulties encountered in obtaining representative samples of groundwa
ter and subsurface sediments. At the same time, most groundwater systems are 
nutrient poor or oligotrophic environments in which the resident microorganisms 
are severely stressed and often nearly inactive. These populations are functioning 
so slowly that many types of activity measurements designed to assess microbial 
processes in more productive environments are ineffective for groundwater. How
ever, because groundwater is by far the largest reservoir of freshwater in the 
world (Freeze and Cherry 1979), our lack of knowledge about groundwater 
microorganisms and their processes represents a significant void in the study of 
microbial ecology and in our ability to predict the outcome when these reserves 
are compromised by contamination. 

Compared to groundwater microbiology, which is a fledgling discipline, ground
water hydrology is a mature science (e.g. see Freeze and Cherry 1979). A great deal 
is known about the flow of water through an aquifer and the importance of many 
of the factors affecting it. A variety of approaches, techniques, and models have 
been developed to facilitate hydrologic studies of groundwater and to test theoreti
cal principles. Each of these aspects of groundwater hydrology has a direct bearing 
on groundwater microbiology because groundwater hydrology defines the environ
ment within which groundwater microorganisms live. Microbial processes in any 
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habitat must be delineated within the context of the microbes' environment. There
fore, a great deal of the technology developed by and for groundwater hydrology 
can be aptly applied to studies of groundwater microbiology. 

This chapter presents an overview of the adaptation of tracer-test technology, 
which was originally developed to study groundwater transport and movement, 
to also study microbial processes in situ. This approach is achievable because 
groundwater and tracer constituents will move through an aquifer. Yet at the 
same time, it is considerably complicated by this same condition. In addition to 
microbial processes, a variety of physical and chemical processes will also affect 
the transport of a tracer in groundwater. Fortunately, many of these factors 
are sufficiently characterized to the extent that conservative transport can be 
successfully simulated by groundwater transport models. These models can also 
be modified to include reaction terms for microbial processes. Because they deal 
with groundwater flow, the models describe certain aspects of a groundwater 
microorganism's environment, even though that was not the original intention 
when the models were developed. The modified models have actually become 
essential tools in the interpretation of tracer-test results for determining microbial 
processes. We review the development and the features of these models within 
the context of the groundwater environment, and then present two examples 
demonstrating how the models can be used to assess specific microbial processes 
in the subsurface. 

2. The Groundwater Environment 

2.1. Groundwater Occurrence 

Although groundwater systems are basically aquatic environments from a 
microbial standpoint, there are several features of these systems that make them 
different from surface-water environments. These features include the total ab
sence of light, generally low but constant temperatures, and the predominance 
of mineral surfaces. Subsurface earth materials generally have pores and fractures 
that can contain air, water, or other fluids (Freeze and Cherry 1979). The subsur
face environment can be separated into two basic zones, the vadose (unsaturated) 
zone in which water is under less than atmospheric pressure, and the phreatic 
(groundwater) zone in which the water has pressure greater than atmospheric 
(Fig. 5.1). These zones are very distinct because water will only enter a well if 
it is at a pressure greater than atmospheric pressure. For most of the vadose zone, 
the earth materials are unsaturated-that is, the soil or parent materials have 
pores that contain both air and water-whereas in the phreatic zone pores contain 
only water. The importance of this distinction will become more apparent as the 
discussion leads to those situations in which oxygen in a groundwater system 
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Figure 5.1 Generalized diagram of the subsurface. 

becomes depleted and the redox condition can become reduced. Another major 
difference between the two zones is that the movement of water in the vadose 
zone is primarily downward; whereas the movement of water in the phreatic 
zone is primarily lateral. For example, some major aquifer systems have travel 
paths of tens to hundreds of kilometers. 

Within the phreatic zone, water can be contained within aquifers or aquitards 
(Fig. 5.1). Aquifers are defined in an operational manner by the amount of water 
that can be extracted; when this amount is a useful quantity the groundwater 
system is considered an aquifer. Aquitards, however, may contain significant 
amounts of water, but the yield from them is very small. Aquifers can be classified 
as either unconfined or confined. In the case of an unconfined aquifer, the top 
of the aquifer is in direct contact with an unsaturated zone. In a confined aquifer, 
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the top of the aquifer is in direct contact with a unit that transmits water less 
readily. This confining bed (i.e., an aquitard) is typically composed of fine
grained silts and clays. 

Aquifers can be found in several different geologic environments (Freeze and 
Cherry 1979). These include loose, unconsolidated sediments composed of gravel, 
sand, and some silt. Consolidated sedimentary rocks, such as sandstones and 
limestones, will also transmit water. Both consolidated and unconsolidated sedi
mentary rocks will typically transmit water through interstitial pores, that is, 
through pores that are between the individual mineral grains. The size of these 
pores will vary depending on the size of the mineral grains, their shape, and 
degree of sorting (or size variance); ranges of pore sizes are typically from 
micrometers to millimeters. In addition, sedimentary rocks may often have sec
ondary pores, which are developed by the dissolution of minerals. 

Other transmissive geologic materials include volcanic rocks (e.g., basaltic 
lava), intrusive igneous rocks (e.g., granite), and metamorphic rocks (e.g., schist 
and gneiss). Igneous and metamorphic rocks usually transmit water through 
fractures; these are developed in joints and faults, and typically are of micrometer 
to millimeter aperture size. Sandstones and limestones will also transmit signifi
cant quantities of water through fractures, and in the case of limestones these 
fractures can become larger due to dissolution of the limestone. It is interesting 
to note that the lay term for "underground river," although not applicable to 
aquifers composed of small pores and fractures, does accurately describe the 
situation in some limestone aquifers, where large cave systems can develop and 
be the primary means of transmitting water in these areas. 

2.2. Groundwater Movement 

Groundwater moves through granular or fractured porous media from areas 
of high hydraulic head to areas of lower head. Hydraulic head is a potential 
energy term which includes the potential energy of both elevation and pressure. 
This combined term is the elevation to which the water rises in a well, and is 
used because it is easily measured in the field. 

The volumetric flow rate of water (Q) moving through a porous media has 
been found (Darcy 1856) to be linearly related to the change in hydraulic head 
over distance (dh/dx), which is the hydraulic gradient; the cross-sectional area 
of the porous media (A); and a proportioning factor defined as the hydraulic 
conductivity (K). Darcy's equation, 

(1) 
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is the equation used to describe fluid movement in the subsurface. The negative 
sign in this equation is necessary to indicate that fluid flows from higher to lower 
hydraulic head. Hydraulic conductivity (K) is a factor that generally is found 
from laboratory tests of porous media or from field tests using measurements of 
head around a pumped well. 

Although hydraulic conductivity is defined in the same units as velocity (length! 
time), it does not represent the velocity of water in the porous media. To quantify 
the average velocity of water (v) in the porous media, a modified version of 
Darcy's equation (Freeze and Cherry 1979) is used which recognizes that fluid 
flow occurs only in the pores, 

v = _ ~ (dh) , 
n dx 

(2) 

where n is the porosity of the material. The porosity is defined as a fraction, and is 
the volume of voids in a porous media relative to the total volume. A representative 
example of velocity in a sandy material could involve a hydraulic conductivity 
value (K) of 100 mJday, a hydraulic gradient (dh/dx) of 1 m per 1000 m (0.001), 
and a porosity (n) of one third (0.33). This would result in a velocity (v) of 0.3 
mJday. Although porosity will typically vary from 20% to 50% for most porous 
media, hydraulic conductivity can vary over several orders of magnitude, and 
velocities can have an equally large range. Most groundwater systems have 
velocities in the range of millimeters to meters per day. 

2.3. Groundwater Transport 

Although water moves through the porous media it will carry along with it 
solutes, gases, and in some cases colloidal-sized particles. Solutes and gases that 
do not interact with the solids (which can include well-crystallized minerals, 
amorphous solids, and organic material) and do not react in solution will generally 
travel (advect) with the same velocity as the water. Advective transport is the 
most important mechanism for solute movement in groundwater systems and 
will expose solutes to different regions of the aquifer over time. 

As solutes move through porous media they also are dispersed. This dispersion 
occurs as the solutes travel through a number of routes in the porous media, 
some of which are faster and some slower than the average rate. The result of 
this range of velocities is the spreading of solute molecules, and if there is a 
chemical gradient, a dilution of the solute concentration. 

During transport, solutes can be added or removed from groundwater, depend
ing on the type of reactions that occur. For instance, if the solute undergoes a 
reaction with the solid surfaces, such as adsorption, it will be retarded relative 
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to the rate of transport of a conservative solute. Solutes that generally are conserva
tive include anions like chloride and bromide; whereas cations like sodium and 
calcium will be adsorbed to mineral surfaces. In addition, precipitation-dissolution 
reactions are possible that deposit solid precipitates within the porous media or 
to dissolve solids, thereby adding solutes to the groundwater. There are also 
many reactions in groundwater systems that are microbially mediated that affect 
solute concentrations. 

2.4. Groundwater Microbiology 

Our present understanding of the diversity and ecology of groundwater microor
ganisms has been the subject of several reviews (Ghiorse and Wilson 1988; 
Harvey and Widdowson 1992; Chapelle 1993) and is not reiterated here. However, 
there are a few key points that need to be emphasized that are particularly relevant 
to the use of tracer tests for in situ activity measurements. 

Because an aquifer is an aquatic environment that is dominated by solid 
surfaces, it should stand to reason that a considerable fraction of the microorgan
isms in an aquifer would be attached to surfaces (Ghiorse and Wilson 1988). 
For example, on average, greater than 98% of the bacteria in a pristine portion 
of a sand and gravel aquifer in Massachusetts were attached (Harvey et al. 
1984). Generally, bacterial abundances in groundwater range from 105 to 108/g 
of sediment (Harvey and Widdowson 1992). However, the distribution is not 
uniform. In the Massachusetts aquifer, 98% of the adherent bacteria were attached 
to particles that were less than 60 11m in size, although these silt and clay
sized particles represented only about 2% (based on mass) of the total sediment 
particulates. Although a minor component, free-living bacteria are present in the 
groundwater and some are capable of traveling relatively long distances via 
groundwater flow (Harvey et al. 1989). The remainder are immobilized by strain
ing or sorption after moving only short distances (Harvey 1991). An idealized 
scheme of the microbial community in a groundwater pore is shown in Figure 
5.2. From the perspective of the microorganism, the rate of groundwater flow 
through this pore can actually be rather fast. The groundwater flow rate in the 
Massachusetts aquifer is 0.4 m/day (Garabedian et al. 1991), which is 4.6 mm/ 
sec. The travel time across 100 11m, the approximate dimension of Figure 5.2, 
would be 22 sec. 

In most groundwaters, nutrient availability is extremely sparse. Dissolved or
ganic carbon concentrations are usually less than 1 mg/L in pristine groundwater, 
much of which may be refractory compounds (Thurman 1985). Dissolved nitrogen 
and phosphorus concentrations are often even lower or absent (Ghiorse and 
Wilson 1988). The result is that groundwater microorganisms are nutrient-limited 
and grow very slowly. Growth rates can be several orders of magnitude lower 
than those found in surface sediments (Thorn and Ventullo 1988). In situations 
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Figure 5.2 Schematic presentation of groundwater microorganisms in an aquifer pore. 
(Modified after Harvey (1991». 

where the groundwater is contaminated, growth rates can increase, but most are 
still low compared to surface-water habitats (Harvey and George 1987). Other 
general physiological indicators such as DNA content, total adenylates, and 
adenylate energy charge indicate that groundwater microorganisms are stressed 
and struggling to survive, even in contaminated aquifers (Metge et al. 1993). 

Often an aquifer is viewed as a homogeneous environment, in which the 
physical, chemical, and microbiological conditions are considered to be uniform 
throughout. Usually this is an erroneous assumption. Geochemical gradients are 
common in groundwater, occurring both along and perpendicular to groundwater 
flowpaths (Chapelle 1993; Lyngkilde and Christensen 1993; Smith, Harvey, and 
LeBlanc 1991). The presence of these gradients can have important implications 
to the microbial processes occurring within an aquifer as they are often accompa
nied (or more appropriately caused) by sequential changes in the predominant 
terminal electron acceptor and consequently the redox potential. In many cases 
vertical gradients can be relatively steep (Fig. 5.3) and maintained for considerable 
horizontal transport distances (Smith, Harvey and LeBlanc 1991). This is due to 
a tendency of groundwater not to mix (i.e., disperse) well vertically when flow 
is horizontal. This condition is expressed as a small vertical dispersion coefficient. 
When examining microbial processes in groundwater, chemical gradients should 
be delineated at an appropriate spatial resolution and interpretation of microbio
logical results should be within the context of that spatial scale. 



Using Transport Mode/Interpretations of Tracer Tests 101 

42.----------------------. 

40 

g 
~ 38 

:l 
< 
1;] 36 

~ 
~ 34 

§ 
C 32 

~ 

o 100 200 300 400 500 

SPECIFIC CONDUCTANCE (I1S/em) 
OXYGEN (11M) 

42,------------------------, 

40 

38 

36 r----~-""__'" 

34 

32 

o 0.5 1.5 

NITRATE (mM) 
AMMONIUM (11M) 

2 2.5 

Figure 5.3 Vertical profile of dissolved constituents in a groundwater contaminant plume 
located on Cape Cod, MA, USA. 

3. Measuring Microbial Processes in an Aquifer 

The most common approach for measuring microbial processes in groundwater 
is to conduct batch incubations with aquifer material obtained using coring 
procedures (Aelion and Bradley 1991; Chapelle and Lovley 1990; Madsen et al. 
1991; Phelps et al. 1989; Smith and Duff 1988; Wilson and Wilson 1985). 
Although the results of these kinds of incubations can give instructive insight 
into the metabolic potential of the groundwater microbial community, they should 
not be viewed as representing actual in situ rates of activity. The drilling procedure 
to obtain the cores is a disruptive process, fraught with the potential for contamina
tion from the surface and geologic material above the horizon of the sample, 
and from drilling fluids. Once the core has been obtained, the incubation condi
tions usually do not reflect the hydrologic and geochemical conditions present 
within the aquifer. In addition to the uncertainty that these disruptions represent, 
but virtually totally ignored by groundwater microbiologists, is the heterogeneity 
that occurs within the matrix of an aquifer. This heterogeneity may require a 
large number of cores to obtain activity estimates that would be appropriate on 
an aquifer scale, or on any scale larger than 1 to 2 cm. 
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A more effective approach for assessing groundwater microbial processes on 
a habitat-relevant basis would be to conduct the activity assay directly within 
the aquifer. This approach recognizes the unique physical nature of an aquifer 
by avoiding attempts to reproduce it in the laboratory and it circumvents the 
problems associated with trying to collect representative samples. However, 
despite the conceptual appeal, there are imposing logistical barriers inherent in 
this approach that must be overcome. To date, only a handful of studies have 
successfully done so, several of which have been associated with enhanced 
activity due to bioremediative treatment. For example, at Moffett Field, California, 
the in situ biodegradation of chlorinated aliphatic compounds was characterized 
using induced populations of methanotrophic bacteria (Roberts et al. 1990; Sem
prini et al. 1990), whereas Hutchins et al. (1991) examined degradation of a JP-4 
jet fuel spill by supplementing groundwater with nitrate and nutrients. Several 
studies that have characterized microbial processes in situ have been conducted 
at the Borden site in Ontario, Canada, including studies to determine the aerobic 
degradation rates of bromoform, dichlorobenzene, and hexachloroethane (Roberts 
et al. 1986) and BTEX (benzene, toluene, ethylbenzene, and xylene) degradation 
with both oxygen and nitrate as electron acceptors (Barbaro et al. 1992; Barker 
et al. 1987). Trudell et al. (1986) used a specially designated drive point that 
could first inject and then withdraw tracers in a nitrate-contaminated aquifer to 
measure rates of denitrification, and Gillham et al. (1990) reported a microcosm
like device that could be used in situ to measure microbial processes. 

4. Tracer-Test Technology 

Because tracer tests can and have been used for assessing groundwater micro
bial processes in situ, a brief overview on the technology is in order. Tracer 
tests have been used extensively in groundwater investigations, particularly for 
hydraulic research purposes (Davis et al. 1990; Domenico and Schwarz 1990). 
Tracers have been used to define travel paths and times through both granular 
and fractured-rock systems. Tracers used to quantify the direction and rate of 
water movement are usually conservative, that is they don't react with other 
solutes or with the solid surfaces. Typically anionic solutes are used for this 
purpose, including chloride and bromide; these solutes will usually move at the 
same rate as the water molecules. Another tracer used for the same purpose is 
tritiated water. Although tritium is nonconservative, its decay can be readily 
predicted, and is ideal in the sense that the water molecule itself is marked. A 
major problem with the use of tritium is the reluctance of regulatory agencies 
to allow release into the environment, and generally tritium's use is limited to 
laboratory experiments. 

In addition to travel directions and rates, tracer tests are also used to characterize 
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and quantify the rates of reactions occurring in the subsurface. Examples of 
tracers used for these purposes include cations that electrostatically adsorb on to 
solid surfaces (e.g. cation exchange on clays). In this case the total mass of the 
cation remains conservative in that the cation does not degrade and there will 
be stable concentrations of the cation on the solid and in solution at equilibrium 
conditions. If, however, the equilibrium is disturbed, for example by a decreased 
concentration in solution, there will be an adjustment of the cation concentration 
on the solid until a new equilibrium is reached. An example of a different, 
consumptive reaction is the degradation of an organic compound (e.g. benzene) 
by microbial uptake. Here the compound may undergo both adsorption to solid 
organic matter in the aquifer and be consumed by microbially mediated reactions, 
decreasing its total mass. Other tracers have included colloidal-sized particles 
used to quantify the transport and reaction rates of groundwater particles; these 
tracers include both organic (bacteria, viruses, and synthetic microspheres) and 
inorganic (iron precipitates) particles. 

There are two basic types of tracer tests used in groundwater systems, forced
and natural-gradient experiments (Domenico and Schwartz 1990). Forced-gradi
ent tests involve the injection of water, the withdrawal of water, or both. The 
intent is to control the direction and rate of water movement in the aquifer. One 
type of forced-gradient test is the radial injection (Fig. 5.4A) experiment in which 
the flow of groundwater and tracer moves radially outward from the injection 
well. In this type of experiment only small volumes of water and tracer are 
extracted as they pass by the sampling well; therefore the radial flow pattern 
induced by the injection well is not disturbed by the sampling. A second design 
is the pumping experiment, in which the sampling well is now a large capacity 
pumping well, and a smaller capacity well is used to inject a small amount of 
the tracer (Fig. 5.4A). A third design is the doublet test in which the pumping 
and injection rates are usually the same (Fig. 5.4A). Advantages of these types 
of tests include the short duration of the experiment and the simplicity of the 
design, which requires only two wells. Disadvantages include the continuously 
varying velocity of the water as it moves away from (or toward) the injection 
(or pumping) well, and in the case of the radial injection or pumping test, 
the need to supply or dispose of large quantities of water some distance from 
the experiment. 

A natural-gradient experiment involves injecting the tracers into the aquifer 
over a short period of time, therefore limiting the disturbance to the flow system, 
and allowing the solute to move at the rate of natural groundwater flow in the 
aquifer (Fig. 5.4B) (Garabedian et al. 1991; LeBlanc et al. 1991). This type of 
test has the advantage that it is conducted under the hydrologic and chemical 
conditions that are similar to those that would affect a contaminant or solute of 
interest in systems that are not undergoing pumping or other hydrologic stresses. 
Another advantage of this design is the time of exposure of the solute to the 
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Figure 5.4 Types of A) forced-gradient and B) natural-gradient tracer tests used in ground
water studies and C) an example of a tracer test breakthrough curve. (Part B reprinted 
with permission from Smith, Howes and Garabedian (1991 ». 
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sediment. Many of the reactions that occur in the subsurface are noninstantaneous; 
the time of exposure to the sediment is important and the rate and degree of 
degradation is dependent on the advection rate of the solute through the aquifer. 
Natural-gradient experiments enable reactions to occur at rates expected under 
natural (i.e., unstressed) conditions. A major disadvantage of natural-gradient 
experiments is that they can take weeks to months to complete because the flow 
of groundwater can be quite slow and it may take a long period of time to achieve 
the desired transport distances. Generally, the type of tracer test that is chosen 
will be determined by the objectives of the test, and the hypotheses that need to 
be tested. 

5. Transport-Process Models 

Mathematical models can be used to test various hypotheses and interpretations 
of the microbial processes occurring in the subsurface. The basic equation used 
for natural-gradient tracer tests is a modified version of the advection-dispersion 
equation. This one-dimensional equation is developed by assuming that both 
porosity and velocity of the groundwater system are constant with respect to 
both space and time (Domenico and Schwartz 1990; Freeze and Cherry 1979), 
and dispersion is assumed to be proportional to the concentration gradient and 
only occurs in the longitudinal direction. These assumptions result in the follow
ing equation: 

where 

c = concentration of solute in solution. 
t = time, 

D = dispersion coefficient = (XLV, 

(XL = longitudinal dispersivity, 
x = spatial coordinate along the direction of flow, 
V = velocity, 
r = solute mass consumed or produced per unit volume per unit time, 
n = porosity. 

(3) 

In the case of a conservative solute, one that does not undergo reaction in 
solution or with the solid surfaces, the reaction rate (r) would be zero. However, 
in situations where reactions do occur, various forms are possible (Domenico 
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and Schwartz 1990). One of the simplest would be the case of a zero-order 
reaction, in which r would be a constant production or consumption rate. For 
this case, the mass of the solute would increase or decrease at a constant rate 
over time. If the rate was negative, the initial mass was finite, and there were 
no other sources, the solute mass would eventually drop to zero. In the case of 
a first-order reaction, the reaction rate (r) is equal to the concentration of the 
solute (e) times a reaction constant (k): r = ke. Here the reaction rate will increase 
or decrease over time as the mass is produced or consumed by the reaction. An 
example of a first-order reaction is the decay of a radioactive isotope. Another 
form of the advection-dispersion equation can be developed, which includes the 
Michaelis-Menten reaction term; this term is often used to describe consumption 
of a biologically active solute: 

(4) 

where Vmax is the maximum rate of solute degradation and Km is the Michaelis
Menten constant. This equation has the effect of a first-order reaction rate at low 
concentrations (e« Km; r = VmaxclKm) and a zero-order rate at high concentrations 
(e » Km; r = Vmax). 

Deriving a solution to the preceding transport equation requires both boundary 
conditions and an initial condition for the solute concentration. In the case of an 
infinite porous media and a very thin slug of conservative solute (r = 0) injected 
into the porous media, the solution is 

M [ (x - vt)2] 
c(x,t) = _ ~ exp - 4D ' 

n'J41tDt t 
(5) 

where M is the mass of injected solute. 
The preceding solution can be used to identify the velocity and dispersivity 

of a conservative solute during an experiment. After the tracer injection and 
subsequent movement through the aquifer, the tracer concentration is sampled 
at a downgradient point, producing a breakthrough curve (Fig. 5.4C). The tracer 
concentration at this point will have been affected by dispersion and any reactions, 
reducing the tracer concentration relative to the initial concentration. The velocity 
is found by dividing the distance of the sampling point from the injection of the 
solute (XI) by the time to the peak concentration (v = x/tpeak; see Fig. 5.4C). The 
dispersivity (aL) is found by measuring the time (M) in which the concentration 
of the solute is greater than one half the peak concentration (e(t) > emaJ2; see 
Fig. 5.4C) (Smith, Howes and Garabedian 1991), and deriving a relation between 
A.t and aL using the solution presented in equation 5: 
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where At is the duration of the breakthrough curve when c(t) > O.5crnax and Crnax 
is the peak concentration and tpeak is the time to peak concentration. 

To obtain a general solution for equation 4 it is necessary to use numerical 
methods because of the nonlinear nature of the Michaelis-Menten term (Smith, 
Howes, and Garabedian 1991). The partial differential equation is replaced with 
an algebraic approximation, the area of interest (i.e. the solution domain) is 
discretized into subregions (e.g. blocks) over which the approximations are valid, 
and time is divided into steps. An example of a numerical approach is the 
finite-difference approximation with a Crank-Nicholson time-stepping scheme 
(Huyakom and Pinder 1983). After the approximations are introduced into equa
tion 4, the equation is reduced to an algebraic form, 

c(x - Ax, t + At) [2~)2 + 4~)] 
{ 1 D Vrnax} 

+ c(x, t + At) A + --2 + 2 [K ( A )] D.t (Ax) n m + c x, t + D.t 

+ c(x + Ax, t + At) L~)2 + 4(~)] = c(x - Ax,t) L(.~X)2 + 4(~J 
[ 1 -D -Vrnax ] 

+ c(x,t) At + -(Ax-)2 + -2n-(-K-m ---'+=c"---(-x,-t) 

+ c(x + Ax,t) [2(~? + 4;)] (7) 

where Ax is the block step and At is the time step. One of these equations is 
applied to each of the blocks in the model domain, resulting in a large set of 
simultaneous equations to solve, typically by using a digital computer. Note that 
all of the concentration values on the left-hand side of equation 7, (c(x - Ax, t 

+ At), c(x, t + At), c(x + Ax, t + At)), are at the new time step (t + At) and are 
unknown; those on the right-hand side, (c(x - Ax,t), c(x,t), c(x + Ax,t)) are at the 
present time level and are known. 

The above algebraic equation is nonlinear because concentration appears in 
the denominator in the Michaelis-Menten term on the left-hand side. Therefore, 
an iterative scheme is employed to solve the equation and advance the solution 
to the next time step. The concentration value used in the denominator of the 
Michaelis-Menten tenn is held at a value from the previous iteration step. The 
fixed value is then updated to the new concentration approximation with every 
iterative step until the concentration on both sides of the equation converge and 



108 R. L. Smith and S. P. Garabedian 

the solution is stable. After convergence, the newly calculated concentration 
values are then used as the present time values and another set are calculated 
for the next time step, marching onward in time. (See Smith, Howes, and Garabe
dian (1991) for additional details.) 

6. Assessing Methane Oxidation 

Now we will illustrate two specific examples of using the coupled tracer test
model approach to assess microbial processes in an unconfined sand and gravel 
aquifer located on Cape Cod, Massachusetts. The aquifer has been continuously 
contaminated with treated sewage effluent since 1934, resulting in a contaminant 
plume that is more than 5 kIn long and nearly 1 kIn wide (LeBlanc 1984). 
Although it is rather dilute, the contamination has altered the composition and 
the distribution of the microbial community within the aquifer (Harvey and 
Barber 1992; Harvey and George 1987; Harvey et al. 1984; Metge et al. 1993). 
The plume is characterized by vertical geochemical gradients, which are main
tained even after transport downgradient of several kilometers (Smith, Harvey, 
and LeBlanc, 1991). The predominant terminal electron-accepting processes of 
the microbial community change accordingly across these gradients as the redox 
potential changes. The result is a vertical zonation in microbial metabolism, 
similar to what is found in surface sedimentary environments, even though the 
overwhelming flux or movement of solutes in the aquifer is in the horizontal, 
downgradient direction. 

More than 50 volatile organic compounds, many of them halogenated, have 
been detected in the Cape Cod contaminant plume (Barber 1988; Barber et al. 
1988). Methane oxidation has been identified as a process that could be exploited 
to bioremediate groundwater contaminated with halogenated aliphatic compounds 
(Roberts et al. 1989; Semprini et al. 1990; Wilson and Wilson 1985). In situ 
treatment would involve enriching for methane-oxidizing bacteria in the subsur
face by injecting methane into a known area of contamination (Semprini et al. 
1990). The overall applicability of this approach will depend on the presence 
of native populations of methane-oxidizing bacteria in both contaminated and 
uncontaminated groundwater environments and their capacity to respond to the 
added methane. The results of a tracer test at the Cape Cod site designed to study 
the transport of dissolved gases suggested that when methane was added as a 
tracer it readily disappeared, even though it was not generally present in the 
aquifer. Therefore, because the in situ activity of this "methane-consuming" or 
methylotrophic process appeared to be relevant to the ecology of methane-oxidiz
ing, groundwater bacteria and to their potential for bioremediation, the process 
was selected as a focal point for tracer test-modeling studies (Smith, Howes, and 
Garabedian 1991). 
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Figure 5.5 Diagram of the technique used to prepare the injection solution for the methane 
oxidation tracer test. 

The basic approach for measuring methane oxidation in situ was to add the 
substrate, methane, to the aquifer, without altering the geochemistry of the zone 
of interest. This was accomplished by dissolving methane gas and NaBr (used 
as a conservative tracer) in 100 L of groundwater in a gas-impermeable bladder 
(Fig. 5.5) and then injecting the tracer solution into the ground through one or 
more ports of a multilevel sampling well. The use of the multilevel sampler as 
the injection well enables the selection of a specific vertical interval as the 
target zone for the activity measurement. The tracer cloud is then transported 
downgradient by natural groundwater flow, where it is intercepted by rows of 
multilevel samplers (Fig. 5.4B). 

Tracer tests to measure methane oxidation were conducted in a well oxygenated, 
uncontaminated portion of the Cape Cod aquifer and in an anoxic nitrate-contain
ing zone in which denitrification was the predominant electron-accepting process 
(Smith, Howes, and Duff 1991). Breakthrough curves of the injectate constituents 
clearly demonstrate that there was a significant loss of methane within the trans
port interval relative to a conservative species such as bromide (Fig. 5.6A). When 
normalized to the injectate concentration, methane concentrations in the tracer 
cloud were significantly attenuated at both the contaminated and uncontaminated 
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Figure 5.6 Breakthrough curves of A) bromide and methane and B) 81Jc values for 
dissolved inorganic carbon (DIC) for a natural-gradient tracer test conducted at the Cape 
Cod, MA site using lJCH4 as the tracer. (Reprinted with permission from Smith, Howes, 
and Garabedian, (1991». 

sites, yet the time to peak concentration and the spread of the methane break
through curves were identical to the bromide curves (Fig. 5.6A). Methane oxida
tion was identified as the process responsible for the methane loss in replicate 
tracer tests using 13C-enriched methane (Fig. 5.6B). The 13C enrichment in the 
dissolved inorganic carbon pool could only have resulted from the oxidation of 
the added 13C-enriched methane. 

The amount of methane consumed within the transport interval can be calcu
lated by taking the difference between the dimensionless concentrations (ClCo) 

of bromide and methane for a given sample date and multiplying it by the injectate 
methane concentration. The amount of methane consumed is related to the meth
ane concentration in the tracer cloud as it passed by the well fence (Fig. 5.7). 
Although the shape of this curve might suggest Michaelis-Menten saturation 
kinetics, it is actually an empiricial relationship and is site specific. That is 
because the curve is relating the total amount of substrate consumed within the 
entire transport interval with the substrate concentration at the end of the interval. 
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Figure 5.7 Relationship between the amount of methane consumed within a transport 
interval and the measured methane concentration in the tracer cloud at the end of the 
interval. The plot is a composite of data from several tracer tests conducted at one site. 
(Reprinted with permission from Smith, Howes and Garabedian (1991». 

In this type of test, substrate concentrations within the tracer cloud are being 
continually diluted during transport via dispersion. Therefore, if the process of 
interest is governed by Michaelis-Menten kinetics, the rate of the process is 
probably also changing as the substrate concentration changes. The only exception 
would be when the substrate concentration was sufficiently high to maintain a 
zero-order reaction throughout the transport interval. In that case the rate of the 
process would be constant during transport and a Vrnax can be calculated. For the 
methane oxidation tracer tests at the contaminated site, the amount of methane 
consumed was independent of methane concentrations> 15 11M (Fig. 5.7). The 
average Vrnax for methane oxidation in samples in which the methane concentration 
exceeded this value* was 0.16 I1moles (L aquifer x daytl. 

The transport-microbial reaction model (Equation [4]) does not have a unique 

*The value reported by Smith, Howes, and Garabedian (1991) was 0.4 mMI 
day (i.e., per liter of groundwater). Normalizing for aquifer porosity (39%) 
gives units that are better suited for comparison to other aquifers. 
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solution for both Km and V rnax . However, for any given Vrnm there is a unique Km. 
Therefore, if an independent estimate for one can be obtained, best-fit, trial and 
error simulations of the model can then be made to estimate the other. This is 
demonstrated with the methane tracer test data in Figure 5.8 using the Vmax value 
of 0.16 ~moles (L aquifer x daytl, that was derived from Figure 5.7. The model 
adequately simulates the methane breakthrough curve. This indicates that in 
addition to capably predicting the physical factors that are affecting methane 
transport, the model is also able to successfully incorporate the effect that methane 
oxidation has on methane transport. The Km value can be chosen either by visually 
selecting the simulation that best matches the peak of the breakthrough curve or 
by calculating the root mean square error for a statistical best fit (Smith, Howes, 
and Garabedian 1991). The statistical approach gives equal emphasis on the 
entire breakthrough curve, including the leading and trailing edges, while the 
visual approach places more emphasis on the central portion of the tracer cloud. 
The Km for methane oxidation in the Cape Cod aquifer was determined to be 9.0 
and 6.0 ~M, at the contaminated and uncontaminated sites, respectively, using 
a visually determined best fit. 

The results of the methane oxidation tracer tests emphasize that the best 
approach for such tests is to carefully select the total mass and the concentration 
of the substrate to be tested. The injection concentration should be high enough 
to result in zero-order kinetics for the center of the tracer cloud through the 
transport interval so that several samples can be collected from this region of 
the cloud. This enables a determination of Vrnax that is independent of the model. 
On the other hand, excessive additions of substrate to the aquifer will likely result 
in growth of the subsurface populations, which will interfere with determining the 
in situ rates of the process. Although growth kinetics could be incorporated into the 
transport model, it would be more straightforward to minimize growth by limiting 
the amount of substrate added and to minimize the contact time that the substrate 
has with any given volume of aquifer, and, therefore, with its attached resident 
microorganisms. For example, in the methane tests, the longest contact time, which 
was at the sampling well located farthest downgradient, was 16 days, but for only 
4 days did the concentration exceed the calculated Km for methane oxidation. 

7. Assessing Denitrification 

Inorganic nitrogen compounds are usually an important aspect of sewage
derived contamination, and the groundwater plume at the Cape Cod site is no 
exception (LeBlanc 1984). Nitrate is a common constituent of the contaminant 
plume, reaching concentrations of up to 2 mM. At the same time, the contamina
tion has resulted in an increased electron acceptor demand, one which exceeds 



Using Transport Model Interpretations of Tracer Tests 113 

9~---------------------------------' 

8 

7 

& 

t \ 
f • \ 
~ ,'\ ~ :: ~ : 
: r ,: 
j :. ~ ~ .. 
• 1 , i 

: ~ \ \ 
I • ~ , I ~ 
I I: 

I .' : , ' . 
'f ,: 

I I: 

r ' ~ r I: , : 
I: 
I: 

.1 ~ 

"' , : ~ 
U 4 "' , : 

Legend 
• OBSERVED 

Km=9.0 

~==! • .9 __ 
~::'.!~~~L 

r 
I. , : 
I: 
I: 
1 ~ 
I l . : , : , : , : 
, ;. , ~ 
1\ 

~ \. , '. 
\ \ . 

\ ' . . '. , ~ . 
\ . "., . ',,,:: 

O~------~--~a&--~------~--~~-i 
o 1D 2D 30 40 

DAYS AfTER INJECTION 

Figure 5.8 Model simulations as compared to the observed relative methane concentration 
for a tracer test measuring methane oxidation in a sand and gravel aquifer. The figure 
demonstrates the sensitivity of the model to different values for Km (JlM) for methane 
oxidation. Values used for the simulation were: v, 0.28 m day-I; (XL, 0.06 m; Vmax> 0.16 
Jlmoles (L aquifer x daytl. (Reprinted with permission from Smith, Howes and Garabe
dian (1991)). 
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the dissolved oxygen supply in most locations. Consequently, denitrification is 
a predominant terminal electron-accepting process in much of the contaminant 
plume (Smith and Duff 1988; Smith, Howes, and Duff 1991). The factors that 
control denitrification and the extent and rate at which it is occurring are, therefore, 
important facets of the total microbial community metabolism within the contami
nant plume. 

Small-scale natural-gradient tracer tests were conducted within the contami
nated aquifer to determine the in situ rates of denitrication at a site in which the 
process was known to be occurring (Smith et al. 1996). Denitrifying activity was 
measured with the acetylene blockage technique (Balderston et al. 1976; Yoshinari 
et al. 1977). This technique exploits the sensitivity of the terminal enzyme of 
denitrification, nitrous oxide reductase, to acetylene. In the presence of acetylene 
nitrous oxide is the end product of denitrification, rather than N2• Tracer tests 
were conducted in anoxic ground water containing high concentrations of nitrate 
by adding acetylene and NaBr as tracers (Table 5.1). 

The overall nature of this tracer test is quite different from the methane 
oxidation tracer tests. In this case, the substrate for the process of interest is 
present throughout the transport interval at high concentrations, the process itself 
is occurring continuously, while the tracer cloud contains an inhibitor for the 
process rather than the substrate. Activity is subsequently quantified by the 
accumulation of a 'product' within the tracer cloud above the background concen
tration. Both the inhibitor and the 'product' will be diluted by dispersion during 
downgradient transport, but the substrate will not be diluted. 

The injectate solution for the acetylene block tracer test was prepared as 
depicted in Figure 5.5, except that acetylene was substituted for methane. The 
breakthrough curves for the conservative tracer (bromide) and acetylene in the 
sand and gravel aquifer are very similar (Figure 5.9). This is a clear indication 
that the acetylene was transported in a conservative manner, both hydrologically 
and biologically. There was also an increase in nitrous oxide concentration 
coincident with the tracer cloud (Fig. 5.9). This nitrous oxide peak confirms that 
denitrification was actively occurring within the transport interval. However, the 

Table 5.1 Acetylene block tracer test 

Groundwater geochemistry 
Specific conductance 
Oxygen 
Nitrate 
Nitrous oxide 

Tracer constituents 
Acetylene 
Sodium bromide 

416 ).lS/cm 
<2 ).lM 
1.8 mM 
6.6 ).lM 

6.1 mM 
1.0mM 
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Figure 5.9 Breakthrough curves of bromide, acetylene and nitrous oxide for an acetylene 
block tracer test that measured denitrification in nitrate-contaminated ground water. (Re
printed with permission from Smith, Garabedian and Brooks (1996». 

peak nitrous oxide concentration occurred 2 days after and was several days 
narrower than the acetylene and bromide peaks. 

This apparent lag or delay of the nitrous oxide peak is readily explainable 
given the context of this tracer test. The nitrate concentration present in the zone 
in which the test was conducted is more than sufficient to allow denitrification 
to function as a zero order reaction (relative to nitrate) (Firestone 1982). The 
effect this has within the tracer cloud is depicted in Figure 5.10. As the tracer 
cloud passes by a fixed point, such as a sampling well, the acetylene concentration 
in the leading edge will increase to a level that will result in a complete inhibition 
of nitrous oxide reductase. Then nitrous oxide accumulation would occur at a 
constant, zero-order rate as the remainder of the tracer cloud passes by, even 
after acetylene concentrations peak and begin to decline. As a result, nitrous 
oxide concentrations will continue to increase throughout the time of exposure 
to the acetylene cloud, with the peak nitrous oxide value occurring well after 
the center of the acetylene cloud has passed. Nitrous oxide production should 
drop off only at the trailing edge of the tracer cloud when acetylene falls below 
the amount needed for a complete inhibition. 



116 R. L. Smith and s. P. Garabedian 

B 

ACETYLENE IN 
TRACER CLOUD 

RATE OF N20 
PRODUCTION 

IN TRACER 
CLOUD 

GW FLOW 

...... 

, 

V 
~ TIME 

-e M 

, 

~ • RAT 

Figure 5.10 Schematic of the rate of nitrous oxide production within a tracer cloud of 
varying acetylene concentration when denitrification is zero order due to high nitrate con
centrations. 

The model used to simulate the acetylene block tracer test was somewhat 
different from the model used for the methane oxidation determination. A zero
order rate constant was used to calculate nitrous oxide production within the 
tracer cloud. However, at low acetylene concentrations the rate constant was 
linearly scaled to account for those situations in which the acetylene inhibition 
was not 100%. The equations used were 

Np = 0, Ca:S; Cmin , (8a) 

( Ca - Cmin ) Cmin :s; Ca :s; c.n.x, (8b) Np = Kmax C _ C. ' 
max mm 

Np = Km•x Cm.x:S; Ca, (8c) 

where 

Np = nitrous oxide production rate, 
Km•x = maximum nitrous oxide production rate, 
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Co = acetylene concentration, 
Cmin = minimum acetylene concentration for inhibition to occur, 
Cmax = acetylene concentration at which Kmax is achieved. 

Initial values for Cmin and Cmax were selected as 0 and 10 IlM, respectively, based 
on the data reported by Y oshinari et aI. (1977). 

This initial version of the model matched the nitrous oxide breakthrough 
curves, but with limited success (Fig. 5.11). It simulated the delayed arrival time 
in the nitrous oxide peak relative to the acetylene and bromide peaks, however, 
it did not aptly simulate the narrowness of the nitrous oxide peak. The simulated 
peak can be narrowed by altering Cmin and Cm"" although the model is not very 
sensitive to changes in these parameters. Unrealistically high values (» 1000 
IlM for Cmin) are needed to match the narrowness of the observed data, yet 
increasing these values resulted in progressively earlier arrival times for the 
simulated nitrous oxide peak, no longer matching the observed arrival time. So 
there appeared to be an additional factor(s) affecting denitrification in situ or the 
function of the acetylene block in situ. 

Incubation experiments with aquifer core material routinely exhibit a 3- to 4-
day lag period when denitrification was assayed using the acetylene blockage 
technique (Smith et aI., 1996). This lag was usually attributed to disturbances 
from the core collection process and (or) to bottle effects during the incubation. 
However, when the acetylene block transport model was modified to include a 
4-day lag term, the simulated nitrous oxide breakthrough curve closely matched 
the tracer test data for both arrival time and peak shape (Fig. 5.12). Adding a 
lag term functioned to decrease the amount of nitrous oxide production computed 
by the model, and also narrowed the simulated breakthrough curve. It also delayed 
the arrival time of the peak, and this had the effect of counteracting the effect 
of increasing Cmin • With the time lag in place, the calibrated best-fit value for 
Cmin was 500 IlM, which is not an unreasonably high value. This modified model 
suggests that ground-water denitrification is much less sensitive to acetylene than 
are pure cultures or surface soils and that the time lag in response to the presence 
of acetylene is a general phenomenon for denitrification at this groundwater site. 

The in situ denitrification rate that yielded the best-fit simulation for the 
modified version of the model was 1.5 Ilmoles N20 (L aquifer x daytl. This 
rate is up to 26-fold less than equivalent rate measurements using laboratory 
incubations with core material obtained from the tracer test location and depth 
(Smith et aI. 1996). Bottle or flask activity measurements are well known for 
overestimating in situ rates with surface sediments and soils. Tracer tests are 
also inherently more capable of integrating the natural heterogeneity that occurs 
along an aquifer flow path, an integration that would require the collection of 
up to several hundred cores for laboratory incubations. 
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Figure 5.11 Model simulation as compared to the observed nitrous oxide concentration 
for an acetylene block tracer test to measure denitrification. Values used for the simulation 
were: v, 0.45 m day-I; UL> 0.05 m; Cmin, 0 11M; Cmax, 10 11M; rate = Kmax, 0.6 I1moles N20 
produced (L aquifer x daytl. (Reprinted with permission from Smith, Garabedian and 
Brooks (1996». 



Using Transport Mode/Interpretations of Tracer Tests 119 

Figure 5.12 Model simulation as compared to the observed nitrous oxide concentrations 
for an acetylene block tracer test to measure denitrification. The model used in Figure 
5.11 was modified to include a 4 day lag term for the commencement of nitrous oxide 
production after exposure to an acetylene concentration that exceeded emi,. Values used 
for the simulation were: v, 0.45 m day-I; <XL> 0.05 m; Cmi" 500 11M; cm." 501 11M; rate = 
Kmax, 1.51 I1moles N20 produced (L aquifer x daytl. (Reprinted with permission from 
Smith, Garabedian and Brooks (1996». 
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8. Future Applications and Limitations 

Natural-gradient tracer tests offer a unique opportunity to assess microbial 
processes occurring in groundwater within the in situ environment. Valid interpre
tation of the tracer-test results requires the application of a model that accounts 
for advection and dispersion during transport and also includes microbial pro
cesses. The models, then, are an integral part of the overall approach and must 
be considered when designing these types of tests. 

Many different types of microbial processes could be examined using natural
gradient tracer tests. An example of a bacterial transport experiment is reported 
by Harvey and Garabedian (1991), in which a model based on colloid-filtration 
theory was applied to a natural-gradient tracer test using stained indigenous 
bacteria. Particularly apropos would be the predominant terminal electron-accept
ing processes, which would be indicative of total microbial metabolism in the 
aquifer. Tracer tests could also be used to examine short-term responses to 
perturbations such as changes in redox, electron donor or electron acceptor supply, 
metabolism of individual substrates of interest, or the effect of various types 
contamination. In some situations, such as with the methane oxidation studies 
at the Cape Cod site, these tests could also be used to gauge the potential for 
bioremediation. These tests do not necessarily have to be slug injections, they 
could also potentially be continuous injections for extended periods of time, 
which might be better suited for bioremediative studies. 

The tracer-test model approach does have certain drawbacks. First, it requires 
a good understanding about the hydrology of a given aquifer. Obviously, one 
must have reasonable confidence regarding the direction and rate of travel that 
a tracer cloud will take to intercept it downgradient. These tests are also rather 
time-consuming and can be initially expensive with regard to well construction 
and installation. Logistical considerations will probably limit these tests to rela
tively shallow depths (perhaps 100 ft below land surface). And as with most field 
experiments, suitable controls and replication will be subjected to the vagaries of 
a changeable environment. There will also be limitations on the types of com
pounds that can be added to groundwater; toxic or radioactive substrates may 
be inappropriate for drinking water aquifers. However, the recent improvement 
in analytical sensitivities suggests that using tracers labeled with stable isotopes 
could be a practical alternative. 

In general, this tracer-test transport model approach is an interactive, interdisci
plinary combination of microbial ecology, groundwater hydrology, and numerical 
simulation. There are many situations for which the approach will be a valuable 
tool for examining the activities and the ecology of groundwater microorganisms 
directly within their native environment. 
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1. Introduction 

Pesticides are an integral part of modem agriculture. A significant proportion 
of the increase in agricultural productivity since World War II is directly attribut
able to effectively controlling weed, insect, and fungal pests with herbicides, 
insecticides, and fungicides, respectively. The need for pesticides is underscored 
by a total U.S. production in 1990 of approximately 1.1 billion lb (Anonymous 
1990). However, the intentional release of large quantities of synthetic pesticides 
has given rise to serious concerns over the potential for adverse human health 
and environmental effects. Largely as a consequence of Rachel Carson's book 
Silent Spring, the majority of organochlorine insecticides were banned (e.g., 
DDT) in the 1970s because of their volatility, persistence, and tendency to 
bioaccumulate in the food chain. In recent years, there has been renewed concern 
over the fate of soil-applied herbicides and insecticides because of the potential 
for runoff and/or leaching through the soil profile, resulting in the contamination of 
surface and ground waters. Various strategies have been proposed for minimizing 
contamination; however, the only permanent and environmentally benign solution 
is biodegradation. Consequently, the use of pesticides that are rapidly and exten
sively biodegraded to CO2, H20, NHt etc. is desirable. 

Rates of biodegradation that are too rapid, however, can lead to losses of 
efficacy. In the last 10 years, losses of efficacy have been reported for both soil
applied herbicides, such as S-Ethyl dipropyl thiocarbonate (EPTC) (Wilson 1984; 
Bean et aI. 1988; Moorman 1988; Tal et aI., 1989), and insecticides, such as 
isophenphos (Racke and Coats 1987) and carbofuran (Harris et aI. 1984; Chapman 
et aI. 1986; Camper et aI. 1987; Turco and Konopka 1990). This topic was the 
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focus of a recent symposium (Racke and Coats 1990). In each instance, the loss 
of efficacy has been demonstrated to be due to enhanced rates of microbial 
degradation, which result in soil pesticide concentrations below the lethal thresh
old required for effective pest control. Therefore, successful pest management 
strategies using biodegradable soil-applied pesticides will, in large measure, be 
dependent on the ability to reasonably predict soil pesticide concentrations when 
pest control is most critical (typically the first 4 to 8 weeks after application and 
planting) to ensure that losses of efficacy do not occur. Consequently, a know ledge 
of the kinetics of pesticide biodegradation in soils is necessary to assess both 
the potential for environmental contamination due to persistence and the losses 
of efficacy due to accelerated biodegradation. 

2. Modeling 

Rates of pesticide degradation in soil have traditionally been described by 
first-order kinetics; Rao and Davidson (1988) have compiled first-order degrada
tion rate constants for a wide range of pesticides. First-order kinetics are to be 
expected when pesticides are cometabolized, i.e., not utilized as carbon and/or 
nitrogen sources for growth (Horvath 1972). The pesticide-degradation literature 
indicates that the majority of currently used pesticides are degraded via co
metabolic mechanisms, e.g., oxidative, reductive, and/or hydrolytic transforma
tions; although new strains of microorganisms (or microbial consortia) are periodi
cally isolated with the ability to utilize previously "persistent" pesticides as 
growth substrates (e.g., atrazine; Mandelbaum et al. 1993; Radosevich et al. 
1995). Actually, the more appropriate kinetic expression is pseudo first-order 
kinetics, where biomass is assumed to remain constant with time. Consequently, 
depending on the population densities of pesticide-degrading strains, rate con
stants (half-lives) may vary significantly from one site to another, resulting in 
the spatial variability generally observed in pesticide dissipation studies. 

The primary advantage of assuming first-order kinetics is the ease of data 
summarization since a single rate constant is obtained. A single rate constant is 
particularly useful where the goal is to compare and contrast the relative persis
tence of pesticides, or in pesticide fate models where biodegradation is not the 
primary focus. For example, models designed to estimate rates of leaching of 
pesticides to groundwater (e.g., pesticide root zone model (PRZM); Carsel et 
al. 1984) assume first-order kinetics. Of course, modeling of the effect(s) of 
environmental variables on rates of pesticide degradation are simplified if first
order kinetics are assumed. It has long been recognized that environmental 
parameters that affect overall rates of soil microbial respiration and/or activity 
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(e.g. moisture, temperature, pH) also affect rates of pesticide biodegradation 
(Lichtenstein and Schulz 1964; Getzin 1968; Walker 1978). Walker (1974) has 
proposed a pesticide biodegradation model that accounts for temperature effects 
using the Ahhrenius equation and moisture effects using the empirical equation: 
H = aMC-b, where H is half-life, MC is moisture content, and a and b are 
constants, in conjunction with a first-order biodegradation rate constant. For 
those pesticides that are degraded via cometabolic mechanisms and are relatively 
nonpersistent, the application of pseudo-first-order kinetics, adjusted for tempera
ture/moisture effects, may result in reasonably accurate estimates of pesticide dis
sipation. 

Deviations from simple first-order kinetics, however, are frequently observed 
in soils studies. Increasing rates of degradation may be observed due to utilization 
of pesticides as growth substrates by soil microorganisms ("accelerated" or "en
hanced" degradation). Conversely, decreasing rates of biodegradation may also 
be observed due to sorption to soil particles (decreased bioavailability). It has 
long been recognized that pesticides in soil partition between soluble and sorbed 
phases (Kd) and that this partitioning can effect availability to soil microorganisms, 
as well as exposure to the target pests (Osgerby 1973; Pignatello 1989; Weber 
et al. 1993). Furthermore, the sorption of pesticides to soil particles can continue 
over a sustained period of time resulting in both lower bioavailability and de
creased extraction efficiencies, i.e. "bound" residues (Hamaker and Goring 1976; 
Karickhoff 1980; McCall and Agin 1985). The topic of "bound" pesticide residues 
was reviewed (Kaufman et al. 1976), although there was no apparent consensus 
as to the precise fate of such residues. 

Based on the observation that rates of pesticide dissipation in soil (over a 
period of several months) were biphasic, Hamaker and Goring (1976) proposed 
the use of a two-compartment model. Pesticides were proposed to partition 
between "labile" (i.e., soluble) and "unavailable" (i.e., sorbed) pools, with first
order rate constants (k/k_ l ) describing the rates of transfer between the two 
pools (i.e., sorption/desorption). Rates of "decomposition" (i.e., degradation) 
were described by a third first-order rate constant (k), based on the assumption 
that only pesticides in the soluble pool were available for degradation. Conse
quently, the more rapid initial rate of decomposition was a reflection of the 
fraction of pesticide that was readily available for degradation (soluble), whereas 
the slower rate was a reflection of the fraction that was not readily available 
(sorbed). This modeling approach has proved to be useful in assessing the long
term environmental fate of relatively persistent pesticides, and has been used 
successfully by investigators to predict the potential for groundwater contamina
tion and/or carryover between growing seasons (Helling et al. 1994). This model
ing approach is not very helpful, however, in assessing the potential for losses 
of efficacy where short-term rates of biodegradation are of primary importance. 
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3. More Elaborate Models 

Recently, more sophisticated models that include terms for convection, disper
sion, and retardation have been used by soil physicists to describe rates of leaching/ 
transport of organic contaminants through subsurface soils (van Genuchten and 
Wagenet 1989; Brusseau et al. 1991; Gamerdinger et al. 1991). These models 
allow for the distribution of pesticides into one of three compartments: (1) 
pesticides in aqueous or soil solution, (2) pesticides sorbed to soil surfaces 
but that are in rapid equilibrium with the soil solution (readily available for 
biodegradation), and (3) pesticides that have diffused into soil aggregates and/ 
or organic matter particles and are slowly available for biodegradation. The earlier 
model, as mentioned, for this is the Hamaker-Goring model. The model assumes 
that pesticides are initial in soil solution and that degradation and sorption to 
soil particles occurs simultaneously. Sorbed pesticides are assumed to be unavail
able for degradation, but can be degraded after they desorb. Although conceptually 
similar to the Hamaker-Goring model, these newer models are designed to predict 
the fate or movement of pesticides over a much shorter time period: hours to 
days as opposed to weeks to months. The leaching models have proved to be 
particularly useful for describing the short-term sorptive behavior of pesticides 
(albeit under homogenous conditions) and in distinguishing rates of sorption! 
diffusion from rates of biodegradation. However, to the extent that these models 
typically assume first-order biodegradation, due either to the assumption that 
pesticides are not utilized as growth substrates or that concentrations are too 
low to support microbial growth (<1 /lg/mL), their applicability in assessing the 
potential for losses of efficacy is limited. 

As previously stated, losses of pesticide efficacy are due to utilization of 
pesticides as growth substrates, i.e., carbon and/or nitrogen sources. In those 
instances, the assumption of first-order biodegradation kinetics may not be valid; 
rather, depending on initial substrate and biomass concentrations, sigmoidal kinet
ics may be observed. In one of the first studies to demonstrate pesticide biodegrad
ability, Audus (1951) observed sigmoidal kinetics of 2,4-D degradation as a 
result of microbial growth. Sigmoidal kinetics have been observed in other 
aqueous and soils studies, but due to the difficulties in summarizing nonlinear, 
sigmoidal data, deviations from first-order kinetics have typically been ignored 
or, alternatively, data have been summarized by including a lag period followed 
by first-order kinetics. With the advent of the digital computer and appropriate 
nonlinear regression software, however, analysis of sigmoidal data has been 
greatly simplified. 

Recently, a variety of models have been proposed for fitting and summarizing 
sigmoidal mineralization i.e. conversion to (C02) data, or substrate disappearance 
data. One approach to summarizing sigmoidal mineralization data has been to 



128 D. R. Shelton, M. A. Doherty, T. B. Parkin, and}. A. Robinson 

utilize nonmechanistic models with the simple objective of reducing the dimen
sionality of the data to facilitate statistical comparisons. Parkin et a1. (1991) used 
a four-parameter logistic equation (the Morgan-Mercer Flodin (MMF) model), 
developed as a general model for characterizing the nutritional response of organ
isms (Morgan et a1. 1975), to describe the sigmoidal kinetics of CO2 production 
resulting from hydrolysis of the insecticide carbofuran. The MMF model makes 
no assumptions regarding the nature of microbial growth or pesticide metabolism; 
the summary parameters produced by the model are DT-50% (time required to 
achieve 50% of asymptotic dissipation) and maximum rate. This model was 
successfully used to assess spatial and temporal variability in rates of carbofuran 
biodegradation in agricultural soils (Parkin and Shelton 1992), and to model the 
effects of moisture and temperature on rates of biodegradation (Parkin and Shelton 
1994). Such an approach may be preferable when treatment comparisons, or 
treatment modeling, are the primary goal and goodness-of-fit is the critical cri
terion. 

Alternatively, mechanistic models have been proposed for summarizing sig
moidal rates of biodegradation of organic compounds, including pesticides. Mod
els derived from Monod kinetics (see later) have been used successfully to 
summarize mineralization data from aqueous incubations (Simkins and Alexander 
1985). However, these models have not proven to be applicable to soils, presum
ably, due to sorption and diffusional constraints (Scow et a1. 1986). Scow et a1. 
(1986) proposed a two-compartment model (analogous to the Hamaker and Gor
ing model) in which the substrate was assumed to be distributed between two 
separate pools. This model was generally superior in describing rates of mineral
ization from soil, however, Monod kinetics were not incorporated into the model; 
rather, first-order kinetics were used to describe both the rates of transfer between 
the two pools and the rates of biodegradation. Brunner and Focht (1984) proposed 
a three-half-order kinetic model for summarizing mineralization data. This model 
makes no assumptions regarding the reaction order, i.e., it is not assumed that 
the compound (pesticide) of interest is the primary growth substrate or that 
biological factors, as opposed to physical and chemical factors, are rate limiting. 
Consequently, the three-half-order model can be used to summarize first-order, 
linear, or sigmoidal kinetic data. Despite attempts to provide mechanistic interpre
tations for rate constants, however, all of these models are essentially exercises 
in curve fitting and provide little predictive value. In addition, mineralization 
models are limited by the fact that rates of parent compound disappearance (i.e., 
losses of efficacy) are not necessarily highly correlated with rates of mineraliza
tion. Consequently, it is difficult to ascertain which factors (biological versus 
physical and chemical) are controlling rates of biodegradation. Consequently, 
there is a need for more information-intensive models that, with appropriate 
databases, can be used to predict rates of enhanced pesticide biodegradation. 

Rates of bacterial growth have traditionally been described using Monod kinet-
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ics (Monod 1949). If the fraction of substrate utilized for cell growth (Y) is 
assumed to be constant over time, then rates of substrate depletion can be described 
according to the equation 

dS I1m.xSX 
-

dt (Ks + S)Y' 
(1) 

where I1m.x is the maximum growth rate, Ks is the half-saturation growth constant, 
s is substrate concentration, and X is biomass concentration. Figure 6.1 illustrates 
the shape of substrate depletion curves (aqueous culture) as a function of different 
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Figure 6.1 Rates of substrate/pesticide and biodegradation in aqueous culture as a function 
of Monod growth constants: (A) effect of K" (B) effect of Xo, (C) effect of f.tmm and (D) 
effect of So. Default values were Ks = lO f.tg/mL, Xo = 0.0l f.tg/g dry soil, f.tm" = O.llhour, 
y = 0.25, and So = lO f.tg/g dry soil. 
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combinations of K" Xu, /lma" and So (simulated data; from Shelton and Doherty 
I 997b ). For purposes of comparison, 1 /lg/mL was assumed to represent a 
hypothetical loss of efficacy. Clearly, differences in growth constants or initial 
conditions can have dramatic effects on the time required to achieve substrate 
depletion as well as the shape of the curve (Simkins and Alexander, 1984; Shelton 
and Doherty 1997b). 

Application of Monod kinetics was limited primarily to chemostat studies 
prior to 1983, when Robinson and Tiedje (1983) demonstrated the potential for 
estimation of Monod constants from analysis of substrate depletion data using 
nonlinear regression techniques. The application of this technique to describing 
the metabolism of organic substrates in aqueous culture has since been demon
strated by others (Simkins and Alexander 1984; Alexander and Scow 1989). The 
application of microbial growth kinetics to soils is problematic, however, due to 
the lack of quantitative knowledge regarding boundary conditions and factors 
controlling microbial processes. 

Pesticide concentrations in soil are typically assumed to be in the range of 0.5 
to 2 /lg/g soil, which is generally assumed to be too low to support microbial 
growth. This concentration is estimated from dividing the typical application rate 
for many herbicides (1 to 4 lb/acre) by the approximate weight of mineral soil 
(plough depth) per acre (- 2 million lb). However, pesticide concentrations in 
the surface layer of soil, or in the vicinity of granules, may be significantly 
higher. For example, the uniform application of a herbicide to the soil surface 
at a rate of - 3 lh/acre (e.g., atrazine) would result in concentrations in the top 
centimeter of soil of 30 /lg/g soil. In the case of carbofuran granules, which are 
applied in the seed furrow at the time of planting, Shelton et al. (1993) determined 
that the average carbofuran concentration in soil solution within I cm of granules 
after a heavy rainfall was 24 /lg/mL. However, carbofuran concentrations in the 
immediate vicinity of granules in moist soil (in the absence of rainfall) were 
calculated to be significantly higher (up to 400 /lg/mL, depending on the distance 
from the granule) due to relatively rapid rates of granular dissolution but slow 
rates of molecular diffusion away from granules. Consequently, pesticide concen
trations in soil shortly after application may be sufficient to support microbial 
growth, depending on initial biomass levels (Xo) and Ks values. 

4. Effect of Microbial Numbers 

The extent of microbial growth (i.e., sigmoidicity of the dissipation curve) is, 
in large measure, dependent on the population density of pesticide degraders at 
the time of pesticide application. The maximum theoretical biomass of pesticide
degrading bacteria in soils can be estimated from the initial pesticide/substrate 
concentration (So) x yield (y), where Y is defined as the weight of biomass 
produced/weight of pesticide consumed. For example, assuming an initial So of 
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10 )lg/g soil and a Y of 0.25 (e.g., 2,4-D), the maximum biomass will be 2.5 )lg/ 

g soil; assuming a typical bacterium mass of - 0.1 pg (1 x 10-13), the maximum 
population density would be 2 x 107 bacteriaig soil. The actual population density 
of pesticide degraders in soils will also depend on other factors such as mortality 
rates (i.e., cell death, predation, parasitism) as well as proliferation with alternative 
growth substrates. Consequently, rates of biodegradation (and losses of efficacy) 
will depend not only on kinetic growth constants for specific pesticides, but also 
on mortality rates and growth rates with other substrates throughout the year 
prior to pesticide application. Actual quantification of population densities of 
specific pesticide degraders in soil is frequently difficult. Plate counting techniques 
are reasonably precise (typical CVs = 25%), however, they typically underesti
mate population densities due to problems with extracting cells from the soil 
matrix. In addition, this technique is often precluded by limited pesticide solubilit
ies and/or inhibitory effects of parent or product(s) at higher concentrations. An 
alternative approach is the most probable number (MPN) technique, however, 
this technique is imprecise, with 95% confidence intervals of approximately one 
order of magnitude. 

Values for Y can vary depending on the extent of metabolism and on the 
metabolic pathway; in particular, whether the pesticide is utilized as a carbon or 
nitrogen source. For example, carbofuran-degrading bacteria have been isolated 
that are able to utilize (1) the aromatic ring as a carbon source, (2) the methylamine 
moiety as a carbon source, and/or (3) the methylamine moiety as a nitrogen 
source (Karns et al. 1986; Chaudry and Ali 1988; Ramanand et al. 1988). In 
each instance, Y varies as a function of the metabolic pathway. Based on pure 
culture studies with strain WMIII (Karns et al. 1986), utilization of methylamine 
as a sole carbon source resulted in a Y value of 0.225 )lg biomass )lg-I methyl
amine, or 0.03 )lg biomass )lg-I carbofuran (Shelton and Parkin, unpublished 
data). However, utilization of methylamine as a sole nitrogen source, in the 
presence of alternate carbon substrates, would result in an approximate 20-fold 
increase in biomass (assuming a biomass C:N ratio of 5:1). 

There is little information on the range of )lmax and K, values for pesticide
degrading microorganisms. To our knowledge, the only systematic assessment 
of Monod constants was conducted by Greer et al. (1992), who estimated )lmax 
and Ks values for seven strains of 2,4-D-degrading bacteria in aqueous culture. 
They observed )lmax values ranging from 0.1 hour-1 to 1.0 hour- I and Ks values 
ranging from - 2 )lg/mL to 30 )lg/mL. Whether the variability and/or absolute 
values observed in this study are applicable to other pesticide-degrading organ
isms is unclear. 

5. Role of Sorption 

As previously discussed, sorption plays a major role in limiting bioavailability. 
Consequently, models designed to estimate enhanced rates of biodegradation in 
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soil must also account for the effects of sorption on microbial growth. Several 
studies indicate that rates of microbial growth (ll) are strictly dependent on soluble 
or soil solution substrate concentrations (Apajalahti and Salkinoja-Salonen 1984; 
Ogram et aI., 1985; Gordon and Millero, 1985; Speitel et al. 1988; Robinson et 
al. 1990; Shelton and Parkin 1991; Greer and Shelton, 1992). One study appears 
to indicate that some bacteria are capable of directly utilizing sorbed substrates 
(Guerin and Boyd 1992); however, the most straightforward interpretation of 
this data is the production of biosurfactants by one of the strains. Consequently, 
pesticide residues that are sorbed to soil surfaces and particles must first desorb 
before biodegradation can occur. Depending on the relative rates of sorption/ 
desorption, a significant fraction of those pesticide residues sorbed to soil surfaces 
may be rapidly desorbed, hence readily available for biodegradation. In compari
son, those pesticide residues that have diffused into soil aggregates, or into 
organic matter particles, will be slowly available, or "unavailable," for biodegra
dation since reverse diffusion/desorption must first occur. The size of the "unavail
able" pool depends primarily on the relative quantity and size of organic matter 
particles, as well as the contact time between soil and pesticide prior to microbial 
degradation. It should be noted that the "unavailable" pool is not necessarily 
synonymous with "bound residues," since "bound residues" is operationally 
defined based on a specific extraction procedure. 

Scow has recently described a model for studying the effect(s) of sorption and 
diffusion on rates of microbial degradation (Scow and Hutson 1992; Scow and 
Alexander 1992). The diffusion-sorption-biodegradation (DSB) model contains 
terms for sorption to particulate surfaces (linear sorption isotherm), diffusion 
within a polymeric matrix (radial Fickian diffusion), and biodegradation (includ
ing Monod kinetics). The model has been used to describe rates of substrate 
consumption (usually from mineralization data) in defined soil/polymeric bead 
slurries. The DSB model has been particularly useful in elucidating the effects 
of particulate size, sorptivity, and porosity, as well as different Monod growth 
constants, on rates of substrate degradation. However, to the extent that it describes 
pesticide behavior in well-defined aqueous systems, results are not directly appli
cable to soil. 

Recently, Shelton, and Doherty (1997a) have proposed a model to describe 
enhanced rates of pesticide biodegradation in soil, with emphasis on rates of 
biodegradation in the first 4 to 8 weeks after pesticide application. The compart
mentalized model, with the relevant differential equations, is shown in Figure 
6.2. The model is based on the following assumptions: (1) pesticides are used 
as growth substrates (carbon and/or nitrogen sources) by soil microorganisms; 
(2) rates of biodegradation can be described by Monod kinetics, where the 
pesticide is the rate limiting nutrient and yield (Y) is constant; (3) rates of microbial 
growth (ll) are strictly dependent on soil solution concentrations (soluble pool); 
(4) there is a rapid rate of sorption/desorption of pesticides to and from soil 
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U 

Figure 6.2 Four-compartment model with relevant differential equations describing sub
strate depletion (soluble compartment), microbial growth (biomass), sorption to soil sur
faces (sorbed-available compartment), and diffusion into the soil matrix (sorbed-unavail
able compartment). 

surfaces (sorbed-available pool); (5) there is a time-dependent diffusion of pesti
cides to less accessible sites such as aggregates and/or organic matter particles 
(sorbed-unavailable); and (6) rates of sorption/desorption and diffusion can be 
described by first-order kinetics. Although conceptually similar to previous mod
els (Brusseau et a1. 1991; Gamerdinger et a1. 1991; Scow and Hutson 1992; 
Estrada et a1. 1993), the proposed model differs in that it attempts to describe 
pesticide behavior in actual field moist surface soils. Pesticides in the soluble, 
sorbed-available, and sorbed-unavailable pools are estimated using a hydraulic 
pressure technique that allows for independent estimates of soluble versus sorbed 
pesticide concentrations in soil over a wide range of moisture contents (Shelton 
and Parkin 1991; Greer and Shelton 1992). This technique assumes that pesticides 
are homogeneously distributed throughout the soil solution and that extraction 
efficiencies remain constant with time. 

Here Kdl (k/k_,) is operationally defined as the ratio of pesticide sorbed to soil 
surfaces (sorbed-available), shortly after application before significant diffusion 
into aggregates/particles has occurred « 3 hours) versus pesticide in soil solution 
(soluble). On the other hand, Kd2 (kzfk2) is operationally defined as the time-
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dependent diffusion/sorption of pesticides to "internal sites" (McCall and Agin 
1985) within the organic matter/aggregate matrix (sorbed-unavailable). In addi
tion, the mass of pesticide in the sorbed-unavailable pool can be calculated by 
subtracting sorbed-available from sorbed-total, where sorbed-available = SsoJ x 
KdI • Although kJ and k-J are defined in terms of rates of sorption/desorption, they 
also undoubtedly reflect the rate of diffusion through the soil solution to and from 
the sorptive sites, which under some circumstances (particularly low moisture 
conditions), may be the rate limiting process (Shelton and Parkin 1991). Similarly, 
although k2 and k-2 are defined in terms of first-order rate constants, they reflect 
the much more complicated process of intraorganic matter diffusion, where the 
rate of diffusion is a function of KdI , amount and relative size distribution of 
organic matter particles (ratio of internal to external sorption sites), and organic 
matter matrix size in conjunction with the pesticide molecular weight (Wu and 
Gschwend 1986). 

The ability of the model to accurately estimate sorption, diffusion, and microbial 
growth rate constants is illustrated in Figures 6.3 and 6.4 (from Shelton and Doherty 
1997a) using 2,4-D degradation data from Greer and Shelton (1992). High and low 
organic matter soils, amended with 100 /lg 2,4-D g-J soil, were inoculated with a 
2,4-D-degrading Alcaligenes (strain MI), and soluble versus sorbed concentrations 
of 2,4-D monitored with time. High r2 values indicate that estimates of k/k_J. kz/ 
k_2, /lm.x> and K, generated by the model accurately described the data. Estimates of 
K, and /lmax were generally comparable with previous pure culture determinations 
(/lmax = 0.19 hour-J, K, = 2.7 /lg/mL; Greer et al. 1992). These observations suggest 
that rates of microbial growth in soil are consistent with Monod kinetics when 
adjusted for soil solution (soluble) pesticide concentrations. 

Potential limitations of this model are that (1) the pesticide may not be the 
growth-limiting nutrient, or the primary growth substrate; (2) it does not account 
for cell mortality; and (3) it does not account for temperature and moisture effects 
on microbial growth. Although inorganic nutrients are not likely to be limiting in 
agricultural soils, the utilization of alternative substrates could result in inaccurate 
estimates of biomass. Depending on microbial growth rates versus mortality rates 
(e.g., parasitism, predation, cell death), mortality could be an important variable. 
Fortunately, the Monod growth equation can be easily modified to account for 
mortality, pending the availability of reliable data. Accounting for moisture and 
temperature effects could be more difficult. Although models have been proposed 
to account for moisture and temperature effects, assuming either first-order 
(Walker 1974) or sigmoidal kinetics (Parkin and Shelton 1994), neither of these 
models explicitly described the effects of moisture and/or temperature on rates 
of sorption, diffusion, or microbial growth constants (/lm.x and K,). Ultimately, 
however, in conjunction with information on rates of pesticide dissolution from 
various formulations, moisture and temperature effects, rates of microbial mortal-
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Figure 6.3 Soluble, sorbed-total, sorbed-unavailable (A), and soil solution (B) 2,4-D 
(- 100 lLg/g soil) in low organic matter soil inoculated with MI. Symbols represent 
measured or calculated data; lines represent model estimates. Model estimates for k/k_h 
kik_2, Xo, Ilm"" and K, were 0.7261l2.8, 0.015/0.055, 0.4, 0.17, and 41.5, respectively 
(r2 = 0.9994). 
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ity, and rates of pest mortality as a function of time and pesticide concentration, 
it should be possible to develop a predictive model for estimating potential losses 
of efficacy. Such a predictive model is necessary if biodegradable, soil-applied 
pesticides are to be extensively used in agricultural production. 

6. Summary 

A variety of models have been proposed over the past 30 years for estimating 
rates of pesticide biodegradation in soil. All of the models have some utility 
depending on the nature of the metabolic pathway, the time frame of degradation, 
and the purpose(s) for which the model is to be used. The simplest approach is 
to assume first-order kinetics, where the rate of biodegradation is dependent only 
on pesticide concentration. The primary advantage of this model is that a single 
rate constant is generated, which is particularly useful where the goal is to 
compare/contrast the long-term persistence of pesticides. There are severe limita
tions, however; the model assumes that pesticides are co-metabolized (not used 
as a growth substrate), and it does not account for the effects of sorption on 
bioavailability or temperature and moisture on microbial activity. Modifications 
to the basic first-order model have been proposed to account for sorption or 
temperature/moisture effects on rates of biodegradation. A first-order model has 
been described which incorporates the Ahhrenius equation and the empirical 
equation, H = aMC-b, to account for temperature and moisture effects, respec
tively. The long-term effects of sorption on rates of biodegradation have been 
modeled by partitioning pesticides into soluble versus sorbed pools, and assuming 
that only pesticides in the soluble pool are bioavailable. This model incorporates 
first-order rate constants to describe the rates of transfer between the two pools 
(i.e., sorption/desorption) and the rate of biodegradation. Recently, more sophisti
cated models have been described that include rate terms for sorption of pesticides 
to soil surfaces (rapid process) and subsequent diffusion into soil aggregates and/ 
or organic matter particles (slower process). These models have been particularly 
useful in describing the short-term bioavailability of pesticides. None of the 
above models, however, can account for utilization of pesticides as microbial 
growth substrates (i.e., sigmoidal kinetics). Recently, models have been proposed 
that combine pesticide sorption/diffusion with microbial growth (Monod) kinetics. 
These models are significantly more complex since nonlinear regression tech
niques are required to describe rates of biodegradation. However, to the extent 
that readily biodegradable pesticides are to be extensively used in agricultural 
production, biodegradation models are needed which can accurately account for 
microbial activity/growth as a function of bioavailability and soil parameters 
such as temperature and moisture. 
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Model i ng Nitrogen Transformations 
in Soil 

David D. Myrold 

1. Introduction 

Studies of N cycling in soils are inherently concerned with measuring process 
rates and examining the environmental factors that affect these rates. Conse
quently, models and modeling always have been a part of such studies. 

Nitrogen cycle models come in an almost infinite variety. Therefore it is useful 
to sort these models into meaningful and useful categories. This could be done 
in numerous ways: by N cycle process or the number of N transformations 
(complexity), theoretical versus empirical, static versus dynamic, deterministic 
versus stochastic, etc. Although I use these criteria to some degree, I attempt to 
categorize N cycle models by their use. Models of N transformations can be 
used to (1) generate data, e.g., calculate process rates or pool sizes; (2) gain 
further understanding of how the N cycle is regulated and functions; and (3) 
make predictions. My approach is to discuss a few models in each category. The 
models were selected to represent the range of models that have been applied to 
N transformations. 

2. Using Models to Calculate Data 

Studies of the N cycle invariably involve measuring pool sizes and/or rates 
of N cycle transformations (Legg and Meisinger, 1982). Doing so, in most cases, 
requires at least a conceptual model of the N cycle and often a mathematical 
model. Examples of applications of models for determining pool sizes or rates 
include: N budgets, kinetic expressions, and compartmental models. 
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2. I. Nitrogen Budgets 

Perhaps the first used and conceptually simplest type of model used in studies 
of N cycling was the construction of a N budget, which are also known as mass 
balance or input-output models. A N budget is basically an accounting approach 
that sums all inputs and subtracts all outputs from a system to determine the net 
gain or loss of N to the system. The system itself is often treated as a "black 
box" and transformations of N within the system are ignored. In many cases 
where the soil is the system of interest, the soil N is assumed to be in equilibrium, 
i.e., there is no net gain or loss of soil N, and the difference between known N 
inputs and outputs can be used to identify unknown, or unmeasured processes. 
This was often how denitrification was estimated, for example, prior to the 
introduction of 15N and acetylene block methods. 

Nitrogen budgets have been applied at scales ranging from a few grams of 
soil in a laboratory flask to the globe (Hauck and Tanji, 1982). Their most 
common application, however, has probably been at the field-plot scale. Fertilizer 
recovery experiments in agricultural systems are a typical example. The sensitivity 
of the mass balance approach can be enhanced by using 15N-labeled materials. 

The recently reported "sandbox" study by Bormann et al. (1993) is a good 
example of a N mass balance. The sandboxes, consisting of reconstituted soil 
horizons, were isolated on all four sides and capped on the bottom to measure 
N contained in water escaping the rooting zone. Each sandbox was vegetated 
with a different tree species or left unvegetated as a control. Over a period of 3 
to 5 years, N inputs in precipitation, N outputs in leachate, and changes in N 
stored in the soil and vegetation were measured. This is summarized by the 
following mass balance equation: 

Nunexplained = AN"storage + Nprecipitation - Ndrainage (1) 

Precipitation inputs were relatively small with low variability (5.2 ± 0.5 kg N 
ha-1 yr-1) and were largely balanced by small but more variable drainage outputs 
(0.3 to 7.0 kg N ha-1 yc1, depending on treatment). Changes in N stored in 
vegetation and soils were typically an order of magnitude greater and had much 
larger relative variability, despite the great care taken in this experiment. The 
high variability in vegetation and soil N storage is often the major weakness in 
constructing N budgets (Legg and Meisinger, 1982). The most interesting result 
from Bormann et al. (1993) is the relatively large amount of unexplained N (Fig. 
7.1). Without vegetation, there an unexplained loss of 94 ± 75 kg N ha-1 yc1, 

which is far in excess of what might be expected for denitrification and volatiliza
tion losses. The sandbox containing black alder, a symbiotic N2 fixing species, 
gained 320 ± 70 kg N ha-1 yc1, which is on the upper end of previous estimates 
of N2 fixation in alder strands (Hibbs and Cromack, 1990). More surprising was 
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Figure 7.1 Nitrogen balance for three of the "sandbox" systems of Bormann et al. (1993). 
The left bar of each system shows the gains or losses of N within the soil and vegetation 
within the plant-soil system. The right bar represents measured inputs and outputs and 
also shows the unexplained gain or loss ofN assuming that each sandbox is a closed system. 

the large gain in N (140 ± 90 kg N ha-1 yr-1) in the red pine sandbox, which was 
presumably from non symbiotic and/or root-associated Nz fixation, a process not 
thought to add more than a few kg N ha-1 yr-1 to most soils. These results illustrate 
that, even with the relatively large errors that accumulate when using the mass 
balance approach, N budgets can be important in learning more about how N is 
cycled in soils. 

2.2. Kinetic Expressions 

There has been a long standing interest in the kinetics of N transformations 
in soil. Of these transformations, the kinetics of N mineralization have been 
studied most extensively. Stanford and Smith (1972) can probably be credited 
with starting the trend of describing net N mineralization using first-order kinetics: 
N = No(1 - e-kt ), where N is the amount of inorganic N (NHt + N03) at a given 
time, No is the amount of potentially mineralizable N, k is the first-order rate 
constant, and t is time. An example of this approach is shown for some simulated 
data (Fig. 7.2). 

Although Broadbent (1986) found that a power function (N = AtIlZ , where A 
is an arbitrary constant) fit the data of Stanford and Smith (1972) better than the 
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Figure 7.2 The net change in soil inorganic N pools from a simulation using the model 
shown in Fig. 3. The solid line is the best-fit curve based on a first-order N mineralization 
model (Stanford and Smith 1972). This model was used to estimate the available organic 
N pool (200 mg N kg-I soil) and first-order rate constant (0.0148 day-I). 

first-order kinetic model, the first-order model is still preferred because of the 
potential utility of No and the intuitively satisfying assumption that the reaction 
rate should depend on substrate concentration. Subsequently, many additional 
models have been proposed, some completely empirical, others with a greater 
mechanistic basis (Juma et al. 1984; Deans et al. 1986; Bonde and Lindberg 
1988; Ellert and Bettany 1988; White and Marinakis 1991). The overriding 
conclusion from these studies is that no single model gives the best fit to the 
data for all soils or under all conditions. The best guidance is to use the simplest 
model that fits the data well and to avoid simplistic mechanistic interpretations. 

2.3. Compartmental Models 

The distinction between kinetic models and compartmental models is somewhat 
arbitrary but for this discussion compartmental models will be defined as having 
more than one compartment (N pool) and/or more than one process rate. Typically 
a compartmental model is graphically depicted as a set of boxes, the compartments 
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or N pools, connected by arrows, the N transfonnations (Fig. 7.3). This pictorial 
representation of a compartmental model is written mathematically as a series 
of first-order differential equations, which represent the changes in N pool sizes 
over time. 

The simpler compartmental models, i.e., those with relatively few pools and 
rates, can be solved analytically. Some early examples of these, and ones that 
are still used widely today, are the models of Kirkham and Bartholomew (1954, 
1955). By using 15NH! as a tracer, gross rates ofN mineralization and N immobili
zation can be calculated given certain assumptions about the kinetic order of the 
reaction and whether immobilized N can be mineralized. 

The compartmental model shown in Fig. 7.3 was used to create a simulated 
dataset. For the simulation, all reactions were assumed to be first-order, remineral
ization of immobilized N was allowed, and the NH! pool was labelled with 15NHi 
at zero time. Initial pool sizes were 200 mg N kg-I for organic Nand 10 mg N 
kg- I for NH! and NO:; (Figs. 7.2 and 7.4). First-order rate constants of 0.025 
day-I for N mineralization, 0.2 day-I for N immobilization, and 0.3 day-I for 
nitrification were used. This simulation resulted in a gradual decrease in NH! 
concentration and a continuous, curvilinear increase in NO:; (Fig. 7.2). The 15N 
in the NH! pool was rapidly diluted (Fig. 7.4) whereas the atom % 15N of the 
NO) pool increased rapidly, reached a maximum at 3 days, and declined thereafter. 
It is interesting to note that the calculated rate constant for net N mineralization 
(0.0148 day-I, Fig. 7.2) was much smaller than the gross N mineralization rate 
constant, however, the No estimate of 199 mg N kg-I agreed well with the organic 
N pool size. 

The first 10 days of simulated data were analyzed by the method of Kirkham 
and Bartholomew (1955) to detennine daily gross N mineralization rates. The 
actual gross N mineralization rate, based on the organic N pool size and first
order rate constant decreased gradually from 5 to about 4.5 mg N kg- I day-lover 
this time period (Fig. 7.5). The gross N mineralization rate calculated by assuming 
that remineralization occurred agreed quite well with the actual rates, just slightly 
overestimating the rate for each daily interval. When remineralization was ex
cluded, gross N mineralization rates were underestimated and after 2 days this 

Figure 7.3 An example of a simple compartmental model for the soil N cycle. There are 
three pool ofN and three transformation processes: N mineralization (m), N immobilization 
(i), and autotrophic nitrification (n). 
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Figure 7.4 The temporal dynamics of the l5N labeling of inorganic N pools based on a 
simulation using the compartmental model shown in Figure 7.3 At zero time, l5NH~ was 
added to the soil so that the NH1 pool was labeled at 50 atom % l5N excess. Figure 7.2 
shows the changes in NH~ and NO] concentrations for this simulation. 

underestimation became large. Thus for short time periods following the addition 
of 15NH! and for short time intervals, it is probably reasonable to assume zero
order kinetics (pool sizes do not change appreciably) and no remineralization. 

The analytical approach of Kirkham and Bartholomew has subsequently been 
extended to include autotrophic nitrification (Nishio et aI., 1985) and NO] immobi
lization (Wessel and Tietema 1992). As model complexity increases, by adding 
more pools or transformations, it is necessary to use numerical solutions to the 
resulting differential equations (Myrold and Tiedje 1986; Nason and Myrold 
1991). 

3. Using Models to Understand N Cycle Transformations and 
Their Regulation 

Some of the models described previously, such as mass balance and compart
mental models, have given insights into the N cycle, for example, by identifying 
important processes. Greater understanding, however, has come from models 
that have more fully incorporated other components of the soil ecosystem. By 
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Figure 7.5 Actual and estimated gross N mineralization rates from the simulated data 
shown in Figures 7.2 and 7.4. Gross N mineralization rates were calculated using the 
formulas of Kirkham and Bartholomew (1955). 

adding other important biological processes, incorporating population dynamics, 
or including important physical or chemical factors, such as aeration, pH, etc., 
more realistic models have been created. Three examples are given to illustrate 
the range of models that have been developed to explore the N cycle and its 
functioning in soil. 

3.1. Regulation of N Mineralization-Immobilization 

It has been long recognized that net N mineralization, the balance between N 
immobilization and mineralization, is tightly coupled with the C cycle. As a rule 
of thumb, the C:N ratio of a material undergoing decomposition can be used to 
predict if net N mineralization or immobilization will take place. For many 
natural substrates a C:N ratio of 25 or less results in net N mineralization, 
however, more information about the chemical composition of the substrate, the 
nature of the decomposing population, and soil conditions is required to determine 
the time course of N mineralization and immobilization. For this purpose a 
number of models of varying complexity have been developed (Juma and Paul 
1981; McGill et aI., 1991; Molina et aI., 1983; van Veen et a1. 1984; Bosatta 
and Berendse 1984; Grant et al. 1993). As an example, the development and use 
of the NCSOIL model of Molina et a1. (1983) is reviewed. 
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NCSOIL divides soil organic matter into three pools: biomass, humads, and 
humus. The biomass and humads fractions are thought to be part of the actively 
cycling organic matter, whereas the humus is relatively unreactive or passive. 
Biomass and humads fractions are further divided into two pools each, one labile 
and one resistant, each of which decomposes independently according to first
order kinetics. The submodels for C and N are quite similar (Fig. 7.6) except 
that CO2, the product of C mineralization, is not immobilized into organic matter. 
They are linked by the C:N ratios of the pools and efficiency factors for C 
utilization. (NCSOIL is coded in FORTRAN. It is available from the authors 
on request). 

Various modifications of the original NCSOIL model have been used to suc
cessfully simulate Nand C dynamics over time periods of weeks to years (Molina 
et al. 1983; Nicolardot et al. 1994; Nicolardot and Molina 1994). Of particular 
interest are studies that used NCSOIL and experimental data to examine whether 
microorganisms preferentially assimilated inorganic or organic N. The original 

DINITROGEN 

Figure 7.6 Diagram of the N submodel of the NCSOIL model. Redrawn from Molina 
et al. (1983). 
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NCSOIL model allowed for organic N to be directly assimilated by the microbial 
biomass. A modification, known as the mineralization-immobilization turnover 
model, allowed only inorganic N to be assimilated into microbial biomass. Incuba
tion studies with lSNH! generally demonstrated that the mineralization-immobili
zation turnover model provided the better fit to the data (Fig. 7.7) (Hadas et al. 
1987, 1 992a, 1992b). When lsN-labeled alanine was used (Hadas et al. 1992b), 
however, the direct immobilization model more accurately simulated the lsN 
dynamics of the system. Thus, soil microorganisms apparently will assimilate 
small organic N molecules when they are available. Under natural soil conditions, 
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Figure 7.7 Changes in 15N excess of soil organic N for two soils incubated with 15NH4. 
Three versions of NCSOIL were fit to the data: MIT -1 (inorganic N assimilation, with 
NH4 preferred), MIT-2 (inorganic N assimilation of NH4 and NO], and DIR (direct 
assimilation of soluble organic N). Data from Hadas et al. 1992b). 
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however, small soluble organic N compounds may not be present at concentrations 
sufficient for their assimilation to be a major factor in N immobilization. 

3.2. Population Dynamics of Nitrifying Bacteria 

Because of the unique autotrophic character of nitrifying bacteria and the 
importance of nitrification and NO) in determining the availability of N in soils, 
nitrifiers and their activity have been extensively researched for more than 50 
years (Lees and Quastel 1946). Packed soil columns, with either a closed flow 
(perfusion; Lees and Quastel1946) or continuous flow (Macura and Kunc, 1965) 
of nutrients, have often been used to study nitrification in the laboratory. Such 
column systems with a constant flow rate have been modeled in a variety of 
ways and experimental data from such systems frequently was fitted well by 
these models (McLaren, 1970, 1971; Bazin and Saunders 1973; Saunders and 
Bazin 1973; Ardakani et al. 1974). Subsequently, further refinements have been 
made that more closely mimic actual soil conditions where diffusion is often the 
dominant transport process. 

Darrah and others (Darrah et al. 1983, 1985, 1986a, 1986b, 1986c, 1986d) 
incorporated the diffusion of substrates and products into a model of nitrification 
in soil. Their model quite accurately predicted temporal and spatial changes in 
NHt and NO.3 profiles (Fig. 7.8). Predicted nitrifier biomass was found to closely 
parallel the spatial and temporal trends of NO), however, actual measurements 
of nitrifier populations were not made (Darrah et al. 1985). Subsequent sensitivity 
analysis of the model suggested that parameters associated with nitrifier growth 
and activity had the greatest impact on modeled predictions (Darrah et al. 1986d). 
Maximum specific growth rate and growth yield were the most important parame
ters, whereas the model was quite insensitive to changes in the substrate affinity 
constant, probably because it was much smaller than typical soil substrate concen
trations. This example demonstrates how models can be used to identify the most 
important biological parameters affecting an N cycling process. 

3.3. Environmental Controls of Denitrification 

Denitrification is extremely variable in time and space. This, along with its 
importance to N cycling, has resulted in significant study and the generation of 
numerous models. Conceptually, Groffman et al. (1988) formulated a model that 
suggested that the environmental variables important in regulating denitrification 
differed as the spatial and temporal scales changed (Fig. 7.9). At the finer scale 
of centimeters and hours, the supply of oxygen (or creation of anaerobic micro
sites), C, and NO:; are the dominant variables. 

Much of the modeling of denitrification at the microsite level has used soil 
aggregates as their physical basis. Greenwood (1962) modeled soil aggregates 
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Figure 7.9 The effect of spatial scale on the factors that regulate denitrification in soil 
ecosystems. Based on the concepts of Groffman et al. (1988). 

as spheres with the assumptions of steady-state conditions, uniform distribution 
of microorganisms, a constant diffusion coefficient, and a constant respiration 
rate. This enabled him to calculate the anaerobic volume within a given aggregate. 
Experimental work with nitrification as an indicator of aerobic activity and 
denitrification as an index of anaerobic activity showed that the ratio of denitrifi
cation to nitrification was linearly related to the fraction of the aggregate volume 
that was anaerobic. This work on individual aggregates has been further confirmed 
by direct measurement of oxygen profiles and denitrification activity in native 
soil aggregates by Sexstone et al. (1985; Table 7.1). 

Aggregates come in a variety of sizes, of course, so extending this aggregate 
model to native soils requires information about the size distribution of aggregates. 
Smith (1980) developed a model based on a lognormal distribution of aggregates 
sizes and was able to calculate the anaerobic volume of a soil based on data about 
aggregate size distribution. Further refinements have been made by including the 
transport of N03 (Myrold and Tiedje 1985; Arah and Smith 1989). Myrold and 
Tiedje (1985) suggested that in a well aerated soil, N03 could be limiting to 
denitrification because only large aggregates contained anaerobic centers. This 
conclusion was later extended to show that the optimum aggregate size for 
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Table 7.1 Relationship between the size of the anaerobic zone within water-saturated 
soil aggregates as measured with an O2 microelectrode and denitrification rates 

Measured Calculated 
Aggregate Anaerobic Anaerobic Respiration Denitrification 
Radius Radius Radius Rate Rate 
(mm) (mm) (mm) (mm3-C02 cm-1 hour-1) (ng-N g-l hour-1) 

9.0 0.3 0.0 1.0 0.03 
18.0 14.0 13.6 2.2 1.70 

The soil aggregates came from a silt loam soil of an uncultivated native prairie. Data 
taken from Sex stone et al. (1985). 

denitrification was a function of both oxygen and NO) transport (Arah and 
Smith 1989). 

4. Using Models to Make Predictions about N Cycling 

Over the past 20 years numerous models have been developed to describe the 
biological, chemical, and physical fate of N in terrestrial ecosystems and several 
symposia and books have been devoted to them (Beck and Frisse11973; Nielsen 
and MacDonald 1978; Frissel and van Veen 1981; Groot et al. 1991). These 
ecosystem-scale models normally contain several submodels, which themselves 
may contain more detailed components (Fig. 7.10). Their size and complexity 
has led to the proliferation of these models, which vary in the types of processes 
included and the detail in which these processes are considered. Many of these 
models have been compared and reviewed by others (Frissel and van Veen 1982; 
Rao et al. 1982; Addiscott and Wage net, 1985), with the reviews of Tanji (1981) 
and de Willigen (de Willegen and Neeteson 1985; de Willegan 1991) being 
particularly detailed and informative. Instead of dwelling on such comparisons, 
however, I present one model as an example of this class of ecosystem-level 
models that have been used for making predictions about N cycling. 

LEACHN, the N version of LEACHM (Leaching Estimation And CHemistry 
Model), is a model developed at and available from Cornell University (Hutson 
and Wagenet 1991, 1992). LEACHN is a deterministic model that includes 
separate components for heat flow, water flow, solute transport, evapotranspira
tion, N transformation, and plant growth. Potential evapotranspiration and canopy 
and root growth are simulated with daily time steps, whereas other processes 
use smaller time steps. 

Fluxes are modeled mechanistically. Convective heat transport is based on 
Fourier's Law (which is the equivalent of Fick's diffusion laws, but apply for 
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Figure 7.10 An example of hierarchical modeling used in the construction of complex 
predictive models. Based on the diagram of Rao et al. (1982). 
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diffusion of heat), unsaturated water flow is modeled by the Richard's equation 
(which is a second-order partial differential equation for water flow), and solute 
transport is represented by the convective-dispersion equation. All transport pro
cesses are modeled using finite difference approximations. 

Plant growth is based on empirical equations that simulate a logistic accumula
tion of biomass. As such, there is no feedback between the plant growth and 
important soil properties, such as water and N. 

The N transformation subroutine in LEACHN is based on the concepts and 
equations of 10hnsson et al. (1987; Fig. 7.11). The organic N pool is divided 
into three components: litter, feces, and humus, the latter pool being relatively 
recalcitrant. Mineralization from each organic pool is modeled as a first-order 
kinetic process. Nitrification rates are scaled proportionally to the NO]INH! ratio. 
Michaelis-Menten kinetics, with NO] as the single substrate, are used to model 
denitrification. All these biological processes are adjusted for temperature using 
a QlO function, and water content, using a scaling factor between 0 and 1 for the 
optimum water content for each process. The water content adjustment empirically 
accounts for aeration effects. In addition, ammonia volatilization is a first-order 
function of NH! concentration. 

An almost infinite variety of simulations can be run with models such as 
LEACHN because of the large number of input variables that can be altered. 
For example, one could examine the effects of cover crops versus winter fallow, 
different fertilization regimes or irrigation schedules, and changes in microbial 

BIOMASS 
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Figure 7.11 The N submodel of LEACHM (Hutson and Wagenet 1991; lohnsson et al. 
1987). 
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transformation rate constants. Hutson and Wagenet (1991) briefly examined the 
latter situation and found that soil NO) contents were more sensitive to changes 
in N mineralization and denitrification rate constants than to variations in ammonia 
volatilization rates. 

5. Summary 

Whether implicitly, in our conceptual models of how N is transformed in soil 
systems, or explicitly, in mathematical models of varying complexity, models 
are a useful tool for studying N transformations in soil. They enable us to calculate 
gross and net rates of N cycle processes, help to identify the more important N 
transformations in a given soil system, provide a means to study regulatory 
mechanisms, and may even have meaningful predictive capabilities. This brief 
overview has touched on only a few examples of such uses and many additional 
modeling approaches and applications can be found by those interested in quanti
tatively studying the soil N cycle. 
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Construction and Analysis of Static, 
Structured Models of Nitrogen Cycling 
in Coastal Ecosystems 

Robert R. Christian, Mariachiara Naldi, and Pierluigi Viaroli 

1. Introduction 

Microbial processes often dominate biogeochemical cycling within ecosystems. 
Therefore, microbial ecology interfaces with ecosystem ecology as appropriately 
as plant or animal ecology does. However, it is difficult for many microbiologists 
to interpret ecosystem-level phenomena. Often field measurements are made 
separately on individual components of an ecosystem. Thus one measures a single 
process, such as phytoplankton primary productivity, or a single assemblage of 
organisms, such as benthic (i.e., referring to sediments) microalgae. The interac
tions of components are inferred from observations of patterns of several variables 
over time or space. Or one conducts experiments using a limited number of 
variables where inferences involve only direct interactions of a few components. 
It is more difficult to examine indirect influences of one component on another 
or to simultaneously evaluate numerous interactions. We have found that con
structing and analyzing simple mathematical models can be useful in greater 
synthesis of microbiological and ecological information (Christian et al. 1986; 
Christian and Wetzel 1991). Modeling provides a mechanism by which one can 
extend inferences to include numerous components and both direct and indirect 
interactions simultaneously. 

In ecosystem ecology, mathematical models often are "structured," containing 
a number of compartments (also called state variables). The first-year biology 
student is aware of the general, structured model of the food chain with compart
ments of primary producers, herbivores, etc. Compartments generally categorize 
ecological units (e.g., species popUlations, communities, trophic levels, nutrient 
pools), which represent matter, energy, or individuals. Compartments may be 
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connected to each other and to the environment of the system. These connections, 
or interactions, represent flows of matter, energy, individuals, or infonnation. 

There may be several objectives for employing models in ecological research. 
These objectives are met at different steps in the process: before, during, and 
after data collection. In many instances for biologists (as opposed to mathemati
cians), the most important objective of modeling is to aid field or laboratory 
research or to give insight to new directions for research. Thus, it is valuable to 
construct models early in the research program. These models may be crude 
because of the lack of information. But they can be improved as research proceeds. 
The recognition of ways for improvement may direct certain avenues of research. 
In this way, one can view modeling as a "synergistic" partner to nonnal ecological 
research (Christian and Wetzel 1991). 

The steps of ecological modeling begin with establishing a purpose. What 
specific question or questions concerning the system can be addressed by the 
construction and analysis of a model? For example, one may ask whether the 
import of nutrients or their recycling most controls primary productivity. Next, 
it is important to define the system precisely: the compartments, imports, exports, 
interactions, and the boundary conditions in both space and time. Again, for 
example, if one wishes to define the temporal boundaries of a system as a 
"season," one must decide if the traditional seasons (between soltice and equinox) 
are ecologically relevant or if some other interval is more appropriate. This 
process of definition can be rewarding in itself, as it forces a fonnality of thought 
about the ecological system of concern. There should be interplay between what 
has been, is being, or will be measured and the characteristics of the model. To 
be useful and efficient, the definitions should reflect the research program. In 
this regard, a model at the species level may be of little value if infonnation is 
obtained only at the community level. 

Once each compartment, interaction, and connection with the environment is 
defined qualitatively, quantification is the next step. If simulation through time 
is desired, one must also define the interactions through specific equations. These 
equations can take a variety of fonns, linear or nonlinear, based on empirical 
relationships or perceived mechanisms. Simulation models are discussed through
out this book in other chapters. Overviews of ecosystem-level simulation models 
can be found in such works as those by Shugart and O'Niell (1979) and 
Odum (1983). 

In the current effort, multicompartmental models are static; that is, they are 
time-averaged and represent a "snapshot" of the ecosystem. Analyses of these 
are directly on the structure of the models (i.e., how are compartments connected) 
and magnitudes of the averaged fluxes. One benefit of construction and analysis 
of static models is in the avoidance of the need for the assumptions necessary 
in developing equations for simulation. The detriment is the preclusion of the 
predictive powers of simulation (Mann et al. 1989). For the static models, values 
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of standing stocks and fluxes are derived for one sampling or may be averaged 
in time and space. The sources of these values may be varied and include (1) 
direct measures, (2) interpolations and extrapolations from related studies, (3) 
general literature and ecological principles, and (4) results of mass balance 
calculations of other compartments. Thus the degree of reliability can vary among 
values, depending on their sources. Some numbers may be well estimated, whereas 
others may be little more than guesses. This exercise helps determine what is 
being measured in the context of total system's structure and function. The lack 
of a particular value may direct a change in research plan. Also, the balancing 
of inputs and outputs of compartments may help define the limits of values for 
which there is little information. For example, knowing the productivity of an 
animal species population sets a minimum estimate on its rate of ingestion. 
General inferences from similar species concerning respiration, excretion, and 
egestion improves the estimate. In fact, merely designing a model can provide 
much useful information without formal analysis. 

The formal analyses of models described here come under the general heading 
of network analysis. Network analysis is actually several descrete analyses that 
employ a variety of subdisciplines of mathematics and associated algorithms. 
The analyses are designed to evaluate the qualitative (the topology of the connec
tions among compartments or "map of the system") and quantitative (related to 
the amounts of each flux) structure of the system. Overviews of ecological 
network analysis and its applications are found in Patten (1985), Ulanowicz 
(1986), and Wulff et al. (1989). Issues that can be addressed include (1) the 
relative importance of imports to recycled material in the system, (2) the role 
of each compartment and interaction in recycling, (3) the importance of each 
compartment to others, (4) the trophic structure of the community, (5) the distribu
tion of positive feedback loops in the system and their importance to flow, and 
(6) global attributes of growth and development of the system. These various 
system characteristics can be used for comparisons within the system, among 
times, and among systems. Hence, network analyses provide powerful tools for 
the interpretation of both nutrient cycling and energy flow. 

In this chapter, we illustrate our use of static multi compartmental models 
and network analysis in the understanding of nitrogen cycling within coastal 
ecosystems. Compartments are states of nitrogen within these systems (e.g., 
phytoplankton N). Some commonly measured and designated forms include 
dissolved N (DN), dissolved inorganic N (DIN), dissolved organic N (DON), 
and particulate organic N (PON). Connections represent transformations of nitro
gen from one state to another (e.g., uptake of DIN by phytoplankton) or transfers 
from one location to another (e.g., import of DIN into a coastal lagoon). We 
have analyzed models from the Neuse River Estuary in North Carolina (Christian 
et al. 1992) and from rice fields and a coastal lagoon in the Ebro River delta of 
Spain (Fores and Christian 1993; Fores et al. 1994). Comparative ecosystem 
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ecology has been attempted through comparison of analyses ofthese three systems 
with each other, with another lagoon in the Ebro River delta and with the Sacca 
di Goro in Italy (Christian et al. 1993, 1996). We concentrate our discussion for 
the present chapter on the latter system. We have refined our model through 
three generations of improved information acquisition and incorporation. We 
describe this evolution to address the following issues: (1) establishment of 
purpose, (2) iterative nature of the process and reliability of information, (3) 
sensitivity of analysis results to model changes, and (4) benefits and limitations 
of such models and their analysis. 

2. Methods 

2.1. Study Site 

The Sacca di Goro is a coastal lagoon within the Po River delta, Italy at 
approximately 44°47'-44°50' Nand 12°15'-12°20' E (Fig. 8.1). It is 26 km2 

.. ' . " ... 
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Figure 8.1 Map of the Sacca di Goro, Italy. The coastal lagoon receives fresh water from 
the Po di Goro, the Po di Volano, and local pumping stations and connects with the 
northern Adriatic Sea (see insert). Field research involves sampling stations shown. Models 
of nitrogen cycling are from the Valle di Gorino in the vicinity of station 8. 
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with an average depth of 1.5 m. The bottom is fiat, and sediments are composed 
of typical alluvial mud with a high clay and silt content, whereas sandy mud 
prevails in the eastern region. The eastern region, the Valle di Gorino, accounts 
for half the area with a shallow depth of 0.8 m. Fresh water enters the lagoon 
from the Po di Goro, the southernmost distributary of the Po River; Po di Volano, 
a polluted canal that drains the Provinces of Ferrara and Modena; and from local 
pumping stations releasing highly polluted water directly into the lagoon. Saline 
water enters from the northern Adriatic Sea through a 2-km-wide mouth and at 
times through a man-made ditch into the Valle di Gorino. The lagoon is the site 
of numerous enterprises, including fin and shell fisheries, tourism, a bird sanctuary 
and mariculture. However, the incoming waters have high concentrations of 
nutrients; macroalgae, especially Viva rigida and Gracilaria spp., grow in large 
abundances; and in summer there are periods of dystrophy. Dystrophy is the 
trophic state in which the primary supply of organic matter and energy is from 
preformed material and not active primary production. Heterotrophy dominates. 
In the Sacca di Goro this res.ults from the decomposition of macroalgae and is 
associated with extended anoxia. The Valle di Gorino is the site of greatest 
macroalgal biomass and most severe dystrophy (Viaroli et ai. 1992). Station 8 
is taken to be representative of the Valle di Gorino (Fig. 8.l). 

The Sacca di Goro has been the site of continuous study since 1987 by 
researchers at the Universities of Ferrara and Parma. This research stems from 
recognition of the high degree of cultural eutrophication of the lagoon and 
associated dystrophy. Much of the initial work was on either community structure 
(e.g., Pugnetti 1990; Ferrari et ai. 1993) or water quality (e.g., Colombo 1989). 
More recent studies have focused on the processes of nutrient cycling and their 
relationship to the growth and decomposition of macroalgae (e.g., Viaroli 1992; 
Viaroli et aI., 1992; 1993 a,b,c). The results of these studies provide a body of 
knowledge sufficient enough to allow us to construct reasonable models of the 
nitrogen cycle within the Valle di Gorino to be used in network analysis. 

2.2. Nitrogen Cycle 

Nitrogen is the nutrient element that has been considered the most likely to 
be limiting in coastal marine systems (Ryther and Dunstan 1971; Day et ai. 
1989). The cycle is complex, involving numerous oxidations and reductions of 
the element. These oxidations and reductions are involved in both the assimilation 
of organic matter and catabolic metabolisms. Some processes occur only in 
aerobic environments, some only in anaerobic environments, and some in both. 
Details of the cycle are beyond the scope of this chapter. We assume the reader 
to be versed in the general processes of the nitrogen cycle. If background informa
tion is required, refer to Day et ai. (1989) for descriptions of estuarine nitrogen 
cycling. In fact, the models presented here do not explicitly include all of the 
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transformations, having been constructed in the context of available information 
from the field studies in the Sacca di Goro. Christian et al. (1992) developed 
two models of nitrogen cycling within the Neuse River Estuary which included 
a larger suite of transformations. See this work for a more detailed network 
analysis of nitrogen cycling. 

2.3. Basis for Model Construction and Analysis 

Our modeling approach involves designating individual compartments that 
represent standing stocks of nitrogen and flows of nitrogen between compartments 
or between a compartment and outside the system. These latter flows are imports 
and two forms of outputs: exports and dissipations resulting from respiration. 
This separation of outputs has been useful in the analysis of energy flow and 
carbon cycling models as done by Ulanowicz (1986). The energetic ground state 
for carbon is carbon dioxide, resulting from respiration. In published models of 
carbon, as a surrogate for energy, the carbon dioxide pool is considered outside 
the system, connected to the compartments via autotrophy and respiration (e.g., 
Baird and Ulanowicz 1989; Baird et al. 1991). In nitrogen cycles we may consider 
molecular nitrogen as having a similar position outside the system, although it 
is not the energetic ground state. Its connections with the system are through 
nitrogen fixation and denitrification (a dissipation in the sense of Ulanowicz 
[1986]). No distinction has been made between molecular nitrogen and other 
gaseous endproducts of denitrification (e.g., nitrous oxide). All flow rates (i.e., 
fluxes) have positive values with the units mmole N m~2 day~l. Standing stocks 
are as mmoles N m~2. 

We have constructed three generations of models for the Valle di Gorino. Our 
initial model (called VDGIA) was developed as a form of introduction to the 
research results from the Sacca di Goro for Christian during a stay in Italy in 
1991. The most complete data set available at that time was for April 1989, 
which served as a rough temporal setting for this first attempt. Based in part on 
the results of the first model's construction and analysis, a second generation 
was developed using a better data set, with much, but not all, field information 
collected during 1991. Two separate time periods were modeled: (1) the produc~ 
tive period of early summer (VDG2B) and (2) the dystrophic period in July 
(VDG2C). These were used in initial comparisons of cycles among coastal 
ecosystems (Christian et al. 1993). A third generation of models was based on 
a more complete analysis of the data from the 1991 studies of the Sacca di Goro. 
Three periods were modeled: (1) spring 1991 (VDG3A), (2) early summer 1991 
(VDG3B), and (3) the dystrophic period of July (VDG3C). This generation is 
being used for a more complete and specific evaluation of the effects of macroalgal 
growth and dystrophy on nitrogen cycling. The reliability of information has 
increased greatly during the evolution of the models. This reliability is in the 
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fonn of greater specificity in both the time and location of data collection to the 
desired boundary conditions of the models. Details of data sources and model 
construction are given in the next section. 

We used ecological network analyses to interprete the nature of nitrogen cycling 
in our models and by inference in the field. Calculations were made on an IBM
PC compatible computer using the MS-DOS software package "NETWRK4: A 
Package of Computer Algorithms to Analyze Ecological Flow Networks" by R. 
E. Ulanowicz (University of Maryland, Center for Environmental and Estuarine 
Studies, Chesapeake Biological Laboratory, Solomons, MD 20688-0038, USA, 
1987). The package contains several programs in FORTRAN to aid in network 
analysis. The two used for our analyses were DATAIN used to convert data into 
SCOR input fonnat, usable for the network analysis in the program NETWRK. 
(Details of the software's use are given in the documentation provided by Ulano
wicz 1987.) NETWRK computes a variety of analyses under the headings of 
Structure Analysis, Lindeman Trophic Aggregations, Biogeochemical Cycle 
Analysis, Infonnation Indices and Connectance Indices. Of these we have found 
the Structure Analysis and Biogeochemical Cycle Analysis to be the most infor
mative for our nitrogen cycling models. The other analyses are more appropriate 
when a developed food web is represented. 

The mathematical derivations of the various algorithms within the network 
analysis have been presented several times by others. Patten (1985), Ulanowicz 
(1986), and Kay et al. (1989) give perhaps the most comprehensive discussions 
of most to all of the algorithms. Individual analyses have been described by their 
original authors, and we cite these references where appropriate. Rather than 
reiterate the mathematics, we provide what we hope are simple explanations of 
each algorithm designed to interest and infonn microbiologists. Further, the 
jargon associated with network analysis can be fonnidable. Where we could, we 
have tried to use tenns that we consider of more common usage to people 
with minimum modeling experience. In many cases, however, new vocabulary 
is necessary. 

Structure analysis involves a series of matrix algebra manipulations resulting 
in matrices and vectors designed to quantify both direct and indirect effects and 
fates of imports and interactions (Hannon 1973; Finn 1976; Patten et al. 1976). 
The NETWRK4 software organizes separate vectors of fluxes involving imports, 
exports, dissipations and a matrix of interactive flows (exchange matrix). Each 
flux or coefficient within a vector or matrix is represented as hj' where i refers 
to a donor, Xi; j refers to a recipient, Xj; and 0 refers to outside the system. 
"Throughput" of each compartment is used for the analyses and is equal to the 
sum of all of each compartment's outputs or inputs. When a compartment is in 
steady state, these two sums are equivalent. When a compartment is not in steady 
state, throughput is the larger of the two sums. Finn (1976, 1980) relates this 
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latter definition to the sequestering of materials from or release to the system 
with growth and decline, respectively. 

Two matrices that examine the interaction of compartments are calculated first 
in the Structure Analysis section. A "total contribution matrix" is used to evaluate 
the fraction of a compartment's throughput that contributes to another compart
ment's throughput. A "total dependency matrix" is calculated to evaluate the 
fraction of a compartment's throughput that resided at some point in another 
compartment. These are derived from the exchange matrix of each interaction or 
exchange among compartments. In the total contribution matrix, each interactionj;j 
is divided by the throughput of the donating compartment Xi; then the resulting 
matrix F is subtracted from the identity matrix I; and the inverse of the difference 
is computed (I - Ftl. For the total dependency matrix, each interaction j;j is 
divided by the throughput of the recipient compartment Xj; then the resulting 
matrix G is subtracted from the identity matrix I; and the inverse of the difference 
is computed (I - Gtl. Coefficients along diagonals are further manipulated by 
subtracting each from 1 and dividing the difference by the original coefficient to 
evaluate recycling (Ulanowicz 1986). The coefficients for either matrix represent 
connections between compartments that may be either direct or indirect. That is, 
no direct connection is necessary for positive dependence or a contribution to 
occur. For example, nitrogen released as ammonium during the decomposition 
of detritus may be taken up by phytoplankton. The connection between phyto
plankton and detritus is indirect and mediated by an ammonium pool. These 
matrices compute relative dependencies and contributions of both the direct 
connections, such as that between phytoplankton and ammonium and the indirect 
connections, such as between detritus and phytoplankton. 

Another analysis, called input environ analysis, computes the contributions of 
each import to other flows within and from the system through a series of vectors 
and matrices. Each import is considered separately. In our studies, the coefficients 
in each resultant vector and matrix represent the number of times or the probability 
that an atom of imported N passes along a flow path between entering and leaving 
the system. This analysis begins with the matrix F as described above. It is 
transposed (FT) and subtracted from the identity matrix, and the inverse is taken 
of the difference (I - FT) -I. Each column represents a vector (n of throughputs 
of compartments for unit inputs to the compartment represented by the column 
(i.e., column i refers to unit input to xJ To construct an exchange matrix, matrix 
F is muliplied in separate subsequent analyses by each vector Ti for which there 
is an input fOi. The unit fate of the material to export and respiration are calculated 
by mass balance after accounting for internal flows. Thus through structure 
analysis, the influence of both flows entering the system and those within the 
system (i.e., loading versus recycling of nutrients) can be considered. 

Biogeochemical cycle analysis employs graph theory to evaluate the character-
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istics of cycles or positive feedback loops within the system (Ulanowicz 1983, 
1986). The terminology for graph theory is somewhat new to most biologists. 
For our purposes an arc is a flux or flow between two compartments. A cycle 
is a series of arcs that in combination pass material from a compartment, through 
one or more unique compartments, and returns material to the original one. This 
is in fact a positive feedback loop. The arc within a cycle that has the smallest 
flux is the weak arc. And a group of cycles sharing the same weak arc is a nexus. 
One can infer that the weak arc is potentially the controlling flow within a cycle 
and that cycles in a nexus have a common control. For example, a cycle may exist 
as the following: nitrogen is passed from an ammonium pool to phytoplankton and 
then with death the nitrogen is passed to detritus. Mineralization of the detritus 
returns nitrogen to the ammonium pool. If the smallest flux is the assimilation 
of ammonium by phytoplankton, this is the weak arc. If there is also a cycle 
from ammonium to phytoplankton to detritus to sediments and back to ammonium, 
and if the smallest flux of that cycle is also the assimilation by phytoplankton; 
the two cycles form a nexus. The cycling of nitrogen through both cycles may 
be controlled by their common weak arc. If assimilation is increased, then one 
might infer that both cycles would have a greater flow. 

NETWRK4 possesses an algorithm that searches for and identifies all cycles. 
The program then identifies the smallest weak arc and its cycle or cycles (nexus). 
If only one cycle is involved, the amount of flow associated with this weak arc 
is subtracted from all arcs in the cycle; thus breaking the cycle. If more than 
one cycle share the weak arc, the amount in the weak arc is divided equally 
among the cycles, and subtraction occurs again to break the cycles at the weak 
arc. This continues with ascending values of weak arcs until all are broken. As 
cycles may have different lengths (i.e., number of arcs per cycle) and quantities 
of flow, the system is characterized by not only the number of cycles but also 
the distribution of flow according to cycle length. Finally, as the total flow 
associated with these cycles represents cycled flow it can be compared to flows 
of the total system (i.e., total system throughput equals the sum of all inputs, 
outputs and interactions). The latter comparison (i.e., cycled flow as a fraction 
of total system throughput) is commonly called the Finn Cycling Index (Finn 
1976, 1980). 

3. Model Development 

3.1. First Generation 

In this chapter, we explain not only the results of the modeling exercise but 
also the processes of developing a model. The original use of modeling for this 
exercise was to aid one of us (RRC) in organizing information on nitrogen cycling 
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within the Sacca di Goro (Fig. 8.1) during his stay in Italy in spring 1991. Having 
surveyed the literature on the lagoon, we constructed the first conceptual model 
(VDG 1 A), as shown in Figure 8.2. This model has four compartments containing 
nitrogen: seston (SES), Uiva rigida (ULV), sediments (SED), and dissolved 
inorganic nitrogen (DIN). These compartments are connected by 10 flows of 
nitrogen representing different processes (e.g., feeding by heterotrophs of one 
community on another, deposition, benthic release of DIN). Seston is defined as 
particulate matter in the water column and includes nitrogen in both living and 
nonliving entities. Seston and DIN are imported and exported with water currents, 
nitrogen in sediments is exported through burial, and nitrogen "dissipation" occurs 
through denitrification in sediments. The degree of aggregation of compartments 
reflects the information available at the time. Both process and standing stock 
information were collected at the hierarchical levels represented. For example, 
nitrogen exchange rates between sediments and the water column were available 
(Barbanti et al. 1992b, in press at the time), but information on cycling within 
sediments was not. Flows of nitrogen were computed based on both available 
information and reasonable conjecture of ecological interaction. Thus the gross 
primary productivity of seston was estimated from field data, but feeding by 

VDG1A 

Seston 
(SES) 

\ 
Dissolved t-( _____ _ __ ..... Sediments 

(SED) ~ Inorganic N 
(DIN) 

,/ / 
Ulva 
(ULV) 

\ 

Figure 8.2 First-generation model of nitrogen cycling in the Valle di Gorino, for the 
period April 1989 (VDG IA). 
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sestonic, heterotrophic organisms (animals and bacteria) on Viva was not. Also, 
April 1989 was chosen solely because most pertinent information was available 
for this time. Therefore, values were derived in a variety of ways: from the 
literature directly, from unpublished data, from conversions of related literature 
values, from mass balance calculations of compartments, and from educated 
guesses based on general ecological principles or knowledge of similar systems. 

A total of 19 values (4 standing stocks and 15 flows) were needed for this 
first, rather small and simplistic model. One important consideration in obtaining 
such numbers is documentation. In most cases, the available information is not 
exactly in the form needed for the model. Available information on units, times, 
locations, species, or elements may be different from those required for the 
model. Many decisions may be made in converting this information. These 
decisions must be documented at least for the researcher if not for the readers 
of any publication. This documentation is equivalent to that needed to identify 
data in a field or laboratory study (i.e., you must be able to construct the history 
of each value). Our documentation for this small model is over 20 pages. A 
summary of the designation and meaning of each compartment and flow, its 
value, and a reference or brief explanation are given in Table 8.l. 

The mere construction of such a model can provide information even before 
any formal analysis. Based on the comparison of the various standing stocks and 
rates estimated for the first model, the following observations were made for the 
prescribed time and location. The availability of DIN during the growth of Viva 
appears to come largely from loading rather than recycling. This hypothesis is 
based on two observations. First, estimated respiration rates and sediment release 
cannot sustain reasonable rates of macroalgal growth. Second, based on concentra
tion patterns, the Valle di Gorino appears to be a sink for DIN such that it draws 
N from the Po di Goro, intruding saline waters from the Adriatic Sea, and 
neighboring regions of the lagoon. A result of the low recycling rates, varied 
sources of loaded nitrogen, and in situ concentration patterns is that nitrogen 
was probably the nutrient limiting growth of autotrophs at this time. 

Other observations were also made. During April 1989, phytoplankton gross 
primary productivity was comparable to that of Ulva, and primary productivity 
by benthic microalgae was minimal. Also, as a general consideration, denitrifica
tion may cause significant losses of nitrogen from the system. However, the 
major source of nitrogen for this process is not necessarily nitrate in the water 
column. Organic nitrogen reaching sediments may be mineralized to ammonium, 
this may be nitrified to nitrate in the sediments, and then the nitrate is denitrified. 
Finally, trophic and migratory interactions between compartments are likely to 
be small but may be important qualitative links between compartments. Little is 
known of the rates of these interactions, and research on these interactions may 
provide a novel link between ecological studies of material and energy processing 
and community structure. Thus before formal analysis is even conducted, these 
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Table 8.1 Summary of information for model of nitrogen cycling in the Valle di 
Gorino during April 1989 (VDG J A) 

Description 

State variables 
Seston (SES) 
Ulva (ULV) 
Sediments (SED) 
Dissolved inorganic N (DIN) 

Imports 
Seston 
DIN 

Exports 
Seston 
Burial in Sediments 
DIN 

Dissipations 
Denitrification from SED 

Interactions 
Seston feeding on Ulva 
Feeding on benthos and migration 
Seston: Gross primary production 
Ulva: Gross primary production 
To sediments from seston 
To sediments from Ulva 
Benthic uptake of DIN 
Seston: community respiration 
Ulva: Community respiration 
Benthic release of DIN 

Reference 
Value Explanation 

(mmole N m-2) 

46 10, 12 
136 4,9, 12 
1000 7 

15.2 
(mmole N m-2 day-I) 

3.3 J, 13 
21 11 

3.3 11 
2.2 3,7 
0 11 

13.3 7, 11 

13 
1 13 

12.4 2, 12 
7 4, 9 

10 11 
1 13 
5.6 7 

2, 12 
1 9, 12 
2.2 2 

1, Aquater, 1990; 2, Barbanti et a1. 1992a; 3, Barbanti et a1. 1992b; 4, Fujita et al. 1989; 
5, Pugnetti 1990; 6, Pugnetti et al. 1992; 7, Viaroli et al. 1991; 8, Viaroli et al. 1992; 
9, Viaroli and Naldi 1992; 10, unpublished data; 11, mass balance; 12, conversions of 
elements needed; 13, educated guess. 

various observations lead to numerous hypotheses that may provide fruitful 
avenues for future research. 

3.2. Second Generation 

The research on the Sacca di Goro was part of a program funded by the 
European Economic Community to study eutrophication at the mouths of major 
rivers in the Mediterranean basin (Po, Ebro, and Rhone Rivers). A second genera-
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tion of models was designed to compare nitrogen cycles among several of the 
ecosystems studied and with Christian's previous work on the Neuse River 
Estuary (Christian et al. 1993). Two models (VDG2B and VDG2C) were con
structed to represent June and July, a period of high productivity and one of 
dystrophy, respectively. Structural changes from the first generation included the 
following: (1) phytoplankton nitrogen was separated as a compartment from the 
rest of the seston, (2) Gracilaria spp. was added as a compartment for July, (3) 
net primary productivity was estimated (as opposed to gross primary productivity), 
and (4) new flows associated with this compartmentalization were defined. New 
information had become available from the 1991 field season, and as much of 
this information as possible was incorporated into the second generation models 
(Table 8.2 and Fig. 8.3). 

The second-generation models are intermediate in reliability between the first
and third-generation models. As such, we do not describe them in the detail 
devoted to the others. We do allude to some results of their analysis in comparison 
with the other models. Comparative results ranked the Valle di Gorino as the 
most eutrophic of the systems studied. Nitrogen recycling was found to be the 
least, and we proposed that macroalgae were responsible for the "short circuiting" 
of the cycle (Christian et al. 1993). 

3.3. Third Generation 

By the autumn of 1993, data analysis of the intensive sampling that took place 
in 1991 was largely complete. Inferences from the first- and second-generation 
models could now be evaluated with the more reliable data. Therefore, we 
constructed three models to follow nitrogen cycling in 1991 from the spring 
(VDG3A), through early summer (VDG3B), and into the dystrophic period of 
July (VDG3C). Data from six sampling dates from March through July 1991 
were used in conjunction with information from laboratory studies using macroal
gae from the site. These data provided more specificity to desired time intervals 
than one normally has in these exercises. 

Third generation model structure is summarized in Figure 8.4, and values are 
given in Table 8.3. The number and designation of compartments are largely as 
used for the second generation model (VDG2C). Gracilaria was found to be 
present at each represented period during the 1991 field season and not just in 
July. Dissolved nitrogen now includes both inorganic and organic forms. We 
estimated fluxes for 3 imports, 5 exports, 1 dissipation, and 13 interactions for 
each period model and used the following rules in estimating standing stocks 
and fluxes. When data were directly measured during the period, they were used 
as an initial estimate. Averages from at least two dates were preferred to single 
measures. The most satisfactorially estimated fluxes were imports, phytoplankton 
and macroalgal uptakes of dissolved nitrogen, and sediment exchanges. Next we 
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Table 8.2 Summary of values for initial models of nitrogen cycling in the Valle di 
Gorino for 1991 during early summer (VDG2B) and dystrophy in July (VDG2C) 

Phase 2 Phase 3 
Description VDG2B VDG2C 

State variables (mmole N m~2) 
Phytoplankton (PRY) 0.7 0.6 
Uiva (ULV) 687.9 73.8 
Gracilaria (GRA) 0 66.8 
Seston (SES) 6.4 11.8 
Sediments (SED) 1131 990 
Dissolved inorganic N (DIN) 1.5 2 

Imports (mmole N m~2 day~l) 

Phytoplankton 1.3 1.6 
Seston 3.5 3.1 
DIN 22.3 6.9 

Exports 
Phytoplankton 0.1 0.1 
Viva 6.3 0.7 
Seston 0.8 1.2 
DIN 0.2 0.2 

Dissipations 
Denitrification from SED 49.7 31.2 

Interactions 
PRY to SES 1.0 1.4 
PRY to SED 0.2 0.15 
SES feeding on UL V 4.5 0.4 
ULV to SED 12.7 1.1 
SES feeding on GRA 0.6 
GRA to SED 1.6 
SES to SED 0.1 0.1 
SES mineralization 0.3 0.6 
SED release of DN 0.1 4.5 
ULV: net productivity 149.9 11.8 
GRA: net productivity 5.9 
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Figure 8.3 Second-generation models of nitrogen cycling in the Valle di Gorino, during 
1991 for early summer (VDG2B) and July (VDG2C). Continued 

balanced inputs and outputs for all individual compartments except the macroal
gae. This involved estimating some fluxes for which we had little or no direct 
measurement. For example, we had little information on the fates of macroalgal 
nitrogen during periods of biomass decrease. If minimal information was available 
in deciding the distribution of nitrogen fluxes among two or more paths, equal 
fluxes were assumed initially. Inequality was then instituted as more information 
was incorporated. Further, we modified fluxes that we had previously estimated 
to achieve mass balance. This was always done by minimizing change to fluxes 
for which we felt we had the best estimates. 

A central question was always asked when a change was proposed or an 
estimate made based on little direct data: Does this make sense based on what 
is known about the ecology of the system? Thus a degree of subjectivity was 
introduced. Models at the ecosystem level invariably contain such subjectivity. 
Both the temporal and spatial scales, as well as system's complexity, preclude 
accurate and precise measurement of all necessary values. This condition has 
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been responsible for many to reject ecosystem-level modeling as a worthwhile 
pursuit (Mann et al. 1989). We contend that modeling can be valuable over a 
variety of levels of accuracy and precision of information. After all, science 
progresses through increasing the reliability of hypotheses as more information 
becomes available. Models represent hypotheses or composites of hypotheses. 
The important point is to remember that the model and the results of its analysis 
must be interpreted in the context of its perceived reliability. 

4. Analysis Results and Interpretation 

In this section we present and interprete those network analyses that we consider 
most useful to biogeochemistry. The reader is encouraged to peruse papers on 
the analyses of food webs that use a broader range of network analyses (e.g., 
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Figure 8.4 Third-generation models of nitrogen cycling in the Valle di Gorino, during 
1991 for spring (VDG3A), early summer (VDG3B), and July (VDG3C). 

Baird and Ulanowicz 1989, 1993; Christensen and Pauly 1993). We begin by 
providing an in depth description of the analysis of the first generation model. 
We do this to take advantage of its relative simplicity, acknowledging its lack 
of reliability as a descriptor of the Sacca di Goro. We then use the other model 
generations for selected comparisons within a generation across periods and 
across generations. 

4.1. First-Generation Structure Analysis 

The total dependency matrix of VDG lA is shown in Table 8.4. Each coefficient 
represents the fraction of nitrogen input to the recipient compartment (designated 
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Table S.3 Summary of values for models of nitrogen cycling in the Valle di 
Gorino for 1991 during spring (VDG3A), early summer (VDG3B), and dystrophy in 
July (VDG3C) 

Phase I Phase 2 Phase 3 
Description VDG3A VDG3B VDG3C 

State variables (mmole N m-2) 

Phytoplankton (PRY) 0.5 0.5 0.4 
Uiva (ULV) 47.3 314.4 237.2 
Gracilaria (GRA) 124.9 SO.5 91.S 
Seston (SES) 1.0 2.5 3.S 
Sediments (SED) 1429.0 1429.0 l357.0 
Dissolved nitrogen (DN) 65.S 57.2 42.3 

Imports (mmole N m-2 day-I) 

Phytoplankton 1.6 1.S 0.6 
Seston 4.5 4.4 1.7 
Dissolved nitrogen 26.S 31.1 9.7 

Exports 
Phytoplankton 0.1 0.1 0.1 
Uiva 0.3 2.1 2.7 
Gracilaria 9.9 1.2 0.6 
Seston 0.3 0.5 0.3 
Dissolved Nitrogen 20.S 9.6 3.S 

Dissipations 
Denitrification from SED 4.2 14.S 15.7 

Interactions 
SES feeding on PRY 0.9 1.3 0.1 
PRY to SED 1.0 1.0 0.7 
SES feeding on UL V 0.3 2.1 10.2 
ULVtoSED 0.3 2.1 10.2 
SES feeding on GRA 1.6 1.2 0.6 
GRA to SED 1.7 7.5 0.6 
SES to SED 2.0 5.0 7.6 
SES to mineralization 5.1 3.6 4.S 
SES feeding on SED 0.1 0.1 0.1 
SED release of DN 0.7 0.7 3.3 
PRY: net productivity 0.4 0.6 0.3 
UL V: net productivity 2.7 IS.2 7.3 
GRA: net productivity 8.7 7.0 6.4 
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by columns) that once resided in the donor compartment (designated by rows). 
For example, 57% of the nitrogen flowing into sediments (SED) was once in 
seston (SES). This is largely a direct interaction potentially involving filter feeding 
by benthic fauna, sedimentation, and migration of organisms to the benthos. 
Also, 9% of the flow to Viva (UL V) was once in seston even though no direct 
interaction was included in the model. The only direct source of nitrogen for 
Viva was from DIN which thus supplied 100% of the nitrogen needs. The 9% 
from seston must have first passed through the DIN pool. In fact some also 
passed through the sediments before reaching the DIN pool. Therefore this matrix 
can be used to evaluate the extended sources of material to a compartment. If 
this were a model of energy flow through a food web the extended source could 
be considered the "extended diet", a concept effectively used by Baird and 
Ulanowicz (1989) for trophic interactions in Chesapeake Bay, USA. 

From the total dependency matrix (Table 8.4) we see that, as expected, DIN 
was the most important donor of nitrogen to all other compartments. Nitrogen 
was recycled through the system from each compartment. Viva was the least 
important source of nitrogen, whereas seston and sediments acted similarly as 
sources to both Viva and DIN. Coefficients along the diagonal represent the 
fraction of complete recycling, indicating how much of the flow to a compartment 
once previously resided in that compartment. These values ranged from 5% to 
14% giving the first indication of relatively little recycling. 

The reverse perspective of interaction is seen through the total contribution 
matrix (Table 8.5). Here each coefficient represents the relative amount of output 
from a compartment (represented by row) that enters another (represented by 
column), directly or indirectly. The diagonal coefficients are the same in both 
value and meaning as those for the total dependency matrix. In this view, for 
example, 60% of the outputs from both seston and DIN passed into sediments, 
whereas 32% of Viva output entered sediments. Less than 15% of sediment 
release of nitrogen (by all processes) entered any other single compartment by 
any combination of internal interactions. Denitrification and burial were major 

Table 8.4 Total dependency matrix of nitrogen cycling in the Valle di Gorino during 
April 1989 (VDGIA) 

Recipient 

Donor SES ULV SED DIN 

SES 0.10 0.09 0.57 0.09 
ULV 0.10 0.05 0.12 0.05 
SED 0.13 0.10 0.10 0.10 
DIN 0.80 1.00 0.78 0.14 

Coefficients represent fraction of recipient's throughput that once resided in donor. 
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Table 8.5 Total contribution matrix of nitrogen cycling in the Valle di Gorino during 
April 1989 (VDGIA) 

Recipient 

Donor SES ULV SED DIN 

SES 0.10 0.04 0.60 0.13 
ULV 0.24 0.05 0.32 0.18 
SED 0.12 0.04 0.10 0.12 
DIN 0.59 0.31 0.60 0.14 

Coefficients represent fraction of donor's throughput that passes into recipient. 

outputs from the sediments, and their magnitude ensured relatively low contribu
tions to other compartments. Thus, this matrix extends our understanding of the 
fates of materials leaving a compartment. 

A third type of structure analysis (input environs analysis) evaluates the fate 
of each import through the system. Coefficients of calculated vectors and matrices 
represent the number of atoms of nitrogen associated with a flow for every atom 
of nitrogen entering through a particular path. In Table 8.6 we show two vectors 
and the exchange matrix summarizing the contributions from the sole import of 
I atom of seston nitrogen. Twenty-one percent left as seston, and 8% was buried 

Table 8.6 Input environs analysis of imported seston in the Valle di Gorino during 
April 1989 (VDGlA) 

Export from 

SES ULV SED DIN 
0.21 0.00 0.08 0.00 

Dissipation from 

SES ULV SED DIN 
0.00 0.00 0.48 0.00 

Exchange Matrix 
Recipient 

Donor SES ULV SED DIN 
SES 0.00 0.00 0.63 0.06 
ULV 0.01 0.00 0.01 0.01 
SED 0.04 0.00 0.00 0.08 
DIN 0.07 0.04 0.03 0.00 

Coefficients represent the number of atoms of nitrogen within a flux per atom of seston 
nitrogen imported as seston. 
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in the sediments ("export from" vector). The equivalent to nearly half of the 
nitrogen entering as seston was dissipated through denitrification ("dissipation 
from" vector). The contribution of seston nitrogen to denitrification occurred 
largely through the considerable flow of seston (SES) to sediments (SED) as 
seen in the exchange matrix (0.63). Presumably, within the sediments organic N 
from seston was first mineralized and nitrified. Thus, using this analysis one can 
trace the fate of material as it passes through and out of a system. 

4.2. Biogeochemical Cycle Analysis 

In this analysis, the nature of the pathways of nitrogen cycling are examined. 
Within the first-generation model were 10 cycles or positive feedback loops (Table 
8.7). Four cycles involved only 2 arcs (2 fluxes and, therefore, 2 compartments), 4 
cycles involved 3 arcs, and 2 involved all 4 compartments and 4 arcs. Seven 
cycles involved seston, 5 involved Ulva, 7 involved sediments, and all but 1 
involved DIN. This pattern of occurrence fits the degree to which each compart
ment was an extended source of nitrogen to others described in the previous 
section: DIN> seston = sediment> Ulva. 

As discussed, the sources for information for this model were varied, and the 
accuracy of some of the values is suspect. We wished to represent five fluxes, 
for which we had virtually no information, as positive but relatively small num
bers. These were fluxes involving trophic interactions for the most part, and such 
interactions were not directly studied. The value 1 mmole N m-2 day-I was 
used for each. Unfortunately, the use of the same small number so many times 
compromised our ability to group cycles into nexuses (cycles sharing the same 

Table 8.7 Biogeochemical cycles of nitrogen in the Valle di Gorino during April 1989 
(VDGIA) 

Weak Arc Value 
Cycle Weak Arc (mmole N m-2 day-I) 

SES-SED-SES SED-SES 1.0 
SES-DIN-SES SES-DIN 1.0 
SES-DIN-SED-SES SES-DIN, SED-SES 1.0, 1.0 
SES-DIN-ULV-SES SES-DIN, ULV-SES 1.0, 1.0 
SES-DIN-ULV-SED-SES SES-DIN, ULV-SED, 1.0, 1.0 

SED-SES 1.0 
SES-SED-DIN-UL V -SES ULV-SES 1.0 
SED-DIN-UL V -SED ULV-SED 1.0 
DIN-ULV-DIN ULV-DIN 1.0 
SES-SED-DIN-SES SED-DIN 2.2 
SED-DIN-SED SED-DIN 2.2 
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weak arc or smallest flux). The value, 1, served as the weak arc for all but two 
cycles. However, this value occurred more than once in two cycles. Although 
the grouping into nexuses helps to delineate the potential for shared controlling 
processes among cycles, the duplication of weak arc values makes this analysis 
less tenable for this particular model. It is evident, however, that remineralization 
pathways into the DIN pool (SES-DIN and SED-DIN) may be important limits 
to the cycling of nitrogen. 

We also considered the distribution of flows through cycles of different lengths. 
This distribution can be normalized to total systems throughput of nitrogen in 
the system. Thus, 7.2% of total systems throughput (85.3 mmole N m-2 day-I) 
passed through cycles possessing a length of 2 (i.e., between two compartments). 
The percentages of flow through cycles of length 3 and 4 were 3.9% and 4.7%, 
respectively. Information of this sort has been used to evaluate the degree of 
stress on systems represented as food webs. Stress may be represented as "changes 
in the flows of energy in a system, disappearance of previously existing flows, 
or acceleration of repair work" (Lugo 1978). For food webs it is postulated that 
stress results in more flow in shorter cycles than in unperturbed systems (Wulff 
et al. 1989; Baird et al. 1991). However, we have not found this to be true for 
biogeochemical cycle-based models (Christian et al. 1996). 

By summing the normalized flows per cycle length (given in the previous 
paragraph), we obtained the total percentage of throughput associated with recy
cling equal to an FCI of 15.8%. This is quite small compared to the N recycling 
portrayed in models of other coastal systems, as studied by Christian et al. (1993, 
1996) and Baird et al. (1995). Although differences in model structure may 
contribute to differences in FCI, the Sacca di Goro, as depicted in VDG lA, has 
features which would minimize FCI: (1) a relatively short residence time of 
water, (2) a positive growth of both micro- and macroalgae, and (3) minimal 
mineralization and release into the DIN pool. 

4.3. Across-Period Analysis 

We consider that the most valuable use of network analysis is in comparisons: 
within system across time (Baird and Ulanowicz 1989; Christian et al. 1992; 
Fores and Christian, 1993; Baird et al. 1995), and across systems (Baird et aI., 
1991; Baird and Ulanowicz, 1993; Christensen and Pauly 1993; Christian et al. 
1993, 1996). Here we compare models of three periods in 1991: VDG3A for 
spring, VDG3B for early summer, and VDG3C for the July dystrophic period. 
Two system-level indices are total systems throughput and Finn cycling index 
(FCI). The former remained relatively constant through time as 94, 116, and 87 
mmole N m-2 daTI for the respective periods. In contrast FCI was low during 
the first two periods (9.5% and 11.4%, respectively, for spring and early summer) 
and increased to 29.2% during the dystrophic period. During the periods of low 
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FCI, macroalgal growth sequestered nitrogen and restricted cycling. The increase 
in cycling would be expected as Ulva decomposed and organic nitrogen was 
released and/or mineralized. 

The total dependency matrices of the three models were used to examine the 
relative importances of compartments to DN dynamics (Fig. 8.5). Again recycling 
from the macroalgae was low except during dystrophy, when Ulva was the major 
source for other compartments. All recycling to DN from macroalgae was indirect 
either through seston or sediments. Included in Figure 8.5 is the recycling of DN 
associated with alLintermediates. Again the value is low overall, but is greatest 
during the dystrophic period. Although direct relationships are easily made with
out network analysis, such conclusions concerning indirect relationships are not 
readily made by alternative means. 

Input analysis was also used to compare models (Fig. 8.6). We evaluated 
the fate of imported DN. Again we emphasize indirect relationships, this time 
associated with sediments. The largest fractions of imported DN to pass to 
sediments occurred during early summer from Gracilaria and during July from 
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Figure 8.5 Total dependency of dissolved nitrogen (DN) on selected compartments by 
period in third-generation models. 
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Figure 8.6 Probability of nitrogen flow from the import of dissolved nitrogen (DN) through 
selected pathways by period in third generation models. Abbreviations of compartments 
through which flow occurs are as shown in Figure 8.4 and defined in text. 

Uiva. Dystrophy in July was largely in response to Uiva death and decomposition. 
Graciiaria actually grew during this period. Subsequent return of nitrogen from 
sediments to DN occurred with greatest probably during dystrophy. Loss of 
imported DN from the sediments via denitrification occurred with greater proba
bility during both summer periods than during spring. 

Each model had the same 13 cycles. One was 2 arcs in length, six had 3 arcs, 
and the remainder had 4 arcs. Those with lengths of three arcs were associated 
with the most cycled flow (Fig. 8.7). This large contribution of 3 arc cycles to 
cycled flow was primarily the result of one or more cycles involving the flow 
from DN to a macroalga to either seston or sediments and back to DN. The 
macroalga involved in these important cycles changed from Graciiaria in spring 
to Uiva during both summer periods. All cycles but one involved DN, 11 involved 
sediments, and 10 involved seston. Each primary producer was involved in four 
cycles. Thus, although macroalgae were involved in a limited number of cycles, 
their quantative contribution to cycling was important. Again, we find that network 
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Figure 8.7 Distribution of cycled fluxes according to the length of cycles by period in 
third-generation models. The number of arcs refers to the number of flows associated 
with cycles. For example "3 arcs" includes all cycles that involve three flows connecting 
three compartments. 

analysis provides a unique view of model structure and inferentially nutrient 
cycling. 

4.4. Intergenerational Comparisons 

As previously indicated, we consider modeling an iterative process, as is 
science in general. Better information can be used to produce more reliable 
models, and each generation of model can promote the search for better informa
tion. In this section we provide examples of how analysis results compare among 
models of different generations. Model structure changed with increased numbers 
of compartments and flows with successive generations (Table 8.8). As a result, 
the most direct comparisons can be made with system-level attributes. Total 
systems throughputs were most similar for generations 1 and 3 in spite of the 
doubling of number of flows in the latter. The second-generation models had the 
highest (VDG2B) and lowest (VDG2C) values. The high value was largely the 
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Table 8.8 Comparison of selected traits of three generations of models and their 
network analyses concerning nitrogen cycling in the Valle di Gorino 

Index VDGIA VDG2B VDG2C VDG3A VDG3B VDG3C 

Compartments 4 5 6 6 6 6 
Number of flows 10 16 19 21 21 21 
Total systems 85 221 68 94 116 87 
throughput 

(mrnole N m-2 day-I) 

Dependency 
(as percentage) 
DN on ULV 5 <1 I 3 39 
DN on GRA NA NA 4 4 3 3 
DN on SES 9 <1 6 17 11 36 
DN on SED 10 <1 34 2 2 20 
DN on DN 14 <1 3 4 5 15 

Input of DN (as fraction of atom per 1 atom of DN input) 
to PHY 0.57 0.00 0.00 0.01 0.02 0.02 
to ULV 0.32 1.00 0.57 0.09 0.54 0.48 
to GRA NA NA 0.45 0.28 0.21 0.42 
from UL V to SED 0.05 0.11 0.08 0.01 0.06 0.21 
from GRA to SED NA NA 0.12 0.04 0.16 0.04 
from SED to DN 0.08 <0.01 0.03 om 0.01 0.07 
denitrification 0.48 0.11 0.18 0.06 0.27 0.35 

Biogeochemical cycles 
Number 10 3 6 13 13 13 
Number of nexuses 6 3 4 4 3 4 
FCI 15.8 0.34 13.8 9.5 11.4 29.2 

NA refers to not applicable. 
Season designations are A for spring, B for early summer, and C for dystrophy in July. 

result of a large estimate of macroalgal primary productivity during early summer 
compared to VDG3B. This estimate was reduced with better data analysis for 
the third generation. The low value resulted from several small fluxes throughout 
when compared to the third generation model of dystrophy (VDG3C). As one 
might expect, greater information stabilizes "mean" values, in this case, the 
values used to represent fluxes for set time intervals. 

Lower FCI values and DN recycling for early summer and July were also 
found for the second generation when compared to the respective third-generation 
models (Fig. 8.8). This is to be expected as the second-generation models had 
a reduced number of cycles; increased denitrification; and, during early summer, 
high rate of sequestering of nitrogen by macro algae compared to the third genera-
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Figure 8.8 Comparison of models by generation for total systems throughput (mmole N 
m-2 day-I), DN recycling (percentage total systems throughput) and Finn cycling index 
(FIC, percentage total systems throughput). Model designations are given in text. 

tion. The rates of denitrification used for the second generation were much greater 
than those used by us for other systems (Christian et aI., 1993), had produced 
considerable imbalance in sediment nitrogen, and were based on a technique that 
might promote overestimation (EI-Habr and Golterman 1990). Denitrification 
rates are particularly hard to estimate (Seitzinger 1988). In the third-generation 
models, we used measured estimates as maximum limits. Nitrate reduction rates 
were measured and considered twice the rates of denitrification (Hattori 1983). 
Rates were then modified by comparing these with mass balance requirements. 
Again, by putting a rate in context of other flows, one may be forced to revaluate 
its accuracy, as we have done. 

Overall, however, by comparison to similar models of other coastal ecosystems, 
the intergenerational differences are small. Total systems throughput values for 
all VDG models were large compared to two lagoons in the Ebro River delta 
(Christian et al. 1993, 1996; Fores et aI. 1994) and in the range of highly productive 
ricefields (Fores and Christian 1993) and an eutrophic estuary (Christian et 
al. 1992). Similarly, FCI values for all generations were low compared to those 
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for other systems, and interperiod trends were as expected for both the second
and third-generation models. 

Quantitative precision and accuracy should increase with greater reliability of 
information used for model construction. For our models, the general trends that 
we have inferred have not been modified significantly and may confirm our 
perceptions of the system. However, changes in trends over generations may 
also provide valuable information to the scientist and force him or her to under
stand why a change occurred and to reevaluate the assumptions associated with 
that change. 

5. Conclusions and Subsequent Directions 

Three generations of static, multicompartmental or structured models of nitro
gen cycling of the Valle di Gorino were developed and subjected to network 
analysis to formalize understanding of the system. Several inferences concerning 
cycling were made from the analyses: 

1. Recycling represented a small percentage of total nitrogen flow within this 
system with maximum, but still small, recycling occurring during dystrophy. 

2. Imports of DN are largely sequestered within macroalgae during their growth, 
and the relative contribution of each macroalgal species to recycling changes 
over time. 

3. The decomposition of Viva during July's dystrophy dominates nitrogen 
cycling. 

4. Denitrification may cause a significant loss of N, but the major source of 
nitrate within the sediments is probably from the deposition and decomposi
tion of organic matter to sediments followed by nitrification and not from 
nitrate uptake from the water column. 

The first model, constructed in 1991 with values largely based on conjecture, 
was developed as a crude tool to address the ongoing research. Consistent research 
was lacking on such areas as external loading, benthic fluxes and nutrient uptake 
by macroalgae over the growing and dystrophic periods. Early field studies did 
reveal regular trends in nutrient concentrations in the water column, potential 
for nitrogen limitation of primary production and nitrogen pulses conforming to 
the life cycle of U. rigida (Viaroli et al. 1992; Viaroli and Naldi 1993). Early 
experience in modeling did provide more precise hypotheses about the key role 
of VIva in the functioning of the lagoon; by storing and immobilizing nitrogen 
in the spring and by allowing release during dystrophy. Subsequently we improved 
our research program to consider the following: (I) trends in hydrological and 
hydrochemical variables and in external loading; (2) seasonal succession of 



190 R. R. Christian, M. Naldi, and P. Viaroli 

Table 8.9 Nitrogen content in Viva and the water column within the Valle di Gorino 
during field studies from April through August 1992 

Vlva-N Total N in Water %DON 
Date (mmole N m-2) (mmole N m-2) %DIN of Total N in Water %PON 

9 Apr. 381.0 30.2 1.8 75.7 22.5 
5 May 635.4 50.4 2.7 70.0 27.3 
9 Jun. 374.7 42.2 3.7 84.2 12.1 
7 Jul. 162.8 32.4 2.9 87.7 9.4 
21 Jul. 0.0 60.7 3.9 70.2 25.9 
28 Jul. 0.0 90.0 10.5 52.2 37.3 
4 Aug. 0.0 54.5 11.9 48.0 40.1 

macro algae and phytoplankton; (3) production and respiration of both macroalgal 
and plankton communities; (4) changes in the elemental composition of macroal
gal biomass; and (5) decomposition of macroalgal detritus and its effects on 
sediment oxygen demand, water-sediment nitrate reduction, and regeneration of 
ammonium and soluble reactive phosphorus (Viaroli et aI., 1993 a,b). This second 
series of studies was syneristic with modeling by being in part directed by 
model construction needs and analysis results and by providing information for 
better models. 

There was significant agreement between the improved model output and 
experimental and field results. In the models, nitrogen cycling was least dependent 
on Viva during the two growing phases (Fig. 8.5). The same interpretation was 
made of our 1992 field data (Table 8.9). Viva is seen as a sink during active 
growth. When Viva undergoes decomposition, increased nitrogen cycling occurs 
through both organic dissolved and particulate (seston) forms, but DIN remineral
ization seems relatively negligible. Direct remineralization of Viva nitrogen is 
small, and much DIN is released after further processing. This was evidenced 
in both field and laboratory results (Viaroli and Naldi 1993; Viaroli et aI. 1993a) 
and in the length of quantitatively important cycles within the models of dystrophy 
(Fig. 8.7). 

Modeling helped us develop more appropriate experimentation in the field. In 
1993, we tested the hypotheses involving the sequestering of nitrogen by Viva 
during growth and subsequent ineffective direct recycling and mineralization to 
DIN during dystrophy. Three experiments sere conducted with light and dark 
benthic chambers and bell jars, providing different combinations of plankton, 
sediment, and Viva: one in the Sacca di Goro and two in the lagoon Etang du 
Prevost, France (Viaroli et aI. 1993b,c). Here we summarize results from Etang 
du Prevost. Over a 3-day period in the dark 14% of the initial nitrogen in 
Viva was accounted for as total dissolved nitrogen (TDN), but only 6% was as 
ammonium. In the light TDN accounted for only 8% of the initial macroalgal 
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nitrogen, and ammonium was 1 %. These results can be interpreted to confirm 
the hypothesis that released nitrogen during decomposition included considerable 
organic material. 

The general results of field and laboratory studies, modeling, and network 
analysis are in agreement with a conceptual model of macroalgal growth and 
decomposition. Nutrient cycling shifts from a spring growing phase through early 
summer to a decomposition phase (Fig. 8.9). If water renewal is slow, as observed 
in the Valle di Gorino, the rapid changes from the growing to stationary to 
decomposition phases may produce an oxygen imbalance which in tum causes 
increased reducing conditions and anoxia. The rapid and strong anoxic decomposi
tion of Viva does not release all the energy of the decaying detritus; part of this 
energy accumulates in reduced organic compounds and part as sulfides. Sulfide 
production decouples carbon cycling and energy flow, and organic matter decom
position is incomplete. 

Nitrogen seems to be one of the most important factors in the "bottom-up" or 
resource availability control of primary production in the Valle di Gorino. During 

+ 
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organic matter accumulation 
nitrogen storage 

<: high biomass. shading, ... 
dystrophy switch 

nitrogen and oxygen deficit. ... 

sulphide· reduced 

NOT-PRODUCTIVE 
organic matter decomposition 
oxygen deficit 
low N.recycling 
high P.recycling 

Figure 8.9 Conceptual model representing mechanisms and processes involved in the 
dystrophic crisis. 
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the growing phases, nitrophilous macroalgae take up most of the available DIN 
and make it more limiting to other primary producers. Viva and Graciiaria 
dominate with a depression of the planktonic food web. The dystrophic event 
seems to start inside and beneath the macroalgal mats and overlaps the processes 
taking place in the surface sediments: inorganic nutrient release, potential nitrate 
losses due to nitrate reduction, and imbalance in organic matter decay and nutrient 
regeneration. The trophic structure is dominated by a loop that includes macroal
gae and associated microbial communities. Incomplete decomposition fosters 
continued nitrogen limitation. 

The temporal uncoupling between growth and decomposition of macro algae 
with incomplete recycling requires further study. We are considering the extent 
to which the life cycle of Viva and intensity of its production in the Valle di 
Gorino actually provide negative feedback for the macro algal growth. The ques
tion remains open as it is difficult to distinguish between the effects of external 
factors, such as loading, from internal ecological processes. Currently, we are 
focusing on field studies concerning the decoupling of primary production and 
decomposition processes as having key responsibility for system control. Al
though static models have been most helpful to this point; in matters that involve 
important temporal changes in the mechanisms of control, dynamic modeling 
may be needed for future evaluations. The interface between dynamic models 
and network analysis remains an interesting direction for the future. 
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A Modeling Approach to Elucidating 
the Distribution and Rates of 
Microbially Catalyzed Redox Reactions 
in Anoxic Groundwater 

Derek R. Lovley and Francis H. Chapelle 

1. Introduction 

Microbially catalyzed redox reactions have an important influence on the 
chemical composition of many groundwaters. For example, carbon dioxide pro
duction during the oxidation of organic matter drives carbonate and silicate 
mineral dissolution in pristine carbonate aquifers and thus has a significant impact 
on water quality and secondary porosity (Chapelle 1993). Microbial reduction 
of Fe(I1I) to Fe(II) generates undesirably high concentrations of dissolved iron 
in aquifers (Lovley et al. 1990; Chapelle and Lovley 1992) and microbial sulfate 
reduction and methane production result in the accumulation of sulfide and 
methane (Thorstenson et al. 1979). The degradation of organic contaminants in 
polluted aquifers is a major mechanism for attenuating the transport of contami
nants (Salanitro 1993; Lyngkilde and Christensen 1992; Baedecker et al. 1993). 
Thus, to better understand existing groundwater quality, and to predict the effect 
of perturbations on groundwater quality, it is necessary to have information on 
the types of microbial processes taking place in the subsurface and on the rates 
of these processes. 

One way to study microbial process in aquifers is to sample the aquifer 
sediments and measure the rates of the processes of interest. However, this 
technique has several limitations. One is that it is generally expensive to sample 
the sediments of all but the shallowest of aquifers. Most measurements of micro
bial metabolism in incubated aquifer sediments are also expensive, labor intensive, 
and often technically difficult. Furthermore, as discussed later, activities measured 
in aquifer sediments incubated in the laboratory may bear little relationship to 
in situ activities. 
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We have attempted to develop techniques in which the types of microbial 
processes and their rates could be discerned through analyses of groundwater 
chemistry. Wells for sampling groundwater are often already in place in aquifers 
under investigation. It also is often easier to justify the cost of drilling for well 
installation than for sediment collection because once a well is installed, the 
groundwater can be sampled repeatedly over long periods of time, whereas 
sediments can only be collected at the time of drilling. Furthermore, chemical 
analyses of groundwater are generally simple and relatively inexpensive. Here 
we demonstrate how mathematical modeling of microbial metabolism and geo
chemistry have been used to elucidate the distribution and rates of microbial 
processes in groundwater. 

2. Use of H2 Concentrations to Predict Terminal Electron-Accepting 
Processes in Anoxic Groundwater 

2.1. Model for H2 Concentrations in Anoxic Sedimentary Environments 

H2 is an important intermediate in the decomposition of organic matter in 
many anoxic ecosystems. H2 is produced from the fermentation of organic matter 
and in methanogenic systems, and is also generated in the oxidation of short
chain fatty acids. The principal sinks for H2 in anoxic sedimentary environments 
are microorganisms that couple the oxidation of H2 to the reduction of inorganic 
electron acceptors such as nitrate, Mn(IV), Fe(I1I), sulfate, and carbon dioxide. 
It is the competition for H2 (as well as other substrates, most notably acetate) 
among the various H2-consuming populations that, accounts for the often observed 
segregation of anaerobic processes in sedimentary environments (reviewed in 
Lovley and Chapelle 1995). When Fe(III) is readily available, Fe(III)-reducing 
microorganisms are able to maintain H2 concentrations at levels too low for 
sulfate reducers or methanogens to metabolize. When Fe(III) is no longer available 
but sulfate is not limiting, sulfate reducers maintain H2 too low for methanogens 
to metabolize. As sulfate levels become limiting sulfate reducers are no longer 
able to maintain H2 below the minimum threshold necessary for methanogenesis 
and methane production become the predominant terminal electron accepting 
process. 

A large number of studies (reviewed in Lovley and Goodwin 1988) on H2 
uptake by either natural assemblages or pure cultures of sulfate reducers and 
methanogens have indicated that, as long as the H2 does not fall below a minimum 
threshold necessary for H2 uptake, H2 uptake can be modeled with Michaelis
Menten kinetics: 
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(1) 

where v is the velocity of H2 uptake, Vrnax is the maximum rate of H2 uptake per 
unit of biomass, [H2] is the concentration of dissolved H2, K is the H2 concentration 
at which v is one half V rna" and B is the amount biomass of the Hrconsuming popu
lation. 

The growth rate of a given Hrconsuming population can be modeled as 

dB at = (v x Y) - (b x B), (2) 

where dBfdt is change in the biomass of the Hrconsuming population over time; 
Y is the amount of biomass produced per H2-consumed; and b is the cell decay 
coefficient, which includes all sources of loss of cellular material such as mainte
nance energy requirements, cell lysis or death, and grazing by predators. 

It is assumed that in many anoxic sedimentary environments, H2 production 
and consumption approach steady conditions such that the rates of H2 production 
and consumption are equal and there is no net change in the size of the 
H2-consuming population (dBfdt = 0). When dBfdt is replaced with 0, Equations 
(1) and (2) can be combined and solved for [H2] with the following result: 

K 
H2 = . 

(Vrnax x Yfb) - 1 
(3) 

According to this model, under steady-state conditions, the concentration of 
dissolved H2 in anoxic groundwater should be dependent solely on the physiologi
cal characteristics of the microorganisms consuming the H2. 

As previously discussed (Lovley and Goodwin 1988), Vmax and b are expected 
to remain relatively constant, regardless of the microbial population consuming 
the H2. However, the K and Y parameters are different for different types of 
Hrconsuming microorganisms. In general, the higher the potential energy yield 
from the H2 oxidation the lower the K and the higher the Y (Lovley and Goodwin 
1988). The potential energy yield for H2 oxidation with the various electron 
acceptors in anoxic environments is: nitrate > Mn(IV) > Fe(IIl) > sulfate > 
methane and thus the expected pattern of H2 concentrations in different types of 
sediments is nitrate-reducing < Mn(IV)-reducing < Fe(III)-reducing < sulfate
reducing < methanogenic (Lovley and Goodwin 1988). This pattern has consis
tently been observed in a wide variety of anoxic aquatic sediments (Lovley and 
Goodwin 1988) and ground waters «Lovley et al. 1994; Vroblesky and Chapelle 
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1994; Chapelle et al. 1995) (Fig. 9.1). Remarkably, not only is the pattern of Hz 
concentrations the same in different types of sediments, but also, the absolute 
values of dissolved H2 for a given microbial process all fall within a narrow 
range. The constancy of Hz concentrations for a given process in such a wide 
diversity of environments suggests that microorganisms with similar physiologi
cal characteristics for Hz uptake are widespread. 

It was previously suggested that further evidence supporting the hypothesis 
that the Hz-consuming microorganisms control the steady-state Hz concentrations 
in sediments was that if the K, Y, and Vmax values for pure cultures of Hz-
consuming sulfate-reducers or methanogens were put into Equation (3), along 
with a b value obtained for Hz-consuming methanogens living in sediments, then 
the calculated steady-state Hz concentrations for sulfate reduction and methano
genesis were comparable to the H2 concentrations measured in sediments in 
which sulfate reduction or methanogenesis predominated (Lovley and Goodwin 
1988). However, the Y values that were used in the previous calculations were 
lOO-fold higher than the actual values because there was a printer's error in the 
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Figure 9.1 H2 concentrations observed in aquatic sediments (Lovley and Goodwin 1988) 
and groundwater (Lovley et al. 1994) in which the stated terminal electron accepting 
processes predominated. 
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table that the Yvalues were taken from (Robinson and Tiedje 1984). Thus, using 
the correct Y values, the calculated H2 values would be - lOO-fold higher than 
those observed in sediments. 

A subsequent study has indicated that the K estimates for that were used in 
the original calculations were also probably wrong (Giraldo-Gomes et al. 1992). 
When the K for methanogens was estimated by a novel technique designed to 
avoid mass transfer limitations, the estimated K was two orders of magnitude 
lower than the previous K estimates. This lower K value would then compensate 
for the error in the Yvalues in the original calculations and again give calculated H2 
concentration close to what has been observed in methanogenic aquatic sediments. 
However, the large difference in estimated K values with different methods 
emphasizes that extreme caution is required in trying to extrapolate from pure 
culture data to sediments. Calculations based on culture data may not be suitable 
to prove or disprove models of sedimentary metabolism. 

2.2. Application of H2 Model to Anoxic Ground Water 

This simple model for H2 metabolism not only explains the pattern of dissolved 
H2 that is observed in anoxic sedimentary environments, but also provides a 
technique to determine which microbially catalyzed redox reactions predominate 
in groundwater. Historically, redox reactions in anoxic groundwater have been 
evaluated in terms of equilibrium thermodynamics and the master variable pe 
(Lindberg and Runnells 1984; Hostettler 1984; Fish 1993, and references therein). 
The hope was that with measurements of redox potential with electrodes or 
through calculations of redox potential from an analysis of groundwater chemistry 
it would be possible to define which redox reactions predominated in a given 
groundwater. This approach has proven not to be useful in practice primarily 
because groundwaters are rarely if ever at redox equilibrium and because redox 
electrodes do not respond to most of the important redox couples in groundwater 
(Lindberg and Runnells 1984; Hostettler 1984; Fish 1993, and references therein). 
However, with H2 measurements it has been possible to reliably predict which 
anaerobic processes predominate at a given site. 

An example of this was in a study of microbial metabolism in a shallow, 
petroleum-contaminated aquifer in Hanahan, South Carolina (Lovley et al. 1994). 
A large area of the aquifer downgradient from the source of contamination 
was anoxic. Methane production and Fe(III) reduction were important anaerobic 
processes in the anoxic zone. However, it was impossible to localize the zones 
of Fe (III) reduction and methane production with standard geochemical analyses 
of the groundwater because there were high concentrations of the products of 
Fe(III) reduction (Fe(II)) and the methane production (CH4) even in zones where 
Fe(III) reduction or methane production were not taking place. In a study at two 
sites within the aquifer, measurements of dissolved H2 concentrations in the 
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groundwater predicted that Fe(III) reduction predominated at one site, whereas 
methane production was the terminal electron accepting process at the other. 
Measurements of microbial processes in laboratory incubations of sediments from 
the two aquifers confirmed that the dissolved H2 concentrations had accurately 
predicted the distribution of the microbial processes. 

H2 measurements can also be helpful in elucidating the distribution of anaerobic 
processes in deep pristine aquifers. In many such aquifers, there is an orderly 
succession of anaerobic processes that can be inferred through monitoring changes 
in the concentrations of substrates and/or products along the groundwater flowpath 
(see next section). However, a limitation of the geochemical modeling approach 
is that many of the reactants and products of important redox reactions reactions 
are insoluble (i.e. particulate organic matter, Fe(III) and Mn(IV) oxides, sulfate 
minerals, sulfide, and Fe(II) and Mn(II) minerals) or may diffuse in from the 
neighboring confining beds (i.e., sulfate and dissolved organic matter) (Chapelle 
and Lovley 1990, 1992; McMahon and Chapelle 1991; Plummer et al. 1990). 
Thus, numerous assumptions about which compounds are being consumed and 
produced are often required. 

An example of this was a study of an anoxic reach of the Black Creek aquifer 
in South Carolina (Chapelle and McMahon 1991; McMahon and Chapelle 1991 a). 
The accumulation of dissolved inorganic carbon along the ground water flow 
path indicated that organic carbon was being oxidized to carbon dioxide. However, 
there was not sufficient loss of potential electron acceptors or accumulation of 
reduced products to account for the amount of carbon dioxide produced. H2 
measurements predicted that the organic matter oxidation was coupled to sulfate 
reduction. Subsequent analysis of sediment cores demonstrated that sulfate to 
support sulfate reduction was diffusing into the aquifer from the surrounding 
confining beds and that the sulfide that was produced from sulfate reduction was 
precipitating as iron sulfide. Again, H2 measurements accurately predicted the 
anaerobic process in an aquifer where standard geochemical analysis of ground 
water could not. 

3. Estimating Rates of Microbial Processes with Geochemical Modeling 

The limitation of the H2 technique is that it can only specify which microbial 
processes predominate in a given section of an aquifer, it can not be used to 
determine the rates of microbial processes. However, it is often possible to 
estimate the rates of microbial processes in aquifers based solely on changes 
in water-chemistry changes along groundwater flowpaths. The basic equation 
describing water-chemistry changes as groundwater moves along a one-dimen
sional flowpath in an aquifer system may be written (Konikow 1977): 
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D 2PCldx2 - v dCldx - CHEMIE = dCldt, (4) 

where (when L is the flowpath length, T is time, and M is mass of the solute): 

D = coefficient of hydrodynamic dispersion (UT~I), 
C = the concentration of a solute (ML~3), 
x = distance in the direction of groundwater flow (L), 
v = velocity of groundwater flow (LT~I); 

CHEM = chemical/biological reaction source (+) or sink (-) 
of solute C per unit volume of aquifer (ML~311), 

E = aquifer porosity (dimensionless). 

Equation (4) is a general statement of the principle of the conservation of mass 
and is applicable to all aquifer systems. The first term on the left side of Equation 
(4) incorporates the effects of hydrodynamic dispersion of a solute as it moves 
with flowing ground water. The second term on the left side of Equation (4) 
accounts for the effects of connective mixing on solute concentrations. The 
CHEM term is the summation of all chemical and/or biological reactions that 
serve either as a source or a sink of the solute and, depending on the scale of 
the system and types of reactions under consideration, can be formulated in a 
variety of ways, as illustrated later. 

3.1. Rate of Organic Matter Oxidation in a Regional Aquifer System 

If groundwater flow and solute transport is considered on a regional scale 
(flowpath lengths on the order of tens of kilometers), the influence of hydrody
namic dispersion (term 1) and convective mixing (term 2) on overall solute 
concentrations are often negligible and Equation (4) can be simplified as 

CHEM = dCldt. (5) 

Mathematically rigorous methods (Plummer et al. 1983) have been developed 
to identify operative chemical/biological processes in groundwater systems and 
to quantify amounts of mass transfer into or out of solution. These methods are 
collectively known as geochemical modeling. Geochemical modeling is based 
on the principle of mass conservation in which changes in water chemistry along 
a flowpath can be explained as: 

Initial water composition + Reactants (6) 
= Final water composition + Products. 



A Modeling Approach to Elucidating the Distribution 203 

This principle can be mathematically expressed as (Plummer et al. 1983) 

( i oopbp,k = Amrot,k)' k = 1, j, 
p=! 

(7) 

Which states that the change in total moles of a particular element k, (Amrot,k) is 
equal to the sum of all the sources and sinks for element k. This relationship 
holds for 1 through j elements. The sources and sinks may include dissolution, 
precipitation, microbial degradation, gas transfer, and so forth, for P phases (i.e., 
minerals or gases) along the flowpath where 00 is the number of moles reacting 
and b is the stoichiometric coefficient for the element in the pth phase. In practice, 
Arot,k values are derived directly from groundwater chemistry data using equations 
of the form 

Arot,k = mk (initial water) - mk (final water). (8) 

An example of an application of this approach to microbial processes was the 
attempt to estimate rates of organic matter oxidation in three aquifers in a regional 
groundwater system in the Atlantic Coastal Plain of South Carolina (Chapelle 
and Lovley 1990). In this system, changes in groundwater chemistry were domi
nated by microbial CO2 production which drove the dissolution of magnesium
bearing carbonate shell material in the aquifers: 

The calcium and magnesium liberated by this reaction could then exchange with 
sorbed sodium: 

'Ca2+ + NalCclay) ~ Ca(clay) + 2Na+, 
Mg2+ + Nalclay) ~ Mg(clay) + 2Na+. 

(10) 

(11) 

An added consideration was the fact that residual seawater present in the aquifer 
mixed with the incoming freshwater and served to increase concentrations of 
sodium and chloride. 

From this information, mass balance equations that account for the observed 
water chemistry changes along aquifer flowpaths could be formulated. For exam
ple, the change in dissolved inorganic carbon (AMe) is equal to the sum of carbon 
dioxide produced by microbial metabolism (1l1c02) and the carbonate shell material 
(msm) dissolved: 

(12) 



204 D. R. Lovley and F. H. Chapelle 

The carbonate shell material contained 98 mol % calcium and 2 mol% magnesium. 
Thus, the change in dissolved calcium along each flowpath segment (AMea) was 
equal to O.98msm minus the amount of calcium that was removed from solution 
by sorption onto clays (rnea(elay»): 

AMea = O.98msm - mea(elay), (13) 

and the change in dissolved magnesium (AMMg) was 

(14) 

The change in sodium (AMNa) along each flowpath segment was set as the amount 
of sodium resulting from calcium-sodium (2rnea(elay») and magnesium-sodium 
(2mMg(elay») exchange as well as sodium coming from the residual seawater (msw): 

i1MNa = msw + 2rnea(clay) + 2mMg(clay). (15) 

The amount of chloride from the seawater (i1MCl) was represented as: 

(16) 

These five mass balance equations (Equations [12] to [16]), with five unknowns, 
could be solved algebraically to determine the mass of carbon dioxide produced 
by microbial metabolism: 

(17) 

However, computer programs designed to formulate and solve these kinds of 
mass-balance problems in geochemical modeling are presently available (Park
hurst et al. 1982) and make the procedure much easier. 

Once the time for groundwater to travel between two points along a ground
water flowpath is known then a rate of carbon dioxide production can be calcu
lated. The approximate velocity of groundwater flow is given by Darcy's equation: 

where 

v = K(dhldL)IE, 

v = average ground-water velocity (LT-1), 

K = hydraulic conductivity (LT-1), 

dhldl = hydraulic gradient (dimensionless), 
E = is aquifer porosity (dimensionless). 

(18) 
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Rates of microbial carbon dioxide production (R-C02) could be calculated as: 

R - CO2 = (Illco x v)/L. 
2 

(19) 

Using this method, overall rates of microbial carbon dioxide production in the 
Black Creek, Middendorf, and Cape Fear aquifers were estimated to be on the 
order of 10-5 mmoles of CO2 per liter of groundwater per year. In contrast, 
depending on the incubation technique, laboratory incubations of sediment mate
rial from these aquifers yielded estimated rates of organic matter decomposition 
that were 102 to 106 times faster (Chapelle and Lovley 1990). Considerations of 
the age of the aquifer sediments and the amount and microbial availability of 
organic mater in the sediments and groundwater clearly indicate that the high 
estimates from laboratory incubations can not be correct and that the geochemical 
modeling technique must more closely approximate in situ rates of organic matter 
decomposition (Chapelle and Lovley 1990). The only other environment known 
to have such low rates of microbial metabolism is the cold bottom waters of 
deep ocean basins (Williams and Carlucci 1976). 

3.2. Compound-Specific Rates of Contaminant Biodegradation 

Geochemical modeling can also be used to estimate the rates of microbial 
decomposition of specific organic compounds in groundwater. In the simplest 
case, where degradation of the organic can be assumed to follow first-order 
kinetics, the CHEM term in Equation (4) can be replaced by: 

(20) 

where kd is the first-order rate constant (T-1). Most studies on degradation of 
organic compounds are concerned with the local scale, where groundwater flow
paths are considered over distances of tens or hundreds of meters. In these 
instances, the effects of hydrodynamic dispersion and convective mixing are 
relatively important in solute transport and they must be included in Equation 
(4). Thus, the equation for the first-order decomposition of an organic compound 
on the local level can be expressed as 

(21) 

Equation (21) can be simplified for the special case where concentration changes 
approach steady-state conditions. At steady state, Equation (20) simplifies to an 
ordinary differential equation, 
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(22) 

that is easily solved given appropriate boundary conditions. For boundary condi
tions of C = Co at x = 0, and C ~ 0 as x ~ 00, the solution of Equation 
(22) is 

2 112 C(x) = Co expiry - (v + 4Dkd) JI2D}x. (23) 

If a hydrologic system has been well-characterized, so that reasonable estimates 
can be made for the coefficient of hydrodynamic dispersion (D) and groundwater 
velocity (v), and if water-chemistry data are available to describe concentrations 
of C in time and space, then estimates of kd can be obtained by curve-fitting 
calculated concentration changes with measured concentration changes. As an 
example, this method can be used to estimate rates of toluene degradation in 
the contaminated shallow aquifer located in Hanahan, South Carolina, that was 
mentioned earlier in connection with H2 measurements. The aquifer was polluted 
by gasoline and jet fuel spills in the 1960s, and groundwater contaminated with 
benzene, toluene, and xylene has emanated from the site ever since. Because 
contaminated groundwater has been transported from the site for such a long 
period of time, the steady-state assumption is a reasonable approximation. Exten
sive hydrologic testing, including tracer tests estimates of hydrodynamic disper
sion, indicate that D and v are approximately 0.038 fe/day and 1 ftlday. Using 
these parameters, it is evident that, allowing for inevitable variability in the data, 
apparent biodegradation rate constants for toluene degradation are bracketed by 
kd values of about 0.01 and 0.005 day-l (Fig. 9.2). 

Studies in which the rates of oxidation of [ring_14C]-toluene to 14C02 were 
monitored in laboratory incubations of sediments from this site indicated that 
under the sulfate-reducing conditions that predominate in the zone modeled, the 
kd values for toluene oxidation were on the order of 0.009 day-I (F. H. Chapelle 
and P. M. Bradley, unpublished data). Thus, in contrast to the deep subsurface 
studies in which there was poor agreement between estimates from laboratory 
incubations and geochemical modeling, laboratory estimates and geochemical 
modeling gave similar rate estimates in this shallow, contaminated aquifer. 

4. Conclusions 

These studies have demonstrated how relatively simple modeling of microbial 
processes can aid in evaluating the geochemistry of groundwater and how model
ing of geochemistry can help in elucidating microbial processes. The combined 
approach of using dissolved H2 concentrations to define which microbially cata-
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Figure 9.2 Concentrations of toluene near the Hanahan, South Carolina, site measured 
in July 1992 (0), November 1992 (~), and June 1993 (e) superimposed on solutions of 
equation 23 for kd values of 0.01 and 0.005 day-l and boundary conditions of 830 and 
1560 f.,lglL, respectively. 

lyzed redox process are taking place in subsurface environments and using geo
chemical modeling to estimate the rates of the microbial processes permits detailed 
examination of microbial metabolism without sampling the aquifer sediments. 
Since sampling aquifer sediments is generally much more costly and requires 
much more technical expertise than sampling groundwater and since, at least in 
some instances, results from laboratory incubations of aquifer sediments fail to 
reflect in situ conditions, whenever possible, a modeling approach to the study 
of microbial processes in groundwater should be considered. 
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From the Ground Up: The Development 
and Demonstrated Uti I ity of the 
Ruminal Ecosystem Model 

R. L. Baldwin and K. C. Donovan 

1. Introduction 

Our understanding of rumen digestion and microbial ecology has developed 
in several stages. The first was recognition in the 1940s of the fact that the rumen 
microbes playa major role in the digestive process, producing volatile fatty acids, 
and that they are a major source of nutrients to the ruminant animal (Hungate 
1966). This recognition was followed by studies that led to the isolation, taxo
nomic identification, and enumeration of microbes present in the rumen (Bryant 
1959). These studies were followed by studies of pure cultures of rumen microbes 
in which their physiological properties and metabolism were defined. In addition, 
interactions among rumen microbes were evaluated. This area of inquiry is not 
complete, even though activity has been sporadic and limited during recent 
years. The final phase of our evaluation of the rumen as an ecosystem requires 
quantitative and dynamic analyses of the extent to which microbes express their 
characteristics in mixed cultures and in vivo. To achieve this goal we must 
understand microbial interdependence and competition in the rumen (Russell and 
Respell 1981). Progress toward this goal has been limited and may require several 
decades for adequate resolution. With the exception of the model of Russell and 
Allen (1984) of the behavior of Streptococcus bovis and Ruminococcus albus in 
coculture, no dynamic, mechanistic models of interactions among rumen microbes 
have been published. This may well be because of a lack of interest in modeling 
the system, a lack of required data, a lack of opportunities to undertake the 
coupled modeling and experimental analyses required to make progress, or all 
of these. Whatever the case, this limitation clearly limits the range of models of 
ruminant digestion to those that consider the rumen microbes in aggregate or as 
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functional groups. Discussions of models of rumen function in this chapter reflect 
this reality. 

2. Balance Models of Rumen Digestion 

Most rumen microbiologists and ruminant nutritionists have used balance 
models in teaching and writing (Wolin 1960; Hungate 1966). Examples of balance 
models frequently used in the past are presented in Table 10.1. These simplified 
models emphasize the requirement for maintenance of redox balance in anaerobic 
systems; illustrate the varied metabolic functions of rumen microbes and interac
tions among microbes; and, in part, demonstrate relationships among fermentation 
patterns and ATP yields. Although these simple balance models illustrate underly
ing metabolic considerations, they are misleading. For example, the high estimates 
of carbohydrate energy lost as methane energy in examples II and III (Table 
10.1) are inflated because carbohydrate and reducing equivalents used in support 
of microbial growth are not considered. This observation led to the view that 
more complex models must be used in quantitative evaluations of ruminant 
digestion. Such models must accommodate the fermentation of the several classes 
of carbohydrates by different microbes; fermentation of nutrients other than 
carbohydrates; the use of carbon, nitrogen, and reducing equivalents for microbial 
cell growth; and passage to and digestion of nutrients in the lower gut. This need 
led Reichl and Baldwin (1975, 1976) to develop balance models of ruminant di
gestion. 

Two balance models were constructed: an elemental balance model and a 
metabolic pathways balance model. These were, initially, constructed to provide 
convenience and accuracy in calculating rumen balance relationships from com
plete and partial fermentation data. The stoichiometric relationship developed in 
these models have been used in many subsequent models. The Reichl and Baldwin 
(1975, 1976) models were designed to aid investigators in evaluations of experi
mental data for internal consistency in terms of essential balance relationships. 
Fermentation data had to be input to these models. These were not predictive 
models. 

Murphy et al. (1982) developed an analytical model to estimate proportions 
of fermentation products formed from specific chemical components of ruminant 
diets based on the molar proportions of acetate, propionate, butyrate, and valerate 
produced during fermentation of various diets. A premise in this study was that 
the eventual development of predictive models of rumen fermentation will require 
the availability of estimates of the proportions of products formed from specific 
chemical entities in the diet. Two sets of data were compiled from the literature. 
The first set of data was from 20 different publications on 137 animals fed forage 
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Table 10.1 Three early rumen balance models 

I. Glucose conversion to acetate and propionate: 
1.5 glucose + 3ADP ~ 3 pyruvate + 6H+ + 6e- + 3A TP 
1 pyruvate + ADP ~ COz + acetate + 2e- + 2H+ + A TP 
2 pyruvate + 8H+ + 8e- + [2ADP] ~ 2 propionate [+ 2ATP]a 

------ --

1.5 glucose + 6ADP ~ COz + acetate + 2 propionate + 6A TP 

Efficiency = 2 prop;o~at~ + 1 acetate* 100 = 94% 
. g ucose 

Energy loss as heat = 6.0% (does not exclude energy trapped in ATP) 

II. Glucose conversion to acetate and methane 
Organism A 

polysaccharide ~ 1.5 glucose-P 
1.5 glucose-P + 4.5ADP ~ 3 pyruvate + 6H+ + 6e- + 4.5ATP 
3 pyruvate + 6W + 6e- ~ 3 lactate 

Organism B 
3 lactate + 3ADP ~ 3 acetate 3C02 + 6Hz + 3ATP 

Organism C 
6H2 + 1.5COz + 1.5ADP ~ I.5CH4 + 3HzO + 1.5ADP 

1.5 glucose units + 9ADP ~ 3 acetate + 1.5 CO2 + 1.5CH4 + 3HzO 

Eff' . = 3 acetate * 100 -_ 610l lClency I 5 I ~/O . g ucose 

Methane loss = 30.5% Heat loss = 8.5% 

III. Standard rumen fermentationb 

100 glucose units ~ 107 acetate + 37 propionate + 28 butyrate + 59 methane + heat 
Net efficiency of fermentation = 75% 
Methane loss = 18% 
Net ATP yielda (depending on microbes considered) = 3.65 - 4.58 
Heat loss = 7% 

aATP yields can vary depending on microbe and metabolic pathway (Baldwin et al. 1970). 
bBased on Hungate (1966). 
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diets. The second set of data was from studies of 48, mostly concentrate, diets 
fed to 374 experimental animals. 

An arbitrary set of initial parameter values defining proportions of each sub
strate converted to each fermentation product were input to initiate the iterative, 
parameter estimation process. In sequential solutions, the parameter values were 
adjusted systematically using the simplex and steepest descent algorithms to 
minimize the weighted sums of squares of residual errors of prediction. Weight
ings of experimental data were based on the assumptions that measurements on 
a number of animals are more likely to be representative than are those based 
upon one animal. Standard errors of the final parameter values were estimated 
using the jackknife procedure. 

Estimated fermentation parameters for both the roughage (R) and concentrate 
(C) data sets are presented in Table 10.2. Evaluations of the uniqueness of 
parameters deduced using complex analytical models is difficult. Qualitative 
evaluations based on whether or not the parameter estimates are compatible with 
known fermentation patterns and diet-induced shifts in the relative numbers of 
major rumen microbes were satisfactory. 

A second set of evaluations involved comparisons of estimated parameter 
values with data derived from in vitro incubations of rumen microbes with 
soluble 14C-Iabeled substrates. These evaluations also indicated that the deduced 
parameter values reflect reality. Additional evaluations, which are not repeated 
here, suggested that parameter values deduced for acetate and propionate forma
tion from the several substrates were unique and correct. Parameter values defining 
protein (amino acid) fermentation and butyrate fermentation were found to be 
suspect. 

Russell et al. (1992) described the rumen element of the Cornell Net Carbohy
drate and Protein System (CNCPS; Search:Agriculture, 1990) for evaluating 
cattle diets and predicting energy and amino acids available to the ruminant 
animal. In this system, inputs required to predict microbial yields are feed carbohy
drate, which is divided into nonstructural carbohydrate (NSC) that includes sugars, 
pectin, and starch; structural carbohydrate (SC), which includes hemicellulose, 
cellulose, and lignin; and feed protein. Feed crude protein is partitioned into four 
fractions: nonprotein nitrogen; rapidly degraded soluble true protein; slowly 
degraded true protein; and unavailable protein. Relative amounts of each compo
nent of each feed degraded in or passed from the rumen are calculated from 
values tabulated for each feed ingredient. All nutrients in each feed ingredient 
are either digested in or passed from the rumen. 

Net microbial growth yields are dependent on the amount of NSC and SC 
digested in the rumen; a theoretical maximum growth yield, Yg, which is defined 
as maximum grams of bacteria formed per gram of carbohydrate fermented in 
the rumen in the absence of maintenance; a maintenance requirement; and the 
input of hemicellulose plus cellulose and lignin (neutral detergent fiber [NDFD 
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from forage in the diet. Thus, the Cornell system for microbial growth accommo
dates variation due to composition of feed ingredients and their digestibilities in 
the rumen, as well as microbial growth yields dependent on relative rates of 
fermentation, growth, maintenance energy expenditures, and availabilities of 
amino acids and peptides (Search:Agriculture, 1990). In our view, such accommo
dations are essential to adequate predictions of amino acid availabilities to rumi
nant animals. Thus, these criteria are emphasized in the evaluations of dynamic 
models in the next section of this chapter. 

3. Dynamic Models of Ruminant Digestion 

Most dynamic models discussed in this section were constructed to evaluate 
current data and concepts regarding ruminant digestion and metabolism and 
identify critical research needs. As a result, direct comparisons with the static 
models discussed in the previous section are not always relevant, because these 
models were often constructed with different goals, including prediction, in mind. 
In many cases, the development of dynamic models emphasized the concept that 
model evolution should proceed from the simple to the complex, with increasing 
complexity forced by failures of the model. The examples used herein were 
selected to illustrate this concept and to represent the evolution of dynamic 
models of rumen digestion supported by an interplay between experimental and 
modeling research. 

4. Early Dynamic Models 

The first detailed mechanistic and dynamic model of ruminant digestion we 
are familiar with was published by Baldwin et al. (1970). The stated modeling 
objectives were to illustrate the utility and flexibility of using mathematical 
models in support of research. Important results of the study were an updating 
of stoichiometric relationships for fermentation and microbial growth and recogni
tion of the fact that a number of microbial interactions have significant impacts 
on quantitative aspects of ruminant digestion. A number of provisions in the 
model were quite similar to those in some current models. 

Three composite microbial groups were defined: a cellulolytic group (A), 
which encompassed known fermentation and growth properties of Ruminococcus 
flavefaciens, R. albus, and Bacteroides (now Fibrobacter) succinogenes, plus 
methanogenic species; an amylolytic complex (B); and a complex (C), which 
included species with weak cellulolytic and very active saccharolytic activities 
such as those associated with Bacteroides ruminicola and several Butyrivibrio 
spp. Group A microbes utilized ammonia as a nitrogen source for growth, whereas 
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groups Band C used ammonia and amino acids. Limitations in nitrogen availabil
ity could disrupt microbial growth. Group C microbes compete for hydrolytic 
products from holocellulose. This accommodated the presence of high numbers 
of group C microbes on high-fiber diets. Based on the view that rumen microbes 
utilize and ferment chemicals rather than conventionally defined fiber, protein, 
and nitrogen-free extract, description of dietary inputs to the model in chemical 
terms was considered necessary. Potentially digestible holocellulose, soluble 
carbohydrate, starch, protein, and nonprotein nitrogen expressed as urea were 
chosen to describe dietary input. Based on application of similar reasoning to 
the animal, rates of production of individual volatile fatty acids (VFA) were 
traced. Insoluble substrates were separated into large (slow passage rate) and 
small (readily passed) particle pools. Equations in the model were mass action 
in form and parameter values required for solution of the model were calculated 
from steady-state (continuous feeding) data. A number of additional factors 
such as rates of protein and starch solubilization were considered but were not 
incorporated because of a lack of data. The already mentioned provisions are 
quite compatible with those discussed in the previous section with regard to the 
Cornell system. The major difference is that dynamic data can be used to challenge 
the dynamic model but not the static Cornell model. Failures of the dynamic 
model to stimulate dynamic data provided insights regarding types of data required 
to formulate subsequent models to better simulate reality. 

Mazinov and Nolan (1976) and Nolan (1975) developed and illustrated the 
use of a dynamic, analytical model of nitrogen metabolism in sheep. Their basic 
objective was to enable the interpretation and integration of 15N isotope dilution 
experiments, in which tracers were introduced at different sites. The submodel 
of nitrogen metabolism in the reticulo-rumen, omasum, and abomasum was 
premised on the view that quantitative assessments of the following are necessary 
(Nolan 1975): the quantities of soluble and insoluble protein and nonprotein N 
from the diet and of endogenous urea and other endogenous N compounds, and 
their contribution to the total pool of N compounds available for fermentation 
in the rumen; the extent to which these N compounds are degraded to simpler 
compounds (i.e., peptides, amino acids, and ammonia) or pass undegraded from 
the rumen; the extent to which peptides, amino acids, ammonia, and nucleic 
acids are assimilated by bacteria and protozoa, and the net rate of efflux of 
microbial N to the small intestine; the quantities of soluble N compounds absorbed 
through the walls of the forestomach, or their efflux in water; and the quantities 
of N recycled through pools within the rumen itself (e.g., as a result of ingestion 
of other microorganisms by protozoa, and lysis of bacteria). 

Further studies indicated that nitrogen exchange required consideration of 
transactions in the lower digestive tract and in the animal. Critical elements of 
the model included separation of diet inputs into protein and Non Protein nitrogen 
(NPN); explicit consideration of amino acid as well as ammonia use for microbial 
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growth; nitrogen digestion and secretion into the gastrointestinal tract (GIT); 
urea recycling to the GIT; turnover of extracellular and intracellular amino acids, 
as well as body protein; and N excretion in urine and feces. Equations used in 
the model were essentially mass action in form with lags to allow the fitting of 
experimental data. A very important aspect of this work was that the experimental 
approach of administering 15N compounds at multiple sites enabled "identifica
tion" of components of the model and computations of flux relationships 
among pools. 

Baldwin et al. (1977) presented a research model of ruminant digestion for 
use in evaluating factors that influence nutritive value. Specific objectives were 
development of a quantitative and dynamic model of the ruminant digestive 
process based on currently accepted and defensible concepts; identification of 
specific aspects of ruminant digestion where current generally accepted concepts 
and/or data are inadequate; and development of a model that could be used to 
test hypotheses regarding factors affecting nutritive value. Baldwin et al. (1977) 
stated the belief that a model suitable for these purposes should be comprised 
of mechanistic rather than empirical equations and satisfy the following criteria: 
applicability to all ruminant diets and feeding regimens with no changes in basic 
functional forms (equations), rate constants, or parameter values other than those 
required to describe feed input and the physiological status of the animal; accom
modation of current concepts regarding physical, chemical, biochemical, physio
logical, and microbiological factors that affect nutritive value and interactions 
amongst these; manageability in terms of size, i.e., fulfill the preceding objectives 
of model development without incorporating excessive detail; and provide outputs 
in a form comparable with a wide range of experimental data. Their model 
incorporated the following concepts: (1) the relative rates of fermentation in and 
passage from the rumen are central determinants of extent of digestion in the 
rumen, partition of digestion between the stomach and intestine, and amounts 
and patterns of nutrients absorbed by the animal; (2) both the physical and 
chemical properties of feedstuffs influence rates and patterns of rumen availability, 
utilization, and passage of nutrients; (3) microbes fulfill an essential, integrative, 
and variable role in ruminant digestion; (4) interactions among animals and their 
digestive processes strongly influence digestion rates and patterns; (5) estimates 
of most rate constants and other essential numerical inputs can be obtained or 
deduced from experimental data with animals fed frequently (so as to simulate 
a steady-state system); and (6) stoichiometric relationships in rumen fermentation 
can be calculated based on available knowledge of metabolic pathways. The 
bases for these concepts are self-evident and have been discussed in many compre
hensive reviews (Hungate 1966; Phillipson 1970; McDonald and Warner 1975; 
Russell and Hespelll981; Baldwin and Allison 1983; Dobson and Dobson 1988). 

The first three concepts simply suggest that rumen microbial functions should 
be emphasized in the model. The fourth concept requires that animal functions 
such as rumination, salivation, etc. be represented. The fifth concept essentially 
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restricts the data set used in model development to continuously fed sheep 
(actually fed only one diet, alfalfa, at one intake). This allows all other diets, 
intakes, and feeding patterns to be used in model evaluations. The final concept 
accepts stoichiometric coefficients from rumen balance models discussed in the 
previous section. 

The basic block diagrams used to describe the digestion of soluble nutrients, 
insoluble, rapidly available nutrients, and insoluble, particulate material varied 
in complexity. 

Several concepts regarding microbial growth were introduced into this model. 
The equation for microbial growth was given as the commonly known function 
of ATP availability and yield of microbial cells/mole ATP (YATP). Additionally, 
the concept of ATP use for microbial maintenance (ATPM) was introduced. 
Also, dependence of microbial growth rates and yields on amino acid availability 
derived from Maeng and Baldwin (1976) and Maeng et al. (1976) were incorpo
rated. Third, an equation describing a limitation of microbial growth by low 
ammonia concentrations was formulated, based on the data of Hogan (1975). 

Equations for nutrient transactions in the Baldwin et al. (1977) model were 
all mass action in nature. Most parameter values incorporated into the model 
were estimated using a static model based on data from studies of 40-kg sheep 
fed 910 g/day of an alfalfa diet in equal amounts at hourly intervals. Although 
available data were not adequate to fully parameterize the model (overparameter
ized), input:output data were good and considered to be an adequate reference 
base for simulations of the steady-state condition used in initial stages of model 
evaluation (debugging etc.). Numerical inputs descriptive of stoichiometric rela
tionships of fermentation and microbial growth were similar to those reported 
by Baldwin et al. (1970), Reichl and Baldwin (1975), and Koong et al. (1975). 
Given the constraints inherent to the use of a very specific data set to parameterize 
the model and the almost exclusive use of mechanistic elements, evaluations of 
the model and the concepts that comprise it were quite promising (Baldwin et al. 
1977; Murphy et al. 1986). However, a number of specific failures of the model, 
including an inability to simulate the digestion of poor (straw) and very high 
(concentrate) quality diets, helped identify several critical limitations in then 
current data and concepts. These included water dynamics including salivation; 
factors involved in particle size reduction and passage; effects of diet and pH 
on patterns of volatile fatty acids (VFA) formed from the several chemical 
constituents in the diet; and nitrogen metabolism in the rumen and exchange 
between the rumen and the animal (Argyle and Baldwin, 1988). 

Several improvements were incorporated into the model by Murphy et al. 
(1986). These were undertaken to correct specific omissions and weaknesses in 
the original model and were based, largely, on experimental data collected in 
response to conceptual and data problems identified in the course of the first 
modeling analysis. 

A major problem with the initial model was correct simulation of rumen 
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ammonia concentrations across diets and feeding frequencies. Rates of insoluble 
protein hydrolysis and degradation were the most sensitive variable affecting 
rumen ammonia nitrogen. Representation of this was improved by explicit recog
nition of large and small particle pools for insoluble protein and addition of a 
provision that only microbes closely associated with small particles hydrolyze 
insoluble protein. This allowed accommodation of effects of rumen fill, passage, 
and rumination and the concept of colonization. These changes improved model 
behavior markedly. However, effects of feeding frequency were still not simulated 
adequately. For example, predictions of rumen ammonia nitrogen in animals fed 
once daily differed by as much as 50% from experimental estimates at the same 
time of day. If the rate constant for ammonia absorption from the rumen deduced 
from continuous feeding data were adjusted, once-a-day feeding can be adequately 
simulated. However, this type of change was not compatible with concept 5. 
These observations imply that factor(s) other than those recognized, at that time, 
influence protein hydrolysis and ammonia absorption. 

In construction of the first model, data needed for estimation of a number of 
rate constants were very limited and relevant data sets available were often quite 
variable. A premise in modeling is that experimental data are correct. When data 
available are limited and variable, the modeler is tempted to select the datum 
that works best and can never be certain whether he or she has resisted this 
temptation. Mechanistic models are complex in explicitly expressing causal as 
compared to empirical relationships. If the computation of numerical inputs
rate constants and pool sizes-is not firmly based on experimental data, the 
model can become nonunique; i.e., when a model is complex with many equations 
and numerical inputs, many combinations of numerical inputs can produce satis
factory outputs. Adequate experimental data are required to prevent this. When 
confidence regarding uniqueness is low, the model and evaluations and conclu
sions derived therefrom are suspect. The very complete study of Ulyatt et al. 
(1984) helped satisfy this need during evolution of the Murphy et al. (1986) 
revision of the rumen model. All numerical inputs to the model were evaluated 
carefully based on these data, and adjustments, where required, were made. One 
could then believe that when the model behaved well, the result reflected adequacy 
of the conceptual frame on which it was based. Conversely, when the model failed, 
this could be taken as an indication that the conceptual frame was inadequate rather 
than a problem with nonunique parameter values. As noted, concepts regarding 
the dynamics of nitrogen metabolism in the rumen required improvement. Other 
aspects that required further study were water dynamics, which are poorly repre
sented in most current models; particle size reduction through chewing; rumina
tion and other factors; and factors influencing passage rates across species. 

At the same time that Baldwin et al. (1977) were working on the discussed 
model, Black et al. (1981) were also developing a dynamic model of ruminant 
digestion. Their objective was to integrate current concepts of processes occurring 
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in the rumen in equation forms compatible with their existing model of growth 
(Black et al. 1981) and enable the prediction of growth and production in the 
whole animal. This model, although more aggregated than that of Baldwin et al. 
(1977), captured many of the same key concepts, including nitrogen recycling 
from the animal to the rumen via saliva, microbial maintenance requirements, 
use of amino acids and ammonia as sources of nitrogen for microbial growth, 
independent consideration of soluble and insoluble substrates, etc. Major differ
ences were uses of empirically deduced equations, estimates of potentially degrad
able protein and a and ~ hexose polymers, and rates of hydrolysis as inputs to 
the model. 

Evaluations of the model were very good (Beever et al. 1981) and certainly 
better than those obtained with the original Baldwin et al. (1977) model, whether 
the comparisons were between experimental data and model predictions or of 
systematic errors of prediction. This should be the expected result, in that the 
Baldwin et al. (1977) model was designed as a research model, and one of the 
imposed requisites was that the model apply to all ruminant diets and feeding 
regimes with no changes in rate constants or parameter values (to test the adequacy 
of current data and concepts). The Black et al. (1981) model was designed, 
however, as a predictive model in which estimates of potential degradability and 
fractional degradation rates were defined on the basis of empirical or experimental 
estimates made on the specific feedstuffs to be simulated. Despite their differences 
in objectives and form, these two models provided valuable insights regarding 
the types of data and additional inquiry needed to advance our understanding of 
quantitative and dynamic aspects of ruminant digestive function. 

5. Current Dynamic Models 

Three recent models were selected as representative of current mechanistic 
and dynamic models of ruminant digestion. The first model was published by 
Danfaer (1990). This was selected because the objective was to develop a research 
model that could eventually evolve into a model for practical use in animal 
agriculture. The second model evolved from the Baldwin et al. (1987) study and 
was initially devised to formulate nutrient inputs to a lactating cow model; it has 
since been improved in a number of regards. The final model selected was that 
of Dijkstra et aI. (1992) and Neal et al. (1992). These models share a number 
of common attributes and in this illustrate a convergence that appears to be taking 
place and may indicate future directions in the evolution of dynamic models of 
ruminant digestion. To a significant extent, the three models trace their origins 
to the analysis of France et al. (1982), entitled A Mathematical Model of the 
Rumen. All three models have been described in detail (Danfaer 1990; Dijkstra 
et al. 1992; Baldwin 1995) and thus, are available for use and comparison by 
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all interested workers. Evaluation criteria differed in the three cases, but all of 
these are relevant and reveal important limitations in our current understanding 
of digestion in the ruminant. 

A very important departure from previous approaches evident in all three of 
these models is that most of the equations used exhibit saturation or Michaelis
Menten type kinetics, rather than the first-order, mass action arguments used 
previously. There are a number of good reasons for the departure. First, almost 
all metabolic systems are saturable such that when substrate availability is high, 
the system approaches a maximum reaction velocity. Also, as nutrient availabili
ties vary over a physiological range, patterns of nutrient use can vary in a fashion 
not adequately simulated using mass action kinetic arguments. Another important 
reason is that equations that exhibit saturation kinetics are more stable or robust 
in their behavior when numerical methods are used to solve large models. A 
major disadvantage arises from the fact that the number of parameters that must 
be defined essentially doubles. As with early models, a static model of flux rates 
observed in a reference, steady-state system was utilized heavily. Such data are 
adequate and appropriate for parameterizing mass action equations. However, 
these data are not adequate for Michaelis-Menten type equations. To parameterize 
such equations an assumption or an additional data fact is required for each 
equation. Common assumptions that can often be defended in general terms are 
that the Vrnax is very high relative to observed rates and need not be specified 
accurately (solutions insensitive to this parameter) or that ks and concentration 
of substrate are about equal under most conditions. However, such assumptions 
cannot always be defended and thus invoked. We are not pointing this out as a 
criticism of the newer models, although all three of the models contain parameter 
estimates that can be challenged on these grounds, but rather to emphasize that 
further evolution of these models toward the goal of general applicability will 
require generation of kinetic data in addition to steady-state data. In presentation 
of the three models, discussions of parameterization and types of data required 
for further evolution are included. 

A very troubling area of parameter estimation is detailing feed inputs to the 
models. In all three models, these inputs are based on chemical and physical 
properties of the feedstuffs. There are notable differences in aggregation of inputs 
among the models. The most detailed feed composition inputs (16) are required 
by the Baldwin et al. (1987) model. A drawback of this approach is that such 
complete analyses of diets are rarely available. This problem identifies one area 
of needed research-more extensive, detailed analyses of feedstuffs. Dijkstra 
et al. (1992) also noted that data on diet composition affects the accuracy of 
model simulations. 

The models of Danfaer (1990) and Dijkstra et al. (1992) utilize feed fractions 
that are composites of several chemical entities. For example, Danfaer (1990) 
combines organic acids, pectin, lactate, and starch into a fermentable sugars pool, 
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and hemicellulose and cellulose into a fermentable cell-wall carbohydrate pool. 
Dijkstra et al. (1992) combine hemicellulose, cellulose, and lignin into a neutral 
detergent fiber pool. A problem with aggregation of chemicals differing in elemen
tal composition and heats of combustion per gram is that computation of carbon 
and redox balances and accounting for energetic relationships is not feasible. 

Additionally, Danfaer (1990) and Dijkstra et al. (1992) define fermentable/ 
degradable and unfermentable/undegradable fractions of protein, starch, and NDF. 
These inputs are set based on in vitro fermentation rates and in vivo degradation 
rates of feeds in nylon bags. By utilizing such data to set the input data, consider
ation of important biological processes that contribute significantly to (explain
able) variance in the digestion process is avoided. In this sense, the models 
become partially self-fulfilling and dependent on the accuracy of data used to 
define inputs on digestibility or degradability. 

It is very important to recognize in this context that utilization of inputs that 
can be adjusted to accommodate variance partially compromises the modelers' 
goal of identifying areas where current data on the chemical and physical proper
ties of feeds are not adequate to define the reactions and relationships occurring 
in ruminant digestion. Also, although it is recognized that deficiencies exist in 
all three models with respect to predicting nutrient outflow from the rumen and, 
ultimately, nutrient availability to the animal, these deficiencies give emphasis 
and direction as to where research and modeling efforts should be concentrated. 

Dijkstra et al. (1992) identified several areas in earlier models "as being 
insufficiently represented." These included "aspects relating to microbial recy
cling, microbial substrate preference, uncoupled microbial fermentation, effect 
of pH on microbial activity and VFA and ammonia absorption," and "variation 
in microbial chemical composition, as influenced by microbial species and nutri
ent availability." 

The concept of recycling microbial matter was captured by Dijkstra et al. 
(1992) by including model elements defining protozoa as a subfraction of the 
amylolytic microbial pool. Inclusion of protozoa in the model allows for microbial 
matter recycling within the rumen by protozoa engulfment. It also provides for 
equations describing the retention and lysis of protozoa, lactate metabolism by 
protozoa, and the effects of pH on protozoal growth. 

Substrate preferences of the highly diverse and variable population in the 
rumen continue to pose a major problem to modelers of the rumen fermentation 
process. As noted in the introduction to this chapter, the many factors that define 
interactions among the individual microbial species in the rumen have, probably, 
not all been identified and, certainly, have not been characterized in the quantita
tive fashion required for the formulation of models of the rumen ecology. This 
problem has forced modelers of rumen digestion to the use of highly aggregated 
representations of rumen fermentation. Baldwin et al. (1970) defined three distinct 
rumen microbe groups based on substrate specificity. These workers recognized 
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that this decision stretched the available data resulting in overparameterization 
of the model and simplified their representation to two microbial groups. One 
of these groups was identified as those fermenting readily available carbohydrates 
and the other as those that grow in association with fibrous particles (Baldwin 
et al. 1977). This approach was modified by adoption of the concept that the 
microbes in each group vary with the amount of concentrate (starch) in the diet 
and the deduction of differing stoichiometric coefficients for carbohydrates in 
roughage and concentrate diets, as already discussed and in Table 10.2 (Murphy 
et al. 1982, 1986). Similarly, Baldwin et al. (1987), Dijkstra et al. (1992), and 
Baldwin (1995) adopted the same approach-two microbial groups with differ
ences in fermentation patterns based on diet composition. The strategies in formu
lation of equation forms differ but the underlying conceptual frame is held 
in common. 

Effects of pH on cellulose and hemicellulose hydrolysis were implemented by 
Argyle and Baldwin (1988) by modifying the rate constant for these reactions 
in a linear manner below pH 6.2. The authors recognized that the response form 
is likely sigmoidal in form, but insufficient data were available at that time to 
parameterize a nonlinear equation. In addition to pH effects on microbial action 
of degradable fiber, Dijkstra et al. (1992) also implemented pH effects on protozoa 
and absorption of VF A and ammonia by modifying the maximal velocity of the 
respective equations as a function of pH minimum and period of time below a 
set pH. 

Table 10.2 Estimated rumen fermentation parametersa 

Acetate Propionate Butyrate Valerate 
Substrate Group A(I) ± SE B(l) + SE C(l) ± SE D(I) ± SE 

Soluble carbohydrateb RC 0.69 ± 0.06 0.20 ± 0.01 0.11 ± 0.05 0.00 ± 0.00 
Cd 0.45 ± 0.03 0.21 ± 0.04 0.30 ± 0.04 0.04 ± 0.00 

Starch R 0.59 ± 0.04 0.14 ± 0.02 0.20 ± 0.05 0.06 ± 0.00 
C 0.40 ± 0.01 0.03 ± 0.00 0.20 ± 0.00 0.10 ± 0.01 

Hemicellulose R 0.57 ± 0.06 0.18 ± 0.03 0.21 ± 0.05 0.05 ± 0.00 
C 0.56 ± 0.01 0.26 ± 0.01 0.11 ± 0.01 0.07 ± 0.00 

Cellulose R 0.66 ± 0.10 0.09 ± 0.00 0.23 ± 0.09 0.03 ± 0.00 
C 0.79 ± 0.00 0.06 ± 0.00 0.06 ± 0.00 0.09 ± 0.00 

Protein R 0.45 ± 0.07 0.30 ± 0.04 0.18 ± 0.03 0.07 ± 0.00 
C 0.36 ± 0.03 0.37 ± 0.01 0.20 ± 0.03 0.07 ± 0.00 

aAdapted from Murphy et al. (1982). 
bSoluble carbohydrate plus organic acids and pectin. 
CRoughage diets. Values are mean ± standard errors (10 jackknife runs). 
dConcentrate diets. Values are mean ± standard errors (8 jackknife runs). 
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Figure 10.1 Comparisons of predicted versus observed estimates of (a) metabolizable 
energy and (b) methane production. Regression equations for best fit lines (-) were y = 
a + bx with r values for ME and CH4 of 0.85 and 0.60, respectively. Regression equations 
for lines of equality (- -) were y = bx. The 34 experimental estimates were reported by 
Armsby and Fries (1915), Armstrong (1964), Armstrong et al. (1958), Armstrong et al. 
(1964), Blaxter (1967), Blaxter and Clapperton (1965), Colovos et al. (1970), (1979), 
Coppock et al. (1964), Flatt et al. (1967), Graham et al. (1958), Moe et al. (1972, 1973a,b), 
Moe and Tyrrell (1976, 1979a,b), Tyrrell and Moe (1972), and Tyrrell et al. (1976) for 
diets including high- and low-quality legume, com silage, com meal, soybean meal, and 
high- and low-quality grass hays. 
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It has long been recognized that the proportion of polysaccharides in microbes 
is variable (He spell and Bryant 1979; Storm and 0rskov 1983; Czerkawski 
1986). This concept was captured in Dijkstra et al. (1992) by allowing storage 
polysaccharides to vary as a function of the concentration of hexose available 
to amylolytic microbes. This is an important concept and represents an advance. 

These models of ruminant digestion (Danfaer, 1990; Dijkstra et al. 1992; Neal 
et al. 1992; Baldwin 1995) are the current state of the art. They have been built 
on biological concepts laid out in earlier generations of mathematical models, 
and have been further refined both biologically and mathematically. Some aspects 
of ruminant digestion have been aggregated or removed dependent on their 
significance to overall digestion, a determination that was made as part of the 
modeling exercises. Other aspects of ruminant digestion have systematically been 
added to the models to improve model behavior and predictions. The overall 
behavior of the models is considered good. As an example of this efficacy, results 
of model estimates of observed and predicted values of metabolizable energy 
(ME) and methane (CH4) using Baldwin's (1995) model are presented in Figures 
1O.la and lO.1b. Differences between observed and predicted values may be due 
to experimental or animal variance, errors in data evaluation of diet composition 
as inputs to the model, or model errors. In view of these potential sources of 
errors, the r values for ME and CH4, 0.85 and 0.60, respectively, indicate 
acceptable agreement and a lack of systematic error of predictions. It must be 
recognized that several areas exist where model predictions are poor. These 
include predicting cellulose and hemicellulose digestion on high-concentrate diets 
and predicting the yield of VF A. Errors in estimates of butyrate production 
present a particularly difficult problem, as discussed. 

Current models are more heavily parameterized than earlier ones due, in large 
part, to the adoption of Michaelis-Menten type equation forms. Many assumptions 
have been made in estimating the parameters for these equations. Making assump
tions and testing them is an integral part of the modeling/experimental research 
cycle. The fact that assumptions are made should not be forgotten, however. In 
the words of Czerkawski (1986), "the danger lies within, that others will not 
realize that assumptions have been made." 
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Mathematical Models of 
Bacterial Chemotaxis 

Roseanne M. Ford and Peter T. Cummings 

1. Introduction 

Many bacterial species exhibit chemotactic behavior, the ability to bias their 
otherwise random motion in the direction toward increasing concentrations of 
nutrients (referred to as attractants) or away from increasing concentrations of 
metabolites or compounds toxic to the bacteria, which may be indicators of 
unfavorable conditions (referred to as repellents). Chemotaxis can provide a 
competitive advantage for bacteria because in their natural habitats they are 
continually exposed to changing environmental conditions, and their survival 
depends on their capacity to respond favorably to adverse circumstances. Because 
their small size (1 to 2 ~m) and simple structure limits their ability to modify 
their surroundings, they respond either by migration to a more desirable location 
or by adaptation of their internal metabolic processes (Macnab 1980). Adaptation 
occurs naturally through genetic modification, but is relatively slow. Chemotactic 
bacteria can clearly respond much more quickly by moving to a more favorable 
environment. Chemotaxis has many practical applications and is known to play 
important roles in nitrogen fixation in plants, the pathogenesis of disease, and 
the bioremediation of contaminated aquifers. This last case is of particular interest 
in our research group because it has been shown that bacteria are capable of 
degrading many toxic organic materials-including halogenated hydrocarbons via 
anaerobic degradation (Bouwer 1992; Harvey 1991 )-and additionally respond 
chemotactically to these compounds. We are pursuing a long-range research 
program aimed at understanding the role of bacterial motility and chemotaxis in 
in situ bioremediation processes. The objectives are to quantitatively measure 
bacterial migration at the macroscopic level (both in the presence and absence 
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of one or more attractant and/or repellent species), understand the basis for the 
macroscopic behavior by measuring and analyzing the motion of individual 
bacteria, develop mathematical models for bacterial migration based on micro
scopic and macroscopic level information, and use the model to predict bacterial 
migration in natural processes, with particular emphasis on in situ bioremedia
tion processes. 

To interpret experimental data on bacterial migration in terms of fundamental 
transport coefficients and to predict the behavior of bacterial popUlations in 
response to changing environmental conditions, it is necessary to develop and 
solve mathematical models for bacterial migration. Several such models have 
been proposed in the literature and can be categorized into three broad classes: 
(1) population-level models, which attempt to describe the bacterial migration 
at a purely macroscopic level by convective diffusion equations and so are partial 
differential equations for the bacterial density c(r,t) at the point r at time t; (2) 
subpopulation-Ievel models, which are based on balance equations for the density 
of bacteria n(r,s,t) at the point r at time t moving in direction s (a unit vector), 
and hence require a model for the way in which bacteria change the direction 
of their motion; and (3) microscopic level models that are based on individual 
cell dynamics, which can be described by stochastic equations of motion. 

In this chapter, we review several mathematical models for bacterial chemo
taxis. We particularly focus on our own modeling efforts at the microscopic and 
subpopulation levels and the utility of these models for analyzing experiments, 
visualizing bacterial migration, and predicting bacterial migration in natural envi
ronments (including exposure to multiple gradients). The chapter is divided up 
as follows: In the remainder of this Introduction, the known microscopic dynamics 
of bacteria both in the absence and presence of chemical stimuli (attractants or 
repellents) is described in Section 1.1, the experimental assay developed by one 
of us (Ford and Lauffenburger 1991; Ford et al. 1991) for observing bacterial 
migration at the macroscopic level is outlined in Section 1.2, and the philosophy 
and utility of our two modeling approaches (cellular dynamics simulation and 
sUbpopulation models) is discussed in Section 1.3. In Section 2, we present Alt's 
subpopulation model (Alt, 1980), which is the most general subpopulation level 
description of bacterial migration considered in the published literature. We also 
describe a reduced form of All's equations suitable for systems in which the 
stimulus gradients occur in one spatial direction only (Frymier et al. 1994), and 
compare the reduced form of All's model with a one-dimensional model proposed 
by Rivero et al. (1989). Cellular dynamics (Frymier et al. 1993), a technique for 
studying large populations of bacteria by performing simulations oflarge numbers 
of individual bacteria based on the known single-cell dynamics, is presented in 
Section 3. In Section 4, the solutions of the reduced form of All's equations for 
a one-dimensional stimulus gradient and of the Rivero et al. model are compared 
to cellular dynamics simulations and to experimental data. In Section 5, we 
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apply the reduced fonn of Alt's equations to the case of bacteria responding 
simultaneously to two attractants to demonstrate modeling a more relevant situa
tion in natural microbial processes. We propose three simple models for the 
tumbling probability associated with the swimming behavior in such a case and 
solve the resulting balance equations by using finite element methods. We con
clude in Section 6 with some remarks about the necessity and utility of mathemati
cal modeling in understanding bacterial migration. 

1.1. Mechanism of Bacterial Chemotaxis 

The swimming behavior exhibited by individual bacteria at the microscopic 
level consists of a series of relatively straight line "runs" followed by "tumbles," 
which usually result in a change in orientation (Berg and Brown 1972; Macnab 
and Koshland 1972; Spudich and Koshland 1975). Typical swimming speeds are 
20 to 60 ,"un/sec (Macnab and Aizawa 1984) with runs lasting up to several 
seconds and tumbles taking about 0.1 sec. In an isotropic medium, the swimming 
behavior resembles a three-dimensional random walk analogous to molecular 
diffusion. In molecular diffusion, however, a change in direction results from a 
collision with another molecule, whereas for bacteria a change in direction results 
from a reversal of flagellar rotation from counterclockwise to clockwise. In the 
presence of an attractant gradient, a bacterium is able to decrease its tumbling 
frequency (increase its run time) if it is moving in a favorable direction and 
thereby bias its random walk to achieve net migration toward higher attractant 
concentrations. Bacteria respond to repellents by extending their run lengths 
when swimming toward lower concentrations. 

The migration behavior of bacteria in the absence and presence of an attractant 
is illustrated in Figure 11.1, which contains visualizations of cellular dynamics 
simulations (see Section 3) of bacteria in an isotropic medium (left column of 
photographs) and in the presence of a linear attractant gradient (right column). 
Straight line runs, interrupted by tumbles and changes in direction, are evident 
in all the photographs. In the absence of an attractant, the overall motion of the 
population is unifonn (without bias) so the bacteria spread out in a unifonn 
sphere. For the bacteria in the presence of an attractant, it is clear that the runs 
in the direction of increasing attractant concentration are on average longer than 
those in the opposite direction with the result that the population spreads out 
nonunifonnly with a bias toward increasing attractant concentration. 

As bacteria move about exploring their surroundings they monitor changes in 
chemical concentrations through special proteins called receptors located near 
the cell surface. These receptors, like enzymes, have specific binding sites to 
which only a narrow range of structurally similar chemical substrates can bind. 
It is the change in the number of bound receptors over time that provides informa
tion to the cell regarding chemical gradients (Macnab and Koshland 1972). This 
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Figure ILl Cellular dynamics (CD) simulations of 100 bacteria (originating from the 
center of the photograph) shown as traces of bacterial trails. In the left-hand series, no 
attractant gradient is present and the bacteria disperse essentially unifonnly in all directions 
as time increases from top to bottom. In the right-hand series, a linear attractant gradient 
that increases from left to right generates a chemotactic response. Bacterial run lengths 
to the right are on average longer than those to the left resulting in an overall bias of 
bacterial motion toward the right. 

231 
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interaction generates a biochemical signal that controls the flagellar rotation and 
hence the "decision" whether to tumble or to continue swimming. In the analysis 
of our data, a simple mechanism that assumes equilibrium binding of attractant 
to the receptors and a direct correspondence between the number of bound 
receptors and the chemotactic signal adequately describes experimentally ob
served chemotactic responses to single stimuli. 

1.2. Stopped-Flow Diffusion Chamber 

The stopped-flow diffusion chamber (SFDC) assay shown schematically in 
Figure 11.2 is advantageous for the study of bacterial chemotaxis because it 

packed bed 

syringe pump 

Figure 11.2 Diagram of the SFDC assay (left). Two bacterial suspensions differing only 
in the concentration of an attractant are contacted by impinging flow to create an initial step 
change in attractant concentration at the center of the chamber and a uniform distribution of 
bacteria. The walls of the chamber are formed by two microscope slides, which serve as 
optical windows. The approximate dimensions of the chamber are 4 x 2 x 0.2 cm. On 
the right is an exploded view of the simulation box, which is referred to in Section 3 of 
the text. 
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provides well-characterized chemical gradients (Ford et al. 1991; Ford and Lauf
fenburger 1991). The fluid flow behavior within the chamber involves the contact 
of two suspensions by impinging flow. The impinging flow is created by fluid 
flow in equal volumetric amounts into the top and bottom of the SFDC with the 
fluid exiting at the two side ports, as illustrated in Figure 11.2. One critical aspect 
is that while the fluid is flowing no mixing occurs between the two suspensions 
and a step change in stimulus concentration can be maintained to establish well
defined initial conditions for solving the mathematical model equations. After 
establishing the initial conditions, flow is stopped, and the chemical stimulus in 
the bottom half begins to diffuse into the upper half, setting up a transient gradient 
in the stimulus concentration. As bacteria respond to this gradient, a band of 
high cell density forms and moves downward toward higher stimulus concentra
tions. The changing bacterial distribution is observed through light scattering 
under dark-field illumination and recorded with a charge-coupled device (CCD) 
video camera. Digitized images at several time points over a 10-min interval are 
generated using a frame grabber board connected to a microcomputer with image 
processing software. Bacterial density profiles are computed from gray level 
measurements over a rectangular region in each image. The bacterial transport 
coefficients for random motility and chemotaxis, as defined in the Rivero-Tran
quillo-Buettner-Lauffenburger (RTBL) mathematical model presented in Section 
2.2.4, are determined from the observed bacterial distributions. Note that the 
experiments in the SFDC are performed to minimize the number of factors that 
need to be taken into account in modeling bacterial movement. Bacterial growth 
and decay are negligible because the experimental observation times (6 to 12 
min) are short compared to the expected bacterial doubling times at the suboptimal 
growth conditions in the SFDC assay. The attractant species studied are nonmetab
olizable analogs of metabolizable attractants (such as fucose and a-methylaspar
tate as analogs for galactose and aspartate) so that consumption of the attractant 
and the production of metabolites (which can act as repellents) can be ignored. 
Hence, in the mathematical models described in the remainder of this chapter, 
growth, death, attractant consumption, and metabolite production are all assumed 
to be negligible and are not discussed further. 

1.3. Relationships between Computer Simulation, Mathematical Modeling, 
and Experiments 

To characterize the migration behavior of chemotactic bacteria we use three 
different research tools-experiments, mathematical modeling, and computer 
simulation. The relationship between the modeling approaches and experimenta
tion is shown in diagram form in Figure 11.3. The experimental system to which 
we apply our model is the stopped-flow diffusion chamber. We have used both 
the RTBL model (Section 2.2.4) and the reduced form of Alt's equations (Section 
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COMPUTER 
SIMULATIONS 

1. model for behavioral mechanism 
(constitutive equations) 

2. approximations introduced in reduc
tion to analytically solvable form 
(1-D balance equations) 

EXPERIMENTS MATHEMATICAL 
~~::::::::::~ MODELS 

Figure 11.3 Schematic illustration of the relationship between the three approaches (exper
iments, mathematical models, and computer simulations) we use in characterizing bacte
rial migration. 

2.2.5) to analyze our experimental data in terms of macroscopic transport proper
ties. The solution of these model equations requires approximations that may 
introduce errors into the theoretical bacterial density profiles. The computer 
simulation methodology we have developed provides an independent check of 
the error introduced in the numerical solution of the model equations because it 
is based on an exact solution of the rigorous equations of motion for a single 
bacterium. A comparison of the simulation results to the experimental data 
indicates the accuracy of the physical model used to describe bacterial detection 
of and response to chemical gradients. Without the independent check afforded 
by the simulations it is possible that errors associated with approximations in 
the mathematical model could be compensated for by an incorrect physical model. 
For example, the restriction of bacterial motion to one-dimension in the RTBL 
model underpredicts the bacterial response, but the agreement with experiments 
is still very good. One explanation is that the physical model for the swimming 
behavior away from the gradient is incorrect and results in an overprediction of 
the chemotactic response as we showed in Frymier et al. (1994) and is described 
in Section 4.3. If the computer simulations provide an exact prediction of the 
behavior for a given physical model, one might then ask what the utility is of 
the mathematical model. The answer lies in recognizing that the simulations 
require significant computational resources to yield statistically meaningful results 
and are therefore not practical to use routinely as a modeling tool. Once a 
mathematical model is developed that is consistent with and agrees with the 
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simulations, and that is computationally efficient, characterization of experimental 
data can be performed on a routine basis using the mathematical model. As we 
demonstrate in this chapter, the reduced form of All's equations, derived by Ford 
and Cummings (1992) and solved using finite element techniques (see Section 
2.2.5), is just such a mathematical model. 

2. Population Balance Models 

To mathematically describe the motion of chemotactic bacteria, two sets of 
equations must be formulated. The first are the cell balance equations that describe 
the evolution in time and space of the cell density. For bacterial migration in 
the absence of growth or death of the bacteria, these constitute the statement that 
cell number is conserved and are exact. The second set of equations that need 
to be formulated are the constitutive equations that relate the quantities in the 
conservation equation to properties of the cells and their swimming motion. It 
is in the constitutive equations that the approximations are introduced that define 
the physical model. One can draw a parallel with the development of a mathemati
cal description of a chemical process: one begins with the exact conservation 
laws (such as conservation of mass, momentum, and/or energy) and supplements 
these with constitutive relations (such as equations of state, Newton's law of 
viscosity, and Fick's law of diffusion) to obtain a closed mathematical problem. 
In the mathematical modeling of the motion of chemotactic bacteria, several 
authors (Alt 1980; Othmer et al. 1988; Patlack 1953; Segel 1977; Stroock 1974; 
Rivero et al. 1989) have developed cell balance equations of varying degrees of 
rigor. The most general and rigorous are the three-dimensional cell balance 
equations derived by Alt (1980) that take into account explicitly the position, 
direction, and elapsed run time of a bacterial subpopulation. A simplified three
dimensional cell balance equation, known as Stroock's equation (1974), can be 
derived from Alt's equations when one assumes that the probability that a bacte
rium tumbles is independent of run time. Segel's (1970) equations are one
dimensional phenomenological equations that do not explicitly include the depen
dence on run time. One can also attempt to describe the bacterial migration at 
the macroscopic level via a convective diffusion equation. This is the basis for 
the model of Keller and Segel (1971). Each of these models (composed of balance 
equations and constitutive relations) and the relationship between them is briefly 
described here. A mathematically more rigorous derivation of the relationships 
between the models was published by Ford and Cummings (1992), to which the 
interested reader is referred. 

2.1. Models Based on Population Balance Equations 

The time evolution of the cell density c(r,t) is given by the conservation equation 
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dc 
dt = -V', . Je , (1) 

where Je is the cell flux. This is an exact statement in the absence of cell death 
or reproduction. In their original phenomenological model to describe population 
behavior, Keller and Segel (1971) proposed that the bacterial flux include one 
term to describe diffusion-like or random motility behavior and a second term 
for convection-like or chemotactic motion, 

JoCr,t) = -)1 V',c(r,t) + Vec(r,t), (2) 

where )1 is the random motility coefficient, analogous to a molecular diffusion 
coefficient, and Ve is the chemotactic velocity. The fundamental transport proper
ties, )1 and Vn are in general both functions of the stimulus concentration a(r,t). 
Keller and Segel considered the case of bacteria responding to an attractant whose 
concentration varies only in the z direction, so that the chemotactic velocity has 
only a single nonzero component, Vel' for which they proposed the constitutive re
lation, 

where 

da 
Vez = x(a) dz ' 

~ 
x(a) = -. a 

(3) 

This particular form was chosen because it generated a traveling wave solution 
that could describe the traveling bands experimentally observed by Adler (1966, 
1969). For an exponential attractant gradient this relationship predicts a constant 
chemotactic velocity. However, experiments performed in an exponential gradient 
did not yield a constant chemotactic velocity as expected; the velocity varied by 
a factor of eight over the concentration range studied (Dahlquist et al. 1972). 
Lapidus and Schiller (1976) proposed a different functional form, 

(4) 

to qualitatively satisfy the behavior of a dose-response curve in the capillary 
assay, as reported by Mesibov et al. (1973). The chemotactic response was 
proportional to the chemotactic mobility, 0, and had a maximum sensitivity at a 
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particular concentration, k, which they let equal the initial attractant concentration. 
Segel (1977) later derived the following expression, 

(5) 

based on experimental observations of individual cell behavior by Brown and Berg 
(1974). The Hill cooperativity number, n, was included to match the sensitivity of 
response observed by Dalquist et aI. (1972) over a wide range of attractant 
concentrations. For n = 1, the Lapidus and Schiller (1976) form is recovered 
with the sensitivity constant now defined as the dissociation constant, K, and the 
chemotactic mobility as the constant XM' As we shall see, some of the relationships 
just given can be derived from more microscopic considerations described in the 
discussion of models based on subpopulation balance equations described next. 

2.2. Models Based on Subpopulation Balance Equations 

In this section, we describe several models for bacterial migration based on 
subpopulation balance equations. The relationships between the models, and the 
assumptions needed to derive one from another, are represented schematically 
in Figure 11.4. 

2.2.1. ALT'S BALANCE EQUATIONS 

In All's cell balance equations, the cells are assumed to have piecewise linear 
paths (runs) where the mean speed, v, depends on position and time-i.e., v = 
v(r,t). The quantity a(r,s, 't,t) is the number of cells per unit volume at point r 
moving in direction s (a unit vector) at time t with run time 'to The probability 

Poisson process independent of Reduced ALT for tumbling 
STROOCK stimulus concentration 

• Symmetry in 2 dimensions ALT 

• Tum angle distribution 

• Small 
Confinement gradient 

to 1-0 
• v = 2s 

Turning probability is 

SEGEL product of tumbling and RTBL reversal prooaDllltles 

Figure 11.4 Relationships between population and subpopulation cell balance equations 
in three dimensions and one dimension (shown in boxes) and the assumptions required 
to derive one from the other (shown as lines). 
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per unit time that a cell moving in direction s at r at time t with run time 't 

(counted from the beginning of the run) tumbles at r at time t is given by ~(r,s,'t,t). 
If a cell tumbles at r at time t after a run in direction s', the probability that after 
tumbling it chooses the direction s, as its new direction is k(r,S',t;s), where k is 
referred to as the turning probability. All's fundamental equations (1980) are then 

dcr(r,s,'t,t) dcr(r,s,'t,t) A n A A A A 
dt = - d't - s . v,[v(r,t)cr(r,s,'t,t)] - I-'(r,s,'t,t)cr(r,s,'t,t), (6) 

for 't > 0 and for 't = 0, we have 

cr(r,s,O,t) = CJ ~(r,s,'t,t)cr(r,s ','t,t)k(r,s ',t;s) ds' d't. (7) 

Physically, Equation (6) states that the rate of change in the population of cells 
at r at time t moving in direction s with run time 't is given by a term that takes 
into account the change in the run time of the cell population, an efflux term 
which accounts for the net motion of the cells away from the point r and a loss 
term due to cells tumbling (with probability ~, so density ~cr). The SUbscript r 
on the divergence operator is included to emphasize that the divergence is with 
respect to the spatial coordinate r. Note that implicit in this cell balance equation 
is the assumption that the swimming motion of the cells is piecewise linear 
and that changes in direction are assumed to occur only through the tumbling 
mechanism (taken into account by the ~cr term on the right hand side of Equation 
[6]). Equation (7) states that the way in which one obtains an initial (i.e., run time = 
0) population of cells moving in direction s is by considering cell populations that 
were moving in another direction s' which tumbled at time t with run time 't, 

~(r,s,'t,t)cr(r,s, 't,t), mUltiplying by the probability that the cell after tumbling 
moves in the direction s, given by k(r,s,t;s). One needs to add up over all such 
populations-hence, the integration over all directions S' and all run times 'to 

2.2.2. STROOCK'S BALANCE EQUATION 

The general form of All's equations can be simplified considerably by applying 
an important constitutive relationship. If one assumes that the tumbling probabil
ity, ~(r,s,'t,t), is independent of run time 't, All's equations can be integrated 
(Ford and Cummings 1992) to give the single equation 

dn(r,s,t) A n [( ) ( A)] A( A) ( A) dt = -s . v, v r,t n r,s,t - I-' r,s,t n r,s,t (8) 

+ J~(r,s,t)n(r,s,t)k(r,s,t;s) ds, 
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where 

n(r,s,t) = r a(r,s,1:,t) d1: 

is the number density of cells per unit volume at point r moving in direction S 
at time t. The assumption that ~(r,§,1:,t) is independent of 1: is equivalent to 
assuming that the distribution of run times is governed by a Poisson distribution. 
This has been shown experimentally to be the case for Escherichia coli by Berg 
and Brown (Berg and Brown 1972; Brown and Berg 1974). For comparison, 
Stroock's three-dimensional equation for the transport of chemotactic cell popula
tions is given by (Stroock 1974) 

an(r,s,t) A n [( ) ( A)] f ( A AI ) ( A ) dN at = - s . V r V r,t n r,s,t - p r,s,s ,f n r,s,t s (9) 

+ f p(r,s,s,t)n(r,s,t) ds, 

where p(r,s,s,t) is the probability density for a cell to change direction at point 
r from direction s to direction f If one makes the identifications 

p(r,s,s,t) =~(r,s,t)k(r,s,t;s) 
~(r,s,t) =f p(r,s,s,t) ds , 

(10) 

then Stroock' s equation is equivalent to Alt' s equations for bacteria whose running 
phase is governed by a Poisson distribution. Furthermore, if one recognizes that 

c(r,t) = J n(r,s,t) ds (11) 

and 

Jc = v f n(r,s,t)s ds (12) 

integration of either Equation (8) or Equation (9) over s yields the macroscopic 
conservation equation, Equation (1). Multiplication of either Equation (8) or 
Equation (9) by s and integration of s should lead to an expression for the bacterial 
flux. However, except for very simple formulations of the tumbling probability 
and turning probability, there is no obvious simplification of the resulting flux 
equation to a form easily identified with Equation (2). For a more complete 
discussion, see Ford and Cummings (1992). 
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2.2.3. SEGEL BALANCE EQUATIONS 

Segel (1977) considered the motion of bacteria in one dimension (z) only and 
wrote down cell balance equations accordingly. If we define n+(Z,t) as the density 
of cells at point Z at time t moving in the positive Z direction and n-(Z,t) as the 
density of cells at point Z at time t moving in the negative Z direction, then 
Segel's equations are 

(13) 

In these equations, p+ = p+(z,t) is the probability per unit time that a cell moving 
in the positive z direction becomes a cell moving in the negative z direction (by 
tumbling), and p- = p-(z,t) is the probability per unit time that a cell moving in 
the negative z direction becomes a cell moving in the positive z direction. The 
one-dimensional version of Equation (1) is obtained by adding together Equations 
(13) (Rivero et al. 1989) and recognizing that 

C(z,t) = n+(Z,t) + n-(Z,t), (14) 

and 

(15) 

Comparing the one-dimensional cell density conservation equation thus obtained 
with the Keller and Segel equations, Equations (1) and (2), after some manipula
tion (involving neglect of the short time dynamics of the cell flux) we find that 
(Rivero et al. 1989) 

(16) 

thus enabling the macroscopic transport properties (random motility and chemo
tactic velocity) to be related to microscopic quantities. 

Ford and Cummings (1992) recently showed that the Segel equations could 
be obtained from All's equations by assuming a Poisson process for tumbling 
and assuming that the bacterial motion was confined to one dimension. The latter 
assumption is unrealistic (one exception may be bacteria confined to capillaries 
whose diameter is of the same order of magnitude as the effective cell diameter), 
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and in fact the intended application of the Segel equation is to bulk systems 
(bacteria moving freely in three-dimensional space) subject to one-dimensional 
attractant gradients. In this case, physically we have symmetry in the x and y 
directions and it is a natural question to ask whether Alt's equations applied to 
bacteria subject to a one-dimensional gradient can be reduced to Segel's equations 
by integration over x and y. Ford and Cummings (1992) recently showed that 
only in the limit of infinitesimally small gradients could the Segel equations be 
obtained rigorously by integrating Alt's equations over x and y. 

2.2.4. RTBL MODEL 

The model of Rivero et al. (1989), hereafter referred to as the RTBL model, 
follows from the use of Equations (13) with p+ and p- given by 

p± = p, ± p" p, ± = (~±) , p, = (1 - 'l')/2. (17) 

In this equation, p, is the probability that a cell reverses direction after tumbling 
which, on the basis of experimental observations (Macnab 1980), is independent 
of the presence of an attractant or repellent, p,± = p,±(z,t) is the probability of 
tumbling, (t±) is the mean run time for a cell moving in the ±z direction, and 'l' 
is the directional persistence. Note that the inverse relation between the tumbling 
probability and mean run length reflects the Poisson distribution of run times. A 
positive value for the directional persistence implies that a bacterium after tum
bling is more likely to continue in the same direction as it was going before 
tumbling than to reverse direction. This is consistent with experimental observa
tions (Berg and Brown 1972) in which the average angle between trajectories 
before and after tumbling for E. coli was found to be around 62°, compared to 
90° which would be the average for random reorientations. 

Berg and Brown (1972) also studied the effect of a chemical stimulus on 
individual cell paths and observed that the mean run times, (t), increased exponen
tially with the change in the number of receptor-attractant complexes, Nb, over 
mean run times measured in the absence of a chemical gradient, ('to). Based on 
this observation, the RTBL model for mean run time is given by 

(18) 

where v is the differential tumbling frequency and D/Dt is the material (or 
substantial) derivative. The material derivative in Equation (18) is necessary to 
account for both temporal and spatial changes in attractant concentration sensed 
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by cells swimming at speed v (Berg and Brown 1972; Macnab and Kosh1and 
1972; Spudich and Kosh1and 1975). The quantity Nb is related to the chemical 
attractant concentration, a, by the attractant/receptor binding equilibrium 

N _ NTa 
b - Kd + a' ( 19) 

where Kd is the dissociation constant for attractant/receptor binding and NT is the 
total number of receptors. For substitution into the one-dimensional Segel equa
tions through Equation (17), Rivero et al. (1989) made use of a simplified version 
of Equation (18) given by 

(20) 

Using these constitutive relationships (Equations [17] to [20], Rivero et al. (1989) 
derived expressions for the random motility coefficient and the chemotactic 
velocity in terms of microscopic quantities as follows: 

v2 [xo Kd da] 
Ilo = ( I ) , Vez = v tanh - 2 d ' 

PI - \jf V (Kd + a) Z 
(21) 

where Ilo is the random motility coefficient in the absence of an attractant gradient 
and Xo is referred to as the chemotactic sensitivity coefficient and is given by 

(22) 

In the presence of an attractant gradient, the random motility Il exhibits a weak 
dependence on the gradient but for the conditions associated with the SFDC 
experiment it is adequately characterized by its gradient-independent value Ilo 
(Ford and Lauffenburger 1991). 

Thus, bacterial migration can be characterized by two fundamental transport 
coefficients, Ilo and Xo. The stopped flow diffusion chamber assay provides a 
method for measuring these coefficients for given bacterial species and attractants. 
This method is described in Section 4.3. 

The macroscopic form ofthe RTBL model, which follows from ignoring some 
of the short term dynamics in the cell flux (Rivero et al. 1989), is given by 

(23) 
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where Jlo and Vcz are given by Equation (21). The numerical solution of Equation 
(23) can be obtained by finite differences using a predictor-corrector method 
(Ford and Lauffenburger, 1991). 

2.2.5. MODEL BASED ON REDUCED FORM OF ALT"S EQUATIONS 

The RTBL model is based on the Segel subpopulation balance equations (Segel 
1977) that can be derived from Alt's equations if the bacterial motion is confined 
to one dimension (z, in our notation). In reality, bacteria are free to move in 
three dimensions but symmetry exists in two of the three coordinate directions 
(x and y in our case). Therefore, the use of the RTBL model to describe bacterial 
migration has the inherent approximation of one-dimensional bacterial motion. 
To develop a model that did not involve this approximation, Ford and Cummings 
integrated Equation (8) over the x and y directions to obtain a reduced equation 
of the form 

anzCz,e,t) = _ av(z,t)nlz,e,t) _ R( e ) ( e ) 
at az I-' z, ,t nz Z, ,t (24) 

n 
+ fa ~(z,e',t)nzCz,e',t)K(e',e) sin e' de', 

where e is the angle made by s with the z axis, 

2n 

nzCz,e,t) = fa f fn(r,s,t) dx dy dcp, (25) 

and 

1 2n 2n 

K(e',e) = 21t fo fa k(s,s) dcp' dcp. (26) 

The relationship between c(z,t) and nlz,e,t) is given by 

n 
c(z,t) = fonlz,e,t)sin e de. (27) 

Equation (24) was solved numerically by Frymier et al. (1994) using Galerkin's 
method on finite elements (Allaire 1985) for integration over the spatial variables 
z and e. We briefly describe some aspects of this because the solution of Equation 
(24) represents an unusual application of the finite element technique. This is 
because it is an integropartial differential equation, in contrast to the typical 
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application to purely partial differential equations. A weighted implicit/explicit 
finite difference method was used for the integration over time. With the definition 

e (Jv(z,t)nzCz,e,t) A e e 
F(z, ,t) = - Sz (Jz - p(z, ,th(z, ,t) (28) 

n 

+ fo ~(z,e',t)nzCz,e',t)K(e',e)sine' de', 

and first order differencing in time, Equation (24) gives 

n,(z,e,tm) - nzCz,e,tm- 1) = F (1 - )F 
Ilt (J) m + (J) m- J, (29) 

where the subscript m indicates that F is evaluated at the current time step t = 
tm = to + milt and the subscript m - 1 indicates that F is evaluated at the previous 
time step. The weighting parameter (J) can be varied from 1 (resulting in a fully 
implicit method) to 0 (resulting in a fully explicit method). The z - e space 
was divided into 2000 rectangular elements. A bilinear function was used to 
approximate nzCz,e,t) on the elements, that is 

(30) 

where the superscript (e) denotes the element e. The constants Yi' i = 1, ... , 4, 
are related to the (unknown) nodal values of the dependent variable nzCz,e,t). 
The interpolation function for nzCz,e,t) can also be approximated by the more 
convenient form 

(31 ) 

where the constants nz(a), ex = i, j, k, I are the values of nzCz, e,t) at the "nodes" 
of the element e and Ga, ex = i, j, k, I are called the shape functions of e. The 
shape functions are related to Yi, i = 1, ... ,4 and are constructed so that nzCz,e,t) 
varies linearly along the sides of the element and takes on its nodal values at 
the nodes i, j, k, and l. For each element, the integration over e' indicated in 
Equation (24) was calculated using a two-point Gaussian integration that, because 
of the small variation of the integrand over the width of an element in e space 
(1t/1O), was found to be sufficiently accurate. The values of e and e' for which 
the direction change is needed are therefore known at the beginning of the solution 
method, enabling K(e',e) to be calculated at the outset of the solution procedure 
and tabulated so that it need not be recalculated at each time step. A typical 
finite element solution to the balance equation for one-dimensional attractant 
gradients requires about 40 CPU minutes on an IBM RS/6000 Powerstation 320. 
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Numerical solutions of Equation (24) using the finite element method are pre
sented in Section 4. 

3. Cellular Dynamics Simulation 

The cellular dynamics (CD) simulation methodology was developed by us as 
a method for studying the collective transport properties of populations of bacteria 
essentially by simulating the dynamics of large populations of individual bacteria 
(Frymier et al. 1993). It thus shares considerable common philosophical ground 
with molecular dynamics simulations methods used to predict the many-body 
thermophysical properties of liquids (Allen and Tildesly 1987). In essence, the 
stochastic differential equation that describes the dynamics of an individual 
bacterium is solved for 104 to 105 bacteria in a geometry appropriate to a small 
subvolume (l x 1 x 8 mm) of the SFDC located at its center with the long axis 
parallel to the coordinate direction (z) in which there is an attractant gradient, 
as shown in Figure 11.2. 

Computer simulations of the motion of individual bacteria have been reported 
by several researchers. Berg (1988, 1993) performed simulations to illustrate the 
random walks generated by single cells assuming Poisson statistics for the tum
bling probability and a simple approximation to the bias in the tum angle distribu
tion. Bornbusch and coworkers (1984, 1986) investigated the effect of limiting 
the turning field size of a cell on its ability to locate an attractant source. Tankersley 
and Conner (1990) performed simulations of single-cell migration to illustrate 
how the differences between various cell types in the mechanisms used to move 
toward an attractant source resulted in markedly different patterns of migration. 
Unlike these computer simulations, we simulate a large population of bacteria 
(20,000 or more cells) and incorporate the experimentally measured tum angle 
distribution into the mechanism for reorienting the cells after tumbling. 

The logic diagram in Figure 11.5 summarizes the cellular dynamics simulation 
methodology described below. The simulation box is first initialized. At the start 
of the simulation loop, each bacterium decides whether or not to tumble (according 
to Equations [36] and [37]). Based on whether or not it tumbles, either a new 
direction is chosen or the bacterium continues its run in the same direction. 
Finally the bacterium moves to a new position based on its swimming speed and 
direction vector using an Euler integration of the equation of motion. We now 
describe the implementation of these steps. 

The simulation "box" of size h x w x l is given an initial uniform random 
distribution of bacteria, both in terms of the spatial distribution of the bacteria 
as well as the direction of motion for each bacterium. The initial concentration 
c(r,t = 0) (see Fig. 11.2) is given by 
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choose new 
direction 

initial position 
and direction 

calculate new position 
ri(t+M) = ri(t)+ dtvSi(f) 

NO 

Figure 11.5 The motion of bacteria is simulated by performing three calculations for each 
individual bacterium at each time step. First, based on a probability that is dependent on 
the local attractant gradient, it is stochastically determined whether or not the cell tumbles. 
Second, if the cell tumbles, then its new direction is chosen using an experimentally 
measured tum angle distribution. If it does not tumble, its direction is maintained. Third, 
the cell's new position is computed based on its direction vector, swimming speed, and 
the time step. 

w w 
c(r,t = 0) = co, - "2 ::;; y ::;; "2 

I I 
--<z<-2 - - 2 . 

(32) 

An initial bacterial concentration of Co = 2 x 107 cells/cm3 was used in the 
experiments of Ford et al. (1991); however, for the simulation results presented 
here, we used an initial concentration of bacteria of Co = 2 X 106 cells/cm3 to 
reduce the calculations necessary at each time step by an order of magnitude. 
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The bacteria are assigned initial direction vectors at random. A step change along 
the z axis at time t = 0 in the concentration of an attractant, a, exists such that 

a(z,t = 0) = 0, -l/2 ~ z ~ 0, (33) 
a(z,t = 0) = ao, 0 ~ z ~ -l/2, 

a(z,t) = I [1 + erf ("":DJ l t > 0, -l/2 ~ z ~ l/2, (34) 

where ao is the initial attractant concentration introduced into one half of the 
chamber, D is the diffusion coefficient of the attractant, z is the position along 
the z axis, and t is time. The solution given above for t > 0 can be found in 
Crank (1979). (Strictly speaking, Equation [34] is the solution of the diffusion 
equation for I -? 00. For practical purposes, over the course of a simulation, the 
attractant concentration goes to the limiting value ao at z = ±112, so that Equation 
[34] is valid for our application.) For t > 0, the motion of each bacterium is modeled 
as an independent, three-dimensional, biased random walk. Our assumption that 
the motion of each bacterium can be considered independent of the motion of 
other bacteria is justified by noting that the cell densities used in the SFDC 
experiments are low enough that intercellular distances are at least an order of 
magnitude greater than cellular diameters. However, at much higher cell densities 
(by an order of magnitude or more), hydrodynamic interactions among swimming 
bacteria may be significant (Guell et al. 1988), in which case our simulation 
technique would require additional terms in the equations of motion to account 
for hydrodynamic interactions between the bacteria. 

The position r of the bacterium i at time t + b.t, where b.t is the time step in 
the simulation, is given by 

(35) 

where v is the three-dimensional swimming speed of the bacterium and Si is the 
unit vector in the direction of motion of the bacterium. The simulation box 
employs periodic boundary conditions (Allen and Tildesly 1987). If the cell 
moves out of the box, it is repositioned so that it reenters at the opposite wall, 
retaining a constant number of cells in the simulation box. The length of the 
simulation box in the direction of the attractant gradient (the z direction) is 0.8 
cm. This is sufficiently large to ensure that the attractant concentration is uniform 
at the ends of the box (z = ±0.4 cm), at which points the cell density returns to 
the bulk density co. 

The unit direction vectors for the bacteria evolve in time according to 
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where 

Ai = 1 if Pi ?: Pt!1t 
= 0 if Pi < Pt f1t. 

(36) 

(37) 

In Equation (37), Pi is a random number chosen at time t + !1t from a uniform 
distribution on [0,1] so that a bacterium has probability Pt!1t of tumbling and 
probability (1 - Pt!1t) of continuing its run. Thus, the tumbling probability in a 
zero gradient is constant and consistent with a Poisson distribution. The time step 
used in the simulation is!1t = 0.1 sec, the time corresponding to the experimentally 
observed duration of a tumble. Therefore the tumbling process is effectively 
instantaneous in our simulation. Details on the method of choosing i;' in Equation 
(36) using the experimentally determined tum angle probability are provided in 
the appendix of Frymier et al. (1994). 

Figure 11.1 shows the paths of 100 bacteria generated by applying the simula
tion algorithm in the absence of a chemical gradient (left column) and in the 
presence of a linear attractant gradient (right column). Note that periodic boundary 
conditions were not implemented in this sample trace. The cell swimming speed 
(22 f.un/sec) and zero gradient tumbling probability (0.17 sec-I) are the same as 
for the simulations reported in Section 4, where results of the cellular dynamics 
simulation of the SFDC assay are compared with the solution of Equation (24), 
the reduced form of the Alt equations. 

4. Comparison of Modeling Approaches 

In this section, we compare the finite element method (FEM) solution of the 
reduced Alt (RA) model, Equation (24), with results obtained from cellular 
dynamics (CD) simulations (Section 4.1), with the one-dimensional RTBL model 
(Section 4.2) and with experimental data for E. coli responding to fucose and 
a-methylaspartate in the SFDC assay (Section 4.3). 

Before doing so, it is instructive to summarize the relationship between the 
three approaches being used to describe bacterial migration in this paper, RTBL, 
the FEM solution to the balance equation for one-dimensional attractant gradients 
and CD simulations. All three approaches have the same conceptual basis: that 
tumbling in bacteria is governed by a stochastic Poisson process and is related 
to the attractant gradient by the experimentally derived relationship Equation 
(18). The CD simulation method is, in essence, a brute force Monte Carlo method 
for solving Alt's equations, Equations (6) and (7). The FEM solution is for the 
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RA equation derived by Ford and Cummings (1992) for the case of a one
dimensional attractant gradient by exploiting symmetry in two of three coordinate 
directions. Thus, CD and FEM are alternative methods for solving the same 
model-that is, the same equations for the same physical situation-and thus 
should yield equivalent results. Note that the CD method involves the solution 
of the dynamical equations for individual cells and thus, unlike the FEM solution, 
is unable to take advantage of the overall symmetry of the population as it 
responds to a one-dimensional attractant gradient. This is one sense in which the 
FEM solution of the RA model is more efficient. By contrast to the model 
underlying the CD simulation and the RA model, the RTBL model involves an 
additional physical assumption, namely that the bacteria are confined to one 
dimension in their motion (Ford and Cummings 1992). 

Hence, the purpose of these comparisons is to validate the FEM solution of 
the RA model by comparing it to CD simulations, evaluate the accuracy of the 
RTBL model compared to the more rigorous RA model, and to evaluate the 
accuracy of the physical model embodied in both CD simulations and the RA 
model by comparing the RA theoretical predictions against experimental data. 

4.1. Comparison of Reduced Alt Model to Cellular Dynamics Simulation 

We begin with a comparison of the bacterial density profiles generated by the 
RA model, CD simulation and RTBL model for the set of conditions shown in 
Table 11.1. The attractant concentration, diffusivity and dissociation constant 
(ao, D, and Kd ) and bacterial properties (~o, v, and Pr in Table 11.1 correspond 
to those in SFDC experiments measuring the response of E. coli bacteria to a 
gradient of fucose reported by Ford et al. (1991). Note that the RTBL quantities 
for cell speed v and chemotactic sensitivity coefficient Xo in Table 11.1 are one
dimensional quantities and are related to the corresponding three-dimensional 
quantities used in the CD simulation and RA model calculations according to 
the relationships derived by Ford and Cummings (Ford and Cummings 1992): 

(38) 

which leads to the following relationship between X6D and Xo (Ford and Cum
mings 1992): 

XiD - Xo 
o - 4 . (39) 
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These relationships were verified by Frymier et al. (1992) as being essential to 
obtain consistency between the one-dimensional RTBL and three-dimensional 
CD descriptions. The value Xo = 3.5 X 10-4 cm2/sec (equivalent to xbD = 0.88 X 

10-4 cm2/sec) corresponds to the experimentally measured value for this system. 
The value of Xo = 105 X 10-4 cm2/sec is significantly higher, but is consistent 
with values measured experimentally for bacteria cultured at low growth rates 
(Mercer et al. 1993). 

In Figures 11.6 and 11.7, the FEM solution of the RA model is compared to 
the CD simulation and to the solution of the RTBL model for the conditions 
given in Table 11.1 over a period corresponding to 6 min of elapsed time. Equation 
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Figure 11.6 Comparison of the finite element solution of the reduced form of Alt's 
equations for a one-dimensional gradient (solid line), CD simulation (squares), and the 
RTBL model (dashed line) for Xo = 3.5 X 10-4 cm2/sec. The dimensionless bacterial density 
cleo is plotted as a function of the position along the SFDC for times of I, 2, 4, and 6 
min. The position z = 0 corresponds to the position of the initial step change in the 
attractant concentration at t = 0 with a fucose concentration of 0.2 mM initially in the 
bottom of the SFDC (0 < z :0; 4 cm in the graphs). 
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Figure 1l.7 Comparison of the finite element solution of the reduced form of All's 
equations for a one-dimensional gradient (solid line), CD simulation (squares), and the 
RTBL model (dashed line) for a large value of Xo = 105 X 10-4 cm2/sec. 

(27) corresponds to the bacterial density that is observable experimentally. This 
density is plotted in dimensionless form as a function of position. The dimension
less bacterial density is defined as clco, where Co is the initial uniform bacterial 
density. 

The model for the tumbling probability used in the FEM solution and the CD 
simulations is Equation (18) and in the RTBL model is Equation (20), both with 
the time derivative aalat term neglected, an assumption validated by Frymier et 
al. (1994). This model for the tumbling probability is consistent with that used 
in previously reported numerical studies (Ford and Lauffenburger 1991). 

The stochastic differential equation solved in the CD embodies the same 
individual cell dynamics as are assumed in Alt's equations and the RA model. 
Hence, from the mathematical point of view, the density profiles obtained from 
the CD simulations should be the same as those obtained from the FEM solution 
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Table 11.1 Summary of constants used in the CD simulation and in solving the RA 
and RTBL equations for comparisons shown in Figures 11.6 and 11.7. 

Po v ao XO D Kd p, 

Quantity (sec-I) (11m/sec) (rnM) (x 104 ern'/see) (x 106 ern'/see) (rnM) 

RA and CD 0.17 22. 0.2 3.5, 105 6.9 0.08 
RTBL 0.17 11. 0.2 0.88,26 6.9 0.08 0.32 

for the RA model provided the same boundary conditions (i.e., SFDC geometry), 
operating conditions and sensing mechanisms are used in both cases. It is clear 
from Figures 11.6 and 11.7 that the FEM solutions of the RA model are completely 
consistent with the CD simulations as expected. The advantage of the FEM 
solution to Equation (24) over CD simulation is that the numerical computation 
involved is considerably less. This is because the error in CD simulations is 
O(N-I12), whereas the computation time is O(N) where N is the number of bacteria 
simulated. Obtaining results from CD simulation with errors similar to those of 
FEM solution of the RA model (around 1 %) would be computationally expensive. 
For example, with 20,000 bacteria the noise in CD appears to be around 5%, so 
reducing this to 1 % would require 25 times this number (or 500,000) bacteria 
and would require 26 hours of CPU time on a IBM RS/6000 Powerstation 320 
for a simulation corresponding to 6 min of real time. For comparison, the FEM 
solution of the RA model requires 39 min of CPU time on an IBM RS/6000 
Powerstation 320 for a calculation corresponding to 6 min of real time. The 
advantage of the CD method is that it enables visualization of the individual 
bacterial motion as well as the collective motion of the population. 

4.2. Comparison of Reduced Alt Model to RTBL Model 

From Figures 11.6 and 11.7, it is clear that there is a small but discernible, 
quantitative difference between the predictions of the RTBL model and the 
solution of the three-dimensional models (RA model and CD simulations). In 
view of the relative speed of the numerical solution of the RTBL equation 
(1 min of CPU time on an IBM RS/6000 Powerstation 320 for a calculation 
corresponding to 6 min of real time compared to 39 min for the analogous FEM 
solution of the RA model), it might be tempting to regard the difference as 
inconsequential for practical purposes and compensated for by the more rapid 
computational speed of RTBL. However, as Frymier et al. (1994) show, the 
small differences in the density profiles in the RTBL model lead to significant 
overestimates in the values of the chemotactic sensitivity coefficient Xo inferred 
by comparison with experimental data, with overestimates ranging from 30% for 
Xo = 3.5 X 10-4 crn/sec to 230% for Xo = 105 X 10-4 cm2/sec. These overestimates 
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are with respect to values obtained from the RA model and CD simulations, 
which are assumed to be physically correct. 

4.3. Comparison of Reduced Alt Model to Experimental Results 

Having established the correctness of the FEM solution of the RA model by 
comparison to CD simulation, it is clear that the FEM solution provides a conve
nient and computationally inexpensive route to calculating the bacterial migration 
profiles for bacteria subject to one-dimensional attractant gradients. It is thus the 
appropriate vehicle for comparison with experimental measurements, particularly 
for determining values of transport coefficients. 

The model for the tumbling probability used in the previous two sections is 

p(r,s,t) = poexp( -E), (40) 

where P = l/(t), Po is the tumbling probability in the absence of an attractant 
gradient and 

(41) 

This implies that bacteria decrease their tumbling frequency when moving toward 
an attractant and increase their tumbling frequency when moving away from an 
attractant. Depending on the swimming behavior of the particular bacterial spe
cies, an alternate form of Equation (40) may be appropriate, which is given by 

p(r,s,t) = poexp(-E) E > 0 (42) 

= Po E < O. 

That is, for some bacterial species (which include E. coli) the probability of 
tumbling does not increase when the bacteria are moving in the direction of a 
decreasing attractant gradient but simply returns to Po, the basal tumbling fre
quency in the absence of a gradient (Berg and Brown 1972). 

In order to compare the RA model with experiment, it is necessary to determine 
the fundamental transport parameters, the random motility ~o and the chemotactic 
sensitivity coefficient Xo. We now describe how this is done. 

First, a random motility experiment is performed in the SFDC in which, under 
flow conditions, the lower half of the chamber contains only motility buffer and 
the upper half contains buffer and bacteria. Hence, there is a step change in 
bacterial density at the midpoint of the SFDC. Once flow is stopped, the bacteria 
exhibit net migration into the lower half of the chamber where initially no bacteria 
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were present. Bacterial density is measured by light scattering to determine N(t), 
the number of bacteria entering the lower half of the SFDC. Experimentally, it 
is observed that N(t) oc tll2. From the mathematical modeling point of view, all 
the models described in Section 2 predict that the macroscopic diffusion equation 
for the bacterial density, 

(43) 

will hold for this random motility experiment. The solution of this equation for 
the initial conditions of the random motility experiment also predicts N(t) oc t l12 

with a slope related to ~. Figure 11.8a shows the experimental result for N(t) 
in the case of E. coli. The random motility is determined by the value of /lo 
which leads to the best fit of the experimental data. The random motility is used 
to determine the tumbling probability in the absence of an attractant gradient ~o 
based on the rigorous connection between ~, ~o, the cell swimming speed v, 
and directional persistence 'If = (cos cp) (where cp is the angle between successive 
runs) given by (Lovely and Dahlquist 1975) 

/lo = 3~0(1 - 'If) . (44) 

For E. coli, we use the values of v = 22/lmlsec and 'If = 0.32 measured by Berg and 
Brown (1972) to obtain ~o from the experimentally determined random motility. 

Knowledge of ~o is necessary for the next step, determination of the chemotactic 
sensitivity coefficient Xo. Under flow conditions at the beginning of a chemotaxis 
experiment, the lower half of the SFDC contains motility buffer, bacteria, and 
attractant, whereas the upper half of the SFDC contains buffer and an equal 
concentration of bacteria but no attractant. Hence, there is a uniform density of 
bacteria in the SFDC and a step change in the concentration of the attractant. 
Once flow is stopped, the attractant diffuses upward according to Fickian diffusion 
and the bacteria exhibit net migration into the lower half of the SFDC chamber 
in response to the attractant gradient. The density of the bacteria is again measured 
by light scattering, and N(t), the number of bacteria entering the lower half of 
the SFDC, obtained. Experimentally, it is found that N(t) oc tll2, and this is also 
found to be the case from the solution of the RA model with a slope that increases 
monotonically with Xo. The inferred value of Xo from the experiment is that which 
yields the same theoretical slope of N(t) oc t ll2 as that given by a linear least
squares regression of the experimental data. This is illustrated in Figure 11.8b, 
where experimental data on E. coli responding to fucose is used to determine Xo. 

Frymier et al. (1994) investigated the degree to which the use of Equation 
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Figure 1l.8 (a) Graph of N(t), the number of bacteria entering the bottom half of the 
SFDC, determined experimentally as the area under the bacterial density profile, plotted 
as a function of tl12 from a random motility experiment. A linear regression analysis of 
the data produced the solid line shown in the graph with a slope of 1.22 x 10-3 cmlsec1/2 and 
a correlation coefficient r of 0.98952. The resulting random motility coefficient is ~ = 
(4.7 ± 0.8) x 10-6 cm2/sec. (b) Graph of the area of the bacterial density peak as a function 
of t1l2. The data are from a chemotaxis experiment with an initial attractant concentration 
of 0.1 mM fucose. A linear regression analysis of the data produced the solid line shown 
in the graph with a slope of 4.29 x 10-4 cmlsec1l2 and a correlation coefficient r of 0.99754. 
The chemotactic sensitivity coefficient Xo is determined by matching the experimental 
slope to theoretical predictions over a range of Xo values. For this set of data, Xo = (3.9 
± 0.1) x 10-5 cm2/sec. 
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(40) for the tumbling probability, rather than the more correct Equation (42), 
affected the experimental determination of Xo. Specifically, for E. coli responding 
to a-methylaspartate, they found that Equation (40) for the tumbling probability 
leads to a value of (1.9 ± 0.1) x 10-4 cm2/sec, whereas the use of the more correct 
Equation (42) (bacteria moving against the attractant gradient return to the basal 
tumbling frequency) yields (4.1 ± 0.2) x 10-4 cm2/sec (Strauss et al. 1995). 
Therefore, determination of Xu from experimental data requires a priori knowledge 
of whether Equation (40) or Equation (42) applies for the particular bacteria 
under investigation. We note that the 100% increase in Xo obtained using Equation 
(42) rather than Equation (40) is not a general result but is consistent with the 
small values of Xo involved. It can be shown that in the limit of small E, in which 
case the exponentials in the tumbling frequency equations can be linearized, this 
factor of two naturally arises using the perturbative expansion of Ford and 
Cummings (1992). 

Figures 11.9 and 11.10 show the experimental data for E. coli responding to 
fucose and a-methylaspartate in SFDC experiments (Ford et al. 1991; Strauss 
1992; Strauss et al. 1995) conducted under the conditions given in Table 11.2. 
Also shown in Table 11.2 are the random motility and chemotactic sensitivity 
coefficients measured in the SFDC. The theoretically obtained bacterial density 
profiles from the RA model are also shown in the figures. The agreement between 
theory and experiment is very good, which suggests that the major assumptions 
in the development of the RA model are reasonable. 

5. Application to Multiple Stimuli 

In this section, we extend the reduced Alt model to include experiments 
involving two chemical attractant gradients. We propose three models for describ
ing chemotactic signals generated from two different gradients into the constitu
tive equation for the tumbling probability. By comparing the bacterial density 
profiles from the theoretical predictions with experimental data from the SFDC 
assay for two chemical stimuli we can infer some information about how bacteria 
process multiple signal inputs from their surroundings to produce a single out
put response. 

Although the biochemical pathway for communicating concentration gradient 
information to the flagellar motors-in particular, signal integration and regula
tion-is not completely understood, the primary steps in the pathway are well 
known from studies of nonchemotactic mutants of E. coli and Salmonella typhimu
rium. Recent reviews of the signal transduction mechanism include those by 
Stock et al. (1989) and Eisenbach (1991). Transmembrane proteins convey infor
mation from the environment across the cytoplasmic membrane to the interior 
of the cell. Located on the periplasmic (exterior) side of the transducer proteins 
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Figure 1l.9 Bacterial density profiles from the SFDC assay for chemotaxis experiments 
(circles) with an initial attractant concentration of 0.1 ruM fucose at times of 1, 4, and 9 
min. Fucose was initially present in the bottom of the chamber, which corresponds to 
positions greater than zero on the plot. Theoretical profiles (FEM solution) are superim
posed with Xo = 3.9 X 10-5 cm2/sec (solid line) for comparison. 
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Figure 11.10 Bacterial density profiles from the SFDC assay for chemotaxis experiments 
(circles) with an initial attractant concentration of 0.01 mM a-methylaspartate at times 
of 1, 2, and 4 min. Methylaspartate was initially present in the bottom of the chamber, 
which corresponds to positions to the right of zero on the plot. Theoretical (FEM solution) 
profiles are superimposed with Xo = 4.1 X 10-5 cm2/sec (solid line) for comparison. 
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Table 11.2 Conditions for experimental measurement of the response of E. coli to 
fucose (Ford et al. 1991) and a-methylaspartate (Strauss 1992) 

v au 110 D Kd Xu 
Quantity (I·un/sec) (mM) (x 107 cm2/sec) (x 106 cm'/sec) (mM) (x 105 cm2/sec) 

Fucose 22 0.1 47 ± 8 6.9 0.08 3.9 ± 0.1 
a-Methyl- 22 0.01 8.8 ± 3.8 8.6 0.125 41 ± 2 

aspartate 

are specific binding sites for chemoattractants and repellents. The binding event 
on the periplasmic portion of the transducer induces a structural change on the 
cytoplasmic (interior) side, which initiates a cascade of phosphorylation reactions 
that control the flagellar rotation and ultimately the tumbling behavior. 

Our experimental system, E. coli/fucuse/u-methylaspartate, represents two 
attractants that utilize different transmembrane proteins for signal transduction. 
Fucose binds to the galactose-binding protein, which then binds to the Trg 
transmembrane protein to initiate the chemotactic signal. The attractant u-methyl
aspartate is a nonmetabolizable structural analog to the amino acid aspartate and 
binds directly to the Tar transmembrane protein. 

5.1. Tumbling Probability Models 

The general equation describing the tumbling probability, p(z,a,t), in the pres
ence of a one-dimensional attractant gradient for a single attractant is given by 
Equation (42) and Equation (41) in Section 4.3. We consider three hypothetical 
models for the tumbling probability p(z,a,t) in the presence of multiple stimuli: 
(1) response only to the attractant present with the highest chemotactic sensitivity 
Xo; (2) response to the maximum individual chemotactic signal E at anyone time; 
and (3) response proportional to simple additivity of individual chemotactic 
signals, L Ej. These models can be compared with mixture rules used in thermody
namics to predict the thermophysical properties of fluid mixtures based on mea
surements of the properties for pure substances (Sandler 1977). In our experimen
tal system, the first model, "high sensitivity (HS)," would use the tumbling 
probability equation for a single attractant Equation (42) with parameter values 
for u-methylaspartate, since the chemotactic sensitivity of u-methylaspartate is 
significantly higher than that for fucose. This model implies that the chemotactic 
response is controlled by a single attractant, which is preferred by the bacteria 
and all other attractants are ignored. The second model, "maximum signal (MS)," 
is based on the hypothesis that bacteria respond to the strongest chemotactic 
signal, which combines both the chemotactic sensitivity and the strength of the 
gradient. This differs from the HS model because bacteria will respond to a 
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fucose signal in the presence of methylaspartate if the fucose gradient is large 
enough to compensate for a lower chemotactic sensitivity coefficient. In terms 
of the tumbling probability, this model is defined by 

A e {~oexp[- max(Ei)], max(Ei) > 0 
I-'(z, ,t) = A 0 I-'o,max( EJ < , 

(45) 

where 

(46) 

The third model, "simple additivity (SA)," suggests that the responses are additive 
as suggested by Rubik and Koshland (1978) for S. typhimurium STl711aspartate/ 
serine and S. typhimurium STl71 /aspartate/ribose. The tumbling probability equa
tion for this model is written as 

{ 
~oexp [I.( -EJ], I.( -EJ > 0 

~(z,e,t) = A ~ (~.) 0' 
1-'0, k.. E, < . 

i 

(47) 

5.2. Experimental Observations 

Our experimentally observed responses of E. coli to multiple gradients of 
fucose and a-methylaspartate are shown in Figure 1l.11 for the co-directional 
configuration and the anti directional configuration. A codirectional configuration 
refers to fucose and a-methylaspartate both in the bottom half of the SFDC and 
antidirectional refers to fucose only in the bottom and a-methylaspartate in the 
top. If we compare the gradients relative to the respective dissociation constants 
that correspond to the concentrations evoking the strongest response, fucose is 
greater by a factor of 5. However, bacterial bands were observed to move toward 
a-methyl aspartate and away from fucose in the antidirectional configuration 
indicating that the greater chemotactic sensitivity of a-methylaspartate more than 
compensated for a larger gradient. From qualitative visual observations during 
the experiments it also appeared that the magnitude of the chemotactic response 
of the bacteria in the presence of both attractants was much greater than the 
single stimulus responses to a-methylaspartate and fucose. Nevertheless, it is 
difficult to compare directly because the random motility of the population used 
for the experiment to measure the response to a-methylaspartate alone was 
significantly less than that for the multiple-stimuli experiment. 
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Figure ILl 1 (a) Bacterial density profiles for multiple stimulus experiments (circles) 
with an initial attractant concentration of 0.01 mM a-methylaspartate and 0.032 mM of 
fucose compared to theoretical predictions based on the HS (long-dashed line), MS (short
dashed line), and SA (solid line) models for the codirectional configuration. The HS and 
MS model predictions are identical and appear as a line with a combination of long and 
short dashes. (b) Bacterial density profiles for mUltiple stimulus experiments compared 
to theoretical predictions for the antidirectional configuration. 

The one direct experimental comparison that can be made is between the 
results for the co- and anti directional configurations of the two attractants. For 
these cases, the fucose concentrations and random motility coefficients are the 
same. According to the HS model, bacteria would only respond to the attractant 
with the larger chemotactic sensitivity coefficient, in our case a-methylaspartate. 
The presence of the less-preferred attractant, fucose, would be ignored. We would 
then expect the bacterial density profiles to be mirror images of each other 
because the a-methylaspartate gradient is identical except it is initiated from 
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opposite sides of the chamber. It is clear from Figure 11.11 that the profiles 
differ significantly and therefore, we conclude that the HS model does not accu
rately model the multiple gradient response. 

Because the fucose concentrations were different between the single stimulus 
and multiple stimuli experiments and the random motility coefficients were differ
ent for each of the experiments, it would not be possible to properly evaluate 
the physical models from the experimental profiles alone. However, because we 
have a mathematical model that describes the physical model, we can generate 
theoretical predictions for any set of experimental conditions thereby permitting 
us to evaluate the validity of the physical model. 

5.3. Comparison between Theoretical Models and Experiments 

We compare theoretical predictions of the bacterial density profiles for the 
three different tumbling probability models to each other and to the experimental 
data for the codirectional and antidirectional configurations in Figure 11.11. The 
comparisons are shown at 4 min because the differences between the models 
and the experimental data are more pronounced at the later times. The same 
qualitative trends were observed at 1 and 2 min. 

In assessing the MS model, we note that for the codirectional gradients, the 
a-methylaspartate signal (as defined by Equation [41]) will always be stronger 
because of the lO-fold larger chemotactic sensitivity coefficient although the 
fucose gradient is initially larger in magnitude by a factor of three. Therefore, 
in a codirectional configuration we expect multiple gradient response to be very 
similar to the single stimulus response to a-methylaspartate (and to the HS model). 
As expected, the MS model is identical to the HS model for this configuration 
and underpredicts the response to multiple gradients. For the antidirectional 
configuration, bacteria moving against the a-methylaspartate gradient would 
respond to the fucose stimulus instead of returning to their basal tumbling fre
quency. This would increase the run lengths for bacteria moving away from the 
a-methylaspartate and tend to reduce the number of bacteria crossing the interface 
and hence reduce the peak area of the bacterial density profile as compared to 
the HS model and a-methyl aspartate alone. So, for the antidirectiona1 configura
tion the HS model agrees more closely with the experimental data than the MS 
model, but both significantly underpredict the observed response. 

The SA model predicts a response to the codirectional gradient equivalent to 
the sum of the individual responses to fucose and a-methylaspartate at the same 
initial concentrations. In comparing the models, we see a larger response for the 
SA model due to the inclusion of a response to fucose, which was ignored in 
the other two models. Even with this increase accounting for a response to 
fucose, the theoretical prediction still falls short of the experimental data. For 
the antidirectional configuration, the response should still be toward the a-methyl-
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aspartate side, but with a reduction in peak area related to the fucose peak area 
for a single stimulus experiment at 0.032 mM. For this configuration, the HS 
model more closely represents the experimental data, although based on previous 
arguments the HS model is clearly incorrect. 

5.4. Evaluation of Proposed Models 

The work of Tsang et al. (1973) and Adler and Tso (1974) with attractants 
and repellents eliminated the dominance of an attractant over a repellent and 
vice versa. The mere presence of an attractant was not sufficient to overcome 
the response to a repellent; a gradient in the attractant was required. Our results 
for two attractants are also consistent with the elimination of the HS model. 
Although this model provides the closest fit to the experimental data for the 
antidirectional case, it is clear from the experimental data that the presence 
of the fucose causes a diminished response to the a-methyl aspartate in the 
antidirectional configuration in comparison to the response in the codirectional 
configuration. The height of the peak drops from 1.22 to 1.14 in dimensionless 
units and the area under the peak representing the number of bacteria that re
sponded to a-methylaspartate is significantly decreased. 

Previous work (Tsang et al. 1973; Adler and Tso 1974; Pfeffer 1988) with 
attractants and repellents indicated that the decision to respond to either the 
attractant or repellent was influenced by the size of the gradient as well as the type 
of chemoattractant. Our proposed MS model therefore incorporated a measure of 
the gradient along with the chemotactic sensitivity as the input for the decision 
to which chemoattractant they should respond. This model, like the HS model 
processes only one input, but uses a different criterion for selection. Comparison 
to experimental data for the multiple attractants shows that this model is no better 
than the HS model in representing the data. The apparent conclusion is that 
bacteria do process both inputs using a common mechanism. 

The simplest common mechanism for signal processing is represented by the 
SA model. It comes closest to what we might expect physically for a receptor
mediated response. It adds together the signals initiated by all the bound receptors. 
The other two models require the bacteria to somehow distinguish, compare and 
evaluate several stimuli and then switch off the signal from one or more of them 
which would be a more complex biochemical process to carry out via a receptor
mediated response. Algebraic additivity of the responses was reported by the 
previous researchers considering responses to attractants and repellents (Tsang 
et al. 1973; Adler and Tso 1974; Rubik and Koshland 1978).We have represented 
this in our model by addition of the signal E from each of the stimuli as measured 
in single stimulus experiments. Even this model underestimates the observed 
experimental data for both co- and antidirectional configurations. 

Rubik and Koshland (1978) proposed a response regulator model to account 
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for their observations that seems consistent with the most recent literature regard
ing the signal transduction mechanism with the level of phosphorylated Che Y 
protein acting as the regulator. They suggested that such a model would predict 
different additive properties which could be studied using mutants or multiple 
stimuli. Their studies with mutants revealed that the bacterial system was capable 
not only of exact additivity, but also nonadditive behaviors such as desensitization 
and potentiation observed in higher order organisms. One explanation of our 
experimental data, which is consistent with Rubik and Koshland's hypothesis, 
is that the signal from the a-methyl aspartate is amplified during the signal
processing step. This would explain the result for both configurations. A more 
complex model than any of those presented here is clearly required to account 
for signal being amplified within the cell during processing. To develop such a 
model, we need to understand more about the relationship between the number 
of bound receptors and the switch activator for the flagellar rotation to incorporate 
a signal amplification model. 

6. Concluding Remarks 

In this chapter we have illustrated the necessity and utility of mathematical 
modeling for characterizing bacterial motility and chemotaxis and for understand
ing the underlying mechanisms governing this behavior. A cell balance equation 
derived by reducing Alt's equations for the case of symmetry in two of three 
dimensions was used with constitutive equations for the tumbling probability to 
evaluate experimental data from the SFDC assay to determine the macroscopic 
transport coefficients, random motility, and chemotactic sensitivity. This demon
strates that mathematical models can be applied to specific experimental condi
tions in which other complicating factors can be minimized or eliminated to 
determine values of fundamental transport properties of bacteria. In the SFDC, 
we observe the formation of traveling bands in response to an attractant gradient. 
The observed bacterial density profiles can be interpreted within the context of 
a mathematical model to provide macroscopic transport properties. 

Once the values for these properties have been determined in independent 
experiments, they can be used as parameter values in the mathematical model 
to predict bacterial density profiles for different experimental conditions. We 
determined )10 and Xo from total numbers of cells accumulating on one side of 
the chamber or within a band, then we used these values to predict the bacterial 
density profiles for comparison with experimental data and found good agreement 
for the systems we studied, namely, E. coli with fucose and a-methylaspartate 
as attractants. 

Good agreement with the experimental profiles suggests that the physical 
models we have used adequately describe the bacterial swimming behavior so 
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long as the approximations used in solving the mathematical model are valid. 
Computer simulations are a tool that can be used to check these approximations 
to avoid the possibility of compensating errors leading to good agreement. For 
example, the approximation that confines bacteria to one-dimensional swimming 
used in the application of the RTBL model to evaluate SFDC assay data yields 
lower bacterial density profiles when compared with the cellular dynamics simula
tions as shown in the upper two graphs of Figure 11.12. This model requires a 
higher value for Xo to match the simulation results. However, the physical model 
also used in the RTBL model, which assumes bacteria decrease run lengths when 
swimming down the attractant gradient, has the opposite effect (see the lower 
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Figure 11.12 Illustration of compensating errors in RTBL model. Comparison of bacterial 
density profiles generated from the reduced form of Alt's equations, CD simulations and 
RTBL model (top figures) to show that approximations in RTBL underpredict the bacterial 
density profile. Solutions of the reduced form of Alt's equations (bottom figures) for 
different physical models of the bacterial swimming behavior away from increasing 
attractant concentrations show differences in the bacterial density profiles. RTBL used 
the increased frequency model which overpredicts the bacterial density. Good agreement 
with experimental data is still possible because the errors are compensating for each other. 
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two graphs in Fig. 11.12). The bacterial density profiles are larger than the 
corresponding ones from the simulations and require a lower value of Xo to 
match the results. Thus, compensating errors can lead to good agreement with 
experimental data and even provide reasonable values for the transport properties. 
Computer simulations are necessary to provide an independent method to check 
for such problems. 

Being confident that the RA model yielded reliable results for the cases with 
single stimuli in a one-dimensional gradient, we extended the model to multiple 
gradients to investigate the signal-processing mechanism in bacteria by comparing 
theoretical predictions based on a tumbling probability model to experimentally 
observed responses for codirectional and antidirectional configurations of fucose 
and a-methylaspartate gradients. None of the simple models which we proposed 
matched the experimental data particularly well, suggesting that the bacteria do 
have a processing mechanism that weights signal inputs differently in the presence 
of secondary inputs. The development of a model for such a mechanism is part 
of our ongoing research. 

The current emphasis in our modeling work is in several areas. First, we are 
extending our consideration of stimuli to include repellents, both alone and in 
the presence of attractants. We have developed a more detailed model of the 
cellular response that considers additional elements of the signal transduction 
mechanism based on the work of Bray et al. (1993), and preliminary results 
indicate that this model works well in predicting the response of E. coli to 
attractant/repellent systems. Second, all of our modeling to date has been for 
bacteria swimming in a bulk aqueous medium. We are now performing experi
mental studies and developing mathematical models for bacterial migration within 
porous media, both in the presence and absence of attractant species. This research 
moves us toward our ultimate goal of a mathematical description of in situ 
bioremediative processes in terms of fundamental cellular processes. 
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