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Lenka Čížková Department of Econometrics & Operations Research,
Tilburg University, Tilburg, The Netherlands, lenka@lenka-photography.eu

Laurie Davies Universität Duisburg-Essen, Essen, Germany,
laurie.davies@uni-due.de

William F. Eddy Department of Statistics, Carnegie Mellon University,
Pittsburgh, PA, USA, bill@stat.cmu.edu

Ursula Gather Technische Universität Dortmund, Dortmund, Germany,
gather@statistik.tu-dortmund.de

James E. Gentle Department of Computational and Data Sciences,
George Mason University, Fairfax, VA, USA, jgentle@gmu.edu

Oliver Günther Universität Potsdam, Präsidialamt Potsdam, Germany,
guenther@wiwi.hu-berlin.de

ix

luc.bauwens@uclouvain.be
claus.boyens@web.de
s.a.broda@uva.nl
buhlmann@stat.math.ethz.ch
chib@wustl.edu
P.Cizek@uvt.nl
lenka@lenka-photography.eu
laurie.davies@uni-due.de
bill@stat.cmu.edu
gather@statistik.tu-dortmund.de
jgentle@gmu.edu
guenther@wiwi.hu-berlin.de


x Contributors

Wolfgang Karl Härdle Humboldt-Universität zu Berlin, L.v.Bortkiewicz Chair
of Statistics, C.A.S.E. – Centre for Applied Statistics and Economics, School of
Business and Economics, Berlin, Germany, haerdle@wiwi.hu-berlin.de

Joel L. Horowitz Department of Economics, Northwestern University, Evanston,
IL, USA, joel-horowitz@northwestern.edu

Alfred Inselberg School of Mathematical Sciences, Tel Aviv University, Tel Aviv,
Israel, aiisreal@post.tau.ac.il

Toshinari Kamakura Chuo University, Tokyo, Japan,
kamakura@indsys.chuo-u.ac.jp

Jack P.C. Kleijnen Department of Information Management/Center for
Economic Research (CentER), Tilburg University, Tilburg, The Netherlands,
Kleijnen@UvT.NL

Sigbert Klinke Ladislaus von Bortkiewicz Chair of Statistics, C.A.S.E. – Center
for Applied Statistics and Economics, Humboldt- Universität zu Berlin, Berlin,
Germany, sigbert@wiwi.hu-berlin.de

Thriyambakam Krishnan Mu-Sigma Business Solutions Pvt. Ltd,
Kalyani Platina, K.R. Puram Hobli, Bangalore, India, krishnant001@gmail.com

Pierre L’Ecuyer Département d’Informatique et de Recherche Opérationnelle,
Université de Montréal, Montréal (Québec), Canada, lecuyer@iro.umontreal.ca

Pavel Laskov University of Tübingen, Tübingen, Germany, laskov@first.fhg.de

Hans-J. Lenz Institut für Statistik und Ökonometrie, Freie Universität Berlin,
Berlin, Germany, Hans-J.Lenz@fu-berlin.de

Catherine Loader Department of Statistics, Case Western Reserve University,
Cleveland, OH, USA, catherine@case.edu

Enno Mammen University of Mannheim, Mannheim, Germany,
emammen@rumms.uni-mannheim.de

David J. Marchette Naval Surface Warfare Center, Dahlgren, VA, USA,
david.marchette@navy.mil

Geoffrey. J. McLachlan Department of Mathematics, University of Queensland,
Brisbane, QLD, Australia, g.mclachlan@uq.edu.au

Rebecca L. McNamee Department of Statistics, Carnegie Mellon University,
Pittsburgh, PA, USA

Sebastian Mika idalab GmbH, Berlin, Germany, mika@idalab.de;
mika@first.fhg.de

Adam Misiorek Santander Consumer Bank S.A., Wrocław, Poland,
adam.misiorek@santanderconsumer.pl

haerdle@wiwi.hu-berlin.de
joel-horowitz@northwestern.edu
aiisreal@post.tau.ac.il
kamakura@indsys.chuo-u.ac.jp
Kleijnen@UvT.NL
sigbert@wiwi.hu-berlin.de
krishnant001@gmail.com
lecuyer@iro.umontreal.ca
laskov@first.fhg.de
Hans-J.Lenz@fu-berlin.de
catherine@case.edu
emammen@rumms.uni-mannheim.de
david.marchette@navy.mil
g.mclachlan@uq.edu.au
mika@idalab.de
mika@first.fhg.de
adam.misiorek@santanderconsumer.pl


Contributors xi

Masahiro Mizuta Information Initiative Center, Hokkaido University, Sapporo,
Japan, mizuta@iic.hokudai.ac.jp

John F Monahan Department of Statistics, North Carolina State University,
Raleigh, NC, USA, monahan@ncsu.edu

Yuichi Mori Department of Socio-information, Okayama University, Okayama,
Japan, mori@soci.ous.ac.jp

Klaus-Robert Müller Berlin Institute of Technology, Berlin, Germany,
klaus-robert.mueller@tu-berlin.de

Marlene Müller Beuth University of Applied Sciences, Berlin, Germany,
marlene.mueller@beuth-hochschule.de

Junji Nakano Department of Data Science, The Institute of Statistical
Mathematics, Tachikawa, Tokyo, Japan, nakanoj@ism.ac.jp

Swagata Nandi Indian Statistical Institute, Delhi Centre, New Delhi, India,
nandi@isid.ac.in

Shu Kay Ng School of Medicine, Griffith University, Meadowbrook, QLD,
Australia, s.ng@griffith.edu.au

Marc S. Paolella Swiss Banking Institute, University of Zurich, Zurich,
Switzerland
and
Swiss Finance Institute, Zurich, Switzerland, paolella@isb.uzh.ch

Konrad Rieck Berlin Institute of Technology, Berlin, Germany,
konrad.rieck@tu-berlin.de

Christian P. Robert Université Paris-Dauphine, CEREMADE, and
CREST-INSEE, Paris, France, Christian.Robert@ceremade.dauphine.fr

Jeroen V.K. Rombouts HEC Montréal, CIRANO, CIRPEE, CORE, Montreal,
Canada, jeroen.rombouts@hec.ca

Christin Schäfer Fraunhofer Institute FIRST, Berlin, Germany,
christin@first.fhg.de

David W. Scott Department of Statistics, Rice University, Houston, TX, USA,
scottdw@rice.edu

Sören Sonnenburg Berlin Institute of Technology, Berlin, Germany

James C. Spall The Johns Hopkins University, Applied Physics Laboratory,
Laurel, MD, USA, James.Spall@jhuapl.edu

Masashi Sugiyama Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan,
sugi@cs.titech.ac.jp

mizuta@iic.hokudai.ac.jp
monahan@ncsu.edu
mori@soci.ous.ac.jp
klaus-robert.mueller@tu-berlin.de
marlene.mueller@beuth-hochschule.de
nakanoj@ism.ac.jp
nandi@isid.ac.in
s.ng@griffith.edu.au
paolella@isb.uzh.ch
konrad.rieck@tu-berlin.de
Christian.Robert@ceremade.dauphine.fr
jeroen.rombouts@hec.ca
christin@first.fhg.de
scottdw@rice.edu
James.Spall@jhuapl.edu
sugi@cs.titech.ac.jp


xii Contributors

Jürgen Symanzik Department of Mathematics and Statistics, Utah State
University, Logan, UT, USA, juergen.symanzik@usu.edu

David Tax Delft University of Technology, Delft, The Netherlands,
ldavidt@first.fhg.de

Iosif I. Vaisman Department of Bioinformatics and Computational Biology,
George Mason University, Fairfax, VA, USA, ivaisman@gmu.edu

Brani Vidakovic The Wallace H. Coulter Department of Biomedical Engineering,
Georgia Institute of Technology, Atlanta, GA, USA, brani@bme.gatech.edu

Miroslav Virius Czech Technical University in Prague, Faculty of Nuclear
Sciences and Physical Engineering, Prague, Czech Republic,
miroslav.virius@fjfi.cvut.cz

Yuedong Wang Department of Statistics and Applied Probability, University of
California, Santa Barbara, CA, USA, yuedong@pstat.ucsb.edu

Rafał Weron Institute of Organization and Management, Wrocław University of
Technology, Wrocław, Poland, rafal.weron@gmail.com

Adalbert Wilhelm Commerzbank Chair of Information Management, School of
Humanities and Social Sciences, Jacobs University Bremen gGmbH, Bremen,
Germany, a.wilhelm@jacobs-university.de

Leland Wilkinson SYSTAT Software Inc., Chicago, IL, USA,
Leland.Wilkinson@systat.com

Heping Zhang Yale University School of Medicine, New Haven, CT, USA
and
Sun Yat-Sen University, Guangzhou, China, heping.zhang@yale.edu

juergen.symanzik@usu.edu
ldavidt@first.fhg.de
ivaisman@gmu.edu
brani@bme.gatech.edu
miroslav.virius@fjfi.cvut.cz
yuedong@pstat.ucsb.edu
rafal.weron@gmail.com
a.wilhelm@jacobs-university.de
Leland.Wilkinson@systat.com
heping.zhang@yale.edu


Part I
Computational Statistics



Chapter 1
How Computational Statistics Became the
Backbone of Modern Data Science

James E. Gentle, Wolfgang Karl Härdle, and Yuichi Mori

This first chapter serves as an introduction and overview for a collection of articles
surveying the current state of the science of computational statistics. Earlier versions
of most of these articles appeared in the first edition of Handbook of Computational
Statistics: Concepts and Methods, published in 2004.

There have been advances in all of the areas of computational statistics, so we
feel that it is time to revise and update this Handbook. This introduction is a revision
of the introductory chapter of the first edition.

1.1 Computational Statistics and Data Analysis

To do data analysis is to do computing. Statisticians have always been heavy users of
whatever computing facilities are available to them. As the computing facilities have
become more powerful over the years, those facilities have obviously decreased
the amount of effort the statistician must expend to do routine analyses. As the
computing facilities have become more powerful, an opposite result has occurred,
however; the computational aspect of the statistician’s work has increased. This is
because of paradigm shifts in statistical analysis that are enabled by the computer.
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Department of Computational and Data Sciences, George Mason University, Fairfax, VA, USA
e-mail: jgentle@gmu.edu

W.K. Härdle
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4 J.E. Gentle et al.

Statistical analysis involves use of observational data together with domain
knowledge to develop a model to study and understand a data-generating process.
The data analysis is used to refine the model or possibly to select a different
model, to determine appropriate values for terms in the model, and to use the
model to make inferences concerning the process. This has been the paradigm
followed by statisticians for centuries. The advances in statistical theory over the
past two centuries have not changed the paradigm, but they have improved the
specific methods. The advances in computational power have enabled newer and
more complicated statistical methods. Not only has the exponentially-increasing
computational power allowed use of more detailed and better models, however,
it has shifted the paradigm slightly. Many alternative views of the data can be
examined. Many different models can be explored. Massive amounts of simulated
data can be used to study the model/data possibilities.

When exact models are mathematically intractable, approximate methods, which
are often based on asymptotics, or methods based on estimated quantities must be
employed. Advances in computational power and developments in theory have made
computational inference a viable and useful alternative to the standard methods of
asymptotic inference in traditional statistics. Computational inference is based on
simulation of statistical models.

The ability to perform large numbers of computations almost instantaneously
and to display graphical representations of results immediately has opened many
new possibilities for statistical analysis. The hardware and software to perform
these operations are readily available and are accessible to statisticians with no
special expertise in computer science. This has resulted in a two-way feedback
between statistical theory and statistical computing. The advances in statistical
computing suggest new methods and development of supporting theory; conversely,
the advances in theory and methods necessitate new computational methods.

Computing facilitates the development of statistical theory in two ways. One way
is the use of symbolic computational packages to help in mathematical derivations
(particularly in reducing the occurrences of errors in going from one line to the
next!). The other way is in the quick exploration of promising (or unpromising!)
methods by simulations. In a more formal sense also, simulations allow evaluation
and comparison of statistical methods under various alternatives. This is a widely-
used research method. For example, 66 out of 79 articles published in the Theory
and Methods section of the Journal of the American Statistical Association in 2010
reported on Monte Carlo studies of the performance of statistical methods. (In 2002,
this number was 50 out of 61 articles.) A general outline of many research articles
in statistics is

1. State the problem and summarize previous work on it.
2. Describe a new approach.
3. Work out some asymptotic properties of the new approach.
4. Conduct a Monte Carlo study showing the new approach in a favorable light.

Much of the effort in mathematical statistics has been directed toward the easy
problems of exploration of asymptotic properties. The harder problems for finite
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samples require different methods. Carefully conducted and reported Monte Carlo
studies often provide more useful information on the relative merits of statistical
methods in finite samples from a range of model scenarios.

While to do data analysis is to compute, we do not identify all data analysis,
which necessarily uses the computer, as “statistical computing” or as “compu-
tational statistics”. By these phrases we mean something more than just using
a statistical software package to do a standard analysis. We use the term “sta-
tistical computing” to refer to the computational methods that enable statistical
methods. Statistical computing includes numerical analysis, database methodology,
computer graphics, software engineering, and the computer/human interface. We
use the term “computational statistics” somewhat more broadly to include not
only the methods of statistical computing, but also statistical methods that are
computationally intensive. Thus, to some extent, “computational statistics” refers
to a large class of modern statistical methods. Computational statistics is grounded
in mathematical statistics, statistical computing, and applied statistics. While we
distinguish “computational statistics” from “statistical computing”, the emergence
of the field of computational statistics was coincidental with that of statistical
computing, and would not have been possible without the developments in statistical
computing.

One of the most significant results of the developments in statistical computing
during the past few decades has been the statistical software package. There are
several of these, but a relatively small number that are in widespread use. While
referees and editors of scholarly journals determine what statistical theory and
methods are published, the developers of the major statistical software packages
determine what statistical methods are used. Computer programs have become
necessary for statistical analysis. The specific methods of a statistical analysis are
often determined by the available software. This, of course, is not a desirable
situation, but, ideally, the two-way feedback between statistical theory and statistical
computing dimishes the effect over time.

The importance of computing in statistics is also indicated by the fact that
there are at least ten major journals with titles that contain some variants of both
“computing” and “statistics”. The journals in the mainstream of statistics without
“computing” in their titles also have a large proportion of articles in the fields
of statistical computing and computational statistics. This is because, to a large
extent, recent developments in statistics and in the computational sciences have
gone hand in hand. There are also two well-known learned societies with a pri-
mary focus in statistical computing: the International Association for Statistical
Computing (IASC), which is an affiliated society of the International Statistical
Institute (ISI), and the Statistical Computing Section of the American Statistical
Association (ASA). There are also a number of other associations focused on
statistical computing and computational statistics, such as the Statistical Computing
Section of the Royal Statistical Society (RSS), and the Japanese Society of
Computational Statistics (JSCS).

Developments in computing and the changing role of computations in statistical
work have had significant effects on the curricula of statistical education programs
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both at the graduate and undergraduate levels. Training in statistical computing is a
major component in some academic programs in statistics (see Gentle 2004; Lange
2004; Monahan 2004; Nolan and Temple Lang 2010). In all academic programs,
some amount of computing instruction is necessary if the student is expected to
work as a statistician. The extent and the manner of integration of computing into an
academic statistics program, of course, change with the developments in computing
hardware and software and advances in computational statistics.

We mentioned above the two-way feedback between statistical theory and statis-
tical computing. There is also an important two-way feedback between applications
and statistical computing, just as there has always been between applications and
any aspect of statistics. Although data scientists seek commonalities among methods
of data analysis, different areas of application often bring slightly different problems
for the data analyst to address. In recent years, an area called “data mining” or
“knowledge mining” has received much attention. The techniques used in data
mining are generally the methods of exploratory data analysis, of clustering, and of
statistical learning, applied to very large and, perhaps, diverse datasets. Scientists
and corporate managers alike have adopted data mining as a central aspect of
their work. Specific areas of application also present interesting problems to the
computational statistician. Financial applications, particularly risk management and
derivative pricing, have fostered advances in computational statistics. Biological
applications, such as bioinformatics, microarray analysis, and computational biol-
ogy, are fostering increasing levels of interaction with computational statistics.

The hallmarks of computational statistics are the use of more complicated
models, larger datasets with both more observations and more variables, unstruc-
tured and heterogeneous datasets, heavy use of visualization, and often extensive
simulations.

1.2 The Emergence of a Field of Computational Statistics

Statistical computing is truly a multidisciplinary field and the diverse problems have
created a yeasty atmosphere for research and development. This has been the case
from the beginning. The roles of statistical laboratories and the applications that
drove early developments in statistical computing are surveyed by Grier (1999).
As digital computers began to be used, the field of statistical computing came to
embrace not only numerical methods but also a variety of topics from computer
science.

The development of the field of statistical computing was quite fragmented, with
advances coming from many directions – some by persons with direct interest and
expertise in computations, and others by persons whose research interests were in
the applications, but who needed to solve a computational problem. Through the
1950s the major facts relevant to statistical computing were scattered through a
variety of journal articles and technical reports. Many results were incorporated into
computer programs by their authors and never appeared in the open literature. Some
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persons who contributed to the development of the field of statistical computing
were not aware of the work that was beginning to put numerical analysis on a sound
footing. This hampered advances in the field.

1.2.1 Early Developments in Statistical Computing

An early book that assembled much of the extant information on digital computa-
tions in the important area of linear computations was by Dwyer (1951). In the same
year, Von Neumann’s NBS publication (Von Neumann 1951) described techniques
of random number generation and applications in Monte Carlo. At the time of
these publications, however, access to digital computers was not widespread. Dwyer
(1951) was also influential in regression computations performed on calculators.
Some techniques, such as use of “machine formulas”, persisted into the age of
digital computers.

Developments in statistical computing intensified in the 1960s, as access to
digital computers became more widespread. Grier (1991) describes some of the
effects on statistical practice by the introduction of digital computers, and how
statistical applications motivated software developments. The problems of rounding
errors in digital computations were discussed very carefully in a pioneering book by
Wilkinson (1963). A number of books on numerical analysis using digital computers
were beginning to appear. The techniques of random number generation and Monte
Carlo were described by Hammersley and Handscomb (1964). In 1967 the first book
specifically on statistical computing appeared, Hemmerle (1967).

1.2.2 Early Conferences and Formation of Learned Societies

The 1960s also saw the beginnings of conferences on statistical computing and
sections on statistical computing within the major statistical societies. The Royal
Statistical Society sponsored a conference on statistical computing in December
1966. The papers from this conference were later published in the RSS’s Applied
Statistics journal. The conference led directly to the formation of a Working Party
on Statistical Computing within the Royal Statistical Society. The first Symposium
on the Interface of Computer Science and Statistics was held February 1, 1967.
This conference has continued as an annual event with only a few exceptions
since that time (see Billard and Gentle 1993; Goodman 1993; Wegman 1993). The
attendance at the Interface Symposia initially grew rapidly year by year and peaked
at over 600 in 1979. In recent years the attendance has been slightly under 300. The
proceedings of the Symposium on the Interface have been an important repository of
developments in statistical computing. In April, 1969, an important conference on
statistical computing was held at the University of Wisconsin. The papers presented
at that conference were published in a book edited by Milton and Nelder (1969),
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which helped to make statisticians aware of the useful developments in computing
and of their relevance to the work of applied statisticians.

In the 1970s two more important societies devoted to statistical computing were
formed. The Statistical Computing Section of the ASA was formed in 1971 (see
Chambers and Ryan 1990). The Statistical Computing Section organizes sessions
at the annual meetings of the ASA, and publishes proceedings of those sessions.
The International Association for Statistical Computing (IASC) was founded in
1977 as a Section of ISI. In the meantime, the first of the biennial COMPSTAT
Conferences on computational statistics was held in Vienna in 1974. Much later,
regional sections of the IASC were formed, one in Europe and one in Asia. The
European Regional Section of the IASC is now responsible for the organization of
the COMPSTAT conferences.

Also, beginning in the late 1960s and early 1970s, most major academic
programs in statistics offered one or more courses in statistical computing. More
importantly, perhaps, instruction in computational techniques has permeated many
of the standard courses in applied statistics.

As mentioned above, there are several journals whose titles include some
variants of both “computing” and “statistics”. The first of these, the Journal of
Statistical Computation and Simulation, was begun in 1972. There are dozens
of journals in numerical analysis and in areas such as “computational physics”,
“computational biology”, and so on, that publish articles relevant to the fields of
statistical computing and computational statistics.

By 1980 the field of statistical computing, or computational statistics, was well-
established as a distinct scientific subdiscipline. Since then, there have been regular
conferences in the field, there are scholarly societies devoted to the area, there are
several technical journals in the field, and courses in the field are regularly offered
in universities.

1.2.3 The PC

The 1980s was a period of great change in statistical computing. The personal
computer brought computing capabilities to almost everyone. With the PC came
a change not only in the number of participants in statistical computing, but, equally
important, completely different attitudes toward computing emerged. Formerly, to
do computing required an account on a mainframe computer. It required laboriously
entering arcane computer commands onto punched cards, taking these cards to a
card reader, and waiting several minutes or perhaps a few hours for some output –
which, quite often, was only a page stating that there was an error somewhere in the
program. With a personal computer for the exclusive use of the statistician, there
was no incremental costs for running programs. The interaction was personal, and
generally much faster than with a mainframe. The software for PCs was friendlier
and easier to use. As might be expected with many non-experts writing software,
however, the general quality of software probably went down.
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The democratization of computing resulted in rapid growth in the field, and rapid
growth in software for statistical computing. It also contributed to the changing
paradigm of the data sciences.

1.2.4 The Cross Currents of Computational Statistics

Computational statistics of course is more closely related to statistics than to
any other discipline, and computationally-intensive methods are becoming more
commonly used in various areas of application of statistics. Developments in other
areas, such as computer science and numerical analysis, are also often directly
relevant to computational statistics, and the research worker in this field must scan
a wide range of literature.

Numerical methods are often developed in an ad hoc way, and may be reported
in the literature of any of a variety of disciplines. Other developments important
for statistical computing may also be reported in a wide range of journals that
statisticians are unlikely to read. Keeping abreast of relevant developments in
statistical computing is difficult not only because of the diversity of the literature, but
also because of the interrelationships between statistical computing and computer
hardware and software.

An example of an area in computational statistics in which significant devel-
opments are often made by researchers in other fields is Monte Carlo simulation.
This technique is widely used in all areas of science, and researchers in various
areas often contribute to the development of the science and art of Monte Carlo
simulation. Almost any of the methods of Monte Carlo, including random number
generation, are important in computational statistics.

1.2.5 Reproducible Research

Reproducibility in the sense of replication within experimental error has always
been a touchstone of science. In recent years, however, the term “reproducible
research” (RR), or sometimes “reproducible analysis”, has taken on a stronger
meaning. The standards for RR include provision of computer codes (preferably
in source) and/or data that would allow the reader to replicate the reported results
(see Baggerly and Berry 2011).

Many journals enforce these requirements, or at least facilitate the provisions.
The Journal of American Statistical Association, for example, encourages authors
to provide code and/or data, as well as other supporting material. This additional
material is linked with an electronic version of the article at the journal’s web site.

Many articles in computational statistics are written in LATEX and the computa-
tions are done in R. The R code, together with any input data, allows the reader to
perform the same computations for simulations and analyses that yielded the results
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reported in the accompanying text. The Sweave package facilitates the incorporation
of code with text in the same file (see Leisch 2002). Instructions for obtaining
Sweave as well as the current user manual can be obtained at http://www.statistik.
lmu.de/~leisch/Sweave/Sweave-manual.pdf

1.2.6 Literature

Some of the major periodicals in statistical computing and computational statistics
are listed below. Some of these journals and proceedings are refereed rather
rigorously, some refereed less so, and some are not refereed. Although most of these
serials are published in hardcopy form, most are also available electronically.

• ACM Transactions on Mathematical Software, published quarterly by the ACM
(Association for Computing Machinery), includes algorithms in Fortran and C.
Most of the algorithms are available through netlib. The ACM collection of
algorithms is sometimes called CALGO.
www.acm.org/toms/

• ACM Transactions on Modeling and Computer Simulation, published quarterly
by the ACM.
www.acm.org/tomacs/

• Applied Statistics, published quarterly by the Royal Statistical Society. (Until
1998, it included algorithms in Fortran. Some of these algorithms, with cor-
rections, were collected by Griffiths and Hill, 1985. Most of the algorithms are
available through statlib at Carnegie Mellon University.)
www.rss.org.uk/publications/

• Communications in Statistics – Simulation and Computation, published quarterly
by Marcel Dekker. (Until 1996, it included algorithms in Fortran. Until 1982, this
journal was designated as Series B.)
www.dekker.com/servlet/product/productid/SAC/

• Computational Statistics published quarterly by Physica-Verlag (formerly called
Computational Statistics Quarterly).
comst.wiwi.hu-berlin.de/

• Computational Statistics. Proceedings of the xxth Symposium on Computational
Statistics (COMPSTAT), published biennially by Physica-Verlag/Springer.

• Computational Statistics & Data Analysis, published by Elsevier Science. There
are twelve issues per year. (This is also the official journal of the International
Association for Statistical Computing and as such incorporates the Statistical
Software Newsletter.)
www.cbs.nl/isi/csda.htm

• Computing Science and Statistics. This is an annual publication containing
papers presented at the Interface Symposium. Until 1992, these proceedings were
named Computer Science and Statistics: Proceedings of the xxth Symposium on
the Interface. (The 24th symposium was held in 1992.) In 1997, Volume 29 was

http://www.statistik.lmu.de/~leisch/Sweave/Sweave-manual.pdf
http://www.statistik.lmu.de/~leisch/Sweave/Sweave-manual.pdf
www.acm.org/toms/
www.acm.org/tomacs/
www.rss.org.uk/publications/
www.dekker.com/servlet/product/productid/SAC/
comst.wiwi.hu-berlin.de/
www.cbs.nl/isi/csda.htm
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published in two issues: Number 1, which contains the papers of the regular
Interface Symposium; and Number 2, which contains papers from another
conference. The two numbers are not sequentially paginated. Since 1999, the
proceedings have been published only in CD-ROM form, by the Interface
Foundation of North America.
www.galaxy.gmu.edu/stats/IFNA.html

• Journal of Computational and Graphical Statistics, published quarterly as a joint
publication of ASA, the Institute of Mathematical Statistics, and the Interface
Foundation of North America.
www.amstat.org/publications/jcgs/

• Journal of the Japanese Society of Computational Statistics, published once a
year by JSCS.
www.jscs.or.jp/oubun/indexE.html

• Journal of Statistical Computation and Simulation, published in twelve issues
per year by Taylor & Francis.
www.tandf.co.uk/journals/titles/00949655.asp

• Journal of Statistical Software, a free on-line journal that publishes articles, book
reviews, code snippets, and software reviews.
www.jstatsoft.org/

• Proceedings of the Statistical Computing Section, published annually by ASA.
www.amstat.org/publications/

• SIAM Journal on Scientific Computing, published bimonthly by SIAM. This
journal was formerly SIAM Journal on Scientific and Statistical Computing.
www.siam.org/journals/sisc/sisc.htm

• Statistical Computing & Graphics Newsletter, published quarterly by the Statis-
tical Computing and the Statistical Graphics Sections of ASA.
www.statcomputing.org/

• Statistics and Computing, published quarterly by Chapman & Hall.

In addition to literature and learned societies in the traditional forms, an
important source of communication and a repository of information are computer
databases and forums. In some cases, the databases duplicate what is available in
some other form, but often the material and the communications facilities provided
by the computer are not available elsewhere.

1.3 This Handbook

The purpose of this handbook is the same as that of the first edition of Concepts
and Fundamentals. It is to provide a survey of the basic concepts of computational
statistics. A glance at the table of contents reveals a wide range of articles written
by experts in various subfields of computational statistics. The articles are generally
expository, taking the reader from the basic concepts to the current research trends.

www.galaxy.gmu.edu/stats/IFNA.html
www.amstat.org/publications/jcgs/
www.jscs.or.jp/oubun/indexE.html
www.tandf.co.uk/journals/titles/00949655.asp
www.jstatsoft.org/
www.amstat.org/publications/
www.siam.org/journals/sisc/sisc.htm
www.statcomputing.org/
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The emphasis throughout, however, is on the concepts and fundamentals. Most
chapters have been revised to provide up-to-date references to the relevant literature.

We have retained the organization of the main body in three parts. Part II
on “statistical computing” addresses the computational methodology; Part III on
“statistical methodology” covers techniques of applied statistics that are computer-
intensive, or otherwise that make use of the computer as a tool of discovery, rather
than as just a large and fast calculator; and, finally, Part IV describes a number of
application areas in which computational statistics plays a major role.

1.3.1 Summary and Overview; Part II: Statistical Computing

Statistical computing is in the interface of numerical analysis, computer science, and
statistics. This interface includes computer arithmetic, algorithms, database method-
ology, languages and other aspects of the user interface, and computer graphics.

For statistical numerical analysis, it is important to understand how the computer
does arithmetic, and more importantly what the implications are for statistical
(or other) computations. In addition to understanding of the underlying arithmetic
operations, the basic principles of numerical algorithms, such as divide and conquer,
must be in the working knowledge of persons writing numerical software for
statistical applications. Although many statisticians do not need to know the details,
it is important that all statisticians understand the implications of computations
within a system of numbers and operators that is not the same system that we are
accustomed to in mathematics. Anyone developing computer algorithms, no matter
how trivial the algorithm may appear, must understand the details of the computer
system of numbers and operators.

One of the important uses of computers in statistics, and one that is central to
computational statistics, is the simulation of random processes. This is a theme
of several chapters of this handbook, but in Part II, the basic numerical methods
relevant to simulation are discussed. These include the basics of random number
generation, including assessing the quality of random number generators, and
simulation of random samples from various distributions, as well as the class of
methods called Markov chain Monte Carlo. Statistical methods using simulated
samples are discussed further in Part III.

Some chapters of Part II address specific numerical methods, such as methods
for linear algebraic computations, for optimization, and for transforms. Separate
chapters in Part II discuss two specific areas of optimization, the EM algorithm and
its variations, and stochastic optimization. Another chapter describes transforms,
such as the well-known Fourier and wavelet transforms, that effectively restructure
a problem by changing the domain are important statistical functionals.

Other chapters of Part II focus on efficient usage of computing resources. Spe-
cific topics include parallel computing, database management methodology, issues
relating to the user interface, and even paradigms, such as an object orientation, for
software development.
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Statistical graphics, especially interactive and dynamic graphics, play an increas-
ingly prominent role in data analysis. Two chapters of Part II are devoted to this
important area.

1.3.2 Summary and Overview; Part III: Statistical Methodology

Part III covers several aspects of computational statistics. In this part the emphasis is
on the statistical methodology that is enabled by computing. Computers are useful
in all aspects of statistical data analysis, of course, but in Part III, and generally in
computational statistics, we focus on statistical methods that are computationally
intensive. Although a theoretical justification of these methods often depends on
asymptotic theory, in particular, on the asymptotics of the empirical cumulative
distribution function, asymptotic inference is generally replaced by computational
inference.

The first few chapters of this part deal directly with techniques of computational
inference; that is, the use of cross validation, resampling, and simulation of data-
generating processes to make decisions and to assign a level of confidence to the
decisions. Selection of a model implies consideration of more than one model.
As we suggested above, this is one of the hallmarks of computational statistics:
looking at data through a variety of models. Cross validation and its generalizations
and resampling are important techniques for addressing the problems. Resampling
methods also have much wider applicability in statistics, from estimating variances
and setting confidence regions to larger problems in statistical data analysis.
Computational inference depends on simulation of data-generating processes. Any
such simulation is an experiment, and in Part III, principles for design and analysis
of experiments using computer models are discussed.

Estimation of a multivariate probability density function is also addressed in
Part III. This area is fundamental in statistics, and it utilizes several of the standard
techniques of computational statistics, such as cross validation and visualization
methods.

The next few chapters of Part III address important issues for discovery and
analysis of relationships among variables. One class of models are asymmetric, that
is, models for the effects of a given set of variables (“independent variables") on
another variable or set of variables. Smoothing methods for these models, which
include use of kernels, splines, and orthogonal series, are generally nonparametric
or semiparametric. Two important types of parametric asymmetric models discussed
in Part III are generalized linear models and nonlinear regression models. In any
models that explore the relationships among variables, it is often desirable to reduce
the effective dimensionality of a problem. All of these chapters on using models of
variate relationships to analyze data emphasize the computational aspects.

One area in which computational inference has come to play a major role is
in Bayesian analysis. Computational methods have enabled a Bayesian approach in
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practical applications, because no longer is this approach limited to simple problems
or conjugate priors.

Survival analysis, with applications in both medicine and product reliability,
has become more important in recent years. Computational methods for analyzing
models used in survival analysis are discussed in Part III.

The final chapters of Part III address an exciting area of computational statistics.
The general area may be called “data mining”, although this term has a rather
anachronistic flavor because of the hype of the mid-1990s. Other terms such as
“knowledge mining” or “knowledge discovery in databases” (“KDD”) are also used.
To emphasize the roots in artificial intelligence, which is a somewhat discredited
area, the term “computational intelligence” is also used. This is an area in which
machine learning from computer science and statistical learning have merged.

1.3.3 Summary and Overview; Part IV: Statistical Methodology

Many areas of applications can only be addressed effectively using computationally-
intensive statistical methods. This is often because the input datasets are so
large, but it may also be because the problem requires consideration of a large
number of possible alternatives. In Part IV, there are separate chapters on some
areas of applications of computational statistics. One area is finance and eco-
nomics, in which heavy-tailed distributions or models with nonconstant variance are
important.

Human biology has become one of the most important areas of application, and
many computationally-intensive statistical methods have been developed, refined,
and brought to bear on problems in this area. Two important question involve the
geometrical structure of protein molecules and the functions of the various areas
in the brain. While much is known about the order of the components of the
molecules, the three-dimensional structure for most important protein molecules is
not known, and the tools for discovery of this structure need extensive development.
Understanding the functions of different areas in the brain will allow more effective
treatment of diseased or injured areas and the resumption of more normal activities
by patients with neurological disorders.

Another important area of application of computational statistics is computer
network intrusion detection. Because of the importance of computer networks
around the world, and because of their vulnerability to unauthorized or malicious
intrusion, detection has become one of the most important – and interesting – areas
for data mining.

The articles in this handbook cover the important subareas of computational
statistics and give some flavor of the wide range of applications. While the articles
emphasize the basic concepts and fundamentals of computational statistics, they
provide the reader with tools and suggestions for current research topics. The
reader may turn to a specific chapter for background reading and references on a
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particular topic of interest, but we also suggest that the reader browse and ultimately
peruse articles on unfamiliar topics. Many surprising and interesting tidbits will be
discovered!

1.3.4 Other Handbooks in Computational Statistics

This handbook on concepts and fundamentals sets the stage for future handbooks
that go more deeply into the various subfields of computational statistics. These
handbooks will each be organized around either a specific class of theory and
methods, or else around a specific area of application.

The development of the field of computational statistics has been rather frag-
mented. We hope that the articles in this handbook series can provide a more unified
framework for the field.

In the years since the publication of the first volume in the series of Handbooks
in Computational Statistics, which covered general concepts and methods, three
other volumes have appeared. These are on somewhat more narrow topics within
the field of computational statistics: data visualization, partial least squares, and
computational finance.
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Part II
Statistical Computing



Chapter 2
Basic Computational Algorithms

John F. Monahan

2.1 Computer Arithmetic

Numbers are the lifeblood of statistics, and computational statistics relies heavily on
how numbers are represented and manipulated on a computer. Computer hardware
and statistical software handle numbers well, and the methodology of computer
arithmetic is rarely a concern. However, whenever we push hardware and software
to their limits with difficult problems, we can see signs of the mechanics of floating
point arithmetic around the frayed edges. To work on difficult problems with
confidence and explore the frontiers of statistical methods and software, we need
to have a sound understanding of the foundations of computer arithmetic. We need
to know how arithmetic works and why things are designed the way they are.

As scientific computation began to rely heavily on computers, a monumental
decision was made during the 1960s to change from base ten arithmetic to base
two. Humans had been doing base ten arithmetic for only a few hundred years,
during which time great advances were possible in science in a short period of time.
Consequently, the resistance to this change was strong and understandable. The
motivation behind the change to base two arithmetic is merely that it is so very easy
to do addition (and subtraction) and multiplication in base two arithmetic. The steps
are easy enough that a machine can be designed – wire a board of relays – or design
a silicon chip – to do base two arithmetic. Base ten arithmetic is comparatively
quite difficult, as its recent mathematical creation would suggest. However two big
problems arise in changing from base ten to base two: (1) we need to constantly
convert numbers written in base ten by humans to base two number system and then
back again to base ten for humans to read the results, and (2) we need to understand
the limits of arithmetic in a different number system.
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2.1.1 Integer Arithmetic

Computers use two basic ways of writing numbers: fixed point (for integers) and
floating point (for real numbers). Numbers are written on a computer following base
two positional notation. The positional number system is a convention for expressing
a number as a list of integers (digits), representing a number x in base B by a list of
digits am; am�1; : : : ; a1; a0 whose mathematical meaning is

x D am�1Bm�1 C : : :C a2B2 C a1B C a0 (2.1)

where the digits aj are integers in f0; : : : ; B � 1g. We are accustomed to what
is known in the West as the Arabic numbers, 0; 1; 2; : : : ; 9 representing those
digits for writing for humans to read. For base two arithmetic, only two digits are
needed f0; 1g. For base sixteen, although often viewed as just a collection of four
binary digits (1 byteD 4 bits), the Arabic numbers are augmented with letters, as
f0; 1; 2; : : : ; 9; a; b; c; d; e; f g, so that fsixteen D 15ten.

The system based on (2.1), known as fixed point arithmetic, is useful for writing
integers. The choice of m D 32 dominates current computer hardware, although
smaller (m D 16) choices are available via software and larger (m D 48)
hardware had been common in high performance computing. Recent advances in
computer architecture may soon lead to the standard changing to m D 64. While
the writing of a number in base two requires only the listing of its binary digits,
a convention is necessary for expression of negative numbers. The survivor of many
years of intellectual competition is the two’s complement convention. Here the first
(leftmost) bit is reserved for the sign, using the convention that 0means positive and
1means negative. Negative numbers are written by complementing each bit (replace
1 with 0, 0 with 1) and adding one to the result. For m D 16 (easier to display), this
means that 22ten and its negative are written as

.0 001 0110/ D 22ten

and
.1 110 1010/ D �22ten :

Following the two’s complement convention with m bits, the smallest (negative)
number that can be written is �2m�1 and the largest positive number is 2m�1 � 1;
zero has a unique representation of (0 000 � � � 0000). Basic arithmetic (addition
and multiplication) using two’s complement is easy to code, essentially taking the
form of mod 2m�1 arithmetic, with special tools for overflow and sign changes. See,
for example, Knuth (1997) for history and details, as well as algorithms for base
conversions.

The great advantage of fixed point (integer) arithmetic is that it is so very fast.
For many applications, integer arithmetic suffices, and most nonscientific computer
software only uses fixed point arithmetic. Its second advantage is that it does not
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suffer from the rounding error inherent in its competitor, floating point arithmetic,
whose discussion follows.

2.1.2 Floating Point Arithmetic

To handle a larger subset of the real numbers, the positional notation system includes
an exponent to express the location of the radix point (generalization of the decimal
point), so that the usual format is a triple (sign, exponent, fraction) to represent
a number as

x D .�1/signBexponent
�
a1B

�1 C a2B�2 C : : :C adB�d
�
; (2.2)

where the fraction is expressed by its list of base B digits 0:a1a2a3 : : : ad . To
preserve as much information as possible with the limited d digits to represent the
fraction, normalization is usually enforced, that is, the leading=most significant digit
a1 is nonzero – except for the special case x D 0. The mathematical curiosity of
an infinite series expansion of a number has no place here where only d digits are
available. Moreover, a critical issue is what to do when only d digits are available.
Rounding to the nearest number is preferred to the alternative chopping; in the
case of representing � D 3:14159265 : : : to d D 5 decimal (B D ten) digits
leads to the more accurate .C;C1; 0:31416/ in the case of rounding, rather than
.C;C1; 0:31415/ for the chopping alternative. Notice that normalization and the
use of this positional notation reflects a goal of preserving relative accuracy, or
reducing the relative error in the approximation. The expression of a real number x
in floating point arithmetic can be expressed mathematically in terms of a function
f l W R ! F where F is the set of numbers that can be represented using this
notation, the set of floating point numbers. The relative accuracy of this rounding
operation can be expressed as

f l.x/ D .1C u/x ; (2.3)

where juj � U where U is known as the machine unit. Seen in terms of the relative
error of f l.x/ in approximating x, the expression above can be rewritten as

jx � f l.x/j=jxj � U for x ¤ 0 :

For base B arithmetic with d digits and chopping,U D B1�d ; rounding reduces U
by a factor of 2.

An important conceptual leap is the understanding that most numbers are
represented only approximately in floating point arithmetic. This extends beyond
the usual irrational numbers such as � or e that cannot be represented with a finite
number of digits. A novice user may enter a familiar assignment such as x D 8:6

and, observing that the computer prints out 8:6000004, may consider this an error.
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When the “8:6” was entered, the computer had to first parse the text “8:6” and
recognize the decimal point and arabic numbers as a representation, for humans,
of a real number with the value 8 C 6 � 10�1. The second step is to convert this
real number to a base two floating point number – approximating this base ten
number with the closest base two number – this is the function f l.�/. Just as 1=3
produces the repeating decimal 0:33333 : : : in base 10, the number 8:6 produces
a repeating binary representation 1000:100110011 : : :two, and is chopped or rounded
to the nearest floating point number f l.8:6/. Later, in printing this same number out,
a second conversion produces the closest base 10 number to f l.8:6/with few digits;
in this case 8:6000004, not an error at all. Common practice is to employ numbers
that are integers divided by powers of two, since they are exactly represented. For
example, distributing 1,024 equally spaced points makes more sense than the usual
1,000, since j=1024 can be exactly represented for any integer j .

A breakthrough in hardware for scientific computing came with the adoption and
implementation of the IEEE 754 binary floating point arithmetic standard, which has
standards for two levels of precision, single precision and double precision (IEEE
1985). The single precision standard uses 32 bits to represent a number: a single
bit for the sign, 8 bits for the exponent and 23 bits for the fraction. The double
precision standard requires 64 bits, using 3 more bits for the exponent and adds 29
to the fraction for a total of 52. Since the leading digit of a normalized number is
nonzero, in base two the leading digit must be one. As a result, the floating point
form (2.2) above takes a slightly modified form:

x D .�1/signBexponent�excess �1C a1B�1 C a2B�2 C : : :C adB�d
�

(2.4)

as the fraction is expressed by its list of binary digits 1:a1a2a3 : : : ad . As a result,
while only 23 bits are stored, it works as if one more bit were stored. The exponent
using 8 bits can range from 0 to 255; however, using an excess of 127, the range
of the difference .exponent � excess/ goes from �126 to 127. The finite number of
bits available for storing numbers means that the set of floating point numbers F is
a finite, discrete set. Although well-ordered, it does have a largest number, smallest
number, and smallest positive number. As a result, this IEEE Standard expresses
positive numbers from approximately 1:4 � 10�45 to 3:4 � 1038 with a machine
unit U D 2�24 � 10�7 using only 31 bits. The remaining 32nd bit is reserved for
the sign. Double precision expands the range to roughly 10˙300 with U D 2�53 �
10�16, so the number of accurate digits is more than doubled.

The two extreme values of the exponent are employed for special features. At
the high end, the case exponentD 255 signals two infinities (˙1) with the largest
possible fraction. These values arise as the result of an overflow operation. The
most common causes are adding or multiplying two very large numbers, or from
a function call that produces a result that is larger than any floating point number.
For example, the value of exp.x/ is larger than any finite number in F for x > 88:73
in single precision. Before adoption of the standard, exp.89:9/ would cause the
program to cease operation due to this “exception”. Including ˙1 as members
of F permits the computations to continue, since a sensible result is now available.
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As a result, further computations involving the value ˙1 can proceed naturally,
such as 1=1 D 0. Again using the exponent D 255, but with any other fraction
represents not-a-number, usually written as “NaN”, and used to express the result
of invalid operations, such as 0=0,1 �1, 0 � 1, and square roots of negative
numbers. For statistical purposes, another important use of NaN is to designate
missing values in data. The use of infinities and NaN permit continued execution
in the case of anomalous arithmetic operations, instead of causing computation
to cease when such anomalies occur. The other extreme exponent D 0 signals
a denormalized number with the net exponent of �126 and an unnormalized
fraction, with the representation following (2.2), rather than the usual (2.4) with the
unstated and unstored 1. The denormalized numbers further expand the available
numbers in F , and permit a soft underflow. Underflow, in contrast to overflow,
arises when the result of an arithmetic operation is smaller in magnitude than the
smallest representable positive number, usually caused by multiplying two small
numbers together. These denormalized numbers begin approximately 10�38 near the
reciprocal of the largest positive number. The denormalized numbers provide even
smaller numbers, down to 10�45. Below that, the next number in F is the floating
point zero: the smallest exponent and zero fraction – all bits zero.

Most statistical software employs only double precision arithmetic, and some
users become familiar with apparent aberrant behavior such as a sum of residuals
of 10�16 instead of zero. While many areas of science function quite well using
single precision, some problems, especially nonlinear optimization, nevertheless
require double precision. The use of single precision requires a sound understand
of rounding error. However, the same rounding effects remain in double precision,
but because their effects are so often obscured from view, double precision may
promote a naive view that computers are perfectly accurate.

The machine unit expresses a relative accuracy in storing a real number as
a floating point number. Another similar quantity, the machine epsilon, denoted by
�m, is defined as the smallest positive number that, when added to one, gives a result
that is different from one. Mathematically, this can be written as

f l.1C x/ D 1 for 0 < x < �m : (2.5)

Due to the limited precision in floating point arithmetic, adding a number that is
much smaller in magnitude than the machine epsilon will not change the result. For
example, in single precision, the closest floating point number to 1 C 2�26 is 1.
Typically, both the machine unit and machine epsilon are nearly the same size, and
these terms are often used interchangeably without grave consequences.

2.1.3 Cancellation

Often one of the more surprising aspects of floating point arithmetic is that some
of the more familiar laws of algebra are occasionally violated: in particular, the
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associative and distributive laws. While most occurrences are just disconcerting to
those unfamiliar to computer arithmetic, one serious concern is cancellation. For
a simple example, consider the case of base ten arithmetic with d D 6 digits,
and take x D 123:456 and y D 123:332, and note that both x and y may have
been rounded, perhaps x was 123:456478 or 123:456000 or 123:455998. Now x

would be stored as .C; 3; 0:123456/ and y would be written as .C; 3; 0:123332/,
and when these two numbers are subtracted, we have the unnormalized difference
.C; 3; 0:000124/. Normalization would lead to .C; 0; :124???/ where merely “?”
represents that some digits need to take their place. The simplistic option is to put
zeros, but 0:124478 is just as good an estimate of the true difference between x
and y as 0:124000, or 0:123998, for that matter. The problem with cancellation
is that the relative accuracy that floating point arithmetic aims to protect has been
corrupted by the loss of the leading significant digits. Instead of a small error in the
sixth digit, we now have that error in the third digit; the relative error has effectively
been magnified by a factor of 1,000 due to the cancellation of the first 3 digits.

The best way to deal with the potential problem caused by catastrophic cancella-
tion is to avoid them. In many cases, the cancellation may be avoided by reworking
the computations analytically to handle the cancellation:

1 � .1 � 2t/�1 D 1 � 2t � 1
1 � 2t D �2t

1 � 2t :

In this case, there is significant cancellation when t is small, and catastrophic
cancellation whenever t drops below the machine epsilon. Using six digit decimal
arithmetic to illustrate, at t D 0:001, the left hand expression, 1� .1� 2t/�1, gives

1:00000� 1:00200D 0:200000� 10�2

while the right hand expression, �2t=.1 � 2t/, gives

0:200401� 10�2 ;

the correct (rounded) result. The relative error in using the left hand expression is
an unacceptable 0:002. At t D 10�7, the left hand expression leads to a complete
cancellation yielding zero and a relative error of one. Just a little algebra here avoids
the most of the effect of cancellation. When the expressions involve functions, cases
where cancellation occurs can often be handled by approximations. In the case of
1 � e�t , serious cancellation will occur whenever t is very small. The cancellation
can be avoided for this case by using a power series expansion:

1 � e�t D 1 � �1 � t C t2=2� : : :� � t � t2=2 D t .1 � t=2/ :

When t D 0:0001, the expression 1 � e�t leads to the steps

1:00000� 0:999900D 0:100000� 10�4 ;
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while the approximation gives

.0:0001/.0:999950/ D 0:999950� 10�4

which properly approximates the result to six decimal digits. At t D 10�5 and 10�6,
similar results occur, with complete cancellation at 10�7. Often the approximation
will be accurate just when cancellation must be avoided.

One application where rounding error must be understood and cancellation
cannot be avoided is numerical differentiation, where calls to a function are used
to approximate a derivative from a first difference:

f 0.x/ � Œ f .x C h/ � f .x/� =h : (2.6)

Mathematically, the accuracy of this approximation is improved by taking h very
small; following a quadratic Taylor’s approximation, we can estimate the error as

Œ f .x C h/� f .x/� =h � f 0.x/C 1

2
hf 00.x/ :

However, when the function calls f .x/ and f .x C h/ are available only to limited
precision – a relative error of �m, taking h smaller leads to more cancellation. The
cancellation appears as a random rounding error in the numerator of (2.6) which
becomes magnified by dividing by a small h. Taking h larger incurs more bias
from the approximation; taking h smaller incurs larger variance from the rounding
error. Prudence dictates balancing bias and variance. Dennis and Schnabel (1983)
recommend using h � �1=2m for first differences, but see also Bodily (2002).

The second approach for avoiding the effects of cancellation is to develop
different methods. A common cancellation problem in statistics arises from using
the formula

nX

iD1
y2i � ny2 (2.7)

for computing the sum of squares around the mean. Cancellation can be avoided by
following the more familiar two-pass method

nX

iD1
.yi � y/2 (2.8)

but this algorithm requires all of the observations to be stored and repeated updates
are difficult. A simple adjustment to avoid cancellation, requiring only a single pass
and little storage, uses the first observation to center:

nX

iD1
.yi � y/2 D

nX

iD1
.yi � y1/2 � n.y1 � y/2 : (2.9)
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An orthogonalization method from regression using Givens rotations (see Chan et al.
1983) can do even better to find sn DPn

iD1.yi � Ny/2:

ti D ti�1 C yi (2.10)

si D si�1 C .iyi � ti /2=.i.i � 1// : (2.11)

To illustrate the effect of cancellation, take the simple problem of n D 5

observations, yi D 4;152 C i so that y1 D 4;153 through y5 D 4;157. Again
using six decimal digits, the computations of the sum and mean encounter no
problems, and we easily get y D 4;155 or 0:415500 � 104, and

P
yi D 20;775

or 0:207750� 105. However, each square loses some precision in rounding:

y1 D 4;153 ; y21 D 4;1532 D 17;247;409 rounded to 0:172474� 108

y2 D 4;154 ; y22 D 4;1542 D 17;255;716 rounded to 0:172557� 108

y3 D 4;155 ; y23 D 4;1552 D 17;264;025 rounded to 0:172640� 108

y4 D 4;156 ; y24 D 4;1562 D 17;272;336 rounded to 0:172723� 108

y5 D 4;157 ; y25 D 4;1572 D 17;280;649 rounded to 0:172806� 108 :

Summing the squares encounters no further rounding on its way to 0:863200� 108,
and we compute the corrected sum of squares as

0:863200� 108 � .0:207750� 105/ � 4;155
0:863200� 108 � 0:863201� 108 D �100 :

The other three algorithms, following (2.8), (2.9), (2.10), and (2.11), each give the
perfect result of 10 in this case.

Admittedly, while this example is contrived to show an absurd result, a negative
sum of squares, the equally absurd value of zero is hardly unusual. Similar computa-
tions – differences of sum of squares – are routine, especially in regression and in the
computation of eigenvalues and eigenvectors. In regression, the orthogonalization
method (2.10) and (2.11) is more commonly seen in its general form. In all these
cases, simply centering can improve the computational difficulty and reduce the
effect of limited precision arithmetic.

2.1.4 Accumulated Roundoff Error

Another problem with floating point arithmetic is the sheer accumulation of
rounding error. While many applications run well in spite of a large number
of calculations, some approaches encounter surprising problems. An enlightening
example is just to add up many ones: 1C 1C 1C : : : . Astonishingly, this infinite
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series appears to converge – the partial sums stop increasing as soon as the ratio of
the new number to be added, in this case, one, to the current sum (n) drops below
the machine epsilon. Following (2.5), we have f l.n C 1/ D f l.n/, from which
we find

1=n � �m or n � 1=�m :
So you will find the infinite series of ones converging to 1=�m. Moving to double
precision arithmetic pushes this limit of accuracy sufficiently far to avoid most
problems – but it does not eliminate them. A good mnemonic for assessing the effect
of accumulated rounding error is that doing m additions amplifies the rounding
error by a factor of m. For single precision, adding 1,000 numbers would look
like a relative error of 10�4 which is often unacceptable, while moving to double
precision would lead to an error of 10�13. Avoidance strategies, such as adding
smallest to largest and nested partial sums, are discussed in detail in Monahan,
(2001, Chap. 2).

2.1.5 Interval Arithmetic

One of the more interesting methods for dealing with the inaccuracies of floating
point arithmetic is interval arithmetic. The key is that a computer can only do
arithmetic operations: addition, subtraction, multiplication, and division. The novel
idea, though, is that instead of storing the number x, its lower and upper bounds
.x; x/ are stored, designating an interval for x. Bounds for each of these arithmetic
operations can be then established as functions of the input. For addition, the
relationship can be written as:

x C y < x C y < x C y :

Similar bounds for the other three operations can be established. The propagation
of rounding error through each step is then captured by successive upper and
lower bounds on intermediate quantities. This is especially effective in probability
calculations using series or continued fraction expansions. The final result is an
interval that we can confidently claim contains the desired calculation. The hope
is always that interval is small. Software for performing interval arithmetic has
been implemented in a practical fashion by modifying a Fortran compiler. See, for
example, Hayes (2003) for an introductory survey, and Kearfott and Kreinovich
(1996) for articles on applications.

2.2 Algorithms

An algorithm is a list of directed actions to accomplish a designated task. Cooking
recipes are the best examples of algorithms in everyday life. The level of a cookbook
reflects the skills of the cook: a gourmet cookbook may include the instruction
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“saute the onion until transparent” while a beginner’s cookbook would describe
how to choose and slice the onion, what kind of pan, the level of heat, etc. Since
computers are inanimate objects incapable of thought, instructions for a computer
algorithm must go much, much further to be completely clear and unambiguous,
and include all details.

Most cooking recipes would be called single pass algorithms, since they are a list
of commands to be completed in consecutive order. Repeating the execution of the
same tasks, as in baking batches of cookies, would be described in algorithmic terms
as looping. Looping is the most common feature in mathematical algorithms, where
a specific task, or similar tasks, are to be repeated many times. The computation of
an inner product is commonly implemented using a loop:

a>b D a1b1 C a2b2 C : : :C anbn ;

implemented as

s D 0
do i D 1 to n

s D s C ai � bi
end do

where the range of the loop includes the single statement with a multiplication and
addition. In an iterative algorithm, the number of times the loop is be repeated is
not known in advance, but determined by some monitoring mechanism. For math-
ematical algorithms, the focus is most often monitoring convergence of a sequence
or series. Care must be taken in implementing iterative algorithms to insure that, at
some point, the loop will be terminated, otherwise an improperly coded procedure
may proceed indefinitely in an infinite loop. Surprises occur when the convergence
of an algorithm can be proven analytically, but, because of the discrete nature of
floating point arithmetic, the procedure implementing that algorithm may not con-
verge. For example, in a square-root problem to be examined further momentarily,
we cannot find x 2 F so that x � x is exactly equal to 2. The square of one number
may be just below two, and the square of the next largest number in F may be larger
than 2. When monitoring convergence, common practice is to convert any test for
equality of two floating point numbers or expressions to tests of closeness:

if .abs.x�x � 2/ < eps/ then exit. (2.12)

Most mathematical algorithms have more sophisticated features. Some algorithms
are recursive, employing relationships such as the gamma function: � .x C 1/ D
x� .x/ so that new values can be computed using previous values. Powerful
recursive algorithms, such as the Fast Fourier Transform (FFT) and sorting
algorithms, follow a divide-and-conquer paradigm: to solve a big problem, break
it into little problems and use the solutions to the little problems to solve the big
problem. In the case of sorting, the algorithm may look something like:
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algorithm sort(list)
break list into two pieces: first and second
sort (first)
sort (second)
put sorted lists first and second together to form
one sorted list

end algorithm sort

Implemented recursively, a big problem is quickly broken into tiny pieces and
the key to the performance of divide-and-conquer algorithms is in combining the
solutions to lots of little problems to address the big problem. In cases where these
solutions can be easily combined, these recursive algorithms can achieve remarkable
breakthroughs in performance. In the case of sorting, the standard algorithm, known
as bubblesort, takes O.n2/ work to sort a problem of size n – if the size of
the problem is doubled, the work goes up by factor of 4. The Discrete Fourier
Transform, when written as the multiplication of an n � n matrix and a vector,
involves n2 multiplications and additions. In both cases, the problem is broken
into two subproblems, and the mathematics of divide and conquer follows a simple
recursive relationship, that the time=work T .n/ to solve a problem of size n is the
twice the time=work to solve two subproblem with half the size, plus the time=work
C.n/, to put the solutions together:

T .n/ D 2T .n=2/C C.n/ : (2.13)

In both sorting and the Discrete Fourier Transform, C.n/ � cn C d , which leads
to T .n/ D cn log.n/ C O.n/. A function growing at the rate O.n logn/ grows
so much slower than O.n2/, that the moniker “Fast” in Fast Fourier Transform
is well deserved. While some computer languages preclude the use of recursion,
recursive algorithms can often be implemented without explicit recursion through
clever programming.

The performance of an algorithm may be measured in many ways, depending on
the characteristics of the problems the it may be intended to solve. The sample
variance problem above provides an example. The simple algorithm using (2.7)
requires minimal storage and computation, but may lose accuracy when the variance
is much smaller than the mean: the common test problem for exhibiting catastrophic
cancellation employs yi D 212 C i for single precision. The two-pass method (2.8)
requires all of the observations to be stored, but provides the most accuracy and least
computation. Centering using the first observation (2.9) is nearly as fast, requires
no extra storage, and its accuracy only suffers when the first observation is unlike
the others. The last method, arising from the use of Givens transformations (2.10)
and (2.11), also requires no extra storage, gives sound accuracy, but requires more
computation. As commonly seen in the marketplace of ideas, the inferior methods
have not survived, and the remaining competitors all have tradeoffs with speed,
storage, and numerical stability.
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2.2.1 Iterative Algorithms

The most common difficult numerical problems in statistics involve optimization, or
root-finding: maximum likelihood, nonlinear least squares, M-estimation, solving
the likelihood equations or generalized estimating equations. And the algorithms
for solving these problems are typically iterative algorithms, using the results from
the current step to direct the next step.

To illustrate, consider the problem of computing the square root of a real
number y. Following from the previous discussion of floating point arithmetic,
we can restrict y to the interval .1; 2/. One approach is to view the problem as
a root-finding problem, that is, we seek x such that f .x/ D x2 � y D 0. The
bisection algorithm is a simple, stable method for finding a root. In this case, we
may start with an interval known to contain the root, say .x1; x2/, with x1 D 1

and x2 D 2. Then bisection tries x3 D 1:5, the midpoint of the current interval. If
f .x3/ < 0, then x3 <

p
y < x2, and the root is known to belong in the new interval

.x3; x2/. The algorithm continues by testing the midpoint of the current interval,
and eliminating half of the interval. The rate of convergence of this algorithm is
linear, since the interval of uncertainty, in this case, is cut by a constant .1=2/ with
each step. For other algorithms, we may measure the rate at which the distance from
the root decreases. Adapting Newton’s method to this root-finding problem yields
Heron’s iteration

xnC1 D 1

2
.xn C y=xn/ :

Denoting the solution as x� D py, the error at step n can be defined as �n D
xn � x�, leading to the relationship

�nC1 D 1

2

�2n
xn
: (2.14)

This relationship of the errors is usually called quadratic convergence, since the new
error is proportional to the square of the error at the previous step. The relative error
ın D .xn � x�/=x� follows a similar relationship,

ın D 1

2
ı2n=.1C ın/ : (2.15)

Here, the number of accurate digits is doubled with each iteration. For the secant
algorithm, analysis of the error often leads to a relationship similar to (2.14), but
j�nC1j � C j�njp , with 1 < p < 2, achieving a rate of convergence known as
superlinear. For some well-defined problems, as the square root problem above, the
number of iterations needed to reduce the error or relative error below some criterion
can be determined in advance.

While we can stop this algorithm when f .xn/ D 0, as discussed previously, there
may not be any floating point number that will give a zero to the function, hence the
stopping rule (2.12). Often in root-finding problems, we stop when jf .xn/j is small
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enough. In some problems, the appropriate “small enough” quantity to ensure the
desired accuracy may depend on parameters of the problem, as in this case, the value
of y. As a result, termination criterion for the algorithm is changed to: stop when
the relative change in x is small

jxnC1 � xnj=jxnj < ı :

While this condition may cause premature stopping in rare cases, it will prevent
infinite looping in other cases. Many optimization algorithms permit the iteration
to be terminated using any combination – and “small enough” is within the user’s
control. Nevertheless, unless the user learns a lot about the nature of the problem
at hand, an unrealistic demand for accuracy can lead to unachievable termination
criteria, and an endless search.

As discussed previously, rounding error with floating point computation affects
the level of accuracy that is possible with iterative algorithms for root-finding. In
general, the relative error in the root is at the same relative level as the computation
of the function. While optimization problems have many of the same characteristics
as root-finding problems, the effect of computational error is a bit more substantial:
k digits of accuracy in the function to be optimization can produce but k=2 digits in
the root=solution.

2.2.2 Iterative Algorithms for Optimization
and Nonlinear Equations

In the multidimensional case, the common problems are solving a system of
nonlinear equations or optimizing a function of several variables. The most common
tools for these problems are Newton’s method or secant-like variations. Given the
appropriate regularity conditions, again we can achieve quadratic convergence with
Newton’s method, and superlinear convergence with secant-like variations. In the
case of optimization, we seek to minimize f .x/, and Newton’s method is based on
minimizing the quadratic approximation:

f .x/ � f .x0/C .x � x0/>rf .x0/C .x � x0/>r2f .x0/.x � x0/ :

This leads to the iteration step

x.nC1/ D x.n/ � �r2f
�
x.n/

���1 rf �x.n/� :

In the case of solving a system of nonlinear equations, g.x/ D 0, Newton’s method
arises from solving the affine (linear) approximation

g.x/ � g .x0/C Jg .x0/ .x � x0/ ;
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leading to a similar iteration step

x.nC1/ D x.n/ � ŒJg.x.n//��1g.x.n// :

In both cases, under suitable smoothness conditions, the Newton iteration will
achieve quadratic convergence – using norms to measure the error at each step:

�
�x.nC1/ � x��� � C ��x.n/ � x���2 :

For both problems, Newton’s method requires the computation of lots of derivatives,
either the gradient rf .x0/ and Hessian r2f .x0/, or the Jacobian matrix Jg.x.n//.
In the univariate root-finding problem, the secant method arises by approximating
the derivative with the first difference using the previous evaluation of the function.
Secant analogues can be constructed for both the optimization and nonlinear
equations problems, with similar reduction in the convergence rate: from quadratic
to superlinear.

In both problems, the scaling of the parameters is quite important, as measuring
the error with the Euclidean norm presupposes that errors in each component are
equally weighted. Most software for optimization includes a parameter vector for
suitably scaling the parameters, so that one larger parameter does not dominate the
convergence decision. In solving nonlinear equations, the condition of the problem
is given by

�
�Jg

�
x.n/

���
�
��
�
Jg

�
x.n/

���1���

(as in solving linear equations) and the problem of scaling involves the components
of g.x/. In many statistical problems, such as robust regression, the normal
parameter scaling issues arise with the covariates and their coefficients. However,
one component of g.x/, associated with the error scale parameter may be orders
of magnitude larger or smaller than the other equations. As with parameter scaling,
this is often best done by the user and is not easily overcome automatically.

With the optimization problem, there is a natural scaling with rf .x0/ in contrast
with the Jacobian matrix. Here, the eigenvectors of the Hessian matrix r 2f .x0/

dictate the condition of the problem; see, for example, Gill et al. (1981) and Dennis
and Schnabel (1983). Again, parameter scaling remains one of the most important
tools.
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Chapter 3
Random Number Generation

Pierre L’Ecuyer

3.1 Introduction

The fields of probability and statistics are built over the abstract concepts of
probability space and random variable. This has given rise to elegant and powerful
mathematical theory, but exact implementation of these concepts on conventional
computers seems impossible. In practice, random variables and other random
objects are simulated by deterministic algorithms. The purpose of these algorithms
is to produce sequences of numbers or objects whose behavior is very hard to
distinguish from that of their “truly random” counterparts, at least for the application
of interest. Key requirements may differ depending on the context. For Monte Carlo
methods, the main goal is to reproduce the statistical properties on which these
methods are based, so that the Monte Carlo estimators behave as expected, whereas
for gambling machines and cryptology, observing the sequence of output values for
some time should provide no practical advantage for predicting the forthcoming
numbers better than by just guessing at random.

In computational statistics, random variate generation is usually made in two
steps: (1) generating imitations of independent and identically distributed (i.i.d.)
random variables having the uniform distribution over the interval .0; 1/ and (2)
applying transformations to these i.i.d. U.0; 1/ random variates to generate (or
imitate) random variates and random vectors from arbitrary distributions. These
two steps are essentially independent and the world’s best experts on them are two
different groups of scientists, with little overlap. The expression (pseudo)random
number generator (RNG) usually refers to an algorithm used for step (1).
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In principle, the simplest way of generating a random variateX with distribution
function F from a U.0; 1/ random variate U is to apply the inverse of F to U :

X D F �1.U / defD minfx j F.x/ � U g: (3.1)

This is the inversion method. It is easily seen that X has the desired distribution:
P ŒX � x� D P ŒF �1.U / � x� D P ŒU � F.x/� D F.x/. Other methods are
sometimes preferable when F �1 is too difficult or expensive to compute, as will be
seen later.

The remainder of this chapter is organized as follows. In the next section,
we give a definition and the main requirements of a uniform RNG. Generators
based on linear recurrences modulo a large integer m, their lattice structure and
quality criteria, and their implementation, are covered in Sect. 3.3. In Sect. 3.4,
we have a similar discussion for RNGs based on linear recurrences modulo 2.
Nonlinear RNGs are briefly presented in Sect. 3.5. In Sect. 3.6, we discuss empirical
statistical testing of RNGs and give some examples. Section 3.7 contains a few
pointers to recommended RNGs and software. In Sect. 3.8, we cover non-uniform
random variate generators. We first discuss inversion and its implementation in
various settings. We then explain the rejection, ratio-of-uniform, composition and
convolution methods, provide pointers to other methods that apply in special cases,
and discuss multivariate distributions.

Important basic references that we recommend are Knuth (1998), L’Ecuyer
(1994, 1998), Niederreiter (1992), and Tezuka (1995) for uniform RNGs, and
Devroye (1986, 2006), Gentle (2003), and Hörmann et al. (2004) for non-uniform
RNGs.

3.2 Uniform Random Number Generators

3.2.1 Physical Devices

Random numbers can be generated via physical mechanisms such as the timing
between successive events in atomic decay, thermal noise in semiconductors, photon
counting and photon trajectory detectors, and the like. A key issue when construct-
ing a RNG based on a physical device is that a “random” or “chaotic” output
does not suffice; the numbers produced must be, at least to a good approximation,
realizations of independent and uniformly distributed random variables. If the
device generates a stream of bits, which is typical, then each bit should be 0 or
1 with equal probability, and be independent of all the other bits. In general, this
cannot be proved, so one must rely on the results of empirical statistical testing to
get convinced that the output values have the desired statistical behavior, at least
approximately. Not all these devices are reliable, but some are and, as far as we
know, they pass all statistical tests that can be run in reasonable time.
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For computational statistics, physical devices have several disadvantages com-
pared to a good algorithmic RNG that stands in a few lines of code. For example,
(a) they are much more cumbersome to install and run; (b) they are more costly; (c)
they are slower; (d) they cannot reproduce exactly the same sequence twice. Item
(d) is important in several contexts, including program verification and debugging
as well as comparison of similar systems by simulation with common random
numbers to reduce the variance (Bratley et al. 1987; Fishman 1996; Law and Kelton
2000). Nevertheless, these physical RNGs can be useful for selecting the seed of an
algorithmic RNG, more particularly for applications in cryptology and for gaming
machines, where frequent reseeding of the RNG with an external source of entropy
(or randomness) is important. A good algorithmic RNG whose seed is selected at
random can be viewed as an extensor of randomness, stretching a short random seed
into a long sequence of pseudorandom numbers.

3.2.2 Generators Based on a Deterministic Recurrence

RNGs used for simulation and other statistical applications are almost always based
on deterministic algorithms that fit the following framework, taken from L’Ecuyer
(1994): a RNG is a structure .S; �; f;U ; g/ where S is a finite set of states (the state
space), � is a probability distribution on S used to select the initial state (or seed)
s0, f W S ! S is the transition function, U is the output space, and g W S ! U is
the output function. Usually, U D .0; 1/, and we shall assume henceforth that this is
the case. The state of the RNG evolves according to the recurrence si D f .si�1/, for
i � 1, and the output at step i is ui D g.si / 2 U . The output values u0; u1; u2; : : :
are the so-called random numbers produced by the RNG.

Because S is finite, there must be some finite l � 0 and j > 0 such that
slCj D sl . Then, for all i � l , one has siCj D si and uiCj D ui , because both
f and g are deterministic. That is, the state and output sequences are eventually
periodic. The smallest positive j for which this happens is called the period of the
RNG, and is denoted by �. When l D 0, the sequence is said to be purely periodic.
Obviously, � � jSj, the cardinality of S. If the state has a k-bit representation on
the computer, then � � 2k. Good RNGs are designed so that their period � is not
far from that upper bound. In general, the value of � may depend on the seed s0, but
good RNGs are normally designed so that the period is the same for all admissible
seeds.

In practical implementations, it is important that the output be strictly between 0
and 1, because F �1.U / is often infinite when U is 0 or 1. All good implementations
take care of that. However, for the mathematical analysis of RNGs, we often assume
that the output space is Œ0; 1/ (i.e., 0 is admissible), because this simplifies the
analysis considerably without making much difference in the mathematical structure
of the generator.
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3.2.3 Quality Criteria

What important quality criteria should we consider when designing RNGs? An
extremely long period is obviously essential, to make sure that no wrap-around
over the cycle can occur in practice. The length of the period must be guaranteed
by a mathematical proof. The RNG must also be efficient (run fast and use only
a small amount of memory), repeatable (able to reproduce exactly the same
sequence as many times as we want), and portable (work the same way in different
software/hardware environments). The availability of efficient jump-ahead methods
that can quickly compute siC� given si , for any large � and any i , is also very useful,
because it permits one to partition the RNG sequence into long disjoint streams and
substreams of random numbers, to create an arbitrary number of virtual generators
from a single RNG (Law and Kelton 2000; L’Ecuyer 2008; L’Ecuyer et al. 2002).
These virtual generators can be used on parallel processors or to support different
sources of randomness in a large simulation model, for example.

To show that these properties are not sufficient, consider a RNG with state space
S D f0; : : : ; 21000�1g, transition function siC1 D f .si / D .si C1/ mod 21000, and
ui D g.si / D si =21000. This RNG has period 21000 and enjoys all the nice properties
described in the preceding paragraph, but it is far from imitating “randomness.”

A sequence of real-valued random variables u0; u1; u2; : : : are i.i.d. U.0; 1/ if
and only if for all integers i � 0 and t > 0, the vector ui;t D .ui ; : : : ; uiCt�1/
is uniformly distributed over the t-dimensional unit hypercube .0; 1/t . Of course,
this cannot hold for algorithmic RNGs because any vector of t successive values
produced by the generator must belong to the finite set

	t D f.u0; : : : ; ut�1/ W s0 2 Sg;

which is the set of all vectors of t successive output values, from all possible initial
states. Here we interpret 	t as a multiset, which means that the vectors are counted
as many times as they appear, and the cardinality of 	t is exactly equal to that of S.

Suppose we select the seed s0 at random, uniformly over S. This can be
approximated by using some physical device, for example. Then, the vector u0;t
has the uniform distribution over the finite set 	t . And if the sequence is purely
periodic for all s0, ui;t D .ui ; : : : ; uiCt�1/ is also uniformly distributed over 	t for
all i � 0. Since the goal is to approximate the uniform distribution over .0; 1/t ,
it immediately becomes apparent that 	t should be evenly spread over this unit
hypercube. In other words, 	t approximates .0; 1/t as the sample space from which
the vectors of successive output values are drawn randomly, so it must be a good
approximation of .0; 1/t in some sense. The design of good-quality RNGs must
therefore involve practical ways of measuring the uniformity of the corresponding
sets 	t even when they have huge cardinalities. In fact, a large state space S is
necessary to obtain a long period, but an even more important reason for having a
huge number of states is to make sure that 	t can be large enough to provide a good
uniform coverage of the unit hypercube, at least for moderate values of t .
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More generally, we may also want to measure the uniformity of sets of the form

	I D f.ui1 ; : : : ; uit / j s0 2 Sg;

where I D fi1; � � � ; it g is a fixed set of non-negative integers such that 0 � i1 <

� � � < it . As a special case, we recover	t D 	I when I D f0; : : : ; t�1g. Of course,
there are so many such sets 	I that we cannot examine the uniformity over all of
them, but we can do it over a selected class J of such sets deemed more important.

The uniformity of a set 	I is typically assessed by measuring the discrepancy
between the empirical distribution of its points and the uniform distribution over
.0; 1/t (L’Ecuyer 2009; L’Ecuyer and Lemieux 2002; Niederreiter 1992). Discrep-
ancy measures are equivalent to goodness-of-fit test statistics for the multivariate
uniform distribution. They can be defined in many different ways. The choice of a
specific definition typically depends on the mathematical structure of the RNG to
be studied and the reason for this is very pragmatic: we must be able to compute
these measures quickly even when S has very large cardinality, for instance 2200

or more. This obviously excludes any method that requires explicit generation of
the sequence over its entire period. The selected discrepancy measure is usually
computed for each set I in a predefined class J , these values are weighted or
normalized by factors that depend on I , and the worst-case (or average) over J is
adopted as a figure of merit used to rank RNGs. The choice of J and of the weights
are arbitrary. Typically, J would contain sets I such that t and it � i1 are rather
small. Examples of such figures of merit will be given when we discuss specific
classes of RNGs.

3.2.4 Statistical Testing

Good RNGs are designed based on mathematical analysis of their properties, then
implemented and submitted to batteries of empirical statistical tests. These tests try
to detect empirical evidence against the null hypothesis H0: “the ui are realizations
of i.i.d. U.0; 1/ random variables.” A test can be defined by any function T that
maps a sequence u0; u1; : : : in .0; 1/ to a real number X , and for which a good
approximation is available for the distribution of the random variable X under H0.
For the test to be implementable, X must depend on only a finite (but perhaps
random) number of ui ’s. Passing many tests may improve one’s confidence in the
RNG, but never guarantees that the RNG is foolproof for all kinds of simulations.

Building a RNG that passes all statistical tests is an impossible dream. Consider,
for example, the class of all tests that examine the first (most significant) b bits of n
successive output values, u0; : : : ; un�1, and return a binary value X 2 f0; 1g. Select
˛ 2 .0; 1/ so that ˛2nb is an integer and let Tn;b;˛ be the set of tests in this class that
return X D 1 for exactly ˛2nb of the 2nb possible output sequences. We say that
the sequence fails the test when X D 1. This Tn;b;˛ is the set of all statistical tests
of (exact) level ˛. Its cardinality is equal to the number of ways of choosing ˛2nb
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distinct objects among 2nb. The chosen objects are the sequences that fail the test.
For any given output sequence, the number of tests in Tn;b;˛ that return 1 for this
sequence is equal to the number of ways of choosing the other ˛2nb � 1 sequences
that also fail the test. This is the number of ways of choosing ˛2nb � 1 distinct
objects among 2nb � 1. In other words, as pointed out by Leeb (1995), every output
sequence fails exactly the same number of tests! Viewed from a different angle,
it is a restatement of the well-known fact that under H0, each of the 2nb possible
sequences has the same probability of occurring, so one may argue that none should
be considered more random than any other (Knuth 1998).

This viewpoint seems to lead into a dead end. For statistical testing to be
meaningful, all tests should not be considered on equal footing. So which ones are
more important? Any answer is tainted with arbitrariness. However, for large values
of n, the number of tests is huge and all but a tiny fraction are too complicated even
to be implemented. So we may say that bad RNGs are those that fail simple tests,
whereas good RNGs fail only complicated tests that are hard to find and run. This
common-sense compromise has been generally adopted in one way or another.

Experience shows that RNGs with very long periods, good structure of their set
	t , and based on recurrences that are not too simplistic, pass most reasonable tests,
whereas RNGs with short periods or bad structures are usually easy to crack by
standard statistical tests. For sensitive applications, it is a good idea, when this
is possible, to apply additional statistical tests designed in close relation with the
random variable of interest (e.g., based on a simplification of the stochastic model
being simulated, and for which the theoretical distribution can be computed).

Our discussion of statistical tests continues in Sect. 3.6. A key reference is
L’Ecuyer and Simard (2007).

3.2.5 Cryptographically Strong Generators

One way of defining an ideal RNG would be that no statistical test can distinguish
its output sequence from an i.i.d. U.0; 1/ sequence. If an unlimited computing time
is available, no finite-state RNG can satisfy this requirement, because by running
it long enough one can eventually figure out its periodicity. But what if we impose
a limit on the computing time? This can be analyzed formally in the framework
of asymptotic computational complexity theory, under the familiar “rough-cut”
assumption that polynomial-time algorithms are practical and others are not.

Consider a family of RNGs fGk D .Sk; �k; fk;Uk; gk/; k D 1; 2; : : : g where Sk
of cardinality 2k (i.e., Gk has a k-bit state). Suppose that the transition and output
functions f and g can be computed in time bounded by a polynomial in k. Let T
be the class of statistical tests that run in time bounded by a polynomial in k and
try to differentiate between the output sequence of the RNG and an i.i.d. U.0; 1/
sequence. The RNG family is called polynomial-time perfect if there is a constant
� > 0 such that for all k, no test in T can differentiate correctly with probability
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larger than 1=2 C e�k� . This is equivalent to asking that no polynomial-time
algorithm can predict any given bit of ui with probability of success larger than
1=2C e�k� , after observing u0; : : : ; ui�1. This links unpredictability with statistical
uniformity and independence. For the proofs and additional details, see, e.g. Blum
et al. (1986), L’Ecuyer and Proulx (1989), Lagarias (1993), and Luby (1996).
This theoretical framework has been used to define a notion of reliable RNG in
the context of cryptography. But the guarantee is only asymptotic; it does not
necessarily tell what value of k is large enough for the RNG to be secure in practice.
Moreover, specific RNG families have been proved to be polynomial-time perfect
only under yet unproven conjectures. So far, no one has been able to prove even
their existence. Most RNGs discussed in the remainder of this chapter are known
not to be polynomial-time perfect. However, they are fast, convenient, and have
good enough statistical properties when their parameters are chosen carefully.

3.3 Linear Recurrences Modulom

3.3.1 The Multiple Recursive Generator

The most widely used RNGs are based on the linear recurrence

xi D .a1xi�1 C � � � C akxi�k/ mod m; (3.2)

where m and k are positive integers called the modulus and the order, and the
coefficients a1; : : : ; ak are in Zm, interpreted as the set f0; : : : ; m � 1g on which
all operations are performed with reduction modulo m. The state at step i is
si D xi D .xi�kC1; : : : ; xi /T. When m is a prime number, the finite ring Zm

is a finite field and it is possible to choose the coefficients aj so that the period
reaches � D mk � 1 (the largest possible value) (Knuth 1998). This maximal
period is achieved if and only if the characteristic polynomial of the recurrence,
P.z/ D zk �a1zk�1�� � ��ak , is a primitive polynomial over Zm, i.e., if and only if
the smallest positive integer � such that .z� mod P.z// mod m D 1 is � D mk � 1.
Knuth (1998) explains how to verify this for a given P.z/. For k > 1, for P.z/ to
be a primitive polynomial, it is necessary that ak and at least another coefficient aj
be nonzero. Finding primitive polynomials of this form is generally easy and they
yield the simplified recurrence:

xn D .arxn�r C akxn�k/ mod m: (3.3)

A multiple recursive generator (MRG) uses (3.2) with a large value of m and
defines the output as ui D xi=m. For k D 1, this is the classical linear congruential
generator (LCG). In practice, the output function is modified slightly to make sure
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that ui never takes the value 0 or 1 (e.g., one may define ui D .xi C 1/=.mC 1/,
or ui D xi=.m C 1/ if xi > 0 and ui D m=.m C 1/ otherwise) but to simplify
the theoretical analysis, we will follow the common convention of assuming that
ui D xi=m (in which case ui does take the value 0 occasionally).

3.3.2 The Lattice Structure

Let ei denote the i th unit vector in k dimensions, with a 1 in position i and
0’s elsewhere. Denote by xi;0; xi;1; xi;2; : : : the values of x0; x1; x2; : : : produced
by the recurrence (3.2) when the initial state x0 is ei . An arbitrary initial state
x0 D .z1; : : : ; zk/T can be written as the linear combination z1e1 C � � � C zkek and
the corresponding sequence is a linear combination of the sequences .xi;0; xi;1; : : : /,
with reduction of the coordinates modulo m. Conversely, any such linear combina-
tion reduced modulo m is a sequence that can be obtained from some initial state
x0 2 S D Zk

m. If we divide everything by m we find that for the MRG, for each
t � 1, 	t D Lt \ Œ0; 1/t where

Lt D
(

v D
tX

iD1
zivi j zi 2 Z

)

;

is a t-dimensional lattice in Rt , with basis

v1 D .1; 0; : : : ; 0; x1;k; : : : ; x1;t�1/T=m
:::

:::

vk D .0; 0; : : : ; 1; xk;k; : : : ; xk;t�1/T=m
vkC1 D .0; 0; : : : ; 0; 1; : : : ; 0/T

:::
:::

vt D .0; 0; : : : ; 0; 0; : : : ; 1/T:

For t � k, Lt contains all vectors whose coordinates are multiples of 1=m. For
t > k, it contains a fractionmk�t of those vectors.

This lattice structure implies that the points of 	t are distributed according to
a very regular pattern, in equidistant parallel hyperplanes. Graphical illustrations
of this, usually for LCGs, can be found in a myriad of papers and books; e.g.,
Gentle (2003), Law and Kelton (2000), and L’Ecuyer (1998). Define the dual lattice
to Lt as

L�t D fh 2 Rt W hTv 2 Z for all v 2 Lt g:
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Each h 2 L�t is a normal vector that defines a family of equidistant parallel
hyperplanes, at distance 1=khk2 apart, and these hyperplanes cover all the points
of Lt unless h is an integer multiple of some other vector h0 2 L�t . Therefore, if `t
is the Euclidean length of a shortest non-zero vector h inL�t , then there is a family of
hyperplanes at distance 1=`t apart that cover all the points of Lt . A small `t means
there are thick slices of empty space between the hyperplanes and we want to avoid
that. A large `t means a better (more uniform) coverage of the unit hypercube by the
point set 	t . Computing the value of 1=`t is often called the spectral test (Fishman
1996; Knuth 1998).

The lattice property holds as well for the point sets 	I formed by values
at arbitrary lags defined by a fixed set of indices I D fi1; � � � ; it g. One has
	I D LI \ Œ0; 1/t for some lattice LI , and the largest distance between successive
hyperplanes for a family of hyperplanes that cover all the points of LI is 1=`I ,
where `I is the Euclidean length of a shortest nonzero vector in L�I , the dual lattice
to LI .

The lattice LI and its dual can be constructed as explained in Couture and
L’Ecuyer (1996) and L’Ecuyer and Couture (1997). Finding the shortest nonzero
vector in a lattice with basis v1; : : : ; vt can be formulated as an integer programming
problem with a quadratic objective function:

Minimize kvk2 D
tX

iD1

tX

jD1
zivT

i vj zj

subject to z1; : : : ; zt integers and not all zero. This problem can be solved by a
branch-and-bound algorithm (Fincke and Pohst 1985; L’Ecuyer and Couture 1997;
Tezuka 1995).

For any given dimension t andmk points per unit of volume, there is an absolute
upper bound on the best possible value of `I (Conway and Sloane 1999; Knuth
1998; L’Ecuyer 1999b). Let `�t .mk/ denote such an upper bound. To define a figure
of merit that takes into account several sets I , in different numbers of dimensions, it
is common practice to divide `I by an upper bound, to obtain a standardized value
between 0 and 1, and then take the worst case over a given class J of sets I . This
gives a figure of merit of the form

MJ D min
I2J `I =`

�
jI j.m

k/:

A value of MJ too close to zero means that LI has a bad lattice structure for
at least one of the selected sets I . We want a value as close to 1 as possible.
Computer searches for good MRGs with respect to this criterion have been reported
by L’Ecuyer et al. (1993), L’Ecuyer and Andres (1997), L’Ecuyer (1999a), for
example. In most cases, J was simply the sets of the form I D f1; : : : ; tg for
t � t1, where t1 was an arbitrary integer ranging from 8 to 45. L’Ecuyer and
Lemieux (2000) also consider the small dimensional sets I with indices not too
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far apart. They suggest taking J D ff0; 1; : : : ; ig W i < t1g [ ffi1; i2g W 0 D i1 <

i2 < t2g [ � � � [ ffi1; : : : ; idg W 0 D i1 < : : : < id < td g for some positive integers
d; t1; : : : ; td . We could also take a weighted average instead of the minimum in the
definition of MJ .

An important observation is that for t > k, the t-dimensional vector h D
.�1; a1; : : : ; ak; 0; : : : ; 0/T always belong to L�t , because for any vector v 2 Lt ,
the first k C 1 coordinates of mv must satisfy the recurrence (3.2), which implies
that .�1; a1; : : : ; ak; 0; : : : ; 0/v must be an integer. Therefore, one always has `2t �
1C a21 C � � � C a2k . Likewise, if I contains 0 and all indices j such that ak�j 6D 0,
then `2I � 1C a21 C � � � C a2k (L’Ecuyer 1997). This means that the sum of squares
of the coefficients aj must be large if we want to have any chance that the lattice
structure be good.

Constructing MRGs with only two nonzero coefficients and taking these coeffi-
cients small has been a very popular idea, because this makes the implementation
easier and faster (Deng and Lin 2000; Knuth 1998). However, the MRGs thus
obtained have a bad structure. As a worst-case illustration, consider the widely-
available additive or subtractive lagged-Fibonacci generator, based on the recur-
rence (3.2) where the two coefficients ar and ak are both equal to ˙1. In this case,
whenever I contains f0; k � r; kg, one has `2I � 3, so the distance between the
hyperplanes is at least 1=

p
3. In particular, for I D f0; k� r; kg, all the points of 	I

(aside from the zero vector) are contained in only two planes! This type of structure
can have a dramatic effect on certain simulation problems and is a good reason for
staying away from these lagged-Fibonacci generators, regardless of their parame-
ters. They fail several simple empirical statistical tests (L’Ecuyer and Simard 2007).

A similar problem occurs for the “fast MRG” proposed by Deng and Lin (2000),
based on the recurrence

xi D .�xi�1 C axi�k/ mod m D ..m � 1/xi�1 C axi�k/ mod m;

with a2 < m. If a is small, the bound `2I � 1C a2 implies a bad lattice structure for
I D f0; k � 1; kg. A more detailed analysis by L’Ecuyer and Touzin (2004) shows
that this type of generator cannot have a good lattice structure even if the condition
a2 < m is removed. Another special case proposed by Deng and Xu (2003) has the
form

xi D a.xi�j2 C � � � C xi�jt / mod m: (3.4)

In this case, for I D f0; k � jt�1; : : : ; k � j2; kg, the vectors .1; a; : : : ; a/ and
.a�; 1; : : : ; 1/ both belong to the dual lattice L�I , where a� is the multiplicative
inverse of a modulom. So neither a nor a� should be small.

To get around this structural problem when I contains certain sets of indices,
Lüscher (1994) and Knuth (1998) recommend to skip some of the output values to
break up the bad vectors. For the lagged-Fibonacci generator, for example, one can
output k successive values produced by the recurrence, then skip the next d values,
output the next k, skip the next d , and so on. A large value of d (e.g., d D 5k or
more) may get rid of the bad structure, but slows down the generator. See Wegenkittl
and Matsumoto (1999) for further discussion.
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3.3.3 MRG Implementation Techniques

The modulus m is often taken as a large prime number close to the largest integer
directly representable on the computer (e.g., equal or near 231 � 1 for 32-bit
computers). Since each xi�j can be as large as m � 1, one must be careful in
computing the right side of (3.2) because the product aj xi�j is typically not
representable as an ordinary integer. Various techniques for computing this product
modulo m are discussed and compared by Fishman (1996), L’Ecuyer and Tezuka
(1991), L’Ecuyer (1999a), and L’Ecuyer and Simard (1999). Note that if aj D
m � a0j > 0, using aj is equivalent to using the negative coefficient �a0j , which
is sometimes more convenient from the implementation viewpoint. In what follows,
we assume that aj can be either positive or negative.

One approach is to perform the arithmetic modulom in 64-bit (double precision)
floating-point arithmetic (L’Ecuyer 1999a). Under this representation, assuming
that the usual IEEE floating-point standard is respected, all positive integers up
to 253 are represented exactly. Then, if each coefficient aj is selected to satisfy
jaj j.m � 1/ � 253, the product jaj jxi�j will always be represented exactly and
zj D jaj jxi�j mod m can be computed by the instructions

y D jaj jxi�j I zj D y �mby=mc:

Similarly, if .ja1j C � � �C jakj/.m� 1/ � 253, a1xi�1C � � �C akxi�k will always be
represented exactly.

A second technique, called approximate factoring (L’Ecuyer and Côté 1991),
uses only the integer representation and works under the condition that jaj j D i or
jaj j D bm=ic for some integer i <

p
m. One precomputes qj D bm=jaj jc and

rj D m mod jaj j. Then, zj D jaj jxi�j mod m can be computed by

y D bxi�j =qj cI z D jaj j.xi�j � yqj /� yrj I
if z < 0 then zj D zCm else zj D z:

All quantities involved in these computations are integers between �m and m, so
no overflow can occur if m can be represented as an ordinary integer (e.g.,m < 231

on a 32-bit computer).
The powers-of-two decomposition approach selects coefficients aj that can be

written as a sum or difference of a small number of powers of 2 (L’Ecuyer and
Simard 1999; L’Ecuyer and Touzin 2000; Wu 1997). For example, one may take
aj D ˙2q ˙ 2r and m D 2e � h for some positive integers q, r , e, and h. To
compute y D 2qx mod m, decompose x D z0 C 2e�qz1 (where z0 D x mod 2e�q)
and observe that

y D 2q.z0 C 2e�qz1/ mod .2e � h/ D .2qz0 C hz1/ mod .2e � h/:
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Suppose now that

h < 2q and h.2q � .hC 1/2�eCq/ < m: (3.5)

Then, 2qz0 < m and hz1 < m, so y can be computed by shifts, masks, additions,
subtractions, and a single multiplication by h. Intermediate results never exceed
2m � 1. Things simplify further if q D 0 or q D 1 or h D 1. For h D 1, y is
obtained simply by swapping the blocks of bits z0 and z1 (Wu 1997). L’Ecuyer and
Simard (1999) pointed out that LCGs with parameters of the form m D 2e � 1 and
a D ˙2q ˙ 2r have bad statistical properties because the recurrence does not “mix
the bits” well enough. However, good and fast (combined) MRGs can be obtained
via the power-of-two decomposition method, as explained in L’Ecuyer and Touzin
(2000).

Another idea to improve efficiency is to take all nonzero coefficients aj equal to
the same a, as in (3.4) (Deng and Xu 2003; Marsaglia 1996). Then, computing the
right side of (3.2) requires a single multiplication. Deng and Xu (2003) and Deng
(2005) provide specific parameter sets and concrete implementations for MRGs of
this type, for primem near 231, and for k ranging from 102 to 1597.

One may be tempted to take m equal to a power of two, say m D 2e , because
then the “ mod m” operation is much easier: it suffices to keep the e least significant
bits and mask-out all others. However, taking a power-of-two modulus is not
recommended because it has several strong disadvantages in terms of the quality
of the RNG (L’Ecuyer 1990, 1998). In particular, the least significant bits have very
short periodicity and the period of the recurrence (3.2) cannot exceed .2k � 1/2e�1
if k > 1, and 2e�2 if k D 1 and e � 4. The maximal period achievable with k D 7
andm D 231, for example, is more than 2180 times smaller than the maximal period
achievable with k D 7 and m D 231 � 1 (a prime number).

3.3.4 Combined MRGs and LCGs

The conditions that make MRG implementations run faster (e.g., only two nonzero
coefficients both close to zero) conflict with those required for having a good
lattice structure and statistical robustness. Combined MRGs are one solution to this
problem. Consider J distinct MRGs evolving in parallel, based on the recurrences

xj;i D .aj;1xj;i�1 C � � � C aj;kxj;i�k/ mod mj (3.6)

where aj;k 6D 0, for j D 1; : : : ; J . Let ı1; : : : ; ıJ be arbitrary integers,

zi D .ı1x1;i C � � � C ıJ xJ;i / mod m1; ui D zi =m1; (3.7)

and
wi D .ı1x1;i =m1 C � � � C ıJ xJ;i =mJ / mod 1: (3.8)
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This defines two RNGs, with output sequences fui ; i � 0g and fwi ; i � 0g.
Suppose that the mj are pairwise relatively prime, that ıj and mj have no

common factor for each j , and that each recurrence (3.6) is purely periodic with
period �j . Letm D m1 � � �mJ and let � be the least common multiple of �1; : : : ; �J .
Under these conditions, L’Ecuyer and Tezuka (1991) and L’Ecuyer (1996a) proved
the following: (a) the sequence (3.8) is exactly equivalent to the output sequence
of a MRG with (composite) modulus m and coefficients aj that can be computed
explicitly as explained by L’Ecuyer (1996a); (b) the two sequences in (3.7) and (3.8)
have period �; and (c) if both sequences have the same initial state, then ui D wiC�i
where maxi�0 j�i j can be bounded explicitly by a constant � which is very small
when the mj are close to each other.

Thus, these combined MRGs can be viewed as practical ways of implementing an
MRG with a large m and several large nonzero coefficients. The idea is to cleverly
select the components so that: (1) each one is easy to implement efficiently (e.g.,
has only two small nonzero coefficients) and (2) the MRG that corresponds to the
combination has a good lattice structure. If eachmj is prime and if each component
j has maximal period �j D mk

j � 1, then each �j is even and � cannot exceed
�1 � � ��J =2J�1. Tables of good parameters for combined MRGs of different sizes
that reach this upper bound are given in L’Ecuyer (1999a) and L’Ecuyer and Touzin
(2000), together with C implementations.

3.3.5 Jumping Ahead

The recurrence (3.2) can be written in matrix form as

xi D Axi�1 mod m D

0

BB
B
@

0 1 � � � 0
:::

: : :
:::

0 0 � � � 1
ak ak�1 � � � a1

1

CC
C
A

xi�1 mod m:

To jump ahead directly from xi to xiC� , for an arbitrary integer �, it suffices to
exploit the relationship

xiC� D A�xi mod m D .A� mod m/xi mod m:

If this is to be done several times for the same �, the matrix A� mod m can be
precomputed once for all. For a large �, this can be done in O.log2 �/ matrix
multiplications via a standard divide-and-conquer algorithm (Knuth 1998):

A� mod m D
(
.A�=2 mod m/.A�=2 mod m/ mod m if � is even;

A.A��1 mod m/ mod m if � is odd.
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3.3.6 Linear Recurrences with Carry

These types of recurrences were introduced by Marsaglia and Zaman (1991)
to obtain a large period even when m is a power of two (in which case the
implementation may be faster). They were studied and generalized by Tezuka et al.
(1994), Couture and L’Ecuyer (1994, 1997), and Goresky and Klapper (2003). The
basic idea is to add a carry to the linear recurrence (3.2). The general form of this
RNG, called multiply-with-carry (MWC), can be written as

xi D .a1xi�1 C � � � C akxi�k C ci�1/d mod b; (3.9)

ci D b.a0xi C a1xi�1 C � � � C akxi�k C ci�1/=bc; (3.10)

ui D
1X

`D1
xi�`C1b�`; (3.11)

where b is a positive integer (e.g., a power of two), a0; : : : ; ak are arbitrary integers
such that a0 is relatively prime to b, and d is the multiplicative inverse of �a0
modulo b. The state at step i is si D .xi�kC1; : : : ; xi ; ci /T. In practice, the sum in
(3.11) is truncated to a few terms (it could be a single term if b is large), but the
theoretical analysis is much easier for the infinite sum.

Define m D Pk
`D0 a`b` and let a be the inverse of b in arithmetic modulo m,

assuming for now thatm > 0. A major result proved in Tezuka et al. (1994), Couture
and L’Ecuyer (1997), and Goresky and Klapper (2003) is that if the initial states
agree, the output sequence fui ; i � 0g is exactly the same as that produced by
the LCG with modulus m and multiplier a. Therefore, the MWC can be seen as a
clever way of implementing a LCG with very large modulus. Couture and L’Ecuyer
(1997) have shown that the value of `t for this LCG satisfies `2t � a20 C � � � C a2k for
t � k, which means that the lattice structure will be bad unless the sum of squares
of coefficients aj is large.

In the original proposals of Marsaglia and Zaman (1991), called add-with-carry
and subtract-with-borrow, one has �a0 D ˙ar D ˙ak D 1 for some r < k

and the other coefficients aj are zero, so `2t � 3 for t � k and the generator has
essentially the same structural defect as the additive lagged-Fibonacci generator. In
the version studied by Couture and L’Ecuyer (1997), it was assumed that �a0 D
d D 1. Then, the period cannot exceed .m�1/=2 if b is a power of two. A concrete
implementation was given in that paper. Goresky and Klapper (2003) pointed out
that the maximal period of � D m � 1 can be achieved by allowing a more general
a0. They provided specific parameters that give the maximal period for b ranging
from 221 to 235 and � up to approximately 22521.
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3.4 Generators Based on Recurrences Modulo 2

3.4.1 A General Framework

It seems natural to exploit the fact that computers work in binary arithmetic and to
design RNGs defined directly in terms of bit strings and sequences. We do this under
the following framework, taken from L’Ecuyer and Panneton (2002) and L’Ecuyer
and Panneton (2009). Let F2 denote the finite field with two elements, 0 and 1,
in which the operations are equivalent to addition and multiplication modulo 2.
Consider the RNG defined by a matrix linear recurrence over F2, as follows:

xi D Axi�1; (3.12)

yi D Bxi ; (3.13)

ui D
wX

`D1
yi;`�12�` D :yi;0 yi;1 yi;2 � � � ; (3.14)

where xi D .xi;0; : : : ; xi;k�1/T 2 Fk
2 is the k-bit state vector at step i , yi D

.yi;0; : : : ; yi;w�1/T 2 Fw
2 is the w-bit output vector at step i , k and w are positive

integers, A is a k � k transition matrix with elements in F2, B is a w � k output
transformation matrix with elements in F2, and ui 2 Œ0; 1/ is the output at step i .
All operations in (3.12) and (3.13) are performed in F2.

It is well-known (L’Ecuyer 1994; Niederreiter 1992) that when the xi ’s obey
(3.12), for each j , the sequence fxi;j ; i � 0g follows the linear recurrence

xi;j D .˛1xi�1;j C � � � C ˛kxi�k;j / mod 2; (3.15)

whose characteristic polynomial P.z/ is the characteristic polynomial of A, i.e.,

P.z/ D det.A � zI/ D zk � ˛1zk�1 � � � � � ˛k�1z � ˛k;

where I is the identity matrix and each ˛j is in F2. The sequences fyi;j ; i � 0g,
for 0 � j < w, also obey the same recurrence (although some of them may follow
recurrences of shorter order as well, depending on B). We assume that ˛k D 1, so
that the recurrence (3.15) has order k and is purely periodic. Its period is 2k � 1
(i.e., maximal) if and only if P.z/ is a primitive polynomial over F2 (Knuth 1998;
Niederreiter 1992).

To jump ahead directly from xi to xiC� with this type of generator, it suffices to
precompute the matrix A� (in F2) and then multiply xi by this matrix.

Several popular classes of RNGs fit this framework as special cases, by appro-
priate choices of the matrices A and B. This includes the Tausworthe or LFSR,
polynomial LCG, GFSR, twisted GFSR, Mersenne twister, WELL, xorshift, multi-
ple recursive matrix generators, and combinations of these (L’Ecuyer and Panneton



50 P. L’Ecuyer

2009; Matsumoto and Nishimura 1998; Niederreiter 1995; Panneton and L’Ecuyer
2005; Panneton et al. 2006; Tezuka 1995). We detail some of them after discussing
measures of uniformity.

3.4.2 Measures of Uniformity

The uniformity of point sets 	I produced by RNGs based on linear recurrences over
F2 is usually assessed by measures of equidistribution defined as follows (L’Ecuyer
1996b, 2004; L’Ecuyer and Panneton 2002, 2009; Tezuka 1995). For an arbitrary
vector q D .q1; : : : ; qt / of non-negative integers, partition the unit hypercube Œ0; 1/t

into 2qj intervals of the same length along axis j , for each j . This determines a
partition of Œ0; 1/t into 2q1C���Cqt rectangular boxes of the same size and shape. We
call this partition the q-equidissection of the unit hypercube.

For some index set I D fi1; : : : ; itg, if 	I has 2k points, we say that 	I is
q-equidistributed in base 2 if there are exactly 2q points in each box of the q-
equidissection, where k � q D q1 C � � � C qt . This means that among the 2k points
.xj1 ; : : : ; xjt / of 	I , if we consider the first q1 bits of xj1 , the first q2 bits of xj2 ,
. . . , and the first qt bits of xjt , each of the 2k�q possibilities occurs exactly the same
number of times. This is possible only if q � k.

The q-equidistribution of 	I depends only on the first qj bits of xij for 1 � j �
t , for the points .xi1 ; : : : ; xit / that belong to 	I . The vector of these q1C � � �C qt D
k � q bits can always be expressed as a linear function of the k bits of the initial
state x0, i.e., as Mqx0 for some .k � q/ � k binary matrix Mq, and it is easily seen
that 	I is q-equidistributed if and only if Mq has full rank k � q. This provides
an easy way of checking equidistribution (L’Ecuyer 1996b; L’Ecuyer and Panneton
2009; Tezuka 1995).

If 	I is .`; : : : ; `/-equidistributed for some ` � 1, it is called t-distributed with
` bits of accuracy, or .t; `/-equidistributed (L’Ecuyer 1996b). The largest value of
` for which this holds is called the resolution of the set 	I and is denoted by `I .
This value has the upper bound `�t D min.bk=tc; w/. The resolution gap of 	I is
defined as ıI D `�t � `I . In the same vein as for MRGs, a worst-case figure of merit
can be defined here by


J D max
I2J ıI ;

where J is a preselected class of index sets I .
The point set 	I is a .q; k; t/-net in base 2 (often called a .t;m; s/-net in

the context of quasi-Monte Carlo methods, where a different notation is used
Niederreiter 1992), if it is .q1; : : : ; qt /-equidistributed in base 2 for all non-negative
integers q1; : : : ; qt summing to k � q. We call the smallest such q the q-value of
	I . The smaller it is, the better. One candidate for a figure of merit could be the
q-value of 	t for some large t . Although widely used to construct and evaluate
low-discrepancy point sets for quasi-Monte Carlo methods, a major drawback of
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this measure is that it is too costly to compute for good long-period generators (for
which k�q is large), because there are too many vectors q for which equidistribution
needs to be checked. In practice, one must settle for figures of merit that involve a
smaller number of equidissections.

When ıI D 0 for all sets I of the form I D f0; : : : ; t � 1g, for 1 � t � k, the
RNG is said to be maximally equidistributed or asymptotically random for the word
size w (L’Ecuyer 1996b; Tezuka 1995; Tootill et al. 1973). This property ensures
perfect equidistribution of all sets 	t , for any partition of the unit hypercube into
subcubes of equal sizes, as long as ` � w and the number of subcubes does
not exceed the number of points in 	t . Large-period maximally equidistributed
generators, together with their implementations, can be found in L’Ecuyer (1999c),
L’Ecuyer and Panneton (2002), Panneton and L’Ecuyer (2004), and Panneton et al.
(2006), for example.

3.4.3 Lattice Structure in Spaces of Polynomials and Formal
Series

The RNGs defined via (3.12)–(3.14) do not have a lattice structure in the real space
like MRGs, but they do have a lattice structure in a space of formal series, as
explained in Couture and L’Ecuyer (2000), L’Ecuyer (2004), L’Ecuyer and Panneton
(2009), Lemieux and L’Ecuyer (2003), and Tezuka (1995). The real space R is
replaced by the space L2 of formal power series with coefficients in F2, of the formP1

`D! x`z�` for some integer !. In that setting, the lattices have the form

Lt D
8
<

:
v.z/ D

tX

jD1
hj .z/vj .z/ such that each hj .z/ 2 F2Œz�

9
=

;
;

where F2Œz� is the ring of polynomials with coefficients in F2, and the basis vectors
vj .z/ are in Lt

2. The elements of the dual lattice L�t are the vectors h.z/ in Lt
2

whose scalar product with any vector of Lt belongs to F2Œz�. We define the mapping
' W L2 ! R by

'

 1X

`D!
x`z
�`
!

D
1X

`D!
x`2
�`:

Then, it turns out that the point set 	t produced by the generator is equal to
'.Lt / \ Œ0; 1/t . Moreover, the equidistribution properties examined in Sect. 3.4.2
can be expressed in terms of lengths of shortest vectors in the dual lattice, with
appropriate definitions of the length (or norm). Much of the theory and algorithms
developed for lattices in the real space can be adapted to these new types of lattices
(Couture and L’Ecuyer 2000; L’Ecuyer et al. 2009; Tezuka 1995).
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3.4.4 The LFSR Generator

The Tausworthe or linear feedback shift register (LFSR) generator (L’Ecuyer 1996b;
Tausworthe 1965; Tezuka 1995) is a special case of (3.12–3.14) with A D As

0 (in
F2) for some positive integer s, where

A0 D

0

B
B
B
@

1
: : :

1
ak ak�1 : : : a1

1

C
C
C
A
; (3.16)

a1; : : : ; ak are in F2, ak D 1, and all blank entries in the matrix are zeros. If w � k,
the matrix B contains the first w lines of the k � k identity matrix, otherwise B is
constructed as explained in L’Ecuyer and Panneton (2009). The RNG thus obtained
can be defined equivalently by

xi D a1xi�1 C � � � C akxi�k mod 2; (3.17)

ui D
wX

`D1
xisC`�12�`: (3.18)

Here, P.z/ is the characteristic polynomial of the matrix As
0, not the characteristic

polynomial of the recurrence (3.17), and the choice of s is important for determining
the quality of the generator. A frequently encountered case is when a single aj
is nonzero in addition to ak ; then, P.z/ is a trinomial and we have a trinomial-
based LFSR generator. These generators are known to have important statistical
deficiencies (Matsumoto and Kurita 1996; Tezuka 1995) but they can be used a
components of combined RNGs (Sect. 3.4.6).

LFSR generators can be expressed as LCGs in a space of polynomials (L’Ecuyer
1994; Tezuka 1995; Tezuka and L’Ecuyer 1991). With this representation, their
lattice structure as discussed in Sect. 3.4.3 follows immediately.

3.4.5 The GFSR and Twisted GFSR

Here we take A as the pq � pq matrix

A D

0

B
B
B
BB
@

Ip S
Ip

Ip
: : :

Ip

1

C
C
C
CC
A
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for some positive integers p and q, where Ip is the p � p identity matrix, S is a
p � p matrix, and the matrix Ip on the first line is in columns .r � 1/p C 1 to rp
for some positive integer r . Often, w D p and B contains the first w lines of the
pq � pq identity matrix. If S is also the identity matrix, the generator thus obtained
is the trinomial-based generalized feedback shift register (GFSR), for which xi is
obtained by a bitwise exclusive-or of xi�r and xi�q . This gives a very fast RNG,
but its period cannot exceed 2q � 1, because each bit of xi follows the same binary
recurrence of order k D q, with characteristic polynomial P.z/ D zq � zq�r � 1. It
also fails several simple empirical tests (L’Ecuyer and Simard 2007).

More generally, we can define xi as the bitwise exclusive-or of xi�r1 ; xi�r2 ;
: : : ; xi�rd where rd D q, so that each bit of xi follows a recurrence in F2 whose
characteristic polynomial P.z/ has d C 1 nonzero terms. However, the period is
still bounded by 2q � 1, whereas considering the pq-bit state, we should rather
expect a period close to 2pq . This was the main motivation for the twisted GFSR
(TGFSR) generator. In the original version introduced by Matsumoto and Kurita
(1992), w D p and the matrix S is defined as the transpose of A0 in (3.16), with
k replaced by p. The characteristic polynomial of A is then P.z/ D PS.zq C zm/,
where PS.z/ D zp � apzp�1 � � � � � a1 is the characteristic polynomial of S , and
its degree is k D pq. If the parameters are selected so that P.z/ is primitive over
F2, then the TGFSR has period 2k � 1. Matsumoto and Kurita (1994) pointed out
important weaknesses of the original TGFSR and proposed an improved version
that uses a well-chosen matrix B whose lines differ from those of the identity. The
operations implemented by this matrix are called tempering and their purpose is to
improve the uniformity of the points produced by the RNG.

The Mersenne twister (Matsumoto and Nishimura 1998; Nishimura 2000) is a
variant of the TGFSR where k is slightly less than pq and can be a prime number. A
specific instance named MT19937, proposed by Matsumoto and Nishimura (1998),
has become quite popular; it runs very fast and has the huge period of 219937 � 1.
However, its state xi occupies a large amount of memory (19,937 bits) and changes
very slowly as a function of i . Panneton et al. (2006) showed that as a consequence
of this slow change, if the generator starts in a state with very few bits equal to 1,
then the average output values over the next few thousand steps is likely to be much
less than 1/2. In particular, if the initial state has a single bit at 1, say randomly
selected, then we need about 3/4 million steps before the average output value gets
close to 1/2. Likewise, if two initial states differ by a single bit, it takes the same
number of steps before the corresponding outputs differ by about half of their bits.
This problem is related to the fact that the characteristic polynomial P.z/ has too
few nonzero coefficients, namely 135 out of 19,938.

Panneton et al. (2006) went on to develop a class of F2-linear generators
called well-equidistributed long-period linear (WELL), which run almost as fast
as MT19937, but whose state changes faster and whose polynomial P.z/ contains
nearly 50% nonzero coefficients. They propose specific instances with periods
ranging from 2512 � 1 to 244;497 � 1, which are all almost (or exactly) maximally
equidistributed.
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In the multiple recursive matrix method of Niederreiter (1995), the first row of
p � p matrices in A contains arbitrary matrices. However, a fast implementation is
possible only when these matrices are sparse and have a special structure.

3.4.6 Combined Linear Generators Over F2

Many of the best generators based on linear recurrences over F2 are constructed by
combining the outputs of two or more RNGs having a simple structure. The idea
is the same as for MRGs: select simple components that can run fast but such that
their combination has a more complicated structure and highly-uniform sets 	I for
the sets I considered important.

Consider J distinct recurrences of the form (3.12–3.13), where the j th recur-
rence has parameters .k;w;A;B/ D .kj ;w;Aj ;Bj / and state xj;i at step i , for
j D 1; : : : ; J . The output of the combined generator at step i is defined by

yi D B1x1;i ˚ � � � ˚ BJ xJ;i ;

ui D
wX

`D1
yi;`�12�`;

where ˚ denotes the bitwise exclusive-or operation. One can show (Tezuka 1995)
that the period � of this combined generator is the least common multiple of the
periods �j of its components. Moreover, this combined generator is equivalent to
the generator (3.12–3.14) with k D k1 C � � � C kJ , A D diag.A1; : : : ;AJ /, and
B D .B1; : : : ;BJ /.

With this method, by selecting the parameters carefully, the combination of
LFSR generators with characteristic polynomialsP1.z/; : : : ; PJ .z/ gives yet another
LFSR with characteristic polynomialP.z/ D P1.z/ � � �PJ .z/ and period equal to the
product of the periods of the components (L’Ecuyer 1996b; Tezuka 1995; Tezuka
and L’Ecuyer 1991; Wang and Compagner 1993). Tables and fast implementations
of maximally equidistributed combined LFSR generators are given in L’Ecuyer
(1999c).

The TGFSR and Mersenne twister generators cannot be maximally equidis-
tributed. However, concrete examples of maximally equidistributed combined
TGFSR generators with periods near 2466 and 21250 can be found in L’Ecuyer and
Panneton (2002). These generators have the additional property that the resolution
gaps ıI are zero for a class of small sets I with indices not too far apart.

3.5 Nonlinear RNGs

All RNGs discussed so far are based on linear recurrences and their structure may
be deemed too regular. For example, we saw earlier that the output binary sequence
fyi;j ; i � 0g of any F2-linear generator obeys the linear recurrence (3.15). This can
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be detected easily by applying statistical tests that measure the linear complexity
of this output sequence, or that construct “random” binary matrices from this
sequence and compute their ranks (L’Ecuyer and Simard 2007). Because of the
linear dependences between the bits, the linear complexity and the matrix ranks will
be smaller than what they should be on average. For the great majority of Monte
Carlo applications, this linearity is not a problem, because the random numbers
are transformed nonlinearly by the simulation algorithm. But for the rare situations
where it may matter, we need alternatives.

There are several ways of getting rid of the regular linear structure, including:
(1) use a nonlinear transition function f ; (2) keep the transition function linear but
use a nonlinear output function g; (3) combine two linear RNGs of different types,
such as an MRG with an F2-linear generator; (4) shuffle (randomly permute) the
output values using another generator. Several types of genuinely nonlinear RNGs
have been proposed over the years; see for example Blum et al. (1986), Eichenauer-
Herrmann (1995), Eichenauer-Herrmann et al. (1998), Hellekalek and Wegenkittl
(2003), Knuth (1998), L’Ecuyer and Proulx (1989), L’Ecuyer (1994), L’Ecuyer
and Simard (2007), Niederreiter and Shparlinski (2002), and Tezuka (1995). Their
nonlinear mappings are defined in various ways by multiplicative inversion in a
finite field, quadratic and cubic functions in the finite ring of integers modulo m,
and other more complicated transformations. Many of them have output sequences
that tend to behave much like i.i.d. U.0; 1/ sequences even over their entire period
length, in contrast with “good” linear RNGs, whose point sets 	t are much more
regular than typical random points (Eichenauer-Herrmann et al. 1998; L’Ecuyer and
Granger-Piché 2003; L’Ecuyer and Hellekalek 1998; Niederreiter and Shparlinski
2002). On the other hand, their statistical properties have been analyzed only
empirically or via asymptotic theoretical results. For specific nonlinear RNGs, the
uniformity of the point sets 	t is very difficult to measure theoretically. Moreover,
the nonlinear RNGs are generally significantly slower than the linear ones. The
RNGs recommended for cryptology are all nonlinear.

An interesting idea for adding nonlinearity without incurring an excessive speed
penalty is to combine a small nonlinear generator with a fast long-period linear
one (Aiello et al. 1998). L’Ecuyer and Granger-Piché (2003) show how to do this
while ensuring theoretically the good uniformity properties of 	t for the combined
generator. A fast implementation can be achieved by using precomputed tables
for the nonlinear component. Empirical studies suggest that mixed linear-nonlinear
combined generators are more robust than the linear ones with respect to statistical
tests, because of their less regular structure.

Several authors have proposed various ways of combining RNGs to produce
streams of random numbers with less regularity and better “randomness” properties;
see, e.g., Collings (1987), Knuth (1998), Gentle (2003), Law and Kelton (2000),
L’Ecuyer (1994), Fishman (1996), Marsaglia (1985), and other references given
there. This includes shuffling the output sequence of one generator using another
one (or the same one), alternating between several streams, or just adding them in
different ways. Most of these techniques are heuristics. They usually improve the
uniformity (empirically), but they can also make it worse. For random variables
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in the mathematical sense, certain types of combinations (e.g., addition modulo 1)
can provably improve the uniformity, and some authors have used this fact to argue
that combined RNGs are provably better than their components alone (Brown and
Solomon 1979; Deng and George 1990; Gentle 2003; Marsaglia 1985), but this
argument is faulty because the output sequences of RNGs are deterministic, not
sequences of independent random variables. To assess the quality of a combined
generator, one must analyze the mathematical structure of the combined generator
itself rather than the structure of its components (L’Ecuyer 1996a,b, 1998; L’Ecuyer
and Granger-Piché 2003; Tezuka 1995).

3.6 Empirical Statistical Tests

As mentioned earlier, a statistical test for RNGs is defined by a random variable X
whose distribution under H0 can be well approximated. When X takes the value x,
we define the right and left p-values of the test by

pR D P ŒX � x j H0� and pL D P ŒX � x j H0�:

When testing RNGs, there is no need to prespecify the level of the test. If either
of the right or left p-value is extremely close to zero, e.g., less than 10�15, then
it is clear that H0 (and the RNG) must be rejected. When a suspicious p-value is
obtained, e.g., near 10�2 or 10�3, one can just repeat this particular test a few more
times, perhaps with a larger sample size. Almost always, things will then clarify.

Most tests are defined by partitioning the possible realizations of .u0; : : : ; u��1/
into a finite number of subsets (where the integer � can be random or deterministic),
computing the probability pj of each subset j under H0, and measuring the
discrepancy between these probabilities and empirical frequencies from realizations
simulated by the RNG.

A special case that immediately comes to mind is to take � D t (a constant) and
cut the interval Œ0; 1/ into d equal segments for some positive integer d , in order
to partition the hypercube Œ0; 1/t into k D d t subcubes of volume 1=k. We then
generate n points ui D .ut i ; : : : ; ut iCt�1/ 2 Œ0; 1/t , for i D 0; : : : ; n � 1, and count
the number Nj of points falling in subcube j , for j D 0; : : : ; k � 1. Any measure
of distance (or divergence) between the numbers Nj and their expectations n=k
can define a test statistic X . The tests thus defined are generally called serial tests of
uniformity (Knuth 1998; L’Ecuyer et al. 2002). They can be sparse (if n=k 	 1), or
dense (if n=k 
 1), or somewhere in between. There are also overlapping versions,
where the points are defined by ui D .ui ; : : : ; uiCt�1/ for i D 0; : : : ; n � 1 (they
have overlapping coordinates).

Special instances for which the distribution under H0 is well-known are the chi-
square, the (negative) empirical entropy, and the number of collisions (L’Ecuyer
and Hellekalek 1998; L’Ecuyer et al. 2002; Read and Cressie 1988). For the latter,
the test statistic X is the number of times a point falls in a subcube that already
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had a point in it. Its distribution under H0 is approximately Poisson with mean
�1 D n2=.2k/, if n is large and �1 not too large.

A variant is the birthday spacings test, defined as follows (Knuth 1998; L’Ecuyer
and Simard 2001; Marsaglia 1985). Let I.1/ � � � � � I.n/ be the numbers of the
subcubes that contain the points, sorted by increasing order. Define the spacings
Sj D I.jC1/ � I.j /, for j D 1; : : : ; n � 1, and let X be the number of collisions
between these spacings. Under H0, X is approximately Poisson with mean �2 D
n3=.4k/, if n is large and �2 not too large.

Consider now a MRG, for which 	t has a regular lattice structure. Because of
this regularity the points of 	t will tend to be more evenly distributed among the
subcubes than random points. For a well-chosen k and large enough n, we expect
the collision test to detect this: it is likely that there will be too few collisions. In
fact, the same applies to any RNG whose set 	t is very evenly distributed. When
a birthday spacings test with a very large k is applied to a MRG, the numbers of
the subcubes that contain one point of 	t tend to be too evenly spaced and the test
detects this by finding too many collisions.

These specific interactions between the test and the structure of the RNG lead
to systematic patterns in the p-values of the tests. To illustrate this, suppose that
we take k slightly larger than the cardinality of 	t (so k � �) and that due to
the excessive regularity, no collision is observed in the collision test. The left p-
value will then be pL � P ŒX � 0 j X � Poisson.�1/� D expŒ�n2=.2k/�. For
this p-value to be smaller than a given �, we need a sample size n proportional
to the square root of the period �. And after that, pL decreases exponentially
fast in n2.

Extensive experiments with LCGs, MRGs, and LFSR generators confirms that
this is actually what happens with these RNGs (L’Ecuyer 2001; L’Ecuyer and
Hellekalek 1998; L’Ecuyer et al. 2002). For example, if we take � D 10�15 and
define n0 as the minimal sample size n for which pL < �, we find that n0 � 16�1=2
(plus some noise) for LCGs that behave well in the spectral test as well as for LFSR
generators. For the birthday spacings test, the rule for LCGs is n0 � 16�1=3 instead
(L’Ecuyer and Simard 2001). So to be safe with respect to these tests, the period �
must be so large that generating more than �1=3 numbers is practically unfeasible.
This certainly disqualifies all LCGs with modulus smaller than 2100 or so.

Other types of tests for RNGs include tests based on the closest pairs of points
among n points generated in the hypercube, tests based on random walks on the real
line or over the integers, tests based on the linear complexity of a binary sequence,
tests based on the simulation of dice or poker hands, and many others (Gentle
2003; Knuth 1998; L’Ecuyer and Simard 2007; Marsaglia 1996; Rukhin et al. 2001;
Vattulainen et al. 1995).

When testing RNGs, there is no specific alternative hypothesis to H0. Different
tests are needed to detect different types of departures from H0. The TestU01 library
of L’Ecuyer and Simard (2007) implements a large collection of tests in the C
language, and also provides specific test suites with preselected parameters and
sample sizes. Some of these suites are designed for i.i.d. U.0; 1/ output sequences
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and others for strings of bits. Other (smaller) test suites for RNGs are DIEHARD
(Marsaglia 1996) and the NIST suite (Rukhin et al. 2001).

3.7 Available Software and Recommendations

Applying standard statistical test suites to RNGs found in popular software (sta-
tistical and simulation software, spreadsheets, system libraries, etc.) reveals that
many of them are surprisingly poor and fail the tests spectacularly (L’Ecuyer 2001;
L’Ecuyer and Simard 2007). There is no good reason to use these poor RNGs,
because several good ones are available that are fast, portable, and pass these test
suites with flying colors.

The RNG I use most of the time is the combined MRG MRG32k3a from
L’Ecuyer (1999a). A convenient object-oriented software package with multiple
streams and substreams of random numbers, based on this generator, is described
in L’Ecuyer et al. (2002) and is available in Java, C, and C++, at http://www.iro.
umontreal.ca/~lecuyer. This tool has been included recently in several software
products, including MATLAB, SAS, R, Arena, Automod, ns3, and many more.
MRG32k3a is not the fastest RNG available, but it is very robust and reliable.
A faster alternative is MGR31k3p from L’Ecuyer and Touzin (2000). Other good
combined MRGs, some for 64-bit computers, are available in L’Ecuyer (1999a).
Even faster ones are the combined LFSRs, Mersenne twisters, and WELL generators
proposed in L’Ecuyer (1999c), L’Ecuyer and Panneton (2002), Matsumoto and
Nishimura (1998), Nishimura (2000), and Panneton et al. (2006). When speed is a
concern, I personally use LFSR113 or LFSR258 from L’Ecuyer (1999c). Software
tools that provide multiple streams and substreams with most of these generators
(except the ones with very large state) are available in the SSJ library (L’Ecuyer
2008).

3.8 Non-Uniform Random Variate Generation

Like for the uniform case, non-uniform variate generation often involves approxima-
tions and compromises. The first requirement is, of course, correctness. This does
not mean that the generated random variateX must always have exactly the required
distribution, because this would sometimes be much too costly or even impossible.
But we must have a good approximation and, preferably, some understanding of
the quality of that approximation. Robustness is also important: when the accuracy
depends on the parameters of the distribution, it must be good uniformly over the
entire range of parameter values that we are interested in.

The method must also be efficient both in terms of speed and memory usage.
Often, it is possible to increase the speed by using more memory (e.g, for larger
precomputed tables) or by relaxing the accuracy requirements. Some methods need

http://www.iro.umontreal.ca/~lecuyer
http://www.iro.umontreal.ca/~lecuyer


3 Random Number Generation 59

a one-time setup to compute constants and construct tables. The setup time can be
significant but may be well worth spending if it is amortized by a large number of
subsequent calls to the generator. For example, it makes sense to invest in a more
extensive setup if we plan to make a million calls to a given generator than if we
expert to make only a few calls, assuming that this investment can improve the speed
of the generator sufficiently.

In general, compromises must be made between simplicity of the algorithm,
quality of the approximation, robustness with respect to the distribution parameters,
and efficiency (generation speed, memory requirements, and setup time).

In many situations, compatibility with variance reduction techniques is another
important issue (Asmussen and Glynn 2007; Bratley et al. 1987; Law and Kelton
2000). We may be willing to sacrifice the speed of the generator to preserve
inversion, because the gain in efficiency obtained via the variance reduction methods
may more than compensate (sometimes by orders of magnitude) for the slightly
slower generator.

3.8.1 Inversion

The inversion method, defined in the introduction, should be the method of choice
for generating non-uniform random variates in a majority of situations. The fact
that X D F �1.U / is a monotone (non-decreasing) function of U makes this
method compatible with important variance reductions techniques such as common
random numbers, antithetic variates, Latin hypercube sampling, and randomized
quasi-Monte Carlo methods (Bratley et al. 1987; Law and Kelton 2000; L’Ecuyer
and Lemieux 2000; L’Ecuyer et al. 2009).

For some distributions, an analytic expression can be obtained for the inverse
distribution function F�1 and inversion can be easily implemented. As an example,
consider the Weibull distribution function with parameters ˛ > 0 and ˇ > 0, defined
by F.x/ D 1�expŒ�.x=ˇ/˛� for x > 0. It is easy to see that F�1.U / D ˇŒ� ln.1�
U /�1=˛ . For ˛ D 1, we have the special case of the exponential distribution with
mean ˇ.

For an example of a simple discrete distribution, suppose that P ŒX D i � D pi
where p0 D 0:6, p1 D 0:3, p2 D 0:1, and pi D 0 elsewhere. The inversion method
in this case will return 0 if U < 0:6, 1 if 0:6 � U < 0:9, and 2 if U � 0:9. For
the discrete uniform distribution over f0; : : : ; k � 1g, returnX D bkU c. As another
example, let X have the geometric distribution with parameter p, so P ŒX D x� D
p.1 � p/x for x D 0; 1; 2; : : : , where 0 < p < 1. Then, F.x/ D 1 � .1 � p/bxC1c
for x � 0 and one can show that X D F�1.U / D dln.1 � U /= ln.1 � p/e � 1.

For other distributions (e.g., the normal, Student, chi-square) there is no closed-
form expression for F�1 but good numerical approximations are available (Bratley
et al. 1987; Gentle 2003; Hörmann et al. 2004; Marsaglia et al. 1994). When the
distribution has only scale and location parameters, we need to approximate F�1
only for a standardized version of the distribution. For the normal distribution, for
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example, it suffices to have an efficient method for evaluating the inverse distribution
function of a N.0; 1/ random variable Z, since a normal with mean � and variance
2 can be generated by X D Z C �.

When shape parameters are involved (e.g., the gamma and beta distributions),
things are more complicated because F �1 then depends on the parameters in a more
fundamental manner.

Hörmann and Leydold (2003) propose a general adaptive and automatic method
that constructs a highly accurate Hermite interpolation method of F �1. In a one-
time setup, their method produces tables for the interpolation points and coefficients.
Random variate generation using these tables is then quite fast.

A less efficient but simpler way of implementing inversion when a method is
available for computing F is via binary search (Cheng 1998). If the density is
also available and if it is unimodal with known mode, a Newton-Raphson iteration
method can advantageously replace the binary search (Cheng 1998; Devroye 1986).

To implement inversion for general discrete distributions, sequential search and
binary search with look-up tables are the standard methods (Bratley et al. 1987;
Cheng 1998). For a discrete distribution over the values x1 < � � � < xk , one first
tabulates the pairs .xi ; F .xi //, where F.xi / D P ŒX � xi � for i D 1; : : : ; k. To
generateX , it then suffices to generateU � U.0; 1/, find I D minfi j F.xi / � U g,
and return X D xI . The following algorithms do that.

Sequential search (needs O.k/ iterations in the worst case);
generate U � U.0; 1/; let i D 1;
while F.xi / < U do i D i C 1;
return xi .

Binary search (needsO.log k/ iterations in the worst case);
generate U � U.0; 1/; let L D 0 and R D k;
while L < R � 1 do
m D b.LCR/=2c;
if F.xm/ < U then L D m else R D m;
/* Invariant: at this stage, the index I is in fLC 1; : : : ; Rg. */

return xR.

These algorithms can be modified in many different ways. For example, if k D
1, in the binary search, one can start with an arbitrary value of R, double it until
F.xR/ � U , and start the algorithm with this R and L D R=2. Of course, only
a finite portion of the table (a portion that contains most of the probability mass)
would be precomputed in this case, the other values can be computed only when
needed. This can also be done if k is finite but large.

Another class of techniques use indexing or buckets to speed up the search
(Bratley et al. 1987; Chen and Asau 1974; Devroye 1986). For example, one can
partition the interval .0; 1/ into c subintervals of equal sizes and use (pre-tabulated)
initial values of .L;R/ that depend on the subinterval in which U falls. For the
subinterval Œj=c; .j C 1/=c/ the values of L and R would be Lj D F�1.j=c/
and Rj D F �1..j C 1/=c/, for j D 0; : : : ; c � 1. The subinterval number that
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corresponds to a given U is simply J D bcU c. Once we know that subinterval,
we can search it by linear of binary search. With a larger value of c the search
is faster (on the average) but the setup is more costly and a larger amount of
memory is needed. So a compromise must be made depending on the situation
(e.g., the value of k, the number of variates we expect to generate, etc.). For
c D 1, we recover the basic sequential and binary search algorithms given above.
A well-implemented indexed search with a large enough c is competitive with the
alias method (described in the next paragraph). A combined indexed/binary search
algorithm is given below. An easy adaptation gives the combined indexed/sequential
search, which is generally preferable when k=c is small, because it has smaller
overhead.

Indexed search (combined with binary search);
generate U � U.0; 1/; let J D bcU c, L D LJ , and R D RJ ;
while L < R � 1 do
m D b.LCR/=2c;
if F.xm/ < U then L D m else R D m;

return xR.

These search methods are also useful for piecewise-linear (or piecewise-
polynomial) distribution functions. Essentially, it suffices to add an interpolation
step at the end of the algorithm, after the appropriate linear (or polynomial) piece
has been determined (Bratley et al. 1987).

Finally, the stochastic model itself can sometimes be selected in a way that
makes inversion easier. For example, one can fit a parametric, highly-flexible, and
easily computable inverse distribution functionF�1 to the data, directly or indirectly
(Nelson and Yamnitsky 1998).

There are situations where speed is important and where non-inversion methods
are appropriate. In forthcoming subsections, we outline the main non-inversion
methods.

3.8.2 The Alias Method

Sequential and binary search require O.k/ and O.log k/ time, respectively, in
the worst case, to generate a random variate X by inversion over the finite set
fx1; : : : ; xkg. The alias method (Walker 1977) can generate such a X in O.1/ time
per variate, after a table setup that takes O.k/ time and space. On the other hand, it
does not implement inversion, i.e., the transformation fromU toX is not monotone.

To explain the idea, consider a bar diagram of the distribution, where each index
i has a bar of height pi D P ŒX D xi �. The idea is to “equalize” the bars so that they
all have height 1=k, by cutting-off bar pieces and transferring them to other bars.
This is done in a way that in the new diagram, each bar i contains one piece of size qi
(say) from the original bar i and one piece of size 1=k� qi from another bar whose
index j , denoted A.i/, is called the alias value of i . The setup procedure initializes
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two tables, A and R, where A.i/ is the alias value of i and R.i/ D .i � 1/=k C qi .
See Devroye (1986) and Law and Kelton (2000) for the details. To generate X , we
generate U � U Œ0; 1�, define I D dkU e, and return X D xI if U < R.I / and
X D xA.I / otherwise.

There is a version of the alias method for continuous distributions, called
the acceptance-complement method (Devroye 1986; Gentle 2003; Kronmal and
Peterson 1984). The idea is to decompose the density f of the target distribution
as the convex combination of two densities f1 and f2, f D wf1 C .1 � w/f2 for
some real number w 2 .0; 1/, in a way that wf1 � g for some other density g and so
that it is easy to generate from g and f2. The algorithm works as follows: Generate
X from density g and U � U.0; 1/; if Ug.X/ � wf1.Y / return X , otherwise
generate a new X from density f2 and return it.

3.8.3 Kernel Density Estimation and Generation

Instead of selecting a parametric distribution that is hard to invert and estimating
the parameters, one can estimate the density via a kernel density estimation method
for which random variate generation is very easy (Devroye 1986; Hörmann et al.
2004). In the case of a Gaussian kernel, for example, on can generate variates simply
by selecting one observation at random from the data and adding random noise
generated form a normal distribution with mean zero. However, this method is not
equivalent to inversion. Because of the added noise, selecting a larger observation
does not necessarily guarantee a larger value for the generated variate.

3.8.4 The Rejection Method

Suppose we want to generate X from a complicated density f . In fact f may be
known only up to a multiplicative constant � > 0, i.e., we know only �f . If we know

f , we may just take � D 1. We select another density r such that �f .x/ � t.x/ defD
ar.x/ for all x for some constant a, and such that generating variates Y from the
density r is easy. The function t is called a hat function or majorizing function. By
integrating this inequality with respect to x on both sides, we find that � � a. The
following rejection method generates X with density f (Devroye 1986; Evans and
Swartz 2000; von Neumann 1951):

Rejection method;
repeat

generate Y from the density r and U � U.0; 1/, independent;
until Ut.Y / � �f .Y /;
return X D Y .

The number R of turns into the “repeat” loop is one plus a geometric random
variable with parameter �=a, so EŒR� D a=�. Thus, we want a=� � 1 to be as
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small as possible, i.e., we want to minimize the area between �f and t . There is
generally a compromise between bringing a=� close to 1 and keeping r simple.

When �f is expensive to compute, we can also use squeeze functions q1 and q2
that are faster to evaluate and such that q1.x/ � �f .x/ � q2.x/ � t.x/ for all x. To
verify the condition Ut.Y / � �f .Y /, we first check if Ut.Y / � q1.Y /, in which
case we accept Y immediately, otherwise we check if Ut.Y / � q2.Y /, in which
case we reject Y immediately. The value of �f .Y / must be computed only when
Ut.Y / falls between the two squeezes. Sequences of embedded squeezes can also
be used, where the primary ones are the least expensive to compute, the secondary
ones are a little more expensive but closer to �f , etc.

It is common practice to transform the density f by a smooth increasing function
T (e.g., T .x/ D logx or T .x/ D �x�1=2) selected so that it is easier to construct
good hat and squeeze functions (often piecewise linear) for the transformed density
T .f .�//. By transforming back to the original scale, we get hat and squeeze
functions for f . This is the transformed density rejection method, which has several
variants and extensions (Devroye 1986; Evans and Swartz 2000; Hörmann et al.
2004).

The rejection method works for discrete distributions as well; it suffices to
replace densities by probability mass functions.

3.8.5 Thinning for Point Processes with Time-Varying Rates

Thinning is a cousin of acceptance-rejection, often used for generating events from a
non-homogeneous Poisson process. Suppose the process has rate �.t/ at time t , with
�.t/ � N� for all t , where N� is a finite constant. One can generate Poisson pseudo-
arrivals at constant rate N� by generating interarrival times that are i.i.d. exponentials
of mean 1= N�. Then, a pseudo-arrival at time t is accepted (becomes an arrival) with
probability �.t/= N� (i.e., if U � �.t/= N�, where U is an independent U Œ0; 1�), and
rejected with probability 1��.t/= N�. Non-homogeneous Poisson processes can also
be generated by inversion (Bratley et al. 1987). The idea is to apply a nonlinear
transformation to the time scale to make the process homogeneous with rate 1 in the
new time scale. Arrival times are generated in this new time scale (which is easy),
and then transformed back to the original time scale. The method can be adapted to
other types of point processes with time-varying rates.

3.8.6 The Ratio-of-Uniforms Method

If f is a density over the real-line, � an arbitrary positive constant, and the pair
.U; V / has the uniform distribution over the set

C D
n
.u; v/ 2 R2 such that 0 � u � p�f .v=u/

o
;
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then V=U has density f (Devroye 1986; Gentle 2003; Kinderman and Monahan
1977). This interesting property can be exploited to generate X with density f :
generate .U; V / uniformly over C and return X D V=U . This is the ratio-of-
uniforms method. The key issue is how do we generate a point uniformly over C. In
the cases where this can be done efficiently, we immediately have an efficient way
of generatingX .

The most frequent approach for generating .U; V / uniformly over C is the
rejection method: Define a region C2 that contains C and in which it is easy to
generate a point uniformly (for example, a rectangular box or a polygonal region).
To generateX , repeat: generate .U; V / uniformly over C2, until it belongs to C. Then
return X D V=U . If there is another region C1 contained in C and for which it is
very fast to check if a point .U; V / is in C1, this C1 can also be used as a squeeze
to accelerate the verification that the point belongs to C. Several special cases and
refinements are described in Devroye (1986), Gentle (2003), Leydold (2000), and
other references given there.

3.8.7 Composition and Convolution

Suppose F is a convex combination of several distributions, i.e., F.x/ DP
j pjFj .x/, or more generally F.x/ D R

Fy.x/dH.y/. To generate from F ,
one can generate J D j with probability pj (or Y from H ), then generate X from
FJ (or FY ). This method, called the composition algorithm, is useful for generating
from compound distributions such as the hyperexponential or from compound
Poisson processes. It is also frequently used to design specialized algorithms for
generating from complicated densities. The idea is to partition the area under the
complicated density into pieces, where piece j has surface pj . To generate X ,
first select a piece (choose piece j with probability pj ), then draw a random point
uniformly over that piece and project it to the horizontal axis. If the partition is
defined so that it is fast and easy to generate from the large pieces, then X will
be returned very quickly most of the time. The rejection method with a squeeze is
often used to generate from some of the pieces.

A dual method to composition is the convolution method, which can be used
when X D Y1 C Y2 C � � � C Yn, where the Yi ’s are independent with specified
distributions. With this method, one just generates the Yi ’s and sum up. This requires
at least n uniforms. Examples of random variables that can be expressed as sums like
this include the hypoexponential, Erlang, and binomial distributions.

3.8.8 Other Special Techniques

Specialized and sometimes very elegant techniques have been designed for com-
monly used distributions such as the Poisson distribution with small mean, the
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normal (e.g., the Box-Muller and the polar methods), for generating points uni-
formly on a k-dimensional sphere, for generating random permutations, and so
on. Details can be found, e.g., in Bratley et al. (1987), Cheng (1998), Devroye
(1986), Fishman (1996), Gentle (2003). Many of those methods are based on a
clever multivariate change of variables, defined so that the random variates or
random vectors in the new coordinates are much easier to generate. In the Box-
Muller and Polar methods, for example, a pair of independent standard normals
is generated in polar coordinates, and then transformed back into rectangular
coordinates.

Recently, there has been an effort in developing automatic or black box algo-
rithms for generating variates from an arbitrary (known) density, and reliable
software that implements these methods (Hörmann and Leydold 2000; Hörmann
et al. 2004; Leydold 2009).

3.8.9 Multivariate Distributions

Inversion does not directly apply to generate a d -dimensional random vector X D
.X1; : : : ; Xd /

T, because the inverse of its distribution function is not well defined. In
some cases, one can generate the first coordinate X1 by inversion from its marginal
distribution, then generateX2 by inversion from its marginal distribution conditional
on X1, then generate X3 by inversion from its marginal distribution conditional on
.X1;X2/, and so on. But this is not always possible and convenient.

Simple and elegant methods are available for certain classes of distributions. For
example, if X has a multinormal distribution with mean vector � and covariance
matrix˙ , then one can decompose˙ D AAT for some matrix A, generate a vector
Z of d independent standard normal random variable (with mean 0 and variance 1),
usually by inversion, and return X D �C AZ. One way to decompose˙ is via the
Cholesky decomposition, for which A is lower triangular, but there are many other
possibilities, including the eigendecomposition as in principal component analysis.
The choice of decomposition can have a large impact on the variance reduction in
the context of randomized quasi-Monte Carlo integration, by concentrating more of
the variance on the first few uniform random numbers that are generated L’Ecuyer
(2009).

Multivariate normals are often used to generate vectors from other distributions.
For example, to generate a random point on a d -dimensional sphere of radius r
centered at zero, one can generate a vector Z of independent standard normals
(this amounts to generating a random direction), then normalize its length to r .
More generally, by putting X D RZ=kZk where R has an arbitrary distribution
over .0;1/, one generates a vector with a radially symmetric distribution. As a
special case, ifR has the Student distribution, X is multivariate Student. As a further
generalization, let X D � C RAZ=kZk where Z is multinormal in k dimensions
and A is a d � k matrix. This X has an elliptic multivariate distribution.
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A richer class of multivariate distributions are defined via copula methods
(Asmussen and Glynn 2007; Hörmann et al. 2004; Nelsen 1999). Start with
an arbitrary d -dimensional distribution function G with continuous marginals
Gj , generate Y D .Y1; : : : ; Yd /

T from G, and let U D .U1; : : : ; Ud / D
.G1.Y1/; : : : ; Gd .Yd //

T. These Uj have the uniform distribution over .0; 1/, but
they are not independent in general. The distribution function of U is the copula
associated with G and it specifies the dependence structure of the vector U. In
fact, any multivariate distribution function over .0; 1/d with uniform marginals is
a copula. To generate X D .X1; : : : ; Xd/

T with arbitrary marginal distribution
functionsFj and dependence structure specified by this copula, putXj D F�1j .Uj /

for each j . A popular choice for G is the multinormal distribution with standard
normal marginals; then Y and U are easy to generate, and one can select the
correlation matrix of Y to approximate a target correlation (or rank correlation)
matrix for X. It can usually match the correlations pretty well. But to approximate
the whole dependence structure in general, a much richer variety of copulas is
required (Asmussen and Glynn 2007; Hörmann et al. 2004; Nelsen 1999).

The rejection method extends easily to the multivariate case. For a target
d -dimensional density f known up to the multiplicative constant �, pick a d -
dimensional density r such that �f .x/ � ar.x/ for all x and some constant a,
and such that sampling random vectors Y from r is easy. To generate X with
density f , generate Y from r and U uniform over .0; 1/ independent of Y, until
Uar.Y/ � �f .Y/, and return X D Y.

There are many situations where one wishes to generate random vectors X from
quite complicated distributions and no efficient method is available to do it exactly.
One very important approach that often permit one to generate X approximately
from the target distribution is the Markov chain Monte Carlo (MCMC) method. In
a nutshell, it constructs an artificial Markov chain whose steady-state distribution
is the target distribution of X, and runs the Markov chain for a large number of
steps, until it is deemed sufficiently close to steady-state. Then the state of the
chain has a distribution close to the target one. MCMC is covered elsewhere in this
handbook.
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Chapter 4
Markov Chain Monte Carlo Technology

Siddhartha Chib

4.1 Introduction

In the past fifteen years computational statistics has been enriched by a powerful,
somewhat abstract method of generating variates from a target probability distribu-
tion that is based on Markov chains whose stationary distribution is the probability
distribution of interest. This class of methods, popularly referred to as Markov chain
Monte Carlo methods, or simply MCMC methods, have been influential in the
modern practice of Bayesian statistics where these methods are used to summarize
the posterior distributions that arise in the context of the Bayesian prior-posterior
analysis (Besag et al. 1995; Chib and Greenberg 1995; Gelfand and Smith 1990;
Smith and Roberts 1993; Tanner and Wong 1987; Tierney 1994, 1996; Carlin and
Louis 2000; Chen et al. 2000; Chib 2001; Congdon 2001; Gammerman 1997;
Gelman et al. 2003; Gilks et al. 1996; Liu 2001; Robert 2001; Robert and Casella
1999; Tanner 1996). MCMC methods have proved useful in practically all aspects
of Bayesian inference, for example, in the context of prediction problems and in
the computation of quantities, such as the marginal likelihood, that are used for
comparing competing Bayesian models.

A central reason for the widespread interest in MCMC methods is that these
methods are extremely general and versatile and can be used to sample univariate
and multivariate distributions when other methods (for example classical methods
that produce independent and identically distributed draws) either fail or are difficult
to implement. The fact that MCMC methods produce dependent draws causes no
substantive complications in summarizing the target distribution. For example, if
f .1/; : : : ; .M/g are draws from a (say continuous) target distribution �. /, where
 2 <d , then the expectation of h. / under � can be estimated by the average
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M�1
MX

jD1
h
�
 .j /

�
; (4.1)

as in the case of random samples, because suitable laws of large numbers for Markov
chains can be used to show that

M�1
MX

jD1
h
�
 .j /

�!
Z

<d
h. /�. /d ;

as the simulation sample size M becomes large.
Another reason for the interest in MCMC methods is that, somewhat surprisingly,

it is rather straightforward to construct one or more Markov chains whose limiting
invariant distribution is the desired target distribution. One way to construct the
appropriate Markov chain is by a method called the Metropolis method which
was introduced by Metropolis et al. (1953) in connection with work related to the
hydrogen bomb project. In this method, the Markov chain simulation is constructed
by a recursive two step process. Given the current iterate .j /, a proposal value 0 is
drawn from a distribution q. .j /; �/, such that  0 is symmetrically distributed about
the current value .j /. In the second step, this proposal value is accepted as the next
iterate  .jC1/ of the Markov chain with probability

˛
�
 .j /; 0

� D min

(

1;
�. 0/
�
�
 .j /

�

)

:

If the proposal value is rejected, then  .jC1/ is taken to be the current value.
The method is simple to implement, even in multivariate settings, and was widely
used by physicists in computational statistical mechanics and quantum field theory
to sample the coordinates of a point in phase space. In those settings, and in
subsequent statistical problems, it is helpful that the method can be implemented
without knowledge of the normalizing constant of � since that constant cancels in
the determination of the probability ˛. .j /; 0/.

The requirement that the proposal distribution be symmetric about the current
value was relaxed by Hastings (1970). The resulting method, commonly called the
Metropolis–Hastings (M–H) method, relies on the same two steps of the Metropolis
method except that the probability of move is given by

˛
�
 .j /; 0

� D min

(

1;
� . 0/
�
�
 .j /

�
q
�
 0; .j /

�

q
�
 .j /; 0

�

)

which clearly reduces to the Metropolis probability of move when the proposal
distribution is symmetric in its arguments. Starting with an arbitrary value  .0/ in
the support of the target distributions, iterations of this two step process produce the
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(correlated) sequence of values

˚
 .0/; .1/; .2/; : : :

�
:

Typically, a certain number of values (say n0) at the start of this sequence are
discarded and the subsequent (say) M values are used as variates from the target
distribution.

In applications when the dimension of is large it may be preferable to construct
the Markov chain simulation by first grouping the variables  into smaller blocks.
For simplicity suppose that two blocks are adequate and that  is written as
. 1; 2/, with  k 2 ˝k � <dk . In that case, the M–H chain can be constructed
by:

• Updating  1 given
�
 
.j /;
1  

.j /
2

	
to produce .j /

1 and then

• Updating  2 given
�
 
.jC1/
1 ; 

.j /
2

	
to produce  .jC1/

2 ,

which completes one cycle through two sub-moves. Chib and Greenberg (1995) who
emphasized and highlighted such M–H chains have referred to them as multiple-
block M–H algorithms.

Despite the long vintage of the M–H method, the contemporary interest in
MCMC methods was sparked by work on a related MCMC method, the Gibbs
sampling algorithm. The Gibbs sampling algorithm is one of the simplest Markov
chain Monte Carlo algorithms and has its origins in the work of Besag (1974)
on spatial lattice systems, Geman and Geman (1984) on the problem of image
processing, and Tanner and Wong (1987) on missing data problems. The paper by
Gelfand and Smith (1990) helped to demonstrate the value of the Gibbs algorithm
for a range of problems in Bayesian analysis. In the Gibbs sampling method, the
Markov chain is constructed by simulating the conditional distributions that are
implied by �. /. In particular, if  is split into two components  1 and  2,
then the Gibbs method proceeds through the recursive sampling of the conditional
distributions �. 1j 2/ and �. 2j 1/, where the most recent value of 2 is used in
the first simulation and the most recent value of  1 in the second simulation. This
method is most simple to implement when each conditional distribution is a known
distribution that is easy to sample. As we show below, the Gibbs sampling method
is a special case of the multiple block M–H algorithm.

4.1.1 Organization

The rest of the chapter is organized as follows. In Sect. 4.2 we summarize the
relevant Markov chain theory that justifies simulation by MCMC methods. In
particular, we provide the conditions under which discrete-time and continuous state
space Markov chains satisfy a law of large numbers and a central limit theorem. The
M–H algorithm is discussed in Sect. 4.3 followed by the Gibbs sampling algorithm
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in Sect. 4.4. Section 4.5 deals with MCMC methods with latent variables and
Sect. 4.6 with ways of estimating the marginal densities based on the MCMC output.
Issues related to sampler performance are considered in Sect. 4.7 and strategies for
improving the mixing of the Markov chains in Sect. 4.8. Section 4.9 concludes with
brief comments about new and emerging directions in MCMC methods.

4.2 Markov Chains

Markov chain Monte Carlo is a method to sample a given multivariate distribu-
tion �� by constructing a suitable Markov chain with the property that its limiting,
invariant distribution, is the target distribution ��. In most problems of interest,
the distribution �� is absolutely continuous and, as a result, the theory of MCMC
methods is based on that of Markov chains on continuous state spaces outlined, for
example, in Nummelin (1984) and Meyn and Tweedie (1993). Tierney (1994) is the
fundamental reference for drawing the connections between this elaborate Markov
chain theory and MCMC methods. Basically, the goal of the analysis is to specify
conditions under which the constructed Markov chain converges to the invariant
distribution, and conditions under which sample path averages based on the output
of the Markov chain satisfy a law of large numbers and a central limit theorem.

4.2.1 Definitions and Results

A Markov chain is a collection of random variables (or vectors) ˚ D f˚ i W i 2 T g
where T D f0; 1; 2; : : :g. The evolution of the Markov chain on a space ˝ � <p is
governed by the transition kernel

P.x; A/  Pr.˚ iC1 2 Aj˚ i D x;˚j ; j < i/

D Pr.˚ iC1 2 Aj˚ i D x/ ; x 2 ˝ ; A � ˝ ;

where the second line embodies the Markov property that the distribution of each
succeeding state in the sequence, given the current and the past states, depends only
on the current state.

Generally, the transition kernel in Markov chain simulations has both a continu-
ous and discrete component. For some function p.x;y/ W ˝ �˝ ! <C, the kernel
can be expressed as

P.x; dy/ D p.x;y/dy C r.x/ıx.dy/ ; (4.2)

where p.x;x/ D 0, ıx.dy/ D 1 if x 2 dy and 0 otherwise, r.x/ D 1 �R
˝
p.x;y/ dy. This transition kernel specifies that transitions from x to y occur

according to p.x;y/ and transitions from x to x occur with probability r.x/.
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The transition kernel is thus the distribution of˚ iC1 given that˚ i D x. The nth
step ahead transition kernel is given by

P .n/.x; A/ D
Z

˝

P.x; dy/ P .n�1/.y ; A/ ;

where P .1/.x; dy/ D P.x; dy/ and

P.x; A/ D
Z

A

P.x; dy/ : (4.3)

The goal is to find conditions under which the nth iterate of the transition kernel
converges to the invariant distribution �� as n ! 1. The invariant distribution is
one that satisfies

��.dy/ D
Z

˝

P.x; dy/�.x/ dx ; (4.4)

where � is the density of �� with respect to the Lebesgue measure. The invariance
condition states that if ˚ i is distributed according to ��, then all subsequent
elements of the chain are also distributed as ��. Markov chain samplers are invariant
by construction and therefore the existence of the invariant distribution does not
have to be checked.

A Markov chain is reversible if the function p.x;y/ in (4.2) satisfies

f .x/p.x;y/ D f .y/p.y ;x/ ; (4.5)

for a density f .�/. If this condition holds, it can be shown that f .�/ D �.�/ and has
�� as an invariant distribution (Tierney 1994). To verify this we evaluate the right
hand side of (4.4):

Z
P.x; A/�.x/ dx D

Z 
Z

A

p.x;y/ dy

�
�.x/ dx C

Z
r.x/ıx.A/�.x/ dx

D
Z

A


Z
p.x;y/�.x/ dx

�
dy C

Z

A

r.x/�.x/ dx

D
Z

A


Z
p.y ;x/�.y/ dx

�
dy C

Z

A

r.x/�.x/ dx

D
Z

A

.1 � r.y//�.y/ dy C
Z

A

r.x/�.x/ dx

D
Z

A

�.y/ dy : (4.6)
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A minimal requirement on the Markov chain for it to satisfy a law of large
numbers is the requirement of ��-irreducibility. This means that the chain is able
to visit all sets with positive probability under �� from any starting point in ˝ .
Formally, a Markov chain is said to be ��-irreducible if for every x 2 ˝ ,

��.A/ > 0) P.˚ i 2 Aj˚0 D x/ > 0

for some i � 1. If the space ˝ is connected and the function p.x;y/ is positive
and continuous, then the Markov chain with transition kernel given by (4.3) and
invariant distribution �� is ��-irreducible.

Another important property of a chain is aperiodicity, which ensures that the
chain does not cycle through a finite number of sets. A Markov chain is aperiodic
if there exists no partition of ˝ D .D0;D1; : : : ;Dp�1/ for some p � 2 such that
P.˚ i 2 Di mod .p/j˚0 2 D0/ D 1 for all i .

These definitions allow us to state the following results from Tierney (1994)
which form the basis for Markov chain Monte Carlo methods. The first of these
results gives conditions under which a strong law of large numbers holds and the
second gives conditions under which the probability density of the M th iterate of
the Markov chain converges to its unique, invariant density.

Theorem 1. Suppose f˚ ig is a ��-irreducible Markov chain with transition kernel
P.�; �/ and invariant distribution ��, then �� is the unique invariant distribution of
P.�; �/ and for all ��-integrable real-valued functions h,

1

M

MX

iD1
h.˚ i /!

Z
h.x/�.x/dx as M !1 ; a:s:

Theorem 2. Suppose f˚ ig is a ��-irreducible, aperiodic Markov chain with
transition kernel P.�; �/ and invariant distribution ��. Then for ��-almost every
x 2 ˝ , and all sets A

k PM .x; A/ � ��.A/ k! 0 as M !1 ;

where k � k denotes the total variation distance.

A further strengthening of the conditions is required to obtain a central limit
theorem for sample-path averages. A key requirement is that of an ergodic chain,
i.e., chains that are irreducible, aperiodic and positive Harris-recurrent (for a def-
inition of the latter, see Tierney (1994)). In addition, one needs the notion of
geometric ergodicity. An ergodic Markov chain with invariant distribution �� is
a geometrically ergodic if there exists a non-negative real-valued function (bounded
in expectation under ��) and a positive constant r < 1 such that

k PM .x; A/ � ��.A/ k� C.x/rn
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for all x and all n and sets A. Chan and Ledolter (1995) show that if the Markov
chain is ergodic, has invariant distribution ��, and is geometrically ergodic, then
for all L2 measurable functions h, taken to be scalar-valued for simplicity, and any
initial distribution, the distribution of

p
M. OhM �Eh/ converges weakly to a normal

distribution with mean zero and variance 2h � 0, where

OhM D 1

M

MX

iD1
h.˚ i /

Eh D
Z
h.˚/�.˚/d˚

and

2h D Varh.˚0/C 2
1X

kD1
Cov Œfh.˚0/; h.˚k/g� : (4.7)

4.2.2 Computation of Numerical Accuracy
and Inefficiency Factor

The square root of 2h is the numerical standard error of OhM . To describe estimators
of 2h that are consistent in M , let Zi D h.˚ i / .i � M/. Then, due to the fact that
fZi g is a dependent sequence

Var
� OhM

	
DM�2

X

j;k

Cov .Zj ;Zk/

D s2M�2
MX

j;kD1
�jj�kj

D s2M�1
(

1C 2
MX

sD1

�
1 � s

M

	
�s

)

;

where s2 is the sample variance of fZi g and �s is the estimated autocorrelation
at lag s (see Ripley 1987, Chap. 6). If �s > 0 for each s, then this variance is
larger than s2=M which is the variance under independence. Another estimate of
the variance can be found by consistently estimating the spectral density f of fZi g
at frequency zero and using the fact that Var . OhM / D �2=M , where �2 D 2�f .0/.
Finally, a traditional approach to finding the variance is by the method of batch
means. In this approach, the data .Z1; : : : ; ZM / is divided into k batches of length
mwith meansBi D m�1ŒZ.i�1/mC1C: : :CZim� and the variance of OhM estimated as
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Var
� OhM

	
D 1

k.k � 1/
kX

iD1

�
Bi � NB

�2
; (4.8)

where the batch size m is chosen to ensure that the first order serial correlation of
the batch means is less than 0.05.

Given the numerical variance it is common to calculate the inefficiency factor,
which is also called the autocorrelation time, defined as

� Oh D
Var

� OhM
	

s2=M
: (4.9)

This quantity is interpreted as the ratio of the numerical variance of OhM to the
variance of OhM based on independent draws, and its inverse is the relative numerical
efficiency defined in Geweke (1992). Because independence sampling produces an
autocorrelation time that is theoretically equal to one and Markov chain sampling
produces autocorrelation times that are bigger than one, the inefficiency factor
serves to quantify the relative efficiency loss in the computation of OhM from
correlated versus independent samples.

4.3 Metropolis–Hastings Algorithm

This powerful algorithm provides a general approach for producing a correlated
sequence of draws from the target density that may be difficult to sample by
a classical independence method. The goal is to simulate the d -dimensional
distribution ��. /,  2 	 � <d that has density �. / with respect to some
dominating measure. To define the algorithm, let q. ; 0/ denote a source density
for a candidate draw  0 given the current value  in the sampled sequence. The
density q. ; 0/ is referred to as the proposal or candidate generating density. Then,
the M–H algorithm is defined by two steps: a first step in which a proposal value is
drawn from the candidate generating density and a second step in which the proposal
value is accepted as the next iterate in the Markov chain according to the probability
˛. ; 0/, where

˛. ; 0/ D
8
<

:
min

�
�. 0/q. 0; /
�. /q. ; 0/

; 1


if �. /q. ; 0/ > 0 I

1 otherwise .
(4.10)

If the proposal value is rejected, then the next sampled value is taken to be the
current value. In algorithmic form, the simulated values are obtained by the
following recursive procedure.
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Algorithm 1 Metropolis–Hastings

1. Specify an initial value  .0/:
2. Repeat for j D 1; 2; : : : ;M .

(a) Propose
 0 � q � .j /; ��

(b) Let

 .jC1/ D
(
 0 if Unif .0; 1/ � ˛ � .j /; 0

� I
 .j / otherwise .

3. Return the values
˚
 .1/; .2/; : : : ; .M/

�
.

Typically, a certain number of values (say n0) at the start of this sequence
are discarded after which the chain is assumed to have converged to it invariant
distribution and the subsequent draws are taken as approximate variates from � .
Because theoretical calculation of the burn-in is not easy it is important that the
proposal density is chosen to ensure that the chain makes large moves through
the support of the invariant distribution without staying at one place for many
iterations. Generally, the empirical behavior of the M–H output is monitored by
the autocorrelation time of each component of  and by the acceptance rate, which
is the proportion of times a move is made as the sampling proceeds.

One should observe that the target density appears as a ratio in the probability
˛. ; 0/ and therefore the algorithm can be implemented without knowledge of
the normalizing constant of �.�/. Furthermore, if the candidate-generating density
is symmetric, i.e. q. ; 0/ D q. 0; /, the acceptance probability only contains
the ratio �. 0/=�. /; hence, if �. 0/ � �. /, the chain moves to 0, otherwise it
moves with probability given by �. 0/=�. /. The latter is the algorithm originally
proposed by Metropolis et al. (1953). This version of the algorithm is illustrated in
Fig. 4.1.

Different proposal densities give rise to specific versions of the M–H algorithm,
each with the correct invariant distribution � . One family of candidate-generating
densities is given by q. ; 0/ D q. 0 �  /. The candidate  0 is thus drawn
according to the process  0 D  C z, where z follows the distribution q. Since
the candidate is equal to the current value plus noise, this case is called a random
walk M–H chain. Possible choices for q include the multivariate normal density and
the multivariate-t . The random walk M–H chain is perhaps the simplest version of
the M–H algorithm (and was the one used by Metropolis et al. 1953) and popular
in applications. One has to be careful, however, in setting the variance of z; if it
is too large it is possible that the chain may remain stuck at a particular value
for many iterations while if it is too small the chain will tend to make small
moves and move inefficiently through the support of the target distribution. In
both cases the generated draws that will be highly serially correlated. Note that
when q is symmetric, q.z/ D q.�z/ and the probability of move only contains the
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Fig. 4.1 Original Metropolis algorithm: higher density proposal is accepted with probability one
and the lower density proposal with probability ˛

ratio �. 0/=�. /. As mentioned earlier, the same reduction occurs if q. ; 0/ D
q. 0; /.

Hastings (1970) considers a second family of candidate-generating densities
that are given by the form q. ; 0/ D q.y/. Tierney (1994) refers to this as
an independence M–H chain because, in contrast to the random walk chain, the
candidates are drawn independently of the current location  . In this case, the
probability of move becomes

˛. ; 0/ D min



w. 0/
w. /

; 1

�
I

where w. / D �. /=q. / is the ratio of the target and proposal densities. For this
method to work and not get stuck in the tails of � , it is important that the proposal
density have thicker tails than � . A similar requirement is placed on the importance
sampling function in the method of importance sampling (Geweke 1989). In fact,
Mengersen and Tweedie (1996) show that if w. / is uniformly bounded then the
resulting Markov chain is ergodic.

Chib and Greenberg (1994, 1995) discuss a way of formulating proposal densities
in the context of time series autoregressive-moving average models that has a bear-
ing on the choice of proposal density for the independence M–H chain. They suggest
matching the proposal density to the target at the mode by a multivariate normal or
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multivariate-t distribution with location given by the mode of the target and the
dispersion given by inverse of the Hessian evaluated at the mode. Specifically, the
parameters of the proposal density are taken to be

m D arg max log�. / and

V D �


�@

2 log�. /

@ @ 0

��1

 D O 
; (4.11)

where � is a tuning parameter that is adjusted to control the acceptance rate. The
proposal density is then specified as q. 0/ D f . 0jm;V /, where f is some
multivariate density. This may be called a tailored M–H chain.

Another way to generate proposal values is through a Markov chain version of
the accept-reject method. In this version, due to Tierney (1994), and considered
in detail by Chib and Greenberg (1995), a pseudo accept-reject step is used to
generate candidates for an M–H algorithm. Suppose c > 0 is a known constant
and h. / a source density. Let C D f W �. / � ch. /g denote the set of
value for which ch. / dominates the target density and assume that this set has
high probability under ��. Given  .n/ D  , the next value  .nC1/ is obtained as
follows: First, a candidate value  0 is obtained, independent of the current value  ,
by applying the accept-reject algorithm with ch.�/ as the “pseudo dominating”
density. The candidates  0 that are produced under this scheme have density
q. 0/ / minf�. 0/; ch. 0/g. If we let w. / D c�1�. /=h. / then it can be
shown that the M–H probability of move is given by

˛. ; 0/ D

8
ˆ̂
<

ˆ̂
:

1 if  2 C
1=w. / if  … C ;  0 2 C
min fw. 0/=w. /; 1g if  … C ;  0 … C

: (4.12)

4.3.1 Convergence Results

In the M–H algorithm the transition kernel of the chain is given by

P. ; d 0/ D q. ; 0/˛. ; 0/ d 0 C r. /ı .d 0/ ; (4.13)

where ı .d 0/ D 1 if  2 d 0 and 0 otherwise and

r. / D 1 �
Z

˝

q. ; 0/˛. ; 0/ d 0 :

Thus, transitions from  to  0 ( 0 ¤  ) are made according to the density
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p. ; 0/  q. ; 0/˛. ; 0/;  ¤  0

while transitions from  to  occur with probability r. /. In other words, the
density function implied by this transition kernel is of mixed type,

K. ; 0/ D q. ; 0/˛. ; 0/C r. /ı . 0/ ; (4.14)

having both a continuous and discrete component, where now, with change of
notation, ı . 0/ is the Dirac delta function defined as ı . 0/ D 0 for  0 ¤  

and
R
˝
ı . 

0/d 0 D 1.
Chib and Greenberg (1995) provide a way to derive and interpret the probability

of move ˛. ; 0/. Consider the proposal density q. ; 0/. This proposal density q
is not likely to be reversible for � (if it were then we would be done and
M–H sampling would not be necessary). Without loss of generality, suppose that
�. /q. ; 0/ > �. 0/q. 0; / implying that the rate of transitions from  to  0
exceed those in the reverse direction. To reduce the transitions from  to  0 one
can introduce a function 0 � ˛. ; 0/ � 1 such that �. /q. ; 0/˛. ; 0/ D
�. 0/q. 0; /. Solving for ˛. ; 0/ yields the probability of move in the M–H
algorithm. This calculation reveals the important point that the functionp. ; 0/ D
q. ; 0/˛. ; 0/ is reversible by construction, i.e., it satisfies the condition

q. ; 0/˛. ; 0/�. / D q. 0; /˛. 0; /�. 0/ : (4.15)

It immediately follows, therefore, from the argument in (4.6) that the M–H kernel
has �. / as its invariant density.

It is not difficult to provide conditions under which the Markov chain generated
by the M–H algorithm satisfies the conditions of Propositions 1–2. The conditions of
Proposition 1 are satisfied by the M–H chain if q. ; 0/ is positive for . ; 0/ and
continuous and the set  is connected. In addition, the conditions of Proposition 2
are satisfied if q is not reversible (which is the usual situation) which leads to
a chain that is aperiodic. Conditions for ergodicity, required for use of the central
limit theorem, are satisfied if in addition � is bounded. Other similar conditions are
provided by Robert and Casella (1999).

4.3.2 Example

To illustrate the M–H algorithm, consider the binary response data in Table 4.1,
taken from Fahrmeir and Tutz (1997), on the occurrence or non-occurrence of
infection following birth by caesarean section. The response variable y is one if the
caesarean birth resulted in an infection, and zero if not. There are three covariates:
x1, an indicator of whether the caesarean was non-planned; x2, an indicator of
whether risk factors were present at the time of birth and x3, an indicator of whether
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Table 4.1 Caesarean infection data
Y .1=0/ x1 x2 x3

11=87 1 1 1

1=17 0 1 1

0=2 0 0 1

23=3 1 1 0

28=30 0 1 0

0=9 1 0 0

8=32 0 0 0

antibiotics were given as a prophylaxis. The data in the table contains information
from 251 births. Under the column of the response, an entry such as 11=87 means
that there were 98 deliveries with covariates .1; 1; 1/ of whom 11 developed an
infection and 87 did not.

Suppose that the probability of infection for the i th birth .i � 251/ is

Pr.yi D 1jxi ;ˇ/ D ˚.x0iˇ/ ; (4.16)

ˇ � N4.0; 5I4/ ; (4.17)

where xi D .1; xi1; xi2; xi3/
> is the covariate vector, ˇ D .ˇ0; ˇ1; ˇ2; ˇ3/ is

the vector of unknown coefficients, ˚ is the cdf of the standard normal random
variable and I4 is the four-dimensional identity matrix. The target posterior density,
under the assumption that the outcomes y D .y1; y2; : : : ; y251/ are conditionally
independent, is

�.ˇjy/ / �.ˇ/
251Y

iD1
˚
�
x>i ˇ

�yi ˚
1 � ˚ �x>i ˇ

��.1�yi /
;

where �.ˇ/ is the density of the N.0; 10I4/ distribution.

Random Walk Proposal Density

To define the proposal density, let

Ǒ D .�1:093022 0:607643 1:197543 � 1:904739/>

be the MLE found using the Newton–Raphson algorithm and let

V D

0

BB
@

0:040745 �0:007038 �0:039399 0:004829

0:073101 �0:006940 �0:050162
0:062292 �0:016803

0:080788

1

CC
A
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Table 4.2 Caesarean data: Prior-posterior summary based on 5000 draws (beyond a burn-in of
100 cycles) from the random-walk M–H algorithm

Prior Posterior

Mean Std dev Mean Std dev Lower Upper

ˇ0 0.000 3.162 �1:110 0.224 �1:553 �0:677
ˇ1 0.000 3.162 0:612 0.254 0:116 1:127

ˇ2 0.000 3.162 1:198 0.263 0:689 1:725

ˇ3 0.000 3.162 �1:901 0.275 �2:477 �1:354

be the symmetric matrix obtained by inverting the negative of the Hessian matrix
(the matrix of second derivatives) of the log-likelihood function evaluated at Ǒ. Now
generate the proposal values by the random walk:

ˇ D ˇ.j�1/ C ".j /

".j / � N4.0;V / ; (4.18)

which leads to the original Metropolis method. From a run of 5000 iterations of the
algorithm beyond a burn-in of a 100 iterations we get the prior-posterior summary
that is reported in Table 4.2, which contains the first two moments of the prior
and posterior and the 2.5th (lower) and 97.5th (upper) percentiles of the marginal
densities of ˇ.

As expected, both the first and second covariates increase the probability
of infection while the third covariate (the antibiotics prophylaxis) reduces the
probability of infection.

To get an idea of the form of the posterior density we plot in Fig. 4.1 the
four marginal posterior densities. The density plots are obtained by smoothing the
histogram of the simulated values with a Gaussian kernel. In the same plot we also
report the autocorrelation functions (correlation against lag) for each of the sampled
parameter values. The autocorrelation plots provide information of the extent of
serial dependence in the sampled values. Here we see that the serial correlations
start out high but decline to almost zero by lag twenty.

Tailored Proposal Density

To see the difference in results, the M–H algorithm is next implemented with
a tailored proposal density. In this scheme one utilizes both Ǒ and V that were
defined above. We let the proposal density be fT .ˇj Ǒ;V ; 15/, a multivariate-t
density with fifteen degrees of freedom. This proposal density is similar to the
random-walk proposal except that the distribution is centered at the fixed point Ǒ.
The prior-posterior summary based on 5,000 draws of the M–H algorithm with
this proposal density is given in Table 4.3. We see that the marginal posterior
moments are similar to those in Table 4.1. The marginal posterior densities are
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Table 4.3 Caesarean data: Prior-posterior summary based on 5,000 draws (beyond a burn-in of
100 cycles) from the tailored M–H algorithm

Prior Posterior

Mean Std dev Mean Std dev Lower Upper

ˇ0 0.000 3.162 �1:080 0.220 �1:526 �0:670
ˇ1 0.000 3.162 0:593 0.249 0:116 1:095

ˇ2 0.000 3.162 1:181 0.254 0:680 1:694

ˇ3 0.000 3.162 �1:889 0.266 �2:421 �1:385

Fig. 4.2 Caesarean data with random-walk M–H algorithm: Marginal posterior densities (top
panel) and autocorrelation plot (bottom panel)

reported in the top panel of Fig. 4.2. These are virtually identical to those computed
using the random-walk M–H algorithm. The most notable difference is in the
serial correlation plots which decline much more quickly to zero indicating that
the algorithm is mixing well. The same information is revealed by the inefficiency
factors which are much closer to one than those from the previous algorithm.

The message from this analysis is that the two proposal densities produce
similar results, with the differences appearing only in the autocorrelation plots (and
inefficiency factors) of the sampled draws (Fig. 4.3).
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Fig. 4.3 Caesarean data with tailored M–H algorithm: Marginal posterior densities (top panel)
and autocorrelation plot (bottom panel)

4.3.3 Multiple-Block M–H Algorithm

In applications when the dimension of  is large, it can be difficult to construct
a single block M–H algorithm that converges rapidly to the target density. In such
cases, it is helpful to break up the variate space into smaller blocks and to then
construct a Markov chain with these smaller blocks. Suppose, for illustration, that
 is split into two vector blocks . 1; 2/. For example, in a regression model, one
block may consist of the regression coefficients and the other block may consist of
the error variance. Next, for each block, let

q1. 1; 
0
1j 2/ I q2. 2; 

0
2j 1/ ;

denote the corresponding proposal density. Here each proposal density qk is allowed
to depend on the data and the current value of the remaining block. Also define (by
analogy with the single-block case)

˛. 1; 
0
1j 2/ D min



1;
�. 01j 2/q1. 

0
1; 1j 2/

�. 1j 2/q1. 1; 
0
1j 2/

�
; (4.19)
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and

˛. 2; 
0
2jy ; 1/ D min



1;
�. 02j 1/q2. 

0
2; 2j 1/

�. 2j 1/q2. 2; 
0
2j 1/

�
; (4.20)

as the probability of move for block  k .k D 1; 2/ conditioned on the other block.
The conditional densities

�. 1j 2/ and �. 2j 1/

that appear in these functions are called the full conditional densities. By Bayes
theorem each is proportional to the joint density. For example,

�. 1j 2/ / �. 1; 2/ ;

and, therefore, the probabilities of move in (4.19) and (4.20) can be expressed
equivalently in terms of the kernel of the joint posterior density �. 1; 2/ because
the normalizing constant of the full conditional density (the norming constant in the
latter expression) cancels in forming the ratio.

With these inputs, one sweep of the multiple-block M–H algorithm is completed
by updating each block, say sequentially in fixed order, using a M–H step with the
above probabilities of move, given the most current value of the other block.

Algorithm 2 Multiple-Block Metropolis–Hastings

1. Specify an initial value  .0/ D
�
 
.0/
1 ; 

.0/
2

	
:

2. Repeat for j D 1; 2; : : : ; n0 CM .

(a) Repeat for k D 1; 2

I. Propose a value for the kth block, conditioned on the previous value of kth block, and
the current value of the other block  �k :

 0

k � qk
�
 
.j�1/

k ; �j �k

	
:

II. Calculate the probability of move

˛k

�
 
.j�1/

k ; 0

k jy; �k

	
D min

8
<

:
1;

�
�
 0

k j �k

�
qk

�
 0

k; 
.j�1/

k j �k

	

h
�
 
.j�1/

k j �k

	
qk

�
 
.j�1/

k ; 0

k j �k

	

9
=

;
:

III. Update the kth block as

 
.j /

k D
8
<

:

 0

k with prob ˛k

�
 
.j�1/

k ; 0

k j �k

	

 
.j�1/

k with prob 1� ˛k
�
 
.j�1/

k ; 0

k j �k

	 :

3. Return the values
˚
 .n0C1/; .n0C2/; : : : ; .n0CM/

�
:
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The extension of this method to more than two blocks is straightforward.
The transition kernel of the resulting Markov chain is given by the product of

transition kernels

P. ; d 0/ D
2Y

kD1
Pk
�
 k; d 

0
kj �k

�
(4.21)

This transition kernel is not reversible, as can be easily checked, because under fixed
sequential updating of the blocks updating in the reverse order never occurs. The
multiple-block M–H algorithm, however, satisfies the weaker condition of invari-
ance. To show this, we utilize the fact that each sub-move satisfies local reversibility
(Chib and Jeliazkov 2001) and therefore the transition kernel P1. 1; d 1j 2/ has
��
1j2.�j 2/ as its local invariant distribution with density ��

1j2.�j 2/, i.e.,

��1j2.d 1j 2/ D
Z
P1. 1; d 1j 2/�1j2. 1j 2/ d 1 : (4.22)

Similarly, the conditional transition kernel P2. 2; d 2j 1/ has ��
2j1.�j 1/ as

its invariant distribution, for a given value of  1. Then, the kernel formed by
multiplying the conditional kernels is invariant for ��.�; �/:
“

P1. 1; d 
0
1j 2/P2. 2; d 

0
2j 01/�. 1; 2/ d 1 d 2

D
Z
P2. 2; d 

0
2j 01/

�Z
P1. 1; d 

0
1j 2/�1j2. 1j 2/ d 1


�2. 2/ d 2

D
Z
P2. 2; d 

0
2j 01/��1j2.d 01j 2/�2. 2/ d 2

D
Z
P2. 2; d 

0
2j 01/

�2j1. 2j 01/��1 .d 01/
�2. 2/

�2. 2/ d 2

D ��1 .d 01/
Z
P2. 2; d 

0
2j 01/�2j1. 2j 01/ d 2

D ��1 .d 01/��2j1.d 02j 01/
D ��.d 01; d 02/ ;

where the third line follows from (4.22), the fourth from Bayes theorem, the sixth
from assumed invariance of P2, and the last from the law of total probability.

The implication of this result is that it allows us to take draws in succession from
each of the kernels, instead of having to run each to convergence for every value of
the conditioning variable.

Remark 1. Versions of either random-walk or tailored proposal densities can be
used in this algorithm, analogous to the single-block case. For example, Chib and
Greenberg (1995) determine the proposal densities qk by tailoring to �. k; �k/
in which case the proposal density is not fixed but varies across iterations. An
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important special case occurs if each proposal density is taken to be the full
conditional density of that block. Specifically, if we set

q1

�
 
.j�1/
1 ; 01j 2

	
D �. 01j 2/ ;

and
q2

�
 
.j�1/
2 ; 02j 1

	
D �. 02j 1/ ;

then an interesting simplification occurs. The probability of move (for the first
block) becomes

˛1

�
 
.j�1/
1 ; 01j 2

	
D min

8
<

:
1;
�
�
 01j 2

�
�
�
 
.j�1/
1 j 2

	

�
�
 
.j�1/
1 j 2

	
�
�
 01j 2

�

9
=

;

D 1 ;

and similarly for the second block, implying that if proposal values are drawn from
their full conditional densities then the proposal values are accepted with probability
one. This special case of the multiple-block M–H algorithm (in which each block
is proposed using its full conditional distribution) is called the Gibbs sampling
algorithm.

4.4 The Gibbs Sampling Algorithm

The Gibbs sampling algorithm is one of the simplest Markov chain Monte Carlo
algorithms. It was introduced by Geman and Geman (1984) in the context of image
processing and then discussed in the context of missing data problems by Tanner
and Wong (1987). The paper by Gelfand and Smith (1990) helped to demonstrate
the value of the Gibbs algorithm for a range of problems in Bayesian analysis.

4.4.1 The Algorithm

To define the Gibbs sampling algorithm, let the set of full conditional distributions
be

˚
�. 1j 2; : : : ; p/I �. 2j 1; 3; : : : ; p/I : : : ; �. pj 1; : : : ; d�1/

�
:

Now one cycle of the Gibbs sampling algorithm is completed by simulating
f kgpkD1 from these distributions, recursively refreshing the conditioning variables.
When d D 2 one obtains the two block Gibbs sampler that appears in Tanner and
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Wong (1987). The Gibbs sampler in which each block is revised in fixed order is
defined as follows.

Algorithm 3 Gibbs Sampling

1. Specify an initial value  .0/ D
�
 
.0/
1 ; : : : ; 

.0/
p

	
:

2. Repeat for j D 1; 2; : : : ;M .

Generate  .jC1/
1 from �

�
 1j .j /

2 ; 
.j /
3 ; : : : ; 

.j /
p

	

Generate  .jC1/
2 from �

�
 2j .jC1/

1 ; 
.j /
3 ; : : : ; 

.j /
p

	

:
:
:

Generate  .jC1/
p from �

�
 pj .jC1/

1 ; : : : ; 
.jC1/
p�1

	
.

3. Return the values
˚
 .1/; .2/; : : : ; .M/

�
.

It follows that the transition density of moving from  
.j /

k to  .jC1/
k is given by

�
�
 kj .jC1/

1 ; : : : ; 
.jC1/
k�1 ; 

.j /

kC1; : : : ; 
.j /
p

	

since when the kth block is reached, the previous .k�1/ blocks have been updated.
Thus, the transition density of the chain, under the maintained assumption that � is
absolutely continuous, is given by the product of transition kernels for each block:

K. ; 0/ D
pY

kD1
�
�
 kj .jC1/

1 ; : : : ; 
.jC1/
k�1 ; 

.j /

kC1; : : : ; 
.j /
p

	
: (4.23)

To illustrate the manner in which the blocks are revised, we consider a two block
case, each with a single component, and trace out in Fig. 4.4 a possible trajectory of
the sampling algorithm. The contours in the plot represent the joint distribution of 
and the labels “.0/”, “.1/” etc., denote the simulated values. Note that one iteration
of the algorithm is completed after both components are revised. Also notice that
each component is revised along the direction of the coordinate axes. This feature
can be a source of problems if the two components are highly correlated because
then the contours get compressed and movements along the coordinate axes tend to
produce small moves. We return to this issue below.

4.4.2 Invariance of the Gibbs Markov Chain

The Gibbs transition kernel is invariant by construction. This is a consequence of the
fact that the Gibbs algorithm is a special case of the multiple-block M–H algorithm
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Fig. 4.4 Gibbs sampling algorithm in two dimensions starting from an initial point and then
completing three iterations

which is invariant, as was established in the last section. Invariance can also be
confirmed directly. Consider for simplicity a two block sampler with transition
kernel density

K. ; 0/ D �. 01j 2/�. 
0
2j 01/ :

To check invariance we have to show that
Z
K. ; 0/�. 1; 2/d 1d 2

D
Z
�. 01j 2/�. 

0
2j 01/�. 1; 2/d 1d 2

is equal to �. 01; 02/. This holds because �. 02j 01/ comes out of the integral, and
the integral over  1 and  2 produces �. 01/. This calculation can be extended to
any number of blocks. It may be noted that the Gibbs Markov chain is not reversible.
Reversible Gibbs samplers are discussed by Liu et al. (1995).

4.4.3 Sufficient Conditions for Convergence

Under rather general conditions, the Markov chain generated by the Gibbs sampling
algorithm converges to the target density as the number of iterations become large.
Formally, if we let K. ; 0/ represent the transition density of the Gibbs algorithm
and let K.M/. 0; 

0/ be the density of the draw  0 after M iterations given the
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starting value  0, then

�
�K.M/

�
 .0/; 0

� � �. 0/��! 0 ; as M !1 : (4.24)

Roberts and Smith (1994) (see also Chan 1993) have shown that the conditions of
Proposition 2 are satisfied under the following conditions: (1) �. / > 0 implies
there exists an open neighborhood N containing  and � > 0 such that, for all
 0 2 N , �. 0/ � � > 0; (2)

R
f . / d k is locally bounded for all k, where  k

is the kth block of parameters; and (3) the support of  is arc connected.
These conditions are satisfied in a wide range of problems.

4.4.4 Example: Simulating a Truncated Multivariate Normal

Consider the question of sampling a trivariate normal distribution truncated to the
positive orthant. In particular, suppose that the target distribution is

�. / D 1

Pr. 2 A/fN .�;˙ /I. 2 A/

/ fN .�;˙ /I. 2 A/

where � D .0:5; 1; 1:5/0, ˙ is in equi-correlated form with units on the diagonal
and 0.7 on the off-diagonal, A D .0;1/ � .0;1/ � .0;1/ and Pr. 2 A/ is the
normalizing constant which is difficult to compute. In this case, the Gibbs sampler
is defined with the blocks  1; 2;  3 and the full conditional distributions

�. 1j 2; 3/ I �. 2j 1; 3/ I �. 3j 1; 2/ ;

where each of the these full conditional distributions is univariate truncated normal
restricted to the interval .0;1/:

�. kj �k/ / fN
�
 k j�k C C 0k˙�1�k . �k ���k/ ;˙k

�C 0k˙�1�kC k

�
I. k 2 .0;1// ; (4.25)

C k D Cov. k; �k/, ˙�k D Var. �k/ and ��k D E. �k/. Figure 4.5 gives
the marginal distribution of each component of  k from a Gibbs sampling run of
M D 10000 iterations with a burn-in of 100 cycles. The figures includes both
the histograms of the sampled values and the Rao–Blackwellized estimates of the
marginal densities (see Sect. 4.6 below) based on the averaging of (4.25) over the
simulated values of �k . The agreement between the two density estimates is close.
In the bottom panel of Fig. 4.5 we plot the autocorrelation function of the sampled
draws. The rapid decline in the autocorrelations for higher lags indicates that the
sampler is mixing well.
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Fig. 4.5 Marginal distributions of  in truncated multivariate normal example (top panel).
Histograms of the sampled values and Rao–Blackwellized estimates of the densities are shown.
Autocorrelation plots of the Gibbs MCMC chain are in the bottom panel. Graphs are based on
10,000 iterations following a burn-in of 500 cycles

4.5 MCMC Sampling with Latent Variables

In designing MCMC simulations, it is sometimes helpful to modify the target
distribution by introducing latent variables or auxiliary variables into the sampling.
This idea was called data augmentation by Tanner and Wong (1987) in the context
of missing data problems. Slice sampling, which we do not discuss in this chapter,
is a particular way of introducing auxiliary variables into the sampling, for example
see Damien et al. (1999).

To fix notations, suppose that z denotes a vector of latent variables and let
the modified target distribution be �. ; z/. If the latent variables are tactically
introduced, the conditional distribution of  (or sub components of  ) given z may
be easy to derive. Then, a multiple-block M–H simulation is conducted with the
blocks and z leading to the sample

�
 .n0C1/; z.n0C1/

�
; : : : ;

�
 .n0CM/; z.n0CM/

� � �. ; z/ ;

where the draws on , ignoring those on the latent data, are from �. /, as required.
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To demonstrate this technique in action, we return to the probit regression
example discussed in Sect. 4.3.2 to show how a MCMC sampler can be developed
with the help of latent variables. The approach, introduced by Albert and Chib
(1993), capitalizes on the simplifications afforded by introducing latent or auxiliary
data into the sampling.

The model is rewritten as

zi jˇ � N.x0iˇ; 1/ ;

yi D I Œzi > 0� ; i � n ;
ˇ � Nk.ˇ0;B0/ : (4.26)

This specification is equivalent to the probit regression model since

Pr.yi D 1jxi ;ˇ/ D Pr.zi > 0jxi ;ˇ/ D ˚.x0iˇ/ :

Now the Albert–Chib algorithm proceeds with the sampling of the full conditional
distributions

ˇjy ; fzig I fzi gjy;ˇ ;
where both these distributions are tractable (i.e., requiring no M–H steps). In
particular, the distribution of ˇ conditioned on the latent data becomes independent
of the observed data and has the same form as in the Gaussian linear regression
model with the response data given by fzi g and is multivariate normal with mean
Ǒ D B.B�10 ˇ0 C

Pn
iD1 xi zi / and variance matrix B D .B�10 C

Pn
iD1 xix0i /�1.

Next, the distribution of the latent data conditioned on the data and the parameters
factor into a set of n independent distributions with each depending on the data
through yi :

fzi gjy;ˇ dD
nY

iD1
zi jyi ;ˇ ;

where the distribution zi jyi ;ˇ is the normal distribution zi jˇ truncated by the
knowledge of yi ; if yi D 0, then zi � 0 and if yi D 1, then zi > 0. Thus,
one samples zi from T N .�1;0/.x0iˇ; 1/ if yi D 0 and from T N .0;1/.x0iˇ; 1/ if
yi D 1, where T N .a;b/.�; 

2/ denotes the N .�; 2/ distribution truncated to the
region .a; b/.

The results, based on 5,000 MCMC draws beyond a burn-in of a 100 iterations,
are reported in Fig. 4.4. The results are close to those presented above, especially to
the ones from the tailored M–H chain (Fig. 4.6).

4.6 Estimation of Density Ordinates

We mention that if the full conditional densities are available, whether in the context
of the multiple-block M–H algorithm or that of the Gibbs sampler, then the MCMC
output can be used to estimate posterior marginal density functions (Gelfand and
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Fig. 4.6 Caesarean data with Albert–Chib algorithm: Marginal posterior densities (top panel) and
autocorrelation plot (bottom panel)

Smith 1990; Tanner and Wong 1987). We exploit the fact that the marginal density
of  k at the point  �k is

�. �k / D
Z
�. �k j �k/ �. �k/d �k ;

where as before  �k D  n k . Provided the normalizing constant of �
�
 �k j �k

�

is known, an estimate of the marginal density is available as an average of the full
conditional density over the simulated values of  �k :

O�. �k / DM�1
MX

jD1
�
�
 �k j .j /�k

	
:

Under the assumptions of Proposition 1,

M�1
MX

jD1
�
�
 �k j .j /

�k
	
! �. �k / ; as M !1 :
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Gelfand and Smith (1990) refer to this approach as Rao–Blackwellization because
of the connections with the Rao–Blackwell theorem in classical statistics. That
connection is more clearly seen in the context of estimating (say) the mean of  k ,
E. k/ D

R
 k�. k/d k . By the law of the iterated expectation,

E. k/ D E fE. kj �k/g

and therefore the estimates

M�1
MX

jD1
 
j

k

and

M�1
MX

jD1
E
�
 kj .j /

�k
	

both converge to E. k/ as M ! 1. Under i id sampling, and under Markov
sampling provided some conditions are satisfied – see Liu et al. (1994), Casella and
Robert (1996) and Robert and Casella (1999), it can be shown that the variance of
the latter estimate is smaller than that of the former. Thus, it can help to average
the conditional mean E. kj �k/; if that were available, rather than average the
draws directly. Gelfand and Smith (1990) appeal to this analogy to argue that the
Rao–Blackwellized estimate of the density is preferable to that based on the method
of kernel smoothing. Chib (1995) extends the Rao–Blackwellization approach to
estimate reduced conditional ordinates defined as the density of  k conditioned on
one or more of the remaining blocks. Finally, Chen (1994) provides an importance
weighted estimate of the marginal density for cases where the conditional posterior
density does not have a known normalizing constant. Chen’s estimator is based on
the identity

�. �k / D
Z

w. kj �k/�. 
�
k ; �k/

�. k; �k/
�. /d ;

where w. kj �k/ is a completely known conditional density whose support is
equal to the support of the full conditional density �. kj �k/. In this form,
the normalizing constant of the full conditional density is not required and given
a sample of draws f .1/; : : : ; .M/g from �. /, a Monte Carlo estimate of the
marginal density is given by

O�. �k / D M�1
MX

jD1
w
�
 
.j /

k

ˇ
ˇ
ˇ .j /

�k
	 �

�
 �k ; 

.j /

�k
	

�
�
 
.j /

k ; 
.j /

�k
	 :

Chen (1994) discusses the choice of the conditional density w. Since it depends on
 �k , the choice of w will vary from one sampled draw to the next.
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4.7 Sampler Performance and Diagnostics

In implementing a MCMC method it is important to assess the performance of the
sampling algorithm to determine the rate of mixing and the size of the burn-in, both
having implications for the number of iterations required to get reliable answers.
A large literature has emerged on these issues, for example, Robert (1995), Tanner
(1996, Sect. 6.3), Cowles and Carlin (1996), Gammermann (1997, Sect. 5.4) and
Robert and Casella (1999), but the ideas, although related in many ways, have not
coalesced into a single prescription.

One approach for determining sampler performance and the size of the burn-
in time is to employ analytical methods to the specified Markov chain, prior to
sampling. This approach is exemplified in the work of, for example, Polson (1996),
Roberts and Tweedie (1996) and Rosenthal (1995). Two factors have inhibited
the growth and application of these methods. The first is that the calculations are
difficult and problem-specific and, second, the upper bounds for the burn-in that
emerge from such calculations are usually conservative.

At this time the more popular approach is to utilize the sampled draws to
assess both the performance of the algorithm and its approach to the invariant
distribution. Several such relatively informal methods are available. Gelfand and
Smith (1990) recommend monitoring the evolution of the quantiles as the sampling
proceeds. Another useful diagnostic, one that is perhaps the most direct, are
autocorrelation plots (and autocorrelation times) of the sampled output. Slowly
decaying correlations indicate problems with the mixing of the chain. It is also
useful in connection with M–H Markov chains to monitor the acceptance rate of
the proposal values with low rates implying “stickiness” in the sampled values and
thus a slower approach to the invariant distribution.

Somewhat more formal sample-based diagnostics are summarized in the CODA
routines provided by Best et al. (1995). Although these diagnostics often go under
the name “convergence diagnostics” they are in principle approaches that detect lack
of convergence. Detection of convergence based entirely on the sampled output,
without analysis of the target distribution, is perhaps impossible. Cowles and Carlin
(1996) discuss and evaluate thirteen such diagnostics (for example, those proposed
by Geweke 1992; Raftery and Lewis 1992; Ritter and Tanner 1992; Gelman and
Rubin 1992; Gelman and Rubin 1992; and Zellner and Min 1995, amongst others)
without arriving at a consensus. Difficulties in evaluating these methods stem from
the fact that some of these methods apply only to Gibbs Markov chains (for example,
those of Ritter and Tanner 1992; and Zellner and Min 1995) while others are based
on the output not just of a single chain but on that of multiple chains specifically
run from “disparate starting values” as in the method of Gelman and Rubin (1992).
Finally, some methods assess the behavior of univariate moment estimates (as in the
approach of Geweke 1992; and Gelman and Rubin 1992) while others are concerned
with the behavior of the entire transition kernel (as in Ritter and Tanner 1992; and
Zellner and Min 1995).
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4.8 Strategies for Improving Mixing

In practice, while implementing MCMC methods it is important to construct
samplers that mix well, where mixing is measured by the autocorrelation time,
because such samplers can be expected to converge more quickly to the invariant
distribution. Over the years a number of different recipes for designing samplers
with low autocorrelation times have been proposed although it may sometimes be
difficult, because of the complexity of the problem, to apply any of these recipes.

4.8.1 Choice of Blocking

As a general rule, sets of parameters that are highly correlated should be treated as
one block when applying the multiple-block M–H algorithm. Otherwise, it would be
difficult to develop proposal densities that lead to large moves through the support
of the target distribution.

Blocks can be combined by the method of composition. For example, suppose
that  1; 2 and  3 denote three blocks and that the distribution  1j 3 is tractable
(i.e., can be sampled directly). Then, the blocks . 1; 2/ can be collapsed by
first sampling  1 from  1j 3 followed by  2 from  2j 1; 3. This amounts to
a two block MCMC algorithm. In addition, if it is possible to sample . 1; 2/

marginalized over  3 then the number of blocks is reduced to one. Liu et al.
(1994) discuss the value of these strategies in the context of a three-block Gibbs
MCMC chains. Roberts and Sahu (1997) provide further discussion of the role of
blocking in the context of Gibbs Markov chains used to sample multivariate normal
target distributions.

4.8.2 Tuning the Proposal Density

As mentioned above, the proposal density in a M–H algorithm has an important
bearing on the mixing of the MCMC chain. Fortunately, one has great flexibility
in the choice of candidate generating density and it is possible to adapt the choice
to the given problem. For example, Chib et al. (1998) develop and compare four
different choices in longitudinal random effects models for count data. In this
problem, each cluster (or individual) has its own random effects and each of these
has to be sampled from an intractable target distribution. If one lets n denote the
number of clusters, where n is typically large, say in excess of a thousand, then the
number of blocks in the MCMC implementation is nC 3 (n for each of the random
effect distributions, two for the fixed effects and one for the variance components
matrix). For this problem, the multiple-block M–H algorithm requires nC 1 M–H
steps within one iteration of the algorithm. Tailored proposal densities are therefore
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computationally expensive but one can use a mixture of proposal densities where
a less demanding proposal, for example a random walk proposal, is combined with
the tailored proposal to sample each of the n random effect target distributions.
Further discussion of mixture proposal densities is contained in Tierney (1994).

4.8.3 Other Strategies

Other approaches have also been discussed in the literature. Marinari and Parsi
(1992) develop the simulated tempering method whereas Geyer and Thompson
(1995) develop a related technique that they call the Metropolis-coupled MCMC
method. Both these approaches rely on a series of transition kernels fK1; : : : ; Kmg
where only K1 has �� as the stationary distribution. The other kernels have
equilibrium distributions�i , which Geyer and Thompson (1995) take to be �i . / D
�. /1=i , i D 2; : : : ; m. This specification produces a set of target distributions
that have higher variance than ��. Once the transition kernels and equilibrium
distributions are specified then the Metropolis-coupled MCMC method requires
that each of the m kernels be used in parallel. At each iteration, after the m draws
have been obtained, one randomly selects two chains to see if the states should be
swapped. The probability of swap is based on the M–H acceptance condition. At
the conclusion of the sampling, inference is based on the sequence of draws that
correspond to the distribution ��. These methods promote rapid mixing because
draws from the various “flatter” target densities have a chance of being swapped
with the draws from the base kernel K1. Thus, variates that are unlikely under the
transition K1 have a chance of being included in the chain, leading to more rapid
exploration of the parameter space.

4.9 Concluding Remarks

In this survey we have provided an outline of Markov chain Monte Carlo methods.
These methods provide a set of general recipes for sampling intractable multivariate
distributions and have proved vital in the recent virtually revolutionary evolution
and growth of Bayesian statistics. Refinements and extensions of these methods
continue to occur. Two recent developments are the slice sampling method discussed
by Mira and Tierney (2002), Damien et al. (1999) and Roberts and Rosenthal
(1999) and the perfect sampling method proposed by Propp and Wilson (1996). The
slice sampling method is based on the introduction of auxiliary uniform random
variables to simplify the sampling and improve mixing while the perfect sampling
method uses Markov chain coupling to generate an exact draw from the target
distribution.
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Chapter 5
Numerical Linear Algebra

Lenka Čížková and Pavel Čížek

Many methods of computational statistics lead to matrix-algebra or numerical-
mathematics problems. For example, the least squares method in linear regression
reduces to solving a system of linear equations, see Chap. III.8. The principal
components method is based on finding eigenvalues and eigenvectors of a matrix, see
Chap. III.6. Nonlinear optimization methods such as Newton’s method often employ
the inversion of a Hessian matrix. In all these cases, we need numerical linear algebra.

Usually, one has a data matrix X of (explanatory) variables, and in the case of
regression, a data vector y for dependent variable. Then the matrix defining a system
of equations, being inverted or decomposed typically corresponds toX orX>X. We
refer to the matrix being analyzed as A D fAij gm;niD1;jD1 2 Rm	n and to its columns
asAk D fAikgmiD1; k D 1; : : : ; n. In the case of linear equations, b D fbigniD1 2 Rn

represents the right-hand side throughout this chapter. Further, the eigenvalues and
singular values of A are denoted by �i and i , respectively, and the corresponding
eigenvectorsgi , i D 1; : : : ; n. Finally, we denote the n�n identity and zero matrices
by In and 0n, respectively.

In this chapter, we first study various matrix decompositions (Sect. 5.1), which
facilitate numerically stable algorithms for solving systems of linear equations and
matrix inversions. Next, we discuss specific direct and iterative methods for solving
linear systems (Sects. 5.2 and 5.3). Further, we concentrate on finding eigenvalues
and eigenvectors of a matrix in Sect. 5.4. Finally, we provide an overview of
numerical methods for large problems with sparse matrices (Sect. 5.5).

Let us note that most of the mentioned methods work under specific conditions
given in existence theorems, which we state without proofs. Unless said otherwise,
the proofs can be found in Harville (1997), for instance. Moreover, implementations
of the algorithms described here can be found, for example, in Anderson et al. (1999)
and Press et al. (1992).
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5.1 Matrix Decompositions

This section covers relevant matrix decompositions and basic numerical methods.
Decompositions provide a numerically stable way to solve a system of linear
equations, as shown already in Wampler (1970), and to invert a matrix. Additionally,
they provide an important tool for analyzing the numerical stability of a system.

Some of most frequently used decompositions are the Cholesky, QR, LU,
and SVD decompositions. We start with the Cholesky and LU decompositions,
which work only with positive definite and nonsingular diagonally dominant square
matrices, respectively (Sects. 5.1.1 and 5.1.2). Later, we explore more general
and in statistics more widely used QR and SVD decompositions, which can be
applied to any matrix (Sects. 5.1.3 and 5.1.4). Finally, we briefly describe the
use of decompositions for matrix inversion, although one rarely needs to invert
a matrix (Sect. 5.1.5). Monographs Gentle (1998), Harville (1997), Higham (2002)
and Stewart (1998) include extensive discussions of matrix decompositions.

All mentioned decompositions allow us to transform a general system of linear
equations to a system with an upper triangular, a diagonal, or a lower triangular
coefficient matrix: Ux D b;Dx D b, or Lx D b, respectively. Such systems are
easy to solve with a very high accuracy by back substitution, see Higham (1989).
Assuming the respective coefficient matrixA has a full rank, one can find a solution
of Ux D b, where U D fUij gniD1;jD1, by evaluating

xi D U�1i i

0

@bi �
nX

jDiC1
Uij xj

1

A (5.1)

for i D n; : : : ; 1. Analogously forLx D b, whereL D fLij gniD1;jD1, one evaluates
for i D 1; : : : ; n

xi D L�1i i

0

@bi �
i�1X

jD1
Lij xj

1

A : (5.2)

For discussion of systems of equations that do not have a full rank, see for example
Higham (2002).

5.1.1 Cholesky Decomposition

The Cholesky factorization, first published by Benoit (1924), was originally devel-
oped to solve least squares problems in geodesy and topography. This factorization,
in statistics also referred to as “square root method,” is a triangular decomposition.
Providing matrix A is positive definite, the Cholesky decomposition finds a trian-
gular matrix U that multiplied by its own transpose leads back to matrixA. That is,
U can be thought of as a square root of A.
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Theorem 1. Let matrix A 2 Rn	n be symmetric and positive definite. Then there
exists a unique upper triangular matrix U with positive diagonal elements such that
A D U>U.

The matrix U is called the Cholesky factor of A and the relation A D U>U is
called the Cholesky factorization.

Obviously, decomposing a system Ax D b to U>Ux D b allows us to solve
two triangular systems: U>z D b for z and thenUx D z for x. This is similar to the
original Gauss approach for solving a positive definite system of normal equations
X>Xx D X>b. Gauss solved the normal equations by a symmetry-preserving
elimination and used the back substitution to solve for x.

Let us now describe the algorithm for finding the Cholesky decomposition, which
is illustrated on Fig. 5.1. One of the interesting features of the algorithm is that in
the i th iteration we obtain the Cholesky decomposition of the i th leading principal
minor of A, fAklgi;ikD1;lD1.

Algorithm 4
for i=1 to n

Uii D
�
Aii �Pi�1

kD1 U
2
ki

	1=2

for j=i+1 to n

Uij D
�
Aij �Pi�1

kD1 UkiUkj

	.
Uii

end
end

The Cholesky decomposition described in Algorithm 4 is a numerically stable
procedure, see Martin et al. (1965) and Meinguet (1983), which can be at the
same time implemented in a very efficient way. Computed values Uij can be stored

Fig. 5.1 Rowwise Cholesky
algorithm
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in place of original Aij , and thus, no extra memory is needed. Moreover, let us
note that while Algorithm 4 describes the rowwise decomposition (U is computed
row by row), there are also a columnwise version and a version with diagonal
pivoting, which is also applicable to semidefinite matrices. Finally, there are also
modifications of the algorithm, such as blockwise decomposition, that are suitable
for very large problems and parallelization; see Bjorck (1996), Gallivan et al. (1990)
and Nool (1995).

5.1.2 LU Decomposition

The LU decomposition is another method reducing a square matrix A to a product
of two triangular matrices (lower triangular L and upper triangular U). Contrary to
the Cholesky decomposition, it does not require a positive definite matrix A, but
there is no guarantee that L D U>.

Theorem 2. Let the matrix A 2 Rn	n satisfy following conditions:

A11 ¤ 0 ; det

�
A11 A12
A21 A22

�
¤ 0 ; det

0

@
A11 A12 A13
A21 A22 A23
A31 A32 A33

1

A

¤ 0 ; : : : ; detA ¤ 0 :

Then there exists a unique lower triangular matrix L with ones on a diagonal,
a unique upper triangular matrix U with ones on a diagonal and a unique diagonal
matrixD such thatA D LDU.

Note that for any nonsingular matrix A there is always a row permutation P such
that the permuted matrix PA satisfies the assumptions of Theorem 2. Further,
a more frequently used version of this theorem factorizes A to a lower triangular
matrix L0 D LD and an upper triangular matrix U0 D U. Finally, Zou (1991)
gave alternative conditions for the existence of the LU decomposition: A 2 Rn	n
is nonsingular and A> is diagonally dominant (i.e., jAii j � Pn

iD1;i 6Dj jAij j for
j D 1; : : : ; n).

Similarly to the Cholesky decomposition, the LU decomposition reduces solving
a system of linear equations Ax D LUx D b to solving two triangular systems:
Lz D b, where z D Ux, and Ux D z.

Finding the LU decomposition of A is described in Algorithm 5. Since it
is equivalent to solving a system of linear equations by the Gauss elimination,
which searches just for U and ignores L, we refer a reader to Sect. 5.2, where its
advantages (e.g., easy implementation, speed) and disadvantages (e.g., numerical
instability without pivoting) are discussed.
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Algorithm 5

L D 0n;U D In
for i = 1 to n

for j = i to n

Lji D Aji �Pi�1
kD1 LjkUki

end
for j = i + 1 to n

Uij D
�
Aij �Pi�1

kD1 LikUkj

	
=Lii

end
end

Finally, note that there are also generalizations of LU to non-square and singular
matrices, such as rank revealing LU factorization; see Pan (2000) and Miranian and
Gu (2003).

5.1.3 QR Decomposition

One of the most important matrix transformations is the QR decomposition. It splits
a general matrix A to an orthonormal matrix Q, that is, a matrix with columns
orthogonal to each other and its Euclidian norm equal to 1, and to an upper triangular
matrixR. Thus, a suitably chosen orthogonal matrixQ will triangularize the given
matrixA.

Theorem 3. Let matrix A 2 Rm	n with m � n. Then there exist an orthonormal
matrix Q 2 Rm	m and an upper triangular matrix R 2 Rn	n with nonnegative
diagonal elements such that

A DQ
�
R

0

�

(the QR decomposition of the matrixA).

If A is a nonsingular square matrix, an even slightly stronger result can be
obtained: uniqueness of the QR decomposition.

Theorem 4. Let matrix A 2 Rn	n be nonsingular. Then there exist a unique
orthonormal matrix Q 2 Rn	n and a unique upper triangular matrix R 2 Rn	n
with positive diagonal elements such thatA D QR.

The use of the QR decomposition for solving a system of equations Ax D
QRx D b consists in multiplying the whole system by the orthonormal matrixQ>,
Q>Q D I, and then solving the remaining upper triangular system Rx D Q>b.
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This method guarantees numerical stability by minimizing errors caused by machine
roundoffs (see the end of this section for details).

The QR decomposition is usually constructed by finding one orthonormal vector
(one column of Q) after another. This can be achieved using the so-called ele-
mentary orthogonal transformations such as Householder reflections, Householder
(1958), or Givens rotations, Givens (1958), that are described in the following
subsections. These transformations are related to the solution of the following
standard task.

Problem 1. Given a vector x 2 Rm, x ¤ 0, find an orthogonal matrixM 2 Rm	m
such thatM>x D kxk2 �e1, where e1 D .1; 0; : : : ; 0/> denotes the first unit vector.

In the rest of this section, we will first discuss how Householder reflections and
Givens rotations can be used for solving Problem 1. Next, using these elementary
results, we show how one can construct the QR decomposition. Finally, we briefly
mention the Gram–Schmidt orthogonalization method, which also provides a way
to find the QR decomposition.

Householder Reflections

The QR decomposition using Householder reflections (HR) was developed
by Golub (1965). Householder reflection (or Householder transformation) is
a matrix P,

P D I � 1
c

uu>; c D 1

2
u>u ; (5.3)

where u is a Householder vector. By definition, the matrix P is orthonormal and
symmetric. Moreover, for any x 2 Rm, it holds that

Px D x � 1
c

�
u>x

�
u :

Therefore, to apply HR one does not need to explicitly compute the matrix P itself.
Additionally, it holds Pu D �u and Px 2 spanfx;ug. This means that HR reflects
a vector x with respect to the hyperplane with normal vector, see Fig. 5.2. u (hence
the name Householder reflection).

To solve Problem 1 using some HR, we search for a vector u such that x will be
reflected to the x-axis. This holds for the following choice of u:

u D x C s1kxk2 � e1 ; s1 D 2I.x1 � 0/� 1 ; (5.4)

where x1 D x>e1 denotes the first element of the vector x and I.�/ represents an
indicator. For this reflection, it holds that c from (5.3) equals kxk2.kxk2Cjx1j/ and
Px D �s1kxk2 � e1 as one can verify by substituting (5.4) into (5.3).
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Fig. 5.2 Reflection with
respect to the hyperplane with
a normal vector u

Givens Rotations

A Givens rotation (GR) in m dimensions (or Givens transformation) is defined by
an orthonormal matrix Rij .˛/ 2 Rm	m,

Rij .˛/ D

0

B
B
BB
B
B
B
B
BB
B
B
B
B
@

1 0 � � � � � � � � � � � � 0
0
: : :

:::
::: c s

:::
:::

: : :
:::

::: �s c
:::

:::
: : : 0

0 � � � � � � � � � � � � 0 1

1

C
C
CC
C
C
C
C
CC
C
C
C
C
A

i

j

; (5.5)

where c D cos˛ and s D sin ˛ for ˛ 2 R and 1 � i < j � n. Thus, the rotation
Rij .˛/ represents a plane rotation in the space spanned by the unit vectors ei and
ej by an angle ˛. In two dimensions, rotationR12.˛/,

R12.˛/ D
�

c s

�s c
�
; c D cos˛ ; s D sin ˛;

represents a clockwise rotation by an angle ˛; see Fig. 5.3.
Now, let us have a look at how GRs can be used for solving Problem 1. A GR

of a vector x D .x1; : : : ; xm/
> 2 Rm by an angle ˛ results in Rij .˛/x D y D

.y1; : : : ; ym/
> such that

yk D

8
ˆ̂<

ˆ̂
:

xk for k ¤ i; j ;
cxi C sxj for k D i ;
�sxi C cxj for k D j :

For a vector x with nonzero elements xi or xj , setting d D .x2i Cx2j /1=2, c D xi =d ,
s D xj =d leads to
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Fig. 5.3 Rotation of x in
a plane by an angle ˛

�
c s

�s c
��

xi
xj

�
D
�
d

0

�
:

Thus, using GR with this specific choice of c and s (referred further asR0
ij ) implies

that the j th component of the vector x vanishes. Similarly to HRs, it is not necessary
to explicitly construct the whole matrix P to transform x since the rotation is fully
described by only two numbers: c and s. This elementary rotation R0

ij does not
however constitute a solution to Problem 1 yet: we need to combine more of them.

The next step employs a simple fact that the pre- or postmultiplication of
a vector x or a matrix A by any GR Rij .˛/ affects only the i th and j th rows
and columns, respectively. Hence, one can combine several rotations without one
rotation spoiling the result of another rotation. (Consequently, GRs are more flexible
than HRs). Two typical ways how GRs are used for solving Problem 1 mentioned
in Sect. 5.1.3 follow:

1. R0
1nR

0
1;n�1 : : :R0

13R
0
12x D de1. Here the kth component of the vector x van-

ishes after the Givens rotationR0
1k . The previously zeroed elements x2; : : : ; xk�1

are not changed because rotationR1k affects only the first and kth component.
2. R0

12R
0
23 : : :R

0
n�1;nx D de1. Here the kth component vanishes by the rotation

Rk�1;k .

Finally, there are several algorithms for computing the Givens rotations that
improve over the straightforward evaluation of R0

ijx. A robust algorithm mini-
mizing the loss of precision is given in Bjorck (1996). An algorithm minimizing
memory requirements was proposed by Stewart (1976). On the other hand, Gen-
tleman (1973) and Hammarling (1974) proposed modifications aiming to minimize
the number of arithmetic operations.

QR Decomposition by Householder Reflections or Givens Rotations

An appropriate combination of HRs or GRs, respectively, can be used to compute
the QR decomposition of a given matrix A 2 Rm	n, m � n, in a following
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way. Let Qi , i D 1; : : : ; n � 1, denote an orthonormal matrix in Rm	m such that
premultiplication of B D Qi�1 � � �Q1A by Qi can zero all elements in the i th
column that are below the diagonal and such that the previous columns 1; : : : ; i � 1
are not affected at all. Such a matrix can be a blockwise diagonal matrix with blocks
being the identity matrix Ii�1 and a matrix M solving Problem 1 for the vector
composed of elements in the i th column of B that lie on and below the diagonal.
The first part Ii�1 guarantees that the columns 1; : : : ; i � 1 of matrix B are not
affected by multiplication, whereas the second block M transforms all elements in
the i th column that are below the diagonal to zero. Naturally, matrixM can be found
by means of HRs or GRs as described in previous paragraphs.

This way, we construct a series of matricesQ1; : : : ;Qn such that

Qn � � �Q1A D
�
R

0

�
:

Since all matrices Q1; : : : ;Qn are orthonormal,Qt D Qn � � �Q1 is also orthonor-
mal and its inverse equals its transpose:Q�1t D Q>t . Hence,

A D .Qn � � �Q1/
>
�
R

0

�
DQ

�
R

0

�

as described in Theorem 3.
We describe now the QR algorithm using HRs or GRs. Let M.x/ denote the

orthonormal matrix from Problem 1 constructed for a vector x by one of the
discussed methods.

Algorithm 6

Q D Im
R D A
for i = 1 to n

x D fRki gmkDi

Qi D
�
Ii�1 0

0 M.x/

�

Q D QiQ

R D QiR

end
Q DQ>

R D ˚
Rij

�n;n
iD1;jD1

There are also modifications of this basic algorithm employing pivoting for better
numerical performance and even revealing rank of the system, see Hong and Tan
(1992) and Higham (2000) for instance. An error analysis of the QR decomposition
by HRs and GRs are given by Gentleman (1975) and Higham (2000), respectively.
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Gram–Schmidt Orthogonalization

Given a nonsingular matrix A 2 Rm	n;m � n, the Gram–Schmidt orthogonal-
ization constructs a matrix Q such that the columns of Q are orthonormal to each
other and span the same space as the columns of A. Thus, A can be expressed as
Q multiplied by another matrix R, whereby the Gram–Schmidt orthogonalization
process (GS) ensures thatR is an upper triangular matrix. Consequently, GS can be
used to construct the QR decomposition of a matrixA. A survey of GS variants and
their properties is given by Bjorck (1994).

The classical Gram–Schmidt (CGS) process constructs the orthonormal basis
stepwise. The first column Q1 of Q is simply normalized A1. Having constructed
a orthonormal baseQ1Wk D fQ1; : : : ;Qkg, the next columnQkC1 is proportional to
AkC1 minus its projection to the space spanfQ1Wkg. Thus,QkC1 is by its definition
orthogonal to spanfQ1Wkg, and at the same time, the first k columns ofA andQ span
the same linear space. The elements of the triangular matrixR from Theorem 3 are
then coordinates of the columns of A given the columns ofQ as a basis.

Algorithm 7

for i = 1 to n
for j = 1 to i - 1

Rji D Q>

j Ai

end
Qi D A i �Pi�1

jD1 RjiQj

Rii D �
Q>

i Qi

�1=2

Qi D Qi =Rii
end

Similarly to many decomposition algorithms, also CGS allows a memory
efficient implementation since the computed orthonormal columns ofQ can rewrite
the original columns of A. Despite this feature and mathematical correctness, the
CGS algorithm does not always behave well numerically because numerical errors
can very quickly accumulate. For example, an error made in computingQ1 affects
Q2, errors in both of these terms (although caused initially just by an error in Q1)
adversely influence Q3 and so on. Fortunately, there is a modified Gram–Schmidt
(MGS) procedure, which prevents such an error accumulation by subtracting linear
combinations of Qk directly from A before constructing following orthonormal
vectors. (Surprisingly, MGS is historically older than CGS.)

Apart from this algorithm (the row version of MGS), there are also a column
version of MGS by Bjorck (1994) and MGS modifications employing iterative
orthogonalization and pivoting by Dax (2000). Numerical superiority of MGS over
CGS was experimentally established already by Rice (1966). This result is also
theoretically supported by the GS error analysis in Bjorck (1994), who uncovered
numerical equivalence of the QR decompositions done by MGS and HRs.
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Algorithm 8

for i = 1 to n
Qi D A i

Rii D
�
Q>

i Qi

�1=2

Qi D Qi =Rii
for j = i + 1 to n

Rji D Q>

i Aj

Aj D Aj �RijQi

end
end

5.1.4 Singular Value Decomposition

The singular value decomposition (SVD) plays an important role in numerical
linear algebra and in many statistical techniques as well. Using two orthonormal
matrices, SVD can diagonalize any matrix A and the results of SVD can tell
a lot about (numerical) properties of the matrix. (This is closely related to the
eigenvalue decomposition: any symmetric square matrix A can be diagonalized,
A D VDV>, where D is a diagonal matrix containing the eigenvalues of A and V
is an orthonormal matrix.)

Theorem 5. Let A 2 Rm	n be a matrix of rank r . Then there exist orthonormal
matrices U 2 Rm	m and V 2 Rn	n and a diagonal matrix D 2 Rm	n, with the
diagonal elements 1 � 2 � : : : � r > rC1 D : : : D minfm;ng D 0, such that
A D UDV>.

Numbers 1; : : : ; minfm;ng represent the singular values of A. Columns Ui and Vi
of matrices U and V are called the left and right singular vectors of A associated
with singular value i , respectively, because AVi D iUi and U>i A D iV

>
i ; i D

1; : : : ;minfm; ng.
Similarly to the QR decomposition, SVD offers a numerically stable way to

solve a system of linear equations. Given a system Ax D UDV>x D b, one
can transform it to U>Ax D DV>x D U>b and solve it in two trivial steps: first,
finding a solution z ofDz D U>b, and second, setting x D Vz, which is equivalent
to V>x D z.

On the other hand, the power of SVD lies in its relation to many important
matrix properties; see Trefethen and Bau (1997), for instance. First of all, the
singular values of a matrix A are equal to the (positive) square roots of the
eigenvalues of A>A and AA>, whereby the associated left and right singular
vectors are identical with the corresponding eigenvectors. Thus, one can compute
the eigenvalues of A>A directly from the original matrix A. Second, the number
of nonzero singular values equals the rank of a matrix. Consequently, SVD can
be used to find an effective rank of a matrix, to check a near singularity and to
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compute the condition number of a matrix. That is, it allows to assess conditioning
and sensitivity to errors of a given system of equations. Finally, let us note that
there are far more uses of SVD: identification of the null space of A, null.A/ D
spanfVkC1; : : : ;Vng; computation of the matrix pseudo-inverse, A� D VD�U>;
low-rank approximations and so on. See Bjorck (1996) and Trefethen and Bau
(1997) for details.

Let us now present an overview of algorithms for computing the SVD decom-
position, which are not described in details due to their extent. The first stable
algorithm for computing the SVD was suggested by Golub and Kahan (1965). It
involved reduction of a matrix A to its bidiagonal form by HRs, with singular
values and vectors being computed as eigenvalues and eigenvectors of a specific
tridiagonal matrix using a method based on Sturm sequences. The final form of the
QR algorithm for computing SVD, which has been the preferred SVD method for
dense matrices up to now, is due to Golub and Reinsch (1970); see Anderson et al.
(1999), Bjorck (1996) or Gentle (1998) for the description of the algorithm and some
modifications. An alternative approach based on Jacobi algorithm was given by Hari
and Veselic (1987). Latest contributions to the pool of computational methods for
SVD, including von Matt (1995), Demmel et al. (1999) and Higham (2000), aim
to improve the accuracy of singular values and computational speed using recent
advances in the QR decomposition.

5.1.5 Matrix Inversion

In previous sections, we described how matrix decompositions can be used for solv-
ing systems of linear equations. Let us now discuss the use of matrix decompositions
for inverting a nonsingular squared matrix A 2 Rn	n, although matrix inversion is
not needed very often. All discussed matrix decomposition construct two or more
matrices A1; : : : ;Ad such that A D A1 �: : :�Ad , where matrices Al ; l D 1; : : : ; d;
are orthonormal, triangular, or diagonal. Because A�1 D A�1d � : : : � A�11 ; we just
need to be able to invert orthonormal and triangular matrices (a diagonal matrix is
a special case of a triangular matrix).

First, an orthonormal matrix Q satisfies by definition Q>Q D QQ> D In.
Thus, inversion is in this case equivalent to the transposition of a matrix:
Q�1 DQ>.

Second, inverting an upper triangular matrix U can be done by solving directly
XU D In, which leads to the backward substitution method. LetX D fXij gn;niD1;jD1
denote the searched for inverse matrix U�1.

The inversion of a lower triangular matrix L can be done analogously: the
algorithm is applied to L>, that is, Uij is replaced by Lji for i; j D 1; : : : ; n.

There are several other algorithms available such as forward substitution or
blockwise inversion. Designed for a faster and more (time) efficient computation,
their numerical behavior does not significantly differ from the presented algorithm.
See Croz and Higham (1992) for an overview and numerical study.
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Algorithm 9

X D 0n
for i = n to 1

Xii D 1=Uii
for j = i + 1 to n

Xij D �
�Pj

kDiC1 XkjUik

	
=Ujj

end
end

5.2 Direct Methods for Solving Linear Systems

A system of linear equations can be written in the matrix notation as

Ax D b ; (5.6)

where A denotes the coefficient matrix, b is the right-hand side, and x represents
the solution vector we search for. The system (5.6) has a solution if and only if b
belongs to the vector space spanned by the columns of A.

• If m < n, that is, the number of equations is smaller than the number of
unknown variables, or if m � n but A does not have a full rank (which means
that some equations are linear combinations of the other ones), the system is
underdetermined and there are either no solution at all or infinitely many of them.
In the latter case, any solution can be written as a sum of a particular solution and
a vector from the nullspace ofA. Finding the solution space can involve the SVD
decomposition (Sect. 5.1.4).

• If m > n and the matrix A has a full rank, that is, if the number of equations
is greater than the number of unknown variables, there is generally no solution
and the system is overdetermined. One can search some x such that the distance
betweenAx and b is minimized, which leads to the linear least-squares problem
if distance is measured by L2 norm; see Chap. III.8.

• Ifm D n and the matrixA is nonsingular, the system (5.6) has a unique solution.
Methods suitable for this case will be discussed in the rest of this section as well
as in Sect. 5.3.

From here on, we concentrate on systems of equations with unique solutions.
There are two basic classes of methods for solving system (5.6). The first class

is represented by direct methods. They theoretically give an exact solution in a
(predictable) finite number of steps. Unfortunately, this does not have to be true
in computational praxis due to rounding errors: an error made in one step spreads in
all following steps. Classical direct methods are discussed in this section. Moreover,
solving an equation system by means of matrix decompositions, as discussed in
Sect. 5.1, can be classified as a direct method as well. The second class is called
iterative methods, which construct a series of solution approximations that (under
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some assumptions) converges to the solution of the system. Iterative methods are
discussed in Sect. 5.3. Finally, note that some methods are on the borderline between
the two classes; for example, gradient methods (Sect. 5.3.5) and iterative refinement
(Sect. 5.2.2).

Further, the direct methods discussed in this section are not necessarily optimal
for an arbitrary system (5.6). Let us deal with the main exceptions. First, even
if a unique solution exist, numerical methods can fail to find the solution: if the
number of unknown variables n is large, rounding errors can accumulate and result
in a wrong solution. The same applies very much to systems with a nearly singular
coefficient matrix. One alternative is to use iterative methods (Sect. 5.3), which
are less sensitive to these problems. Another approach is to use the QR or SVD
decompositions (Sect. 5.1), which can transform some nearly singular problems to
nonsingular ones. Second, very large problems including hundreds or thousands of
equations and unknown variables may be very time demanding to solve by standard
direct methods. On the other hand, their coefficient matrices are often sparse, that is,
most of their elements are zeros. Special strategies to store and solve such problems
are discussed in Sect. 5.5.

To conclude these remarks, let us mention a close relation between solving the
system (5.6) and computing the inverse matrixA�1:

• Having an algorithm that for a matrixA computesA�1, we can find the solution
to (5.6) as x D A�1b;

• An algorithm solving the system (5.6) can be used to compute A�1 as follows.
Solve n linear systems Axi D ei , i D 1; : : : ; n (or the corresponding system
with multiple right-hand sides), where ei denotes the i th unit vector. Then
A�1 D .x1; : : : ;xn/.
In the rest of this section, we concentrate on the Gauss–Jordan elimination

(Sect. 5.2.1) and its modifications and extensions, such as iterative refinement
(Sect. 5.2.2). A wealth of information on direct methods can be found in mono-
graphs Axelsson (1994), Gentle (1998) and Golub and van Loan (1996).

5.2.1 Gauss–Jordan Elimination

In this subsection, we will simultaneously solve the linear systems

Ax1 D b1 ; Ax2 D b2 ; : : : ; Axk D bk
and a matrix equation AX D B, where X;B 2 Rn	l (its solution is X D A�1B,
yielding the inverse A�1 for a special choice B D In). They can be written as
a linear matrix equation

AŒx1jx2j : : : jxkjX� D Œb1jb2j : : : jbkjB� ; (5.7)

where the operator j stands for column augmentation.



5 Numerical Linear Algebra 119

The Gauss–Jordan elimination (GJ) is based on elementary operations that do
not affect the solution of an equation system. The solution of (5.7) will not change
if we perform any of the following operations:

• Interchanging any two rows of A and the corresponding rows of bi ’s and B,
i D 1; : : : ; k;

• Multiplying a row of A and the same row of bi ’s and B by a nonzero number,
i D 1; : : : ; k;

• Adding to a chosen row of A and the same row of bi ’s and B a linear
combination of other rows, i D 1; : : : ; k.

Interchanging any two columns of A is possible too, but it has to be followed by
interchanging the corresponding rows of all solutions xi and X as well as of right
sides bi and B, i D 1; : : : ; k. Each row or column operation described above is
equivalent to the pre- or postmultiplication of the system by a certain elementary
matrix R or C, respectively, that are results of the same operation applied to the
identity matrix In.

GJ is a technique that applies one or more of these elementary operations
to (5.7) so that A becomes the identity matrix In. Simultaneously, the right-
hand side becomes the set of solutions. Denoting Ri ; i D 1; : : : ; O , the matrices
corresponding to the i th row operation, the combination of all operations has to
constitute inverseA�1 D RO �: : :�R3R2R1 and hence x D RO �: : :�R3R2R1b. The
exact choice of these elementary operation is described in the following paragraph.

Pivoting in Gauss–Jordan Elimination

Let us now discuss several well-known variants of the Gauss–Jordan elimination.
GJ without pivoting does not interchange any rows or columns; only multiplication
and addition of rows are permitted. First, nonzero nondiagonal elements in the first
column A1 are eliminated: the first row of (5.7) is divided by its diagonal element
A11 and the Ai1-multiple of the modified first row is subtracted from the i th row,
i D 2; : : : ; n. We can proceed the same way for all n columns of A, and thus,
transform A to the identity matrix In. It is easy to see that the method fails if the
diagonal element in a column to be eliminated, the so-called pivot, is zero in some
step. Even if this is not the case, one should be aware that GJ without pivoting is
numerically unstable.

On the other hand, the GJ method becomes stable when using pivoting. This
means that one can interchange rows (partial pivoting) or rows and columns (full
pivoting) to put a suitable matrix element to the position of the current pivot. Since
it is desirable to keep the already constructed part of the identify matrix, only
rows below and columns right to the current pivot are considered. GJ with full
pivoting is numerically stable. From the application point of view, GJ with partial
pivoting is numerically stable too, although there are artificial examples where it
fails. Additionally, the advantage of partial pivoting (compared to full pivoting) is
that it does not change the order of solution components.
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There are various strategies to choose a pivot. A very good choice is the largest
available element (in absolute value). This procedure depends however on the
original scaling of the equations. Implicit pivoting takes scaling into account and
chooses a pivot as if the original system were rescaled so that the largest element of
each row would be equal to one.

Finally, let us add several concluding remarks on efficiency of GJ and its
relationship to matrix decompositions. As shown, GJ can efficiently solve problems
with multiple right-hand sides known in advance and compute A�1 at the same
time. On the other hand, if it is necessary to solve later a new system with
the same coefficient matrix A but a new right-hand side b, one has to start the
whole elimination process again, which is time demanding, or compute A�1b
using the previously computed inverse matrix A�1, which leads to further error
accumulation. In praxis, one should prefer matrix decompositions, which do not
have this drawback. Specifically, the LU decomposition (Sect. 5.1.2) is equivalent to
GJ (with the same kind of pivoting applied in both cases) and allows us to repeatedly
solve systems with the same coefficient matrix in an efficient way.

5.2.2 Iterative Refinement

In the introduction to Sect. 5.2, we noted that direct methods are rather sensitive to
rounding errors. Iterative refinement offers a way to improve the solution obtained
by any direct method, unless the system matrix A is too ill-conditioned or even
singular.

Let x1 denote an initially computed (approximate) solution of (5.6). Iterative
refinement is a process constructing a series xi , i D 1; 2; : : : ; as described in Algo-
rithm 10. First, given a solution xi , the residuum ri D Axi �b is computed. Then,
one obtains the correction�xi by solving the original system with residuum ri on
the right-hand side. It is reasonable to carry out the computation of residuals ri in

Algorithm 10

Repeat for i D 1; 2; : : :

compute ri D b �Ax i
solve A�xi D r i for �xi

set x iC1 D xi C�xi
until the desired precision is achieved.

a higher precision because a lot of cancellation occurs if xi is a good approximation.
Nevertheless, provided that the coefficient matrixA is not too ill-conditioned, Skeel
(1980) proved that GJ with partial pivoting and only one step of iterative refinement
computed in a fixed precision is stable (it has a relative backward error proportional
to the used precision). In spite of this result, one can recommend to use iterative
refinement repeatedly until the desired precision is reached.
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Additionally, an important feature of iterative refinement is its low computational
costs. Provided that a system is solved by means of decompositions (e.g., GJ is
implemented as the LU decomposition), a factorization of A is available already
after computing the initial solution x1. Subsequently, solving any system with the
same coefficient matrix A, such as A�xi D ri , can be done fast and efficiently
and the computational costs of iterative refinement are small.

5.3 Iterative Methods for Solving Linear Systems

Direct methods for solving linear systems theoretically give the exact solution
in a finite number of steps, see Sect. 5.2. Unfortunately, this is rarely true in
applications because of rounding errors: an error made in one step spreads further in
all following steps! Contrary to direct methods, iterative methods construct a series
of solution approximations such that it converges to the exact solution of a system.
Their main advantage is that they are self-correcting, see Sect. 5.3.1.

In this section, we first discuss general principles of iterative methods that solve
linear system (5.6), Ax D b, whereby we assume that A 2 Rn	n and the system
has exactly one solution xe (see Sect. 5.2 for more details on other cases). Later,
we describe most common iterative methods: the Jacobi, Gauss–Seidel, successive
overrelaxation, and gradient methods (Sects. 5.3.2–5.3.5). Monographs containing
detailed discussion of these methods include Bjorck (1996), Golub and van Loan
(1996) and Hackbusch (1994). Although we treat these methods separately from the
direct methods, let us mention here that iterative methods can usually benefit from
a combination with the Gauss elimination, see Milaszewicz (1987) and Alanelli and
Hadjidimos (2004), for instance.

To unify the presentation of all methods, let D, L, and U denote the diagonal,
lower triangular and upper triangular parts of a matrixA throughout this section:

Dij D
(
Aij for i D j ;
0 otherwise I Lij D

(
Aij for i > j ;

0 otherwise I

Uij D
(
Aij for i < j ;

0 otherwise :

5.3.1 General Principle of Iterative Methods for Linear Systems

An iterative method for solving a linear system Ax D b constructs an iteration
series xi , i D 0; 1; 2; : : :, that under some conditions converges to the exact
solution xe of the system (Axe D b). Thus, it is necessary to choose a starting
point x0 and iteratively apply a rule that computes xiC1 from an already known xi .
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A starting vector x0 is usually chosen as some approximation of x. (Luckily, its
choice cannot cause divergence of a convergent method.) Next, given xi ; i 2 N , the
subsequent element of the series is computed using a rule of the form

xiC1 D Bixi CCib ; i D 0; 1; 2; : : : ; (5.8)

where Bi ;Ci 2 Rn	n; i 2 N , are matrix series. Different choices of Bi and Ci
define different iterative methods.

Let us discuss now a minimal set of conditions on Bi and Ci in (5.8) that
guarantee the convergence of an iterative method. First of all, it has to hold that
Bi C CiA D In for all i 2 N , or equivalently,

xe D Bixe C Cib D .Bi C CiA/xe ; i 2 N : (5.9)

In other words, once the iterative process reaches the exact solution xe , all
consecutive iterations should stay equal to xe and the method cannot depart from
this solution. Second, starting from a point x0 6D xe , we have to ensure that
approximations xi will converge to xe as i increases.

Theorem 6. An iteration series xi given by (5.8) converges to the solution of
system (5.6) for any chosen x0 iff

lim
i!1BiBi�1 : : :B0 D 0 :

In praxis, stationary iterative methods are used, that is, methods with constant
Bi D B and Ci D C, i 2 N . Consequently, an iteration series is then constructed
using

xiC1 D Bxi CCb ; i D 0; 1; 2; : : : (5.10)

and the convergence condition in Theorem 6 has a simpler form.

Theorem 7. An iteration series xi given by (5.10) converges to the solution
of system (5.6) for any chosen x0 iff the spectral radius �.B/ < 1, where
�.B/ D maxiD1;:::;n j�i j and �1; : : : ; �n represent the eigenvalues of B.

Note that the convergence condition �.B/ < 1 holds, for example, if kBk < 1

in any matrix norm. Moreover, Theorem 7 guarantees the self-correcting property
of iterative methods since convergence takes place independent of the starting
value x0. Thus, if computational errors adversely affect xi during the i th iteration,
xi can be considered as a new starting vector and the iterative method will further
converge. Consequently, the iterative methods are in general more robust than the
direct ones.
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Apparently, such an iterative process can continue arbitrarily long unless xi D
xe at some point. This is impractical and usually unnecessary. Therefore, one uses
stopping (or convergence) criteria that stop the iterative process when a pre-specified
condition is met. Commonly used stopping criteria are based on the change of the
solution or residual vector achieved during one iteration. Specifically, given a small
" > 0, the iterative process is stopped after the i th iteration when kxi � xi�1k � ",
kri�ri�1k � ", or krik � ", where ri D Axi�b is a residual vector. Additionally,
a maximum acceptable number of iterations is usually specified.

5.3.2 Jacobi Method

The Jacobi method is motivated by the following observation. Let A have nonzero
diagonal elements (the rows of any nonsingular matrix can be reorganized to achieve
this). Then the diagonal part D of A is nonsingular and the system (5.6) can be
rewritten asDx C .L C U/x D b. Consequently,

x D D�1Œ.�L � U/x C b� :

Replacing x on the left-hand side by xiC1 and x on the right-hand side by xi leads
to the iteration formula of the Jacobi method:

xiC1 D �D�1.L CU/xi CD�1b :

The intuition of the Jacobi method is very simple: given an approximation xold

of the solution, let us express the kth component xk of x as a function of the other
components from the kth equation and compute xk given xold:

xnew
k D 1

Akk

0

B
B
@bk �

nX

jD1
j¤k

Akj x
old
j

1

C
C
A ; (5.11)

k D 1; : : : ; n (see Fig. 5.4).
The Jacobi method converges for any starting vector x0 as long as �.D�1.L C

U// < 1, see Theorem 7. This condition is satisfied for a relatively big class of matri-
ces including diagonally dominant matrices (matricesA such that

Pn
jD1;j¤i jAij j �

jAii j for i D 1; : : : ; n), and symmetric matrices A such thatD, A D L CD C U,
and �L CD � U are all positive definite. Although there are many improvements
to the basic principle of the Jacobi method in terms of convergence to xe , see
Sects. 5.3.3 and 5.3.4, its advantage is an easy and fast implementation (elements
of a new iteration xi can be computed independently of each other).
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Fig. 5.4 Scheme of the Jacobi method

Fig. 5.5 Scheme of the Gauss–Seidel method

5.3.3 Gauss–Seidel Method

Analogously to the Jacobi method, we can rewrite system (5.6) as .LCD/xCUx D
b, which further implies x D .L C D/�1Œ�Ux C b�. This leads to the iteration
formula of the Gauss–Seidel method:

xiC1 D �.L CD/�1Uxi C .L CD/�1b : (5.12)

The main difference to the Jacobi methods lies in a more efficient use of (5.11).
When computing the kth element xnew

k , the first k � 1 elements xnew
1 ; : : : ; xnew

k�1
are already known (and presumably more precise than xold

1 ; : : : ; x
old
k�1). Thus, it

is possible to use these new values instead of the old ones and speed up the
convergence (see Fig. 5.5 for a scheme). Moreover, using this strategy, the newly
computed elements of xiC1 can directly overwrite the respective elements of xi and
save memory this way.

Following the Theorem 7, the Gauss–Seidel method converges for any starting
vector x0 if �..LCD/�1U/ < 1. This condition holds, for example, for diagonally
dominant matrices as well as for positive definite ones.

5.3.4 Successive Overrelaxation Method

The successive overrelaxation (SOR) method aims to further refine the Gauss–
Seidel method. The Gauss–Seidel formula (5.12) can be rewritten as
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xiC1 D xi �D�1ŒfLxiC1 C .D C U/xi g � b� D xi ��i ;

which describes the difference �i between xiC1 and xi expressed for the kth
element of xi.C1/ from the kth equation, k D 1; : : : ; n. The question SOR poses
is whether the method can converge faster if we “overly” correct xiC1 in each step;
that is, if xi is corrected by a multiple ! of �i in each iteration. This idea leads to
the SOR formula:

xiC1 D xi � !D�1ŒfLxiC1 C .D C U/xig � b� ;

or in the form (5.10),

xiC1 D .D C !L/�1f.1 � !/D � !Ugxi C !.D C !L/�1b : (5.13)

The parameter ! is called the (over)relaxation parameter and it can be shown that
SOR converges only for ! 2 .0; 2/, a result derived by Kahan (1958).

A good choice of parameter ! can speed up convergence, as measured by the
spectral radius of the corresponding iteration matrix B (see Theorem 7; a lower
spectral radius �.B/ means faster convergence). There is a choice of literature
devoted to the optimal setting of relaxation parameter: see Hadjidimos (2000)
for a recent overview of the main results concerning SOR. We just present one
important result, which is due to Young (1954).

Definition 1. A matrixA is said to be two-cyclic consistently ordered if the eigen-
values of the matrixM.˛/ D ˛D�1L C ˛�1D�1U, ˛ ¤ 0, are independent of ˛.

Theorem 8. Let the matrixA be two-cyclic consistently ordered. Let the respective
Gauss–Seidel iteration matrixB D �.LCD/�1U have the spectral radius �.B/ <
1. Then the optimal relaxation parameter ! in SOR is given by

!opt D 2

1Cp1 � �.B/

and for this optimal value it holds �.BI!opt/ D !opt � 1.

Using SOR with the optimal relaxation parameter significantly increases the rate
of convergence. Note however that the convergence acceleration is obtained only for
! very close to !opt. If !opt cannot be computed exactly, it is better to take ! slightly
larger rather than smaller. Golub and van Loan (1996) describe an approximation
algorithm for �.B/.

On the other hand, if the assumptions of Theorem 8 are not satisfied, one can
employ the symmetric SOR (SSOR), which performs the SOR iteration twice:
once as usual, see (5.13), and once with interchanged L and U. SSOR requires
more computations per iteration and usually converges slower, but it works for any
positive definite matrix and can be combined with various acceleration techniques.
See Bjorck (1996) and Hadjidimos (2000) for details.
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5.3.5 Gradient Methods

Gradient iterative methods are based on the assumption that A is a symmetric
positive definite matrix A. They use this assumption to reformulate (5.6) as
a minimization problem: xe is the only minimum of the quadratic form

Q.x/ D 1

2
x>Ax � x>b :

Given this minimization problem, gradient methods construct an iteration
series of vectors converging to xe using the following principle. Having the i th
approximation xi , choose a direction vi and find a number ˛i such that the new
vector

xiC1 D xi C ˛i vi
is a minimum of Q.x/ on the line xi C ˛vi , ˛ 2 R. Various choices of directions
vi then render different gradient methods, which are in general nonstationary
(vi changes in each iteration). We discuss here three methods: the Gauss–Seidel
(as a gradient method), steepest descent and conjugate gradients methods.

Gauss–Seidel Method as a Gradient Method

Interestingly, the Gauss–Seidel method can be seen as a gradient method for the
choice

vknCi D ei ; k D 0; 1; 2; : : : ; i D 1; : : : ; n ;
where ei denotes the i th unit vector. The kth Gauss–Seidel iteration corresponds to
n subiterations with vknCi for i D 1; : : : ; n.

Steepest Descent Method

The steepest descent method is based on the direction vi given by the gradient of
Q.x/ at xi . Denoting the residuum of the i th approximation ri D b � Axi , the
iteration formula is

xiC1 D xi C r>i ri
r>i Ari

ri ;

where ri represents the direction vi and its coefficient is the Q.x/-minimizing
choice of ˛i . By definition, this method reduces Q.xi / at each step, but it is not
very effective. The conjugate gradient method discussed in the next subsection will
usually perform better.
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Conjugate Gradient Method

In the conjugate gradient (CG) method proposed by Hestenes and Stiefel (1952), the
directions vi are generated by the A-orthogonalization of residuum vectors. Given
a symmetric positive definite matrix A, A-orthogonalization is a procedure that
constructs a series of linearly independent vectors vi such that v>i Avj D 0 for i ¤
j (conjugacy orA-orthogonality condition). It can be used to solve the system (5.6)
as follows (ri D b �Axi represents residuals).

Algorithm 11

v0 D r0 D b �Ax0
do

˛i D �
v>

i ri
�
=
�
v>

i Av i
�

x iC1 D xi C ˛i vi
riC1 D ri � ˛iAv i
ˇi D �

�
v>

i AriC1

�
=
�
v>

i Avi
�

v iC1 D riC1 C ˇivi
until a stop criterion holds

An interesting theoretic property of CG is that it reaches the exact solution in at
most n steps because there are not more than n (A-)orthogonal vectors. Thus, CG is
not a truly iterative method. (This does not have to be the case if A is a singular or
non-square matrix, see Kammerer and Nashed 1972.) On the other hand, it is usually
used as an iterative method, because it can give a solution within the given accuracy
much earlier than after n iterations. Moreover, if the approximate solution xn after
n iterations is not accurate enough (due to computational errors), the algorithm can
be restarted with x0 set to xn. Finally, let us note that CG is attractive for use with
large sparse matrices because it addresses A only by its multiplication by a vector.
This operation can be done very efficiently for a properly stored sparse matrix, see
Sect. 5.5.

The principle of CG has many extensions that are applicable also for nonsym-
metric nonsingular matrices: for example, generalized minimal residual, Saad and
Schultz (1986); (stabilized) biconjugate gradients, Vorst (1992); or quasi-minimal
residual, Freund and Nachtigal (1991).

5.4 Eigenvalues and Eigenvectors

In this section, we deal with methods for computing eigenvalues and eigenvectors
of a matrix A 2 Rn	n. First, we discuss a simple power method for computing
one or few eigenvalues (Sect. 5.4.1). Next, we concentrate on methods performing
the complete eigenanalysis, that is, finding all eigenvalues (the Jacobi, QR, and LR
methods in Sects. 5.4.2–5.4.5). Finally, we briefly describe a way to improve already
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computed eigenvalues and to find the corresponding eigenvector. Additionally, note
that eigenanalysis can be also done by means of SVD, see Sect. 5.1.4. For more
details on the described as well as some other methods, one can consult monographs
by Gentle (1998), Golub and van Loan (1996), Press et al. (1992) and Stoer and
Bulirsch (2002).

Before discussing specific methods, let us describe the principle common to most
of them. We assume that A 2 Rn	n has eigenvalues j�1j � j�2j � : : : � j�nj. To
find all eigenvalues, we transform the original matrixA to a simpler matrix B such
that it is similar to A (recall that matrices A and B are similar if there is a matrix
T such that B D T�1AT). The similarity of A and B is crucial since it guarantees
that both matrices have the same eigenvalues and their eigenvectors follow simple
relation: if g is an eigenvector of B corresponding to its eigenvalue �, then Tg is
an eigenvector ofA corresponding to the same eigenvalue �.

There are two basic strategies to construct a similarity transformation B of the
original matrixA. First, one can use a series of simple transformations, such as GRs,
and eliminate elements of A one by one (see the Jacobi method, Sect. 5.4.2). This
approach is often used to transformA to its tridiagonal or upper Hessenberg forms.
(Matrix B has the upper Hessenberg form if it is an upper triangular except for the
first subdiagonal; that is,Aij D 0 for i > jC1, where i; j D 1; : : : ; n). Second, one
can also factorize A into A D FLFR and switch the order of factors, B D FRFL
(similarity of A and B follows from B D FRFL D F�1L AFL). This is used for
example by the LR method (Sect. 5.4.5). Finally, there are methods combining both
approaches.

5.4.1 Power Method

In its basic form, the power method aims at finding only the largest eigenvalue �1
of a matrix A and the corresponding eigenvector. Let us assume that the matrix A
has a dominant eigenvalue (j�1j > j�2j) and n linearly independent eigenvectors.

The power method constructs two series ci and xi ; i 2 N; that converge to �1 and
to the corresponding eigenvector g1, respectively. Starting from a vector x0 that is
not orthogonal to g1, one only has to iteratively computeAxi and split it to its norm
ciC1 and the normalized vector xiC1, see Algorithm 5.4.1. Usually, the Euclidian
(ciC1 D kAxik2) and maximum (ciC1 D maxjD1;:::;n j.Axi /j j) norms are used.

Algorithm 12

i D 0

do
i D i C 1
x iC1 D Axi
ciC1 D kAx iC1k
x iC1 D xiC1=ciC1

until a stop criterion holds
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Although assessing the validity of assumptions is far from trivial, one can usually
easily recognize whether the method converges from the behaviour of the two
constructed series.

Furthermore, the power method can be extended to search also for other
eigenvalues; for example, the smallest one and the second largest one. First, if A is
nonsingular, we can apply the power method to A�1 to find the smallest eigenvalue
�n because 1=�n is the largest eigenvalue of A�1. Second, if we need more
eigenvalues and �1 is already known, we can use a reduction method to construct
a matrixB that has the same eigenvalues and eigenvectors asA except for �1, which
is replaced by zero eigenvalue. To do so, we need to find a (normalized) eigenvector
h1 of A> corresponding to �1 (A and A> have the same eigenvalues) and to set
B D A � �1h1h>1 . Naturally, this process can be repeated to find the third and
further eigenvalues.

Finally, let us mention that the power method can be used also for some matrices
without dominant eigenvalue (e.g., matrices with �1 D : : : D �p for some 1 <
p � n). For further extensions of the power method see Sidi (1989), for instance.

5.4.2 Jacobi Method

For a symmetric matrix A, the Jacobi method constructs a series of orthogonal
matrices Ri , i 2 N; such that the matrix Ti D R>

i
: : :R>

1
AR1 : : :Ri converges

to a diagonal matrix D. Each matrix Ri is a GR matrix defined in (5.5), whereby
the angle ˛ is chosen so that one nonzero element .Ti /jk becomes zero in TiC1.
Formulas for computing Ri given the element .j; k/ to be zeroed are described in
Gentle (1998), for instance. Once the matrixA is diagonalized this way, the diagonal
of D contains the eigenvalues of A and the columns of matrix R D R1 � : : : � Ri
represent the associated eigenvectors.

There are various strategies to choose an element .j; k/ which will be zeroed
in the next step. The classical Jacobi method chooses the largest off-diagonal
element in absolute value and it is known to converge. (Since searching the maximal
element is time consuming, various systematic schemes were developed, but their
convergence cannot be often guaranteed.) Because the Jacobi method is relatively
slow, other methods are usually preferred (e.g., the QR method). On the other
hand, it has recently become interesting again because of its accuracy and easy
parallelization (Higham 1997; Zhou and Brent 2003).

5.4.3 Givens and Householder Reductions

The Givens and Householder methods use a similar principle as the Jacobi method.
A series of GRs or HRs, designed such that they form similarity transformations,
is applied to a symmetric matrix A in order to transformed it to a tridiagonal
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matrix. (A tridiagonal matrix is the Hessenberg form for symmetric matrices.) This
tridiagonal matrix is then subject to one of the iterative methods, such as the QR
or LR methods discussed in the following paragraphs. Formulas for Givens and
Householder similarity transformations are given in Press et al. (1992), for instance.

5.4.4 QR Method

The QR method is one of the most frequently used methods for the complete
eigenanalysis of a nonsymmetric matrix, despite the fact that its convergence is not
ensured. A typical algorithm proceeds as follows. In the first step, the matrix A
is transformed into a Hessenberg matrix using Givens or Householder similarity
transformations (see Sects. 5.1.3 and 5.4.3). In the second step, this Hessenberg
matrix is subject to the iterative process called chasing. In each iteration, similarity
transformations, such as GRs, are first used to create nonzero entries in positions
.i C 2; i/, .i C 3; i/ and .i C 3; i C 1/ for i D 1. Next, similarity transformations
are repeatedly used to zero elements .i C 2; i/ and .i C 3; i/ and to move these
“nonzeros” towards the lower right corner of the matrix (i.e., to elements .i C 2; i/,
.i C 3; i/ and .i C 3; i C 1/ for i D i C 1). As a result of chasing, one or two
eigenvalues can be extracted. If An;n�1 becomes zero (or negligible) after chasing,
elementAn;n is an eigenvalue. Consequently, we can delete the nth row and column
of the matrix and apply chasing to this smaller matrix to find another eigenvalue.
Similarly, if An�1;n�2 becomes zero (or negligible), the two eigenvalues of the 2� 2
submatrix in the lower right corner are eigenvalues of A. Subsequently, we can
delete last two rows and columns and continue with the next iteration.

Since a more detailed description of the whole iterative process goes beyond
the extent of this contribution, we refer a reader to Gentle (1998) for a shorter
discussion and to Golub and van Loan (1996) and Press et al. (1992) for a more
detailed discussion of the QR method.

5.4.5 LR Method

The LR method is based on a simple observation that decomposing a matrixA into
A D FLFR and multiplying the factors in the inverse order results in a matrix
B D FRFL similar to A. Using the LU decomposing (Sect. 5.1.2), the LR method
constructs a matrix series Ai for i 2 N , whereA1 D A and

Ai D LiUi H) AiC1 D UiLi ;

where Li is a lower triangular matrix and Ui is an upper triangular matrix with
ones on its diagonal. For a wide class of matrices, including symmetric positive
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definite matrices, Ai and Li are proved to converge to the same lower triangular
matrixL, whereby the eigenvalues ofA form the diagonal of L and are ordered by
the decreasing absolute value.

5.4.6 Inverse Iterations

The method of inverse iterations can be used to improve an approximation �� of an
eigenvalue � of a matrix A. The method is based on the fact that the eigenvector g
associated with � is also an eigenvector of QA D .A � ��I/�1 associated with
the eigenvalue Q� D .� � ��/�1. For an initial approximation �� close to �, Q� is the
dominant eigenvalue of QA. Thus, it can be computed by the power method described
in Sect. 5.4.1, whereby �� could be modified in each iteration in order to improve
the approximation of �.

This method is not very efficient without a good starting approximation, and
therefore, it is not suitable for the complete eigenanalysis. On the other hand, the use
of the power method makes it suitable for searching of the eigenvector g associated
with �. Thus, the method of inverse iterations often complements methods for
complete eigenanalysis and serves then as a tool for eigenvector analysis. For this
purpose, one does not have to perform the iterative improvement of initial ��:
applying the power method on QA D .A � ��I/�1 suffices. See Ipsen (1997), Press
et al. (1992) and Stoer and Bulirsch (2002) for more details.

5.5 Sparse Matrices

Numerical problems arising in some applications, such as seemingly unrelated
regressions, spatial statistics, or support vector machines (Chap. III.15), are sparse:
they often involve large matrices, which have only a small number of nonzero
elements. (It is difficult to specify what exactly “small number” is.) From the
practical point of view, a matrix is sparse if it has so many zero elements that it
is worth to inspect their structure and use appropriate methods to save storage and
the number of operations. Some sparse matrices show a regular pattern of nonzero
elements (e.g., band matrices), while some exhibit a rather irregular pattern. In both
cases, solving the respective problem efficiently means to store and operate on only
nonzero elements and to keep the “fill,” the number of newly generated nonzero
elements, as small as possible.

In this section, we first discuss some of storage schemes for sparse matrices,
which could indicate what types of problems can be effectively treated as sparse
ones (Sect. 5.5.1). Later, we give examples of classical algorithms adopted for
sparse matrices (Sect. 5.5.2). Monographs introducing a range of methods for sparse
matrices include Duff et al. (1989), Hackbusch (1994) and Saad (2003).
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5.5.1 Storage Schemes for Sparse Matrices

To save storage, only nonzero elements of a sparse vector or matrix should be stored.
There are various storage schemes, which require approximately from two to five
times the number of nonzero elements to store a vector or a matrix. Unfortunately,
there is no standard scheme. We discuss here the widely used and sufficiently
general compressed (row) storage for vectors and for general and banded matrices.

The compressed form of a vector x consists of a triplet .c; i; n0/, where c is
a vector containing nonzero elements of x, i is an integer vector containing the
indices of elements stored in c and n0 specifies the number of nonzero elements.
The stored elements are related to the original vector by formula xfij g D cj for
j D 1; : : : ; n0. To give an example, the vector x D .0; 0; 3; 0;�8; 1:5; 0; 0; 0; 16; 0/
could be stored as

c D .3; 1:5;�8; 16/ ; i D .3; 6; 5; 10/ ; n0 D 4 :

Obviously, there is no need to store the elements in the original order. Therefore,
adding new nonzero elements is easy. Operations involving more sparse vectors are
simpler if we can directly access elements of one vector, that is, if one of the vectors
is “uncompressed.” For example, computing the inner product a D x>y of a sparse
vectorx stored in the compressed form with a sparse uncompressed vectory follows
the algorithm

a D 0 I for j D 1 ; : : : ; n0 W a D aC yfij g � cj :

The compressed row storage for matrices is a generalization of the vector
concept. We store the nonzero elements of A as a set of sparse row (or column)
vectors in the compressed form. The main difference is that, instead of a single
number n0, we need to store a whole vector n0 specifying the positions of the first
row elements of A in c. For example, the matrix

A D

0

B
B
B
B
B
@

A11 A12 0 0 0 0

A21 0 0 A24 0 0

0 0 0 A34 0 0

0 0 A43 0 A45 0

0 A52 0 0 0 A56

1

C
C
C
C
C
A

would be represented rowwise as

c D .A11; A12jA21; A24jA34jA43; A45jA52; A56/ ;
i D .1; 2j1; 4j4j3; 5j2; 6/ ;
n0 D .1; 3; 5; 6; 8; 10/ :
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(The sign “j” just emphasizes the end of a row and has no consequence for the
storage itself.) As in the case of vectors, the elements in each row do not have
to be ordered. Consequently, there is no direct access to a particular element Aij
stored in c. Nevertheless, retrieving a row is easy: it suffices to examine the part
of i corresponding to the i th row, which is given by n0. On the contrary, retrieving
a column involves a search through the whole storage scheme. Therefore, if a fast
access to columns is necessary, it is preferable to simultaneously store A rowwise
and columnwise.

A special type of sparse matrices are matrices with a banded structure.

Definition 2. The row bandwidth of a matrixA 2 Rm	n is defined as

w.A/ D max
1�i�m .li .A/� fi .A/C 1/ ;

where fi .A/ D minfj jAij ¤ 0g and li .A/ D maxfj jAij ¤ 0g are column indices
of the first and last nonzero elements in the i th row of A.

A banded matrix A is considered to be sparse if w.A/ 	 n. Contrary to the
general case, vector c of a banded matrix typically contains for each row all elements
between the first and last nonzero ones. Thus, the storage scheme does not have to
include in i all column indices, only one index for the first nonzero element in a row.
On the other hand, zeros within the band have to be stored as well. For example, the
matrix

A D

0

B
B
@

A11 A12 0 0 0

0 A22 0 A24 0

0 0 0 A34 0

0 0 A43 0 A45

1

C
C
A

would be represented as

c D .A11; A12jA22; 0; A24jA34jA43; 0; A45/ ;
i D .1; 2; 4; 3/ ;

n0 D .1; 3; 6; 7; 10/ :

An interesting observation is that the row bandwidth w.A/ can be influenced
by column permutations. The fill-minimizing column orderings are discussed by
Bjorck (1996) and George and Ng (1983), for instance.

Details on some other storage schemes can be found in Duff et al. (1989) and
Press et al. (1992).

5.5.2 Methods for Sparse Matrices

Methods for sparse matrices are still subject to intensive research. Moreover, the
choice of a suitable method for a given problem (and even the choice of an
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algorithm for elementary operations such as matrix-vector multiplication) depends
on many factors, including dimension, matrix type storage scheme, and compu-
tational environment (e.g., storage in virtual memory vs. auxiliary storage; vector
vs. parallel computing, etc.). Therefore, we provide only a general overview
and references to most general results. More details can be found in Bjorck
(1996), Dongarra and Eijkhout (2000), Duff et al. (1989), Hackbusch (1994) and
Saad (2003).

First, many discussed algorithms can be relatively easily adopted for banded
matrices. For example, having a row-based storage scheme, one just needs to
modify the summation limits in the row version of Cholesky decomposition.
Moreover, the positions of nonzero elements can be determined in advance
(Ng and Peyton 1993).

Second, the algorithms for general sparse matrices are more complicated.
A graph representation may be used to capture the nonzero pattern of a matrix as
well as to predict the pattern of the result (e.g., the nonzero pattern of A>A, the
Cholesky factor U, etc.). To give an overview, methods adopted for sparse matrices
include, but are not limited to, usually used decompositions (e.g., Cholesky, Ng and
Peyton 1993; LU and LDU, Mittal and Al-Kurdi 2002; QR, George and Liu 1987,
and Heath 1984), solving systems of equations by direct (Gupta 2002; Tran et al.
1996) and iterative methods (Makinson and Shah 1986; Zlatev and Nielsen 1988)
and searching eigenvalues (Bergamaschi and Putti 2002; Golub et al. 2000).
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Hari, V., Veselić, K.: On Jacobi methods for singular value decompositions. SIAM J. Sci. Stat.
Comput. 8, 741–754 (1987)

Harville, D.A.: Matrix Algebra from a Statistician’s Perspective. Springer, New York, USA (1997)
Heath, M.T.: Numerical methods for large sparse linear least squares problems. SIAM J. Sci. Stat.

Comput. 26, 497–513 (1984)
Hestenes, M.R., Stiefel, E.: Method of conjugate gradients for solving linear systems. J. Res. Nat.

Bur. Standards B 49, 409–436 (1952)
Higham, N.J.: The accuracy of solutions to triangular systems. SIAM J. Numer. Anal. 26, 1252–

1265 (1989)
Higham, N.J.: Recent Developments in Dense Numerical Linear Algebra. In: Duff, I.S., Wat-

son, G.A. (eds.) State of the Art in Numerical Analysis. Oxford University Press, Oxford (1997)
Higham, N.J.: QR factorization with complete pivoting and accurate computation of the SVD. Lin.

Algebra Appl. 309, 153–174 (2000)
Higham, N.J.: Accuracy and Stability of Numerical Algorithms. (2nd edn.), SIAM Press, Philadel-

phia, USA (2002)
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Chapter 6
The EM Algorithm

Shu Kay Ng, Thriyambakam Krishnan, and Geoffrey J. McLachlan

6.1 Introduction

The Expectation-Maximization (EM) algorithm is a broadly applicable approach
to the iterative computation of maximum likelihood (ML) estimates, useful in a
variety of incomplete-data problems. It is based on the idea of solving a succession
of simpler problems that are obtained by augmenting the original observed variables
(the incomplete data) with a set of additional variables that are unobservable or
unavailable to the user. These additional data are referred to as the missing data in
the EM framework. The EM algorithm is closely related to the ad hoc approach
to estimation with missing data, where the parameters are estimated after filling
in initial values for the missing data. The latter are then updated by their predicted
values using these initial parameter estimates. The parameters are then re-estimated,
and so on, proceeding iteratively until convergence. On each iteration of the EM
algorithm, there are two steps called the Expectation step (or the E-step) and
the Maximization step (or the M-step). The name “EM algorithm” was given by
Dempster et al. (1977) in their fundamental paper.

The EM algorithm has a number of desirable properties, such as its numerical
stability, reliable global convergence, and simplicity of implementation. However,
the EM algorithm is not without its limitations. In its basic form, the EM algorithm
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lacks of an in-built procedure to compute the covariance matrix of the parameter
estimates and it is sometimes very slow to converge. Moreover, certain complex
incomplete-data problems lead to intractable E-steps and M-steps. The first edition
of the book chapter published in 2004 covered the basic theoretical framework of
the EM algorithm and discussed further extensions of the EM algorithm to handle
complex problems. The second edition attempts to capture advanced developments
in EM methodology in recent years. In particular, there are many connections
between the EM algorithm and Markov chain Monte Carlo algorithms. Furthermore,
the key idea of the EM algorithm where a function of the log likelihood is
maximized in a iterative procedure occurs in other optimization procedures as
well, leading to a more general way of treating EM algorithm as an optimization
procedure. Capturing the above developments in the second edition has led to the
addition of new examples in the applications of the EM algorithm or its variants to
complex problems, especially in the related fields of biomedical and health sciences.

The remaining of Sect. 6.1 focusses on a brief description of ML estimation and
the incomplete-data structure of the EM algorithm. The basic theoretical framework
of the EM algorithm is presented in Sect. 6.2. In particular, the monotonicity of
the algorithm, convergence, and rate of convergence properties are systematically
examined. In Sect. 6.3, the EM methodology presented in this chapter is illustrated
in some commonly occurring situations such as the fitting of normal mixtures
and missing observations in terms of censored failure times. Another example
is provided in which the EM algorithm is used to train a mixture-of-experts
model. Consideration is given also to clarify some misconceptions about the
implementation of the E-step, and the important issue associated with the use of
the EM algorithm, namely the provision of standard errors. We discuss further
modifications and extensions to the EM algorithm in Sect. 6.4. In particular, the
extensions of the EM algorithm known as the Monte Carlo EM, ECM, ECME,
AECM, and PX–EM algorithms are considered. With the considerable attention
being given to the analysis of large data sets, as in typical data mining applications,
recent work on speeding up the implementation of the EM algorithm is discussed.
These include the IEM, SPIEM, and the use of multiresolution kd-trees. In Sect. 6.5,
the relationship of the EM algorithm to other data augmentation techniques, such
as the Gibbs sampler and MCMC methods is presented briefly. The Bayesian
perspective is also included by showing how the EM algorithm and its variants can
be adapted to compute the maximum a posteriori (MAP) estimate. We conclude the
chapter with a brief account of the applications of the EM algorithm in such topical
and interesting areas as bioinformatics and health sciences.

6.1.1 Maximum Likelihood Estimation

Maximum likelihood estimation and likelihood-based inference are of central
importance in statistical theory and data analysis. Maximum likelihood estimation
is a general-purpose method with attractive properties. It is the most-often used
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estimation technique in the frequentist framework, and it can be equally applied to
find the mode of the posterior distribution in a Bayesian framework (Chap. III.26).
Often Bayesian solutions are justified with the help of likelihoods and maximum
likelihood estimates (MLE), and Bayesian solutions are similar to penalized likeli-
hood estimates. Maximum likelihood estimation is an ubiquitous technique and is
used extensively in every area where statistical techniques are used.

We assume that the observed data y has probability density function (p.d.f.)
g.y I � /, where � is the vector containing the unknown parameters in the pos-
tulated form for the p.d.f. of Y . Our objective is to maximize the likelihood
L.� / D g.yI � / as a function of � , over the parameter space˝ . That is,

@L.� /=@� D 0;

or equivalently, on the log likelihood,

@ logL.� /=@� D 0: (6.1)

The aim of ML estimation is to determine an estimate O� , so that it defines a
sequence of roots of (6.1) that is consistent and asymptotically efficient. Such a
sequence is known to exist under suitable regularity conditions (Cramér 1946).
With probability tending to one, these roots correspond to local maxima in the
interior of ˝ . For estimation models in general, the likelihood usually has a global
maximum in the interior of ˝ . Then typically a sequence of roots of (6.1) with the
desired asymptotic properties is provided by taking O� to be the root that globally
maximizes L.� /; in this case, O� is the MLE. We shall henceforth refer to O� as the
MLE, even in situations where it may not globally maximize the likelihood. Indeed,
in some of the examples on mixture models (McLachlan and Peel 2000, Chap. 3),
the likelihood is unbounded. However, for these models there may still exist under
the usual regularity conditions a sequence of roots of (6.1) with the properties of
consistency, efficiency, and asymptotic normality (McLachlan and Basford 1988,
Chap. 12).

When the likelihood or log likelihood is quadratic in the parameters as in the
case of independent normally distributed observations, its maximum can be obtained
by solving a system of linear equations in parameters. However, often in practice
the likelihood function is not quadratic giving rise to nonlinearity problems in ML
estimation. Examples of such situations are: (a) models leading to means which are
nonlinear in parameters; (b) despite a possible linear structure, the likelihood is not
quadratic in parameters due to, for instance, non-normal errors, missing data, or
dependence.

Traditionally ML estimation in these situations has been carried out using
numerical iterative methods of solution of equations such as the Newton–Raphson
(NR) method and its variants like Fisher’s method of scoring. Under reasonable
assumptions on L.� / and a sufficiently accurate starting value, the sequence of
iterates f� .k/g produced by the NR method enjoys local quadratic convergence to
a solution � � of (6.1). Quadratic convergence is regarded as the major strength of
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the NR method. But in applications, these methods could be tedious analytically
and computationally even in fairly simple cases; see McLachlan and Krishnan
(2008, Sect. 1.3) and Meng and van Dyk (1997). The EM algorithm offers an
attractive alternative in a variety of settings. It is now a popular tool for iterative
ML estimation in a variety of problems involving missing data or incomplete
information.

6.1.2 Idea Behind the EM Algorithm: Incomplete-Data
Structure

In the application of statistical methods, one is often faced with the problem of
estimation of parameters when the likelihood function is complicated in structure
resulting in difficult-to-compute maximization problems. This difficulty could
be analytical or computational or both. Some examples are grouped, censored
or truncated data, multivariate data with some missing observations, multiway
frequency data with a complex cell probability structure, and data from mixtures
of distributions. In many of these problems, it is often possible to formulate an
associated statistical problem with the same parameters with “augmented data” from
which it is possible to work out the MLE in an analytically and computationally
simpler manner. The augmented data could be called the “complete data” and
the available data could be called the “incomplete data”, and the corresponding
likelihoods, the “complete-data likelihood” and the “incomplete-data likelihood”,
respectively. The EM Algorithm is a generic method for computing the MLE of
an incomplete-data problem by formulating an associated complete-data problem,
and exploiting the simplicity of the MLE of the latter to compute the MLE of
the former. The augmented part of the data could also be called “missing data”,
with respect to the actual incomplete-data problem on hand. The missing data
need not necessarily be missing in the practical sense of the word. It may just
be a conceptually convenient technical device. Thus the phrase “incomplete data”
is used quite broadly to represent a variety of statistical data models, including
mixtures, convolutions, random effects, grouping, censoring, truncated and missing
observations.

A brief history of the EM algorithm can be found in McLachlan and Krishnan
(2008, Sect. 1.8). In their fundamental paper, Dempster et al. (1977) synthesized
earlier formulations of this algorithm in many particular cases and presented a
general formulation of this method of finding MLE in a variety of problems. Since
then the EM algorithm has been applied in a staggering variety of general statistical
problems such as resolution of mixtures, multiway contingency tables, variance
components estimation, factor analysis, as well as in specialized applications in such
areas as genetics, medical imaging, and neural networks.
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6.2 Basic Theoretical Framework of the EM Algorithm

6.2.1 The E- and M-Steps

Within the incomplete-data framework of the EM algorithm, we let x denote the
vector containing the complete data and we let z denote the vector containing the
missing data. Even when a problem does not at first appear to be an incomplete-data
one, computation of the MLE is often greatly facilitated by artificially formulating it
to be as such. This is because the EM algorithm exploits the reduced complexity of
ML estimation given the complete data. For many statistical problems the complete-
data likelihood has a nice form.

We let gc.xI � / denote the p.d.f. of the random vector X corresponding to the
complete-data vector x. Then the complete-data log likelihood function that could
be formed for � if x were fully observable is given by

logLc.� / D loggc.xI � /:

The EM algorithm approaches the problem of solving the incomplete-data likeli-
hood equation (6.1) indirectly by proceeding iteratively in terms of logLc.� /. As
it is unobservable, it is replaced by its conditional expectation given y , using the
current fit for � . On the .k C 1/th iteration of the EM algorithm,
E-Step: ComputeQ.� I � .k//, where

Q.� I � .k// D E
�

.k/flogLc.� /jyg: (6.2)

M-Step: Choose � .kC1/ to be any value of � 2 ˝ that maximizesQ.� I � .k//:

Q.� .kC1/I � .k// � Q.� I � .k// 8� 2 ˝ : (6.3)

The E- and M-steps are alternated repeatedly until convergence, which may be
determined, for instance, by using a suitable stopping rule like k� .kC1/�� .k/k < "
for some " > 0 with some appropriate norm k � k or the difference L.� .kC1// �
L.� .k// changes by an arbitrarily small amount in the case of convergence of the
sequence of likelihood values fL.� .k//g.

It can be shown that both the E- and M-steps will have particularly simple forms
when gc.xI � / is from an exponential family:

gc.xI � / D b.x/ expfc>.� /t.x/g=a.� /; (6.4)

where t.x/ is a k � 1 .k � d/ vector of complete-data sufficient statistics and
c.� / is a k � 1 vector function of the parameter vector � , and a.� / and b.x/ are
scalar functions. Here d is the number of unknown parameters in � . Members of
the exponential family include most common distributions, such as the multivariate
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normal, Poisson, multinomial and others. For exponential families, the E-step can
be written as

Q.� I � .k// D E
�

.k/ .log b.x/jy/C c>.� /t.k/ � log a.� /;

where t.k/ D E
�

.k/ft.X/jyg is an estimator of the sufficient statistic. The
M-step maximizes the Q-function with respect to � ; but E

�
.k/ .log b.x/jy/ does

not depend on � . Hence it is sufficient to write:
E–Step: Compute

t.k/ D E
�

.k/ft.X/jyg:
M–Step: Compute

� .kC1/ D arg max
�
Œc>.� /t.k/ � log a.� /�:

In Example 2 of Sect. 6.3.2, the complete-data p.d.f. has an exponential family
representation. We shall show how the implementation of the EM algorithm can
be simplified.

6.2.2 Generalized EM Algorithm

Often in practice, the solution to the M-step exists in closed form. In those instances
where it does not, it may not be feasible to attempt to find the value of � that
globally maximizes the function Q.� I � .k//. For such situations, Dempster et al.
(1977) defined a generalized EM (GEM) algorithm for which the M-Step requires
� .kC1/ to be chosen such that

Q.� .kC1/I � .k// � Q.� .k/I � .k// (6.5)

holds. That is, one chooses � .kC1/ to increase the Q-function,Q.� I � .k//, over its
value at � D � .k/, rather than to maximize it over all � 2 ˝ in (6.3).

It is of interest to note that the EM (GEM) algorithm as described above
implicitly defines a mapping � ! M .� /, from the parameter space ˝ to itself
such that

� .kC1/ DM .� .k// .k D 0; 1; 2; : : :/:
The function M is called the EM mapping. We shall use this function in our
subsequent discussion on the convergence property of the EM algorithm.

6.2.3 Convergence of the EM Algorithm

Let k.xjy I � / D gc.xI � /=g.yI � / be the conditional density ofX givenY D y .
Then the complete-data log likelihood can be expressed by
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logLc.� / D loggc.xI � / D logL.� /C log k.xjyI � /: (6.6)

Taking expectations on both sides of (6.6) with respect to the conditional distribution
xjy using the fit � .k/ for � , we have

Q.� I � .k// D logL.� /CH.� I � .k//; (6.7)

whereH.� I � .k// D E
�

.k/flogk.X jyI � /jyg: It follows from (6.7) that

logL.� .kC1// � logL.� .k// D fQ.� .kC1/I � .k// �Q.� .k/I � .k//g
�fH.� .kC1/I � .k//�H.� .k/I � .k//g:(6.8)

By Jensen’s inequality and the concavity of the logarithmic function, we have
H.� .kC1/I � .k// � H.� .k/I � .k//. From (6.3) or (6.5), the first difference on
the right-hand side of (6.8) is nonnegative. Hence, the likelihood function is not
decreased after an EM or GEM iteration:

L.� .kC1// � L.� .k// .k D 0; 1; 2; : : :/: (6.9)

A consequence of (6.9) is the self-consistency of the EM algorithm. Thus for a
bounded sequence of likelihood values fL.� .k//g, L.� .k// converges monotoni-
cally to some L�. Now questions naturally arise as to the conditions under which
L� corresponds to a stationary value and when this stationary value is at least a local
maximum if not a global maximum. Examples are known where the EM algorithm
converges to a local minimum and to a saddle point of the likelihood (McLachlan and
Krishnan 2008, Sect. 3.6). There are also questions of convergence of the sequence
of EM iterates, that is, of the sequence of parameter values f� .k/g to the MLE.

Wu (1983) investigates in detail several convergence issues of the EM algorithm
in its generality, and their relationship to other optimization methods. He shows
that when the complete data are from a curved exponential family with compact
parameter space, and when the Q-function satisfies a certain mild differentiability
condition, then any EM sequence converges to a stationary point (not necessarily
a maximum) of the likelihood function. If L.� / has multiple stationary points,
convergence of the EM sequence to either type (local or global maximizers, saddle
points) depends upon the starting value � .0/ for � . If L.� / is unimodal in ˝ and
satisfies the same differentiability condition, then any sequence f� .k/gwill converge
to the unique MLE of � , irrespective of its starting value.

To be more specific, one of the basic convergence results of the EM algorithm is
the following:

logL.M .� // � logL.� /

with equality if and only if

Q.M .� /I � / D Q.� I � / and k.xjyI M .� // D k.xjyI � /:
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This means that the likelihood function increases at each iteration of the EM
algorithm, until the condition for equality is satisfied and a fixed point of the iteration
is reached. If O� is an MLE, so that logL. O� / � logL.� /; 8 � 2 ˝ , then
logL.M . O� // D logL. O� /. Thus MLE are fixed points of the EM algorithm. If we
have the likelihood function bounded (as might happen in many cases of interest),
the EM sequence f� .k/g yields a bounded nondecreasing sequence flogL.� .k//g
which must converge as k !1.

The theorem does not quite imply that fixed points of the EM algorithm are in fact
MLEs. This is however true under fairly general conditions. For proofs and other
details, see McLachlan and Krishnan (2008, Sect. 3.5) and Wu (1983). Furthermore,
if a sequence of EM iterates f� .k/g satisfy the conditions

1. Œ@Q.� I � .k//=@� �
�D� .kC1/ D 0, and

2. The sequence f� .k/g converges to some value � � and log k.xjyI � / is suffi-
ciently smooth,

then we have Œ@ logL.� /=@� ��D� � D 0; see Little and Rubin (2002) and Wu
(1983). Thus, despite the earlier convergence results, there is no guarantee that the
convergence will be to a global maximum. For likelihood functions with multiple
maxima, convergence will be to a local maximum which depends on the starting
value � .0/.

In some estimation problems with constrained parameter spaces, the parameter
value maximizing the log likelihood is on the boundary of the parameter space. Here
some elements of the EM sequence may lie on the boundary, thus not fulfilling Wu’s
conditions for convergence. Nettleton (1999) extends Wu’s convergence results to
the case of constrained parameter spaces and establishes some stricter conditions to
guarantee convergence of the EM likelihood sequence to some local maximum and
the EM parameter iterates to converge to the MLE.

6.2.4 Rate of Convergence of the EM Algorithm

The rate of convergence of the EM algorithm is usually slower than the quadratic
convergence typically available with Newton-type methods. Dempster et al. (1977)
show that the rate of convergence of the EM algorithm is linear and the rate depends
on the proportion of information in the observed data. Thus in comparison to the
formulated complete-data problem, if a large portion of data is missing, convergence
can be quite slow.

Recall the EM mappingM defined in Sect. 6.2.2. If� .k/ converges to some point
� � and M .� / is continuous, then � � is a fixed point of the algorithm; that is, � �
must satisfy � � D M .� �/: By a Taylor series expansion of � .kC1/ D M .� .k//

about the point � .k/ D � �, we have in a neighborhood of � � that

� .kC1/ � � � � J .� �/.� .k/ � � �/;
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where J .� / is the d � d Jacobian matrix for M .� / D .M1.� /; : : : ;Md .� //
>,

having .i; j /th element rij .� / equal to

rij .� / D @Mi.� /=@	j ;

where 	j D .� /j and d is the dimension of � . Thus, in a neighborhood of � �, the
EM algorithm is essentially a linear iteration with rate matrix J .��/, since J.� �/
is typically nonzero. For this reason, J .� �/ is often referred to as the matrix rate
of convergence. For vector � , a measure of the actual observed convergence rate is
the global rate of convergence, which is defined as

r D lim
k!1 k �

.kC1/ � � � k = k � .k/ � � � k;

where k � k is any norm on d -dimensional Euclidean space <d . It is noted that the
observed rate of convergence equals the largest eigenvalue of J .� �/ under certain
regularity conditions (Meng and van Dyk 1997). As a large value of r implies slow
convergence, the global speed of convergence is defined to be s D 1 � r (Meng
1994); see also McLachlan and Krishnan (2008, Sect. 3.9).

6.2.5 Initialization of the EM Algorithm

The EM algorithm will converge very slowly if a poor choice of initial value � .0/

were used. Indeed, in some cases where the likelihood is unbounded on the edge
of the parameter space, the sequence of estimates f� .k/g generated by the EM
algorithm may diverge if � .0/ is chosen too close to the boundary. Also, with
applications where the likelihood equation has multiple roots corresponding to local
maxima, the EM algorithm should be applied from a wide choice of starting values
in any search for all local maxima. A variation of the EM algorithm (Wright and
Kennedy 2000) uses interval analysis methods to locate multiple stationary points
of a log likelihood within any designated region of the parameter space; see also
McLachlan and Krishnan (2008, Sect. 7.9).

Different ways of specification of initial value have been considered specifically
within the mixture models framework. With the EMMIX program (McLachlan and
Peel 2000, pp. 343–344), an initial parameter value can be obtained automatically
using either random partitions of the data, k-means clustering algorithm, or
hierarchical clustering methods. With random starts, the effect of the central limit
theorem tends to have the component parameters initially being similar at least in
large samples. With the EMMIX program, there is an additional option for random
starts to reduce this effect by first selecting a random subsample from the data, which
is then randomly assigned to the g components. As described in McLachlan and Peel
(2000, Sect. 2.12), the subsample has to be sufficiently large to ensure that the first
M-step is able to produce a nondegenerate estimate of the parameter vector � .
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Ueda and Nakano (1998) considered a deterministic annealing EM (DAEM)
algorithm in order for the EM iterative process to be able to recover from a poor
choice of starting value. They proposed using the principle of maximum entropy and
the statistical mechanics analogy, whereby a parameter, say � , is introduced with
1=� corresponding to the “temperature” in an annealing sense. With their DAEM
algorithm, the E-step is effected by averaging logLc.� / over the distribution taken
to be proportional to that of the current estimate of the conditional density of
the complete data (given the observed data) raised to the power of � ; see for
example McLachlan and Peel (2000, pp. 58–60). Recently, Pernkopf and Bouchaffra
(2005) combined genetic algorithms (GA) and the EM algorithm for fitting normal
mixtures, where the proposed algorithm is less sensitive to its initialization and
enables escaping from local optimal solutions.

6.3 Examples of the EM Algorithm

6.3.1 Example 1: Normal Mixtures

One of the classical formulation of the statistical pattern recognition involves a
mixture of p-dimensional normal distributions with a finite number, say g, of
components in some unknown proportions �1; : : : ; �g that sum to one. Here, we
have n independent observations y1;y2; : : : ; yn from the mixture density

f .y I� / D
gX

iD1
�i�.yI�i ;˙ i /;

where �.yI �i ;˙ i / denotes the p-dimensional normal density function with mean
vector �i and covariance matrix ˙ i .i D 1; : : : ; g/. The vector � of unknown
parameters consists of the mixing proportions �1; : : : ; �g�1, the elements of the
component means �i , and the distinct elements of the component-covariance
matrices ˙ i . The problem of estimating � is an instance of the problem of
resolution of mixtures or in pattern recognition parlance an “unsupervised learning
problem”.

Consider the corresponding “supervised learning problem”, where observations
on the random vector X D .Z ;Y / are x1 D .z1;y1/; x2 D .z2;y2/; : : : ;
xn D .zn;yn/. Here zj is the unobservable component-indicator vector, where the
i th element zij of zj is taken to be one or zero according as the j th observation
does or does not come from the i th component .j D 1; : : : ; n/. The MLE problem
is far simpler here with easy closed-form MLE. The classificatory vectors z D
.z>1 ; : : : ; z>n /> could be called the missing data. The unsupervised learning problem
could be called the incomplete-data problem and the supervised learning problem
the complete-data problem. A relatively simple iterative method for computing the
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MLE for the unsupervised problem could be given exploiting the simplicity of the
MLE for the supervised problem. This is the essence of the EM algorithm.

The complete-data log likelihood function for � is given by

logLc.� / D
gX

iD1

nX

jD1
zij flog�i C log�.yj I�i ;˙ i /g: (6.10)

Now the EM algorithm for this problem starts with some initial value � .0/ for the
parameters. As logLc.� / in (6.10) is a linear function of the unobservable data z
for this problem, the calculation of Q.� I � .k// on the E-step is effected simply
by replacing zij by its current conditional expectation given the observed data y ,
which is the usual posterior probability of the j th observation arising from the i th
component

�
.k/
ij D E� .k/ .Zij jy/ D

�
.k/
i �.yj I �.k/i ;˙ .k/

i /
Pg

lD1 �
.k/

l �.yj I �.k/l ;˙ .k/

l /
:

From (6.10), it follows that

Q.� I� .k// D
gX

iD1

nX

jD1
�
.k/
ij flog�i C log�.yj I�i ;˙ i /g: (6.11)

For mixtures with normal component densities, it is computationally advantageous
to work in terms of the sufficient statistics (Ng and McLachlan 2003) given by

T
.k/
i1 D

nX

jD1
�
.k/
ij

T
.k/
i2 D

nX

jD1
�
.k/
ij yj

T
.k/
i3 D

nX

jD1
�
.k/
ij yjy

T
j : (6.12)

By differentiating (6.11) with respect to � on the basis of the sufficient statistics in
(6.12), the M -step exists in closed form as

�
.kC1/
i D T

.k/
i1 =n

�
.kC1/
i D T .k/

i2 =T
.k/
i1

˙
.kC1/
i D fT .k/

i3 � T .k/i1

�1
T
.k/
i2 T

.k/
i2

T g=T .k/i1 : (6.13)



150 S.K. Ng et al.

The E- and M-steps are then iterated until convergence. Unlike in the MLE for
the supervised problem, in the M-step of the unsupervised problem, the posterior
probabilities �ij , which are between 0 and 1, are used. The mean vectors �i and

the covariance matrix ˙ i .i D 1; : : : ; g/ are computed using the �.k/ij as weights in
weighted averages.

In the case of unrestricted component-covariance matrices ˙ i , L.� / is
unbounded, as each data point gives rise to a singularity on the edge of the parameter
space (McLachlan and Peel 2000, Sect. 3.8). In practice, the component-covariance
matrices ˙ i can be restricted to being the same, ˙ i D ˙ .i D 1; : : : ; g/, where
˙ is unspecified. In this case of homoscedastic normal components, the updated
estimate of the common component-covariance matrix ˙ is given by

˙ .kC1/ D
gX

iD1
T
.k/
i1 ˙

.kC1/
i =n;

where ˙ .kC1/
i is given by (6.13), and the updates of �i and �i are as above in the

heteroscedastic case.

6.3.2 Example 2: Censored Failure-Time Data

In survival or reliability analyses, the focus is the distribution of time T to the
occurrence of some event that represents failure (for computational methods in
survival analysis see also Chap. III.27). In many situations, there will be individuals
who do not fail at the end of the study, or individuals who withdraw from the study
before it ends. Such observations are censored, as we know only that their failure
times are greater than particular values. We let y D .c1; ı1; : : : ; cn; ın/> denote the
observed failure-time data, where ıj D 0 or 1 according as the j th observation Tj is
censored or uncensored at cj .j D 1; : : : ; n/. That is, if Tj is uncensored, tj D cj ,
whereas if tj > cj , it is censored at cj .

In the particular case where the p.d.f. for T is exponential with mean �, we have

f .t I �/ D ��1 exp.�t=�/I.0;1/.t/ .� > 0/; (6.14)

where the indicator function I.0;1/.t/ D 1 for t > 0 and is zero elsewhere. The
unknown parameter vector � is now a scalar, being equal to �. Denote by s the
number of uncensored observations. By re-ordering the data so that the uncensored
observations precede censored observations. It can be shown that the log likelihood
function for � is given by

logL.�/ D �s log� �
nX

jD1
cj =�: (6.15)
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By equating the derivative of (6.15) to zero, the MLE of � is

O� D
nX

jD1
cj =s: (6.16)

Thus there is no need for the iterative computation of O�. But in this simple case,
it is instructive to demonstrate how the EM algorithm would work and how its
implementation could be simplified as the complete-data log likelihood belongs to
the regular exponential family (see Sect. 6.2.1).

The complete-data vector x can be declared to be x D .t1; : : : ; ts; z>/>; where
z D .tsC1; : : : ; tn/> contains the unobservable realizations of the n � s censored
random variables. The complete-data log likelihood is given by

logLc.�/ D �n log� �
nX

jD1
tj =�: (6.17)

As logLc.�/ is a linear function of the unobservable data z, the E-step is effected
simply by replacing z by its current conditional expectation given y. By the lack of
memory of the exponential distribution, the conditional distribution of Tj �cj given
that Tj > cj is still exponential with mean �. So, we have

E�.k/.Tj jy/ D E�.k/ .Tj jTj > cj / D cj C �.k/ (6.18)

for j D s C 1; : : : ; n: Accordingly, the Q-function is given by

Q.�I �.k// D �n log�� ��1
8
<

:

nX

jD1
cj C .n � s/�.k/

9
=

;
:

In the M-step, we have

�.kC1/ D
8
<

:

nX

jD1
cj C .n � s/�.k/

9
=

;

,

n: (6.19)

On putting �.kC1/ D �.k/ D �� in (6.19) and solving for ��, we have for s < n

that �� D O�. That is, the EM sequence f�.k/g has the MLE O� as its unique limit
point, as k !1; see McLachlan and Krishnan (2008, Sect. 1.5.2).

From (6.17), it can be seen that logLc.�/ has the exponential family form (6.4)
with canonical parameter ��1 and sufficient statistic t.X/ D Pn

jD1 Tj : Hence,

from (6.18), the E-step requires the calculation of t.k/ D Pn
jD1 cj C .n � s/�.k/.

The M-step then yields �.kC1/ as the value of � that satisfies the equation
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t.k/ D E�ft.X/g D n�:

This latter equation can be seen to be equivalent to (6.19), as derived by direct
differentiation of the Q-function.

6.3.3 Example 3: Mixture-of-Experts Models

Among the various kinds of modular networks, mixtures-of-experts (Jacobs et al.
1991) and hierarchical mixtures-of-experts (Jordan and Jacobs 1994) are of much
interest due to their wide applicability and the advantage of fast learning via the
EM algorithm (Jordan and Xu 1995; Ng and McLachlan 2004a). In mixture-of-
experts (ME) networks, there are a finite number, say m, of modules, referred to as
expert networks. These expert networks approximate the distribution of the output
yj within each region of the input space. The expert network maps its input xj to
an output, the density fh.yj jxj I�h/, where �h is a vector of unknown parameters
for the hth expert network. It is assumed that different experts are appropriate in
different regions of the input space. The gating network provides a set of scalar
coefficients �h.xj I˛/ that weight the contributions of the various experts, where ˛
is a vector of unknown parameters in the gating network. Therefore, the final output
of the ME neural network is a weighted sum of all the output vectors produced by
expert networks:

f .yj jxj I � / D
mX

hD1
�h.xj I ˛/fh.yj jxj I �h/; (6.20)

where � D .˛>;�>1 ; : : : ;�>m/> is the vector of all the unknown parameters. The
output of the gating network is modeled by the softmax function as

�h.xI˛/ D exp.v>h x/Pm
lD1 exp.v>l x/

.h D 1; : : : ; m/; (6.21)

where vh is the weight vector of the hth expert in the gating network and vm D 0.
It is implicitly assumed that the first element of x is one, to account for an intercept
term. It follows from (6.21) that ˛ contains the elements in vh .h D 1; : : : ; m � 1/.

To apply the EM algorithm to the ME networks, we introduce the indicator
variables zhj , where zhj is one or zero according to whether yj belongs or does
not belong to the hth expert (Ng and McLachlan 2004a). The complete-data log
likelihood for � is given by

logLc.� / D
nX

jD1

mX

hD1
zhj flog�h.xj I˛/C logfh.yj jxj I �h/g: (6.22)
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On the .k C 1/th iteration, the E-step calculates the Q-function as

Q.� I � .k// D E
�

.k/flogLc.� /jy; xg

D
nX

jD1

mX

hD1
E
�

.k/ .Zhj jy ;x/flog�h.xj I˛/C logfh.yj jxj I�h/g

D Q˛ CQ�; (6.23)

where the Q-function can be decomposed into two terms with respect to ˛ and
�h .h D 1; : : : ; m/, respectively, as

Q˛ D
nX

jD1

mX

hD1
�
.k/

hj log�h.xj I˛/; (6.24)

and

Q� D
nX

jD1

mX

hD1
�
.k/

hj logfh.yj jxj I�h/; (6.25)

where

�
.k/

hj D E� .k/ .Zhj jy;x/

D �h.xj I˛.k//fh.yj jxj I�.k/h /=
mX

rD1
�r .xj I˛.k//fr .yj jxj I�.k/r /

is the current estimated posterior probability that yj belongs to the hth expert (h D
1; : : : ; m).

Hence, the M-step consists of two separate maximization problems. With the
gating network (6.21), the updated estimate of ˛.kC1/ is obtained by solving

nX

jD1

 

�
.k/

hj �
exp.v>h xj /

1CPm�1
lD1 exp.v>l xj /

!

xj D 0 .h D 1; : : : ; m � 1/; (6.26)

which is a set of non-linear equations with .m� 1/p unknown parameters, where p
is the dimension of xj .j D 1; : : : ; n/. It can be seen from (6.26) that the non-linear
equation for the hth expert depends not only on the parameter vector vh, but also on
other parameter vectors vl .l D 1; : : : ; m � 1/. In other words, each parameter
vector vh cannot be updated independently. With the iterative reweighted least
squares (IRLS) algorithm presented in Jordan and Jacobs (1994), the independence
assumption on these parameter vectors was used implicitly and each parameter
vector was updated independently and in parallel as
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v.sC1/h D v.s/h � �˛
 
@2Q˛

@vhv>h

!�1
@Q˛

@vh
.h D 1; : : : ; m � 1/; (6.27)

where �˛ � 1 is the learning rate (Jordan and Xu 1995). That is, there are m � 1
sets of non-linear equations each with p variables instead of a set of non-linear
equations with .m� 1/p variables. In Jordan and Jacobs (1994), the iteration (6.27)
is referred to as the inner loop of the EM algorithm. This inner loop is terminated
when the algorithm has converged or the algorithm has still not converged after
some pre-specified number of iterations. The above independence assumption on
the parameter vectors is equivalent to the adoption of an incomplete Hessian matrix
of the Q-function (Ng and McLachlan 2004a).

The densities fh.yj jxj I�h/ .h D 1; : : : ; m/ can be assumed to belong to the
exponential family (Jordan and Jacobs 1994). In this case, the ME model (6.20) will
have the form of a mixture of generalized linear models (McLachlan and Peel 2000,
Sect. 5.13). The updated estimate of � .kC1/

h is obtained by solving

nX

jD1
�
.k/

hj @ logfh.yj jxj I�h/=@�h D 0 .h D 1; : : : ; m/: (6.28)

Equation (6.28) can be solved separately for each expert .h D 1; : : : ; m/ when
the density fh.yj jxj I�h/ is assumed to be normally distributed. With some other
members of the exponential family such as multinomial distribution, (6.28) requires
iterative methods to solve; see Example 5 in Sect. 6.4.2.

6.3.4 Misconceptions on the E-Step

Examples 1 to 3 may have given an impression that the E-step consists in simply
replacing the missing data by their conditional expectations given the observed data
at current parameter values. However, this will be valid only if the complete-data
log likelihood logLc.� / were a linear function of the missing data z. Unfortunately,
it is not always true in general. Rather, as should be clear from the general theory
described in Sect. 6.2.1, the E-step consists in replacing logLc.� / by its conditional
expectation given the observed data at current parameter values. Flury and Zoppé
(2000) give an example to demonstrate the point that the E-step does not always
consist in plugging in “estimates” for missing data. Similar misconceptions exist in
the applications of the EM algorithm to train neural networks. Let

.x>1 ;y>1 />; : : : ; .x>n ;y>n /> (6.29)

denote the n examples available for training a neural network, where xj is an input
feature vector and yj is an output vector .j D 1; : : : ; n/. In the training process, the
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unknown parameters in the neural network, denoted by a vector� , are inferred from
the observed training data given by (6.29). We let x D .x>1 ; : : : ;x>n /> and y D
.y>1 ; : : : ;y>n />. In order to estimate � by the statistical technique of maximum
likelihood, we have to impose a statistical distribution for the observed data (6.29),
which will allow us to form a log likelihood function, logL.� I y; x/, for � . In
general, we proceed conditionally on the values for the input variable x; that is, we
shall consider the specification of the conditional distribution of the random variable
Y corresponding to the observed outputy given the input x; see, for example, (6.20)
in Sect. 6.3.3.

Within the EM framework, the unknown vector � is estimated by consideration
of the complete-data log likelihood formed on the basis of both the observed and the
missing data z, logLc.� I y ; z; x/. On the .kC 1/th iteration of the EM algorithm,
the E-step computes the Q-function, which is given by

Q.� I � .k// D E
�

.k/flogLc.� I y ; z; x/jy; xg: (6.30)

In some instances, a modified form of the EM algorithm is being used unwittingly
in that on the E-step, theQ-function is effected simply by replacing the random vec-
tor z by its conditional expectation. That is, (6.30) is computed by the approximation

Q.� I � .k// � logLc.� I y; Qz; x/; (6.31)

where
Qz D E

�
.k/fZ jy; xg:

As described above, the approximation (6.31) will be invalid when the complete-
data log likelihood is non-linear in z, for example, in the multilayer perceptron
networks or the radial basis function networks with regression weights; see Ng and
McLachlan (2004a).

6.3.5 Provision of Standard Errors

Several methods have been suggested in the EM literature for augmenting the EM
computation with some computation for obtaining an estimate of the covariance
matrix of the computed MLE. Many such methods attempt to exploit the com-
putations in the EM steps. These methods are based on the observed information
matrix I. O� I y/, the expected information matrix I.� / or on resampling methods.
Baker (1992) reviews such methods and also develops a method for computing
the observed information matrix in the case of categorical data. Jamshidian and
Jennrich (2000) review more recent methods including the Supplemented EM
(SEM) algorithm of Meng and Rubin (1991) and suggest some newer methods based
on numerical differentiation.

Theoretically one may compute the asymptotic covariance matrix by inverting
the observed or expected information matrix at the MLE. In practice, however, this
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may be tedious analytically or computationally, defeating one of the advantages of
the EM approach. Louis (1982) extracts the observed information matrix in terms
of the conditional moments of the gradient and curvature of the complete-data
log likelihood function introduced within the EM framework. These conditional
moments are generally easier to work out than the corresponding derivatives of the
incomplete-data log likelihood function. An alternative approach is to numerically
differentiate the likelihood function to obtain the Hessian. In an EM-aided differ-
entiation approach, Meilijson (1989) suggests perturbation of the incomplete-data
score vector to compute the observed information matrix. In the SEM algorithm
(Meng and Rubin 1991), numerical techniques are used to compute the derivative
of the EM operatorM to obtain the observed information matrix. The basic idea is
to use the fact that the rate of convergence is governed by the fraction of the missing
information to find the increased variability due to missing information to add to
the assessed complete-data covariance matrix. More specifically, let V denote the
asymptotic covariance matrix of the MLE O� . Meng and Rubin (1991) show that

I�1. O� I y/ D I�1c . O� I y/C
V ; (6.32)

where 
V D fId � J . O� /g�1J . O� /I�1c . O� I y/ and Ic. O� I y/ is the conditional
expected complete-data information matrix, and where Id denotes the d � d
identity matrix. Thus the diagonal elements of 
V give the increases in the
asymptotic variances of the components of O� due to missing data. For a wide
class of problems where the complete-data density is from the regular exponential
family, the evaluation of Ic. O� I y/ is readily facilitated by standard complete-data
computations (McLachlan and Krishnan 2008, Sect. 4.5). The calculation of J . O� /
can be readily obtained by using only EM code via numerically differentiation of
M .� /. Let O� D � .kC1/ where the sequence of EM iterates has been stopped
according to a suitable stopping rule. Let Mi be the i th component of M .� /. Let
u.j / be a column d -vector with the j th coordinate 1 and others 0. With a possibly
different EM sequence � .k/, let rij be the .i; j /th element of J . O� /, we have

r
.k/
ij D

MiŒ O� C .� .k/
j � O� ju.j //� � O� i

�
.k/
j � O� j

:

Use a suitable stopping rule like jr.kC1/ij � r.k/ij j <
p
� to stop each of the sequences

rij .i; j D 1; 2; : : : ; d / and take r�ij D r
.kC1/
ij ; see McLachlan and Krishnan (2008,

Sect. 4.5).
It is important to emphasize that estimates of the covariance matrix of the MLE

based on the expected or observed information matrices are guaranteed to be valid
inferentially only asymptotically. In particular for mixture models, it is well known
that the sample size n has to be very large before the asymptotic theory of maximum
likelihood applies. A resampling approach, the bootstrap (Efron 1979; Efron and
Tibshirani 1993), has been considered to tackle this problem; see also Chernick
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(2008) for recent developments of the bootstrap in statistics. Basford et al. (1997)
compared the bootstrap and information-based approaches for some normal mixture
models and found that unless the sample size was very large, the standard errors
obtained by an information-based approach were too unstable to be recommended.

The bootstrap is a powerful technique that permits the variability in a random
quantity to be assessed using just the data at hand. Standard error estimation of O�
may be implemented according to the bootstrap as follows. Further discussion on
bootstrap and resampling methods can be found in Chaps. III.17 and III.18 of this
handbook.

1. A new set of data, y�, called the bootstrap sample, is generated according to OF ,
an estimate of the distribution function of Y formed from the original observed
data y. That is, in the case where y contains the observed values of a random
sample of size n, y� consists of the observed values of the random sample

Y �1 ; : : : ; Y �n
i:i:d:� OF ;

where the estimate OF (now denoting the distribution function of a single
observation Y j ) is held fixed at its observed value.

2. The EM algorithm is applied to the bootstrap observed data y� to compute the
MLE for this data set, O� �.

3. The bootstrap covariance matrix of O�� is given by

Cov�. O� �/ D E�Œf O� � � E�. O� �/gf O�� � E�. O� �/g>�; (6.33)

where E� denotes expectation over the bootstrap distribution specified by OF .

The bootstrap covariance matrix can be approximated by Monte Carlo methods.
Steps 1 and 2 are repeated independently a number of times (say, B) to give
B independent realizations of O� �, denoted by O� �1 ; : : : ; O�

�
B . Then (6.33) can be

approximated by the sample covariance matrix of these B bootstrap replications to
give

Cov�. O� �/ �
BX

bD1
. O� �b � O�

�
/. O� �b � O�

�
/>=.B � 1/; (6.34)

where O�
�
D PB

bD1 O�
�
b =B: The standard error of the i th element of O� can be

estimated by the positive square root of the i th diagonal element of (6.34). It has
been shown that 50 to 100 bootstrap replications are generally sufficient for standard
error estimation (Efron and Tibshirani 1993).

In Step 1 above, the nonparametric version of the bootstrap would take OF to
be the empirical distribution function formed from the observed data y . Situations
where we may wish to use the latter include problems where the observed data are
censored or are missing in the conventional sense.
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6.4 Variations on the EM Algorithm

In this section, further modifications and extensions to the EM algorithm are
considered. In general, there are extensions of the EM algorithm:

1. To produce standard errors of the MLE using the EM.
2. To surmount problems of difficult E-step and/or M-step computations.
3. To tackle problems of slow convergence.
4. In the direction of Bayesian or regularized or penalized ML estimations.

We have already discussed methods like the SEM algorithm for producing standard
errors of EM-computed MLE in Sect. 6.3.5. The modification of the EM algorithm
for Bayesian inference will be discussed in Sect. 6.5.1. In this section, we shall focus
on the problems of complicated E- or M-steps and of slow convergence of the EM
algorithm.

6.4.1 Complicated E-Step

In some applications of the EM algorithm, the E-step is complex and does not admit
a close-form solution to the Q-function. In this case, the E-step at the .k C 1/th
iteration may be executed by a Monte Carlo (MC) process:

1. Make M independent draws of the missing values Z , z.1k/; : : : ; z.Mk/, from the
conditional distribution k.zjyI � .k//.

2. Approximate the Q-function as

Q.� I � .k// � QM.� I � .k// D 1

M

MX

mD1
log k.� jz.mk/I y/:

In the M-step, the Q-function is maximized over � to obtain � .kC1/. The variant
is known as the Monte Carlo EM (MCEM) algorithm (Wei and Tanner 1990). As
MC error is introduced at the E-step, the monotonicity property is lost. But in
certain cases, the algorithm gets close to a maximizer with a high probability (Booth
and Hobert 1999). The problems of specifying M and monitoring convergence are
of central importance in the routine use of the algorithm (Levine and Fan 2004).
Wei and Tanner (1990) recommend small values of M be used in initial stages
and be increased as the algorithm moves closer to convergence. As to monitoring
convergence, they recommend that the values of � .k/ be plotted against k and when
convergence is indicated by the stabilization of the process with random fluctuations
about O� , the process may be terminated or continued with a larger value of M .
Alternative schemes for specifying M and stopping rule are considered by Booth
and Hobert (1999) and McCulloch (1997). The computation of standard errors with
MCEM algorithm is discussed in Robert and Casella (2004, Sect. 5.3).
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Example 4: Generalized Linear Mixed Models

Generalized linear mixed models (GLMM) are extensions of generalized linear
models (GLM) (McCullagh and Nelder 1989) that incorporate random effects
in the linear predictor of the GLM (more material on the GLM can be found
in Chap. III.24). We let y D .y1; : : : ; yn/

> denote the observed data vector.
Conditional on the unobservable random effects vector, u D .u1; : : : ; uq/>, we
assume that y arise from a GLM. The conditional mean �j D E.yj ju/ is related
to the linear predictor �j D x>j ˇ C z>j u by the link function g.�j / D �j .j D
1; : : : ; n/, where ˇ is a p-vector of fixed effects and xj and zj are, respectively, p-
vector and q-vector of explanatory variables associated with the fixed and random
effects. This formulation encompasses the modeling of data involving multiple
sources of random error, such as repeated measures within subjects and clustered
data collected from some experimental units (Breslow and Clayton 1993; Ng et al.
2004).

We let the distribution for u be g.uID/ that depends on parameters D. The
observed data y are conditionally independent with density functions of the form

f .yj juI ˇ; �/ D expŒmj �
�1f�jyj � b.�j /g C c.yj I �/�; (6.35)

where �j is the canonical parameter, � is the dispersion parameter, and mj is the
known prior weight. The conditional mean and canonical parameters are related
through the equation �j D b0.�j /, where the prime denotes differentiation with
respect to �j . Let � denotes the vector of unknown parameters within ˇ, �, andD.
The likelihood function for � is given by

L.� / D
Z nY

jD1
f .yj juI ˇ; �/g.uID/du; (6.36)

which cannot usually be evaluated in closed form and has an intractable integral
whose dimension depends on the structure of the random effects.

Within the EM framework, the random effects are considered as missing data.
The complete data is then x D .y>;u>/> and the complete-data log likelihood is
given by

logLc.� / D
nX

jD1
logf .yj juI ˇ; �/C logg.uID/: (6.37)

On the .kC1/th iteration of the EM algorithm, the E-step involves the computation
of the Q-function, Q.� I � .k// D E

�
.k/flogLc.� /jyg, where the expectation is

with respect to the conditional distribution of ujy with current parameter value� .k/.
As this conditional distribution involves the (marginal) likelihood function L.� /
given in (6.36), an analytical evaluation of the Q-function for the model (6.35) will
be impossible outside the normal theory mixed model (Booth and Hobert 1999). The
MCEM algorithm can be adopted to tackle this problem by replacing the expectation
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in the E-step with a MC approximation. Let u.1k/; : : : ;u.Mk/ denote a random sample
from k.ujyI � .k// at the .kC1/th iteration. A MC approximation of the Q-function
is given by

QM.� I � .k// D 1

M

MX

mD1
flogf .y ju.mk/I ˇ; �/C logg.u.mk/ID/g: (6.38)

From (6.38), it can be seen that the first term of the approximated Q-function
involves only parameters ˇ and �, while the second term involves only D. Thus,
the maximization in the MC M-step is usually relatively simple within the GLMM
context (McCulloch 1997).

Alternative simulation schemes for u can be used for (6.38). For example, Booth
and Hobert (1999) proposed the rejection sampling and a multivariate t importance
sampling approximations. McCulloch (1997) considered dependent MC samples
using MC Newton-Raphson (MCNR) algorithm. A two-slice EM algorithm has
developed by Vaida and Meng (2005) to handle GLMM with binary response, where
the MC E-step is implemented via a slice sampler.

6.4.2 Complicated M-Step

One of major reasons for the popularity of the EM algorithm is that the M-
step involves only complete-data ML estimation, which is often computationally
simple. But if the complete-data ML estimation is rather complicated, then the EM
algorithm is less attractive. In many cases, however, complete-data ML estimation
is relatively simple if maximization process on the M-step is undertaken conditional
on some functions of the parameters under estimation. To this end, Meng and Rubin
(1993) introduce a class of GEM algorithms, which they call the Expectation–
Conditional Maximization (ECM) algorithm.

ECM and Multicycle ECM Algorithms

The ECM algorithm takes advantage of the simplicity of complete-data conditional
maximization by replacing a complicated M-step of the EM algorithm with several
computationally simpler conditional maximization (CM) steps. Each of these CM-
steps maximizes the Q-function found in the preceding E-step subject to constraints
on � , where the collection of all constraints is such that the maximization is over
the full parameter space of � .

A CM-step might be in closed form or it might itself require iteration, but because
the CM maximizations are over smaller dimensional spaces, often they are simpler,
faster, and more stable than the corresponding full maximizations called for on
the M-step of the EM algorithm, especially when iteration is required. The ECM
algorithm typically converges more slowly than the EM in terms of number of
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iterations, but can be faster in total computer time. More importantly, the ECM
algorithm preserves the appealing convergence properties of the EM algorithm, such
as its monotone convergence.

We suppose that the M-step is replaced by S > 1 steps and let � .kCs=S/ denote
the value of � on the sth CM-step of the .kC1/th iteration. In many applications of
the ECM algorithm, the S CM-steps correspond to the situation where the parameter
vector � is partitioned into S subvectors,

� D .�>1 ; : : : ; �>S />:

The sth CM-step then requires the maximization of the Q-function with respect
to the sth subvector � s with the other .S � 1/ subvectors held fixed at their
current values. The convergence properties and the rate of convergence of the ECM
algorithm have been discussed in Meng (1994), Meng and Rubin (1993), and Sexton
and Swensen (2000); see also the discussion in McLachlan and Krishnan (2008,
Sect. 5.2.3), where the link to the monotone convergence of Iterative Proportional
Fitting with complete data (Bishop et al. 2007, Chap. 3) is described.

It can be shown that

Q.� .kC1/I � .k// � Q.� .kC.S�1/=S/I � .k// � � � � � Q.� .k/I 	.k//; (6.39)

which implies that the ECM algorithm is a GEM algorithm and so possesses its
desirable convergence properties. As noted in Sect. 6.2.3, the inequality (6.39) is a
sufficient condition for

L.� .kC1// � L.� .k//

to hold. In many cases, the computation of an E-step may be much cheaper than the
computation of the CM-steps. Hence one might wish to perform one E-step before
each CM-step. A cycle is defined to be one E-step followed by one CM-step. The
corresponding algorithm is called the multicycle ECM (Meng and Rubin 1993). A
multicycle ECM may not necessarily be a GEM algorithm; that is, the inequality
(6.39) may not be hold. However, it is not difficult to show that the multicycle ECM
algorithm monotonically increases the likelihood function L.� / after each cycle,
and hence, after each iteration. The convergence results of the ECM algorithm
apply to a multicycle version of it. An obvious disadvantage of using a multicycle
ECM algorithm is the extra computation at each iteration. Intuitively, as a tradeoff,
one might expect it to result in larger increases in the log likelihood function per
iteration since the Q-function is being updated more often (Meng 1994; Meng and
Rubin 1993).

Example 5: Mixture-of-Experts Models for Multiclass Classification

It is reported in the literature that ME networks trained by the EM algorithm using
the IRLS algorithm in the inner loop of the M-step often performed poorly in
multiclass classification because of the incorrect independence assumption (Chen
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et al. 1999); see also the discussion in Sect. 6.3.3. In this section, we present an ECM
algorithm to train ME networks for multiclass classification such that the parameters
in the gating and expert networks are separable. It follows that the independence
assumption is not required and the parameters in both (6.26) and (6.28) can be
updated separately; see, for example, Ng and McLachlan (2004a) and Ng et al.
(2006a).

For multiclass classification, the densities fh.yj jxj I�h/ .h D 1; : : : ; m/ are
modelled by a multinomial distribution consisting of one draw on multiple (say, g)
categories. That is, we have

fh.yj jxj ;�h/ D
g�1Y

iD1

 
exp.w>hixj /

1CPg�1
rD1 exp.w>hrxj /

!yij  
1

1CPg�1
rD1 exp.w>hrxj /

!ygj
;

(6.40)
where �h contains the elements in whi .i D 1; : : : ; g � 1/. Equation (6.28) in
Sect. 6.3.3 thus becomes

nX

jD1
�
.k/

hj

 

yij � exp.w>hixj /
1CPg�1

rD1 exp.w>hrxj /

!

xj D 0 .i D 1; : : : ; g � 1/ (6.41)

for h D 1; : : : ; m, which are m sets of non-linear equations each with .g � 1/p
unknown parameters.

With the ECM algorithm, the M-step is replaced by several computation-
ally simpler CM-steps. For example, the parameter vector ˛ is partitioned as
.v>1 ; : : : ; v>m�1/>. On the .k C 1/th iteration of the ECM algorithm, the E-step is
the same as given in Equations (6.23)–(6.25) for the EM algorithm, but the M-step
of the latter is replaced by .m � 1/ CM-steps, as follows:

• CM-step 1: Calculate v.kC1/1 by maximizingQ˛ with vl .l D 2; : : : ; m� 1/ fixed

at v.k/l .

• CM-step 2: Calculate v.kC1/2 by maximizingQ˛ with v1 fixed at v.kC1/1 and vl .l D
3; : : : ; m � 1/ fixed at v.k/l .

•
:::

• CM-step .m � 1/ W Calculate v.kC1/.m�1/ by maximizingQ˛ with vl .l D 1; : : : ; m�
2/ fixed at v.kC1/l .

As each CM-step above corresponds to a separable set of the parameters in vh
for h D 1; : : : ; m � 1, it can be obtained using the IRLS approach; see Ng and
McLachlan (2004a).

6.4.3 Speeding Up Convergence

Several suggestions are available in the literature for speeding up convergence,
some of a general kind and some problem-specific; see for example McLachlan
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and Krishnan (2008, Chap. 4). Most of them are based on standard numerical
analytic methods and suggest a hybrid of EM with methods based on Aitken
acceleration, over-relaxation, line searches, Newton methods, conjugate gradients,
etc. Unfortunately, the general behaviour of these hybrids is not always clear and
they may not yield monotonic increases in the log likelihood over iterations. There
are also methods that approach the problem of speeding up convergence in terms
of “efficient” data augmentation scheme (Meng and van Dyk 1997). Since the
convergence rate of the EM algorithm increases with the proportion of observed
information in the prescribed EM framework (Sect. 6.2.4), the basic idea of the
scheme is to search for an efficient way of augmenting the observed data. By
efficient, they mean less augmentation of the observed data (greater speed of
convergence) while maintaining the simplicity and stability of the EM algorithm. A
common trade-off is that the resulting E- and/or M-steps may be made appreciably
more difficult to implement. To this end, Meng and van Dyk (1997) introduce a
working parameter in their specification of the complete data to index a class of
possible schemes to facilitate the search.

ECME, AECM, and PX–EM Algorithms

Liu and Rubin (1994, 1998) present an extension of the ECM algorithm called the
ECME (expectation–conditional maximization either) algorithm. Here the “either”
refers to the fact that with this extension, each CM-step either maximizes the Q-
function or the actual (incomplete-data) log likelihood function logL.� /, subject
to the same constraints on � . The latter choice should lead to faster convergence as
no augmentation is involved. Typically, the ECME algorithm is more tedious to code
than the ECM algorithm, but the reward of faster convergence is often worthwhile
especially because it allows convergence to be more easily assessed.

A further extension of the EM algorithm, called the Space-Alternating General-
ized EM (SAGE), has been proposed by Fessler and Hero (1994), where they update
sequentially small subsets of parameters using appropriately smaller complete data
spaces. This approach is eminently suitable for situations like image reconstruction
where the parameters are large in number. Meng and van Dyk (1997) combined the
ECME and SAGE algorithms. The so-called Alternating ECM (AECM) algorithm
allows the data augmentation scheme to vary where necessary over the CM-steps,
within and between iterations. With this flexible data augmentation and model
reduction schemes, the amount of data augmentation decreases and hence efficient
computations are achieved.

In contrast to the AECM algorithm where the optimal value of the working
parameter is determined before EM iterations, a variant is considered by Liu et al.
(1998) which maximizes the complete-data log likelihood as a function of the
working parameter within each EM iteration. The so-called parameter-expanded
EM (PX–EM) algorithm has been used for fast stable computation of MLE in a wide
range of models (Little and Rubin 2002). This variant has been further developed,
known as the one-step-late PX–EM algorithm, to compute maximum a posteriori
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(MAP) or maximum penalized likelihood (MPL) estimates (van Dyk and Tang
2003). Analogous convergence results hold for the ECME, AECM, and PX–EM
algorithms as for the EM and ECM algorithms. More importantly, these algorithms
preserve the monotone convergence of the EM algorithm.

Incremental Scheme of the EM Algorithm

The EM algorithm can be viewed as alternating minimization of a joint function
between a parameter space ˝ and a family of distributions ˚ over the unobserved
variables (Csiszár and Tusnády 1984; Hathaway 1986). Let z denote the vector
containing the unobservable data and let P be any distribution defined over the
support of Z . The joint function is defined as

D.P;� / D � logL.� /CKLŒP; g.zjy I � /�; (6.42)

where g.zjyI � / is the conditional distribution of Z given the observed data and
KLŒP; g.zjyI � /� is the Kullback-Leibler information that measures the divergence
of P relative to g.zjyI � /. Hathaway (1986) shows that, given the current estimates
� .k/, the E-step on the .k C 1/th scan corresponds to the minimization of (6.42)
with respect to P over ˚ . For fixed P .kC1/, the M-step then minimizes (6.42) with
respect to � over˝ .

From this perspective, Neal and Hinton (1998) justify an incremental variant
of the EM algorithm in which only a block of unobserved data is calculated in
each E-step at a time before performing a M-step. A scan of the incremental EM
(IEM) algorithm thus consists of B “partial” E-steps and B M-steps, where B is
the total number of blocks of data. This variant of the EM algorithm has been
shown empirically to give faster convergence compared to the EM algorithm in
applications where the M-step is computationally simple, for example, in fitting
multivariate normal mixtures (Ng and McLachlan 2003, 2004b). With the IEM
algorithm, Neal and Hinton (1998) showed that the partial E-step and the M-step
both monotonically increase F.P;� / D �D.P;� / and if a local maximum (or
saddle point) of F.P;� / occurs at P � and � �, then a local maximum (or saddle
point) of the log likelihood occurs at � � as well. Although the IEM algorithm can
possess stable convergence to stationary points in the log likelihood under slightly
stronger conditions of Wu (1983) for the EM algorithm, the current theoretical
results for the IEM algorithm do not quarantine monotonic behaviour of the log
likelihood as the EM algorithm does. The same argument for proving that the
EM algorithm always increases the log likelihood cannot be adopted here, as the
estimate of � in Q.� I � .k// of (6.7) is changing at each iteration within each scan
(Ng and McLachlan 2003). However, it is noted that F.P;� / can be considered
as a lower bound on the log likelihood since the Kullback-Leibler information is
non-negative. For given P , as obtained in the partial E-step, the M-step increases
F.P;� / with respect to � . It follows that
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F.P;� .kC.bC1/=B// � F.P;� .kCb=B// .b D 0; : : : ; B-1/:

That is, the lower bound of the log likelihood is monotonic increasing after each
iteration.

The argument for improved rate of convergence is that the IEM algorithm
exploits new information more quickly rather than waiting for a complete scan of
the data before parameters are updated by an M-step. Another method suggested by
Neal and Hinton (1998) is the sparse EM (SPEM) algorithm. In fitting a mixture
model to a data set by ML via the EM, the current estimates of some posterior
probabilities �.k/ij for a given data point yj are often close to zero. For example, if

�
.k/
ij < 0:005 for the first two components of a four-component mixture being fitted,

then with the SPEM algorithm we would fix �.k/ij (i=1,2) for membership of yj
with respect to the first two components at their current values and only update �.k/ij

(i=3,4) for the last two components. This sparse E-step will take time proportional
to the number of components that needed to be updated. A sparse version of the
IEM algorithm (SPIEM) can be formulated by combining the partial E-step and
the sparse E-step. With these versions, the likelihood is still found to be increased
after each scan. Ng and McLachlan (2003) study the relative performances of these
algorithms with various number of blocksB for the fitting of normal mixtures. They
propose to chooseB to be that factor of n that is the closest toB� D round.n2=5/ for
unrestricted component-covariance matrices, where round.r/ rounds r to the nearest
integer.

Ng and McLachlan (2004b) propose to speed up further the IEM and SPIEM
algorithms for the fitting of normal mixtures by imposing a multiresolution kd-tree
(mrkd-tree) structure in performing the E-step. Here kd stands for k-dimensional
where, in our notation, k D p, the dimension of an observation yj . The mrkd-
tree is a binary tree that recursively splits the whole set of data points into
partition (Moore 1999). The contribution of all the data points in a tree node to
the sufficient statistics is simplified by calculating at the mean of these data points
to save time. The mrkd-tree approach does not guarantee the desirable reliable
convergence properties of the EM algorithm. However, the IEM-based mrkd-
tree algorithms have been shown empirically to give a monotonic convergence as
reliable as the EM algorithm when the size of leaf nodes are sufficiently small (Ng
and McLachlan 2004b). It is noted that the number of leaf nodes will increase
dramatically when the dimension of the data points p increases. This implies
that mrkd-trees-based algorithms will not be able to speed up the EM algorithm
for applications to high dimensional data (Ng and McLachlan 2004b). Recently,
a number of techniques have been developed to reduce dimensionality without
losing significant information and separability among mixture components; see, for
example, the matrix factorization approach of Nikulin and McLachlan (2010) and
the references therein.
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6.5 Miscellaneous Topics on the EM Algorithm

6.5.1 EM Algorithm for MAP Estimation

Although we have focussed on the application of the EM algorithm for computing
MLEs in a frequentist framework, it can be equally applied to find the mode of the
posterior distribution in a Bayesian framework. This problem is analogous to MLE
and hence the EM algorithm and its variants can be adapted to compute maximum
a posteriori (MAP) estimates. The computation of the MAP estimate in a Bayesian
framework via the EM algorithm corresponds to the consideration of some prior
density for � . The E-step is effectively the same as for the computation of the MLE
of � in a frequentist framework, requiring the calculation of the Q-function. The
M-step differs in that the objective function for the maximization process is equal
to the Q-function, augmented by the log prior density. The combination of prior and
sample information provides a posterior distribution of the parameter on which the
estimation is based.

The advent of inexpensive high speed computers and the simultaneous rapid
development in posterior simulation techniques such as Markov chain Monte Carlo
(MCMC) methods (Gelfand and Smith 1990) enable Bayesian estimation to be
undertaken. In particular, posterior quantities of interest can be approximated
through the use of MCMC methods such as the Gibbs sampler. Such methods allow
the construction of an ergodic Markov chain with stationary distribution equal to the
posterior distribution of the parameter of interest. A concise theoretical treatment of
MCMC is provided in Gamerman and Lopes (2006) and Robert and Casella (2004);
see also McLachlan and Krishnan (2008, Chap. 8) and the references therein. A
detailed description of the MCMC technology can also be found in Chap. II.4.

Although the application of MCMC methods is now routine, there are some
difficulties that have to be addressed with the Bayesian approach, particularly in
the context of mixture models. One main hindrance is that improper priors yield
improper posterior distributions. Another hindrance is that when the number of
components g is unknown, the parameter space is simultaneously ill-defined and of
infinite dimension. This prevents the use of classical testing procedures and priors
(McLachlan and Peel 2000, Chap. 4).

6.5.2 Iterative Simulation Algorithms

In computing Bayesian solutions to incomplete-data problems, iterative simulation
techniques have been adopted to find the MAP estimates or estimating the entire
posterior density. These iterative simulation techniques are conceptually similar to
the EM algorithm, simply replacing the E- and M-steps by draws from the current
conditional distribution of the missing data and � , respectively. However, in some
methods such as the MCEM algorithm described in Sect. 6.4.1, only the E-step is
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so implemented. Many of these methods can be interpreted as iterative simulation
analogs of the various versions of the EM and its extensions. Some examples are
Stochastic EM, Data Augmentation algorithm, and MCMC methods such as the
Gibbs sampler (McLachlan and Krishnan 2008, Chap. 6). Here, we give a very brief
outline of the Gibbs sampler; see also Chap. II.4 of this handbook and the references
therein.

The Gibbs sampler is extensively used in many Bayesian problems where the
joint distribution is too complicated to handle, but the conditional distributions are
often easy enough to draw from; see Casella and George (1992). On the Gibbs
sampler, an approximate sample from p.� j y/ is obtained by simulating directly
from the (full) conditional distribution of a subvector of � given all the other
parameters in � and y . We write � D .� 1; : : : ;� d / in component form, a d -
dimensional Gibbs sampler makes a Markov transition from � .k/ to � .kC1/ via d
successive simulations as follows:

(1) Draw 	
.kC1/
1 from p.	1 j y I 	.k/

2 ; : : : ; 	
.k/

d /.

(2) Draw 	
.kC1/
2 from p.	2 j y I 	.kC1/

1 ; 	
.k/
3 : : : ; 	

.k/

d /.
:::

:::
:::

(d) Draw 	
.kC1/
d from p.	d j y I 	.kC1/

1 ; : : : ; 	
.kC1/
d�1 /.

The vector sequence f� .k/g thus generated is known to be a realization of a homo-
geneous Markov Chain. Many interesting properties of such a Markov sequence
have been established, including geometric convergence, as k ! 1; to a unique
stationary distribution that is the posterior density p.	.k/

1 ; : : : ; 	
.k/

d j y/ under
certain conditions; see Roberts and Polson (1994). Among other sampling methods,
there is the Metropolis-Hastings algorithm (Hastings 1970), which, in contrast to the
Gibbs sampler, accepts the candidate simulated component in � with some defined
probability (McLachlan and Peel 2000, Chap. 4).

The Gibbs sampler and other such iterative simulation techniques being Bayesian
in their point of view consider both parameters and missing values as random vari-
ables and both are subjected to random draw operations. In the iterative algorithms
under a frequentist framework, like the EM-type algorithms, parameters are sub-
jected to a maximization operation and missing values are subjected to an averaging
operation. Thus the various versions of the Gibbs sampler can be viewed as stochas-
tic analogs of the EM, ECM, and ECME algorithms (Robert and Casella 2004).
Besides these connections, the EM-type algorithms also come in useful as starting
points for iterative simulation algorithms where typically regions of high density are
not known a priori (McLachlan and Krishnan 2008, Sect. 6.10). The relationship
between the EM algorithm and the Gibbs sampler and the connection between their
convergence properties have been examined in Sahu and Roberts (1999).
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6.5.3 Further Applications of the EM Algorithm

Since the publication of Dempster et al. (1977), the number, variety, and range
of applications of the EM algorithm and its extensions have been tremendous.
Applications in many different contexts can be found in monographs Little and
Rubin (2002), McLachlan et al. (2004), McLachlan and Krishnan (2008), and
McLachlan and Peel (2000). We conclude the chapter with a quick summary of
some of the more interesting and topical applications of the EM algorithm.

Bioinformatics: EMMIX-GENE and EMMIX-WIRE Procedures

In bioinformatics, much attention is centered on the cluster analysis of the tissue
samples and also the genes. The clustering of tumour tisses can play a useful role
in the discovery and understanding of new subtypes of diseases (McLachlan et al.
2002), while the clustering of gene expression profiles contributes significantly to
the elucidation of unknown gene function, the validation of gene discoveries and
the interpretation of biological processes (Ng et al. 2006b). The EM algorithm
and its variants have been applied to tackle some of the problems arisen in such
applications. For example, the clustering of tumour tissues on the basis of genes
expression is a nonstandard cluster analysis problem since the dimension of each
tissue sample is so much greater than the number of tissues. The EMMIX-GENE
procedure of McLachlan et al. (2002) handles the problem of a high-dimensional
feature vector by using mixtures of factor analyzers whereby the component
correlations between the genes are explained by their conditional linear dependence
on a small number of latent or unobservable factors specific to each component.
The mixtures of factor analyzers model can be fitted by using the AECM algorithm
(Meng and van Dyk 1997); see, for example, McLachlan et al. (2004).

The clustering of gene profiles is also not straightforward as the profiles of the
genes are not all independently distributed and the expression levels may have
been obtained from an experimental design involving replicated arrays (Lee et al.
2000; Pavlidis et al. 2003). Similarly, in time-course studies (Storey et al. 2005),
where expression levels are measured under various conditions or at different
time points, gene expressions obtained from the same condition (tissue sample)
are correlated. Ng et al. (2006b) have developed a random-effects model that
provides a unified approach to the clustering of genes with correlated expression
levels measured in a wide variety of experimental situations. The EMMIX-WIRE
procedure of Ng et al. (2006b) formulates a linear-mixed-effects model (LMM) for
the mixture components in which both gene-specific and tissue-specific random
effects are incorporated in the modelling of the microarray data. In their model,
the gene profiles are not all independently distributed as genes within the same
component in the mixture model are allowed to be dependent due to the presence
of the tissue-specific random effects. This problem is circumvented by proceeding
conditionally on the tissue-specific random effects, as given these terms, the gene
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profiles are all conditionally independent. In this way, Ng et al. (2006b) showed that
the unknown parameter vector � can be estimated by ML via the EM algorithm
under a conditional mode, where both the E- and M-steps are carried out in
closed form.

Health Science: On-Line Prediction of Hospital Resource Utilization

The continuing development and innovative use of information technology in health
care has played a significant role in contributing and advancing this active and
burgeoning field. Inpatient length of stay (LOS) is an important measure of hospital
activity and health care utilization. It is also considered to be a measurement of
disease severity and patient acuity (Ng et al. 2006a; Pofahl et al. 1998). Length of
stay predictions have therefore important implications in various aspects of health
care decision support systems. Most prediction tools use a batch-mode training
process. That is, the model is trained only after the entire training set is available.
Such a training method is unrealistic in the prediction of LOS as the data become
available over time and the input-output pattern of data changes dynamically over
time.

An intelligent ME network for on-line prediction of LOS via an incremental
ECM algorithm has been proposed by Ng et al. (2006a). The strength of an
incremental training process is that it enables the network to be updated when
an input-output datum becomes known. These on-line and incremental updating
features increase the simulation between neural networks and human decision
making capability in terms of learning from “every” experience. In addition, an
on-line process is capable of providing an output whenever a new datum becomes
available. This on-the-spot information is therefore more useful and practical for
adaptive training of model parameters and making decisions (Jepson et al. 2003;
Lai and Fang 2005), especially when one deals with a tremendous amount of data.

The incremental training process for on-line prediction is formulated based on
the incremental scheme of the EM algorithm described in Sect. 6.4.3; see also
Ng and McLachlan (2003) and Ng et al. (2006a). In particular, the unknown
parameters are updated in the CM-step when a single input-output datum is
available. Also, a discount parameter is introduced to gradually “forget” the effect
of previous estimated posterior probabilities obtained from earlier less-accurate
estimates (Jordan and Jacobs 1994; Sato and Ishii 2000). It implies that the sufficient
statistics required in the CM-step are decayed exponentially with a multiplicative
discount factor as the training proceeds. When the discount parameter is scheduled
to approach one as the iteration tends to infinity, the updating rules so formed can
be considered as a stochastic approximation for obtaining the ML estimators (Sato
and Ishii 2000; Titterington 1984).
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Chapter 7
Stochastic Optimization

James C. Spall

Stochastic optimization algorithms have been growing rapidly in popularity over the
last decade or two, with a number of methods now becoming “industry standard”
approaches for solving challenging optimization problems. This chapter provides a
synopsis of some of the critical issues associated with stochastic optimization and
a gives a summary of several popular algorithms. Much more complete discussions
are available in the indicated references.

To help constrain the scope of this article, we restrict our attention to methods
using only measurements of the criterion (loss function). Hence, we do not cover the
many stochastic methods using information such as gradients of the loss function.
Section 7.1 discusses some general issues in stochastic optimization. Section 7.2
discusses random search methods, which are simple and surprisingly powerful
in many applications. Section 7.3 discusses stochastic approximation, which is a
foundational approach in stochastic optimization. Section 7.4 discusses a popular
method that is based on connections to natural evolution – genetic algorithms.
Finally, Sect. 7.5 offers some concluding remarks.

7.1 Introduction

7.1.1 General Background

Stochastic optimization plays a significant role in the analysis, design, and operation
of modern systems. Methods for stochastic optimization provide a means of coping
with inherent system noise and coping with models or systems that are highly
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nonlinear, high dimensional, or otherwise inappropriate for classical deterministic
methods of optimization. Stochastic optimization algorithms have broad application
to problems in statistics (e.g., design of experiments and response surface mod-
eling), science, engineering, and business. Algorithms that employ some form of
stochastic optimization have become widely available. For example, many modern
data mining packages include methods such as simulated annealing and genetic
algorithms as tools for extracting patterns in data.

Specific applications include business (making short- and long-term investment
decisions in order to increase profit), aerospace engineering (running computer
simulations to refine the design of a missile or aircraft), medicine (designing
laboratory experiments to extract the maximum information about the efficacy of
a new drug), and traffic engineering (setting the timing for the signals in a traffic
network). There are, of course, many other applications.

Let us introduce some concepts and notation. Suppose ‚ is the domain of
allowable values for a vector ™. The fundamental problem of interest is to find
the value(s) of a vector ™ 2 ‚ that minimize a scalar-valued loss function L.™/.
Other common names for L are performance measure, objective function, measure-
of-effectiveness (MOE), fitness function (or negative fitness function), or criterion.
While this problem refers to minimizing a loss function, a maximization problem
(e.g., maximizing profit) can be trivially converted to a minimization problem
by changing the sign of the criterion. This chapter focuses on the problem of
minimization. In some cases (i.e., differentiable L), the minimization problem can
be converted to a root-finding problem of finding ™ such that g.™/ D @L.™/=@™ D 0.
Of course, this conversion must be done with care because such a root may not
correspond to a global minimum of L.

The three remaining subsections in this section define some basic quantities,
discuss some contrasts between (classical) deterministic optimization and stochastic
optimization, and discuss some basic properties and fundamental limits. This section
provides the foundation for interpreting the algorithm presentations in Sects. 7.2
to 7.4. There are many other references that give general reviews of various
aspects of stochastic optimization. Among these are Arsham (1998), Fouskakis
and Draper (2002), Fu (2002), Gosavi (2003), Michalewicz and Fogel (2000),
Spall (2003), and Cochran (2011; see topic area “stochastic optimization”).

7.1.2 Formal Problem Statement

The problem of minimizing a loss function L D L.™/can be formally represented
as finding the set:

‚�  arg min
™2‚ L.™/ D f™

� 2 ‚ W L.™�/ � L.™/ for all ™ 2 ‚g ; (7.1)
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where ™ is the p�dimensional vector of parameters that are being adjusted and
‚ � Rp . The “arg min™2‚” statement in (7.1) should be read as: ‚� is the set of
values ™ D ™� (™ the “argument” in “arg min”) that minimize L.™/ subject to ™�
satisfying the constraints represented in the set ‚. The elements ™� 2 ‚� � ‚ are
equivalent solutions in the sense that they yield identical values of the loss function.
The solution set ‚� in (7.1) may be a unique point, a countable (finite or infinite)
collection of points, or a set containing an uncountable number of points.

For ease of exposition, this chapter generally focuses on continuous optimization
problems, although some of the methods may also be used in discrete problems. In
the continuous case, it is often assumed that L is a “smooth” (perhaps several times
differentiable) function of ™. Continuous problems arise frequently in applications
such as model fitting (parameter estimation), adaptive control, neural network
training, signal processing, and experimental design. Discrete optimization (or
combinatorial optimization) is a large subject unto itself (resource allocation,
network routing, policy planning, etc.).

A major issue in optimization is distinguishing between global and local optima.
All other factors being equal, one would always want a globally optimal solution to
the optimization problem (i.e., at least one ™� in the set of values ‚�). In practice,
however, it may not be feasible to find a global solution and one must be satisfied
with obtaining a local solution. For example, L may be shaped such that there is a
clearly defined minimum point over a broad region of the domain ‚, while there is
a very narrow spike at a distant point. If the trough of this spike is lower than any
point in the broad region, the local optimal solution is better than any nearby ™, but
it is not be the best possible ™.

It is usually only possible to ensure that an algorithm approaches a local
minimum with a finite amount of resources being put into the optimization process.
That is, it is easy to construct functions that will “fool” any known algorithm,
unless the algorithm is given explicit prior information about the location of the
global solution — certainly not a case of practical interest! However, since the
local minimum may still yield a significantly improved solution (relative to no
formal optimization process at all), the local minimum may be a fully acceptable
solution for the resources available (human time, money, computer time, etc.) to be
spent on the optimization. However, we discuss several algorithms (random search,
stochastic approximation, and genetic algorithms) that are sometimes able to find
global solutions from among multiple local solutions.

7.1.3 Contrast of Stochastic and Deterministic Optimization

As a chapter on stochastic optimization, the algorithms considered here apply
where:

I. There is random noise in the measurements of L.™/
– and/or –
II. There is a random (Monte Carlo) choice made in the search direction as the

algorithm iterates toward a solution.
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In contrast, classical deterministic optimization assumes that perfect information
is available about the loss function (and derivatives, if relevant) and that this
information is used to determine the search direction in a deterministic manner at
every step of the algorithm. In many practical problems, such information is not
available. We discuss properties I and II below.

Let O™k be the generic notation for the estimate for ™ at the kth iteration of
whatever algorithm is being considered, k D 0; 1; 2; : : :. Throughout this chapter,
the specific mathematical form of O™k will change as the algorithm being considered
changes. The following notation is used to represent noisy measurements of L at a
specific ™:

y.™/  L.™/C ©.™/; (7.2)

where © represents the noise terms. Note that the noise terms show dependence on
™. This dependence is relevant for many applications. It indicates that the common
statistical assumption of independent, identically distributed (i.i.d.) noise does not
necessarily apply since ™ will be changing as the search process proceeds.

Relative to property I, noise fundamentally alters the search and optimization
process because the algorithm is getting potentially misleading information through-
out the search process. For example, as described in Example 1.4 of Spall (2003),
consider the following loss function with a scalar ™: L.™/ D e�0:1™ sin.2™/. If
the domain for optimization is ‚ D Œ0; 7�, the (unique) minimum occurs at
™� D 3 =4 � 2:36, as shown in Fig. 7.1. Suppose that the analyst carrying
out the optimization is not able to calculate L.™/, obtaining instead only noisy
measurements y.™/ D L.™/ C ©, where the noises " are i.i.d. with distribution
N.0; 0:52/ (a normal distribution with mean zero and variance 0:52). The analyst
uses the y.™/ measurements in conjunction with an algorithm to attempt to find ™�.

Consider the experiment depicted in Fig. 7.1 (with data generated via MATLAB).
Based on the simple method of collecting one measurement at each increment of 0.1
over the interval defined by ‚ (including the endpoints 0 and 7), the analyst would
falsely conclude that the minimum is at ™ D 5:9. As shown, this false minimum is
far from the actual ™�.

Noise in the loss function measurements arises in almost any case where physical
system measurements or computer simulations are used to approximate a steady-
state criterion. Some specific areas of relevance include real-time estimation and
control problems where data are collected “on the fly” as a system is operating
and problems where large-scale simulations are run as estimates of actual system
behavior.

Let us summarize two distinct problems involving noise in the loss function
measurements: target tracking and simulation-based optimization. In the tracking
problem there is a mean-squared error (MSE) criterion of the form

L.™/ D E
�
kactual output � desired outputk2

	
:
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Fig. 7.1 Simple loss function L.™/ with indicated minimum ™�. Note how noise causes the
algorithm to be deceived into sensing that the minimum is at the indicated false minimum.
(Reprinted from Spall, J.C.: Introduction to stochastic search and optimization: estimation,
simulation, and control. Wiley, (2003) with permission of John Wiley & Sons, Inc.)

The stochastic optimization algorithm uses the actual (observed) squared error
y.™/ D k � k2, which is equivalent to an observation of L embedded in noise. In
the simulation problem, let L.™/ be the loss function representing some type of
“average” performance for the system. A single run of a Monte Carlo simulation
at a specific value of ™ provides a noisy measurement: y.™/ D L.™/C noise at ™.
(Note that it is rarely desirable to spend computational resources in averaging many
simulation runs at a given value of ™; in optimization, it is typically necessary to
consider many values of ™.) The above problems are described in more detail in
Examples 1.5 and 1.6 in Spall (2003).

Relative to the other defining property of stochastic optimization, property II
(i.e., randomness in the search direction), it is sometimes beneficial to deliberately
introduce randomness into the search process as a means of speeding convergence
and making the algorithm less sensitive to modeling errors. This injected (Monte
Carlo) randomness is usually created via computer-based pseudorandom number
generators. One of the roles of injected randomness in stochastic optimization is to
allow for “surprise” movements to unexplored areas of the search space that may
contain an unexpectedly good ™ value. This is especially relevant in seeking out a
global optimum among multiple local solutions. Some algorithms that use injected
randomness are random search (Sect. 7.2), simultaneous perturbation stochastic
approximation (Sect. 7.3), and genetic algorithms (Sect. 7.4).
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7.1.4 Some Principles of Stochastic Optimization

The discussion above is intended to motivate some of the issues and challenges
in stochastic optimization. Let us now summarize some important issues for the
implementation and interpretation of results in stochastic optimization.

The first issue we mention is the fundamental limits in optimization with only
noisy information about the L function. Foremost, perhaps, is that the statistical
error of the information fed into the algorithm – and the resulting error of the output
of the algorithm – can only be reduced by incurring a significant cost in number of
function evaluations. For the simple case of independent noise, the error decreases
at the rate 1=

p
N , where N represents the number of L measurements fed into the

algorithm. This is a classical result in statistics, indicating that a 25-fold increase in
function evaluations reduces the error by a factor of five.

A further limit for multivariate .p > 1/ optimization is that the volume of the
search region generally grows rapidly with dimension. This implies that one must
usually exploit problem structure to have a hope of getting a reasonable solution in
a high-dimensional problem.

All practical problems involve at least some restrictions on ™, although in some
applications it may be possible to effectively ignore the constraints. Constraints can
be encountered in many different ways, as motivated by the specific application.
Note that the constraint set ‚ does not necessarily correspond to the set of
allowable values for ™ in the search since some problems allow for the “trial”
values of the search to be outside the set of allowable final estimates. Constraints
are usually handled in practice on an ad hoc basis, especially tuned to the problem
at hand. There are few general, practical methods that apply broadly in stochastic
optimization. Michalewicz and Fogel (2000, Chap. 9), for example, discuss some of
the practical methods by which constraints are handled in evolutionary computation.
Similar methods apply in other stochastic algorithms.

In general search and optimization, it is very difficult (perhaps impossible) to
develop automated methods for indicating when the algorithm is close enough
to the solution that it can be stopped. Without prior knowledge, there is always
the possibility that ™� could lie in some unexplored region of the search space.
This applies even when the functions involved are relatively benign; see Solis and
Wets (1981) for mention of this in the context of twice-differentiable convex L.
Difficulties are compounded when the function measurements include noise.

It is quite normal for the environment to change over time. Hence, the solution to
a problem now may not be the best (or even a good) solution to the corresponding
problem in the future. In some search and optimization problems, the algorithm will
be explicitly designed to adapt to a changing environment and automatically provide
a new estimate at the optimal value (e.g., a control system). In other cases, one needs
to restart the process and find a new solution. In either sense, the problem solving
may never stop!

In reading or contributing to the literature on stochastic optimization, it is
important to recognize the limits of numerical comparisons by Monte Carlo. Monte
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Carlo studies can be a sound scientific method of gaining insight and can be a
useful supplement to theory, much of which is based on asymptotic (infinite sample)
analysis. In fact, it is especially popular in certain branches of optimization to
create “test suites” of problems, where various algorithms compete against each
other. A danger arises, however, in making broadclaims about the performance of
individual algorithms based on the results of numerical studies. Performance can
vary tremendously under even small changes in the form of the functions involved or
the coefficient settings within the algorithms themselves. One must be careful about
drawing conclusions beyond those directly supported by the specific numerical
studies performed. For purposes of drawing objective conclusions about the relative
performance of algorithms, it is preferable to use both theory and numerical studies.

Some real systems have one (unique) globally “best” operating point (™�) in the
domain ‚ while others have multiple global solutions (in either case, of course,
there could be many locallyoptimal solutions). To avoid excessively cumbersome
discussion of algorithms and supporting implementation issues and theory, we often
refer to “the” solution ™� (versus “a” solution ™�). In practice, an analyst may be
quite satisfied to reach a solution at or close to any one ™� 2 ‚�.

The so-called no free lunch (NFL) theorems provide a formal basis for the
intuitively appealing idea that there is a fundamental tradeoff between algorithm
efficiency and algorithm robustness (reliability and stability in a broad range of
problems). In essence, algorithms that are very efficient on one type of problem are
not automatically efficient on problems of a different type. Hence, there can never
be a universally best search algorithm just as there is rarely (never?) a universally
best solution to any general problem of society. Wolpert and Macready (1997)
provided a general formal structure for the NFL theorems, although the general
ideas had been around for a long time prior to their paper (Wolpert and Macready
were the ones to coin the expression “no free lunch” in this search and optimization
context). The NFL theorems are established for discrete optimization with a finite
(but arbitrarily large) number of options. However, their applicability includes most
practical continuous problems because virtually all optimization is carried out on
32- or 64-bit digital computers. The theorems apply to the cases of both noise-
free and noisy loss measurements. NFL states, in essence, that an algorithm that is
effective on one class of problems is guaranteed to be ineffective on another class.
Spall (2003, Sects. 1.2.2 and 10.6) provides more-detailed discussion on the basis
and implications of NFL.

We are now in a position to discuss several popular stochastic optimization
methods. The summaries here are just that — summaries. Much more complete
discussions are available in the indicated references or in Spall (2003). We let O™k
represent the estimate for ™ at the kth iteration of an algorithm under consideration.
Section 7.2 discusses random search methods, which are simple and surprisingly
powerful in many applications. Section 7.3 discusses stochastic approximation and
Sect. 7.4 discusses the popular genetic algorithms. Because of the relative brevity
of this review, there are many methods of stochastic optimization not covered here,
including simulated annealing, stochastic programming, evolutionary computation
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other than genetic algorithms, temporal difference methods, and so on. Readers
with an interest in one of those may consult the references mentioned at the end
of Sect. 7.1.1.

7.2 Random Search

This section describes some simple methods based on the notion of randomly
searching over the domain of interest. Section 7.2.1 gives a short discussion of
general issues in direct random search methods. The algorithms discussed in
Sect. 7.2.2 represent two versions of random search.

7.2.1 Some General Properties of Direct Random Search

Consider the problem of trying to find the optimal ™ 2 ‚ based on noise-free
measurements of L D L.™/. Random search methods are perhaps the simplest
methods of stochastic optimization in such a setting and can be quite effective in
many problems. Their relative simplicity is an appealing feature to both practitioners
and theoreticians. These direct random search methods have a number of advantages
relative to most other search methods. The advantages include relative ease of cod-
ing in software, the need to only obtain L measurements (versus gradients or other
ancillary information), reasonable computational efficiency (especially for those
direct search algorithms that make use of some local information in their search),
broad applicability to non-trivial loss functions and/or to ™ that may be continuous,
discrete, or some hybrid form, and a strong theoretical foundation. Some of these
attributes were mentioned in the forward-looking paper of Karnopp (1963). A good
recent survey of random search and related methods is Kolda et al. (2003).

7.2.2 Two Algorithms for Random Search

This section describes two direct random search techniques. These two algorithms
represent only a tiny fraction of available methods. Solis and Wets (1981) and
Zhigljavsky (1991) are among many references discussing these and other random
search methods. The two algorithms here are intended to convey the essential flavor
of most available direct random search algorithms. With the exception of some
discussion at the end of the subsection, the methods here assume perfect (noise-
free) values of L.

The first method we discuss is “blind random search.” This is the simplest
random search method, where the current sampling for ™ does not take into account
the previous samples. That is, this blind search approach does not adapt the current
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sampling strategy to information that has been garnered in the search process. The
approach can be implemented in batch (non-recursive) form simply by laying down
a number of points in ‚ and taking the value of ™ yielding the lowest L value as
our estimate of the optimum. The approach can be conveniently implemented in
recursive form as we illustrate below.

The simplest setting for conducting the random sampling of new (candidate)
values of ™ is when‚ is a hypercube and we are using uniformly generated values of
™. The uniform distribution is continuous or discrete for the elements of ™ depending
on the definitions for these elements. In fact, the blind search form of the algorithm
is unique among all general stochastic optimization algorithms in that it is the only
one without any adjustable algorithm coefficients that need to be “tuned” to the
problem at hand. (Of course, a de facto tuning decision has been made by choosing
the uniform distribution for sampling.)

For a domain ‚ that is not a hypercube or for other sampling distributions,
one may use transformations, rejection methods, or Markov chain Monte Carlo
to generate the sample ™ values (see, e.g., Gentle 2003). For example, if ‚ is an
irregular shape, one can generate a sample on a hypercube superset containing ‚
and then reject the sample point if it lies outside of ‚.

The steps for a recursive implementation of blind random search are given below.
This method applies when ™ has continuous, discrete, or hybrid elements.

Blind Random Search

step 0 (Initialization)Choose an initial value of ™, say O™0 2 ‚, either randomly or
deterministically. (If random, usually a uniform distribution on ‚ is used.)
Calculate L. O™0/. Set k D 0.

step 1 Generate a new independent value ™new.kC 1/ 2 ‚, according to the chosen
probability distribution. IfL.™new.kC1// < L. O™k/, set O™kC1 D ™new.kC1/.
Else, take O™kC1 D O™k .

step 2 Stop if the maximum number of L evaluations has been reached or the user
is otherwise satisfied with the current estimate for ™ via appropriate stopping
criteria; else, return to step 1 with the new k set to the former k C 1.

The above algorithm converges almost surely (a.s.) to ™� under very general
conditions (see, e.g., Spall 2003, pp. 40–41). Of course, convergence alone is an
incomplete indication of the performance of the algorithm. It is also of interest to
examine the rate of convergence. The rate is intended to tell the analyst how close
O™k is likely to be to ™� for a given cost of search. While blind random search is a
reasonable algorithm when ™ is low dimensional, it can be shown that the method
is generally a very slow algorithm for even moderately dimensioned ™ (see, e.g.,
Spall 2003, pp. 42–43). This is a direct consequence of the exponential increase
in the size of the search space as p increases. As an illustration, Spall (2003,
Example 2.2) considers a case where ‚ D Œ0; 1�p (the p-dimensional hypercube



182 J.C. Spall

with minimum and maximum values of 0 and 1 for each component of ™) and where
one wishes to guarantee with probability 0.90 that each element of ™ is within 0.04
units of the optimal value. As p increases from one to ten, there is an approximate
1010-fold increase in the number of loss function evaluations required.

Blind search is the simplest random search in that the sampling generating the
new ™ value does not take account of where the previous estimates of ™ have been.
The random search algorithm below is slightly more sophisticated in that the random
sampling is a function of the position of the current best estimate for ™. In this way,
the search is more localized in the neighborhood of that estimate, allowing for a
better exploitation of information that has previously been obtained about the shape
of the loss function.

The localized algorithm is presented below. This algorithm was described in
Matyas (1965). Note that the use of the term “localized” here pertains to the
sampling strategy and does not imply that the algorithm is only useful for local
(versus global) optimization in the sense described in Sect. 7.1. In fact, the algorithm
has global convergence properties as described below. As with blind search, the
algorithm may be used for continuous or discrete problems.

Localized Random Search

step 0 (Initialization)Pick an initial guess O™0 2 ‚, either randomly or with prior
information. Set k D 0.

step 1 Generate an independent random vector dk 2 Rp and add it to the current ™
value, O™k . Check if O™k C dk 2 ‚. If O™k C dk … ‚, generate a new dk and
repeat or, alternatively, move O™k + dk to the nearest valid point within‚. Let
™new.k C 1/ equal O™k C dk 2 ‚ or the aforementioned nearest valid point in
‚.

step 2 If L.™new.k C 1// < L. O™k/, set O™kC1 D ™new.k C 1/; else, set O™kC1 D O™k .
step 3 Stop if the maximum number of L evaluations has been reached or the user

is otherwise satisfied with the current estimate for ™ via appropriate stopping
criteria; else, return to step 1 with the new k set to the former k C 1.

For continuous problems, Matyas (1965) and others have used the (multivariate)
normal distribution for generating dk . However, the user is free to set the distribution
of the deviation vector dk . The distribution should have mean zero and each
component should have a variation (e.g., standard deviation) consistent with the
magnitudes of the corresponding ™ elements. This allows the algorithm to assign
roughly equal weight to each of the components of ™ as it moves through the
search space. Although not formally allowed in the convergence theory, it is often
advantageous in practice if the variability in dk is reduced as k increases. This allows
one to focus the search more tightly as evidence is accrued on the location of the
solution (as expressed by the location of our current estimate O™k).
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The convergence theory for the localized algorithms tends to be more restrictive
than the theory for blind search. Solis and Wets (1981) provide a theorem for
global convergence of localized algorithms, but the theorem conditions may not be
verifiable in practice. An earlier theorem from Matyas (1965) (with proof corrected
in Baba et al. 1977) provides for global convergence of the localized search above
if L is a continuous function. The convergence is in the “in probability” sense.
The theorem allows for more than one global minimum to exist in ‚. Therefore, in
general, the result provides no guarantee of O™k ever settling near any one value ™�.
We present the theorem statement below.

Convergence theorem for localized search. Let ‚� represent the set of global
minima for L (see Sect. 7.1). Suppose that L is continuous on a bounded domain‚
and that if O™k C dk … ‚ at a given iteration, a new dk is randomly generated. For
any � > 0, let R˜ D S

™�2‚�f™jL.™/ � L.™�/j < ˜g. Then, for dk having an i.i.d.
N.0, Ip/ distribution, limk!1P. O™k 2 R˜/ D 1.

The above algorithm might be considered the most naïve of the localized random
search algorithms. More sophisticated approaches are also easy to implement. For
instance, if a search in one direction increases L, then it is likely to be beneficial to
move in the opposite direction. Further, successive iterations in a direction that tend
to consistently reduce L should encourage further iterations in the same direction.
Many algorithms exploiting these simple properties exist (e.g., Solis and Wets 1981;
Zhigljavsky 1991).

In spite of its simplicity, the localized search algorithm is surprisingly effective
in a wide range of problems. Several demonstrations are given in Sects. 2.2.2 to 2.4
in Spall (2003).

The random search algorithms above are usually based on perfect (noise-free)
measurements of the loss function. This is generally considered a critical part of
such algorithms (Pflug 1996, p. 25). In contrast to the noise-free case, random search
methods with noisy loss evaluations of the form y.™/ D L.™/C ".™/ generally do
not formally converge.

There are, however, means by which the random search techniques can be
modified to accommodate noisy measurements, at least on a heuristic basis. Some
of the limited formal convergence theory for random search as applied to the noisy
measurement case includes Yakowitz (1973, Sect. 4.4.4) and Zhigljavsky (1991,
Chap. 3). Spall (2003, Sect. 2.3) discusses some practical methods for coping with
noise, including simple averaging of the noisy loss function evaluations y.™/ at each
value of ™ generated in the search process and a modification of the algorithm’s key
decision criterion (step 1 of blind random search and step 2 of localized random
search) to build in some robustness to the noise. However, the averaging method
can be costly since the error decreases only at the rate of 1=

p
N when averaging

N function evaluations with independent noise. Likewise, the altered threshold may
be costly by rejecting too many changes in ™ due to the conservative nature of the
modified criterion. The presence of noise in the loss evaluations makes the optimiza-
tion problem so much more challenging that there is little choice but to accept these
penalties if one wants to use a simple random search. We see in the next section that
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stochastic approximation tends to be more adept at coping with noise at the price of
a more restrictive problem setting than the noise-free convergence theorem above.

7.3 Stochastic Approximation

7.3.1 Introduction

Stochastic approximation (SA) is a cornerstone of stochastic optimization. Robbins
and Monro (1951) introduced SA as a general root-finding method when only noisy
measurements of the underlying function are available. Let us now discuss some
aspects of SA as applied to the more specific problem of root-finding in the context
of optimization. With a differentiable loss function L.™), recall the familiar set of p
equations and p unknowns for use in finding a minimum ™�:

g.™/ D @L

@™
D 0: (7.3)

(Of course, side conditions are required to guarantee that a root of (7.3) is a mini-
mum, not a maximum or saddlepoint.) Note that (7.3) is nominally only directed at
local optimization problems, although some extensions to global optimization are
possible, as briefly discussed in Sect. 7.3.3. There are a number of approaches for
solving the problem represented by (7.3) when direct (usually noisy) measurements
of the gradient g are available. These typically go by the name of stochastic gradient
methods (e.g., Spall 2003, Chap. 5). In contrast to the stochastic gradient approach
– but consistent with the emphasis in the random search and genetic algorithms
(Sects. 7.2 and 7.4 here) – let us focus on SA when only measurements of L are
available. However, unlike the emphasis in random search and genetic algorithms,
we consider noisy measurements of L.

To motivate the general SA approach, first recall the familiar form for the
unconstrained deterministic steepest descent algorithm for solving (7.3):

O™kC1 D O™k � akg. O™k/;

where the gain (or step size) satisfies ak > 0 (see, e.g., Bazaraa et al. 1993, pp.
300-308 or any other book on mathematical programming; Spall 2003, Sect. 1.4).
This algorithm requires exact knowledge of g. Steepest descent converges to ™�
under certain fairly general conditions. (A notable variation of steepest descent is
the Newton-Raphson algorithm [sometimes called Newton’s method; e.g., Bazaraa
et al. 1993, pp. 308–312], which has the form O™kC1 D O™k � akH. O™k/�1g. O™k/,
where H.�/ is the Hessian [second derivative] matrix of L. Under more restrictive
conditions, the Newton–Raphson algorithm has a much faster rate of convergence
to ™� than steepest descent. However, with its requirement for a Hessian matrix, it
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is generally more challenging to implement. An SA version of Newton–Raphson is
discussed briefly at the end of Sect. 7.3.3.

Unlike with steepest descent, it is assumed here that we have no direct knowledge
of g. The recursive procedure of interest is in the general SA form

O™kC1 D O™k � ak Ogk. O™k/; (7.4)

where Ogk. O™k/ is the estimate of g at the iterate O™k based on measurements of the
loss function. Hence, (7.4) is analogous to the steepest descent algorithm, with
the gradient estimate Ogk.™/ replacing the direct gradient g at ™ D O™k: The gain
ak > 0 here also acts in a way similar to its role in the steepest descent form. Under
appropriate conditions, the iteration in (7.4) converges to ™� in some stochastic
sense (usually almost surely, a.s.). (There are constrained forms of SA, but we do
not discuss those here; see, e.g., Spall 2003, Chaps. 4–8).

Sections 7.3.2 and 7.3.3 discuss two SA methods for carrying out the optimiza-
tion task using noisy measurements of the loss function. Section 7.3.2 discusses the
traditional finite-difference SA method and Sect. 7.3.3 discusses the more recent
simultaneous perturbation method.

7.3.2 Finite-Difference SA

The essential part of (7.4) is the gradient approximation Ogk. O™k/. The traditional
means of forming the approximation is the finite-difference method. Expression
(7.4) with this approximation represents the finite-difference SA (FDSA) algorithm.
One-sided gradient approximations involve measurements y. O™k/ and y. O™k C
perturbation/, while two-sided approximations involve measurements of the form
y. O™k ˙ perturbation/. The two-sided FD approximation for use with (7.4) is

Ogk. O™k/ D

2

6
6
66
6
4

y. O™k C ck�1/� y. O™k � ck�1/
2ck
:::

y. O™k C ck�p/� y. O™k � ck�p/
2ck

3

7
7
77
7
5
; (7.5)

where � i denotes a vector with a 1 in the i th place and 0’s elsewhere and ck > 0

defines the difference magnitude. The pair fak; ckg are the gains (or gain sequences)
for the FDSA algorithm. The two-sided form in (7.5) is the obvious multivariate
extension of the scalar two-sided form in Kiefer and Wolfowitz (1952). The initial
multivariate method in Blum (1954) used a one-sided approximation.

It is of fundamental importance to determine conditions such that O™k as shown
in (7.4) and (7.5) converges to ™� in some appropriate stochastic sense. The
convergence theory for the FDSA algorithm is similar to “standard” convergence
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theory for the root-finding SA algorithm of Robbins and Monro (1951). Additional
difficulties, however, arise due to a bias in Ogk. O™k/ as an estimator of g. O™k/. That is,
standard conditions for convergence of SA require unbiased estimates of g.�/ at all
k. On the other hand, Ogk. O™k/, as shown in (7.5), is a biased estimator, with the bias
having a magnitude of order c2k . We do not present the details of the convergence
theory here, as it is available in many other references (e.g., Fabian 1971; Kushner
and Yin 2003, Chaps. 5–8; Ruppert 1991; Spall 2003, Chap. 6). However, let us
note that the standard conditions on the gain sequences are:ak > 0, ck > 0; ak !
0; ck ! 0;

P1
kD0 ak D 1, and

P1
kD0 a2k=c2k < 1. The choice of these gain

sequences is critical to the performance of the method. Common forms for the
sequences are:

ak D a

.k C 1 C A/˛
and ck D c

.k C 1/�
;

where the coefficients a, c, ’, and ” are strictly positive and A � 0. The user
must choose these coefficients, a process usually based on a combination of the
theoretical restrictions above, trial-and-error numerical experimentation, and basic
problem knowledge. In some cases, it is possible to partially automate the selection
of the gains (see, e.g., Spall 2003, Sect. 6).

Let us summarize a numerical example based on the following p D 10 loss
function:

L.™/ D ™TBTB™C 0:1
10X

iD1
.B™/3i C 0:01

10X

iD1
.B™/4i ;

where .�/i represents the i th component of the argument vector B™, and B is such
that 10B is an upper triangular matrix of 1’s. The minimum occurs at ™� D 0 with
L.™�/ D 0; all runs are initialized at O™0 D Œ1; 1; : : :; 1�T (so L. O™0/ D 4:178/.
Suppose that the measurement noise © is independent, identically distributed (i.i.d.)
N.0; 1/. All iterates O™k are constrained to be in ‚ D Œ�5; 5�10. If an iterate falls
outside of‚, each individual component of the candidate ™ that violates the interval
[�5, 5] is mapped to it nearest endpoint ˙5. The subsequent gradient estimate is
formed at the modified (valid) ™ value. (The perturbed values O™k˙ ck� i are allowed
to go outside of‚.)

Using n D 1; 000 loss measurements per run, we compare FDSA with the
localized random search method of Sect. 7.2. Based on principles for gain selection
in Spall (2003, Sect. 6) together with some limited trial-and-error experimentation,
we chose a D 0:5, c D 1, A D 5, ’ D 0:602, and ” D 0:101 for FDSA
and an average of 20 loss measurements per iteration with normally distributed
perturbations having distribution N.0; 0:52I10/ for the random search method.

Figure 7.2 summarizes the results. Each curve represents the sample mean of 50
independent replications. An individual replication of one of the two algorithms has
much more variation than the corresponding smoothed curve in the figure.

Figure 7.2 shows that both algorithms produce an overall reduction in the true
loss function as the number of measurements approach 1,000. The curves illustrate
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Fig. 7.2 Comparison of FDSA and localized random search. Each curve represents sample mean
of 50 independent replications

that FDSA outperforms random search in this case. To make the comparison fair,
attempts were made to tune each algorithm to provide approximately the best
performance possible. Of course, one must be careful about using this example to
infer that such a result holds in other problems as well.

7.3.3 Simultaneous Perturbation SA

The FDSA algorithm of Sect. 7.3.2 is a standard SA method for carrying out opti-
mization with noisy measurement of the loss function. However, as the dimension
p grows large, the number of loss measurements required may become prohibitive.
That is, each two-sided gradient approximation requires 2p loss measurements.
More recently, the simultaneous perturbation SA (SPSA) method was introduced,
requiring only two measurements per iteration to form a gradient approximation
independent of the dimension p. This provides the potential for a large savings in
the overall cost of optimization.

Beginning with the generic SA form in (7.4), we now present the SP form of the
gradient approximation. In this form, all elements of O™k are randomly perturbed
together to obtain two loss measurements y.�/. For the two-sided SP gradient
approximation, this leads to
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Ogk. O™k/ D

2

6
6
6
6
6
4

y . O™k C ck�k/ � y . O™k � ck�k/

2ck�k1
:::

y . O™k C ck�k/ � y . O™k � ck�k/

2ck�kp

3

7
7
7
7
7
5

D y . O™k C ck�k/� y . O™k � ck�k/

2ck

h
��1k1 ;��1k2 ; : : : ; ��1kp

iT
;

(7.6)

where the mean-zero p-dimensional random perturbation vector, �k D Œ�k1,
�k2; : : :, �kp�

T , has a user-specified distribution satisfying certain conditions and
ck is a positive scalar (as with FDSA). Because the numerator is the same in all
p components of Ogk. O™k/, the number of loss measurements needed to estimate the
gradient in SPSA is two, regardless of the dimension p.

Relative to FDSA, the p-fold measurement savings per iteration, of course,
provides only the potential for SPSA to achieve large savings in the total number of
measurements required to estimate ™ when p is large. This potential is realized if the
number of iterations required for effective convergence to an optimum ™� does not
increase in a way to cancel the measurement savings per gradient approximation.
One can use asymptotic distribution theory to address this issue. In particular, both
FDSA and SPSA are known to be asymptotically normally distributed under very
similar conditions. One can use this asymptotic distribution result to characterize the
mean-squared error E.kO™k � ™�k2/ for the two algorithms for large k. Fortunately,
under fairly broad conditions, thep-fold savings at each iteration is preserved across
iterations. In particular, based on asymptotic considerations:

Under reasonably general conditions (see Spall 1992, or Spall 2003,
Chap. 7), the SPSA and FDSA algorithms achieve the same level of statistical
accuracy for a given number of iterations even though SPSA uses only 1=p
times the number of function evaluations of FDSA (since each gradient
approximation uses only 1=p the number of function evaluations).

The SPSA Web site www.jhuapl.edu/SPSA includes many references on the
theory and application of SPSA. On this Web site, one can find many accounts of
numerical studies that are consistent with the efficiency statement above. (Of course,
given that the statement is based on asymptotic arguments and associated regularity
conditions, one should not assume that the result always holds.) In addition, there
are references describing many applications. These include queuing systems, pat-
tern recognition, industrial quality improvement, aircraft design, simulation-based
optimization, bioprocess control, neural network training, chemical process control,
fault detection, human-machine interaction, sensor placement and configuration,
and vehicle traffic management.

We do not present here the formal conditions for convergence and asymptotic
normality of SPSA, as such conditions are available in many references (e.g.,
Dippon and Renz 1997; Gerencsér et al. 1999; Spall 1992; Spall 2003, Chap. 7).

www.jhuapl.edu/SPSA
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These conditions are essentially identical to the standard conditions for convergence
of SA algorithms, with the exception of the additional conditions on the user-
generated perturbation vector�k .

The choice of the distribution for generating the �k is important to the
performance of the algorithm. The standard conditions for the elements �ki of �k

are that the f�kig are independent for all k, i , identically distributed for all i at each
k, symmetrically distributed about zero and uniformly bounded in magnitude for all
k. In addition, there is an important inverse moments condition:

E

 ˇ
ˇ̌
ˇ
1

�ki

ˇ
ˇ̌
ˇ

2C2£!
� C

for some £ > 0 andC > 0. The role of this condition is to control the variation of the
elements of Ogk. O™k/ (which have �ki in the denominator). One simple and popular
distribution that satisfies the inverse moments condition is the symmetric Bernoulli
˙1 distribution. (In fact, as discussed in Spall 2003, Sect.7.7, this distribution can
be shown to be optimal under general conditions when using asymptotic considera-
tions.) Two common mean-zero distributions that do not satisfy the inverse moments
condition are symmetric uniform and normal with mean zero. The failure of both
of these distributions is a consequence of the amount of probability mass near zero.
Exercise 7.3 in Spall (2003), illustrates the dramatic performance degradation that
can occur through using distributions that violate the inverse moments condition.

As with any real-world implementation of stochastic optimization, there are
important practical considerations when using SPSA. One is to attempt to define
™ so that the magnitudes of the ™ elements are similar to one another. This desire
is apparent by noting that the magnitudes of all components in the perturbations
ck�k are identical in the case where identical Bernoulli distributions are used.
Although it is not always possible to choose the definition of the elements in ™,
in most cases an analyst will have the flexibility to specify the units for ™ to ensure
similar magnitudes. Another important consideration is the choice of the gains ak ,
ck . The principles described for FDSA above apply to SPSA as well. Section 7.5 of
Spall (2003), provides additional practical guidance.

There have been a number of important extensions of the basic SPSA method
represented by the combination of (7.4) and (7.5). Three such extensions are to
the problem of global (versus local) optimization, to discrete (versus continuous)
problems, and to include second-order-type information (Hessian matrix) with the
aim of creating a stochastic analogue to the deterministic Newton–Raphson method.

The use of SPSA for global minimization among multiple local minima is
discussed in Maryak and Chin (2008). One of their approaches relies on injecting
Monte Carlo noise in the right-hand side of the basic SPSA updating step in (7.4).
This approach is a common way of converting SA algorithms to global optimizers
through the additional “bounce” introduced into the algorithm (Yin 1999). Maryak
and Chin (2008) also show that basic SPSA without injected noise (i.e., (7.4)
and (7.6) without modification) may, under certain conditions, be a global optimizer.
Formal justification for this result follows because the random error in the SP
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gradient approximation acts in a way that is statistically equivalent to the injected
noise mentioned above.

Discrete optimization problems (where ™ may take on discrete or combined
discrete/continuous values) are discussed in Gerencsér et al. (1999), Hill (2005),
and Wang and Spall (2011). Discrete SPSA relies on a fixed-gain (constant ak and
ck/ version of the standard SPSA method. The parameter estimates produced are
constrained to lie on a discrete-valued grid. Although gradients do not exist in
this setting, the approximation in (7.6) (appropriately modified) is still useful as
an efficient measure of slope information.

Finally, using the simultaneous perturbation idea, it is possible to construct
a simple method for estimating the Hessian (or Jacobian) matrix of L while,
concurrently, estimating the primary parameters of interest (™). This adaptive
SPSA (ASP) approach produces a stochastic analogue to the deterministic Newton-
Raphson algorithm (e.g., Bazaraa et al. 1993, pp. 308–312), leading to a recursion
that is optimal or near-optimal in its rate of convergence and asymptotic error. The
approach applies in both the gradient-free setting emphasized in this section and
in the root-finding/stochastic gradient-based (Robbins-Monro) setting reviewed in
Spall (2003, Chaps. 4 and 5). Like the standard SPSA algorithm, the ASP algorithm
requires only a small number of loss function (or gradient, if relevant) measurements
per iteration – independent of the problem dimension – to adaptively estimate the
Hessian and parameters of primary interest. Further information is available at
Spall (2000) or Spall (2003, Sect. 7.8). A recent paper (Spall 2009) presents two
enhancements to ASP, one related to feedback to reduce the error and the other
enhancement related to optimal weighting of input information. Both enhancements
are aimed at improving the quality of the estimates for underlying Hessian (or
Jacobian) matrices, thereby improving the quality of the estimates for the primary
parameters of interest ™.

The Hessian estimation aspect of ASP is also useful in non-SA applications, such
as calculating the Fisher information matrix (FIM) for problems where the FIM is
difficult to obtain analytically (e.g., Spall 2005; Das et al. 2010). The FIM has wide
applications in areas such as uncertainty calculation (Ljung 1999, pp. 215–219),
experimental design (Spall 2003, Chap. 17; Spall 2010), and Bayesian prior distri-
bution selection (Jeffreys 1946). The Hessian estimation provides an efficient Monte
Carlo method for determining the FIM in difficult high-dimensional problems.

7.4 Genetic Algorithms

7.4.1 Introduction

Genetic algorithms (GAs) represent a popular approach to stochastic optimization,
especially as relates to the global optimization problem of finding the best solution
among multiple local mimima. (GAs may be used in general search problems that
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are not directly represented as stochastic optimization problems, but we focus here
on their use in optimization.) GAs represent a special case of the more general
class of evolutionary computation algorithms (which also includes methods such
as evolutionary programming and evolution strategies). The GA applies when the
elements of ™ are real-, discrete-, or complex-valued. As suggested by the name, the
GA is based loosely on principles of natural evolution and survival of the fittest. In
fact, in GA terminology, an equivalent maximizationcriterion, such as �L.™) (or its
analogue based on a bit-string form of ™), is often referred to as the fitness function
to emphasize the evolutionary concept of the fittest of a species.

A fundamental difference between GAs and the random search and SA algo-
rithms considered in Sects. 7.2 and 7.3 is that GAs work with a population of
candidate solutions to the problem. The previous algorithms worked with one
solution and moved toward the optimum by updating this one estimate. GAs
simultaneously consider multiple candidate solutions to the problem of minimizing
L and iterate by moving this population of solutions toward a global optimum. The
terms generation and iteration are used interchangeably to describe the process
of transforming one population of solutions to another. Figure 7.3 illustrates the
successful operations of a GA for a population of size 12 with problem dimension
p D 2. In this conceptual illustration, the population of solutions eventually come
together at the global optimum.

The use of a population versus a single solution affects in a basic way the range of
practical problems that can be considered. In particular, GAs tend to be best suited
to problems where the loss function evaluations are computer-based calculations
such as complex function evaluations or simulations. This contrasts with the single-
solution approaches discussed earlier, where the loss function evaluations may
represent computer-based calculations or physical experiments. Population-based
approaches are not generally feasible when working with real-time physical exper-
iments. Implementing a GA with physical experiments requires that either there
be multiple identical experimental setups (parallel processing) or that the single
experimental apparatus be set to the same state prior to each population member’s
loss evaluation (serial processing). These situations do not occur often in practice.

Fig. 7.3 Minimization of multimodal loss function. Successful operations of a GA with a
population of 12 candidate solutions clustering around the global minimum after some number
of iterations (generations). (Reprinted from Spall, J.C.: Introduction to stochastic search and
optimization: estimation, simulation, and control. Wiley, (2003) with permission of John Wiley
& Sons, Inc.)
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Specific values of ™ in the population are referred to as chromosomes. The
central idea in a GA is to move a set (population) of chromosomes from an initial
collection of values to a point where the fitness function is optimized. We let N
denote the population size (number of chromosomes in the population). Most of
the early work in the field came from those in the fields of computer science
and artificial intelligence. More recently, interest has extended to essentially all
branches of business, engineering, and science where search and optimization are
of interest. The widespread interest in GAs appears to be due to the success in
solving many difficult optimization problems. Unfortunately, to an extent greater
than with other methods, some interest appears also to be due to a regrettable
amount of “salesmanship” and exaggerated claims. (For example, in a recent
software advertisement, the claim is made that the software “: : :uses GAs to solve
any optimization problem.” Such statements are provably false.) While GAs are
important tools within stochastic optimization, there is no formal evidence of
consistently superior performance – relative to other appropriate types of stochastic
algorithms – in any broad, identifiable class of problems.

Let us now give a very brief historical account. The reader is directed to
Goldberg (1989, Chap. 4), Mitchell (1996, Chap. 1),Michalewicz (1996, pp. 1–10),
Fogel (2000, Chap. 3), and Spall (2003, Sect. 9.2) for more complete historical
discussions. There had been some success in creating mathematical analogues of
biological evolution for purposes of search and optimization since at least the 1950s
(e.g., Box 1957). The cornerstones of modern evolutionary computation – evolution
strategies, evolutionary programming, and GAs – were developed independently of
each other in the 1960s and 1970s. John Holland at the University of Michigan
published the seminal monograph Adaptation in Natural and Artificial Systems
(Holland 1975). There was subsequently a sprinkle of publications, leading to the
first full-fledged textbook Goldberg (1989). Activity in GAs grew rapidly beginning
in the mid-1980s, roughly coinciding with resurgent activity in other artificial
intelligence-type areas such as neural networks and fuzzy logic. There are now
many conferences and books in the area of evolutionary computation (especially
GAs), together with countless other publications.

7.4.2 Chromosome Coding and the Basic GA Operations

This section summarizes some aspects of the encoding process for the population
chromosomes and discusses the selection, elitism, crossover, and mutation opera-
tions. These operations are combined to produce the steps of the GA.

An essential aspect of GAs is the encoding of the N values of ™ appearing in
the population. This encoding is critical to the GA operations and the associated
decoding to return to the natural problem space in ™. Standard binary (0, 1)
bit strings have traditionally been the most common encoding method, but other
methods include gray coding (which also uses (0, 1) strings, but differs in the way
the bits are arranged) and basic computer-based floating-point representation of the
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real numbers in ™. This 10-character coding is often referred to as real-number
coding since it operates as if working with ™ directly. Based largely on successful
numerical implementations, this natural representation of ™ has grown more popular
over time. Details and further references on the above and other coding schemes
are given in Michalewicz (1996, Chap. 5), Mitchell (1996, Sects. 5.1.1 and 5.1.2),
Fogel (2000, Sects. 3.5 and 4.3), and Spall (2003, Sect. 9.3).

Let us now describe the basic operations mentioned above. For consistency
with standard GA terminology, let us assume that L.™) has been transformed to
a fitness function with higher values being better. A common transformation is to
simply set the fitness function to �L.™/ C C , where C � 0 is a constant that
ensures that the fitness function is nonnegative on‚ (nonnegativity is only required
in some GA implementations). Hence, the operations below are described for a
maximization problem. It is also assumed here that the fitness evaluations are noise-
free. Unless otherwise noted, the operations below apply with any coding scheme
for the chromosomes.

The selection and elitism steps occur after evaluating the fitness function for the
current population of chromosomes. A subset of chromosomes is selected to use
as parents for the succeeding generation. This operation is where the survival of
the fittest principle arises, as the parents are chosen according to their fitness value.
While the aim is to emphasize the fitter chromosomes in the selection process, it is
important that not too much priority is given to the chromosomes with the highest
fitness values early in the optimization process. Too much emphasis of the fitter
chromosomes may tend to reduce the diversity needed for an adequate search of
the domain of interest, possibly causing premature convergence in a local optimum.
Hence methods for selection allow with some nonzero probability the selection of
chromosomes that are suboptimal.

Associated with the selection step is the optional “elitism” strategy, where the
Ne < N best chromosomes (as determined from their fitness evaluations) are placed
directly into the next generation. This guarantees the preservation of the Ne best
chromosomes at each generation. Note that the elitist chromosomes in the original
population are also eligible for selection and subsequent recombination.

As with the coding operation for ™, many schemes have been proposed for the
selection process of choosing parents for subsequent recombination. One of the
most popular methods is roulette wheel selection (also called fitness proportionate
selection). In this selection method, the fitness functions must be nonnegative
on ‚. An individual’s slice of a Monte Carlo-based roulette wheel is an area
proportional to its fitness. The “wheel” is spun in a simulated fashion N � Ne
times and the parents are chosen based on where the pointer stops. Another
popular approach is called tournament selection. In this method, chromosomes are
compared in a “tournament,” with the better chromosome being more likely to
win. The tournament process is continued by sampling (with replacement) from
the original population until a full complement of parents has been chosen. The
most common tournament method is the binary approach, where one selects two
pairs of chromosomes and chooses as the two parents the chromosome in each pair
having the higher fitness value. Empirical evidence suggests that the tournament
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Fig. 7.4 Example of crossover operator under binary coding with one splice point

selection method often performs better than roulette selection. (Unlike tournament
selection, roulette selection is very sensitive to the scaling of the fitness function.)
Mitchell (1996, Sect. 5.4) provides a good survey of several other selection methods.

The crossover operation creates offspring of the pairs of parents from the
selection step. A crossover probability Pc is used to determine if the offspring
represents a blend of the chromosomes of the parents. If no crossover takes place,
then the two offspring are clones of the two parents. If crossover does take place,
then the two offspring are produced according to an interchange of parts of the
chromosome structure of the two parents. Figure 7.4 illustrates this for the case of a
ten-bit binary representation of the chromosomes. This example shows one-point
crossover, where the bits appearing after one randomly chosen dividing (splice)
point in the chromosome are interchanged. In general, one can have a number of
splice points up to the number of bits in the chromosomes minus one, but one-point
crossover appears to be the most commonly used.

Note that the crossover operator also applies directly with real-number coding
since there is nothing directly connected to binary coding in crossover. All
that is required are two lists of compatible symbols. For example, one-point
crossover applied to the chromosomes (™ values) [6:7;�7:4; 4:0; 3:9j6:2;�1:5] and
[�3:8; 5:3; 9:2;�0:6j8:4;�5:1] yields the two children: [6:7;�7:4; 4:0; 3:9; 8:4;
�5:1] and [�3:8; 5:3; 9:2;�0:6; 6:2;�1:5].

The final operation we discuss is mutation. Because the initial population may
not contain enough variability to find the solution via crossover operations alone, the
GA also uses a mutation operator where the chromosomes are randomly changed.
For the binary coding, the mutation is usually done on a bit-by-bit basis where a
chosen bit is flipped from 0 to 1, or vice versa. Mutation of a given bit occurs
with small probabilityPm. Real-number coding requires a different type of mutation
operator. That is, with a (0, 1)-based coding, an opposite is uniquely defined, but
with a real number, there is no clearly defined opposite (e.g., it does not make sense
to “flip” the 2.74 element). Probably the most common type of mutation operator
is simply to add small independent normal (or other) random vectors to each of the
chromosomes (the ™ values) in the population.

As discussed in Sect. 7.1.4, there is no easy way to know when a stochastic
optimization algorithm has effectively converged to an optimum. This includes GAs.
The one obvious means of stopping a GA is to end the search when a budget
of fitness (equivalently, loss) function evaluations has been spent. Alternatively,
termination may be performed heuristically based on subjective and objective
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impressions about convergence. In the case where noise-free fitness measurements
are available, criteria based on fitness evaluations may be most useful. For example,
a fairly natural criterion suggested in Schwefel (1995, p. 145) is to stop when
the maximum and minimum fitness values over the N population values within
a generation are sufficiently close to one another. However, this criterion provides
no formal guarantee that the algorithm has found a global solution.

7.4.3 The Core Genetic Algorithm

The steps of a basic form of the GA are given below. These steps are general enough
to govern many (perhaps most) modern implementations of GAs, including those in
modern commercial software. Of course, the performance of a GA typically depends
greatly on the implementation details, just as with other stochastic optimization
algorithms. Some of these practical implementation issues are taken up in the next
section.

Core GA Steps for Noise-Free Fitness Evaluations

step 0 (Initialization) Randomly generate an initial population of N chromosomes
and evaluate the fitness function (the conversion of L.™) to a function to be
maximized for the encoded version of ™) for each of the chromosomes.

step 1 (Parent selection) Set Ne D 0 if elitism strategy is not used; 0 < Ne < N

otherwise. Select with replacement N �Ne parents from the full population
(including theNe elitist elements). The parents are selected according to their
fitness, with those chromosomes having a higher fitness value being selected
more often.

step 2 (Crossover) For each pair of parents identified in step 1, perform crossover
on the parents at a randomly (perhaps uniformly) chosen splice point (or
points if using multi-point crossover) with probability Pc . If no crossover
takes place (probability 1�Pc/, then form two offspring that are exact copies
(clones) of the two parents.

step 3 (Replacement and mutation) While retaining the Ne best chromosomes
from the previous generation, replace the remaining N � Ne chromosomes
with the current population of offspring from step 2. For the bit-based
implementations, mutate the individual bits with probability Pm; for real
coded implementations, use an alternative form of “small” modification (in
either case, one has the option of choosing whether to make the Ne elitist
chromosomes candidates for mutation).

step 4 (Fitness and end test) Compute the fitness values for the new population of
N chromosomes. Terminate the algorithm if the stopping criterion is met or
if the budget of fitness function evaluations is exhausted; else return to step 1.
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7.4.4 Some Implementation Aspects

While the above steps provide the broad outline for many modern implementations
of GAs, there are some important implementation aspects that must be decided
before a practical implementation. This section outlines a few of those aspects.
More detailed discussions are given in Mitchell (1996, Chap. 5), Michalewicz (1996,
Chaps. 4– 6), Fogel (2000, Chaps. 3 and 4), Goldberg (2002, Chap. 12), and other
references mentioned below. A countless number of numerical studies have been
reported in the literature; we do not add to that list here.

As with other stochastic optimization methods, the choice of algorithm-specific
coefficients has a significant impact on performance. With GAs, there is a relatively
large number of user decisions required. The following must be set: the choice
of chromosome encoding, the population size (N ), the probability distribution
generating the initial population, the strategy for parent selection (roulette wheel
or otherwise), the number of splice points in the crossover, the crossover probability
(Pc), the mutation probability (Pm), the number of retained chromosomes in elitism
(Ne), and some termination criterion. Some typical values for these quantities are
discussed, for example, in Mitchell (1996, pp. 175–177) and Spall (2003, Sect. 9.6).

Constraints on L.™) (or the equivalent fitness function) and/or ™ are of major
importance in practice. The bit-based implementation of GAs provide a natural way
of implementing component-wise lower and upper bounds on the elements of ™
(i.e., a hypercube constraint). More general approaches to handling constraints are
discussed in Michalewicz (1996, Chap. 8 and Sects. 4.5 and 15.3) and Michalewicz
and Fogel (2000, Chap. 9).

Until now, it has been assumed that the fitness function is observed without noise.
One of the two possible defining characteristics of stochastic optimization, however,
is optimization with noise in the function measurements (property I in Sect. 7.1.3).
There appears to be relatively little formal analysis of GAs in the presence of noise,
although the application and testing of GAs in such cases has been carried out since
at least the mid-1970s (e.g., De Jong 1975, p. 203). A large number of numerical
studies are in the literature (e.g., the references and studies in Spall (2003, Sects. 9.6
and 9.7). As with other algorithms, there is a fundamental tradeoff of more accurate
information for each function input (typically, via an averaging of the inputs) and
fewer function inputs versus less accurate (“raw”) information to the algorithm
together with a greater number of inputs to the algorithm. There appears to be no
rigorous comparison of GAs with other algorithms regarding relative robustness to
noise. Regarding noise, Michalewicz and Fogel (2000, p. 325) state: “There really
are no effective heuristics to guide the choices to be made that will work in general.”

7.4.5 Some Comments on the Theory for GAs

One of the key innovations in Holland (1975) was the attempt to put GAs
on a stronger theoretical footing than the previous ad hoc treatments. He did
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this by the introduction of schema theory. While many aspects and implications
of schema theory have subsequently been challenged (Reeves and Rowe 2003,
Chap. 3; Spall 2003, Sect. 10.3), some aspects remain viable. In particular, schema
theory itself is generally correct (subject to a few modifications), although many
of the assumed implications have not been correct. With the appropriate caveats
and restrictions, schema theory provides some intuitive explanation for the good
performance that is frequently observed with GAs.

More recently, Markov chains have been used to provide a formal structure for
analyzing GAs. First, let us mention one negative result. Markov chains can be used
to show that a canonical GA without elitism is (in general) provably nonconvergent
(Rudolph 1994). That is, with a GA that does not hold onto the best solution at
each generation, there is the possibility (through crossover and mutation) that a
chromosome corresponding to ™� will be lost. (Note that the GA without elitism
corresponds to the form in Holland 1975.)

On the other hand, conditions for the formal convergence of GAs to an
optimal ™� (or its coded equivalent) are presented in Vose (1999, Chaps. 13 and
14), Fogel (1999, Chap. 4), (Reeves and Rowe 2003, Chap. 6), and Spall (2003,
Sect. 10.5), among other references. Consider a binary bit-coded GA with a
population size of N and a string length of B bits per chromosome. Then the total
number of possible unique populations is:

NP 
�
N C 2B � 1

N

�
D .N C 2B � 1/Š

.2B � 1/ŠN Š

(Suzuki 1995). It is possible to construct an NP � NP Markov transition matrix P,
where the ijth element is the probability of transitioning from the i th population of
N chromosomes to the j th population of the same size. These elements depend in
a nontrivial way on N , the crossover rate, and the mutation rate; the number of elite
chromosomes is assumed to be Ne D 1 (Suzuki 1995). Let pk be an NP � 1 vector
having j th component pk.j / equal to the probability that the kth generation will
result in population j , j D 1; 2; : : :, NP .

From basic Markov chain theory,

pTkC1 D pTk P D pT0 PkC1;

where p0 is an initial probability distribution. A standard result in Markov chain
theory is that if the chain is irreducible and ergodic (see, e.g., Spall 2003, Appendix
E, Theorem E.1), then the limiting distribution of the GA exists and satisfies the
stationarity equation. (Recall from basic Markov chain theory that irreducibility
indicates that any state may be reached from any other state after a finite number
of steps.) However, the chain for a GA is not irreducible because the GA cannot
move to a population whose best fitness value is lower than the current best fitness
(hence, the convergence Theorem E.1 in Spall 2003, does not apply). Nevertheless,
the chain does have a unique limiting value NpT satisfying the stationarity equation
NpT D NpT P. An individual element in P can be computed according to the
formulas in Suzuki (1995) and Stark and Spall (2003). These elements depend in
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a nontrivial way on N , the crossover rate, and the mutation rate; the number of elite
chromosomes is assumed to be Ne D 1.

Suppose that ™� is unique (i.e., ‚� is the singleton ™�/. Let J � f1; 2; : : :; NP g
be the set of indices corresponding to the populations that contain at least one
chromosome representing ™�. So, for example, if J D f1; 6;NP � 3g, then each of
the three populations indexed by 1, 6 and NP � 3 contains at least one chromosome
that, when decoded, is equal to ™�. Under the above-mentioned assumptions of
irreducibility and ergodicity,

P
i2J Npi D 1, where Npi is the i th element of Np. Hence,

a GA with Ne D 1 and a transition matrix that is irreducible and ergodic converges
in probability to ™�.

To establish the fact of convergence alone, it may not be necessary to compute
the P matrix. Rather, it suffices to know that the chain is irreducible and ergodic.
(For example, Rudolph 1997, p. 125, shows that the Markov chain approach yields
convergence when 0 < Pm < 1.) However, P must be explicitly computed to get
the rate of convergence information that is available from pk . This is rarely possible
in practice because the number of states in the Markov chain (and hence dimension
of the Markov transition matrix) grows very rapidly with increases in the population
size and/or the number of bits used in coding for the population elements. For
example, in even a trivial problem of N D B D 6, there are � 108 states and
� 1016 elements in the transition matrix; this problem is much smaller than any
practical GA, which can easily have 50 to 100 population elements and 15 to 40
bits per population element (leading to well over 10100 states, with each element
in the corresponding row and column in the transition matrix requiring significant
computation).

7.5 Concluding Remarks

Stochastic optimization is a major branch of computational statistics. This chapter
has been a whirlwind tour through some important issues and methods in stochastic
optimization. Stochastic optimization applies when there are noisy measurements
of the criterion being optimized and/or there is an injected Monte Carlo randomness
as part of the algorithm. Of necessity, we cover only a small fraction of available
methods in this relatively brief review, although the methods described (random
search, stochastic approximation, and genetic algorithms) are representative of a
broad range of important and widely used algorithms. Further, the treatment here
on the specific algorithms is relatively brief. In particular, the subjects covered in
this chapter of approximately 30 pages are treated in over 160 pages in Spall (2003,
Chaps. 1–2, 6–8, and 9–10) and are given an even more detailed treatment in the
many specialized books or other references.

There are many challenges to carrying out real-world optimization, including the
presence of noise in the function evaluations, the difficulties in distinguishing a glob-
ally optimal solution from locally optimal solutions, the “curse of dimensionality,”
the difficulties associated with nontrivial constraints, and the lack of stationarity in
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the solution as a result of the conditions of the problem changing over time. Stochas-
tic optimization methods are especially useful in treating some of these challenges.
In particular, by definition, they are designed for noisy function evaluations. Further,
when considering injected (Monte Carlo) randomness (property II in Sect. 7.1.3),
certain stochastic optimization algorithms will (under conditions, of course) serve
as global optimizers. That is, the injected randomness provides enough “bounce” to
the algorithm to allow for escape from local minima en route to achieving a global
minimum.

In summary, while classical deterministic optimization methods (linear and
nonlinear programming) are effective for a range of problems, stochastic methods
are able to handle many of the problems for which deterministic methods are inap-
propriate. It is hoped that this summary gives the reader a flavor of the issues, algo-
rithms, and challenges in carrying out optimization in the face of stochastic effects.
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Chapter 8
Transforms in Statistics

Brani Vidakovic

It is not an overstatement to say that statistics is based on various transformations
of data. Basic statistical summaries such as the sample mean, variance, z-scores,
histograms, etc., are all transformed data. Some more advanced summaries, such
as principal components, periodograms, empirical characteristic functions, etc., are
also examples of transformed data. To give a just coverage of transforms utilized
in statistics will take a size of a monograph. In this chapter we will focus only
on several important transforms with the emphasis on novel multiscale transforms
(wavelet transforms and its relatives).

Transformations in statistics are utilized for several reasons, but unifying argu-
ments are that transformed data:

(1) Are easier to report, store, and analyze,
(2) Comply better with a particular modeling framework, and
(3) Allow for an additional insight to the phenomenon not available in the domain

of non-transformed data.

For example, variance stabilizing transformations, symmetrizing transforma-
tions, transformations to additivity, Laplace, Fourier, Wavelet, Gabor, Wigner–Ville,
Hugh, Mellin, transforms all satisfy one or more of points listed in (1–3).

We emphasize that words transformation and transform are often used inter-
changeably. However, the semantic meaning of the two words seem to be slightly
different. For the word transformation, the synonyms are alteration, evolution,
change, reconfiguration. On the other hand, the word transform carries the meaning
of a more radical change in which the nature and/or structure of the transformed
object are altered. In our context, it is natural that processes which alter the data
leaving them unreduced in the same domain should be called transformations (for
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example Box–Cox transformation) and the processes that radically change the
nature, structure, domain, and dimension of data should be called transforms (for
example Wigner–Ville transform).

In this chapter we focus mainly on transforms providing an additional insight on
data. After the introduction discussing three examples, several important transforms
are overviewed. We selected discrete Fourier, Hilbert, and Wigner–Ville transforms,
discussed in Sect. 8.2, and given their recent popularity, continuous and discrete
wavelet transforms discussed in Sects. 8.3 and 8.4.

8.1 Introduction

As an “appetizer” we give two simple examples of use of transformations in
statistics, Fisher z and Box–Cox transformations as well as the empirical Fourier–
Stieltjes transform.

Example 1. Assume that we are looking for variance transformation Y D #.X/, in
the case where VarX D 2X.�/ is a function of the mean � D EX . The first order
Taylor expansion of #.X/ about mean � is

#.X/ D #.�/C .X � �/# 0.�/CO �.X � �/2� :

Ignoring quadratic and higher order terms we see that

E#.X/ � 0 ; Var#.X/ � E
�
.X � �/2# 0.�/� D �# 0.x/�2 2X.�/ :

If Var .#.X// is to be c2, we obtain

�
# 0.x/

�2
2X.�/ D c2

resulting in

#.x/ D c
Z

dx

X.x/
dx :

This is a theoretical basis for the so-called Fisher z-transformation.
Let .X11; X21/; : : : ; .X1n; X2n/ be a sample from bivariate normal distribution

N2.�1; �2; 
2
1 ; 

2
2 ; �/, and NXi D 1=nPn

jD1 Xij , i D 1; 2.
The Pearson coefficient of linear correlation

r D
Pn

iD1.X1i � NX1/.X2i � NX2/
hPn

iD1
�
X1i � NX1

�2 �Pn
iD1

�
X2i � NX2

�2i1=2

has a complicated distribution involving special functions, e.g., Anderson (1984,
p. 113). However, it is well known that the asymptotic distribution for r is normal

N.�;
.1��2/2

n
/. Since the variance is a function of mean,
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#.�/ D
Z

c
p
n

1 � �2 d�

D c
p
n

2

Z �
1

1 � � C
1

1C �
�
d�

D c
p
n

2
log

�
1C �
1 � �

�
C k

is known as Fisher z-transformation for the correlation coefficient (usually for c D
1=
p
n and k D 0). Assume that r and � are mapped to z and � as

z D 1

2
log

�
1C r
1� r

�
D arctanh r ; � D 1

2
log

�
1C �
1 � �

�
D arctanh � :

The distribution of z is approximately normalN.�; 1=.n�3// and this approximation
is quite accurate when �2=n2 is small and when n is as low as 20. The use of Fisher
z-transformation is illustrated on finding the confidence intervals for � and testing
hypotheses about �.

To exemplify the above, we generated n D 30 pairs of normally distributed
random samples with theoretical correlation

p
2=2. This was done by generating

two i.i.d. normal samples a, and b of length 30 and taking the transformation x1 D
a C b, x2 D b. The sample correlation coefficient r is found. This was repeated
M D 10;000 times. The histogram of 10,000 sample correlation coefficients is
shown in Fig. 8.1a. The histogram of z-transformed r’s is shown in Fig. 8.1b with
superimposed normal approximationN.arctanh .

p
2=2/; 1=.30� 3//.

(1) For example, .1 � ˛/100% confidence interval for � is:

�
tanh

�
z � ˚

�1.1 � ˛=2/p
n � 3

�
; tanh

�
zC ˚�1.1 � ˛=2/p

n � 3
�

;

a b

Fig. 8.1 (a) Simulational run of 10,000 r’s from the bivariate population having theorethical � Dp
2=2:; (b) The same r’s transformed to z’s with the normal approximation superimposed



206 B. Vidakovic

where z D arctanh .r/ and tanhx D .ex � e�x/=.ex C e�x/ and ˚ stands for the
standard normal cumulative distribution function.

If r D �0:5687 and n D 28 z D �0:6456, zL D �0:6456� 1:96=5 D �1:0376
and zU D �0:6456C1:96=5D �0:2536. In terms of � the 95% confidence interval
is Œ�0:7769;�0:2483�.

(2) Assume that two samples of size n1 and n2, respectively, are obtained
form two different bivariate normal populations. We are interested in testing
H0 W �1 D �2 against the two sided alternative. After observing r1 and r2
and transforming them to z1 and z2, we conclude that the p-value of the test is
2˚.�jz1 � z2j=

p
1=.n1 � 3/C 1=.n2 � 3//.

Example 2. Box and Cox (1964) introduced a family of transformations, indexed
by real parameter �, applicable to positive data X1; : : : ; Xn,

Yi D
8
<

:

X�
i � 1
�

; � ¤ 0
logXi ; � D 0 :

(8.1)

This transformation is mostly applied to responses in linear models exhibiting
non-normality and/or heteroscedasticity. For properly selected �, transformed data
Y1; : : : ; Yn may look “more normal” and amenable to standard modeling techniques.
The parameter � is selected by maximizing the log-likelihood,

.� � 1/
nX

iD1
logXi � n

2
log

"
1

n

nX

iD1

�
Yi � NYi

�2
#

; (8.2)

where Yi are given in (8.1) and NYi D 1=nPn
iD1 Yi .

As an illustration, we apply the Box–Cox transformation to apparently skewed
data of CEO salaries.

Forbes magazine published data on the best small firms in 1993. These were
firms with annual sales of more than five and less than $350 million. Firms were
ranked by five-year average return on investment. One of the variables extracted is
the annual salary of the chief executive officer for the first 60 ranked firms (since
one datum is missing, the sample size is 59). Figure 8.2a shows the histogram of row
data (salaries). The data show moderate skeweness to the right. Figure 8.2b gives the
values of likelihood in (8.2) for different values of �. Note that (8.2) is maximized
for � approximately equal to 0.45. Figure 8.2c gives the transformed data by Box–
Cox transformation with � D 0:45. The histogram of transformed salaries is notably
symetrized.

Example 3. As an example of transforms utilized in statistics, we provide an appli-
cation of empirical Fourier–Stieltjes transform (empirical characteristic function) in
testing for the independence.

The characteristic function of a probability distribution F is defined as its
Fourier–Stieltjes transform,
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a b

c

Fig. 8.2 (a) Histogram of row data (CEO salaries); (b) Log-likelihood is maximized at � D 0:45;
and (c) Histogram of Box–Cox-transformed data

'X.t/ D E exp.itX/ ; (8.3)

where E is expectation and random variableX has distribution functionF . It is well
known that the correspondence of characteristic functions and distribution functions
is 1–1, and that closeness in the domain of characteristic functions corresponds
to closeness in the domain of distribution functions. In addition to uniqueness,
characteristic functions are bounded. The same does not hold for moment generating
functions which are Laplace transforms of distribution functions.

For a sample X1;X2; : : : ; Xn one defines empirical characteristic function
'�.t/ as

'�X.t/ D
1

n

nX

jD1
exp.i tXj / :

The result by Feuerverger and Mureika (1977) establishes the large sample proper-
ties of the empirical characteristic function.
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Theorem 1. For any T <1

P

"

lim
n!1 sup

jt j�T
j'�.t/ � '.t/j D 0

#

D 1

holds. Moreover, when n!1, the stochastic process

Yn.t/ D
p
n
�
'�.t/ � '.t/� ; jt j � T ;

converges in distribution to a complex-valued Gaussian zero-mean process Y.t/
satisfying Y.t/ D Y.�t/ and

E
�
Y.t/Y.s/

	
D '.t C s/ � '.t/'.s/ ;

where Y.t/ denotes complex conjugate of Y.t/.

Following Murata (2001) we describe how the empirical characteristic function
can be used in testing for the independence of two components in bivariate
distributions.

Given the bivariate sample .Xi ; Yi /, i D 1; : : : ; n, we are interested in testing for
independence of the components X and Y . The test can be based on the following
bivariate process,

Zn.t; s/ D
p
n
�
'�X;Y .t C s/ � '�X.t/'�Y .s/

�
;

where '�X;Y .t C s/ D 1=n
Pn

jD1 exp.itXj C isYj /.
Murata (2001) shows that Zn.t; s/ has Gaussian weak limit and that

VarZn.t; s/ �
h
'�X.2t/�

�
'�X.t/

�2i h
'�Y .2s/ �

�
'�Y .s/

�2i
; and

Cov
�
Zn.t; s/; Zn.t; s/

	
� �1 � j'�X.t/j2

� �
1 � j'�Y .s/j2

�
;

The statistics

T .t; s/ D .<Zn.t; s/ =Zn.t; s// ˙�1 .<Zn.t; s/ =Zn.t; s//0

has approximately �2 distribution with 2 degrees of freedom for any t and s finite.
Symbols < and = stand for the real and imaginary parts of a complex number. The
matrix˙ is 2 � 2 matrix with entries

&11 D 1

2

h
<Var .Zn.t; s//C Cov

�
Zn.t; s/; Zn.t; s/

	i
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&12 D &21 D 1

2
=Var .Zn.t; s// ; and

&22 D 1

2

h
�<Var .Zn.t; s//C Cov

�
Zn.t; s/; Zn.t; s/

	i
:

Any fixed pair t; s gives a valid test, and in the numerical example we selected t D 1
and s D 1 for calculational convenience.

We generated two independent components from the Beta(1; 2) distribution of
size n D 2;000 and found T statistics and corresponding p-values M D 2;000

times. Figure 8.3a,b depicts histograms of T statistics and p values based on
2,000 simulations. Since the generated components X and Y are independent, the
histogram for T agrees with asymptotic �22 distribution, and of course, the p-values
are uniform on Œ0; 1�. In Fig. 8.3c we show the p-values when the componentsX and
Y are not independent. Using two independent Beta(1; 2) components X and Y 0,
the second component Y is constructed as Y D 0:03X C 0:97Y 0. Notice that for

a b

c

Fig. 8.3 (a) Histogram of observed T statistics with theoretical �22 distribution; (b) p-values of
the test when components are independent; and (c) p-values if the test when the second component
is a mixture of an independent sample and 3% of the first component
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majority of simulational runs the independence hypothesis is rejected, i.e., the p-
values cluster around 0.

8.2 Fourier and Related Transforms

Functional series have a long history that can be traced back to the early nine-
teenth century. French mathematician (and politician) Jean-Baptiste-Joseph Fourier,
decomposed a continuous, periodic on Œ��; �� function f .x/ into the series od sines
and cosines,

a0

2
C
1X

nD1
an cosnx C bn sin nx ;

where the coefficients an and bn are defined as

an D 1

�

Z �

��
f .x/ cosnx dx ; n D 0; 1; 2; : : :

bn D 1

�

Z �

��
f .x/ sin nx dx ; n D 1; 2; : : : :

The sequences fan; n D 0; 1; : : :g and fbn; n D 1; 2; : : :g can be viewed as
a transform of the original function f . It is interesting that at the time of Fourier’s
discovery the very notion of function was not precisely defined. Fourier methods
have long history in statistics especially in the theory of nonparametric function and
density estimation and characteristic functions.

There are three types of Fourier transforms: integral, serial, and discrete. Next,
we focus on discrete transforms and some modifications of the integral transform.

8.2.1 Discrete Fourier Transform

The discrete Fourier transform (DFT) of a sequence f D ffn; n D 0; 1; : : : ; N �1g
is defined as

F D
(
N�1X

nD0
fnw

nk
N ; k D 0; : : : ; N � 1

)

;

where wN D e�i2�=N : The inverse is

f D
(
1

N

N�1X

kD0
Fkw�nkN ; n D 0; : : : ; N � 1

)

:
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The DFT can be interpreted as the multiplication of the input vector by a matrix;
therefore, the discrete Fourier transform is a linear operator. If Q D fQnk D
e�i2�nkgN	N , then F D Q � f . The matrix Q is unitary (up to a scale factor),
i.e., Q�Q D NI , where I is the identity matrix and Q� is the conjugate transpose
of Q.

There are many uses of discrete Fourier transform in statistics. It turns cyclic
convolutions into component-wise multiplication, and the fast version of DFT
has a low computational complexity of O.n log.n//, meaning that the number of
operations needed to transform an input of size n is proportional to n log.n/. For
a theory and various other uses of DFT in various fields reader is directed to Brigham
(1988).

We focus on estimation of a spectral density from the observed data, as an
important statistical task in a variety of applied fields in which the information about
frequency behavior of the phenomena is of interest.

Let fXt; t 2 Zg be a a real, weakly stationary time series with zero mean and
autocovariance function �.h/ D EX.tCh/X.t/. An absolutely summable complex-
valued function �.�/ defined on integers is the autocovariance function of Xt if and
only if the function

f .!/ D 1

2�

1X

hD�1
�.h/e�ih! (8.4)

is non-negative for all ! 2 Œ��; ��. The function f .!/ is called the spectral density
associated with covariance function �.h/, and is in fact a version of discrete Fourier
transform of the autocovariance function �.h/. The spectral density of a stationary
process is a symmetric and non-negative function. Given the spectral density, the
autocovariance function can uniquely be recovered via inverse Fourier transform,

�.h/ D
Z �

��
f .!/eih!d! ; h D 0;˙1;˙2; : : : :

A traditional statistic used as an estimator of the spectral density is the peri-
odogram. The periodogram I.!/, based on a sample X0; : : : ; XT�1 is defined as

I.!j / D 1

2�T

ˇ̌
ˇ
ˇ
ˇ

T�1X

tD0
Xte�it!j

ˇ̌
ˇ
ˇ
ˇ

2

; (8.5)

where !j is the Fourier frequency !j D 2�j=T , j D Œ�T=2� C 1; : : : ;

�1; 0; 1; : : : ; ŒT=2�. By a discrete version of the sampling theorem it holds that I.!/
is uniquely determined for all ! 2 Œ��; ��, given its values at Fourier frequencies.

Calculationally, the periodogram is found by using fast Fourier transform.
A simple matlab m-function calculating the periodogram is

function out = periodogram(ts)
out = abs(fftshift(fft(ts - mean(ts)))).^2/(2*pi*length(ts));
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An application of spectral and log-spectral estimation involves famous Wolf’s
sunspot data set. Although in this situation the statistician does not know the “true”
signal, the theory developed by solar scientists helps to evaluate performance of the
algorithm.

The Sun’s activity peaks every 11 years, creating storms on the surface of our star
that disrupt the Earth’s magnetic field. These “solar hurricanes” can cause severe
problems for electricity transmission systems. An example of influence of such
periodic activity to everyday life is 1989 power blackout in the American northeast.

Efforts to monitor the amount and variation of the Sun’s activity by counting
spots on it have a long and rich history. Relatively complete visual estimates of daily
activity date back to 1818, monthly averages can be extrapolated back to 1,749, and
estimates of annual values can be similarly determined back to 1,700. Although
Galileo made observations of sunspot numbers in the early seventeenth century, the
modern era of sunspot counting began in the mid-1,800s with the research of Bern
Observatory director Rudolph Wolf, who introduced what he called the Universal
Sunspot Number as an estimate of the solar activity. The square root of Wolf’s yearly
sunspot numbers are given in Fig. 8.4a, data from Tong (1996), p. 471. Because of
wavelet data processing we selected a sample of size a power of two, i.e., only
256 observations from 1733 till 1998. The square root transformation was applied
to symmetrize and de-trend the Wolf’s counts. Figure 8.4b gives a raw periodogram,
while Fig. 8.4c shows the estimator of log-spectral density (Pensky and Vidakovic
2003).

The estimator reveals a peak at frequency !� � 0:58, corresponding to the
Schwabe’s cycle ranging from 9 to 11.5 (years), with an average of 2�=0:58 � 10:8
years. The Schwabe cycle is the period between two subsequent maxima or minima
the solar activity, although the solar physicists often think in terms of a 22-year
magnetic cycle since the sun’s magnetic poles reverse direction every 11 years.

8.2.2 Windowed Fourier Transform

Windowed Fourier Transforms are important in providing simultaneous insight
in time and frequency behavior of the functions. Standard Fourier Transforms
describing the data in the “Fourier domain” are precise in frequency, but not
in time. Small changes in the signal (data) at one location cause change in
the Fourier domain globally. It was of interest to have transformed domains
that are simultaneously precise in both time and frequency domains. Unfortu-
nately, the precision of such an insight is limited by the Heisenberg’s Uncertainty
Principle.

Suppose f .t/ is a signal of finite energy. In mathematical terms, the integral of
its modulus squared is finite, or shortly, f belongs to L2.R/ space.

The integral Fourier transform of the signal

F.f /.�/ D Of .�/ D
Z

R
f .t/e�ıt� dt ; (8.6)
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a b

c

Fig. 8.4 (a) Square roots of Wolf’s yearly sunspot numbers from 1732–1988 (256 observations);
(b) Raw periodogram; (c) An estimator of the log-spectra. The frequency !� 
 0:58 corresponds
to Schwabe’s period of 10.8 (years)

describes the allocation of energy content of a signal at different frequencies, but
the time-related information is lost.

Windowed Fourier transform (also called short time Fourier transform, STFT)
was introduced by Gabor (1946), to measure time-localized frequencies of sound.
An atom in Gabor’s decomposition is defined via:

gu;� .t/ D ei�tg.t � u/ ;

where g is a real, symmetric, and properly normalized “window” function. [jjgjj D
1 so that jjgu;� jj D 1]

If f 2 L2.R/, then windowed Fourier transform is defined as

Sf .u; �/ D hf; gu;�i D
Z

R
f .t/g.t � u/e�i�tdt : (8.7)
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The chief use of windowed Fourier transforms is to analyze time/frequency
distribution of signal energy, via a spectrogram.

The spectrogram,

PSf .u; �/ D jSf .u; �/j2 D
ˇ
ˇ̌
ˇ

Z 1

�1
f .t/g.t � u/e�i�tdt

ˇ
ˇ̌
ˇ

2

;

expresses the energy distribution in the signal f , with respect to time and frequency
simultaneously.

The following are some basic properties of STFT. Let f 2 L2.R2/. Then

[Inverse STFT] f .t/ D 1

2�

Z

R

Z

R
Sf .u; �/g.t � u/ei�td�du ; (8.8)

and

[Energy Conservation]
Z

R
jf .t/j2 dt D 1

2�

Z

R

Z

R
jSf .u; �/j2 d�du : (8.9)

The following is a characterizing property of STFT:
Let ˚ 2 L2.R2/. There exist f 2 L2.R2/ such that ˚.u; �/ D Sf .u; �/ if and

only if

˚ .u0; �0/ D 1

2�

Z

R

Z

R
˚.u; �/K .u0; u; �0; �/ dud� ; (8.10)

where

K.u0; u; �0; �/ D
˝
gu;� ; gu0;�0

˛ D
Z

R
g.t � u/g.t � u0/e

�i.�0��/t dt : (8.11)

8.2.3 Hilbert Transform

We next describe the Hilbert transform and its use in defining instantaneous
frequency, an important measure in statistical analysis of signals.

The Hilbert transform of the function signal g.t/ is defined by

Hg.t/ D 1

�
.VP /

Z 1

�1
g.�/

t � � d� : (8.12)

Because of the possible singularity at � D t , the integral is to be considered as
a Cauchy principal value, (VP). From (8.12) we see that Hg.t/ is a convolution,
1=.�t/ � g.t/.

The spectrum of Hg.t/ is related to that of g.t/. From the convolution equation,

F.H.t// D F
�
1

�t

�
F.g.t// :
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where F is the Fourier transform. With a real signal g.t/ one can associate
a complex function with the real part equal to g.t/ and the imaginary part equal
to H.g.t//, h.t/ D g.t/ � iH.g.t//.

In statistical signal analysis this associated complex function h.t/ is known as
analytic signal (or causal signal, since Oh.�/ D 0, for � < 0). Analytic signals are
important since they possess unique phase �.t/ which leads to the definition of the
instantaneous frequency.

If h.t/ is represented as a.t/ � expfi�.t/g, then the quantity d�=dt is instan-
taneous frequency of the signal g.t/, at time t . For more discussion and use of
instantaneous frequency, the reader is directed to Flandrin (1992, 1999).

8.2.4 Wigner–Ville Transforms

Wigner–Ville Transform (or Distribution) is the method to represent data (signals)
in the time/frequency domain. In statistics, Wigner–Ville transform provide a tool
to define localized spectral density for the nonstationary processes (Fig. 8.5).

Ville (1948) introduced the quadratic form that measures a local time-frequency
energy:

PV f .u; �/ D
Z

R
f
�

uC �

2

	
f �

�
u � �

2

	
e�i��d� ;

where f � is conjugate of f .
The Wigner–Ville transform is always real since f .u C �

2
/f �.u � �

2
/ has

Hermitian symmetry in � .
Time and frequency are symmetric in PV f .u; �/, by applying Parseval formula

one gets,
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Fig. 8.5 (a) Sonar signal from flying bat; (b) its Wigner–Ville transform
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PV f .u; �/ D 1

2�

Z

R

Of
�
� C �

2

	 Of �
�
� � �

2

	
e�i�ud� ; (8.13)

For any f 2 L2.R/

Z

R
PV f .u; �/du D j Of .�/j2 ; (8.14)

i.e., the time marginalization reproduces power spectrum, and

Z

R
PV f .u; �/d� D 2�jf .u/j2 ; (8.15)

i.e, the frequency marginalization is proportional to the squared modulus of the
signal.

Integral (8.13) states that one-dimensional Fourier transform of g�.u/ D
PV f .u; �/, with respect to u is,

Og�.�/ D Of
�
� C �

2

	 Of �
�
� � �

2

	
:

If � D 0, Og�.0/ D
R

R g�.u/du, which proves (8.14). Similarly for (8.15).
For example:

(1) If f .t/ D 1.�T � t � T /, then

PV f .u; �/ D 2 sinŒ2.T � juj/��
�

1.�T � u � T / :

Plot PV f .u; �/.
(2) If f .t/ D expfi�.t C ˛t2=2/g, then PV .u; �/ D 2�ı.� � �.1C ˛u//.
(3) A Gaussian f .t/ D .2�/�1=4 exp.�t2=.22// is transformed into

PV f .u; �/ D 1

�
exp

�
� u2

2
� 2�2

�
:

In this case, PV f .u; �/ D jf .u/j2 � j Of .�/j2. The Gaussian is the only (up to time and
frequency shifts) distribution for which Wigner–Ville transform remains positive.
Some basic properties of Wigner–Ville transforms are listed in Table 8.1.

Next we show that expected value of Wigner–Ville transform of a random process
can serve as a definition for generalized spectrum of a non-stationary process. Let
X.t/ be real-valued zero-mean random process with covariance function

EX.t/X.s/ D R.t; s/ D R
�

uC �

2
; u � �

2

	
D C.u; �/ ;



8 Transforms in Statistics 217

Table 8.1 Properties of Wigner–Ville transform

Function Wigner–Ville

f .t/ PV f .u; �/
ei�f .t/ PV f .u; �/
f .t � u0/ PV f .u� u0; �/
ei�0t f .t/ PV f .u; � � �0/
eiat2f .t/ PV f .u; � � 2au/
1

p

s
f .t=s/ PV f .u=s; s�/

after substitution � D t � s and u D .t C s/=2.
Now, if the process X.t/ is stationary, then C.u; �/ is a function of � only and

PX.�/ D
Z 1

�1
C.�/e�i��d�

is its power spectrum.
For arbitrary process Flandrin (1999) defined “power spectrum” as

PX.�/ D
Z 1

�1
C.u; �/e�i��d� :

Thus, PX.�/ can be represented as EPV X.u; �/, where

PV X.u; �/ D
Z 1

�1
X
�

uC �

2

	
X
�

u � �
2

	
e�i��d� :

For more information on Wigner–Ville transforms and their statistical use the
reader is directed to Baraniuk (1994), Carmona et al. (1998), Flandrin (1999), Mallat
(1999), among others.

8.3 Wavelets and Other Multiscale Transforms

Given their recent popularity and clear evidence of wide applicability the
most of the space in this chapter is devoted to Wavelet transforms. Statistical
multiscale modeling has, in recent decade, become a well established area in
both theoretical and applied statistics, with impact to developments in statistical
methodology.

Wavelet-based methods are important in statistics in areas such as regression,
density and function estimation, factor analysis, modeling and forecasting in
time series analysis, in assessing self-similarity and fractality in data, in spatial
statistics.
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The attention of the statistical community was attracted in late 1980s and early
1990s, when Donoho, Johnstone, and their coauthors demonstrated that wavelet
thresholding, a simple denoising procedure, had desirable statistical optimality
properties. Since then, wavelets have proved useful in many statistical disciplines,
notably in nonparametric statistics and time series analysis. Bayesian concepts and
modeling approaches have, more recently, been identified as providing promising
contexts for wavelet-based denoising applications.

In addition to replacing traditional orthonormal bases in a variety statistical prob-
lems, wavelets brought novel techniques and invigorated some of the existing ones.

8.3.1 A Case Study

We start first with a statistical application of wavelet transforms. This example
emphasizes specificity of wavelet-based denoising not shared by standard state-of-
art denoising techniques.

A researcher in geology was interested in predicting earthquakes by the level of
water in nearby wells. She had a large (8;192 D 213 measurements) data set of water
levels taken every hour in a period of time of about one year in a California well.
Here is the description of the problem.

The ability of water wells to act as strain meters has been observed for centuries. The
Chinese, for example, have records of water flowing from wells prior to earthquakes. Lab
studies indicate that a seismic slip occurs along a fault prior to rupture. Recent work has
attempted to quantify this response, in an effort to use water wells as sensitive indicators
of volumetric strain. If this is possible, water wells could aid in earthquake prediction by
sensing precursory earthquake strain.

We have water level records from six wells in southern California, collected over a six
year time span. At least 13 moderate size earthquakes (magnitude 4.0–6.0) occurred in
close proximity to the wells during this time interval. There is a significant amount of
noise in the water level record which must first be filtered out. Environmental factors
such as earth tides and atmospheric pressure create noise with frequencies ranging from
seasonal to semidiurnal. The amount of rainfall also affects the water level, as do surface
loading, pumping, recharge (such as an increase in water level due to irrigation), and sonic
booms, to name a few. Once the noise is subtracted from the signal, the record can be
analyzed for changes in water level, either an increase or a decrease depending upon
whether the aquifer is experiencing a tensile or compressional volume strain, just prior to an
earthquake.

A plot of the raw data for hourly measurements over one year (8;192 D 213

observations) is given in Fig. 8.6a, with a close-up in Fig. 8.6b. After applying the
wavelet transform and further processing the wavelet coefficients (thresholding),
we obtained a fairly clean signal with a big jump at the earthquake time. The
wavelet-denoised data are given in Fig. 8.6d. The magnitude of the water level
change at the earthquake time did not get distorted in contrast to traditional
smoothing techniques. This local adaptivity is a desirable feature of wavelet
methods.

For example, Fig. 8.6c, is denoised signal after applying supsmo smoothing
procedure. Note that the earthquake jump is smoothed, as well.
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a b

c d

Fig. 8.6 (a) shows n D 8;192 hourly measurements of the water level for a well in an earthquake
zone. Notice the wide range of water levels at the time of an earthquake around t D 417.
(b) focusses on the data around the earthquake time. (c) demonstrates action of a standard smoother
supsmo, and (d) depicts a wavelet based reconstruction

8.3.2 Continuous Wavelet Transform

The first theoretical results in wavelets had been concerned with continuous wavelet
decompositions of functions and go back to the early 1980s. Papers of Morlet
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et al. (1982) and Grossmann and Morlet (1984, 1985) were among the first on this
subject.

Let  a;b.x/, a 2 Rnf0g; b 2 R be a family of functions defined as translations
and re-scales of a single function  .x/ 2 L2.R/,

 a;b.x/ D 1
pjaj 

�
x � b
a

�
: (8.16)

Normalization constant 1=
pjaj ensures that the norm jj a;b.x/jj is independent

of a and b: The function  (called the wavelet function is assumed to satisfy the
admissibility condition,

C D
Z

R

j	.!/j2
j!j d! <1 ; (8.17)

where	.!/ D R
R  .x/e

�ix!dx is the Fourier transform of .x/: The admissibility
condition (8.17) implies

0 D 	.0/ D
Z
 .x/dx :

Also, if
R
 .x/dx D 0 and

R
.1 C jxj˛/j .x/jdx < 1 for some ˛ > 0, then

C <1.
Wavelet functions are usually normalized to “have unit energy”, i.e.,

jj a;b.x/jj D 1.
For example, the second derivative of the Gaussian function,

 .x/ D d2

dx2

h
�C e�x2=2

i
D C �1 � x2� e�x2=2 ; C D 2

p
3
p
�
;

is an example of an admissible wavelet, called Mexican Hat or Marr’s wavelet, see
Fig. 8.7.

For any square integrable function f .x/, the continuous wavelet transform is
defined as a function of two variables

CWT f .a; b/ D hf; a;bi D
Z
f .x/ a;b.x/dx :

Here the dilation and translation parameters, a and b, respectively, vary continu-
ously over Rnf0g �R.

Figure 8.8 gives the doppler test function, f D 1=.tC0:05/pt.1 � t/ sin.2� �
1:05/, 0 � t � 1, and its continuous wavelet transform. The wavelet used was
Mexican Hat. Notice the distribution of “energy” in the time/frequency plane in
Fig. 8.8b.
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Fig. 8.7 Mexican hat wavelet (solid line) and its Fourier transform (dashed line)

Resolution of Identity

When the admissibility condition is satisfied, i.e., C < 1, it is possible to find
the inverse continuous transform via the relation known as resolution of identity or
Calderón’s reproducing identity,

f .x/ D 1

C 

Z

R2

CWT f .a; b/ a;b.x/
da db

a2
:

The continuous wavelet transform of a function of one variable is a function of
two variables. Clearly, the transform is redundant. To “minimize” the transform one
can select discrete values of a and b and still have a lossless transform. This is
achieved by so called critical sampling.

The critical sampling defined by

a D 2�j ; b D k2�j ; j; k 2 Z ; (8.18)

will produce the minimal, but complete basis. Any coarser sampling will not
produce a unique inverse transform. Moreover under mild conditions on the wavelet
function , such sampling produces an orthogonal basis f jk.x/ D 2j=2 .2j x�k/,
j; k 2 Zg. To formally describe properties of minimal and orthogonal wavelet bases
a multiresolution formalism is needed.
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a

b

Fig. 8.8 (a) Doppler signal; (b) Continuous wavelet transform of doppler signal by the Mexican
hat wavelet

8.3.3 Multiresolution Analysis

Fundamental for construction of critically sampled orthogonal wavelets is a notion
of multiresolution analysis introduced by Mallat (1989a,b). A multiresolution
analysis (MRA) is a sequence of closed subspaces Vn; n 2 Z in L2.R/ such that
they lie in a containment hierarchy



8 Transforms in Statistics 223

� � � � V�2 � V�1 � V0 � V1 � V2 � � � � : (8.19)

The nested spaces have an intersection that contains only the zero function and
a union that contains all square integrable functions.

\nVj D f0g ; [j Vj D L2.R/ :

(WithA we denoted the closure of a set A). The hierarchy (8.19) is constructed such
that V -spaces are self-similar,

f
�
2j x

� 2 Vj iff f .x/ 2 V0 : (8.20)

with the requirement that there exists a scaling function � 2 V0 whose integer-
translates span the space V0,

V0 D
(

f 2 L2.R/j f .x/ D
X

k

ck�.x � k/
)

;

and for which the family f�.� � k/, k 2 Zg is an orthonormal basis. It can be
assumed that

R
�.x/dx � 0. With this assumption this integral is in fact equal to 1.

Because of containment V0 � V1, the function �.x/ 2 V0 can be represented as
a linear combination of functions from V1, i.e.,

�.x/ D
X

k2Z

hk
p
2�.2x � k/ ; (8.21)

for some coefficients hk , k 2 Z. This equation called the scaling equation
(or two-scale equation) is fundamental in constructing, exploring, and utilizing
wavelets.

Theorem 2. For the scaling function it holds

Z

R
�.x/dx D 1 ;

or, equivalently,
˚.0/ D 1 ;

where ˚.!/ is Fourier transform of �,
R

R �.x/e
�i!xdx.

The coefficients hn in (8.21) are important in efficient application of wavelet
transforms. The (possibly infinite) vector h D fhn, n 2 Zg will be called a wavelet
filter. It is a low-pass (averaging) filter as will become clear later by its analysis in
the Fourier domain.
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To further explore properties of multiresolution analysis subspaces and their
bases, we will often work in the Fourier domain.

It will be convenient to use Fourier domain for subsequent analysis of wavelet
paradigm. Define the functionm0 as follows:

m0.!/ D 1p
2

X

k2Z

hke�ik! D 1p
2
H.!/ : (8.22)

The function in (8.22) is sometimes called the transfer function and it describes the
behavior of the associated filter h in the Fourier domain. Notice that the functionm0

is 2�-periodic and that filter taps fhn, n 2 Zg are in fact the Fourier coefficients in
the Fourier serias of H.!/ D p2m0.!/.

In the Fourier domain the relation (8.21) becomes

˚.!/ D m0

�!
2

	
˚
�!
2

	
; (8.23)

where ˚.!/ is the Fourier transform of �.x/. Indeed,

˚.!/ D
Z 1

�1
�.x/e�i!xdx

D
X

k

p
2hk

Z 1

�1
�.2x � k/e�i!xdx

D
X

k

hkp
2

e�ik!=2
Z 1

�1
�.2x � k/e�i.2x�k/!=2d.2x � k/

D
X

k

hkp
2

e�ik!=2˚
�!
2

	

D m0

�!
2

	
˚
�!
2

	
:

By iterating (8.23), one gets

˚.!/ D
1Y

nD1
m0

� !
2n

	
; (8.24)

which is convergent under very mild conditions concerning the rates of decay of the
scaling function �.

Next, we prove two important properties of wavelet filters associated with an
orthogonal multiresolution analysis, normalization and orthogonality.
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Normalization

X

k2Z

hk D
p
2 : (8.25)

Proof :

Z
�.x/dx D p2

X

k

hk

Z
�.2x � k/dx

D p2
X

k

hk
1

2

Z
�.2x � k/d.2x � k/

D
p
2

2

X

k

hk

Z
�.x/dx :

Since
R
�.x/dx ¤ 0 by assumption, (8.25) follows.

This result also follows fromm0.0/ D 1.

Orthogonality

For any l 2 Z; X

k

hkhk�2l D ıl : (8.26)

Proof : Notice first that from the scaling equation (8.21) it follows that

�.x/�.x � l/ D p2
X

k

hk�.2x � k/�.x � l/ (8.27)

D p2
X

k

hk�.2x � k/
p
2
X

m

hm�.2.x � l/ �m/ :

By integrating the both sides in (8.27) we obtain

ıl D 2
X

k

hk

"
X

m

hm
1

2

Z
�.2x � k/�.2x � 2l �m/d.2x/

#

D
X

k

X

m

hkhmık;2lCm

D
X

k

hkhk�2l :

The last line is obtained by taking k D 2l Cm.
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An important special case is l D 0 for which (8.26) becomes

X

k

h2k D 1 : (8.28)

The fact that the system f�.� � k/, k 2 Zg constitutes an orthonormal basis for
V0 can be expressed in the Fourier domain in terms of either ˚.!/ or m0.!/.

In terms of ˚.!/,
1X

lD�1
j˚.! C 2�l/j2 D 1 : (8.29)

From the Plancherel identity and the 2�-periodicity of ei!k it follows

ık D
Z

R
�.x/�.x � k/dx

D 1

2�

Z

R
˚.!/˚.!/ei!kd!

D 1

2�

Z 2�

0

1X

lD�1
j˚.! C 2�l/j2ei!kd! : (8.30)

The last line in (8.30) is the Fourier coefficient ak in the Fourier series decomposi-
tion of

f .!/ D
1X

lD�1
j˚.! C 2�l/j2 :

Due to the uniqueness of Fourier representation, f .!/ D 1. As a side result, we
obtain that ˚.2�n/ D 0, n ¤ 0, and

P
n �.x � n/ D 1. The last result follows

from inspection of coefficients ck in the Fourier decomposition of
P

n �.x�n/, the
series

P
k cke2� ikx . As this function is 1-periodic,

ck D
Z 1

0

 
X

n

�.x � n/
!

e�2� ikxdx D
Z 1

�1
�.x/e�2� ikxdx D ˚.2�k/ D ı0;k :

Remark 1. Utilizing the identity (8.29), any set of independent functions spanning
V0, f�.x � k/, k 2 Zg, can be orthogonalized in the Fourier domain. The
orthonormal basis is generated by integer-shifts of the function

F�1

2

6
4

˚.!/
qP1

lD�1 j˚.! C 2�l/j2

3

7
5 : (8.31)

This normalization in the Fourier domain is used in constructing of some wavelet
bases.
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Orthogonality condition 8.29 can be expressed in terms of m0 as:

jm0.!/j2 C jm0.! C �/j2 D 1 : (8.32)

Since
P1

lD�1 j˚.2! C 2l�/j2 D 1, then by (8.23)

1X

lD�1
jm0.! C l�/j2 j˚.! C l�/j2 D 1 : (8.33)

Now split the sum in (8.33) into two sums – one with odd and the other with even
indices, i.e.,

1 D
1X

kD�1
jm0.! C 2k�/j2 j˚.! C 2k�/j2C

1X

kD�1
jm0.! C .2k C 1/�/j2 j˚.! C .2k C 1/�/j2 :

To simplify the above expression, we use (8.29) and the 2�-periodicity of m0.!/.

1 D jm0.!/j2
1X

kD�1
j˚.! C 2k�/j2 C jm0.! C �/j2

1X

kD�1
j˚..! C �/C 2k�/j2

D jm0.!/j2 C jm0.! C �/j2 :

Whenever a sequence of subspaces satisfies MRA properties, there exists (though
not unique) an orthonormal basis for L2.R/,

˚
 jk.x/ D 2j=2 

�
2j x � k� ; j; k 2 Z

�
(8.34)

such that f jk.x/, j -fixed, k 2 Zg is an orthonormal basis of the “difference space”
Wj D VjC1 � Vj . The function  .x/ D  00.x/ is called a wavelet function or
informally the mother wavelet.

Next, we discuss the derivation of a wavelet function from the scaling function.
Since  .x/ 2 V1 (because of the containmentW0 � V1), it can be represented as

 .x/ D
X

k2Z

gk
p
2�.2x � k/ ; (8.35)

for some coefficients gk; k 2 Z.
Define

m1.!/ D 1p
2

X

k

gke�ik! : (8.36)
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By mimicking what was done with m0, we obtain the Fourier counterpart of (8.35),

	.!/ D m1

�!
2

	
˚
�!
2

	
: (8.37)

The spaces W0 and V0 are orthogonal by construction. Therefore,

0 D
Z
 .x/�.x � k/dx D 1

2�

Z
	.!/˚.!/ei!kd!

D 1

2�

Z 2�

0

1X

lD�1
	.! C 2l�/˚.! C 2l�/ei!kd! :

By repeating the Fourier series argument, as in (8.29), we conclude

1X

lD�1
	.! C 2l�/˚.! C 2l�/ D 0 :

By taking into account the definitions of m0 and m1, and by the derivation as
in (8.32), we find

m1.!/m0.!/Cm1.! C �/m0.! C �/ D 0 : (8.38)

From (8.38), we conclude that there exists a function �.!/ such that

.m1.!/;m1.! C �// D �.!/
�
m0.! C �/;�m0.!/

	
: (8.39)

By substituting � D ! C � and by using the 2�-periodicity of m0 and m1, we
conclude that

�.!/ D ��.! C �/ ; and (8.40)

�.!/ is 2�-periodic :

Any function �.!/ of the form e˙i!S.2!/, where S is an L2.Œ0; 2��/, 2�-periodic
function, will satisfy (8.38); however, only the functions for which j�.!/j D 1 will
define an orthogonal basis  jk of L2.R/.

To summarize, we choose �.!/ such that:

(1) �.!/ is 2�-periodic,
(2) �.!/ D ��.! C �/, and
(3) j�.!/j2 D 1.

Standard choices for �.!/ are �e�i! , e�i! , and ei! ; however, any other function
satisfying (1)–(3) will generate a valid m1. We choose to definem1.!/ as
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m1.!/ D �e�i!m0.! C �/ : (8.41)

since it leads to a convenient and standard connection between the filters h and g.
The form ofm1 and (8.29) imply that f .�� k/, k 2 Zg is an orthonormal basis

forW0.
Since jm1.!/j D jm0.! C �/j, the orthogonality condition (8.32) can be

rewritten as
jm0.!/j2 C jm1.!/j2 D 1 : (8.42)

By comparing the definition ofm1 in (8.36) with

m1.!/ D �e�i! 1p
2

X

k

hkei.!C�/k

D 1p
2

X

k

.�1/1�khke�i!.1�k/

D 1p
2

X

n

.�1/nh1�ne�i!n ;

we relate gn and hn as
gn D .�1/n h1�n : (8.43)

In signal processing literature, (8.43) is known as the quadrature mirror relation
and the filters h and g as quadrature mirror filters.

Remark 2. Choosing �.!/ D ei! leads to the rarely used high-pass filter gn D
.�1/n�1h�1�n. It is convenient to define gn as .�1/nh1�nCM , where M is a “shift
constant.” Such re-indexing of g affects only the shift-location of the wavelet
function.

8.3.4 Haar Wavelets

In addition to their simplicity and formidable applicability, Haar wavelets have
tremendous educational value. Here we illustrate some of the relations discussed
in the Sect. 8.3.3 using the Haar wavelet. We start with scaling function �.x/ D
1.0 � x � 1/ and pretend that everything else is unknown. By inspection of simple
graphs of two scaled Haar wavelets �.2x/ and �.2x C 1/ stuck to each other, we
conclude that the scaling (8.21) is

�.x/ D �.2x/C �.2x � 1/

D 1p
2

p
2�.2x/C 1p

2

p
2�.2x � 1/ ; (8.44)
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which yields the wavelet filter coefficients:

h0 D h1 D 1p
2
:

The transfer functions are

m0.!/ D 1p
2

�
1p
2

e�i!0
�
C 1p

2

�
1p
2

e�i!1
�
D 1C e�i!

2
:

and

m1.!/ D �e�i!m0.! C �/ D �e�i!
�
1

2
� 1
2

ei!
�
D 1 � e�i!

2
:

Notice that m0.!/ D jm0.!/jei'.!/ D cos.!=2/ � e�i!=2 (after cos x D .eix C
e�ix/=2). Since '.!/ D �!

2
, the Haar wavelet has linear phase, i.e., the scaling

function is symmetric in the time domain. The orthogonality condition jm0.!/j2 C
jm1.!/j2 D 1 is easily verified, as well.

Relation (8.37) becomes

	.!/ D 1 � e�i!=2

2
˚
�!
2

	
D 1

2
˚
�!
2

	
� 1
2
˚
�!
2

	
e�i!=2 ;

and by applying the inverse Fourier transform we obtain

 .x/ D �.2x/� �.2x � 1/

in the time-domain. Therefore we “have found” the Haar wavelet function  . From
the expression for m1 or by inspecting the representation of  .x/ by �.2x/ and
�.2x � 1/, we “conclude” that g0 D �g�1 D 1p

2
.

Although the Haar wavelets are well localized in the time domain, in the
frequency domain they decay at the slow rate of O.1=n/ and are not effective in
approximating smooth functions.

8.3.5 Daubechies’ Wavelets

The most important family of wavelets was discovered by Ingrid Daubechies and
fully described in Daubechies (1992). This family is compactly supported with
various degrees of smoothness.

The formal derivation of Daubechies’ wavelets goes beyond the scope of this
chapter, but the filter coefficients of some of its family members can be found by
following considerations.

For example, to derive the filter taps of a wavelet with N vanishing moments, or
equivalently, 2N filter taps, we use the following equations.
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The normalization property of scaling function implies

2N�1X

iD0
hi D

p
2 ;

requirement for vanishing moments for wavelet function  leads to

2N�1X

iD0
.�1/i ikhi D 0 ; k D 0; 1; : : : ; N � 1 ;

and, finally, the orthogonality property can be expressed as

2N�1X

iD0
hihiC2k D ık k D 0; 1; : : : ; N � 1 :

We obtained 2N C 1 equations with 2N unknowns; however the system is
solvable since the equations are not linearly independent.

Example 4. For N D 2, we obtain the system:

8
ˆ̂
<

ˆ̂
:

h0 C h1 C h2 C h3 D
p
2

h20 C h21 C h22 C h23 D 1
�h1 C 2h2 � 3h3 D 0;
h0 h2 C h1 h3 D 0

;

which has a solution h0 D 1Cp3
4
p
2

, h1 D 3Cp3
4
p
2

, h2 D 3�p3
4
p
2

, and h3 D 1�p3
4
p
2

.
For N D 4, the system is

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂:

h0 C h1 C h2 C h3 C h4 C h5 C h6 C h7 D
p
2

h20 C h21 C h22 C h23 C h24 C h25 C h26 C h27 D 1
h0 � h1 C h2 � h3 C h4 � h5 C h6 � h7 D 0
h0h2 C h1h3 C h2h4 C h3h5 C h4h6 C h5h7 D 0
h0h4 C h1h5 C h2h6 C h3h7 D 0
h0h6 C h1h7 D 0
0h0 � 1h1 C 2h2 � 3h3 C 4h4 � 5h5 C 6h6 � 7h7 D 0
0h0 � 1h1 C 4h2 � 9h3 C 16h4 � 25h5 C 36h6 � 49h7 D 0
0h0 � 1h1 C 8h2 � 27h3 C 64h4 � 125h5 C 216h6 � 343h7 D 0 :

Figure 8.9 depicts two scaling function and wavelet pairs from the Daubechies
family. Figure 8.9a,b depict the pair with two vanishing moments, while Fig. 8.9c,d
depict the pair with four vanishing moments.
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a b

c d

Fig. 8.9 Wavelet functions from Daubechies family. (a) Daubechies scaling function, 2 vanishing
moments, 4 tap filter (b) Wavelet function corresponding to (a), (c) Daubechies scaling function,
4 vanishing moments, 8 tap filter (d) Wavelet function corresponding to (c)

8.4 Discrete Wavelet Transforms

Discrete wavelet transforms (DWT) are applied to discrete data sets and produce
discrete outputs. Transforming signals and data vectors by DWT is a process that
resembles the fast Fourier transform (FFT), the Fourier method applied to a set of
discrete measurements.

The analogy between Fourier and wavelet methods is even more complete
(Table 8.2) when we take into account the continuous wavelet transform and wavelet
series expansions.

Discrete wavelet transforms map data from the time domain (the original or input
data vector) to the wavelet domain. The result is a vector of the same size. Wavelet
transforms are linear and they can be defined by matrices of dimension n�n if they
are applied to inputs of size n. Depending on boundary conditions, such matrices
can be either orthogonal or “close” to orthogonal. When the matrix is orthogonal,
the corresponding transform is a rotation in Rn in which the data (a n-typle) is
a point in Rn. The coordinates of the point in the rotated space comprise the
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Table 8.2 The analogy between Fourier and wavelet methods

Fourier Fourier Fourier Discrete

Methods Integrals Series Fourier transforms
Wavelet Continuous Wavelet Discrete
Methods Wavelet transforms Series Wavelet transforms

Fig. 8.10 A function
interpolating y on Œ0; 8/

discrete wavelet transform of the original coordinates. Here we provide two toy
examples.

Example 5. Let the vector be .1; 2/ and let M.1; 2/ be the point in R2 with
coordinates given by the data vector. The rotation of the coordinate axes by an
angle of �=4 can be interpreted as a DWT in the Haar wavelet basis. The rotation
matrix is

W D
�

cos �
4

sin �
4

cos �
4
� sin �

4

�
D
 

1p
2

1p
2

1p
2
� 1p

2

!

;

and the discrete wavelet transform of .1; 2/0 is W � .1; 2/0 D .3=
p
2;�1=p2/0.

Notice that the energy (squared distance of the point from the origin) is preserved,
12 C 22 D .1=2/2 C .p3=2/2, since W is a rotation.

Example 6. Let y D .1; 0;�3; 2; 1; 0; 1; 2/. The associated function f is given
in Fig. 8.10. The values f .n/ D yn; n D 0; 1; : : : ; 7 are interpolated by
a piecewise constant function. We assume that f belongs to Haar’s multiresolution
space V0.

The following matrix equation gives the connection between y and the wavelet
coefficients (data in the wavelet domain).
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6
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6
6
6
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6
6
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0

�3
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1

0
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3

7
7
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7
7
7
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7
7
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D

2

6
6
6
66
6
6
6
6
66
6
6
6
4
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2
p
2

1

2
p
2

1
2

0 1p
2

0 0 0
1

2
p
2

1

2
p
2

1
2

0 � 1p
2

0 0 0
1

2
p
2

1

2
p
2
� 1
2
0 0 1p

2
0 0

1

2
p
2

1

2
p
2
� 1
2
0 0 � 1p

2
0 0

1

2
p
2
� 1

2
p
2
0 1

2
0 0 1p

2
0

1

2
p
2
� 1

2
p
2
0 1

2
0 0 � 1p

2
0

1

2
p
2
� 1

2
p
2
0 � 1

2
0 0 0 1p

2
1

2
p
2
� 1

2
p
2
0 � 1

2
0 0 0 � 1p

2

3

7
7
7
77
7
7
7
7
77
7
7
7
5

�

2

6
6
66
6
6
6
66
6
6
4

c00
d00

d10
d11
d20

d21
d22
d23

3

7
7
77
7
7
7
77
7
7
5

:

The solution is
2

6
6
6
6
66
6
6
6
66
4

c00

d00
d10
d11

d20
d21
d22
d23

3

7
7
7
7
77
7
7
7
77
5

D

2

6
6
6
6
6
66
6
6
6
66
6
4

p
2

�p2
1

�1
1p
2

� 5p
2

1p
2

� 1p
2

3

7
7
7
7
7
77
7
7
7
77
7
5

:

Thus,

f D p2��3;0 �
p
2 �3;0 C  �2;0 �  �2;1

C 1p
2
 �1;0 � 5p

2
 �1;1 C 1p

2
 �1;2 � 1p

2
 �1;3 : (8.45)

The solution is easy to verify. For example, when x 2 Œ0; 1/,

f .x/ D p2 � 1

2
p
2
�p2 � 1

2
p
2
C 1 � 1

2
C 1p

2
� 1p

2
D 1

2
C 1

2
D 1 .D y0/ :

Applying wavelet transforms by multiplying the input vector with an appropriate
orthogonal matrix is conceptually straightforward task, but of limited practical
value. Storing and manipulating the transformation matrices for long inputs .n >
2;000/may not even be feasible.

This obstacle is solved by the link of discrete wavelet transforms with fast
filtering algorithms from the field of signal and image processing.
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8.4.1 The Cascade Algorithm

Mallat (1989a,b) was the first to link wavelets, multiresolution analyses and cascade
algorithms in a formal way. Mallat’s cascade algorithm gives a constructive and
efficient recipe for performing the discrete wavelet transform. It relates the wavelet
coefficients from different levels in the transform by filtering with wavelet filter h
and and its mirror counterpart g.

It is convenient to link the original data with the space VJ , where J is often 0 or
logn, where n is a dyadic size of data. Then, coarser smooth and complementing
detail spaces are .VJ�1;WJ�1/, .VJ�2;WJ�2/, etc. Decreasing the index in V -
spaces is equivalent to coarsening the approximation to the data.

By a straightforward substitution of indices in the scaling (8.21) and (8.35), one
obtains

�j�1;l .x/ D
X

k2Z

hk�2l�jk.x/ and  j�1;l .x/ D
X

k2Z

gk�2l�jk.x/ : (8.46)

The relations in (8.46) are fundamental in developing the cascade algorithm.
In a multiresolution analysis, : : : � Vj�1 � Vj � VjC1 � : : :. Since

Vj D Vj�1 ˚ Wj�1, any function vj 2 Vj can be represented uniquely as
vj .x/ D vj�1.x/Cwj�1.x/, where vj�1 2 Vj�1 and wj�1 2 Wj�1. It is customary
to denote the coefficients associated with �jk.x/ and  jk.x/ by cjk and djk ,
respectively.

Thus,

vj .x/ D
X

k

cj;k�j;k.x/

D
X

l

cj�1;l�j�1;l .x/C
X

l

dj�1;l j�1;l .x/

D vj�1.x/C wj�1.x/ :

By using the general scaling (8.46), orthogonality of wj�1.x/ and �j�1;l .x/ for any
j and l , and additivity of inner products, we obtain

cj�1;l D hvj ; �j�1;l i

D
*

vj ;
X

k

hk�2l�j;k

+

D
X

k

hk�2lhvj ; �j;ki (8.47)

D
X

k

hk�2lcj;k :
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Similarly dj�1;l DPk gk�2l cj;k .
The cascade algorithm works in the reverse direction as well. Coefficients in

the next finer scale corresponding to Vj can be obtained from the coefficients
corresponding to Vj�1 and Wj�1. The relation

cj;k D hvj ; �j;ki
D
X

l

cj�1;lh�j�1;l ; �j;ki C
X

l

dj�1;lh j�1;l ; �j;ki (8.48)

D
X

l

cj�1;lhk�2l C
X

l

dj�1;lgk�2l ;

describes a single step in the reconstruction algorithm.
The discrete wavelet transform can be described in terms of operators. Let the

operators H and G acting on a sequence a D fan; n 2 Zg, satisfy the following
coordinate-wise relations:

.Ha/k D
X

n

hn�2kan .Ga/k D
X

n

gn�2kan ;

and their adjoint operators H� and G� satisfy:

.H�a/n D
X

k

hn�2kak .G�a/n D
X

k

gn�2kak ;

where h D fhng is wavelet filter and g D fgng its quadrature-mirror counterpart.
Denote the original signal by c.J / D fc.J /k g. If the signal is of length 2J , then

c.J / can be interpolated by the function f .x/ D P
c
.J /

k �.x � k/ from VJ . In each
step of the wavelet transform, we move to the next coarser approximation (level)
c.j�1/ by applying the operatorH, c.j�1/ D Hc.j /. The “detail information,” lost by
approximating c.j / by the “averaged” c.j�1/, is contained in vector d .j�1/ D Gc.j /.

The discrete wavelet transform of a sequence y D c.J / of length 2J can then be
represented as

�
c.J�k/;d .J�k/;d .J�kC1/; : : : ;d .J�2/;d .J�1/

	
: (8.49)

Notice that the lengths of y and its transform in (8.49) coincide. Because of
decimation, the length of c.j / is twice the length of c.j�1/, and 2J D 2J�k CPk

iD1 2J�i , 1 � k � J .
For an illustration of (8.49), see Fig. 8.11. By utilizing the operator notation, it is

possible to summarize the discrete wavelet transform (curtailed at level k) in a single
line:

y 7! �
Hky ;GHk�1y; : : : ;GH2y;GHy ;Gy

�
:
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Fig. 8.11 Forward wavelet transform of depth k (DWT is a vector of coefficients connected by
double lines)

Fig. 8.12 Inverse transform

The number k can be any arbitrary integer between 1 and J and it is associated with
the coarsest “smooth” space, VJ�k , up to which the transform was curtailed. In terms
of multiresolution spaces, (8.49) corresponds to the multiresolution decomposition
VJ�k ˚ WJ�k ˚ WJ�kC1 ˚ : : : ˚ WJ�1. When k D J the vector c.0/ contains
a single element, c.0/.

If the wavelet filter length exceeds 2, one needs to define actions of the filter
beyond the boundaries of the sequence to which the filter is applied. Different
policies are possible. The most common is a periodic extension of the original
signal.

The reconstruction formula is also simple in terms of operators H� and G�. They
are applied on c.j�1/ and d .j�1/, respectively, and the results are added (Fig. 8.12).
The vector c.j / is reconstructed as

c.j / D H�c.j�1/ C G�d .j�1/ ; (8.50)

Recursive application of (8.50) leads to

�
Hky ;GHk�1y ; : : : ;GH2y ;GHy ;Gy

�

D
�
c.J�k/;d .J�k/;d .J�kC1/; : : : ;d .J�2/;d .J�1/

	

7!
k�1X

iD1

�
H�
�k�1�i G�d .J�kCi / C �H��k c.J�k/ D y :
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Example 7. Let y D .1; 0;�3; 2; 1; 0; 1; 2/ be an exemplary set we want to
transform by Haar’s DWT. Let k D J D 3, i.e., the coarsest approximation and
detail levels will contain a single point each. The decomposition algorithm applied
on y D .1; 0;�3; 2; 1; 0; 1; 2/ is given schematically in Fig. 8.13.

For the Haar wavelet, the operators H and G are given by .Ha/k DP
n hn�2kan D

P
m hmamC2k D h0a2k C h1a2kC1 D .a2k C a2kC1/=

p
2. Similarly,

.Ga/k DPn gn�2kan D
P

m gmamC2k D g0a2k C g1a2kC1 D .a2k � a2kC1/=
p
2.

The reconstruction algorithm is given in Fig. 8.14. In the process of recon-
struction, .H�a/n D P

k hn�2kak , and .G�a/n D P
k gn�2kak . For instance, the

first line in Fig. 8.14 recovers the object f1; 1g from
p
2 by applying H�. Indeed,

.H�fa0g/0 D h0
p
2 D 1 and .H�fa0g/1 D h1

p
2 D 1.

We already mentioned that when the length of the filter exceeds 2, boundary
problems occur since the convolution goes outside the range of data.

There are several approaches to resolving the boundary problem. The signal
may be continued in a periodic way (: : : ; yn�1; ynjy1; y2; : : :), symmetric way
(: : : ; yn�1; ynjyn�1; yn�2; : : :), padded by a constant, or extrapolated as a polyno-
mial. Wavelet transforms can be confined to an interval (in the sense of Cohen
et al. (1993) and periodic and symmetric extensions can be viewed as special cases.
Periodized wavelet

transforms are also defined in a simple way.
If the length of the data set is not a power of 2, but of the formM �2K , forM odd

and K a positive integer, then only K steps in the decomposition algorithm can be

Fig. 8.13 An illustration of a decomposition procedure
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Fig. 8.14 An illustration of a reconstruction procedure

performed. For precise descriptions of conceptual and calculational hurdles caused
by boundaries and data sets whose lengths are not a power of 2, we direct the reader
to the monograph by Wickerhauser (1994).

In this section we discussed the most basic wavelet transform. Various gener-
alizations include biorthogonal wavelets, multiwavelets, nonseparable multidimen-
sional wavelet transforms, complex wavelets, lazy wavelets, and many more.

For various statistical applications of wavelets (nonparametric regression, density
estimation, time series, deconvolutions, etc.) we direct the reader to Antoniadis
(1997), Hï£¡rdle et al. (1998), Vidakovic (1999). An excellent monograph by Walter
and Shen (2000) discusses statistical applications of wavelets and various other
orthogonal systems.

8.4.2 Matlab Implementation of Cascade Algorithm

The following two matlab m-files implement discrete wavelet transform and its
inverse, with periodic handling of boundaries. The data needs to be of dyadic size
(power of 2). The programs are didactic, rather than efficient. For an excellent and
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comprehensive wavelet package, we direct the reader to wavelab802 module
(http://www-stat.stanford.edu/~wavelab/) maintained by Donoho and his coauthors.

function dwtr = dwtr(data, L, filterh)
% function dwtr = dwt(data, filterh, L);
% Calculates the DWT of periodic data set
% with scaling filter filterh and L scales.
%
% Example of Use:
% data = [1 0 -3 2 1 0 1 2]; filter = [sqrt(2)/2 sqrt(2)/2];
% wt = DWTR(data, 3, filter)
%------------------------------------------------------------------

n = length(filterh); %Length of wavelet filter
C = data; %Data \qut{live} in V_J
dwtr = []; %At the beginning dwtr empty
H = fliplr(filterh); %Flip because of convolution
G = filterh; %Make quadrature mirror
G(1:2:n) = -G(1:2:n); % counterpart
for j = 1:L %Start cascade

nn = length(C); %Length needed to
C = [C(mod((-(n-1):-1),nn)+1) C]; % make periodic
D = conv(C,G); %Convolve,
D = D([n:2:(n+nn-2)]+1); % keep periodic, decimate
C = conv(C,H); %Convolve,
C = C([n:2:(n+nn-2)]+1); % keep periodic, decimate
dwtr = [D,dwtr]; %Add detail level to dwtr

end; %Back to cascade or end
dwtr = [C, dwtr]; %Add the last \qut{smooth} part

function data = idwtr(wtr, L, filterh)
% function data = idwt(wtr, L, filterh);
% Calculates the IDWT of wavelet
% transform wtr using wavelet filter
% \qut{filterh} and L scales.
% Example:
%>> max(abs(data - IDWTR(DWTR(data,3,filter), 3,filter)))
%ans = 4.4409e-016
%----------------------------------------------------------------
nn = length(wtr); n = length(filterh); %Lengths
if nargin==2, L = round(log2(nn)); end; %Depth of transform
H = filterh; %Wavelet H filter
G = fliplr(H); G(2:2:n) = -G(2:2:n); %Wavelet G filter
LL = nn/(2^L); %Number of scaling coeffs
C = wtr(1:LL); %Scaling coeffs
for j = 1:L %Cascade algorithm

w = mod(0:n/2-1,LL)+1; %Make periodic
D = wtr(LL+1:2*LL); %Wavelet coeffs
Cu(1:2:2*LL+n) = [C C(1,w)]; %Upsample & keep periodic
Du(1:2:2*LL+n) = [D D(1,w)]; %Upsample & keep periodic
C = conv(Cu,H) + conv(Du,G); %Convolve & add
C = C([n:n+2*LL-1]-1); %Periodic part
LL = 2*LL; %Double the size of level

end;
data = C; %The inverse DWT

8.5 Conclusion

In this chapter we gave an overview of several transforms useful in computational
statistics. We emphasized frequency and scale domain transforms (Fourier and
wavelet) since they provide an insight to the phenomena, not available in the

http://www-stat.stanford.edu/~{ }wavelab/
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domain of untransformed data. Moreover, multiscale transforms are relatively
new, and as such deserve more attention. It was pretentious to title this chapter
Transforms in Statistics, since literally several dozens important transforms are not
even mentioned. As it was hinted in the introduction, a just task of overviewing all
important transformations used in statistical practice would take a space of a large
monograph.

Acknowledgements Work on this chapter was supported by DOD/NSA Grant E-24-60R at
Georgia Institute of Technology. Editor Jim Gentle read early versions of the chapter and gave
many valuable comments. All matlab programs that produced figures and simulations are
available from the author at request.
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Chapter 9
Parallel Computing Techniques

Junji Nakano

9.1 Introduction

Parallel computing means to divide a job into several tasks and use more than
one processor simultaneously to perform these tasks. Assume you have developed
a new estimation method for the parameters of a complicated statistical model. After
you prove the asymptotic characteristics of the method (for instance, asymptotic
distribution of the estimator), you wish to perform many simulations to assure the
goodness of the method for reasonable numbers of data values and for different
values of parameters. You must generate simulated data, for example, 100,000 times
for each length and parameter value. The total simulation work requires a huge
number of random number generations and takes a long time on your PC. If you
use 100 PCs in your institute to run these simulations simultaneously, you may
expect that the total execution time will be 1=100. This is the simple idea of parallel
computing.

Computer scientists noticed the importance of parallel computing many years
ago (Flynn 1966). It is true that the recent development of computer hardware
has been very rapid. Over roughly 40 years from 1961, the so called “Moore’s
law” holds: the number of transistors per silicon chip has doubled approximately
every 18 months (Tuomi 2002). This means that the capacity of memory chips
and processor speeds have also increased roughly exponentially. In addition, hard
disk capacity has increased dramatically. Consequently, modern personal computers
are more powerful than “super computers” were a decade ago. Unfortunately,
even such powerful personal computers are not sufficient for our requirements. In
statistical analysis, for example, while computers are becoming more powerful,
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data volumes are becoming larger and statistical techniques are becoming more
computer intensive. We are continuously forced to realize more powerful computing
environments for statistical analysis. Parallel computing is thought to be the most
promising technique.

However, parallel computing has not been popular among statisticians until
recently (Schervish 1988). One reason is that parallel computing was available only
on very expensive computers, which were installed at some computer centers in
universities or research institutes. Few statisticians could use these systems easily.
Further, software for parallel computing was not well prepared for general use.

Recently, cheap and powerful personal computers changed this situation. The
Beowulf project (Sterling et al. 1999), which realized a powerful computer sys-
tem by using many PCs connected by a network, was a milestone in parallel
computer development. Freely available software products for parallel computing
have become more mature. Thus, parallel computing has now become easy for
statisticians to access.

In this chapter, we describe an overview of available technologies for parallel
computing and give examples of their use in statistics. The next section considers
the basic ideas of parallel computing, including memory architectures. Section 9.3
introduces the available software technologies such as process forking, threading,
OpenMP, PVM (Parallel Virtual Machine), MPI (Message Passing Interface) and
HPF (High Performance Fortran). The last section describes some examples of
parallel computing in statistics.

9.2 Basic Ideas

Two important parts of computer hardware are the processor, which performs
computations, and memory, in which programs and data are stored. A processor
is also often called a central processing unit (CPU). Modern computer systems
adopt a stored programming architecture: all the program instructions are stored in
memory together with processed data and are executed sequentially by a processor
according to the instructions.

In a traditional single processor computer, a single stream of instructions is
generated from the program, and these instructions operate on a single stream of
data. Flynn (1966) called this arrangement a single instruction stream–single data
stream (SISD) computer.

On the other hand, a parallel computer system uses several processors, and is
realized as a single instruction stream–multiple data stream (SIMD) computer or
a multiple instruction stream–multiple data stream (MIMD) computer. SIMD refers
to a form of parallel execution in which all processors execute the same operation
on different data at the same time, and is often associated with performing the same
operation on every element of a vector or array. MIMD refers to parallel execution
in which each processor works independently; for example, one processor might
update a database file while another processor handles a graphic display.
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The fundamental software of a modern computer system is an operating system
such as UNIX or Microsoft Windows. They support multiple users and multiple
tasks, even on single processor systems, by adopting time-slicing mechanisms, in
which a processor executes tasks cyclically. In parallel computer systems, some
tasks are executed on different processors simultaneously.

9.2.1 Memory Architectures of Parallel Computers

The traditional computer system has a single processor (or CPU) that can access
all of the memory (Fig. 9.1). Parallel computers use more than one processor
simultaneously for a single calculation task. There are two simple methods to
increase the number of available processors in a single system. One method is to
add processors to the traditional single processor system without changing other
parts. Because all the memory is shared by all processors, such systems are called
shared memory systems (Fig. 9.2). An example of a shared memory system is a dual
processor personal computer, where the motherboard has two sockets for CPUs.
When we mount one CPU, it works as a traditional single processor system. If
we mount two CPUs, both processors can access all the memory in the PC, and it
works as a shared memory system. A second method is to connect traditional single
processor computers by a network. This is called a distributed memory system,
because the memory is used by a single processor locally and is “distributed”
over the whole system (Fig. 9.3). An example of a distributed memory system is
a network of workstations, in which each node computer works independently and
communicates with the others through a network to solve a single problem.

Integration of shared memory and distributed memory is possible (Fig. 9.4).
Network-connected PCs that each have two processors can be considered a dis-
tributed shared memory system.

Memory

CPU
Fig. 9.1 Traditional system

Memory

CPU CPU CPUFig. 9.2 Shared memory
system

Memory

CPU

Memory

CPU

Memory

CPU
Fig. 9.3 Distributed memory
system
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Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Fig. 9.4 Distributed shared memory system

Shared Memory Systems

In the simple shared memory realization, all the processors can access all the mem-
ory at the same speed by using a common memory bus. This is known as a uniform
memory access (UMA) configuration. Performance in a UMA system is limited by
the memory bus bandwidth; adding processors to the system beyond some point
does not increase performance linearly, because signals from processors flow on the
same memory bus and often cause collisions. Typically, UMA configurations do not
scale well beyond 10–20 processors.

To improve communication between processors and memory, a non-uniform
memory access (NUMA) configuration is used. In NUMA systems, all processors
have access to all the memory, but the cost of accessing a specific location in
memory is different for different processors, because different regions of memory
are on physically different buses. Even if we adopt a NUMA configuration, it is not
efficient to use more than 100 processors in a shared memory system.

A shared memory system is also a symmetric multiprocessor (SMP) system, in
which any processor can do equally well any piece of work.

In a shared memory system, a single copy of an operating system is in charge
of all the processors and the memory. It usually uses a programming model called
“fork–join”. Each program begins by executing just a single task, called the master.
When the first parallel work is reached, the master spawns (or forks) additional tasks
(called slaves or workers), which will “join” to the master when they finish their
work (the middle figure in Fig. 9.5). Such activities can be programmed by using
software technologies such as process, thread or OpenMP, which will be explained
in the next section.

Distributed Memory Systems

In a distributed memory system, each node computer is an independent computer
that has, at least, processor and memory, and the nodes are connected together by
a network. This so called “network of workstations” (NOW) is the cheapest way
to construct a distributed memory system, because we can utilize many different
kinds of workstations available, connected by a network, without adding any new
hardware. However, NOW is sometimes ineffective for heavy computation, because,
for example, general purpose networks are slow, and nodes may be unexpectedly
used for other work, so that it is difficult to schedule them efficiently.
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Memory
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Fig. 9.5 Typical parallel computing execution

Nowadays, “Beowulf class cluster computers” are popular for distributed mem-
ory parallel computing (Sterling et al. 1999). These are a kind of NOW, but
there are slight differences. First, the nodes in the cluster are the same kind of
workstation or PC, and are dedicated to the cluster calculation tasks. Typically,
node computers share the working directory on the hard disk and have no display
or keyboard. The interconnection network is isolated from external networks and
is also dedicated to the cluster, and communication among the nodes can be done
without further authentication. Operating system parameters are tuned to improve
the total performance for parallel computing. All these characteristics help the
performance of the parallel computing on the cluster.

Distributed memory systems have no memory bus problem. Each processor can
use the full bandwidth to its own local memory without interference from other
processors. Thus, there is no inherent limit to the number of processors. The size of
the system is constrained only by the network used to connect the node computers.
Some distributed memory systems consist of several thousand processors.

As nodes in a distributed memory system share no memory at all, exchange of
information among processors is more difficult than in a shared memory system.
We usually adopt a message passing programming model on a distributed memory
system; we organize a program as a set of independent tasks that communicate with
each other via messages. This introduces two sources of overhead: it takes time
to construct and send a message from one processor to another, and the receiving
processor must be interrupted to deal with messages from other processors.

Available message passing libraries are PVM and MPI . The right figure in
Fig. 9.5 shows an execution image of MPI. HPF is also mainly used in distributed
memory systems. These libraries are illustrated in the next section.
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9.2.2 Costs for Parallel Computing

We expect that the calculation speed increases n times if we use n processors instead
of one. We also wish to use multiprocessor systems just like an ordinary single
processor system. However, some costs are incurred in realizing parallel computing.
They include the non-parallel characteristics of the problem, communication costs
such as distributing and gathering data and/or programs, the difficulty of program-
ming for synchronization among executions and unexpected influences of cache
memory. All these factors reduce the effect of parallelization.

Amdahl’s Law

All programming tasks include non-parallelizable or serial parts, which cannot be
executed on several processors, for example, summarizing calculation results and
writing them to the display or file. Assume the ratio of computing time for the serial
parts to the whole task is f (0 < f < 1). If a single processor requires ts time to
complete the task, .1�f /ts computation time is used for the parallelizable task and
f ts computation time is used for the serial task. If we use n processors, the elapsed
time for execution of the parallelizable task will be at least .1 � f /ts=n, while the
execution time of the serial task remains f ts . Thus, the ratio of execution time for n
processors to that for one processor, S.n/, which is called the speedup factor, is

S.n/ D ts

f ts C .1 � f /ts=n D
n

1C .n � 1/f :

This equation is known as “Amdahl’s law” (Amdahl 1967). When n is large, it
converges to 1=f , that is, the effect of parallel computing is limited. For example,
if f D 5%, the maximum possible speedup is 20, even if we use an infinite number
of processors. This may discourage the use of parallel computing.

Of course, as f goes to zero, S.n/ converges to n, which is an ideal situation.

Gustafson’s Law

Amdahl’s law considers the situation where the task size is fixed and the number
of processors increases. In real problems, however, we wish to perform larger tasks
when the number of processors increases. For example, assume time s is required
for preparing a task, and time p is required for the (moderate) simulation task. When
a parallel computer is available, we wish to perform more simulations, typically, n
times larger simulations than the original ones by n processors. To perform this
simulation, a single processor system requires s C np time, while the n-processor
system requires s C p time. The speedup factor is
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S.n/ D s C np
s C p :

This equation is called “Gustafson’s law” (Gustafson 1988). Note that if we define
f D s=.s C np/, this is as same as Amdahl’s law. However, when n becomes
large, S.n/ becomes large linearly. This means that parallel computing is useful for
large-scale problems in which the serial part does not increase as the problem size
increases. If s approaches zero, S.n/ converges to n, the ideal situation.

Other Costs

If we divide one task into several small tasks and execute them in parallel, we must
wait until all the child tasks have been completed: we must synchronize executions.
As the slowest child task determines the total execution time, child tasks should be
designed to have almost the same execution times, otherwise some processors may
be idle while others have tasks queuing for execution. Techniques that aim to spread
tasks among the processors equally are called load balancing and are not easy.

In a shared memory system, exchange of information among processors is
performed by variables stored in the shared memory. If several tasks use one variable
almost simultaneously, it may cause trouble. Consider two tasks trying to decrease
the value of variable x by one. Assume x D 3; task 1 obtains this value, decreases
it and writes 2 into x. If task 2 tries to do the same task before task 1 finishes its
work, task 2 also obtains the value 3, and writes 2 into x. Thus, the final result is
2, although x should have decreased twice. To avoid such a maloperation, task 2
must wait until task 1 finishes. All parallel computing software can handle this
synchronization problem, typically by using a lock-unlock mechanism.

An important hardware aspect of shared memory systems is cache memory.
As the advances in main memory technology do not keep up with processor
innovations, memory access is very slow compared with processor speed. In order
to solve this problem, another layer of memory has been added between a processor
and main memory, called the cache. It is a small amount of very fast, expensive
memory, that operates close to the speed of the processor. A separate cache
controller monitors memory accesses and loads data and instructions in blocks of
contiguous locations from memory into the cache. Once the content of memory
is stored in the cache, the processor can operate at full speed by using them.
Sometimes, the cache contents are different from the necessary ones. In these cases,
the processor is stalled and has to wait while the necessary data is newly loaded from
memory into the cache. This mechanism works well in a single processor system.

All processors in a shared memory system have their own caches. Suppose
several processors access the same location of memory and copy them into their
caches. If one processor changes the value of the memory in that location, other
processors should not use the value in their caches. A cache coherence protocol is
used to notify this information among caches. A common cache coherence protocol
is an invalidate policy; when one copy of memory is altered, the same data in
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any other cache is invalidated (by resetting a valid bit in the cache). In shared
memory systems, cache coherence is done in the hardware and the programmer
need not worry about cache coherence. However, it may cause the slowdown of
the calculation speed. Note that caches handle blocks of memory. If one processor
writes to one part of the block, copies of the whole block in other caches are
invalidated though the actual data is not shared. This is known as false sharing
and can damage the performance of the cache in a shared memory system. We are
sometimes required to write programs considering the amount of the cache memory
in a shared memory system to achieve enough performance.

Distributed memory systems require communication among node computers.
Such communication is affected by several factors, including network bandwidth,
network latency and communication latency. Network bandwidth is the number of
bits that can be transmitted in unit time. Network latency is the time to prepare
a message for sending it through the network. Communication latency is the
total time to send the message, including software overhead and interface delays.
Generally, communication is expensive compared with processor work.

If a problem can be divided into small tasks that are completely independent
and require no or very little synchronization and communication, the problem
is called “embarrassingly parallel”. Clearly, embarrassingly parallel problems are
particularly suitable for parallel computing.

9.3 Parallel Computing Software

Several well-designed software technologies are available for utilizing parallel
computing hardware. Note that each of them is suitable for a specific hardware
architecture.

In this section, we use as an example the calculation of the value of � by the
approximation formula
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The case n D 10 is illustrated in Fig. 9.6.
A C program to calculate the last term is given in Listing 9.3. The main

calculation is performed in the for statement, which is easily divided into parallel-
executed parts; this is an example of an embarrassingly parallel problem. We show
several parallel computing techniques by using this example in this section. We
choose this simple example to keep the length of following example source codes
as small as possible and to give a rough idea of parallel computing techniques.
Note that this example is so simple that only the most fundamental parts of each
technique will be used and explained. Many important details of each technique are
left to references.

#include <stdio.h>

main(int argc, char **argv)
{

int n, i;
double d, s, x, pi;
n = atoi(argv[1]);
d = 1.0/n;
s = 0.0;
for (i=1; i<=n; i++){

x = (i-0.5)*d;
s += 4.0/(1.0+x*x);

}
pi = d*s;
printf("pi=%.15f\n", pi);

}

9.3.1 Process Forking

Modern operating systems have multi-user and multi-task features even on a single
processor; many users can use a single processor system and can seemingly perform
many tasks at the same time. This is usually realized by multi-process mechanisms
(Tanenbaum 2001).

UNIX-like operating systems are based on the notion of a process. A process
is an entity that executes a given piece of code, has its own execution stack, its
own set of memory pages, its own file descriptors table and a unique process ID.
Multiprocessing is realized by time-slicing the use of the processor. This technology
repeatedly assigns the processor to each process for a short time. As the processor
is very fast compared with human activities, it looks as though it is working
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simultaneously for several users. In shared memory systems, multiprocessing may
be performed simultaneously on several processors. Multiprocessing mechanisms
are a simple tool for realizing parallel computing.

We can use two processes to calculate the for loop in Listing 9.3, by using
the process-handling functions of UNIX operating systems: fork(), wait() and
exit(). The function fork() creates a new copy process of an existing process.
The new process is called the child process, and the original process is called the
parent. The return value from fork() is used to distinguish the parent from the
child; the parent receives the child’s process id, but the child receives zero. By
using this mechanism, an if statement, for example, can be used to prescribe
different work for the parent and the child. The child process finishes by calling
the exit() function, and the parent process waits for the end of the child process
by using the wait() function. This fork–join mechanism is fundamental to the
UNIX operating system, in which the first process to start invokes another process
by forking. This procedure is repeated until enough processes are invoked. Although
this mechanism was originally developed for one processor and a time-slicing
system, UNIX operating systems that support shared memory can run processes
on different processors simultaneously.

As processes are independent and share only a limited set of common resources
automatically, we must write a program for information exchange among processes.
In our example, we use functions to handle shared memory segments: shmget(),
shmat() and shmctl(). shmget() allocates a shared memory segment,
shmat() attaches the shared memory segment to the process, and shmctl()
allows the user to set information such as the owner, group and permissions on
the shared memory segment. When the parent process uses fork(), the shared
memory segment is inherited by the child process and both processes can access it.

Listing 9.3.1 shows a two-process version of Listing 9.3. In the for statement,
the parent process works for i D 2; 4; 6; : : :, while the child process works for
i D 1; 3; 5; : : : The child process stores its result to *shared and the parent process
receives the value and adds it to its own result, then prints the final result.

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/ipc.h>
#include <sys/shm.h>
main(int argc, char **argv)
{

int n, i;
double d, s, x, pi;
int shmid, iproc;
pid_t pid;
double *shared;
n = atoi(argv[1]);
d = 1.0/n;
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shmid = shmget(IPC_PRIVATE,
sizeof(double), (IPC_CREAT | 0600));

shared = shmat(shmid, 0, 0);
shmctl(shmid, IPC_RMID, 0);
iproc = 0;
if ((pid = fork()) == -1) {

fprintf(stderr, "The fork failed!\n");
exit(0);

} else {
if (pid != 0) iproc = 1 ;

}
s = 0.0;
for (i=iproc+1; i<=n; i+=2) {

x = (i-0.5)*d;
s += 4.0/(1.0+x*x);

}
pi = d*s;
if (pid == 0) {

*shared = pi;
exit(0);

} else {
wait(0);
pi = pi + *shared;
printf("pi=%.15f\n", pi);

}
}

Forking, however, is not appropriate for parallel computing. Much time and
memory is required to duplicate everything in the parent process. Further, a com-
plete copy is not always required, because, for example, the forked child process
starts execution at the point of the fork.

9.3.2 Threading

As a process created using the UNIX fork() function is expensive in setup
time and memory space, it is sometimes called a “heavyweight” process. Often
a partial copy of the process is enough and other parts can be shared. Such
copies can be realized by a thread or “lightweight” process. A thread is a stream
of instructions that can be scheduled as an independent unit. It is important to
understand the difference between a thread and a process. A process contains two
kinds of information: resources that are available to the entire process such as
program instructions, global data and working directory, and schedulable entities,
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which include program counters and stacks. A thread is an entity within a process
that consists of the schedulable part of the process.

In a single processor system, threads are executed by time-slicing, but shared
memory parallel computers can assign threads to different processors.

Pthread Library

There were many thread libraries in the C language for specific shared memory
systems. Now, however, the Pthread library is a standard thread library for many
systems (Butenhof 1997). The Pthread API is defined in the ANSI/IEEE POSIX
1003.1-1995 standard, which can be purchased from IEEE.

Listing 9.3.2 is an example program to calculate � by using the Pthread library.
The program creates a thread using the function pthread_create(), then
assigns a unique identifier to a variable of type pthread_t. The caller provides
a function that will be executed by the thread. The function pthread_exit() is
used to terminate itself. The function pthread_join() is analogous to wait()
for forking, but any thread may join any other thread in the process, that is, there is
no parent–child relationship.

As multi-threaded applications execute instructions concurrently, access to
process-wide (or interprocess) shared memory requires a mechanism for coordi-
nation or synchronization among threads. It is realized by mutual exclusion (mutex)
locks. Mutexes furnish the means to guard data structures from concurrent modi-
fication. When one thread has locked the mutex, this mechanism precludes other
threads from changing the contents of the protected structure until the locker per-
forms the corresponding mutex unlock. Functions pthread_mutex_init(),
pthread_mutex_lock() and pthread_mutex_unlock() are used for
this purpose.

The compiled executable file is invoked from a command line with two
arguments: n and the number of threads, which is copied to the global
variable num_threads. The i th thread of the function PIworker, which
receives the value i from the original process, calculates a summation for about
n/num_threads times. Each thread adds its result to a global variable pi. As
the variable pi should not be accessed by more than one thread simultaneously,
this operation is locked and unlocked by the mutex mechanism.

#include <stdio.h>
#include <pthread.h>
int n, num_threads;
double d, pi;
pthread_mutex_t reduction_mutex;
pthread_t *tid;

void *PIworker(void *arg)
{
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int i, myid;
double s, x, mypi;
myid = *(int *)arg;
s = 0.0;
for (i=myid+1; i<=n; i+=num_threads) {

x = (i-0.5)*d;
s += 4.0/(1.0+x*x);

}
mypi = d*s;
pthread_mutex_lock(&reduction_mutex);
pi += mypi;
pthread_mutex_unlock(&reduction_mutex);
pthread_exit(0);

}

main(int argc, char **argv)
{

int i;
int *id;
n = atoi(argv[1]);
num_threads = atoi(argv[2]);
d = 1.0/n;
pi = 0.0;
id = (int *) calloc(n,sizeof(int));
tid = (pthread_t *) calloc(num_threads,

sizeof(pthread_t));
if(pthread_mutex_init(&reduction_mutex,NULL)) {

fprintf(stderr, "Cannot init lock\n");
exit(0);

};
for (i=0; i<num_threads; i++) {

id[i] = i;
if(pthread_create(&tid[i],NULL,

PIworker,(void *)&id[i])) {
exit(1);

};
};
for (i=0; i<num_threads; i++)

pthread_join(tid[i],NULL);
printf("pi=%.15f\n", pi);

}

We note that it is not easy to write multi-threaded applications in the C language,
even if we use the Pthread library. As the Pthread library was added to the C
language later, there are no assurances that original basic libraries are “thread-safe”.
The term thread-safe means that a given library function is implemented in such
a manner that it can be executed correctly by multiple concurrent threads of execu-
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tion. We must be careful to use thread-safe functions in multi-thread programming.
The Pthread library is mainly used by professional system programmers to support
advanced parallel computing technologies such as OpenMP.

Java Threads

The Java language supports threads as one of its essential features (Oaks and Wong
1999). The Java library provides a Thread class that supports a rich collection
of methods: for example, the method start() causes the thread to execute the
method run(), the method join() waits for the thread to finish execution. The
lock–unlock mechanism can be easily realized by the synchronized declaration.
All fundamental libraries are thread-safe. These features make Java suitable for
thread programming.

public class PiJavaThread {
int n, numThreads;
double pi = 0.0;
synchronized void addPi(double p) {

pi += p;
}
public PiJavaThread(int nd, int nt) {

n = nd;
numThreads = nt;
Thread threads[] = new Thread[numThreads];
for (int i=0; i<numThreads; i++) {
threads[i] = new Thread(new PIworker(i));
threads[i].start();

}
for (int i=0; i<numThreads; i++) {
try {

threads[i].join();
} catch (InterruptedException e) {

e.printStackTrace();
}

}
}
class PIworker implements Runnable {

int myid;
public PIworker(int id) {
myid = id;

}
public void run() {
double d, s, x;
d = 1.0/n;
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s = 0.0;
for (int i=myid+1; i<=n; i+=numThreads) {

x = (i-0.5)*d;
s += 4.0/(1.0+x*x);

}
addPi(d*s);

}
}
public static void main(String[] args) {

PiJavaThread piJavaThread
= new PiJavaThread(Integer.parseInt(args[0]),

Integer.parseInt(args[1]));
System.out.println(" pi = " + piJavaThread.pi);

}
}

Listing 9.3.2 is an example program to calculate the value of � using the
Java language. This program is almost the same as the Pthread example. As the
method declaration for addPi() contains the keyword synchronized, it can be
performed by only one thread; other threads must wait until the addPi() method
of the currently executing thread finishes.

Although the Java language is designed to be thread-safe and provides several
means for thread programming, it is still difficult to write efficient application
programs in Java. Java’s tools are generally well suited to system programming
applications, such as graphical user interfaces and distributed systems, because they
provide synchronization operations that are detailed and powerful, but unstructured
and complex. They can be considered an assembly language for thread program-
ming. Thus, it is not easy to use them for statistical programming.

9.3.3 OpenMP

OpenMP is a directive-based parallelization technique (Chandra et al. 2001) that
supports fork–join parallelism and is mainly for shared memory systems. The MP
in OpenMP stands for “Multi Processing”. It supports Fortran (77 and 90), C and
C++, and is suitable for numerical calculation, including statistical computing. It is
standardized for portability by the OpenMP Architecture Review Board (OpenMP
Architecture Review Board 2004). The first Fortran specification 1.0 was released
in 1997, and was updated as Fortran specification 1.1 in 1999. New features were
added as Fortran specification 2.0 in 2000. Several commercial compilers support
OpenMP.

We use the Fortran language for our examples in this section, because Fortran
is still mainly used for high-performance computers focused on large numerical
computation. Fortran is one of the oldest computer languages and has many reliable
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and efficient numerical libraries and compilers. The Fortran program for the simple
� computation is shown in Listing 9.3.3.

We note that C (and C++) are also used for large numerical computations and
are now supported to the same extent as Fortran. The following examples can easily
be replaced by C programs (except the HPF examples) but we omit them for space
reasons.

integer n, i
double precision d, s, x, pi
write(*,*) ’n?’
read(*,*) n
d = 1.0/n
s = 0.0
do i=1, n

x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

enddo
pi = d*s
write(*,100) pi

100 format(’ pi = ’, f20.15)
end

We can parallelize this program simply by using OpenMP directives (List-
ing 9.3.3).

integer n, i
double precision d, s, x, pi
write(*,*) ’n?’
read(*,*) n
d = 1.0/n
s = 0.0

!$OMP PARALLEL PRIVATE(x), SHARED(d)
!$OMP& REDUCTION(+: s)
!$OMP DO

do i = 1, n
x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

end do
!$OMP END DO
!$OMP END PARALLEL

pi = d*s
write(*,100) pi

100 format(’ pi = ’, f20.15)
end

Lines started by !$OMP are OpenMP directives to specify parallel computing.
Each OpenMP directive starts with !$OMP, followed by a directive and, optionally,
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clauses. For example, “!$OMP PARALLEL” and “!$OMP END PARALLEL”
encloses a parallel region and all code lexically enclosed is executed by all
threads. The number of threads is usually specified by an environmental variable
OMP_NUM_THREADS in the shell environment. We also require a process distri-
bution directive “!$OMP DO” and “!$OMP END DO” to enclose a loop that is
to be executed in parallel. Within a parallel region, data can either be private to
each executing thread, or be shared among threads. By default, all data in static
extents are shared (an exception is the loop variable of the parallel loop, which is
always private). In the example, shared scope is not desirable for x and s, so we
use a suitable clause to make them private: “!$OMP PARALLEL PRIVATE (x,
s)”. By default, data in dynamic extent (subroutine calls) are private ( an exception
is data with the SAVE attribute), and data in COMMON blocks are shared.

An OpenMP compiler will automatically translate this program into a Pthread
program that can be executed by several processors on shared memory systems.

9.3.4 PVM

PVM (Parallel Virtual Machine) is one of the first widely used message passing
programming systems. It was designed to link separate host machines to form
a virtual machine, which is a single manageable computing resource (Geist et al.
1994). It is (mainly) suitable for heterogeneous distributed memory systems. The
first version of PVM was written in 1989 at Oak Ridge National Laboratory, but
was not released publicly. Version 2 was written at the University of Tennessee
Knoxville and released in 1991. Version 3 was redesigned and released in 1993.
Version 3.4 was released in 1997. The newest minor version, 3.3.4, was released in
2001 (PVM Project Members 2004).

PVM is freely available and portable (available on Windows and several UNIX
systems). It is mainly used in Fortran, C and C++, and extended to be used in many
other languages, such as Tcl/Tk, Perl and Python.

The PVM system is composed of two parts: a PVM daemon program (pvmd)
and libraries of PVM interface routines. Pvmd provides communication and process
control between computers. One pvmd runs on each host of a virtual machine.
It serves as a message router and controller, and provides a point of contact,
authentication, process control and fault detection. The first pvmd (which must be
started by the user) is designated the master, while the others (started by the master)
are called slaves or workers.

PVM libraries such as libpvm3.a and libfpvm3.a allow a task to interface
with the pvmd and other tasks. They contain functions for packing and unpacking
messages, and functions to perform PVM calls by using the message functions to
send service requests to the pvmd.

Example Fortran programs are in Listings 9.3.4 and 9.3.4.
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program pimaster
include ’/usr/share/pvm3/include/fpvm3.h’
integer n, i
double precision d, s, pi
integer mytid,numprocs,tids(0:32),status
integer numt,msgtype,info
character*8 arch
write(*,*) ’n, numprocs?’
read(*,*) n, numprocs
call PVMFMYTID(mytid)
arch = ’*’
call PVMFSPAWN(’piworker’,PVMDEFAULT,arch,
$ numprocs,tids,numt)
if( numt .lt. numprocs) then

write(*,*) ’trouble spawning’
call PVMFEXIT(info)
stop

endif
d = 1.0/n
msgtype = 0
do 10 i=0, numprocs-1

call PVMFINITSEND(PVMDEFAULT,info)
call PVMFPACK(INTEGER4, numprocs, 1, 1, info)
call PVMFPACK(INTEGER4, i, 1, 1, info)
call PVMFPACK(INTEGER4, n, 1, 1, info)
call PVMFPACK(REAL8, d, 1, 1, info)
call PVMFSEND(tids(i),msgtype,info)

10 continue
s=0.0
msgtype = 5
do 20 i=0, numprocs-1

call PVMFRECV(-1,msgtype,info)
call PVMFUNPACK(REAL8,x,1,1,info)
s = s+x

20 continue
pi = d*s
write(*,100) pi

100 format(’ pi = ’, f20.15)
call PVMFEXIT(info)
end

program piworker
include ’/usr/share/pvm3/include/fpvm3.h’
integer n, i
double precision s, x, d
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integer mytid,myid,numprocs,msgtype,master,info
call PVMFMYTID(mytid)
msgtype = 0
call PVMFRECV(-1,msgtype,info)
call PVMFUNPACK(INTEGER4, numprocs, 1, 1, info)
call PVMFUNPACK(INTEGER4, myid, 1, 1, info)
call PVMFUNPACK(INTEGER4, n, 1, 1, info)
call PVMFUNPACK(REAL8, d, 1, 1, info)
s = 0.0
do 10 i = myid+1, n, numprocs

x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

10 continue
call PVMFINITSEND(PVMDEFAULT,info)
call PVMFPACK(REAL8, s,1,1, info)
call PVMFPARENT(master)
msgtype = 5
call PVMFSEND(master,msgtype,info)
call PVMFEXIT(info)
end

Listing 9.3.4 is the master program, and Listing 9.3.4 is the slave program, and
its compiled executable file name should be piworker. Both programs include the
Fortran PVM header file fpvm3.h.

The first PVM call PVMFMYTID() in the master program informs the pvmd of
its existence and assigns a task id to the calling task.

After the program is enrolled in the virtual machine, the master program spawns
slave processes by the routine PVMFSPAWN(). The first argument is a string
containing the name of the executable file that is to be used. The fourth argument
specifies the number of copies of the task to be spawned and the fifth argument is
an integer array that is to contain the task ids of all tasks successfully spawned.
The routine returns the number of tasks that were successfully created via the last
argument.

To send a message from one task to another, a send buffer is created to hold
the data. The routine PVMFINITSEND() creates and clears the buffer and returns
a buffer identifier. The buffer must be packed with data to be sent by the routine
PVMFPACK(). The first argument specifies the type of data to be packed. The
second argument is the first item to be packed, the third is the total number of items
to be packed and the fourth is the stride to use when packing. A single message
can contain any number of different data types; however, we should ensure that
the received message is unpacked in the same way it was originally packed by the
routine PVMFUNPACK(). The routine PVMFSEND() attaches an integer label of
msgtype and sends the contents of the send buffer to the task specified by the first
argument.
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After the required data have been distributed to each worker process, the master
program must receive a partial sum from each of the worker processes by the
PVMFRECV() routine. This receives a message from the task specified by the first
argument with the label of the second argument and places it into the receive buffer.
Note that a value of -1 for an argument will match with any task id and/or label.
The master program expects a label value of 5 on messages from the worker tasks.

The unpacking routine PVMFUNPACK() has the same arguments as
PVMFPACK(). The second argument shows where the first item unpacked is to
be stored.

After the sum has been computed and printed, the master task informs the PVM
daemon that it is withdrawing from the virtual machine. This is done by calling the
routine PVMFEXIT().

The worker program uses the same PVM routines as the master program. It also
uses PVMFPARENT() routine to find the task id of the master task that spawned
the current task.

When we compile Fortran PVM codes, we must link in both the PVM Fortran
library and the standard PVM library compiled for the target machine architecture.
Before executing the program, the executables of the worker program should be
available in a specific directory on all the slave nodes. The default authentication is
performed by rsh call.

9.3.5 MPI

MPI (Message Passing Interface) is the most widely used parallel computing
technique. It specifies a library for adding message passing mechanisms to existing
languages such as Fortran or C. MPI is mainly used for homogeneous distributed
memory systems.

MPI appeared after PVM. PVM was a research effort and did not address the
full spectrum of issues: it lacked vendor support, and was not implemented at the
most efficient level for a particular hardware. The MPI Forum (Message Passing
Interface MPI) was organized in 1992 with broad participation by vendors (such
as IBM, Intel, SGI), portability library writers (including PVM), and users such as
application scientists and library writers. MPI-1.1 was released in 1995, MPI-1.2
was released in 1997, and MPI-2 was released in 1997.

MPI-1 has several functions that were not implemented in PVM. Communicators
encapsulate communication spaces for library safety. Data types reduce copying
costs and permit heterogeneity. Multiple communication modes allow precise buffer
management. MPI-1 has extensive collective operations for scalable global commu-
nication, and supports process topologies that permit efficient process placement
and user views of process layout (Gropp et al. 1999a).

In MPI-2, other functions were added: extensions to the message passing model,
dynamic process management, one-sided operations (remote memory access),
parallel I/O, thread support, CCC and Fortran 90 bindings, and extended collective
operations (Gropp et al. 1999b).
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MPI implementations are released from both vendors and research groups.
MPICH (MPICH Team 2004) and LAM/MPI (LAM Team 2004) are widely used
free implementations.

Although MPI has more than 150 routines, many parallel programs can be
written using just six routines, only two of which are non-trivial: MPI_INIT(),
MPI_FINALIZE(),MPI_COMM_SIZE(),MPI_COMM_RANK(),MPI_SEND()
and MPI_RECV(). An example program is shown in Listing 9.3.5.

include ’mpif.h’
integer n, i
double precision d, s, x, pi, temp
integer myid, numprocs, ierr, status(3)
integer sumtag, sizetag, master
call MPI_INIT(ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)
sizetag = 10
sumtag = 17
master = 0
if (myid .eq. master) then

write(*,*) ’n?’
read(*,*) n
do i = 1, numprocs-1

call MPI_SEND(n,1,MPI_INTEGER,i,sizetag,
$ MPI_COMM_WORLD,ierr)

enddo
else

call MPI_RECV(n,1,MPI_INTEGER,master,sizetag,
$ MPI_COMM_WORLD,status,ierr)
endif
d = 1.0/n
s = 0.0
do i = myid+1, n, numprocs

x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

enddo
pi = d*s
if (myid .ne. master) then

call MPI_SEND(pi,1,MPI_DOUBLE_PRECISION,
$ master,sumtag,MPI_COMM_WORLD,ierr)
else

do i = 1, numprocs-1
call MPI_RECV(temp,1,MPI_DOUBLE_PRECISION,

$ i,sumtag,MPI_COMM_WORLD,status,ierr)
pi = pi+temp
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enddo
endif
if (myid .eq. master) then

write(*, 100) pi
100 format(’ pi = ’, f20.15)

endif
call MPI_FINALIZE(ierr)
end

MPI follows the single program-multiple data (SPMD) parallel execution model.
SPMD is a restricted version of MIMD in which all processors run the same
programs, but unlike SIMD, each processor may take a different flow path in the
common program.

If the example program is stored in file prog8.f, typical command lines for
executing it are

f77 -o prog8 prog8.f -lmpi
mpirun -np 5 prog8

where the command mpirun starts five copies of process prog8 simultane-
ously. All processes communicate via MPI routines.

The first MPI call must be MPI_INIT(), which initializes the message passing
routines. In MPI, we can divide our tasks into groups, called communicators.
MPI_COMM_SIZE() is used to find the number of tasks in a specified MPI
communicator. In the example, we use the communicator MPI_COMM_WORLD,
which includes all MPI processes. MPI_COMM_RANK() finds the rank (the name
or identifier) of the tasks running the code. Each task in a communicator is assigned
an identifying number from 0 to numprocs-1.
MPI_SEND() allows the passing of any kind of variable, even a large array, to

any group of tasks. The first argument is the variable we want to send, the second
argument is the number of elements passed. The third argument is the kind of
variable, the fourth is the id number of the task to which we send the message, and
the fifth is a message tag by which the receiver verifies that it receives the message it
expects. Once a message is sent, we must receive it on another task. The arguments
of the routine MPI_RECV() are similar to those of MPI_SEND(). When we finish
with the message passing routines, we must close out the MPI routines by the call
MPI_FINALIZE().

In parallel computing, collective operations often appears. MPI supports useful
routines for them. MPI_BCAST distributes data from one process to all others in
a communicator. MPI_REDUCE combines data from all processes in a communica-
tor and returns it to one process. In many numerical algorithms, SEND/RECEIVE
can be replaced by BCAST/REDUCE, improving both simplicity and efficiency.
Listing 9.3.5 can be replaced by Listing 9.3.5 (some parts of Listing 8 are omitted).

...
master = 0
if (myid .eq. master) then
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write(*,*) ’n?’
read(*,*) n

endif
call MPI_BCAST(n,1,MPI_INTEGER,master,
$ MPI_COMM_WORLD,ierr)
d = 1.0/n
s = 0.0

...
enddo
pi = d*s
call MPI_REDUCE(pi,temp,1,MPI_DOUBLE_PRECISION,
$ MPI_SUM,master,MPI_COMM_WORLD,ierr)
pi = temp
if (myid .eq. master) then

write(*, 100) pi
...

In distributed shared memory systems, both OpenMP and MPI can be used
together to use all the processors efficiently. Again, Listing 9.3.5 can be replaced
by Listing 9.3.5 (the same parts of Listing 9.3.5 are omitted) to use OpenMP.

...
d = 1.0/n
s = 0.0

!$OMP PARALLEL PRIVATE(x), SHARED(d)
!$OMP& REDUCTION(+: s)
!$OMP DO

do i = myid+1, n, numprocs
x = (i-0.5)*d
s = s+4.0/(1.0+x*x)

enddo
!$OMP END DO
!$OMP END PARALLEL

pi = d*s
if (myid .ne. master) then

...

9.3.6 HPF

HPF (High Performance Fortran) is a Fortran 90 with further data parallel program-
ming features (Koelbel et al. 1993). In data parallel programming, we specify which
processor owns what data, and the owner of the data does the computation on the
data (Owner-computes rule).
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Fortran 90 provides many features that are well suited to data parallel program-
ming, such as array processing syntax, new functions for array calculations, modular
programming constructs and object-oriented programming features.

HPF adds additional features to enable data parallel programming. We use
compiler directives to distribute data on the processors, to align arrays and to declare
that a loop can be calculated in parallel without affecting the numerical results. HPF
also has a loop control structure that is more flexible than DO, and new intrinsic
functions for array calculations.

The High Performance Fortran Forum (HPFF) (High Performance Fortran Forum
2004) is a coalition of industry, academic and laboratory representatives, and defined
HPF 1.0 in 1993. HPF 1.1 was released in 1994 and HPF 2.0 was released in 1997.
Several commercial and free HPF compilers are now available.

Listing 9.3.6 is an example program for calculating � in HPF.

integer n, i
double precision d, s, pi
double precision, dimension (:),
$ allocatable :: x, y

!HPF$ PROCESSORS procs(4)
!HPF$ DISTRIBUTE x(CYCLIC) ONTO procs
!HPF$ ALIGN y(i) WITH x(i)

write(*,*) ’n?’
read(*,*) n
allocate(x(n))
allocate(y(n))
d = 1.0/n

!HPF$ INDEPENDENT
FORALL (i = 1:n)

x(i) = (i-0.5)*d
y(i) = 4.0/(1.0 + x(i)*x(i))

end FORALL
pi = d*SUM(y)
write (*, 100) pi

100 format(’ pi = ’, f20.15)
deallocate(x)
deallocate(y)
end

!HPF$ is used for all HPF compiler directives. We note that this is a comment
to non-HPF compilers and is ignored by them. The PROCESSORS directive
specifies the shape of the grid of abstract processors. Another example “!HPF$
PROCESSORS exprocs(6,2)” specifies a 6� 2 array of 12 abstract processors
labelled exprocs.

The DISTRIBUTE directive partitions an array by specifying a regular distribu-
tion pattern for each dimension ONTO the arrangement of abstract processors. The
CYCLIC pattern spreads the elements one per processor, wrapping around when it
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runs out of processors, i.e., this pattern distributes the data in the same way that
the program in Listing 9.3.5 performs. Another pattern is BLOCK, which breaks the
array into equal-sized blocks, one per processor. The rank of the abstract processor
grid must be equal to the number of distributed axes of the array.

The ALIGN directive is used to specify relationships between data objects. In the
example program, elements of x and y that have the same index are placed on the
same processor.

The INDEPENDENT directive informs the compiler that in the execution of the
FORALL construct or the do loop, no iteration affects any other iteration in any way.

The FORALL statement is a data parallel construct that defines the assignment
of multiple elements in an array but does not restrict the order of assignment to
individual elements. Note that the do loop executes on each element in a rigidly
defined order.

The SUM intrinsic function performs reduction on whole arrays.
We may compare HPF with OpenMP, because both systems use compiler

directives in a standard language (Fortran) syntax. In OpenMP, the user specifies
the distribution of iterations, while in HPF, the user specifies the distribution of
data. In other words, OpenMP adopts the instruction parallel programming model
while HPF adopts data parallel programming model. OpenMP is suitable for shared
memory systems whereas HPF is suitable for distributed memory systems.

9.4 Parallel Computing in Statistics

9.4.1 Parallel Applications in Statistical Computing

The most important thing in parallel computing is to divide a job into small tasks
for parallel execution. We call the amount of independent parallel processing that
can occur before requiring some sort of communication or synchronization the
“granularity”. Fine granularity may allow only a few arithmetic operations between
processing one message and the next, whereas coarse granularity may allow
millions. Although the parallel computing techniques described above can support
programming of any granularity, coarse granularity is preferable for many statistical
tasks. Fine granularity requires much information exchange among processors and
it is difficult to write the required programs. Fortunately, many statistical tasks are
easily divided into coarse granular tasks. Some of them are embarrassingly parallel.

In data analysis, we often wish to perform the same statistical calculations
on many data sets. Each calculation for a data set is performed independently
from other data sets, so the calculations can be performed simultaneously. For
example, Hegland et al. (1999) implemented the backfitting algorithm to estimate
a generalized additive model for a large data set by dividing it into small data sets,
fitting a function in parallel and merging them together. Beddo (2002) performed
parallel multiple correspondence analysis by dividing an original data set and
merging their calculation results.
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Another embarrassingly parallel example is a simulation or a resampling com-
putation, which generates new data sets by using a random number generating
mechanism based on a given data set or parameters. We calculate some statistics
for those data sets, repeat such operations many times and summarize their results
to show empirical distribution characteristics of the statistics. In this case, all cal-
culations are performed simultaneously except the last part. Beddo (2002) provided
an example of bootstrapping from parallel multiple correspondence analysis.

We must be careful that random numbers are appropriately generated in parallel
execution. For example, random seeds for each process should all be different
values, at least. SPRNG (Mascagni 1999) is a useful random number generator for
parallel programming. It allows for the dynamic creation of independent random
number streams on parallel machines without interprocessor communication. It
is available in the MPI environment and the macro SIMPLE_SPRNG should be
defined to invoke the simple interface. Then the macro USE_MPI is defined to
instruct SPRNG to make MPI calls during initialization. Fortran users should
include the header file sprng_f.h and call sprng() to obtain a double precision
random number in .0; 1/. In compiling, the libraries liblcg.a and the MPI library
should be linked.

The maximum likelihood method requires much computation and can be par-
allelized. Jones et al. (1999) describes a parallel implementation of the maximum
likelihood estimation using the EM algorithm for positron emission tomography
image reconstruction. Swann (2002) showed maximum likelihood estimation for
a simple econometric problem with Fortran code and a full explanation of MPI.
Malard (2002) solved a restricted maximum likelihood estimation of variance-
covariance matrix by using freely available toolkits: the portable extensible toolkit
for scientific computation (PETSc) and the toolkit for advanced optimazation (TAO)
(Balay et al. 2001) which are built on MPI.

Optimization with dynamic programming requires much computation and is
suitable for parallel computing. Hardwick et al. (1999) used this technique to solve
sequential allocation problems involving three Bernoulli populations. Christofides
et al. (1999) applied it to the problem of discretizing multidimensional probability
functions.

Racine (2002) demonstrated that kernel density estimation is also calculated
efficiently in parallel.

9.4.2 Parallel Software for Statistics

Several commercial and non-commercial parallel linear algebra packages that are
useful for statistical computation are available for Fortran and/or C. We mention
two non-commercial packages with freely available source codes: ScaLAPACK
(Blackford et al. 1997) supports MPI and PVM, and PLAPACK (van de Geijin
1997) supports MPI. Murphy et al. (1999) described the work to transfer sequential
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libraries (Gram-Schmidt orthogonalization and linear least squares with equally
constraints) to parallel systems by using Fortran with MPI.

Although we have many statistical software products, few of them have parallel
features. Parallel statistical systems are still at the research stage. Bull et al. (1999)
ported a multilevel modeling package MLn into a shared memory system by using
C++ with threads. Yamamoto and Nakano (2002) explained a system for time series
analysis that has functions to use several computers via Tkpvm, an implementation
of PVM in the Tcl/Tk language.

The statistical systems R (The R Development Core Team 2004) and S (Cham-
bers 1998) have some projects to add parallel computing features. Temple Lang
(1997) added thread functions to S. PVM and MPI are directly available from
R via the rpvm (Li and Rossini 2001) and Rmpi (Yu 2002) packages. They are
used to realize the package “snow” (Rossini et al. 2003), which implements simple
commands for using a workstation cluster for embarrassingly parallel computations
in R. A simple example session is:

> cl <- makeCluster(2, type = "PVM")
> clusterSetupSPRNG(cl)
> clusterCall(cl, runif, 3)
[[1]]
[1] 0.749391854 0.007316102 0.152742874

[[2]]
[1] 0.8424790 0.8896625 0.2256776

where a PVM cluster of two computers is started by the first command and
the SPRNG library is prepared by the second command. Three uniform random
numbers are generated on each computer and the results are printed by the third
command.

The statistical system “Jasp” (Nakano et al. 2000) is implementing experimental
parallel computing functions via network functions of the Java language (see also
http://jasp.ism.ac.jp/).
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Chapter 10
Statistical Databases

Claus Boyens, Oliver Günther, and Hans-J. Lenz

10.1 Introduction

Most data collected in technology, statistics and science is still stored in simple flat
files, usually as data matrices with rows identified by a case identifier (case_id),
columns corresponding to attributes (variables), and numerical data types for the
elements of each data matrix due to a universal numeric coding of all attributes.
Each row (tuple) carries the (coded) values of the attributes, besides the case_id.
Due to an encoding that maps even a symbolic domain to a numerical one, all matrix
entries have a numeric data type. The scales of the attributes – nominal, ordinal and
cardinal – may of course be quite different.

A simple example is given by census data stored at statistical offices in
files according to a schema like census_questionnaire (case_id,
age-group, gender, profession,...). While science gains their data
from observational sampling or experiments, statistical agencies collect their data
still mostly off-line from surveys, reports or census. Industry and services get their
data on-line from their business processes, i.e., from their logistical, production
and administrative transactions. A typical example is sales data, which may be
represented by a schema like
sales (transaction_id, customer_id, date, product_

name, quantity, price, amount).
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Such data is called microdata, since it is kept in its original form and is not
divisible but atomic. In the business area such data is labeled as on-line transaction
data because it is subject to frequent updates and is the basis for the bulk of
continuous business transactions. The use of a simple file system to store microdata
is rarely a good choice because of a lack of independence between applications and
data, safety and integrity, and, consequently, retrieval problems with especially ad
hoc queries. Such data should rather be stored as tables of a relational database.
A database management system (DBMS) asserts safety, integrity and retrieval
flexibility. For instance, a query like “Find prices and amount of all sales since year
2001 where customer equals 007 and product 4711” can be simply stated in SQL
(structured query language) as

SELECT price, amount FROM sales
WHERE year $\ge $ 2001
AND customer_id = 007
AND product_name = 4711;

It is interesting to note that SQL provides for a set of query operators that is
relationally complete. One may thus process any reasonable query as long as it does
not involve “transitive closure”, i.e. a potentially infinite loop based on some logical
inference (such as a part-of hierarchy).

Macrodata is derived from microdata by applying statistical functions, aggre-
gation and grouping, and consequently has a larger granularity. For example, a
business analyst might be interested in a three-way table (data cube) of total sales
classified by month and year, customer_id and product_name. Such
retrieval can be achieved on sales by the command:

SELECT SUM(sales), date.month, date.year,
customer_id, product_name
FROM sales Group BY date.month, date.year,
customer_id, product_name;

This type of activities is coined on-line analytical operations (OLAP), which
expresses clearly its objective, i.e. a statistical analysis of data for planning, decision
support, and controlling.

As we shall see later there does not exist a clear boundary between retrieval
and statistical modeling. However, a statistical function like sum (or average) must
be selected for a specific query, which does imply some basic statistical modeling.
Consequently, a closed set of operators does not exist for such multi-way tables,
cf. consider as an example average (avg), median and geometric or harmonic mean.
Moreover, two further problems are involved. First of all, the question arises which
data structure is efficient, and secondly, what kind of background information
is needed to efficiently access data, to assist the database administrator and the
interpretation of real data by the end user? This leads to discuss metadata as
data about real data and functions involved. Modern database management systems
encapsulate metadata in a repository (integrated metadata database).

In the following we are first concerned with some fundamentals of database
management. Then we turn to the architecture of a statistical database or a data
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warehouse and some concepts related to it. We pay special attention to conceptual
data structures and their related operators, the summarizability problem, and the
specifics of hierarchically structured attributes like time and space. We discuss
metadata, access methods and ETL (“extraction, transformation, and loading”). We
close with metadata and XML, and privacy.

10.2 Fundamentals of Data Management

We start our discussion with file systems, have a look at database systems useful
to store transactions or microdata, and finally turn to data warehouses which host
micro and macro data either in a real (materialized) or virtual form.

10.2.1 File Systems

Data is classically stored in files. All statistical packages offer this facility. Files
can be viewed as a conceptually related set R of records, which are represented
by a given record type, see Wirth (1986), and an access mode (direct, indexed or
sequential). If the records have a numeric type for each of its fields and the access
mode is sequential, then a data matrix can be stored in a sequential file. A collection
of such files is called a file system (FS), if there exist logical relations between files
f 2 FS, a set of constraints on FS and application software. Typical applications
in statistics are simple surveys like price surveys, where in most cases only one
file is needed. A more complex file system is compulsory if, for instance, stratified
or panel sampling designs are considered, where various sampling periods, areas,
objects and units (carriers of interest) are involved. Note, that relational data mining
as described by Dzeroski and Lavrac (2001) and Wrobel (2001), is devoted to such
data structures.

File systems are appropriate if only single user-access and weakly logically
connected files with simple constraints are effective. Note, that application programs
must be specially tailored to execute queries, and to achieve data safety and
security. This implies data dependence between the application software and the
files referenced, which reduces the program’s flexibility with respect to structural
changes of the data structure and the ease of “on-the-fly” querying. These pitfalls
can be overcome by database systems.

10.2.2 Relational Database Systems

Multi-user access, complex data structures, data independence, disclosure control
and logical constraints ask for a relational database system (RDBS). It consists of
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a set T of relations (flat tables) together with a set S of corresponding schemas
and a set C of constraints, a database management system (DBMS) and application
software. A database schema describes the attributes (variables) of a specific table,
its data types and roles. It defines further the underlying constraints which represent
either schema based or semantic restrictions. For instance, there are entity or key
and referential integrity constraints as well as business rules to be considered, see
Elmasri and Navathe (2006). To avoid redundancy and anomalies during insert,
delete or update transactions, those tables should be transformed into a “normal
form”, see Elmasri and Navathe (2006). As an example, we take a Census. When
we look at the RDBS ’Census’ from a conceptual point of view, there are four table
schemas involved: Census-questionnaire, household, dwelling, and employment.
We shall consider only the first two in some detail, and select only some few
attributes for the sake of brevity. The first schema is
census_questionnaire(case_id, household_id, age-group,

gender, profession,...).
Its first four attributes are numeric and the fourth one is of type “string”. The

attribute case_id acts as a primary key. Therefore it is underlined. The remaining
attributes of this table are functionally dependent on it. Because a key attribute
uniquely identifies any tuple (record) of the corresponding table (set of tuples),
there is one (entity integrity) constraint among others saying that duplicates in a
given table are not allowed. Note, that attribute household_id acts as a foreign
key because it is defined as a primary key in the relation household. In order to
mention just one semantic constraint, the domain of the identifier case_id may
be restricted to the set of non-negative integers, i.e. cardinals.

The other schema is
household (household_id, case-id, role,...).
The first two attributes have a numeric domain, while role is of type “string”

with the value set g“member”, “owner”g. Of course, we have again the constraint
on household_id that duplicates are not allowed, but we need at least one
further restriction to ensure reference integrity, i.e., whenever there exist entries
of people grouped together in a household, each of their corresponding records in
census_questionnaire has to exist.

Last but not least, we reconsider our sales example from the introduction. The
schema is
sales (transaction_id, customer_id, date, product_

name, quantity, price, amount)
The primary key is transaction_id, which implies that only one product

can be part of any sales transaction. Evidently, this scheme is not normalized,
because price depends on product_name besides of transaction_id,
and we have the balance equation amount=quantity � price. The relation
itself is of degree (number of attributes) seven. The six attributes (customer_id,
date, ..., amount) span a six-dimensional data space, where each tuple
has six data items and is identified by its corresponding transaction_id. We
represent four tuples only in the table below to illustrate the difference between
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a schema and its corresponding relation (Table 10.1). We use abbreviations in the
header of the table sales.

The need of various users for different data can be satisfied by the concept of
virtual relations (views), which can be created by an appropriate external schema of
a given user coherently related to the underlying conceptual schema of the database
system.

Note that the term “table” used in a relational database to store such information
is quite different from the tables statisticians use for the same purpose. Table 10.2
shows the representation of the same information in a different table structure that
allows the natural computation of aggregates along rows and columns (“marginal
sums” etc.). Note that this table structure cannot be mapped directly into a relational
database context due to the margins (total or ALL), see Gray et al. (1996).

Let us close this example with a discussion of the background information
needed. We mentioned above metadata like schema names, attribute names, data
types, roles (key vs. non key, null values allowed vs. not allowed) of attributes,
constraints etc. All this can be considered as technical metadata. Moreover, we need
further metadata of a semantic and statistical type. Take for instance the attributes
quantity, price, and amount. What is their definition? As far as amount
is concerned we have “amount=quantity � price”. Furthermore, we need
the corresponding measurement units which may be units, e/unit, and e. As far
as data collection at Statistical Offices is concerned, we may need information
about the periodicity of data surveys like “annual”, “quarterly” or “monthly”. With
respect to data analysis we may be interested in the measurement scale. While

Table 10.1 Relational table sales of degree 7 and cardinality 4

Transaction_id Customer_id Date Product_name Quantity Price Amount

015 A 4 Jan 97 Tennis shoes 200 95 19,000.00
018 A 4 Jan 97 Tennis balls 300 1.50 450.00
004 A 3 Jan 97 Tennis nets 350 27 9,450.00
009 C 3 Jan 97 Tennis shoes 100 95 9,500.00
. . . . . . . . . . . . . . . . . . . . .

Table 10.2 Sales data in the form of the three-way statistical table total_sales with
dimensions (date, customer_id, product_name)

Tennis shoes Tennis balls Tennis nets

3 Jan 1997
Customer A 0 0 350

Customer B 0 0 0

Customer C 100 0 0

Total 100 0 350

4 Jan 1997
Customer A 300 400 450

Customer B 1; 100 1; 100 800

Customer C 600 1; 600 350

Total 2; 350 3; 400 1; 900
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product_name has a nominal scale allowing only operations like “equal” and
“not equal”, the attributes quantity, price, and amount have a metric scale
allowing for all basic numerical operations. There exist further ambiguities. For
example, the generation mode of the attribute sales may have the categories “real”,
“simulated” or “forecasted”. There may further vagueness exist about sales of
category “real” unless its update state is set to “final”, and not to “provisional”.

10.2.3 Data Warehouse Systems (DWS)

A data warehouse system consists of a (replicated) micro database DB, a set of mate-
rialized or virtual multi-way tables (data cubes) needed to represent macro (pre-
aggregated and grouped) data, a data warehouse management system (DWMS), and
a repository, which stores all required technical, statistical and semantic metadata.

As an example of a data cube, we remind the reader of the three-way table
presented above:
total_sales (date.month, date.year, customer_id,

product_name, sum (sales)).
This table is represented in a relational form, where date, customer_id, and

product_name are concatenated as a primary key. These attributes are called
dimensions. Evidently, the non-key attribute sum(sales) is fully dependent upon
this key, i.e. given the values of date.month, date.year, customer_id,
product_name there exist one and only one value of sum(sales) if missing
values (null values) are excluded.

Views are useful again and can be provided by joining cubes or sub-cubes in
combination with table projections to lower dimensions. It is worthwhile consid-
ering separately the attributes sum (sales), date and pro-duct_name.
The first attribute is sometimes called summary attribute and is composed of the
statistical sum applied to the attribute sales, see Shoshani (1997). This operation
is feasible because the function sum and the attribute sales have an identical
statistical data type, i.e., a metric or cardinal scale. Moreover, the attribute sales
is of attribute type flow, but not stock. While summarizing over flows (rates) is
reasonable, such an operation over stocks like “monthly number of customers” is
nonsense. Evidently, such and further integrity constraints of semantic type must be
effective for a DWS, in order to protect the naive user from nonsense queries. This
is extremely important for data warehousing, because contrary to database queries,
the application of statistical functions is an inherent part of any query.

Furthermore, there exists a specific problem related to date. This attribute
can be decomposed into month and year but these components are functionally
dependent, i.e., for a given month of a calendar year the year is fixed. We thus
have (month, year)! year as a functional dependency. Therefore only one
dimension called date is used for the two attributes month and year in the data
cube above. There may be further temporal levels of the hierarchy time like hour,
day, month, quarter, and year. Such hierarchical attributes are called taxonomies
and need special attention; see Lehner et al. (1998), Lenz and Thalheim (2009). It
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taxonomy with a weak
functional dependency

is quite remarkable that all dimensions can be allocated to three main groups only:
time, location and subject. This is called the 3D-principle, see Lenz (1994).

Let us have a further look at taxonomies that are unbalanced and asymmetric.
This may happen in case of a product or regional hierarchy. In our running example
the subgroups tennis shoes and balls may be grouped together as product-group
1, while tennis nets build-up product-group 2, but are free of sub-grouping. Both
groups 1 and 2 build the root group product-all. As sub-groups exist only for shoes
and balls, sub-groups are no longer functionally dependent on product_name,
but only weakly functionally dependent, see Lehner et al. (1998), Fig. 10.1. This
implies that queries, which involve sub-grouping over products, are not feasible and
must be refused. Further pitfalls of operations on a data-cube are given in Lenz and
Shoshani (1997) and Lenz and Thalheim (2001).

It becomes evident that real data without metadata is more or less useless
especially for on-line analytical processing (OLAP). A repository with metadata is
a prerequisite of any OLTP or OLAP DBS engineering and any sound data analysis
or data mining.

10.3 Architectures, Concepts, and Operators

We first consider the architecture of micro or operational data used for on-line
transaction processing (OLTP), and then illustrate the different architecture of macro
or analytical data used for decision support and its relation to operational data, see
OLAP. We note that the key features of a DBS for OLTP data are: transaction-
oriented, measurement- or record-based, real time processing of inserts, deletes
and updates of records. In contrary, a DWS for OLAP data is characterized by
the features: subject-oriented, integrated and aggregated, calendar or fiscal period
related, and non-volatile, see Inmon (1992).

10.3.1 Architecture of a Database System for OLTP

The architecture of database system (DBS) can be represented by the quintuple
(data sources, application server, DB server with a DBMS, application server, DB
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Fig. 10.2 Architecture of a DBS used to manage and query operational data

and repository); see also Fig. 10.2. As mentioned above, business processes act as
data sources in commercial systems, while at statistical offices data is supplied by
surveys, periodic reports or a census. Similarly, in science the data is generated by
observations or measurements collected by operating sensors, field or simulation
experiments. We represent the architecture in Fig. 10.2.

As an example from business we consider a company, which manages wages
and salaries of its employees. The data is generated by bookkeeping, the DBMS
administers the real and metadata, processes queries, and controls transactions.
The application server is responsible for running the software for wage and salary
computation, while the client is used as a presentation layer for the employees
according to their access rights.

10.3.2 Architecture of a Data Warehouse

The main components of the architecture of any OLAP application are hetero-
geneous data sources S like internal or external databases or files, an OLAP
server with DWMS, DW, Repository and Data Marts, and OLAP clients. The
DWMS is responsible for the load management, query management and warehouse
management.

The data warehouse (see Fig. 10.3) incorporates data replications, archived data
and aggregated data stored as data cubes. The departmental view on the whole data
is given by subsets of the data cube, called data marts.

As can be seen from Fig. 10.3, analytical processing is concerned with data from
various data sources, i.e., external or internal (operational) data. These sources are
integrated by ETL in data marts in a unified manner. The data marts can be viewed
as collections of data cubes.
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There exist two types of OLAP clients:

(i) stand-alone applications like spreadsheets with a DW interface, and
(ii) Web clients that use an Internet browser and some applets.

10.3.3 Concepts (ROLAP, MOLAP, HOLAP, Cube Operators)

As we have seen above, the schema of a data cube consists of a cube identifier
(name), a list of identifying attributes called dimensions and -optional- a statistical
function like min, max, count (frequency), sum, avg (arithmetic mean) applied to
a summary attribute. Furthermore, the data types and roles of the attributes and
integrity constraints must be given. As an example we take from above the data
cube “sales cross-classified by month and year, customer and product”:
total_sales (date.month, date.year, customer_id,

product_name, sum(sales)).
Evidently, the dimensions span a three-dimensional space on which the statistical

function sum (sales) is defined. The corresponding data types are date (mm,
yyyy), integer, string and decimal.

Relational OLAP (ROLAP)

In the following we map the conceptual schema of a data cube into a relational
database schema. This approach is called ROLAP for Relational OLAP, see
Raden (1996). There exist two schemas, star and snowflake schemas. As illustrated
in Fig. 10.4, the star schema refers to two types of corresponding tables:

1. A fact table with a primary key reference to each dimension and the facts
which are composed of at least one statistical function and –optional- a summary
attribute.



282 C. Boyens et al.

Date_id

month-no
month-label
year-no
year label
level

Product_id

group-no
group-label
sub-group-no
sub-group 
label
level

sum(sales)

Date_id
Product_id
Customer_id

Customer_id

cust-label
cust-group-no
cust-group-
label
level

Product

Customer

Date

Fact table sales

Fig. 10.4 Star schema of a three-dimensional data cube
(one fact table, three dimension tables; the product hierarchy is assumed to have two levels)

2. A dimension table for each dimension with a primary key and a level indicator
for each entry of a hierarchical attribute.

The star schema models all kind of hierarchical attributes including parallel
hierarchies see Lehner et al. (1998). The schema is not normalized as becomes
obvious, for example, from the dimension table Date. The attributes month and
year are nested, which implies some redundancy. For small or medium-sized data
volumes, such schemas have a sufficient performance because join operations are
only necessary between the fact table and the related dimension tables.

In order to normalize tables by level attributes, the snowflake schema was
introduced. Instead of modelling each dimension by one table, a table is created for
each level of a hierarchical attribute. The schemas involved are related by identifiers,
which play the role either of a primary or a foreign key. In Fig. 10.5 we display
only the normalized dimension tables Month and Year and the fact table Sales.
The identifiers are month-no in the fact table and dimension table Month and
year-no in the dimension table Year.

It can be shown that the normalization is lossless by applying an inner join to the
tables of a snowflake schema.

Other Storage Modes (MOLAP, HOLAP)

The above conceptual model of a star or snowflake schema may lead to the wrong
conclusion that data cubes are exclusively represented by a relational data model
approach. There exist further storage modes, which are in use.
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The main advantage of ROLAP lies in the reliability, security and ease of
loading of the data warehouse based on Relational DBMS (RDBMS) technology.
As was mentioned above, this is achieved due to the mapping of facts into a
normalized relation and dimension into a mostly non-normalized relation of a
relational database. As the set of statistical functions in SQL is too restrictive, some
of the functionality of OLAP must be added to the application server. An example
is to find the top-ten among all products sold in a given period.

Multi-dimensional OLAP (MOLAP) makes use of specially tailored data struc-
tures like arrays and associated dimension lists or bitmaps. The operational data is
extracted and stored as aggregates in those structures. The performance is acceptable
for up to medium-sized data sets (<1 Gbyte). There exists a multi-dimensional
query language called MDX (multidimensional expressions), see Microsoft 1998.
“XML for Analysis” defines a standardized programming interface for an OLAP
server, see http://www.xmla.org. An OLAP client encodes a query of a data cube
and inserts it into a XML document, which specifies the method “execute” and
the accompanying parameters according to the “Simple Object Access Protocol”
(SOAP). This document is transmitted over the Internet based on the “Hypertext
Transfer Protocol” (HTTP). After decoding the OLAP server executes the query, and
sends the data back in a XML document to the client according to SOAP. For further
details see Messerschmidt and Schweinsberg (2003). MOLAP has the disadvantage
of “miss hits” if a data cube cannot be stored fully in-core and an access to a second
storage device is necessary. Moreover, array compression or sparse array handling
is needed because mostly the data cube or, equivalently, the arrays are sparse.

Hybrid OLAP (HOLAP) tries to combine the advantages of relational and multi-
dimensional database technology. The relational model is used to store replicated
and low-level aggregates, while the multi-dimensional model is responsible for
high-level aggregates.

Data Cube Operators

Data cubes are used for analytical purposes and not for (simple) transaction
processing. Therefore a clear boundary does not exist between data extraction or
retrieval and data analysis. This implies that there does not exist a minimal, closed

http://www.xmla.org
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and complete set of OLAP operators. The mostly built-in operators on data cubes
in commercial DWs are the following; see Shoshani (1997), Jarke et al. (2000), and
Lenz and Thalheim (2009).

Slicing c(T) is to select data from a cube T according to a fixed condi-
tion c. This operation is called in Statistics conditioning if only frequencies
(counts) applied to multi-way tables are considered. For example, we can retrieve
data from total_sales according to product_id, customer_id, month,
year=97(total_sales).

Dicing �c(T) is table projection on T by selecting a sub-cube T’ of some
lower dimension c than the original cube T has. This operation is equivalent to
marginalization in Statistics, i.e. projection of a data space into a lower dimension.
For instance �date, customer_id (total_sales) retrieves a sub-cube of total
sales cross-classified by date and customer.

Table aggregation (roll-up) and disaggregation (drill-down) are meaningful
operations on data cubes if at least on dimension is hierarchical. For example
�year;customer_id;product_id(total_sales) is a query for less fine-grained data, i.e.
for years and summarizing over all months per year. This specific operation is
called temporal aggregation. We observe that such an operation is not allowable if
a type conflict happens with respect to the summary attribute. This is the case if the
attribute “sales” is substituted by “no of employees”, see Lenz and Shoshani (1997).

Drill-across ılevel, node, attribute(T) is a navigation on the same level through
the various sub trees of a hierarchical attribute starting at a given node. For example,
retrieving products from level 1 (product–group) with start at product group 1 (shoes
and balls) of the taxonomy “Product” delivers data about tennis nets.

In order to compute ratios, products etc. of data cubes the join operator
�˝.T1, T2/ is needed. For instance, as sales=turnover � price we have
sales=�(turnover, price).

We note that there exist further operators like pivot (rotation of a cube), see
Jarke et al. (2000), or cube, which was introduced by Gray et al. (1996). It delivers
the margins ALL for any subset of dimensions.

10.3.4 Summarizability and Normal Forms

The main objective of summarizability is to guarantee correct results of the
cube operation roll-up and the utilization of statistical (aggregation) functions
like min, max, avg, sum and count under all circumstances, see Lenz
and Shoshani (1997). The corresponding integrity constraints are based on non-
overlapping levels of dimensions, completeness and type compatibility. The first
condition assures that each node of taxonomy has at most one preceding node except
for the root node. The second one ascertains that any node on a low level granularity
is directly linked to at least one node of a higher granularity. Type compatibility
guarantees that the application of any statistical function to a summary attribute is
feasible from a statistical point of view. In a preceding section we mentioned the
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unfeasibility of aggregation of stocks over time. Another example is the misuse of
the sum operator applied to numerically coded professions.

As Lehner et al. (1998) pointed out, the integrity constraint of completeness
may turn out to be too restrictive. This happens if structural missing values (null
values) in taxonomies exist. For example, the German state Bavaria is divided into
regions called “Kreise”. Berlin is a city as well as an autonomous German state. It
is not divided into regions, but into suburbs called “Bezirke”. In such cases a con-
text sensitive summarizability constraint is appropriate. The authors consequently
proposed three multi-dimensional normal forms for fact tables. Lechtenbörger and
Vossen (2001) improved the design of such normal forms.

10.3.5 Comparison of Terminologies

To sum up this chapter, the following tables compare the terminology of statistical
databases and OLAP, see Shoshani (1997) (Tables 10.3 and 10.4).

10.4 Access Methods

10.4.1 Views (Virtual Tables)

Statistical databases are often accessed by different users with different intentions
and different access rights. As already indicated in Sect. 10.2.2, these different
requirements can be accounted for by using views. These views are derived virtual

Table 10.3 Comparison of concepts

Statistical databases OLAP

Categorical attribute Dimension
Structural attribute Dimension hierarchy
Category value Dimension value
Summary attribute Fact
Multi-way table Data cube
Cross product Multidimensionality

Table 10.4 Comparison of operators

Statistical databases OLAP

Table projection Dice
Table selection Slice
Table aggregation Roll-up
Table disaggregation Drill-down
Table join term missing
Term missing Drill across
Viewing Pivoting
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tables, which are computed from (actually stored) base tables; see Elmasri and
Navathe (2006). There are two main purposes for the use of views.

1. It makes the use of the DBS or DW more convenient for the user by providing
only customized parts of the whole data cube.

2. It enforces security constraints by restricting operations on the base tables and
by granting users access to their specific views only.

The following SQL statement creates a view for the manager of the product “Tennis
Nets” from our example in Table 10.1. It only permits to look up the revenues
for Tennis Nets while for all other products, viewing the sales and modifying the
corresponding base tables is not possible.

CREATE VIEW tennis_nets_manager AS
SELECT date.month, date.year, customer_id,sum(sales)
FROM total_sales WHERE product_name=‘‘Tennis Nets’’;

Views can never contain information that is not present in the base tables. This is
true because the database system translates all view queries into equivalent queries
that refer only to the given base tables.

Base tables of a data warehouse may contain billions of tuples. Scanning these
tables can be time-consuming and may slow down the interaction between the
decision support system and the user significantly. One strategy to speed up the
access to aggregated data is to pre-compute a range of probable queries and to
store the results in materialized views, see Gupta et al. (1997). The access to these
materialized views is then much faster than computing data on demand. Yet there
are drawbacks to this strategy. The pre-computed data need space, the prediction of
the users’ queries may be difficult, and each change in the base table requires an
update of the materialized view, too. Furthermore, real-time data warehousing as
being mandatory in RFID technology increases the existence of computing power
for synchronized updates. This is known as the view maintenance problem, see
Huyn (1997).

10.4.2 Tree-based Indexing

The tables of a DW can physically be accessed either by a sequential scan or
by random access. With today’s hard disk technology, a sequential scan is 10 to
20 times faster than random access, see Jürgens (2002). That means if more than
approximately 5% to 10% of the data has to be accessed it is faster to scan the entire
table than addressing specific tuples via random access. In order to avoid full table
scans, the number of tuples involved in the result computation has to be reduced.
This can be achieved via index structures, which permit a fast look-up of specific
tuples.

The best-known index structure for one-dimensional data (i.e. data with just
one key such as product_name) is the B-tree; see Bayer and McCreight (1972),
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Comer (1979). Pointers to the data items are stored in the leaf nodes of a balanced
tree. The B-tree is a very general and flexible index structure, yet in some specific
cases it may be outperformed by different kinds of hashing, see Gaede and
Günther (1998).

The universal B-tree (UB-tree, see Bayer 1997) is an extension of the B-tree
for indexing multidimensional data such as total_sales (date.month,
date.year, customer_id, product_name, sum(sales)). The
approach partitions the multidimensional data space into squares each of which
is captured by a space-filling Z-curve, see Fig. 10.6. For each record, the Z-address
of the square, which contains the key values is computed. These Z-addresses are
one-dimensional and serve as the new primary keys for the records, which can then
be indexed with a standard B-tree.

Another approach for indexing multidimensional data is the R-tree, see
Guttman (1984). It uses rectangles to represent multidimensional intervals. The
leaf rectangles correspond to entries in the database. The parent nodes contain
all child nodes and the minimal bounding rectangle. The root rectangle covers
the entire query space. An example of how to store sales indexes in an R-tree
when product_name and customer_id build the concatenated primary key is
shown in Fig. 10.7. The minimal bounding rectangle of the dashed-line rectangles
A, B, and C constitutes the entire search space.

Refinements are the RC-tree of Sellis et al (1985), the R�-tree of Beckmann
et al. (1990) and a slightly improved version called R�a -tree of Jürgens (2002).

10.4.3 Bitmap Index Structures

An important alternative to tree index structures is bitmap indexing. For each value
of an attribute, a bitmap vector indicates whether or not it is assumed in the
records of the table, see Chan and Ionanidis (1998), O’Neil and Quass (1997),

Fig. 10.6 The UB-tree:
partition and capture of
multidimensional space with
the Z-curve
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Table 10.5 Bitmap index for the attribute product_name

Transaction_id Tennis balls Tennis nets Tennis shoes

015 0 0 1
018 1 0 0
004 0 1 0
009 0 0 1

Wu and Buchmann (1998). Table 10.5 shows a bitmap index for the attribute
product_name corresponding to the example presented in Table 10.1. There are
three bitmaps needed to represent each value of attribute product_name.

The bitmap vector for the attribute value Tennis Balls is (0, 1, 0, 0)T. Such a
set of bitmap vectors is created for all dimensions. In our total_sales example,
bitmap indexes have to be created further for (date.month, date.year) and
customer_id.

The size of the bitmap index depends on the number of tuples and on the
cardinality of the attribute domain. The required operations on bitmaps are simple
and therefore very fast. Thus loading blocks from disc and performing the basic
Boolean operations is efficient, especially if the number of dimensions is high,
see Jürgens (2002). As bitmaps are often sparse, they are well suited for com-
pression techniques. This is the reason why many commercial database systems
are implemented using bitmaps. However, standard bitmaps indexes become space
consuming for high attribute’s domain cardinality, and they are not very efficient for
(low dimensional) range queries, which are typical for DW systems.

Several approaches have been proposed to overcome these drawbacks like the
multi-component equality encoded bitmap index, see Chan and Ionanidis (1998).
The basic idea is to compress bitmap indexes by encoding all values into a smaller
number system by applying modular multiplication. This significantly reduces the
space requirements for attributes of high cardinality.
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To summarize, bitmaps are more suited for high-dimensional queries with low
attribute cardinality. Tree index structures are better for low-dimensional range
queries with attributes of high cardinality.

10.5 Extraction, Transformation and Loading (ETL)

ETL is a shorthand notation for a workflow of the initial popularization or a follow-
up update of a DW, a data mart or an OLAP application. In the first step data
must be extracted from various autonomous, often heterogeneous data sources and
temporarily stored in a so-called staging area of a DWS. Transformation means to
modify data, schema and data quality according to requirement specifications of the
DWS. Loading is the integration of replicated and aggregated data in the DW. As
the data volume may be huge, incremental loading within pre-selected time slots by
means of a bulk loader is appropriate.

10.5.1 Extraction

Extraction can be triggered by events linked to time and state of a running DBS or
can be executed under human control. Mostly extraction is deferred according to an
extraction schedule supplied by monitoring of the DWS. However, changes of data
in the source system are tracked in real time, if the actuality of data is mandatory for
some decision makers, see Kimball (1996) or real-time processing based on sensors
is involved.

As the data sources are generally heterogeneous, the efforts to wrap single
data sources can be enormous. Therefore software companies defined standard
interfaces, which are supported by almost all DBMS and ETL tools. For example,
the OLE DB provider for ODBC, see Microsoft (1998, 2003), Oracle (2003), and
IBM (2003).

10.5.2 Transformation

Transformations are needed to resolve conflicts of schema and data integration and
to improve data quality, see Davis and Gather, ChapternreffIII.9g.

We first turn to the first type of conflicts. Spaccapietra et al (1992) consider four
classes of conflicts of schema integration, which are to be resolved in each case.

(i) Semantic conflicts exist, if two source schemas refer to the same object, but
the corresponding set of attributes is not identical, i.e. the class extensions are
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different. As an example take two customer files. One record structure includes
the attribute name gender, while it is missing in the other one.

(ii) A second kind of conflict of integration happens if synonyms, homonyms,
different data types, domains or measurements units exist. For instance, think
of the synonym part/article, a homonym like water/money pool, string/date as a
domain, and Euro/USD. The ambiguity of our natural language becomes clear
when one thinks of the meaning of “name” – family name, nickname, clerical
name, former family name, artist name, friar name etc.

(iii) Schema heterogeneity conflicts appear if the source schemas differ from the
target schema of the DW. For example, sales and departments can be modeled
as two relations Sales and Department of a relational data model or as
a nested relation DepartmentnSales as part of an object oriented model.
Another kind of conflict corresponds to the mapping of local source keys to
global surrogates; see Bauer and Günzel (2001). This problem gets tightened if
entity identification is necessary in order decide whether a pair of records from
two data sources refer to same entity or not. Fellegi and Sunter (1969) were
the first to solve this problem by the record-linkage technique, which is now
considered as a special classification method; see Neiling (2003).

(iv) Structural conflicts are present if the representation of an object is different in
two schemas. There may only one customer schema exist with the attribute
gender in order to discriminate between “males” and “females”. Alterna-
tively, there may be two schemas in use, one linked to “females”, the other
one to “males”.

The second type of conflicts, i.e., conflicts of data integration, happens, if false
or differently represented data are to be integrated. False data are generated by
erroneous or obsolete entries. Differences in representation are caused by non-
identical coding like male/female versus 0/1 or by different sizes of rounding-off
errors.

10.6 Metadata and XML

McCarthy (1982) described metadata as data about data. However, the technical
progress of OLTP and OLAP database systems, workflow techniques and infor-
mation dissemination has made it necessary, to use a more general definition of
metadata.

Metadata is now interpreted as any kind of integrated data used for the design,
implementation and usage of an information system. This implies that metadata
not only describes real data, but functions or methods, workflows, data suppliers
or sources and data receivers or sinks, too. It does not only give background
information about the technology of a DBS or DWS, but about its semantic,
structure, statistics and functionality. Especially, the semantic metadata enable the
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common user to retrieve definitions of an attribute, to select and filter values of meta
attributes, and to navigate through taxonomies.

In Fig. 10.8 we present a view of a conceptually designed metadata. Its core is
given by a statistical object, which is either a specialisation of a data matrix or a data
cube. It is uniquely described by a definition, and is related in a many to many way to
validation and processing rules, surveys or reports and attributes. As we present only
a view, no further refinement is given with respect to attributes like role (measure,
key, property), scale (nominal, ordinal, cardinal), ontology or even domain (natural,
coded) etc. Each statistical object is linked to at least one survey or report. Surveys
or reports can be related to a preceding or succeeding one, are related to a statistical
framework (“statistical documentation”) giving details about the sampling scheme
and frame, the corresponding population and statistical estimation methods, and
are associated to a chronicle as a calendar of events. Furthermore references to
the specific literature and law are allowed. The corresponding substructure is not
displayed in Fig. 10.8. For further information about the metadata structure from
the user’s point of view, see Lenz (1994).

As metadata is stored and can be retrieved similar to real data, it is captured in
a repository and is managed by a metadata manager. A repository can be accessed
by users, administrators and software engineers according to their privileges and
read/write rights.

Repositories are offered from all vendors. Microsoft (2001) labelled its repos-
itory “metadata services”, and it is integrated in its SQL server. Alliances were
founded to harmonize the metadata models and to standardize the exchange formats.
Leading examples are the “Open Information Model” of the “Metadata Coalition
(MDC”), see http://www.mdcinfo.com, and the “Common Warehouse Metamodel
(CWM)”, which was developed by the “Object Management Group” (OMG), see

http://www.mdcinfo.com,


292 C. Boyens et al.

http://www.omg.org. Since the year 2000 both groups were fused and try to merge
their models. Due to the increasing importance of XML and XML databases, import
and export format of metadata based on XML is becoming an industrial standard.
This happened to OLAP client-server architectures, see “XML for Analysis” as
referred in Sect. 10.3.3.

10.7 Privacy and Security

10.7.1 Preventing Disclosure of Confidential Information

The statistical databases that are built by government agencies and non-profit
organizations often contain confidential information such as income, credit ratings,
type of disease or test scores of individuals. In corporate data warehouses, some
strategic figures that are not related to individuals like sales for recently launched
products may also be confidential. Whenever sensitive data is exchanged, it must
be transmitted over a secure channel like the Secure Socket Layer (SSL), see
Netscape (1996) in order to prevent unauthorized use of the system. For the purposes
of this chapter, we assume that adequate measures for security and access control
are in place, see Stallings (1999).

However, even if the information in the statistical database safely reaches the
correct address, the system has to ensure that the released information does not
compromise the privacy of individuals or other confidential information. Privacy
breaches do not only occur as obvious disclosures of individual values in single
queries. Often, the combination of multiple non-confidential query results may
allow for the inference of new confidential facts that were formerly unknown.

We give an example. From Table 10.1, we take the total sales for Tennis Shoes
(28,500), Tennis Balls (450), Tennis Nets (9450) and a fourth, new product (Tennis
Socks, 500). We assume that sum queries for groups of products are allowed but
that single, product-specific sales values are confidential. After querying the sum
for balls and shoes (28,950) and for balls and socks (950), the user can infer an
interval of [28,000; 28,950] for the sales of shoes, as sales cannot be negative. The
length of the interval, which is the maximum error of the user’s estimation of the
confidential shoe sales, is only 3.3% of the actual value. This particular case of
disclosure is called interval inference; see Li et al. (2002). Other types of inference
include exact inference (concluding the exact value of 28,500 for shoes sales) and
statistical inference (inferring estimates like mean
NxTennis Shoes D 30; 000 and standard deviation sTennis Shoes D 5; 000).
If a researcher is granted ad-hoc access to a statistical database, there are basi-

cally two different approaches to protect information that is private and confidential
from being revealed by a malevolent snooper; cf. Fig. 10.9, and see Adam and
Wortmann (1989), Willenborg and de Waal (1996) and Agrawal and Srikant (2000).
In the first approach, the kind and number of queries that a researcher poses

http://www.omg.org.
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to the statistical database (SDB) is restricted (query restriction). In the second
approach, the entire database is subject to a manipulation that protects single
values but preserves the statistical properties which are of interest to the user.
Then the perturbed database can be accessed by a researcher without restrictions
(data perturbation). In the following, we give an overview of disclosure protection
techniques of this kind.

10.7.2 Query Set Restriction

With this approach a query is either denied or responded with an exact answer as
the upper sketch in Fig. 10.9 indicates.

Query set size control, Fellegi (1972) works by setting lower and upper bounds
for the size of the query answer set based on the properties of the database and on the
preferences fixed by the database administrator. If the number of returned records
did not lie within these bounds, the information request would have to be rejected
and the query answer is denied. As queries that are issued sequentially by one user
often have a large numbers of entities in common, an improvement is the restriction
of these entities to a maximum number, see Dobkin et al. (1979). Although popular,
this method is not robust enough as a stand-alone solution, see Denning (1982).

Auditing involves keeping up-to-date logs of all queries made by each user and
constantly checking for possible disclosures whenever a new query is issued. One
major drawback of this method is that it requires huge amounts of storage and CPU
time to keep these logs updated. A well-known implementation of such an audit
system is Audit Expert by Chin and Özsoyoglu (1982). It uses binary matrices; see
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Query set restriction
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b

Fig. 10.9 (a) Query set restriction and (b) data perturbation
Adam and Wortmann (1989)
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bitmap indexes in Sect. 10.4.3, to indicate whether or not a record was involved in a
query.

Cell suppression, see Cox (1980) is an important method for categorical
databases when information is published in tabular form. Especially Census Bureaus
often make use of tabular data and publish counts of individuals based on different
categories. One of the main privacy objectives is to avoid answers of small size. For
example, if a snooper knows somebody’s residence, age and employer, he can issue
a query for (ZIP=10,178, age=57, employer=“ABC”). If the answer is
one entity, the snooper could go on and query for (ZIP=10,178, age=57,
employer=“ ABC”, diagnosis=“depression”). If the answer is one
again, the database is compromised and the person with the diagnosis identified.
The cells should have to be suppressed. A common criterion to decide whether
or not to suppress a cell is the N–k rule where a cell is suppressed if the top N
respondents contribute at least k% of the cell total. N and k are parameters that are
fixed by the database administrator, i.e. the Census Bureau. In the exemplary case
of N D 2 and k D 10%, a cell which indicates aggregated income ($10M) of 100
individuals would have to be suppressed if the top two earners’ aggregate income
exceeded $1M.

10.7.3 Data Perturbation

In the query restriction approach, either exact data is delivered from the original
database or the query is denied. As depicted in the lower part of Fig. 10.9, an
alternative is to perturb the original values such that confidential, individual data
become useless for a snooper while the statistical properties of the attribute are
preserved. The manipulated data is stored in a second database and is then freely
accessible for the users.

If in Table 10.1, we permute the sales of tennis balls, tennis nets, and tennis shoes,
individual sales data is not correct anymore. But the arithmetic average and the
standard deviation of the attribute sales stay the same. This procedure is called data
swapping, see Denning (1982).

Noise addition for numerical attributes, see Traub et al. (1984), means adding a
disturbing term to each value: Yk D Xk C ek; where Xk is the original value and
ek adheres to a given probability distribution with mean zero. As for every valueXk
value, the perturbation ek is fixed, conducting multiple queries does not refine the
snooper’s search for confidential single values.

A hybrid approach are random-sample queries, Denning (1982), where a sample
is drawn from the query set in such a way that each entity of the complete set is
included in the sample with probability P . If, for example, the sample of a count
query has n entities, then the size of the not perturbed query set can be estimated as
n=P . If P is large, there should be a set-size restriction to avoid small query sets
where all entities are included.
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10.7.4 Disclosure Risk vs. Data Utility

All methods presented in the preceding sections aim at lowering the disclosure risk
for data that is private and confidential. But at the same time, each of these methods
reduces, in some way, the utility of the data for the legitimate data user. Duncan
and Keller-McNulty (2001) present a formal framework to measure this trade-off
between disclosure risk and data utility, the Risk-Utility (R � U ) map. There are
numberless measures for disclosure risk, see Domingo-Ferrer et al. (2002) for an
excellent overview. We already gave an intuitive measure for interval inference. The
sales for tennis shoes were predicted with an error of only 3.3%, see Sect. 10.7.1.

However, it is far more difficult to measure data utility because it strongly
depends on the varying preferences of the data user. Especially for this reason,
classifying statistical disclosure control methods as presented here on an absolute
scale is almost an impossible task.
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Chapter 11
Discovering and Visualizing Relations in High
Dimensional Data

Alfred Inselberg

11.1 Introduction

V isualization flourished in Geometry. Legend has it that Archimedes was absorbed
in a diagram when he was killed by a Roman soldier. “Do not disturb my circles” he
pleaded as he was being struck by the sword . . . the first reported death in defense
of visualization. Visual interaction with diagrams is interwoven with the testing of
conjectures and construction of proofs. Our tremendous pattern recognition enables
us to extract insight from images. This essence of visualization is abstracted and
adapted in the more general problem-solving process to the extent that we form a
mental image of a problem we are trying to solve and at times we say see when
we mean understand. My interest in visualization was sparked and nourished while
learning geometry. Later, while studying multi-dimensional geometry I struggled
with the thought of displaying multidimensional geometry and multivariate prob-
lems. What emerged is Parallel Coordinates (Inselberg 1985 and earlier).

In the Euclidean plane R2 with xy-Cartesian coordinates, N copies of the real
line R labeled NX1; NX2; : : : ; NXN are placed equidistant and perpendicular to the
x-axis as shown in Fig. 11.1. They are the axes of the Parallel Coordinates system
for the Euclidean N-dimensional space RN , all having the same positive orientation
as the y-axis. A point C with coordinates .c1 ; c2 ; : : : ; cN / is represented by the
complete polygonal line NC (i.e. the lines containing the segments between the axes)
whose N vertices are at the ci value on the NXi -axis for i D 1; : : : ; N . In this way, a
1-1 correspondence between points in RN and planar polygonal lines with vertices
on the parallel axes is established. In principle, a large number of axes can be placed
and be seen parallel to each other. The representation of points is deceptively simple
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Fig. 11.1 The polygonal lineNC represents the point
C D .c1; c2; c3; c4; c5/

and much development with additional ideas is needed to enable the visualization
of multivariate relations or equivalently multidimensional objects.

Many contributed to the development, colleagues and students: B. Dimsdale
Inselberg and Dimsdale (1990), A. Hurwitz, T. Chomut Chomut (1987), M. Boz
Inselberg et al. (1991), M. Reif Inselberg et al. (1987), P.Fiorini Fiorini and Inselberg
(1989), J. Eickemeyer Eickemeyer (1992), C.K.Hung Hung and Inselberg (1992), A.
Chatterjee Chatterjee (1995) and T. Mastkewich Matskewich et al. (2000) and others
S. Cohan & Yang Cohan and Yang (1986), H.Hinterberger Schmid and Hinterberger
(1994), P.Fiorini Fiorini and Inselberg (1989), C.Gennings et al. Gennings et al.
(1990), E. Wegman Wegman (1990), A. Desai & L. Walters Desai and Walters
(1991) and more. Progress continued A.Chatterjee et al. Chatterjee et al. (1993),
M.Ward et al Ward (1994), C.Jones Jones (1996), Inselberg (1997), Inselberg and
Avidan (1999) to the more recent work of H. Hauser Hauser (2005), H. Choi
and Heejo Lee Choi and Lee (2005), G. Conti Conti (2007), M. Theus and S.
Urbanek Theus and Urbanek (2009) and others increased the body of knowledge and
versatility of k-cs. The last chapter in Inselberg (2009) contains the exciting recent
contributions of S. Cohen-Ganor – Displaying Several Lines Efficiently, N. Shahaf –
Separating Point Clusters on Different Planes, C. K. Hung – Surface Representation
and Developable Quadrics, Y. Singer & O. Greenshpan – Network Visualization
and Analysis, and Y. Yaari – To See C2, The Visualization of Complex Valued
Functions. And this list is by no means exhaustive. As of this writing a query for
“parallel coordinates” on Google returned about 140,000 “hits”.

11.2 Visual Data Mining

T he first, and still more widespread, application of parallel coordinates is for
exploratory data analysis (EDA). That is, the discovery of data subsets (relations)
fulfilling given objectives. A dataset with M items has 2M subsets anyone of which
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may be the one we really want. Our fantastic pattern-recognition ability and a good
data display can penetrate this combinatorial explosion by recognizing patterns and
the multivariate relations they represent. Extracting insight from images is the crux
of data visualization.

For the visualization of multivariate problems numerous mappings encoding
multidimensional information visually into 2-D or 3-D (see Friendly and al (2005)
and Tufte (1996) have been invented to augment our perception, which is limited
by our 3-dimensional habitation. Wonderful successes like Minard’s “Napoleon’s
March to Moscow”, Snow’s “dot map” and others are ad hoc (i.e. one-of-a-
kind) and exceptional. Succinct multivariate relations are rarely apparent from
static displays; interactivity is essential. Searching a dataset with M items for
interesting, depending on the objectives, properties is inherently hard. The visual
cues, our eyes can pick from a good data display, navigate the knowledge discovery
process. Clearly, if the transformation : data! picture clobbers information a great
deal is lost right at the start. Good displays of datasets with N variables should
preserve information and work for any number of variables N. Also they need to
be computationally and space efficienct. These considerations limit the use of the
scatterplot matrix (abbr. SM) and other methods. For our purposes, the crucial value
and role of visualization is not seeing “zillions of objects” but rather recognizing
relations among them.

11.2.1 Exploratory Data Analysis with Parallel Coordinates

Parallel coordinates transform multivariate relations into 2-D patterns suitable for
exploration and analysis. The exploration1 paradigm is that of a detective, starting
from the data, searching for clues leading to conjectures, testing, backtracking until
voila . . . the “culprit” is discovered. The task is especially intricate when there are
many variables (i.e. dimensions).

During the ensuing interaction think, dear reader, how similar queries can be
done using other exploration methodologies including the ubiquitous spread-sheets.
More important, what visual clues are available that would prompt the use of such
queries. Recall that in k-cs due to the point$ line and other dualities, some but not
all actions are best performed in the dual. The queries, which are the “cutting tools”,
operate on the display i.e. the dual. Their design should exploit the methodology’s
strengths and avoid its weaknesses; rather than mimic the action of queries operating
on standard “non-dual” displays. As a surgeon’s many specialized cutting tools,
one of our early software versions had lots of specialized queries. Not only was it
hard to classify and remember them but they still could not handle all situations
encountered. After experimentation, few (3) intuitive atomic queries were chosen

1The venerable name “Exploratory Data Analysis” EDA is used interchangeably with the currently
more fashionable “Visual Data Mining”.



302 A. Inselberg

which can be combined via boolean operations to form complex intricate cuts.
Even for relatively small datasets the k-cs display can look uninformative and
intimidating. Lack of understanding the basic underlying geometry and poor choice
of queries limits the use of k-cs to unrealistically small datasets. Summarizing, the
requirements for successful exploratory data analysis are:

• An informative display without loss of information of the data,
• Good choice of queries, and
• Skillful interaction with the display.

Aside from starting the exploration without biases it is essential to understand
the objectives. The task in the first example is the detection and location of various
ground features (i.e. built-up areas, vegetation, water etc) on the map. There is
a prominent lake, on the lower-left corner with an unusual shape like an upward
pointing “finger”.

11.2.2 An Easy First Study: Satellite Data

T he first advice is not to let the picture intimidate you as can easily happen by
taking an uninformed look at Fig. 11.4(left) showing the dataset to be explored. It
consists of over 9,000 measurements with 9 variables, the first two .X; Y / specify
the location on the map in Fig. 11.2(left), a portion of Slovenia, where 7 types of
ground emissions are measured by satellite. The ground location, .X; Y /, of one
data item is shown in Fig. 11.2 (right), which corresponds to the map’s region and
remains open during the exploration. The query, shown in Fig. 11.3(left), used to
select the data item is called Pinch. It is activated by the button P on the tool bar. By
means of this query, a bunch of polygonal lines (i.e. data items) can be chosen by
being “pinched” in-between the axes. The cursor’s movement changes the position
of the selected arrow-head which is the larger of the two shown. In due course
various parts of the GUI are explained(Parallax).2

Follow up on anything that catches the eyes, gaps, regularities, holes, twists,
peaks & valleys, density contrasts like the one at the lower values of B3 through
B7. Using the Interval query, activated by the I button, starting at the minimum we
grab the low range of B4 (between the arrowheads) stopping at the dense part as
shown in Fig. 11.3 (right). The result, on the left of Fig. 11.4, is amazing. Voila we
found the water3 the lake is clearly visible together with two other regions which in
the map turn up to be small streams. Our scrutiny having been rewarded we recall the
adage that a good thing may be worth repeating. Examining for density variations
now within the selected lower interval of B4 we notice another. The lowest part is
much denser. Experimenting a bit, appreciating the importance of interactivity, we

2MDG’s Ltd proprietary software – All Rights Reserved, is used by permission.
3Suggesting that the Landsat Thematic mapper band 4 filters out water though unknown to me.
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Fig. 11.2 Seven types of ground emissions were measured on this region of Slovenia.
Measurements made by the LandSat Thematic Mapper. Thanks and acknowledgement to Dr. Ana
Tretjak and Dr. Niko Schlamberger, Statistics Office of Slovenia, for providing the data. (Right)
The display is the map’s rectangular region. The dot marks the position where the 7-tuple shown
in the next figure was measured

Fig. 11.3 (Left) Query selecting a single data item. (Right) Finding water regions.
(Left)The X; Y (position, also shown on the right of Fig. 11.2), and values of the 7-tuple
.B1; B2; B3; B4; B5; B6; B7/ at that point. (Right)The contrast due to density differences around
the lower values of B4 is the visual cue prompting this query

select the sparse portion, Fig. 11.5, which defines the water’s edge (right) 11.4 and
in fact more. By dropping the lower arrow we see the lake filling up starting from
the edge i.e. shallow water first. So the lower values of B4 reveal the water and the
lowest “measure” the water’s depth; not bad for few minutes of playing around.

But all this pertains to a single variable when we are supposed to be demon-
strating multivariate exploration. This is a valid point but we did pick B4 among
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Fig. 11.4 (Left)The lake – result of query shown in Fig. 11.4 (Right).
On the right is just the lake’s edge. It is the result of query shown in Fig. 11.5

Fig. 11.5 Query finding the water’s edge

several variables. Further, this is a nice “warm-up” for the subsequent more involved
examples enabling us to show two of the queries. The astute observer must have
already noticed the regularity, the vertical bands, between the B1;B2 and B3 axes.
This is where the angle query, activated by the A button, comes into play. As
the name implies it selects groups of lines within a user-specified angle range. A
data subset is selected between the B2;B3 axes as shown, with enlarged inter-
axes distance better showing the vertical bands, in Fig. 11.6 (left) to select a data
subset which corresponds on the map to regions with high vegetation. Clicking the
A button and placing the cursor on the middle of one axis opens an angle, with
vertex on the mid-range of the previous(left) axis, whose range is controlled by
the arrow movements on the right axis. Actually this “rule” (i.e. relation among
some parameters) for finding vegetation can be refined by twicking a couple of more
parameters. This raises the topic of rule finding in general, Classification, which is
taken up in Sect. 11.3.
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Fig. 11.6 Finding regions with vegetation

The angle and pinch queries are motivated by the ` line! point Ǹ duality

` W x2 D mx1 C b $ Ǹ D . d

1 �m;
b

1 �m/ (11.1)

in k-coords illustrated in Fig. 11.7 where the inter-axes distance is d . As seen from
its x-coordinate, the point Ǹ lies between the parallel axes when the line’s slope
m < 0, to the right of the NX2 axis for 0 < m < 1 and left of NX1 for m > 1. Lines
withm D 1 are mapped to the direction with slope b=d in the on the xy-plane; with
d the inter-axes distance and b the constant (intercept) in the equation of `. This
points out that dualities properly reside in the Projective, the directions being the
ideal points, rather than the Euclidean plane. For sets of points having a “general”
direction with negative slope, i.e. are “negatively correlated”, the lines representing
them in k-cs cross each other in between the axes and they can be selected with the
pinch query. For positively correlated sets of points their corresponding lines cross
outside the axes and can be selected with the angle query. All this exemplifies the
need to understand some of the basic geometry so as to work effectively with the
queries and of course, at first, design them well. The three atomic queries having
been introduced there remains to learn how they can be combined to construct
complex queries.

Prior to that, Fig. 11.6 (left) begs the question: “what if the B2 and B3 axes
were not adjacent”? Then the pattern and hence their pairwise relation would
be missed. Clearly the axes-permutation used for the exploration is important. In
particular what is the minimum number of permutations among N -axes containing
the adjacencies for all pairs of axes? It turns out that M permutations are needed
for even N D 2M and M C 1 for odd N D 2M C 1. It is fun to see why.
Label the N vertices of a graph with the index of the variables Xi; i D 1; : : : ; N
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Fig. 11.7 Parallel coordinates induce a point Ǹ $ ` line duality (left).
(Right) The horizontal position of the point Ǹ representing the line ` is determined only by the
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Fig. 11.8 (Left) Graph
corresponds to the (axes)
index permutation 126354.
(Right) The complete graph
as the union of the 3 distinct
Hamiltonian paths starting
successively at the vertices
1, 2, 3

as shown in Fig. 11.8 for N D 6. An edge joining vertex i with j signifies that
the axes indexed by i , j are adjacent. The graph on the left is a Hamilton path
for it contains all the vertices. Such paths have been studied starting with Euler
in the eighteenth century with modern applications to the “travelling salesman”
problem and elsewhere (Harary 1969 pp. 66, Bollobas 1979 pp. 12). The graph
corresponds to the axes index permutation 126354. On the right, the union with the
additional two Hamiltonian paths, starting at vertices 2 and 3, forms the complete
graph which contains all possible edges. Hence the 3 permutations 126354, 231465,
342516 contain all possible adjacent pairs; just try it. The remaining permutations
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are obtained from the first by successively adding 1 mod 6 to each digit and this
works for generalN . This early result and recent ones appears in the comprehensive
paper by C. Hurley and W. Olford Hurley and Olford (2010). An important more
general question, let’s call it the the triad problem, is “what is the minimum number
of permutations needed containing all adjacent triple variables displays?” Clearly
this is relevant for in k-cs adjacent order-independent triples appear, revealing
their interelations, and can lead to the faster discovery of more global multivariate
relations. This problem may be of interest in social networks in finding common
friends between pairs of members. Apparently it is an open question and hopefully
this discussion may motivate and inspire readers to contribute a solution.

Returning to EDA, the icon with the Rubik’s Cube on Parallax’s toolbar activates
a permutation editor which automatically generates the Hamiltonian permutations
(abbr. HP). After scrutinizing the dataset display the recommended next step is
to run through the O.N=2/ HP. This is how all nice adjacencies such as the one
in Fig. 11.6 are discovered. Then using the editor, patch your own custom-made
permutation containing all the parts you like in the HP. With this preprocessing cost
the user sets her own best permutation to work with. Of course, there is nothing
to prevent the inclusion of axes several times in different positions as well as
experimenting with different permutations in the course of the exploration.

11.2.3 Compound Querries: Financial Data

T o be explored next is the financial dataset shown in Fig. 11.9, the goal being to
discover relations useful for investments and trading. The data for the years 1986
(second tick on the 3rd axes) and 1992 are selected and compared. In 1986 the
Yen had the greater volatility among the 3 currencies, interests varied in the mid-
range, gold had a price gap while SP500 was uniformly low. By comparison in
1992, the Yen was stable while the Sterling was very volatile (possibly due to
Soros’ speculation that year), interests and gold price were low and the SP500 was
uniformly high. Two Interval queries are combined with the OR boolean operator
(i.e. Union) to obtain this picture.

We continue “looking for the gold” by checking out patterns that caught our
attention. The data for 1986 is isolated in Fig. 11.10 and the lower range in the gold
price gap is selected. Gold prices were low until the 2nd week in August when they
jumped and stayed higher. The exploration was carried out in the presence of four
financial experts who carefully recorded the relation between low Yen, high 3MTB
rates and low Gold prices. By the way, low Yen rate of exchange means the Yen has
high value relative to the US $.

There are two bunches of crossing lines between 6th and 7th axes in Fig. 11.9
which together comprise more than 80% of the dataset. This and recalling the
previous discussion on the line point mapping in Fig. 11.7 points out the strong
negative correlation between Yen and 3MTB rates. The smaller cluster in Fig. 11.11
(left) is selected. Moving from the top range of any of the two axes, with the I query,
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Fig. 11.9 Financial data.
Quotes by Week-on Mondays, Month, Year – the first 3 axes fix the date; Sterling, Dmark, Yen
rates per $ 4th, 5th, 6th axes; 3MTB, 30YTB interest rates in %, 7th, 8th axes; Gold in $/ounce,
9th, SP500 index values on 10th axes

Fig. 11.10 Gold prices In 1986.
Gold prices jumped in the 2nd week of August. Note the correlation between the low Yen, high
3MTB rates and low Gold price range

and lowering the range causes the other variable’s range to rise and is a nice way to
show negative correlation interactively.

For the contrarians among us, we check also for positive correlation Fig. 11.11
(right). We find that it exists when Gold prices are low to mid-range as happened
for a period in the 1990s. This is a free investment tip for bucking the main trend
shown in Fig. 11.11 (left). It is also a nice opportunity for showing the inversion
feature activated by the icon with 2 cyclical arrows. A variable is selected and the
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Fig. 11.11 (Left) Negative correlation. (Right) Positive correlation.
(Left)The crossing lines between the 6th and 7th axes in Fig. 11.9 show strong negative correlation
between Yen and 3MTB rates. One cluster is selected with the Pinch query and combined with
the high and low ranges on the Yen axis.(Right) A positively correlated cluster where the Yen and
3MTB rates move together when Gold prices are low to mid-range

Fig. 11.12 (Left)Inverting the 3MTB axis. (Right) Variations in exchange rates.
Now the lines between the Yen-3MTB and 3MTB-30MTB axes in Fig. 11.11 (right) cross.
Variations in the rate of exchange of the currencies correlate with movements in the price of Gold

min/max values on that axes are inverted. Diverging lines (as for + correlation)
now intersect Fig. 11.12 (left) making it easier visually to spot the crossing and
hence the correlation. Actually, the recommendation is to work with the A query
experimenting with various angle ranges using the inversion to check out or confirm
special clusters.

When stuck don’t just stand there but vary one of the variables watching
for interesting variations in the other variables. Doing this on the Yen axis,
Fig. 11.12(left) we strike another gold connection. The (rough) intersection of a
bunch of lines joining Yen to the Dmark corresponds, by the duality, to their rate of
exchange. When the rate of exchange changes so does the intersection and the price
of Gold! That is movements in currency exchange rates and the price range of Gold
go together. Are there any indications that are associated with the high range of
Gold? The top price range is selected, Fig. 11.13 (left), and prompted by the result
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Fig. 11.13 (Left) High Gold. (Right) Two price ranges of Gold.
(Left) Note the perfect straight line in the Sterling vs. Dmark plot. The slope is the rate of exchange
between them and which remains constant when Gold prices peak. (Right) The associated Sterling
vs. Dmark plots show no regularity

Fig. 11.14 (Left)The complement of an I query. (Right) Yen stable.
(Right) For the Yen trading in a narrow range, high Dmark goes with low 3MTB rates, low Dmark
goes with high 3MTB rates, while mid 3MTB rates go with high Gold

of the previous query we check out the exchange rate between Sterling and Dmark
(or Yen) and the resul is stunning: a perfect straight line. The slope is the rate of
exchange which is constant when Gold tops out. The relation between Sterling and
Dmark is checked for different price ranges of Gold, Fig. 11.13 (right), and the only
regularity found is the one straight-line above. Aside from the trading guideline it
establishes, it suggests “behind-the-scenes manipulation of the Gold market” . . .
we could have said that but we won’t. We perish this thought and proceed with
the boolean complement, Fig. 11.14(left) of an I (or any other) query. Not finding
anything we select a narrow but dense range on the Yen, Fig. 11.14 (right) and notice
an interesting relation between Dmark, interest rates and Gold.

There is an exploratory step akin to “multidimensional contouring” which we
fondly call Zebra activated by the last icon button on the right with the appropriate
skin-color. A variable axis is selected, the SP500 axis in Fig. 11.15 (left), and
divided into a number (user specified) intervals (here it is 4) and colored differently.
This shows the connections (influence) of the intervals with the remaining variables
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Fig. 11.15 (Left) The zebra query. (Right) The rule for high SP500.
(Left)It partitions and colors the segments of values differently. A variable, here the SP500 axis, is
divided it into equal (here 4) intervals. This quickly reveals interelationships. Note especially those
for the highest SP500 range. (Right) Both 3MTB (the “short-bond” as it is called) and Gold are
low and in this order of importance

which here is richly structured especially for the highest range. So what does
it take for the SP500 to rise? This is a good question and helps introduce
Parallax’s classifier. The result, shown in Fig. 11.15 (right) confirms the investment
community’s experience that low 3MTB and Gold correlate with high SP500. A
comparison with the results obtained on this dataset with other visualization tools
would be instructive though unfortunately not available. Still let us consider such
an analysis done by the scatterplot matrix. There are 10 variables (axes) which
requires 45 pairwise scatterplots. Let us assume that each is no larger than 5 � 5
cm square and a large screen monitor is available. Varying 1, 2 or more variables
in tandem and observing the effects simultaneously over all the variables in the 45
squares may be possible but quite challenging. By contrast, the effects of varying
Dmark, conditionally for stable Yen, are easily seen on the two interest rates, Gold
as well as the remaining variables in one Fig. 11.14 (right). This example illustrates
the difficulties due to high representational complexity which is O.N2/ for the
scatterplot matrix but O.N/ for k-coords.

11.3 Classification

T hough it is fun to do this data exploration, the level of skill and patience
required tends to discourage some users. So there have been persistent requests and
admonitions for tools which at least partially automate the knowledge discovery.
Here the Nested Cavities4 (abbr. NC) classifier Inselberg and Avidan (2000) is
revisited and substantially improved. For a dataset P and a subset S the goal is
to construct a rule distinguishing the elements of S from those in P � S . NC is a
geometrical algorithm which builds a sequence of nested unbounded parallelopipeds

4My dentist really liked this name!
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of minimal dimensionality containing subsets of P , from which a hypersurface
(the rule) containing the subset S emerges. The partitioning of P � S and S

into disjoint subsets is very useful when the original rule obtained is either too
complex or imprecise. By applying NC to the partitions of S a simpler and more
precise classification may be obtained. This process is illustrated on a (sonar) dataset
with 60 variables and two categories (“mines” and “rocks”) resulting in significant
improvements of the original rule. Such a situation is generic and occurs with other
datasets as illustrated with a similar decompositions of a financial dataset producing
two sets of conditions determing gold prices. Yet another example is a dataset
pertaining to ovarian cancer which is decomposed by NC to distinct cases of this
cancer. We propose including such partitioning for the classification of datasets. The
process may be automated and also allows the classification of the sub-categories to
be done in parallel.

The classifier’s output may also be that there is insufficient information to obtain
the desired distinction. What can be done when the classifier either fails to converge
or the rule it yielded is very complex or not accurate? It turns out that the classifier
reveals the dataset’s structure pointing out how it can partitioned into sub-categories
which can be more simply and accurately classified.

To understand the key idea and make this section reasonably self-sufficient an
overview of the classification algorithm is presented. It is illustrated on a dataset
with 32 variables and 2 categories obtaining an accurate rule using the classifier
as originally proposed. The motivation for the extension is described next with a
dataset having 60 variables and two categories. Though the resulting rule is not
accurate the dataset’s structure is revealed yielding a partition which substantially
improves the classification. The presentation is intuitive and technical details for the
implementation are not elaborated.

11.3.1 Classification Algorithm

W ith parallel coordinates Inselberg (2009) a dataset P with N variables is trans-
formed into a set of points in N -dimensional space. In this setting, the designated
subset S can be described by means of a hypersurface which encloses just the
points of S . In practical situations the strict enclosure requirement is dropped
and some points of S may be omitted (“false negatives”), while some points of
P � S are allowed (“false positives”) in the hypersurface. The description of such a
hypersurface provides a rule for identifying, within an acceptable error, the elements
of S . It turns out that using Parallel Coordinates not only enables the efficient
construction of the hypersurface but also the visualization of the rule.

At first the algorithm determines a tight upper bound for the dimension R of S .
For example, P may be a 3-dimensional set of points but all point of S may be on
a plane; in which case S has dimension 2. Once R is determined R variables out of
the N are chosen according to their predictive value and the construction process,
schematically shown in Fig. 11.16, operates only on these R selected variables. It is
accomplished by:
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elements of S

S1

S3

S2

Fig. 11.16 Construction of enclosure for the Nested Cavities algorithm. The first “wrapping”
S1 is the convex hull of the points of S which also includes some points of P � S . The second
wrapping S2 is the convex hull of these points and it includes some points of S which are enclosed
with the third wrapping S3. To simplify the wrappings are shown as convex hulls rather than as
approximations. Here the selected set is S D .S1 � S2/[ .S3 � S4/ where S4 D ;

• Use of a “wrapping” algorithm to enclose the points of S in a hypersurface S1
containing S and typically also some points of P � S ; so S � S1.5

• The points in .P �S/\S1 are isolated and the wrapping algorithm is applied to
enclose them, and usually also some points of S1, producing a new hypersurface
S2 with S � .S1 � S2/,

• The points in S not included in S1�S2 are next marked for input to the wrapping
algorithm, a new hypersurface S3 is produced containing these points as well as
some other points in P � .S1 � S2/ resulting in S � .S1 � S2/[ S3,

• The process is repeated alternatively producing upper and lower containment
bounds for S ; termination occurs when an error criterion is satisfied or when
convergence is not achieved.

The algorithm decomposes P into nested subsets, hence the name Nested
Cavities (abbr. NC) for the classifier. The nested subsets are disjoint so they are
partitions of P . Let us illustrate all this with an example on a real dataset with 2
categories and 32 variables x1; x2; : : : ; x32. The rule found by the NC classifier is
shown in Fig. 11.18 and Fig. 11.19.

5By Sj � Sk it is meant that the set of points enclosed in the hypersurface Sj is contained in the
set of points enclosed by the hypersurface Sk .
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Basically, the “wrapping” algorithm produces a convex-hull approximation; the
technical details are not needed here. The efficiency of the version implemented
here is due to the use of the k-cs representations of N-dimensional objects Inselberg
(2009) applied in the description of the resulting hypersurface. It can and does
happen that the process does not converge when P does not contain sufficient
information to characterize S . It may also happen that S is so “porous” (i.e. sponge-
like) that an inordinate number of iterations are required.

At step r the output is the description of the set Sr which consists of:

• A list of the minimum number of variables needed to describe S without loss
of information. Unlike other methods, like the Principal Component Analysis
(PCA), the classifier discards only the redundant variables. It is important to
clarify this point. A subset S of a multidimensional set P is not necessarily of
the same dimensionality as P . So the classifier finds the dimensionality of S in
terms of the original variables and retains only those needed for describing S .
That is, it finds the basis in the mathematical sense of the smallest subspace
containing S , or more precisely the current approximation for it. This basis
is the minimal set Mr of variables needed to describe S ; alternatively the
“features” of S . We call this process dimensionality selection to distinguish it
from dimensionality reduction which is usually done with loss of information.
Retaining the original variables is important in the applications where the domain
experts have developed intuition about the variables they measure. The classifier
presents Mr ordered according to a criterion which optimizes the clarity of
separation. In addition the classifier’s output describes:

• The current approximation of the rule stated in terms of conditions on the
variablesMr , which constitutes the description of the current hypersurface.

So on convergence, say at step 2n, the description of S provided is :

S � .S1 � S2/[ .S3 � S4/ [ : : : [ .S2n�1 � S2n/;
this being the terminating expression resulting from the algorithm. The implemen-
tation allows the user to select a subset of the available variables and restrict the rule
generation to these variables. In certain applications, such as process control, not
all variables can be controlled and hence it would be useful to have a rule involving
such variables that are “accessible” in a meaningful way.

The results (precision of rule) obtained by the NC classifier applied to bench-
mark datasets were the most accurate when compared to those obtained by 22 other
well-known classifiers (see Inselberg and Avidan 2000).

11.3.2 Tracing some Steps

A dataset with 32 variables x1; x2; : : : ; x32 having 2 categories each having
300 points in Fig. 11.17 is chosen to exemplify the process. The NC classifier
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Fig. 11.17 Two categories colored differently each have 300 data points. Category 1 is selected
by the query indicated with the downward and upward arrowheads at the bottom of the first axis

applied to category 1 found that only the variables x11; x14; x8; x10; x12; x9; x7;
x23; x13 are needed to specify the classification rule in only one iteration and
about 6% error. The order of the variables is significant and is discussed shortly.
The second iteration involves additionally x2; x5; x6 reducing the error to 4%.
The result is shown in Fig. 11.18; the separation achieved is striking. See also
further cross-sections in Fig. 11.19 which reveal two tight-fiting “pretsels” winding
in 9-dimensions. As recommended by H. Hinterberger Schmid and Hinterberger
(1994) more than one display, here parallel coordinate and scaterplots, are used for
supporting comparisons, confirming and clarifying the results.

For the example it suffices to use unbounded parallelopipeds for the wrapping.
Let Ij be the range of the variable xj within the set of points C in S ( here category
1); that is from the minimum to the maximum values of xj . Further, let Cj be the
number of data points in the global set P with range Ij . Specifically, as shown in
Fig. 11.20,C11 has 484 points and, Fig. 11.21,C14 has 510 points. So the algorithms
first step is to find the Cj and put them in ascending order i.e. here C11 < C14
and in general Cj1 < Cj2 : : : < Cjm where m is the number of variables (here
m D 32). Next starting with j1 the range of each variable is restricted in the order
j1; j2; : : : observing the number of points Cjk in the P with these restrictions. At
some stage either Cjk D CjkC1

for k < m and procecure stops or Cjm is reached and
then terminates. The k at termination is the dimensionality of S . Here, Fig. 11.22,
C11\C14 D 400. This is what determines the order of the 9 variables chosen here by
NC i.e. j1 D 11; j2 D 14; : : : ; j8 D 23; j9 D 13. In turn, restricting the ranges of
variables on P in this order sequentially reduces most rapidly the number of points
approximating S with one iteration. That is,
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Fig. 11.18 The dataset with 32 variables is shown in the background. It has 2 categories whose
points are differencly colored. The table contains the explicit rule. The left scatterplot shows
the first two consecutive variables. The classifier found that only 9 variables, whose ranges are
indicated by the downward and upward arrowheads on their axis, are needed to describe the rule
with a precision of 4%. The plot of the right shows the two best predictors and the separation
achieved between the two categories

C11 D 484 > 400 > 370 > 350 > : : : 308 > 305;

terminates with j9 D 13. Restricting the range of any other variable xt to It does
not reduce the number of points further in the resulting set which at all times must
contain the selected subset S . Precisely for this reason we consider the dimension
of S in this case to be 9 as it is completely contained withing the unbounded par-
allelopiped determined by the restricted ranges of the 9 aforementioned variables.
This is also the reason for considering x11 as the best predictor, x14 as the second
best predictor and so on. This is a measure of the variables’ relative importance
and has considerable practical significance when there are missing values whose
influence diminishes in the same order.

With one more iteration the number of points selected by the rule is exactly those
contained in S (i.e. 300). For this iteration another parallelopiped is constructed
within the one obtained in the first iteration and deleted creating a cavity. In this
way the process carves out unwanted parts and provides the separation shown.
Parallel coordinates are used internally in the implementation taking advantage of

the efficient intersection and containment algorithms Inselberg (2009). The overall
computational complexity isO.N2jP j/ whereN is the number of variables and jP j
is the number of points in P .

Two error estimates are used: Train & Test and Cross-correlation. When the rule
involves several iterations an additional criterion is employed to avoid overfiting.
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Fig. 11.19 Various cross-sections of the hypersurface corresponding to the classification rule for
category 1 above

Fig. 11.20 Restricting the range of the first variable x11 chosen by the classifier eliminates 116
of the points in category 2
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Fig. 11.21 Restricting the range of the second variable x14 eliminates only 90 of the points in
category 2 showing why x11 (above) is a better predictor for category 1 than x14

Fig. 11.22 Restricting both x14 and x11 eliminates 200 points of category 2. The remaining 100
points of category 2 are eliminated by applying the subsequent conditions specified by the rule

Namely, the rule error is traced iteration by iterations and the process is stopped
when the error increases compares to the previous. As pointed out in Inselberg and
Avidan (2000), the rule obtained by the NC classifier were applied to 4 bench-mark
datasets and were the most accurate compared to those obtained by 22 other well
known classifiers.
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Fig. 11.23 Sonar dataset with 60 variables and 2 categories. The NC classifier partitions the
dataset into 3 nested subsets indicated by the 3 rectangles, in middle of the lower row, with 148,
51 and 14 items each. To improve the visual clarity some of the variables (axes) not needed in the
rule were removed

Due to the short exposition in Inselberg and Avidan (2000) questions were raised
by a number number of users on detailed aspects of the NC algorithm. This detailed
explanation is intended to demistify some of the nuances, present the updates
introduced in the meantime and provide foundational understanding for the new
idea introduced next.

11.3.3 Partioning into Sub-categories

As one might expect things do not always work out as nicely as for the example.
The sonar dataset from UCI (0000) has been a real classification challenge. It has 60
variables, 208 observations and 2 categories 1 for Mines with 111 observations and
0 for Rocks with 97 data points. Applying the NC classifier partitions the dataset
into 3 nested subsets S1; S2; S3, with 148, 51 and 14 items respectively, The rule
obtained involves about 35 variables and an unacceptable high error of about 45%.
The result, demarcating the nesting (by the rectangles in the lower row) and showing
some of the variables used in the rule is shown in Fig. 11.23.

The schematic in Fig. 11.24 clarifies the partition of the dataset into 4 disjoint
sets, M1 D;M2 for the mines and R1;R2 for the “rocks”. These are obtained by
S3 D M2, R2 D S2 � S3, M1 D S1 � S2 and R1 D Al l � S1 where Al l stands
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R2, 37

M2, 14

M1, 97

R1, 60

S3, 14

S2, 51

S1, 148
All, 208Fig. 11.24 Schematic of the

sonar dataset partition. The Si
are the nested subsets,
R D R1 [ R2 and the mines
M DM1 [M2. Together
with the notation is the
number of items contained in
each subset

for the full dataset. This is a very useful insight into the structure of the dataset and
motivates the idea. The bulk of the mines are in M1 which has the higher values of
the variables needed to specify the rule. By contrast, the subset M2 D S3 is a small
“island”, having the smaller variable values, surrounded by R2 differs markedly
fromM1. Why not split M into two classes as suggested by the picture, finding the
rules separately and use them if they are more precise than the one found at first,
and it works!

Consider R [M1 and apply the NC classifier. A rule distinguishing M1 from R

is found needing only 4 variables. Due to small size of M1 the error estimates, with
either cross-correlation or train-and-test the number of “false-negatives” were high,
about 30%, though the “false-positives” were about 5% yielding a weighted average
error of about 15%. For another interesting comparison distinguishingM1 fromM ,
NC yields a rule with 5 variables and an 8% average error. It is clear thatM1 is easily
distinguished both from the “rocks” and the larger class of minesM1. This strongly
suggests that there are two very different types of mines included in this dataset. To
summarize part of NC’s output, indicated by the rectangles in the lower row, gives
the decomposition of the dataset into nested subsets. From these one or more of the
categories can be partitioned to obtain a more accurate and simpler rule. While this
has been observed for some time it was only investigated recently. Of course, the
idea of partitioning is inherent in classification which after all pertains to the division
of a dataset and differentiating between the parts. While there is a lot of literature
on partitions in data mining i.e. Han and Kamber (2001) and Agarwal et al. (1999)
this specific method has apparently not been suggested. Such a decomposition can
clearly be automated and also the classification of the new categories can be done
in parallel.

We have encountered similar situations with other datasets. From the 1986-year
subset of the financial dataset in the previous section, classification with NC showed
that there are two different sets of conditions which cause the price of gold to
rise. These are better characterized separately as for the sonar dataset. Interestingly,
the price of Yen is involved in one of the conditions but not the other. Another
such example is shown in Fig. 11.25 for a dataset with measurements on ovarian
cancer having 50 variables and 3 of categories (types of cancer). Classification
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Fig. 11.25 This a dataset with measurements pertaining to ovarian cancer having 50 variables
and 3 categories. Classification by NC of one category yields a complex and inaccurate rule. It
also partitions it into 2 sub-categories yielding simpler and more precise rule. This may suggest
that this type of cancer has two different descriptions (morphologies)

of one category yielded a complex and imprecise rule. However, it also showed
a decomposition into two sub-classes for which good rules were obtained. Since
different descriptors were involved for each sub-class the thought arises that the
cancer types are really different. These examples are generic of a common problem
in classification, and for these we offer a time-honored solution: divide and
conquer.

11.4 Visual & Computational Models

F inally we illustrate the methodology’s ability to model multivariate relations in
terms of hypersurfaces – just as we model a relation between two variables as
a region in a 2-D plane. Then by using an interior point algorithm, as shown
in Fig. 11.32 of the next section, with the model we can do trade-off analyses,
discover sensitivities, understand the impact of constraints, and in some cases do
optimization. For this purpose we shall use a dataset consisting of the outputs of
various economic sectors and other expenditures of a particular (and real) country.
It consists of the monetary values over several years for the Agricultural, Fishing,
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Fig. 11.26 (Left) Model of a country’s economy. (Right) Competition for labor between the
Fishing & Mining sectors.
Choosing high Agricultural and high Fishing output forces low Mining output

and Mining sector outputs, Manufacturing and Construction industries, together
with Government, Miscellaneous spending and resulting GNP; eight variables
altogether. We will not take up the full ramifications of constructing a model from
data. Rather, we want to illustrate how k-coords may be used as a modeling tool.
Using the Least Squares technique we “fit” a function to this dataset and are not
concerned at this stage whether the choice is “good” or not. The function obtained
bounds a region in R8 and is represented by the upper and lower curves shown in
Fig. 11.26.

The picture is in effect a simple visual model of the country’s economy,
incorporating its capabilities, limitations and interelationships among the sectors. A
point interior to the region, satisfies all the constraints simultaneously, and therefore
represents (i.e. the 8-tuple of values) a feasible economic policy for that country.
Using the interior point algorithm we can construct such points. It can be done
interactively by sequentially choosing values of the variables and we see the result
of one such choice in Fig. 11.26(left). Once a value of the first variable is chosen (in
this case the Agricultural output) within its range, the dimensionality of the region
is reduced by one. In fact, the upper and lower curves between the 2nd and 3rd
axes correspond to the resulting 7-dimensional hypersurface and show the available
range of the second variable Fishing reduced by the constraint. This can be seen
(but not shown here) for the rest of the variables. That is, due to the relationship
between the 8 variables, a constraint on one of them impacts all the remaining
ones and restricts their range. The display allows us to experiment and actually
see the impact of such decisions downstream. By interactively varying the chosen
value for the first variable we found, that it not possible to have a policy that favors
Agriculture without also favoring Fishing and vice versa.

Proceeding, a very high value from the available range of Fishing is chosen and it
corresponds to very low values of the Mining sector. By contrast in Fig. 11.26(right)
we see that a low value in Fishing yields high values for the Mining sector. This
inverse correlation was examined and it was found that the country in question has a
large number of migrating semi-skilled workers. When the fishing industry is doing
well most of them are attracted to it leaving few available to work in the mines and
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vice versa. The comparison between the two figures shows the competition for the
same resource between Mining and Fishing. It is especially instructive to discover
this interactively. The construction of the interior point proceeds in the same way. In
the next section in the discussion on surfaces this construction is shown for higher
dimensional hypersurfaces.

11.5 Parallel Coordinates: Overview of the Fundamentals

This section is for readers interested in the foundational understanding of the
methodology. The overview covers recent results and future prospects. For deeper
excursions to k-cs readers are referred to the textbook Inselberg (2009).

11.5.1 Lines

An N-dimensional line ` can be described by the .N � 1/ linear equations:

` W

8
ˆ̂
ˆ̂
ˆ̂̂
<

ˆ̂̂
ˆ̂
ˆ̂
:

`1;2 W x2 D m2x1 C b2

`2;3 W x3 D m3x2 C b3
� � �

`i�1;i W xi D mixi�1 C bi

� � �
`N�1;N W xN D mNxN�1 C bN ;

(11.2)

each with a pair of adjacently indexed variables. In the xi�1xi -plane the relation
labeled `i�1;i ; N D 2; : : : ; N is a line, and by the line$ point duality, (11.1), it can
be represented by the point

Ǹ
i�1;i D . 1

.1 �mi/
C .i � 2/ ; bi

.1 �mi/
/ (11.3)

Here the inter-axes distance is 1 so that i � 2 is distance between the y (or NX1) and
NXi�1 axes. Actually any N � 1 independent equations like

`i;j W xi D mi;j xj C bi;j ; (11.4)

can equivalently specify the line `, for (11.4) is the projection of ` on the xixj 2-D
plane and N � 1 such independent projections completely describe `. There is a
beautiful and very important relationship illustrated in (left) Fig. 11.27.

For a line ` in 3-D the three points Ǹ12; Ǹ13; Ǹ23 are collinear; the line so
determined is denoted by NL. It is easy to see that a polygonal line on all the N � 1
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Fig. 11.27 Properties of multidimensional lines.
(Left)The 3 points Ǹi;j ; Ǹj;k ; Ǹi;k are collinear for i 6D j 6D k. (Right) A line interval in 10-D

points, given by (11.3) or their equivalent, represents a point on the line `. Two
points in RN determine a line `, so starting with the two polygonal lines the N � 1
intersections of their NXi�1; NXi portions are the Ǹi�1;i representing points for `. A
line interval in 10-D and several of its points is seen on the (right) Fig. 11.27. By
the way, the indexing of the points Ǹ, usually not shown to conserve display space,
is essential and must be accessible when needed.

11.5.2 Planes & Hyperplanes

While a line can be determined from its projections, a plane even in 3-D can
not. A new approach is called for Eickemeyer (1992). Rather than discerning a p-
dimensional object from its points, it is described in terms of its (p-1)-dimensional
subsets constructed from the points. Let’s see how this works. In Fig. 11.28 (left)
polygonal lines representing a set of coplanar points in 3-D are seen. From this
picture even the most persistent pattern-seeker can not detect any clues hinting at a
relation among the three variables much less a linear one. The plane has dimension
p D 1 so we look at lines (having dimension p � 1 D 1) on the plane constructed
so that each pair of polygonal lines the lines NL of the 3 point collinearity shown
in Fig. 11.27 (left) are obtained. The result, shown on the right, is stunning. All the
NL lines intersect at a point which turns out to be characteristic of coplanarity but
not enough to specify the plane. Translating the first axis NX1 to the position NX10 ,
one unit to the right of the NX3 axis and repeating the construction, based on the
axes triple NX2; NX3; NX10 , yields a second point shown in Fig. 11.29(left). For a plane
described by:

� W c1x1 C c2x2 C c3x3 D c0 ; (11.5)

the Cartesian coordinates of the two points, in the order they are constructed, are
respectively
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Fig. 11.28 Coplanarity>.
(Left)The polygonal lines on the first 3 axes represent a set of coplanar points in 3-D.(Right)
Coplanarity! Forming lines on the plane, with the 3-point-collinearity property Fig. 11.27(left),
the resulting lines intersect at poit

N�123 D
�
c2 C 2c3

S
;

c0

S

�
; N�1023 D

�
3c1 C c2 C 2c3

S
;
c0

S

�
; (11.6)

for S D c1 C c2 C c3. Three subscripts correspond to the 3 variables appearing in
the plane’s equation and the axes triple used for their construction, and distinguish
them from the points with two subscripts representing lines. The 2nd and 3rd axes
can also be consecutively translated, as indicated in Fig. 11.28(left), repeating the
construction to generate two more points denoted by N�10203; N�102030 . These points
can also be found otherwise in an easier way. The gist of all this is shown in
Fig. 11.29(right). The distance between successive points is 3ci . The equation of
the plane � can actually be read from the picture!

In general, a hyperlane in N-dimensions is represented uniquely by .N � 1/
points each with N indices. There is an algorithm which constructs these points
recursively, raising the dimensionality by one at each step, as is done here starting
from points (0-dimensional) and constructing lines (1-dimensional). By the way, all
the nice higher dimensional projective dualities like point$ hyperplane, rotation
$ translation etc hold. Further, a multidimensional object, represented in k-cs,
can still be recognized after it has been acted on by projective transformation (i.e.
translation, rotation, scaling and perspective). The recursive construction and its
properties are at the heart of the k-cs visualization.
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Fig. 11.29 Plane representation.
(Left)The two points where the lines intersect uniquely determine a plane � in 3-D. (Right) From
four points, constructed similarty by consecutive axes translation, the coefficients of � W c1x1 C
c2x2 C c3x3 D c0 can be read from the picture!

Challenge: Visualizing Families of Proximate Planes

Returning to 3-D, it turns out that for points as in Fig. 11.28 which are “nearly”
coplanar (i.e. have small errors) the construction produces a pattern very similar to
that in Fig. 11.29(left). A little experiment is in order. Let us consider a family of
proximate (i.e. close) planes generated by

˘ D f� W c1x1 C c2x2 C c3x3 D c0; ci 2 Œc�i ; cCi �; i D 0; 1; 2; 3g ; (11.7)

randomly chosing values of the ci within the allowed intervals to determine several
planes � 2 ˘ , keeping at first c0 D 1, and plotting the two points N�123; N�1023 as
shown in Fig. 11.30 (left). Not only is closeness apparent but more significantly the
distribution of the points is not chaotic. The outline of two hexagonal patterns can
be discerned. The family of “close” planes is visualizable but also the variations in
several directions. These polygons can be easily constructed making it possible to
see, estimate and compare errors or proximity interactively.

It can be proved that in 3-D the set of pairs of points representing the family of
proximate planes form two convex hexagons when c0 D 1with an example is shown
in Fig. 11.30 (right), and are contained in octagons each with two vertical edges
for varying c0. In general, a family of proximate hypeplanes in N-D is represented
by N � 1 convex 2N -agons when c0 D 1 or 2.N C 1/-agons for c0 varying.
These polygonal regions can be constructed with O.N/ computational complexity.
Choosing a point in one of the polygonal regions, an algorithm matches the possible
remaining N � 2 points, one each from the remaining convex polygons, which
represent and identify hyperplanes in the family by N � 1 points.
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Fig. 11.30 A family of close planes.
(Left) Pair of point clusters representing close planes. (Right) The hexagonal regions (interior) are
the regions containing the points N�123 (left) and N�1023 for the family of planes with c0 D 1 and
c1 2 Œ1=3; 1:5�; c2 2 Œ1=3; 2:5�; c3 2 Œ1=3; 1�. For c0 varying, here c0 2 Œ0:85; 1:15�, the regions
(exterior) are octagonal with two vertical edges

We pose the thesis that visualization is not about seeing lots of things but
rather discovering relations among them. While the display of randomly sampled
points from a family of proximate hyperplanes is utterly chaotic (the mess in
Fig. 11.28 (right) from points in just one plane), their proximate coplanarity
relation corresponds to a clear and compact pattern. With k-cs we can focus and
concentrate the relational information into patterns rather than wallow in the details,
ergo the remark “without loss of information” when referring to k-cs. This is the
methodology’s real strength and where he future lies. Here then is a visualization
challenge: how else can proximate coplanarity be detected and seen?

11.5.3 Nonlinear Multivariate Relations: Hypersurfaces

A relation among 2 real variables is represented geometrically by a unique region in
2-D. Analogously, a relation between N variables corresponds to a hypersurface in
N-D, hence the need to say something about the representation of hypersurfaces in
k-cs. A smooth surface in 3-D (and also N-D) can be described as the envelope of all
its tangent planes. This is the basis for the representation shown in Fig. 11.31. Every
point of the surface is mapped into the two points representing the tangent plane at
the point. This generates 2 planar regions and forN -D there areN �1 such regions.
These regions are linked, just as the polygons above, to provide the proper N � 1
points representing each tangent hyperplane and from which the hypersurface can be
reconstructed. Classes of surfaces can be immediately distinguished from their k-cs
display. For developable surfaces the regions consists of boundary curves only with
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Fig. 11.31 Surface
representation.
A smooth surface  is
represented by two planar
regions N123; N2310 consisting
of pairs of points representing
its tangent planes

no interior points, regions for ruled surfaces have grids consisting of straight lines,
quadric surfaces have regions with conic boundaries; these are some examples.

There is a simpler but inexact surface representation which is useful when used
judiciously as in the previous example Fig. 11.26. The polygonal lines representing
points on the boundary are plotted and their envelope “represents” the surface; the
“ ” are a reminder that this is not a unique representation. In Fig. 11.32 (left) are
the upper and lower envelopes for a sphere in 5-D consisting of 4 overlapping
hyperbolae which must be distinguished from those in Fig. 11.31 (right), which is
exact and, interestingly enough are also hyperbolae, the curves determined by points
representing the sphere’s tangent planes. Retaining the exact surface description
(i.e. its equation) internally, interior points can be constructed and displayed as
shown for the 5-D sphere in Fig. 11.32 (left). On the right the same construction
is shown but for a more complex 20-dimensional convex hypersurface (“model”).
The intermediate curves (upper and lower) also provide valuable information
and previews of coming attractions. They indicate a neighborhood of the point
(represented by the polygonal line) and provide a feel for the local curvature. Note
the narrow strips around X13;X14;X15 (as compared to the surrounding ones),
indicating that at this state these are the critical variables where the point is bumping
the boundary. A theorem guarantees that a polygonal line which is in-between all
the intermediate curves/envelopes represents an interior point of the hypersurface
and all interior points can be found in this way. If the polygonal line is tangent at
anyone of the intermediate curves then it represents a boundary point, while if it
crosses anyone of the intermediate curves it represents an exterior point. The later
enables us to see, in an application, the first variable for which the construction failed
and what is needed to make corrections. By varying the choice of value over the
available range of the variable interactively, sensitive regions (where small changes
produce large changes downstream) and other properties of the model can be easily
discovered. Once the construction of a point is completed it is possible to vary the
values of each variable and see how this effects the remaining variables. So one can
do trade-off analysis in this way and provide a powerful tool for, Decision Support,
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Fig. 11.32 Interior point construction.
The interior point (polygonal line) construction on a sphere in 5-D (left) and for a convex
hypersurface in 20-D (right)

Process Control and other applications. As new data becomes available the model
can be updated so that decisions are made based on the most recent information.
This algorithm is used in the earlier example, shown in Fig. 11.26, to interact with a
model of a country’s economy.

11.6 Future

We are drowing in data and starving for knowledge
Searching for patterns in the k-cs data display is what skillful exploration

is about. If there are multivariate relations in the display the patterns are there
though they may be obscured by overlaps and that is not all. Our vision is not
multidimensional. We do not perceive a room which is 3-dimensional from its points
which are 0-dimensional, but from the 2-dimensional planes which enclose and
define it. The recursive construction algorithm does exactly that for the visualization
of p-dimensional objects from their p � 1-dimensional subsets; one dimension
less. We advocate including this algorithm within our armory of interactive analysis
tools – recursive interactivity! Revisit Figs. 11.27 and 11.28 to note that relational
information resides at the crossings. Whatever p-dimensional relations exist are
revealed by the pattern from the representation of the tangent hypeplanes of the
corresponding hypersurface. The polygonal lines are completely discarded for
the relation is concentrated in the pattern: linear relations into points, proximate
coplanarity into convex polygons, quadrics into conics and more.
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What can be achieved in the representation of complex relations by patterns is
illustrated with some examples (a comprehensive coverage of surface representation
is in Hung and Inselberg 2007) in Figs. 11.33–11.36, bumps, cusps, folds, non-
orientability, hypersphere, convex and non-convex surfaces. Many of these results
were first discovered visually and then lead to mathematical proofs; in the true
spirit of Geometry. These are state of the art results showing what is achievable
and how easily it generalizes to N -D. Can one imagine a higher dimensional
non-orientable surface like the Möbius strip, non-convexities (bumps, crevices
etc) which unlike projections are not hidden in the representation. New vistas
for visualization emerge, transforming (rotating, translating) objects in N -space
seeing the result in the representations, exploring for invariants which characterize
surface properties (i.e. convexity, ruled etc), developing intelligent agents to aid the
exploration, classifying objects according to application-specific taxonomies and
more. The challenge is speeding up the algorithms to reach real-time performance
breaching the gridlock of multidimensional visualization. The secrets of massive

Fig. 11.33 A developable surface is represented by 2 curves. The line of cusps (left) is represented
by the 2 inflection points (one on each curve) (right). The crossing curves represent the plane
tangent to both leaves of the surface – a bitangent. The green and blue curves represent the N�00 and
N�10 points respectively. The corresponding hypersurface in N -D is represented by .N � 1/ such
curves

Fig. 11.34 Möbius strip and its representation. The two cusps on the left show that it corresponds
to an “inflection-point in 3-D” the twist – see the duality in Fig. 11.33
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Fig. 11.35 Representation of a sphere centered at the origin (left) and after a translation along the
x1 axis (right) causing the two hyperbolas to rotate in opposite directions. This is an instance of
the translation$ rotation. In N �D a sphere is represented byN �1 hyperbolae – see Fig. 11.32

Fig. 11.36 Convex surfaces are represented by hyperbolic-like regions (left).
Non-convexities: “bump” (center), three “dimples” represented by swirls (right)

datasets can then be unveiled and the multidimensional relations seen as patterns –
their multidimensional graphs.

Acknowledgements I am grateful to David Adjiashvili who wrote the magnificent interactive
software diplaying the k-cs representation of surfaces seen in Fig. 11.33 through 11.36. Senior
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Chapter 12
Interactive and Dynamic Graphics

Jürgen Symanzik

12.1 Introduction

Interactive and dynamic statistical graphics enable data analysts in all fields to
carry out visual investigations leading to insights into relationships in complex
data. Interactive and dynamic statistical graphics involve methods for viewing data
in the form of point clouds or modeled surfaces. Higher-dimensional data can be
projected into one-, two- or three-dimensional planes in a set of multiple views or
as a continuous sequence of views which constitutes motion through the higher-
dimensional space containing the data.

Strictly, there is some difference between interactive graphics and dynamic
graphics. When speaking of interactive graphics only, we usually mean that a user
actively interacts with, i.e., manipulates, the visible graphics by input devices such
as keyboard, mouse, or others and makes changes based on the visible result. When
speaking of dynamic graphics only, we usually mean that the visible graphics
change on the computer screen without further user interaction. An example for
interactive graphics might be the selection of interval lengths and starting points
when trying to construct an optimal histogram while looking at previous histograms.
An example for dynamic graphics might be an indefinitely long grand tour with no
user interaction. Typically, interactive graphics and dynamic graphics are closely
related and we will not make any further distinction among the two here and just
speak of interactive and dynamic statistical graphics.

Two terms closely related to interactive and dynamic statistical graphics are
exploratory data analysis (EDA) and visual data mining (VDM).

EDA, as defined by Tukey (1977), “is detective work—numerical detective
work—or counting detective work—or graphical detective work.” Modern
techniques and software in EDA, based on interactive and dynamic statistical
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graphics, are a continuation of Tukey’s idea to use graphics to find structure,
general concepts, unexpected behavior, etc. in data sets by looking at the data. To
cite Tukey (1977) again, “today, exploratory and confirmatory can—and should—
proceed side by side.” Interactive and dynamic statistical graphics should not
replace common analytic and inferential statistical methods—they should rather
extend these classical methods of data analysis.

Data mining (DM) itself (Klösgen and Zytkow 2002; Witten and Frank 2000),
see also Chap. III.13, is a field whose scientific basis has only began to be explored
over the last few years. DM exists as a result of the convergence of several fields
including data bases, statistics, and artificial intelligence. Friedman (1998) discusses
the connection between DM and statistics in more details and Wegman (2000)
provides a definition of DM that links it with EDA and graphics: “Data mining is
exploratory data analysis with little or no human interaction using computationally
feasible techniques, i.e., the attempt to find interesting structure unknown a priori.”
Simultaneously with an increasing interest in DM there has been the evolution of
computer graphics, especially in the area of virtual reality (VR). Within the statistics
framework, the area of EDA has evolved into a more sophisticated area of interactive
and dynamic statistical graphics. Recently, DM has been combined with statistical
graphics, resulting in VDM (Böhlen et al. 2003; Cox et al. 1997; Inselberg 1998;
Macedo et al. 2000; Symanzik et al. 1999a). However, there exist several different
definitions of the term VDM. Soukop and Davidson (2002) dedicate less than one
page to “dynamic visualizations that allow user interaction” in their book on VDM.

In this chapter we will provide a general overview on existing methods and
software for interactive and dynamic graphics. We will also provide a snapshot of
current developments that may become a standard in the near future but may also be
quickly forgotten again. All sections are supported by an extensive list of references
that will allow every reader from novice to expert to become more familiar with
a particular concept of interactive and dynamic graphics. More specifically, in
Sect. 12.2, we will discuss early developments and software related to interactive
and dynamic graphics. In Sect. 12.3, we will discuss the main concepts and in
Sect. 12.4 some software products related to interactive and dynamic graphics.
Interactive 3D graphics will be discussed in Sect. 12.5 and applications of interactive
and dynamic graphics in geography, medicine, and environmental sciences will be
discussed in Sect. 12.6. We conclude this chapter with an outlook on possible future
developments in Sect. 12.7.

All graphical displays throughout this chapter are based on the “Places” data set
that was distributed to interested members of the American Statistical Association
(ASA) several years ago so that they could apply contemporary data analytic
methods to describe these data and then present results in a poster session at the
ASA annual conference. The data are taken from the Places Rated Almanac (Boyer
and Savageau 1981). The data are reproduced on disk by kind permission of the
publisher, and with the request that the copyright notice of Rand McNally, and the
names of the authors appear in any paper or presentation using these data. The data
consist of nine measures of livability for 329 cities in the U.S.: Climate and Terrain,
HousingCost, Health Care and Environment, Crime, Transportation, Education,
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The Arts, Recreation, and Economics. For all but two of the above criteria, the
higher the score, the better. For HousingCost and Crime, the lower the score
the better. The scores are computed using several statistics for each criterion (see
the Places Rated Almanac for details). Latitude and longitude have been added by
Paul Tukey. Population numbers have been added as well.

12.2 Early Developments and Software

There is a strong history of statistical graphics research on developing tools for
visualizing relationships between many variables. Much of this work is documented
in videos available from the ASA Statistical Graphics Section Video Library at
http://stat-graphics.org/movies/

Additional material on statistical graphics can also be found in journals such
as “Journal of Computational and Graphical Statistics”, “Computational Statistics”,
and “Computational Statistics & Data Analysis” and in “Computing Science and
Statistics”, the proceedings of the Interface conferences. The following paragraphs
only serve as a basic overview for readers unfamiliar with dynamic statistical
graphics but they are not intended as a full introduction into this topic.

A video clip of the successive stages in a multidimensional scaling algorithm
(Kruskal 1962) is one of the first examples how to apply dynamic statistical
graphics. A second example by Chang (1970) shows an interactive search for a
structured two-dimensional projection in five dimensions where three of the five
dimensions are noise. PRIM-9 (Picturing, Rotation, Isolation and Masking in up
to 9 dimensions), documented in Fisherkeller et al. (1974a) and Fisherkeller et al.
(1974b), is the landmark example of early dynamic statistical graphics. Projections
formed the fundamental part of the visualization system and were complemented
with isolation and masking. A good explanation of the importance of projection as
a tool for visualizing structure in high-dimensional data can be found in Furnas and
Buja (1994).

One major breakthrough in using projections for visualizing higher dimensions
was made by Asimov (1985) in his work on the grand tour. The grand tour, further
exploited in Buja and Asimov (1986a), in an abstract sense shows a viewer all
possible projections in a continuous stream (which could be considered to be
moving planes through p-dimensional space). Several possibilities for “showing
all possible projections” were explored in the original work, but the most successful
method to arise from it is based on interpolating between random planes. Another
common approach to displaying high-dimensional data can be found in Becker
and Cleveland (1988) where data is plotted in a scatterplot matrix, i.e., a matrix
of pairwise scatterplots. Users can do linked brushing among the plots, i.e., mark
points with different symbols and colors, while this information is also immediately
displayed in all related (linked) plots.

http://stat-graphics.org/movies/
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The historical development of interactive and dynamic statistical graphics is well
documented in a series of books and articles. Chambers et al. (1983) and du Toit
et al. (1986) can be placed somewhere inbetween Tukey’s original idea of EDA and
the beginning of modern dynamic and interactive statistical graphics. Wegman and
DePriest (1986) is a collection of papers presented at a workshop sponsored by the
Office of Naval Research (ONR), held in Luray, Virginia, from 24 through 27 May,
1983. About half of the papers are related to statistical image processing while the
other half is related to (interactive) statistical graphics. Cleveland and McGill (1988)
contains a collection of papers about dynamic graphics for statistics, originally
published between 1969 through 1988. This book is a very good reference to see
the progress in dynamic graphics concepts and software over two decades, starting
from the very early stages through the late 1980s. Buja and Tukey (1991) is based
on the proceedings of the Institute for Mathematics and its Applications (IMA)
1989 summer program on “Robustness, Diagnostics, Computing and Graphics in
Statistics”. An earlier “Handbook of Statistics, Volume 9, Computational Statistics”,
edited by Rao (1993), contains several then state-of-the-art overviews on interactive
and dynamic statistical graphics, most notably the chapters by Wegman and Carr
(1993) and Young et al. (1993). Nagel et al. (1996) dedicate two (out of six) chapters
of their book to dynamic graphics—one being an overview and one discussing
applications. Theus (1996) is fully dedicated to the theory and applications of
interactive statistical graphics. Wilhelm et al. (1996) contains reviews of software
for interactive statistical graphics.

Major statistical journals often dedicate special issues to interactive and dynamic
graphics, e.g., “Computational Statistics” (Volume 14, Issue 1, 1999) on “Interactive
Graphical Data Analysis” and “Computational Statistics & Data Analysis” (Volume
43, Number 4, 2003) on “Data Visualization”. A strong case for the use of statistical
graphics has been made by Andreas Buja (Symanzik 2008).

12.3 Concepts of Interactive and Dynamic Graphics

This section will provide some deeper insights into concepts of interactive and
dynamic graphics mentioned in the previous sections. Buja et al. (1996) contains a
taxonomy of interactive data visualization based on the notions of focusing, linking,
and arranging views of data. Unwin (1999) discusses some of the main concepts in
the context of interactive graphics software.

12.3.1 Scatterplots and Scatterplot Matrices

Perhaps the most basic concepts for statistical graphics are scatterplots (see
Figs. 12.1–12.3 and 12.4). In a simple scatterplot, we place different symbols
(sometimes also called glyphs) at x- and y-positions in a two-dimensional plot
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Fig. 12.1 Screenshot of the “Places” data in ArcView/XGobi. A map view of the 329 spatial
locations is displayed in ArcView at the top. The two XGobi windows at the bottom are showing
scatterplots of Crime (horizontal) vs. Education (vertical) [left] and Recreation (horizontal) vs.
Arts (vertical) [right]. Locations of high Crime have been brushed and identified, representing
some of the big cities in the U.S. Also, locations of high Education (above 3,500) have been
brushed, mostly representing locations in the northeastern U.S. All displays have been linked

area. These positions are determined by two of the variables. The type, size, and
color of the symbols may depend on additional variables. Usually, explanatory
information such as axes, labels, legends, and titles are added to a scatterplot.
Additional information such as a regression line or a smoothed curve can be added
as well.

If the data consist of more than two variables (e.g., somewhere between three
to ten), the data can be displayed by a scatterplot matrix (see Figs. 12.2 and
12.3) that shows all pairwise scatterplots of the variables. The essential property
of a scatterplot matrix is that any adjacent pair of plots have one of their axes
in common. When plotting the full array of all n � .n � 1/ pairwise scatterplots,
each plot in the upper triangle of plots has a matching plot in the lower triangle
of plots, with the exception that the axes in these pairs of plots have been flipped.
Therefore, sometimes only the upper or lower triangle of scatterplots is displayed;
thus gaining plotting speed and allowing each individual plot to be somewhat larger.
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Fig. 12.2 Screenshot of the “Places” data in GGobi. A scatterplot of Crime (horizontal) vs.
Education (vertical) is displayed at the top right, a scatterplot matrix of five of the variables is
displayed at the bottom right, and a density (1D) plot of Population is displayed at the bottom left.
The data has been brushed with respect to Population: one group for a Population less than 500,000,
one group for a Population between 500,000 and 1,000,000, and one group for a Population
above 1,000,000. The scatterplot of Crime and Education seems to reveal that higher Population
is associated with higher Crime and higher Education. The scatterplot matrix seems to reveal that
higher Population is also associated with higher Arts and higher HealthCare. All displays have
been linked.

Early examples of scatterplot matrices can be found in Chambers et al. (1983)
and Cleveland (1985) for example. In fact, Chambers et al. (1983) initially called
an array of pairwise scatterplots for three variables a draftsman’s display and for
four (or more) variables a generalized draftsman’s display. In their (generalized)
draftsman’s display, each point is plotted with the same symbol. When encoding
additional information through the use of different plotting symbols, Chambers
et al. (1983) speak of symbolic (generalized) draftsman’s displays. Today, we hardly
make any distinction of these different types of displays and just speak of scatterplot
matrices.

Murdoch (2002) and Unwin (2002) discuss features good scatterplots and related
interactive software should provide, e.g., meaningful axes and scales, features for
rescaling and reformatting, good handling of overlapping points and missing data,
panning and zooming, and querying of points. Carr et al. (1987) describes tech-
niques for scatterplot matrices particularly useful for large numbers of observations.
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Fig. 12.3 Screenshot of the “Places” data in CrystalVision. A parallel coordinate plot of all
variables is shown as the main plot. A scatterplot matrix of all variables with a scatterplot of Crime
(horizontal) vs. Education (vertical) is shown as a popup in the top right. The data has been brushed
according to high and low Population. According to the parallel coordinate plot, higher Population
is associated with higher Arts and HousingCost. The scatterplot of Crime and Education seems
to reveal that higher Population is also associated with higher Crime and higher Education.All
displays have been linked

12.3.2 Brushing and Linked Brushing/Linked Views

Brushing, as introduced in Becker and Cleveland (1988) and Becker et al. (1988b),
initially was considered as a collection of several dynamic graphical methods for
analyzing data displayed in a scatterplot matrix. The central idea behind brushing is
a brush, usually a rectangular area on the computer screen, that is moved by the data
analyst to different positions on the scatterplot or any other graphical display. Four
brushing operations were introduced in Becker and Cleveland (1988): highlight,
shadow highlight, delete, and label. The most commonly used brushing technique
is highlighting—often in the context of linked brushing, i.e., for linked views. All
points that are inside the brush in the currently selected display are highlighted, i.e.,
marked with a different symbol or color. Simultaneously, points that correspond to
those points are automatically highlighted with the same symbol/color in all linked
views.
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Fig. 12.4 Screenshot of the “Places” data in Mondrian. The variables Crime, Education, and
Population have been discretized for this figure. A mosaic plot of Crime (first vertical division,
grouped as below 1,000 [left] and above 1,000 [right]), Education (first horizontal division, grouped
as 2,700 to 3,500 [top], below 2,700 [middle], and above 3,500 [bottom]), and Population (second
vertical division, grouped as 500,000 to 1,000,000 [left], below 500,000 [middle], and above
1,000,000 [right]) is displayed at the top right. A histogram of Transportation is shown at the
bottom left, boxplots of HealthCare and Arts are shown at the bottom middle, and a scatterplot
of Climate (horizontal) vs. HousingCost (vertical) is shown at the bottom right. The mosaic plot
shows that Crime, Education, and Population are not independent. The different displays show how
average Transportation (that has been brushed in the histogram) is related to the other variables.
All displays have been linked

A very useful brushing technique is the transient paint mode. As the brush is
moved, the new points that come inside the brush are highlighted while points that
move outside the brush are no longer highlighted.

While brushing initially was only developed for scatterplot matrices, it quickly
has been adapted to other types of linked graphical displays. Linked brushing among
different displays is one of the most useful techniques used within dynamic and
statistical graphics. Linked brushing can be applied to graphical representation of
continuous data, summary data such as histograms (Stuetzle 1988), or even displays
of categorical data such as mosaic plots (Hofmann 2000, 2003). All dynamic
statistical graphics software packages support linked brushing among different types
of graphical displays these days.
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When dealing with massive data sets, it is often beneficial to focus on particular
subgroups of the data and also be able to quickly return to a previous stage of
the analysis. Selection sequences (Hofmann and Theus 1998; Theus et al. 1998)
are an extension of the conventional linked-highlighting paradigm as they store the
whole hierarchical path of a selection and allow an easy editing, redefinition, and
interrogation of each selection in the path of the analysis. In a selection sequence,
we can easily jump from one branch of the hierarchic selection tree to another.

12.3.3 Focusing, Zooming, Panning, Slicing, Rescaling,
and Reformatting

Focusing techniques, as introduced in Buja et al. (1991), are based on the idea that it
often might be easier for a human analyst to understand several individual displays,
each focused on a particular aspect of the underlying data, rather than looking at the
full data set. Focusing techniques include subset selection techniques, e.g., panning
and zooming or slicing, and dimensionality reduction techniques, e.g., projection.
Methods for focusing can be automatic, interactive, or a combination of both. While
focusing shows only part of the data at a time, it is important to display multiple
linked views of the data, perhaps each focusing on a different aspect of the data, to
maintain the full picture of the data.

Zooming is a technique that can be used for inspecting details of the data when
overplotting arises. Zooming can be done via some kind of a magnifying glass or
by manually selecting subsections of the visible axes, e.g., via sliders. The main
idea behind zooming is that when several points overplot in the full display, it
may indeed turn out that these points are exactly the same when zooming into the
neighborhood of these points—or, what most frequently happens, that these points
have a particular structure and are not exactly the same.

Panning is closely related to zooming. An analyst should know which subset of
the data is currently visible. Therefore, an information plot should reveal the current
location on which subregion we have zoomed.

Slicing, as described in Furnas (1988) and Furnas and Buja (1994), is a technique
that takes sections (or slices) of a high-dimensional data set. While slicing (and
projections) are useful means for an exploratory data analysis, these techniques also
have their limitations. However, these limitations may be overcome by combining
slicing and projections in so-called prosections (Furnas and Buja 1994). An exten-
sion of individual prosection views is the prosection matrix (Tweedie and Spence
1998), some kind of a density plot summarizing multi-dimensional volumetric
information. The prosection matrix is a useful representation for engineering
design, allowing an analyst to interactively find a design that leads to a maximal
manufacturing yield.

Rescaling is a technique to quickly change the scale of the displayed variables,
e.g., by taking the log, square root, standardize, or by mapping to a 0–1 scale. When
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looking at multiple variables, it might also be beneficial to have a common scale
(from the minimum across all variables to the maximum across all variables). By
interactively rescaling variables, an analyst may identify useful transformations for
a follow-up modeling step of the data.

Reformatting includes features as simple as swapping x and y axes in a scatterplot
or changing the order of coordinate axes in a parallel coordinate plot.

Unwin (2002) provides more details on several of the techniques described
above.

12.3.4 Rotations and Projections

Rotation, as introduced in Fisherkeller et al. (1974b) and later refined in Becker
et al. (1988b), is a very powerful tool for understanding relationships among three
or more variables. The familiar planar scatterplot is enhanced by rotation to give the
illusion of a third dimension. We typically rotate plots in search of some interesting
views that do not align with the plot axes and therefore cannot be seen in a scatterplot
matrix. Usually, a three-dimensional point cloud representing three of the variables
is shown rotating on a computer screen. The rotation shows us different views of
the points and it produces a 3D effect while moving, allowing us to see depth. Basic
rotation controls with a mouse have been introduced in Becker et al. (1988b).

Mathematically speaking, each rotation within a 3D space onto a 2D computer
screen is based on a projection. Obviously, it is mathematically possible to project
high-dimensional data onto low-dimensional subspaces and gain insights into the
underlying data through dynamic visualizations of such projections. One particular
example of a continuous sequence of projections, the grand tour, will be discussed
in the next section. Cook and Buja (1997) discuss methods how to manually control
high-dimensional data projections. Cook (1997) provides a variety of training data
sets that help new users get a visual feeling of the underlying high-dimensional data
set when seen as a projection into low-dimensional space.

12.3.5 Grand Tour

Often, simple plot rotation, as discussed in the previous section, does not suffice to
see all interesting views of the data. To produce a plethora of possible interesting
views, the grand tour has been introduced in Asimov (1985) and Buja and Asimov
(1986b). In Asimov (1985), the grand tour has been described as “a method for
viewing multivariate statistical data via orthogonal projections onto a sequence of
two-dimensional subspaces. The sequence of subspaces is chosen so that it is dense
in the set of all two-dimensional subspaces.” Some of the features the grand tour
can be used for are examining the overall structure and finding clusters or outliers
in high-dimensional data sets.
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In the context of the grand tour, an alternating sequence of brushing, looking
at additional projections from the grand tour, brushing, and so on, is referred to as
the brush-tour strategy in the remainder of this chapter. We can only be sure that
a cluster visible in one projection of the grand tour really is a cluster if its points
remain close to each other in a series of projections and these points move similarly
when the grand tour is activated. If points move apart, we probably found several
subclusters instead of one larger cluster.

Wegman (1992) discusses a form of the grand tour for general d -dimensional
space. The algorithms for computing a grand tour are relatively computation-
ally intensive. Wegman and Shen (1993) discuss an approximate one- and two-
dimensional grand tour algorithm that was much more computationally efficient
than the Asimov winding algorithm. That algorithm was motivated in part by a
discussion of the Andrews (multidimensional data) plot, discussed in Sect. 12.3.9,
which can also be regarded as a highly restricted pseudo tour.

12.3.6 Parallel Coordinate Plots

Parallel coordinate plots (Inselberg 1985, 2009; Wegman 1990) (see Fig. 12.3) are a
geometric device for displaying points in high-dimensional spaces, in particular,
for dimensions greater than three. The idea is to sacrifice orthogonal axes by
drawing the axes parallel to each other resulting in a planar diagram where each
d -dimensional point .x1; : : : ; xd / is uniquely represented by a continuous line. The
parallel coordinate representation enjoys some elegant duality properties with the
usual Cartesian coordinates and allows interpretations of statistical data in a manner
quite analogous to two-dimensional Cartesian scatterplots. This duality of points
in Cartesian plots and lines in parallel coordinates extends to conic sections. This
means that an ellipse in Cartesian coordinates maps into a hyperbola in parallel
coordinates. Similarly, rotations in Cartesian coordinates become translations in
parallel coordinates.

The individual parallel coordinate axes represent one-dimensional projections
of the data. We can isolate clusters by looking for separation between data points
on any axis or between any pair of axes. Because of the connectedness of the
multidimensional parallel coordinate diagram, it is usually easy to see whether or
not this clustering propagates through other dimensions.

The use of parallel coordinate plots for a d -dimensional grand tour sequence,
sometimes called a parallel coordinate grand tour, has been described in Wegman
(1992) and Wegman and Carr (1993). By using such a parallel coordinate grand
tour, an analyst can find orientations where one or more clusters are evident. The
general strategy for detecting clusters is the following: We begin with a static plot
of the data in parallel coordinates. If there are any gaps along a horizontal axis
(which incidentally does not need to coincide with the coordinate axes), then we
color the individual clusters with distinct colors. Once all clusters are identified
in the original coordinate system, we run the grand tour until an orientation of
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the axes is found in which another gap in one of the horizontal axes is found.
Again we color the individual subclusters with distinct colors. This procedure is
repeated until no further subclusters can be identified. This is another example of
the brush–tour strategy referred to in Sect. 12.3.5. Indeed, when to stop is a matter
of judgement, since the procedure can be repeated until practically every data point
can be individually colored. The crucial issue, which really depends on the dynamic
graphics, is to see that clusters identified in this manner track coherently with the
grand tour animation. That is, data points of the same color stay together as the
grand tour rotation proceeds. If they do not, then there are likely to be substructures
that can be identified through further grand tour exploration.

Slopes of parallel coordinate line segments can also be used to distinguish
clusters. That is, if a group of line segments slopes, say, at 45ı to the horizontal and
another group slopes at, say, at 135ı to the horizontal, then even though the lines
fully overlap in both adjacent parallel coordinate axes and there is no horizontal
gap, these sets of lines represent two distinct clusters of points. Fortunately, when
such indication of clustering exists, the grand tour will also find an orientation of
axes in which there is a horizontal gap. Thus the general strategy is to alternate
color brushing of newly discovered clusters with grand tour rotations until no further
clusters can be easily identified.

In some software packages, the parallel axes in a parallel coordinate plot are
drawn as horizontal lines (e.g., in ExplorN) while in other software packages they
are drawn as vertical lines (e.g., in XGobi). While it may be argued that this makes
no difference from a mathematical point of view, the wider aspect ratio in the
horizontal mode coupled with a more usual sense of plotting data along an abscissa
rather than along the ordinate tends to allow for an easier human interpretation.
Detailed interpretations are given in Wegman (1990).

12.3.7 Projection Pursuit and Projection Pursuit Guided Tours

While the grand tour, as discussed in Sect. 12.3.5, is a dynamic tool, projection
pursuit (Friedman and Tukey 1974; Huber 1985; Kruskal 1969), see also Chap. III.6,
is a static tool. Projection pursuit results in a series of static plots of projections
that are classified as “interesting” with respect to a particular projection pursuit
index. Many projection pursuit indexes, e.g., the ones discussed in Jones and
Sibson (1987), Friedman (1987), Hall (1989), Morton (1989), Morton (1992), Cook
et al. (1993), and Posse (1995), are based on the idea to search for the most non-
normal projections. Usually, each projection pursuit index, a function of all possible
projections of the data, results in many hills and valleys. Friedman (1987) suggests
a projection pursuit algorithm that initially searches for relatively high values of the
function and then starts derivative-based searches to find the global maximum.

The combination of grand tour and projection pursuit, called projection pursuit
guided tour (Cook et al. 1995), helps to direct the grand tour towards “interesting”
projections. This combination of the two methods into an interactive and dynamic



12 Interactive and Dynamic Graphics 347

framework not only shows the “interesting” projections but it maintains the motion
so the user has a feeling how successive “interesting” projections have been
obtained.

12.3.8 Pixel or Image Grand Tours

The idea of the pixel or image grand tour (IGT) evolved from an initial application
of one-dimensional tours to image data. Multiple registered images can be regarded
as a multidimensional image in which each pixel location has a vector attached to
it. For example, ordinary red, green, and blue (RGB) color images are vector-valued
images. The basic idea of the image tour is to apply the same one-dimensional
grand tour to each vector for all pixel locations in an image. This combines the
vectors into a scalar function of time which can be rendered as a time-varying
gray-scale image. The Wegman and Shen (1993) algorithm generalizes easily
to two dimensions, so that an alternate approach to the IGT is to project the
multidimensional vector into two dimensions and render the image as a false
color image with two complementary colors such as red and cyan. It should be
noted that red and cyan are complementary colors in the RGB color model used
for most computer monitors whereas red and green are complementary colors in
the conventional color model, introduced by the Commission Internationale de l’
Éclairage (CIE) in 1931. A detailed comparison of these two and other color models
can be found in Foley et al. (1990), Chap. 13. The initial discussion of the IGT was
given by Wegman et al. (1998). Additional examples of the IGT can be found in
Symanzik et al. (2002b).

Currently, the IGT software, written in C++ by Qiang Luo, is available for Silicon
Graphics, Inc., (SGI) workstations. To obtain a fast rendering rate of large images,
the software intensively uses SGI hardware features such as the ˛-channel hardware.
There exists also a MATLAB version of the IGT written by Wendy Martinez. Both
versions of the IGT software are not accessible through a Web site but can be
obtained from the corresponding software developers.

12.3.9 Andrews Plots

The Andrews (multidimensional data) plot, as introduced in Andrews (1972) is
based on a series of Fourier interpolations of the coordinates of multi-dimensional
data points. Points that are close in some metric will tend to have similar Fourier
interpolations and therefore will tend to cluster in the Andrews plot. Thus, the
Andrews plot is an informative graphical tool most useful to detect clustering.

Ideas underlying the Andrews plot and the grand tour are quite similar. However,
in contrast to the grand tour, the Andrews plot is a static plot while the grand
tour is dynamic. Although dynamic renditions of the Andrews plot exist, and
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these sometimes also are (incorrectly) referred to as one-dimensional grand tour
(Crawford and Fall 1990), the Andrews plot is not a grand tour since it cannot
sweep out all possible directions as pointed out in Wegman and Shen (1993). Three-
dimensional generalizations of the Andrews plot and other pseudo grand tours have
been introduced in Wegman and Shen (1993) as well.

12.3.10 Density Plots, Binning, and Brushing with Hue
and Saturation

Carr et al. (1987) present techniques for visualizing data in scatterplots and
scatterplot matrices when the data consists of a large number of observations, i.e.,
when overplotting of points frequently occurs using standard techniques. A key idea
to address in the visualization of a large number of observations is based on the
estimation and representation of densities. For this purpose, the data is often binned
into an n � n matrix for two-dimensional representation (or an n � n � n matrix
for three-dimensional representation). Possibilities to visualize the number of data
points in each bin can be based on gray-scale (or color) density representations or
by symbol area such as using differently sized hexagon symbols, where the area of
the plot symbol is proportional to the count in each bin. Carr (1991) further extends
these ideas and presents additional low-dimensional displays for data that consists
of a large number of observations. Scott (1992) provides a general overview on
techniques for density estimation, including averaged shifted histograms (ASH) and
kernel density estimators, including possible visualization techniques via contour
surfaces, (transparent) ˛-level contours, and contour shells. Further details on
multivariate density estimation and visualization can be found in Chap. III.4.

Wegman and Luo (1997a) use hue and saturation for plotting and brushing.
For each individual point, the hue is almost fully desaturated with black. When
points are overplotted, the hue components are added. The saturation level should be
interactively adjustable by the analyst. If many points overplot, the pixel will be fully
saturated. If fewer points overplot, the pixel will be shown in a less saturated color.
Often, computer hardware devices such as the ˛-channel allow the blending of pixel
intensities with no speed penalties. When using saturation for parallel coordinate
plots and the level of saturation corresponds with the degree of overplotting, this
creates a kind of parallel coordinate density plot (Wegman and Luo 1997a,b).

12.3.11 Interactive and Dynamic Graphics for Categorical Data

Although categorical data are quite common in the real world, little research has
been done for their analysis and visualization when compared to quantitative data.
However, there exist useful interactive and dynamic graphics for categorical data
(Ostermann and Nagel 1993; Theus and Wilhelm 1998). For example, brushing and
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linking of categorical data represented via bar charts and pie charts can be as useful
as for quantitative data (Hummel 1996). Modified bar charts where the same height
is used for each category and the width is varied according to the number of counts
are called spine plots (Hummel 1996). When interactively highlighting a category
of interest, spine plots allow the analyst to visually compare the proportions in the
different subcategories by looking at the heights of the highlighted areas. Examples
of interactive graphics for categorical data such as spine plots and interactive mosaic
plots (see Fig. 12.4) can be found in Hofmann (2000, 2003). Valero-Mora et al.
(2003) discuss spreadplots (and their implementation in ViSta), a method for laying
out and simultaneously controlling graphics for categorical data.

Blasius and Greenacre (1998) present a collection of papers dealing with the
visualization of categorical data. Main topics include graphics for visualization,
correspondence analysis, multidimensional scaling and biplots, and visualization
and modeling. Several of these approaches benefit from interactive and dynamic
graphics.

12.4 Graphical Software

In this section, we concentrate on three main streams of software for interactive
and dynamic statistical graphics: Software developed by researchers affiliated with
the University of Augsburg, in particular REGARD, MANET, and Mondrian;
software developed by researchers affiliated with George Mason University (GMU),
in particular ExplorN and CrystalVision; and software developed by researchers
affiliated with Bell Labs, AT&T, and Iowa State University (ISU), in particular
XGobi and GGobi. Wilhelm et al. (1996) contains an in depth review of software for
interactive statistical graphics. Wilhelm et al. (1999) is one of the few publications
where the different interactive graphical concepts provided by these three main
streams (represented by MANET, ExplorN, and XGobi, respectively) are applied to
the same data set and thus allow a direct comparison of their features and capabilities
in visual clustering and classification.

12.4.1 REGARD, MANET, and Mondrian

In this section we present a series of software developments that was initiated in
the late 1980’s by John Haslett and Antony Unwin at Trinity College, Dublin,
and later was continued by Antony Unwin and his collaborators at the Institut für
Mathematik, University of Augsburg. Other main collaborators that contributed to
the development of these software tools that should be mentioned here are Heike
Hofmann, Martin Theus, Adalbert Wilhelm, and Graham Wills.

Some of the early developments are Diamond Fast (Unwin and Wills 1988) and
Spider (Craig et al. 1989). Diamond Fast is a software package for the exploration
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of multiple time series with interactive graphics. Spider is a software package for
the exploration of spatially referenced data. One of its main features are moving
statistics, an extension of brushing for spatial data (Craig et al. 1989). Spider also
supports histograms, density estimates, scatterplot matrices, and linked brushing. It
runs on Macintosh computers only.

REGARD (Unwin 1994; Unwin et al. 1990) is a software package that also
provides high interaction graphics tools for spatial data. REGARD stands for
“Radical Effective Graphical Analysis of Regional Data” and runs on Macintosh
computers only. REGARD supports four types of layers of spatial data, i.e., points,
regions, lines, and pictures. The central display in REGARD is the map window
that is linked to statistical displays such as boxplots, scatterplots, and rotating plots.
A map may be loaded as one picture in a picture layer or as several pictures in
several layers, thus allowing to turn on or off different aspects of a map (such as
state boundaries or a road network). Additional interactive features are interrogation,
highlighting, resizing, and rescaling. Advanced features include zooming into
submaps, animation across ordered variables, cross-layer linking, network analysis
tools, and interactive query tools across all graphical displays.

MANET (Unwin et al. 1996) is a statistical graphics research program for EDA
and written in C++. MANET stands for “Missings Are Now Equally Treated” and
runs on Macintosh computers only. It is freely available from the following Web
site: http://stats.math.uni-augsburg.de/Manet/.

MANET offers all standard one- and two-dimensional graphics for continuous
data as well as for discrete data: dotplots, scatterplots, histograms, boxplots, bar
charts. Some special graphics for discrete and spatial data are integrated: spine plots,
mosaic plots and polygon plots. MANET grew out of a project to keep track of miss-
ing values in statistical graphics. In MANET all displays are fully linked and instan-
taneously updated. Displays are kept as simple as possible to not distract the user.

The standard use of linked views in MANET is to highlight clusters that are
apparent in one dimension and to see these one-dimensional clusters in the light
of other variables. By systematically subsetting the sample points, we can also
detect two- and higher-dimensional clusters. Once a cluster has been detected, a
classification rule can be set up by taking the boundary values of the cluster. In
MANET those values can easily be obtained by interrogating the plot symbols.

One-dimensional views show the one-dimensional clusters directly. Two-
dimensional clusters become visible by highlighting a subset in one variable and
conditioning another plot on this subset. For three- and higher-dimensional clusters,
we have to combine various subsets in different plots into one conditioning set and
then we have to look at the remaining plots to check for clusters. The generation
of such combined selections is not only possible in MANET but it is also very
efficiently implemented through selection sequences.

In MANET, both dotplots and boxplots are drawn in a non-standard way. In
dotplots the brightness of a point shows the frequency of its occurrence. This
method, called tonal highlighting, is used to visualize overplotting of points. A
bright color represents many points while a dark color represents just a few points.

http://stats.math.uni-augsburg.de/Manet/
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There is no tonal highlighting for selected points in MANET. The layout of boxplots
is changed so that a standard boxplot can be superimposed for selected points. The
inner fifty percent box is drawn as a dark grey box. The outer regions, usually
represented as whiskers, are drawn as light grey boxes.

A recent new development, Mondrian (Theus 2002, 2003; Theus and Urbanek
2009), is a data visualization system written in JAVA and therefore runs on any
hardware platform. Mondrian is freely available from the following Web site: http://
www.rosuda.org/Mondrian/.

The main emphasis of Mondrian is on visualization techniques for categorical
and geographical data. All plots in Mondrian (see Fig. 12.4) are fully linked and
offer various interrogations. Any case selected in one plot in Mondrian is highlighted
in all other linked plots. Currently, implemented plots comprise mosaic plots,
scatterplots, maps, bar charts, boxplots, histograms, and parallel coordinate plots.
Mosaic plots in Mondrian are fully interactive. This includes not only linking,
highlighting and interrogations, but also an interactive graphical modeling technique
for loglinear models.

12.4.2 HyperVision, ExplorN, and CrystalVision

In this section we present a series of software developments that was initiated
in the late 1980s by Daniel B. Carr (initially while at Battelle Pacific Northwest
Laboratories) and Edward J. Wegman at GMU. Other main collaborators that
contributed to the development of these software tools that should be mentioned
here are Qiang Luo and Wesley L. Nicholson.

EXPLOR4 (Carr and Nicholson 1988) is a research tool, originally implemented
on a VAX 11/780 and written in FORTRAN. Its main features are rotation, masking,
scatterplots and scatterplot matrix, ray glyph plots, and stereo views.

HyperVision, presented in Bolorforoush and Wegman (1988), is a software
product that has been implemented in PASCAL on an IBM RT under the AIX
operating system as well as for MS-DOS machines. The latter implementation
has a mouse-driven painting capability and can do real-time rotations of 3D
scatterplots. Other displays are parallel coordinate plots, parallel coordinate density
plots, relative slope plots, and color histograms. The main interactive features in
HyperVision in addition to linked brushing are highlighting, zooming, and nonlinear
rescaling of each axis.

ExplorN (Carr et al. 1997) is a more advanced software package than HyperVi-
sion and EXPLOR4, but with similar basic features. It runs on SGI workstations
only, using either the GL or the OpenGL tools.

ExplorN supports scatterplot matrices, parallel coordinate plots, icon-enhanced
three-dimensional stereoscopic plots, d -dimensional grand tours and partial grand
tours (i.e., tours based on a subset of the variables with the remaining variables being
held fixed), and saturation brushing all in a high interaction graphics package.

http://www.rosuda.org/Mondrian/
http://www.rosuda.org/Mondrian/
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The ExplorN software is intended to demonstrate principles rather than to be an
operational tool so that some refinements normally found in operational software
are not there. These include history tracking, easy point identification, identification
of mixture weights in the grand tour, relabeling of axes during and after a grand tour
as well as simultaneous multiple window views.

Although ExplorN also supports conventional scatterplots and scatterplot matri-
ces, one of its outstanding features are parallel coordinate displays and partial
grand tours. Since it is easy to see pairwise relationships for adjacent variables in
parallel coordinate plots, but less easy for nonadjacent variables, a complete parallel
coordinate investigation would require running through all possible permutations.
Instead of this, we recommend using the d -dimensional parallel coordinate grand
tour that is implemented in ExplorN. An important interactive procedure for finding
clusters using parallel coordinate plots is via the brush–tour.

CrystalVision is a recently developed successor of ExplorN, freely accessible
at http://crystalvision.galaxy.gmu.edu/. Its main advantage over the older package
is that it is available for PCs. Similar to ExplorN, CrystalVision’s (see Fig. 12.3)
main focus is on parallel coordinate plots, scatterplots, and grand tour animations.
Examples of its use, e.g., its EDA techniques applied to scanner data provided by
the U.S. Bureau of Labor Statistics (BLS), can be found in Wegman and Dorfman
(2003).

12.4.3 Data Viewer, XGobi, and GGobi

In this section we present a series of software developments that was initiated in the
mid 1980s by Andreas Buja, Deborah F. Swayne, and Dianne Cook at the University
of Washington, Bellcore, AT&T Bell Labs, and ISU. Other main collaborators that
contributed to the development of these software tools that should be mentioned
here are Catherine Hurley, John A. McDonald, and Duncan Temple Lang.

The Data Viewer (Buja et al. 1988, 1986; Hurley 1988, 1989; Hurley and Buja
1990) is a software package originally developed on a Symbolics Lisp Machine
that supports object-oriented programming. The Data Viewer is a system for the
exploratory analysis of high-dimensional data sets that allows interactive labeling,
identification, brushing, and linked windows. Additional features are viewport
transformations such as expanding or shrinking of the data and shifting of the
data. The Data Viewer supports several types of projections, including simple 3D
rotations, correlation tour (Buja et al. 1988), and grand tour.

Many of the design and layout concepts of the Data Viewer as well as parts of
its functionality provided the basic ideas for the follow-up XGobi (see Fig. 12.1),
first described in Swayne et al. (1991) and Swayne and Cook (1992). Development
on XGobi took place for about a decade; its almost final version is documented in
Swayne et al. (1998). XGobi is implemented in the X Windows System, so it runs on
any UNIX system, and it runs under Microsoft Windows or the Macintosh operating
system if an X emulator is used. XGobi can be freely downloaded from http://www.
research.att.com/areas/stat/xgobi/.

http://crystalvision.galaxy.gmu.edu/
http://www.research.att.com/areas/stat/xgobi/
http://www.research.att.com/areas/stat/xgobi/
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XGobi is a data visualization system with interactive and dynamic methods for
the manipulation of views of data. It offers 2D displays of projections of points and
lines in high-dimensional spaces, as well as parallel coordinate plots. Projection
tools include dotplots and ASH of single variables, scatterplots of pairs of variables,
3D data rotations, and grand tours. Views of the data can be panned and zoomed.
Points can be labeled and brushed with glyphs and colors. Lines can be edited and
colored. Several XGobi processes can be run simultaneously and linked for labeling,
brushing, and sharing of projections. Missing data are accommodated and their
patterns can be examined; multiple imputations can be given to XGobi for rapid
visual diagnostics (Swayne and Buja 1998). XGobi can be cloned, i.e., an identical
new XGobi process with exactly the same data and all brushing information can be
invoked.

Rotating plots are nowadays implemented in most statistical packages, but the
implementation in XGobi goes beyond most of the others. In addition to the standard
grand tour, XGobi supports the projection pursuit guided tour. More details on
projection pursuit indices available in XGobi can be found in Cook et al. (1993) and
Cook et al. (1995). Additional index functions that result in speed improvements of
the calculations have been presented in Klinke and Cook (1997).

GGobi (Swayne et al. 2003; Cook and Swayne 2007) is a direct descendant of
XGobi, but it has been thoroughly redesigned. GGobi (see Fig. 12.2) can be freely
downloaded from http://www.ggobi.org/.

At first glance, GGobi looks quite unlike XGobi because GGobi uses a newer
graphical toolkit called GTK+ (http://www.gtk.org), with a more contemporary
look and feel and a larger set of user interface components. Through the use of
GTK+, GGobi can be used directly on Microsoft Windows, without any emulator.
In addition, GGobi can be used on any UNIX and Linux system.

In contrast to XGobi, the plot window in GGobi has been separated from
the control panel. In XGobi, there is in general a single plot per process; to
look at multiple views of the same data, we have to launch multiple XGobi
processes. In contrast, a single GGobi session can support multiple plots of various
types: scatterplots, parallel coordinate plots, scatterplot matrices, and time series
plots have been implemented thus far. Other changes in GGobi’s appearance and
repertoire of tools (when compared to XGobi) include an interactive color lookup
table manager, the ability to add variables “on the fly”, and a new interface for
view scaling (panning and zooming). At this point, some of the advanced grand
tour and projection pursuit guided tour features from XGobi have not been fully
reimplemented in GGobi (but hopefully will be available in the near future).

12.4.4 Other Graphical Software

While the previous sections summarize software that focuses on interactive and
dynamic graphics, there exist several statistical languages that provide a tight
integration of interactive graphics and numerical computations. Examples for such

http://www.ggobi.org/
http://www.gtk.org
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languages are S/S-PLUS (Becker 1994; Becker et al. 1988a; Chambers 1997), R
(Ihaka and Gentleman 1996), and XploRe (Härdle et al. 1995). Other examples
of software that link interactive graphics, computation, and spread sheets, often
through the Web, are the Data Representation System (DRS) by Inoue et al. (2002),
DAVIS by Huh and Song (2002), KyPlot by Yoshioka (2002), and the XploRe
Quantlet Client/Server (XQC/XQS) architecture (Kleinow and Lehmann 2002).

12.5 Interactive 3D Graphics

A natural extension of 2D interactive and dynamic graphics is the use of anaglyphs
and stereoscopic displays on a computer screen and eventually the use of VR
environments to obtain a 3D representation of statistical data and linked objects
from geography or medicine.

12.5.1 Anaglyphs

A German teacher, Wilhelm Rollmann, initially described the effect of stereoscopic
graphics drawn in red and green colors that are looked at with the naked eye
(Rollmann 1853a), i.e., what is now called free-viewing stereoscopic images. Later
the same year, Rollmann (1853b) describes the effect of looking at such colored
pictures using filter glasses of corresponding complementary colors. As a reminder,
red and green are complementary colors in the conventional color model whereas
red and cyan are complementary colors in the RGB color model used for most
computer monitors. Eventually, the work by Wilhelm Rollmann has been judged
by Vuibert (1912) and Rösch (1954) as the birth of anaglyphs. The mathematics
underlying anaglyphs and stereoscopic displays can be found in Hodges (1992) and
Wegman and Carr (1993) for example.

Stereoscopic displays and anaglyphs have been used within statistics by Daniel
B. Carr, Richard J. Littlefield, and Wesley L. Nicholson (Carr and Littlefield
1983; Carr et al. 1983; Carr and Nicholson 1985; Carr et al. 1986). In particular
anaglyphs can be considered as an important means to represent three-dimensional
pictures on flat surfaces. They have been used in a variety of sciences but they
found only little use in statistics. One of the first implementations of red–green
anaglyphs was the “real-time rotation of three-dimensional scatterplots” in the
Mason Hypergraphics software package, described in Bolorforoush and Wegman
(1988), page 125. Independently from the work on anaglyphs conducted in the
U.S., interactive statistical anaglyph programs also were developed by Franz
Hering, Jürgen Symanzik, and Stephan von der Weydt at the Fachbereich Statistik,
University of Dortmund (Hering 1994; Hering and Symanzik 1992; Hering and
von der Weydt 1989; Symanzik 1992, 1993a,b).
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Wegman and DePriest (1986) is one of the rare sources in statistics where
anaglyphs are used in the papers of Banchoff (1986), Carr et al. (1986), and Gabriel
and Odoroff (1986). Moreover, Wegman and DePriest (1986) seems to be the first
statistical reference where colored (red–green) anaglyphs have been published in
print.

12.5.2 Virtual Reality

Many different definitions of the term VR can be found throughout the literature.
Cruz-Neira (1993) summarizes several possible definitions of VR, including the
following working definition for this chapter: “Virtual reality refers to immersive,
interactive, multi-sensory, viewer-centered, three-dimensional computer generated
environments and the combination of technologies required to build these environ-
ments.” A brief chronology of events that influenced the development of VR can
be found in Cruz-Neira (1993). A more detailed overview on VR can be found in
Pimentel and Teixeira (1995) or Vince (1995) for example.

Carolina Cruz-Neira and her colleagues developed an ambitious visualization
environment at the Electronic Visualization Lab (EVL) of the University of Illinois
in Chicago, known simply as the CAVE (Cruz-Neira 1995; Cruz-Neira et al.
1993a,b, 1992; Roy et al. 1995). The abbreviation CAVE stands for CAVE Audio
Visual Experience Automatic Virtual Environment. Carolina Cruz-Neira moved to
ISU in 1995 where she was involved in the development of a second, larger
CAVE-like environment known as the C2. The CAVE, C2, and several other of its
successors belong to immersive projection technology (IPT) systems where the user
is visually immersed within the virtual environment.

The use of ISU’s C2 for statistical visualization is based on the framework of
three-dimensional projections of p-dimensional data, using as a basis the methods
developed and available in XGobi. The implementation of some of the basic XGobi
features in the C2 resulted in VRGobi (see Fig. 12.5). The main difference between
XGobi and VRGobi is that the XGobi user interface is rather like a desktop with
pages of paper whereas VRGobi is more like having the whole room at the user’s
disposal for the data analysis.

VRGobi and the statistical visualization in the C2 have been extensively explored
and documented in the literature (Cook 2001; Cook et al. 1998, 1997a; Nelson
et al. 1998, 1999; Symanzik et al. 1996a, 1997). Main developers of VRGobi, over
time, were Dianne Cook and Carolina Cruz-Neira, with major contributions by Brad
Kohlmeyer, Uli Lechner, Nicholas Lewin, Laura Nelson, and Jürgen Symanzik.
Additional information on VRGobi can be found at http://www.las.iastate.edu/
newnews/Cook0219.html.

The initial implementation of VRGobi contains a three-dimensional grand tour.
Taking arbitrary three-dimensional projections can expose features of the data not
visible in one-dimensional or two-dimensional marginal plots.

http://www.las.iastate.edu/newnews/Cook0219.html
http://www.las.iastate.edu/newnews/Cook0219.html
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Fig. 12.5 Screenshots of the “Places” data in VRGobi, previously published in Symanzik et al.
(1996a). A map view [left] and a three-dimensional point cloud displaying HousingCost, Climate,
and Education are shown [right]. The control panel, glyph types, and the boundary box that delimits
the plot area are visible [top row]. Cities with nice Climate and high HousingCost have been
brushed and happen to fall into California [middle row]. Among the brushed points is one city (San
Francisco) with an outstanding value for Education [bottom row]. When running VRGobi in the
C2 (instead of producing screenshots from one of the control monitors), the rendered arm may be
replaced by a human user who is possibly wearing a data glove

One of the most difficult developments for VRGobi was the user interface
(and not the statistical display components). While it is relatively simple to create
popup menus that allow to select colors and symbols for brushing in a desktop
environment, designing an appealing and operational three-dimensional interface
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for the C2 was a real challenge. Eventually, four main components make up
VRGobi: the viewing box, the three-dimensional control panel, the variable spheres
(similar to the variable circles used in XGobi), and possibly a map view.

A three-dimensional map view, if used, allows the user to explore data in its
spatial context within VRGobi, similar to the ArcView/XGobi link (Cook et al.
1996, 1997b) for the desktop.

IPT environments are remarkably different from display devices that are com-
monly available for data analysis. They extend beyond the small gain of one more
dimension of viewing space, to being a completely defined “real” world space. In
VRGobi, the temptation is to grab the objects or climb a mountain in the map view
and to step aside when a point approaches our face during the grand tour. The objects
surround the viewer and it is possible to walk through the data.

In Nelson et al. (1998, 1999), experiments have been conducted on structure
detection, visualization, and ease of interaction. Because only 15 human subjects
participated in these experiments, it could not be expected that statistically signif-
icant results were obtained. However, at least these experiments showed that there
was a clear trend that the test subjects performed considerably better on visualization
tasks in the C2 than with XGobi on the workstation display. In contrast, interaction
tasks such as brushing provided better results for the workstation. However, subjects
with some limited VR experiences already performed considerably better on the
interaction tasks in the C2 than subjects with no prior VR experience, suggesting
that there is some learning needed to effectively use the VR hardware.

The high cost factor of the CAVE, C2, and similar IPT environments motivated
the development of the PC-based MiniCAVE environment. The MiniCAVE is an
immersive stereoscopic projection-based VR environment developed at GMU. It is
oriented toward group interactions. As such, it is particularly suited to collaborative
efforts in scientific visualization, data analysis, and VDM.

Initially researchers began with a 333 megahertz Pentium II machine running
Windows NT. The SGI-based VR applications that make use of the OpenGL
standard could be ported relatively easily to a PC environment. Using the Windows
NT drivers, it was also possible to integrate the Crystal Eyes shutter glasses into
the PC environment. The development of the MiniCAVE, now patented (Patent No.
6,448,965 “Voice-Controlled Immersive Virtual Reality System”) to GMU, has been
documented in Wegman et al. (1999) and Wegman and Symanzik (2002).

The one-wall MiniCAVE with speech recognition has been implemented on a
dual 450 megahertz Pentium III machine at GMU. In addition, a polarized light
LCD projector with both front and rear projection is used. Versions of ExplorN and
CrystalVision have been ported to the MiniCAVE environment.

In addition to the work on VR-based data visualization conducted at ISU and
GMU, independent work also has been conducted elsewhere, e.g., at Georgia Tech
and the Delft Technical University, The Netherlands, resulting in the Virtual Data
Visualizer (van Teylingen et al. 1997), and at the University of South Carolina, using
the Virtual Reality Modeling Language (VRML) for VR applications on the World
Wide Web (Rossini and West 1998). Böhlen et al. (2003) describe 3DVDM, a 3D
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VDM system, that is aimed at the visual exploration of large data bases. More details
are available at http://www.inf.unibz.it/dis/projects/3dvdm/.

Cook (2001) lists three fields, “environmental studies, especially data having a
spatial component; shape statistics; and manufacturing quality control”, that would
benefit most from VR and other IPT environments. Certainly, recent experimental
desktop links of VR and visualization software with spatial statistical applications
such as the links between ViRGIS and RA3DIO with XGobi (Schneider et al. 2000;
Symanzik et al. 1998b) would benefit considerably when being conducted in an IPT
environment. In addition to the fields in Cook (2001), we think that medical, genetic,
and biological statistical data would also considerably benefit when being explored
in an IPT environment.

12.6 Applications in Geography, Medicine, and Environmental
Sciences

12.6.1 Geographic Brushing and Exploratory Spatial Data
Analysis

Linking statistical plots with geography for analyzing spatially referenced data
has been discussed widely in recent years. Monmonier (1988, 1989) describe a
conceptual framework for geographical representations in statistical graphics and
introduce the term geographic brushing in reference to interacting with the map view
of geographically referenced data. But geographic brushing does not only mean pure
interaction with the map. In addition, this term has a much broader meaning, e.g.,
finding neighboring points and spatial structure in a geographic setting.

In fact, the idea to apply interactive and dynamic graphics for EDA in a spatial
(geographic) context resulted in the term exploratory spatial data analysis (ESDA).
However, ESDA is more than just EDA applied to spatial data. In fact, specialized
ESDA methods have been developed that take the special nature of spatial data
explicitly into account. ESDA is discussed in more details in Anselin (1998),
Anselin (1999), and Fotheringham et al. (2000), Chap. 4. Edsall (2003) provides
examples for the use of dynamic and interactive parallel coordinate plots for the
exploration of large spatial and spatio-temporal data bases.

Many software solutions have been developed that link geographic displays with
interactive statistical software packages. In McDonald and Willis (1987), a grand
tour is linked to an image to assess the clustering of landscape types in the band
space of a LandSat image taken over Manaus, Brazil. In Carr et al. (1987) and
Monmonier (1989), a scatterplot matrix is linked to a map view. In REGARD, map
views are linked with histograms and scatterplots and, moreover, diagnostic plots
for assessing spatial dependence are also available. Another exploratory system that
links histograms and scatterplots with latitude and longitude (and depth) coordinates
is discussed in MacDougall (1992). In Carr et al. (1992), (bivariate) ray-glyph maps

http://www.inf.unibz.it/dis/projects/3dvdm/
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have been linked with scatterplots. Nagel (1994) discusses the interactive analysis
of spatial data, mostly environmental and disease data, under ISP. Klein and Moreira
(1994) report on an interface between the image program MTID and XGobi,
used for the exploratory analysis of agricultural images. DiBiase et al. (1994)
provide an overview on existing multivariate (statistical) displays for geographic
data. Other developments are the cartographic data visualizer, cdv (Dykes 1996),
where a variety of plots are linked with geography, the Space–Time–Attribute
Creature/Movie, STAC/M (Openshaw and Perrée 1996), that searches for patterns
in Geographic Information System (GIS) data bases under the control of a Genetic
Algorithm, and an exploratory spatial analysis system in XLisp-Stat (Brunsdon and
Charlton 1996).

In combination with the GIS ArcView, XGobi and XploRe also have been used
to detect structure and abnormalities in geographically referenced data sets such
as satellite imagery, forest health monitoring, and precipitation data (Cook et al.
1996, 1997b; Symanzik et al. 1998a, 2000a, 1996b) (see Fig. 12.1). In addition to
the ArcView/XGobi/XploRe environment, there are several other examples where
GIS’s and (graphical) statistical packages have been linked. Williams et al. (1990)
demonstrate how S and the GRASS GIS can be jointly used for archaeological site
classification and analysis. Scott (1994) links STATA with ArcView. The spatial
data analysis software SpaceStat has been linked with ARC/INFO (Anselin et al.
1993) and with ArcView (Anselin and Bao 1996, 1997). In Haining et al. (1996),
the designing of a software system for interactive exploration of spatial data by
linking to ARC/INFO has been discussed, and in Zhang and Griffith (1997), a
spatial statistical analysis module implemented in ArcView using Avenue has been
discussed. MathSoft (1996) describes the S+GISLink, a bidirectional link between
ARC/INFO and S-PLUS, and Bao (1997) describes the S+Grassland link between
S-PLUS and the Grassland GIS. Finally, a comparison of the operational issues of
the SpaceStat/ArcView link and the S+Grassland link has been given in Bao and
Anselin (1997).

12.6.2 Interactive Micromaps

Over the last decade, researchers have developed many improvements to make
statistical graphics more accessible to the general public. These improvements
include making statistical summaries more visual and providing more information
at a time. Research in this area involved converting statistical tables into plots (Carr
1994; Carr and Nusser 1995), new ways of displaying geographically referenced
data (Carr et al. 1992), and, in particular, the development of linked micromap (LM)
plots (see Fig. 12.6), often simply called micromaps (Carr and Pierson 1996; Carr
et al. 1998, 2000a). LM plots were first presented in a poster session sponsored
by the ASA Section on Statistical Graphics at the 1996 Joint Statistical Meetings
in Chicago (“Presentation of Data in Linked Attribute and Geographic Space” by
Anthony R. Olsen, Daniel B. Carr, Jean-Yves P. Courbois, and Suzanne Pierson).
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Fig. 12.6 Linked micromap plot of the “Places” data, adapted from Daniel B. Carr’s sample
S-PLUS code. The variables Education and Crime have been summarized at the state level for this
figure. For each of the 50 states (plus Washington, D.C.), the minimum, median, and maximum
of the Education and Crime indexes have been obtained for the cities that geographically belong
to a state. It should be noted that for several of the states data exist for only one city. The map
and statistical displays have been sorted with respect to decreasing median Education Index. The
zig–zag curve of the related median Crime Index is an indicator of little correlation between these
two variables Numerically, the ecological correlation between median Education Index and median
Crime Index is almost equal to zero.



12 Interactive and Dynamic Graphics 361

More details on the history of LM plots and their connection to other research can be
found in these early references on micromaps. Recent references on LM plots (Carr
2001; Carr and Pickle 2010; Carr et al. 2000b) focus on their use for communicating
summary data from health and environmental studies. Sample R code, data files,
and resulting plots from Daniel B. Carr’s micromap work can be accessed at http://
mason.gmu.edu/~dcarr/Micromaps/.

Linked micromap plots provide a new statistical paradigm for the viewing
of geographically referenced statistical summaries in the corresponding spatial
context. The main idea behind LM plots is to focus the viewer’s attention on the
statistical information presented in a graphical display. Multiple small maps are
used to provide the appropriate geographic reference for the statistical data.

Initially, LM plots were only static representations on paper. The next stage of
LM plots was aimed at interactive displays on the Web. Eventually, generalized
maps for all states in the U.S. and several counties were automatically created for use
on the U.S. Environmental Protection Agency (EPA) Cumulative Exposure Project
(CEP) Web site (Symanzik et al. 2000b). Most current applications of interactive
LM plots on the Web make use of these generalized maps.

The idea of using micromaps on the Web was first considered for the EPA
CEP Web site (formerly accessible at http://www.epa.gov/CumulativeExposure/).
Initially, the EPA wanted to provide fast and convenient Web-based access to its
hazardous air pollutant (HAP) data for 1990. Unfortunately, no part of the interactive
CEP Web site was ever published due to concerns that the 1990 data was outdated
at the intended release date in 1998. Only a static version of the CEP Web site
without tables and micromaps was accessible. More details on the work related to
the planned interactive CEP Web site can be found in Symanzik et al. (1999b,c,
2000b).

The U.S. Department of Agriculture (USDA)—National Agricultural Statistics
Service (NASS) Research and Development Division released a Web site (http://
www.nass.usda.gov/research/sumpant.htm) in September 1999 that uses interactive
micromaps to display data from the 1997 Census of Agriculture. While the end user
who accesses this Web site gets the impression of fully interactive graphics, this
is not the case. The 10 micromaps (5 crops � 2 arrangements) plus one overview
micromap were precalculated in S-PLUS and were stored as jpg images. It is not
possible to create any new micromap display “on the fly” on this Web site.

The National Cancer Institute (NCI) released a Web site in April 2003 that
provides interactive access to its cancer data via micromaps. This Web site is Java-
based and creates micromaps “on the fly”. Wang et al. (2002) and Carr et al. (2002)
provide more details on the design of the NCI Web site that is accessible at http://
www.statecancerprofiles.cancer.gov/micromaps.

nViZn (read envision) is a JAVA-based software development kit (SDK), for-
merly developed and distributed by SPSS. It is the follow-up to the Graphics
Production Library (GPL), described in Carr et al. (1996), developed within the
BLS. nViZn (Wilkinson et al. 2000) is based on a formal grammar for the specifi-
cation of statistical graphics (Wilkinson 1999), see also Chap. II.13. In addition to
capabilities already present in the original GPL, nViZn has many additional features.
Most useful for the display of data in a geographic context are the capabilities that

http://mason.gmu.edu/~dcarr/Micromaps/
http://mason.gmu.edu/~dcarr/Micromaps/
http://www.epa.gov/CumulativeExposure/
http://www.nass.usda.gov/research/sumpant.htm
http://www.nass.usda.gov/research/sumpant.htm
http://www.statecancerprofiles.cancer.gov/micromaps
http://www.statecancerprofiles.cancer.gov/micromaps
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enable a programmer to create interactive tables and linked micromaps in nViZn.
Experiences with nViZn, its advantages and current problems, and its capabilities
for the display of Federal data via LM plots are described in more detail in Jones
and Symanzik (2001), Symanzik and Jones (2001), and Symanzik et al. (2002a).

Micromap implementations that allow the user to create new LM plots “on the
fly” often provide features to switch from one geographic region or subregion to
another, choose among several variables, resort the data increasingly or decreasingly
according to different statistics (such as mean, median, minimum, or maximum of
the data values in the underlying geographic region), and display different graphical
summaries of the data (e.g., dotplots, boxplots, confidence intervals, or even time
series). So, in an interactive environment, a user might want to create a LM plot of
Education and Arts (sorted by increasing maximum Education) after having studied
the LM plot in Fig. 12.6—and then immediately resort the display by decreasing
maximum Arts.

12.6.3 Conditioned Choropleth Maps

Conditioned choropleth maps (CCmaps), described in Carr et al. (2002); Carr
and Pickle (2010); Carr et al. (2000b), focus on spatial displays that involve one
dependent variable and two independent variables. CCmaps promote interactive
hypothesis generation, common for epidemiological and environmental applica-
tions. In fact, applications from the National Center for Health Statistics (NCHS)
and the EPA motivated the development of CCmaps. CCmaps are written in Java
and can be freely obtained from http://mason.gmu.edu/~dcarr/CCmaps.

The main interactive component of CCmaps are partitioning sliders that allow
to dynamically partition the study units into a 3 � 3 layout of maps. The sliders
allow a user to create, examine, and contrast subsets for the purpose of generating
hypotheses about patterns in spatially referenced data. For example, in a medical
application one of the sliders might control the age intervals and the second slider
might control the years of active smoking in a study on cancer mortality rates
across the U.S. The resulting 9 maps will allow an analyst to develop hypotheses
on spatial patterns within panels or among panels. Additional features of this
CCmaps implementation are dynamic quantile–quantile (QQ) plots and pan and
zoom widgets to allow closer inspection of data at the U.S. county level.

12.7 Outlook

12.7.1 Limitations of Graphics

Wegman (1995) discusses aspects of data set size, computational feasibility, and in
particular limits of visualization for “large” (about 108 bytes) and “huge” (about
1010 bytes) data sets, where “large” and “huge” are terms introduced in Huber’s

http://mason.gmu.edu/~dcarr/CCmaps
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taxonomy of large data sets (Huber 1992, 1994). As pointed out in Wegman (1995),
even in the most wildly optimistic scenario, i.e., an angular resolution of 4.38
minutes of arc as suggested in Maar (1982), immersion, and a 4:5 aspect-ratio, the
human eye would only be able to distinguish 17; 284� 13; 828D 2:39� 108 pixels.
Using single-pixel coding, it seems to be impossible to visualize “large” to “huge”
data sets.

Huber (1994) initially suggests to prepare “medium” (about 106 bytes) derived
data sets that are easier to visualize and grasp as a whole and can still be worked
with established techniques of high interaction graphics. Unfortunately, as Wegman
(1995) further describes, common ways of parsing data sets down, e.g., clustering,
discriminant analysis, and principal components, are computationally complex
(often of a magnitude of O.n3=2/ or even O.n2/) and therefore are not valid
alternatives. It seems that simple random thinning is the only methodology of
choice, but this may have the side effect of missing some of the tail structure an
analyst may actually be looking for.

Possible solutions are the use of 3D VR techniques that may display up to 1010

voxels (Wegman 1995), further advances in selection sequences, or new strategies
to increase visual scalability i.e., the capability of visualization tools to effectively
display large data sets (Eick and Karr 2002). However, the conclusion in Wegman
(1995) that “visualization of data sets say of size 106 or more is clearly a wide open
field” is still valid today.

12.7.2 Future Developments

Historically, one of the problems with interactive and dynamic statistical graphics
was to publish visible results. The ASA Statistical Graphics Section Video Lending
Library was one attempt to capture at least some snapshots of software and
applications of interactive and dynamic statistical graphics and preserve them for
the future. Publishing a sequence of screenshots in a written paper clearly has not
the same effect as watching the full interaction and being able to manipulate the
graphics.

However, due to the recent move of books being published with accompanying
CDs or DVDs and many conference proceedings being published on CD, it is now
possible to immediately publish a movie accompanying a written paper or integrate
interactive graphics within a paper. Examples are Wojciechowski and Scott (2000)
and Symanzik et al. (2002b) where the papers are accompanied by several movie
segments. It is to be expected that more and more future publications on interactive
and dynamic graphics will be accompanied by an interactive application or by
movies.

To be useful for the future, interactive and dynamic graphics have to adapt to
challenges posed by “large” and “huge” (in terms of Huber’s taxonomy) data sets as
outlined in Sect. 12.7.1. Examples for such data sets are data from earth or planetary
observation systems, real-time S-PLUS data (such as from surveillance systems),
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or any other type of massive data streams. Wegman (2000) provides a futuristic
vision, indicating that major advancements can be expected in DM, visualization,
and quantization methods.

For smaller data sets (from “tiny” to “medium” in terms of Huber’s taxonomy)
we can expect to see progress in new user paradigms that will allow to interact with
the data through voice or gestures as well as multiple users to manipulate the visible
view simultaneously. It can also be expected that more graphical software will make
use of the Web and mobile data transmission and reception techniques. The same
software may therefore be available for a variety of hardware platforms with screens
as small as a clock or cell phone or as big as a 3D IMAX theatre.

As pointed out in Carr et al. (2002), “there are many barriers to acceptance of
new methodology by federal agencies.” This can be easily extended towards other
users of newly developed interactive and dynamic graphical software. Clearly, just
promoting a new idea or graphical software product is not enough in many cases.
It is likely that more usability tests of new graphical software products as well as
comparative reviews of old and new tools will be conducted in the future.
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Chapter 13
The Grammar of Graphics

Leland Wilkinson

13.1 Introduction

The Grammar of Graphics, or GOG, denotes a system with seven orthogonal
components (Wilkinson 1999). By orthogonal, we mean there are seven graphical
component sets whose elements are aspects of the general system and that every
combination of aspects in the product of all these sets is meaningful. This sense
of the word orthogonality, a term used by computer designers to describe a com-
binatoric system of components or building blocks, is in some sense similar to the
orthogonal factorial analysis of variance (ANOVA), where factors have levels and
all possible combinations of levels exist in the ANOVA design. If we interpret each
combination of features in a GOG system as a point in a network, then the world
described by GOG is represented in a seven-dimensional rectangular lattice.

A consequence of the orthogonality of such a graphic system is a high degree
of expressiveness. That is, it comprises a system that can produce a huge variety of
graphical forms (chart types). In fact, it is claimed that virtually the entire corpus of
known charts can be generated by this relatively parsimonious system, and perhaps
a great number of meaningful but undiscovered chart types as well.

The second principal claim of GOG is that this system describes the meaning of
what we do when we construct statistical graphs or charts. It is more than a taxon-
omy. It is a computational system based on the classical mathematics of representing
functions and relations in Cartesian and other spaces. Because of this mathematical
foundation, GOG specifications can serve as parsimonious and natural descriptions
of famous statistical charts devised by Playfair, Minard, Jevons, Pearson, Bertin,
Tukey, and other significant figures in the history of statistical graphics.
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13.1.1 Architecture

Figure 13.1 shows a dataflow diagram that contains the seven GOG components.
This dataflow is a chain that describes the sequence of mappings needed to produce
a statistical graphic from a set of data. The first component (Variables) maps data to
an object called a varset (a set of variables). The next three components (Algebra,
Scales, Statistics) are transformations on varsets. The next component (Geometry)
maps a varset to a graph and the next (Coordinates) embeds a graph in a coordinate
space. The last component (Aesthetics) maps a graph to a visible or perceivable
display called a graphic.

The dataflow architecture implies that the subtasks needed to produce a graphic
from data must be done in this specified order. Imposing an order would appear to
be unnecessarily restrictive, but changes of this ordering can produce meaningless
graphics. For example, if we compute certain statistics on variables (e.g., sums)
before scaling them (e.g., log scales), we can produce statistically questionable
results because the log of a sum is not the sum of the logs.

Statistics

Geometry

Aesthetics

Coordinates

Variables

Scales

Algebra

Varset

Varset

Varset

Varset

Graph

Graphic

Graph

Data

Fig. 13.1 Dataflow
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The dataflow in Fig. 13.1 has many paths through it. We can choose different
designs (factorial, nested, : : :), scales (log, probability, : : :), statistical methods
(means, medians, modes, smoothers, : : :), geometric objects (points, lines, bars, : : :),
coordinate systems (rectangular, polar, : : :), and aesthetics (size, shape, color, : : :).
These paths reveal the richness of the system. The remainder of this article will
summarize the seven GOG components, delineate these paths, and then briefly
introduce sample applications.

13.2 Variables

We begin with data. We assume the data that we wish to graph are organized in
one or more tables. The column(s) of each table represent a set of fields, each field
containing a set of measurements or attributes. The row(s) of this table represent
a set of logical records, each record containing the measurements of an object on
each field. Usually, a relational database management system (RDBMS) produces
such a table from organized queries specified in Structured Query Language (SQL)
or another relational language. When we do not have data stored in a relational
database (e.g., live data feeds), we need custom software to provide such a table
using Extensible Markup Language (XML), Perl scripts, or other languages.

The first thing we have to do is convert such tables of data to something called a
varset. A varset is a set of one or more variables. While a column of a table of data
might superficially be considered to be a variable, there are differences. A variable is
both more general (in regard to generalizability across samples) and more specific
(in regard to data typing and other constraints) than a column of data. First, we
define a variable, then a varset.

13.2.1 Variable

A statistical variable X is a mapping f W O ! V , which we consider as a triple:

X D ŒO; V; f �
The domainO is a set of objects.
The codomain V is a set of values.
The function f assigns to each element of O an element in V .

The image ofO under f contains the values ofX . We denote a possible value as
x, where x 2 V . We denote a value of an object asX.o/, where o 2 O . A variable is
continuous if V is an interval. A variable is categorical if V is a finite subset of the
integers (or there exists an injective map from V to a finite subset of the integers).

Variables may be multidimensional. X is a p-dimensional variable made up of p
one-dimensional variables:
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X D .X1; : : : ; Xp/
D ŒO; Vi ; f � ; i D 1; : : : ; p
D ŒO;V; f �

The element x D .x1; : : : ; xp/, x 2 V, is a p-dimensional value of X. We use
multidimensional variables in multivariate analysis.

A random variable X is a real–valued function defined on a sample space ˝:

X D Œ˝;R; f �

Random variables may be multidimensional. In the elementary probability model,
each element ! 2 ˝ is associated with a probability function P . The range of P
is the interval Œ0; 1�, and P.˝/ D 1. Because of the associated probability model,
we can make probability statements about outcomes in the range of the random
variable, such as:

P.X D 2/ D P.! W ! 2 ˝;X.!/ D 2/

13.2.2 Varset

We call the triple
X D ŒV; eO; f �

a varset. The word varset stands for variable set. If X is multidimensional, we use
boldface X. A varset inverts the mapping used for variables. That is,
The domain V is a set of values.
The codomain eO is a set of all possible ordered lists of objects.
The function f assigns to each element of V an element in eO .

We invert the mapping customarily used for variables in order to simplify the
definitions of graphics algebra operations on varsets. In doing so, we also replace
the variable’s set of objects with the varset’s set of ordered lists. We use lists in the
codomain because it is possible for a value to be mapped to an object more than
once (as in repeated measurements).

13.2.3 Converting a Table of Data to a Varset

To convert a table to a varset, we must define the varset’s domain of values and
range of objects and specify a reference function that maps each row in the table to
an element in the varset.
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We define the domain of values in each varset by identifying the measurements
its values represent. If our measurements include weight, for example, we need to
record the measurement units and the interval covered by the range of weights. If
the domain is categorical, we need to decide whether there are categories not found
in the data that should be included in the domain (refused to reply, don’t know,
missing, : : :). And we may need to identify categories found in the data that are not
defined in the domain (mistakes, intransitivities, : : :). The varset’s domain is a key
component in the GOG system. It is used for axes, legends, and other components
of a graphic. Because the actual data for a chart are only an instance of what we
expect to see in a varset’s domain, we let the domain control the structure of the
chart.

We define the range of potential objects in each varset by identifying the class
they represent. If the rows of our table represent measurements of a group of school
children, for example, we may define the range to be school children, children in
general, people, or (at the most abstract level) objects. Our decision about the level
of generality may affect how a graphic will be titled, how legends are designed, and
so on.

Finally, we devise a reference system by indexing objects in the domain. This is
usually as simple as deriving a caseID from a table row index. Or, as is frequently
done, we may choose the value of a key variable (e.g., Social Security Number) to
create a unique index.

13.3 Algebra

Given one or more varsets, we now need to operate on them to produce combinations
of variables. A typical scatterplot of a variable X against a variable Y, for example, is
built from tuples .xi ; yi / that are elements in a set product. We use graphics algebra
on values stored in varsets to make these tuples. There are three binary operators in
this algebra: cross, nest, and blend.

13.3.1 Operators

We will define these operators in set notation and illustrate them by using a table
of real data. Table 13.1 shows 1980 and 2000 populations for selected world cities.
During various periods in US history, it was fashionable to name towns and cities
after their European and Asian counterparts. Sometimes this naming was driven
by immigration, particularly in the colonial era (New Amsterdam, New York, New
London). At other times, exotic names reflected a fascination with foreign travel
and culture, particularly in the Midwest (Paris, Madrid). Using a dataset containing
namesakes will help reveal some of the subtleties of graphics algebra.
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Table 13.1 Cities and their Populations

Country City 1980 Population 2000 Population

Japan Tokyo 21900000 26400000
India Mumbai 8067000 18100000
USA New York 15600000 16600000
Nigeria Lagos 4385000 13400000
USA Los Angeles 9523000 13100000
Japan Osaka 9990000 11000000
Philippines Manila 5955000 10900000
France Paris 8938000 9624000
Russia Moscow 8136000 9321000
UK London 7741000 7640000
Peru Lima 4401000 7443000
USA Chicago 6780000 6951000
Iraq Bagdad 3354000 4797000
Canada Toronto 3008000 4651000
Spain Madrid 4296000 4072000
Germany Berlin 3247000 3324000
Australia Melbourne 2765000 3187000
USA Melbourne 46536 71382
USA Moscow 16513 21291
USA Berlin 13084 10331
USA Paris 9885 9077
USA London 4002 5692
USA Toronto 6934 5676
USA Manila 2553 3055
USA Lima 2025 2459
USA Madrid 2281 2264
USA Bagdad 2331 1578

We begin by assuming there are four varsets derived from this table: country,
city, pop1980, and pop2000 (we use lower case for varsets when they are
denoted by names instead of single letters). Each varset has one column. The varsets
resulting from algebraic operations will have one or more columns.

There is one set of objects for all four varsets: 27 cities. This may or may not be
a subset of the domain for the four associated variables. If we wish to generalize
analyses of this varset to other cities, then the set of possible objects in these
varsets might be a subdomain of the set of all cities existing in 1980 and 2000.
We might even consider this set of objects to be a subset of all possible cities
in all of recorded history. While these issues might seem more the province of
sampling and generalizability theory, they affect the design of a graphics system.
Databases, for example, include facilities for semantic integrity constraints that
ensure domain integrity in data tables. Data-based graphics systems share similar
requirements.

There are sets of values for these varsets. The country varset has country
names in the set of values comprising its domain. The definition of the domain



13 The Grammar of Graphics 381

of the varset depends on how we wish to use it. For example, we might include
spellings of city names in languages other than English. We might also include
country names not contained in this particular varset. Such definitions would affect
whether we could add new cities to a database containing these data. For pop1980
and pop2000, we would probably make the domain be the set of positive
integers.

Cross (�)

Cross joins the left argument with the right to produce a set of tuples stored in the
multiple columns of the new varset:

x xa a

aay y

z zb b

=*

The resulting set of tuples is a subset of the product of the domains of the two
varsets. The domain of a varset produced by a cross is the product of the separate
domains.

One may think of a cross as a horizontal concatenation of the table representation
of two varsets, assuming the rows of each varset are equivalent and in the same
order. The following example shows a crossing of two varsets using set notation
with simple integer keys for the objects:

A D Œfred; blueg; fh�i; h�; �i; : : :g; fred ! h1; 4i; blue! h2; 3ig�
B D ŒŒ�10; 10�; fh�i; h�; �i; : : :g; f�10! h1i; 5! h2; 3i; 10! h4ig�

A � B D Œfred; blueg � Œ�10; 10�; fh�i; h�; �i; : : :g ;
f.red;�10/! h1i; .blue; 5/! h2; 3i; .red; 10/! h4ig�

If we plotted A � B in two dimensions with a point graph, we would see n points
between �10 and 10 stacked vertically above one or both of the two color names.

Figure 13.2 shows a graphic based on the algebraic expressioncity�pop2000.
We choose the convention of representing the first variable in an expression on
the horizontal axis and the second on the vertical. We also restrict the domain of
pop2000 to be Œ0; 32000000�.

Although most of the US namesake cities have smaller populations, it is not easy
to discern them in the graphic. We can separate the US from the other cities by
using a variable called group that we derive from the country names. Such a new
variable is created easily in a database or statistical transformation language with an
expression like



382 L. Wilkinson

Tokyo

Mumbai

NewYork
Lagos

Los A
ngeles

Osa
ka
Manila

Paris

Mosco
w

London
Lim

a

Chica
go

Bagdad

Toronto
Madrid

Berlin

Melbourne

City

0

4000000

8000000

12000000

16000000

20000000

24000000

28000000

32000000

P
op

ul
at

io
n 

20
00

Fig. 13.2 city � pop2000

if (country == “USA”) group = “USA”;

else group = “World” I

Figure 13.3 shows a graphic based on the three-dimensional algebraic expression
city�pop2000�group. This expression produces a varset with three columns.
The first column is assigned to the horizontal axis, the second to the vertical, and
the third to the horizontal axis again, which has the effect of splitting the frame
into two frames. This general pattern of alternating horizontal and vertical roles
for the columns of a varset provides a simple layout scheme for complex algebraic
expressions. We may think of this as a generalization of the Trellis layout scheme
(Becker et al. 1996). We could, of course, represent this same varset in a 3D plot
projected into 2D, but the default system behavior is to prefer 2D with recursive
partitioning. We will describe this in more detail in Sect. 13.9.

Chicago stands out as an anomaly in Fig. 13.3 because of its relatively large
population. We might want to sort the cities in a different order for the left panel
or eliminate cities not found in the US, but the algebraic expression won’t let us do
that. Because group is crossed with the other variables, there is only one domain
of cities shared by both country groups. If we want to have different domains for the
two panels, we need our next operator, nest.
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Fig. 13.3 city � pop2000 � group

Nest (/)

Nest partitions the left argument using the values in the right:

x x

aa

a a

b b

y y

z z

=/

Although it is not required in the definition, we assume the nesting varset on the
right is categorical. If it were continuous (having interval domain) there would be an
infinite number of partitions. We do require predefined nested domains. To construct
a nested domain, three options are possible:

1. Data values – identify the minimal domain containing the data by enumerating
unique data tuples.

2. Metadata – define the domain using external rules contained in a metadata
resource or from known principles.

3. Data organization – identify nested domains using the predefined structure of
a hierarchical database or OLAP cube.

The following example shows a nesting of two categorical variables:

A D Œfant; f ly; beeg; fh�i; h�; �i; : : :g; fant ! h1i; f ly ! h2; 3i; bee! h4ig�
B D Œfnoun; verbg; fh�i; h�; �i; : : :g; fnoun! h1; 2; 4i; verb! h3ig�

A=B D Œf.ant; noun/; .f ly; noun/; .f ly; verb/; .bee; noun/g; fh�i; h�; �i; : : :g ;
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f.ant; noun/! h1i; .f ly; noun/! h2i; .f ly; verb/! h3i.bee; noun/

! h4ig�

Nesting defines meaning conditionally. In this example, the meaning of fly is
ambiguous unless we know whether it is a noun or a verb. Furthermore, there is
no verb for ant or bee in the English language, so the domain of A=B does not
include this combination.

If A is a continuous variable, then we have something like the following:

A D ŒŒ0; 10�; fh�i; h�; �i; : : :g; f0! h1i; 8! h2i; 1:4! h3i; 3! h4i; 10
! h5; 6ig�

B D Œf1; 2g; fh�i; h�; �i; : : :g; f1! h1; 2; 3i; 2! h4; 5; 6ig�
A=B D ŒfŒ0; 8� � f1g; Œ3; 10�� f2gg; fh�i; h�; �i; : : :g ;

f.0; 1/! h1i; .8; 1/! h2i; .1:4; 1/! h3i; .3; 2/! h4i; .10; 2/! h5; 6ig�

In this example, the elements of the nesting A=B result in intervals conditioned on
the values of B. A represents 6 ratings (ranging from 0 to 10) of the behavior of
patients by two psychiatrists. B represents the identity of the psychiatrist making
each rating. The intervals Œ0; 8� and Œ3; 10� imply that psychiatrist 1 will not use
a rating greater than 8 and psychiatrist 2 will not use a rating less than 3. Nesting
in this case is based on the (realistic) assumption that the two psychiatrists assign
numbers to their perceptions in a different manner. A rating of 2 by one psychiatrist
cannot be compared to the same rating by the other, because of possible differences
in location, scale, and even local nonlinearities. Much of psychometrics is concerned
with the problem of equating ratings in this type of example so that nesting would
not be needed, although it is not always possible to do so plausibly.

The name nest comes from design-of-experiments terminology. We often use the
word within to describe its effect. For example, if we assess schools and teachers
in a district, then teachers within schools specifies that teachers are nested within
schools. Assuming each teacher in the district teaches at only one school, we would
conclude that if our data contain two teachers with the same name at different
schools, they are different people. Those familiar with experimental design may
recognize that the expression A=B is equivalent to the notation A.B/ in a design
specification. Both expressions mean A is nested within B. Statisticians’ customary
use of parentheses to denote nesting conceals the fact that nesting involves an
operator, however. Because nesting is distributive over blending, we have made this
operator explicit and retained the conventional mathematical use of parentheses in
an algebra.

Figure 13.4 shows a graphic based on the algebraic expression city=group �
pop2000. The horizontal axis in each panel now shows a different set of cities:
one for the USA and one for the rest of the world. This graphic differs from the one
in Fig. 13.3 not only because the axes look different, but also because the meanings
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Fig. 13.4 city=group � pop2000

of the cities in each panels are different. For example, the city named Paris appears
twice in both figures. In Fig. 13.3, on the one hand, we assume the name Paris in the
left panel is comparable to the name Paris in the right. That is, it refers to a common
name (Paris) occurring in two different contexts. In Fig. 13.4, on the other hand, we
assume the name Paris references two different cities. They happen to have the same
name, but are not equivalent. Such distinctions are critical, but often subtle.

Blend (C)

Blend produces a union of varsets:

x a

ay

z

=+

x

y

z

a

a

b

b

Blend is defined only if the order of the tuples (number of columns) in the left
and right varsets is the same. Furthermore, we should restrict blend to varsets with
composable domains, even though we do not need this restriction for the operation
to be defined. It would make little sense to blend Age and Weight, much less Name
and Height.
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In vernacular, we often use the conjunction and to signify that two sets are
blended into one (although the word or would be more appropriate technically).
For example, if we measure diastolic and systolic blood pressure among patients in
various treatment conditions and we want to see blood pressure plotted on a common
axis, we can plot diastolic and systolic against treatment. The following example
shows a blending of two varsets, using integers for keys:

A D ŒŒ0; 120�; fh�i; h�; �i; : : :g; f0! h1i; 120! h2i; 90! h3; 4ig�
B D ŒŒ10; 200�; fh�i; h�; �i; : : :g; f10! h1i; 200! h2; 3i; 90! h4ig�

AC B D ŒŒ0; 200�; fh�i; h�; �i; : : :g;
f0! h1i; 10! h1i; 120! h2i; 90! h3; 4; 4i; 200! h2; 3ig�

Figure 13.5 shows an example of a blend using our cities data. The graphic is
based on the algebraic expression city� .pop1980Cpop2000/. The horizontal
axis represents the cities and the vertical axis represents the two repeated population
measures. We have included different symbol types and a legend to distinguish the
measures. We will see later how shape aesthetics are used to create this distinction.

As with the earlier graphics, we see that it is difficult to distinguish US and
world cities. Figure 13.6 makes the distinction clear by splitting the horizontal
axis into two nested subgroups. The graphic is based on the algebraic expression
.city=group/�.pop1980Cpop2000/. Once again, the vertical axis represents
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the two repeated population measures blended on a single dimension. We see most
of the cities gaining population between 1980 and 2000.

13.3.2 Rules

The following rules are derivable from the definitions of the graphics operators:

Associativity

.X � Y/ � Z D X � .Y � Z/

.X=Y/=Z D X=.Y=Z/

.XC Y/C Z D XC .YC Z/

Distributivity

X � .YC Z/ D X � YC X � Z

X=.YC Z/ D X=YC X=Z

.XCY/ � Z D X � ZC Y � Z

.XC Y/=Z D X=ZC Y=Z

Commutativity
XC Y D YC X
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Identity

The identity element for blend is an empty list. Cross and nest have no identity.

Precedence

Nest takes precedence over cross and blend. Cross takes precedence over blend.
This hierarchical order may be altered through the use of parentheses.

13.3.3 SQL Equivalences

Given a table X and a table Y in a database, we can use SQL to perform the
operations in chart algebra. This section outlines how to do this.

Cross

Cross can be accomplished by a cross join:

SELECT a:�;b:�
FROM X a;Y b I
Of course, this operation is inefficient and requires optimization. Alternatively,

one can do a simple join and generate the missing tuples with an iterator when
needed.

Nest

Nest can be accomplished through a nest operation. The nest operator requires that
the database allow tables as primitives, either as relation-valued attributes (Date and
Darwen 1992) or as nested tables (Makinouchi 1977), (Abiteboul et al. 1989).

Alternatively, we can accumulate the subset of tuples in a nest operation with
a simple join:

SELECT a:�;b:�
FROM X a;Y b
WHERE a.rowid D b.rowid I
If we use this latter method, we must distinguish the entries used for tags and

those used for values.

Blend

Blend is performed through UNION. If UNION all is not available, we can
concatenate key columns to be sure that all rows appear in the result set.
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SELECT � from X
UNION all
SELECT � from YI

Composition and Optimization

SQL statements can be composed by using the grammar for chart algebra.
Compound statements can then be submitted for optimization and execution by
a database compiler. Alternatively, pre-optimization can be performed on the
chart algebra parse tree object and the optimized parse tree used to generate SQL.
Secondary optimization can then be performed by the database compiler.

13.3.4 Related Algebras

Research on algebras that could be used for displaying data has occurred in many
fields. We will summarize these approaches in separate sections.

Table Algebras

The US Bureau of Labor Statistics pioneered a language for laying out tables
(Mendelssohn 1974). While not a formal algebra, this Table Production Language
(TPL) contained many of the elements needed to assemble complex tables. Gyssens
et al. (1996) outlined an algebra for displaying relational data; this algebra closely
followed TPL, although the latter is not referenced. Wilkinson (1996) presented an
algebra for structuring tables and graphics.

Design Algebras

Nelder (1965) and Wilkinson and Rogers (1973) developed a language for imple-
menting factorial and nested experimental designs, following Fisher (1935). The
operators in this language are similar to the cross and nest operators in the present
paper. The algebraic design language was implemented in the GENSTAT statistical
computer program for generating and analyzing general linear statistical models.

Query Algebras

Pedersen et al. (2002) described an algebra for querying OLAP cubes. The result
sets from their algebraic expressions could be used for graphic displays. Agrawal
et al. (1997) used a similar algebra for statistical modeling of data contained in
a cube.
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Display Algebras

Mackinlay (1986) developed an algebra for querying relational databases and
generating charts. His general goal was to develop an intelligent system that could
offer graphical responses to verbal or structural queries. Roth et al. (1994) followed
a similar strategy in developing graphical representations of relational data. They
extended Mackinlay’s and others’ ideas by using concepts from computational
geometry.

13.3.5 Algebra XML

A parse tree for a given algebraic expression maps nicely to XML in a manner
similar to the way MathML (http://www.w3.org/TR/MathML2/) is defined. We have
developed an implementation, called VizML (http://xml.spss.com/ visualization),
that includes not only the algebraic components of the specification, but also the
aesthetic and geometric aspects. Ultimately, VizML makes it possible to embed
chart algebraic operations in a database.

13.4 Scales

Before we compute summaries (totals, means, smoothers, : : :) and represent these
summaries using geometric objects (points, lines, : : :), we must scale our varsets. In
producing most common charts, we do not notice this step. When we implement log
scales, however, we notice it immediately. We must log our data before averaging
logs. Even if we do not compute nonlinear transformations, however, we need to
specify a measurement model.

The measurement model determines how distance in a frame region relates to
the ranges of the variables defining that region. Measurement models are reflected
in the axes, scales, legends, and other annotations that demarcate a chart’s frame.
Measurement models determine how values are represented (e.g., as categories or
magnitudes) and what the units of measurement are.

13.4.1 Axiomatic Measurement

In constructing scales for statistical charts, it helps to know something about the
function used to assign values to objects. Stevens (1946) developed a taxonomy of
such functions based on axioms of measurement. Stevens identified four basic scale
types: nominal, ordinal, interval, and ratio.
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To define a nominal scale, we assume there exists at least one equivalence class
together with a binary equivalence relation (�) that can be applied to objects in the
domain (e.g., the class of this object is the same as the class of that object). For
a domain of objects D and a set of values X.d/; d 2 D, we say that a scale is
nominal if

di � dj ” X.di/ D X.dj /; 8 di ; dj 2 D :

To define an ordinal scale, we assume there exists a binary total order relation (�)
that can be applied to objects in the domain (e.g., this stone is heavier than that
stone). We then say that a scale is ordinal if

di � dj ” X.di/ > X.dj /; 8 di ; dj 2 D :

To define an interval scale, we assume there exists a symmetric concatenation
operation (˚) that can be applied to objects in the domain (e.g., the length of this
stick appended to the length of that stick). We then say that a scale is interval if

di ˚ dj � dk ” X.di/CX.dj / D X.dk/; 8 di ; dj ; dk 2 D :

To define a ratio scale, we assume there exists a magnitude comparison operation
(˛) that can be applied to objects in the domain (e.g., the ratio of the brightness of
this patch to the the brightness of that patch). We then say that a scale is ratio if

di ˛ dj � dk ” X.di/=X.dj / D X.dk/; 8 di ; dj ; dk 2 D :

Axiomatic scale theory is often invoked by practitioners of data mining and
graphics, but it is not sufficient for determining scales on statistical graphics
produced by chart algebra. The blend operation, for example, allows us to union
values on different variables. We can require that blended variables share the same
measurement level (e.g., diastolic and systolic blood pressure), but this will not
always produce a meaningful scale. For example, we will have a meaningless
composite scale if we attempt to blend height and weight, both presumably ratio
variables. We need a different level of detail so that we can restrict the blend
operation more appropriately.

13.4.2 Unit Measurement

An alternative scale classification is based on units of measurement. Unit scales
permit standardization and conversion of metrics. In particular, the International
System of Units (SI) (Taylor 1997) unifies measurement under transformation rules
encapsulated in a set of base classes. These classes are length, mass, time, electric
current, temperature, amount of substance, and luminous intensity. Within the base
classes, there are default metrics (meter, kilogram, second, etc.) and methods for
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Table 13.2 Typical unit measurements

Length Mass Temperature Time Volume Currency

meter kilogram kelvin second liter dollar
point gram rankine minute teaspoon euro
pica grain celsius hour tablespoon pound
inch slug fahrenheit day cup yen
foot carat week pint rupee
yard month quart dinar
mile quarter gallon
furlong year bushel
fathom century barrel

converting from one metric to another. From these base classes, a set of derived
classes yields measurements such as area, volume, pressure, energy, capacitance,
density, power, and force. Table 13.2 shows some examples of several SI base
classes, derived classes, and an example of an economic base class that is not in
SI. The currency class is time dependent, since daily exchange rates determine
conversion rules and an inflation adjustment method varies with time.

Most of the measurements in the SI system fit within the interval and ratio
levels of Stevens’ system. There are other scales fitting Stevens’ system that are not
classified within the SI system. These involve units such as category (state, province,
country, color, species), order (rank, index), and measure (probability, proportion,
percent). And there are additional scales that are in neither the Stevens nor the SI
system, such as partial order.

For our purposes, unit measurement gives us the level of detail needed to
construct a numerical or categorical scale. We consider unit measurement a form of
strong typing that enables reasonable default behavior. Because of the class structure
and conversion methods, we can handle labels and relations for derived quantities
such as miles-per-gallon, gallons-per-mile, and liters-per-kilometer. Furthermore,
automatic unit conversion within base and derived classes allows meaningful blends.
As with domain check overrides in a database (Date 1990), we allow explicit type
overrides for the blend operation.

13.4.3 Transformations

We frequently compute transformations of variables in constructing graphics.
Sometimes, we employ statistical transformations to achieve normality so that we
can apply classical statistical methods such as linear regression. Other times, we
transform to reveal local detail in a graphic. It helps to apply a log transform, for
example, to stretch out small data values in a display. We might do this even when
not applying statistical models.

These types of transformations fall within the scale stage of the grammar of
graphics system. Because GOG encapsulates variable transformations within this
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Fig. 13.7 city � .pop1980C pop2000/, ylog

stage, it accomplishes two tasks at the same time: 1) the values of the variables
are transformed prior to analysis and display, and 2) nice scale values for axes and
legends are computed based on the transformation. Figure 13.7 shows an example
of this process for the city data. In order to highlight population changes in small
cities, we represent the populations on a log scale. The algebraic expression is the
same as in Fig. 13.5: city � .pop1980C pop2000/. Now we see that most of
the cities gained population between 1980 and 2000 but half the US namesakes lost
population.

13.5 Statistics

Visualization and statistics are inseparable. Statisticians have known this for a long
time, but non-statisticians in the visualization field have largely ignored the role
of statistics in charts, maps, and graphics. Non-statisticians often believe that
visualization follows data analysis. We aggregate, summarize, model, and then
display the results. In this view, visualization is the last step in the chain and statistics
is the first.

In GOG, statistics falls in the middle of the chain. The consequence of this
architecture is that statistical methods are an integral part of the system. We can
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construct dynamic graphics, in which statistical methods can be changed (for
exploratory purposes) without altering any other part of the specification and
without restructuring the data. By including statistical methods in its architecture,
GOG also makes plain the independence of statistical methods and geometric
displays. There is no necessary connection between regression methods and curves
or between confidence intervals and error bars or between histogram binning and
histograms.

In GOG, the statistics component receives a varset, computes various statistics,
and outputs another varset. In the simplest case, the statistical method is an identity.
We do this for scatterplots. Data points are input and the same data points are output.
In other cases, such as histogram binning, a varset with n rows is input and and
a varset with k rows is output, where k is the number of bins (k < n). With smoothers
(regression or interpolation), a varset with n rows is input and and a varset with k
rows is output, where k is the number of knots in a mesh over which smoothed
values are computed. With point summaries (means, medians, : : :), a varset with
n rows is input and a varset with one row is output. With regions (confidence
intervals, ranges, : : :), a varset with n rows is input and and a varset with two rows is
output.

Understanding how the statistics component works reveals an important reason
for mapping values to cases in a varset rather than the other way around. If

A D ŒR; fh�i; h�; �i; : : :g; f1:5! h1i; 2:7! h2i; 1:8! h3ig� ;

then
mean.A/ D ŒR; fh�i; h�; �i; : : :g; f2:0! h1; 2; 3ig� :

Notice that the list of caseIDs that is produced by mean./ is contained in the
one row of the output varset. We do not lose case information in this mapping, the
way we do when we compute results from an ordinary SQL query on a database
or when we compute a data cube for an OLAP or when we pre-summarize data to
produce a simple graphic. This aspect of GOG is important for dynamic graphics
systems that allow drill-down or queries regarding metadata when the user hovers
over a particular graphic element.

Figure 13.8 shows an application of a statistical method to the city data. We
linearly regress 2000 population on 1980 population to see if population growth
is proportional to city size. On log-log scales, the estimated values fall on a line
whose slope is greater than 1, suggesting that larger cities grow faster than smaller.
Ordinarily, we would draw a line to represent the regression and we would include
the data points as well. We would also note that Lagos grew at an unusual rate
(with a Studentized residual of 3.4). Nevertheless, our main point is to show that
the statistical regression produces data points that are exchangeable with the raw
data insofar as the entire GOG system is concerned. How we choose to represent
the regressed values graphically is the subject of the next section.
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13.6 Geometry

GOG presumes no connection between a statistical method and a geometric
representation. Histogram bins need not be represented by histograms. Tukey
schematic plots (his original word for box plots) need not be represented by boxes
and whiskers. Regressions need not be represented by lines or curves. Separating
geometry from data (and from other graphical aspects such as coordinate systems) is
what gives GOG its expressive power. We choose geometric representation objects
independently of statistical methods, coordinate systems, or aesthetic attributes.

As Fig. 13.1 indicates, the geometry component of GOG receives a varset and
outputs a geometric graph. A geometric graph is a subset of Rn. For our purposes,
we will be concerned with geometric graphs for which 1 � n � 3. Geometric
graphs are enclosed in bounded regions:

Bn � Œa1; b1� � : : : � Œan; bn�

These intervals define the edges of a bounding box or region in n-dimensional space.
There are two reasons we need bounded regions. First, in order to define certain
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useful geometric graphs, we need concepts like the end of a line or the edge of
a rectangle. Second, we want to save ink and electricity. We don’t want to take
forever to compute and draw a line.

Geometric graphs are produced by graphing functions F W Bn ! Rn that have
geometric names like line./ or tile./. A geometric graph is the image of F. And
a graphic, as used in the title of this chapter, is the image of a graph under one or
more aesthetic functions. Geometric graphs are not visible. As Bertin (1967) points
out, visible elements have features not present in their geometric counterparts.

Figures 13.9 and 13.10 illustrate the exchangeability of geometry and statistical
methods. The graphics are based on UN data involving 1990 estimates of female
life expectancy and birth rates for selected world countries. Figure 13.9 shows
four different geometric graphs – point, line, area, and bar – used to represent
a confidence interval on a linear regression. Figure 13.10 shows one geometric
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Fig. 13.9 Different graph types, same statistical method
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Fig. 13.10 Different statistical methods, same graph type

graph used to represent four different statistical methods – local mean, local range,
quadratic regression, and linear regression confidence interval.

This exchangeability produces a rich set of graphic forms with a relatively small
number of geometric graphs. Table 13.3 contains these graphing methods. The
point./ graphing function produces a geometric point, which is an n-tuple. This
function can also produce a finite set of points, called a multipoint or a point cloud.
The set of points produced by point./ is called a point graph.

The line./ graphing function function is a bit more complicated. Let Bm be
a bounded region in Rm. Consider the function F W Bm ! Rn, where n D mC 1,
with the following additional properties:

1. The image of F is bounded, and
2. F.x/ D .v; f .v//, where f W Bm ! R and v D .x1; : : : ; xm/ 2 Bm.
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Table 13.3 Geometric graphs

Relations Summaries Partitions Networks

Point Schema Tile Path
Line (surface) Contour Link
Area (volume)
Bar (interval)
Histobar

If m D 1, this function maps an interval to a functional curve on a bounded plane.
And if m D 2, it maps a bounded region to a functional surface in a bounded
3D space. The line./ graphing function produces these graphs. Like point./, line./
can produce a finite set of lines. A set of lines is called a multiline. We need
this capability for representing multimodal smoothers, confidence intervals on
regression lines, and other multifunctional lines.

The area./ graphing function produces a graph containing all points within
the region under the line graph. The bar./ graphing function produces a set of
closed intervals. An interval has two ends. Ordinarily, however, bars are used to
denote a single value through the location of one end. The other end is anchored
at a common reference point (usually zero). The histobar./ graphing function
produces a histogram element. This element behaves like a bar except a value maps
to the area of a histobar rather than to its extent. Also, histobars are glued to each
other. They cover an interval or region, unlike bars.

A schema is a diagram that includes both general and particular features in
order to represent a distribution. We have taken this usage from Tukey (1977), who
invented the schematic plot, which has come to be known as the box plot because
of its physical appearance. The schema./ graphing function produces a collection of
one or more points and intervals.

The tile./ graphing function tiles a surface or space. A tile graph covers and
partitions the bounded region defined by a frame; there can be no gaps or overlaps
between tiles. The Latinate tessellation (for tiling) is often used to describe the
appearance of the tile graphic.

A contour./ graphing function produces contours, or level curves. A contour
graph is used frequently in weather and topographic maps. Contours can be used to
delineate any continuous surface.

The network./ graphing function joins points with line segments (edges). Net-
works are representations that resemble the edges in diagrams of theoretic graphs.
Although networks join points, a point graph is not needed in a frame in order for
a network graphic to be visible.

Finally, the path./ graphing function produces a path that connects points such
that each point touches no more than two line segments. Thus, a path visits every
point in a collection of points only once. If a path is closed (every point touches
two line segments), we call it a circuit. Paths often look like lines. There are several
important differences between the two, however. First, lines are functional; there
can be only one point on a line for any value in the domain. Paths may loop, zigzag,
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and even cross themselves inside a frame. Second, paths consist of segments that
correspond to edges, or links between nodes. This means that a variable may be
used to determine an attribute of every segment of a path.

Figure 13.11 contains two geometric objects for representing the regression we
computed in Fig. 13.8. We use a point for representing the data and a line for
representing the regression line.

13.7 Coordinates

The most popular types of charts employ Cartesian coordinates. The same real
tuples in the graphs underlying these graphics can be embedded in many other
coordinate systems, however. There are many reasons for displaying graphics in
different coordinate systems. One reason is to simplify. For example, coordinate
transformations can change some curvilinear graphics to linear. Another reason
is to reshape graphics so that important variation or covariation is more salient
or accurately perceived. For example, a pie chart is generally better for judging
proportions of wholes than is a bar chart (Simkin and Hastie 1987). Yet another
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reason is to match the form of a graphic to theory or reality. For example, we might
map a variable to the left-closed and right-open interval Œ0; 1/ on a line or to the
interval Œ0; 2�/ on the circumference of a circle. If our variable measures defects
within a track of a computer disk drive in terms of rotational angle, it is usually
better to stay within the domain of a circle for our graphic. Another reason is to
make detail visible. For example, we may have a cloud with many points in a local
region. Viewing those points may be facilitated by zooming in (enlarging a region
of the graphic) or smoothly distorting the local area so that the points are more
separated in the local region.

Wilkinson (1999) contains many examples of ordinary charts rendered in
different coordinate systems. A simple example suffices for the data in this chapter.
Figure 13.12 shows a transposed version of Fig. 13.7. The result of this coordinate
transformation (a rotation composed with a reflection) is to make the city names
more readable.

13.8 Aesthetics

The term aesthetics derives from a Greek word that means perception. The derivative
modern meanings of beauty, taste, and artistic criteria arose in the eighteenth
century. We have chosen the name aesthetics to describe the class of functions that
turn theoretical graphs into perceivable graphics because of its original connotations
and because the modern word perception is subjective rather than objective;
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Table 13.4 Aesthetics
Form Surface Motion Sound Text

Position Color Direction Tone Label
Size Texture Speed Volume
Shape Blur Acceleration Rhythm
Rotation Transparency Voice

perception refers to the perceiver rather than the object. Aesthetics turn graphs into
graphics so that they are perceivable, but they are not the perceptions themselves.
A modern psychologist would most likely call aesthetics in this sense stimuli,
aspects, or features, but these words are less germane to our purpose.

Table 13.4 summarizes these aesthetic attributes. We have grouped these
attributes in five categories: form, surface, motion, sound, and text. This is not
intended to be an exhaustive list; other attributes, such as odor, can be devised. The
color aesthetic has three components: hue, brightness, and saturation (other color
components are possible). The texture aesthetic includes components of pattern,
granularity, and orientation.

Seven of these attributes are derived from the visual variables of Bertin (1967):
position (position), size (taille), shape (forme), orientation (orientation), brightness
(valeur), color (couleur), and granularity (grain). Bertin’s grain is often translated
as texture, but he really means granularity (as in the granularity of a photograph).
Granularity in this sense is also related to the spatial frequency of a texture.

These aesthetic attributes do not represent the aspects of perception investigated
by psychologists. This lack of fit often underlies the difficulty graphic designers
and computer specialists have in understanding psychological research relevant
to graphics and the corresponding difficulty psychologists have with questions
asked by designers. Furthermore, these attributes are not ones customarily used
in computer graphics to create realistic scenes. They are not even sufficient
for a semblance of realism. Notice, for example, that pattern, granularity, and
orientation are not sufficient for representing most of the textures needed for
representing real objects. Instead, these attributes are chosen in a tradeoff between
the psychological dimensions they elicit and the types of routines that can be
implemented in a rendering system. Specifically:

• An attribute must be capable of representing both continuous and categorical
variables.

• When representing a continuous variable, an attribute must vary primarily on
one psychophysical dimension. In order to use multidimensional attributes such
as color, we must scale them on a single dimension such as hue or brightness,
or compute linear or nonlinear combinations of these components to create
a unidimensional scale.

• An attribute does not imply a linear perceptual scale. In fact, few aesthetic
attributes scale linearly. Some attributes such as hue scale along curvilinear
segments in two- or three-dimensional space. All linear scales are unidimensional
but not all unidimensional scales are linear.
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• A perceiver must be able to report a value of a variable relatively accurately
and effortlessly when observing an instance of that attribute representing that
variable.

• A perceiver must be able to report values on each of two variables relatively
accurately upon observing a graphic instantiating two attributes. This task
usually, but not necessarily, requires selective attention. This criterion probably
isn’t achievable for all of our attributes and may not even be achievable for any
pair of them. But any attribute that is clearly non-separable with another should
be rejected for our system. It is too much to expect, of course, that higher order
interactions among attributes be non-existent. Much of the skill in graphic design
is knowing what combinations of attributes to avoid.

• Each attribute must name a distinct feature in a rendering system. We cannot
implement an attribute that does not uniquely refer to a drawable (or otherwise
perceivable) feature. An attribute cannot be mapped to a miscellaneous collection
of widgets or controls, for example.

We have attempted to classify aesthetics so that they are orthogonal in a design
sense. One must not assume that this implies they are uncorrelated in our perceptual
mechanisms, however. Orthogonalization in design means making every dimension
of variation that is available to one object available to another. How these variations
are perceived is another matter. Many aesthetic attributes, even ones such as size or
position that are usually considered visual, need not be perceived visually. There is
nothing in the definition of a graphic to limit it to vision. Provided we use devices
other than computer screens and printers, we can develop graphical environments
for non-sighted people or for those unable to attend to a visual channel because,
perhaps, they are busy, restrained, or multiprocessing. Touch, hearing, even smell
can be used to convey information with as much detail and sensitivity as can vision.

Every one of the figures in this chapter incorporates several aesthetics. Without
aesthetic functions, they would not be visible. Consequently, we will not add a figure
to illustrate other aesthetics, particularly since we are constrained in publishing
format. Note, however, that in addition to using the position aesthetic function in
every graphic, we have employed shape to differentiate symbols. Note, also, that
position aesthetics are usually referenced by axes and shape and other aesthetics are
usually referenced by legends.

Our discussion of the seven primary GOG components ends here. But there are
several important topics remaining. We will first examine issues in graphics layout,
and then conclude with a discussion of the relation between graphics algebra and
statistical design models.

13.9 Layout

Chart algebra does not determine the physical appearance of charts plotted on
a screen or paper. It simply produces a set of tuples .x1; : : : ; xp/ that can be rendered
using geometric primitives and a layout interpreter. If we have 2-tuples, then we can
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render them directly on a computer screen or piece of paper. If we have 3-tuples,
then we can use a perspective projection to render them on the plane. Higher-order
tuples require a layout scheme to embed all dimensions in the plane. Various layout
schemes are attempts to solve a graphic representation problem: how to transform
a p-dimensional vector space to a 2-dimensional space so that we can perceive
structures in the higher dimensional space by examining the 2-dimensional space.
We will discuss several approaches in this section.

Projection

One scheme is to employ a linear or nonlinear projection from p-dimensions to two.
This may cause loss of information because a projection onto a subspace is many-to-
one. Also, projection is most suitable for displaying points or fV;Eg graphs. It is less
suitable for many geometric chart types such as bars and pies. Nevertheless, some
2D projections have been designed to capture structures contained in subspaces,
such as manifolds, simplices, or clusters (Friedman 1987). Other popular projection
methods are principal components and multidimensional scaling (Hastie et al.
2001).

Sets of Functions

A second possibility is to map a set of n points in Rp one-to-one to a set of n
functions in R2. A particularly useful class of functions is formed by taking the first
p terms in a Fourier series as coefficients for .x1; : : : ; xp/ (Andrews 1972). Another
useful class is the set of Chebysheff orthogonal polynomials. A popular class is
the set of p � 1 piecewise linear functions with .x1; : : : ; xp/ as knots, often called
parallel coordinates (Inselberg 1984; Wegman 1985).

An advantage of function space representations is that there is no loss of
information, since the set of all possible functions for each of these types in R2 is
infinite. Orthogonal functions (such as Fourier and Chebysheff) are useful because
zero inner products are evidence of linear independence. Parallel coordinates
are useful because it is relatively easy to decode values on particular variables.
A disadvantage of functional representations is that manifolds, solids, and distances
are difficult to discern.

Recursive Partitioning

A third possibility is recursive partitioning. We choose an interval Œu1; u2� and
partition the first dimension of Rp into a set of connected intervals of size .u2�u1/,
in the same manner as histogram binning. This yields a set of rectangular subspaces
of Rp . We then partition the second dimension of Rp similarly. This second partition
produces a set of rectangular subspaces within each of the previous subspaces. We
continue choosing intervals and partitioning until we finish the last dimension. We
then plot each subspace in an ordering that follows the ancestry of the partitioning.
Recursive partitioning layout schemes have appeared in many guises: Rp 7! R3
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(Feiner and Beshers 1990), Rp 7! R2 (Mihalisin et al. 1991), R4 7! R2 (Becker
et al. 1996).

There are several modifications we may make to this scheme. First, if a dimension
is based on a categorical variable, then we assume .u2 � u1/ D 1, which assures
one partition per category. Second, we need not partition a dimension into equal
intervals; instead, we can make Œu1; u2� adaptive to the density of the data (Wilkinson
1999, page 186). Third, we can choose a variety of layouts for displaying the
nodes of the partitioning tree. We can display the cells as an n-ary tree, which is
the method used by popular decision-tree programs. Or, we can alternate odd/even
dimensions by plotting horizontally/vertically. This display produces a 2D nested
table, which has been variously named a mosaic (Hartigan and Kleiner 1981) or
treemap (Johnson and Schneiderman 1991). We use this latter scheme for the figures
in this article.

This rectangular partitioning resembles a 2D rectangular fractal generator. Like
simple projection, this method can cause loss of information because aggregation
occurs within cells. Nevertheless, it yields an interpretable 2D plot that is familiar
to readers of tables.

Because recursive partitioning works with either continuous or categorical vari-
ables, there is no display distinction between a table and a chart. This equivalence
between tables and graphs has been noted in other contexts (Pedersen et al. 2002;
Shoshani 1997). With recursive partitioning, we can display tables of charts and
charts of tables.

13.10 Analytics

If conclusions based on statistical charts are to be useful, we must identify and
interpret the statistical models underlying charts. A statistical model determines how
the location of a representation element (point, line, : : :) in a frame (a measurable
region of representation) is computed from the values of a variable. Statistical
models usually (but not necessarily) incorporate error terms and help us to articulate
the domains of generalizations and inferences we make from examining a chart.
Glymour et al. (1996) summarize these issues from a data mining context. Because
chart algebra is based on statistical design algebras, it can be used to generate
statistical models for visual data mining or predictive analytics.

This section presents the statistical model equivalents of chart algebra expres-
sions. In each subsection, we show the chart algebra notation on the left of each
equivalence expression and the statistical model notation on the right. The terms on
the left comprise varsets and the terms on the right comprise variables. Note that
some symbols (e.g., +) are common to both notations but have different meanings.
The general linear statistical models presented in this section are due to (Fisher
1925, 1935). More recent introductions to the design notation used for statistical
models are (Heiberger 1989) and (Kutner et al. 1996).
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13.10.1 Statistical Model Equivalents

In the following subsections, we assume a functional modelZ D f .X; Y /, whereZ
is a (possibly multivariate) variable.Z corresponds to a varset Z, which itself might
be produced from a chart algebra expression. In statistical terms, we sometimes call
Z a dependent variable and X and Y independent variables. In this section, we
ignore Z and focus on expressions involving X and Y . These expressions are used
to construct statistical models that help to predict or estimate Z.

Cross

X � Y � C CX C Y CXY
The cross operator corresponds to a fully factorial experimental design specification.
This design employs a product set that includes every combination of levels of
a set of experimental factors or treatments. The terms on the right of the similarity
represent the linear model for fitting fully factorial designs. The terms in the
model are:

C W constant term (grand mean)

X W levels of factor X (X main effect)

Y W levels of factor Y (Y main effect)

XY W product of factors X and Y(interactions)

We could use boldface for the variables on the right because the most general
form of the model includes factors (multidimensional categorical variables) having
more than one level. These multivariate terms consist of sets of binary categorical
variables whose values denote presence or absence of each level in the factor.
Alternatively, terms based on continuous variables are called covariates.

An example of a two-way factorial design would be the basis for a study of
how teaching method and class size affect the job satisfaction of teachers. In such
a design, each teaching method (factor X) is paired with each class size (factor Y)
and teachers and students in a school are randomly assigned to the combinations.

Nest
X=Y � C C Y CX.Y /

The terms on the right of the similarity are:

C W constant term

Y W levels of factor Y (Y main effect)
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X.Y / W X levels nested within levels of Y

The term X.Y / represents the series X j .Y D Y1/CX j .Y D Y2/C : : :
Notice that there is no interaction term involving X and Y because X is nested

within Y . Not all combinations of the levels of X and Y are defined. An example
of a nested design would be the basis for a study of the effectiveness of different
teachers and schools in raising reading scores. Teachers are nested within schools
when no teacher in the study can teach at more than one school. With nesting, two
teachers with the same name in different schools are different people. With crossing,
two teachers with the same name in different schools may be the same person.

Blend

XC Y � C C FXY
The terms on the right of the similarity are:

C W constant term

FXY W function of X and Y .e.g.; X � Y /

The blend operator usually corresponds to a time series design. In such a design,
we predict using functions of a time series. When the blend involves dependent
variables, this is often called a repeated measures design. The simplest case is
a prediction based on first differences of a series. Time is not the only possible
dimension for ordering variables, of course. Other multivariate functional models
can be used to analyze the results of blends (Ramsay and Silverman 1997).

An example of a repeated measures design would be the basis for a study of
improvement in reading scores under different curricula. Students are randomly
assigned to curriculum and the comparison of interest involves differences between
pre-test and post-test reading scores.

It would appear that analytics have little to do with the process of building a chart.
If visualization is at the end of a data-flow pipeline, then statistics is simply a form
of pre-processing. In our model, however, analytics are an intrinsic part of chart
construction. Through chart algebra, the structure of a graph implies a statistical
model. Given this model, we can employ likelihood, information, or goodness-of-fit
measures to identify parsimonious models. We will explore some graphic uses of
statistical models in this section.

13.10.2 Subset Model Fitting

The factorial structure of most chart algebra expressions can produce rather complex
models. We need to consider strategies for selecting subset models that are adequate
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Fig. 13.13 Model subset tree

fits to the data. We will discuss one simple approach in this section. This approach
involves eliminating interactions (products of factors) in factorial designs.

Interactions are often regarded as nuisances because they are difficult to interpret.
Comprehending interactions requires thinking about partial derivatives. A three-way
interaction XYZ, for example, means that the relation between X and Y depends
on the level ofZ. And the relation betweenX andZ depends on the level of Y . And
the relation between Y andZ depends on the level ofX . Without any interaction, we
can speak about these simple relations unconditionally. Thus, one strategy for fitting
useful subset models is to search for subsets with as few interactions as possible. In
this search, we require that any variables in an interaction be present as a main-effect
in the model.

Figure 13.13 shows a submodel tree for the three-way crossing X � Y � Z.
Not all possible submodels are included in the tree, because the convention in
modeling factorial designs is to include main effects for every variable appearing
in an interaction. This reduces the search space for plausible submodels. By using
branch-and-bound methods, we can reduce the search even further. Mosteller and
Parunak (1985) and Linhart and Zucchini (1986) cover this area in more detail.

13.10.3 Lack of Fit

Statistical modeling and data mining focus on regularity: averages, summaries,
smooths, and rules that account for the significant variation in a dataset. Often,
however, the main interest of statistical graphics is in locating aspects that are
discrepant, surprising, or unusual: under-performing sales people, aberrant voting
precincts, defective parts.
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An outlier is a case whose data value and fitted value (using some model) are
highly discrepant relative to the other data-fitted discrepancies in the dataset. (Bar-
nett and Lewis 1994). Casewise discrepancies are called residuals by statisticians.
Outliers can be flagged in a display by highlighting (e.g., coloring) large residuals in
the frame. Outliers are only one of several indicators of a poorly fit model, however.
Relative badness-of-fit can occur in one or more cells of a table, for example. We
can use subset modeling to highlight such cells in a display. Sarawagi et al. (1998)
do this for log-linear models. Also, we can use autocorrelation and cross-correlation
diagnostic methods to identify dependencies in the residuals and highlight areas in
the display where this occurs.

13.10.4 Scalability

Subset design modeling is most suited for deep and narrow (many rows, few
columns) data tables or low-dimensional data cubes. Other data mining methods are
designed for wide data tables or high-dimensional cubes (Hand et al. 2001; Hastie
et al. 2001). Subset design modeling makes sense for visualization applications
because the design space in these applications does not tend to be high-dimensional.
Visual data exploration works best in a few dimensions. Higher-dimensional
applications work best under the guidance of other data mining algorithms.

Estimating design models requires O.n/ computations with regard to cases,
because only one pass through the cases is needed to compute the statistics for
estimating the model. Although computing design models can be worse-caseO.p2/
in the number of dimensions, sparse matrix methods can be used to reduce this
overhead because many of the covariance terms are usually zero.

13.10.5 An Example

Smoothing data reveals systematic structure. Tukey (1977) used the word in
a specific sense, by pairing the two equations

data D fitC residual

data D smoothC rough

Tukey’s use of the word is different from other mathematical meanings, such as
functions having many derivatives.

We smooth data in graphics to highlight selected patterns in order to make
inferences. We present an example involving injury to the heads of dummies in
government frontal crash tests. Figure 13.14 shows NHTSA crash test results
for selected vehicles tested before 1999. The dependent variable shown on the
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horizontal axis of the chart is the Head Injury Index computed by the agency. The
full model is generated by the chart algebra H � T=.M � V / �O . This expression
corresponds to the model:

H D C CM C V CO C T .MV /CMV CMO C VO COT .MV /CMVO

where the symbols are:

H W Head Injury Index

C W constant term (grand mean)

M W Manufacturer

V W Vehicle (car/truck)

O W Occupant (driver/passenger)

T W Model

This display is difficult to interpret. We need to fit a model and order the display
to reveal the results of the model fit. Figure 13.15 charts fitted values from the
following subset model:

H D C C V CO C T .MV /

Figure 13.15 has several notable features. First, the models are sorted according to
the estimated Head Injury Index. This makes it easier to compare different cells.
Second, some values have been estimated for vehicles with missing values (e.g.,
GM G-20 driver data). Third, the trends are smoother than the raw data. This is
the result of fitting a subset model. We conclude that passengers receive more head
injuries than drivers, occupants of trucks and SUVs (sports utility vehicles) receive
more head injuries than occupants of cars, and occupants of some models receive
more injuries than occupants of others.

13.11 Software

Four systems have so far implemented the algebra described in this chapter.
Wilkinson et al. (2000) developed a system called nViZn, which used the algebra
to present interactive graphics in a Web environment. Norton et al. (2001) used
the algebra to structure and display data in a real-time streaming environment;
their system is called Dancer. Wills (2002) developed a server-based presentation
graphics system with an XML schema for GOG; this system is called. ViZml. Stolte
et al. (2002) used the algebra to develop a visualization front-end for an OLAP; their
system is called Polaris.
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13.12 Conclusion

Many of the pieces that motivate graphics algebra have been lying around for
decades: experimental design algebras, relational algebras, table algebras. These
algebras emerged from separate disciplines, so that in most instances, researchers
have been unaware of developments in the other disciplines. What is new about chart
algebra is the explicit and formal equivalence between the data structures needed
for statistical models and the methods for displaying them in charts. In a general
sense, this equivalence allows us to think about manipulating data by manipulating
statistical representation elements of a chart.

The GOG project has had several purposes. One, of course, is to develop
statistical graphics systems that are exceptionally powerful and flexible. Another
is to understand the steps we all use when we generate charts and graphs. This
understanding leads to a formalization of the problem that helps to integrate the
miscellaneous set of techniques that have comprised the field of statistical graphics
over several centuries. Another purpose is to develop, ultimately, intelligent systems
that can 1) graph data without human specification and 2) read already published
statistical graphics to recover data and interpret relationships. Finally, we hope to
define problem specification and user interaction in a way that enables graphics
systems to be understood by ordinary people as well as by statisticians. By formally
relating display structure and statistical models, we can produce environments in
which users interact with data, receive guidance, and draw conclusions that are
based on appropriate statistical inferences.
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Chapter 14
Statistical User Interfaces

Sigbert Klinke

14.1 Introduction

A statistical user interface is an interface between a human user and a statistical
software package. Whenever we use a statistical software package we want to solve
a specific statistical problem. But very often at first it is necessary to learn specific
things about the software package.

Everyone of us knows about the “religious wars” concerning the question which
statistical software package/method is the best for a certain task; see Marron (1996)
and Cleveland and Loader (1996) and related internet discussions. Experienced
statisticians use a bunch of different statistical software packages rather than a single
one; although all of the major companies (at least the marketing departments) tell
us that we only need their software package.

Why do these wars, not only concerning statistical software packages, evolve?
One of the reasons is that we need time to learn about the software package besides
learning the statistical methodology. And the more time we need to learn to use the
software package, the more we are defending “our” software package. But if we
need to spend a lot of time for learning to use a statistical software package, then
the question, whether this software package really has a good user interface, arises?

The basic problem is that the development of statistical software is started by
experts of statistical methodology. Since they have to have a deep inside in their
special fields, most of them have a very limited view to problems of other users. We
generally do not consider the sex of the users, the ethnic or cultural background, the
statistical knowledge or other factors when we create a user interface.
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Thus the important questions we have to answer when we design a user interface
are: What does the user want to do with this software package? And how can he do
it effectively?

Fortunately, during years of development of software packages, we have col-
lected a lot of experience about human behavior and specific differences because of
sex, ethnic or cultural background and so on. In the book of Shneiderman (1998)
a lot of rules have been collected which should help the software developers to
avoid the worst problems. But the best way for developing a user interface is
a development cycle of designing, testing, redesigning, testing, redesigning, : : : This
will take a lot of time and money, but redesigning the basic components of a software
package at late development will be much more expensive or even impossible.

In this chapter only a subset of all statistical software packages, namely
DataDesk 6.0, GGobi 0.99, R 1.7.1, SPSS 11.0 (English version), SYSTAT 10,
XploRe 4.6 and Mathematica 4.3 will be used for illustrating purposes (see also the
section “Web references”). It covers a wide range of different statistical software
packages.

In all statistical software packages we can find errors in the user interface design.
User interface design is not a exact science as statistics, but it relies heavily on
the way how we perceive information and how we react to it. That includes that
in every design we will make errors before we can learn to avoid them in future.
Therefore a lot of theories are available, partially explanatory, partially predicting,
which should help us to design user interfaces.

14.2 The Golden Rules and the ISO Norm 9241

Complex statistical tasks require more and more complex statistical programs. In
consequence more complex user interfaces are needed to be developed. Software
developers recognized that common rules exist in simplifing the use of software
systems. Shneiderman (1998) published a summary of these rules known as the
“golden rules” of user interface design:

1. Achieve consistency
The first rule is the one which is most often violated, especially when teams of
people work together. Users expect that in similar situations the software behaves
similarly and requires the same actions from the user.

2. Use shortcuts
Beginners need a comfortable clear structured way to accomplish their task, but
power users of a software package want to do their work as quickly as possible.

3. Give informative feedback
Users need to have a feedback on their actions. The amount of the feedback
depends on the action and the user’s experience. Frequent actions require only
short answers whereas rare actions require more extended answers. Beginners
need more feedback whereas power users may just need acknowlegdement that
the task is finished.
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4. Design closed actions
Actions should have a clear structure with a start and a well-defined end. This
holds especially for dialogs and forms.

5. Offer error prevention and easy error handling
Software should not support erroneous input from the user and provide default
values. The user should be able to recover easily from errors. If a user can
revert his actions easily then this will increase his trustworthiness in the software
package.

6. Support user control
Users prefer to initiate actions in a software package. If a user believes that he
only reacts to the system he will experience a control loss.

7. Reduce memorization
Humans can only remember seven plus minus two information bits in their
short term memory Miller (1956). Extensive memorization to handle a software
package should be avoided.

A formalization of the rules can be found, partially in very detailed instruction,
in the ISO (International Standardization Organization) norm 9241. The norm
itself, which distinguishes between requirements and recommendations, consists of
17 parts:

1. General introduction
2. Guidance on task requirements
3. Visual display requirements
4. Keyboard requirements
5. Workstation layout and postural requirements
6. Environmental requirements
7. Display requirements with reflections
8. Requirements for displayed colors
9. Requirements for non-keyboard input devices

10. Dialogue principles
11. Usability statements
12. Presentation of information
13. User guidance
14. Menu dialogs
15. Command dialogs
16. Direct manipulation dialogs
17. Form-filling dialogs

14.3 Development of Statistical User Interfaces

In the past we have seen the development of software according to new concepts
in computer science. From the end of the 1960s/beginning of the 1970s when
computers became available till now, we can distinguish several phases. In the
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beginning we had non-interactive, batch oriented software packages, e.g. SAS and
SPSS. The idea of incremental programming and interaction lead to systems like
PRIM-9 (Tukey et al. 1973, 1974) or programming languages like BASIC. Another
paradigm was that the notation used should be compact, like in languages as in
APL or C. The availability of personal computers with window systems introduced
graphical user interface (GUI) in contrast to command line interfaces (CLI) also
to statistical software packages. As mentioned in the interview with J.E. Gentle
(Hardle 2004) statistical software packages nowadays should come with both
interfaces. During the last fifteen years we saw that team programming, reusability
of software, network/internet computing and access to databases had their impact on
programming languages (ADA, C++, Java, SQL) as well as on statistical software
packages like S/S-Plus, R, XploRe, Jasp, etc.

Before we start to develop a statistical software package and a user interface
(GUI or CLI), we should think about the kind of problems a user may have:

1. A user could formulate an inadequate goal, e.g. using Excel for semi-parametric
modeling.

2. A user could not find the right tool/method, since the developer uses inap-
propriate labels, e.g. the command paf in XploRe should better be named
selectrows.

3. A user could not be able to find or execute a specific method, e.g. in a statistical
programming language with a lot of commands and macros, he could loose the
overview. For example, languages like XploRe or R consist of a lot of commands,
macros and packages.

4. The feedback from the software package to a user action could be inappropriate
or misleading, e.g. the error message syntax error.

The first problem can not be solved with a better interface design, but so can
the latter three (Franzke 1995). We have two ways to solve them: either we make
a better user interface or the user has to spend a lot of time for learning about the
interface. One of the most time consuming design error is a subtle inconsistency, for
example if the parameter orders for nearly identical actions, either in formulas for
GUIs or commands in CLIs, are different. The user will always loose time to look
up these subtle differences.

Obviously we can not develop one user interface for all users. The slogan Know
your user (Hansen 1971) in detail (statistical background knowledge, cultural back-
ground, etc.) is an important building block to the success of a (statistical) software
package. We can distinguish three types of users: novice users who need to execute
a small set of simple exercises and need an informative feedback from the software
package. Periodic users who need support for forgotten execution sequences and
need to know how to extend the current software package. But they usually need
only a short feedback to an executed task. A power user is mainly interested in fast
answers and needs only very limited feedback. Some statistical software packages,
XploRe and R offer even multiple GUIs for different types of users.
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However, basic guidelines for all user types are:

1. Consistency in the appearance
2. Effective information control by the user
3. Minimal memorization and minimal data entry by the user
4. Flexible adaption of the data display
5. Compatibility between data entry and output

14.3.1 Graphical User Interfaces

For novice users it is clear that they prefer software with GUIs (see Temple, Barker
and Sloane, Inc. 1990), but for power users this is not quite clear, see Ulich et al.
(1991). There are some general drawbacks of GUIs:

1. They need valuable screen space for menus, icons, windows etc.
2. There is no consistent set of menus, icons and windows. We have to relearn them

for each software package.

A look at Fig. 14.1 shows the entry screens of different statistical software
packages. Here we find all elements forming a modern GUI: menu bar, toolbar(s)

Fig. 14.1 Entry screens of the statistical software packages, (a) XploRe, (b) SPSS, (c) DataDesk
and (d) SYSTAT
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and multiple windows. Note that a statistical user interface is more than a GUI:
design of the programming language, help system, basically every aspect in the
interface between a user and a statistical software package.

Some packages try to help a novice user with his next task. SPSS opens, after
starting the program, a dialogue box to load a dataset (see Fig. 14.1b). For R, which
can load all data objects from previous sessions automatically, such feature is not
necessary.

14.3.2 Toolbars

Although toolbars play a more and more important role in software nowadays,
we immediately notice the sparse toolbars (see Fig. 14.2), due to the fact that
we have no common set of icons. For example GGobi and DataDesk do not
offer any toolbar, XploRe, SPSS and R offer only toolbars related to standard
tasks, like opening, saving and printing programs, images etc. and specialized
software functions. Among the considered programs only SYSTAT offers toolbars
for standard statistical graphics (histogram, pie chart, boxplot, scatterplot and
scatterplot matrices) and tasks (descriptive statistics, two-way-tables, two-sample
t-test, ANOVA, correlations, linear regression, clustering and non-linear modeling).
But to learn the meaning of the icons may take some time.

14.3.3 Menus

The first parts of a software package we use are the menu bar, the menus and the
menu items. Menus can give a clear structure to the methods/actions of a software

Fig. 14.2 Menu bars and toolbars of the main windows of (a) GGobi, (b) SPSS, (c) DataDesk and
(d) SYSTAT



14 Statistical User Interfaces 421

package. Liebelt et al. (1982) have found that a proper organization of the menu
reduces the error rate to about 50%. Most statistical software packages have a very
clear separation of the tasks in the menu bar (see Fig. 14.2).

It might be distracting if the position of the menu items changes (Mitchell
and Shneiderman 1989). For unused menu items (not applicable tasks in the
current situation) it is preferable if they are grayed out and do not vanish from
the menu. Statistical software packages behave very differently. The menu bar in
XploRe and R changes heavily depending on the active window which can be very
disturbing to the user. It would have been better to attach an appropriate menu to
each window. Also in GGobi the menu changes depending on the active window:
compare Fig. 14.4a to Fig. 14.2a. Nevertheless this is less disturbing to the user
because additional menus appear only once in the menu bar and heavy changes
take place in the items of the Display menu which are invisible to the user.
The menu Display is empty after starting GGobi, but filled when a dataset is
loaded.

If we create a menu hierarchy we basically have two possibilities to organize
them: a small, deep hierarchy or a broad, flat hierarchy. Norman and Chin (1988)
found that broad, flat hierarchies lead to a better user performance. Most software
packages follow this concept intuitively, none of the software packages has a menu
depth larger than four.

Several orders of menu items within menus are possible: by time, by numbering,
by alphabet, by importance or by function. Card (1982) found that an alphabetical
order of menu items is better than a functional order. McDonald et al. (1983) showed
that the advantage of the alphabetical order is lost if each menu item consists of
a one line definition rather than of one meaningful known word. Nowadays all
statistical software packages prefer a functional order by separating the menu items
with horizontal lines into menu item groups. But within a menu item group the order
is unclear.

To achieve consistency within a menu system, the same terms should be used.
If we use one word items then they should be clearly separable, like “insert” and
“delete”. The exact difference between “change” and “correct” is unclear. Cyclic
menus, which means we can achieve the same task by different ways through the
menu hierarchy, should be avoided. Users become unsure where to find a specific
action; the same problem is well known from the World Wide Web.

The approach to put the most used menu items at the top and suppress the others,
may irritate the user. The irritation occurs not with the most used items, but with the
items which are used less often. Their position appears to be more or less randomly.
Thus, Sears and Shneiderman (1994) found that bringing only the most used items
to the top of the menu is an effective technique.

For power users shortcuts, e.g. through keyboard sequences or toolbars, are very
important. Often used menu items should get short shortcuts, e.g. Ctrl+O for open
a data set, whereas rarely used shortcuts can have longer keyboard sequences. Most
statistical software packages offer only the standard shortcuts coming from the
Windows operating system; only GGobi offers shortcuts for different view modes.
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Unfortunately, we have no common sets of shortcuts for a (statistical) task. We have
not even a common naming convention for menus, e.g. the statistical tasks are in the
Calcmenu in DataDesk, in the Statisticsmenu in SPSS and in the Analyze
menu in SYSTAT.

For an effective menu system design it is helpful to log the user choices and to
analyze them for improvements.

14.3.4 Forms and Dialog Boxes

The use of menus leads to another form of interaction with the user: forms and
dialog boxes. Basically they should:

• Have a meaningful title.
• Use a consistent and for the user well known terminology.
• Group information in a consistent and meaningful way.
• Minimize mouse movement and jump from one item to another item in a useful

way.
• Support error prevention.
• Allow for fast error correction.
• Provide default values, if possible.
• Indicate optional values clearly.
• Inform when the dialog or form has enough information.

Here, a very good example is SPSS. See as example in Fig. 14.3 four out of
six steps for reading ASCII data into SPSS. The six dialog boxes are grouped in
information about:

1. Reuse of old format.
2. Information about the arrangement of the variables.
3. Information about the arrangement of the cases.
4. Separation between single data.
5. Variable formats and names.
6. Saving the defined format.

The forms always provide default values, show the consequence of changing
a value in the bottom and allow easy navigation between forms forward and
backward. We can cancel the whole operation or finish it at any time. The last form
gives a clear signal when we are finished. The SPSS developers have designed all
these forms and dialogs very carefully.

However, we have to keep in mind that pure statistical programming languages,
like R or XploRe, will have to incorporate forms and dialog boxes in their
programming language. This turns out to be a difficult task.
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Fig. 14.3 Four out of six steps of reading ASCII data in SPSS. They provide a very clear, intuitive
interface even for unexperienced users for reading data

14.3.5 Windows

Usually statistical software packages use different windows to visualize data and
output. Figure 14.4 shows a scatterplot of the variables “percentage of lower
status people” and “median houseprice” of the Boston Housing data (Harrison and
Rubinfeld 1978). We easily find that the software packages have different methods
to handle output. SPSS and SYSTAT have a special independent output window
for text and graphic output. DataDesk, R (by default) and XploRe use the multiple
document interface (MDI) coming with the Windows operating system. Actually R
allows to switch between different types of handling windows (MDI/SDI). GGobi
creates a complete set of independent windows.

In GGobi and DataDesk the data in the windows is linked (see Fig. 14.5a). Thus
interactive brushing is very easy.

A problem of some statistical software packages is that the user can easily create
a lot of windows, see in Fig. 14.4 and even worse in Fig. 14.5 for DataDesk. But
a large number of windows can easily irritate the user. Statistical software packages
have tried to overcome this problem with different approaches: having separate
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Fig. 14.4 Scatterplot of the variables “percentage of lower status people” and “median house-
price” of the Boston Housing data in (a) R, (b) GGobi, (c) DataDesk and (d) SYSTAT

graphic types, for example the scatterplotmatrix in SPSS or trellis displays in R;
XploRe has a datatype for a graphical display which consists of single plots. The
idea is always the same: statistical information that belongs together should be
in one window. Another strategy is a virtual desktops (see the software package
VanGogh in Keller 2003) as we find them under Linux GUIs.

Power users prefer full-screen views (see Bury et al. 1985). Note that in Fig. 14.5
we tried to maximize the size of the graphics in R, SPSS and XploRe. SPSS
and SYSTAT follow partially such a strategy with separating clearly between
spreadsheet presentation of data and variables and output results. But Staggers
(1993) has shown that users work faster with compact information on one screen
rather than to scroll.

The grouping of information in a window plays an important role in GUI design.
Fitts (1954) developed an effective forecasting model for the time T for a movement
over a distance D to an object with width W

T D C1 C C2 log 2.2D=W /

with device dependent constants C1 and C2.
May be approaches like “The CAVE” (Cruz-Neira et al. 1993), a virtual reality

environment, will lead to more screen space.
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Fig. 14.5 (a) Linked scatterplot, histograms and barcharts in DataDesk. (b) Scatterplotmatrix of
three variables “average number of rooms”, “percentage of lower status people” and “median
houseprice” in SPSS. (c) Trellis display of the variables “percentage of lower status people” and
“median houseprice” conditioned on the variable “index of accessibility to radial highways” in
XploRe. (d) Trellis display of the same variables in R

The question of the contents of the windows is related to showing windows. Tufte
(1983, 1990) has shown proper and improper use of statistical graphics (see also
Chap. II.11). Modern statistical techniques, like data mining, but also exploratory
data analysis, has lead to principles of analysis like get an overview, zoom, select
and look to details.

14.3.6 Response Times

The productivity of a user depends heavily on the response time of a software
package to a user action. To achieve a good productivity we have to balance between
the speed of working and the error rate. Fast response times (<1 s) lead to faster
user work. Fast working increases the error rate because the user does not think
much about the current action since he is concentrated on the responses from the
software package. Slow response times (>15 s) lead to slower user work. Slow
working decreases the error rate because the user has time to think about the next
action. But if he makes a mistake he will loose time.
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The right amount of the response time depends also on user experiences, e.g.
if he sees that one software package reads a large dataset in 30 s whereas another
software package needs 3 m for the same dataset then he will assume something has
gone wrong. A power user is generally more impatient than a novice user. A partial
solution to the problem of slow response times is a progress bar which shows how
much time it will take till the end of the action.

Generally a user expects that simple actions, e.g. reading a small dataset, are
done fast and complex actions, e.g. building a model from a large dataset, can take
much longer time. The study of Martin and Corl (1986) found that the response
time for a complex statistical task does not matter much for productivity, whereas
the response time for a simple task (entering data) is linearly related to productivity.
A variation in response times (˙50%) does not matter much. In a set of mixed tasks
the user balances out: he thinks about the task when the response time is slow and
works fast if the response time is fast.

14.3.7 Catching the User Attention

In Fig. 14.4d we see that in SYSTAT the data editor stays on top, although we just
created a scatterplot in the underlying output window. But the user attention is still
directed to the data editor. Similar problems can be observed in other software.

Another point in GUI design we should consider is the way how we catch the
attention of the user. In statistical graphics Tufte (1983, 1990) has shown how the
user’s attention can be redirected from the data. In the same manner a too colorful
GUI may distract the user. Wickens (1992) analyzed how to catch the users attention
and gave some hints:

• Use 3 different fonts with 4 different sizes in 2 intensities.
• Use up to 4 standard colors, more colors have to be used with care.
• Use soft sounds when everything is okay, use hard sounds for warnings and

errors.

Nowadays operating systems offer a large variety of true-type fonts, nevertheless
most people use only a few fonts in their documents.

Especially the use of colors may create special problems. First, different user
may combine different reactions to the same color (cultural background); second, it
is known that in Europe and North America 8% of the population have problems in
recognizing a color correctly. The largest problem here is the red-green blindness,
both colors appear grey to such people.

The use of sound should only be an additional option. During teaching or when
working in PC-Pools it will distract other users.
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14.3.8 Command Line Interfaces and Programming Languages

In the beginning of the computer age all programs only had CLIs. One of the
largest statistical software packages which has survived from these times, SPSS,
still has a CLI. But it is hidden by a GUI and we can reach it via SPSS syntax
editor. Statistical programming languages, like R and XploRe, are more like CLIs
embedded in a GUI. Only statistical software packages like GGobi and DataDesk
are real GUI software, but even DataDesk has a (visual) programming language.

In the recent past we observed that statistical packages like R or XploRe have
a tendency to be split up between a GUI and a CLI. In fact on the R-Project page we
find more than one GUI for R.

CLI provides some advantages compared to a pure GUI. Some manipulations,
for example arithmetic transformation of data, can be done much faster with the
keyboard than with the mouse.

With a programming language we can achieve a precise and compact way to
manipulate and analyze data. We should be able to easily learn, read and write the
programming language. Some problems that can arise are:

• The design has too many objects and actions. A hierarchical approach like
organizing objects and actions in libraries may help here. However, R and
XploRe suffer both from an overwhelming number of packages, commands and
programs.

• Sometimes the names chosen for an action are to close to computer science and
not to statistics. Do we load, read, open or get a dataset (see also Table 14.1)?

• Inconsistent order of parameters for operations.

Modern statistical programming languages implement matrix algebra since
we can easily transfer expressions, e.g. for computing the coefficients of
a multiple linear regression, like .X>X/�1.X>Y / into a program (in XploRe:
inv(x’*x)*(x’*y)). This allows for fast error correction and fast
learning.

Caroll (1982) found that hierarchical (verb-object-qualifier) and symmetric
command sequences, like in Table 14.2 for linear regression, lead to the best user
performance and can be easily learned and remembered. The reality in software
packages is shown in the Table 14.3.

Again power users prefer rather short names whereas novice users can find
actions with long names more informative. It is the best to have both available,
like DoLinearRegression and DoLinReg or even dlr. Ehrenreich and Porcu
(1982) suggest rules to make (automatic) abbreviations and Schneider (1984)
proposes possible abbreviation methods:

• Use a simple rule to create abbreviations

– Truncation (most preferred by users)
– Deletion of vocals (DLnrRgrssn)
– Use last and/or first letter
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Table 14.1 Reading ASCII file with the boston housing data

Software Reading ASCII data

R x <- read.table("c:/data/bostonh.dat", header=FALSE)

SPSS GET DATA /TYPE = TXT
/FILE = ’c:databostonh.dat’
/DELCASE = LINE
/DELIMITERS = " "
/ARRANGEMENT = DELIMITED
/FIRSTCASE = 1
/IMPORTCASE = ALL
/VARIABLES = CRIM F7.2 ... MEDV F5.2 .

SYSTAT IMPORT "c:/data/bostonh.dat.dat" / TYPE=ASCII

XploRe x = read ("bostonh")

Table 14.2 Example of a hierarchical and symmetric command sequences in the context of linear
regression

do linear regression
do linear regression stepwise
do linear regression forward
do linear regression backward
plot linear regression line
plot linear regression residuals

Table 14.3 Simple linear regression with intercept between the variable “percentage of lower
status people” (lstat) and the dependent variable “median houseprice” (medv) of the Boston
Housing data in different statistical programming languages

Software Linear regression commands

R res <- lm (medv � lstat)
SPSS REGRESSION

/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT lstat
/METHOD=ENTER medv .

SYSTAT REGRESS
USE "c:/data/bostonh.dat"
MODEL MEDV = CONSTANT + LSTAT
ESTIMATE

XploRe res = linreg (lstat, medv)
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– Standard abbreviation, e.g. QTY for Quantity
– Phonetical abbreviation, e.g. XQT for Execute

• Use a (simple) second rule for conflicts
• Apply the second rule very rarely
• Abbreviations with result from the second rule should have a special symbol

included
• User should know both rules
• Abbreviations should have a fixed length
• The software package should always use the long name, e.g. in error messages

Modern editors, e.g. the Visual Basic editor in Microsoft Office, support the
writing of programs with semi-automatic command completion.

A future dream is that (statistical) software understands natural language. What
has proven to be valuable to the user is the generation of a report of results in natural
language.

Table 14.4 Error messages in different software packages

Software Example Error message

XploRe proc()=test(x) Syntax Error
if(x=1) in test line: 2
"true" Parse Error
else on position 5 in line 2
"false"
endif
endp
test(0)

R if (x=1) "true" else "false" Error: syntax error

SPSS as in Table 14.3, just /DEPENDENT changed to /INDEPENDENT

Warning

Unrecognized text appears on the REGRESSION command. The only
recognized subcommands are: Global options: DESCRIPTIVES MATRIX
MISSING WIDTH; Case selection/weight: REGWGT SELECT;
Variable list: VARIABLES; Equation options: CRITERIA NOORIGIN
ORIGIN STATISTICS; Dependent variable(s): DEPENDENT;
Equ. methods: METHOD BACKWARD ENTER FORWARD REMOVE
STEPWISE TEST; Residuals: RESIDUAL CASEWISE PARTIALPLOT
SAVE SCATTERPLOT OUTFILE. Text found: INDEPENDENT
This command is not executed
*WARNING* REGRESSION syntax scan continues. Further
diagnostics from this command may be misleading – interpret
with care Misplaced REGRESSION METHOD subcommand – The
METHOD subcommand must follow a DEPENDENT subcommand
or another METHOD subcommand. It cannot follow any other
subcommand. Check for a missing DEPENDENT subcommand.
Text found: METHOD
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14.3.9 Error Messages

The most crucial response for a user is an error or warning message from the
system. Error messages can be not very helpful, e.g. in XploRe or R syntax
error in Table 14.4. A better solution would be to tell the user what the problem
exactly was (use x==1 instead x=1). But SPSS tells the user too much and the
problem disappears behind the text. However, the ability of SPSS for abbreviating
is impressive. From the linear regression example in Table 14.3 the parameter
/NOORIGIN can be shortened to /NOO. Further shortening to /NO produces an
error message.

The language in an error message and warning should be positive, constructive,
meaningful and precise. Shneiderman (1982) found in a study that the error rate
could be reduced by 28% with well constructed error messages.

Again it is a good idea to log the error message to see which ones are needed to
be improved and which parts of the software package has to be improved.

14.3.10 Help System

Nowadays software is always accompanied with online help systems and tuto-
rials, mostly HTML-based. A help system should give the user quick access to
the information he needs. Depending on the type of users, they have different
approaches to use a help system. Reference or alphabetical guides are useful for
power users, but novice users learn most from a lot of examples. Consequently the
help system of modern statistical software is mostly composed of several parts:
reference/alphabetical guide, introductory tutorials, indices and a search engine.

In Fig. 14.6 we see the entry page of help systems. The variation in the software
packages is large, from very sparse help systems upto detailed explanations how to
use the help system.

Finding information in the help system is a crucial task. Thus good navigation,
indices and search are essential for any help system. Help systems based on the
windows help system, e.g. used by DataDesk, bring already the capabilities for an
index and searching. Creating a good index, for a book or a help system is not easy.
Especially since the developers of statistical algorithms mostly do not care much
about the documentation. The quality of the help system depends heavily on the
contributors to it. Maybe automated ways of analyzing tutorials and descriptions to
create a hierarchy and an index can improve the help system quality.

One of useful help systems that we have seen is the help system of Mathematica
which is an inherent part of it. At the top of Fig. 14.7d we see the detailed navigation,
we know always where we are. Mathematica separates the information well: red
background for Mathematica commands and programs and their descriptions, white
background for explanations.
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Fig. 14.6 Entry screens of the help systems in (a) XploRe, (b) R, (c) DataDesk and (d) Mathe-
matica

Fig. 14.7 Help system entry for statistical distributions of statistical software packages,
(a) XploRe, (b) R, (c) DataDesk and (d) Mathematica
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Generally, help systems and tutorials should have a simple language, short
sentences (Roemer and Chapanis 1982) and a consistent terminology. This has been
proven more helpful to the users and most help systems follow that suggestion. It
is even more important since most help systems and tutorials are written in English
and the majority of the statisticians do not speak English as native language.

14.4 Outlook

There is a wishlist for the statistical user interface of a statistical software pack-
age:

• Well-known icons for statistical tasks for useful toolbars.
• A consistent and unified terminology for menu bars and items.
• Well designed dialog boxes and forms.
• Good editors for statistical programming languages.
• A well constructed programming language.
• A well designed HTML-based help system with clear structures.
• A unique data format for exchanging data with other (statistical) software

packages.

In the past we have observed that statistical software packages got various GUIs.
Even SPSS offers a web-based interface now, like the R Web server or the XploRe
Java client version. Currently we observe that statistical software packages are
embedded via direct calls (Excel: XploRe with MD*ReX, R in the RDCOM server
or DataDesk /XL) or via CORBA (R: Omega Hat project) in other software. In the
future statistical software packages will use the GUI of the “host” software, but the
problems we will encounter are the same.

Since the user interface design depends heavily on our perception and behavior,
there is still a lot of experimental research necessary to find answers to the problems
that occur.

Web References

DataDesk http://www.datadesk.com
GGobi http://www.ggobi.org
Jasp http://jasp.ism.ac.jp
Mathematica http://www.wolfram.com
PRIM-9 video http://cm.bell-labs.com/cm/cms/departments/sia/

video-library/prim9.html
R http://www.r-project.org
– GUIs http://www.sciviews.org/_rgui/
– Omega hat/RDCOM http://www.omegahat.org

http://www.datadesk.com
http://www.ggobi.org
http://jasp.ism.ac.jp
http://www.wolfram.com
http://cm.bell-labs.com/cm/cms/departments/sia/
video-library/prim9.html
http://www.r-project.org
http://www.sciviews.org/_rgui/
http://www.omegahat.org
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– Web http://www.math.montana.edu/Rweb
S/S-Plus http://www.insightful.com
SAS http://www.sas.com
SPSS http://www.spss.com
SYSTAT http://www.systat.com
VanGogh http://stats.math.uni-augsburg.de/VanGogh/
XploRe http://www.xplore-stat.de
– Java client http://www.xplore-stat.de/java/java.html
– MD*ReX http://www.md-rex.com
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Chapter 15
Object Oriented Computing

Miroslav Virius

15.1 Introduction

Object Oriented Programming (OOP) is a preferred methodology in contemporary
software development. OOP may be considered as a continuation of the well known
ideas of Structured Programming and Modular Programming. If properly used, it
leads to well structured code which is easy to understand for human reader, easy to
debug and easy to maintain.

15.1.1 First Approach to Objects

Every computer program may be considered as a software model of a real problem.
It follows, that two basic domains should be taken into account during the analysis
of the problem and design of the program: the problem domain, which is a part of
the real world, and the model domain, which is a mapping of the problem domain
to the computer program.

The problem domain consists of a set of interacting objects. Selected objects
of the problem domain must of course correspond to data structures in model
domain and the interactions of objects in the problem domain must correspond to
the operations with these data structures. That is, the interactions of objects in the
problem domain will be represented by procedures and functions dealing with these
data structures.

Example 1. Consider the program modeling the interactions of elementary particles
in a detector using the Monte Carlo method. (Design and analysis of Monte
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Carlo experiments is discussed in depth in Chap. 3.) The problem domain of this
experiment simulation consists of the detector, of the particle source, of the air
surrounding the experimental apparatus, of many elementary particles and, of
course, of a statistical file containing the simulation results. It follows, that the model
of the experiment should contain a suitable representation of the detector, a suitable
representation of the particle source, statistical file, etc.

The representation of the elementary particle source may consist of the data
representing its coordinates in a given coordinate system, of a description of the
spectrum of the source (i.e. of probability distributions describing the emission
of various types of particles, their directions, energies and other characteristics of
emitted particles) etc.

15.1.2 Note on Unified Modeling Language

To formalize object-oriented analysis and design, the Unified Modeling Language
(UML) is widely used. UML consists of a set of diagrams that describe various
aspects of the problem solved. We use some UML diagrams in this chapter. A short
introduction to the UML is given in Sect. 15.3; full description of the UML may be
found in Booch (2005).

Note that the Unified Modeling Language is described by the international
standard ISO/IEC 19501:2005.

15.2 Objects and Encapsulation

In the model domain, the term object denotes the data representation of the objects
of the problem domain, together with the operations defined on this data.

This means that we define a data structure together with the operations with
it. These operations are usually called methods. The object’s data are denoted as
attributes; the data and the methods together are denoted as members of the object.

A basic rule of the OOP requires that the methods should be used for all the
manipulations with object’s data. Only the methods of the object are allowed to
access the data; no other access to the data is permitted. (We shall see later that it is
acceptable to violate this rule under some special circumstances.) This principle is
called encapsulation and is sometimes presented by the “wall of code around each
piece of data" metaphor.

Note.

Methods that return the value of the attribute (data member) X have usually the
GetX() identifier; methods that set the value of the attribute X usually have the
SetX() identifier. In some programming environments, these identifiers may be
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required. These methods are called getters and setters, respectively; common name
for both getters and setters is access methods or accessors.

15.2.1 Benefits of Encapsulation

So far, there is nothing new in encapsulation: This is implementation hiding, well
known from modular programming. The object may be considered as a module and
the set of the methods as its interface.

The main benefit of the encapsulation is that the programmer may change the
implementation of the object without affecting the whole program, if he or she
preserves the interface of the object. Any change of the data representation will
affect only the implementation of the object’s methods.

Example 2. Let’s continue with the Monte Carlo simulation of the experiment with
elementary particles. The object representing the detector will, of course, contain
the coordinates of some important points of the detector. The first idea could be
to use Cartesian coordinates; in later stage of the program development, it will be
found that the spherical coordinates will suit better – e.g., because of the detector
shape and program performance.

If it were allowed to manipulate the detector data directly by any part of the
program, all the parts of the program that use this data should be changed. But if the
encapsulation is properly applied and the data is manipulated only by the methods
of the detector, all what will have to be changed is the implementation of some
detector methods.

15.2.2 Objects and Messages

The OOP program is considered as the program consisting only of objects that
collaborate by means of the messages. This may seem a little strange, but in this
context, to send a message to an object means to call a method of this object. A
message means a request for an operation on the object’s data, i.e. a request to
perform a method.

The object may receive only those messages for which it has corresponding
methods. Sending a message that the object does not recognize causes an error. It
depends on the programming language whether this error is detected in the compile
time or in the run time. (In C++, it is detected in the compile time.)

15.2.3 Class

Objects of the problem domain may often be grouped into classes; one class
contains objects that differ only in the values of some properties. The same holds
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for the objects in the model domain. The classes of objects in the problem domain
are represented by user-defined data types called object types or classes in OOP
programs.

The term instance is used to denote a variable, constant, or parameter of an object
type. It is equivalent to the term object.

Class Members

Up to now, we have considered the class as a data type only; it serves as a template
for the creation of instances. But in the OOP, the class is an object, too. It follows it
may have its own data and its own methods and may receive messages.

Data members that are part of the class, not of particular instances, are called
class data members or class attributes and the methods that correspond to the
messages sent to the class are called class methods. Non-class members, attributes,
as well as methods are, if necessary, designated as instance members.

Class data members contain data of the class as a whole, i.e. data shared among
all the instances of the class; class methods operate on class attributes. (From the
non-OOP point of view, the class data members are global variables hidden in the
class, and the class methods are global functions or procedures hidden in the class.)

Note.

Class data members are often called static data members and class methods are
called static methods in C++, Java, and some other programming languages, because
they are declared using the static keyword in these languages.

Note.

The class in C++, Java and many other OOP languages may contain definitions of
other types, including other classes, as class members. Even though the so called
nested classes are sometimes very useful, we will not discuss them in this article.

Note.

We have already mentioned that the class in the OOP may be considered as an
object, i.e. as an instance of another class; this leads to the concept of metaclass. The
metaclass is a class that has only one instance – a class. You can find metaclasses in
pure OOP languages like Smalltalk. We will not discuss the metaclass concept here.

Example 3. We may suppose – at some level of abstraction – that the representation
of all the particles in the Monte Carlo simulation of a particle experiment is
essentially the same. Thus, every individual particle belongs to the class of particles.
It follows that the model will contain the Particle class, and the program will
contain the definition of the corresponding data type – and of course some instances
of this type.
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Because every particle has its own mass and velocity, the Particle class will
contain the declaration of four data items representing the particle mass and the
three components of the particle velocity vector. The Particle class should also
contain methods to set and to get the values of these data items. Later on, we will
see that even other methods are necessary – e.g., a method for the interaction with
the detector.

It is also necessary to know the total number of generated particles and the
actual number of existing particles in the simulation program. These numbers of
the particles do not describe an individual particle. It follows that they cannot be
data members of any Particle instance; to hold, and of course to maintain these
data is the task of the whole Particle class. These data will be stored in the class
attributes – because we use the C++, we may say in static attributes – of type int,
and they will be accessed by class methods (static methods).

Definition of the Particle class in C++ will be as follows:

// Particle class definition in C++, first approach
class Particle
{
public:

// Constructor
Particle(double _mass, double vX,

double vY, double vZ);
// Instance methods
~Particle() { --actual; } // Destructor
double GetMass() { return mass; }
void SetMass(double m){ mass = m; }
void SetVelocity(double vX, double vY, double vZ);
double GetVelocityX() { return velocityX; }
// Performs the interaction with the detector
virtual void Interact(Detector *aDetector);
// ... and other methods
// Class methods
static int GetActual() { return actual; }
static int GetTotal() {}

private:
// Instance data members
double mass;
double velocityX, velocityY, velocityZ;
// Class data members
static int actual;
static int total;

}; // End of the class declaration

// Definition of the static attributes
int Particle::actual = 0;



440 M. Virius

int Particle::total = 0;

// Definition of the constructor
Particle::Particle(double _mass, double vX,

double vY, double vZ)
: mass(_mass), velocityX(vX), velocityY(vY),

velocityZ(vZ)
{
++actual; ++total;

}
// And other method definitions

We will not discuss the syntactic rules of the class declaration in the C++ here
– those rules can be found in any textbook devoted to this programming language,
e.g., in Stroustrup (2000). We only note a few points.

This class contains the mass, velocityX, velocityY, and velocityZ
instance attributes, and the actual and total class attributes (note the static
keyword in their declarations). It follows that every instance of the Particle
class will have its own mass, velocityX, etc. data members. On the other
hand, no instance will contain the total or actual data members. These
are global variables shared among all instances and they exist even before
the first instance of the Particle class is created and after the last one is
destroyed.

The Particle() method is a special method called constructor and it serves
to the construction of new instances. It is invoked as a response to the message
requesting the creation of a new instance of the class. (Even though it is a class
method, its declaration in C++ does not contain the static keyword.) Its task is
to create an instance and to initialize its instance attributes. In our example, it also
actualizes the values of the two class attributes.

The ~Particle() method is another special method called destructor. The
destructor prepares the instance for final destruction. In our example, it decreases
the number of existing particles, because the instance for which the destructor is
called will be immediately destroyed. (This is – unlike the constructor – the instance
method. Note that in garbage collected OOP languages, e.g., in Java, destructors are
not used.)

15.2.4 Object Composition

One object in a program may exploit the services of another object. It may call the
methods of any other independent object, or it may contain another object as a data
member. The second approach is usually called object composition, even though it
is typically implemented as a composition of classes.
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Note.

An object may not contain another object of the same class, of any class containing
an object of the same class or of any derived class as data member. It may, of course,
contain the pointers or the references to objects of any of these classes.

Example 4. Consider the particle source in the Monte Carlo simulation. It will be
an instance of the Source class. For the simulation of the random processes of the
particle emission, we will need a random number generator. The random number
generator will be implemented in the program as an instance of the Generator
class and will be based on the theory discussed in Chap. 2. (The Generator class
is an example of a class that has been found during the design of the Source class.
It does not appear in the original formulation of the problem.)

This means that the Source class will contain an instance of the Generator
class or a pointer to an instance of that class:

class Source
{
public:

Source();
Particle* Generate(); // Returns pointer to
new particle
// ... and other methods

private:
Generator *gen; // Pointer to Generator
instance
// ... and other private members

};

15.2.5 Access Control

Note the private and public access specifiers in the class declarations above.
The public specifier declares that all the subsequent members of the class are pub-
lic, i.e., they are accessible from any part of the program. The public members of the
class constitute the class interface. The class interface usually contains only some
methods and constant attributes. (Constant attributes may be accessed directly. This
does not violate the encapsulation, because constant attributes cannot be changed.)

The private specifier means that the following members of the class are
private, i.e., accessible only from the methods of the class. In other words, private
members are implementation details of the class that can not be used by other parts
of the program. Changes of private parts of the class do not change the class interface
and do not affect other parts of the program.

Later on, we will see the third access specifier, protected. Protected members
are accessible only from the methods of this class and from all the classes derived
by inheritance. Thus, they constitute the class interface for derivation, that may be
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wider than the interface of the class for common use. We will discuss the inheritance
in Sect. 15.4.

The access specifiers help to implement the encapsulation. Note that in C++, as
well as in many other object oriented languages, the subject of access control is the
class, not the individual objects (instances). Thus any method called for an instance
of the given class may use all private members of another instance of the same class.

15.3 Short Introduction to the UML

In Sect. 15.1.2 we have mentioned the UML. This is a modeling language based on
a set of diagrams describing various aspects of the problem solved:

• The class diagram describes the classes used in the problem and their mutual
dependencies.

• The object diagram describes all objects (instances) in the problem and their
mutual dependencies.

• The activity diagram describes activities of the objects.
• The state diagram describes the states of objects and their possible changes and

transitions.
• etc.

We will use only class diagrams in this chapter.
The class in the class diagram is presented as a rectangle containing the name of

the class. It usually contains also the names of the methods and the names of the
attributes; both may be prefixed by symbols representing their access specification
(the + sign for public members, the - sign for private members and the # for
protected ones). The data type of the attributes and the return type of the methods
may be shown, too.

The class name, the attributes and the methods are separated by horizontal lines in
the class icon. If not necessary, attributes and methods may be omitted. Figure 15.1
shows the icon of the Source class as we have designed it in Sect. 15.2.4.

Associations (i.e., any relations) among the classes in UML class diagrams are
represented by lines connecting the class icons; as a description, the meaning and
the multiplicity of the relation may be given. For example, the numbers appended to
the line connecting the Source and the Particle classes in Fig. 15.2 express the
fact that one particle source may emit any number of particles and that any particle
is emitted by one source. The numbers appended to the line connecting the Source

+Source()
+Generate() : Particle*

-gen

Source

Fig. 15.1 The full UML icon
of the Source class
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Source Particle

Generator

1

1

-generates

1

–is generated

0..*

Fig. 15.2 Relations among the Source, Particle and Generator classes

and the Generator class express the fact that one source uses only one random
number generator.

Object composition is expressed by an arrow ending with a filled diamond on
the side of the containing class. Figure 15.2 shows relations among the Source,
Particle, and Generator classes. Simplified class icons are used.

15.4 Inheritance

Inheritance is a very powerful tool used in OOP to derive new classes from existing
ones. First, look at an example.

Example 5. Investigating our Monte Carlo simulation more deeply, we find, that
various types of elementary particles can be involved: photons, neutrons, neutrinos,
etc.

On the one hand, we may conclude that one common data type, the Particle
class, is sufficient for the representation of all the different particles, because they
have many common features:

• Every particle has a velocity vector.
• Every particle has a mass, a spin, and electrical charge.
• Every particle has its halftime of decay.
• Every particle may interact with the detector.
• etc.

On the other hand, the way of the interaction with the detector is substantially
different for different types of the particles. In some cases, it is described by
mathematical formulae, in other cases it is described by measured data only. It
follows that the operation representing the interaction of the particle in the detector
must be implemented in a different way for different types of the particles, and
this leads to the conclusion that different types of simulated particles have to be
represented by different classes in the program; but these class types share many
common properties.
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This situation – closely related, but different classes – can be expressed in the
program model: OOP offers the mechanism of inheritance, which is the way of
deriving one class from some other one (or other ones).

The class a new type is derived from is usually called the base class.

15.4.1 Base Class and Derived Class

The derived class inherits all the public and protected members of its base class
or classes. This means that the derived class contains these members and may
access them without any constrains. Private members are not inherited. They are
not directly accessible in the derived class; they may be accessed only by the access
methods inherited from the base class.

The derived class may add its own data members and methods to the inherited
ones. The derived class may also redefine (override) some of the methods defined
in the base class. (To override a method in a derived class means to implement
a different response to the same message in the derived class.) In this case, the
signature, i.e., the identifier, the return type, the number, and the types of the
parameters of the overriding method in the derived class should be the same as
the signature of the overridden method in the base class.

No members of the base class may be deleted in the inheritance process.
The set of all the classes connected by inheritance is usually called the class

hierarchy.
Note that in some programming languages there are exceptions to the above

rules. For example, the constructors, destructors, and overloaded assignment oper-
ators are not inherited in C++. Instead, the constructor of the derived class always
calls the base class constructor and the destructor of the derived class always calls
the base class destructor. The same holds for the default assignment operator of the
derived class. This feature may be considered as a generalized form of inheritance,
of course. Another example is the “deleted" functions in derived classes introduced
in C++11 – the new standard has been issued in August 2011 the C++ language; see
Stroustrup (2009).

15.4.2 Generalization and Specialization

The base class always represents a concept that is more general and more abstract
than the concept represented by the derived class; it follows that the derived class
represents a more specialized concept than the base class. Thus, the derived class
always represents a subclass – or a subtype – of its base class. Any instance of the
derived class is also considered to be an instance of the base class.

The interface of the base class is a subset of the interface of the derived class.
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Consequently, an instance of the derived class may be used everywhere where
an instance of the base class is expected. This rule may significantly simplify the
operation with instances of many similar classes.

In the UML class diagram, the inheritance is represented by an arrow ending with
triangle (not filled). The arrow points from the derived class to the base class.

Example 6. Consider the Particle class in our Monte Carlo simulation. This is
a general concept that can be used to describe common features of all the particles
involved. But in the simulation, concrete types of particles – e.g., protons, electrons,
etc. – will be used.

Consequently, we will use the Particle class as the base class of the particles
hierarchy that will contain the common data members and the common methods of
all the particles. All the classes representing concrete particle types will be derived
from the Particle class – see Fig. 15.3.

We will show only the declaration of the Electron class here.

class Electron: public Particle
{
public:

Electron();
void SetCharge(double _charge) { charge =

_charge; }
virtual void Interact(Detector *aDetector);

private:
double charge;

};

The declaration of the Electron class contains only the declaration of the
constructor, two access methods and one data member. Nevertheless, the methods
GetVelocityX(), SetVelocityX(), GetActual() etc., inherited from
the base class, may be called for any instance of this class. This class changes –
overrides – the implementation of the Interact() method.

On the other hand, data members mass, velocityX, actual, etc. are not
directly accessible in the Electron class. These data members are in the base

Source Particle

Generator

1

1

-generates

1

-is generated

0..*

Electron

Photon

Neutron

Positron

Fig. 15.3 The Particle class as a base class of concrete particle types
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class declared as private and the derived class must manipulate them using the
public access methods only. Thus the following fragment of the definition of the
Electron::Interact()method is incorrect:

// Error: velocityX, velocityY and velocityZ
// are inaccessible in the Electron class.
void Electron::Interact(Detector *aDetector)
{

double velocity = sqrt(velocityX*velocityX +
velocityY*velocityY + velocityZ

*velocityZ);
// ... and so on ...

}

The correct form uses the access methods inherited from the base class:

// Correct form of the previous code fragment
void Electron::Interact(Detector *aDetector)
{

double velocity = sqrt(GetVelocityX()

*GetVelocityX() +
GetVelocityY()*GetVelocityY() +
GetVelocityZ()*GetVelocityZ());

// ... and so on ...
}

Of course, this is sometimes inconvenient. If we change the access specifiers of
these data members to protected in the base class,

// Particle class definition revised
class Particle
{
public:

// Public members as before
protected:

// Instance data members
double mass;
double velocityX, velocityY, velocityZ;
// Class data members
static int actual;
static int total;

};

the problems with access to data members will not appear. On the other hand, this
violates the encapsulation of the base class and it may have a negative impact on the
clarity and maintainability of the program code.
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15.4.3 Using Base Class as Common Interface

As stated above, instances of derived classes may be used anywhere instances of the
base class are expected. This gives us very powerful tool to deal with the objects of
the classes derived from the same base class in a uniform manner.

Example 7. In the Monte Carlo simulation of the particle experiment, we may store
all the emitted particles in a suitable container first, then exclude particles, that do
not hit the detector etc., and after that preprocessing, let the remaining particles
interact with the detector. Consider the following fragment of code:

const int N = 1000000; // Number of particles to
// emit

vector<Particle*> store; // Store for particles
Source source1; // Particle source
Detector detector; // Detector in the

// experiment
for(int i = 0; i < N; i++)

store.push_back(source1.Generate());
// ... after some preprocessing of the set of the
// particles:
for(int i = 0; i < store.size(); i++)

store[i] -> Interact(detector);

The store variable is a vector (dynamically sized array) of pointers to
Particle, the base class of all the elementary particles involved. This allows us
to store pointers to instances of any class derived from the Particle class in this
container.

The expression

store[i] -> Interact(detector);

represents the call of the Interact() method of the particle pointed to by
store[i]. (In fact, this statement calls the method of the Particle class. To
ensure that the method of the actual class of the particle is called, the method needs
to be declared with the virtual specifier. This will be discussed later in Sect. 15.5,
Polymorphism.)

This example demonstrates that the base class defines the common interface for
all the derived classes. This common interface allows us to treat all the particles in
an uniform way no matter what the actual type of the particle is.

Technical Note

The conversion from the derived class to the base class is automatic, but it deserves
special attention in some situations. Consider the following assignment:
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Electron e; // Non-dynamical instances
Particle p;
p = e;

After this statement has been executed, the p variable will contain an instance of
the Particle class, not an instance of the Electron class! The reason is simple:
The declaration

Particle p;

reserves memory only for the Particle instance, thus there is no place for the
additional data members declared in the Electron class. The only way how to
execute the assignment is to convert the derived class instance e to the base class
first, i.e., to truncate the data members added in the derived class.

The same problem arises in the case of passing function arguments by value.
Having the function

void process(Particle p); // Pass by value

it is syntactically correct to write

process(e); // e is Electron

but the instance e of type Electron will be first cast (converted) to the
Particle type. This cast leads to the loss of information.

These problems may be avoided if we use dynamical instances only. If we rewrite
the preceding declarations into the form

Electron *ep = new Electron; // Dynamical instances
Particle *pp;
pp = ep; // OK

the pp variable will still contain the pointer to the instance of the Electron class.
(The type of the pointer is converted, not the type of the instance.)

The parameter of the process() function should be passed by the pointer or
by the reference. In both cases, the original instance is accessible in the function
body and no information is lost.

In Java, C# and other OOP languages, that use dynamical instances of the object
types only and manipulate them by references, these problems do not appear.

15.4.4 Inheritance, or Composition?

It is not clear in some cases, whether a new class should be derived from some
suitable class by inheritance or whether the object composition should be used.

There are two questions that should be answered in this case:

• Is the new class a special case of the base class proposed?
• Has the new class a data member of the base class proposed?
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This is known as the IS A – HAS A test. Only if the answer to the first question is
yes, the inheritance may be considered, otherwise the composition should be used.

Example 8. Consider the Source class, representing the source of elementary
particles in the Monte Carlo simulation. It will be based on some generator of
random numbers represented in our program by the Generator class. Thus,
the Source seems to be the Generator class with some added functionality.
Should we derive the Source class from the Generator class by inheri-
tance?

If we apply the IS A – HAS A test, we find that the particle source is not a special
case – a subclass – of the random number generator. It uses the random number
generator, thus it may contain it as a data member, however, the inheritance should
be avoided in this case.

Consider for an instant that we use the inheritance to derive the Source class
from the Generator class,

// Bad use of the inheritance
class Source: public Generator
{

// Body of the class
}

This would mean that we could use a Source instance everywhere the
Generator instance is expected. But the random number generator is necessary
even in other parts of the Monte Carlo simulation program, e.g., for the
determination of the interaction type, for the determination of the features of the
secondary particles resulting from the interaction (if any) etc. However, the Source
class may not serve as the random number generator in these parts of the program.

Such a design of the Source class may cause that some typing errors in the
program will not be properly detected and some mysterious error messages during
the compilation will be reported; or even worse – it may lead to runtime errors hard
to discover.

15.4.5 Multiple Inheritance

The class may have more than one base class; this is called multiple inheritance.
The class derived from multiple base classes is considered to be the subclass of all
its base classes.

Multiple inheritance may be used as a means of the class composition.
This feature is supported only in a few programming languages – e.g., in C++

(see Stroustrup 2000) or in Eiffel (see Meyer 1988). In Java, C#, Object Pascal
and some other languages it is not supported. Multiple inheritance poses special
problems, that will not be discussed here.
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15.5 Polymorphism

We have seen at the end of the previous section, that instances of many different
classes were dealt with in the same way. We did not know the exact type of the
instances stored in the store container; it was sufficient that they were instances
of any class derived from the Particle class.

This feature of the OOP is called polymorphism. Polymorphism means that
instances of various classes may be used in the same way – they accept the same
messages, thus their methods may be called without any regard to the exact type
of the instance. In some programming languages, e.g., in Java, this is automatic
behavior of the objects (or of their methods), in some other programming languages,
e.g., in C++, this behavior must be explicitly declared.

There are at least two ways to achieve polymorphic behavior: The use of the
inheritance and the use of the interfaces. The interfaces will be discussed in 15.5.4.

Example 9. Let’s consider the example given at the end of the Inheritance section
once again. The expression store[i] is of type “pointer to the Particle class",
even though it in fact points to an instance of the Electron, Photon, or some
other derived class.

It follows that the statement

store[i] -> Interact(detector);// Which method is
// called?

might be interpreted as the call of the Particle::Interact() method, even
though it should be interpreted as the call of the Interact() method of some
derived class.

15.5.1 Early and Late Binding

The previous example shows that there are two possible approaches to the resolution
of the type of the instance for which the method is called, if the pointer (or reference)
to the instance is used:

• Early binding. The type of the instance is determined in the compile time. It
follows that the static (declared) type of the pointer or reference is used. This is
the default for all methods in C++, C#, or Object Pascal.

• Late binding. The type of the instance is determined in the run time. It follows
that the actual type of the instance is used and the method of this type is called.
This is always used for the methods in Java. In C++, the virtual keyword
denotes the methods using the late binding.

The late binding gives the class the polymorphic behavior. On the other hand,
late binding is less effective than early binding, even though the difference may be
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negligible. (In C++ on PCs, the difference between the late and the early binding is
usually one machine instruction per method call.)

Any method that might be overridden in any of the derived classes should use the
late binding.

Note.

In C++ and other object oriented languages in which the late binding must be
declared, the classes containing at least one virtual method are called polymorphic
classes. Classes without any virtual method are called non-polymorphic classes. In
languages like Java, where all the methods use late binding by default, all the classes
are polymorphic.

15.5.2 Algorithm of the Late Binding

In this subsection, some low level concepts will be discussed. They are not necessary
for understanding the basic concepts of the OOP, but they can give you a better
insight in it.

We will explore one the common way of the late binding implementation, i.e., of
the determination of the actual type of the instance for which the method is called.

This is based on the so called virtual method tables. The virtual method table
(VMT) is the hidden class data member that is part of any polymorphic class. Any
polymorphic class contains exactly one VMT. (The hidden class member is a class
member the programmer does not declare – the compiler adds it automatically.)

The VMT is an array containing pointers to all the virtual method implementa-
tions of the class. Any derived class has its own VMT that contains pointers to all
the virtual methods (even those that are not overridden in this class). The pointers
to the virtual methods in the VMT of the derived class are stored in the same order
as the pointers to corresponding methods in the base class.

Any instance of the polymorphic class contains another hidden data member –
the pointer to the VMT of the class. This data member is stored in all the instances
at the same place – e.g., at the beginning.

The method call is performed in the following way:

1. The program takes the instance, for which the method is called.
2. In the instance, it finds the pointer to the VMT. It’s position does not depend on

the type of the instance.
3. In the VMT, it finds the pointer to the method called. In all the VMTs, this pointer

is stored in the same entry; e.g., the pointer to the Interact() method might
be in the VMT of the Particle class and in the VMTs of all the classes derived
from the Particle class in the first entry.

4. The program uses this pointer to call the method of the actual class of the
instance.
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Interact()

...

...

The Electron VMT

Interact()

...

...

The Photon VMT

void
Electron::Interact(...)
{ // Code of the method
 // in the Electron class
}

void Photon::Interact(...)
{ // Code of the method
 // in the Photon class
}

&VMT Instance attributes of the Electron

&VMT Instance attributes of the Electron

&VMT Instance attributes of the Photon

Interact()

...

...

The Particle VMT

void
Particle::Interact(...)
{ // Code of the method
 // in the Particle class
}

Fig. 15.4 Typical implementation of the late binding

Figure 15.4 illustrates this process for the Particle base class and two derived
classes. The values stored in the VMT are set usually at the start of the program or
when the class is loaded to the memory. The values of the pointer to the VMT in the
instances are set automatically by the constructor.

15.5.3 Abstract Class

In some cases, the base class represents such an abstract concept that some
operations with instances of this class cannot be implemented. Nevertheless, at least
the stub of the corresponding method should be present in the class, because this
class is used as a base class and determines the common interface for all the derived
classes.

Such a class is called the abstract class and such an operation is called the
abstract method in OOP. Abstract methods have usually no implementation (no
method body).

It is not allowed to create instances of the abstract classes and it is not allowed to
call the abstract methods. It is of course possible to define pointers or references to
abstract classes.
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Storable
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Fig. 15.5 The classes implementing the Storable interface

The abstract classes serve as base classes. If the derived class does not implement
any of the inherited abstract methods, it will be abstract like the base class. The
abstract class:

• Defines the interface of the derived classes.
• Provides the implementation of non-polymorphic methods for the derived

classes.
• Offers a default implementation of non-abstract polymorphic (virtual) methods.

Note that the abstract class names are italicized in the UML class diagrams – see
e.g., the Particle class in Fig. 15.5.

Example 10. Consider the Particle class defined above. How could the
Interact() method be implemented?

For the derived classes, the situation is clear: If it is, e.g., the Photon, the
interaction could be the photoelectric effect, the Compton scattering, or some other
interaction known to particle physicists; probabilities of these phenomena are deter-
mined according to their total effective cross sections. For the other derived classes,
there are other well defined possibilities that can be expressed in the program code.

However, there is no general interaction, that could be used to implement the
Interact() method of the general Particle. On the other hand, this method
must be declared in the Particle class as the part of the common interface of
derived classes. If we omit it, the statement

store[i] -> Interact(detector);

will not compile, because store[i] is the pointer to the Particle class that
does not contain such a method.

Thus the Interact() method should be declared abstract (in C++, the
abstract methods are called pure virtual methods). In the following revision of
the Particle class, we omit all parts of that class that are unchanged.

// Particle as an abstract class
class Particle
{
public:
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// Pure virtual method (abstract method)
virtual void Interact(Detector *aDetector) = 0;
// All other public members as before

protected:
// All data members as before

};

15.5.4 Interfaces

The term interface is used in two different meanings in OOP:

1. It is the set of the public methods and attributes of the object. This is similar to
the module interface in the modular programming.

2. It denotes a named set of methods and constants. This set may be empty and is
defined independently on any class.

We will discuss the second meaning of this term in this subsection.

Interface as a Set of Methods

We have defined the interface as a named set of methods and constants. The
interface represents a way to achieve the polymorphic behavior; it is an alternative
to inheritance. This concept is relatively new in OOP, it was first widely used in the
Java language.

In languages that support interfaces, any class may declare that it implements the
given interface. This means that the class will supply the implementations (bodies)
of the methods listed in the interface.

Note the terminological difference: Even though the interfaces are syntactically
similar to the classes that contain only public abstract methods, they are not
inherited, they are implemented. In programming languages, that support interfaces,
any class may implement many interfaces, even if the language does not support
multiple inheritance.

The interface represents the type. If the class C implements the interfaces I1 and
I2, any instance of this class is an instance of the type C as well as it is an instance
of the type I1 and of the type I2.

The interface is usually represented by a small circle connected to the class icon
in the UML class diagrams (see Fig. 15.5). It may also be represented by a class-
like icon marked by the “interface” label (“stereotype”). Implementation of the
interface is represented by a dashed arrow pointing to the implementing class (see
Fig. 15.7).



15 Object Oriented Computing 455

Interfaces in C++

We have chosen C++ as the language of examples in this chapter, thus it is
necessary to cover briefly the interfaces in this language. C++ does not support
interfaces directly; nevertheless, interfaces may be fully simulated by abstract
classes that contain only public abstract (pure virtual) methods, and the interface
implementation may be substituted by the inheritance. This will be demonstrated by
the following example.

Example 11. The Monte Carlo simulation may be time-consuming and it would be
convenient to have the possibility to store the status of the simulation into a file, so
that the computation might be interrupted and continued later.

It is clear that all the generated but not yet processed particles should be stored.
The status of the particle source, and consequently the status of the random number
generator, should be stored, too. This is necessary especially for debugging, because
it ensures that we could get the same sequence of random numbers in repeated runs
of the program, even if they are interrupted.

It follows that we have at least two different object types belonging to different
class hierarchies that have a common feature – they will be stored in a file and later
will be restored into their original state. It follows that all the classes involved should
have suitable methods, e.g., store() and load().

The simulated experiment is represented by the Experiment class in the
program and to store the experiment status is the task of this class; it follows we
would like to implement the storeObject() method to store objects passed as
arguments in this class. Thus all the parameters – all the objects stored – should be
of the same type.

The solution of this dilemma – the method requires objects of the same type as
parameters, but we have objects of at least two distinct types belonging to different
class hierarchies – is to use a suitable interface that contains the store() and
load() methods. We will use the Storable identifier for this interface. The
Source, Generator and Particle classes should be modified as follows:

// Interface simulation in C++
class Storable
{
public:

virtual void store(ostream&) = 0;
virtual void load(istream&) = 0;

};

class Generator: public Storable // Interface
implementation

{
public:

virtual void store(ostream& out)
{/* Store the generator */}
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virtual void load(istream& in)
{/* Read the generator and reconstruct it */}
// ... Other methods and attributes as before

};

class Source: public Storable // Interface
implementation

{
public:

virtual void store(ostream& out)
{/* Store the source */}
virtual void load(istream& in)
{/* Read the source from the file and reconstruct

it*/}
// ... Other methods and attributes as before

};

class Particle: public Storable // Interface
implementation

{
public:

virtual void store(ostream& out)
{/* Store the particle */}
virtual void load(istream& in)
{/* Read the particle from the file and

reconstruct it */}
// ... Other methods and attributes as before

};

(ostream and istream are base classes for output and input data streams in the
standard C++ library.) Figure 15.5 shows the revised UML class diagram of these
classes.

Note that the Particle class is abstract, thus it needs not override the methods
of the Storable interface. The classes representing the concrete particle types,
Electron etc., inherit the implementation of the Storable interface; thus it is
not necessary to declare this fact. Of course, if a derived class is not abstract, it must
inherit or override the implementation of the methods of this interface.

Implementation of the Storable interface allows us to define the method
Experiment::storeObject() as follows:

void Experiment::storeObject(Storable& obj, ostream&
out)

{
obj.store(out)

}
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Storable interface serves as the common type of all the storable objects –
particles as well as random number generators – in the program. This gives us the
possibility to treat all these objects in our program in a uniform way, even if they do
not belong to the same hierarchy of inheritance.

15.6 More About Inheritance

Inheritance can be easily misused and this is often counterproductive. Poorly
designed inheritance hierarchies lead to programs that are difficult to understand,
contain hard-to-find errors, and are difficult to maintain. In this section, we give
some typical examples.

15.6.1 Substitution Principle

In Sect. 15.4, Inheritance, we have seen that any instance of any derived class may
be used in place of an instance of the base class. This is sometimes called the
substitution principle.

As far as we have seen, this is a syntactic rule: If you follow it, the program
compiles. But we already know that the derived class should be a specialization of
the base class, if we want to use the inheritance reasonably. Let’s investigate more
deeply, what it means.

“Technical” Inheritance

This problem is similar to the problem we have seen in Sect. 15.4.4. We have two
related classes, say A and B, and class B contains all the members of A and some
additional ones. Is it reasonable to use A as a base class of B?

Of course, this situation indicates, that B might be really derived from A. But this
is only an indication that cannot replace the IS A – HAS A test. In 15.4.4, we have
seen an example that leads to object composition. Here we give another example
that will be solved by inheritance.

Example 12. Consider the particles in our Monte Carlo simulation. The interaction
of electrically charged particles in the detector substantially differs form the
interaction of uncharged particles, thus it would be convenient to split the class
of all the particles into two subclasses, one for the uncharged particles and the other
for the charged ones.

The class representing the charged particles contains the same data members as
the class representing the uncharged particles plus the charge attribute and the
access methods setCharge() and getCharge() to manipulate the charge.
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Fig. 15.6 Class hierarchies discussed in subsections 15.6.1 and 15.6.2. Only (c) is correct

This might lead to the idea to define the Uncharged class representing the
uncharged particles and use it as a base for the Charged class representing the
charged particles. These two classes will serve as base classes for the classes
representing concrete particle types (Fig. 15.6(a)).

This class hierarchy design is incorrect and leads to problems in the program.
Suppose the following two declarations:

list<Uncharged*> listOfUncharged;
Electron e; // Electron is charged particle

The listOfUncharged variable is a double-linked list of pointers to the
Uncharged instances. If the Charged class were derived from the Uncharged
class, it would be possible to insert any charged particle into this container of
uncharged ones. The following statement would compile and run (of course, the
results would be unpredictable):

ListOfUncharged.push_back(&e); // It compiles...

The cause of this problem is evident – the charged particle is not a special case of
the uncharged particle (the IS A test), so this inheritance is not applicable.

“Logical” Inheritance

Now we will see that the IS A – HAS A test may be insufficient in some cases. First,
consider the following example.

Example 13. We will continue with the analysis of the Monte Carlo simulation of
the charged and uncharged particles. The uncharged particles may be considered
as a special case of the charged particles with the electric charge set to zero.
Consequently, it seems to be logical to derive the Uncharged class from the
Charged class (Fig. 15.6(b)).

However, no member of the base class may be excluded from the derived class
in the inheritance process. Thus the derived class, Uncharged, will contain the
charge attribute and both the access methods. In order to ensure that the charge
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is zero, we have to override the setCharge() method so that it always sets the
charge value to zero,

void Uncharged::setCharge(double ch) {
charge = 0.0; // Parameter value not used

}

Nevertheless, this construction may fail. Consider the following function:

void process(Charged& cp){
const double chargeValue = 1e-23;
cp.setCharge(chargeValue);
assert(cp.getCharge() == chargeValue);
// And some other code...

}

This is correct behavior of the process() function: It expects a charged particle,
changes its charge to some predefined value and tests whether or not this change
succeeded. If the argument is really a charged particle, it works.

However, the classes representing the uncharged particles, e.g., Photon, are
derived from the Uncharged class and this class is derived from the Charged
class, so the following code fragment compiles, but fails in the run time:

Photon p; // Uncharged particle
process(p); // Assertion fails...

This example shows, that even if the IS A test succeeds, it does not follow
that the inheritance is necessarily the right choice. In this case, the overridden
setCharge() method violates the contract of the base class method – it does
not change the charge value.

15.6.2 Substitution Principle Revised

The preceding example demonstrates that in some situations the Uncharged class
has significantly different behavior than the base class, and this leads to problems –
even to run time errors.

This is the rule: Given the pointer or reference to the base class, if it is possible to
distinguish, whether it points to an instance of the base class or of the derived class,
the base class cannot be substituted by the derived class.

The conclusion is, that the substitution principle is more than a syntactic rule.
This is a constraint imposed on derived classes, that requires, that the derived class
instances must be programmatically indistinguishable from the base class instances,
otherwise the derived class does not represent a subtype of the base class.

This conclusion has been originally formulated by Liskov (1988), Martin (1996)
as follows:
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What is wanted here is something like the following substitution property: If for each object
o1 of type S there is an object o2 of type T such that for all programs P defined in terms of
T, the behavior of P is unchanged when o1 is substituted for o2 , then S is subtype of T.

Example 14. Let’s finish the analysis of the charged and uncharged particles
problem. We have seen that the Charged and Uncharged classes may not be
derived one from the other. To avoid both kinds of problems, it is necessary to split
the hierarchy and to derive both classes directly from the Particle class:

// Proper Particle hierarchy
class Charged: public Particle { /* ... */ };
class Uncharged: public Particle { /* ... */ };

This class hierarchy is shown in the Fig. 15.6(c).

15.6.3 Inheritance and Encapsulation

In this subsection we demonstrate that the inheritance may lead to significant
violation of the encapsulation, which may cause problems in the implementation
of derived classes. We start with an example.

Example 15. The particles interact in the detector in different ways. Some of the
interactions represent events that are subject to our investigation and need to be
logged in the result file and further processed. (This means to record the particle
type, energy, coordinates of the interaction etc.) But the events may appear in
groups, so the ResultFile class will contain the methods LogEvent() and
LogEventGroup(). The latter will get the vector containing data of several
events as an argument. Suppose that both these methods are polymorphic.

At some later stage of the program development, we find that it is necessary to
be aware of the total count of recorded events. The actual implementation of the
ResultFile class does not support this feature and we cannot change it, e.g.,
because it is the part of some program library.

The solution seems to be easy – we derive a new class, CountedResultFile,
based on the ResultFile. The implementation could be as follows:

class CountedResultFile: public ResultFile
{
public:

virtual void LogEvent(Event *e)
{

ResultFile::LogEvent(e);
count++;

}
virtual void LogEventGroup(vector<Event*> eg)
{
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ResultFile::LogEventGroup(eg);
count += eg.size();

}
private:

int count;
};

The overridden methods simply call the base class methods to log the events and
then increase the count of the recorded events.

It may happen that we find that the LogEventGroup() method increases the
count of recorded events incorrectly: After the call

LogFile *clf = new CountedLogFile;
clf -> LogEventGroup(eg); // (*)

the count value increases by twice the number of the events in eg.
The reason might be that the implementation of the LogEventGroup()

method internally calls the LogEvent() method in a loop. This is what hap-
pens:

1. The (*) statement calls the LogEventGroup()method. This is a polymorphic
method, so the CountedResultFile::LogEventGroup() method is
called.

2. This method calls the base class LogEventGroup() method.
3. The base class method calls the LogEvent() method in a loop. But because

these methods are polymorphic, the method of the actual type, i.e. the
ComputedResultFile::LogEvent()method is called.

4. This method calls the base class method to record the event and increases the
count of events. After that it returns to the CountedResultFile::Log-
EventGroup() method. This method increases the event count once again.

To implement the derived class properly, we need to know that the Result-
File::LogEventGroup()method internally calls the ResultFile::Log-
Event() method. But this is an implementation detail, not the part of the contract
of the methods of the ResultFile class – it will probably not be mentioned in the
documentation to the library containing the ResultFile class.

Solution

This problem may easily be avoided by using interfaces and object composition
(cf. class diagram in Fig. 15.7); it is necessary to use another design of the
ResultFile class, as well as another design of the CountedResultFile
class.

First we design the ResultFileInterface interface as follows:

class ResultFileInterface {
public:

virtual void LogEvent(Event *e) = 0;
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+LogEventGroup() : void
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CountedResultFile
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+LogEventGroup() : void

«interface»
ResultFileInterface

Fig. 15.7 Class diagram of the correct design. Only interface methods and corresponding
attributes are shown

virtual void LogEventGroup(vector<Event*> eg) = 0;
};

The class ResultFile will implement this interface:

class ResultFile: public ResultFileInterface {
// Implementation as before

};

Now, CountedResultFile may be designed as an independent class that imple-
ments the ResultFileInterface and uses the ResultFile as an attribute:

class CountedResultFile: public ResultFileInterface {
public:

virtual void LogEvent(Event *e)
{

rs.LogEvent(e);
count++;

}
virtual void LogEventGroup(vector<Event*> eg)
{

rs.LogEventGroup(eg);
count += eg.size();

}
private:

int count;
ResultSet rs;

};

The problem may not appear, because the CountedResultFile is not
derived from the ResultFile now. Nevertheless, the classes may be treated poly-
morphically, i.e. instances of the CountedResultFile may be used instead of
instances of the ResultFile, if they are used as instances of the ResultFile-
Interface interface.
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15.7 Structure of the Object Oriented Program

We conclude this chapter by describing shortly the typical structure of the OOP
program.

As we have seen in previous sections, an OOP program consists of objects that
collaborate by messages. In this structure, one object must play the role of a starting
object. This means that one of the methods of this object will be called as the
program starts. The starting object typically creates other objects in the program
and manages the their lifetime.

All the other objects represent various parts of the problem solved and are
responsible for the associated resource management, computation, etc.

Example 16. Here we finish the Monte Carlo simulation of an experiment with par-
ticles. We have already mentioned the Experiment class covering the application
as a whole. The only instance of this class in the program will be the starting object.
The Experiment class will contain the public method run() that will represent
the run of the experiment.

As we are in C++, our program must have the main() function where the
program starts. It will create the starting object and let it run:

int main() { // Create the starting object
Experiment().Run(); // and run it

}

The Experiment class could be defined as follows:

class Experiment{
public:

Experiment(); // Constructor
void Run(); // Run the experiment

private:
Detector *detector; // Detector in this experiment
Source *source; // Particle source
ResultFile *rfile; // Result file

};

The Experiment::Experiment() constructor reads the input data (e.g.,
cross sections describing the probabilities of the interactions) and creates and
initializes the attributes (particle source, result file etc.).

The Experiment::Run() method does the work – it starts particle emission
in the source using the appropriate method of the Source class, determines,
whether the given particle hits the detector using the appropriate Detector
method, records the results of the detection into the ResultFile instance and
in the end processes the results using the appropriate ResultFile methods.

Class diagram of the program at the level we have given here is presented in
Fig. 15.8.
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Fig. 15.8 Basic structure of the simulation program

Note that this is top-level design only. The extent of this chapter allows us to
demonstrate only the beginning of the object oriented approach to the example.

15.8 Conclusion

Attempts to formalize the process of object oriented analysis and design have been
made since the beginning of the OOP. A widely used approach is described in Booch
(1993).

In object oriented design some common problems – or tasks – may appear in
many different situations. Reusable solutions of these problems are called Design
Patterns. A well known example of design pattern is the Singleton – the class that
may have at most one instance. Another example is the Responsibility Chain; this
design pattern solves the problem how to find the proper processing of varying data,
even if the way of processing may dynamically change. The Observer design pattern
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is used, if some objects in the program need to respond to some events arising in
other objects.

The idea of design patterns and the 23 most common design patterns in OOP are
described in Gamma (1995).
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Chapter 16
Model Selection

Yuedong Wang

16.1 Introduction

The need for model selection arises when a data-based choice among competing
models has to be made. For example, for fitting parametric regression (linear, non-
linear and generalized linear) models with multiple independent variables, one needs
to decide which variables to include in the model (Chaps. III.7, III.8 and III.12);
for fitting non-parametric regression (spline, kernel, local polynomial) models, one
needs to decide the amount of smoothing (Chaps. III.5 and III.10); for unsupervised
learning, one needs to decide the number of clusters (Chaps. III.13 and III.16); and
for tree-based regression and classification, one needs to decide the size of a tree
(Chap. III.14).

Model choice is an integral and critical part of data analysis, an activity which has
become increasingly more important as the ever increasing computing power makes
it possible to fit more realistic, flexible and complex models. There is a huge liter-
ature concerning this subject (Burnham and Anderson 2002; George 2000; Linhart
and Zucchini 1986; Miller 2002) and we shall restrict this chapter to basic concepts
and principles. We will illustrate these basics using a climate data, a simulation,
and two regression models: parametric trigonometric regression and non-parametric
periodic splines. We will discuss some commonly used model selection methods
such as Akaike’s AIC (Akaike 1973), Schwarz’s BIC (Schwarz 1978), Mallow’s Cp
(Mallows 1973), cross-validation (CV) (Stone 1974), generalized cross-validation
(GCV) (Craven and Wahba 1979) and Bayes factors (Kass and Raftery 1995). We
do not intend to provide a comprehensive review. Readers may find additional model
selection methods in the following chapters.
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Let M D fM�; � 2 �g be a collection of candidate models from which one
will select a model for the observed data. � is the model index belonging to a set �
which may be finite, countable or uncountable.

Variable selection in multiple regression is perhaps the most common form of
model selection in practice. Consider the following linear model

yi D x>i ˛C �i ; i D 1; 2; � � � ; n ; (16.1)

where xi are vectors of m independent variables, ˛ is a m-vector of parameters, and
�i are random errors. Often a large number of independent variables are investigated
in the model (16.1) and it is likely that not all m variable are important. Statistical
inferences can be carried out more efficiently with smaller models. The goal of
the variable selection is to find a subset of these m independent variables which is
optimal in a certain sense. In this case, � is the collection of all 2m subsets and � is
any particular subset.

For illustration, we will use part of a climate data set downloaded from the
Carbon Dioxide Information Analysis Center at http://cdiac.ornl.gov/ftp/ndp070.
The data consists of daily maximum temperatures and other climatological variables
from 1,062 stations across the contiguous United States. We choose daily maximum
temperatures from the station in Charleston, South Carolina, which has the longest
records from 1871 to 1997. We use records in the year 1990 as observations. Records
from other years provide information about the population. To avoid correlation
(see Sect. 16.6) and simplify the presentation, we divided 365 days in 1990 into
73 five-day periods. The measurements on the third day in each period is selected
as observations. Thus the data we use in our analyses is a subset consisting of
every fifth day records in 1990 and the total number of observations n D 73. For
simplicity, we transform the time variable t into the interval Œ0; 1�. The data is shown
in the left panel of Fig. 16.1.

Our goal is to investigate how maximum temperature changes over time in a year.
Consider a regression model

yi D f .ti /C �i ; ti D i=n; i D 1; � � � ; n ; (16.2)
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Fig. 16.1 Left: 73 observations in the year 1990. Middle: observations on the same 73 days from
1871–1997. Averages are marked as the solid line. Right: 73 observations in the year 1990 (points)
and a periodic spline fit (line) to the average temperatures in the middle panel
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where yi is the observed maximum temperature at time ti in Fahrenheit, f is the
mean temperature function and �i ’s are random fluctuations in the year 1990. We
assume that �i ’s are independent and identically distributed with mean zero and
variance 2. Note that even though model (16.2) is very general, certain model
assumptions (choices) have already been made implicitly. For example, the random
fluctuations are assumed to be additive, independent and homogeneous. Violations
of these assumptions such as independence may have severe impacts on model
selection procedures (Sect. 16.6).

In the middle panel of Fig. 16.1, we plot observations on the same selected 73
days from 1871 to 1997. Assuming model (16.2) is appropriate for all years, the
points represent 127 realizations from model (16.2). The averages reflect the true
mean function f and the ranges reflect fluctuations. In the right panel, a smoothed
version of the averages is shown, together with the observations in 1990. One
may imagine that these observations were generated from the smoothed curve plus
random errors. Our goal is to recover f from the noisy data. Before proceeding
to estimation, one needs to decide a model space for the function f . Intuitively,
a larger space provides greater potential to recover or approximate f . At the same
time, a larger space makes model identification and estimation more difficult (Yang
1999). Thus the greater potential provided by the larger space is more difficult to
reach. One should use as much prior knowledge as possible to narrow down the
choice of model spaces. Since f represents mean maximum temperature in a year,
we will assume that f is a periodic function.

Trigonometric Regression Model. It is a common practice to fit the periodic
function f using a trigonometric model up to a certain frequency, say �, where
0 � � � K andK D .n � 1/=2 D 36. Then the model space is

M� D span
n
1;
p
2 sin 2��t;

p
2 cos 2��t; � D 1; � � � ; �

o
: (16.3)

The order � is unknown in most applications. Thus one needs to select � among
� D f0; 1; � � � ; Kg whereM0 D spanf1g. For a fixed �, we write the modelM� as

yi D ˇ1 C
�X

�D1

�
ˇ2�
p
2 sin 2��t C ˇ2�C1

p
2 cos 2��t

	
C �i ; i D 1; � � � ; n ;

(16.4)
or in a matrix form

y D X�˛� C ›;

where y D .y1; � � � ; yn/>,

X� D

0

B
B
BB
B
@

1
p
2 sin 2�t1

p
2 cos 2�t1 � � �

p
2 sin 2��t1

p
2 cos 2��t1

1
p
2 sin 2�t2

p
2 cos 2�t2 � � �

p
2 sin 2��t2

p
2 cos 2��t2

:::
:::

::: � � � :::
:::

1
p
2 sin 2�tn

p
2 cos 2�tn � � �

p
2 sin 2��tn

p
2 cos 2��tn

1

C
C
CC
C
A
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is the design matrix, ˛� D .ˇ1; � � � ; ˇ2�C1/> and › D .�1; � � � ; �n/>. The
coefficients ˛� are estimated by minimizing the least squares (LS)

min
˛�

8
<

:
1

n

nX

iD1

 

yi � ˇ1 �
�X

�D1

�
ˇ2�
p
2 sin 2��ti C ˇ2�C1

p
2 cos 2��ti

	
!29=

;

(16.5)

Since design points are equally spaced, we have the following orthogonality
relations:

2

n

nX

iD1
cos 2��ti cos 2��ti D ı�;�; 1 � �; � � K;

2

n

nX

iD1
sin 2��ti sin 2��ti D ı�;�; 1 � �; � � K;

2

n

nX

iD1
cos 2��ti sin 2��ti D 0; 1 � �; � � K; (16.6)

where ı�;� is the Kronecker delta. Thus columns of the design matrix are orthogonal.
That is, X>� X� D nI2�C1 where I2�C1 is an identity matrix of size 2�C 1. Let XK
be the design matrix of the largest model MK . Then XK=

p
n is an orthonormal

matrix. Define the discrete Fourier transformation Qy D X>K y=n. The LS estimate of
˛� isb̨� D .X>� X�/�1X>� y D X>� y=n D Qy�, where Qy� consists of the first 2�C 1
elements of Qy. More explicitly,

b̌
0 D 1

n

nX

iD1
yi D Qy1;

b̌
2� D

p
2

n

nX

iD1
yi sin 2��ti D Qy2�; 1 � � � �;

b̌
2�C1 D

p
2

n

nX

iD1
yi cos 2��ti D Qy2�C1; 1 � � � �: (16.7)

Let bf � be the estimate of f where the dependence on � is expressed explicitly.
Then the fits

bf�
4D
�
bf �.t1/; � � � ;bf �.tn/

	> D X�b̨� D P.�/y ;

where
P.�/ D X�

�
X>� X�

��1
X>� D X�X>� =n (16.8)
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Fig. 16.2 Circles are observations. Lines are the estimated functions. Top two rows are fits
from trigonometric models with frequencies indicated in the strips (we used k instead of � for
distinction). Bottom two rows are fits from the periodic spline with smoothing parameters indicated
in the strips

is the projection matrix. Note that P.K/ D In. Thus model MK interpolates the
data.

Fits for several � (labeled as k in strips) are shown in the top two rows of
Fig. 16.2. Obviously as � increases from zero to K , we have a family of models
ranging from a constant to interpolation. A natural question is that which model (�)
gives the “best” estimate of f .
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Periodic Spline. In addition to the periodicity, it is often reasonable to assume that
f is a smooth function of t 2 Œ0; 1�. Specifically, we assume the following infinite
dimensional space (Gu 2002; Wahba 1990)

W2.per/ D
n
f Wf and f 0 are absolutely continuous;

f .0/ D f .1/; f 0.0/ D f 0.1/;
Z 1

0

. f 00.t//2dt <1
o

(16.9)

as the model space for f . A smoothing spline estimate of f is the minimizer of the
following penalized LS (Gu 2002; Wahba 1990)

min
f 2W2.per/

(
1

n

nX

iD1
.yi � f .ti //2 C �

Z 1

0

. f 00.t//2dt
)

; (16.10)

where the first part (LS) measures the goodness-of-fit, the second part is a penalty
to the roughness of the estimate, and � (0 � � � 1) is the so called
smoothing parameter which controls the trade-off between the goodness-of-fit and
the roughness. When � D 0, there is no penalty to the roughness of the estimate
and the spline estimate interpolates the data. When � D 1, the spline estimate
is forced to be a constant. As � varies from zero to infinity, we have a family of
models ranging from interpolation to a constant parametric model. Thus � can be
considered as a model index in� D Œ0;1�. Fits with several choices of � are shown
in the bottom two rows of Fig. 16.2.

The exact solution to (16.10) can be found in Wahba (1990). To simplify the
argument, as in Wahba (1990), we consider the following approximation of the
original problem

min
f 2MK

(
1

n

nX

iD1
.yi � f .ti //2 C �

Z 1

0

. f 00.t//2dt
)

; (16.11)

whereW2.per/ in (16.10) is replaced byMK which is defined in (16.3) with � D K .
The following discussions hold true for the exact solution in the infinite dimensional
spaces (Gu 2002; Wahba 1990). The approximation makes the following argument
transparent and provides insights into smoothing.

Let

bf �.t/ D b̨1 C
KX

�D1

�
b̨2�
p
2 sin 2��t C b̨2�C1

p
2 cos 2��t

	

be the solution to (16.11). Thenbf�
4D .bf �.t1/; � � � ;bf �.tn//

> D XKb̨, where b̨ D
.b̨1; � � � ;b̨2KC1/>. The LS

1

n
jjy�bf�jj2 D 1

n
jj 1p

n
X>K .y�bf�/jj2 D jj

1

n
X>K y � 1

n
X>KXKb̨jj2 D jjQy � b̨jj2 :
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Thus (16.11) reduces to the following ridge regression problem

.b̨1 � Qy1/2 C
KX

�D1

�
.b̨2� � Qy2�/2 C .b̨2�C1 � Qy2�C1/2

�

C �
KX

�D1
.2��/4

�
b̨22� C b̨22�C1

�
: (16.12)

The solutions to (16.12) are

b̨1 D Qy1;
b̨2� D Qy2�=

�
1C �.2��/4� ; � D 1; � � � ; K;

b̨2�C1 D Qy2�C1=
�
1C �.2��/4� ; � D 1; � � � ; K : (16.13)

Thus the periodic spline with equally spaced design points is essentially a low-pass
filter: components at frequency � are down-weighted by a factor of 1 C �.2��/4.
The right panel of Fig. 16.3 shows how � controls the nature of the filter: more high
frequencies are filtered out as � increases. It is clear from (16.7) and (16.13) that
selecting an order for the trigonometric model may be viewed as hard thresholding
and selecting the smoothing parameter for the periodic spline may be viewed as soft
thresholding.

LetD D diag.1; 1=.1C�.2�/4/; 1=.1C�.2�/4/;� � �; 1=.1C�.2�K/4/; 1=.1C
�.2�K/4//. Then b̨D D Qy, and the fit

bf� D XKb̨D 1

n
XKDX

>
K y D A.�/y ;

where
A.�/ D XKDX>K =n (16.14)

is the hat (smoother) matrix.
We choose the trigonometric regression and periodic spline models for illustra-

tion because of their simple model indexing: the first has a finite set of consecutive
integers� D f0; 1; � � � ; Kg and the second has a continuous interval � D Œ0;1�.

This chapter is organized as follows. In Sect. 16.2, we discuss the trade-offs
between the goodness-of-fit and model complexity, and the trade-offs between
bias and variance. We also introduce mean squared error as a target criterion. In
Sect. 16.3, we introduce some commonly used model selection methods: AIC,
BIC, Cp , AICc and a data-adaptive choice of the penalty. In Sect. 16.4, we discuss
the cross-validation and the generalized cross-validation methods. In Sect. 16.5, we
discuss Bayes factor and its approximations. In Sect. 16.6, we illustrate potential
effects of heteroscedasticity and correlation on model selection methods. The
chapter ends with some general comments in Sect. 16.7.
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16.2 Basic Concepts: Trade-Offs

We illustrate in this section that model selection boils down to compromises between
different aspects of a model. Occam’s razor has been the guiding principle for the
compromises: the model that fits observations sufficiently well in the least complex
way should be preferred. Formalization of this principle is, however, nontrivial.

To be precise on fits observations sufficiently well, one needs a quantity that
measures how well a model fits the data. This quantity is often called the goodness-
of-fit (GOF). It usually is the criterion used for estimation, after deciding on a model.
For example, we have used the LS as a measure of the GOF for regression models in
Sect. 16.1. Other GOF measures include likelihood for density estimation problems
and classification error for pattern recognition problems.

To be precise on the least complex way, one needs a quantity that measures
the complexity of a model. For a parametric model, a common measure of model
complexity is the number of parameters in the model, often called the degrees
of freedom (df). For a non-parametric regression model like the periodic spline,
t rA.�/, a direct extension from its parametric version, is often used as a measure
of model complexity (Hastie and Tibshirani 1990). t rA.�/ will also be refered to
as the degrees of freedom. The middle panel of Fig. 16.3 depicts how t rA.�/ for
the periodic spline depends on the smoothing parameter �. Since there is an one-
to-one correspondence between � and t rA.�/, both of them are used as model
index (Hastie and Tibshirani 1990). See Gu (1998) for discussions on some subtle
issues concerning model index for smoothing spline models. For some complicated
models such as tree-based regression, there may not be an obvious measure of model
complexity (Ye 1998). In these cases the generalized degrees of freedom defined
in Ye (1998) may be used. Section 16.3 contains more details on the generalized
degrees of freedom.

To illustrate the interplay between the GOF and model complexity, we fit
trigonometric regression models from the smallest model with � D 0 to the largest
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Fig. 16.3 Left: square root of RSS from the trigonometric model (circles) and periodic spline
(line) plotted against the degrees of freedom. Middle: degrees of freedom of periodic spline plotted
against the smoothing parameter on the logarithm base 10 scale. Right: weights of the periodic
spline filter, 1=.1 C �.2��/4/, plotted as a function of frequency �. Six curves from top down
corresponds to six different �: 0, 10�8, 10�6, 10�4 , 10�2 and1
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model with � D K . The square root of residual sum of squares (RSS) are plotted
against the degrees of freedom (D 2�C 1) as circles in the left panel of Fig. 16.3.
Similarly, we fit the periodic spline with a wide range of values for the smoothing
parameter �. Again, we plot the square root of RSS against the degrees of freedom
(D t rA.�/) as the solid line in the left panel of Fig. 16.3. Obviously, RSS decreases
to zero (interpolation) as the degrees of freedom increases to n. RSS keeps declining
almost linearly after the initial big drop. It is quite clear that the constant model does
not fit data well. But it is unclear which model fits observations sufficiently well.

The previous example shows that the GOF and complexity are two opposite
aspects of a model: the approximation error decreases as the model complexity
increases. On the other hand, the Occam’s razor suggests that simple models should
be preferred to more complicated ones, other things being equal. Our goal is to
find the “best” model that strikes a balance between these two conflicting aspects.
To make the word “best” meaningful, one needs a target criterion which quantifies
a model’s performance. It is clear that the GOF cannot be used as the target because
it will lead to the most complex model. Even though there is no universally accepted
measure, some criteria are widely accepted and used in practice. We now discuss one
of them which is commonly used for regression models.

Let bf � be an estimate of the function in model (16.2) based on the model space
M�. Let f D . f .t1/; � � � ; f .tn//> andbf� D .bf �.t1/; � � � ;bf �.tn//

>. Define the
mean squared error (MSE) by

MSE.�/ D E

�
1

n
jjbf� � fjj2

�
:

We want the estimate bf � to be as close to the true function f as possible. Obviously
MSE is the expectation of the Euclidean distance between the estimates and the true
values. L2 distance between bf � and f may also be used. MSE can be decomposed
into two components:

MSE.�/ D 1

n
Ejj.Ebf� � f/C .bf� � Ebf�/jj2

D 1

n
EjjEbf� � fjj2 C 2

n
E.Ebf� � f/>.bf� � Ebf�/C 1

n
Ejjbf� � Ebf�jj2

D 1

n
jjEbf� � fjj2 C 1

n
Ejjbf� � Ebf�jj2

4D Bias2 C Variance : (16.15)

The Bias2 measures how well the model M� approximates the true function f , and
the Variance measures how well the function can be estimated inM�. Usually larger
model space leads to smaller Bias2 but larger Variance. Thus, the MSE represents
a trade-off between Bias2 and Variance.
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Another closely related target criterion is the average predictive squared error
(PSE)

PSE.�/ D E

�
1

n
jjyC �bf�jj2

�
; (16.16)

where yC D f C ›C are new observations at the same design points, ›C D
.�C1 ; � � � ; �Cn /> are independent of ›, and �Ci ’s are independent and identically
distributed with mean zero and variance 2. PSE measures the performance of
a model’s prediction for new observations. We have

PSE.�/ D E

�
1

n
jj.yC � f/C .f �bf�/jj2

�
D 2 CMSE.�/ :

Thus PSE differs from MSE only by a constant 2. When justifying some criteria
including the Cp in Sect. 16.3, we will ignore a constant 2. Thus the targets of these
criteria are really PSE rather than MSE.

To illustrate the bias-variance trade-off, we now calculate MSE for the trigono-
metric regression and periodic spline models. For notational simplicity, we assume
that f 2 MK :

f .t/ D ˛1 C
KX

�D1

�
˛2�
p
2 sin 2��t C ˛2�C1

p
2 cos 2��t

	
: (16.17)

Then f D XK˛ where ˛ D .˛1; � � � ; ˛n/>. From the orthogonality relations (16.6),
it is easy to check that ˛ D X>K f=n, the discrete Fourier transformation of f.

Bias-Variance Trade-Off for the Trigonometric Regression. X� consists of the
first 2� C 1 columns of the orthogonal matrix XK . Thus X>� XK D .nI2�C1; 0/.
E.b̨�/ D X>� XK˛=n D ˛�, where ˛� consists of the first 2� C 1 elements in ˛.

Thusb̨� is unbiased. Furthermore,

Bias2 D 1

n
jj.In � P.�//fjj2

D 1

n
jj 1p

n
X>K

�
In � 1

n
X�X

>
�

�
XK˛jj2

D 1

n2
jj
�
nIn �

�
nI2�C1 0

0 0

��
˛jj2

D
KX

�D�C1

�
˛22� C ˛22�C1

�
;

Variance D 1

n
EjjP.�/.y� f/jj2 D 2

n
trP 2.�/ D 2

n
.2�C 1/ :
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Thus

MSE.�/ D
KX

�D�C1

�
˛22� C ˛22�C1

�C 1

n
2.2�C 1/ :

Remarks

1. Adding the �th frequency terms into the model space reduces the Bias2 by the
amount of .˛2

2� C ˛22�C1/ and increases the Variance by 22=n.
2. The optimal model based on the MSE may not be the true model when 2 > 0.
3. Assuming ˛2

2� C ˛22�C1 decreases with increasing �, one should keep adding
frequencies until

˛22� C ˛22�C1 � 22=n: (16.18)

4. Bias2 does not depend on the sample size n and the Variance is inversely
proportional to n. Thus as n increases, more frequencies should be included.

Bias-Variance Trade-Off for Periodic Spline. For the approximate periodic spline
estimator, it is easy to check that E.Qy/ D ˛, Var.Qy/ D 2I=n, E.b̨/ D D˛,
Var.b̨/ D 2D2, E.bf�/ D XKD˛, and Var.bf�/ D 2XKD

2X>K =n. Thus all
coefficients are shrunk to zero except b̨1 which is unbiased. The amount of shinkage
is controlled by the smoothing parameter �. It is straightforward to calculate the
Bias2 and Variance in (16.15).

Bias2 D 1

n
jjXK˛� XKD˛jj2 D 1

n
jj 1p

n
X>K .XK˛ � XKD˛/ jj2

D jj.I �D/˛jj2 D
KX

�D1

�
�.2��/4

1C �.2��/4
�2 �

˛22� C ˛22�C1
�
;

Variance D 1

n2
2t r

�
XKD

2X>K
�D 

2

n
tr.D2/

D 
2

n

 

1C 2
KX

�D1

�
1

1C �.2��/4
�2!

:

Thus

MSE D
KX

�D1

�
�.2��/4

1C �.2��/4
�2
.˛22� C ˛22�C1/

C
2

n

 

1C 2
KX

�D1

�
1

1C �.2��/4
�2!

:
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Fig. 16.4 Left: true function for the simulation (line) and observations (circle). Right: plots of b� ,
� D 1; � � � ; K , as circles and the threshold, log.22=n/, as the dashed line
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Fig. 16.5 Bias2 (dashed lines), Variance (dotted lines) and MSE (solid lines) for trigonometric
regression on the left and periodic spline on the right

It is easy to see that as � increases from zero to infinity, the Bias2 increases from
zero to

PK
�D1.˛22� C ˛22�C1/ and the Variance decreases from 2 to 2=n.

To calculate MSE, one needs to know the true function. We use the following
simulation for illustration. We generate responses from model (16.2) with f .t/ D
sin.4�t2/ and  D 0:5. The same design points in the climate data is used: ti D
i=n; i D 1; � � � ; n and n D 73. The true function and responses are shown in the left
panel of Fig. 16.4. We compute b� D log.a22�Ca22�C1/, � D 1; � � � ; K . b� represents
the contribution from frequency �. In the right panel of Fig. 16.4, we plot b� against
frequency � with the threshold, log.22=n/, marked as the dashed line. Except for
� D 1, b� decreases as � increases. Values of b� are above the threshold for the first
four frequencies. Thus the optimal choice is � D 4.

Bias2, Variance and MSE are plotted against frequency (log10.�/) for trigonomet-
ric regression (periodic spline) in the left (right) panel of Fig. 16.5. Obviously, as the
frequency (�) increases (decreases), the Bias2 decreases and the Variance increases.
The MSE represents a balance between Bias2 and Variance. For the trigonometric
regression, the minimum of the MSE is reached at � D 4, as expected.
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After deciding on a target criterion such as the MSE, ideally one would select
the model to minimize this criterion. This is, however, not practical because the
criterion usually involves some unknown quantities. For example, MSE depends on
the unknown true function f which one wants to estimate in the first place. Thus
one needs to estimate this criterion from the data and then minimize the estimated
criterion. We discuss unbiased and cross-validation estimates of MSE in Sects. 16.3
and 16.4 respectively.

16.3 AIC, BIC, Cp and Their Variations

Let GOF(M�) and jM�j be measures of the GOF and complexity for model M�.
A direct compromise between these two conflicting quantities is

GOF.M�/C �jM�j ; (16.19)

where the parameter � controls how this compromise should be achieved. Note that
the penalized LS (16.10) may be considered as a special case with the LS regarded
as a measure of GOF and the squared integral regarded as a measure of complexity.

To be concrete, let us consider the regression model (16.2). For a fixed �, the
estimates are linear,bf� D H.�/y, whereH.�/ D P.�/ for the trigonometric model
andH.�/ D A.�/ for the periodic spline. Suppose that LS is used as the measure of
GOF and jM�j D t r.H.�//. Let us first consider the case when the error variance 2

is known. Then the criterion (16.19) can be re-expressed as

U.�; ™/ D 1

n
jjy �bf�jj2 C ™

n
2t rH.�/ : (16.20)

(16.20) is known as the final prediction error (FPE) criterion (Akaike 1970). Many
existing model selection methods corresponds to special choices of ™: ™ D 2 for
Akaike’s AIC and Mallow’s Cp , and ™ D logn for Schwarz’s BIC. The Cp
method is also called the unbiased risk method (UBR) in smoothing spline literature
(Wahba 1990). The following simple argument provides the motivation behind the
Cp (UBR) method.

E

�
1

n
jjy �bf�jj2

�
D E

�
1

n
jjy � fjj2 C 2

n
.y � f/>.f �bf�/C 1

n
jjf�bfjj2

�

D 2 � 2
n
2t rH.�/CMSE.�/: (16.21)

Therefore, ignoring the constant 2, U.�; 2/ is an unbiased estimate of MSE.�/.
Other choices of ™ were motivated from different principles: AIC is an estimate

of the expected Kullback-Leibler discrepancy where the second term in (16.20)
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is considered as a bias correction (Burnham and Anderson 2002) and BIC is an
asymptotic Bayes factor (Sect. 16.5). Since each method was derived with different
motivations, it is not surprising that they have quite different theoretical properties
(Shao 1997). ™ in (16.20) can be considered as a penalty to the model complexity.
A larger penalty (™) leads to a simpler model. As a result, AIC and Cp perform well
for “complex” true models and poorly for “simple” true models, while BIC does
just the opposite. In practice the nature of the true model, “simple” or “complex”,
is never known. Thus a data driven choice of model complexity penalty ™ would be
desirable. Several methods have been proposed to estimate ™ (Bai et al. 1999; Rao
and Wu 1989; Rao 1999; Rao and Tibshirani 1997; Shen and Ye 2002). We now
discuss Shen and Ye (2002)’s method based on the generalized degrees of freedom.
We will discuss the cross-validation method (Rao and Tibshirani 1997) in the next
section.

Now consider both � and ™ in (16.20) as unknown parameters. Denoteb�.™/ as
the selected model index based on (16.20) for a fixed ™, and bf b�.™/ as the estimate
based on the selected model. The dependence on ™ is made explicit. We now want
to find ™ which minimizes the MSE

MSE.™/ D E

�
1

n
jjbfb�.™/ � fjj2

�
:

Again, we need to estimate MSE.™/. As (16.21), we have

E

�
1

n
jjy�bfb�.™/jj2

�
D E

�
1

n
jjy� fjj2 C 2

n
.y � f/>

�
f �bfb�.™/

	

C1
n
jjf �bfb�.™/jj2

�

D 2 � 2
n
2g0.™/CMSE.™/;

where
g0.™/ D E›>

�
bfb�.™/ � f

	
=2

is the generalized degrees of freedom (gdf) defined in Ye (1998). Thus, ignoring
a constant 2,

G.™/ D 1

n
jjy�bfb�.™/jj2 C

2

n
2g0.™/ (16.22)

is an unbiased estimate of MSE.™/. More rigorous justification can be found in Shen
and Ye (2002). Note thatb�.™/ depends on y. Thusbfb�.™/ D H.b�.™//y is a non-linear

estimator. Usually g0.™/ ¤ t rH.b�.™//. We need to estimate the gdf g0.™/. It can
be shown that (Ye 1998)

bg0.™/ D
Z

‹>bfb�.™/.yC ‹/�� .‹/d ‹
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is an approximately unbiased estimate of g0.™/, where ‹ � N.0; �2I /, ��.‹/ is the
n-dimensional density of N.0; �2I /, andbfb�.™/.yC ‹/ is the fit to the perturbed data

yC ‹. Ye (1998) suggested the following Monte Carlo approach to computebg0.™/:
for a fixed ™:

1. draw a n-dimensional sample ‹ � N.0; �2I /, use the perturbed sample yC ‹ to
select a model based on (16.20) with fixed ™ and calculate the fitsbfb�.™/.yC ‹/.

2. Repeating above step T times, one has ‹t D .ıt1 � � � ; ıtn/> and bfb�.™/.y C
‹t /
4D .bf t1; � � � ;bf tn/

>, t D 1; � � � ; T .
3. For a fixed i , i D 1; � � � ; n, calculate the regression slope bhi of the following

linear model
bf ti D �Cbhiıti ; t D 1; � � � ; T:

4. Estimate g0.™/ by
Pn

iD1bhi .

� 2 Œ0:5; � is generally a good choice and the results are usually insensitive to
the choice of � when it is in this region (Ye 1998). A data-driven choice of ™ is
the minimum of (16.22) with g0.™/ replaced by its estimate

Pn
iD1bhi (Shen and Ye

2002).
When 2 is unknown, one may replace 2 in (16.20) and (16.22) by a consistent

estimate. Many estimators were proposed in literature (Dette et al. 1998; Donoho
and Johnston 1994; Gasser et al. 1986; Hall et al. 1990; Rice 1984). The Rice’s
estimator is one of the simplest. For model (16.2), Rice (1984) proposed to estimate
2 by

Q2 D 1

2.n� 1/
nX

iD2
.yi � yi�1/2 :

In the remaining of this chapter, 2 is replaced by Q2 whenever necessary.
Another option, assuming the distribution of yi ’s is known, is to replace

GOF(M�) in (16.19) by �2 log.maximum likelihood/. For the regression models
with Gaussian random errors, this leads to

n log.jjy �bf�jj2/C ™t rH.�/ : (16.23)

Again, ™ D 2 and ™ D logn correspond to AIC and BIC criteria respectively.
The same data-driven procedure discussed above may also be used to select ™.

Derived from asymptotic argument, the AIC method may lead to over-fitting
for small samples (Burnham and Anderson 2002; Hurvich and Tsai 1989). The
following AICc criterion modifies (16.23) with a second order bias adjustment
(Hurvich and Tsai 1989)

AICc D n log.jjy�bf�jj2/C 2trH.�/ n

n� t rH.�/� 1 :
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AICc should be used when the ratio between n and the number of parameters
in the largest candidate model is small, say less than 40 (Burnham and Anderson
2002). In our trigonometric model, the highest dimension may reach n. Thus we
will use AICc in our computations.

Now consider the trigonometric model. It is easy to check that criterion (16.20)
reduces to

KX

�D�C1

� Qy22� C Qy22�C1
�C ™

n
2.2�C 1/ :

Thus adding the �th frequency reduces RSS by Qy22� C Qy22�C1 and increases
the complexity part by 2™2=n. When Qy22� C Qy22�C1 decreases with increasing �,
one should keeping adding frequencies until Qy22� C Qy22�C1 � 2™2=n. It is not
difficult to see that the Cp criterion corresponds to applying rule (16.18) with
˛2
2�C˛22�C1 replaced by its unbiased estimate Qy22�C Qy22�C1�22=n. Other data-based

thresholding can be found in Donoho and Johnston (1994), Beran (1996), Zhou and
Huang (2005) and Hinkley (2003).

Fitting trigonometric models to the climate data, we plot scores of AICc , BIC
and Cp criteria as functions of the frequency in the left panel of Fig. 16.6. The
AICc and Cp criteria reach minimum at � D 2 and the BIC criterion reaches the
minimum at � D 1. For a grid of ™ in the interval Œ0; logn�, we calculate the optimal
�, b�.™/, based on (16.20). We also calculate the estimated gdf using T D 1;000

and � D 0:75 Q . The middle panel of Fig. 16.6 shows the estimated gdf together
with the degrees of freedom based on the selected model, 2b�.™/ C 1. The gdf is
intended to account for the extra cost for estimating �. As expected, the gdf is almost
always larger than the degrees of freedom. The gdf is close to the degrees of freedom
when ™ is small or large. In the middle, it can have significant corrections to the
degrees of freedom. Overall, the gdf smoothes out the corners in the discrete degrees
of freedom. The RSS, complexity 2bg0 Q2 and G.™/ are plotted in the right panel
of Fig. 16.6. The minimum of G.™/ is reached at ™ D 3:68 with b�.3:68/ D 2.
Trigonometric model fits with � D 1 and � D 2 are shown in Fig. 16.2.
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Fig. 16.6 Left: Scores of AICc , BIC and Cp criteria marked as letters “a”, “b” and “c” respectively.
Middle: degrees of freedom (solid line) and estimated gdf (dashed line). Right: RSS (dotted line),
model complexity part (dashed line) and the G score (solid line) in (16.22)
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Fig. 16.7 Left: Scores of the Cp (UBR), GCV and GML criteria plotted as dotted, solid and
dashed lines respectively. Minimum points are marked with vertical bars. Right: Observations
(circles) and fits from the periodic spline with the UBR (dotted line), GCV (solid line) and GML
(dashed line) choices of smoothing parameter

Fitting periodic spline models to the climate data, we plot the Cp (UBR) criterion
in the left panel of Fig. 16.7. Fits with the UBR choice of the smoothing parameter
is shown in the right panel of Fig. 16.7.

16.4 Cross-Validation and Generalized Cross-Validation

The reason one cannot use the GOF for model selection is that it generally under-
estimates the generalization error of a model (Efron 1986; Hastie et al. 2002). For
example, (16.21) shows that the RSS under-estimates the PSE by 22t rH.�/=n.
Thus, similar to the correction term in the AIC, the second term in the Cp criterion
corrects this bias. The bias in RSS is a result of using the same data for model
fitting and model evaluation. Ideally, these two tasks should be separated using
independent samples. This can be achieved by splitting the whole data into two
subsamples, a training (calibration) sample for model fitting and a test (validation)
sample for model evaluation. This approach, however, is not efficient unless the
sample size is large. The idea behind the cross-validation is to recycle data by
switching the roles of training and test samples.

Suppose that one has decided on a measure of discrepancy for model evaluation,
for example the prediction error. A V -fold cross-validation selects a model as
follows:

1. Split the whole data into V disjoint subsamples S1; � � � ; SV .
2. For v D 1; � � � ; V , fit model M� to the training sample [i¤vSi , and compute

discrepancy, dv.�/, using the test sample Sv.
3. Find optimal � as the minimizer of the overall discrepancy d.�/ DPV

vD1 dv.�/.

The cross-validation is a general procedure that can be applied to estimate tuning
parameters in a wide variety of problems. To be specific, we now consider the
regression model (16.2). For notational simplicity, we consider the delete-1 (leave-
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one-out) cross-validation with V D n. Suppose our objective is prediction. Let y�i
be the n� 1 vector with the i th observation, yi , removed from the original response
vector y. Let bf �i� be the estimate based on n � 1 observations y�i . The ordinary
cross-validation (OCV) estimate of the prediction error is

OCV.�/ D 1

n

nX

iD1
.yi � bf �i� .ti //2 : (16.24)

A cross-validation estimate of � is the minimizer of (16.24). The cross-validation
method was introduced by Allen (1974) (also called PRESS) in the context of linear
regression and by Wahba and Wold (1975) in the context of smoothing splines. To
compute the OCV score, one needs to fit model M� n times, once for each delete-
one data y�i . This is computationally intensive. Fortunately, a short-cut exists for
many situations. Let

Qyij D
(
yj ; j ¤ i;
bf �i� .ti /; j D i;

and Qyi D . Qyi1; � � � ; Qyin/>. Qyi simply replaces the i th element in y, the one
deleted to get y�i , by bf �i� .ti /. Let Qf �i� be the estimate of f with data Qyi .
For many methods such as the trigonometric regression (linear regression
in general) and periodic spline (smoothing spline in general), we have the
following

Lemma 1 (Leaving-Out-One Lemma). Qf �i
� .ti / D bf �i� .ti /, i D 1; � � � ; n.

See Wahba (1990) and Hastie and Tibshirani (1990) for proofs. Note that even
though it is called the leaving-out-one lemma, similar results hold for the leaving-
out-of-cluster cross-validation (Wang et al. 2000). See also Xiang and Wahba
(1996), Zhang et al. (2002) and Ke and Wang (2002) for the leaving-out-one lemma
for more complicated problems.

For trigonometric regression and periodic spline models, bf� D H.�/y for any y.
Thus when y is replaced by Qyi , we have . Qf �i� .t1/; � � � ; Qf �i� .tn//

> D H.�/Qyi .
Denote the elements of H.�/ as hij ; i; j D 1; � � � ; n. Then

bf �.ti / D
nX

jD1
hij yj ;

bf �i� .ti / D Qf �i� .ti / D
nX

jD1
hij Qyj D

X

j¤i
hij yj C hiibf �i� .ti / :
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Combined, we have

bf �.ti / � bf �i� .ti / D hii .yi � bf �i� .ti // :

Then it is easy to check that

yi � bf �i� .ti / D .yi � bf �.ti //=.1� hii / ;

and the OCV reduces to

OCV.�/ D 1

n

nX

iD1

 
yi � bf �.ti /

1 � hii

!2
: (16.25)

Thus one only needs to fit the model once with the full data and compute the
diagonal elements of the H.�/ matrix.

Replacing hii in (16.25) by the average of all diagonal elements, Craven and
Wahba (1979) proposed the following generalized cross-validation (GCV) criterion

GCV.�/ D
1
n

Pn
iD1.yi � bf �.ti //

2

.1 � t rH.�/=n/2 : (16.26)

It is easy to see that the GCV criterion is a weighted version of OCV with weights
.1 � hii /2=.1 � t rH.�/=n/2. When t rH.�/=n is small, using the approximation
.1 � x/2 � 1C 2x,

GCV.�/ � 1

n

nX

iD1
.yi � bf �.ti //

2 C 2

n
trH.�/

"
1

n

nX

iD1
.yi � bf �.ti //

2

#

:

Regarding 1
n

Pn
iD1.yi � bf �.ti //

2 in the second part as an estimate of 2, the GCV
is approximately the same as the Cp (UBR) criterion. Originally proposed to reduce
the computational burden, the GCV criterion has been found to possess several
favorable properties (Golub et al. 1979; Li 1985, 1986; 1987, Gu 2002; Wahba
1990). Sometimes it is difficult to compute each diagonal element in H.�/ directly.
Nevertheless, it is relatively easy to approximate t rH.�/ using the randomized
trace method (Zhang et al. 2002). Thus the GCV criterion may be adopted to
many complicated problems (Xiang and Wahba 1996; Zhang et al. 2002). The GCV
criterion has non-zero probability to select � D 0 (interpolation) which may cause
problems when the sample size is small. Fortunately, this probability tends to zero
exponentially fast as sample size increases (Wahba and Wang 1993).

For the trigonometric regression,

hii D 1

n

 

1C
�X

�D1
2.sin2 2��ti C cos2 2��ti /

!

D 1

n
.1C 2�/ D t rH.�/

n
:
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For the periodic spline,

hii D 1

n
C 1

n

KX

�D1
2.sin2 2��ti C cos2 2��ti /=.1C �.2��/4/ D t rD

n
D t rH.�/

n
:

Thus the OCV and GCV are the same for both cases.
Instead of deleting one observation at a time, one may delete d observations

at a time as described in the V-fold cross-validation. We will call such a method
as delete-d CV. Shao (1997) classified various model selection criteria into the
following three classes:

Class 1: AIC, Cp , delete-1 CV and GCV.
Class 2: Criterion (16.20) with ™!1 as n!1, and delete-d CV with
d=n! 1.
Class 3: Criterion (16.20) with a fixed ™ > 2, and delete-d CV with
d=n! � 2 .0; 1/.

BIC is a special case of the Class 2. Shao (1997) showed that the criteria in
Class 1 are asymptotically valid if there is no fixed-dimensional correct model and
the criteria in Class 2 are asymptotically valid when the opposite is true. Methods
in Class 3 are compromises of those in Classes 1 and 2. Roughly speaking, criteria
in the first class would perform better if the true model is “complex” and the criteria
in the second class would do better if the true model is “simple”. See also Zhang
(1993) and Shao (1993).

The climate data subset was selected by first dividing 365 days in the year 1990
into 73 five-day periods, and then selecting measurements on the third day in each
period as observations. This is our training sample. Measurements excluding these
selected 73 days may be used as the test sample. This test sample consists 365�73D
292 observations. For the trigonometric model with fixed frequency �, we calculate
the prediction error using the test sample

PE.�/ D 1

292

292X

iD1
.yi � bf �.si //

2 ; (16.27)

where si are time points for observations in the test sample. The prediction errors
are plotted in the left panel of Fig. 16.8 where the minimum is reached at � D 1. The
GCV scores for the trigonometric model is also plotted in the left panel of Fig. 16.8
where the minimum is reached at � D 2. The GCV score for the periodic spline and
the corresponding fits are plotted in the left and right panels of Fig. 16.7 respectively.
As expected, the GCV scores are similar to the UBR scores.

As a general methodology, the cross-validation may also be used to select ™
in (16.20) (Rao and Tibshirani 1997). Let bf �ib��i .™/

be the estimate based on the

delete-one data y�i whereb��i .™/ is selected using (16.20), also based on y�i . Then
the OCV estimate of prediction error is
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Fig. 16.8 Left: prediction errors (16.27) (marked as “v”) and GCV scores (marked as “c”) for the
trigonometric model. Right: the OCV scores in (16.28) on the logarithm scale

OCV.™/ D 1

n

nX

iD1

�
yi � bf �ib��i .™/

.ti /
	2
: (16.28)

The minimum of (16.28) provides an estimate of ™. The OCV score for the
trigonometric model is plotted as a function of ™ in the right panel of Fig. 16.8.
The minimum is reached at a wide range of ™ values with � D 1 or � D 2.

16.5 Bayes Factor

Let P.M�/ be the prior probability for model M�. For any two models M�1 and
M�2 , the Bayes factor

B.�1; �2/ D P.M�1 jy/
P.M�2 jy/

� P.M�1/

P.M�2/
(16.29)

is the posterior odds in favor of model M�1 divided by the prior odds in favor of
modelM�1 (Kass and Raftery 1995). The Bayes factor provides a scale of evidence
in favor of one model versus another. For example, B.�1; �2/ D 2 indicates that
the data favor model M�1 over model M�2 at odds of two to one. Table 16.1 lists
a possible interpretation for Bayes factor suggested by Jeffreys (1961).

The Bayes factor is easy to understand and applicable to a wide range of
problems. Methods based on the Bayes factor behave like an Occam’s razor
(Jeffreys and Berger 1992). Non-Bayesian analysis typically selects a model and
then proceeds as if the data is generated by the chosen model. Ignoring the fact that
the model has been selected from the same data, this approach often leads to under-
estimation of the uncertainty in quantities of interest, a problem know as the model
selection bias (Chatfield 1995). Specifically, the estimates of parameters based on
the selected model are biased and their variances are usually too optimistic. The
Bayesian approach accounts for model uncertainty with the posterior probability



490 Y. Wang

Table 16.1 Jeffreys’ scale of evidence for Bayes factors

Bayes factor Interpretation

B.�1; �2/ < 1=10 Strong evidence for M�2

1=10 < B.�1; �2/ < 1=3 Moderate evidence for M�2

1=3 < B.�1; �2/ < 1 Weak evidence for M�2

1 < B.�1; �2/ < 3 Weak evidence for M�1

3 < B.�1; �2/ < 10 Moderate evidence for M�1

B.�1; �2/ > 10 Strong evidence for M�1

P.M�jy/. For example, to predict a new observation yC, the best prediction under
squared loss is

E.yCjy/ D
X

�2�
E.yCjM�; y/P.M�jy/ ;

a weighted average of predictions from all models with weights equal to the
posterior probabilities. Instead of using a single model, such model averaging incor-
porates model uncertainty. It also indicates that selecting a single model may not be
desirable or necessary for some applications such as prediction (Hoeting et al. 1999).

The practical implementation of Bayesian model selection is, however, far from
straightforward. In order to compute the Bayes factor (16.29), ones needs to specify
priorsP.M�/ as well as priors for parameters in each model. While providing a way
to incorporating other information into the model and model selection, these priors
may be hard to set in practice, and standard non-informative priors for parameters
cannot be used (Berger and Pericchi 1996; Gelman et al. 1995). See Kass and
Raftery (1995), Chipman et al. (2001) and Berger and Pericchi (2001) for more
discussions on the choice of priors.

After deciding on priors, one needs to compute (16.29) which can be re-
expressed as

B.�1; �2/ D P.yjM�1/

P.yjM�2/
; (16.30)

whereP.yjM�/ is the marginal likelihood. The marginal likelihood usually involves
an integral which can be evaluated analytically only for some special cases. When
the marginal likelihood does not have a closed form, several methods for approxima-
tion are available including Laplace approximation, importance sampling, Gaussian
quadrature and Markov chain Monte Carlo (MCMC) simulations. Details about
these methods are out of the scope of this chapter. References can be found in Kass
and Raftery (1995).

Under certain conditions, Kass and Wasserman (1995) showed that

�2 logP.yjM�/ � �2 log.maximum likelihood/C jM�j logn :

Thus the BIC is an approximation to the Bayes factor.
In the following we discuss selection of the smoothing parameter � for the

periodic spline. Based on (16.30), our goal is to find � which maximizes the
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marginal likelihood P.yjM�/, or equivalently, P.QyjM�/ where Qy is the discrete
Fourier transformation of y. Note that

Qy D ˛C Q› ; (16.31)

where Q› D X>K ›=n � N.0; 2I=n/. Let b D 2=n�. Assume the following prior
for ˛:

˛1 / 1;
˛2� � N.0; b.2��/�4/; � D 1; � � � ; K ;

˛2�C1 � N.0; b.2��/�4/; � D 1; � � � ; K ; (16.32)

where ˛i are mutually independent and are independent of Q›. An improper prior
is assumed for ˛1. It is not difficult to check that E.˛jQy/ D b̨. Thus the posterior
means of the Bayes model (16.31) and (16.32) are the same as the periodic spline
estimates.

Let z D . Qy2; � � � ; Qyn/> and write P.QyjM�/ D P. Qy1jM�/P.zjM�/. Since
P. Qy1jM�/ is independent of �, we will estimate � using the marginal likelihood
P.zjM�/. Since Qy2� or Qy2�C1 � N.0; b..2��/�4C �//, the log marginal likelihood
of z is

l.b; �/D�n � 1
2

log 2� � n � 1
2

log b

�
KX

�D1
logŒ.2��/�4 C �� � 1

2b

KX

�D1

Qy22� C Qy22�C1
.2��/�4 C �:

Fixing � and maximizing with respect to b, we have

bb D 1

n � 1
KX

�D1

Qy22� C Qy22�C1
.2��/�4 C � :

Plugging back, we have

l.bb; �/ D constant� n � 1
2

log
KX

�D1

Qy22� C Qy22�C1
.2��/�4 C � �

KX

�D1
log

�
.2��/�4 C �� :

Thus maximizing the log likelihood is equivalent to minimizing

M.�/ D
PK

�D1. Qy22� C Qy22�C1/=..2��/�4 C �/
�QK

�D1..2��/�4 C �/
	2=.n�1/ ;
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It is not difficult to check that

M.�/ D y>.I �A.�//y
�
detC.I � A.�//�1=.n�1/

; (16.33)

where detC is the product of non-zero eigenvalues. The criterion (16.33) is called
the generalized maximum likelihood method in smoothing spline literature (Wahba
1990). It is the same as the restricted maximum likelihood (REML) method in
the mixed effects literature (Wang 1998). Note that the marginal likelihood is
approximated by plugging-inbb rather than averaging over a prior distribution for b.

For the climate data, the GML scores for the periodic spline and the correspond-
ing fits are plotted in the left and right panels of Fig. 16.7 respectively. The fits with
three different choices of the smoothing parameter are very similar.

16.6 Impact of Heteroscedasticity and Correlation

In our climate example we used one fifth of all measurements in the year 1990.
Figure 16.9 shows all measurements in 1990 and periodic spline fits using all
measurements with GCV, GML and UBR choices of the smoothing parameter.
Obviously the GCV and UBR criteria under-estimate the smoothing parameter
which leads to wiggly fits. What is causing the GCV and UBR methods to
breakdown?

In model (16.2) we have assumed that random errors are iid with mean zero and
variance 2. The middle panel of Fig. 16.1 indicates that variation of the maximum
temperature is larger during the winter. Also, temperatures close in time may be
correlated. Thus the assumption of homoscedasticity and independence may not
hold. What kind of impact, if any, do these potential violations have on the model
selection procedures?
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For illustration, we again consider two simulations with heteroscedastic and
auto-correlated random errors respectively. We use the same function and design
points as the simulation in Sect. 16.2 with the true function shown in the left panel
of Fig. 16.4. For heteroscedasticity, we generate random errors �i � N.0; ..i C
36:5/=147/2/, i D 1; � � � ; 73, where the variance increases with i . For correlation,
we generate the �i ’s as a first-order autoregressive process with mean zero, standard
deviation 0.5 and first-order correlation 0.5. The first and the second rows in
Fig. 16.10 show the fits by the trigonometric model with cross-validation, BIC
and Cp choices of orders under heteroscedastic and auto-correlated random errors
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respectively but without adjustment for the heteroscedasticity or correlation. The
third and the fourth rows in Fig. 16.10 show the fits by the periodic spline with
GCV, GML and UBR choices of smoothing parameters under heteroscedastic
and auto-correlated random errors respectively but without adjustment for the
heteroscedasticity or correlation. These kind of fits are typical under two simulation
settings. The heteroscedasticity has some effects on the model selection, but far
less severe than the impact of auto-correlation. It is well-known that positive auto-
correlation leads to under-smoothing for non-parametric models with data-driven
choices of the smoothing parameter (Opsomer et al. 2001; Wang 1998). Figure 16.10
shows that the same problem exists for parametric regression models as well.

The breakdown of the GCV and UBR criteria for the climate data is likely
caused by the auto-correlation which is higher when daily measurements are used
as observations. Extensions of the GCV, GML and UBR criteria for correlated data
can be found in Wang (1998).

16.7 Discussion

There are many fundamental and philosophical issues in model selection. For
example, a model is usually a simplification or approximation of the complicated
reality. “All models are wrong, but some are useful” (Box 1976). A selected model
tell us what the finite data are likely to support, not the full reality.

Data analysts are constantly making model selections (assumptions), consciously
or unconsciously. For example, certain choices have to be made for selecting the
candidate models M (Burnham and Anderson 2002). The selection methods have
been formalized in the current literature represent only a fraction of the whole
selection process in practice. As a consequence, model selection is considered as
both science and art. Scientific knowledge, empirical evidence, common sense, and
good judgment all play an important role in this process. It is rarely the case that
sufficient information is available to fully specify the model. Thus creative, critical
and careful thinking is required. The problem is often so complicated that one should
not expect to achieve the final model in one attempt, regardless of which model
selection method has been used. Instead, an iterative scheme including diagnostics
suggested by Box and Jenkins (1976) should be used.

Some methods such as cross-validation can be applied to a wide variety of
applications, while others are designed for specific applications. Different methods
have been motivated and justified with different target criteria under different
assumptions. Thus it is unrealistic to expect one method to serve all purposes and
perform uniformly better under all circumstances.

We used prediction criteria including MSE and PSE as examples. This, of course,
does not mean model selection is involved in (or for) prediction only. For example,
another important objective of a model is data description. Identifying risk factors
for diabetes is as important as predicting a person’s chance of having this disease.
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Wang and Ke (2002) have developed a user-friendly S package, ASSIST,
which includes several functions for fitting various spline based models. The ssr
function in this package is used to fit periodic spline models in this chapter.
The ASSIST package can be downloaded from http://www.pstat.ucsb.edu/ fac-
ulty/yuedong/software. More details and examples can be found in the manual of
the ASSIST package which also is available at this web-site.
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Chapter 17
Bootstrap and Resampling

Enno Mammen and Swagata Nandi

17.1 Introduction

The bootstrap is by now a standard method in modern statistics. Its roots go back
to a lot of resampling ideas that were around in the seventies. The seminal work of
Efron (1979) synthesized some of the earlier resampling ideas and established a new
framework for simulation based statistical analysis. The idea of the bootstrap is to
develop a setup to generate more (pseudo) data using the information of the original
data. True underlying sample properties are reproduced as closely as possible and
unknown model characteristics are replaced by sample estimates.

In its basic nature the bootstrap is a data analytic tool. It allows to study the
performance of statistical methods by applying them repeatedly to bootstrap pseudo
data (“resamples”). The inspection of the outcomes for the different bootstrap
resamples allows the statistician to get a good feeling on the performance of the
statistical procedure. In particular, this concerns graphical methods. The random
nature of a statistical plot is very difficult to be summarized by quantitative
approaches. In this respect data analytic methods differ from classical estimation
and testing problems. We will illustrate data analytic uses of the bootstrap in the
next section.

Most of the bootstrap literature is concerned with bootstrap implementations of
tests and confidence intervals and bootstrap applications for estimation problems.
It has been argued that for these problems bootstrap can be better understood if
it is described as a plug-in method. Plug-in method is an approach used for the
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estimation of functionals that depend on unknown finite or infinite dimensional
model parameters of the observed data set. The basic idea of plug-in estimates
is to estimate these unknown parameters and to plug them into the functional.
A wide known example is the plug-in bandwidth selector for kernel estimates.
Asymptotical optimal bandwidths typically depend e.g. on averages of derivatives of
unknown curves (e.g. densities, regression functions), residual variances, etc. Plug-
in bandwidth selectors are constructed by replacing these unknown quantities by
finite sample estimates. We now illustrate why the bootstrap can be understood
as a plug-in approach. We will do this for i.i.d. resampling. This is perhaps the
most simple version of the bootstrap. It is applied to an i.i.d. sample X1; : : : ; Xn
with underlying distribution P . I.i.d. resamples are generated by drawing n times
with replacement from the original sample X1; : : : ; Xn. This gives a resample
X�1 ; : : : ; X�n . More formally, the resample is constructed by generatingX�1 ; : : : ; X�n
that are conditionally independent (given the original data set) and have conditional
distribution OPn. Here OPn denotes the empirical distribution. This is the distribution
that puts mass 1=n on each value of X1; : : : ; Xn in case that all observations have
different values (or more generally, mass j=n on points that appear j times in the
sample), i.e. for a set A we have OPn.A/ D n�1

Pn
iD1 I.Xi 2 A/ where I denotes

the indicator function. The bootstrap estimate of a functional T .P / is defined
as the plug-in estimate T . OPn/. Let us consider the mean �.P / D R

xP.dx/ as
a simple example. The bootstrap estimate of �.P / is given by �. OPn/. Clearly,
the bootstrap estimate is equal to the sample mean Xn D n�1

Pn
iD1 Xi . In this

simple case, simulations are not needed to calculate the bootstrap estimate. Also
in more complicated cases it is very helpful to distinguish between the statistical
performance and the algorithmic calculation of the bootstrap estimate. In some
cases it may be more appropriate to calculate the bootstrap estimate by Monte-
Carlo simulations, in other cases powerful analytic approaches may be available.
The discussion which algorithmic approach is preferable should not be mixed up
with the discussion of the statistical properties of the bootstrap estimate. Perhaps,
clarification of this point is one of the major advantages of viewing the bootstrap
as a plug-in method. Let us consider now a slightly more complicated example.
Suppose that the distribution of

p
nŒXn � �.P /� is our functional Tn.P / D T .P /

that we want to estimate. The functional now depends on the sample size n. The
factor

p
n has been introduced to simplify asymptotic considerations following

below. The bootstrap estimate of Tn.P / is equal to Tn. OPn/. This is the conditional
distribution of

p
nŒX

�
n � �. OPn/� D

p
n.X

�
n � Xn/, given the original sample

X1; : : : ; Xn. In this case the bootstrap estimate could be calculated by Monte-
Carlo simulations. Resamples are generated repeatedly, say m-times, and for the
j -th resample the bootstrap statistic �j D pn.X�n � Xn/ is calculated. This
gives m values �1; : : : ; �m. Now the bootstrap estimate Tn. OPn/ is approximated
by the empirical distribution of these m values. E.g. the quantiles of the distribution
Tn.P / of

p
nŒXn � �.P /� are estimated by the sample quantiles of �1; : : : ; �m.

The bootstrap quantiles can be used to construct “bootstrap confidence intervals”
for �.P /. We will come back to bootstrap confidence intervals in Sect. 17.3.
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There are two other advantages of the plug-in view of the bootstrap. First, the
estimate of P that is plugged into the functional Tn could be replaced by other
estimates. For example if one is willing to assume that the observations have
a symmetric distribution around their mean one could replace OPn by a symmetrized
version. Or if one is using a parametric model fP™ W ™ 2 $g for the observations one
could use PO™ where O™ is an estimate of the parameter ™. In the latter case one also
calls the procedure parametric bootstrap. In case that the parametric model holds
one may expect a better accuracy of the parametric bootstrap whereas, naturally,
the “nonparametric” bootstrap is more robust against deviations from the model.
We now come to another advantage of the plug-in view. It gives a good intuitive
explanation when the “bootstrap works”. One says that the bootstrap works or
bootstrap is consistent if the difference between Tn.ePn/ and Tn.P /, measured by
some distance, converges to zero. Here ePn is some estimate of P . The Bootstrap
will work when two conditions hold:

(1) The estimate eP n is a consistent estimate of P , i.e. eP n converges to P , in some
appropriate sense.

(2) The functionals Tn are continuous, uniformly in n.

Consistency of the bootstrap has been proved for a broad variety of models and
for a large class of different bootstrap resampling schemes. Typically for the proofs
another approach has been used than (1) and (2). Using asymptotic theory often one
can verify that Tn.eP n/ and Tn.P / have the same limiting distribution, see Bickel
and Freedman (1981) for one of the first consistency proofs for the bootstrap. In
our example if the observations have a finite variance 2.P / then both Tn.ePn/ and
Tn.P / have a limiting normal limit N.0; 2.P //. For a more general discussion
of the approach based on (1) and (2), see also Beran and Ducharme (1991). The
importance of (1) and (2) also lies in the fact that it gives an intuitive reasoning
when the bootstrap works. For a recent discussion if assumption (2) is necessary see
also Inoue and Kilian (2003).

There exist bootstrap methods that cannot be written or interpreted as plug-in
estimates. This concerns different bootstrap methods where random weights are
generated instead of random (pseudo) observations (see Bose and Chatterjee 2002).
Or this may happen in many applications where the data model is not fully specified.
Important examples are models for dependent data. Whereas classical parametric
time series models specify the full dimensional distribution of the complete data
vector, some non- and semi-parametric models only describe the distribution of
neighbored observations. Then the full data generating process is not specified and
a basic problem arises how bootstrap resamples should be generated. There are some
interesting proposals around and the research on bootstrap for dependent data is still
going on. We give a short introduction to this topic in Sect. 17.4. It is a nice example
of an active research field on the bootstrap.

Several reasons have been given why the bootstrap should be applied. The
Bootstrap can be compared with other approaches. In our example the classical
approach would be to use the normal approximation N.0; 2. OPn//. It has been
shown that the bootstrap works if and only if the normal approximation works, see
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Mammen (1992a). This even holds if the observations are not identically distributed.
Furthermore, one can show that the rate of convergence of both the bootstrap and
the normal approximation is n�1=2. This result can be shown by using Edgeworth
expansions. We will give a short outline of the argument. The distribution function
F.x/ D P.pnŒXn � �.P /� � x/ can be approximated by

˚

�
x

.P /

�
� 1

6
p
n

�3.P /

.P /3

"�
x

.P /

�2
� 1

#

�

�
x

.P /

�
:

Here, ˚ is the distribution function of a standard normal distribution and �

is its density. �3.P / D EŒXi � �.P /�3 is the third centered moment of the
observations Xi . Under regularity conditions this approximation holds with errors
of order O.n�1/. For the bootstrap estimate of F a similar expansion can be
shown where .P / and �3.P / are replaced by their sample versions . OPn/ and
�3. OPn/ D n�1Pn

iD1.Xi � Xn/
3

˚
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. OPn/
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n
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:

The difference between the bootstrap estimate and F is of order n�1=2 because the
first order terms ˚.x=.P // and ˚.x=. OPn// differ by a term of order OP .n�1=2/
as the same holds for .P / and . OPn/. Thus there seems to be no asymptotic
advantage in using the bootstrap compared to the classical normal approximation
although the skewness of the distribution is accurately mimicked by the bootstrap.
However, if the functional Tn is replaced by the distribution of the studentized
statistic

p
n. OPn/�1.Xn��.P // then the bootstrap achieves a rate of convergence

of order n�1 whereas the normal approximation N.0; 1/ still only has a rate of
accuracy of order n�1=2. Again, this can be easily seen by Edgeworth expansions.
For the distribution function of the studentized statistic the following expansion
holds with accuracyO.1=n/.

˚.x/C 1

6
p
n

�3.P /

.P /3

�
2x2 C 1��.x/ :

The normal approximation ˚.x/ differs from this expansion by terms of order
O.n�1=2/. For the bootstrap estimate one gets the following expansion with error
terms of order O.1=n/.

˚.x/C 1

6
p
n

�3. OPn/
. OPn/3

�
2x2 C 1��.x/ :

This approximates the distribution function of the studentized statistic with accuracy
OP .n

�1/ because�3. OPn/��3.P / D OP .n�1=2/ and . OPn/�.P / D OP .n�1=2/.
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That means in this case the classical normal approximation is outperformed by the
bootstrap. This result for studentized statistics has been used as the main asymptotic
argument for the bootstrap. It has been verified for a large class of models and
resampling methods. For a rigorous and detailed discussion see Hall (1992).

There also exist some other arguments in favor of the bootstrap. For linear models
with increasing dimension it has been shown in Bickel and Freedman (1983) and
Mammen (1989, 1992b, 1993) that the bootstrap works under weaker conditions
than the normal approximation. These results have been extended to more general
sequences of models and resampling schemes, see Bose and Chatterjee (2002) and
references cited therein. These results indicate that the bootstrap still may give
reasonable results even when the normal approximation does not work. For many
applications this type of result may be more important than a comparison of higher
order performances. Higher order Edgeworth expansions only work if the simple
normal approximation is quite reasonable. But then the normal approximation
is already sufficient for most statistical applications because typically not very
accurate approximations are required. For example an actual level :06 instead of
an assumed level :05 may not lead to a misleading statistical analysis. Thus one
may argue that higher order Edgeworth expansions can only be applied when they
are not really needed and for these reasons they are not the appropriate methods for
judging the performance of the bootstrap. On the other hand no other mathematical
technique is available that works for such a large class of problems as the Edgeworth
expansions do. Thus there is no general alternative way for checking the accuracy
of the bootstrap and for comparing it with normal approximations.

The Bootstrap is a very important tool for statistical models where classical
approximations are not available or where they are not given in a simple form.
Examples arise e.g. in the construction of tests and confidence bands in nonpara-
metric curve estimation. Here approximations using the central limit theorem lead
to distributions of functionals of Gaussian processes. Often these distributions are
not explicitly given and must be calculated by simulations of Gaussian processes.
We will give an example in the next section (number of modes of a kernel smoother
as a function of the bandwidth). Compared with classical asymptotic methods the
bootstrap offers approaches for a much broader class of statistical problems.

By now, the bootstrap is a standard method of statistics. It has been discussed
in a series of papers, overview articles and books. The books Efron (1982), Efron
and Tibshirani (1993) and Davison and Hinkley (1997) give a very insightful intro-
duction into possible applications of the bootstrap in different fields of statistics.
The books Beran and Ducharme (1991) and Mammen (1992b) contain a more
technical treatment of consistency of the bootstrap, see also Gine (1997). Higher
order performance of the bootstrap is discussed in the book Hall (1992). The
book Shao and Tu (1995) gives a rather complete overview on the theoretical
results on the bootstrap in the mid-nineties. The book Politis et al. (1999) gives
a complete discussion of the subsampling, a resampling method where the resample
size is smaller than the size of the original sample. The book Lahiri (2003b)
discusses the bootstrap for dependent data. Some overview articles are contained
in Statistical Science (2003), Vol. 18, Number 2. Here, Efron (2003) gives a short
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(re)discussion of bootstrap confidence intervals, Davison et al. (2003) report on
recent developments of the bootstrap, in particular in classification, Hall (2003)
discusses the roots of the bootstrap, and Boos (2003), Beran (2003) give a short
introduction to the bootstrap, and other articles give an overview over recent
developments of bootstrap applications in different fields of statistics. Overview
articles over special bootstrap applications have been given for sample surveys
(Lahiri 2003a; Shao 1996, 2003), for econometrics (Horowitz 1997, 2001, 2003a),
nonparametric curve estimation (Härdle and Mammen 1991; Mammen 2000),
estimating functions (Lele 2003): dependent data (Kreiss and Paparoditis 2011) and
financial time series analysis (Paparoditis and Politis 2009).

17.2 Bootstrap as a Data Analytical Tool

In a data analysis the statistician wants to get a basic understanding of the stochastic
nature of the data. For this purpose he/she applies several data analytic tools and
interprets the results. A basic problem of a data analysis is over-interpretation of
the results after a battery of statistical methods has been applied. A similar situation
occurs in multiple testing but there exist approaches to capture the joint stochastics
of several test procedures. The situation becomes more involved in modern graphical
data analysis. The outcomes of a data analytic tool are plots and the interpretation
of the data analysis relies on the interpretation of these (random) plots. There is no
easy way to have an understanding of the joint distribution of the inspected graphs.
The situation is already complicated if only one graph is checked. Typically it is
not clearly specified for which characteristics the plot is checked. We will illustrate
this by a simple example. We will argue that the bootstrap and other resampling
methods offer a simple way to get a basic understanding for the stochastic nature of
plots that depend on random data. In the next section we will discuss how this more
intuitive approach can be translated into the formal setting of mathematical decision
theoretical statistics. Our example is based on the study of a financial time series.
Figure 17.1 shows the daily values of the German DAX index from end of 1993
until November 2003. In Fig. 17.2 mean-corrected log returns are shown. Logreturns
for a series xt are defined as logxt � logxt�1. Mean-corrected logreturns rt are

Fig. 17.1 Plot of DAX data
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-

Fig. 17.2 1-lag mean-corrected logreturn of the DAX data

-

Fig. 17.3 Random permutation of the data in Fig. 17.2

-

Fig. 17.4 Nonparametric bootstrap sample of the data in Fig. 17.2

defined as this difference minus its sample average. Under the Black-Sholes model
the logreturns rt are i.i.d. It belongs to folklore in finance that this does not hold. We
now illustrate how this could be seen by application of resampling methods.

Figure 17.3 shows a plot of the same logreturns as in Fig. 17.2 but with changed
order. The logreturns are plotted against a random permutation of the days. The
clusters appearing in Fig. 17.2 dissappear. Figure 17.3 shows that these clusters
could not be explained by stochastic fluctuations. The same story is told in Fig. 17.4.
Here a bootstrap sample of the logreturns is shown. Logreturns are drawn with
replacement from the set of all logreturns (i.i.d. resampling) and they are plotted
in the order as they were drawn. Again the clusters disappear and the same happens
for typical repetitions of random permutation or bootstrap plots. The clusters in
Fig. 17.2 can be interpreted as volatility clusters. The volatility of a logreturn for
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-

Fig. 17.5 GARCH(1,1) bootstrap sample of the data in Fig. 17.2

Fig. 17.6 Plot of kernel smooth of squared logreturns from the data in Fig. 17.2

a day is defined as the conditional variance of the logreturn given the logreturns
of all past days. The volatilities of neighbored days are positively correlated.
This results in volatility clusters. A popular approach to model the clusters are
GARCH (Generalized Autoregressive Conditionally Heteroscedastic) models. In
the GARCH(1,1) specification one assumes that rt D t "t where "t are i.i.d. errors
with mean zero and variance 1 and where 2t is a random conditional variance
process fulfilling 2t D a0 C a1

2
t�1 C b1r2t�1. Here a0, a1 and b1 are unknown

parameters. Figure 17.5 shows a bootstrap realization of a fitted GARCH(1,1)
model. Fitted parameters Oa0, Oa1 and Ob1 are calculated by a quasi-likelihood method
(i.e. likelihood method for normal "t ). In the bootstrap resampling the errors "t
are generated by i.i.d. resampling from the residuals rt = Ot where O2t is the fitted
volatility process O2t D Oa0 C Oa1 O2t�1 C Ob1r2t�1. An alternative resampling would to
generate normal i.i.d. errors in the resampling. This type of resampling is also called
parametric bootstrap. At first sight the volatility clusters in the parametric bootstrap
have similar shape as in the plot of the observed logreturns. Figure 17.6 shows
local averages Om.t/ over squared logreturns. We have chosen Om.t/ as Nadaraya–
Watson estimate Omh.t/ D ŒPN

sD1 Kf.s � t/=hgr2t �=Œ
PN

sD1 Kf.s � t/=hg�. We used
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Fig. 17.7 Plot of kernel smooth of squared logreturns from the data in Fig. 17.3

Fig. 17.8 Plot of kernel smooth of squared logreturns from the data in Fig. 17.4

a Gaussian kernel K and bandwidth h D 5 days. Figures 17.7–17.9 show the
corresponding plots for the three resampling methods. Again the plots for random
permutation resampling and nonparametric i.i.d. bootstrap qualitatively differ from
the plot for the observed time series (Figs. 17.7 and 17.8). In Fig. 17.9 the GARCH
bootstrap shows a qualitatively similar picture as the original logreturns ruling again
not out the GARCH(1,1) model.

As a last example we consider plots that measure local and global shape
characteristics of the time series. We consider the number of local maxima of the
kernel smoother Omh as a function of the bandwidth h. We compare this function
with the number of local maxima for resamples. Figures 17.10–17.12 show the
corresponding plots for the permutation resampling, the nonparametric bootstrap
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Fig. 17.9 Plot of kernel smooth of squared logreturns from the data in Fig. 17.5

Fig. 17.10 Number of local maxima of kernel smoother Omh of squared mean-corrected logreturns
of DAX data from Fig. 17.1 (black line) compared with number of local maxima for 10 random
permutation resamples (dashed lines)
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Fig. 17.11 Number of local maxima of kernel smoother Omh of squared mean-corrected logreturns
of DAX data from Fig. 17.1 (black line) compared with number of local maxima for 10
nonparametric bootstrap resamples (dashed lines)

and the GARCH(1,1) bootstrap. The plot of the original data set is always compared
with the plots for 10 resamples. Again i.i.d. structures are not supported by the
resampling methods. GARCH(1,1) bootstrap produces plots that are comparable to
the original plot.

The last approach could be formalized to a test procedure. This could e.g. be done
by constructing uniform resampling confidence bands for the expected number of
local maxima. We will discuss resampling tests in the next section. For our last
example we would like to mention that there seems to be no simple alternative to
resampling. An asymptotic theory for the number of maxima that could be used for
asymptotic confidence bands is not available (to our knowledge) and it would be
rather complicated. Thus, resampling offers an attractive way out. It could be used
for a more data analytic implementation as we have used it here. But it could also
be used for getting a formal test procedure.

The first two problems, discussed in Figs. 17.1–17.9, are too complex to be
formalized as a testing approach. It is impossible to describe for what differences
the human eye is looking in the plots and to summarize the differences in one simple
quantity that can be used as a test statistic. The eye is using a battery of “tests” and it
is applying the same or similar checks for the resamples. Thus, resampling is a good
way to judge statistical findings based on the original plots.
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Fig. 17.12 Number of local maxima of kernel smoother Omh of squared mean-corrected logreturns
of DAX data from Fig. 17.1 (black line) compared with number of local maxima for GARCH(1,1)
bootstrap resamples (dashed lines)

17.3 Resampling Tests and Confidence Intervals

In the last section we have pointed out how resampling can offer additional insights
in a data analysis. We now want to discuss applications of bootstrap that are more in
the tradition of classical statistics. We will introduce resampling approaches for the
construction of confidence intervals and of testing procedures. The majority of the
huge amount of the bootstrap literature is devoted to these topics. There exist two
basic approaches for the construction of confidence regions:

• Bootstrapping asymptotic pivots, bootstrap-t intervals
• Confidence intervals based on bootstrap percentiles

We will outline both methods below. There also exist two basic approaches for the
construction of resampling tests:

• Resampling from the hypothesis
• Conditional tests

We will discuss testing after confidence intervals.
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Approaches based on pivot statistics are classical methods for the construction
of confidence sets. In a statistical model fP™ W ™ 2 $g a pivot statistic is a random
quantity Q D Q.™; X/ that depends on the unknown parameter ™ and on the
observation (vector) X and that has the following property. The distribution of Q
under P™ does not depend on ™. Thus the distribution of Q is known and one can
calculate quantiles q1;˛; q2;˛ such that P™fq1;˛ � Q.™; X/ � q2;˛g D 1 � ˛. Then
C˛ D f™ 2 $ W q1;˛ � Q.™; X/ � q2;˛g is a confidence set of the unknown
parameter ™ with coverage probability P.™ 2 C˛/ D 1 � ˛. Classical examples are
i.i.d. normal observationsXi with mean � and variance 2. Then Q D .X � �/= O
is a pivot statistic. HereX is the sample mean and O2 D .n�1/�1Pn

iD1.Xi�X/2 is
the sample variance. Then we get, e.g.C˛ D ŒX�n�1=2k1�˛=2 O;XCn�1=2k1�˛=2 O�
is a confidence interval for � with exact coverage probability 1 � ˛. Here k1�˛=2 is
the 1 � ˛=2 quantile of the t-distribution with n� 1 degrees of freedom.

Pivot statistics only exist in very rare cases. However for a very rich class of
settings one can find statistics Q D Q.™; X/ that have a limiting distribution L.™/
that smoothly depends on ™. Such statistics are called asymptotic pivot statistics. If
now q1;˛; q2;˛ are chosen such that underL. O™/ the interval Œq1;˛ ; q2;˛� has probability
1�˛ then we get that P.™ 2 C˛/ converges to 1�˛. Here O™ is a consistent estimate
of ™ and the confidence set C˛ is defined as above. A standard example can be easily
given if an estimate O� of a (one-dimensional, say) parameter � D �.™/ is given that is
asymptotically normal. Then

p
n. O� � �/ converges in distribution towards a normal

limit with mean zero and variance 2.™/ depending on the unknown parameter ™.
Here Q D pn. O� � �/ or the studentized version Q D pn. O� � �/=. O™/ with
a consistent estimate O™ of ™ could be used as asymptotic pivot. Asymptotic pivot
confidence intervals are based on the quantiles of the asymptotic distribution L
of Q. The bootstrap idea is to simulate the finite sample distribution Ln.™/ of the
pivot statistic Q instead of using the asymptotic distribution of Q. This distribution
depends on n and on the unknown parameter ™. The bootstrap idea is to estimate the
unknown parameter and to plug it in. Then bootstrap quantiles for Q are defined as
the (random) quantiles of Ln. O™/. For the unstudentized statistic Q D pn. O� � �/ we
get the bootstrap confidence interval Œ O� � n�1=2 Oq2;˛; O� � n�1=2 Oq1;˛� where Oq1;˛ is the
˛=2 bootstrap quantile and Oq2;˛ is the 1 � ˛=2 bootstrap quantile. This confidence
interval has an asymptotic coverage probability equal to 1�˛. We want to illustrate
this approach by the data example of the last section. Suppose we fit a GARCH(1,1)
model to the logreturns and we want to have a confidence interval for � D a1Cb1. It
is known that a GARCH(1,1) process is covariance stationary if and only if j� j < 1.
For values of � that approximate 1, one gets a very high persistency of shocks on
the process. We now construct a bootstrap confidence interval for � . We used Q Dp
n. O� � �/ as asymptotic pivot statistic. The results are summarized in Table 17.1.

Table 17.1 Estimate of a1 C b1 and 90% bootstrap confidence interval using GARCH(1,1)
bootstrap (asymptotic pivot method)

Oa1 C Ob1 Confidence lower bound Upper bound

0.9919 0.9874 0.9960
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Table 17.2 Estimate of a1 C b1 and 90% bootstrap-t confidence interval using GARCH(1,1)
bootstrap for the first half and for the second half of the DAX returns (asymptotic pivot method)

Oa1 C Ob1 Confidence lower bound Upper bound

Using part I 0.9814 0.9590 0.9976
Using part II 0.9842 0.9732 0.9888

Table 17.3 Estimate of a1 C b1 and 90% bootstrap percentile confidence interval using
GARCH(1,1) bootstrap

Oa1 C Ob1 Confidence lower bound Upper bound

0.9919 0.9877 0.9963

We also applied the GARCH(1,1) bootstrap to the first half and to the second half
of our data set. The results are summarized in Table 17.2. The value of O� is quite
similar for both halves. The fitted parameter is always contained in the confidence
interval based on the other half of the sample. Both confidence intervals have a broad
overlap. So there seems no reason to expect different values of � for the two halves
of the data. The situation becomes a little bit confused if we compare Table 17.2 with
Table 17.1. Both fitted values of � , the value for the first half and for the second half,
are not contained in the confidence interval that is based on the whole sample. This
suggests that a GARCH(1,1) model with fixed parameters for the whole sample is
not an appropriate model. A model with different values seems to be more realistic.
When for the whole time series a GARCH(1,1) model is fitted the change of the
parameters in time forces the persistency parameter � closer to 1 and this effect
increases for GARCH fits over longer periods. We do not want to discuss this point
further here and refer to Mikosch and Starica (2004) for more details.

In Efron (1979) another approach for confidence intervals was suggested. It
was supposed to use the bootstrap quantiles of a test statistic directly as bounds
of the bootstrap confidence intervals. In our example then the estimate O� has to
be calculated repeatedly for bootstrap resamples and the 5% and 95% empirical
quantiles are used as lower and upper bound for the bootstrap confidence intervals.
It can be easily checked that we then get Œ O� C n�1=2 Oq1;˛; O� Cn�1=2 Oq2;˛� as bootstrap
confidence interval where the quantiles Oq1;˛ and Oq2;˛ are defined as above, see also
Efron and Tibshirani (1993). Note that the interval is just reflected around O� . The
resulting confidence interval for � is shown in Table 17.3. For asymptotic normal test
statistics both bootstrap confidence intervals are asymptotically equivalent. Using
higher order Edgeworth expansions it was shown that bootstrap pivot intervals
achieve a higher order level accuracy. Modifications of percentile intervals have
been proposed that achieve level accuracy of the same order, see Efron and
Tibshirani (1993). For a recent discussion on bootstrap confidence intervals see
also Efron (2003), Davison et al. (2003). In our data example there is only a minor
difference between the two intervals, cf. Tables 17.1 and 17.3. This may be caused
by the very large sample size.

The basic idea of bootstrap tests is rather simple. Suppose that for a statistical
model fP™ W ™ 2 $g a testing hypothesis ™ 2 $0 � $ and a test statistic T .X/ is
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given. Then bootstrap is used to calculate critical values for T .X/. This can be done
by fitting a model on the hypothesis and by generating bootstrap resamples under
the fitted hypothesis model. The 1 � ˛ quantile of the test statistic in the bootstrap
samples can be used as critical value. The resulting test is called a bootstrap test.
Alternatively, a testing approach can be based on the duality of testing procedures
and confidence regions. Each confidence region defines a testing procedure by
using the following rule. A hypothesis is rejected if no hypothesis parameter lies
in the confidence region. We shortly describe this method for bootstrap confidence
intervals based on an asymptotic pivot statistic, say

p
n. O™n � ™/, and the hypothesis

$0 D .�1; ™0� � R. Bootstrap resamples are generated (in the unrestricted model)
and are used for estimating the 1 � ˛ quantile of

p
n. O™n � ™/ by Ok1�˛ , say. The

bootstrap test rejects the hypothesis, if
p
n. O™n�™0/ is larger than Ok1�˛ . Higher order

performance of bootstrap tests has been discussed in Hall (1992). For a discussion
of bootstrap tests we also refer to Beran (1988), Beran and Ducharme (1991).

We now compare bootstrap testing with a more classical resampling approach
for testing (“conditional tests”). There exist some (important) examples where,
for all test statistics, resampling can be used to achieve a correct level on the
whole hypothesis for finite samples. Such tests are called similar. For some testing
problems resampling tests turn out to be the only way to get similar tests. This
situation arises when a statistic is available that is sufficient on the hypothesis
fP™ W ™ 2 $0g. Then, by definition of sufficiency, the conditional distribution
of the data set given this statistic is fixed on the hypothesis and does not depend
on the parameter of the underlying distribution as long as the parameter lies on
the hypothesis. Furthermore, because this distribution is unique and thus known,
resamples can be drawn from this conditional distribution. The resampling test
then has correct level on the whole hypothesis. We will now give a more formal
description.

A test �.X/ for a vector X of observations is called similar if E™ �.X/ D ˛ for
all ™ 2 $0, where $0 is the set of parameters on the null hypotheses. We suppose
that a statistic S is available that is sufficient on the hypothesis. Let P0 D fP™ W
™ 2 $0g be the family of distributions of X on the hypothesis. Then the conditional
distribution of X given S does not depend on the underlying parameter ™ 2 $0
because S is sufficient. In particular, E.�.X/jS D s/ does not depend on ™. Then
any test satisfying

E Œ�.X/jS D s� D ˛ (17.1)

is similar on P0. This immediately follows from

EŒ�.X/� D EEŒ�.X/jS� D ˛ :

A test satisfying (17.1) is said to have Neyman structure with respect to S .
For a given test statistic T similar tests can be constructed by choosing k˛.S/

such that
P ŒT > k˛.S/jS D s� D ˛ : (17.2)
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Here the conditional probability on the left hand side does not depend on ™ because
S is assumed to be sufficient. We now argue that this is the only way to construct
similar tests if the family of distributions of S (for ™ 2 $0) is “rich enough”. For
such families E™u.S/ D 0 for all ™ 2 $0 for a function u implies u.s/  0. In
particular, with u.s/ D P ŒT > k˛.S/jS D s� � ˛ we get that the test T > k˛.S/

is similar if E™u.S/ D 0 for all ™ 2 $0. This implies u.s/  0, i.e. (17.2).
Thus, given a test statistic T , the only way to construct similar tests is by choosing
k˛.S/ according to (17.2). The relation between similar tests and tests with Neyman
structure belongs to the classical material of mathematical statistics and can be
found in text books, e.g. Lehmann (1986).

We will consider two examples of conditional tests. The first one are permutation
tests. For a sample of observations X D .X1; : : : ; Xn/ the order statistic S D
.X.1/; : : : ; X.n// containing the ordered sample valuesX.1/ � : : : � X.n/ is sufficient
on the hypothesis of i.i.d. observations. Given S , the conditional distribution of X
is a random permutation of X1; : : : ; Xn. The resampling scheme is very similar to
the nonparametric bootstrap. In the resampling, n pseudo observations are drawn
from the original data sample. Now this is done without replacement whereas in the
bootstrap scheme this is done with replacement. For a comparison of bootstrap and
permutation tests see also Janssen and Pauls (2003). Also for the subsampling (i.e.
resampling with a resample size that is smaller than the sample size) both schemes
(with and without replacement) have been considered. For a detailed discussion of
the subsampling without replacement see Politis et al. (1999).

The second example is a popular approach in the physical literature on nonlinear
time series analysis. For odd sample size n a series X1; : : : ; Xn can be written as

Xt D X C
r
2�

n

.n�1/=2X

jD1
2

s

IX

�
2�j

n

�
cos

�
2�j

n
t C ™j

�

with sample mean X , periodogram IX.!/ D 1
2�n

ˇ
ˇPn

tD1 Xt exp.�i!t/ˇˇ2 and
phases ™j . On the hypothesis that X is a circular stationary Gaussian process the
statistic S D .X; IX.2�j=n/ W j D 1; : : : ; .n � 1/=2/ is sufficient. Conditional on
S , the phases ™j are conditional i.i.d. and have a uniform distribution on Œ0; 2��.
Resamples with observations

X�t D X C
r
2�

n

.n�1/=2X

jD1
2

s

IX

�
2�j

n

�
cos

�
2�j

n
t C ™�j

�
;

where ™�j are i.i.d. with uniform distribution are called “surrogate data”. They can
be used to construct similar tests for the hypothesis of circular stationary Gaussian
processes. In the physics literature these tests are applied for testing the hypothesis
of stationary Gaussian processes. It is argued that for tests that do not heavily
depend on boundary observations the difference between stationarity and circular
stationarity becomes negligible for large data sets. Surrogate data tests are used as
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first checks if deterministic nonlinear time series models are appropriate for a data
set. The relation of surrogate data tests to conditional tests was first observed in Chan
(1997). The method of surrogate data was first proposed in Theiler et al. (1992).

We would like to highlight a major difference between bootstrap and conditional
tests. Bootstrap tests work if they are based on resampling of an asymptotic pivot
statistic. Then the bootstrap critical values stabilize asymptotically and converge
against the quantile of the limiting distribution of the test statistic. For conditional
tests the situation is quite different. They work for all test statistics. However,
not for all test statistics it is guaranteed that the critical value k˛.S/ converges to
a deterministic limit. In Mammen and Nandi (2004) this is discussed for surrogate
data tests. It is shown that also for very large data sets the surrogate data quantile
k˛.S/ may have a variance of the same order as the test statistic T . Thus the
randomness of k˛.S/ may change the nature of a test. This is illustrated by a test
statistic for kurtosis of the observations that is transformed to a test for circular
stationarity.

17.4 Bootstrap for Dependent Data

The Bootstrap for dependent data is a lively research area. A lot of ideas are around
and have let to quite different proposals. In this section we do not want to give
a detailed overview and description of the different proposals. We only want to
sketch the main ideas. Models for dependent data may principally differ from i.i.d.
models. For dependent data the data generating process is often not fully specified.
Then there exists no unique natural way for resampling. The resampling should be
carried out in such a way that the dependence structure should be captured. This
can be easily done in case of classical finite-dimensional ARMA models with i.i.d.
residuals. In these models the resamples can be generated by fitting the parameters
and by using i.i.d. residuals in the resampling. We will discuss the situation when
no finite-dimensional model is assumed. For other overviews on the bootstrap for
time series analysis, see Buhlmann (2002), Härdle et al. (2003), Politis (2003) and
the time series chapter in Davison et al. (2003) and the book Lahiri (2003b). In
particular, Härdle et al. (2003) give an overview over the higher order performance
of the different resampling schemes.

The most popular bootstrap methods for dependent data are block, sieve,
local, wild and Markov bootstrap and subsampling. They all are nonparametric
procedures.

17.4.1 The Subsampling

The method that works under a minimal amount of assumptions is the subsampling.
It is used to approximate the distribution of an estimate O™n estimating an unknown
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parameter ™. In the subsampling subsamples of consecutive observations of length
l <n are taken. These subsamples are drawn randomly from the whole time series.
For the subsamples estimates O™� are calculated. If it is known that for a sequence an
the statistic an. O™n � ™/ has a limiting distribution then under very weak conditions
the conditional distribution of al . O™�� O™n/ has the same limiting distribution. Higher
order considerations show that the subsampling has a very poor rate of convergence,
see Hall and Jing (1996). It does not even achieve the rate of convergence of
a normal approximation. It may be argued that this poor performance is the
price for its quite universal applicability. Subsampling has also been used in i.i.d.
settings where classical bootstrap does not work. For a detailed discussion of the
subsampling see Politis et al. (1999).

17.4.2 The Block Bootstrap

The basic idea of the block bootstrap is closely related to the i.i.d. nonparametric
bootstrap. Both procedures are based on drawing observations with replacement. In
the block bootstrap however instead of single observations blocks of consecutive
observations are drawn. This is done to capture the dependence structure of
neighbored observations. Different versions of this idea have been proposed in
Hall (1985), Carlstein (1986), Künsch (1989), Liu and Singh (1992b) and Politis
and Romano (1994). It has been shown that this approach works for a large class
of stationary processes. The blocks of consecutive observations are drawn with
replacement from a set of blocks. In the first proposal this was done for a set of
nonoverlapping blocks of fixed length l : fXj W j D 1; : : : ; lg, fXlCj W j D
1; : : : ; lg; : : : Later papers proposed to use all (also overlapping) blocks of length
l , i.e. the k-th block consists of the observations fXk�1Cj W j D 1; : : : ; lg
(Moving block bootstrap). The bootstrap resample is obtained by sampling n=l
blocks randomly with replacement and putting them together to a time series of
length n. By construction, the bootstrap time series has a nonstationary (conditional)
distribution. The resample becomes stationary if the block length l is random and
generated from a geometric distribution. This version of the block bootstrap is called
the stationary bootstrap and was introduced in Politis and Romano (1994). Recently,
Paparoditis and Politis (2001a, 2002a) proposed another modification that uses
tapering methods to smooth the effects of boundaries between neighbored blocks.
With respect to higher order properties the moving block bootstrap outperforms the
version with non overlapping blocks and both achieve a higher order accuracy as
the stationary bootstrap (see Hall et al. 1995; Lahiri 1999a,b, 2003b).

The block bootstrap has turned out as a very powerful method for dependent data.
It does not achieve the accuracy of the bootstrap for i.i.d. data but it outperforms
the subsampling. It works reasonably well under very weak conditions on the
dependency structure. It has been applied to a very broad range of applications.
For the block bootstrap no specific assumption is made on the structure of the data
generating process.
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We now describe some methods that use more specific assumptions on the
dependency structure.

17.4.3 The Sieve Bootstrap

The i.i.d. resampling can also be applied to models of dependent data where the
stochastics is driven by i.i.d. innovations. The distribution of the innovations can
be estimated by using fitted residuals. In the resampling i.i.d. innovations can
be generated by i.i.d. resampling from this fitted distribution. An example is an
autoregressive linear model:

Xt � �X D
pX

jD1
�j
�
Xt�j � �X

�C "t ; t 2 Z (17.3)

where �X D E.Xt/ is the observation mean and where f"tg is a sequence of i.i.d.
innovations with E."t / D 0 and "t is independent of fXs; s < tg. The parameters
�1; : : : ; �p can be estimated by least squares or by using Yule-Walker equations.
Residuals can be fitted by putting

Q"t D Xt � O�X �
pX

jD1
O�j
�
Xt�j � O�X

�
;

where O�X D n�1
Pn

tD1 Xt and O�1; : : : ; O�p are the fitted parameters. Bootstrap
resamples can be generated by

X�t � O�X D
pX

jD1
O�j
�
X�t�j � O�X

	
C "�t (17.4)

where "�t are drawn with replacement from the estimated centered residuals O"t D
Q"t � n�1Pn

iD1 Q"i . For a study of this bootstrap procedure in model (17.3), see e.g.
Franke and Kreiss (1992) and references cited therein.

In a series of papers this approach has been studied for the case that model (17.3)
only approximately holds. This is the case if the underlying time series is a station-
ary linear process, i.e. fXtg has an infinite order autoregressive representation:

Xt � �X D
1X

jD1
�j
�
Xt�j � �X

�C "t ; t 2 Z : (17.5)

The bootstrap scheme (17.4) has been proposed for this AR(1) model. In a first
step a model (17.3) of finite order p is fitted to the time series. Bootstrap resamples
are generated as in (17.4) according to model (17.3). This resampling scheme has
been called the sieve bootstrap because the AR(1) model (17.5) is approximated by
an AR(p) model, where, in the asymptotics, p converges to infinity for increasing
sample size n. It is argued that this asymptotic approach reflects practical uses of
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AR models where the order p is selected data adaptively and one is only thinking of
the finite order AR model as an approximation to the truth. The Sieve bootstrap
and its asymptotic consistency was first considered by Kreiss (1988, 1992) and
further analyzed by Buhlmann (1997), Buhlmann (1998), Bickel and Buhlmann
(1999), Paparoditis (1996), Park (2002), Choi and Hall (2000) showed that under
appropriate conditions the sieve bootstrap achieves nearly the rates of convergence
of the i.i.d resampling. In particular, it usually outperforms the block bootstrap.
Buhlmann (1997) studied higher order performance of sieve bootstrap variance
estimates for the sample mean under assumptions on the decay of the coefficients
�j � cj�v for constants c > 0 and v > 2.

17.4.4 The Nonparametric Autoregressive Bootstrap

Another residual based bootstrap scheme has been proposed for a nonparametric
autoregression model:

Xt D m.Xt�1; : : : ; Xt�p/C .Xt�1; : : : ; Xt�q/"t t D 1; 2 : : : (17.6)

where f"tg is a sequence of i.i.d. error variables with zero mean and unit variance
and where m and  are unknown smooth functions. The functions m and  can be
estimated by nonparametric smoothing estimates Om and O . These estimates can be
used to fit residuals. In the nonparametric autoregressive bootstrap resamples are
generated

X�t D Qm
�
X�t�1; : : : ; X�t�p

	
C Q

�
X�t�1; : : : ; X�t�q

	
"�t t D 1; 2 : : :

where Qm and Q are nonparametric smoothing estimates and where "�t are drawn
with replacement from the centered fitted residuals. The choice of the bootstrap
autoregression function Qm and of the bootstrap volatility function Q2 is rather
delicate because inappropriate choices can lead to explosive dynamics for the
bootstrap time series. The nonparametric autoregressive bootstrap was discussed
in Franke et al. (2002a). They give conditions under which this bootstrap approach
is consistent. Franke et al. (2002b) used this bootstrap approach for the construction
of uniform confidence bands for the regression functionm.

17.4.5 The Regression-type Bootstrap, the Wild Bootstrap
and the Local Bootstrap

Franke et al. (2002a) also consider two other bootstrap procedures for the
model (17.6): the regression bootstrap and the wild bootstrap. In the regression
bootstrap, a nonparametric regression model is generated with (conditionally) fixed
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design. We describe this approach for the case of a homoscedasstic autoregression
model:

Xt D m.Xt�1; : : : ; Xt�p/C "t t D 1; 2; : : : (17.7)

where again f"tg is a sequence of i.i.d. error variables with zero mean and m is an
unknown smooth autoregression function. Bootstrap error variables "�t can be gen-
erated by drawing with replacement from centered fitted residuals in model (17.7).
In contrast to the autoregression bootstrap the resamples are now generated in
a regression model

X�t D Qm.Xt�1; : : : ; Xt�p/C "�t t D 1; 2; : : : ; (17.8)

where Qm is again a nonparametric smoothing estimate ofm. The stochastic behavior
of the autoregression estimates in model (17.7) is fitted by the bootstrap regression
estimates in (17.8). Thus regression of Xt onto .Xt�1; : : : ; Xt�p/ is mimicked in
the bootstrap by regression of X�t onto the same covariable .Xt�1; : : : ; Xt�p/. The
regression bootstrap principally differs from the autoregressive bootstrap because
no autoregressive scheme is generated in the resampling. Because the original time
series is used as covariables in a regression problem the regression bootstrap has
the advantage that there is no danger for the bootstrap process to be unstable or to
explode. Thus the choice of the bootstrap error distribution and of the estimate Qm is
not so crucial as for the autoregression bootstrap. On the other hand the randomness
of the covariables is not mimicked in the resampling. This leads to a poorer finite
sample performance, see Franke et al. (2002a).

Modifications of the regression bootstrap are the local bootstrap (Paparoditis and
Politis 2000) and the wild bootstrap. The wild bootstrap also uses a regression
model with (conditionally) fixed covariables. But it is designed to work also for
heteroscedastic errors. It has been first proposed for regression models with indepen-
dent but not identically distributed error variables, see Wu (1986), Beran (1986). For
nonparametric models it was first proposed in Härdle and Mammen (1993). In the
nonparametric autoregression model (17.7) wild bootstrap resamples are generated
as in (17.8). But now the error variables "�t are generated as "�t D O"t�t where O"t are
centered fitted residuals and where �1; : : : ; �n are (conditionally) i.i.d. variables with
conditional zero mean and conditional unit variance (given the original sample). For
achieving higher order accuracy it has also been proposed to use �t with conditional
third moment equal to 1. One could argue that in this resampling scheme the
distribution of "t is fitted by the conditional distribution of �t . Then n different
distributions are fitted in a model where only n observations are available. This
is the reason why in Härdle and Mammen (1993) this approach was called wild
bootstrap. For a more detailed discussion of the wild bootstrap, see Liu (1988),
Liu and Singh (1992a), Mammen (1992a,b, 1993). The asymptotic analysis of the
wild bootstrap and other regression type bootstrap methods in model (17.7) is much
simpler than the autoregression bootstrap. In the bootstrap world it only requires
mathematical analysis of a nonparametric regression model. Only the discussion
of uniform nonparametric confidence bands remains rather complicated because it
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involves strong approximations of the bootstrap nonparametric regression estimates
by Gaussian processes, see Neumann and Kreiss (1988). The wild bootstrap works
under quite weak model assumptions. Essentially it is only assumed that the
conditional expectation of an observation given the past is a smooth function of
the last p observations (for some finite p). Generality has its price. Resampling
schemes that use more detailed modeling may achieve a better accuracy. We now
consider resampling under the stronger assumption that not only the mean but also
the whole conditional distribution of an observation smoothly depends on the last p
observations (for some finite p). Resampling schemes that work under this smooth
Markov assumption are the Markov Bootstrap schemes.

17.4.6 The Markov Bootstrap

We discuss the Markov bootstrap for a Markov model of order 1. We will describe
two implementations of the Markov bootstrap. For both implementations one has
to assume that the conditional distribution of XtC1 given X1; : : : ; Xt smoothly
depends on Xt . The first version was introduced by Rajarshi (1990). It is based
on a nonparametric estimate of the transition density f .yjx/ of XtC1 D y given
Xt D x. Using kernel density estimates of the density of Xt and of the joint density
of .Xt ; XtC1/ one can estimate f .yjx/ by

Of .yjx/ D
Of .x; y/
Of .x/ ;

where

Of .x; y/ D 1

n � 1
n�1X

tD1
Kh.Xt � x/Kg.XtC1 � y/ ;

Of .x/ D 1

n

nX

tD1
Kh.Xt � x/

are kernel density estimates with kernel functions Kr.u/ D r�1K
�
r�1u

�
for

bandwidths r D h; g. In the bootstrap resampling one starts with an observation
X�1 from the density Of .�/ and then one iteratively generatesX�tC1 by sampling from
Of .�jX�t /. Higher order performance of this resampling scheme has been discussed in

Horowitz (2003b). It turns out that it achieves faster rates of convergence compared
with the block bootstrap. This is in accordance with intuition because the Markov
bootstrap requires an additional model assumption, namely the Markov property.

The second version of the Markov bootstrap can be described as a limiting
version of the latter for g ! 0. Then in the limiting case the bootstrap process
takes values only in the set of observations fX1; : : : ; Xng. Given X�t D x, the next
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observation X�tC1 is equal to Xs .2 � s � n/ with probability Kh.Xs�1 � x/=Pn�1
rD1 Kh.Xr � x/. This resampling scheme was introduced in Paparoditis and

Politis (2001b, 2002b). Higher order properties are not yet known. It may be
expected that it has similar asymptotic properties as the smoothed version of the
Markov bootstrap. The unsmoothed version has the advantage that the bootstrap
time series is forced to live on the observed values of the original time series.
This leads to a more stable dynamic of the bootstrap time series, in particular
for smaller sample sizes. Furthermore, for higher dimensional Markov processes
the unsmoothed version is based on only d dimensional kernel density smoothing
whereas smoothed bootstrap requires 2d dimensional kernel smoothing. Here,
d denotes the dimension of the Markov process. Again, one can argue that this leads
to a more stable finite sample performance of unsmoothed bootstrap. On the other
hand, the smoothed Markov bootstrap takes advantage of smoothness of f .yjx/
with respect to y. For larger data sets this may lead to improvements, in case of
smooth transition densities.

17.4.7 The Frequency Domain Bootstrap

For the periodogram IX.!/ D 1
2�n

ˇ
ˇPn

tD1 Xt exp.�i!t/ˇˇ2 it is known that its values
for !j D 2�j=n, 0 < j < n=2 are asymptotically independent. For the first two
moments one gets that for 0 < j; k < n=2; j 6D k

EŒIX.!j /� D f .!j /C o.n�1=2/ ; (17.9)

VarŒIX .!j /� D f .!j /2 C o.1/ ; (17.10)

CovŒIX .!j /; IX.!k/� D n�1f .!j /f .!k/

2

6
4

E
h
"4j

i

E
h
"2j

i2 � 3

3

7
5C o.n�1/ ; (17.11)

where f .!/ D .2�/�1P1kD�1Cov.Xt ; XtCk/ exp.�ik!/ is the spectral density of
the time series Xt and where "j D Xj� E ŒXj jXt W t � j � 1� are the innovations
of the time series. These expansions hold under some regularity conditions on Xt .
In particular, it is needed that Xt is a linear process. Thus approximately, we get
that �j D IX.!j /=f .!j /, 0 < j < n=2 is an i.i.d. sequence. This suggests
the following bootstrap scheme, called the frequency domain bootstrap or the
periodogram bootstrap.

In this resampling bootstrap values I�X.!j / of the periodogram IX.!j / are

generated. The resampling uses two estimates Of and Qf of the spectral density. In
some implementations these estimates can be chosen identically. The first estimate
is used for fitting residuals O�j D IX.!j /= Of .!j /. The bootstrap residuals ��1 ; : : :
are drawn with replacement from the centered fitted residuals O�j = O�� where O�� is the
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average of O�j over 0 < j < n=2. The bootstrap periodogram is then calculated by
putting I�X.!j / D Qf .!j /��j .

The frequency domain bootstrap can be used to estimate the distribu-
tion of statistics n�1=2

P
0<j<n=2 wj IX.!j /. Then the distribution of n�1=2P

0<j<n=2Œwj IX.!j / � wj f .!j /� is estimated by the conditional distribution of

n�1=2
P

0<j<n=2Œwj I
�
X.!j / � wj Qf .!j /�. Unfortunately, in general this approach

does not work. This can be easily seen by a comparison of the asymptotic variances
of the statistics. The original statistic n�1=2

P
0<j<n=2 wj IX.!j / has variance that

is asymptotically equivalent to

n�1
X

w2j f .!j /
2 C

2

6
4

E
h
"4j

i

E
h
"2j

i2 � 3

3

7
5
h
n�1

X
wj f .!j /

i2
;

see (17.9)–(17.11). In the bootstrap world the variance is approximately

n�1
X

w2j Qf .!j /2 :

Thus in general there are differences between the variances that do not vanish
asymptotically. The reason is that the term on the right hand side of (17.11)
contributes an additional term to the variance for the original time series. This term
does not appear in the bootstrap because an i.i.d. resampling is used that produces
conditionally uncorrelated I�X.!j /.

Although the frequency domain bootstrap does not work in general, there exist
three important examples where it works. In all three examples the second term in
the asymptotic expansion of the variance vanishes. This happens e.g. if the kurtosis
of the innovations is equal to zero:

E
h
"4j

i

E
h
"2j

i2 � 3 D 0 :

In particular, this is the case if the innovations have a normal distribution. Another
more general example where the bootstrap works is given by statistics where it
holds that n�1

P
wj f .!j / D o.1/. A large class of examples for this case are

ratio statistics

n1=2

P
0<j<n=2 rj IX.!j /P
0<j<n=2 IX.!j /

:

By some Taylor expansion calculus one can see that
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n1=2

"P
0<j<n=2 rj IX.!j /P
0<j<n=2 IX.!j /

�
P

0<j<n=2 rj f .!j /P
0<j<n=2 f .!j /

#

� n�1=2
X

0<j<n=2

�
wj IX.!j /� wj f .!j /

�

with wj proportional to rj �Pk rk f .!k/
ıP

k f .!k/. Then
P

j wj f .!j / D 0 and
the bootstrap consistently estimates the variance of the ratio statistic. Consistency
of the frequency domain bootstrap for ratio statistics has been shown in Dahlhaus
and Janas (1996). They also showed that the frequency domain bootstrap achieves
higher order accuracy. But for this it is necessary that the third moment of the
innovations vanishes. This is a rather restrictive assumption. Examples of ratio
statistics are autocorrelation estimates, see Dahlhaus and Janas (1996) where other
examples are also given. Modifications of the frequency domain bootstrap have been
proposed that work for a larger class of statistics. An example is the proposal of
Kreiss and Paparoditis (2003) where ideas of the frequency domain bootstrap are
combined with ideas of the the sieve bootstrap, see also the discussion in Kreiss and
Paparoditis (2011) for more recent modifications of this proposal.

There exists also another example where the frequency domain bootstrap works.
Nonparametric smoothing estimates of the spectral density are linear statistics
where the weights wj are now local. For example for kernel smoothing weights
wj D h�1KŒ.!j � x/=h� with bandwidth h and kernel function K one has
n�1

P
j w2j f .!j /

2 D O.h�1/. On the other hand, n�1
P

j wj f .!j / D O.1/ is
of lower order. Now, both the variance of the original spectral density estimate
and the variance of the bootstrap spectral density estimate have variance that is
up to terms of order o.h/ is equal to the same quantity .2�/2n�1

P
w2j f .!j /

2. The
correlation between IX.!j / and IX.!k/ for j 6D k (see (17.11)) only contributes
to higher order terms. Franke and Härdle (1992) firstly observed this relation and
used this fact to show that the frequency domain bootstrap works for nonparametric
spectral density estimation. In their approach, both Of and Qf are nonparametric
kernel smoothing estimates. For Qf a bandwidth has been chosen that is of larger
order than the bandwidth h. Then bootstrap consistently estimates the bias of the
spectral density estimate. Similar approaches have been used in bootstrap schemes
for other settings of nonparametric curve estimation, see Mammen (2000). For the
frequency domain bootstrap for parametric problems one can choose Of D Qf , see
Dahlhaus and Janas (1996).

We now have discussed a large class of resampling schemes for dependent
data. They are designed for different assumptions on the dependency structure
ranging from quite general stationarity assumptions (subsampling), mixture con-
ditions (block bootstrap), linearity assumptions (sieve bootstrap, frequency domain
bootstrap), conditional mean Markov property (wild bootstrap), Markov properties
(Markov bootstrap) and autoregressive structure (autoregressive bootstrap). It may
be generally conjectured that resampling schemes for more restrictive models are
more accurate as long as these more restrictive assumptions really apply. These
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conjectures are supported by asymptotic results based on higher order Edgeworth
expansions. (Although these results should be interpreted with care because of the
poor performance of higher order Edgeworth expansions for finite samples, see also
the discussion in the introduction.) The situation is also complicated by the fact
that in time series analysis typically models are used as approximations to the truth
and they are not interpreted as true models. Thus one has to study the much more
difficult problem how resampling schemes perform if the underlying assumptions
are only approximately fulfilled.

Resampling for dependent data has stimulated very creative ideas and discussions
and it had lead to a large range of different approaches. Partially, the resampling
structure is quite different from the stochastic structure of the original time series.
In the regression bootstrap regression data are used instead of autoregression series.
In the sieve bootstrap and in the frequency domain bootstrap models are used that
only approximate the original model.

For dependent data the bootstrap has broadened the field of possible statistical
applications. The bootstrap offered new ways of implementing statistical procedures
and made it possible to treat new types of applied problems by statistical inference.

The discussion of thebootstrap for dependent data is not yet finished. For the
comparison of the proposed resampling schemes a complete understanding is still
missing and theoretical research is still going on. Applications of time series anal-
ysis will also require new approaches. Examples are unit root tests, cointegration
analysis and the modeling of financial time series. See also Kreiss and Paparoditis
(2011) for an overview on the recent developments in this area.
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Chapter 18
Design and Analysis of Monte Carlo
Experiments

Jack P.C. Kleijnen

18.1 Introduction

By definition, computer simulation or Monte Carlo models are not solved by math-
ematical analysis (such as differential calculus), but are used for numerical exper-
imentation. The goal of these experiments is to answer questions about the real
world; i.e., the experimenters may use their models to answer what if questions –
this is also called sensitivity analysis. Sensitivity analysis – guided by the statistical
theory on design of experiments (DOE) – is the focus of this chapter. This sensitivity
analysis may serve validation of the model, optimization of the real system,
and risk or uncertainty analysis to find robust solutions for real problems; see
Kleijnen (2008). Note that optimization is also discussed at length in Chap. II.6
by Spall.

Though I assume that the reader is familiar with basic Monte Carlo methods, I
shall summarize a simple Monte Carlo example (based on the well-known Student
t statistic) in Sect. 18.2. This example will also illustrate bootstrap and variance-
reduction techniques.

Furthermore, in this chapter I shall summarize classic DOE, and extend it to
newer methods (for example, DOE for interpolation using Kriging; Kriging is
named after the South-African mining engineer named Krige).

Traditionally, ‘the shoemaker’s children go barefoot’; i.e., users of computational
statistics ignore statistical issues of their Monte Carlo results. Nevertheless, they
should address the following two types of issues:

1. Tactical issues: number of (macro)replicates, variance-reduction techniques.
2. Strategic issues: situations to be simulated, and the sensitivity analysis of the

resulting data.
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Both types of issues will be addressed in this chapter.
As Monte Carlo methods are applied in many disciplines, the terminologies vary.

DOE speaks of ‘factors’ with ‘levels’, whereas simulation analysts may speak of
‘inputs‘or ‘parameters’ with ‘values’. DOE talks about ‘design points’ or ‘runs’,
whereas simulationists may talk about ‘situations’, ‘cases’, or ‘scenarios’.

Originally, classic DOE was developed for experiments with real, non-simulated
systems in agriculture, in the 1930s. Since the 1950s, DOE has also been devel-
oped for experiments in engineering, psychology, etc. This classic DOE includes
fractional factorial designs, as we shall see. In those real systems it is impractical
to experiment with ‘many’ factors: ten factors seems a maximum. Moreover, it
is then hard to experiment with factors that have more than ‘a few’ values: five
values per factor seems a maximum. Finally, these experiments are run in ‘one
shot’(for example, in one growing season) and not sequentially. In Monte Carlo
experiments, however, these limitations do not hold! A recent textbook on classic
DOE for simulation is Kleijnen (2008), which covers a wider area and gives more
details than this review does.

Continuing the discussion on terminology, I speak of the Monte Carlo method
whenever (pseudo)random numbers are used; for example, I shall apply the Monte
Carlo method to estimate the behavior of the t statistic in case of non-normality, in
Sect. 18.2 (the Monte Carlo method may also be used to estimate multiple integrals,
which is a deterministic problem that is outside the scope of this handbook). Random
numbers (say) r are identically and independently distributed (IID) on the interval
from zero to one: r 2 U (0, 1). Pseudorandom numbers (PRN) are generated through
a computer, and are assumed to behave like truly random numbers when applying
the Monte Carlo method.

I use the term simulation whenever the analysts compute the output of a dynamic
model; i.e., the analysts do not use calculus to find the solution of a set of
differential or difference equations. The dynamic model may be either stochastic
or deterministic. Stochastic simulation uses the Monte Carlo method; it is often
applied to solve waiting (queuing) problems in telecommunications and logistics.
Deterministic simulation is often applied in computer-aided engineering (CAE),
computer-aided design (CAD), and computer-aided manufacturing (CAM).

I use the term metamodel for models that approximate – or model – the
input/output (I/O) behavior of the underlying simulation model; for example, a
low-order polynomial regression model is a popular metamodel (as we shall see).
Metamodels are used – consciously or not – to design and analyze experiments
with simulation models. In the simulation literature, metamodels are also called
emulators, response surfaces, surrogates, etc.

The remainder of this chapter is organized as follows. Section 18.2 presents a
simple Monte Carlo experiment with Student’s t statistic, including bootstrapping
and variance-reduction techniques. Section 18.3 discusses the black-box approach
to simulation experiments, and corresponding metamodels – especially, polynomial
and Kriging models. Section 18.4 starts with simple regression (meta)models with
a single factor, proceeds with designs for multiple factors including designs for
first-order and second-order polynomial models, and concludes with screening
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designs for ‘many’ (for example, a few hundred) factors. Section 18.5 introduces
Kriging, which often uses space-filling designs, such as Latin hypercube sampling
(LHS); Kriging has only recently been applied in random simulation, but it has
already established a track record in deterministic simulation and spatial statistics.
Section 18.6 gives conclusions and discusses topics for further research.

18.2 Simulation Techniques in Computational Statistics

Consider the well-known definition of the t statistic with n� 1 degrees of freedom:

tn�1 D Nx � �
sx=
p
n

with Nx D

nP

iD1
xi

n
and s2x D

nP

iD1
.xi � Nx/2

n � 1 (18.1)

where the xi (1 D 1; : : :; n) are normally (Gaussian), independently, and identically
distributed (NIID) with mean � and variance 2:

xi 2 NIID.�; /.i D 1; : : : ; n/ (18.2)

A century ago, Gossett used a (manual) Monte Carlo experiment, before he
analytically derived the density function of the statistic defined in (18.1) and (18.2);
he published his results under the pseudonym ‘Student’. So in this experiment,
he sampled n values xi from an urn for which (18.2) was an adequate model,
and he computed the corresponding value for the statistic defined by (18.1). This
experiment he repeated (say) m times, so that he could compute the estimated
density function (EDF) – also called the empirical cumulative distribution function
(ECDF) – of the statistic.

Let us imitate Student’s experiment through the simulation experiment described
in the following procedure with six steps.

1. Read the simulation inputs: � (mean), 2 (variance), n(sample size), m(number
of macro-replicates, used in step 4).

2. Take nsamples xi 2 NIID.�; / (see (18.2) and Chap. II.2 by L’Ecuyer).
3. Compute the statistic tn�1 defined in (18.1).
4. Repeat steps 2 and 3 m times.
5. Sort – in increasing order – the m values of tn�1 resulting from step 4.
6. Compute the EDF from the results in step 5.

To verify this simulation program, we may compare the result (namely the EDF in
step 6) with the results that are tabulated for Student’s density function; for example,
does our EDF give an estimated 90% quantile that does not differ significantly from
the exact value, tn�1I0:90. Next we may proceed to the following more interesting
experiment.
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We may drop the classic assumption formulated in (18.2), and experiment with
non-normal distributions. It is easy to sample from such distributions (see again
Chap. II.2). However, we are now confronted with several so-called strategic
choices (also see step 1 above): Which type of distribution should we select
(lognormal, exponential, etc.); which parameter values for that distribution type
(mean and variance for the lognormal, etc.), which sample size n (for a ‘large’ n,
the t distribution is known to be a good approximation for our EDF)?

Besides these strategic issues, we must face some tactical issues: Which number
of macro-replicates m gives a good EDF; can we use special variance reducing
techniques (VRTs) – such as common random numbers and importance sampling –
to reduce the variability of the EDF? I explain these techniques briefly, as follows.

Common random numbers (CRN) mean that the analysts use the same
(pseudo)random numbers when estimating the effects of different strategic choices.
For example, CRN may be applied when comparing the estimated 90% quantiles
Otn�1I0:90 for various sample sizes n and distribution types. Obviously, CRN reduces
the variance of estimated differences in performance, provided CRN creates positive
correlations between the estimators Otn�1I0:90 being compared for various sample
sizes, etc.

Antithetic variates (AV) mean that the analysts use the complements (1 �
ri with i D 1; : : : ; n/ of the PRN (riwith i D 1; : : : ; n/ in two ‘companion’
macro-replicates (where I assume that each sample of xi with i D 1; : : : ; n requires
one random number; for example, sampling from the exponential distribution with
rate � may use xi D � ln ri =� with i D 1; : : : ; n/. AV reduces the variance
of the estimator averaged over these two replicates, provided AV creates negative
correlation between the two estimators resulting from the two replicates; obviously,
1 � ri and ri have correlation �1, but nonlinear transformations such as � ln.1 �
ri /=� and � ln ri =� do not have such a strong negative correlation.

Importance sampling (IS) is used when the analysts wish to estimate a rare event,
such as the probability of the Student statistic exceeding the 99.999% quantile, the
probability of a ‘disaster’ occurring in ecology, finance, telecommunications, etc.
IS increases that probability (for example, by sampling from a distribution with a
fatter tail), and then corrects for this distortion of the input distribution (through the
likelihood ratio). IS is not so simple as CRN and AV – but without IS too much
computer time may be needed. Publications on rare event simulation may be found
in the proceedings of the yearly Winter Simulation Conference (WSC); see http://
www.wintersim.org/.

There are many more VRTs. Both CRN and AV are intuitively attractive and
easy to implement, but most popular is CRN. The most useful VRT may be IS. In
practice, the other VRTs often do not reduce the variance drastically so many users
prefer to spend more computer time instead of applying VRTs.

Finally, suppose a very limited set of historical data is given and we must analyze
these data while we know that these data do not satisfy the classic assumption
formulated in (18.2). Then bootstrapping may help, as follows (also remember the
six steps above).

http://www.wintersim.org/
http://www.wintersim.org/
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1. Read the bootstrap sample size B.B is the usual symbol in bootstrapping,
comparable with m, the number of macro-replicates in step 1 above).

2. Take n samples with replacement from the original sample xi .i D 1; : : :; n/; this
sampling gives x�i (the superscript * is the usual symbol to denote bootstrapped
values, which are to be distinguished from the ‘original’ values).

3. From these bootstrapped values x�i compute the bootstrap statistic t�n�1
(see (18.1)).

4. Repeat steps 2 and 3 B times.
5. Sort the Bvalues of t�n�1 that result from step 4.
6. Compute the EDF of t�n�1 from the results in step 5.

So, bootstrapping is just a Monte Carlo experiment – using resampling with
replacement of a given data set. (There is also a parametric bootstrap, which comes
even closer to our simulation of Gossett’s original experiment.) Bootstrapping is
further discussed in Efron and Tibshirani (1993), Kleijnen (2008, pp. 80–87) and in
Chap. III.2 (by Mammen).

18.3 Black-Box Metamodels of Simulation Models

DOE treats the simulation model as a black box; i.e., only the inputs and outputs
are observed and analyzed. For example, in the simulation of the t statistic (in
Sect. 18.2) the simulation inputs (listed in step 1) are � (mean), 2 (variance),
n(sample size), and m(number of macro-replicates); this m is probably a tactical
factor that is not of interest to the user. Suppose the user is interested in the 90%
quantile of the distribution function of the statistic in case of nonnormality. A black-
box representation of this example is:

tn�1I0:90 D t.�; ; n; r0/ (18.3)

where t.dot/ denotes the mathematical function implicitly defined by the simulation
procedure (outlined in steps 1 through 6 below (18.2), which form the white-box
simulation model); � and  now denote the parameters of the nonnormal distribu-
tion of the input xi (for example, � denotes how many exponential distributions
with parameter  D � are summed to form an Erlang distribution); r0 denotes the
seed of the (pseudo)random numbers.

One possible metamodel of the black-box model in (18.3) is a Taylor-series
approximation that is cut off after the first-order effects of the three factors, �;  ,
and n:

y D ˇ0 C ˇ1�C ˇ2 C ˇ3nC e (18.4)

where y is the metamodel predictor of the simulation output tn�1I0:90 in (18.3);ˇT D
.ˇ0; ˇ1; ˇ2; ˇ3/ denotes the row-vector with the parameters of the metamodel in
(18.4), and e is the noise which includes both lack of fit of the metamodel and
intrinsic noise caused by the (pseudo)random numbers with seed r0.
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Instead of the metamodel specified in (18.4), many alternative metamodels may
be used. For example, taking the logarithm of the inputs and outputs in (18.4) makes
the first-order polynomial approximate relative changes; i.e., the parameters ˇ1, ˇ2,
and ˇ3 become so-called elasticity coefficients. There are also more complicated
types of metamodels. Examples are Kriging models, neural nets, radial basis
functions, splines, support vector regression, and wavelets; see the various chapters
in Part III – especially Chaps. III.5 (by Loader), III.7 (Müller), III.8 (Cizek), and
III.15 (Laskov and Müller) – and also the many references in Kleijnen (2008,
p. 8). I, however, will focus on two types that have established a track record in
simulation:

• linear regression models; see Sect. 18.4;
• Kriging; see Sect. 18.5.

To estimate the parameters of whatever black-box metamodel, the analysts must
experiment with the simulation model; i.e., they must change the inputs (or factors)
of the simulation, run the simulation, and analyze the resulting I/O data. This
experimentation is the topic of the next sections.

18.4 Designs for Linear Regression Metamodels

18.4.1 Linear Regression Metamodels with a Single Factor

I start the discussion of DOE with the simplest metamodel; namely, a first-
order polynomial with a single factor. An example is the ‘Student’ simulation in
Sect. 18.2, for which I now assume that the response (output) of interest is the type-
II error probability (or its complement, the power) so y in (18.4) now denotes this
probability predicted through the regression metamodel. I further assume a single
factor (say) x D =n (‘relative’ variability; i.e., absolute variability corrected for
sample size); see (18.4). Elementary mathematics proves that to fit a straight line
it suffices to have two I/O observations; see ‘local area 1’ in Fig. 18.1. It is simple
to prove that the ‘best’ estimators of the regression parameters result if those two
values are as far apart as ‘possible’. In practice, the analysts do not know over which
experimental area a first-order polynomial is a ‘valid’ model. This validity depends
on the goals of the simulation study; see Kleijnen and Sargent (2000).

So the analysts may start with a local area, and simulate the two (locally) extreme
input values. Let us denote these two extreme values of the ‘coded’ variable x by
�1 andC1, which implies the following standardization of the original variable z:

x D z � Nz
.zmax � zmin/=2

(18.5)

where Nz denotes the average value of the original variable (in the example, the
relative variability z D =n/ in the (local) experiment.



18 Design and Analysis of Monte Carlo Experiments 535

Fig. 18.1 Two simple
polynomial regression models
with predictor Oy for the
output of a simulation with a
single factor x

The Taylor series implies that – as the experimental area gets bigger (also see
‘local area 2’ in Fig. 18.1) – a better metamodel may be the second-order polynomial

y D ˇ0 C ˇ1x C ˇ2x2 C e: (18.6)

Obviously, estimation of the three parameters in (18.6) requires at least the
simulation of three input values. Indeed, DOE provides designs with three values
per factor; for example, 3k designs for k factors. However, most publications on the
application of DOE in simulation focus on central composite designs (CCD), which
have five values per factor; see Sect. 18.4.2 below.

I emphasize that the second-order polynomial in (18.6) is nonlinear in x (the
regression variable), but linear in ˛ (the regression parameters or factor effects to be
estimated). Consequently, such a polynomial is a type of linear regression model
(also see Chap. III.8).

When the experimental area covers the whole area in which the simulation model
is valid (see again Fig. 18.1), then other global metamodels become relevant. For
example, Kleijnen and Van Beers (2005) find that Kriging models (to be discussed
in Sect. 18.5) outperform second-order polynomials.

Note that Zeigler, Praehofer, and Kim (2000) call the experimental area the
‘experimental frame’. I call it the domain of admissible scenarios, given the goals
of the simulation study.

I conclude that lessons learned from the simple example in Fig. 18.1, are:

1. The analysts should decide whether they want to experimentlocally orglobally.
2. Given that decision, they should select a specific metamodel type ( low-order

polynomial, Kriging, spline, etc.); also see Chaps. III.5, III.7, and III.8.

18.4.2 Linear Regression Metamodels with Multiple Factors

Let us now consider a regression model with k factors; for example, k D 2.
A popular but inferior design changes one factor at a time. For k D 2 such a design
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x1

x2

(2)(1)

(3)

-1 +1

-1

+1
Fig. 18.2
One-factor-at-a-time design
for two factors x1 and x2x2

Table 18.1 A one-factor-at-a-time design for two factors, and possible regression variables

Scenario x0 x1 x2 x1x2

1 1 �1 �1 1

2 1 1 �1 �1
3 1 �1 1 �1

is shown in Fig. 18.2 and Table 18.1; this table displays the factor values – in the
various factor combinations – in the columns denoted by x1 and x2; the ‘dummy’
column x0 corresponds with the polynomial intercept Ǒ0 in (18.4). In this design the
analysts usually start with the ‘base’ scenario, denoted by the factor combination
(�1, �1); see scenario 1 in the table. Next they simulate the two scenarios (1, �1)
and (�1, 1); see the scenarios 2 and 3 in the table.

The reader may find it intuitively clear that changing a single factor at a time
does not enable the estimation of the interaction between the two factors. Applying
linear algebra we can prove that the three-by-four matrix X implied by Table 18.1
must have a column for the interaction x1x2 that is linearly dependent on the other
three columns. If the vector of simulation outputs is denoted by w, then the ordinary
least squares (OLS) estimator

Ǒ D .XTX/�1XTw (18.7)

does not exist because the inverse in (18.7) does not exist. In mathematical statistics,
we say that the estimated effects are confounded with or biased by each other. One-
factor-at-a-time designs are further discussed by Kleijnen (2008, pp. 32–33).

Note that in practice, analysts often study each factor in their one-at-a-time
design at three levels (which may be denoted by the standardized values�1, 0,C1).
However, two levels suffice to estimate the parameters of a first-order polynomial
(see again Sect. 18.4.1).

To enable the estimation of interactions, the analysts must change factors
simultaneously; for example, the analysts also observe the factor combination (1, 1)
besides the three combinations in Table 18.1. It is easy to check that the resulting 22
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design implies a matrix of regression variables X that is orthogonal:

XT X D nI (18.8)

where n denotes the number of scenarios simulated; n D 4 in the 22 design. Hence
the OLS estimator (18.7) simplifies to Ǒ D XT w=4.

In the general case of k factors, a 2k design enables the unbiased estimation
of the intercept (grand mean) ˇ0. all k first-order effects (main effects) ˇj .j D
1; : : :; k/, all the interactions between pairs of factors ˇj Ij 0 .j < j 0 D 2; : : :; k/,
among triplets, etc. The interpretation of interactions among three or more factors
is rather difficult, so they are usually assumed to be negligible. This assumption
implies that a 2k design requires the simulation of relatively many (namely, 2k/
factor combinations, as the number of effects to be estimated (say) q in only 1 C
k C k.k � 1/=2 in case of a polynomial metamodel with an intercept, first-order
effects, and two-factor interactions. In such situations, the analysts need to simulate
only a fraction of the 2k design – as we shall see next.

Let us consider a situation in which the number of factors k increases from two
to three. Then Fig. 18.2 becomes Fig. 18.3 (the asterisks will be explained below)
and Table 18.1 becomes Table 18.2. The latter table shows that each of the three
factors (see the columns with the headings 1, 2, 3) has the two standardized values
�1 and 1; to simplify the notation, the table shows only the signs of the factor
values so � means �1 and C means C 1. All 23 combinations of these two values
or ‘scenarios’ are simulated (see the first column). The table further shows possible
regression variables, using the symbols ‘0’ through ‘1.2.3’ to denote the subscripts
of the regression variables x0 (the dummy variable always equals 1) through x1x2x3
(third-order interaction). Further, I point out that each column is balanced; i.e., each
column has four plusses and four minuses – except for the dummy column.

(i): Scenario i in 23 design (i*): Scenario i in 23–1 design

(6)(5*)

(8*)(7)

(1)

(4)(3*)

(2*)

Fig. 18.3 The 23 design
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The 23 design enables the unbiased OLS estimation of all eight parameters of the
following regression model, which is a third-order polynomial that is incomplete;
i.e., some parameters are assumed zero:

y D ˇ0 C
3X

jD1
ˇj xj C

2X

jD1

3X

j 0>j

ˇj Ij 0xj xj 0 C ˇ1I2I3x1x2x3 C e: (18.9)

Indeed, the 23 design implies a matrix of regression variables X that is orthogonal;
see (18.8).

The metamodel (18.9) includes the third-order effect ˇ1I2I3. Assuming that this
effect is negligible, the analysts may simulate fewer scenarios than specified by the
23 design. Indeed a 23�1 fractional factorial design suffices; a possible 23�1 design is
shown in Table 18.2 deleting the four rows (scenarios) that have a minus sign in the
1.2.3 column (i.e., delete the rows 1, 4, 6, 7). In other words, the analysts simulate
only a fraction; namely, 2�1 of the 23 full-factorial design. This fraction corresponds
with the points denoted by the symbol � in Fig. 18.3 (so each scenario corresponds
with a vertex that cannot be reached via a single edge of the cube).

In this 23�1 design two columns are identical; namely, the 1.2.3 column (with
four plusses) and the dummy column. Hence, the corresponding two effects
are confounded – but the high-order interaction ˇ1I2I3 is assumed zero, so this
confounding can be ignored!

Sometimes, (18.9) may be replaced by a first-order polynomial; for example, in
the (sequential) optimization of black-box simulation models the analysts may use a
first-order polynomial to estimate the local gradient; see Angün et al. (2009). Then
it suffices to take a 2k�p design with the biggest p value that makes the following
condition hold: 2k�p > k. An example is k D 7 and p D 4 so only eight scenarios
are simulated; see Table 18.3, in which the first three factors (labeled 1, 2, and 3)
form a full-factorial 23design, and the symbol ‘4=1.2’ means that the values for
factor 4 are selected by multiplying the elements of the columns for the factors 1
and 2, etc. Note that the design is still balanced and orthogonal.

Because a 2k�p design is orthogonal, its estimators of the regression parameters
have smaller variances than one-factor-at-a-time designs have; see Kleijnen (2008,

Table 18.2 The 23 design and possible regression variables

Scenario 0 1 2 3 1.2 1.3 2.3 1.2.3

1 C � � � C C C �
2 C C � � � � C C
3 C � C � � C � C
4 C C C � C � � �
5 C � � C C � � C
6 C C � C � C � �
7 C � C C � � C �
8 C C C C C C C C
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Table 18.3 A 27�4 design

Scenario 1 2 3 4 D 1:2 5 D 1:3 6 D 2:3 7 D 1:2:3

1 � � � C C C �
2 C � � � � C C
3 � C � � C � C
4 C C � C � � �
5 � � C C � � C
6 C � C � C � �
7 � C C � � C �
8 C C C C C C C

p. 32). The actual variances are found on the main diagonal of the covariance matrix
of the (linear) OLS estimator given by (18.7):

cov. Ǒ/ D Œ.XTX/�1XT �cov.w/Œ.XTX/�1XT �T : (18.10)

If we assume white noise and no CRN, then cov.w/ in (18.10) reduces to

cov.w/ D 2I; (18.11)

so (18.10) reduces to
cov. Ǒ/ D 2.XT X/�1: (18.12)

I shall return to these assumptions behind (18.11), at the end of this section.
How to select scenarios in 2k�p designs is detailed in many DOE textbooks,

including Kleijnen (2008).
Fractional factorial designs of the 2k�p type – with a p value so high that the

design still enables the estimation of first-order polynomial regression models –
are a subset of Plackett–Burman designs. The latter designs consists of k C 1

combinations with k C 1 rounded upwards to a multiple of four; for example,
Table 18.4 gives such a design for k D 11. For 7 < k < 11 we can still use
Table 18.4, simply deleting the last 11 � k columns. Plackett–Burman designs are
tabulated in many DOE textbooks, including Myers et al. (2009). Note that designs
for first-order polynomial regression models are called resolution III designs.

Resolution IV designs enable unbiased estimators of first-order effects – even if
two-factor interactions are important. These designs require double the number of
scenarios required by resolution III designs; i.e., after simulating the scenarios of
the resolution III design, the analysts simulate the mirror scenarios which multiply
by �1 the factor values in the original scenarios. For example, the resolution IV
design for k D 11 factors based on the resolution III design in Table 18.4 has
scenario 13 that is the mirror image of scenario 1 so it combines the factor values
-C-CCC- - -C-; scenario 24 is the mirror image of scenario 12 so it has all 11
factors at their +value.

Resolution V designs enable unbiased estimators of first-order effects plus all
two-factor interactions. This class includes certain 2k�p designs with small enough
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Table 18.4 The Placket–Burman design for 11 factors

Scenario 1 2 3 4 5 6 7 8 9 10 11

1 C � C � � � C C C � C
2 C C � C � � � C C C �
3 � C C � C � � � C C C
4 C C C � C C � � � C C
5 C � C C � � � � � � C
6 C C � C C C C C � � �
7 � C C C � C C � C � �
8 � � C C C � C C � C �
9 � � � C C C � C C � C
10 C � � � C C C � C C �
11 � C � � � C C C � C C
12 � � � � � � � � � � �

p values. For example, the resolution V design for k D 11 factors has 211�4 D 128
combinations where the first seven factors form a 27 design and the remaining factor
values are defined by the following relations (called ‘generators’): 8 D 1:2:3:7; 9 D
2:3:4:5, 10 D 1:3:4:6 and 11 D 1. 2:3:4:5:6:7. These designs often require
rather many scenarios to be simulated; for example, the number of effects to be
estimated for k D 11 factors is 1C 11C 11 � 10=2 D 67 whereas the number of
scenarios simulated is 128. Fortunately, there are also saturated designs; i.e., designs
with the minimum number of scenarios that still allow unbiased estimators of the
regression parameters. Saturated designs are attractive for expensive simulations;
i.e., simulations that require relatively much computer time per scenario. Saturated
resolution V designs are discussed by Kleijnen (2008, pp. 48–49).

Central composite designs (CCD) enable the estimation of second-order poly-
nomials. These designs augment resolution V designs with the base scenario
(corresponding with the standardized value zero) and 2k‘axial’ combinations that
change each factor one at a time in the base scenario. Saturated variants (smaller
than CCD) are discussed in Kleijnen (2008, p. 51).

The main conclusion is that incomplete designs for low-order polynomial regres-
sion are plentiful in both the classic DOE literature and the simulation literature.

Finally, let us return to the assumptions that gave cov. Ǒ/ in (18.12). I claim that
in practice these assumptions do not hold:

1. The variances of the simulation output w change as the input x changes so the
assumed common variance 2 in (18.11) does not hold: variance heterogeneity
does hold. (Well-known examples are Monte Carlo studies of the type-I and type-
II errors, which are binomial variables so the estimated variances are w.1–w/=m;
also see Sect. 18.2)

2. Often the analysts use common random numbers (see CRN in Sect. 18.2), so the
assumed diagonality of the matrix in (18.11) does not hold.

Several solutions for these two problems are discussed by Kleijnen (2008,
pp. 94–97). Here I present the simplest solution, assuming that each scenario is
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simulated m > 1 times. Each replicate gives the I/O combination (X, wr / with
r D 1; : : :; m (all m replicates use the same input combination so the matrix of
regression variables X does not change with r). From these I/O data for replicate r
we compute the OLS estimate (say) Ǒ

r . From these m effect estimates we compute
the usual Student t statistic and confidence interval for the true ˇ; i.e., in (18.1)
we replace n by m. and xi by Ǒj Ir with j D 1; : : :; q. In this way we can test
statistically whether some factors have zero effects.

A significant factor may be unimportant, practically speaking. If the factors
are scaled between �1 and C1, then the estimated effects quantify the order
of importance. For example, in a first-order polynomial metamodel the factor
estimated to be the most important factor is the one with the highest absolute value
for its estimated effect.

18.4.3 Simulations with Very Many Factors

Most practical, non-academic simulation models have many factors; for example,
Kleijnen (2010) discusses a supply-chain simulation model with nearly 100 factors.
For this model, even a Plackett-Burman design would require the simulation of
102 scenarios. Because each scenario needs to be replicated several times (to
quantify the noise), the total computer time may then be prohibitive. Therefore,
many analysts keep many factors fixed (at the base values), and experiment with
only a few remaining factors. For example, Horne and Leonardi (2001) present a
military simulation that was run millions of times for only a few scenarios that
change a few factors only.

However, there are designs that require fewer than k scenarios – called supersat-
urated designs; various types are referenced by Kleijnen (2010) and Kleijnen (2008,
p. 159). Some of these designs aggregate the k individual factors into groups
of factors. It may then happen that the effects of individual factors cancel out,
so the analysts would erroneously conclude that all factors within that group are
unimportant. The solution is to define the �1 andC1 levels of the individual factors
(see (18.5)) such that all first-order effects ˇj (j D 1; : : :; k/ are non-negative. My
experience is that in practice the users do know the direction of the first-order effects
of individual factors; otherwise they can keep the few factors with unknown signs
out of the group-screening.

The most efficient group screening is sequential bifurcation. This design type
is so efficient because it proceeds sequentially, as follows. It starts with only two
scenarios; namely, one scenario with all individual factors at �1, and a second
scenario with all factors at C1. Comparing the outputs of these two extreme
scenarios requires only two replications because the aggregated effect of the group
factor is huge compared with the intrinsic noise (caused by the pseudorandom
numbers). The next step splits or bifurcates the factors into two groups; there are
several heuristic rules to decide on how to assign factors to groups. Comparing the
outputs of the third scenario with the outputs of the preceding two scenarios enables
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the estimation of the aggregated effect of the individual factors within a group.
Groups – and all its individual factors – are eliminated from further experimentation
as soon as the group effect is statistically unimportant. Obviously, the groups get
smaller as the analysts proceed sequentially. The analysts stop, once the first-order
effects ˇj of all the important individual factors are estimated. For example, in the
supply-chain simulation, only 11 of the 92 factors are estimated to be important; see
Kleijnen (2010) or Kleijnen (2008, p. 167–169).

18.5 Kriging

Let us return to the example in Fig. 18.1. If the analysts are interested in the I/O
behavior within ‘local area 1’, then a first-order polynomial may be adequate.
Maybe, a second-order polynomial is required to get a valid approximation in ‘local
area 2’, which is larger and shows non-linear behavior of the I/O function. However,
Kleijnen and Van Beers (2005) present an example illustrating that a second-order
polynomial may give poor predictions compared with Kriging.

Kriging has been often applied in deterministic simulation models. Such sim-
ulations are used for the development of airplanes, automobiles, computer chips,
computer monitors, etc.; see Sacks et al. (1989)’s pioneering article, and the update
by Kleijnen (2008, pp. 3, 123). For Monte Carlo experiments, I do not know any
applications yet. First, I explain the basics of Kriging; then the DOE aspects of
Kriging.

18.5.1 Kriging Basics

Kriging is an interpolation method that predicts unknown values of a random
process; see the classic textbook on Kriging in spatial statistics, Cressie (1993).
More precisely, a Kriging prediction is a weighted linear combination of all
output values already observed (simulated). These weights depend on the distances
between the input for which the output is to be predicted and the inputs already
simulated. Kriging assumes that the closer the inputs are, the more positively
correlated the outputs are. This assumption is modeled through the correlogram
or the related variogram, discussed below.

In deterministic simulation, Kriging has an important advantage over regression
analysis: Kriging is an exact interpolator; that is, predicted values at ‘old’ observed
input values are exactly equal to the observed output values. In random simulation,
however, the observed output values are only estimates of the true values, so exact
interpolation loses its intuitive appeal. Santner et al. (2003, pp. 215–249) account
for the so-called nugget effect or measurement error by adding a white-noise term;
their Kriging predictor does not interpolate the n old outputs; also see Forrester
et al. (2008, p. 143). Recently, Ankenman et al. (2010) and Yin et al. (2009)
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introduced Kriging for random simulation, accounting for variance heterogeneity;
their Kriging predictors do not interpolate the n old outputs averaged over the mi

(i D 1 WWW n/ replicates per input combination. Ankenman et al. also account for
CRN so the white-noise assumption does not hold; see Sect. 18.2. Unfortunately,
there is no well-documented software implementing these nugget effects, so I focus
on DACE, the free Matlab Kriging toolbox for deterministic simulation which is
well documented in Lophaven et al. (2002). In random simulation, the analysts may
use DACE to interpolate the n averages, like I did in my Kriging publications listed
in the references.

The simplest type of Kriging (to which I restrict myself in this chapter) assumes
the following metamodel:

w D �C ı.x/ (18.13)

where � is the mean of the stochastic process w, and ı.x/ is a Gaussian stationary
covariance process with zero mean; i.e., the covariances of w.x C h/ and w.x/
depend only on the distance (or ‘lag’) between their inputs, jhj D j.xC h/� .x/j.

The Kriging predictor for the ‘new’ input x0 is a weighted linear combination of
all the n old output data (which are already simulated):

Oy.x0/ D
nX

iD1
�i �w.xi / D �T � w with

nX

iD1
�i D 1: (18.14)

To quantify the weights � in (18.14), Kriging derives the best linear unbiased
estimator (BLUE), which minimizes the mean squared error (MSE) of the predictor
Oy.x0/. Obviously, these weights depend on the covariances mentioned below
(18.13). The optimal weights can be proven to be

�T D
 

	 C 1
1� 1T
 �1	

1T
 �11

!
T
 �1 (18.15)

where 	 denotes the vector of the n covariances between the output at the new
input x0 and the outputs at the n old inputs so 	 D .�.x0 � x1/; : : : ; �.x0 � xn//T ;

 denotes the matrix of the covariances between the outputs at the n old inputs
with element (i , j / equal to �.xi � xj /; and 1 denotes the vector with n ones.
Note that these optimal weights vary with the input value for which output is to be
predicted (see 	/, whereas linear regression uses the same estimated parameters
Ǒ for all inputs to be predicted. The DACE software uses maximum likelihood

estimation (MLE) to estimate the optimal weights, and plugs these weights into
(18.14) to compute the Kriging predictor; DACE also gives the estimated gradient
corresponding with this prediction.

Note that the correlation function for a k-dimensional input vector is assumed
to be the product of k one-dimensional correlation functions; a popular one-
dimensional correlation function is the Gaussian one, �j D exp.™j h2j / where ™j
denotes the importance of input j (the higher ™j is, the less effect input j has)
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and hj denotes the Euclidean distance between the values of input j in two input
combinations.

18.5.2 Designs for Kriging

The most popular design type for Kriging is Latin hypercube sampling (LHS).
This design type was invented by McKay et al. (1979) for deterministic simulation
models. Those authors did not analyze the I/O data by Kriging (but they did assume
I/O functions more complicated than the low-order polynomials in classic DOE).
Nevertheless, LHS is much applied in Kriging nowadays, because LHS is a simple
technique (it is part of popular spreadsheet add-ons such as @Risk).

LHS offers flexible design sizes n (number of scenarios simulated) for any
number of simulation inputs k. A simplistic example is shown for k D 2 and n D 4
in Table 18.5 and Fig. 18.4, which are constructed as follows.

1. The table illustrates that LHS divides each input range into n intervals of equal
length, numbered from 1 to n (in the example, we have n D 4; see the numbers
in the last two columns); i.e., the number of values per input can be much larger
than in the designs for low-order polynomials (see again Sect. 18.3).

2. Next, LHS places these integers 1,. . . , n such that each integer appears exactly
once in each row and each column of the design. (This characteristic explains the
term “Latin hypercube”: it resembles Latin squares in classic DOE.)

3. Within each cell of the design in the table, the exact input value may be
sampled uniformly; see Fig. 18.4. (Alternatively, these values may be placed
systematically in the middle of each cell. In risk analysis, this uniform sampling
is replaced by sampling from a prespecified distribution for the input values.)

Because LHS implies randomness, the resulting design may happen to include
outlier scenarios; for example, it might happen (with small probability) that in
Fig. 18.4 all scenarios lie on the main diagonal, so the values of the two inputs have
a correlation coefficient of �1. Therefore LHS may be adjusted to give (nearly)
orthogonal designs; see Cioppa and Lucas (2007).

Let us compare classic designs and LHS geometrically. Figure 18.3 illustrates
that many classic designs consists of corners of k-dimensional cubes; these designs
imply simulation of extreme scenarios. Figure 18.4 illustrates that LHS has better
space-filling properties.

Table 18.5 A LHS design for two factors and four scenarios

Scenario Interval factor 1 Interval factor 2

1 2 1
2 1 4
3 4 3
4 3 2
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x2

x1+1-1

+1

-1

(1)

(2)

(3)

(i): Scenario i (i=1, 2, 3, 4)

(4)

Fig. 18.4 A LHS design for
two factors and four scenarios

This property has inspired many statisticians to develop other space-filling
designs. One type maximizes the minimum Euclidean distance between any two
points in the k-dimensional experimental area. Related designs minimize the
maximum distance. Many references and websites are given by Kleijnen (2008, pp.
126–130).

Besides these one-shot designs, simulation may use sequential designs, because
simulation proceeds sequentially. In sensitivity analysis the design may simulate
most scenarios in those subareas in which the I/O behavior is not linear; see Kleijnen
and Van Beers (2004). In optimization the design may focus on the most promising
area, while also simulating other areas to avoid getting trapped in a local optimum;
i.e., the design balances exploration and exploitation (see Forrester et al. (2008) and
Kleijnen, Van Beers, and van Nieuwenhuyse (2010)).

18.6 Conclusions

Because simulation implies experimentation with a model, design of experiments
(DOE) is essential. In this chapter, I treat the simulation model as a black box, and
presented both classic designs for low-order polynomial regression metamodels and
modern designs (including Latin hypercube sampling) for other metamodels such as
Kriging. The simpler the metamodel is, the fewer scenarios need to be simulated.
(Cross validation of the metamodel selected, is discussed in Chap. III.1 by Wang.)

I did not discuss so-called optimal designs because these designs use statistical
assumptions (such as white noise) that I find too unrealistic. Optimal designs are
discussed by Pronzato and Zhigljavsky (2009),; also see Kleijnen (2008, pp. 51–54).

Neither did I discuss the designs in Taguchi (1987), because I think that the
classic and modern designs (which I did discuss) are superior. Nevertheless, I think
that Taguchi’s concepts – as opposed to his statistical techniques – are important.
In practice, the ‘optimal’ solution may break down because the environment turns
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out to differ from the environment that the analysts assumed when deriving the
optimum. Therefore they should look for a ‘robust’ solution. For further discussion
I refer to Dellino et al. (2011).

I mentioned several more research issues; for example, importance sampling in
‘rare event’ simulation. Another interesting question is: how much computer time
should analysts spend on replication; how much on exploring new scenarios?

Another challenge is to develop designs and metamodels that explicitly account
for multiple outputs. In practice, multiple outputs are the rule in simulation.

The application of Kriging to random simulation models (such models are a
focus of this handbook, including this chapter) is also a challenge. Moreover, corre-
sponding software needs to be developed (current software focuses on deterministic
simulation).

Comparison of various metamodel types and their designs remains a major prob-
lem. Besides linear regression and Kriging, Kleijnen (2008, p. 8) gives references for
Classification And Regression Trees (CART), Generalized Linear Models (GLM),
Multivariate Adaptive Regression Splines (MARS), neural networks, nonlinear
regression models, nonparametric regression analysis, radial functions, rational
functions, splines, support vector regression, symbolic regression, and wavelets.
Comparison of screening designs has hardly begun; see Kleijnen (2010).
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Chapter 19
Multivariate Density Estimation
and Visualization

David W. Scott

19.1 Introduction

This chapter examines the use of flexible methods to approximate an unknown
density function, and techniques appropriate for visualization of densities in up to
four dimensions. The statistical analysis of data is a multilayered endeavor. Data
must be carefully examined and cleaned to avoid spurious findings. A preliminary
examination of data by graphical means is useful for this purpose. Graphical
exploration of data was popularized by Tukey (1977) in his book on exploratory data
analysis (EDA). Modern data mining packages also include an array of graphical
tools such as the histogram, which is the simplest example of a density estimator.
Exploring data is particularly challenging when the sample size is massive or if the
number of variables exceeds a handful. In either situation, the use of nonparametric
density estimation can aid in the fundamental goal of understanding the important
features hidden in the data. In the following sections, the algorithms and theory
of nonparametric density estimation will be described, as well as descriptions of
the visualization of multivariate data and density estimates. For simplicity, the
discussion will assume the data and functions are continuous. Extensions to discrete
and mixed data are straightforward.

Statistical modeling of data has two general purposes: (1) understanding the
shape and features of data through the density function, f .x/, and (2) prediction
of y through the joint density function, f .x; y/. When the experimental setting is
well-known, parametric models may be formulated. For example, if the data are
multivariate normal, N.�;˙/, then the features of the density may be extracted
from the maximum likelihood estimates of the parameters � and ˙ . In particular,
such data have one feature, which is a single mode located at �. The shape of
the data cloud is elliptical, and the eigenvalues and eigenvectors of the covariance
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matrix, ˙ , indicate the orientation of the data and the spread in those directions.
If the experimental setting is not well-known, or if the data do not appear to follow
a parsimonious parametric form, then nonparametric density estimation is indicated.
The major features of the density may be found by counting and locating the
sample modes. The shape of the density cannot easily be determined algebraically,
but visualization methodology can assist in this task. Similar remarks apply in the
regression setting.

When should parametric methods be used and when should nonparametric meth-
ods be used? A parametric model enjoys the advantages of well-known properties
and parameters which may be interpreted. However, using parametric methods to
explore data makes little sense. The features and shape of a normal fit will always
be the same no matter how far from normal the data may be. Nonparametric
approaches can fit an almost limitless number of density functional forms. However,
at the model, parametric methods are always more statistically accurate than the
corresponding nonparametric estimates. This statement can be made more precise
by noting that parametric estimators tend to have lower variance, but are susceptible
to substantial bias when the wrong parametric form is invoked. Nonparametric
methods are not unbiased, but the bias asymptotically vanishes for any continuous
target function. Nonparametric algorithms generally have greater variance than
a parametric algorithm. Construction of optimal nonparametric estimates requires
a data-based approach in order to balance the variance and the bias, and the
resulting mean squared error generally converges at a rate slower than the parametric
rate of O.n�1/. In summary, nonparametric approaches are always appropriate
for exploratory purposes, and should be used if the data do not follow a simple
parametric form.

19.2 Visualization

19.2.1 Data Visualization

Visualization of data is a fundamental task in modern statistical practice. The
most common figure for this purpose is the bivariate scatter diagram. Figure 19.1a
displays the levels of blood fats in a sample of men with heart disease. The data
have been transformed to a logarithm base 10 scale to minimize the effects of
skewness. At a first glance, the data appear to follow a bivariate normal distribution.
The sample correlation is only 0.22. One might examine each of the two variables
separately as a univariate scatter diagram, which is commonly referred to as a “dot
plot”, but such figures are rarely presented. Tukey advocated the histogram-like
stem-and-leaf plot or the box-and-whiskers plot, which displays simple summaries
including the median and quartiles. Figure 19.1b displays box-and-whisker plots for
these variables. Clearly triglyceride values vary more than cholesterol and may still
be right-skewed.

As shown later in Sect. 19.3.3, there may be rather subtle clusters within these
data. The eye can readily detect clusters which are well-separated, but the eye is
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Fig. 19.1 Cholesterol and triglyceride blood levels for 320 males with heart disease

Fig. 19.2 Waiting time and duration of 299 consecutive eruptions of the Old Faithful Geyser

not reliable when the clusters are not well-separated, nor when the sample size is so
large that the scatter diagram is too crowded. For example, consider the Old Faithful
Geyser data (Azzalini and Bowman 1990), .xt ; yt /, where xt measures the waiting
time between successive eruptions of the geyser, and yt measures the duration of the
subsequent eruption. The data were blurred by adding uniform noise to the nearest
minute for xt and to the nearest second for yt . Figure 19.2 displays histograms of
these two variables. Interestingly, neither appears to follow the normal distribution.
The common feature of interest is the appearance of two modes. One group of
eruptions is only 2 minutes in duration, while the other averages over 4 minutes in
duration. Likewise, the waiting time between eruptions clusters into two groups, one
less than an hour and the other greater than one hour. The distribution of eruption
durations appears to be a mixture of two normal densities, but the distribution of the
waiting times appears more complicated.

Finally, in Fig. 19.3 we examine the scatter diagrams of both .xt ; yt / as well as
the lagged values of eruption duration, .yt�1; yt /. The common feature in these two
densities is the presence of three modes. As mentioned earlier, the eye is well-suited
to discerning clusters that are well-separated. From Fig. 19.3a, short waiting periods
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Fig. 19.3 Two scatter diagrams of the Old Faithful Geyser data

are associated with long eruption durations. From Fig. 19.3b, all eruptions of short
duration are followed by eruptions of long duration. Missing from Fig. 19.3b are
any examples of eruptions of short duration following eruptions of short duration,
which should be a plus for the disappointed tourist. The observant reader may notice
an odd clustering of points at integer values of the eruption duration. A quick count
shows that 23, 2, and 53 of the original 299 values occur exactly at y D 2; 3, and
4 minutes, respectively. Examining the original time sequence suggests that these
measurements occur in clumps; perhaps accurate measurements were not taken after
dark. Exploration of these data has revealed not only interesting features but also
suggest possible data collection anomalies.

Massive datasets present different challenges. For example, the Landsat IV
remote sensing dataset described by Scott (1992) contains information on 22,932
pixels of a scene imaged in 1977 from North Dakota. The variables displayed
in Fig. 19.4 are the time of peak greenness of the crop in each pixel and the
derived value of the maximum greenness, scaled to values 0�255 and blurred
with uniform noise. Overplotting is apparent. Each successive figure drills down
into the boxed region shown. Only 5.6% of the points are eliminated going to the
second frame; 35.5% eliminated between the second and third frames; and 38.1%
between the third and final frames, still leaving 8624 points. Overplotting is still
apparent in the final frame. Generally, gleaning detailed density information from
scatter diagrams is difficult at best. Nonparametric density estimation solves this
problem.

To see the difficulty of gleaning density information from the graphs in Fig. 19.4,
compare the bivariate histogram displayed in Fig. 19.5 for the data in frame (b)
from Fig. 19.4. Using only the scatter diagram, there is no way to know the relative
frequency of data in the two largest clusters except through the histogram.

The bivariate histogram uses rectangular-shaped bins. An interesting hybrid
solution is to use hexagonal-shaped bins and to use a glyph to represent the bin
count. Scott (1988) compared the statistical power of using squares, hexagons,
and equilateral triangles as shapes for bins of bivariate histograms and con-
cluded that hexagons were the best choice. Carr et al. (1992) examined the
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Fig. 19.4 Drilling into the Landsat IV data with n D 22932

Fig. 19.5 Histogram of data
in Fig. 19.4b

use of drawing a glyph in each bivariate bin rather than the perspective view.
For graphical reasons, Carr found hexagonal bins were more effective. The bin
count is represented by a hexagonal glyph whose area is proportional to the
bin count. Figure 19.6 displays the hexagonal mosaic map of the same data as
in Fig. 19.5. This representation gives a quite accurate summary of the density
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Fig. 19.6 Hexagonal bin
glyph of the data in Fig. 19.4b

information. No bin counts are obscured as in the perspective view of the bivariate
histogram.

In the next section, some of the algorithms for nonparametric density estimation
and their theoretical properties are discussed. We then return to the visualization of
data in higher dimensions.

19.3 Density Estimation Algorithms and Theory

This section includes enough algorithms and results to obtain a basic understanding
of the opportunities and issues. Fortunately, there have been a number of readable
monographs available for the reader interested in pursuing this subject in depth. In
rough chronological order, excluding books primarily dealing with nonparametric
regression, the list includes Tapia and Thompson (1978), Wertz (1978), Prakasa Rao
(1983), Devroye and Gyorfi (1985), Silverman (1986), Devroye (1987), Nadaraya
(1989), Hardle (1990), Scott (1992), Tarter and Lock (1993), Wand and Jones
(1995), Simonoff (1996), Bowman and Azzalini (1997), and Tarter (2000).

The purpose of the next section is to provide a survey of important results without
delving into the theoretical underpinnings and details. The references cited above
are well-suited for that purpose.

19.3.1 A High-Level View of Density Theory

Smoothing Parameters

Every algorithm for nonparametric density estimation has one or more design
parameters which are called the smoothing parameter(s) or bandwidth(s) of the
procedure. The smoothing parameter controls the final appearance of the esti-
mate. For an equally-spaced histogram, the bin width plays the primary role of
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a smoothing parameter. Of course, the bins may be shifted and the location of
the bin edges is controlled by the bin origin, which plays the role of a secondary
smoothing parameter. For a kernel estimator, the scale or width of the kernel serves
as the smoothing parameter. For an orthogonal series estimator, the number of
basis functions serves as the smoothing parameter. The smoothing parameters of
a spline estimator also include the location of the knots. Similarly, a histogram with
completely flexible bin widths has many more than two smoothing parameters.

No Unbiased Density Estimators

As a point estimator of f .x/, Rosenblatt (1956) proved that every nonparametric
density estimator, bf .x/ is biased. However, it is usually true that the integral of all
of the pointwise biases is 0. Thus mean squared error (MSE) and integrated mean
squared error (IMSE) are the appropriate criteria to optimize the tradeoff between
pointwise/integrated variance and squared bias.

Nonparametric density estimators always underestimate peaks and overestimate
valleys in the true density function. Intuitively, the bias is driven by the degree of
curvature in the true density. However, since the bias function is continuous and
integrates to 0, there must be a few points where the bias does vanish. In fact,
letting the smoothing parameter vary pointwise, there are entire intervals where
the bias vanishes, including the difficult-to-estimate tail region. This fact has been
studied by Hazelton (1996) and Sain and Scott (2002). Since the bias of a kernel
estimator does not depend on the sample size, these zero-bias or bias-annihilating
estimates have more than a theoretical interest. However, there is much more work
required for practical application. Alternatively, in higher dimensions away from
peaks and valleys, one can annihilate pointwise bias by balancing directions of
positive curvature against directions of negative curvature; see Terrell and Scott
(1992). An even more intriguing idea literally adjusts the raw data points towards
peaks and away from valleys to reduce bias; see Choi and Hall (1999).

Rates of Convergence

The rate of convergence of a nonparametric density estimator to the true density
is much slower than in the parametric setting, assuming in the latter case that
the correct parametric model is known. If the correct parametric model is not
known, then the parametric estimates will converge but the bias will not vanish.
The convergence is slower still in high dimensions, a fact which is often referred
to as the curse of dimensionality. Estimating the derivative of a density function is
even harder than coping with an additional dimension of data.

If the k-th derivative of a density is known to be smooth, then it is theoretically
possible to construct an order-k nonparametric density estimation algorithm. The
pointwise bias is driven by the k-th derivative at x, f .k/.x/. However, if k > 2, then
the density estimate will take on negative values for some points, x. It is possible to
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define higher-order algorithms which are non-negative, but these estimates do not
integrate to 1; see Terrell and Scott (1980). Thus higher-order density estimation
algorithms violate one of the two conditions for a true density: f .x/ � 0 andR1
�1 f .x/ dx D 1. Of course, there are cases where the first condition is violated

for lower-order estimators. Two such cases include orthogonal series estimators
(Kronmal and Tarter 1968; Watson 1969) and boundary-corrected kernel estimators
(Rice 1984). Note that positive kernel estimators correspond to k D 2. Wahba
(1981) studied the efficacy of higher-order procedures and suggested k D 3 often
provided superior estimates. Scott (1992) also studied this question and found some
improvement when k D 3, which must be traded off against the disadvantages of
negative estimates.

Choosing Bandwidths in Practice

Picking the best smoothing parameter from data is an important task in practice.
If the smoothing parameter is too small, the estimate is too noisy, exhibiting high
various and extraneous wiggles. If the smoothing parameter is too large, then the
estimate may miss key features due to oversmoothing, washing out small details.
Such estimates have low variance but high bias in many regions. In practice,
bandwidths that do not differ by more than 10�15% from the optimal bandwidth
are usually satisfactory.

A statistician experienced in EDA is likely to find all estimates informative for
bandwidths ranging from undersmoothed to oversmoothed. With a complicated
density function, no single choice for the bandwidth may properly represent the
density for all values of x. Thus the same bandwidth may result in undersmoothing
for some intervals of x, oversmoothing in another interval, and yet near optimal
smoothing elsewhere. However, the practical difficulty of constructing locally
adaptive estimators makes the single-bandwidth case of most importance. Simple
transformations of the data scale can often be an effective strategy (Wand et
al. 1991). This strategy was used with the lipid data in Fig. 19.1, which were
transformed to a log10 scale.

Consider the 21640 x points shown in frame (b) of Fig. 19.4. Histograms of these
data with various numbers of bins are shown in Fig. 19.7. With so much data, the

Fig. 19.7 Histograms of x variable in Fig. 19.4b with 15, 35, and 100 bins
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Fig. 19.8 Histograms of log10-cholesterol variable in Fig. 19.1 with 9, 19, and 39 bins

oversmoothed histogram Fig. 19.7a captures the major features, but seems biased
downwards at the peaks. The final frame shows a histogram that is more useful for
finding data anomalies than as a good density estimate.

The differences are more apparent with a smaller sample size. Consider the
320 log10-cholesterol levels shown in Fig. 19.1. Three histograms are shown in
Fig. 19.8. The extra one or two modes are at least suggested in the middle panel,
while the histogram in the first panel only suggests a rather unusual non-normal
appearance. The third panel has many large spurious peaks. We conclude from these
two figures that while an oversmoothed estimator may have a large error relative to
the optimal estimator, the absolute error may still be reasonably small for very large
data samples.

Oversmoothed Bandwidths

While there is no limit on how complicated a density may be (for whichR
f .k/.x/2 dx may grow without bound), the converse is not true. Terrell and Scott

(1985) and Terrell (1990) show that for a particular scale of a density (for example,
the range, standard deviation, or interquartile range), there is in fact a lower bound
among continuous densities for the roughness quantity

R
�
f .k/

� D
Z 1

�1
f .k/.x/2 dx : (19.1)

In a real sense, such densities are the smoothest possible and are the easiest to
estimate. The optimal bandwidth for these “oversmoothed densities” serves as an
upper bound. Specifically, any other density with the same scale will have more
complicated structure and will require a smaller bandwidth to more accurately
estimate those features. Since oversmoothed bandwidths (and reference bandwidths
as well) only use the data to estimate the scale (variance, for example), these
data-based estimates are quite stable. Obtaining similar highly stable data-based
nearly optimal bandwidth estimators requires very sophisticated estimates of the
roughness function given in 19.1. One algorithm by Hall et al. (1991) is often highly
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rated in practice (Jones et al. 1996). seemed closely related to the oversmoothed
bandwidths. These approaches all rely on asymptotic expansions of IMSE rather
than an unbiased risk estimate, which underlies the least-squares or unbiased
cross-validation algorithm introduced by Rudemo (1982) and Bowman (1984).
However, the unbiased risk approach has numerous extensions; see Sain and
Scott (1996) and Scott (2001). Another algorithm that should be mentioned is the
bootstrap bandwidth. For a Gaussian kernel, the bootstrap with an infinite number of
repetitions has a closed form expression; see Taylor (1989). Multivariate extensions
are discussed by Sain et al. (1994).

Many details of these ideas may be found in the literature and in the many
textbooks available. The following section provides some indication of this research.

19.3.2 The Theory of Histograms

The basic results of density estimation are perhaps most easily understood with the
ordinary histogram. Thus more time will be spent on the histogram with only an
outline of results for more sophisticated and more modern algorithms.

Given an equally spaced mesh ftkg over the entire real line with tkC1 � tk D h,
the density histogram is given by

bf .x/ D �k

nh
for tk < x < tkC1 ; (19.2)

where �k is the number of data points falling in the k-th bin. Clearly,
P

k �k D n
and �k is a Binomial random variable with mean pk D

R tkC1

tk
f .x/ dx; hence, E�k D

npk and Var�k D npk.1�pk/. Thus the pointwise variance of the histogram (19.2) is
npk.1 � pk/=.nh/2, which is constant for all x in the k-th bin. Thus, the integrated
variance (IV) over .�1;1/ may be found by integrating the pointwise variance
over the k-th bin (i.e., multiply by the bin width h), and summing over all bins:

IV D
1X

kD�1

npk.1 � pk/
.nh/2

� h D
1X

kD�1

pk.1 � pk/
nh

D 1

nh
�
X

k

p2k
nh

; (19.3)

since
P
pk D

R1
�1 f .x/ dx D 1. The final term may be shown to approximate

n�1
R
f .x/2 dx, which is asymptotically negligible. Thus the global integrated

variance of the histogram can be controlled by collecting more data or choosing
a wider bin width.

Next consider the bias of bf at a fixed point, x, which is located in the k-th
bin. Note that Ebf .x/ D npk=nh D pk=h. A useful approximation to the bin
probability is

pk D
Z tkC1

tk

f .y/ dy D h f .x/C h2
�
1

2
� x � tk

h

�
f 0.x/C : : : ; (19.4)
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replacing the integrand f .y/ by f .x/ C .y � x/f 0.x/ C : : :. Thus the pointwise
bias may be approximated by

Biasbf .x/ D Ebf .x/ � f .x/ D pk

h
� f .x/ D h

�
1

2
� x � tk

h

�
f 0.x/C : : : :

(19.5)
Therefore, the bias is controlled by the first derivative of the unknown density at x.
Since tk < x < tkC1, then the factor .1=2� .x � tk/=h/ in (19.5) varies from �1=2
to 1=2. Thus the bias is also directly proportional to the bandwidth, h. To control the
bias of the histogram estimate, the bandwidth h should be small. Comparing (19.3)
and (19.5), the global consistency of the histogram can be guaranteed if, as n!1,
h! 0 while ensuring that the product nh!1 as well, for example, if h D 1=pn
(see Duda and Hart 1973).

A more complete analysis of the bias (Scott 1979) shows that the integrated
squared bias is approximately h2 R. f 0/=12, where R. f 0/ D R

f 0.x/2 dx, so that
the IMSE is given by

IMSE
h
bf k

i
D 1

nh
C 1

12
h2R.f 0/CO.n�1/ : (19.6)

From this equation, the optimal bandwidth is seen to be

h� D
�

6

nR.f 0/

1=3
and IMSE� D

�
9

16

�1=3
R.f 0/1=3 n�2=3 : (19.7)

Thus the optimal bandwidth approaches zero at the rate O.n�1=3/ and not the
rate O.n�1=2/ as suggested by Duda and Hart (1973) nor the rate O.1=logn/ as
suggested by Sturges (1926). With regards to IMSE, the best rate a histogram can
achieve is of orderO.n�2=3/, which falls well short of the parametric rate ofO.n�1/.
From (19.7), the larger the value of the roughness R.f 0/ of the true density, the
smaller the optimal bandwidth and the larger the average error.

Finally, the smoothest density with variance 2 is

g.x/ D 15

16
p
7

�
1 � x2

72

�2
�p7 < x < p7 (19.8)

and zero elsewhere, for which R.g0/ D 15
p
7=.3433/. Since R.f 0/ � R.g0/ for

any other continuous density, f ,

h� D
�

6

nR.f 0/

1=3
�
�

6

nR.g0/

1=3
D
�
686 3

5
p
7n

1=3
D 3:73  n�1=3 ; (19.9)

which is the “oversmoothed bandwidth” rule. Consider the normal reference rule,
f D � D N.�; 2/, for which R.�0/ D 1=.4

p
�3/, which when substituted
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into (19.7) gives h� D 3:49  n�1=3, a value that is only 6.4% narrower than the
oversmoothed bandwidth.

The oversmoothing rule (19.9) may be inverted when the scale is the range of
the density to obtain a lower bound of 3

p
2n on the number of bins in the optimal

histogram. This formula should be compared to Sturges’ rule of 1C log2 n, which is
in common use in many statistical packages (Sturges 1926). In fact, the histograms
in the first frames of Figs. 19.7 and 19.8 correspond to Sturges’ rule, while
the second frames of these figures correspond to the oversmoothed bandwidths.
Presumably the optimal bandwidth would occur somewhere between the second and
third frames of these figures. Clearly Sturges’ rule results in oversmoothed graphs
since the optimal number of bins is severely underestimated.

19.3.3 ASH and Kernel Estimators

The histogram is an order-one density estimator, since the bias is determined by the
first derivative. The estimators used most in practice are order-two estimators.
(Recall that order-three estimators are not non-negative.) Perhaps the most
unexpected member of the order-two class is the frequency polygon (FP), which
is the piecewise linear interpolant of the midpoints of a histogram. (Scott 1985a)
showed that

IMSE
h
bf FP

i
D 2

3nh
C 49

2880
h4R.f 00/CO �n�1� : (19.10)

Compared to Equation (19.6), the integrated variance of a FP is 33% smaller and the
integrated squared bias is two orders of magnitude smaller. Clearly, h� D O.n�1=5/
and IMSE� D O.n�4=5/. Thus the error converges at a faster rate than the his-
togram, by using bins which are wider and an estimator which is not discontinuous.
Examples and other results such as oversmoothing may be found in Scott (1992).

The use of wider bins means that the choice of the bin origin has a larger impact,
at least subjectively. Given a set of m shifted histogram, bf 1.x/; : : : ;bf m.x/, one
might use cross-validation to try to pick the best one. Alternatively, Scott (1985b)
suggested the averaged shifted histogram (ASH), which is literally defined:

bf ASH.x/ D 1

m

mX

kD1
bf k.x/ : (19.11)

To be specific, suppose the collection of m histograms has meshes shifted by an
amount ı D h=m from each other. Recompute the bin counts, �k , on the finer mesh,
t 0k D kı;�1 < k < 1. Then a bin count for one of the histograms with bin
width h may be computed by addingm of the bin counts on the finer mesh. For x in

the `-th (narrow) bin, there are m shifted histograms that include the (narrow) bin
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count, �`. Adding these m shifted histograms together and averaging gives:

�`C1�m C 2�`C2�m C : : :Cm�` C : : :C 2�`Cm�2 C �`Cm�1
m � nh ; (19.12)

or after re-arranging

bf ASH.x/ D 1

nh

m�1X

kD1�m

�
1 � jkj

m

�
�`Ck : (19.13)

As the number of shifted histograms m ! 1, the weights on the bin counts
approaches the triangular kernel given by K.t/ D 1 � jt j for jt j < 1 and zero
elsewhere. The ASH may be generalized to handle general weights by sampling
from an arbitrary kernel function,K.t/, which is any symmetric probability density
defined on the interval Œ�1; 1�. In this case,

bf ASH.x/ D 1

nh

m�1X

kD1�m
wm.k/ �`Ck where wm.k/ / K.k=m/ : (19.14)

Like the FP, the ASH is an order-two algorithm, but more efficient in the statistical
sense.

In Fig. 19.9, two ASHs of the log10-cholesterol data are shown. The bin edge
effects and discontinuities apparent in the ordinary histogram in Fig. 19.8 are
removed. The extra features in the distribution are hinted at.

The extension of the ASH to bivariate (and multivariate) data is straightforward.
A number of bivariate (multivariate) histograms are constructed with equal shifts
along the coordinate axes and then averaged together. Figure 19.10 displays
a bivariate ASH of the same lipid data displayed in Fig. 19.1. The strong bimodal
and weak trimodal features are evident. The third mode is perhaps more clearly
represented in a perspective plot; see Fig. 19.11. (Note that for convenience, the data
were rescaled to the intervals .0; 1/ for these plots, unlike Fig. 19.1.) The precise
location of the third mode above (and between) the two primary modes results in
the masking of the multiple modes when viewed along the cholesterol axis alone.
This masking feature is commonplace and a primary reason for trying to extend the
dimensions available for visualization of the density function.

Fig. 19.9 Averaged shifted
histograms of the
log10-cholesterol data
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Fig. 19.10 Bivariate ASH of
the log10-cholesterol and
log10-triglyceride data

Fig. 19.11 Perspective view
of the Bivariate ASH in
Fig. 19.10

19.3.4 Kernel and Other Estimators

The ASH is a discretized representation of a kernel estimator. Binned kernel
estimators are of great interest to reduce the computational burden. An alternative
to the ASH is the fast Fourier transform approach of Silverman (1982). Kernel
methods were introduced by Rosenblatt (1956) and Parzen (1962) with earlier work
by Evelyn Fix and Joe Hodges completed by 1951 in San Antonio, Texas (see
Silverman and Jones 1989).

Given a kernel function, K.t/, which is generally taken to be a symmetric
probability density function, the kernel density estimate is defined by

bf K.x/ D 1

nh

nX

iD1
K
�x � xi

h

	
D 1

n

nX

iD1
Kh.x � xi / ; (19.15)

letting Kh denote the kernel density transformed by the scale factor, h; that is,
Kh.t/ D K.t=h/=h. Among kernels with finite support, Beta densities shifted to



19 Multivariate Density Estimation and Visualization 563

the interval .�1; 1/ are popular choices. Among kernels with infinite support, the
normal density is by far the most common choice. An important paper by Silverman
(1981) showed that the normal kernel has the unique property that the number of
modes in the kernel estimate monotonically decreases as the smoothing parameter
increases. For many exploratory purposes, this property alone is reason to use only
the normal kernel. Minnotte and Scott (1993) proposed graphing the locations of all
modes at all bandwidths in the “mode tree.” Minnotte (1997) proposed an extension
of Silverman’s bootstrap test (Silverman 1981) for the number of modes to test
individual modes. Software for the ASH, kernel estimates, and the various mode
tests may be found on the web; see statlib at www.stat.cmu.edu, for example.

Multivariate extensions of the kernel approach generally rely upon the product
kernel. For example, with bivariate data f.xi ; yi /; i D 1; : : : ; ng, the bivariate
(product) kernel estimator is

bf K.x; y/ D 1

n

nX

iD1
Khx .x � xi /Khy .y � yi / : (19.16)

A different smoothing parameter for each variable generally gives sufficient control.
A full bivariate normal kernel may be used in special circumstances, effectively
adding one additional smoothing parameter in the form of the correlation coefficient.
However, an equivalent estimate may be obtained by rotating the data so that the
correlation in the kernel vanishes, so that the product kernel may be used on the
transformed data.

In higher dimensions, some care must be exercised to minimize the effects of the
curse of dimensionality. First, marginal variable transformations should be explored
to avoid a heavily skewed appearance or heavy tails. Second, a principal components
analysis should be performed to determine if the data are of full rank. If so, the
data should be projected into an appropriate subspace. No nonparametric procedure
works well if the data are not of full rank. Finally, if the data do not have many
significant digits, the data should be carefully blurred. Otherwise the data may have
many repeated values, and cross-validation algorithms may believe the data are
discrete and suggest using h D 0. Next several kernel or ASH estimates may be
calculated and explored to gain an understanding of the data, as a preliminary step
towards further analyses.

An extensive body of work also exists for orthogonal series density estimators.
Originally, the Fourier basis was studied, but more modern choices for the basis
functions include wavelets. These can be re-expressed as kernel estimators, so we
do not pursue these further. In fact, a number of workers have shown how almost
any nonparametric density algorithm can be put into the form of a kernel estimator;
see Walter and Blum (1979) and Terrell and Scott (1992), for example. More
recent work on local likelihood algorithms for density estimation further shows how
closely related parametric and nonparametric thinking really is; see Loader (1999)
for details and literature.
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19.4 Visualization of Trivariate Functionals

The field of scientific visualization has greatly enhanced the set of tools available
for the statistician interested in exploring the features of a density estimate in more
than two dimensions. In this section, we demonstrate by example the exploration of
trivariate data.

We continue our analysis of the data given by the duration of 299 consecutive
eruptions of the Old Faithful geyser. A graph of the histogram of these data is
displayed in Fig. 19.2b. We further modified the data as follows: the 105 values that
were only recorded to the nearest minute were blurred by adding uniform noise of
30 seconds in duration. (The remaining data points were recorded to the nearest sec-
ond). An easy way to generate high-dimensional data from a univariate time series
is to group adjacent values. In Fig. 19.12, ASH’s of the univariate data fyt g and the
lagged data f.yt�1; yt /g are shown. The obvious question is whether knowledge of
yt�1 is useful for predicting the value of yt . Clearly, the answer is in the affirmative,
but the structure would not be well-represented by an autoregressive model.

Next, we computed the ASH for the trivariate lagged data f.yt�2; yt�1; yt /g.
The resulting estimate, bf ASH.yt�2; yt�1; yt /, may be explored in several fashions.
The question is whether knowing yt�2 can be used to predict the joint behavior
of .yt�1; yt /. This may be accomplished, for example, by examining slices of the
trivariate density. Since the (univariate) density has two modes at x D 1:88 and 4:33
minutes, we examine the slices bf ASH.1:88; yt�1; yt / and bf ASH.4:33; yt�1; yt /; see
Fig. 19.13. The 297 data points were divided into two groups, depending on whether
yt�2 < 3:0 or not. The first group of points was added to Fig. 19.13a, while the
second group was added to Fig. 19.13b.

Since each axis was divided into 100 bins, there are 98 other views one might
examine like Fig. 19.13. (An animation is actually quite informative.) However, one
may obtain a holistic view by examining level sets of the full trivariate density.
A level set is the set of all points x such that bf ASH.x/ D ˛bf max, where bf max is the

Fig. 19.12 Averaged shifted histograms of the Old Faithful geyser duration data
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Fig. 19.13 Slices of the trivariate averaged shifted histogram of lagged values of the Old Faithful
geyser duration data

Fig. 19.14 Visualization of
the ˛ D 58% contour of the
trivariate ASH of the lagged
geyser duration data

maximum or modal value of the density estimate, and ˛ 2 .0; 1/ is a constant that
determines the contour level. Such contours are typically smooth surfaces in <3.
When ˛ D 1, then the “contour” is simply the modal location point. In Fig. 19.14,
the contour corresponding to ˛ D 58% is displayed. Clearly these data are
multimodal, as five well-separated high-density regions are apparent. Each cluster
corresponds to a different sequence of eruption durations, such as long-long-long.
The five clusters are now also quite apparent in both frames of Fig. 19.13. Of the
eight possible sequences, three are not observed in this sequence of 299 eruptions.

A single contour does not convey as much information as several. Depending
on the display device, one may reasonably view three to five contours, using
transparency to see the higher density contours that are “inside” the lower density
contours. Consider adding a second contour corresponding to ˛ D 28% to that
in Fig. 19.14. Rather than attempt to use transparency, we choose an alternative
representation which emphasizes the underlying algorithms. The software which
produced these figures is called ashn and is available at the author’s website. ASH
values are computed on a three-dimensional lattice. The surfaces are constructed
using the marching cubes algorithm (Lorensen and Cline 1987), which generates
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Fig. 19.15 Visualization of
the ˛ D 28% and 58%
contours of the trivariate ASH
of the lagged geyser duration
data

thousands of triangles that make up each surface. In Fig. 19.15, we choose not
to plot all of the triangles but only every other “row” along the second axis. The
striped effect allows one to interpolate and complete the low-density contour, while
allowing one to look inside and see the high-density contour. Since there are five
clusters, this is repeated five times. A smaller sixth cluster is suggested as well.

19.5 Conclusions

Exploring data is an important part of successful statistical model building. General
discussions of graphical tools may be found in Tufte (1983), Wainer (1997),
Cleveland (1985, 1993), Wegman and Depriest (1986) and Buja and Tukey (1991),
for example. Advanced exploratory software may be found in many commercial
packages, but of special note is the XGobi (Swayne et al. 1991) system and
successors. Immersive environments are also of growing interest (Cook et al. 1997).
A general visualization overview may be found in Wolff and Yaeger (1993).

Especially when the data size grows, point-oriented methods should be sup-
plemented by indirect visualization techniques based upon nonparametric density
estimation or by parallel coordinates (Inselberg 1985; Wegman 1990). Many density
algorithms are available. The use of order-two algorithms is generally to be
recommended. These should be calibrated by several techniques, starting with an
oversmoothed bandwidth and the normal reference rule.

For data beyond three dimensions, density estimates may be computed and slices
such as bf .x; y; z; t D t0/ visualized. If advanced hardware is available, the surfaces
can be animated as t varies continuously over an interval .t0; t1/; see Scott (1986;
2000). Obviously, this is most useful for data in four and five dimensions. In any
case, multivariate density estimation and visualization are important modern tools
for EDA.
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Chapter 20
Smoothing: Local Regression Techniques

Catherine Loader

Smoothing methods attempt to find functional relationships between different mea-
surements. As in the standard regression setting, the data is assumed to consist of
measurements of a response variable, and one or more predictor variables. Standard
regression techniques (Chap. III8.) specify a functional form (such as a straight line)
to describe the relation between the predictor and response variables. Smoothing
methods take a more flexible approach, allowing the data points themselves to
determine the form of the fitted curve.

This article begins by describing several different approaches to smoothing,
including kernel methods, local regression, spline methods and orthogonal series.
A general theory of linear smoothing is presented, which allows us to develop
methods for statistical inference, model diagnostics and choice of smoothing
parameters.

The theory is then extended to more general settings, including multivariate
smoothing and likelihood models.

20.1 Smoothing

Given a dataset consisting of several variables and multiple observations, the goal
of smoothing is to construct a functional relationship among the variables.

The most common situation for smoothing is that of a classical regression setting,
where one assumes that observations occur in (predictor, response) pairs. That is, the
available data has the form

f.xi ; Yi / I i D 1; : : : ; ng ;
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where xi is a measurement of the predictor (or independent) variable, and Yi is the
corresponding response. A functional model relating the variables takes the form

Yi D �.xi /C �i ; (20.1)

where �.xi / is the mean function, and �i is a random error term. In classical
regression analysis, one assumes a parametric form for the mean function; for
example, �.x/ D a0 C a1x. The problem of estimating the mean function then
reduces to estimating the coefficients a0 and a1.

The idea of smoothing methods is not to specify a parametric model for the mean
function, but to allow the data to determine an appropriate functional form. Loosely
stated, one assumes only that the mean function is smooth. Formal mathematical
analysis may state the smoothness condition as a bound on derivatives of �; for
example, j�00.x/j �M for all x and a specified constantM .

Section 20.2 describes some of the most important smoothing methods. These all
fall into a class of linear smoothers, and Sect. 20.3 develops important properties,
including bias and variance. These results are applied to derive statistical proce-
dures, including bandwidth selection, model diagnostics and goodness-of-fit testing
in Sect. 20.4. Multivariate smoothing, when there are multiple predictor variables,
is discussed in Sect. 20.5. Finally, Sect. 20.5.2 discusses extensions to likelihood
smoothing.

20.2 Linear Smoothing

In this section, some of the most common smoothing methods are introduced and
discussed.

20.2.1 Kernel Smoothers

The simplest of smoothing methods is a kernel smoother. A point x is fixed in the
domain of the mean function �.�/, and a smoothing window is defined around that
point. Most often, the smoothing window is simply an interval .x�h; xCh/, where
h is a fixed parameter known as the bandwidth.

The kernel estimate is a weighted average of the observations within the
smoothing window:

O�.x/ D
Pn

iD1 W
�
xi�x
h

�
Yi

Pn
jD1 W

� xj�x
h

� ; (20.2)

whereW.�/ is a weight function. The weight function is chosen so that most weight
is given to those observations close to the fitting point x. One common choice is the
bisquare function,
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W.x/ D
( �
1 � x2�2 �1 � x � 1
0 x > 1 or x < �1 :

The kernel smoother can be represented as

O�.x/ D
nX

iD1
li .x/Yi ; (20.3)

where the coefficients li .x/ are given by

li .x/ D
W
�
xi�x
h

�

Pn
jD1 W

� xj�x
h

� :

A linear smoother is a smoother that can be represented in the form (20.3) for
appropriately defined weights li .x/. This linear representation leads to many nice
statistical and computational properties, which will be discussed later.

The kernel estimate (20.2) is sometimes called the Nadaraya–Watson estimate
(Nadaraya (1964); Watson (1964)). Its simplicity makes it easy to understand
and implement, and it is available in many statistical software packages. But its
simplicity leads to a number of weaknesses, the most obvious of which is boundary
bias. This can be illustrated through an example.

The fuel economy dataset consists of measurements of fuel usage (in miles per
gallon) for sixty different vehicles. The predictor variable is the weight (in pounds)
of the vehicle. Figure 20.1 shows a scatterplot of the sixty data points, together with
a kernel smooth. The smooth is constructed using the bisquare kernel and bandwidth
h D 600 pounds.
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Fig. 20.1 Kernel smooth of the fuel economy dataset. The bisquare kernel is used, with bandwidth
h D 600 pounds
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Over much of the domain of Fig. 20.1, the smooth fit captures the main trend of
the data, as required. But consider the left boundary region; in particular, vehicles
weighing less than 2200 pounds. All these data points lie above the fitted curve; the
fitted curve will underestimate the economy of vehicles in this weight range. When
the kernel estimate is applied at the left boundary (say, at Weight D 1800), all the
data points used to form the average have Weight > 1800, and correspondingly
slope of the true relation induces boundary bias into the estimate.

More discussion of this and other weaknesses of the kernel smoother can be
found in Hastie and Loader (1993). Many modified kernel estimates have been
proposed, but one obtains more parsimonious solutions by considering alternative
estimation procedures.

20.2.2 Local Regression

Local regression estimation was independently introduced in several different fields
in the late nineteenth and early twentieth century (Henderson (1916); Schiaparelli
(1866)). In the statistical literature, the method was independently introduced from
different viewpoints in the late 1970’s (Cleveland (1979); Katkovnik (1979); Stone
(1977)). Books on the topic include Fan and Gijbels (1996) and Loader (1999b).

The underlying principle is that a smooth function can be well approximated by
a low degree polynomial in the neighborhood of any point x. For example, a local
linear approximation is

�.xi / � a0 C a1.xi � x/ (20.4)

for x � h � xi � x C h. A local quadratic approximation is

�.xi / � a0 C a1.xi � x/C a2

2
.xi � x/2 :

The local approximation can be fitted by locally weighted least squares. A weight
function and bandwidth are defined as for kernel regression. In the case of local
linear regression, coefficient estimates Oa0; Oa1 are chosen to minimize

nX

iD1
W
�xi � x

h

	
.Yi � .a0 C a1.xi � x///2 : (20.5)

The local linear regression estimate is defined as

O�.x/ D Oa0 : (20.6)

Each local least squares problem defines O�.x/ at one point x; if x is changed, the
smoothing weightsW

�
xi�x
h

�
change, and so the estimates Oa0 and Oa1 change.

Since (20.5) is a weighted least squares problem, one can obtain the coefficient
estimates by solving the normal equations
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X>W
�
Y �X

� Oa0
Oa1
��
D 0 ; (20.7)

whereX is the design matrix:

X D

0

B
@

1 x1 � x
:::

:::

1 xn � x

1

C
A

for local linear regression, W is a diagonal matrix with entries W
�
xi�x
h

�
and Y D

�
Y1 : : : Yn

�>
.

When X>W X is invertible, one has the explicit representation

� Oa0
Oa1
�
D �X>W X��1X>W Y : (20.8)

This shows that the local regression estimate is a linear estimate, as defined
by (20.3). Explicitly, the coefficients li .x/ are given by

l.x/> D �l1.x/ : : : ln.x/
� D e>1

�
X>W X

��1
X>W ; (20.9)

where e>1 is the unit vector
�
1 0
�
.

For local quadratic regression and higher order fits, one simply adds additional
columns to the design matrix X and vector e>1 .

Figure 20.2 shows a local linear regression fit to the fuel economy dataset.
This has clearly fixed the boundary bias problem observed in Fig. 20.1. With
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Fig. 20.2 Local Linear Regression fitted to the fuel economy dataset. A bandwidth h D
1000 pounds is used
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the reduction in boundary bias, it is also possible to substantially increase the
bandwidth, from h D 600 pounds to h D 1000 bounds. As a result, the local linear
fit is using much more data, meaning the estimate has less noise.

20.2.3 Penalized Least Squares (Smoothing Splines)

An entirely different approach to smoothing is through optimization of a penalized
least squares criterion, such as

nX

iD1
.Yi � �.xi //2 C �

Z
�00.x/2dx ; (20.10)

where � is specified constant. This criterion trades off fidelity to the data (measured
by the residual sum-of-squares) versus roughness of the mean function (measured
by the penalty term). The penalized least squares method chooses O� from the class
of twice differentiable functions to minimize the penalized least squares criterion.

The solution to this optimization problem is a piecewise polynomial, or spline
function, and so penalized least squares methods are also known as smoothing
splines. The idea was first considered in the early twentieth century (Whitaker
(1923)). Modern statistical literature on smoothing splines began with work includ-
ing Wahba and Wold (1975) and Silverman (1985). Books devoted to spline
smoothing include Green and Silverman (1994) and Wahba (1990).

Suppose the data are ordered; xi � xiC1 for all i . Let Oai D O�.xi /, and
Obi D O�0.xi /, for i D 1; : : : ; n. Given these values, it is easy to show that between
successive data points, O�.x/ must be the unique cubic polynomial interpolating
these values:

O�.x/ D ai�0.u/C bi�i 0.u/C aiC1�1.u/C biC1�i 1.u/ ;

where�i D xiC1 � xi ; u D .x � xi /=�i and

�0.u/ D 1 � u2.3 � 2u/

 0.u/ D u.1 � u.2 � u//

�1.u/ D u2.3 � 2u/

 1.u/ D u2.u � 1/ :

Letting ˛> D �
a1 b1 : : : an bn

�
, the penalty term

R
�00.x/2dx is a quadratic

function of the parameters, and so (20.10) can be written as

kY �X˛k2 C �˛>M˛ ;
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Fig. 20.3 Smoothing Spline fitted to the fuel economy dataset. The penalty is � D 1:5E8

pounds3

for appropriate matricesM and X . The parameter estimates are given by

b̨D �X>X C �M ��1
X>Y :

Figure 20.3 shows a smoothing spline fitted to the fuel economy dataset. Clearly,
the fit is very similar to the local regression fit in Fig. 20.2. This situation is
common for smoothing problems with a single predictor variable; with comparably
chosen smoothing parameters, local regression and smoothing spline methods
produce similar results. On the other hand, kernel methods can struggle to produce
acceptable results, even on relatively simple datasets.

20.2.4 Regression Splines

Regression splines begin by choosing a set of knots (typically, much smaller than
the number of data points), and a set of basis functions spanning a set of piecewise
polynomials satisfying continuity and smoothness constraints.

Let the knots be v1 < : : : < vk with v1 D min.xi / and vk D max.xi /. A linear
spline basis is

fj .x/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

x � vj�1
vj � vj�1

vj�1 � x � vj

vjC1 � x
vjC1 � vj

vj < x � vjC1

0 otherwise

I
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note that these functions span the space of piecewise linear functions with knots at
v1; : : : ; vk . The piecewise linear spline function is constructed by regressing the data
onto these basis functions.

The linear spline basis functions have discontinuous derivatives, and so the
resulting fit may have a jagged appearance. It is more common to use piecewise
cubic splines, with the basis functions having two continuous derivatives. See
Chap. 3 of Ruppert et al. (2003) for a more detailed discussion of regression splines
and basis functions.

20.2.5 Orthogonal Series

Orthogonal series methods represent the data with respect to a series of orthogonal
basis functions, such as sines and cosines. Only the low frequency terms are
retained. The book Efromovich (1999) provides a detailed discussion of this
approach to smoothing.

Suppose the xi are equally spaced; xi D i=n. Consider the basis functions

f!.x/ D a! cos.2�!x/ I ! D 0; 1; : : : ; bn=2c
g!.x/ D b! sin.2�!x/ I ! D 1; : : : ; b.n � 1/=2c ;

where the constants a!; b! are chosen so that
Pn

iD1 f!.xi /2 D
Pn

iD1 g!.xi /2 D 1.
Then the regression coefficients are

c! D
nX

iD1
f!.xi /Yi

s! D
nX

iD1
g!.xi /Yi

and the corresponding smooth estimate is

O�.x/ D
X

!

h.!/ .c!f!.x/C s!g!.x// :

Here, h.!/ is chosen to ‘damp’ high frequencies in the observations; for example,

h.!/ D
(
1 ! � !0
0 ! > !0

is a low-pass filter, passing all frequencies less than or equal to !0.
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Orthogonal series are widely used to model time series, where the coefficients
c! and s! may have a physical interpretation: non-zero coefficients indicate the
presence of cycles in the data. A limitation of orthogonal series approaches is that
they are more difficult to apply when the xi are not equally spaced.

20.3 Statistical Properties of Linear Smoothers

Each of the smoothing methods discussed in the previous section has one or more
‘smoothing parameters’ that control the amount of smoothing being performed.
For example, the bandwidth h in the kernel smoother or local regression methods,
and the parameter � in the penalized likelihood criterion. In implementing the
smoothers, the first question to be asked is how should the smoothing parameters
be chosen? More generally, how can the performance of a smoother with given
smoothing parameters be assessed? A deeper question is in comparing fits from
different smoothers. For example, we have seen for the fuel economy dataset that
a local linear fit with h D 1000 (Fig. 20.2) produces a fit similar to a smoothing
spline with � D 1:5 � 108 (Fig. 20.3). Somehow, we want to be able to say these
two smoothing parameters are equivalent.

As a prelude to studying methods for bandwidth selection and other statistical
inference procedures, we must first study some of the properties of linear smoothers.
We can consider measures of goodness-of-fit, such as the mean squared error,

MSE.x/ D E �. O�.x/ � �.x//2� D var . O�.x//C bias . O�.x//2 ;

where bias. O�.x// D E. O�.x// � �.x/.
Intuitively, as the bandwidth h increases, more data is used to construct the

estimate O�.x/, and so the variance var. O�.x// decreases. On the other hand, the
local polynomial approximation is best over small intervals, so we expect the bias
to increase as the bandwidth increases. Choosing h is a tradeoff between small bias
and small variance, but we need more precise characterizations to derive and study
selection procedures.

20.3.1 Bias

The bias of a linear smoother is given by

E. O�.x// � �.x/ D
nX

iD1
li .x/E.Yi / � �.x/ D

nX

iD1
li .x/�.xi /� �.x/ : (20.11)
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As this depends on the unknown mean function �.x/, it is not very useful by itself,
although it may be possible to estimate the bias by substituting an estimate for�.x/.
To gain more insight, approximations to the bias are derived. The basic tools are

1. A low order Taylor series expansion of �. � / around the fitting point x.
2. Approximation of the sums by integrals.

For illustration, consider the bias of the local linear regression estimate defined
by (20.6). A three-term Taylor series gives

�.xi / D �.x/C .xi � x/�0.x/C .xi � x/2
2

�00.x/C o �h2�

for jxi � xj � h. Substituting this into (20.11) gives

E. O�.x// � �.x/ D �.x/
nX

iD1
li .x/C �0.x/

nX

iD1
.xi � x/li .x/

C �00.x/
2

nX

iD1
.xi � x/2li .x/ � �.x/C o

�
h2
�
:

For local linear regression, it can be shown that

nX

iD1
li .x/ D 1

nX

iD1
.xi � x/li .x/ D 0 :

This is a mathematical statement of the heuristically obvious property of the local
linear regression: if data Yi fall on a straight line, the local linear regression will
reproduce that line. See Loader (1999b), p. 37, for a formal proof. With this
simplification, the bias reduces to

E. O�.x// � �.x/ D �00.x/
2

nX

iD1
.xi � x/2li .x/C o

�
h2
�
: (20.12)

This expression characterizes the dependence of the bias on the mean function:
the dominant term of the bias is proportional to the second derivative of the mean
function.

The next step is to approximate summations by integrals, both in (20.12) and in
the matrix equation (20.9) defining li .x/. This leads to

E. O�.x// � �.x/ � �00.x/h2
R

v2W.v/dv

2
R
W.v/dv

: (20.13)
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In addition to the dependence on �00.x/, we now see the dependence on h: as the
bandwidth h increases, the bias increases quadratically with the bandwidth.

Bias expansions like (20.13) are derived much more generally by Ruppert
and Wand (1994); their results cover arbitrary degree local polynomials and
multidimensional fits also. Their results imply that when p, the degree of the local
polynomial, is odd, the dominant term of the bias is proportional to hpC1�.pC1/.x/.
When p is even, the first-order term can disappear, leading to bias of order hpC2.

20.3.2 Variance

To derive the variance of a linear smoother, we need to make assumptions about
the random errors �i in (20.1). The most common assumption is that the errors are
independent and identically distributed, with variance var.�i / D 2. The variance
of a linear smoother (20.3) is

var. O�.x// D
nX

iD1
li .x/

2var.Yi / D 2kl.x/k2 : (20.14)

As with bias, informative approximations to the variance can be derived by
replacing sums by integrals. For local linear regression, this leads to

var. O�.x// � 2

nhf .x/

R
W.v/2dv

�R
W.v/dv

�2 ; (20.15)

where f .x/ is the density of the design points xi . The dependence on the sample
size, bandwidth and design density through 1=.nhf .x// is universal, holding for
any degree of local polynomial. The term depending on the weight function varies
according to the degree of local polynomial, but generally increases as the degree of
the polynomials increases. See Ruppert and Wand (1994) for details.

20.3.3 Degrees of Freedom

Under the model (20.1) the observation Yi has variance 2, while the estimate O�.xi /
has variance 2kl.xi /k2. The quantity kl.xi /k2 measures the variance reduction of
the smoother at a data point xi . At one extreme, if the ‘smoother’ interpolates the
data, then O�.xi / D Yi and kl.xi /k2 D 1. At the other extreme, if O�.xi / D NY ,
kl.xi /k2 D 1=n. Under mild conditions on the weight function, a local polynomial
smoother satisfies

1

n
� kl.xi /k2 � 1 ;

and kl.xi /k2 is usually a decreasing function of the bandwidth h.
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A global measure of the amount of smoothing is provided by

�2 D
nX

iD1
kl.xi /k2 :

This is one definition of the ‘degrees of freedom’ or ‘effective number of parame-
ters’ of the smoother. It satisfies the inequalities

1 � �2 � n :

An alternative representation of �2 is as follows. Let H be the ‘hat matrix’,
which maps the data to fitted values:

0

B
@

O�.x1/
:::

O�.xn/

1

C
A D HY :

For a linear smoother,H has rows l.xi />, and �2 D trace.H>H /.
The diagonal elements of H , li .xi / provide another measure of the amount of

smoothing at xi . If the smooth interpolates the data, then l.xi / is the corresponding
unit vector with li .xi / D 1. If the smooth is simply the global average, li .xi / D
1=n. The corresponding definition of degrees of freedom is

�1 D
nX

iD1
li .xi / D trace.H / :

For a least-squares fit, the hat matrix is a perpendicular projection operator, which
is symmetric and idempotent. In this case, H D H>H , and �1 D �2. For linear
smoothers, the two definitions of degrees-of-freedom are usually not equal, but they
are often of similar magnitude.

For the local linear regression in Fig. 20.2, the degrees of freedom are �1 D 3:54
and �2 D 3:09. For the smoothing spline smoother in Fig. 20.3, �1 D 3:66 and
�2 D 2:98. By either measure the degrees of freedom are similar for the two fits.
The degrees of freedom provides a mechanism by which different smoothers, with
different smoothing parameters, can be compared: we simply choose smoothing
parameters producing the same number of degrees of freedom. More extensive
discussion of the degrees of freedom of a smoother can be found in Cleveland and
Devlin (1988) and Hastie and Tibshirani (1990).

Variance Estimation.

The final component needed for many statistical procedures is an estimate of the
error variance 2. One such estimate is
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O2 D 1

n � 2�1 C �2
nX

iD1
.Yi � O�.xi //2 : (20.16)

The normalizing constant is chosen so that if the bias of O�.xi / is neglected, O2 is
unbiased. See Cleveland and Devlin (1988).

20.4 Statistics for Linear Smoothers: Bandwidth Selection
and Inference

We also want to perform statistical inference based on the smoothers. As for
parametric regression, we want to construct confidence bands and prediction
intervals based on the smooth curve. Given a new car that weighs 2800 pounds,
what is its fuel economy? Tests of hypotheses can also be posed: for example,
is the curvature observed in Fig. 20.2 significant, or would a linear regression be
adequate? Given different classifications of car (compact, sporty, minivan etc.) is
there differences among the categories that cannot be explained by weight alone?

20.4.1 Choosing Smoothing Parameters

All smoothing methods have one or more smoothing parameters: parameters that
control the ‘amount’ of smoothing being performed. For example, the bandwidth h
in the kernel and local regression estimates. Typically, bandwidth selection methods
are based on an estimate of some goodness-of-fit criterion. Bandwidth selection is
a special case of model selection, discussed more deeply in Chap. III.1.

How should smoothing parameters be used? At one extreme, there is full
automation: optimization of the goodness-of-fit criterion produces a single ‘best’
bandwidth. At the other extreme is purely exploratory and graphical methods, using
goodness-of-fit as a guide to help choose the best method.

Automation has the advantage that it requires much less work; a computer
can be programmed to perform the optimization. But the price is a lack of
reliability: fits with very different bandwidths can produce similar values of the
goodness-of-fit criterion. The result is either high variability (producing fits that look
undersmoothed) or high bias (producing fits that miss obvious features in the data).

Cross Validation.

Cross validation (CV) focuses on the prediction problem: if the fitted regression
curve is used to predict new observations, how good will the prediction be? If a new
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observation is made at x D x0, and the response Y0 is predicted by bY 0 D O�.x0/,
what is the prediction error? One measure is

E..Y0 � bY 0/2/ :

The method of CV can be used to estimate this quantity. In turn, each observation
.xi ; Yi / is omitted from the dataset, and is ‘predicted’ by smoothing the remaining
n � 1 observations. This leads to the CV score

CV. O�/ D 1

n

nX

iD1
.Yi � O��i .xi //2 ; (20.17)

where O��i .�/ denotes the smoothed estimate when the single data point .xi ; Yi / are
omitted from the dataset; only the remaining n � 1 data points are used to compute
the estimate.

Formally computing each of the leave-one-out regression estimates O��i .�/would
be highly computational, and so at a first glance computation of the CV score (20.17)
looks prohibitively expensive. But there is a remarkable simplification, valid for
nearly all common linear smoothers (and all those discussed in Sect. 20.2):

O��i .xi / D O�.xi /� li .xi /Yi
1 � li .xi / :

With this simplification, the CV criterion becomes

CV. O�/ D 1

n

nX

iD1

.Yi � O�.xi //2
.1 � li .xi //2 :

Generalized cross validation (GCV) replaces each of the influence values li .xi /
by the average, �1=n. This leads to

GCV. O�/ D n
Pn

iD1.Yi � O�.xi //2
.n � �1/2 :

Figure 20.4 shows the GCV scores for the fuel economy dataset, and using kernel
and local linear smoothers with a range of bandwidths. Note the construction of
the plot: the fitted degrees of freedom �1 are used as the x axis. This allows us
to meaningfully superimpose and compare the GCV curves arising from different
smoothing methods. From right to left, the points marked ‘0’ represent a kernel
smoother with h D 300; 400; 500; 600; 800 and 1000, and points marked ‘1’
represent a local linear smoother with h D 400; 500; 700; 1;000; 1;500; 2;000

and1.
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Fig. 20.4 GCV scores for the fuel economy dataset. Points marked 0 are for kernel smoothers
with a range of bandwidths h, and points marked 1 are for a local linear smoother

The interpretation of Fig. 20.4 is that for any fixed degrees of freedom, the local
linear fit outperforms the kernel fit. The best fits obtained are the local linear, with
3 to 3.5 degrees of freedom, or h between 1000 and 1500.

Unbiased Risk Estimation.

A risk function measures the distance between the true regression function and the
estimate; for example,

R.�; O�/ D 1

2

nX

iD1
E
�
. O�.xi /� �.xi //2

�
: (20.18)

Ideally, a good estimate would be one with low risk. But since � is unknown,
R.�; O�/ cannot be evaluated directly.

Instead, the risk must be estimated. An unbiased estimate is

OR.�; O�/ D 1

2

nX

iD1
.Yi � O�.xi //2 � nC 2�1

(Mallows (1973); Cleveland and Devlin (1988)). The unbiased risk estimate is
equivalent to Akaike’s Information Criterion (Akaike (1972), 1974). To implement
the unbiased risk estimate one needs to substitute an estimate for 2; Cleveland and
Devlin recommend using (20.16) with a small bandwidth.



586 C. Loader

The unbiased risk estimate can be used similarly to GDV. One computes OR.�; O�/
for a range of different fits O�, and plots the resulting risk estimates versus the degrees
of freedom. Fits producing a small risk estimate are considered best.

Bias Estimation and Plug-in Methods.

An entirely different class of bandwidth selection methods, often termed plug-in
methods, attempt to directly estimate a risk measure by estimating the bias and
variance. The method has been developed mostly in the context of kernel density
estimation, but adaptations to kernel regression and local polynomial regression can
be found in Fan and Gijbels (1995) and Ruppert et al. (1995).

Again focusing on the squared-error risk, we have the bias-variance
decomposition

2R.�; O�/ D
nX

iD1
bias. O�.xi //2 C

nX

iD1
var. O�.xi //

D
nX

iD1

0

@
nX

jD1
lj .xi /�.xj / � �.xi /

1

A

2

C 2
nX

iD1
kl.xi /k2 : (20.19)

A plug-in estimate begins by constructing a preliminary pilot estimate of the mean
function �.�/. This is then substituted into the risk estimate (20.19), which can then
be minimized over the bandwidth h.

There are many variants of the plug-in idea in the statistics literature. Most sim-
plify the risk function using asymptotic approximations such as (20.13) and (20.15)
for the bias and variance; making these substitutions in (20.19) gives

2R.�; O�/ � h4
�R

v2W.v/dv

2
R
W.v/dv

�2 nX

iD1
�00.xi /2 C 2

nh

R
W.v/2dv

�R
W.v/dv

�2

nX

iD1

1

f .xi /
:

If the design points are uniformly distributed on an interval Œa; b� say, then
approximating the sums by integrals gives

2R.�; O�/ � nh4
�R

v2W.v/dv

2
R
W.v/dv

�2
1

b � a
Z b

a

�00.x/2dx C .b � a/2
h

R
W.v/2dv

�R
W.v/dv

�2 :

Minimizing this expression over h yields an asymptotically optimal bandwidth:

h5opt D
2.b � a/2 R W.v/2dv

n
�R

v2W.v/dv
�2 R b

a
�00.x/2dx

:
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Evaluation of hopt requires substitution of estimates for
R b
a
�00.x/2dx and of 2.

The estimate (20.16) can be used to estimate 2, but estimating
R b
a
�00.x/2dx is

more problematic. One technique is to estimate the second derivative using a ‘pilot’
estimate of the smooth, and then use the estimate

Z b

a

O�00.x/2dx :

If a local quadratic estimate is used at the pilot stage, the curvature coefficient Oa2
can be used as an estimate of �00.x/.

But the use of a pilot estimate to estimate the second derivative is problematic.
The pilot estimate itself has a bandwidth that has to be selected, and the estimated
optimal bandwidth Ohopt is highly sensitive to the choice of pilot bandwidth. Roughly,
if the pilot estimate smooths out important features of �, so will the estimate O� with
bandwidth Ohopt. More discussion of this point may be found in Loader (1999a).

20.4.2 Normal-based Inference

Inferential procedures for smoothers include the construction of confidence bands
for the true mean function, and procedures to test the adequacy of simpler models.
In this section, some of the main ideas are briefly introduced; more extensive
discussion can be found in the books Azzalini and Bowman (1997), Hardle (1990),
Hart (1997) and Loader (1999b).

Confidence Intervals.

If the errors �i are normally distributed, then confidence intervals for the true mean
can be constructed as

O�.x/˙ c Okl.x/k :
The constant c can be chosen from the Student’s t distribution with degrees of
freedom equal to n�2�1C�2 (alternative choices are discussed below in the context
of testing). These confidence intervals are pointwise intervals for E. O�.x//:

P .j O�.x/ �E. O�.x//j < c Okl.x/k/ D 1 � ˛ :

To construct confidence intervals for �.x/, one must either choose the bandwidth
sufficiently small so that the bias can be ignored, or explicitly estimate the bias. The
latter approach suffers from the same weaknesses observed in plug-in bandwidth
selection.
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Tests of Hypothesis

Consider the problem of testing for the adequacy of a linear model. For example, in
the fuel economy dataset of Figs. 20.1 and 20.2, one may be interested in knowing
whether a linear regression, �.x/ D a C bx is adequate, or alternatively whether
the departure from linearity indicated by the smooth is significant. This hypothesis
testing problem can be stated as

H0 W �.x/ D aC bx for some a; b

H1 W otherwise :

In analogy with the theory of linear models, an F ratio can be formed by fitting
both the null and alternative models, and considering the difference between the
fits. Under the null model, parametric least squares is used; the corresponding fitted
values are MY where M is the hat matrix for the least squares fit. Under the
alternative model, the fitted values are HY , where H is the hat matrix for a local
linear regression. An F ratio can then be formed as

F D kHY �MY k2=�
O2 ;

where � D trace..H �M />.H �M //.
What is the distribution of F when H0 is true? Since H is not a perpendicular

projection operator, the numerator does not have a �2 distribution, and F does
not have an exact F distribution. None-the-less, we can use an approximating
F distribution. Based on a one-moment approximation, the degrees of freedom are
� and n � 2�1 C �2.

Better approximations are obtained using the two-moment Satterwaite approxi-
mation, as described in Cleveland and Devlin (1988). This method matches both the
mean and variance of chi-square approximations to the numerator and denominator.
Letting � D .H � M />.H � M /, the numerator degrees of freedom for the
F distribution are given by trace.�/2=trace.�2/. A similar adjustment is made
to the denominator degrees of freedom. Simulations reported in Cleveland and
Devlin (1988) suggest the two-moment approximation is adequate for setting critical
values.

For the fuel economy dataset, we obtain F D 7:247, � D 1:0866 and n � 2�1 C
�2 D 55:997. Using the one-moment approximation, the p-value is 0:0079. The
two-moment approximation gives a p-value of 0:0019. Both methods indicate that
the nonlinearity is significant, although there is some discrepancy between the P -
values.
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20.4.3 Bootstrapping

The F -tests in the previous section are approximate, even when the errors �i are
normally distributed. Additionally, the degrees-of-freedom computations (partic-
ularly for the two-moment approximation) require O.n3/ computations, which is
prohibitively expensive for n more than a few hundred.

An alternative to the F approximations is to simulate the null distribution of
the F ratio. A bootstrap method (Chap. III.2) performs the simulations using the
empirical residuals to approximate the true error distribution:

• Let ri D Yi � O�.xi /.
• Resample: Y �i D O�.xi /C ��i ; i D 1; : : : ; n; where ��i is drawn from r1; : : : ; rn.
• Compute the F statistic based on the resampled data:

F � D kHY
� �MY �k2=�
. O�/2 :

This procedure is repeated a large number of times (sayBD 1000) and tabulation
of the resulting F � values provides an estimate of the true distribution of the
F ratio.

Remark. Since the degrees of freedom do not change with the replication, there
is no need to actually compute the normalizing constant. Instead, one can simply
work with the modified F ratio,

FB D kH Y
� �MY �k2

k.I �H /Y �k2 :

Figure 20.5 compares the bootstrap distribution of the F ratio and the 1 and
2 moment F approximations for the fuel economy dataset. The bootstrap method
uses 10000 bootstrap replications, and the density is estimated using the Local
Likelihood method (Sect. 20.5.2 below). Except at the left end-point, there is
generally good agreement between the bootstrap density and the two-moment
density. The upper 5% quantiles are 3.21 based on the two-moment approximation,
and 3.30 based on the bootstrap sample. The one-moment approximation has
a critical value of 3.90. Based on the observed F D 7:248, the bootstrap p-value is
0.0023, again in close agreement with the two-moment method.

20.5 Multivariate Smoothers

When there are multiple predictor variables, the smoothing problem becomes
multivariate: �.x/ is now a surface. The definition of kernel and local regression
smoothers can be extended to estimate a regression surface with any number of
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Fig. 20.5 Estimated density of the F ratio, based on the bootstrap method (solid line); 1-moment
F approximation (short dashed line) and 2-moment F approximation (long dashed line)

predictor variables, although the methods become less useful for more than 2 or 3
variables. There are several reasons for this:

• Data sparsity – the curse of dimensionality.
• Visualization issues – how does one view and interpret a high dimensional

smooth regression surface?
• Computation is often much more expensive in high dimensions.

For these reasons, use of local polynomials and other smoothers to model high
dimensional surfaces is rarely recommended, and the presentation here is restricted
to the two-dimensional case. In higher dimensions, smoothers can be used in con-
junction with dimension reduction procedures (Chap. III.6), which attempt to model
the high-dimensional surface through low-dimensional components. Examples of
this type of procedure include Projection Pursuit (Friedman and Stuetzle (1981)),
Additive Models (Hastie and Tibshirani (1990)), Semiparametric Models (Ruppert
et al. (2003) and Chap. III.10) and recursive partitioning (Chap. III.14).

20.5.1 Two Predictor Variables

Suppose the dataset consists of n vectors .ui ; vi ; Yi /, where ui and vi are considered

predictor variables, and Yi is the response. For simplicity, we’ll use xi D
�
ui vi

�>

to denote a vector of the predictor variables. The data are modeled as

Yi D �.ui ; vi /C �i D �.xi /C �i :
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Bivariate smoothers attempt to estimate the surface �.ui ; vi /. Kernel and local
regression methods can be extended to the bivariate case, simply by defining
smoothing weights on a plane rather than on a line. Formally, a bivariate local
regression estimate at a point x D .u; v/> can be constructed as follows:

1. Define a distance measure �.x; xi / between the data points and fitting point.
A common choice is Euclidean distance,

�.x; xi / D
p
.ui � u/2 C .vi � v/2 :

2. Define the smoothing weights using a kernel function and bandwidth:

wi .x/ D W
�
�.x; xi /

h

�
:

3. Define a local polynomial approximation, such as a local linear approximation

�.ui ; vi / � a0 C a1.ui � u/C a2.vi � v/

when .ui ; vi / is close to .u; v/. More generally, a local polynomial approximation
can be written

�.xi / � ha;A.xi � x/i ;
where a is a vector of coefficients, and A.�/ is a vector of basis polynomials.

4. Estimate the coefficient vector by local least squares. That is, choose Oa to
minimize

nX

iD1
wi .x/ .Yi � ha;A.xi � x/i/2 :

5. The local polynomial estimate is then

O�.x/ D Oa0 :

20.5.2 Likelihood Smoothing

A likelihood smoother replaces the model (20.1) with a distributional assumption

Yi � f .y; �i / ;

where f .y; �/ is a specified family of densities, parameterized so that E.Yi/ D �i .
The family may be chosen depending on the response variable. If Yi is a count, then
the Poisson family is a natural choice:
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f .y; �/ D �ye��

yŠ
I y D 0; 1; 2; : : : :

If Yi is a 0=1 (or no/yes) response, then the Bernoulli family is appropriate:

f .y; �/ D �y.1 � �/1�y I y D 0; 1 :

Given the data, the log-likelihood is

L.�1; : : : ; �n/ D
nX

iD1
log f .Yi ; �i / :

The goal is to estimate the mean function, �i D �.xi / for an observed set of
covariates xi . A generalized linear model (Chap. III.7) uses a parametric model for
the mean function. Likelihood smoothers assume only that the mean is a smooth
function of the covariates.

The earliest work on likelihood smoothing is Henderson (1924), who used
a penalized binomial likelihood to estimate mortality rates. The local likelihood
method described below can be viewed as an extension of local polynomial
regression, and was introduced by Tibshirani and Hastie (1987).

Local Likelihood Estimation.

Local likelihood estimation is based on a locally weighted version of the log-
likelihood:

Lx.�1; : : : ; �n/ D
nX

iD1
wi .x/ log f .Yi ; �i / :

A local polynomial approximation is then used for a transformation of the mean
function. For example, a local quadratic approximation is

™.xi / D g.�.xi //
� a0 C a1.xi � x/C a2

2
.xi � x/2 :

The function g.�/ is the link function. Its primary goal is to remove constraints on
the mean by mapping the parameter space to .�1;1/. For example, in the Poisson
case, the parameter space is 0 < � < 1. If the log transformation ™ D log.�/ is
used, then the parameter space becomes �1 < ™ <1.

Let l.y; ™/ D logf .y; �/ where ™ D g.�/, so that the locally weighted log-
likelihood becomes
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Lx D
nX

iD1
wi .x/l .Yi ; ™.xi // :

The maximizer satisfies the likelihood equations,

nX

iD1
wi .x/

0

B
B
@

1

xi � x
1

2
.xi � x/2

1

C
C
A
Pl.Yi ; ™.xi // D 0 ; (20.20)

where

Pl D @

@™
l.y; ™/ :

In matrix notation, this system of equations can be written in a form similar
to (20.7):

X>W Pl.Y;Xa/ D 0 : (20.21)

This system of equations is solved to find parameter estimates Oa0; Oa1 and Oa2. The
local likelihood estimate is defined as

O�.x/ D g�1. Oa0/ :

Solving the Local Likelihood Equations.

The local likelihood equations (20.20) are usually non-linear, and so the solution
must be obtained through iterative methods. The Newton–Raphson updating for-
mula is

Oa.jC1/ D Oa.j / C �X>W V X��1X>W Pl �Y;X Oa.j /� ; (20.22)

where V is a diagonal matrix with entries

� @
2

@™2
l.y; ™/ :

For many common likelihoods l.Y; ™/ is concave. Under mild conditions on the
design points, this implies that the local likelihood is also concave, and has a unique
global maximizer. If the Newton–Raphson algorithm converges, it must converge to
this global maximizer.

The Newton–Raphson algorithm (20.22) cannot be guaranteed to converge from
arbitrary starting values. But for concave likelihoods, Oa.jC1/ � Oa.j / is guaranteed to
be an ascent direction, and convergence can be ensured by controlling the step size.
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Statistics for the Local Likelihood Estimate.

Since the local likelihood estimate does not have an explicit representation,
statistical properties cannot be derived as easily as in the local regression case. But
a Taylor series expansion of the local likelihood gives an approximate linearization
of the estimate, leading to theory parallel to that developed in Sects. 20.3 and 20.4
for local regression. See Chap. 4 of Loader (1999b).

20.5.3 Extensions of Local Likelihood

The local likelihood method has been formulated for regression models. But
variants of the method have been derived for numerous other settings, including
robust regression, survival models, censored data, proportional hazards models,
and density estimation. References include Tibshirani and Hastie (1987), Hjort and
Jones (1996), Loader (1996, 1999b).

Robust Smoothing.

Robust smoothing combines the ideas of robust estimation (Chap. III.9) with
smoothing. One method is local M-estimation: choose Oa to minimize

nX

iD1
wi .x/� .Yi � ha;A.xi � x/i/ ;

and estimate O�.x/ D Oa0. If �.u/ D u2, this corresponds to local least squares
estimation. If �.u/ is a symmetric function that increases more slowly than u2, then
the resulting estimate is more robust to outliers in the data. One popular choice of
�.u/ is the Huber function:

�.u/ D
(

u2 juj � c
c.2juj � c/ juj > c :

References include Hardle (1990) and Loader (1999b). Another variant of M-
estimation for local regression is the iterative procedure of Cleveland (1979).

Density Estimation.

SupposeX1; : : : ; Xn are an independent sample from a density f .x/. The goal is to
estimate f .x/. The local likelihood for this problem is
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Lx.a/ D
nX

iD1
wi .x/ ha;A.xi � x/i � n

Z

X
W
�u � x

h

	
eha;A.u�x/idu :

Letting Oa be the maximizer of the local log-likelihood, the local likelihood estimate
is Of .x/ D exp. Oa0/. See Hjort and Jones (1996) and Loader (1996).

The density estimation problem is discussed in detail, together with graphical
techniques for visualizing densities, in Chap. III.4.
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Chapter 21
Semiparametric Models

Joel L. Horowitz

21.1 Introduction

Much empirical research is concerned with estimating conditional mean, median,
or hazard functions. For example, labor economists are interested in estimating the
mean wages of employed individuals conditional on characteristics such as years
of work experience and education. The most frequently used estimation methods
assume that the function of interest is known up to a set of constant parameters
that can be estimated from data. Models in which the only unknown quantities are
a finite set of constant parameters are called parametric. The use of a parametric
model greatly simplifies estimation, statistical inference, and interpretation of the
estimation results but is rarely justified by theoretical or other a priori considera-
tions. Estimation and inference based on convenient but incorrect assumptions about
the form of the conditional mean function can be highly misleading.

As an illustration, the solid line in Fig. 21.1 shows an estimate of the mean of
the logarithm of weekly wages, logW , conditional on years of work experience,
EXP, for white males with 12 years of education who work full time and live
in urban areas of the North Central U.S. The estimate was obtained by applying
kernel nonparametric regression (see, e.g., Fan and Gijbels 1996; Härdle 1990) to
data from the 1993 Current Population Survey (CPS). The estimated conditional
mean of logW increases steadily up to approximately 30 years of experience and
is flat thereafter. The dashed and dotted lines in Fig. 21.1 show two parametric
estimates of the mean of the logarithm of weekly wages conditional on years of
work experience. The dashed line is the ordinary least squares (OLS) estimate
that is obtained by assuming that the mean of logW conditional on EXP is the
linear function E.logW jEXP/ D ˇ0 C ˇ1EXP. The dotted line is the OLS
estimate that is obtained by assuming that E.logW jEXP/ is the quadratic function
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Fig. 21.1 Nonparametric and parametric estimates of mean log wages

E.logW jEXP/ D ˇ0C ˇ1EXPC ˇ2EXP2. The nonparametric estimate (solid line)
places no restrictions on the shape of E.logW jEXP/. The linear and quadratic
models give misleading estimates of E.logW jEXP/. The linear model indicates
thatE.logW jEXP/ increases steadily as experience increases. The quadratic model
indicates that E.logW jEXP/ decreases after 32 years of experience. In contrast,
the nonparametric estimate of E.logW jEXP/ becomes nearly flat at approximately
30 years of experience. Because the nonparametric estimate does not restrict the
conditional mean function to be linear or quadratic, it is more likely to represent the
true conditional mean function.

The opportunities for specification error increase if Y is binary. For example,
consider a model of the choice of travel mode for the trip to work. Suppose that the
available modes are automobile and transit. Let Y D 1 if an individual chooses
automobile and Y D 0 if the individual chooses transit. Let X be a vector of
explanatory variables such as the travel times and costs by automobile and transit.
Then E.Y jx/ is the probability that Y D 1 (the probability that the individual
chooses automobile) conditional on X D x. This probability will be denoted
P.Y D 1jx/. In applications of binary response models, it is often assumed that
P.Y jx/ D G.ˇ0x/, where ˇ is a vector of constant coefficients and G is a known
probability distribution function. Often,G is assumed to be the cumulative standard
normal distribution function, which yields a binary probit model, or the cumulative
logistic distribution function, which yields a binary logit model. The coefficients ˇ
can then be estimated by the method of maximum likelihood (Amemiya 1985).
However, there are now two potential sources of specification error. First, the
dependence of Y on x may not be through the linear index ˇ0x. Second, even if
the index ˇ0x is correct, the response function G may not be the normal or logistic
distribution function. See Horowitz (1993a, 1998) for examples of specification
errors in binary response models and their consequences.
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Many investigators attempt to minimize the risk of specification error by carrying
out a specification search in which several different models are estimated and con-
clusions are based on the one that appears to fit the data best. Specification searches
may be unavoidable in some applications, but they have many undesirable properties
and their use should be minimized. There is no guarantee that a specification search
will include the correct model or a good approximation to it. If the search includes
the correct model, there is no guarantee that it will be selected by the investigator’s
model selection criteria. Moreover, the search process invalidates the statistical
theory on which inference is based.

The rest of this chapter describes methods that deal with the problem of
specification error by relaxing the assumptions about functional form that are made
by parametric models. The possibility of specification error can be essentially
eliminated through the use of nonparametric estimation methods. They assume that
the function of interest is smooth but make no other assumptions about its shape
or functional form. However, nonparametric methods have important disadvantages
that seriously limit their usefulness in applications. One important problem is that
the precision of a nonparametric estimator decreases rapidly as the dimension of
the explanatory variable X increases. This phenomenon is called the curse of
dimensionality. As a result of it, impracticably large samples are usually needed
to obtain acceptable estimation precision if X is multidimensional, as it often is
in applications. For example, a labor economist may want to estimate mean log
wages conditional on years of work experience, years of education, and one or more
indicators of skill levels, thus making the dimension of X at least 3.

Another problem is that nonparametric estimates can be difficult to display,
communicate, and interpret when X is multidimensional. Nonparametric estimates
do not have simple analytic forms. If X is one- or two-dimensional, then the
estimate of the function of interest can be displayed graphically as in Fig. 21.1,
but only reduced-dimension projections can be displayed whenX has three or more
components. Many such displays and much skill in interpreting them can be needed
to fully convey and comprehend the shape of an estimate.

A further problem with nonparametric estimation is that it does not permit extrap-
olation. For example, in the case of a conditional mean function it does not provide
predictions of E.Y jx/ at points x that are outside of the support (or range) of the
random variable X . This is a serious drawback in policy analysis and forecasting,
where it is often important to predict what might happen under conditions that
do not exist in the available data. Finally, in nonparametric estimation, it can be
difficult to impose restrictions suggested by economic or other theory. Matzkin
(1994) discusses this issue.

Semiparametric methods offer a compromise. They make assumptions about
functional form that are stronger than those of a nonparametric model but less
restrictive than the assumptions of a parametric model, thereby reducing (though
not eliminating) the possibility of specification error. Semiparametric methods
permit greater estimation precision than do nonparametric methods when X is
multidimensional. They are easier to display and interpret than nonparametric ones
and provide limited capabilities for extrapolation and imposing restrictions derived
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from economic or other theory models. Section 21.2 of this chapter describes
some semiparametric models for conditional mean functions. Section 21.3 describes
semiparametric estimators for an important class of hazard models. Section 21.4 is
concerned with semiparametric estimation of a certain binary response model.

21.2 Semiparametric Models for Conditional Mean Functions

The term semiparametric refers to models in which there is an unknown function
in addition to an unknown finite dimensional parameter. For example, the binary
response model P.Y D 1jx/ D G.ˇ0x/ is semiparametric if the function G
and the vector of coefficients ˇ are both treated as unknown quantities. This
section describes two semiparametric models of conditional mean functions that
are important in applications. The section also describes a related class of models
that has no unknown finite-dimensional parameters but, like semiparametric models,
mitigates the disadvantages of fully nonparametric models. Finally, this section
describes a class of transformation models that is important in estimation of
hazard functions among other applications. Powell (1994) discusses additional
semiparametric models.

21.2.1 Single Index Models

In a semiparametric single index model, the conditional mean function has the form

E.Y jx/ D G.ˇ0x/ ; (21.1)

where ˇ is an unknown constant vector andG is an unknown function. The quantity
ˇ0x is called an index. The inferential problem is to estimate G and ˇ from
observations of (Y , X ). G in (21.1) is analogous to a link function in a generalized
linear model, except in (21.1) G is unknown and must be estimated.

Model (21.1) contains many widely used parametric models as special cases.
For example, if G is the identity function, then (21.1) is a linear model. If G
is the cumulative normal or logistic distribution function, then (21.1) is a binary
probit or logit model. When G is unknown, (21.1) provides a specification that is
more flexible than a parametric model but retains many of the desirable features of
parametric models, as will now be explained.

One important property of single index models is that they avoid the curse of
dimensionality. This is because the index ˇ0x aggregates the dimensions of x,
thereby achieving dimension reduction. Consequently, the difference between the
estimator of G and the true function can be made to converge to zero at the same
rate that would be achieved if ˇ0x were observable. Moreover, ˇ can be estimated
with the same rate of convergence that is achieved in a parametric model. Thus, in
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terms of the rates of convergence of estimators, a single index model is as accurate
as a parametric model for estimating ˇ and as accurate as a one-dimensional
nonparametric model for estimating G. This dimension reduction feature of single
index models gives them a considerable advantage over nonparametric methods in
applications whereX is multidimensional and the single index structure is plausible.

A single-index model permits limited extrapolation. Specifically, it yields pre-
dictions of E.Y jx/ at values of x that are not in the support of X but are in the
support of ˇ0X . Of course, there is a price that must be paid for the ability to
extrapolate. A single index model makes assumptions that are stronger than those
of a nonparametric model. These assumptions are testable on the support of X but
not outside of it. Thus, extrapolation (unavoidably) relies on untestable assumptions
about the behavior of E.Y jx/ beyond the support of X .

Before ˇ and G can be estimated, restrictions must be imposed that insure their
identification. That is, ˇ and G must be uniquely determined by the population
distribution of (Y , X ). Identification of single index models has been investigated
by Ichimura (1993) and, for the special case of binary response models, Manski
(1988). It is clear that ˇ is not identified if G is a constant function or there is
an exact linear relation among the components of X (perfect multicollinearity). In
addition, (21.1) is observationally equivalent to the model E.Y jX/ D G�.� C
ıˇ0x/, where � and ı ¤ 0 are arbitrary and G� is defined by the relation G�.� C
ıv/ D G.v/ for all v in the support of ˇ0X . Therefore, ˇ and G are not identified
unless restrictions are imposed that uniquely specify � and ı. The restriction on �
is called location normalization and can be imposed by requiring X to contain no
constant (intercept) component. The restriction on ı is called scale normalization.
Scale normalization can be achieved by setting the ˇ coefficient of one component
ofX equal to one. A further identification requirement is thatX must include at least
one continuously distributed component whose ˇ coefficient is non-zero. Horowitz
(1998) gives an example that illustrates the need for this requirement. Other more
technical identification requirements are discussed by Ichimura (1993) and Manski
(1988).

The main estimation challenge in single index models is estimating ˇ. Given an
estimator bn of ˇ, G can be estimated by carrying out the nonparametric regression
of Y on b0nX (e.g, by using kernel estimation). Several estimators of ˇ are available.
Ichimura (1993) describes a nonlinear least squares estimator. Klein and Spady
(1993) describe a semiparametric maximum likelihood estimator for the case in
which Y is binary. These estimators are difficult to compute because they require
solving complicated nonlinear optimization problems. Powell et al. (1989) describe
a density-weighted average derivative estimator (DWADE) that is non-iterative and
easily computed. The DWADE applies when all components of X are continuous
random variables. It is based on the relation

ˇ / E �p.X/@G.ˇ0X/=@X� D �2E ŒY @p.X/=@X� ; (21.2)

where p is the probability density function of X and the second equality follows
from integrating the first by parts. Thus, ˇ can be estimated up to scale by estimating
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the expression on the right-hand side of the second equality. Powell et al. (1989)
show that this can be done by replacing p with a nonparametric estimator and
replacing the population expectationE with a sample average. Horowitz and Härdle
(1996) extend this method to models in which some components of X are discrete.
Hristache et al. (2001a) developed an iterated average derivative estimator that
performs well whenX is high-dimensional. Ichimura and Lee (1991) and Hristache
et al. (2001b) investigate multiple-index generalizations of (21.1).

The usefulness of single-index models can be illustrated with an example that
is taken from Horowitz and Härdle (1996). The example consists of estimating
a model of product innovation by German manufacturers of investment goods. The
data, assembled in 1989 by the IFO Institute of Munich, consist of observations
on 1,100 manufacturers. The dependent variable is Y D 1 if a manufacturer
realized an innovation during 1989 in a specific product category and 0 otherwise.
The independent variables are the number of employees in the product category
(EMPLP ), the number of employees in the entire firm (EMPLF ), an indicator
of the firm’s production capacity utilization (CAP ), and a variable DEM , which
is 1 if a firm expected increasing demand in the product category and 0 otherwise.
The first three independent variables are standardized so that they have units of
standard deviations from their means. Scale normalization was achieved by setting
ˇEMPLP D 1.

Table 21.1 shows the parameter estimates obtained using a binary probit model
and the semiparametric method of Horowitz and Härdle (1996). Figure 21.2 shows
a kernel estimate of G0.�/. There are two important differences between the
semiparametric and probit estimates. First, the semiparametric estimate of ˇEMPLF
is small and statistically nonsignificant, whereas the probit estimate is significant
at the 0:05 level and similar in size to ˇCAP . Second, in the binary probit model,
G is a cumulative normal distribution function, so G0 is a normal density function.
Figure 21.2 reveals, however, that G0 is bimodal. This bimodality suggests that the
data may be a mixture of two populations. An obvious next step in the analysis of the
data would be to search for variables that characterize these populations. Standard
diagnostic techniques for binary probit models would provide no indication that G0
is bimodal. Thus, the semiparametric estimate has revealed an important feature of
the data that could not easily be found using standard parametric methods.

Table 21.1 Estimated coefficients (Standard Errors) for model of product innovation

EMPLP EMPLF CAP DEM

Semiparametric model
1 0.032 0.346 1.732

(0.023) (0.078) (0.509)
Probit model

1 0.516 0.520 1.895
(0.024) (0.163) (0.387)
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Fig. 21.2 Estimate of G0.v/ for model of product innovation

21.2.2 Partially Linear Models

In a partially linear model, X is partitioned into two non-overlapping subvectors,
X1 and X2. The model has the form

E.Y jx1; x2/ D ˇ0x1 CG.x2/ ; (21.3)

where ˇ is an unknown constant vector andG is an unknown function. This model is
distinct from the class of single index models. A single index model is not partially
linear unless G is a linear function. Conversely, a partially linear model is a single
index model only in this case. Stock (1989, 1991) and Engle et al. (1986) illustrate
the use of (21.3) in applications. Identification of ˇ requires the exclusion restriction
that none of the components of X1 are perfectly predictable by components of
X2. When ˇ is identified, it can be estimated with an n�1=2 rate of convergence
regardless of the dimensions of X1 and X2. Thus, the curse of dimensionality is
avoided in estimating ˇ.

An estimator of ˇ can be obtained by observing that (21.3) implies

Y �E.Y jx2/ D ˇ0 ŒX1 �E.X1jx2/�C U ; (21.4)

where U is an unobserved random variable satisfying E.U jx1; x2/ D 0. Robinson
(1988) shows that under regularity conditions, ˇ can be estimated by applying OLS
to (21.4) after replacing E.Y jx2/ and E.X1jx2/ with nonparametric estimators.
The estimator of ˇ, bn, converges at rate n�1=2 and is asymptotically normally
distributed. G can be estimated by carrying out the nonparametric regression
of Y � b0nX1 on X2. Unlike bn, the estimator of G suffers from the curse of
dimensionality; its rate of convergence decreases as the dimension of X2 increases.
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21.2.3 Nonparametric Additive Models

Let X have d continuously distributed components that are denotedX1; : : : ; Xd . In
a nonparametric additive model of the conditional mean function,

E.Y jx/ D �C f1.x1/C : : :C fd .xd / ; (21.5)

where � is a constant and f1; : : : ; fd are unknown functions that satisfy a location
normalization condition such as

Z
fk.v/wk.v/dv D 0 ; k D 1; : : : ; d ; (21.6)

where wk is a non-negative weight function. An additive model is distinct from
a single index model unless E.Y jx/ is a linear function of x. Additive and partially
linear models are distinct unless E.Y jx/ is partially linear and G in (21.3) is
additive.

An estimator of fk .k D 1; : : : ; d / can be obtained by observing that (21.5) and
(21.6) imply

fk.xk/ D
Z
E.Y jx/w�k.x�k/dx�k ; (21.7)

where x�k is the vector consisting of all components of x except the k’th and
w�k is a weight function that satisfies

R
w�k.x�k/dx�k D 1. The estimator of fk is

obtained by replacing E.Y jx/ on the right-hand side of (21.7) with nonparametric
estimators. Linton and Nielsen (1995) and Linton (1997) present the details of
the procedure and extensions of it. Under suitable conditions, the estimator of fk
converges to the true fk at rate n�2=5 regardless of the dimension of X . Thus,
the additive model provides dimension reduction. It also permits extrapolation of
E.Y jx/ within the rectangle formed by the supports of the individual components
of X . Mammen et al. (1999) describe a backfitting procedure that is likely to be
more precise than the estimator based on (21.7) when d is large. See Hastie and
Tibshirani (1990) for an early discussion of backfitting.

Linton and Härdle (1996) describe a generalized additive model whose form is

E.Y jx/ D G Œ�C f1.x1/C : : :C fK.xd /� ; (21.8)

where f1; : : : ; fd are unknown functions and G is a known, strictly increasing (or
decreasing) function. Horowitz (2001) describes a version of (21.8) in which G is
unknown. Both forms of (21.8) achieve dimension reduction. When G is unknown,
(21.8) nests additive and single index models and, under certain conditions, partially
linear models.

The use of the nonparametric additive specification (21.5) can be illustrated by
estimating the model E.logW jEXP;EDUC/ D �C fEXP.EXP/C fEDUC.EDUC/,
where W and EXP are defined as in Sect. 21.1, and EDUC denotes years of
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education. The data are taken from the 1993 CPS and are for white males with
14 or fewer years of education who work full time and live in urban areas of the
North Central U.S. The results are shown in Fig. 21.3. The unknown functions
fEXP and fEDUC are estimated by the method of Linton and Nielsen (1995) and are
normalized so that fEXP.2/ D fEDCU .5/ D 0. The estimates of fEXP (Fig. 21.3a)
and fEDUC (Fig. 21.3b) are nonlinear and differently shaped. Functions fEXP and
fEDUC with different shapes cannot be produced by a single index model, and
a lengthy specification search might be needed to find a parametric model that
produces the shapes shown in Fig. 21.3. Some of the fluctuations of the estimates
of fEXP and fEDUC may be artifacts of random sampling error rather than features
of E.logW jEXP;EDUC/. However, a more elaborate analysis that takes account
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of the effects of random sampling error rejects the hypothesis that either function is
linear.

21.2.4 Transformation Models

A transformation model has the form

H.Y / D ˇ0X C U ; (21.9)

where H is an unknown increasing function, ˇ is an unknown finite dimensional
vector of constants, and U is an unobserved random variable. It is assumed here that
U is statistically independent ofX . The aim is to estimateH and ˇ. One possibility
is to assume thatH is known up to a finite-dimensional parameter. For example,H
could be the Box-Cox transformation

H.y/ D
(
.y� � 1/=� if � > 0

logy if � D 0
where � is an unknown parameter. Methods for estimating transformation models
in whichH is parametric have been developed by Amemiya and Powell (1981) and
Foster et al. (2001) among others.

Another possibility is to assume thatH is unknown but that the distribution of U
is known. Cheng et al. (1995); Cheng et al. (1997) have developed estimators for
this version of (21.9). Consider, first, the problem of estimating ˇ. Let F denote the
(known) cumulative distribution function (CDF) of U . Let .Yi ; Xi / and .Yj ; Xj /
.i ¤ j / be two distinct, independent observations of .Y;X/. Then it follows from
(21.9) that

E
�
I.Yi > Yj /jXi D xi ; Xj D xj

� D P �Ui � Uj > �.xi � xj /
�
: (21.10)

Let G.z/ D P.Ui � Uj > z/ for any real z. Then

G.z/ D
1Z

�1
Œ1 � F.uC z/� dF.u/ :

G is a known function because F is assumed known. Substituting G into (21.10)
gives

E
�
I.Yi > Yj /jXi D xi ; Xj D xj

� D G ��ˇ0.xi � xj /
�
:

Define Xij D Xi �Xj . Then it follows that ˇ satisfies the moment condition

E
˚
w
�
ˇ0Xij

�
Xij

�
I
�
Yi > Yj

� �G ��ˇ0Xij
��� D 0 (21.11)

where w is a weight function. Cheng et al. (1995) propose estimating ˇ by replacing
the population moment condition (21.11) with the sample analog
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nX

iD1

nX

jD1

˚
w
�
b0Xij

�
Xij

�
I
�
Yi > Yj

� �G ��b0Xij
��� D 0 : (21.12)

The estimator of ˇ, bn, is the solution to (21.12). Equation (21.12) has a unique
solution if w.z/ D 1 for all z and the matrix

P
i

P
j X
0
ijXij is positive definite. It

also has a unique solution asymptotically if w is positive everywhere (Cheng et al.
1995). Moreover, bn converges almost surely to ˇ. Cheng et al. (1995) also give
conditions under which n1=2.bn � ˇ/ is asymptotically normally distributed with
a mean of 0.

The problem of estimating the transformation function is addressed by Cheng
et al. (1997). Equation (21.11) implies that for any real y and vector x that is
conformable with X , EIŒI.Y � y/jX D x� � F ŒH.y/ � ˇ0x� D 0. Cheng
et al. (1997) propose estimating H.y/ by the solution to the sample analog of this
equation. That is, the estimator Hn.y/ solves

n�1
nX

iD1

˚
I .Yi � y/� F

�
Hn.y/� b0nXi

�� D 0 ;

where bn is the solution to (21.12). Cheng et al. (1997) show that if F is strictly
increasing on its support, then Hn.y/ converges to H.y/ almost surely uniformly
over any interval Œ0; t � such that P.Y > t/ > 0. Moreover, n1=2.Hn�H/ converges
to a mean-zero Gaussian process over this interval.

A third possibility is to assume thatH and F are both nonparametric in (21.9). In
this case, certain normalizations are needed to make identification of (21.9) possible.
First, observe that (21.9) continues to hold if H is replaced by cH , ˇ is replaced
by cˇ, and U is replaced by cU for any positive constant c. Therefore, a scale
normalization is needed to make identification possible. This will be done here by
setting jˇ1j D 1, where ˇ1 is the first component of ˇ. Observe, also, that when H
and F are nonparametric, (21.9) is a semiparametric single-index model. Therefore,
identification of ˇ requires X to have at least one component whose distribution
conditional on the others is continuous and whose ˇ coefficient is non-zero. Assume
without loss of generality that the components of X are ordered so that the first
satisfies this condition.

It can also be seen that (21.9) is unchanged if H is replaced by H C d and
U is replaced by U C d for any positive or negative constant d . Therefore,
a location normalization is also needed to achieve identification when and F are
nonparametric. Location normalization will be carried out here by assuming that
H.y0/ D 0 for some finite y0 With this location normalization, there is no centering
assumption on U and no intercept term in X .

Now consider the problem of estimatingH , ˇ, and F . Because (21.9) is a single-
index model in this case, ˇ can be estimated using the methods described in
Sect. 21.1. Let bn denote the estimator of ˇ. One approach to estimating H and
F is given by Horowitz and Härdle (1996). To describe this approach, define
Z D ˇ0X . Let G.�jz/ denote the CDF of Y conditional on Z D z. Set Gy.yjz/ D
@G.yjz/=@z and Gz.yjz/ D @G.yjz/=@z. Then it follows from (21.9) that H 0.y/ D
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�Gy.yjz/=Gz.yjz/ and that

H.y/ D �
yZ

y0

�
Gy.vjz/=Gz.vjz/

�
dv (21.13)

for any z such that the denominator of the integrand is non-zero. Now let w.�/ be
a scalar-valued, non-negative weight function with compact support Sw such that
the denominator of Gz.vjz/ is bounded away from 0 for all v 2 Œy0; y� and z 2 Sw.
Also assume that Z

Sw

w.z/dz D 1 :

Then

H.y/ D �
yZ

y0

Z

Sw

w.z/
�
Gy.vjz/=Gz.vjz/

�
dz dv : (21.14)

Horowitz and Härdle (1996) obtains an estimator of H from (21.14) by replacing
Gy and Gz by kernel estimators. Specifically, Gy is replaced by a kernel estimator
of the probability density function of Y conditional on b0nX D z, andGz is replaced
by a kernel estimator of the derivative with respect to z of the CDF of Y conditional
on b0nX D z. Denote these estimators by Gny and Gnz. Then the estimator
of H is

Hn.y/ D �
yZ

y0

Z

Sw

w.z/
�
Gny.vjz/=Gnz.vjz/

�
dz dv : (21.15)

Horowitz and Härdle (1996) gives conditions under which Hn is uniformly consis-
tent for H and n1=2.Hn �H/ converges weakly to a mean-zero Gaussian process.
Horowitz and Härdle (1996) also shows how to estimate F , the CDF of U , and
gives conditions under which n1=2.Fn � F / converges to a mean-zero Gaussian
process, where Fn is the estimator. Gorgens and Horowitz (1999) extend these
results to a censored version of (21.9). Integration over z in (21.14) and (21.15)
accelerates the convergence of Hn to H . Kernel estimators converge in probability
at rates slower than n�1=2. Therefore, Gny.vjz/=Gnz.vjz/ is not n�1=2-consistent for
Gy.vjz/=Gz.vjz/. However, integration over z and v in (21.15) creates an averaging
effect that causes the integral and, therefore, Hn to converge at the rate n�1=2. This
is the reason for basing the estimator on (21.14) instead of (21.13).

Other estimators of H when and F are both nonparametric have been proposed
by Ye (1997) and Chen (2002). Chen uses a rank-based approach that is in
some ways simpler than that of Horowitz and Härdle (1996) and may have better
finite-sample performance. To describe this approach, define diy D I.Yi > y/

and djy0 D I.Yj > y0/. Let i ¤ j . Then E.diy � djy0jXi ;Xj / � 0 whenever
Zi � Zj � H.y/. This suggests that if ˇ were known, then H.y/ could be
estimated by



21 Semiparametric Models 609

Hn.y/ D arg max
�

1

n.n � 1/
nX

iD1

nX

jD1
j¤i

.diy � diy0/I.Zi �Zj � �/ :

Since ˇ is unknown, Chen (2002) proposes

Hn.y/ D arg max
�

1

n.n � 1/
nX

iD1

nX

jD1
j¤i

.diy � diy0/I.b0nXi � b0nXj � �/ :

Chen (2002) gives conditions under which Hn is uniformly consistent for H and
n1=2.Hn �H/ converges to a mean-zero Gaussian process. Chen (2002) also shows
how this method can be extended to a censored version of (21.9).

21.3 The Proportional Hazards Model
with Unobserved Heterogeneity

Let T denote a duration such as that of a spell of employment or unemployment. Let
F.t jx/ D P.T � t jX D x/ where X is a vector of covariates. Let f .t jx/ denote
the corresponding conditional probability density function. The conditional hazard
function is defined as

�.t jx/ D f .t jx/
1 � F.t jx/ :

This section is concerned with an approach to modeling �.t jx/ that is based on the
proportional hazards model of Cox (1972).

The proportional hazards model is widely used for the analysis of duration data.
Its form is

�.t jx/ D �0.t/e�x0ˇ ; (21.16)

where ˇ is a vector of constant parameters that is conformable with X and �0 is
a non-negative function that is called the baseline hazard function.indexBaseline
hazard function The essential characteristic of (21.16) that distinguishes it from
other models is that �.t jx/ is the product of a function of t alone and a function of x
alone. Cox (1972) developed a partial likelihood estimator of ˇ and a nonparametric
estimator of �0. Tsiatis (1981) derived the asymptotic properties of these estimators.

In the proportional hazards model with unobserved heterogeneity, the hazard
function is conditioned on the covariates X and an unobserved random variable U
that is assumed to be independent of X . The form of the model is

�.t jx; u/ D �0.t/e�.ˇ0xCu/ ; (21.17)
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where �.�jx; u/ is the hazard conditional on X D x and U D u. In a model of the
duration of employment U might represent unobserved attributes of an individual
(possibly ability) that affect employment duration. A variety of estimators of �0
and ˇ have been proposed under the assumption that �0 or the distribution of U or
both are known up to a finite-dimensional parameter. See, for example, Lancaster
(1979), Heckman and Singer (1984a), Meyer (1990), Nielsen et al. (1992), and
Murphy (1994, 1995). However, �0 and the distribution of U are nonparametrically
identified (Elbers and Ridder 1982; Heckman and Singer 1984a), which suggests
that they can be estimated nonparametrically.

Horowitz (1999) describes a nonparametric estimator of �0 and the density of
U in model (21.17). His estimator is based on expressing (21.17) as a type of
transformation model. To do this, define the integrated baseline hazard funtion,
�0 by

�0.t/ D
tZ

0

�0.�/d� :

Then it is not difficult to show that (21.17) is equivalent to the transformation model

log�0.T / D X 0ˇ C U C " ; (21.18)

where " is a random variable that is independent of X and U and has the CDF
F".y/ D 1 � exp.�ey/. Now define  D jˇ1j, where ˇ1 is the first component of
ˇ and is assumed to be non-zero. Then ˇ= and H D �1 log�0 can be estimated
by using the methods of Sect. 21.4. Denote the resulting estimators of ˇ= and
H by ˛n and Hn. If  were known, then ˇ and �0 could be estimated by bn D
˛n and �n0 D exp.Hn/. The baseline hazard function �0 could be estimated
by differentiating �n0. Thus, it is necessary only to find an estimator of the scale
parameter  .

To do this, define Z D ˇ0X , and let G.�jz/ denote the CDF of T conditional on
Z D z. It can be shown that

G.t jz/ D 1�
Z

exp
h
��0.t/e�.ˇ

0xCu/
i

dF.u/ ;

whereF is the CDF ofU . Let p denote the probability density function ofZ. Define
Gz.t jz/ D @G.t jz/=@z and

.t/ D
R
Gz.t jz/p.z/2dz
R
G.t jz/p.z/2dz

:

Then it can be shown using l’Hospital’s rule that if �0.t/ > 0 for all t > 0, then

 D lim
t!0 .t/ :



21 Semiparametric Models 611

To estimate  , let pn, Gnz andGn be kernel estimators of p, Gz andG, respectively,
that are based on a simple random sample of .T;X/. Define

n.t/ D
R
Gnz.t jz/pn.z/2dz
R
Gn.t jz/pn.z/2dz

:

Let c, d , and ı be constants satisfying 0 < c <1, 1=5 < d < 1=4, and 1=.2d/ <
ı < 1. Let ftn1g and ftn2g be sequences of positive numbers such that �0.tn1/ D
cn�d and �0.tn2/ D cn�ıd . Then  is estimated consistently by

n D n.tn1/� n�d.1�ı/n.tn2/
n�d.1�ı/

:

Horowitz (1999) gives conditions under which n.1�d/=2.n � / is asymptotically
normally distributed with a mean of zero. By choosing d to be close to 1=5, the
rate of convergence in probability of n to  can be made arbitrarily close to n�2=5,
which is the fastest possible rate (Ishwaran 1996). It follows from an application of
the delta method that the estimators of ˇ, �0, and �0 that are given by bn D n˛n,
�n0 D exp.nHn/, and �n0 D d�n0=dt are also asymptotically normally distributed
with means of zero and n�.1�d/=2 rates of convergence. The probability density
function of U can be estimated consistently by solving the deconvolution problem
Wn D U C ", where Wn D log�n0.T / � X 0ˇn. Because the distribution of " is
“supersmooth,” the resulting rate of convergence of the estimator of the density of U
is .logn/�m, where m is the number of times that the density is differentiable. This
is the fastest possible rate. Horowitz (1999) also shows how to obtain data-based
values for tn1 and tn2 and extends the estimation method to models with censoring.

If panel data on .T;X/ are available, then �0 can be estimated with a n�1=2 rate
of convergence, and the assumption of independence of U from X can be dropped.
Suppose that each individual in a random sample of individuals is observed for
exactly two spells. Let .Tj ; Xj W j D 1; 2/ denote the values of .T;X/ in the two
spells. DefineZj D ˇ0Xj . Then the joint survivor function of T1 and T2 conditional
on Z1 D z1 and Z2 D z2 is

S .t1; t2jZ1;Z2/  P .T1 > t1; T2 > t2jZ1;Z2/
D
Z

exp
���0 .t1/ ez1Cu��0 .t2/ ez2C u

�
dP .ujZ1D z1; Z2D z2/:

Honoré (1993) showed that

R .t1; t2jz1; z2/  @S .t1; t2jz1; z2/
ı
@t1

@S .t1; t2jz1; z2/
ı
@t2
D �0 .t1/

�0 .t2/
exp .z1 � z2/ :

Adopt the scale normalization
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Z

ST

wt .�/

�0.�/
d� D 1 ;

where wt is a non-negative weight function and ST is its support. Then

�0.t/ D
Z

ST

wt .�/ exp .z2 � z1/ R .t; � jz2; z1/ d� :

Now for a weight function !z with support SZ , define

w .�; z1; z2/ D wt .�/wz .z1/wz .z2/ :

Then,

�0.t/ D
Z

ST

d�
Z

SZ

dz1

Z

SZ

dz2w .�; z1; z2/ exp .z2 � z1/ R .t; � jz1; z2/ : (21.19)

The baseline hazard function can now be estimated by replacing R with an
estimator, Rn, in (21.19). This can be done by replacing Z with X 0bn, where bn
is a consistent estimator of ˇ such as a marginal likelihood estimator (Chamberlain
1985; Kalbfleisch and Prentice 1980; Lancaster 2000; Ridder and Tunali 1999),
and replacing S with a kernel estimator of the joint survivor function conditional
X 01bn D z1 and X 02bn D z2. The resulting estimator of �0 is

�n0.t/ D
Z

ST

d�
Z

SZ

dz1

Z

SZ

dz2w .�; z1; z2/ exp .z2 � z1/Rn .t; � jz1; z2/ :

The integrated baseline hazard function is estimated by

�n0.t/ D
tZ

0

�n0.�/d� :

Horowitz and Lee (2004) give conditions under which n1=2.�n0 � �0/ converges
weakly to a tight, mean-zero Gaussian process. The estimated baseline hazard
function �n0 converges at the rate n�q=.2qC1/, where q � 2 is the number of times
that �0 is continuously differentiable. Horowitz and Lee (2004) also show how to
estimate a censored version of the model.
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21.4 A Binary Response Model

The general binary response model has the form

Y D I.ˇ0X C U > 0/ ; (21.20)

where U is an unobserved random variable. If the distribution of U is unknown but
depends on X only through the index ˇ0X , then (21.20) is a single-index model,
and ˇ can be estimated by the methods described in Sect. 21.1. An alternative
model that is non-nested with single-index models can be obtained by assuming
that median.U jX D x/ D 0 for all x. This assumption places only weak
restrictions on the relation between X and the distribution of U . Among other
things, it accommodates fairly general types of heteroskedasticity of unknown form,
including random coefficients. Under median centering, the inferential problem
is to estimate ˇ. The response function, P.Y D 1jX D x/ is not identified
without making assumptions about the distribution of U that are stronger than those
needed to identify and estimate ˇ. Without such assumptions, the only restriction
on P.Y D 1jX D x/ under median centering is that

P.Y D 1jX D x/

8
ˆ̂<

ˆ̂
:

> 0:5 if ˇ0x > 0
D 0:5 if ˇ0x D 0
< 0:5 if ˇ0x < 0

Manski (1975, 1985) proposed the first estimator of ˇ under median centering. Let
the data be the simple random sample fYi ; Xi W i D 1; : : : ; ng. The estimator is
called the maximum score estimator and is

bn D arg max
kbkD1

n�1
nX

iD1
.2Yi � 1/I.b0Xi � 0/ ; (21.21)

where kbk denotes the Euclidean norm of the vector b. The restriction kbk D 1 is
a scale normalization. Scale normalization is needed for identification because
(21.20) identifies ˇ only up to scale. Manski (1975, 1985) gave conditions
under which bn consistently estimates ˇ. The rate of convergence of bn and its
asymptotic distribution were derived by Cavanagh (1987) and Kim and Pollard
(1990). They showed that the rate of convergence in probability of bn to ˇ is n�1=3
and that n1=3.bn � ˇ/ converges in distribution to the maximum of a complicated
multidimensional stochastic process. The complexity of the limiting distribution of
the maximum score estimator limits its usefulness for statistical inference. Delgado
et al. (2001) proposed using subsampling methods to form confidence intervals
for ˇ.

The maximum score estimator has a slow rate of convergence and a complicated
asymptotic distribution because it is obtained by maximizing a step function.
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Table 21.2 Smoothed maximum score estimates of a work-trip mode-choice model

Half-Width of nominal 90%

Conf. interval based on

Estimated Asymp. normal
Variablea Coefficient Approximation Bootstrap

INTRCPT �1:5761 0.2812 0.7664
AUTOS 2:2418 0.2989 0.7488
DOVTT 0:0269 0.0124 0.0310
DIVTT 0:0143 0.0033 0.0087
DCOST 1:0b

aDefinitions of variables: INTRCPT: Intercept term equal to 1; AUTOS: Number of cars owned by
traveler’s household; DOVTT: Transit out-of-vehicle travel time minus automobile out-of-vehicle
travel time (minutes); DIVTT: Transit in-vehicle travel time minus automobile in-vehicle travel
time; DCOST: Transit fare minus automobile travel cost ($)
bCoefficient equal to 1 by scale normalization

Horowitz (1992) proposed replacing the indicator function in (21.21) by a smooth
function. The resulting estimator of ˇ is called the smoothed maximum score
estimator. Specifically, let K be a smooth function, possibly but not necessarily
a distribution function, that satisfies K.�1/ D 0 and K.1/ D 1. Let fhn W
n D 1; 2; : : :g be a sequence of strictly positive constants (bandwidths) that satisfies
hn ! 0 as n!1. The smoothed maximum score estimator, bns , is

bns D arg max
b2B

nX

iD1
.2Yi � 1/K.X 0i b=hn/ ;

where B is a compact parameter set that satisfies the scale normalization jb1j D 1.
Horowitz (1992) shows that under assumptions that are stronger than those of
Manski (1975, 1985) but still quite weak, nr .bns � ˇ/ is asymptotically normal,
where 2=5 � r < 1=2 and the exact value of r depends on the smoothness
of the distribution of X 0ˇ and of P.Y D 1jX D x/. Moreover, the smoothed
maximum score estimator has the fastest possible rate of convergence under its
assumptions (Horowitz 1993b). Monte Carlo evidence suggests that the asymptotic
normal approximation can be inaccurate with samples of practical size. However,
Horowitz (2002) shows that the bootstrap, which is implemented by sampling
the data randomly with replacement, provides asymptotic refinements for tests of
hypotheses about ˇ and produces low ERPs for these tests. Thus, the bootstrap
provides a practical way to carry out inference with the smoothed maximum score
estimator.

Horowitz (1993c) used the smoothed maximum score method to estimate the
parameters of a model of the choice between automobile and transit for work trips
in the Washington, D.C., area. The explanatory variables are defined in Table 21.2.
Scale normalization is achieved by setting the coefficient of DCOST equal to 1. The
data consist of 842 observations sampled randomly from the Washington, D.C., area
transportation study. Each record contains information about a single trip to work,
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including the chosen mode (automobile or transit) and the values of the explanatory
variables. Column 2 of Table 21.2 shows the smoothed maximum score estimates of
the model’s parameters. Column 3 shows the half-widths of nominal 90% symmet-
rical confidence intervals based on the asymptotic normal approximation (half width
equals 1.67 times the standard error of the estimate). Column 4 shows half-widths
obtained from the bootstrap. The bootstrap confidence intervals are 2.5–3 times
wider than the intervals based on the asymptotic normal approximation. The boot-
strap confidence interval for the coefficient of DOVTT contains 0, but the confidence
interval based on the asymptotic normal approximation does not. Therefore, the
hypothesis that the coefficient of DOVTT is zero is not rejected at the 0:1 level based
on the bootstrap but is rejected based on the asymptotic normal approximation.

Acknowledgements Research supported in part by NSF Grant SES-9910925.
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Chapter 22
Dimension Reduction Methods

Masahiro Mizuta

22.1 Introduction

One characteristic of computational statistics is the processing of enormous amounts
of data. It is now possible to analyze large amounts of high-dimensional data through
the use of high-performance contemporary computers. In general, however, several
problems occur when the number of dimensions becomes high. The first problem is
an explosion in execution time. For example, the number of combinations of subsets
taken from p variables is 2p; when p exceeds 20, calculation becomes difficult
pointing terms of computation time. When p exceeds 25, calculation becomes an
impossible no matter what type of computer is used. This is a fundamental situation
that arises in the selection of explanatory variables during regression analysis. The
second problem is the sheer cost of surveys or experiments. When questionnaire
surveys are conducted, burden is placed on the respondent because there are many
questions. And since there are few inspection items to a patient, there are few the
burdens on the body or on cost. The third problem is the essential restriction of
methods. When the number of explanatory variables is greater than the data size,
most methods are incapable of directly dealing with the data; microarray data are
typical examples of this type of data.

For these reasons, methods for dimension reduction without loss of statistical
information are important techniques for data analysis. In this chapter, we will
explain linear and nonlinear methods for dimension reduction; linear methods
reduce dimension through the use of linear combinations of variables, and nonlinear
methods do so with nonlinear functions of variables. We will also discuss the
reduction of explanatory variables in regression analysis. Explanatory variables can
be reduced with several linear combinations of explanatory variables.
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22.2 Linear Reduction of High-dimensional Data

The p-dimensional data can be reduced into q-dimensional data using q linear
combinations of p variables. The linear combinations can be considered as linear
projection. Most methods for reduction involve the discovery of linear combinations
of variables under set criterion. Principal component analysis (PCA) and projection
pursuit are typical methods of this type. These methods will be described in the
following subsections.

22.2.1 Principal Component Analysis

Suppose that we have observations of p variables size n; fxi I i D 1; 2; : : : ; ng
(referred to as X hereafter). PCA is conducted for the purpose of constructing linear
combinations of variables so that their variances are large under certain conditions.
A linear combination of variables is denoted by fa>xi I i D 1; 2; : : : ; ng (simply,
a>X ), where a D .a1; a2; : : : ; ap/>.

Then, the sample variance of a>X can be represented by

V
�
a>x

� D a> Ȯ a ;

where Ȯ D V.X/. a> Ȯ a is regarded as a p variable function of .a1; a2; : : : ; ap/:
�.a1; a2; : : : ; ap/ D a> Ȯ a. To consider the optimization problem for �, a is
constrained to a>a D 1. This problem is solved using Lagrange multipliers. The
following Lagrange function is defined as

L
�
a1; a2; : : : ; ap

� D � �a1; a2; : : : ; ap
� � �1

 
pX

iD1
a2i � 1

!

D a> Ȯ a � �1
�
a>a � 1� ;

where � is the Lagrange multiplier. L is partially differentiated with respect to
a D .a1; a2; : : : ; ap/> and �1, and the derivatives are equated to zero. We therefore
obtain the simultaneous equations:

(
2 Ȯ a � 2�1a D 0
a>a � 1 D 0 :

This is an eigenvector problem; the solution to this problem for a D
.a1; a2; : : : ; ap/

> is a unit eigenvector of Ȯ corresponding to the largest eigenvalue.
Let a be an eigenvector and let � be an eigenvalue. We then have
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�
�
a1; a2; : : : ; ap

� D V �a>x� D a> Ȯ a D �a>a D � :

The eigenvector is denoted as a1. Then a>1 xi I i D 1; 2; : : : ; n are referred to as the
first principal components. The first principal components are one-dimensional data
that are the projection of the original data with the maximum variance. If all of the
information for the data can be represented by the first principal components, further
calculation is unnecessary. However, the first principal components usually exhibit
the “size factor” only, whereas we would like to obtain another projection, namely
the second principal components a>2 xi .

The second principal components serve to explain the maximum variance under
the constraint and the fact that they are independent of the first principal compo-
nents. In other words, the second principal components a>2 X take the maximum
variance under the constraints a>1 a2 D 0 and a>2 a2 D 1. The second principal
components can also be derived with Lagrange multipliers;

L.a1; a2; : : : ; ap; �; �2/ D a> Ȯ a � �a>1 a � �2.a>a � 1/ :

L is partially differentiated with respect to a D .a1; a2; : : : ; ap/>, � and �2, and the
derivatives are equated to zero. The simultaneous equations below are obtained:

8
<

:

2 Ȯ a � �a1 � 2�2a D 0
a>1 a D 0
a>2 a2 � 1 D 0 :

We can obtain � D 0 and �2 is another eigenvalue (not equal to �1). Since
the variance of a>2 X is �2, the a2 must be the second largest eigenvalue of Ȯ .
fa>2 xi I i D 1; 2; : : : ; ng are referred to as the second principal components. The
third principal components, fourth principal components, : : :, and the p-th principal
components can then be derived in the same manner.

Proportion and Accumulated Proportion

The first principal components through the p-th principal components were defined
in the discussions above. As previously mentioned, the variance of the k-th principal
components is �k. The sum of variances of p variables is

Pp
jD1 Oj D t race. Ȯ /,

where Ȯ D . Oij /. It is well known that t race. Ȯ / D Pp
jD1 �j ; the sum of the

variances coincides with the sum of the eigenvalues. The proportion of the k-
th principal components is defined as the proportion of the entire variance to the
variance of the k-th principal components:

�kPp
jD1 �j

:
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The first principal components through the k-th principal components are generally
used consecutively. The total variance of these principal components is represented
by the accumulated proportion:

Pk
jD1 �jPp
jD1 �j

:

We have explained PCA as an eigenvalue problem of covariance matrix. How-
ever, the results of this method are affected by units of measurements or scale
transformations of variables. Thus, another method is to employ a correlation matrix
rather than a covariance matrix. This method is invariant under units of variables,
but does not take the variances of the variables into account.

22.2.2 Projection Pursuit

PCA searches a lower dimensional space that captures the majority of the variation
within the data and discovers linear structures in the data. This method, however,
is ineffective in analyzing nonlinear structures, i.e. curves, surfaces or clusters. In
1974, Friedman and Tukey (1974) proposed projection pursuit to search for linear
projection onto the lower dimensional space that robustly reveals structures in the
data. After that, many researchers developed new methods for projection pursuit and
evaluated them (e.g. Friedman 1987; Hall 1989; Huber 1985; Iwasaki 1991; Koyama
et al. 1998; Nason 1995). The fundamental idea behind projection pursuit is to
search linear projection of the data onto a lower dimensional space their distribution
is “interesting”; “interesting” is defined as being “far from the normal distribution”,
i.e. the normal distribution is assumed to be the most uninteresting. The degree of
“far from the normal distribution” is defined as being a projection index, the details
of which will be described later.

Algorithm

The use of a projection index makes it possible to execute projection pursuit with
the projection index. Here is the fundamental algorithm of k-dimensional projection
pursuit.

1. Sphering x: zi D Ȯ �1=2
xx .xi � Ox/ .i D 1; 2; : : : ; n/, where Ȯ is the sample

covariance matrix and Ox is the sample mean of x.
2. Initialize the project direction: ˛ D .˛1;˛2; : : : ;˛k/.
3. Search the direction ˛ that maximizes the projection index.
4. Project the data onto the lower dimensional space and display or analyze them.
5. Change the initial direction and repeat Steps 3 and 4, if necessary.
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Projection Indexes

The goal of projection pursuit is to find a projection that reveals interesting
structures in the data. There are various standards for interestingness, and it
is a very difficult task to define. Thus, the normal distribution is regarded as
uninteresting, and uninterestingness is defined as a degree that is “far from the
normal distribution.”

Projection indexes are defined as of this degree. There are many definitions for
projection indexes. Projection pursuit searches projections based on the projection
index; methods of projection pursuit are defined by the projection indexes.

Here we will present several projection indexes. It is assumed that Z D
.z1; : : : ; zn/ is the result of sphering X ; the mean vector is a zero vector and the
covariance matrix is an identity matrix.

Friedman’s Index

Friedman (1987) proposed the following projection index:

I D 1

2

JX

jD1
.2j C 1/

"
1

n

nX

iD1
Pj
�
2˚

�
˛>Z i

� � 1�
#2

;

where Pj .�/ are Legendre polynomials of order j and ˚.�/ is the cumulative
distribution function of the normal distribution and J is a user-defined constant
number, i.e. the degree of approximation.

In the case of two-dimensional projection pursuit, the index is represented by

I D
JX

jD1
.2j C 1/E2ŒPj .R1/�=4

C
JX

kD1
.2k C 1/E2 ŒPk.R2/� =4

C
JX

jD1

J�jX

kD1
.2j C 1/.2k C 1/E2

�
Pj .R1/Pk.R2/

�
=4 ;

where

X1 D ˛>1 Z ; X2 D ˛>2 Z
R1 D 2˚ .X1/� 1 ; R2 D 2˚ .X2/� 1 :
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Moment Index

The third and higher cumulants of the normal distribution vanish. The cumulants
are sometimes used for the test of normality, i.e. they can be used for the projection
index. Jones and Sibson (1987) proposed a one-dimensional projection index named
the “moment index,” with the third cumulant k3 D �3 and the fourth cumulant
k4 D �4 � 3:

I D k23 C
1

4
k24 :

For two-dimensional projection pursuit, the moment index can be defined as

I D �k230 C 3k221 C 3k212 C k203
�C 1

4

�
k240 C 4k231 C 6k222 C 4k213 C k204

�
:

Hall’s Index.

Hall (1989) proposed the following projection index:

I D �™0.˛/ � 2�1=2��1=4
�2 C

JX

jD1
™2j .˛/ ;

where

™j .˛/ D n�1
nX

iD1
Pj
�
˛>Z i

�
�
�
˛>Z i

�
;

Pj .z/ D
p
2

p
j Š
�1=4Hj

�
21=2z

�
;

�.z/ is the normal density function and Hj .z/ are the Hermite polynomials of
degree j . J is a user-defined constant number. Hall’s index is much more robust
for outliers than Freidman’s index.

Relative Projection Pursuit

The main objective of ordinary projection pursuit is the discovery of non-normal
structures in a dataset. Non-normality is evaluated using the degree of difference
between the distribution of the projected dataset and the normal distribution.

There are times in which it is desired that special structures be discovered using
criterion other than non-normal criterion. For example, if the purpose of analysis
is to investigate a feature of a subset of the entire dataset, the projected direction
should be searched so that the projected distribution of the subset is far from the
distribution of the entire dataset. In sliced inverse regression (please refer to the
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final subsection of this chapter), the dataset is divided into several subsets based on
the values of the response variable, and the effective dimension-reduction direction
is searched for using projection pursuit. In this application of projection pursuit,
projections for which the distributions of the projected subsets are far from those
of the entire dataset are required. Mizuta (2002) proposed the adoption of relative
projection pursuit for these purposes. Relative projection pursuit finds interesting
low-dimensional space that differs from the reference dataset predefined by the user.

22.3 Nonlinear Reduction of High-dimensional Data

In the previous section, we discussed linear methods i.e. methods for dimension
reduction through the use of linear projections. We will now move on to nonlinear
methods for dimension reduction. First, we will describe a generalized principal
component analysis (GPCA) method that is a nonlinear extension of PCA. Algebraic
curve fitting methods will then be mentioned for a further extension of GPCA.
Finally, we will introduce principal curves i.e. the parametric curves that pass
through the middle of the data.

22.3.1 Generalized Principal Component Analysis

As long as data have a near-linear structure, the singularities of the data can be
pointed out using PCA. On the contrary, if data have a nonlinear structure, GPCA
will not be adequate for drawing conclusions regarding the nature of the data. To
overcome this difficulty, GPCA has been proposed by Gnanadesikan and Wilk
(1969), whereby fitting functions to the data points can be discovered.

Suppose that we have observations of p variables x D .x1; x2; : : : ; xp/ on each
of n individuals. Let fi .x/.i D 1; 2; : : : ; k/ be k real-valued functions of the
original variables.

The aim of GPCA is to discover a new set of variables (or functions of x), as
denoted by z1; z2; : : : ; zk , which are mutually uncorrelated and whose variances
decrease, from first to last. Each zj .j D 1; 2; : : : ; k/ is considered to be a linear
combination of fi .x/.i D 1; 2; : : : ; k/, so that

zj D
kX

iD1
lij fi .x/ D l>j f .x/ ;

where l j D .l1j ; l2j ; : : : ; lkj /
> are k constant vectors such that l>j l j D 1,

and f .x/ D .f1.x/; f2.x/; : : : ; fk.x//
>. The vectors l 1; l 2; : : : ; l k are the

eigenvectors of the covariance matrix of .f1.x/; f2.x/; : : : ; fk.x//, as in PCA. The
function zk defined by the “smallest” eigenvalue is considered to be one of the fitting
functions to the data.



626 M. Mizuta

PCA is a special case of GPCA: real-valued functions fi .x/ are reduced to
xi .i D 1; 2; : : : ; p/.

Quadratic principal component analysis (QPCA) is specified by the following
functions:



fi .x/ D xi .i D 1; 2; : : : ; p/
fi .x/ D xj xm

�
i D p C 1; : : : ; �p2 C 3p� =2� ;

where j;m is uniquely determined by

i D f.2p � j C 3/ j=2g Cm� 1 ;
1 � j � m � p ;

for i.i D p C 1; : : : ; .p2 C 3p/=2/.
QPCA for two dimensional data is defined by

f1.x; y/ D x
f2.x; y/ D y
f3.x; y/ D x2
f4.x; y/ D xy
f5.x; y/ D y2 :

Most GPCA methods are not invariant under orthogonal transformations and/or
the translations (parallel transformations) of a coordinate system, though PCA
is invariant under them. For example, QPCA is not invariant under them. The
expression “the method is invariant” in this subsection means that the results of the
method are never changed in the original coordinate by coordinate transformation.
In the following, the determination of the GPCA methods that are invariant under
the orthogonal transformations of a coordinate system will be described in the case
of two variables. Translations of a coordinate system are disregarded here because
the data can be standardized to have a zero mean vector.

Hereafter, let us assume the following conditions:

A1 f1.x/; f2.x/; : : : ; fk.x/ are linearly independent as functions of x.

A2 For any orthogonal matrix T , there is a matrixW such that f .Tx/  W f .x/.

A3 fi .x/ are continuous functions.

Conditions A1 and A3 may be proper for GPCA, and condition A2 is necessary for
discussing the influence of orthogonal coordinate transformations. PCA and QPCA
clearly satisfy these conditions.

A GPCA method is referred to as “invariant” if its results in the original
coordinate system are not changed by the orthogonal transformation of a coordinate
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system. It can be mathematically described as follows. For any orthogonal coordi-
nate transformation: x� D T x,

z�j D l�>j f .x�/

D l�>j f .Tx/ .j D 1; 2; : : : ; k/

denote the results of the method for transformed variables x�, where l�j are
eigenvectors of Cov.f .x�//. The method is “invariant” if it holds that

l>j f .x/  ˙l�>j f .Tx/ .j D 1; 2; : : : ; k/

as vector-valued functions of x for any orthogonal matrix T . The plus or minus sign
is indicated only for the orientations of the eigenvectors.

The GPCA method specified by f .x/ is invariant under an orthogonal trans-
formation, if and only if the matrix W is an orthogonal matrix for any orthogonal
matrix T . The proof will be described below. If the method is invariant, W can be
taken as �

l�1 ; l�2 ; : : : ; l�k
�
.l1; l 2; : : : ; l k/

> ;

which is an orthogonal matrix. Conversely, ifW is an orthogonal matrix,W >l�j are
eigenvectors of Cov.f .x//. Therefore the following is obtained:

l>j D ˙l�>j W :

Mizuta (1983) derived a theorem on invariant GPCA.

Theorem 1. GPCA methods for two-dimensional data .x; y/ under the condi-
tions A1, A2 and A3 that are invariant under rotations can be restricted to those
specified by the following functions.

(1) s pairs of functions:

8
ˆ̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂
ˆ̂<

ˆ̂̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂̂
ˆ̂:

f2i�1.x; y/ D gi

�p
x2 C y2

	�
xNi �

�
Ni
2

�
y2xNi�2 C

�
Ni
4

�
y4xNi�4 � : : :

�

�hi
�p

x2 C y2
	�
Niyx

Ni�1�
�
Ni
3

�
y3xNi�3C

�
Ni
5

�
y5xNi�5 � : : :

�

f2i .x; y/ D gi

�p
x2 C y2

	�
Niyx

Ni�1 �
�
Ni
3

�
y3xNi�3 C

�
Ni
5

�
y5xNi�5 � : : :

�

Chi
�p

x2 C y2
	�
xNi �

�
Ni
2

�
y2xNi�2 C

�
Ni
4

�
y4xNi�4 � : : :

�

.i D 1; 2; : : : ; s/ ;

where gi , hi are arbitrary continuous functions of
p
x2 C y2 and Ni are

arbitrary positive integers.
(2) Continuous functions of

p
x2 C y2.
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The above theorem can be extended for use with GPCA methods for p-dimen-
sional data because invariant GPCA for p-dimensional data methods are invariant
under the rotations of any pair of two variables and the reverse is also true.

We will show some set of functions for invariant GPCA here.

(1) 3 dimensional and degree 1:
x; y; z :

(2) 3 dimensional and degree 2:

x2; y2; z2;
p
2xy;
p
2yz;
p
2zx :

(3) 3 dimensional and degree 3:

x3; y3; z3;
p
3x2y;

p
3y2z;

p
3z2x;

p
3xy2;

p
3yz2;

p
3zx2;

p
6xyz :

(4) 3 dimensional and degree q:

s
qŠ

i Šj ŠkŠ
xiyj zk

.i C j C k D q I 0 � i; j; k/ :

(5) p dimensional and degree q:

s
qŠ

Qp
iD1 kt Š

pY

tD1
.xt /

k
t

pX

tD1
kt D q I 0 � kt :

22.3.2 Algebraic Curve and Surface Fitting

Next, we will discuss a method involving algebraic curve and surface fitting to
multidimensional data.

The principal component line minimizes the sum of squared deviations in each of
the variables. The PCA cannot find non-linear structures in the data. GPCA is used
to discover an algebraic curve fitted to data; the function zk defined by the “smallest”
eigenvalue is considered to be one of the fitting functions to the data. However, it is
difficult to interpret algebraic curves statistically derived form GPCA.
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We will now describe methods for estimating the algebraic curve or surface that
minimizes the sum of squares of perpendicular distances from multidimensional
data.

Taubin (1991) developed an algorithm for discovering the algebraic curve for
which the sum of approximate squares distances between data points and the curve
is minimized. The approximate squares distance does not always agree with the
exact squares distance. Mizuta (1995, 1996) presented an algorithm for evaluating
the exact distance between the data point and the curve, and have presented a method
for algebraic curve fitting with exact distances. In this subsection, we describe the
method of algebraic surface fitting with exact distances. The method of the algebraic
curve fitting is nearly identical to that of surface fitting, and is therefore omited here.

Algebraic Curve and Surface

A p-dimensional algebraic curve or surface is the set of zeros of k-polynomials
f .x/ D .f1.x/; : : : ; fk.x// on Rp ,

Z.f / D fx W f .x/ D 0g :

In the case of p D 2 and k D 1, Z.f / is a curve in the plane. For example,
Z.x2 C 2y2 � 1/ is an ellipse and Z.y2 � x2 C 1/ is a hyperbola. In the case of
p D 3 and k D 2, Z.f / is a curve in the space.

In the case of p D 3 and k D 1, Z.f / is a surface:

Z.f / D f.x; y; z/ W f .x; y; z/ D 0g :

Hereafter, we will primarily discuss this case.

Approximate Distance

The distance from a point a to the surface Z.f / is usually defined by

dist .a; Z.f // D inf .k a � y kW y 2 Z.f // :

It was said that the distance between a point and the algebraic curve or surface
cannot be computed using direct methods. Thus, Taubin proposed an approximate
distance from a to Z.f / (Taubin 1991). The point Oy that approximately minimizes
the distance k y � a k, is given by

Oy D a � �rf .a/>�C f .a/ ;
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where .rf .a/>/C is the pseudoinverse of rf .a/>. The distance from a to Z.f /
is approximated to

dist .a; Z.f //2 � f .a/2

k rf .a/ k2 :

Taubin also presented an algorithm to find the algebraic curve for which the sum of
approximate squares distances between data points and the curve is minimized.

Exact Distance

In the following, we present a method for calculating the distance between a point
a D .˛; ˇ; �/ and an algebraic surface Z.f /.

If .x; y; z/ is the nearest point to the point a D .˛; ˇ; �/ on Z.f /, .x; y; z/
satisfies the following simultaneous equations:

8
<

:

�1.x; y; z/ D 0
�2.x; y; z/ D 0
f .x; y; z/ D 0 ;

(22.1)

where �1.x; y; z/ D .x � ˛/.@f=@y/ � .y � ˇ/.@f=@x/, and �2.x; y; z/ D
.z � �/.@f=@y/ � .y � ˇ/.@f=@z/.

Equations (22.1) can be solved using the Newton–Rapson method:

1. Set x0; y0 and z0 (see below).
2. Solve the equations:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂̂
ˆ̂
:

h
@�1

@x
C k @�1

@y
C l @�1

@z
D ��1.x; y; z/

h
@�2

@x
C k @�2

@y
C l @�2

@z
D ��2.x; y; z/

h
@f

@x
C k @f

@y
C l @f

@z
D �f .x; y; z/ :

(22.2)

3. Replace x; y: 8
<

:

xiC1 D xi C h
yiC1 D yi C k
ziC1 D zi C l :

4. Stop if h2 C k2 C l2 is below a certain threshold. Otherwise, go to Step 2.

One of the important points to consider when applying the Newton–Rapson
method is to compute an initial point. We have a good initial point: .˛; ˇ; �/.

When x0 D ˛; y0 D ˇ; z0 D � , (22.2) are
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8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
:

h
@�1

@x
C k @�1

@y
C l @�1

@z
D 0

h
@�2

@x
C k @�2

@y
C l @�2

@z
D 0

h
@f

@x
C k @f

@y
C l @f

@z
D �f .x; y; z/ :

It is very simple to show that the distance between .x1; y1; z1/ and .˛; ˇ; �/ agrees
with Taubin’s approximate distance.

Algebraic Surface Fitting

We have already described the method for calculating the distance between a point
and a surface.

The problem of finding a fitting surface that minimizes the sum of the distances
from data points can therefore be solved by using an optimization method without
derivatives. However, for computing efficiency, the partial derivatives of the sum
of squares of distances from data with the coefficients of an algebraic curve are
derived.

In general, a polynomial f in a set is denoted by

f
�
b1; : : : ; bqI x; y; z

�
;

where b1; : : : ; bq are the parameters of the set.
Let ai D .˛i ; ˇi ; �i /.i D 1; 2; : : : ; n/ be n data points within the space.

The point in Z.f / that minimizes the distance from .˛i ; ˇi ; �i / is denoted by
.xi ; yi ; zi /.i D 1; 2; : : : ; n/.

The sum of squares of distances is

R D
nX

iD1
.xi � ai />.xi � ai / :

R can be minimized with respect to the parameters of polynomial f with the
Levenberg–Marquardt Method. This method requires partial derivatives of R with
respect to bj :

@R

@bj
D

nX

iD1

@Ri

@bj
; (22.3)

where

@Ri

@bj
D 2

�
.xi � ˛i / @xi

@bj
C .yi � ˇi / @yi

@bj
C .zi � �i / @zi

@bj

�
: (22.4)
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The only matter left to discuss is a solution for @xi =@bj ; @yi=@bj and
@zi =@bj . Hereafter, the subscript i is omitted. By the derivative of both sides of
f .b1; : : : ; bq; x; y; z/ D 0 with respect to bj .j D 1; : : : ; q/, we obtain

@f

@x

@x

@bj
C @f

@y

@y

@bj
C @f

@z

@z

@bj
C df

dbj
D 0 ; (22.5)

where df=dbj is the differential of f with bj when x and y are fixed.
Since xi is on the normal line from ai ,

 
@f

@x

ˇ
ˇ
ˇ̌
xi

;
@f

@y

ˇ
ˇ
ˇ̌
xi

;
@f

@z

ˇ
ˇ
ˇ̌
xi

!>
.xi � ai / D 0 :

By the derivative of

.y � ˇ/.z � �/ @f
@x

ˇ
ˇ
ˇ̌
x

D t

.x � ˛/.z � �/ @f
@y

ˇ
ˇ
ˇ
ˇ
x

D t

.x � ˛/.y � ˇ/ @f
@z

ˇ̌
ˇ
ˇ
x

D t

with respect to bj , we obtain the linear combinations of @x=@bj ; @y=@bj and
@z=@bj :

c1m
@x

@bj
C c2m @y

@bj
C c3m @z

@bj
C c4m D @t

@bj
; (22.6)

where c1m; : : : ; c4m are constants (m D 1; : : : ; 3).
Equations (22.5) and (22.6) are simultaneous linear equations in four variables

@x=@bj ; @y=@bj ; @z=@bj and @t=@bj . We then obtain @x=@bj ; @y=@bj and @z=@bj
at .xi ; yi ; zi /. By (22.4), we have the partial differentiation of Ri with respect to bj .

Therefore, we can obtain the algebraic curve that minimizes the sum of squares
of distances from data points with the Levenberg–Marquardt method.

Bounded and Stably Bounded Algebraic Curve and Surface

Although algebraic curves can fit the data very well, they usually contain points far
remote from the given data set. In 1994, Keren et al. (1994) and Taubin et al. (1994)
independently developed algorithms for a bounded (closed) algebraic curve with
approximate squares distance. We will now introduce the definition and properties
of a bounded algebraic curve.
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Z.f / is referred to as bounded if there exists a constant r such that Z.f / �
fx Wk x k< rg. For example, it is clear that Z.x2 C y2 � 1/ is bounded, but
Z.x2 � y2/ is not bounded.

Keren et al. (1994) defined Z.f / to be stably bounded if a small perturbation of
the coefficients of the polynomial leaves its zero set bounded. An algebraic curve
Z..x�y/4Cx2Cy2�1/ is bounded but not stably bounded becauseZ..x�y/4C
x2 C y2 � 1C "x3/ is not bounded for any " ¤ 0.

Let fk.x; y/ be the form of degree k of a polynomial f .x; y/: f .x; y/ DPd
kD0 fk.x; y/. The leading form of a polynomial f .x; y/ of degree d is defined by

fd .x; y/. For example, the leading form of f .x; y/ D x2C 2xy �y2C 5x�yC 3
is f2.x; y/ D x2 C 2xy � y2.
Lemma 1. For an even positive integer d , any leading form fd .x; y/ can be
represented by x>Ax. Where A is a symmetric matrix and x D .xd=2; xd=2�1y;
: : : ; xyd=2�1; yd=2/>.

Theorem 2. (Keren et al. 1994): The Z.f / is stably bounded if and only if d is
even and there exists a symmetric positive definite matrix A such that

fd .x; y/ D x>Ax ;

where x D .xd=2; xd=2�1y; : : : ; xyd=2�1; yd=2/>.

These definitions and theorem for algebraic curves are valid for algebraic
surfaces. Hereafter, we will restrict our discussion to algebraic surfaces.

Parameterization

We parameterize the set of all polynomials of degree k and the set of polynomials
that induce (stably) bounded algebraic surfaces. In general, a polynomial f of
degree p with q parameters can be denoted by f .b1; : : : ; bqI x; y/, where b1; : : : ; bq
are the parameters of the polynomial.

For example, all of the polynomials of degree 2 can be represented by

f .b1; b2; : : : ; b10I x; y; z/ D B>X ;

where X D .1; x; y; z; x2; y2; z2; xy; yz; zx/>; B D .b1; b2; : : : ; b10/>.
For stably bounded algebraic curves of degree 4,

f .b1; : : : ; b41I x; y; z/ D
�
x2; y2; z2; xy; yz; zx

�
A2
�
x2; y2; z2; xy; yz; zx

�>

C .b22; : : : ; b41/
�
1; x; y; z; : : : ; z3

�>
;
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where

A D

0

B
BB
B
B
B
B
@

b1 b2 b3 b4 b5 b6

b2 b7 b8 b9 b10 b11
b3 b8 b12 b13 b14 b15
b4 b9 b13 b16 b17 b18

b5 b10 b14 b17 b19 b20
b6 b11 b15 b18 b20 b21

1

C
CC
C
C
C
C
A

:

Examples

Here we will show a numerical example of the algebraic surface and bounded
algebraic surface fitting methods.

The data in this example is three-dimensional data of size 210. The 210 points
nearly lie on a closed cylinder (Fig. 22.1). The result of GPCA is set for an initial
surface and the method is used to search for a fitting algebraic surface of degree 4
(Figs. 22.2, 22.3 and 22.4). The value of R is 0:924.

Figure 22.5 presents the result of a bounded algebraic surface fitting the same
data. The value of R is 1:239, and is greater than that of unbounded fitting. The
bounded surface, however, directly reveals the outline of the data.

In this subsection, we have discussed algebraic surface fitting to multidimen-
sional data. Two sets of algebraic surfaces were described: an unbounded algebraic
surface and a bounded algebraic surface. This method can be extended for use with
any other family of algebraic surfaces.

Taubin (1994) proposed the approximate distance of order k and presented
algorithms for rasterizing algebraic curves. The proposed algorithm for exact
distance can also be used for rasterizing algebraic curves and surfaces. Mizuta
(1997) has successfully developed a program for rasterizing them with exact
distances.

Fig. 22.1 Surface fitting for
distributed cylinder data
(Original Data Points)
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Fig. 22.2 Surface fitting for distributed cylinder data (Unbounded Fitting Surface)

22.3.3 Principal Curves

Curve fitting to data is an important method for data analysis. When we obtain
a fitting curve for data, the dimension of the data is nonlinearly reduced to one
dimension. Hastie and Stuetzle (1989) proposed the concept of a principal curve
and developed a concrete algorithm to find the principal curve, which is represented
by a parametric curve. We can therefore obtain a new nonlinear coordinate for the
data using the principal curve.

Definition of Principal Curve

First, we will define principal curves for a p-dimensional distribution function
h.x/.x 2 Rp/, rather than a dataset.

The expectation of X with density function h in Rp is denoted by Eh.X/. The
parametric curve within the p-dimensional space is represented by f .�/, where �
is the parameter.

For each point x in Rp , the parameter � of the nearest point on the curve f .�/
is denoted by �f .x/, which is referred to as the projection index. The projection
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Fig. 22.3 Surface fitting for distributed cylinder data (Global View of 2)

index, which is different from projection index in projection pursuit, is defined as
follows:

�f .x/ D sup
�



�j k x � f .�/ kD inf

�
k x � f .�/ k

�
:

The curve f .�/ is referred to as the principal curve of density function h, if

Eh
�
x k �f .x/ D �

� D f .�/ .for a.e. �/

is satisfied. After all, for any point f .�/ on the curve, the average of the conditional
distribution of x given �f .x/ D � is consistent with f .�/ with the exception of
a set of measure 0.

The principal curves of a given distribution are not always unique. For example,
two principal components of the two-dimensional normal distribution are principal
curves.

The algorithm for finding the principal curves of a distribution is:

1. Initialization. Put
f .0/.�/ D Nx C a� ;

where a is the first principal component of the distribution defined by the density
function h and Nx is the average of x.
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Fig. 22.4 Surface fitting for distributed cylinder data (Cutting View of 2)

2. Expectation Step (update of f .�/).

f .j /.�/ D E
�
xj�f .j�1/ .x/ D �

	
8�

3. Projection Step (update of �).

�.j /.x/ D �f .j / .x/ 8x 2 Rp

And transform the �.j / to be arc length.
4. Evaluation. Calculate

D2
�
h;f .j /

	
D E�.j /E

˚k x � f ��.j /.x/� k2 j�.j /.x/� :

If the value ˇ
ˇ
ˇD2

�
h;f .j�1/	 �D2

�
h;f .j /

	ˇˇ
ˇ

D2

�
h;f .j�1/	

is smaller than ", then stop, otherwise j D j C 1 and go to Step 1.



638 M. Mizuta

Fig. 22.5 Surface fitting for distributed cylinder data (Bounded Fitting Surface)

In the Expectation Step, calculate the expectation with respect to the distribu-
tion h of the set of x satisfying �f .j�1/ .x/ D � and substitute f .j /.�/ for it. In the

Projection Step, project data points in Rp to the curve f .j /.�/ and assign �.j /.x/.
For actual data analysis, only a set of data points is given and the distribution

is unknown. Hastie and Stuetzle (1989) also proposed an algorithm with which
to derive the principal curve for given p-dimensional data of size n: xik.i D
1; 2; : : : ; N I k D 1; 2; : : : ; p/. In this case, the principal curves are represented by
lines determined by N points .�i ;f i /.

1. Initialization.
f .0/.�/ D Nx C u� ;

where u is the first principal component of the data and Nx is the average of x.
2. Expectation Step. Smooth xik .i D 1; 2; : : : ; N / with respect to � for each k

independently and calculate f .j /.�/.
3. Projection Step. Search for the nearest point on the curve (line curve) of each

data point and assign it to their value of �.
4. Evaluation. If a terminal condition is satisfied, the algorithm is stopped. If not,
j D j C 1 and go to Step 2.
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22.4 Linear Reduction of Explanatory Variables

Thus far, we have described dimension reduction methods for multidimensional
data, where there are no distinctions among variables. However, there are times
when we must analyze multidimensional data in which a variable is a response
variable and others are explanatory variables. Regression analysis is usually used
for the data. Dimension reduction methods of explanatory variables are introduced
below.

Sliced Inverse Regression

Regression analysis is one of the fundamental methods used for data analysis.
A response variable y is estimated by a function of explanatory variables x, a
p-dimensional vector. An immediate goal of ordinary regression analysis is to find
the function of x. When there are many explanatory variables in the data set, it
is difficult to stably calculate the regression coefficients. An approach to reducing
the number of explanatory variables is explanatory variable selection, and there are
many studies on variable selection. Another approach is to project the explanatory
variables on a lower dimensional space that nearly estimates the response variable.

Sliced Inverse Regression (SIR), which was proposed by Li (1991), is a method
that can be employed to reduce explanatory variables with linear projection. SIR
finds linear combinations of explanatory variables that are a reduction for non-linear
regression. The original SIR algorithm, however, cannot derive suitable results for
some artificial data with trivial structures. Li also developed another algorithm,
SIR2, which uses the conditional estimation EŒcov.xjy/�. However, SIR2 is also
incapable of finding trivial structures for another type of data.

We hope that projection pursuit can be used for finding linear combinations
of explanatory variables. A new SIR method with projection pursuit (SIRpp) is
described here. We also present a numerical example of the proposed method.

Sliced Inverse Regression Model

SIR is based on the model (SIR model):

y D f
�
ˇ>1 x;ˇ>2 x; : : : ;ˇ>Kx

	
C " ; (22.7)

where x is the vector of p explanatory variables, ˇk are unknown vectors, " is
independent of x, and f is an arbitrary unknown function on RK .

The purpose of SIR is to estimate the vectorsˇk for which this model holds. If we
obtain ˇk , we can reduce the dimension of x to K . Hereafter, we shall refer to any
linear combination of ˇk as the effective dimensional reduction (e.d.r.) direction.
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Li (1991) proposed an algorithm for finding e.d.r. directions, and it was named
SIR. However, we refer to the algorithm as SIR1 to distinguish it from the SIR
model.

The main idea of SIR1 is to useEŒxjy�.EŒxjy� is contained in the space spanned
by e.d.r. directions, but there is no guarantee that EŒxjy� will span the space. For
example, in Li, if .X1;X2/ � N.0; I2/; Y D X2

1 then EŒX1jy� D EŒX2jy� D 0.

SIR Model and Non-Normality

Hereafter, it is assumed that the distribution of x is standard normal distribution:
x � N.0; Ip/. If not, standardize x by affine transformation. In addition, ˇ>i ˇj D
ıij ; .i; j D 1; 2; : : : ; K/ is presumed without loss of generality. We can choose
ˇi .i D K C 1; : : : ; p/ such that fˇi g .i D 1; : : : ; p/ is a basis forRp .

Since the distribution of x is N.0; Ip/, the distribution of .ˇ>1 x; : : : ;ˇ>p x/ is

also N.0; Ip/. The density function of .ˇ>1 x; : : : ;ˇ>p x; y/ is

h
�
ˇ>1 x; : : : ;ˇ>p x; y

	

D �
�
ˇ>1 x

	
: : : �

�
ˇ>p x

	 1p
2�

exp

0

B
@�

�
y � f

�
ˇ>1 x; : : : ;ˇ>Kx

		2

22

1

C
A ;

where �.x/ D 1=p2� exp .�x2=2/ and we assume " � N.0; 2/.
The conditional density function is

h
�
ˇ>1 x; : : : ;ˇ>p x j y

	
D �

�
ˇ>KC1x

	
: : : �

�
ˇ>p x

	
g
�
ˇ>1 x; : : : ;ˇ>Kx

	
;

where g./ is a function of ˇ>1 x; : : : ;ˇ>Kx, which is not generally the normal density
function.

Thus, h.ˇ>1 x; : : : ;ˇ>p x j y/ is separated into the normal distribution part

�.ˇ>KC1x/ : : : �.ˇ>p x/ and the non-normal distribution part g./.
Projection Pursuit is an excellent method for finding non-normal parts, so we

adopt it for SIR.

SIRpp Algorithm

Here we show the algorithm for the SIR model with projection pursuit (SIRpp). The
algorithm for the data .yi ;xi / .i D 1; 2; : : : ; n/ is as follows:

1. Standardize x: Qxi D Ȯ �1=2xx .xi � Nx/.i D 1; 2; : : : ; n/, where Ȯxx is the sample
covariance matrix and Nx is the sample mean of x.

2. Divide the range of y into H slices, I1; : : : ; IH .



22 Dimension Reduction Methods 641

3. Conduct a projection pursuit in K dimensional space for each slice. The
followingH projections are obtained: .˛.h/1 ; : : : ;˛

.h/
K /, .h D 1; : : : ;H/.

4. Let the K largest eigenvectors of OV be O�k.k D 1; : : : ; K/. Output Ǒ k D
O�k˙�1=2xx .k D 1; 2; : : : ; K/ for the estimation of e.d.r. directions, where OV D
PH

hD1 w.h/
PK

kD1 ˛
.h/

k

>
˛
.h/

k .

Numerical Examples

Two models of the multicomponent are used:

y D x1.x1 C x2 C 1/C  � " ; (22.8)

y D sin.x1/C cos.x2/C  � " (22.9)

to generate n D 400 data, where  D 0:5 (Fig. 22.6, Fig. 22.7). We first generate
x1; x2; " with N.0; 1/ and calculate response variable y using (22.8) or (22.9). Eight
variables x3; : : : ; x10 generated by N.0; 1/ are added to the explanatory variables.
The ideal e.d.r. directions are contained within the space spanned by two vectors
.1; 0; : : : ; 0/ and .0; 1; : : : ; 0/.

Fig. 22.6 Function of the example 1. Asymmetric function y D x1.x1 C x2 C 1/
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Fig. 22.7 Function of the example 2. Function of asymmetric with respect to the x1 axis and
symmetric with respect to x2 axis. y D sin.x1/C cos.x2/

The squared multiple correlation coefficient between the projected variable b>x
and the space B spanned by ideal e.d.r. directions:

R2.b/ D max
ˇ2B

�
b>
P
xx ˇ

	2

b>
P
xx b � ˇ>

P
xx ˇ

(22.10)

is adopted as the criterion for evaluating the effectiveness of estimated e.d.r.
directions.

Table 22.1 and Table 22.2 show the mean and the standard deviation (in
parentheses) of R2. Ǒ 1/ and R2. Ǒ 2/ of four SIR algorithms for H D 5; 10,
and 20, after 100 replicates. SIR2 cannot reduce the explanatory variables from
the first example. The result of the second example is very interesting. SIR1 finds
the asymmetric e.d.r. direction, but, does not find the symmetric e.d.r. direction.
Conversely, SIR2 finds only the symmetric e.d.r. direction. SIRpp can detect both
of the e.d.r. directions.

The SIRpp algorithm performs well in finding the e.d.r. directions; however, the
algorithm requires more computing power. This is one part of projection pursuit for
which the algorithm is time consuming.



22 Dimension Reduction Methods 643

Table 22.1 Results for SIR1, SIR2, and SIRpp (Example 1)

SIR1 SIR2 SIRpp

H R2
� Ǒ

1

	
R2
� Ǒ

2

	
R2
� Ǒ

1

	
R2
� Ǒ

2

	
R2
� Ǒ

1

	
R2
� Ǒ

2

	

5 0.92 0.77 0.96 0.20 0.97 0.78
(0.04) (0.11) (0.03) (0.21) (0.02) (0.15)

10 0.93 0.81 0.92 0.10 0.95 0.79
(0.03) (0.09) (0.09) (0.12) (0.04) (0.13)

20 0.92 0.76 0.83 0.11 0.95 0.75
(0.04) (0.18) (0.19) (0.13) (0.07) (0.18)

Table 22.2 Results of SIR1, SIR2, and SIRpp (Example 2)

SIR1 SIR2 SIRpp

H R2
� Ǒ

1

	
R2
� Ǒ

2

	
R2
� Ǒ

1

	
R2
� Ǒ

2

	
R2
� Ǒ

1

	
R2
� Ǒ

2

	

5 0.97 0.12 0.92 0.01 0.92 0.88
(0.02) (0.14) (0.04) (0.10) (0.05) (0.11)

10 0.97 0.12 0.90 0.05 0.88 0.84
(0.02) (0.15) (0.06) (0.07) (0.08) (0.13)

20 0.97 0.12 0.85 0.05 0.84 0.73
(0.02) (0.14) (0.09) (0.06) (0.10) (0.22)

22.5 Concluding Remarks

In this chapter, we discussed dimension reduction methods for data analysis. First,
PCA methods were explained for the linear method. Then, projection pursuit
methods were described. For nonlinear methods, GPCA algebraic curve fitting
methods and principal curves were introduced. Finally, we explained sliced inverse
regression for the reduction of the dimension of explanatory variable space.

These methods are not only useful for data analysis, but also effective for
preprocessing when carrying out another data analysis. In particular, they are
indispensable for the analysis of enormous amounts of and complex data, e.g.
microarray data, log data on the Internet, etc. Research in this field will continue
to evolve in the future.
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Chapter 23
(Non) Linear Regression Modeling

Pavel Čížek

We will study causal relationships of a known form between random variables.
Given a model, we distinguish one or more dependent (endogenous) variables
Y D .Y1; : : : ; Yl /; l 2 N , which are explained by a model, and independent
(exogenous, explanatory) variables X D .X1; : : : ; Xp/; p 2 N , which explain
or predict the dependent variables by means of the model. Such relationships and
models are commonly referred to as regression models.

A regression model describes the relationship between the dependent and
independent variables. In this chapter, we restrict our attention to models with a
form known up to a finite number of unspecified parameters. The model can be
either linear in parameters,

Y D X>ˇ0 C ";
or nonlinear,

Y D h.X ;ˇ0/C ";
where ˇ represents a vector or a matrix of unknown parameters, " is the error
term (fluctuations caused by unobservable quantities), and h is a known regression
function. The unknown parameters ˇ are to be estimated from observed realizations
fy1i ; : : : ; yli gniD1 and fx1i ; : : : ; xpi gniD1 of random variables Y andX .

Here we discuss both kinds of models, primarily from the least-squares estima-
tion point of view, in Sects. 23.1 and 23.2, respectively. Both sections present the
main facts concerning the fitting of these models and relevant inference, whereby
their focus is above all on the estimation of these regression models under near and
exact multicollinearity and closely related model selection.
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23.1 Linear Regression Modeling

Let us first study the linear regression model Y D X>ˇ0 C " assuming E."jX/ D
0. Unless said otherwise, we consider here only one dependent variable Y . The
unknown vector ˇ0 D .ˇ01; : : : ; ˇ

0
p/ is to be estimated given observations y D

.y1; : : : ; yn/ 2 Rn and fxi gniD1 D f.x1i ; : : : ; xpi /gniD1 of random variables Y and
X ; let us denote X D .x1; : : : ;xn/

> 2 Rn	p and let x�k be the kth column of X.
Thus, the linear regression model can be written in terms of observations as

y D Xˇ0 C " D
pX

kD1
x�kˇ0k C "; (23.1)

where " D ."1; : : : ; "n/ 2 Rn.
Section 23.1.1 summarizes how to estimate the model (23.1) by the method of

least squares. Later, we specify what ill-conditioning and multicollinearity are in
Sect. 23.1.2 and discuss methods dealing with it in Sects. 23.1.3–23.1.10.

23.1.1 Fitting of Linear Regression

Let us first review the least squares estimation and its main properties to facilitate
easier understanding of the fitting procedures discussed further. For a detailed
overview of linear regression modeling see Rao and Toutenberg (1999).

The least squares (LS) approach to the estimation of (23.1) searches an estimate
Ǒ of unknown parametersˇ0 by minimizing the sum of squared differences between

the observed values yi and the predicted ones Oyi . Ǒ / D x>i Ǒ .

Definition 1. The least squares estimate of linear regression model (23.1) is defined
by

ǑLS D argmin
ˇ2Rp

nX

iD1
fyi � Oyi .ˇ/g2 D argmin

ˇ2Rp

nX

iD1
.yi � x>i ˇ/2: (23.2)

This differentiable problem can be expressed as the minimization of

.y �Xˇ/>.y �Xˇ/ D y>y � 2ˇ>X>y C ˇ>X>Xˇ

with respect to ˇ and the corresponding first-order conditions are

�X>y CX>Xˇ D 0 H) X>Xˇ D X>y: (23.3)

They are commonly referred to as the normal equations and identify the global
minimum of (23.2) as long as the second order conditions X>X > 0 hold; that is,
the matrix X>X is supposed to be positive definite, or equivalently, non-singular.
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(This mirrors an often used assumption specified in terms of the underlying random
vector X if regressors are stochastic: E.XX>/ > 0.) Provided that X>X > 0 and
E."jX/ D 0, the LS estimator is unbiased and can be found as a solution of (23.3)

ǑLS D .X>X/�1X>y: (23.4)

Additionally, it is the best linear unbiased estimator of (23.1), see Amemiya (1985).

Theorem 1. (Gauss-Markov) Assume that E."jX/ D 0, E."2jX/ D 2In, and
X>X is non-singular. Let Ǒ D C>y, where C is a t � p matrix orthogonal to X,
C>X D I. Then Var. Ǒ / � Var. ǑLS / > 0 is a positive definite matrix for any
Ǒ 6D ǑLS .

Finally, the LS estimate actually coincides with the maximum likelihood estimate
provided that random errors " are normally distributed (in addition to the assump-
tions of Theorem 1) and shares then the asymptotic properties of the maximum
likelihood estimation (see Amemiya 1985).

Computing LS Estimates

The LS estimate ǑLS can be and often is found by directly solving the system
of linear equations (23.3) or evaluating formula (23.4), which involves a matrix
inversion. Both direct and iterative methods for solving systems of linear equations
are presented in Chap. II.4. Although this straightforward computation may work
well for many regression problems, it often leads to an unnecessary loss of precision,
see Miller (2002). Additionally, it is not very suitable if the matrix X>X is ill-
conditioned (a regression problem is called ill-conditioned if a small change in data
causes large changes in estimates) or nearly singular (multicollinearity) because it
is not numerically stable. Being concerned mainly about statistical consequences of
multicollinearity, the numerical issues regarding the identification and treatment of
ill-conditioned regression models are beyond the scope of this contribution. Let us
refer an interested reader to Barlow (1993), Bjorck (1996), Miller (2002), Thisted
(1988), and Wang et al. (1990).

Let us now briefly review a class of numerically more stable algorithms for the
LS minimization. They are based on orthogonal transformations. Assuming a matrix
Q 2 Rn	n is an orthonormal matrix,Q>Q D QQ> D In,

.y �Xˇ/>.y �Xˇ/ D .Qy �QXˇ/>.Qy �QXˇ/:

Thus, multiplying a regression model by an orthonormal matrix does not change
it from the LS point of view. Since every matrix X can be decomposed into the
product QxRx (the QR decomposition), where Qx is an orthonormal matrix and
Rx is an upper triangular matrix, pre-multiplying (23.1) byQ>x produces

Q>x y D Rxˇ CQ>x "; (23.5)
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where Rx D .R1;R2/
>, R1 2 Rp	p is an upper triangular matrix, and R2 2

R.n�p/	p is a zero matrix. Hence, the sum of squares to minimize can be written as

.Q>x y �Rxˇ/>.Q>x y �Rxˇ/ D .y1 �R1ˇ/>.y1 �R1ˇ/C y>2 y2;

where y1 2 Rp and y2 2 Rn�p form Q>x y D .y>1 ;y>2 />. The LS estimate
is then obtained from the upper triangular system R1ˇ D y1, which is trivial
to solve by backward substitution. There are many algorithms for constructing a
suitable QR decomposition for finding LS estimates, such as the Householder or
Givens transformations; see Chap. II.4, Bjorck (1996), and Gentle (1998) for more
details.

LS Inference

Linear regression modeling does not naturally consist only of obtaining a point
estimate ǑLS . One needs to measure the variance of the estimates in order to
construct confidence intervals or test hypotheses. Additionally, one should assess
the quality of the regression fit. Most such measures are based on regression
residuals e D y � X Ǒ . We briefly review the most important regression statistics,
and next, indicate how it is possible to compute them if the LS regression is
estimated by means of some orthogonalization procedure described in the previous
paragraph.

The most important measures used in statistics to assess model fit and inference
are the total sum of squares TSS D .y � Ny/>.y � Ny/ D Pn

iD1.yi � Ny/2; where
Ny D Pn

iD1 yi =n, the residual sum of squares RSS D e>e D Pn
iD1 e2i ; and

the complementary regression sum of squares RegSS D .y � Oy/>.y � Oy/ DPn
iD1.yi � Oyi /2 D TSS � RSS: Using these quantities, the regression fit can

be evaluated; for example, the coefficient of determination R2 D 1 � RSS=TSS
as well as many information criteria (modified NR2, Mallows and Akaike criteria,
etc.; see Sect. 23.1.3). Additionally, they can be used to compute the variance of the
estimates in simple cases. The variance of the LS estimates can be estimated by

Var. ǑLS / D .X>X/�1X>S�1X.X>X/�1; (23.6)

whereS represents an estimate of the covariance matrix Var."/ D †. Provided that
the model is homoscedastic, † D 2In, the residual variance 2 can be estimated
as an average of squared residuals s2 D e>e=n. Apart from the residual variance,
one needs also an inverse of .X>X/�1, which will often be a by-product of solving
normal equations.

Let us now describe how one computes these quantities if a numerically stable
procedure based on the orthonormalization of normal equations is used. Let us
assume we already constructed a QR decomposition of X D QxRx . Thus,
QxQ

>
x D I andQ>x X D Rx . RSS can be computed as
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RSS D e>e D .y �X Ǒ />.y �X Ǒ / D .y �X Ǒ />QxQ
>
x .y �X Ǒ /

D .Q>x y �RxX Ǒ />.Q>x y �RxX Ǒ /:

Consequently,RSS is invariant with respect to orthonormal transformations (23.5)
of the regression model (23.1). The same conclusion applies also to TSS and
RegSS , and consequently, to the variance estimation. Thus, it is possible to use
the data in (23.5), transformed to achieve better numerical stability, for computing
regression statistics of the original model (23.1).

23.1.2 Multicollinearity

Let us assume that the design matrix X fixed. We talk about multicollinearity when
there is a linear dependence among the variables in regression, that is, the columns
of X.

Definition 2. In model (23.1), the exact multicollinearity exists if there are real
constants a1; : : : ; ap such that

Pp

kD1 jakj > 0 and
Pp

kD1 akx�k D 0:
The exact multicollinearity (also referred to as reduced-rank data) is relatively

rare in linear regression models unless the number of explanatory variables is very
large or even larger than the number of observations, p � n. This happens often in
agriculture, chemometrics, sociology, and so on. For example, Miller (2002) uses
data on the absorbances of infra-red rays at many different wavelength by chopped
meat, whereby the aim is to determine the moisture, fat, and protein content of the
meat as a function of these absorbances. The study employs measurements at 100
wavelengths from 850 nm to 1,050 nm, which gives rise to many possibly correlated
variables.

When the number p of variables is small compared to the sample size n, near
multicollinearity is more likely to occur: there are some real constants a1; : : : ; ap
such that

Pp

kD1 jakj > 0 and
Pp

kD1 akx�k � 0; where � denotes approximate
equality. The multicollinearity in data does not have to arise only as a result of highly
correlated variables (i.e., be systematic because, for example, more measurements
of the same characteristic are taken by different sensors or methods and are used
as separate variables), but it could also result from the lack of information and
variability in data (i.e., be erratic and purely numerical in its nature). Different
causes of multicollinearity and their consequences are extensively discussed by
Spanos and McGuirk (2002).

Whereas the exact multicollinearity implies that X>X is singular and the
LS estimator is not identified, the near multicollinearity permits a non-singular
matrix X>X. The eigenvalues �1 � : : : � �p of matrix X>X can give some
indication concerning multicollinearity: if the smallest eigenvalue �1 equals zero,
the matrix is singular and data are exactly multicollinear; if �1 is close to zero, near
multicollinearity is present in data. Since measures based on eigenvalues depend on
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the parametrization of the model, they are not necessarily optimal and it is often
easier to detect multicollinearity by looking at LS estimates and their behavior as
discussed in the next paragraph. See Bjorck (1996) and Leamer (1983) for more
details on detection and treatment of ill-conditioned problems. (Nearly singular
matrices are dealt with also in numerical mathematics. To measure near singularity,
numerical mathematics uses conditioning numbers dk D

p
�k=�1, which converge

to infinity for singular matrices, that is, as �1 ! 0. Matrices with very large
conditioning numbers are called ill-conditioned.)

The multicollinearity has important implications for LS. In the case of the exact
multicollinearity, matrix X>X does not have a full rank. Hence, the solution of
the normal equations is not unique, the LS estimate ǑLS is not identified, and
one has to introduce additional restrictions to identify the LS estimate. On the
other hand, even though near multicollinearity does not prevent the identifica-
tion of LS, it negatively influences estimation results. Since both the estimate
ǑLS and its variance are proportional to the inverse of X>X, which is nearly

singular under multicollinearity, near multicollinearity inflates ǑLS , which may
become unrealistically large, and variance Var. ǑLS /. Consequently, the corre-
sponding t-statistics are typically very low. Moreover, due to the large values
of .X>X/�1, the least squares estimate ǑLS D .X>X/�1X>y reacts very
sensitively to small changes in data. See Hocking (1996) and Montgomery et
al. (2001) for a more detailed treatment and real-data examples of the effects of
multicollinearity.

There are several strategies to limit the adverse consequences of multicollinearity
provided that one cannot improve the design of a model or experiment or get better
data. First, one can impose an additional structure on the model. This strategy cannot
be discussed in details since it is model specific, and in principle, it requires only to
test a hypothesis concerning additional restrictions. Second, it is possible to reduce
the dimension of the space spanned byX, for example, by excluding some variables
from the regression (Sects. 23.1.3 and 23.1.4). Third, one can also leave the class of
unbiased estimators and try to find a biased estimator with a smaller variance and
mean squared error. Assuming we want to judge the performance of an estimator Ǒ
by its mean squared error (MSE), the motivation follows from

MSE. Ǒ / D EŒ. Ǒ � ˇ0/. Ǒ � ˇ0/>�
D EŒf Ǒ �E. Ǒ /gf Ǒ � E. Ǒ /g>�C ŒEfE. Ǒ / � ˇ0g�ŒEfE. Ǒ / � ˇ0g�>
D Var. Ǒ /C Bias. Ǒ /Bias. Ǒ />:

Thus, it is possible that introducing a bias into estimation in such a way that
the variance of estimates is significantly reduced can improve the estimator’s
MSE. There are many biased alternatives to the LS estimation as discussed in
Sects. 23.1.5–23.1.10 and some of them even combine biased estimation with
variable selection. In all cases, we present methods usable both in the case of near
and exact multicollinearity.
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23.1.3 Variable Selection

The presence of multicollinearity may indicate that some explanatory variables are
linear combinations of the other ones (note that this is more often a “feature” of data
rather than of the model). Consequently, they do not improve explanatory power of
a model and could be dropped from the model provided there is some justification
for dropping them also on the model level rather than just dropping them to fix
data problems. As a result of removing some variables, matrix X>X would not be
(nearly) singular anymore.

Eliminating variables from a model is a special case of model selection proce-
dures, which are discussed in details in Chap. III.1. Here we first discuss methods
specific for the variable selection within a single regression model, mainly variants
of stepwise regression. Later, we deal with more general model selection methods,
such as cross validation, that are useful both in the context of variable selection
and of biased estimation discussed in Sects. 23.1.5–23.1.10. An overview and
comparison of many classical variable selection is given, for example, in Miller
(1984, 2002) and Montgomery et al. (2001). For discussion of computational issues
related to model selection, see Kennedy and Gentle (1980) and Miller (2002).
Finally, note that proper inference after variable selection is generally difficult as
even resampling methods (see Chap. III.2) are not applicable and outside of the
scope of this chapter. A general method for approximately unbiased inference after
variable selection was proposed by Shen et al. (2004).

Backward Elimination

A simple and often used method to eliminate non-significant variables from
regression is backward elimination, a special case of stepwise regression. Backward
elimination starts from the full model y D Xˇ C " and identifies a variable x�k
such that:

1. Its omission results in the smallest increase of RSS ; or

2. It has the smallest t-statistics tk D bLSk =

q
s2k=.n � p/; where s2k is an estimate

of bLSk variance, or any other test statistics of H0 W ˇ0k D 0; or
3. Its removal causes the smallest change of a prediction or information criterion

characterizing the fit or prediction power of the model. Well-known examples
of information criteria are the modified coefficient of determination NR2 D
1 � .n C p/e>e=n.n � p/; Akaike information criterion (Akaike 1974),
AIC D log.e>e=n/ C 2p=n; and Schwarz information criterion (Schwarz
1978), SIC D log.e>e=n/C p ln n=n; where n and p represents sample size
and the number of regressors, respectively.

Next, the variable x�k is excluded from regression by setting bk D 0 if (1) one did
not reach a pre-specified number of variables yet or (2) the test statistics or change
of the information criterion lies below some selected significance level.
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Before discussing properties of backward elimination, let us make several notes
on information criteria used for the elimination and their optimality. There is a
wide range of selection criteria, including classical AIC , SIC , FPE� by Shibata
(1984), cross validation by Stone (1974), and so on. Despite one can consider the
same measure of the optimality of variable selection, such as the sum of squared
prediction errors (Shibata 1981), one can often see contradictory results concerning
the selection criteria (cf. Li 1997, and Shao 1993; or Shibata (1981); and Rao
and Wu 1989). This is caused by different underlying assumptions about the true
model (Shao 1997). Some criteria, such as AIC and cross validation, are optimal
if one assumes that there is no finite-dimensional true model (i.e., the number of
variables increases with the sample size); see Shibata (1981) and Li (1987). On the
other hand, some criteria, such as SIC, are consistent if one assumes that there is
a true model with a finite number of variables; see Rao and Wu (1989) and Shao
(1997). A combination of two concepts can be achieved by using an information
criterion that penalizes the number of selected variables in a data-dependent way
(Shen and Ye 2002). Finally, note that even though some criteria, being optimal
in the same sense, are asymptotically equivalent, their finite sample properties can
differ substantially. See Chap. III.1 for more details.

Let us now return back to backward elimination, which can be also viewed as
a pre-test estimator (Judge and Bock 1983). Although it is often used in practice,
it involves a largely arbitrary choice of the significance level. In addition, it has
rather poor statistical properties caused primarily by discontinuity of the selection
decision, see Magnus (1999). Attempts to improve the properties of backward
selection by bootstrap do not seem to be successful either (Austin 2008). Moreover,
even if a stepwise procedure is employed, one should take care of reporting
correct variances and confidence intervals valid for the whole decision sequence.
Inference for the finally selected model as if it were the only model considered
leads to significant biases, see Danilov and Magnus (2004), Weiss (1995), and
Zhang (1992). Backward elimination also does not perform well in the presence
of multicollinearity and it cannot be used if p > n. Finally, let us note that a nearly
optimal and admissible alternative is proposed in Magnus (2002).

Forward Selection

Backward elimination cannot be applied if there are more variables than observa-
tions, and additionally, it may be very computationally expensive if there are many
variables. A classical alternative is forward selection, where one starts from an
intercept-only model and adds one after another variables that provide the largest
decrease of RSS . Adding stops when the F -statistics

R D RSSp �RSSpC1
RSSpC1

.n � p � 2/
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lies below a pre-specified critical “F-to-enter” value. The forward selection can be
combined with the backward selection (e.g., after adding a variable, one performs
one step of backward elimination), which is known as a stepwise regression
Efroymson (1960). Its computational complexity is discussed in Miller (2002).

Note that most disadvantages of backward elimination apply to forward selection
as well. In particular, correct variances and confidence intervals should be reported,
see Miller (2002) for their approximations. Moreover, forward selection can be
overly aggressive in selection in the respect that if a variable x is already included in
a model, forward selection primarily adds variables orthogonal to x, thus ignoring
possibly useful variables that are correlated with x. To improve upon this, Efron
et al. (2004) proposed the least angle regression, considering correlations of to-be-
added variables jointly with respect to all variables already included in the model
(see Sect. 23.1.9).

All-Subsets Regression

Neither forward selection, nor backward elimination guarantee the optimality of
the selected submodel, even when both methods lead to the same results. This can
happen especially when a pair of variables has jointly a high predictive power; for
example, if the dependent variable y depends on the difference of two variables
x1 � x2. An alternative approach, which is aiming at optimality of the selected
subset of variables – all-subsets regression – is based on forming a model for each
subset of explanatory variables. Each model is estimated and a selected prediction or
information criterion, which quantifies the unexplained variation of the dependent
variable and the parsimony of the model, is evaluated. Finally, the model attaining
the best value of a criterion is selected and variables missing in this model are
omitted.

This approach deserves several comments. First, one can use many other
criteria instead of AIC or SIC. These could be based on the test statistics of
a joint hypothesis that a group of variables has zero coefficients, extensions or
modifications of AIC or SIC, general Bayesian predictive criteria, criteria using non-
sample information, model selection based on estimated parameter values at each
subsample and so on. See the next subsection, Bedrick and Tsai (1994), Hughes and
Maxwell (2003), Jian and Liu (2004), Ibrahim and Ming-Hui (1997), Shao (1997),
Shi and Tsai (1998), Zheng and Loh (1995), for instance, and Chap. III.1 for a more
detailed overview.

Second, the evaluation and estimation of all submodels of a given regression
model can be very computationally intensive, especially if the number of variables
is large. This motivated tree-like algorithms searching through all submodels, but
once they reject a submodel, they automatically reject all models containing only
a subset of variables of the rejected submodel, see Edwards and Havranek (1987).
These so-called branch-and-bound techniques are discussed in Miller (2002), for
instance.
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An alternative computational approach, which is increasingly used in applica-
tions where the number of explanatory variables is very large, is based on the genetic
programming (genetic algorithm, GA) approach, see Wasserman and Sudjianto
(1994). Similarly to branch-and-bound methods, GAs perform an non-exhaustive
search through the space of all submodels. The procedure works as follows. First,
each submodel which is represented by a “chromosome” – a p � 1 vector mj D
fI j1 ; : : : ; I jp g 2 f0; 1gp of indicators, where I jk indicates whether the kth variable is
included in the submodel defined bymj . Next, to find the best submodel, one starts
with an (initially randomly selected) population P D fmj gJjD1 of submodels that
are compared with each other in terms of information or prediction criteria. Further,
this populationP is iteratively modified: in each step, pairs of submodelsmj ;mj 0 2
P combine their characteristics (chromosomes) to create their offspringsm�

j
. This

process can have many different forms such as m�
j
D .mj C mj 0 C rm/ mod 1

or m�
j
D .1; : : : ; 1; 0; : : : ; 0/>mj C .0; : : : ; 0; 1; : : : ; 1/>mj 0 C rm, where rm is

a possibly non-zero random mutation. Whenever an offspring m�
j

performs better
than its “parent” models mj , m�

j
replaces mj in population P . Performing this

action for all j D 1; : : : ; J creates a new population. By repeating this population
renewal, GAs search through the space of all available submodels and keep only
the best ones in the population P . Thus, GAs provide a rather effective way of
obtaining the best submodel, especially when the number of explanatory variables
is very high, since the search is not exhaustive. See Chap. II.6 and Chambers (1998)
for a more detailed introduction to genetic programming.

Finally, an estimation strategy related to all-subset regression is the so-called
model averaging. It also aims to estimate all submodels of a given regression model,
but defines the final estimates as weighted averages across parameter estimates
in all submodels, where weights are probabilities or measures of fit assigned
to each submodel (see Chap. III.11). The all-subset regression represents thus a
special case of model averaging, assigning weight one to the best submodel and
zero weights to all other submodels. Being more general and frequently used in
the context of Bayesian estimation, model averaging obviously presents the same
computational difficulties as the all-subsets regression and leads to the use of
simulation techniques (Chap. II.3). A recent exception among the model-averaging
methods is the weighted-average least squares estimator (Magnus et al. 2010) with
the computational complexity increasing only linearly in the number of variables
rather exponentially despite averaging across all submodels.

Example 1. We compare several mentioned variable selection methods using a
classical data set on air pollution used originally by McDonald and Schwing
(1973), who modeled mortality depending on 15 explanatory variables ranging from
climate and air pollution to socioeconomic characteristics and who additionally
demonstrated instabilities of LS estimates using this data set. We refer to the
explanatory variables of data Pollution simply by numbers 1 to 15.

We applied the forward, backward, and all-subset selection procedures to this
data set. The results reported in Table 23.1 demonstrate that although all three
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Table 23.1 Variables selected from pollution data by different selection procedures. RSS is
reported in brackets

Number of variables Forward selection Backward elimination All-subset selection

1 9 9 9
(133,695) (133,695) 9 (133,695)

2 6, 9 6, 9 6, 9
(99,841) (99,841) (99,841)

3 2, 6, 9 2, 6, 9 2, 6, 9
(82,389) (82,389) (82,389)

4 2, 6, 9, 14 2, 5, 6, 9 1, 2, 9, 14
(72,250) (74,666) (69,154)

5 1, 2, 6, 9, 14 2, 6, 9, 12, 13 1, 2, 6, 9, 14
(64,634) (69,135) (64,634)

methods could lead to the same subset of variables (e.g., if we search a model
consisting of two or three variables), this is not the case in general. For example,
searching for a subset of four variables, the variables selected by backward and
forward selection differ, and in both cases, the selected model is suboptimal
(compared to all-subsets regression) in the sense of the unexplained variance
measured by RSS.

Cross Validation

Cross validation (CV) is a general model-selection principle, proposed already in
Stone (1974), which chooses a specific model in a similar way as the prediction
criteria. CV compares models, which can include all variables or exclude some,
based on their out-of-sample performance, which is measured typically by MSE. To
achieve this, a sample is split to two disjunct parts: one part is used for estimation
and the other part serves for checking the fit of the estimated model on “new”
data (i.e., data which were not used for estimation) by comparing the observed and
predicted values.

Probably the most popular variant is the leave-one-out cross-validation (LOU
CV), which can be used not only for model selection, but also for choosing nuisance
parameters (e.g., in nonparametric regression; see Härdle 1992). Assume we have a
set of models y D hk.X;ˇ/C" defined by regression functions hk; k D 1; : : : ;M ,
that determine variables included or excluded from regression. For model given by
hk , LOU CV evaluates

CVk D
nX

iD1
.yi � Oyi;�i /2 ; (23.7)

where Oyi;�i is the prediction at xi based on the model y�i D hk.X�i ;ˇ/ C "�i
and y�i ;X�i ; "�i are the vectors and matrices y;X; " without their i th elements
and rows, respectively. Thus, all but the i th observation are used for estimation and
the i th observation is used to check the out-of-sample prediction. Having evaluated
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CVk for each model, k D 1; : : : ;M , we select the model commanding the minimum
minkD1;:::;M CVk.

Unfortunately, LOU CV is not consistent as far as the linear model selection is
concerned. To make CV a consistent model selection method, it is necessary to omit
nv observations from the sample used for estimation, where limn!1 nv=n D 1. This
fundamental result derived in Shao (1993) places a heavy computational burden on
the CV model selection. Since our main use of CV in this chapter concerns nuisance
parameter selection, we do not discuss this type of CV any further. See Miller (2002)
and Chap. III.1 for further details.

23.1.4 Principle Components Regression

In some situations, it is not feasible to use variable selection to reduce the number
of explanatory variables or it is not desirable to do so. The first case can occur if the
number of explanatory variables is large compared to the number of observations.
The latter case is typical in situations when we observe many characteristics of
the same type, for example, temperature or electro-impulse measurements from
different sensors on a human body. They could be possibly correlated with each
other and there is no a priori reason why measurements at some points of a skull,
for instance, should be significant while other ones would not be important at all.
Since such data typically exhibit (exact) multicollinearity and we do not want to
exclude some or even majority of variables, we have to reduce the dimension of the
data in another way.

A general method that can be used both under near and exact mul-
ticollinearity is based on the principle components analysis (PCA), see
Chap. III.6. Its aim is to reduce the dimension of explanatory variables by finding
a small number of linear combinations of explanatory variables X that capture
most of the variation in X and to use these linear combinations as new explanatory
variables instead the original ones. Suppose that G is an orthonormal matrix that
diagonalizes matrix X>X: G>G D I, X>X D GƒG>, and G>X>XG D ƒ,
whereƒ D diag.�1; : : : ; �p/ is a diagonal matrix of eigenvalues of X>X.

Definition 3. Assume without loss of generality that �1 � : : : � �p and g1; : : : ;gp
are the corresponding eigenvectors (columns of matrix G ). Vector zi D Xgi for
i D 1; : : : ; p such that �i > 0 is called the i th principle component (PC) of X and
gi represents the corresponding loadings.

PCA tries to approximate the original matrix X by projecting it into the
lower-dimensional space spanned by the first k eigenvectors g1; : : : ;gk. It can be
shown that these projections capture most of the variability in X among all linear
combinations of columns of X, see Härdle and Simar (2003).

Theorem 2. There is no standardized linear combination Xa; where kak D 1,
that has strictly larger variance than z1 D Xg1: Var.Xa/ � Var.z1/ D �1.
Additionally, the variance of the linear combination z D Xa; kak D 1; that is
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uncorrelated with the first k principle components z1; : : : ; zk is maximized by the
.k C 1/-st principle component z D zkC1 and a D gkC1, k D 1; : : : ; p � 1.

Consequently, one chooses a number k of PCs that capture a sufficient amount of
data variability. This can be done by looking at the ratio Lk DPk

iD1 �i=
Pp

iD1 �i ,
which quantifies the fraction of the variance captured by the first k PCs compared
to the total variance of X.

In the regression context, the chosen PCs are used as new explanatory variables,
and consequently, PCs with small eigenvalues can be important too. Therefore, one
can alternatively choose the PCs that exhibit highest correlations with the dependent
variable y because the aim is to use the selected PCs for regressing the dependent
variable y on them, see Jollife (1982). Moreover, for selecting “explanatory” PCs,
it is also possible to use any variable selection method discussed in Sect. 23.1.3.
Recently, Hwang and Nettleton (2003) proposed a new data-driven PC selection for
PCR obtained by minimizing MSE.

Next, let us assume we selected a small number k of PCs Zk D .z1; : : : ; zk/>
by some rule such that matrix Z>k Zk has a full rank, k � p. Then the principle
components regression (PCR) is performed by regressing the dependent variable y
on the selected PCs Zk, which have a (much) smaller dimension than original data
X, and consequently, multicollinearity is diminished or eliminated, see Gunst and
Mason (1980). We estimate this new model by LS,

y D Zk	 C � D XGk	 C �;

whereGk D .g1; : : : ;gk/>. Comparing it with the original model (23.1) shows that
ˇ D Gk	 . It is important to realize that in PCR we first fix Gk by means of PCA
and then estimate 	 .

Finally, concerning different PC selection criteria, Barros and Rutledge (1998)
demonstrate the superiority of the correlation-based PCR (CPCR) and convergence
of many model-selection procedures toward the CPCR results. See also Depczynski
et al. (2000) for a similar comparison of CPRC and PCR based on GA variable
selection and Heij et al. (2007) for comparison with the closely related principal
covariate regression.

Example 2. Let us use data Pollution to demonstrate several important issues
concerning PCR. First, we identify PCs of the data. The fraction of variance
explained by the first k PCs as a function of k is depicted on Fig. 23.1 (dashed
line). On the one side, almost all of the X variance is captured by the first PC. On
the other side, the percentage of the y variance explained by the first k PCs (solid
line) grows and reaches its maximum relatively slowly. Thus, the inclusion of about
7 PCs seems to be necessary when using this strategy.

On the other hand, using some variable selection method or checking the
correlation of PCs with the dependent variable y reveals that PCs 1, 3, 4, 5, 7 exhibit
highest correlations with y (higher than 0.25), and naturally, a model using these 5
PCs has more explanatory power ( NR2 D 0:70) than for example the first 6 PCs



658 P. Čížek
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Fig. 23.1 Fraction of the explained variance of X (dashed line) and y (solid line) by the first
k PCs

together ( NR2 D 0:65). Thus, considering not only PCs that capture most of the
X variability, but also those having large correlations with the dependent variable
enables building more parsimonious models.

23.1.5 Shrinkage Estimators

We argued in Sect. 23.1.2 that an alternative way of dealing with unpleasant
consequences of multicollinearity lies in biased estimation: we can sacrifice a
small bias for a significant reduction in variance of an estimator so that its MSE
decreases. Since it holds for an estimator b and a real constant c 2 R that
Var.c Ǒ / D c2Var. Ǒ /, a bias of the estimator Ǒ towards zero, jcj < 1, naturally
leads to a reduction in variance. This observation motivates a whole class of biased
estimators – shrinkage estimators – that are biased towards zero in all or just some
of their components. In other words, they “shrink” the Euclidean norm of estimates
compared to that of the corresponding unbiased estimate. This is perhaps easiest to
observe on the example of the Stein-rule estimator, which can be expressed in linear
regression model (23.1) as

ǑSR D
 

1 � ke>e
n ǑLS>X>X ǑLS

!
ǑLS ; (23.8)
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where k > 0 is an arbitrary scalar constant and e>e=n represents an estimate of the
residual variance (Gruber 1998). Apparently, the Stein-rule estimator just multiplies
the LS estimator by a constant smaller than one. See Gruber (1998) and Judge and
Bock (1983) for an overview of this and many other biased estimators.

In the following subsections, we discuss various shrinkage estimators that per-
form well under multicollinearity and that can possibly act as variable selection tools
as well: the ridge regression estimator and its modifications (Sect. 23.1.6), the con-
tinuum regression (Sect. 23.1.7), the Lasso estimator and its variants (Sect. 23.1.8),
the least angle regression (Sect. 23.1.9), and partial least squares (Sect. 23.1.10).
Let us note that there are also other shrinkage estimators, which either do not
perform well under various forms of multicollinearity (e.g., Stein-rule estimator)
or are discussed in other parts of this chapter (e.g., pre-test and PCR estimators in
Sects. 23.1.3 and 23.1.4, respectively).

23.1.6 Ridge Regression

Probably the best known shrinkage estimator is the ridge estimator proposed and
studied by Hoerl and Kennard (1970). Having a non-orthogonal or even nearly
singular matrix X>X, one can add a positive constant k > 0 to its diagonal to
improve conditioning.

Definition 4. Ridge regression (RR) estimator is defined for model (23.1) by

ǑRR D .X>X C kI/�1X>y (23.9)

for some ridge parameter k > 0.

“Increasing” the diagonal of X>X before inversion shrinks ǑRR compared to ǑLS
and introduces a bias. Additionally, Hoerl and Kennard (1970) also showed that the
derivative of MSE. ǑRR/ with respect to k is negative at k D 0. This indicates that
the bias

Bias. ǑRR/ D �k.X>X C kI/�1ˇ
can be smaller than the decrease in variance (here for a homoscedastic linear model
with error variance 2)

Var. ǑRR/�Var. ǑLS / D 2.X>XCkI/�1X>X.X>XCkI/�1�2.X>X/�1

caused by shrinking at least for some values of k. The intervals for k where RR
dominates LS are derived, for example, in Chawla (1990), Gruber (1998), and Rao
and Toutenberg (1999). Moreover, the improvement in MSE. ǑRR/ with respect to
MSE. ǑLS / is significant under multicollinearity while being negligible for nearly
orthogonal systems. A classical result for model (23.1) under " � N.0; 2In/ states
that MSE. ǑRR/�MSE. ǑLS / < 0 is negative definite if k < kmax D 22=ˇ>ˇ ,
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see Vinod and Ullah (1981), where an operational estimate of kmax is discussed too.
Notice however that the conditions for the dominance of the RR and other some
other shrinkage estimators over LS can look quite differently in the case of non-
normal errors (Ullah et al. 1983).

In applications, an important question remains: how to choose the ridge parame-
ter k? In the original paper by Hoerl and Kennard (1970), the use of the ridge trace,
a plot of the components of the estimated ǑRR against k, was advocated. If data
exhibit multicollinearity, one usually observes a region of instability for k close to
zero and then stable estimates for large values of ridge parameter k. One should
choose the smallest k lying in the region of stable estimates. Alternatively, one
could search for k minimizing MSE. ǑRR/; see the subsection on the generalized
RR for more details. Furthermore, many other methods for model selection could be
employed too; for example, LOU CV (Sect. 23.1.3) performed on a grid of k values
is often used in this context.

Statistics important for inference based on RR estimates are discussed in Hoerl
and Kennard (1970) and Vinod and Ullah (1981) both for the case of a fixed k
as well as in the case of some data-driven choices. Moreover, the latter work also
describes algorithms for a fast and efficient RR computation.

To conclude, let us note that the RR estimator ǑRR in model (23.1) can be also
defined as a solution of a restricted minimization problem

ǑRR D argmin
Ǒ Wk Ǒk22�r2

.y �X Ǒ />.y �X Ǒ /; (23.10)

or equivalently as

ǑRR D argmin
Ǒ

.y �X Ǒ />.y �X Ǒ /C kk Ǒk22; (23.11)

where r represents a tuning parameter corresponding to k (Swamy et al. 1978).
This formulation was used by Ngo et al. (2003), for instance. Moreover, (23.10)
reveals one controversial issue in RR: rescaling of the original data to make X>X
a correlation matrix. Although there are no requirements of this kind necessary for
theoretical results, standardization is often recommended to make influence of the
constraint k Ǒk22 � r2 same for all variables. There are also studies showing adverse
effects of this standardization on estimation, see Vinod and Ullah (1981) for a
discussion. A possible solution is generalized RR, which assigns to each variable
its own ridge parameter (see the next paragraph).

Generalized Ridge Regression

The RR estimator can be generalized in the sense that each diagonal element of
X>X is modified separately. To achieve that let us recall that this matrix can be
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diagonalized: X>X D G>�G , where G is an orthonormal matrix and � is a
diagonal matrix containing eigenvalues �1; : : : ; �p .

Definition 5. The generalized ridge regression (GRR) estimator is defined for
model (23.1) by

ǑGRR D .X>X CGKG>/�1X>y (23.12)

for a diagonal matrixK D diag.k1; : : : ; kp/ of ridge parameters.

The main advantage of this generalization being ridge coefficients specific to
each variable, it is important to know how to choose the matrix K . In Hoerl and
Kennard (1970) the following result is derived.

Theorem 3. Assume that X in model (23.1) has a full rank, " � N.0; 2In/,
and n > p. Further, let X D H�1=2G> be the singular value decomposition
of X and 	 D G>ˇ0. The MSE-minimizing choice of K in (23.12) is K D
2 diag.��21 ; : : : ; ��2p /.

An operational version (feasible GRR) is based on an unbiased estimate O�i D
G> ǑLS and s2 D .y � H O�/>.y � H O�/. See Hoerl and Kennard (1970) and
Vinod and Ullah (1981), where you also find the bias and MSE of this operational
GRR estimator, and Wang and Chow (1990) for further extensions of this approach.
Let us note that the feasible GRR (FGRR) estimator does not have to possess the
MSE-optimality property of GRR because the optimal choice ofK is replaced by an
estimate. Nevertheless, the optimality property of FGRR is preserved if �i�2i � 22,
where �i is the .i; i/th-element of � (Farebrother 1976).

Additionally, given an estimate of MSE-minimizing OK D diag. Ok1; : : : ; Okp/,
many authors proposed to choose the ridge parameter k in ordinary RR as a
harmonic mean of Oki ; i D 1; : : : ; p; see Hoerl et al. (1975), for instance.

Almost Unbiased Ridge Regression

Motivated by results on GRR, Kadiyala (1984) proposed to correct GRR for its
bias using the first-order bias approximation. This yields almost unbiased GRR
(AUGRR) estimator

ǑAUGRR D .X>X CGKG>/�1.X>y CKG>ˇ0/:

The true parameter value ˇ0 being unknown, Ohtani (1986) defined a feasible
AUFGRR estimator by replacing the unknown ˇ0 by ǑFGRR and K by the
employed ridge matrix. Additionally, a comparison of the FGRR and feasible
AUGRR estimators with respect to MSE proved that FGRR has a smaller MSE
than AUGRR in a wide range of parameter space. Similar observation was also
done under a more general loss function in Wan (2002). Furthermore, Akdeniz et al.
(2004) derived exact formulas for the moments of the feasible AUGRR estimator.
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Further Extensions

RR can be applied also under exact multicollinearity, which arises for example in
data with more variables than observations. Although the theory and application
of RR is the same as in the case of full-rank data, the computational burden of
O.np2 C p3/ operations becomes too high for p > n. A faster algorithm with
computational complexity onlyO.np2/ was found by Hawkins and Yin (2002).

Moreover, there are many other extensions of the RR principle that go beyond the
extent of this chapter. To mention at least some of them, let us refer a reader to works
comparing or combining various ridge and shrinkage approaches (Kibria 1996;
Lipovetski 2010; Shiaishi and Konno 1995; Singh et al. 1994) and to monograph
by Gruber (1998). Further, even though RR is presented here as an alternative tool
to variable selection for dealing with multicollinearity, variable selection can be
performed also in the context of RR (Yanagihara and Satoh 2010).

Example 3. Using data Pollution once again, we estimated RR for the ridge
parameter k 2 .0; 10/ and plotted the estimated coefficients ǑRR as functions
of k (ridge trace plot), see Fig. 23.2. For the sake of simplicity, we restricted
ourselves only to variables that were selected by some variable selection procedure
in Table 23.1 (1, 2, 6, 9, 12, 13, 14). The plot shows the effect of the ridge
parameter k on slope estimates (k D 0 corresponds to LS). Apparently, slopes
of some variables are affected very little (e.g., variable 1), some significantly (e.g.,
the magnitude of variable 14 increases more than twice), and some variables shrink
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Fig. 23.2 Ridge trace plot for variables 1, 2, 6, 9, 12, 13, 14 of data Pollution. The vertical line
represents the CV-choice of k
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extremely (e.g., variables 12 and 13). In all cases, the biggest change occurs between
k D 0 and k D 2 and estimates gradually stabilize for k > 2. The vertical dashed
line in Fig. 23.2 represents the CV estimate of k (kCV D 6:87).

23.1.7 Continuum Regression

RR discussed in Sect. 23.1.6 is very closely connected with the continuum regres-
sion proposed by Brooks and Stone (1990) as a unifying approach to the LS, PCR,
and partial least squares (see Sect. 23.1.10) estimation.

Definition 6. A continuum regression (CR) estimator ǑCR.˛/ of model (23.1) is a
coefficient vector maximizing function

T˛.c/ D .c>s/2.c>Sc/˛�1 D .c>X>y/2.c>X>Xc/˛�1; (23.13)

for a given value of parameter ˛ � 0 and a given length kck, where S D X>X and
s D X>y.

This definition yields estimates proportional to LS for ˛ D 0, to PCR for ˛ ! 1,
and to yet-to-be-discussed partial least squares for ˛ D 1. Apart from this, the
advantage of CR is that one can adaptively select among the methods by searching
an optimal ˛. To determine ˛, Brooks and Stone (1990) used CV.

The relationship between RR and CR was indicated already in Sundberg (1993),
but the most important result came after uncovering possible discontinuities of CR
estimates as a function of data and ˛ by Bjorkstrom and Sundberg (1996). In an
attempt to remedy the discontinuity of the original CR, Bjorkstrom and Sundberg
(1999) not only proposed to maximize

Tı.c/ D .c>s/2.c>Sc/�1jc>Sc C ıj�1;

for ı � 0 instead of T˛.c/ from Def. 6 (ı can be chosen by CV), but also proved the
following proposition.

Theorem 4. If a regressor bf is defined according to

bf D argmax
kckD1

f fK2.c/; V .c/g;

where K.c/ D y>Xc, V.c/ D kXck2, f .K2; V / is increasing in K2 for constant
V , and increasing in V for constant K2, and finally, if X>y is not orthogonal to
all eigenvectors corresponding to the largest eigenvalue �max of X>X, then there
exists a number k 2 .�1; �max/[Œ0;C1� such that bf is proportional to .X>XC
kI/�1X>y, including the limiting cases k ! 0; k ! ˙1, and k ! ��max.
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Thus, the RR estimator fundamentally underlies many methods dealing with
multicollinear and reduced rank data such as mentioned PCR and partial least
squares. Notice however that negative values of the ridge coefficient k have to be
admitted here.

Finally, let us note that CR can be extended to multiple-response-variables
models (Brooks and Stone 1994).

23.1.8 Lasso

The ridge regression discussed in Sect. 23.1.6 motivates another shrinkage method:
Lasso (least absolute shrinkage and selection operator) by Tibshirani (1996).
Formulation (23.10) states that RR can be viewed as a minimization with respect
to an upper bound on the L2 norm of estimate k Ǒk2. A natural extension is to
consider constraints on theLq norm k Ǒkq , q > 0, or even more general penalization
functions (cf. Fan and Li 2001). Specifically, Tibshirani (1996) studied case of
q D 1, that is L1 norm.

Definition 7. The Lasso estimator for the regression model (23.1) is defined by

ǑL D argmin
kˇk1�r

.y �Xˇ/>.y �Xˇ/; (23.14)

where r � 0 is a tuning parameter.

Lasso is a shrinkage estimator that has one specific feature compared to the
ordinary RR. Because of the geometry of L1-norm restriction, Lasso shrinks the
effect of some variables and eliminates influence of the others, that is, sets their
coefficients to zero. Thus, it combines regression shrinkage with variable selection,
and as Tibshirani (1996) demonstrated also by means of simulation, it compares
favorably to all-subsets regression. (It is even possible to induce an order in which
Lasso introduces the variables in the model as shown by Tibshirani et al. 2005.) In
this context, it is interesting that Lasso could be formulated as a special case of the
least angle regression by Efron et al. (2004), see Sect. 23.1.9. Finally, let us note that
to achieve the same kind of shrinking and variable-selection effects for all variables,
they should be standardized before used in Lasso; see Miller (2002) for details.

As far as the inference for the Lasso estimator is concerned, Knight and Fu (2000)
studied its asymptotic distribution using Lq-norm condition kˇkq � r with q �
1, including behavior under nearly-singular designs. These results were recently
complemented by the study of the finite-sample and asymptotic distributions of
Lasso-type estimators by Potscher and Leeb (2009), who show that Lasso tuned to
work as a consistent model-selection procedure cannot (uniformly) reach the usualp
n rate of convergence. These results are important for the extensions of Lasso

aiming at joint estimation and model selection (e.g., Wang et al. 2007; Zou 2006).



23 (Non) Linear Regression Modeling 665

Now, it remains to find out how Lasso estimates can be computed. Equation
(23.14) indicates that one has to solve a restricted quadratic optimization problem.
Setting ˇCj D maxfˇj ; 0g and ˇ�j D �minfˇj ; 0g, the restriction kˇk � r can

be written as 2p C 1 constraints: ˇCj � 0; ˇ�j � 0, and
Pp

jD1.ˇ
C
j � ˇ�j / � r .

Thus, convergence is assured in 2p C 1 steps. Additionally, the unknown tuning
parameter r is to be selected by means of CV. Further, although solving (23.14)
is straightforward in usual regression problems, it can become very demanding
for reduced-rank data, p > n. Osborne et al. (1999) treated lasso as a convex
programming problem, and by formulating its dual problem, developed an efficient
algorithm usable even for p > n.

Example 4. Let us use data Pollution once more to exemplify the use of Lasso.
To summarize the Lasso results, we use the same plot as Tibshirani (1996) and
Efron et al. (2004) used, see Fig. 23.3. It contains standardized slope estimates
as a function of the constraint kbk � r , which is represented by an index
r=max k Ǒk D k ǑLk=k ǑLS k (the LS estimate ǑLS corresponds to ǑL under
r D 1, and thus, renders the maximum of k ǑLk). Moreover, to keep the graph
simple, we plotted again only variables that were selected by variable selection
procedures in Table 23.1 (1, 2, 6, 9, 12, 13, 14).
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Fig. 23.3 Slope coefficients for variables 1, 2, 6, 9, 12, 13, 14 of data Pollution estimated by Lasso
at different constraint levels, r=maxk Ǒk. The right axis assigns to each line the number of variable
it represents and the top axis indicates the number of variables included in the regression
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In Fig. 23.3, we can observe which variables are included in the regression (have
a nonzero coefficient) as tuning parameter r increases. Clearly, the order in which
the first of these variables become significant – 9, 6, 14, 1, 2 – closely resembles
the results of variable selection procedures in Table 23.1. Thus, Lasso combines
shrinkage estimation and variable selection: at a given constraint level r , it shrinks
coefficients of some variables and removes the others by setting their coefficients
equal to zero.

23.1.9 Least Angle Regression

In Sect. 23.1.3, the forward selection was described as overly greedy and conse-
quently ignoring possibly useful variables. A simple modification of the forward
selection, where one always adds to the regression function only an “"-fraction”
of the selected variable for some small " > 0, leads to the forward stagewise
regression, and after finding the optimal size of the step ", to the least angle
regression (LARS) proposed by Efron et al. (2004). Thus, the below described
LARS algorithm represents a generalization of the forward selection procedure. At
the same time, Efron et al. (2004) also showed that LARS provides a fast way to
compute all Lasso estimates, that is, estimates for all values of r in (23.14) can be
computed just in p steps, where p is the number of explanatory variables.

To describe the LARS algorithm, let O�k denote the regression function, Ik the set
of variables selected in the kth step of the algorithm, andXk D fsjx�j gj2Ik , where
sj is a sign defined below. Starting from an “empty” regression function O�0 for
k D 0, LARS adds in each step an additional variable. For a given k D 0; : : : ; p�1,
the selection is done based on the vector of the correlations Oc D X>.y � O�k/ of
variablesX with the current regression residuals. For these correlations, let the signs
sj D sign. Ocj / and the set Ik D fj W j Ocj j D OC g, where OC D maxj j Ocj j, contain the
variables with the highest current correlations. All these most correlated variables
are now added to the regression function: O�kC1 D O�kC�vk, where the combination
of variables is determined is such a way that vk and Xj form the same angle for all
j 2 Ik :

vk D XkŒAk.X>k Xk/�1IjIk j�;
whereAk D fI>jIk j.X>k Xk/�1IjIk jg�1=2. The step � is chosen so that IkC1 computed
for O�kC1 in the next step will contain more variables than Ik :

� D minC
j2f1;:::;ngnIk

( OC � Ocj
Ak � aj ;

OC C Ocj
Ak C aj

)

;

where ak D X>vk and minC means that the minimum is taken only over positive
arguments.

The described form of LARS leads to a similar estimation procedure and similar
outputs as Lasso (see Fig. 23.3), but does not produce exactly the same solutions as
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Lasso. To achieve the equivalence of the two methods, the size of � has to be shorter
in some steps; see Efron et al. (2004). Similarly, the LARS algorithm produces
the stagewise-regression result only if the changes of the regression coefficients
are restricted to have the same signs as the current correlations of the explanatory
variables and regression residuals at each step of the algorithm.

23.1.10 Partial Least Squares

A general modeling approach to most of the methods covered so far was CR in
Sect. 23.1.7, whereby it has two “extremes”: LS for ˛ D 0 and PCR for ˛ ! 1.
The partial least squares (PLS) regression lies in between – it is a special case of
(23.13) for ˛ D 1, see Brooks and Stone (1990). Originally proposed by Wold
(1966), it was presented as an algorithm that searches for linear combinations of
explanatory variables best explaining the dependent variable. Similarly to PCR,
PLS also aims especially at situations when the number of explanatory variables
is large compared to the number of observations. Here we present the PLS idea and
algorithm themselves as well as the latest results on variable selection and inference
in PLS.

Having many explanatory variables X, the aim of the PLS method is to find a
small number of linear combinations T1 D Xc1; : : : ;Tq D Xcq of these variables,
thought about as latent variables, explaining observed responses

Oy D Ǒ0 C
qX

jD1
Tj Ǒj (23.15)

(see Garthwaite 1994; Helland 2001). Thus, similarly to PCR, PLS reduces the
dimension of data, but the criterion for searching linear combinations is different.
Most importantly, it does not depend only on X values, but on y too.

Let us now present the PLS algorithm itself, which defines yet another shrinkage
estimator as shown by Coutis (1996) and Jong (1995). (See Rao and Toutenberg
1999, for more details, Garthwaite 1994, for an alternative formulation, and Zhang
et al. 2004, for weighted versions of PLS.) The indices T1; : : : ;Tq are constructed
one after another. Estimating the intercept by b0 D Ny, let us start with centered
variables z0 D y � Ny and U0 D X � NX and set k D 1.

1. Define the index Tk D Uk�1.U>k�1zk�1/. This linear combination is given by the
covariance of the unexplained part of the response variable zk�1 and the unused
part of explanatory variables Uk�1.

2. Regress the current explanatory matrix Uk�1 on index Tk

wk D .T >k Tk/�1T >k Uk�1
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and the yet-unexplained part of response zk�1 on index Tk

Ǒ
k D .T >k Tk/�1T >k zk�1;

thus obtaining the kth regression coefficient.
3. Compute residuals, that is the remaining parts of explanatory and response

variables: Uk D Uk�1 � Tkwk and zk D zk�1 � Tkbk. This implies that the
indices Tk and Tl are not correlated for k < l .

4. Iterate by setting k D k C 1 or stop if k D q is large enough.

This algorithm provides us with indices Tk, which define the analogs of principle
components in PCR, and the corresponding regression coefficients bk in (23.15).
The main open question is how to choose the number of components q. The original
method proposed by Wold (1978) is based on cross validation. Provided that CVk
from (23.7) represents the CV index of PLS estimate with k factors, an additional
index TkC1 is added if Wold’s R criterion R D CVkC1=CVk is smaller than 1.
This selects the first local minimum of the CV index, which is superior to finding
the global minimum of CVk as shown in Osten (1988). Alternatively, one can stop
already when Wold’s R exceeds 0:90 or 0:95 bound (modified Wold’s R criteria)
or to use other variable selection criteria such as AIC. A recent simulation study by
Li et al. (2002) showed that modified Wold’s R is preferable to Wold’s R and AIC.
Furthermore, similarly to PCR, there are attempts to use GA for the component
selection, see Leardi and Gonzales (1998), for instance.

Next, one of the first results on the asymptotic behavior of PLS stems from
Helland and Almoy (1994). The covariance matrix, confidence and prediction
intervals based on PLS estimates were first studied by Denham (1997), but a more
compact expression was presented in Phatak et al. (2002). There are also attempts
to find a sample-specific prediction error of PLS, which were compared by Faber
et al. (2003). More importantly, while PLS is widely applied in data with large
numbers of covariates, Butler and Denham (2000) showed theoretically and practi-
cally that PLS can severaly break down for data exhibiting particular covariance
structures and has to be thus used with caution, especially in the presence of
multicollinearity.

Finally, note that there are many extensions of the presented algorithm, which
is usually denoted PLS1. First of all, there are extensions (PLS2, SIMPLS, etc.)
of PLS1 to models with multiple dependent variables, see Jong (1993) and Frank
et al. (1993) for instance, which choose linear combinations (latent variables) not
only within explanatory variables, but does the same also in the space spanned by
dependent variables. A recent survey of these and other so-called two-block methods
is given in Wegelin (2000). PLS was also adapted for on-line process modeling, see
Qin (1997) for a recursive PLS algorithm. Additionally, in an attempt to simplify the
interpretation of PLS results, Trygg and Wold (2002) proposed orthogonalized PLS.
Finally, PLS can be adapted for variable selection and seem to outperform similar
modifications of Lasso and PCR, especially under multicollinearity (Chong and Jun
2005).



23 (Non) Linear Regression Modeling 669

Example 5. Let us use again data Pollution, although it is not a typical application
of PLS. As explained in Sects. 23.1.7 and 23.1.10, PLS and PCR are both based
on the same principle (searching for linear combinations of original variables), but
use different objective functions. To demonstrate, we estimated PLS for 1 to 15
latent variables and plotted the fraction of the X and y variance explained by the
PLS latent variables in the same way as in Fig. 23.1. Both curves are in Fig. 23.4.
Almost all of the variability in X is captured by the first latent variable, although
this percentage is smaller than in the case of PCR. On the other hand, the percentage
of the variance of y explained by the first k latent variables increases faster than in
the case of PCR, see Fig. 23.4 (solid vs. dotted line).

23.1.11 Comparison of the Methods

Methods discussed in Sects. 23.1.3–23.1.10 are aiming at the estimation
of (nearly) singular problems and they are often very closely related, see
Sect. 23.1.7. Here we provide several references to studies comparing the discussed
methods.

First, an extensive simulation study comparing variable selection, PCR, RR, and
PLS regression methods is presented in Frank et al. (1993). Although the results
are conditional on the simulation design used in the study, they indicate that PCR,
RR, and PLS are, in the case of ill-conditioned problems, highly preferable to

2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

Number of PCs

%
 o

f v
ar

ia
nc

e

Fig. 23.4 Fraction of the explained variance of X (dashed line) and y (solid line) by the first k
latent variables in PLS regression and by first k PCs (dotted lines)
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variable selection. The differences between the best methods, RR and PLS, are
rather small and the same holds for comparison of PLS and PCR, which seems to be
slightly worse than RR. An empirical comparison of PCR and PLS was also done by
Wentzell and Montoto (2003) with the same result. Next, the fact that neither PCR,
nor PLS asymptotically dominates the other method was proved in Helland and
Almoy (1994) and further discussed in Helland (2001). A similar asymptotic result
was also given by Stoica and Soderstrom (1998). Finally, the fact that RR should
not perform worse than PCR and PLS is supported by Theorem 4 in Sect. 23.1.7.

23.2 Nonlinear Regression Modeling

In this section, we study the nonlinear regression model

yi D h.xi ;ˇ0/C "i ; (23.16)

i D 1; : : : ; n, where h W Rp � Rk ! R is a known regression function and ˇ0 is
a vector of k unknown parameters. Let us note that the methods discussed in this
section are primarily meant for truly nonlinear models rather than intrinsically linear
models. A regression model is called intrinsically linear if it can be unambiguously
transformed to a model linear in parameters. For example, the regression model
y D ˇ1x=.ˇ2 C x/ can be expressed as 1=y D 1=ˇ1 C ˇ2=ˇ1x, which is linear in
parameters ™1 D 1=ˇ1 and ™2 D ˇ2=ˇ1. Transforming a model to its linear form
can often provide better inference, such as confidence regions, although one has to
be aware of the effects of the transformation on the error-term distribution.

We first discuss the fitting and inference in the nonlinear regression (Sects. 23.2.1
and 23.2.2), whereby we again concentrate on the least square estimation. For an
extensive discussion of theory and practice of nonlinear least squares regression
see monographs Amemiya (1983), Bates and Watts (1988), and Seber and Wild
(2003). Second, similarly to the linear modeling section, methods for ill-conditioned
nonlinear systems are briefly reviewed in Sect. 23.2.3.

23.2.1 Fitting of Nonlinear Regression

In this section, we concentrate on estimating the vector ˇ0 of unknown parameters
in (23.16) by nonlinear least squares.

Definition 8. The nonlinear least squares (NLS) estimator for the regression model
(23.16) is defined by

ǑNLS D argmin
ˇ2Rp

nX

iD1
fyi � Oyi .ˇ/g2 D argmin

ˇ2Rp

nX

iD1
fyi � h.xi ;ˇ/g2: (23.17)
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Contrary to the linear model fitting, we cannot express analytically the solution
of this optimization problem for a general function h. On the other hand, we can
try to approximate the nonlinear objective function using the Taylor expansion
because the existence of the first two derivatives of h is an often used condition
for the asymptotic normality of NLS, and thus, could be readily assumed. Denoting
h. Ǒ / D fh.xi ; Ǒ /gniD1 and Sn. Ǒ / D Pn

iD1Œyi � h.xi ; Ǒ /�2, we can state the
following theorem from Amemiya (1985).

Theorem 5. Let "i in (23.16) are independent and identically distributed with
E."jX/ D 0 and Var."jX/ D 2In and let B be an open neighborhood of ˇ0.
Further, assume that h.x;ˇ/ is continuous on B uniformly with respect to x and
twice continuously differentiable in B and that:

1. limn!1 Sn.ˇ/ 6D 0 for ˇ 6D ˇ0;
2. Œ@h.ˇ/=@ˇ>�>Œ@h.ˇ/=@ˇ>�=n converges uniformly in B to a finite matrix
A.ˇ/, such thatA.ˇ0/ is nonsingular;

3. h.ˇ1/>Œ@2h.ˇ2/=@̌ j @̌ k�=n converges uniformly for ˇ1;ˇ2 2 B to a finite
matrix for all j; k D 1; : : : ; k.

Then the NLS estimator ǑNLS is consistent and asymptotically normal

p
n
� ǑNLS � ˇ0

	
! N.0; 2A.ˇ0/

�1/: (23.18)

Hence, although there is no general explicit solution to (23.17), we can assume
without loss of much generality that the objective function Sn. Ǒ / is twice differ-
entiable in order to devise a numerical optimization algorithm. The second-order
Taylor expansion provides then a quadratic approximation of the minimized func-
tion, which can be used for obtaining an approximate minimum of the function,
see Amemiya (1983). As a result, one should search in the direction of the steepest
descent of a function, which is given by its gradient, to get a better approximation
of the minimum. We discuss here the incarnations of these methods specifically for
the case of the quadratic loss function in (23.17).

Newton’s Method

The classical method based on the gradient approach is Newton’s method, see
Kennedy and Gentle (1980) and Amemiya (1983) for detailed discussion. Starting
from an initial point Ǒ1, a better approximation is found by taking

ǑkC1 D Ǒk �H �1.r2; Ǒk/J .r; Ǒk/ D (23.19)

D Ǒk �
"

J .h; Ǒk/>J .h; Ǒk/C
nX

lD1
ri . Ǒ /H .hi ; Ǒk/

#�1
J .h; Ǒk/>r. Ǒk/;
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where r.ˇ/ D fŒyi � h.xi ;ˇ/�gniD1 represents the vector of residuals, J .f ;ˇ/ D
@f .ˇ/=@ˇ> is the Jacobian matrix of a vector function f .ˇ/, and H .f ;ˇ/ D
@2fPn

iD1 f i .ˇ/g =@ˇ@ˇ> is the Hessian matrix of the sum of f .ˇ/.
To find ǑNLS , (23.19) is iterated until convergence is achieved. This is often

verified by checking whether the relative change from Ǒk to ǑkC1 is sufficiently
small. Unfortunately, this criterion can indicate a lack of progress rather than
convergence. Instead, Bates and Watts (1988) proposed to check convergence by
looking at some measure of orthogonality of residuals r. Ǒk/ towards the regression
surface given by h. Ǒk/, since the identification assumption of model (23.16) is
E.r.ˇ0/jX/ D 0. See Bjorck (1996), Kennedy and Gentle (1980), and Thisted
(1988) for more details and further modifications.

To evaluate iteration (23.19), it is necessary to invert the Hessian matrix
H .r2;ˇ/. From the computational point of view, all issues discussed in Sect. 23.1
apply here too and one should use a numerically stable procedure, such as QR
or SVD decompositions, to perform the inversion. Moreover, to guarantee that
(23.19) leads to a better approximation of the minimum, that is r. ǑkC1/>r. ǑkC1/ �
r. Ǒk/>r. Ǒk/, the Hessian matrixH .r2; Ǒk/ needs to be positive definite, which in
general holds only in a neighborhood of ˇ0 (see the Levenberg-Marquardt method
for a remedy). Even if it is so, the step in the gradient direction should not be too
long, otherwise we “overshoot.” Modified Newton’s method addresses this by using
some fraction ˛kC1 of iteration step ǑkC1 D Ǒk � ˛kC1H �1.r2; Ǒk/J .r; Ǒk/. See
Berndt et al. (1974), Fletcher and Powell (1963), and Kennedy and Gentle (1980)
for some choices of ˛kC1.

Gauss-Newton Method

The Gauss-Newton method is designed specifically for NLS by replacing the
regression function h.xi ; Ǒ / in (23.17) by its first-order Taylor expansion. The
resulting iteration step is

ǑkC1 D Ǒk �
n
J .h; Ǒk/>J .h; Ǒk/

o�1
J .h; Ǒk/>r. Ǒk/: (23.20)

Being rather similar to Newton’s method, it does not require the Hessian matrix
H .r2; Ǒk/, which is “approximated” by J .h; Ǒk/>J .h; Ǒk/ (both matrices are
equal in probability for n ! 1 under assumptions of Theorem 5, see Amemiya
1985). Because it only approximates the true Hessian matrix, this method belongs
to the class of quasi-Newton methods. The issues discussed in the case of Newton’s
method apply also to the Gauss-Newton method.

Levenberg-Marquardt Method

Depending on data and the current approximation Ǒk of ǑNLS , the Hessian matrix
H . Ǒk/ or its approximations such as J .h; Ǒk/>J .h; Ǒk/ can be badly conditioned
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or not positive definite, which could even result in divergence of Newton’s method
(or a very slow convergence in the case of modified Newton’s method). The
Levenberg-Marquardt method addresses the ill-conditioning by choosing the search
direction dk D ǑkC1 � Ǒk as a solution of

n
J .h; Ǒk/>J .h; Ǒk/C �Ip

o
dk D �J .h; Ǒk/>r. Ǒk/ (23.21)

(see Marquardt 1963). This approach is an analogy of RR used in linear regression
(Sect. 23.1.6). Similarly to RR, the Levenberg-Marquardt method improves con-
ditioning of the Hessian matrix and it limits the length of the innovation vector
dk compared to the (Gauss-)Newton method. See Kennedy and Gentle (1980) and
Bjorck (1996) for a detailed discussion of this algorithm. There are also algorithms
combining both Newton’s and the Levenberg-Marquardt approaches by using at
each step the method that generates a larger reduction in objective function.

Although Newton’s method and its modifications are most frequently used in
applications, the fact that they find local minima gives rise to various improve-
ments and alternative methods. They range from simple starting the minimization
algorithm from several (randomly chosen) initial points to general global-search
optimization methods such as genetic algorithms mentioned in Sect. 23.1.3 and
discussed in more details in Chaps. II.5 and II.6.

23.2.2 Statistical Inference

Similarly to linear modeling, the inference in nonlinear regression models is mainly
based, besides the estimate ǑNLS itself, on two quantities: the residual sum of
squares RSS D r. ǑNLS />r. ǑNLS / and the (asymptotic) variance of the estimate
Var. ǑNLS / D 2A.ˇ0/

�1, see (23.18). Here we discuss how to compute these
quantities for ǑNLS and its functions.

RSS will be typically a by-product of a numerical computation procedure,
since it constitutes the minimized function. RSS also provides an estimate of 2:
s2 D RSS=.n � k/. The same also holds for the matrix A.ˇ0/, which can
be consistently estimated by A. ǑNLS / D J .h; Ǒk/>J .h; Ǒk/, that is, by the
asymptotic representation of the Hessian matrix H .r2; Ǒk/. This matrix or its
approximations are computed at every step of (quasi-)Newton methods for NLS,
and thus, it will be readily available after the estimation.

Furthermore, the inference in nonlinear regression models may often involve a
nonlinear (vector) function of the estimate f. ǑNLS /; for example, when we test a
hypothesis (see Amemiya 1983, for a discussion of NLS hypothesis testing). Con-
trary to linear functions of estimates, whereVar.A ǑNLSCa/ D A>Var. ǑNLS /A,
there is no exact expression for VarŒf. ǑNLS /� in a general case. Thus, we usually
assume the first-order differentiability of f.�/ and use the Taylor expansion to
approximate this variance. Since
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f. Ǒ / D f.ˇ0/C @f.ˇ0/

@ˇ>
. Ǒ � ˇ0/C o.k Ǒ � ˇ0k/;

it follows that the variance can be approximated by

VarŒf. ǑNLS /� :D @f. ǑNLS /
@ˇ>

Var. ǑNLS /@f.
ǑNLS /
@ˇ

:

Hence, having an estimate of Var. ǑNLS /, the Jacobian matrix @f=@̌ > of function
f evaluated at ǑNLS provides the first-order approximation of the variance of
f. ǑNLS /.

23.2.3 Ill-Conditioned Nonlinear System

Similarly to linear modeling, the nonlinear models can also be ill-conditioned when
the Hessian matrix H.r2; Ǒ / is nearly singular or does not even have a full rank,
see Sect. 23.1.2. This can be caused either by the nonlinear regression function
h itself or by too many explanatory variables relative to sample size n. Here
we mention extensions of methods dealing with ill-conditioned problems in the
case of linear models (discussed in Sects. 23.1.5–23.1.10) to nonlinear modeling:
variable selection, ridge regression, Stein-rule estimator, Lasso, and partial least
squares.

First, a straightforward tool to eliminate the ill-conditioning of a linear estimation
problem is selecting a subset of variables sufficient for predicting the dependent
variable as discussed in Sect. 23.1.3. However in nonlinear models, selecting
relevant variables is complicated by the need to correctly specify a model first
(an incorrect model specification leads to inconsistent estimates and statistics used
to select variables). Therefore, the model-free variable selection is particularly
useful in nonlinear regression. The model-free variable selection relies on the
principle of a sufficient dimension reduction, which in general tries to replace
a high-dimensional vector of explanatory variables by a small number of their
projections (e.g., similarly to PLS) without assuming a parametric form of the
regression function (i.e., the relationships between variables have to be estimated
nonparametrically, see Chap. III.5). One way to use such a nonparametric fit is
to construct t- or �2-statistics for testing significance of each variable (Li et al.
2005) and then perform backward elimination or forward selection in the same
way as discussed in Sect. 23.1.3. Another possibility is to extend the nonparametric
estimation of the dimension-reduction space by additional constraints analously to
shrinkage estimators such as RR and Lasso (Bondell and Li 2009).

Now, considering the shrinkage methods, one of the early nonlinear RR esti-
mators was proposed by Dagenais (1983), who simply added a diagonal matrix to
H .r2;ˇ/ in equation (23.19). Since the nonlinear modeling is done by minimizing
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of an objective function, a more straightforward way is to use the alternative
formulation (23.11) of RR and to minimize

nX

iD1
fyi � h.x>i ;ˇ/g2 C k

pX

jD1
ˇ2j D r.ˇ/>r.ˇ/C kkˇk22; (23.22)

where k represents the ridge coefficient. See Ngo et al. (2003) for an application
of this approach. Next, equally straightforward is an application of Stein-rule
estimator (23.8) in nonlinear regression, see Kim and Hill (1995) for a recent
study of the positive-part Stein-rule estimator within the Box-Cox model. The same
could possibly apply to Lasso-type estimators discussed in Sect. 23.1.8 as well: the
Euclidian norm kˇk22 in (23.22) would just have to be replaced by anotherLq norm.
Nevertheless, the only application of Lasso in nonlinear models concerns situations,
where a transformation to a model with a linear structure is possible; for example,
in generalized linear models (Park and Hastie 2007) or in models approximating a
regression function by a linear combination of basis functions (Tateishi et al. 2010).

Finally, there is a range of modifications of PLS designed for nonlinear regression
modeling, which either try to make the relationship between dependent and explana-
tory variables linear in unknown parameters or deploy an intrinsically nonlinear
model. First, the methods using linearization are typically based on approximating
a nonlinear relationship by higher-order polynomials (see quadratic PLS by Wold et
al. 1989, and INLR approach by Berglund and Wold 1997) or a piecewise constant
approximation (GIFI approach, see Berglund et al. 2001). Wold et al. (2001) present
an overview of these methods. Second, several recent works introduced intrinsic
nonlinearity into PLS modeling. Among most important contributions, there are Qin
and McAvoy (1992) and Malthouse et al. (1997) modeling the nonlinear relationship
using a forward-feed neural network, Wold (1992) and Durand and Sabatier (1997)
transforming predictors by spline functions, and Bang et al. (2003) using fuzzy-
clustering regression approach.
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Chapter 24
Generalized Linear Models

Marlene Müller

24.1 Introduction

Generalized linear models (GLM) extend the concept of the well understood linear
regression model. The linear model assumes that the conditional expectation of Y
(the dependent or response variable) is equal to a linear combinationX>ˇ, i.e.

E.Y jX/ D X>ˇ:

This could be equivalently written as Y D X>ˇ C ". Unfortunately, the restriction
to linearity cannot take into account a variety of practical situations. For example,
a continuous distribution of the error " term implies that the response Y must have
a continuous distribution as well. Hence, the linear regression model may fail when
dealing with binary Y or with counts.

Example 1. (Bernoulli responses)
Let us illustrate a binary response model (Bernoulli Y ) using a sample on credit
worthiness. For each individual in the sample we know if the granted loan has
defaulted or not. The responses are coded as

Y D


1 loan defaults;
0 otherwise:

The term of interest is how credit worthiness depends on observable individual
characteristics X (age, amount and duration of loan, employment, purpose of loan,
etc.). Recall that for a Bernoulli variableP.Y D 1jX/ D E.Y jX/ holds. Hence, the
default probability P.Y D 1jX/ equals a regression of Y on X . A useful approach
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is the following logit model:

P.Y D 1jX D x/ D 1

1C exp.�x>ˇ/ :

Here the function of interestE.Y jX/ is linked to a linear function of the explanatory
variables by the logistic cumulative distribution function (cdf) F.u/ D 1=.1 C
e�u/ D eu=.1C eu/. �

The term generalized linear models (GLM) goes back to
Nelder and Wedderburn (1972) and McCullagh and Nelder (1989) who show
that if the distribution of the dependent variable Y is a member of the exponential
family, then the class of models which connects the expectation of Y to a linear
combination of the variables X>ˇ can be treated in a unified way. In the following
sections we denote the function which relates � D E.Y jX/ and � D X>ˇ by
� D G.�/ or

E.Y jX/ D G�1.X>ˇ/:
This function G is called link function. For all considered distributions of Y there
exists at least one canonical link function and typically a set of frequently used link
functions.

24.2 Model Characteristics

The generalized linear model is determined by two components:

• The distribution of Y .
• The link function.

In order to define the GLM methodology as a specific class of nonlinear models
(for a general approach to nonlinear regression see Chap. III.23), we assume that
the distribution of Y is a member of the exponential family. The exponential
family covers a large number of distributions, for example discrete distributions
as the Bernoulli, binomial and Poisson which can handle binary and count data or
continuous distributions as the normal, Gamma or Inverse Gaussian distribution.

24.2.1 Exponential Family

We say that a distribution is a member of the exponential family if its probability
mass function (if Y discrete) or its density function (if Y continuous) has the
following form:
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f .y; ™;  / D exp



y™ � b.™/
a. /

C c.y;  /
�
: (24.1)

The functions a.�/, b.�/ and c.�/ will vary for different Y distributions. Our
parameter of interest is ™, which is also called the canonical parameter McCullagh
and Nelder (1989). The additional parameter , that is only relevant for some of the
distributions, is considered as a nuisance parameter.

Example 2. (Normal distribution)
Suppose Y is normally distributed with Y � N.�; 2/. The probability density
function f .y/ D exp

˚�.y � �/2=.22/� =.p2�/ can be written as in (24.1)
by setting ™ D � and  D  and a. / D  2, b.™/ D ™2=2, and c.y;  / D
�y2=.2 2/ � log.

p
2� /. �

Example 3. (Bernoulli distribution)
If Y is Bernoulli distributed its probability mass function is

P.Y D y/ D �y.1 � �/1�y D


� if y D 1;
1 � � if y D 0:

This can be transformed into P.Y D y/ D exp .y™/ =.1 C e™/ using the logit
transformation ™ D log f�=.1 � �/g equivalent to � D e™=.1 C e™/. Thus we
obtain an exponential family with a. / D 1, b.™/ D � log.1 � �/ D log.1C e™/,
and c.y;  / D 0. �

Table 24.1 lists some probability distributions that are typically used for a GLM.
For the binomial and negative binomial distribution the additional parameter k is
assumed to be known. Note also that the Bernoulli, geometric and exponential
distributions are special cases of the binomial, negative binomial and Gamma
distributions, respectively.

24.2.2 Link Function

After having specified the distribution of Y , the link function G is the second
component to choose for the GLM. Recall the model notation � D X>ˇ D G.�/.
In the case that the canonical parameter ™ equals the linear predictor �, i.e. if

� D ™;

the link function is called the canonical link function. For models with a canonical
link the estimation algorithm simplifies as we will see in Subsection 24.3.3.
Table 24.2 shows in its second column the canonical link functions of the expo-
nential family distributions presented in Table 24.1.
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Table 24.1 GLM distributions
Range of y Variance terms

f .y/ �.™/ V .�/ a. /

Bernoulli
B.�/

f0; 1g �y.1� �/1�y e™

1C e™ �.1� �/ 1

Binomial
B.k; �/

f0; : : : ; kg
�
k
y

	
�y.1� �/k�y ke™

1C e™ �
�
1� �

k

	
1

Poisson
P.�/

f0; 1; 2; : : :g �y

yŠ
e�� exp.™/ � 1

Geometric
Geo.�/ f0; 1; 2; : : :g

�
�

1C �
	y �

1
1C �

	
e™

1� e™ �C �2 1

Negative
Binomial
NB.�; k/

f0; 1; 2; : : :g
�
kC y � 1

y

	�
�

k C �
�y �

k
k C �

�
ke™

1� e™ �C �2

k
1

Exponential
Exp.�/ .0;1/ 1

� exp
�
� x�

	
� 1=™ �2 1

Gamma
G.�; /

.0;1/ 1
� . /

�
 
�

	 
exp

�
�  y�

	
y �1 � 1=™ �2 1

 

Normal
N.�; 2/

.�1;1/ exp
˚�.y � �/2=.2 2/

�
p
2� 

™ 1  2

Inverse
Gaussian
IG.�;  2/

.0;1/ exp
˚�.y � �/2=.2�2y 2/

�
p
2�y3 

1p�2™ �3  2

Example 4. (Canonical link for Bernoulli Y )
For Bernoulli Y we have � D e™=.1C e™/, hence the canonical link is given by the
logit transformation � D logf�=.1 � �/g. �

What link functions could we choose apart from the canonical? For most of the
models exists a number of specific link functions. For Bernoulli Y , for example,
any smooth cdf can be used. Typical links are the logistic and standard normal
(Gaussian) cdfs which lead to logit and probit models, respectively. A further
alternative for Bernoulli Y is the complementary log–log link � D logf� log
.1 � �/g.

A flexible class of link functions for positive Y observations is the class
of power functions. These links are given by the Box-Cox transformation
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Table 24.2 Characteristics of GLMs
Canonical link Deviance
™.�/ D.y;�/

Bernoulli
B.�/

log
�

�
1� �

	
2
Ph

yi log
�
yi
�i

	
C .1� yi / log

�
1� yi
1� �i

	i

Binomial
B.k; �/

log

�
�

k � �
�

2
P
�
yi log

�
yi
�i

	
C .k � yi / log

�
k � yi
k � �i

�

Poisson
P.�/

log.�/ 2
Ph

yi log
�
yi
�i

	
� .yi � �i /

i

Geometric
Geo.�/ log

�
�

1C �
	

2
Ph

yi log
�
yi C yi�i
�i C yi�i

	
� log

�
1C yi
1C �i

	i

Negative
Binomial
NB.�; k/

log

�
�

k C �
�

2
P
�
yi log

�
yi k C yi�i
�ikC yi�i

�
� k log



k.k C yi /
k.k C �i /

�

Exponential
Exp.�/

1
� 2

Ph
yi � �i
�i

� log
�
yi
�i

	i

Gamma
G.�; /

1
� 2

Ph
yi � �i
�i

� log
�
yi
�i

	i

Normal
N.�; 2/

� 2
P�

.yi � �i /2�

Inverse
Gaussian
IG.�;  2/

1
�2

2
P
�
.yi � �i /2
yi�

2
i



(Box and Cox 1964), i.e. by � D .�� � 1/=� or � D �� where we set in both
cases � D log.�/ for � D 0.

24.3 Estimation

Recall that the least squares estimator for the ordinary linear regression model is
also the maximum-likelihood estimator in the case of normally distributed error
terms. By assuming that the distribution of Y belongs to the exponential family
it is possible to derive maximum-likelihood estimates for the coefficients of a
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GLM. Moreover we will see that even though the estimation needs a numerical
approximation, each step of the iteration can be given by a weighted least squares
fit. Since the weights are varying during the iteration the likelihood is optimized by
an iteratively reweighted least squares algorithm.

24.3.1 Properties of the Exponential Family

To derive the details of the maximum-likelihood algorithm we need to discuss some
properties of the probability mass or density function f .�/. For the sake of brevity
we consider f to be a density function in the following derivation. However, the
conclusions will hold for a probability mass function as well.

First, we start from the fact that
R
f .y; ™;  / dy D 1: Under suitable regularity

conditions (it is possible to exchange differentiation and integration) this implies

0 D @

@™

Z
f .y; ™;  / dy D

Z
@

@™
f .y; ™;  / dy

D
Z 


@

@™
logf .y; ™;  /

�
f .y; ™;  / dy D E



@

@™
`.y; ™;  /

�
;

where `.y; ™;  / D logf .y; ™;  / denotes the log-likelihood function. The func-
tion derivative of ` with respect to ™ is typically called the score function for which
it is known that

E



@2

@™2
`.y; ™;  /

�
D �E



@

@™
`.y; ™;  /

� 2
:

This and taking first and second derivatives of (24.1) results in

0 D E


Y � b0.™/
a. /

�
; and E


 �b00.™/
a. /

�
D �E



Y � b0.™/
a. /

� 2
;

such that we can conclude

E.Y / D � D b0.™/; (24.2)

Var.Y / D V.�/a. / D b00.™/a. /: (24.3)

Note that as a consequence from (24.1) the expectation of Y depends only on the
parameter of interest ™. We also assume that the factor a. / is identical over all
observations.
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24.3.2 Maximum-Likelihood and Deviance Minimization

As pointed out before the estimation method of choice for ˇ is maximum-likelihood.
As an alternative the literature refers to the minimization of the deviance. We will
see during the following derivation that both approaches are identical.

Suppose that we have observed a sample of independent pairs .Yi ;X i / where
i D 1; : : : ; n. For a more compact notation denote now the vector of all response
observations by Y D .Y1; : : : ; Yn/

> and their conditional expectations (given X i )
by � D .�1; : : : ; �n/>. Recall that we study

E.Yi jX i / D �i D G.X>i ˇ/ D G.�i /:

The sample log-likelihood of the vector Y is then given by

`.Y ;�;  / D
nX

iD1
`.Yi ; ™i ;  /: (24.4)

Here ™i is a function of �i D X>i ˇ and we use `.Yi ; ™i ;  / D logf .Yi ; ™i ;  / to
denote the individual log-likelihood contributions for all observations i .

Example 5. (Normal log-likelihood)
For normal responses Yi � N.�i ; 2/ we have `.Yi ; ™i ;  / D �.Yi ��i/2=.22/�
log

�p
2�

	
: This gives the sample log-likelihood

`.Y ;�; / D n log

�
1p
2�

�
� 1

22

nX

iD1
.Yi � �i /2: (24.5)

Obviously, maximizing this log-likelihood is equivalent to minimizing the least
squares criterion. �

Example 6. (Bernoulli log-likelihood)
The calculation in Example 3 shows that the individual log-likelihoods for the binary
responses equal `.Yi ; ™i ;  / D Yi log.�i /C .1 � Yi / log.1 � �i/. This leads to

`.Y ;�;  / D
nX

iD1
fYi log.�i /C .1 � Yi/ log.1 � �i/g (24.6)

for the sample version. �

The deviance defines an alternative objective function for optimization. Let us
first introduce the scaled deviance which is defined as

D.Y ;�;  / D 2 f`.Y ;�max;  / � `.Y ;�;  /g : (24.7)
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Here �max (which typically equals Y ) is the vector that maximizes the saturated
model, i.e. the function `.Y ;�;  / without imposing any restriction on �. Since
the term `.Y ;�max;  / does not depend on the parameter ˇ we see that indeed the
minimization of the scaled deviance is equivalent to the maximization of the sample
log-likelihood (24.4).

If we now plug-in the exponential family form (24.1) into (24.4) we obtain

`.Y ;�;  / D
nX

iD1



Yi™i � b.™i /

a. /
� c.Yi ;  /

�
: (24.8)

Obviously, neither a. / nor c.Yi ;  / depend on the unknown parameter vector ˇ.
Therefore, it is sufficient to consider

nX

iD1
fYi™i � b.™i /g (24.9)

for the maximization. The deviance analog of (24.9) is the (non-scaled) deviance
function

D.Y ;�/ D D.Y ;�;  / a. /: (24.10)

The (non-scaled) deviance D.Y ;�/ can be seen as the GLM equivalent of the
residual sum of squares (RSS) in linear regression as it compares the log-likelihood
` for the “model” � with the maximal achievable value of `.

24.3.3 Iteratively Reweighted Least Squares Algorithm

We will now minimize the deviance with respect to ˇ. If we denote the gradient of
(24.10) by

r.ˇ/ D @

@ˇ

"

�2
nX

iD1
fYi™i � b.™i /g

#

D �2
nX

iD1

˚
Yi � b0.™i /

� @

@ˇ
™i ; (24.11)

our optimization problem consists in solving

r.ˇ/ D 0: (24.12)

Note that this is (in general) a nonlinear system of equations in ˇ and an iterative
solution has to be computed. The smoothness of the link function allows us to
compute the Hessian of D.Y ;�/, which we denote by H.ˇ/. Now a Newton–
Raphson algorithm can be applied which determines the optimal b̌ using the
following iteration steps:
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b̌new D b̌old �
n
H
�
b̌old

	o�1 r
�
b̌old

	
:

A variant of the Newton–Raphson is the Fisher scoring algorithm that replaces the
Hessian by its expectation with respect to the observations Yi :

b̌new D b̌old �
n
EH

�
b̌old

	o�1 r
�
b̌old

	
:

To find simpler representations for these iterations, recall that we have �i D
G.�i / D G.X>i ˇ/ D b0.™i /. By taking the derivative of the right hand term with
respect to ˇ this implies

b0.™i /
@

@ˇ
™i D G.X>i ˇ/X i :

Using that b00.™i / D V.�i / as established in (24.3) and taking derivatives again, we
finally obtain

@

@ˇ
™i D G0.�i /

V .�i /
X i

@2

@ˇˇ>
™i D G00.�i /V .�i / �G0.�i /2V 0.�i /

V .�i /2
X iX

>
i :

From this we can express the gradient and the Hessian of the deviance by

r.ˇ/ D �2
nX

iD1
fYi � �i g G

0.�i /
V .�i/

X i

H.ˇ/ D 2
nX

iD1



G0.�i /2

V .�i /
� fYi � �i gG

00.�i /V .�i /�G0.�i /2V 0.�i /
V .�i /2

�
X iX

>
i :

The expectation of H.ˇ/ in the Fisher scoring algorithm equals

EH.ˇ/ D 2
nX

iD1



G0.�i /2

V .�i /

�
X iX

>
i :

Let us consider only the Fisher scoring algorithm for the moment. We define the
weight matrix

W D diag

�
G0.�1/2

V .�1/
; : : : ;

G0.�n/2

V .�n/

�

and the vectors eY D .eY 1; : : : ;eY n/>, Z D .Z1; : : : ; Zn/> by
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eY i D Yi � �i
G0.�i /

; Zi D �i C eY i D X>i ˇold C
Yi � �i
G0.�i /

:

Denote further by X the design matrix given by the rows x>i . Then, the Fisher
scoring iteration step for ˇ can be rewritten as

ˇnew D ˇold C .X>WX/�1X>WeY D .X>WX/�1X>WZ : (24.13)

This immediately shows that each Fisher scoring iteration step is the result of a
weighted least squares regression of the adjusted dependent variables Zi on the
explanatory variables X i . Since the weights are recalculated in each step we speak
of the iteratively reweighted least squares (IRLS) algorithm. For the Newton–
Raphson algorithm a representation equivalent to (24.13) can be found, only the
weight matrix W differs.

The iteration will be stopped when the parameter estimate and/or the deviance
do not change significantly anymore. We denote the final parameter estimate
by b̌.

24.3.4 Remarks on the Algorithm

Let us first note two special cases for the algorithm:

• In the linear regression model, where we have G0  1 and �i D �i D X>i ˇ, no
iteration is necessary. Here the ordinary least squares estimator gives the explicit
solution of (24.12).

• In the case of a canonical link function we have b0.™i / D G.™i / D G.�i / and
hence b00.™i / D G0.�i / D V.�i /: Therefore the Newton–Raphson and the Fisher
scoring algorithms coincide.

There are several further remarks on the algorithm which concern in particular
starting values and the computation of relevant terms for the statistical analysis:

• Equation (24.13) implies that in fact we do not need a starting value for ˇ.
Indeed the adjusted dependent variables Zi can be equivalently initialized by
using appropriate values for �i;0 and �i;0. Typically, the following initialization
is used McCullagh and Nelder (1989):

? For all but binomial models set �i;0 D Yi and �i;0 D G.�i;0/.
? For binomial models set �i;0 D .Yi C 1

2
/=.kC 1/ and �i;0 D G.�i;0/. (Recall

that this holds with k D 1 in the Bernoulli case.)

The latter definition is based on the observation that G can not be applied to
binary data. Therefore a kind of smoothing is used to obtain �i;0 in the binomial
case.
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• During the iteration the convergence can be controlled by checking the relative
change in the coefficients

vu
u
t .ˇnew � ˇold />.ˇnew � ˇold /

ˇold
>
ˇold

< �

and/or the relative change in the deviance

ˇ
ˇ̌
ˇ
D.Y ;�new/�D.Y ;�old /

D.Y ;�old /

ˇ
ˇ̌
ˇ < � :

• An estimate b for the dispersion parameter  can be obtained from either the
Pearson �2 statistic

ba. / D 1

n � p
nX

iD1

.Yi �b�i/2
V .b�i/

; (24.14)

or using deviance

ba. / D D.Y ;�/

n � p : (24.15)

Here we use p for the number of estimated parameters and b�i for the estimated
regression function at the i th observation. Similarly, b� is the estimated �. Both
estimators for a. / coincide for normal linear regression and follow an exact
�2n�p distribution then. The number n�p (number of observations minus number
of estimated parameters) is denoted as the degrees of freedom of the deviance.

• Typically, software for GLM allows for offsets and weights in the model. For
details on the inclusion of weights we refer to Subsection 24.5.1. Offsets are
deterministic components of �which can vary over the observations i . The model
that is then fitted is

E.Yi jX i / D G.X>i ˇ C oi /:
Offsets may be used to fit a model where a part of the coefficients is known. The
iteration algorithm stays unchanged except for the fact that the optimization is
only necessary with respect to the remaining unknown coefficients.

• Since the variance of Yi will usually depend on X i we cannot simply analyze
residuals of the form Yi � b�i . Instead, appropriate transformations have to be
used. Classical proposals are Pearson residuals

rPi D
Yi �b�ip
V.b�i/

;

deviance residuals
rDi D sign.Yi �b�i/

p
di ;
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where di is the contribution of the i th observation to the deviance, and Anscombe
residuals

rAi D
A.Yi/� A.b�i/
A0.b�i/

p
V.b�i/

;

where A.�/ D R � V �1=3.u/ du.

24.3.5 Model Inference

The resulting estimator b̌ has an asymptotic normal distribution (except of course
for the normal linear regression case when this is an exact normal distribution).

Theorem 1.
Under regularity conditions we have for the estimated coefficient vector

p
n.b̌� ˇ/! N.0;†/ as n!1 :

As a consequence for the scaled deviance and the log-likelihood approximately hold
D.Y ;b�;  / � �2n�p and 2f`.Y ;b�;  / � `.Y ;�;  /g � �2p . �

For details on the necessary conditions see for example Fahrmeir and Kaufmann
(1984). Note also that the asymptotic covariance ˚ for the coefficient estimator b̌ is
the inverse of the Fisher information matrix, i.e.

I D �E



@2

@ˇˇT
`.Y; �; /

�
:

Since I can be estimated by the negative Hessian of the log-likelihood or its
expectation, this suggests the estimator

b† D a.b /
"
1

n

nX

iD1



G0.�i;last /2

V .�i;last /

�
X iX

>
i

#�1
:

Using the estimated covariance we are able to test hypotheses about the components
of ˇ.

For model choice between two nested models a likelihood ratio test (LR test)
is used. Assume that M0 (p0 parameters) is a submodel of the model M (p
parameters) and that we have estimated them as b�0 and b�. For one-parameter
exponential families (without a nuisance parameter  ) we use that asymptotically

D.Y ;�0/�D.Y ;�/ � �2p�p0 : (24.16)

The left hand side of (24.16) is a function of the ratio of the two likelihoods deviance
difference equals minus twice the log-likelihood difference. In a two-parameter
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exponential family ( is to be estimated) one can approximate the likelihood ratio
test statistic by

.n � p/fD.Y ;�0/�D.Y ;�/g
.p � p0/D.Y ;�/ � Fp�p0;n�p (24.17)

using the analog to the normal linear regression case (Venables and Ripley 2002,
Chap. 7).

Model selection procedures for possibly non-nested models can be based on
Akaike’s information criterion Akaike (1973)

AIC D D.Y ;b�;b /C 2p;

or Schwarz’ Bayes information criterion (Schwarz 1978)

BIC D D.Y ;b�;b /C log.n/p;

where again p denotes the number of estimated parameters. For a general overview
on model selection techniques see also Chap. III.16 of this handbook.

24.4 Practical Aspects

To illustrate the GLM in practice we recall Example 1 on credit worthiness.
The credit data set that we use Fahrmeir and Tutz (1994) contains n D 1;000

observations on consumer credits and a variety of explanatory variables. We have
selected a subset of eight explanatory variables for the following examples.

The model for credit worthiness is based on the idea that default can be predicted
from the individual and loan characteristics. We consider criteria as age, information
on previous loans, savings, employment and house ownership to characterize the
credit applicants. Amount and duration of the loan are prominent features of the
granted loans. Some descriptive statistics can be found in Table 24.3. We remark
that we have categorized the durations (months) into intervals since most of the
realizations are multiples of 3 or 6 months.

We are at the first place interested in estimating the probability of credit default
in dependence of the explanatory variables X . Recall that for binary Y it holds
P.Y D 1jX/ D E.Y jX/: Our first approach is a GLM with logit link such that
P.Y D 1jX/ D exp.X>ˇ/=f1C exp.X>ˇ/g.
Example 7. (Credit default on AGE)
We initially estimate the default probability solely related to age, i.e. the model

P.Y D 1jAGE/ D exp.ˇ0 C ˇ1AGE/

1C exp.ˇ0 C ˇ1AGE/
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or equivalently logit fP.Y D 1jAGE/g D ˇ0 C ˇ1AGE. The resulting estimates of
the constant ˇ0 and the slope parameter ˇ1 are displayed in Table 24.4 together with
summary statistics on the model fit.

From the table we see that the estimated coefficient of AGE has a negative sign.
Since the link function and its inverse are strictly monotone increasing, we can
conclude that the probability of default must thus be decreasing with increasing
AGE. Figure 24.1 shows on the left frequency barplots of AGE separately for
Y D 1 and Y D 0. From the observed frequencies we can recognize clearly
the decreasing propensity to default. The right graph in Fig. 24.1 displays the
estimated probabilities P.Y D 1jAGE/ using the fitted logit model which are
indeed decreasing.

The t-values (
p
n b̌j =

q
ḃ
jj ) show that the coefficient of AGE is significantly

different from 0 while the estimated constant is not. The test that is used here is an
approximative t-test such that z1�˛=2-quantile of the standard normal can be used as
critical value. This implies that at the usual 5% level we compare the absolute value
of the t-value with z0:975 � 1:96.

A more general approach to test for the significance of AGE is to compare the
fitted model with a model that involves only a constant default probability. Typically
software packages report the deviance of this model as null deviance or similar. In
our case we find a null deviance of 1221.7 at 999 degrees of freedom. If we apply

Table 24.3 Credit data
Variable Yes No (in %)

Y (observed default) 30:0 70:0

PREVIOUS (no problem) 38:1 61:9

EMPLOYED (� 1 year) 93:8 6:2

DURATION .9; 12� 21:6 78:4

DURATION .12; 18� 18:7 81:3

DURATION .18; 24� 22:4 77:6

DURATION � 24 23:0 77:0

SAVINGS 18:3 81:7

PURPOSE (buy a car) 28:4 71:6

HOUSE (owner) 15:4 84:6

Min. Max. Mean Std.Dev.
AMOUNT (in DM) 250 18424 3271:248 2822:752

AGE (in years) 19 75 35:542 11:353

Table 24.4 Credit default on AGE (logit model)

Variable Coefficient t -value

Constant �0:1985 �0:851
AGE �0:0185 �2:873
Deviance 1213:1

df 998

AIC 1217:1

Iterations 4
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Fig. 24.1 Credit default on AGE, left: frequency barplots of AGE for Y D 1 (yellow) and Y D 0

(red), right: estimated probabilities

the LR test statistic (24.16) to compare the null deviance to the model deviance of
1213.1 at 998 degrees of freedom, we find that constant model is clearly rejected at
a significance level of 0:33%. �

Models using different link functions cannot be directly compared as the link
functions might be differently scaled. In our binary response model for example a
logit or a probit link function may be reasonable. However, the variance parameter
of the standard logistic distribution is �2=3 whereas that of the standard normal
is 1. We therefore need to rescale one of the link functions in order to compare
the resulting model fits. Figure 24.2 shows the standard logistic cdf (the inverse
logit link) against the cdf of N.0; �2=3/. The functions in the left graph of Fig. 24.2
are hardly distinguishable. If we zoom in (right graph) we see that the logistic cdf
vanishes to zero at the left boundary at a lower rate. This holds similarly for the right
boundary and explains the ability of logit models to (slightly) better handle the case
of extremal observations.

Example 8. (Probit versus logit)
If we want to compare the estimated coefficients from a probit to that of the logit
model we need to rescale the probit coefficients by �=

p
3. Table 24.5 shows the

results of a probit for credit default on AGE. The resulting rescaled coefficient
for AGE in is of similar size as that for the logit model (cf. Table 24.4) while the
constant is not significantly different from 0 in both fits. The deviance and the AIC
of the probit fit are slightly larger.

A Newton–Raphson iteration (instead of the Fisher scoring reported in
Table 24.5) does give somewhat different coefficients but returns nearly the same
value of the deviance (1213.268 for Newton–Raphson versus 1213.265 for Fisher
scoring). �
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Fig. 24.2 Logit (solid blue) versus appropriately rescaled probit link (dashed red), left: on the
range Œ�5; 5�, right: on the range of Œ�5;�1�
Table 24.5 Credit default on AGE (probit model), original and rescaled coefficients for compari-
son with logit

Variable Coefficient t -value

(Original) (Rescaled)

Constant �0:1424 �0:2583 �1:022
AGE �0:0109 �0:0197 �2:855
Deviance 1213:3

df 998

AIC 1217:3

Iterations 4 (Fisher scoring)

The next two examples intend to analyze if the fit could be improved by using a
nonlinear function on AGE instead of � D ˇ0 C ˇ1AGE. Two principally different
approaches are possible:

• Include higher order terms of AGE into �.
• Categorize AGE in order to fit a stepwise constant � function.

Example 9. (Credit default on polynomial AGE)
We fit two logit models using second and third order terms in AGE. The estimated
coefficients are presented in Table 24.6. A comparison of the quadratic fit and the
linear fit from Example 7 using the LR test statistic (24.16) shows that the linear fit
is rejected at a significance level of 3%. A subsequent comparison of the quadratic
against the cubic fit no significant improvement by the latter model. Thus, the
quadratic term for AGE improves the fit whereas the cubic term does not show
any further statistically significant improvement. This result is confirmed when we
compare the AIC values of both models which are practically identical. Figure 24.3
shows the estimated default probabilities for the quadratic (left) and cubic AGE fits.
We find that the curves are of similar shape. �
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Table 24.6 Credit default on polynomial AGE (logit model)

Variable Coefficient t -value Coefficient t -value

Constant 1:2430 1:799 0:4092 1:909

AGE �0:0966 �2:699 �0:3240 �1:949
AGE**2 9.56� 10�4 2:234 6.58� 10�3 1:624

AGE**3 � � �4.33� 10�5 �1:390
Deviance 1208:3 1206:3

df 997 996

AIC 1214:3 1214:3

Iterations 4 4
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Fig. 24.3 Credit default on polynomial AGE, left: estimated probabilities from quadratic function,
right: estimated probabilities from cubic function

To incorporate a possible nonlinear impact of a variable in the index function, we
can alternatively categorize this variable. Another term for this is the construction of
dummy variables. The most classical form of the categorization consists in using a
design matrix that sets a value of 1 in the column corresponding to the category
if the category is true and 0 otherwise. To obtain a full rank design matrix we
omit one column for the reference category. In our example we leave out the first
category which means that all estimated coefficients have to be compared to the zero
coefficient of the reference category. Alternative categorization setups are given by
omitting the constant, the sum coding (restrict the coefficients to sum up to 0), and
the Helmert coding.

Example 10. (Credit default on categorized AGE)
We have chosen the intervals .18; 23�, .23; 28�, . . . , .68; 75� as categories. Except for
the last interval all of them are of the same length. The first interval .18; 23� is chosen
for the reference such that we will estimate coefficients only for the remaining 10
intervals.

Frequency barplots for the intervals and estimated default probabilities are
displayed in Fig. 24.4. The resulting coefficients for this model are listed in
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Fig. 24.4 Credit default on categorized AGE, left: frequency barplots of categorized AGE for
Y D 1 (yellow) and Y D 0 (red), right: estimated probabilities

Table 24.7 Credit default on categorized AGE (logit model)

Variable Coefficients t -values

Constant �0:4055 �2:036
AGE (23,28] �0:2029 �0:836
AGE (28,33] �0:3292 �1:294
AGE (33,38] �0:9144 �3:320
AGE (38,43] �0:5447 �1:842
AGE (43,48] �0:6763 �2:072
AGE (48,53] �0:8076 �2:035
AGE (53,58] �0:5108 �1:206
AGE (58,63] �0:4055 �0:864
AGE (63,68] �0:7577 �1:379
AGE (68,75] �1:3863 �1:263
Deviance 1203:2

df 989

AIC 1225:2

Iterations 4

Table 24.7. We see here that all coefficient estimates are negative. This means,
keeping in mind that the group of youngest credit applicants is the reference, that
all applicants from other age groups have an (estimated) lower default probability.
However, we do not have a true decrease in the default probabilities with AGE since
the coefficients do not form a decreasing sequence. In the range from age 33 to 63
we find two local minima and maxima for the estimated default probabilities.

It is interesting to note that the deviance of the categorized AGE fit is the
smallest that we obtained up to now. This is explained by the fact that we have
fitted the most flexible model here. Unfortunately, this flexibility pays with the
number of parameters. The AIC criterion as a compromise between goodness-of-
fit and number of parameters states that all previous fitted models are preferable.
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Nevertheless, categorization is a valuable tool to explore if there are nonlinear
effects. A related technique is local regression smoothing which is shortly reviewed
in Subsection 24.5.8. �

The estimation of default probabilities and the prediction of credit default
should incorporate more than only one explanatory variable. Before fitting the
full model with all available information, we discuss the modeling of interaction
effects.

Example 11. (Credit default on AGE and AMOUNT)
The variable AMOUNT is the second continuous explanatory variable in the
credit data set. (Recall that duration is quantitative as well but quasi-discrete.)
We will therefore use AGE and AMOUNT to illustrate the effects of the simul-
taneous use of two explanatory variables. A very simple model is of course
logit fP.Y D 1jAGE,AMOUNT/g D ˇ0 C ˇ1AGE C ˇ2AMOUNT. This model,
however, separates the impact of AGE and AMOUNT into additive components.
The effect of having both characteristics simultaneously is modeled by adding the
multiplicative interaction term AGE�AMOUNT. On the other hand we have seen
that at least AGE should be complemented by a quadratic term. For that reason
we compare the linear interaction model logit fP.Y D 1jAGE,AMOUNT/g D
ˇ0 C ˇ1AGE C ˇ2AMOUNT C ˇ3AGE � AMOUNT with a specification using
quadratic terms and a third model specification using both, quadratic and interaction
terms.

Table 24.8 shows the results for all three fitted models. The model with quadratic
and interaction terms has the smallest AIC of the three fits. Pairwise LR tests show,
however, that the largest of the three models is not significantly better than the model
without the interaction term. The obtained surface on AGE and AMOUNT from the
quadratic+interaction fit is displayed in Fig. 24.5. �

Let us remark that interaction terms can also be defined for categorical variables.
In this case interaction is modeled by including dummy variables for all possible
combinations of categories. This may largely increase the number of parameters to
estimate.

Table 24.8 Credit default on AGE and AMOUNT (logit model)

Variable Coefficient t -value Coefficient t -value Coefficient t -value

Constant 0:0159 �0:044 1:1815 1:668 1:4864 2:011

AGE �0:0350 �3:465 �0:1012 �2:768 �0:1083 �2:916
AGE**2 � � 9.86� 10�4 2:251 9.32� 10�4 2:100

AMOUNT �2.80� 10�5 �0:365 �7.29� 10�6 �0:098 �1.18� 10�4 �1:118
AMOUNT**2 � � 1.05� 10�8 1:753 9.51� 10�9 1:594

AGE*AMOUNT 3.99� 10�6 1:951 � � 3.37� 10�6 1:553

Deviance 1185:1 1180:2 1177:7

df 996 995 994

AIC 1193:1 1190:2 1189:7

Iterations 4 4 4
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Example 12. (Credit default on the full set of explanatory variables)
In a final analysis we present now the results for the full set of variables from
Table 24.3. We first estimated a logit model using all variables (AGE and AMOUNT
also with quadratic and interaction terms). Most of the estimated coefficients
in the second column of Table 24.9 have the expected sign. For example, the
default probability decreases if previous loan were paid back without problems,
the credit applicant is employed and has some savings, and the loan is used
to buy a car (rather than to invest the loan into goods which cannot serve as
a security). A bit surprising is the fact that house owners seem to have higher
default probabilities. This might be explained by the fact that house owners
usually have additional obligations. The DURATION variable is categorized as
described above. Again we have used the first category (loans up to 9 months)
as reference. Since the series of DURATION coefficients is monotone increasing,
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Table 24.9 Credit default on full set of variables (logit model)

Variable Coefficient t -value Coefficient t -value
Constant 1:3345 1:592 0:8992 1:161

AGE �0:0942 �2:359 �0:0942 �2:397
AGE**2 8.33� 10�4 1:741 9.35� 10�4 1:991

AMOUNT �2.51� 10�4 �1:966 �1.67� 10�4 �1:705
AMOUNT**2 1.73� 10�8 2:370 1.77� 10�8 2:429

AGE*AMOUNT 2.36� 10�6 1:010 � �
PREVIOUS �0:7633 �4:652 �0:7775 �4:652
EMPLOYED �0:3104 �1:015 � �
DURATION .9; 12� 0:5658 1:978 0:5633 1:976

DURATION .12; 18� 0:8979 3:067 0:9127 3:126

DURATION .18; 24� 0:9812 3:346 0:9673 3:308

DURATION � 24 1:5501 4:768 1:5258 4:710

SAVINGS �0:9836 �4:402 �0:9778 �4:388
PURPOSE �0:3629 �2:092 �0:3557 �2:051
HOUSE 0:6603 3:155 0:7014 3:396

Deviance 1091:5 1093:5

df 985 987

AIC 1121:5 1119:5

Iterations 4 4

we can conclude that longer duration increases the default probability. This is also
plausible.

After fitting the full model we have run an automatic stepwise model selection
based on AIC. This reveals that the insignificant terms AGE*AMOUNT and
EMPLOYED should be omitted. The fitted coefficients for this final model are
displayed in the fourth column of Table 24.9. �

24.5 Complements and Extensions

For further reading on GLM we refer to the textbooks of Dobson (2001), McCullagh
and Nelder (1989) and Hardin and Hilbe (2001) (the latter with a special focus on
STATA). Venables and Ripley (2002, Chap. 7) and Gill (2000) present the topic of
generalized linear models in a very compact form. Collett (1991), Agresti (1996),
Cox and Snell (1989), and Bishop et al. (1975) are standard references for analyzing
categorical responses. We recommend the monographs of Fahrmeir and Tutz (1994)
and Lindsey (1997) for a detailed introduction to GLM with a focus on multivariate,
longitudinal and spatial data. In the following sections we will shortly review some
specific variants and enhancements of the GLM.
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24.5.1 Weighted Regression

Prior weights can be incorporated to the generalized linear model by considering
the exponential density in the form

f .yi ; ™i ;  / D exp

�
wi fy™ � b.™/g

a. /
C c.y;  ;wi /


:

This requires to optimize the sample log-likelihood

`.Y ;�;  / D
nX

iD1
wi



Yi™i � b.™i /

a. /
� c.Yi ;  ;wi /

�

or its equivalent, the deviance.
The weights wi can be 0 or 1 in the simplest case that one wants to exclude

specific observations from the estimation. The typical case of applying weights is
the case of repeated independent realizations.

24.5.2 Overdispersion

Overdispersion may occur in one-parameter exponential families where the variance
is supposed to be a function of the mean. This concerns in particular the binomial
or Poisson families where we have EY D � and Var.Y / D �.1 � �=k/ or
Var.Y / D �, respectively. Overdispersion means that the actually observed variance
from the data is larger than the variance imposed by the model. The source for
this may be a lack of independence in the data or a misspecification of the model.
One possible approach is to use alternative models that allows for a nuisance
parameter in the variance, as an example think of the negative binomial instead
of the Poisson distribution. For detailed discussions on overdispersion see Collett
(1991) and Agresti (1990).

24.5.3 Quasi- or Pseudo-Likelihood

Let us remark that in the case that the distribution of Y itself is unknown but its
two first moments can be specified, the quasi-likelihood function may replace the
log-likelihood function. This means we still assume that

E.Y / D �;
Var.Y / D a. / V.�/:
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The quasi-likelihood function is defined through

`.y; ™;  / D 1

a. /

yZ

�.™/

.s � y/
V.s/

ds ; (24.18)

cf. Nelder and Wedderburn (1972). If Y comes from an exponential family then
the derivatives of the log-likelihood and quasi-likelihood function coincide. Thus,
(24.18) establishes in fact a generalization of the likelihood approach.

24.5.4 Multinomial Responses

A multinomial model (or nominal logistic regression) is applied if the response
for each observation i is one out of more than two alternatives (categories). For
identification one of the categories has to be chosen as reference category; without
loss of generality we use here the first category. Denote by �j the probability
P.Y D j jX /, then we can consider the logits with respect to the first category, i.e.

logit.�j / D log

�
�j

�1

�
D X>j ˇj :

The termsX j andˇj indicate that the explanatory variables and their corresponding
coefficients may depend on category j . Equivalently we can define the model by

P.Y D 1jX/ D 1

1CPJ
kD2 exp.X>k ˇk/

P.Y D j jX / D X>j ˇ
1CPJ

kD2 exp.X>k ˇk/
:

It is easy to recognize that the logit model is a special case of the multinomial model
for exactly two alternatives.

If the categories are ordered in some natural way then this additional information
can be taken into account. A latent variable approach leads to the cumulative logit
model or the ordered probit model. We refer here to Dobson (2001, Sect. 8.4) and
Greene (2000, Chap. 21) for ordinal logistic regression and ordered probit analysis,
respectively.

24.5.5 Contingency Tables

The simplest form of a contingency table
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Category 1 2 : : : J
P

Frequency Y1 Y2 . . . YJ n

with one factor and a predetermined sample size n of observations is appropriately
described by a multinomial distribution and can hence be fitted by the multinomial
logit model introduced in Subsection 24.5.4. We could be for instance be interested
in comparing the trivial model EY1 D : : : D EYJ D � to the model EY2 D
�2; : : : ; EYJ D �J (again we use the first category as reference). As before further
explanatory variables can be included into the model.

Two-way or higher dimensional contingency tables involve a large variety of
possible models. Let explain this with the help of the following two-way setup:

Category 1 2 . . . J
P

1 Y11 Y12 . . . Y1J n1�
2 Y21 Y22 . . . Y2J n2�
:
:
:

:
:
:

:
:
:

: : :
:
:
:

:
:
:

K YK1 YK2 . . . YKJ nK�

P
n�1 n�2 . . . n�J n

Here we assume to have two factors, one with realizations 1; : : : ; J , the other with
realizations 1; : : : ; K . If the Yjk are independent Poisson variables with parameters
�jk , then their sum is a Poisson variable with parameter E.n/ D � DP

�jk . The
Poisson assumption implies that the number of observations n is a random variable.
Conditional on n, the joint distribution of the Yjk is the multinomial distribution.
Without additional explanatory variables, one is typically interested in estimating
models of the type

log.EYjk/ D ˇ0 C ˇj C ˇk
in order to compare this with the saturated model log.EYjk/ D ˇ0Cˇj CˇkCˇjk:
If the former model holds then the two factors are independent. Another hypothetical
model could be of the form log.EYjk/ D ˇ0 C ˇj to check whether the second
factor matters at all. As in the multinomial case, further explanatory variables can
be included. This type of models is consequently termed log-linear model. For more
details see for example Dobson (2001, Chap. 9) and McCullagh and Nelder (1989,
Chap. 6).

24.5.6 Survival Analysis

Survival data are characterized by non-negative observations which typically have
a skewed distribution. An additional complication arises due to the fact that the
observation period may end before the individual fails such that censored data may
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occur. The exponential distribution with density f .y; ™/ D ™e�™y is a very simple
example for a survival distribution. In this special case the survivor function (the
probability to survive beyond y) is given by S.y/ D e�™y and the hazard function
(the probability of death within y and yCdy after survival up to y) equals h.y; ™/ D
™. Given additional explanatory variables this function is typically modeled by

h.y; ™/ D exp.X>ˇ/:

Extensions of this model are given by using the Weibull distribution leading to
non-constant hazards and Cox’ proportional hazards model Cox (1972) which uses
a semiparametric approach. More material on survival analysis can be found in
Chap. III.27.

24.5.7 Clustered Data

Clustered data in relation to regression models mean that data from known groups
(“clusters”) are observed. Often these are the result of repeated measurements on
the same individuals at different time points. For example, imagine the analysis of
the effect of a medical treatment on patients or the repeated surveying of households
in socio-economic panel studies. Here, all observations on the same individual form
a cluster. We speak of longitudinal or panel data in that case. The latter term is
typically used in the econometric literature.

When using clustered data we have to take into account that observations from
the same cluster are correlated. Using a model designed for independent data may
lead to biased results or at least significantly reduce the efficiency of the estimates.

A simple individual model equation could be written as follows:

E.Yij jX ij / D G�1.X>ijˇj /:

Here i is used to denote the i th individual observation in the j th cluster. Of
course more complex specifications, for example with hierarchical clusters, can be
formulated as well.

There is a waste amount of literature which deals with many different possible
model specifications. A comprehensive resource for linear and nonlinear mixed
effect models (LME, NLME) for continuous responses is Pinheiro and Bates (2000).
The term “mixed” here refers to the fact that these models include additional random
and/or fixed effect components to allow for correlation within and heterogeneity
between the clusters.

For generalized linear mixed models (GLMM), i.e. clustered observations
with responses from GLM-type distribution, several approaches are possible. For
repeated observations, Liang and Zeger (1986) and Zeger and Liang (1986) propose
to use generalized estimating equations (GEE) which result in a quasi-likelihood
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estimator. They show that the correlation matrix of Y j , the response observations
from one cluster, can be replaced by a “working correlation” as long as the moments
ofY j are correctly specified. Useful working correlations depend on a small number
of parameters. For longitudinal data an autoregressive working correlation can be
used for example. For more details on GEE see also the monograph by Diggle et al.
(2002). In the econometric literature longitudinal or panel data are analyzed with
a focus on continuous and binary responses. Standard references for econometric
panel data analyses are Hsiao (1990) and Arellano (2003). Models for clustered
data with complex hierarchical structure are often denoted as multilevel models. We
refer to the monograph of Goldstein (2003) for an overview.

24.5.8 Semiparametric Generalized Linear Models

Nonparametric components can be incorporated into the GLM at different places.
For example, it is possible to estimate a single index model

E.Y jX/ D g.X>ˇ/

which differs from the GLM by its unknown smooth link function g.�/. The
parameter vector ˇ in this model can then be only identified up to scale. The
estimation of such models has been studied e.g. by Ichimura (1993), Weisberg and
Welsh (1994) and Gallant and Nychka (1987).

Local regression in combination with likelihood-based estimation is introduced
in Loader (1999). This concerns models of the form

E.Y jX/ D G�1 fm.X/g ;

where m is an unknown smooth (possibly multidimensional) function. Further
examples of semiparametric GLM are generalized additive and generalized partial
linear models (GAM, GPLM). These models are able to handle (additional)
nonparametric components in the function �. For example, the GAM is specified
in this simplest form by

E.Y jX/ D G�1
8
<

:
ˇ0 C

pX

jD1
mj .Xj /

9
=

;
:

Here the mj denote univariate (or low dimensional) unknown smooth functions
which have to be estimated. For their identification is should be assumed, that
Em.Xj / D 0. The generalized partial linear model combines a linear and a
nonparametric function in the function � and is specified as
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E.Y jX/ D G�1
n
X>1 ˇ Cm.X 2/

o
:

Example 13. (Semiparametric credit model)
We have fitted a generalized partial linear model as a variant of the final model
from Example 12. The continuous variables AGE and AMOUNT were used as
arguments for the nonparametric component. All other variables of the final model
have been included to the linear part of the index function �. Figure 24.6 shows the
estimated nonparametric function of AGE and AMOUNT. Although the stepwise
model selection in Example 12 indicated that there is no interaction between AGE
and AMOUNT, we see now that this interaction could be in fact of some more
sophisticated form. The estimation was performed using a generalization of the
Speckman (1988) estimator to generalized models. The local kernel weights are cal-
culated from a Quartic (Biweight) kernel function using bandwidths approximately
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Fig. 24.6 Credit default on
AGE and AMOUNT using a
nonparametric function, left:
surface and right: contours of
the fitted function on AGE
and AMOUNT
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equal to 33.3% of the ranges of AGE and AMOUNT, respectively. Details on the
used kernel based estimation can be found in Severini and Staniswalis (1994) and
Müller (2001). �

Some more material on semiparametric regression can be found in Chaps. III.20
and III.21 of this handbook. For a detailed introduction to semiparametric extensions
of GLM we refer to the textbooks by Hastie and Tibshirani (1990), Härdle et al.
(2004), Ruppert et al. (1990), and Green and Silverman (1994).
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Chapter 25
Robust Statistics

Laurie Davies and Ursula Gather

25.1 Robust Statistics; Examples and Introduction

25.1.1 Two Examples

The first example involves the real data given in Table 25.1 which are the results
of an interlaboratory test. The boxplots are shown in Fig. 25.1 where the dotted line
denotes the mean of the observations and the solid line the median.

We note that only the results of the Laboratories 1 and 3 lie below the mean
whereas all the remaining laboratories return larger values. In the case of the median,
7 of the readings coincide with the median, 24 readings are smaller and 24 are
larger. A glance at Fig. 25.1 suggests that in the absence of further information the
Laboratories 1 and 3 should be treated as outliers. This is the course which we
recommend although the issues involved require careful thought. For the moment
we note simply that the median is a robust statistic whereas the mean is not.

The second example concerns quantifying the scatter of real valued observations
x1; : : : ; xn. This example is partially taken from Huber (1981) and reports a dispute
between (Eddington 1914, p. 147) and (Fisher 1920, p. 762) about the relative
merits of

sn D
�
1

n

X
.xi � Nx/2

� 1
2

and dn D 1

n

X
jxi � Nxj :
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Table 25.1 The results of an interlaboratory test involving 14 laboratories

1 2 3 4 5 6 7 9 9 10 11 12 13 14

1:4 5:7 2:64 5:5 5:2 5:5 6:1 5:54 6:0 5:1 5:5 5:9 5:5 5:3

1:5 5:8 2:88 5:4 5:7 5:8 6:3 5:47 5:9 5:1 5:5 5:6 5:4 5:3

1:4 5:8 2:42 5:1 5:9 5:3 6:2 5:48 6:1 5:1 5:5 5:7 5:5 5:4

0:9 5:7 2:62 5:3 5:6 5:3 6:1 5:51 5:9 5:3 5:3 5:6 5:6

1

1

6

5

4

3

2

2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 25.1 A boxplot of the data of Table 25.1. The dotted line and the solid line denote respectively
the mean and the median of the observations

Fisher argued that for normal observations the standard deviation sn is about 12%
more efficient than the mean absolute deviation dn: In contrast Eddington claimed
that his experience with real data indicates that dn is better than sn. In Tukey (1960)
and Huber (1977) we find a resolution of this apparent contradiction. Consider the
model

N� D
�
1 � ��N �

�; 2
�C �N �

�; 92
�
; (25.1)

where N.�; 2/ denotes a normal distribution with mean � and variance 2 and
0 � � � 1. For data distributed according to (25.1) one can calculate the asymptotic
relative efficiency ARE of dn with respect to sn,

ARE.�/ D lim
n!1REn.�/ D lim

n!1
Var.sn/=E.sn/2

Var.dn/=E.dn/2
:

As Huber states, the result is disquieting. Already for � � 0:002 ARE exceeds
1 and the effect is apparent for samples of size 1,000. For � D 0:05 we have
ARE.�/ D 2:035 and simulations show that for samples of size 20 the relative
efficiency exceeds 1.5 and increases to 2.0 for samples of size 100. This is a severe
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deficiency of sn as models such as N� with � between 0.01 and 0.1 often give better
descriptions of real data than the normal distribution itself. We quote Huber (1981)

thus it becomes painfully clear that the naturally occurring deviations from the idealized
model are large enough to render meaningless the traditional asymptotic optimality theory.

25.1.2 General Philosophy

The two examples of the previous section illustrate a general phenomenon. An
optimal statistical procedure based on a particular family of models M1 can differ
considerably from an optimal procedure based on another family M2 even though
the families M1 and M2 are very close. This may be expressed by saying that
optimal procedures are often unstable in that small changes in the data or the model
can lead to large changes in the analysis. The basic philosophy of robust statistics is
to produce statistical procedures which are stable with respect to small changes in
the data or model and even large changes should not cause a complete breakdown
of the procedure.

Any inspection of the data and the removal of aberrant observations may be
regarded as part of robust statistics but it was only with Pearson (1931) that the
consideration of deviations from models commenced. He showed that the exact
theory based on the normal distribution for variances is highly nonrobust. There
were other isolated papers on the problem of robustness (Bartlett 1935; Pearson
1929; Geary 1936, 1947; Box 1953; Box and Andersen 1955; Gayen 1950). Tukey
(1960) initiated a wide spread interest in robust statistics which has continued to
this day. The first systematic investigation of robustness is due to Huber (1964)
and was expounded in Huber (1981). Huber’s approach is functional analytic and
he was the first to investigate the behaviour of a statistical functional over a full
topological neighbourhood of a model instead of restricting the investigation to
other parametric families as in (25.1). Huber considers three problems. The first
is that of minimizing the bias over certain neighbourhoods and results in the median
as the most robust location functional. For large samples deviations from the model
have consequences which are dominated by the bias and so this is an important
result. The second problem is concerned with what Tukey calls the statistical version
of no free lunches. If we take the simple model of i.i.d. N.�; 1/ observations then
the confidence interval for� based on the mean is on average shorter than that based
on any other statistic. If short confidence intervals are of interest then one can not
only choose the statistic which gives the shortest interval but also the model itself.
The new model must of course still be consistent with the data but even with this
restriction the confidence interval can be made as small as desired (Davies 1995).
Such a short confidence interval represents a free lunch and if we do not believe in
free lunches then we must look for that model which maximizes the length of the
confidence interval over a given family of models. If we take all distributions with
variance 1 then the confidence interval for the N.�; 1/ distribution is the longest.
Huber considers the same problem over the family F D fF W dko.F;N.0; 1// < �g
where dko denotes the Kolmogoroff metric. Under certain simplifying assumptions



714 L. Davies and U. Gather

Huber solves this problem and the solution is known as the Huber distribution (see
Huber 1981). Huber’s third problem is the robustification of the Neyman–Pearson
test theory. Given two distributions P0 and P1 Neyman and Pearson (1933) derive
the optimal test for testing P0 against P1. Huber considers full neighbourhoods P0
of P0 and P1 of P1 and then derives the form of the minimax test for the composite
hypothesis of P0 against P1. The weakness of Huber’s approach is that it does not
generalize easily to other situations. Nevertheless it is the spirit of this approach
which we adopt here. It involves treating estimators as functionals on the space of
distributions, investigating where possible their behaviour over full neighbourhoods
and always being aware of the danger of a free lunch.

Hampel (1968) introduced another approach to robustness, that based on the
influence function I.x; T; F / defined for a statistical functional T as follows

I.x; T; F / D lim
�!0

T ..1 � �/F C �ıx/� T .F /
�

; (25.2)

where ıx denotes the point mass at the point x. The influence function has two
interpretations. On the one hand it measures the infinitesimal influence of an
observation situated at the point x on the value of the functional T . On the other
hand ifPn.F / denotes the empirical measure of a sample of n i.i.d. random variables
with common distribution F then under appropriate regularity conditions

lim
n!1

p
n.T .Pn.F //� T .F // DD N

�
0;

Z
I.x; T; F /2 dF.x/

�
; (25.3)

where
DD denotes equality of distribution. Given a parametric family P 0 D fP™ W

™ 2 $g of distributions we restrict attention to those functionals which are Fisher
consistent that is

T .P™/ D ™; ™ 2 $ : (25.4)

Hampel’s idea was to minimize the asymptotic variance of T as an estimate of
a parameter ™ subject to a bound on the influence function

min
T

Z
I.x; T; P™/

2 dP™.x/ under (25.4) and sup
x
jI.x; T; P™/j � k.™/ ; (25.5)

where k.™/ is a given function of ™. Hampel complemented the infinitesimal part
of his approach by considering also the global behaviour of the functional T .
He introduced the concept of breakdown point which has had and continues to
have a major influence on research in robust statistics. The approach based on the
influence function was carried out in Hampel et al. (1986). The strength of the
Hampel approach is that it can be used to robustify in some sense the estimation of
parameters in any parametric model. The weaknesses are that (25.5) only bounds
infinitesimally small deviations from the model and that the approach does not
explicitly take into account the free lunch problem. Hampel is aware of this and
recommends simple models but simplicity is an addition to and not an integral
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part of his approach. The influence function is usually used as a heuristic tool and
care must be taken in interpreting the results. For examples of situations where the
heuristics go wrong we refer to Davies (1993).

Another approach which lies so to speak between that of Huber and Hampel
is the so called shrinking neighbourhood approach. It has been worked out in full
generality by Rieder (1994). Instead of considering neighbourhoods of a fixed size
(Huber) or only infinitesimal neighbourhoods (Hampel) this approach considers
full neighbourhoods of a model but whose size decreases at the rate of n�1=2 as
the sample size n tends to infinity. The size of the neighbourhoods is governed by
the fact that for larger neighbourhoods the bias term is dominant whereas models
in smaller neighbourhoods cannot be distinguished. The shrinking neighbourhoods
approach has the advantage that it does not need any assumptions of symmetry. The
disadvantage is that the size of the neighbourhoods goes to zero so that the resulting
theory is only robustness over vanishingly small neighbourhoods.

25.1.3 Functional Approach

Although a statistic based on a data sample may be regarded as a function of the data
a more general approach is often useful. Given a data set .x1; : : : ; xn/ we define the
corresponding empirical distribution Pn by

Pn D 1

n

nX

iD1
ıxi ; (25.6)

where ıx denotes the unit mass in x: Although Pn clearly depends on the sample
.x1; : : : ; xn/ we will usually suppress the dependency for the sake of clarity. With
this notation we can now regard the arithmetic mean Nxn D Pn

iD1 xi =n either as
a function of the data or as a function Tav of the empirical measure Pn,

Nxn D
Z
x dPn.x/ D Tav.Pn/ :

The function Tav can be extended to all measures P which have a finite mean

Tav.P / D
Z
x dP.x/; (25.7)

and is now a functional defined on a certain subset of the family P of probability
measures on R. This manner of treating statistics is one whose origins go back to
von Mises (1937). In the context of robust statistics it was introduced by Huber
(1964) and has proved very useful (see Fernholz 1983). Another example is given
by the functional Tsh defined as the length of the shortest interval which carries
a mass of at least 1=2,

Tsh.P / D argminfjI j W P.I / � 1=2; I � Rg; (25.8)



716 L. Davies and U. Gather

where jI j denotes the length of the interval I . The idea of using the shortest half
interval goes back to Tukey (see Andrews et al. 1972) who proposed using the mean
of the observations contained in it as a robust location functional.

The space P may be metricized in many ways but we prefer the Kolmogoroff
metric dko defined by

dko.P;Q/ D sup
x2R
jP..�1; x�/ �Q..�1; x�/j : (25.9)

The Glivenko–Cantelli theorem states

lim
n!1dko.Pn.P /; P / D 0; a:s: ; (25.10)

where Pn.P / denotes the empirical measure of the n random variables
X1.P /; : : : ; Xn.P / of the i.i.d. sequence .Xi.P //11 : In conjunction with (25.10)
the metric dko makes it possible to connect analytic properties of a functional T and
its statistical properties. As a first step we note that a functional T which is locally
bounded in the Kolmogoroff metric

supfjT .Q/� T .P /j W dko.P;Q/ < �/g <1 ; (25.11)

for some � > 0 offers protection against outliers. On moving from local bounded-
ness to continuity we see that if a functional T is continuous at P then the sequence
T .Pn.P // is a consistent statistic in that

lim
n!1T .Pn.P // D T .P /; a:s:

Finally we consider a functional T which is differentiable at P , that is

T .Q/� T .P / D
Z
I.x; P; T / d.Q � P/.x/C oP .dko.P;Q// (25.12)

for some bounded function I.�; P; T / W R ! R where, without loss of generality,R
I.x; P; T / dP.x/ D 0 (see Clarke 1983). On putting

Q D Q� D .1 � �/P C �ıx
it is seen that I.x; P; T / is the influence function of (25.2). As

dko.Pn.P /; P / D OP .1=
p
n/ (25.13)

the central limit theorem (25.3) follows immediately. Textbooks which make use of
this functional analytic approach are as already mentioned Huber (1981), Hampel
et al. (1986), Rieder (1994), and also Staudte and Sheather (1990), a book which
can be strongly recommended to students as a well written and at the same time
deep introductory text.
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25.2 Location and Scale in R

25.2.1 Location, Scale and Equivariance

Changes in measurement units and baseline correspond to affine transformations on
R. We write

A D fA W R! R with A.x/ D ax C b; a ¤ 0; b 2 Rg : (25.14)

For any probability measure P and for any A 2 A we define

PA.B/ D P.fx W A.x/ 2 Bg/; B 2 B ; (25.15)

B denoting all Borel sets on R. Consider a subset P 0 of P which is closed under
affine transformations, that is

P 2 P 0 ) PA 2 P 0 for all P 2 P 0; A 2 A : (25.16)

A functional Tl W P 0 ! R will be called a location functional on P 0 if

Tl.P
A/ D A.Tl.P //; A 2 A; P 2 P 0 : (25.17)

Similarly we define a functional Ts W P 0 ! RC to be a scale functional if

Ts.P
A/ D jajTs.P /; A 2 A; A.x/ D ax C b; P 2 P 0 : (25.18)

25.2.2 Existence and Uniqueness

The fact that the mean Tav of (25.7) cannot be defined for all distributions is an
indication of its lack of robustness. More precisely the functional Tav is not locally
bounded (25.11) in the metric dko at any distribution P: The median MED.P / can
be defined at any distribution P as the mid-point of the interval of m-values for
which

P..�1; m�/ � 1=2 and P.Œm;1// � 1=2 : (25.19)

Similar considerations apply to scale functionals. The standard deviation requires
the existence of the second moment of a distribution. The median absolute deviation
MAD (see Andrews et al. 1972) of a distribution can be well defined at all
distributions as follows. Given P we define P 0 by

P 0.B/ D P.fx W jx �MED.P /j 2 Bg/; B 2 B :
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and set
MAD.P / D MED.P 0/ : (25.20)

25.2.3 M-Estimators

An important family of statistical functionals is the family of M-functionals
introduced by Huber (1964) Let  and � be functions defined on R with values in
the interval Œ�1; 1�. For a given probability distributionP we consider the following
two equations for m and s

Z
 
�x �m

s

	
dP.x/ D 0 (25.21)

Z
�
�x �m

s

	
dP.x/ D 0: (25.22)

If the solution exists and is uniquely defined we denote it by

T .P / D .Tl .P /; Ts.P // D .m; s/ :

In order to guarantee existence and uniqueness conditions have to be placed on
the functions and � as well as on the probability measure P . The ones we use are
due to Scholz (1971) (see also Huber 1981) and are as follows:

( 1)  .�x/ D � .x/ for all x 2 R:
( 2)  is strictly increasing
( 3) limx!1 .x/ D 1
( 4)  is continuously differentiable with derivative  .1/.

(1) �.�x/ D �.x/ for all x 2 R:
(2) � W RC ! Œ�1; 1� is strictly increasing
(3) �.0/ D �1
(4) limx!1 �.x/ D 1
(5) � is continuously differentiable with derivative �.1/.

( 1) �.1/= .1/ W RC ! RC is strictly increasing.

If these conditions hold and P satisfies

�.P / D max
x
P.fxg/ < 1=2 (25.23)



25 Robust Statistics 719

then (25.21) and (25.22) have precisely one solution. If we set

P 0 D fP W �.P / < 1=2g

then P 0 satisfies (25.16) and Tl W P 0 ! R and Ts W P 0 ! RC are a location and
a scale functional respectively. Two functions which satisfy the above conditions are

 .x/ D exp.x=c/ � 1
exp.x=c/C 1 (25.24)

�.x/ D x4 � 1
x4 C 1 ; (25.25)

where c < 0:39 is a tuning parameter. The restriction on c is to guarantee
. 1/: Algorithms for calculating the solution of (25.21) and (25.22) are given
in the Fortran library ROBETH (Marazzi 1992) which also contains many other
algorithms related to robust statistics.

The main disadvantage of M-functionals defined by (25.21) and (25.22) is ( 1)
which links the location and scale parts in a manner which may not be desirable. In
particular there is a conflict between the breakdown behaviour and the efficiency
of the M-functional (see below). There are several ways of overcoming this. One is
to take the scale function Ts and then to calculate a second location functional by
solving Z

Q 
�
x �m
Ts.P /

�
dP.x/ D 0 : (25.26)

If now Q satisfies ( 1/�. 4) then this new functional will exist only under
the assumption that the scale functional exists and is non-zero. Furthermore the
functional can be made as efficient as desired by a suitable choice of Q removing
the conflict between breakdown and efficiency. One possible choice for Ts.P / is the
MAD of (25.20) which is simple, highly robust and which performed well in the
Princeton robustness study (Andrews et al. 1972).

In some situations there is an interest in downweighting outlying observations
completely rather than in just bounding their effect. A downweighting to zero is
not possible for a  -function which satisfies ( 2) but can be achieved by using so
called redescending  -functions such as Tukey’s biweight

Q .x/ D x.1 � x2/2fjxj � 1g : (25.27)

In general there will be many solutions of (25.26) for such -functions and to obtain
a well defined functional some choice must be made. One possibility is to take the
solution closest to the median, another is to take

argminm

Z
�

�
x �m
Ts.P /

�
dP.x/ (25.28)
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where �.1/ D Q : Both solutions pose algorithmic problems. The effect of
downweighting outlying observations to zero can be attained by using a so called
one-step functional Tom defined by

Tom.P / D Tm.P /C Ts.P /
R Q 

�
x�Tm.P /
Ts.P /

	
dP.x/

R Q .1/
�
x�Tm.P /
Ts.P /

	
dP.x/

(25.29)

where Tm is as above and Q is redescending. We refer to Hampel et al. (1986) and
Rousseeuw and Croux (1994) for more details.

So far all scale functionals have been defined in terms of a deviation from
a location functional. This link can be broken as follows. Consider the functional Tss
defined to be the solution s of

Z
�
�x � y

s

	
dP.x/ dP.y/ D 0 ; (25.30)

where � satisfies the conditions above. It may be shown that the solution is unique
with 0 < s <1; if X

ai

P.fai g/2 < 1=4 ; (25.31)

where the ai denote the countably many atoms of P . The main disadvantage of
this method is the computational complexity of (25.30) requiring as it does O.n2/
operations for a sample of size n. If � is of the form

�.x/ D


a > 0; jxj > 1
b < 0; jxj � 1 ;

then Tss reduces to a quantile of the jxi � xj j and much more efficient algorithms
exist which allow the functional to be calculated in O.n logn/ operations (see Croux
and Rousseeuw 1992; Rousseeuw and Croux 1992, 1993).

Although we have defined M -functionals as a solution of (25.21) and (25.22)
there are sometimes advantages in defining them as a solution of a minimization
problem. Consider the Cauchy distribution with density

f .x W �; / D 1

�



2 C .x � �/2 : (25.32)

We now define T c.P / D .Tcm.P /; Tcs.P // by

T c.P / D argmin.m;s/

�
�
Z

log. f .x W m; s// dP.x/C 1

2
log.s/

�
: (25.33)

This is simply the standard maximum likelihood estimate for a Cauchy distribution
but there is no suggestion here that the data are so distributed. If �.P / < 1=2 it
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can be shown that the solution exists and is unique. Moreover there exists a simple
convergent algorithm for calculating .Tcm.P /; Tcs.P // for a data sample. We refer
to Kent and Tyler (1991) for this and the multidimensional case to be studied below.
By differentiating the right hand side of (25.33) it is seen that .Tcm.P /; Tcs.P //
may be viewed as an M-functional with a redescending  -function.

Another class of functionals defined by a minimization problem is the class of
S -functionals. Given a function � W R ! Œ0; 1� which is symmetric, continuous
on the right and non-increasing on RC with �.1/ D 1 and limx!1 �.x/ D 0. We
define .Tsm.P /; Tss.P // by

.Tsm.P /; Tss.P // D argmin.m;s/



s W
Z
�..x �m/=s/ dP.x/ � 1=2

�
: (25.34)

A special case is a minor variation of the shortest-half functional of (25.8) which
is obtained by taking � to be the indicator function of the interval Œ0; 1/: Although
the existence of solutions of (25.34) is guaranteed if �.P / < 1=2 the problem of
uniqueness is not trivial and requires the existence of a density subject to certain con-
ditions. If � is smooth then by differentiation it is seen that .Tsm.P /; Tss.P //may be
regarded as an M-functional with a redescending -function given by Q D �.1/: The
minimization problem (25.34) acts as a choice function. We refer to Davies (1987).

25.2.4 Bias and Breakdown

Given a location functional Tl the bias is defined by

b.Tl ; P; �; dko/ D supfjTl.Q/� Tl.P /j W dko.P;Q/ < �g ; (25.35)

where by convention Tl.Q/ D 1 if Tl is not defined at Q: For a scale functional
Ts we set

b.Ts; P; �; dko/ D supfj log.Ts.Q/=Ts.P //j W dko.P;Q/ < �g ; (25.36)

where again by conventionTs.Q/ D 1 if Ts is not defined atQ:A popular although
weaker form of bias function based on the so called gross error neighbourhood is
given by

b.Tl ; P; �;GE/ D supfjTl.Q/�Tl.P /j W Q D .1��/PC�H;H 2 Pg (25.37)

with a corresponding definition for b.Ts; P; �;GE/: We have

b.Tl ; P; �;GE/ � b.Tl ; P; �; dko/ : (25.38)

We refer to Huber (1981) for more details.
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The breakdown point ��.Tl ; P; dko/ of Tl at P with respect to dko is defined by

��.Tl ; P; dko/ D supf� W b.Tl ; P; �; dko/ <1g (25.39)

with the corresponding definitions for scale functionals and the gross error neigh-
bourhood. Corresponding to (25.38) we have

��.Tl ; P; dko/ � ��.Tl ; P;GE/ : (25.40)

If a functional Tl has a positive breakdown point at a distribution P then it exhibits
a certain degree of stability in a neighbourhood of P as may be seen as follows.
Consider a sample x1; : : : ; xn and add to it k further observations xnC1; : : : ; xnCk .
IfPn andPnCk denote the empirical measures based on x1; : : : ; xn and x1; : : : ; xnCk
respectively then dko.Pn; PnCk/ � k=.n C k/: In particular if k=.n C k/ <

��.Tl ; Pn; dko/ then it follows that Tl.PnCk/ remains bounded whatever the added
observations . This finite sample concept of breakdown was introduced by Donoho
and Huber (1983). Another version replaces k observations by other values instead
of adding k observations and is as follows. Let xk1 ; : : : ; x

k
n denote a sample differing

from x1; : : : ; xn in at most k readings. We denote the empirical distributions by Pk
n

and define
��.Tl ; Pn; f sbp/ D max

˚
k=n W ˇ̌Tl

�
Pk
n

� ˇ̌
<1� ; (25.41)

where Pk
n ranges over all possible xk1 ; : : : ; x

k
n . This version of the finite sample

breakdown point is called the replacement version as k of the original observations
can be replaced by arbitrary values. The two breakdown points are related (Zuo
2001). There are corresponding versions for scale functionals.

For location and scale functionals there exist upper bounds for the breakdown
points. For location functionals Tl we have

Theorem 1.

��.Tl ; P; dko/ � 1=2; (25.42)

��.Tl ; P;GE/ � 1=2; (25.43)

��.Tl ; Pn; f sbp/ � bn=2c=n: (25.44)

We refer to Huber (1981). It may be shown that all breakdown points of the mean
are zero whereas the median attains the highest possible breakdown point in each
case.The corresponding result for scale functionals is more complicated. Whereas
we know of no reasonable metric in (25.42) of Theorem 1 which leads to a different
upper bound this is not the case for scale functionals. Huber (1981) shows that for
the Kolmogoroff metric dko the corresponding upper bound is 1=4 but is 1=2 for
the gross error neighbourhood. If we replace the Kolmogoroff metric dko by the
standard Kuiper metric dku defined by
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dku.P;Q/ D supfjP.I / �Q.I/j W I an intervalg (25.45)

then we again obtain an upper bound of 1=2: For scale functionals Ts we have

Theorem 2.

��.Ts; P; dku/ � .1 ��.P //=2; (25.46)

��.Ts; P;GE/ � .1 ��.P //=2; (25.47)

��.Ts; Pn; f sbp/ � .1 ��.P //=2: (25.48)

Similarly all breakdown points of the standard deviation are zero but, in contrast
to the median, the MAD does not attain the upper bounds of (25.44). We have

��.MAD; Pn; f sbp/ D maxf0; 1=2��.Pn/g :

A simple modification of the MAD, namely

MMAD.P / D minfjI j W QP .I / � .1C�.I//=2g ; (25.49)

where QP.B/ D P.fx W jx�MED.P /j 2 Bg/ and�.I/ D maxfP.fxg/; x 2 I g can
be shown to obtain the highest possible finite sample breakdown point of (25.48).

The M-functional defined by (25.21) and (25.22) has a breakdown point �� which
satisfies

 �1
�

��

1 � ��
�
D ��1

� ���
1 � ��

�
(25.50)

(see Huber 1981). For the functions defined by (25.24) and (25.25) the breakdown
point is a decreasing function of c. As c tends to zero the breakdown point tends
to 1=2. Indeed, as c tends to zero the location part of the functional tends to the
median. For c D 0:2 numerical calculations show that the breakdown point is 0.48.
The calculation of breakdown points is not always simple. We refer to Huber (1981),
Huber (1984) and Gather and Hilker (1997).

The breakdown point is a simple but often effective measure of the robustness
of a statistical functional. It does not however take into account the size of the bias.
This can be done by trying to quantify the minimum bias over some neighbourhood
of the distribution P and if possible to identify a functional which attains it. We
formulate this for P D N.0; 1/ and consider the Kolmogoroff ball of radius �: We
have (Huber 1981)

Theorem 3. For every � < 1=2 we have

b.MED; P; �; dko/ � b.Tl ; P; �; dko/

for any translation functional Tl :
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In other words the median minimizes the bias over any Kolmogoroff neighbour-
hood of the normal distribution. This theorem can be extended to other symmetric
distributions and to other situations (Riedel 1989a,b). It is more difficult to obtain
such a theorem for scale functionals because of the lack of a property equivalent
to symmetry for location. Nevertheless some results in this direction have been
obtained and indicate that the length of the shortest half Tsh of (25.8) has very good
bias properties (Martin and Zamar 1993b).

25.2.5 Confidence Intervals and Differentiability

Given a sample x1; : : : ; xn with empirical measure Pn we can calculate a location
functional Tl.Pn/ which in some sense describes the location of the sample.
Such a point value is rarely sufficient and in general should be supplemented by
a confidence interval, that is a range of values consistent with the data. If Tl is
differentiable (25.12) and the data are i.i.d. random variables with distribution
P then it follows from (25.3) (see Sect. 25.1.3) that an asymptotic ˛-confidence
interval for Tl.P / is given by

�
Tl.Pn.P // � z..1C ˛/=2/˙.P /=pn; Tl .Pn.P //C z..1C ˛/=2/˙.P /=pn� :

(25.51)
Here z.˛/ denotes the ˛-quantile of the standard normal distribution and

˙.P /2 D
Z
I.x; Tl ; P /

2 dP.x/ : (25.52)

At first glance this cannot lead to a confidence interval as P is unknown. If however
˙.P / is also Fréchet differentiable at P then we can replace ˙.P / by ˙.Pn.P //
with an error of order OP .1=

p
n/. This leads to the asymptotic ˛-confidence interval

�
Tl.Pn.P // � z..1C ˛/=2/˙.Pn.P //=

p
n; Tl .Pn.P //

Cz..1C ˛/=2/˙.Pn.P //=
p
n
�
: (25.53)

A second problem is that (25.53) depends on asymptotic normality and the accuracy
of the interval in turn will depend on the rate of convergence to the normal
distribution which in turn may depend on P . Both problems can be overcome if
Tl is locally uniformly Fréchet differentiable at P: If we consider the M-functionals
of Sect. 25.2.3 then they are locally uniformly Fréchet differentiable if the  - and
�-functions are sufficiently smooth (see Bednarski et al. 1991, Bednarski 1993,
Bednarski and Clarke 1998, and Davies 1998). The influence function I.�; Tl ; P /
is given by
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I.x; Tl ; P / D Ts.P /
D.P / Q 

�
x�Tl .P /
Ts.P /

	
� B.P /�

�
x�Tl .P /
Ts.P /

	

A.P /D.P / � B.P /C.P / ; (25.54)

where

A.P / D
Z
Q .1/

�
x � Tl.P /
Ts.P /

�
dP.x/ (25.55)

B.P / D
Z �

x � Tl.P /
Ts.P /

�
Q .1/

�
x � Tl.P /
Ts.P /

�
dP.x/ (25.56)

C.P / D
Z
�.1/

�
x � Tl.P /
Ts.P /

�
dP.x/ (25.57)

D.P/ D
Z �

x � Tl.P /
Ts.P /

�
�.1/

�
x � Tl.P /
Ts.P /

�
dP.x/: (25.58)

Simulations suggest that the covering probabilities of the confidence interval (25.53)
are good for sample sizes of 20 or more as long as the distribution P is almost
symmetric. For the sample x1; : : : ; xn this leads to the interval

�
Tl.Pn/� z..1C ˛/=2/˙.Pn/=

p
n; Tl .Pn/C z..1C ˛/=2/˙.Pn/=

p
n
�

(25.59)

with ˙.P / given by (25.52) and I.x; Tl ; P / by (25.54). Similar intervals can be
obtained for the variations on M-functionals discussed in Sect. 25.2.3.

25.2.6 Efficiency and Bias

The precision of the functional T at the distribution P can be quantified by the
length 2z..1 C ˛/=2/˙.P /=pn of the asymptotic confidence interval (25.51). As
the only quantity which depends on T is ˙.P / we see that an increase in precision
is equivalent to reducing the size of ˙.P /. The question which naturally arises is
then that of determining how small ˙.P / can be made. A statistical functional
which attains this lower bound is asymptotically optimal and if we denote this
lower bound by ˙opt.P /, the efficiency of the functional T can be defined as
˙opt.P /

2=˙.P /2: The efficiency depends on P and we must now decide which
P or indeed P s to choose. The arguments given in Sect. 25.1.2 suggest choosing
a P which maximizes ˙opt.P / over a class of models. This holds for the normal
distribution which maximizes˙opt.P / over the class of all distributions with a given
variance. For this reason and for simplicity and familiarity we shall take the normal
distribution as the reference distribution. If a reference distribution is required which
also produces outliers then the slash distribution is to be preferred to the Cauchy
distribution. We refer to Cohen (1991) and the discussion given there.
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If we consider the M-functionals defined by (25.24) and (25.25) the efficiency
at the normal distribution is an increasing function of the tuning parameter c. As
the breakdown point is a decreasing function of c this would seem to indicate that
there is a conflict between efficiency and breakdown point. This is the case for the
M-functional defined by (25.24) and (25.25) and is due to the linking of the location
and scale parts of the functional. If this is severed by, for example, recalculating
a location functional as in (25.26) then there is no longer a conflict between
efficiency and breakdown. As however the efficiency of the location functional
increases the more it behaves like the mean with a corresponding increase in the bias
function of (25.35) and (25.37). The conflict between efficiency and bias is a real
one and gives rise to an optimality criterion, namely that of minimizing the bias
subject to a lower bound on the efficiency. We refer to Martin and Zamar (1993a).

25.2.7 Outliers in R

One of the main uses of robust functionals is the labelling of so called outliers (see
Barnett and Lewis 1994; Hawkins 1980; Atkinson 1994; Gather 1990; Gather et
al. 2003; and Simonoff 1984, 1987). In the data of Table 25.1 the laboratories 1
and 3 are clearly outliers which should be flagged. The discussion in Sect. 25.1.1
already indicates that the mean and standard deviation are not appropriate tools for
the identification of outliers as they themselves are so strongly influenced by the
very outliers they are intended to identify. We now demonstrate this more precisely.
One simple rule is to classify all observations more than three standard deviations
from the mean as outliers. A simple calculation shows that this rule will fail to
identify 10% arbitrarily large outliers with the same sign. More generally if all
observations more than � standard deviations from the mean are classified as outliers
then this rule will fail to identify a proportion of 1=.1C �2/ outliers with the same
sign. This is known as the masking effect (Pearson and Chandra Sekar 1936) where
the outliers mask their presence by distorting the mean and, more importantly, the
standard deviation to such an extent as to render them useless for the detection
of the outliers. One possibility is to choose a small value of � but clearly if � is
too small then some non-outliers will be declared as outliers. In many cases the
main body of the data can be well approximated by a normal distribution so we
now investigate the choice of � for samples of i.i.d. normal random variables. One
possibility is to choose � dependent on the sample size n so that with probability
say 0.95 no observation will be flagged as an outlier. This leads to a value of �
of about

p
2 log.n/ (Davies and Gather 1993) and the largest proportion of one-

sided outliers which can be detected is approximately 1=.1C 2 log.n// which tends
to zero with n. It follows that there is no choice of � which can detect say 10%
outliers and at the same time not falsely flag non-outliers. In order to achieve this
the mean and standard deviation must be replaced by functionals which are less
effected by the outliers. In particular these functionals should be locally bounded
(25.11). Considerations of asymptotic normality or efficiency are of little relevance
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here. Two obvious candidates are the median and MAD and if we use them instead
of the mean and standard deviation we are led to the identification rule (Hampel
1985) of the form

jxi �MED.xn/j � �MAD.xn/ : (25.60)

Hampel (1975) proposed setting � D 5:2 as a general all purpose value. The
concept of an outlier cannot in practice be very precise but in order to compare
different identification rules we require a precise definition and a precise measure of
performance. To do this we shall restrict attention to the normal model as one which
is often reasonable for the main body of data. In other situations such as waiting
times the exponential distribution may be more appropriate. The following is based
on Davies and Gather (1993). To define an outlier we introduce the concept of an ˛-
outlier. For the normal distribution N.�; 2/ and ˛ 2 .0; 1/ we define the ˛-outlier
region by

out.˛;N.�; 2// D fx 2 R W jx � �j >  z1�˛=2g ; (25.61)

which is just the union of the lower and the upper ˛=2-tail regions. Here z1�˛=2
denotes the 1�˛=2-quantile of the standard normal distribution. For the exponential
distribution Exp.�/ with parameter � we set

out.˛;Exp.�// D fx 2 R W x > �� ln˛g (25.62)

which is the upper ˛-tail region (Gather and Schultze 1999). The extension to other
distributions P is clear. Each point located in the outlier region is called an ˛-
outlier, otherwise it is called an ˛-inlier. This definition of an outlier refers only
to its position in relation to the statistical model for the good data. No assumptions
are made concerning the distribution of these outliers or the mechanism by which
they are generated.

We can now formulate the task of outlier identification for the normal distribution
as follows: For a given sample xn D .x1; : : : ; xn/ which contains at least Œn=2�C 1
i.i.d. observations distributed according to N.�; 2/, we have to find all those xi
that are located in out.˛;N.�; 2//. The level ˛ can be chosen to be dependent on
the sample size. If for some Q̨ 2 .0; 1/ we set

˛ D ˛n D 1 � .1 � Q̨ /1=n ; (25.63)

then the probability of finding at least one observation of a N.�; 2/-sample of
size n within out.˛n;N.�; 2// is not larger than Q̨ . Consider now the general
Hampel identifier which classifies all observations xi in

ORH.xn; ˛n/ D fx 2 R W jx �Med.xn/j > gn.˛n/ MAD.xn/g (25.64)

as outliers. The region ORH.xn; ˛n/ may be regarded as an empirical version of the
outlier region out.˛n;N.�; 2//: The constant gn.˛n/ standardizes the behaviour of
the procedure for i.i.d. normal samples which may be done in several ways. One is
to determine the constant so that with probability at least 1� Q̨ no observationXi is



728 L. Davies and U. Gather

identified as an outlier, that is

P
�
Xi … OR.Xn; ˛n/; i D 1; : : : ; n

� � 1 � Q̨ : (25.65)

A second possibility is to require that

P
�
OR.Xn; ˛n/ � out.˛n; P /

� � 1 � Q̨ : (25.66)

If we use (25.65) and set Q̨ D 0:05 then for n D 20; 50 and 100 simulations give
gn.˛n/ D 5:82; 5:53 and 5.52 respectively. For n > 10 the normalizing constants
gn.˛n/ can also be approximated according to the equations given in Sect. 5 of
Gather (1990).

To describe the worst case behaviour of an outlier identifier we can look at the
largest nonidentifiable outlier, which it allows. From Davies and Gather (1993)
we report some values of this quantity for the Hampel identifier (HAMP) and
contrast them with the corresponding values of a sophisticated high breakdown
point outwards testing identifier (ROS), based on the non-robust mean and standard
deviation (Rosner 1975; Tietjen and Moore 1972). Both identifiers are standardized
by (25.65) with Q̨ D 0:05. Outliers are then observations with absolute values
greater than 3:016.n D 20/, 3:284.n D 50/ and 3:474.n D 100/. For k D 2

outliers and n D 20 the average sizes of the largest non-detected outlier are 6.68
(HAMP) and 8.77 (ROS), for k D 5 outliers and n D 50 the corresponding values
are 4.64 (HAMP) and 5.91 (ROS) and finally for k D 15 outliers and n D 100 the
values are 5.07 (HAMP) and 9.29 (ROS).

25.3 Location and Scale in Rk

25.3.1 Equivariance and Metrics

In Sect. 25.2.1 we discussed the equivariance of estimators for location and scale
with respect to the affine group of transformations on R: This carries over to higher
dimensions although here the requirement of affine equivariance lacks immediate
plausibility. A change of location and scale for each individual component in Rk is
represented by an affine transformation of the form�.x/Cb where� is a diagonal
matrix. A general affine transformation forms linear combinations of the individual
components which goes beyond arguments based on units of measurement. The use
of affine equivariance reduces to the almost empirical question as to whether the
data, regarded as a cloud of points in Rk , can be well represented by an ellipsoid. If
this is the case as it often is then consideration of linear combinations of different
components makes data analytical sense. With this proviso in mind we consider the
affine group A of transformations of Rk into itself,
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A D fA W A.x/ D A.x/C bg ; (25.67)

where A is a non-singular k � k-matrix and b is an arbitrary point in Rk:

Let P 0k denote a family of distributions over Rk which is closed under affine
transformations

P 2 P 0k ) PA 2 P 0k; for all A 2A : (25.68)

A function Tl W P 0k ! Rk is called a location functional if it is well defined and

Tl.P
A/ D A.Tl .P //; for all A 2A; P 2 P 0k : (25.69)

A functional Ts W P 0k ! ˙ k where˙ k denotes the set of all strictly positive definite
symmetric k � k matrices is called a scale or scatter functional if

Ts.P
A/ D ATl.P /A>; for all A 2A; P 2 P 0k with A.x/ D A.x/C b : (25.70)

The requirement of affine equivariance is a strong one as we now indicate. The most
obvious way of defining the median of a k-dimensional data set is to define it by the
medians of the individual components. With this definition the median is equivariant
with respect to transformations of the form �.x/C b with � a diagonal matrix but
it is not equivariant for the affine group. A second possibility is to define the median
of a distribution P by

MED.P / D argmin�

Z
.kx � �k � kxk/ dP.x/ :

With this definition the median is equivariant with respect to transformations of the
form x ! O.x/C b with O an orthogonal matrix but not with respect to the affine
group or the group x ! �.x/ C b with � a diagonal matrix. The conclusion is
that there is no canonical extension of the median to higher dimensions which is
equivariant with respect to the affine group.

In Sect. 25.2 use was made of metrics on the space of probability distributions on
R: We extend this to Rk where all metrics we consider are of the form

dC.P;Q/ D sup
C2C
jP.C / �Q.C/j (25.71)

where C is a so called Vapnik–Cervonenkis class (see for example Pollard 1984).
The class C can be chosen to suit the problem. Examples are the class of all lower
dimensional hyperplanes

H D fH W H lower dimensional hyperplaneg (25.72)

and the class of all ellipsoids
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E D fE W E an ellipsoidg: (25.73)

These give rise to the metrics dH and dE respectively. Just as in R metrics dC of the
form (25.71) allow direct comparisons between empirical measures and models. We
have

dC.Pn.P /; P / D O.1=
p
n/ (25.74)

uniformly in P (see Pollard 1984).

25.3.2 M-estimators of Location and Scale

Given the usefulness of M-estimators for one dimensional data it seems natural
to extend the concept to higher dimensions. We follow Maronna (1976). For any
positive definite symmetric k � k-matrix˙ we define the metric d.�; � W ˙/ by

d.x; y W ˙/2 D .x � y/>˙�1.x � y/; x; y 2 Rk:

Further, let u1 and u2 be two non-negative continuous functions defined on RC and
be such that sui .s/; s 2 RC; i D 1; 2 are both bounded. For a given probability
distributionP on the Borel sets of Rk we consider in analogy to (25.21) and (25.22)
the two equations in � and ˙

Z
.x � �/u1.d.x; �I˙// dP D 0: (25.75)

Z
u2.d.x; �I˙/2/.x � �/.x � �/> dP D 0: (25.76)

Assuming that at least one solution .�;˙/ exists we denote it by TM.P / D .�;˙/:
The existence of a solution of (25.75) and (25.76) can be shown under weak
conditions as follows. If we define

�.P / D maxfP.H/ W H 2 Hg (25.77)

with H as in (25.73) then a solution exists if�.P / < 1�ı where ı depends only on
the functions u1 and u2 (Maronna 1976). Unfortunately the problem of uniqueness
is much more difficult than in the one-dimensional case. The conditions placed on
P in Maronna (1976) are either that it has a density fP .x/ which is a decreasing
function of kxk or that it is symmetric P.B/ D P.�B/ for every Borel set B:
Such conditions do not hold for real data sets which puts us in an awkward position.
Furthermore without existence and uniqueness there can be no results on asymptotic
normality and consequently no results on confidence intervals. The situation is
unsatisfactory so we now turn to the one class of M-functionals for which existence
and uniqueness can be shown. The following is based on Kent and Tyler (1991) and
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is the multidimensional generalization of (25.33). The k-dimensional t-distribution
with density fk;�.� W �;˙/ is defined by

fk;�.x W �;˙/ D
� .1

2
.� C k//

.�k/k=2�
�
1
2
�
� j˙ j� 12

�
1C 1

�
.x � �/top˙�1.x � �/

�� 12 .�Ck/

(25.78)
and we consider the minimization problem

TM.p/ D .Tl .P /; Ts.P // D argmin�;˙

Z
fk;�.x W �;˙/ dP.x/C 1

2
log.j˙ j/

(25.79)
where j˙ j denotes the determinant of the positive definite matrix ˙: For any
distribution P on the Borel sets of Rk we define �.P / which is the k-dimensional
version of (25.23). It can be shown that if �.P / < 1=2 then (25.79) has a unique
solution. Moreover for data sets there is a simple algorithm which converges
to the solution. On differentiating the right hand side of (25.79) it is seen that
the solution is an M-estimator as in (25.75) and (25.76). Although this has not
been proven explicitly it seems clear that the solution will be locally uniformly
Fréchet differentiable, that is, it will satisfy (25.12) where the influence function
I.x; TM ; P / can be obtained as in (25.54) and the metric dko is replaced by the
metric dH: This together with (25.74) leads to uniform asymptotic normality and
allows the construction of confidence regions. The only weakness of the proposal is
the low gross error breakdown point ��.TM ; P;GE/ defined below which is at most
1=.kC1/: This upper bound is shared with the M-functionals defined by (25.75) and
(25.76) (Maronna 1976). The problem of constructing high breakdown functionals
in k dimensions will be discussed below.

25.3.3 Bias and Breakdown

The concepts of bias and breakdown developed in Sect. 25.2.4 carry over to higher
dimensions. Given a metric d on the space of distributions on Rk and a location
functional Tl we follow (25.37) and define

b.Tl ; P; �; d / D supfkTl.Q/k W d.P;Q/ < �g (25.80)

and

b.Tl ; P; �;GE/ D supfkTl.Q/k W Q D .1 � �/P C �G; G 2 Pg ; (25.81)

where by convention kTl.Q/k D 1 if Tl is not defined at Q: The extension to
scale functionals is not so obvious as there is no canonical definition of bias. We
require a measure of difference between two positive definite symmetric matrices.
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For reasons of simplicity and because it is sufficient for our purposes the one we
take is j log .j˙1j=j˙2j/ j. Corresponding to (25.36) we define

b.Ts; P; �; d / D supfj log.jTs.Q/j=jTs.P /j/j W d.P;Q/ < �g (25.82)

and

b.Ts; P; �;GE/ D supfj log.jTs.Q/j=jTs.P /j/j W Q D .1 � �/P C �G; G 2 Pg :
(25.83)

Most work is done using the gross error model (25.81) and (25.83). The breakdown
points of Tl are defined by

��.Tl ; P; d/ D supf� W b.Tl ; P; �; d / <1g (25.84)

��.Tl ; P;GE/ D supf� W b.Tl ; P; �;GE/ <1g (25.85)

��.Tl ; Pn; f sbp/ D max
˚
k=n W ˇˇTl

�
Pk
n

� ˇˇ <1� ; (25.86)

where (25.86) corresponds in the obvious manner to (25.41). The breakdown points
for the scale functional Ts are defined analogously using the bias functional (25.82).
We have

Theorem 4. For any translation equivariant functional Tl

��.Tl ; P; dH/ � 1=2 and ��.Tl ; Pn; f sbp/ � bn=2c=n (25.87)

and for any affine equivariant scale functional

��.Ts; P; dE/ � .1 ��.P //=2 and ��.Ts; Pn; f sbp/ � .1 ��.Pn//=2 : (25.88)

In Sect. 25.2.4 it was shown that the M-estimators of Sect. 25.2.3 can attain or
almost attain the upper bounds of Theorem 1. Unfortunately this is not the case
in k dimensions where as we have already mentioned the breakdown points of M-
functionals of Sect. 25.3.2 are at most 1=.k C 1/. In recent years much research
activity has been directed towards finding high breakdown affinely equivariant
location and scale functionals which attain or nearly attain the upper bounds of
Theorem 4. This is discussed in the next section.

25.3.4 High Breakdown Location and Scale Functionals in Rk

The first high breakdown affine equivariant location and scale functionals were
proposed independently of each other by Stahel (1981) and Donoho (1982). They
were defined for empirical data but the construction can be carried over to measures
satisfying a certain weak condition. The idea is to project the data points onto lines
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through the origin and then to determine which points are outliers with respect to
this projection using one-dimensional functions with a high breakdown point. More
precisely we set

o.xi ; ™/ D
ˇ
ˇx>i ™ �MED

�
x>1 ™; : : : ; x>n ™

� ˇˇıMAD
�
x>1 ™; : : : ; x>n ™

�
(25.89)

and
o.xi / D supfo.xi ; ™/ W k™k D 1g : (25.90)

This is a measure for the outlyingness of the point xi and it may be checked that it
is affine invariant. Location and scale functionals may now be obtained by taking
for example the mean and the covariance matrix of those bn=2 C 1c observations
with the smallest outlyingness measure. Although (25.90) requires a supremum over
all values of ™ this can be reduced for empirical distributions as follows. Choose
all linearly independent subsets xi1 ; : : : ; xik of size k and for each such subset
determine a ™ which is orthogonal to their span. If the sup in (25.90) is replaced
by a maximum over all such ™ then the location and scale functionals remain
affine equivariant and retain the high breakdown point. Although this requires the

consideration of only a finite number of directions namely at most
�
n
k

�
this number

is too large to make it a practicable possibility even for small values of n and k:
The problem of calculability has remained with high breakdown methods ever since
and it is their main weakness. There are still no high breakdown affine equivariant
functionals which can be calculated exactly except for very small data sets. Huber
(1995) goes as far as to say that the problem of calculability is the breakdown of
high breakdown methods. This is perhaps too pessimistic but the problem remains
unsolved.

Rousseeuw (1985) introduced two further high breakdown location and scale
functionals as follows. The first, the so called minimum volume ellipsoid (MVE)
functional, is a multidimensional version of Tukey’s shortest half-sample (25.8) and
is defined as follows. We set

E D argmineEfjeEj W jfi W xi 2 eEgj � bn=2cg ; (25.91)

where jEj denotes the volume of E and jf gj denotes the number of elements of the
set f g. In other words E has the smallest volume of any ellipsoid which contains
more than half the data points. For a general distribution P we define

E.P / D argmineE



jeEj W

Z

eE
dP � 1=2

�
: (25.92)

Given E the location functional Tl.P / is defined to be the centre �.E/ of E and
the covariance functional Ts.P / is taken to be c.k/˙.E/ where

E D ˚x W .x � �.E//>˙�1.x � �.E// � 1� : (25.93)
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The factor c.k/ can be chosen so that c.k/˙.E/ D Ik for the standard normal
distribution in k dimensions.

The second functional is based on the so called minimum covariance determinant
(MCD) and is as follows. We write

�.B/ D
Z

B

x dP.x/=P.B/ (25.94)

˙.B/ D
Z

B

.x � �.B//.x � �.B//> dP.x/=P.B/ (25.95)

and define
MCD.P / D argminB fj˙.B/j W P.B/ � 1=2g ; (25.96)

where j˙.B/j is defined to be infinite if either of (25.94) or (25.95) does not
exist. The location functional is taken to be �.MCD.B// and the scatter functional
c.k/˙.MCD.B// where again c.k/ is usually chosen so that c.k/˙.MCD.B// D
Ik for the standard normal distribution in k-dimensions. It can be shown that both
these functionals are affinely equivariant.

A smoothed version of the minimum volume estimator can be obtained by
considering the minimization problem

minimize j˙ j subject to
Z
�
�
.x � �/>˙�1.x � �/� dP.x/ � 1=2 ; (25.97)

where � W RC ! Œ0; 1� satisfies �.0/ D 1; limx!1 �.x/ D 0 and is continuous on
the right (see Davies 1987). This gives rise to the class of so called S -functionals.
The minimum volume estimator can be obtained by specializing to the case �.x/ D
f0 � x < 1g:

On differentiating (25.97) it can be seen that an S -functional can be regarded
as an M-functional but with redescending functions u1 and u2 in contrast to the
conditions placed on u1 and u2 in (25.75) and (25.76) (Lopuhaa 1989). For such
functions the defining equations for an M-estimator have many solutions and the
minimization problem of (25.97) can be viewed as a choice function. Other choice
functions can be made giving rise to different high breakdown M-estimators. We
refer to Lopuhaa (1991) and Kent and Tyler (1996). A further class of location
and scatter functionals have been developed from Tukey’s concept of depth (Tukey
1975). We refer to Donoho and Gasko (1992), Liu at al. (1999) and Zuo and Serfling
(2000a,b). Many of the above functionals have breakdown points close to or equal to
the upper bound of Theorem 4. For the calculation of breakdown points we refer to
Davies (1987), Lopuhaa and Rousseeuw (1991), Donoho and Gasko (1992), Davies
(1993) and Tyler (1994).

The problem of determining a functional which minimizes the bias over a neigh-
bourhood was considered in the one-dimensional case in Sect. 25.2.4. The problem
is much more difficult in Rk but some work in this direction has been done (see
Adrover 1998). The more tractable problem of determining the size of the bias
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function for particular functionals or classes of functionals has also been considered
(Maronna et al. 1992; Yohai and Maronna 1990).

All the above functionals can be shown to exist but there are problems concerning
the uniqueness of the functional. Just as in the case of Tukey’s shortest half
(25.8) restrictions must be placed on the distribution P which generally include
the existence of a density with given properties (see Davies 1987 and Tatsuoka
and Tyler 2000) and which is therefore at odds with the spirit of robust statistics.
Moreover even uniqueness and asymptotic normality at some small class of models
are not sufficient. Ideally the functional should exist and be uniquely defined and
locally uniformly Fréchet differentiable just as in Sect. 25.2.5. It is not easy to
construct affinely equivariant location and scatter functionals which satisfy the first
two conditions but it has been accomplished by Dietel (1993) using the Stahel–
Donoho idea of projections described above. To go further and define functionals
which are also locally uniformly Fréchet differentiable with respect to some metric
dC just as in the one-dimensional case considered in Sect. 25.2.5 is a very difficult
problem. The only result in this direction is again due to Dietel (1993) who managed
to construct functionals which are locally uniformly Lipschitz. The lack of locally
uniform Fréchet differentiability means that all derived confidence intervals will
exhibit a certain degree of instability. Moreover the problem is compounded by
the inability to calculate the functionals themselves. To some extent it is possible
to reduce the instability by say using the MCD functional in preference to the
MVE functional, by reweighting the observations or by calculating a one-step
M-functional as in (25.29) (see Davies 1992a). However the problem remains and
for this reason we do not discuss the research which has been carried out on the
efficiency of the location and scatter functionals mentioned above. Their main use
is in data analysis where they are an invaluable tool for detecting outliers. This will
be discussed in the following section.

A scatter matrix plays an important role in many statistical techniques such
as principal component analysis and factor analysis. The use of robust scatter
functionals in some of these areas has been studied by among others Croux and
Haesbroeck (2000), Croux and Dehon (2001) and Willems et al. (2002).

As already mentioned the major weakness of all known high breakdown
functionals is their computational complexity. For the MCD functional an exact
algorithm of the order of nk.kC3/=2 exists and there are reasons for supposing that
this cannot be reduced to below nk (Bernholt and Fischer 2001). This means that
in practice for all but very small data sets heuristic algorithms have to be used. We
refer to Rousseeuw and Van Driesen (1999) for a heuristic algorithm for the MCD-
functional and also to Rousseeuw and Van Driesen (2000).

25.3.5 Outliers in R

Whereas for univariate, bivariate and even trivariate data outliers may often be found
by visual inspection, this is not practical in higher dimensions (Barme-Delcroix
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and Gather 2000; Caroni and Prescott 1992; Gnanadesikan and Kettenring 1972;
Hadi 1994; Hadi and Simonoff 1997). This makes it all the more important to
have methods which automatically detect high dimensional outliers. Much of the
analysis of the one-dimensional problem given in Sect. 25.2.7 carries over to the
k-dimensional problem. In particular outlier identification rules based on the mean
and covariance of the data suffer from masking problems and must be replaced by
high breakdown functionals (see also Rocke and Woodruff 1996, 1997). We restrict
attention to affine equivariant functionals so that an affine transformation of the data
will not alter the observations which are identified as outliers. The identification
rules we consider are of the form

.xi � Tl.Pn//>Ts.Pn/�1.xi � Tl.Pn// � c.k; n/ ; (25.98)

where Pn is the empirical measure, Tl and Ts are affine equivariant location and
scatter functionals respectively and c.k; n/ is a constant to be determined. This rule
is the k-dimensional counterpart of (25.60). In order to specify some reasonable
value for c.k; n/ and in order to be able to compare different outlier identifiers we
require, just as in Sect. 25.2.7, a precise definition of an outlier and a basic model
for the majority of the observations. As our basic model we take the k-dimensional
normal distribution N .�;˙/. The definition of an ˛n-outlier corresponds to (25.62)
and is

out.˛n; �;˙/ D
˚
x 2 Rk W .x � �/>˙�1.x � �/ > �2kI1�˛n

�
; (25.99)

where ˛n D 1 � .1 � ę/1=n for some given value of ę 2 .0; 1/: Clearly for an
i.i.d. sample of size n distributed according to N .�;˙/ the probability that no
observation lies in the outlier region of (25.99) is just 1 � ˛. Given location and
scale functionals Tl and Ts and a sampleexn we write

ORH.exn; ˛n/ D
˚
x 2 Rk W .x � Tl.Pn//>Ts.Pn/�1.x � Tl.Pn// � c.k; n; ˛n/

�

(25.100)
which corresponds to (25.64). The region ORH.exn; ˛n/ is the empirical counterpart
of out.˛n; �;˙/ of (25.99) and any observation lying in ORH.exn; ˛n/ will be
identified as an outlier. Just as in the one-dimensional case we determine the
c.k; n; ˛n/ by requiring that with probability 1 � ę no observation is identified as
an outlier in i.i.d. N .�;˙/ samples of size n. This can be done by simulations
with appropriate asymptotic approximations for large n. The simulations will of
course be based on the algorithms used to calculate the functionals and will not be
based on the exact functionals assuming these to be well defined. For the purpose
of outlier identification this will not be of great consequence. We give results for
three multivariate outlier identifiers based on the MVE- and MCD-functionals of
Rousseeuw (1985) and the S -functional based on Tukey’s biweight function as
given in Rocke (1996). There are good heuristic algorithms for calculating these
functionals at least approximately (Rocke 1996; Rousseeuw and Van Driesen 1999;
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Table 25.2 Normalizing constants c.k; n; ˛n/ for ORMVE , ORMCD , ORBW for ˛ D 0:1

n k cMVE cMCD cBW

20 2 19.14222 85.58786 21.35944
20 3 23.47072 167.61310 26.87044
20 4 33.72110 388.84680 33.17018
50 2 17.54896 28.51695 16.93195
50 3 20.61580 41.83594 19.78682
50 4 24.65417 64.18462 23.14061

Rousseeuw and van Zoomeren 1990). The following is based on Becker and Gather
(2001). Table 25.2 gives the values of c.k; n; ˛n/ with ˛ D 0:1. The results are
based on 10000 simulations for each combination of k and n.

Becker and Gather (2001) show by simulations that although none of the above
rules fails to detect arbitrarily large outliers it still can happen that very extreme
observations are not identified as outliers. To quantify this we consider the identifier
ORMVE and the constellation n D 50; k D 2 with m D 5 observations replaced by
other values. The mean norm of the most extreme nonidentifiable outlier is 4.17.
The situation clearly becomes worse with an increasing proportion of replaced
observations and with the dimension k (see Becker and Gather 1999). If we use
the mean of the norm of the most extreme non-identifiable outlier as a criterion
then none of the three rules dominates the others although the biweight identifier
performs reasonably well in all cases and is our preferred choice.

25.4 Linear Regression

25.4.1 Equivariance and Metrics

The linear regression model may be written in the form

Yi D x>i ˇ C �i ; i D 1; : : : ; n (25.101)

where xi ; i D 1 : : : ; n and ˇ 2 Rk: The assumptions of the standard model are that
the xi are fixed and that the �i are i.i.d. random variables with the default distribution
being the normal distribution N.0; 2/: There are of course many other models
in the literature including random xi -values and a covariance structure for the
errors �i : For the purpose of robust regression we consider probability distributions
P on RkC1 where the first k components refer to the covariates x and the last
component is the corresponding value of y. We restrict attention to the family PkC1
of probability measures given by

PkC1 D fP W P.H �R/ < 1 for all lower dimensional subspaces H � Rkg :
(25.102)
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The metric we use on PkC1 is dH with H given by (25.73).
Consider the regression group G of transformations g W RkC1 ! RkC1 of the

form
g.x; y/ D �A.x/; sy C x>�� (25.103)

where A is a non-singular k � k-matrix, s 2 R; s ¤ 0; and � 2 Rk : A functional
T W PkC1 ! Rk � RC is called a regression functional if for all g 2 G and
P 2 PkC1

T .P g/ D hg.T .P // ; (25.104)

where
hg.ˇ; / D

�
s.A�1/>.ˇ C �/; s� : (25.105)

with A and � as in (25.103). The first k components of T .P / specify the value of
ˇ 2 Rk and the last component that of : The restriction to models P 2 PkC1 of
(25.102) is that without such a restriction there is no uniquely defined value of ˇ:

25.4.2 M-Estimators for Regression

Given a distribution P 2 PkC1 we define an M-functional by T .P / D .ˇ�; �/
where .ˇ�; �/ is a solution of the equations

Z
�
�
x;
�
y � x>ˇ� =�x dP.x; y/ D 0 ; (25.106)

Z
�
��
y � x>ˇ� =� dP.x; y/ D 0 (25.107)

for given functions � W RkC1 ! R and � W R ! R: Just as in Sect. 25.3.2 for
M-functionals of location and scatter there are problems concerning the existence
and uniqueness. Maronna and Yohai (1981) give sufficient conditions for existence
which depend only on the properties of � and � and the values of sup™fP.™>x D
0/ W ™ ¤ 0g and sup˛;™fP.˛y C ™>x D 0/ W j˛j C k™k ¤ 0g. Uniqueness requires
additional strong assumptions such as either symmetry or the existence of a density
for the conditional distribution of y�™>0 x for each fixed x: Huber (1981) considers
the minimization problem

.ˇ�; �/ D argmin

�Z
�
��
y � x>ˇ� =� dP.x; y/C a

�
 ; (25.108)

where � W R ! RC is convex with �.0/ D 0 and a > 0: Under appropriate
conditions on � it can be shown that the solution is unique and that there exists
a convergent algorithm to calculate it. On differentiating (25.108) we obtain
(25.106) and (25.107) with
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�.x; u/ D �.1/.u/ and �.u/ D u�.1/.u/� �.u/� a : (25.109)

Even if the solution of (25.106) and (25.107) exists and is unique it is not
necessarily regression equivariant. To make it so we must introduce a scatter
functional T˙ on the marginal distributionsP 0; P 0.B/ D P.B�R/ of the covariate
x: Such a functional satisfies T˙.P 0A/ D AT˙.P 0/A> for any non-singular k � k-
matrix A and is required not only for equivariance reasons but also to downweight
outlying x-values or so called leverage points. For this latter purpose the functional
T˙ must also be robust. We now replace (25.106) by

Z
�
�
x>T˙.P /�1x;

�
y � x>ˇ� =�x dP.x; y/ D 0 : (25.110)

The resulting functional is now regression equivariant but its analysis is more
difficult requiring as it does an analysis of the robustness properties of the scatter
functional T˙ .

Finally we note that in the literature most � functions of (25.106) are of the form

�.x; u/ D �.x/ .u/ (25.111)

and the resulting functionals are known as GM-functionals. We refer to Hampel
et al. (1986).

25.4.3 Bias and Breakdown

Given a regression functional Tr D .Tb; Ts/ where Tb refers to the ˇ-components
and Ts is the scale part it is usual to define breakdown just by the behaviour of Tb
and to neglect Ts: The breakdown point of Tr at the distribution P is defined by

��.Tr ; P; dH/ D supf� W b.Tr ; P; �; dH/ <1g (25.112)

where

b.Tr ; P; �; dH/ D supfkTb.Q/� Tb.P /k W dH.P;Q/ < �g (25.113)

with corresponding definitions for the gross error neighbourhood ��.Tr ; P;GE/ and
for the finite sample breakdown point ��.Tr ; Pn; f sbp/: To state the next theorem
we set

�.P / D supfP.H �R/ W H a plane in Rk of dimension at most k � 1g ;

which is the regression equivalent of (25.77). We have
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Theorem 5. For any regression equivariant functional

��.Tr ; P; dh/ � .1��.P //=2 and ��.Tr ; Pn; f sbp/ � .1��.Pn//=2 : (25.114)

If one considers L1-regression

ˇ� D argmin
nX

iD1

ˇ
ˇyi � x>i ˇ

ˇ
ˇ (25.115)

it can be shown if one xi is sufficiently outlying then the residual at this point will
be zero and hence the finite sample breakdown point is a disappointing 1=n: This
turns out to apply to most M-functionals of the last section whose breakdown point
is at most 1=.kC1/ irrespective of their exact definition. The literature on this point
is unsatisfactory. Although some M-functionals have been shown to have a positive
breakdown point this has only been done under the assumption that the scale part Ts
is known. As obtaining the correct magnitude of the scale of the errors is in some
sense the most difficult problem in robust regression such results are of limited
value. They do not however alter the fact that M-functionals have a disappointing
breakdown point. We now turn to the problem of constructing high breakdown
regression functionals.

25.4.4 High Breakdown Regression Functionals

The first high breakdown regression functional was proposed by Hampel (1975) and
is as follows.

Tlms.P / D argmin.ˇ;/



 W

Z ˚jy � x>ˇj � �dP.x; y/ � 1=2
�
: (25.116)

The idea goes back to Tukey’s shortest half-sample of which it is the regression
counter part. It can be shown that it has almost the highest finite sample breakdown
point given by Theorem 5. By slightly altering the factor 1=2 in (25.116) to take
into account the dimension k of the x-variables it can attain this bound. Rousseeuw
(1984) propagated its use and gave it the name by which it is now known, the least
median of squares LMS. Rousseeuw calculated the finite sample breakdown point
and provided a first heuristic algorithm which could be applied to real data sets. He
also defined a second high breakdown functional known as least trimmed squares
LTS defined by

Tlts.P / D argmin.ˇ;/


Z �
y � x>ˇ�2 ˚jy � x>ˇj � � dP.x; y/ W

Z ˚jy � x>ˇj � � dP.x; y/ � 1=2
�
: (25.117)
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There are now many high breakdown regression functionals such as S -functionals
(Rousseeuw and Yohai 1984), MM-functionals (Yohai 1987), �-functionals (Yohai
and Zamar 1988), constrained M-functionals (Mendes and Tyler 1996), rank
regression (Chang et al. 1999) and regression depth (Rousseeuw and Hubert 1999).
Just as in the location and scale problem in Rk statistical functionals can have the
same breakdown points but very different bias functions. We refer to Martin et al.
(1989), Maronna and Yohai (1993) and Berrendero and Zamar (2001). All these
high breakdown functionals either attain or by some minor adjustment can be made
to attain the breakdown points of Theorem 5 with the exception of depth based
methods where the maximal breakdown point is 1=3 (see Donoho and Gasko 1992).

All the above high breakdown regressional functionals can be shown to exist
under weak assumptions but just as in the case of high breakdown location and
scatter functionals in Rk uniqueness can only be shown under very strong conditions
which typically involve the existence of a density function for the errors (see Davies
1993). The comments made about high breakdown location and scale functionals in
Rk apply here. Thus even if a regression functional is well defined at some particular
model there will be other models arbitrarily close in the metric dH where a unique
solution does not exist. This points to an inherent local instability of high breakdown
regression functionals which has been noted in the literature (Ellis 1998; Sheather
et al. 1997). Dietel (1993) has constructed regression functionals which are well
defined at all models P with �.P / < 1 and which are locally uniformly Lipschitz,
not however locally uniformly Fréchet differentiable. For this reason all confidence
regions and efficiency claims must be treated with a degree of caution. An increase
in stability can however be attained by using the LTS-functional instead of the
LMS-functional, by reweighting the observations or using some form of one-step
M-functional improvement as in (25.29).

Just as with high breakdown location and scatter functionals in Rk the calculation
of high breakdown regression functionals poses considerable difficulties. The first
high breakdown regression functional was Hampel’s least median of squares and
even in the simplest case of a straight line in R2 the computational cost is of order n2:
The algorithm is by no means simple requiring as it does ideas from computational
geometry (see Edelsbrunner and Souvaine 1990). From this and the fact that the
computational complexity increases with dimension it follows that one has to fall
back on heuristic algorithms. The one recommended for linear regression is that of
Rousseeuw and Van Driesen (1999) for the LTS-functional.

25.4.5 Outliers

To apply the concept of ˛-outlier regions to the linear regression model we have
to specify the distribution PY of the response and the joint distribution PX of the
regressors assuming them to be random. For specificness we consider the model

PY jXDx D N.x>ˇ; 2/; (25.118)
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and
PX D N .�;˙ /: (25.119)

Assumption (25.118) states that the conditional distribution of the response given
the regressors is normal and assumption (25.119) means that the joint distribution
of the regressors is a certain p-variate normal distribution. If both assumptions are
fulfilled then the joint distribution of .Y;X / is a multivariate normal distribution.

We can define outlier regions under model (25.101) in several reasonable ways.
If only (25.118) is assumed then a response-˛-outlier region could be defined as

out.˛; PY jXDx/ D
˚
y 2 R W u D jy � x>ˇj >  z1�˛=2

�
; (25.120)

which is appropriate if the regressors are fixed and only outliers in y-direction are
to be identified. If the regressors are random, which will be the more frequent case
in actuarial or econometric applications, outliers in x-direction are important as
well. Under assumption (25.119) a regressor-˛-outlier region is a special case of the
˛-outlier region (25.99). This approach leads to a population based version of the
concept of leverage points. These are the points in a sample .yi ;xi /; i D 1; : : : ; n;

from model (25.101) “for which xi is far away from the bulk of the xi in the data”
(Rousseeuw and van Zoomeren 1990).

For the identification of regressor-outliers (leverage points) the same identifica-
tion rules can be applied as in the multivariate normal situation. For the detection
of response-outliers by resistant one-step identifiers, one needs robust estimators of
the regression coefficients and the scale  . Examples of high breakdown estimators
that can be used in this context are the Least Trimmed Squares estimator and
the corresponding scale estimator (Rousseeuw 1984; Rousseeuw and Leroy 1987),
S-estimators (Rousseeuw and Yohai 1984), MM-estimators (Yohai 1987) or the
REWLS-estimators (Gervini and Yohai 2002).

25.5 Analysis of Variance

25.5.1 One-way Table

The one-way analysis of variance is concerned with the comparison of the locations
of k samples xij ; j D 1; : : : ; ni ; i D 1; : : : ; k: The term “analysis of variance”
goes back to the pioneering work of Fisher (1935) who decomposed the variance of
the combined samples as follows

X

ij

.xij � Nx/2 D
X

i

X

j

.xij � Nxi /2 C
X

i

ni . Nxi � Nx/2 : (25.121)

The first term of (25.121) is the total sum of squares, the second is the sum of squares
within samples and the third is the sum of squares between samples. If the data are
modelled as i.i.d. normal random variables with a common variance 2 but with the
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i th sample mean �i then it is possible to derive a test for the null hypothesis that the
means are equal. The single hypothesis of equal means is rarely of interest in itself.
All pairwise comparisons

�i D �l; 1 � i < l � k ;

as well as contrasts
P

i ci�i D 0may also be of interest and give rise to the problem
of multiple testing and the associated difficulties. The use of the L2-norm as in
(25.121) is widespread perhaps because of the elegant mathematics. The peculiari-
ties of data analysis must however have priority over mathematical theory and as real
data sets may contain outliers, be skewed to some extent and have different scales it
becomes clear that anL2-norm and Gaussian based theory is of limited applicability.
We sketch a robustified approach to the one-way table (see Davies 2004).

As a first step gross outliers are eliminated from each sample using a simplified
version of the outlier identification rule based on the median and MAD of the
sample. Using the robust location and scale functionals Tl and Ts an ˛k confidence
or approximation interval Ii for location for the i th sample is calculated. To control
the error rate for Gaussian and other samples we set ˛k D ˛1=k with for example
˛ D 0:95: This choice guarantees that for Gaussian samples

P.�i 2 Ii ; i D 1; : : : ; k/ D ˛ : (25.122)

Simulations show that this holds accurately for other symmetric distributions such as
the slash, Cauchy and the double exponential. All questions relating to the locations
of the samples are now reduced to questions concerning the intervals. For example,
the samples i and l can be approximated by the same location value if and only if
Ii \ Il ¤ ;: Similarly if the samples are in some order derived from a covariable
it may be of interest as to whether the locations can be taken to be non-decreasing.
This will be the case if and only if there exist ai ; i D 1; : : : ; k with a1 � a2 �
: : : � ak and ai 2 Ii for each i . Because of (25.122) all such questions when stated
in terms of the �i can be tested simultaneously and on Gaussian test beds the error
rate will be 1�˛ regardless of the number of tests. Another advantage of the method
is that it allows a graphical representation. Every analysis should include a plot of
the boxplots for the k data sets. This can be augmented by the corresponding plot
of the intervals Ii which will often look like the boxplots but if the sample sizes
differ greatly this will influence the lengths of the intervals but not the form of the
boxplots.

25.5.2 Two-Way Table

Given IJ samples

�
xijk

�nij
kD1 ; i D 1; : : : ; I; j D 1; : : : ; J
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the two-way analysis of variance in its simplest version looks for a decomposition
of the data of the form

xijk D mC ai C bj C cij C rijk (25.123)

with the the following interpretation. The overall effect is represented bym, the row
and column effects by the ai and bj respectively and the interactions by the cij : The
residuals rijk take care of the rest. As it stands the decomposition (25.123) is not
unique but can be made so by imposing side conditions on the ai ; bj and the cij :
Typically these are of the form

X

i

ai D
X

j

bj D
X

i

cij D
X

j

cij D 0 ; (25.124)

where the latter two hold for all j and i respectively. The conditions (25.124) are
almost always stated as technical conditions required to make the decomposition
(25.123) identifiable. The impression is given that they are neutral with respect
to any form of data analysis. But this is not the case as demonstrated by Tukey
(1993) and as can be seen by considering the restrictions on the interactions cij : The
minimum number of interactions for which the restrictions hold is four which, in
particular, excludes the case of a single interaction in one cell. The restrictions on
the row and column effects can also be criticized but we take this no further than
mentioning that the restrictions

MED.a1; : : : ; aI / D MED.b1; : : : ; bJ / D 0 (25.125)

may be more appropriate. The following robustification of the two-way table is
based on Terbeck and Davies (1998). The idea is to look for a decomposition which
minimizes the number of non-zero interactions. We consider firstly the case of one
observation per cell, nij D 1; for all i and j , and look for a decomposition

xij D mC ai C bj C cij (25.126)

with the smallest number of cij which are non-zero. We denote the positions of the
cij by a I�J -matrixC withC.i; j / D 1 if and only if cij ¤ 0, the remaining entries
being zero. It can be shown that for certain matrices C the non-zero interactions cij
can be recovered whatever their values and, moreover, they are the unique non-zero
residuals of the L1-minimization problem

min
ai ;bj

X

ij

jxij � ai � bj j : (25.127)

We call matrices C for which this holds unconditionally identifiable. They can be
characterized and two such matrices are
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0

@
1 0 0

0 0 0

0 0 0

1

A

0

B
B
B
B
B
@

1 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1

C
C
C
C
C
A

(25.128)

as well as matrices obtained from any permutations of rows and columns. The above
considerations apply to exact models without noise. It can be shown however that
the results hold true if noise is added in the sense that for unconditionally identifiable
matrices sufficiently large (compared to the noise) interactions cij can be identified
as the large residuals from an L1-fit. Three further comments are in order. Firstly
Tukey’s median polish can often identify interactions in the two-way-table. This
is because it attempts to approximate the L1-solution. At each step the L1-norm
is reduced or at least not increased but unfortunately the median polish may not
converge and, even if it does, it may not reach theL1 solution. SecondlyL1 solutions
in the presence of noise are not unique. This can be overcome by approximating the
moduls function jxj by a strictly convex function almost linear in the tails. Thirdly, if
there is more than one observation per cell it is recommended that they are replaced
by the median and the method applied to the medians. Finally we point out that an
interaction can also be an outlier. There is no a priori way of distinguishing the two.
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Chapter 26
Bayesian Computational Methods

Christian P. Robert

26.1 Introduction

If, in the mid 1980s, one had asked the average statistician about the difficulties of
using Bayesian Statistics, the most likely answer would have been “Well, there is
this problem of selecting a prior distribution and then, even if one agrees on the prior,
the whole Bayesian inference is simply impossible to implement in practice!" The
same question asked in the Twenty first Century does not produce the same reply, but
rather a much less aggressive complaint about the lack of generic software (besides
winBUGS), along with the renewed worry of subjectively selecting a prior! The last
20 years have indeed witnessed a tremendous change in the way Bayesian Statistics
are perceived, both by mathematical statisticians and by applied statisticians and the
impetus behind this change has been a prodigious leap-forward in the computational
abilities. The availability of very powerful approximation methods has correlatively
freed Bayesian modelling, in terms of both model scope and prior modelling. This
opening has induced many more scientists from outside the statistics community to
opt for a Bayesian perspective as they can now handle those tools on their own. As
discussed below, a most successful illustration of this gained freedom can be seen in
Bayesian model choice, which was only emerging at the beginning of the MCMC
era, for lack of appropriate computational tools.

In this chapter, we will first present the most standard computational challenges
met in Bayesian Statistics (Sect. 26.2), and then relate these problems with compu-
tational solutions. Of course, this chapter is only a terse introduction to the problems
and solutions related to Bayesian computations. For more complete references, see
Robert and Casella (2004), Marin and Robert (2007a), Robert and Casella (2004)
and Liu (2001), among others. We also restrain from providing an introduction to
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Bayesian Statistics per se and for comprehensive coverage, address the reader to
Marin and Robert (2007a) and Robert (2007), (again) among others.

26.2 Bayesian Computational Challenges

Bayesian Statistics being a complete inferential methodology, its scope encom-
passes the whole range of standard statistician inference (and design), from point
estimation to testing, to model selection, and to non-parametrics. In principle, once
a prior distribution has been chosen on the proper space, the whole inferential
machinery is set and the computation of estimators is usually automatically derived
from this setup. Obviously, the practical or numerical derivation of these procedures
may be exceedingly difficult or even impossible, as we will see in a few selected
examples. Before, we proceed with an incomplete typology of the categories and
difficulties met by Bayesian inference. First, let us point out that computational
difficulties may originate from one or several of the following items:

(1) Use of a complex parameter space, as for instance in constrained parameter sets
like those resulting from imposing stationarity constraints in dynamic models.

(2) Use of a complex sampling model with an intractable likelihood, as for instance
in missing data and graphical models.

(3) Use of a huge dataset.
(4) Use of a complex prior distribution (which may be the posterior distribution

associated with an earlier sample).
(5) Use of a complex inferential procedure.

26.2.1 Bayesian Point Estimation

In a formalised representation of Bayesian inference, the statistician is given (or
selects) a triplet:

• A sampling distribution, f .xj™/, usually associated with an observation (or a
sample) x.

• A prior distribution �.™/, defined on the parameter space $.
• A loss function L.™; d / that compares the decisions (or estimations) d for the

true value ™ of the parameter.

Using .f; �;L/ and an observation x, the Bayesian inference is always given as the
solution to the minimisation programme

min
d

Z

$

L.™; d / f .xj™/ �.™/ d™ ;
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equivalent to the minimisation programme

min
d

Z

$

L.™; d / �.™jx/ d™ :

The corresponding procedure is thus associated, for every x, to the solution of the
above programme (see, e.g. Robert 2007, Chap. 2).

There are therefore two levels of computational difficulties with this resolution:
first the above integral must be computed. Second, it must be minimised in d . For
the most standard losses, like the traditional squared error loss,

L.™; d / D j™ � d j2 ;

the solution to the minimisation problem is universally1 known. For instance, for
the squared error loss, it is the posterior mean,

Z

$

™ �.™jx/ d™ D
Z

$

™ f .xj™/ �.™/ d™

�Z

$

f .xj™/ �.™/ d™ ;

which still requires the computation of both integrals and thus whose complexity
depends on the complexity of $, f .xj™/, and �.™/.

Example 1. For a normal distributionN .™; 1/, the use of a so-called conjugate prior
(see, e.g., Robert 2007, Chap. 3)

™ � N .�; �/ ;

leads to a closed form expression for the mean, since

Z

$

™ f .xj™/ �.™/ d™

�Z

$

f .xj™/ �.™/ d™

D
Z

R
™ exp

1

2

˚�™2.1C ��2/C 2™.x C ��2�/� d™

�
�Z

R
exp

1

2

˚�™2.1C ��2/C 2™.x C ��2�/� d™ D x C ��2�
1C ��2 :

On the other hand, if we use instead a more involved prior distribution like a poly-t
distribution (Bauwens and Richard 1985),

�.™/ D
kY

iD1

�
˛i C .™ � ˇi /2

���i
˛; � > 0

1In this chapter, the denomination universal is used in the sense of uniformly over all distributions.
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the above integrals cannot be computed in closed form anymore. This is not
a toy example in that the problem may occur after a sequence of k Student’s
t observations, or with a sequence of normal observations whose variance is
unknown.

The above example is one-dimensional, but, obviously, bigger challenges await
the Bayesian statistician when she wants to tackle high-dimensional problems.

Example 2. In a generalised linear model, a conditional distribution of y 2 R given
x 2 Rp is defined via a density from an exponential family

yjx � exp fy � ™.x/ �  .™.x//g

whose natural parameter ™.x/ depends on the conditioning variable x,

™.x/ D g.ˇTx/ ; ˇ 2 Rp

that is, linearly modulo the transform g. Obviously, in practical applications like
Econometrics, p can be quite large. Inference on ˇ (which is the true parameter of
the model) proceeds through the posterior distribution (where x D .x1; : : : ; xT / and
y D .y1; : : : ; yT /)

�.ˇjx; y/ /
TY

tD1
exp fyt � ™.xt /�  .™.xt //g �.ˇ/

D exp

(
TX

tD1
yt � ™.xt / �

TX

tD1
 .™.xt //

)

�.ˇ/ ;

which rarely is available in closed form. In addition, in some cases  may be
costly simply to compute and in others T may be large or even very large. Take
for instance the case of the dataset processed by Abowd et al. (1999), which covers
twenty years of employment histories for over a million workers, with x including
indicator variables for over one hundred thousand companies.

Complexity starts sharply increasing if we introduce in addition random effects
to the model, that is writing ™.x/ as g.ˇTx C �.x//, where �.x/ is a random
perturbation indexed by x. For instance, in the above employment dataset, it may
correspond to a worker effect or to a company effect. The difficulty is that those
random variables can very rarely be integrated out into a closed-form marginal
distribution. They must therefore be included within the model parameter, which
then increases its dimension severalfold.

A related, although conceptually different, inferential issue concentrates upon
prediction, that is, the approximation of a distribution related with the parameter
of interest, say g.yj™/, based on the observation of x � f .xj™/. The predictive
distribution is then defined as



26 Bayesian Computational Methods 755

�.yjx/ D
Z

$

g.yj™/�.™jx/d™ :

A first difference with the standard point estimation perspective is obviously that
the parameter ™ vanishes through the integration. A second and more profound
difference is that this parameter is not necessarily well-defined anymore. As will
become clearer in a following Section, this is a paramount feature in setups where
the model is not well-defined and where the statistician hesitates between several
(or even an infinity of) models. It is also a case where the standard notion of
identifiability is irrelevant, which paradoxically is a ”plus" from the computational
point of view, as seen below in, e.g., Example 13.

Example 3. Recall that an AR.p/ model is given as the auto-regressive representa-
tion of a time series,

xt D
pX

iD1
™i xt�i C "t :

It is often the case that the order p of the AR model is not fixed a priori, but
has to be determined from the data itself. Several models are then competing for
the “best" fit of the data, but if the prediction of the next value xtC1 is the most
important part of the inference, the order p chosen for the best fit is not really
relevant. Therefore, all models can be considered in parallel and aggregated through
the predictive distribution

�.xtC1jxt ; : : : ; x1/ /
Z
f .xtC1jxt ; : : : ; xt�pC1/�.™; pjxt ; : : : ; x1/dp d™ ;

which thus amounts to integrating over the parameters of all models, simultane-
ously:

1X

pD0

Z
f .xtC1jxt ; : : : ; xt�pC1/�.™jp; xt ; : : : ; x1/ d™ �.pjxt ; : : : ; x1/ :

Note the multiple layers of complexity in this case:

(1) If the prior distribution on p has an infinite support, the integral simultaneously
considers an infinity of models, with parameters of unbounded dimensions.

(2) The parameter ™ varies from model AR.p/ to model AR.p C 1/, so must be
evaluated differently from one model to another. In particular, if the stationarity
constraint usually imposed in these models is taken into account, the constraint
on .™1; : : : ; ™p/ varies2 between model AR.p/ and model AR.p C 1/.

2To impose the stationarity constraint when the order of the AR.p/ model varies, it is necessary
to reparameterise this model in terms of either the partial autocorrelations or of the roots of the
associated lag polynomial. (See, e.g., Robert 2007, Sect. 4.5.)
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(3) Prediction is usually used sequentially: every tick/second/hour/day, the next
value is predicted based on the past values xt ; : : : ; x1). Therefore when t moves
to tC1, the entire posterior distribution�.™; pjxt ; : : : ; x1/must be re-evaluated
again, possibly with a very tight time constraint as for instance in financial or
radar tracking applications.

We will discuss this important problem in deeper details after the testing section,
as part of the model selection problematic.

26.2.2 Testing Hypotheses

A domain where both the philosophy and the implementation of Bayesian inference
are at complete odds with the classical approach is the area of testing of hypotheses.
At a primary level, this is obvious when opposing the Bayesian evaluation of an
hypothesisH0 W ™ 2 $0

Pr�.™ 2 $0jx/
with a Neyman–Pearson p-value

sup
™2$0

Pr™.T .X/ � T .x//

where T is an appropriate statistic, with observed value T .x/. The first quantity
involves an integral over the parameter space, while the second provides an
evaluation over the observational space. At a secondary level, the two answers
may also strongly disagree even when the number of observations goes to infinity,
although there exist cases and priors for which they agree to the order O.n�1/ or
even O.n�3=2/. (See Robert 2007, Sect. 3.5.5 and Chap. 5, for more details.)

From a computational point of view, most Bayesian evaluations of the relevance
of an hypothesis – also called the evidence – given a sample x involve marginal
distributions Z

$i

f .xj™i /�i .™i / d™i (26.1)

where $i and �i denote the parameter space and the corresponding prior, respec-
tively, under hypothesis Hi .i D 0; 1/. For instance, the Bayes factor is defined as
the ratio of the posterior probabilities of the null and the alternative hypotheses over
the ratio of the prior probabilities of the null and the alternative hypotheses, i.e.,

B�
01.x/ D

Pr.™ 2 $0 j x/
Pr.™ 2 $1 j x/

�
�.™ 2 $0/
�.™ 2 $1/ :

This quantity is instrumental in the computation of the posterior probability



26 Bayesian Computational Methods 757

Pr.™ 2 $0 j x/ D 1

1C B�
10.x/

under equal prior probabilities for both $0 and $1. It is also the central tool in
practical (as opposed to decisional) Bayesian testing (Jeffreys 1961) and can be
seen as the Bayesian equivalent of the likelihood ratio.

The first ratio in B�
01.x/ is then the ratio of integrals of the form (26.1) and it is

rather common to face difficulties in the computation of both integrals.3

Example 4 (Continuation of Example 2). In the case of the generalised linear
model, a standard testing situation is to decide whether or not a factor, x1 say, is
influential on the dependent variable y. This is often translated as testing whether
or not the corresponding component of ˇ, ˇ1, is equal to 0, i.e. $0 D fˇIˇ1 D 0g.
If we denote by ˇ�1 the other components of ˇ, the Bayes factor for this hypothesis
will be

Z

Rp

exp

(
TX

tD1
yt � g.ˇTxt /�

TX

tD1
 .g.ˇTxt //

)

�.ˇ/ dˇ

�

Z

Rp�1

exp

(
TX

tD1
yt � g.ˇT�1.xt /�1/�

TX

tD1
 .ˇT�1.xt /�1/

)

��1.ˇ�1/ dˇ�1 ;

when ��1 is the prior constructed for the null hypothesis and when the prior weights
of H0 and of the alternative are both equal to 1=2. Obviously, besides the normal
conjugate case, both integrals cannot be computed in a closed form.

In a related manner, confidence regions are also mostly intractable, being defined
through the solution to an implicit equation. Indeed, the Bayesian confidence region
for a parameter ™ is defined as the highest posterior region,

f™I�.™jx/ � k.x/g (26.2)

where k.x/ is determined by the coverage constraint

Pr�.�.™jx/ � k.x/jx/ D ˛ ;

˛ being the confidence level. While the normalising constant is not necessary to
construct a confidence region, the resolution of the implicit equation (26.2) is
rarely straightforward! However, simulation-based equivalents generally produce

3In this presentation of Bayes factors, we completely bypass the methodological difficulty of
defining �.™ 2 $0/ when $0 is of measure 0 for the original prior � and refer the reader to
Robert (2007, Sect. 5.2.3) and Marin and Robert (2007, Sect. 2.3.2) for proper coverage of this
issue.
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acceptable approximations in a straightforward manner when both the prior and the
likelihood can be numerically computed.

Example 5. Consider a binomial observation x � B.n; ™/ with a conjugate prior
distribution, ™ � Be.�1; �2/. In this case, the posterior distribution is available in
closed form,

™jx � Be.�1 C x; �2 C n � x/ :
However, the determination of the ™’s such that

™�1Cx�1.1 � ™/�2Cn�x�1 � k.x/

with
Pr�

�
™�1Cx�1.1 � ™/�2Cn�x�1 � k.x/jx� D ˛

is not possible analytically. It actually implies two levels of numerical difficulties:

1. Find the solution(s) to ™�1Cx�1.1 � ™/�2Cn�x�1 D k.
2. Find the k corresponding to the right coverage.

and each value of k examined in step 2. requires a new resolution of step 1. However,
k can also be interpreted as the .1�˛/ quantile of the random variable ™�1Cx�1.1�
™/�2Cn�x�1, hence derived from a large sample of ™’s in a Monte Carlo perspective.

The setting is usually much more complex when ™ is a multidimensional
parameter, because the interest is usually in getting marginal confidence sets.
Example 2 is an illustration of this setting: deriving a confidence region on one
component, ˇ1 say, first involves computing the marginal posterior distribution of
this component. As in Example 4, the integral

Z

Rp�1

exp

(
TX

tD1
yt � g.ˇTxt /�

TX

tD1
 .ˇTxt /

)

��1.ˇ�1/ dˇ�1 ;

which is proportional to �.ˇ1jx/, is most often intractable. Fortunately, the sim-
ulation approximations mentioned above are also available to bypass this integral
computation.

26.2.3 Model Choice

Although they are essentially identical from a conceptual viewpoint, we do distin-
guish here between model choice and testing, partly because the former leads to
further computational difficulties, and partly because it encompasses a larger scope
of inferential goals than mere testing. Note first that model choice has been the
subject of considerable effort in the past decades, and has seen many advances,
including the coverage of problems of higher complexity and the introduction of
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new concepts. We stress that such advances mostly owe to the introduction of new
computational methods.

As discussed in further details in Robert (2007, Chap. 7), the inferential action
related with model choice does take place on a wider scale than simple testing: it
covers and compares models, rather than parameters, which makes the sampling
distribution f .x/ “more unknown" than simply depending on an undetermined
parameter. In some respect, it is thus closer to estimation than to regular testing.
In any case, it requires a more precise evaluation of the consequences of choosing
the “wrong" model or, equivalently of deciding which model is the most appropriate
for the data at hand. It is thus both broader and less definitive than deciding whether
H0 W ™1 D 0 is true. At last, the larger inferential scope mentioned in the first point
means that we are leaving for a while the well-charted domain of solid parametric
models.

From a computational point of view, model choice involves more complex struc-
tures that, almost systematically, require advanced tools, like simulation methods
which can handle collections of parameter spaces (also called spaces of varying
dimensions), specially designed for model comparison.

Example 6. A mixture of distributions is the representation of a distribution
(density) as the weighted sum of standard distributions (densities). For instance,
a mixture of Poisson distributions, denoted as

kX

iD1
piP.�i /

has the following density:

Pr.X D k/ D
kX

iD1
pi
�ki
kŠ
e��i :

This representation of distributions is multi-faceted and can be used in populations
with known heterogeneities (in which case a component of the mixture corresponds
to an homogeneous part of the population) as well as a non-parametric modelling of
unknown populations. This means that, in some cases, k is known and, in others, it
is both unknown and part of the inferential problem.

First, consider the setting where several (parametric) models are in competition,

Mi W x � fi .xj™i /; ™i 2 $i ; i 2 I ;

the index set I being possibly infinite. From a Bayesian point of view, a prior
distribution must be constructed for each model Mi as if it were the only and true
model under consideration since, in most perspectives except model averaging, only
one of these models will be selected and used as the only and true model. The
parameter space associated with the above set of models can be written as
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ˆ D
[

i2I
fig �$i ; (26.3)

the model indicator � 2 I being now part of the parameters. So, if the modeller
allocates probabilities pi to the indicator values, that is, to the models Mi .i 2 I /,
and if she then defines priors �i .™i / on the parameter subspaces$i , things fold over
by virtue of Bayes’s theorem, since one can compute

p.Mi jx/ D Pr.� D i jx/ D
pi

Z

$i

fi .xj™i /�i .™i /d™i
X

j

pj

Z

$j

fj .xj™j /�j .™j /d™j
:

While a common solution based on this prior modelling is simply to take the
(marginal) MAP estimator of �, that is, to determine the model with the largest
p.Mi jx/, or even to use directly the average

X

j

pj

Z

$j

fj .yj™j /�j .™j jx/d™j D
X

j

p.Mj jx/mj .y/

as a predictive density in y in model averaging, a deeper-decision theoretic
evaluation is often necessary.

Example 7 (Continuation of Example 3). In the setting of theAR.p/models, when
the orderp of the dependence is unknown, model averaging as presented in Example
3 is not always a relevant solution when the statistician wants to estimate this order
p for different purposes. Estimation is then a more appropriate perspective than
testing, even though care must be taken because of the discrete nature of p. (For
instance, the posterior expectation of p is not an appropriate estimator!)

As stressed earlier in this Section, the computation of predictive densities,
marginals, Bayes factors, and other quantities related to the model choice procedures
is generally very involved, with specificities that call for tailor-made solutions:

– The computation of integrals is increased by a factor corresponding to the number
of models under consideration.

– Some parameter spaces are infinite-dimensional, as in non-parametric settings
and that may cause measure-theoretic complications.

– The computation of posterior or predictive quantities involves integration over
different parameter spaces and thus increases the computational burden, since
there is no time savings from one subspace to the next.

– In some settings, the size of the collection of models is very large or even infinite
and some models cannot be explored. For instance, in Example 4, the collection
of all submodels is of size 2p and some pruning method must be found in variable
selection to avoid exploring the whole tree of all submodels.
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26.3 Monte Carlo Methods

The natural approach to these computational problems is to use computer simulation
and Monte Carlo techniques, rather than numerical methods, simply because there
is much more to gain from exploiting the probabilistic properties of the integrands
rather than their analytical properties. In addition, the dimension of most problems
considered in current Bayesian Statistics is such that very involved numerical
methods should be used to provide a satisfactory approximation in such integration
or optimisation problems. Indeed, down-the-shelf numerical methods cannot handle
integrals in moderate dimensions and more advanced numerical integration methods
require analytical studies on the distribution of interest.

26.3.1 Preamble: Monte Carlo Importance Sampling

Given the statistical nature of the problem, the approximation of an integral like

I D
Z

$

h.™/f .xj™/�.™/ d™;

should indeed take advantage of the special nature of I, namely, the fact that �
is a probability density4 or, instead, that f .xj™/�.™/ is proportional to a density.
As detailed in Chap. II.2 this volume, or in Robert and Casella (2004, Chap. 3) and
Robert and Casella (2010), the Monte Carlo method was introduced by Metropolis
and Ulam (1949) for this purpose. For instance, if it is possible to generate (via a
computer) random variables ™1; : : : ; ™m from �.™/, the average

1

m

mX

iD1
h.™i /f .xj™i /

converges (almost surely) to I when m goes to C1, according to the Law of
Large Numbers. Obviously, if an i.i.d. sample of ™i ’s from the posterior distribution
�.™jx/ can be produced, the average

1

m

mX

iD1
h.™i / (26.4)

converges to

E� Œh.™/jx� D
R
$ h.™/f .xj™/�.™/ d™
R
$
f .xj™/�.™/ d™

4The prior distribution can be used for importance sampling only if it is a proper prior and not a
 -finite measure.
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and it usually is more interesting to use this approximation, rather than

mX

iD1
h.™i /f .xj™i /

� mX

iD1
f .xj™i /

when the ™i ’s are generated from �.™/, especially when �.™/ is flat compared with
�.™jx/.

In addition, if the posterior variance var.h.™/jx/ is finite, the Central Limit
Theorem applies to the empirical average (26.4), which is then asymptotically
normal with variance var.h.™/jx/=m. Confidence regions can then be built from this
normal approximation and, most importantly, the magnitude of the error remains of
order 1=

p
m, whatever the dimension of the problem, in opposition with numerical

methods.5 (See also Robert and Casella 2004, 2009, Chap. 4, for more details on the
convergence assessment based on the CLT.)

The Monte Carlo method actually applies in a much wider generality than the
above simulation from� . For instance, because I can be represented in an infinity of
ways as an expectation, there is no need to simulate from the distributions �.�jx/ or
� to get a good approximation of I. Indeed, if g is a probability density with supp.g/
including the support of jh.™/jf .xj™/�.™/, the integral I can also be represented as
an expectation against g, namely

Z
h.™/f .xj™/�.™/

g.™/
g.™/ d™:

This representation leads to the Monte Carlo method with importance function g:
generate ™1; : : : ; ™m according to g and approximate I through

1

m

mX

iD1
h.™i /!i .™i /;

with the weights !.™i / D f .xj™i /�.™i /=g.™i /. Again, by the Law of Large
Numbers, this approximation almost surely converges to I. And this estimator is
unbiased. In addition, an approximation to E� Œh.™/jx� is given by

Pm
iD1 h.™i /!.™i /Pm

iD1 !.™i /
: (26.5)

since the numerator and denominator converge to

5The constant order of the Monte Carlo error does not imply that the computational effort remains
the same as the dimension increases, most obviously, but rather that the decrease (with m) in
variation has the rate 1=

p
m.
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Z

$

h.™/f .xj™/�.™/ d™ and
Z

$

f .xj™/�.™/ d™;

respectively, if supp.g/ includes supp.f .xj�/�/. Notice that the ratio (26.5) does not
depend on the normalising constants in either h.™/, f .xj™/ or �.™/. The approx-
imation (26.5) can therefore be used in settings when some of these normalising
constants are unknown. Notice also that the same sample of ™i ’s can be used for the
approximation of both the numerator and denominator integrals: even though using
an estimator in the denominator creates a bias, (26.5) does converge to E� Œh.™/jx�.

While this convergence is guaranteed for all densities g with wide enough
support, the choice of the importance function is crucial. First, simulation from g

must be easily implemented. Moreover, the function g.™/ must be close enough
to the function h.™/�.™jx/, in order to reduce the variability of (26.5) as much as
possible; otherwise, most of the weights !.™i / will be quite small and a few will
be overly influential. In fact, if EhŒh2.™/!2.™/� is not finite, the variance of the
estimator (26.5) is infinite (see Robert and Casella 2004, Chap. 3). Obviously, the
dependence on g of the importance function h can be avoided by proposing generic
choices such as the posterior distribution �.™jx/.

26.3.2 First Illustrations

In either point estimation or simple testing situations, the computational problem
is often expressed as a ratio of integrals. Let us start with a toy example to set up
the way Monte Carlo methods proceed and highlight the difficulties of applying a
generic approach to the problem.

Example 8. Consider a t-distribution T .�; ™; 1/ sample .x1; : : : ; xn/ with � known.
Assume in addition a flat prior �.™/ D 1 as in a non-informative environment.
While the posterior distribution on ™ can be easily plotted, up to a normalising con-
stant (Fig. 26.1), because we are in dimension 1, direct simulation and computation
from this posterior is impossible.

If the inferential problem is to decide about the value of ™, the posterior
expectation is

E� Œ™jx1; : : : ; xn� D
Z
™

nY

iD1

�
� C .xi � ™/2

��.�C1/=2
d™

�Z nY

iD1

�
� C .xi � ™/2

��.�C1/=2
d™ :

This ratio of integrals is not directly computable. Since .� C .xi � ™/2/�.�C1/=2 is
proportional to a t-distribution T .�; xi ; 1/ density, a solution to the approximation
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Fig. 26.1 Posterior density of ™ in the setting of Example 8 for n D 10, with a simulated sample
from T .3; 0; 1/

of the integrals is to use one of the i ’s to “be" the density in both integrals. For
instance, if we generate ™1; : : : ; ™m from the T .�; x1; 1/ distribution, the equivalent
of (26.5) is

ı�m D
mX

jD1
™j

nY

iD2

�
� C .xi � ™j /2

��.�C1/=2
(26.6)

� mX

jD1

nY

iD2

�
� C .xi � ™j /2

��.�C1/=2

since the first term in the product has been “used" for the simulation and the
normalisation constants have vanished in the ratio. Figure 26.2 is an illustration
of the speed of convergence of this estimator to the true posterior expectation: it
provides the evolution of ı�m as a function of m both on average and on range
(provided by repeated simulations of ı�m). As can be seen from the graph, the
average is almost constant from the start, as it should, because of unbiasedness,
while the range decreases very slowly, as it should, because of extreme value
theory. The graph provides in addition the 90% empirical confidence interval built
on these simulations.6 The empirical confidence intervals are decreasing in 1=

p
n,

as expected from the theory. (This is further established by regressing the log-

6The empirical (Monte Carlo) confidence interval is not to be confused with the asymptotic
confidence interval derived from the normal approximation. As discussed in Robert and Casella
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Fig. 26.2 Evolution of a sequence of 500 estimators (26.6) over 1,000 iterations: range (in gray),
0.05 and 0.95 quantiles, and average, obtained on the same sample as in Fig. 26.1 when simulating
from the t distribution with location x1
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Fig. 26.3 Regression of the log-ranges (left) and the log-lengths of the confidence intervals (right)
on log.n/, for the output in Fig. 26.2

lengths of the confidence intervals on log.n/, with slope equal to �0:5, as shown
by Fig. 26.3.)

Now, there is a clear arbitrariness in the choice of x1 in the sample .x1; : : : ; xn/
for the proposal T .�; x1; 1/. While any of the xi ’s has the same theoretical validity

(2004, Chap. 4), these two intervals may differ considerably in width, with the interval derived
from the CLT being much more optimistic!
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Fig. 26.4 Repetition of the experiment described in Fig. 26.2 for three different choices of xi :
minxi , x.5/ and max xi (from left to right)

to “represent" the integral and the integrating density, the choice of xi ’s closer to the
posterior mode (the true value of ™ is 0) induces less variability in the estimates, as
shown by a further simulation experiment through Fig. 26.4. It is fairly clear from
this comparison that the choice of extremal values like x.1/ D �3:21 and even
more x.10/ D 1:72 is detrimental to the quality of the approximation, compared
with the median x.5/ D �0:86. The range of the estimators is much wider for both
extremes, but the influence of this choice is also visible for the average which does
not converge so quickly.7

This example thus shows that Monte Carlo methods, while widely available,
may easily face inefficiency problems when the simulated values are not sufficiently
attuned to the distribution of interest. It also demonstrates that, fundamentally, there
is no difference between importance sampling and regular Monte Carlo, in that the
integral I can naturally be represented in many ways.

Although we do not wish to spend too much space on this issue, let us note
that the choice of the importance function gets paramount when the support of the
function of interest is not the whole space. For instance, a tail probability, associated

7An alternative to the simulation from one T .�; xi ; 1/ distribution that does not require an extensive
study on the most appropriate xi is to use a mixture of the T .�; xi ; 1/ distributions. As seen in
Sect. 26.5.2, the weights of this mixture can even be optimised automatically.
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with h.™/ D I™�™0 say, should be estimated with an importance function whose
support is Œ™0;1/. (See Robert and Casella 2004, Chap. 3, for details.)

Example 9 (Continuation of Example 8). If, instead, we wish to consider the
probability that ™ � 0, using the t-distribution T .�; xi ; 1/ is not a good idea because
negative values of ™ are somehow simulated “for nothing". A better proposal (in
terms of variance) is to use the “folded" t-distribution T .�; xi ; 1/, with density
proportional to

 i .™/ D
�
� C .xi � ™/2

��.�C1/=2 C �� C .xi C ™/2
��.�C1/=2

;

on RC, which can be simulated by taking the absolute value of a T .�; xi ; 1/ rv. All
simulated values are then positive and the estimator of the probability is

��m D
mX

jD1

Y

i¤k

�
� C .xi � j™j j/2

��.�C1/=2
= k.j™j j/ (26.7)

�
� mX

jD1

Y

i¤k

�
� C .xi � ™j /2

��.�C1/=2

where the ™j ’s are iid T .�; xk; 1/. Note that this is a very special occurrence where
the same sample can be used in both the numerator and the denominator. In fact, in
most cases, two different samples have to be used, if only because the support of the
importance distribution for the numerator is not the whole space, unless, of course,
all normalising constants are known. Figure 26.5 reproduces earlier figures for this
problem, when using x.5/ as the parameter of the t distribution.

The above example is one-dimensional (in the parameter) and the problems
exhibited there can be found severalfold in multidimensional settings. Indeed,
while Monte Carlo methods do not suffer from the “curse of dimension" in the
sense that the error of the corresponding estimators is always decreasing in 1=

p
n,

notwithstanding the dimension, it gets increasingly difficult to come up with
satisfactory importance sampling distributions as the dimension gets higher and
higher. As we will see in Sect. 26.5, the intuition built on MCMC methods has to be
exploited to derive satisfactory importance functions.

Example 10 (Continuation of Example 2). A particular case of generalised linear
model is the probit model,

Pr™.Y D 1jx/ D 1 � Pr™.Y D 0jx/ D ˚.xT™/ ™ 2 Rp ;

where ˚ denotes the normal N .0; 1/ cdf. Under a flat prior �.™/ D 1, for a sample
.x1; y1/; : : : ; .xn; yn/, the corresponding posterior distribution is proportional to
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Fig. 26.5 Evolution of a sequence of 100 estimators (26.7) over 1,000 iterations (same legend as
Fig. 26.2)

nY

iD1
˚.xT

i ™/
yi ˚.�xT

i ™/
1�yi : (26.8)

Direct simulation from this distribution is obviously impossible since the compu-
tation of ˚.z/ is a difficulty in itself. If we pick an importance function for this
problem, the adequation with the posterior distribution will need to be better and
better as the dimension p increases. Otherwise, the repartition of the weights will
get increasingly asymmetric: very few weights will be different from 0.

Figure 26.6 illustrates this degeneracy of the importance sampling approach
as the dimension increases. We simulate parameters ˇ’s and datasets .xi ; yi /
.i D 1; : : : ; 245/ for dimensions p ranging from 1 to 10, then represented the
histograms of the largest weight for p D 1; 2; 5; 10. The xi ’s were simulated
from a Np.0; Ip/ distribution, while the importance sampling distribution was a
Np.0; Ip=p/ distribution.

26.3.3 Approximations of the Bayes Factor

As explained in Sects. 26.2.2 and 26.2.3, the first computational difficulty associated
with Bayesian testing is the derivation of the Bayes factor, of the form

B�
12 D

Z

$1

f1.xj™1/�1.™1/d™1
Z

$2

f2.xj™2/�2.™2/d™2
D m1.x/

m2.x/
;
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Fig. 26.6 Comparison of the distribution of the largest importance weight based upon 150
replications of an importance sampling experiment with 245 observations and dimensions p D
1; 2; 5; 10

where, for simplicity’s sake, we have adopted a model choice perspective (that is,
™1 and ™2 may live in completely different spaces).

Specific Monte Carlo methods for the estimation of ratios of normalising con-
stants, or, equivalently, of Bayes factors, have been developed in the past five years.
See Chen et al. (2000, Chap. 5) for a complete exposition, as well as Chopin and
Robert (2010) and Marin and Robert (2007b) for recent reassessments. In particular,
the importance sampling technique is rather well-adapted to the computation of
those Bayes factors: Given a importance distribution, with density proportional to g,
and a sample ™.1/; : : : ; ™.T / simulated from g, the marginal density for model Mi ,
mi.x/, is approximated by

bmi.x/ D
TX

tD1
fi .xj™.t//�i .™

.t//

g.™.t//

� TX

tD1

�i .™
.t//

g.™.t//
;

where the denominator takes care of the (possibly) missing normalising constants.
(Notice that, if g is a density, the expectation of �.™.t//=g.™.t// is 1 and the
denominator should be replaced by T to decrease the variance of the estimator of
mi.x/.)
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A compelling incentive, among others, for using importance sampling in the
setting of model choice is that the sample .™.1/; : : : ; ™.T // can be recycled for all
models Mi sharing the same parameters (in the sense that the models Mi are
parameterised in the same way, e.g. by their first moments).

Example 11 (Continuation of Example 4). In the case the ˇ’s are simulated from a
product instrumental distribution

g.ˇ/ D
pY

iD1
gi .ˇi / ;

the sample of ˇ’s produced for the general model of Example 2, M1 say, can
also be used for the restricted model, M2, where ˇ1 D 0, simply by deleting the
first component and keeping the following components, with the corresponding
importance density being

g�1.ˇ/ D
pY

iD2
gi .ˇi / :

Once the ˇ’s have been simulated,8 the Bayes factor B�
12 can be approximated by

bm1.x/=bm2.x/.

However, the variance of bm.x/ may be infinite, depending on the choice of g.
A possible choice is g.™/ D �.™/, with wider tails than �.™jx/, but this is often
inefficient if the data is informative because the prior and the posterior distributions
will be quite different and most of the simulated values ™.t/ fall outside the modal
region of the likelihood. (This is of course impossible when � is improper.) For the
choice g.™/ D f .xj™/�.™/,

bm.x/ D 1
�
1

T

TX

tD1

1

f .xj™.t// ; (26.9)

is the harmonic mean of the likelihoods, but the corresponding variance is infinite
when the likelihood has thinner tails than the prior (which is often the case). Having
an infinite variance means that the numerical value produced by the estimate cannot
be trusted at all, as it may be away from the true marginal by several orders
of magnitude. As discussed in Chopin and Robert (2010) and Marin and Robert
(2007b), it is actually possible to use a generalised harmonic mean estimate

bm.x/ D 1
�
1

T

TX

tD1

'.™.t//

�.™.t//f .xj™.t// ;

8We stress the point that this is mostly an academic exercise as, in regular settings, it is rarely the
case that independent components are used for the importance function.
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when ' is a probability density with tails that are thinner than the posterior tails. For
instance, a density with support an approximate HPD region is quite appropriate.

Explicitly oriented towards the computation of ratios of normalising constants,
bridge sampling was introduced in Meng and Wong (1996): if both models M1 and
M2 cover the same parameter space $, if �1.™jx/ D c1 Q�1.™jx/ and �2.™jx/ D
c2 Q�2.™jx/, where c1 and c2 are unknown normalising constants, then the equality

c2

c1
D E�2 Œ Q�1.™jx/ h.™/�

E�1 Œ Q�2.™jx/ h.™/�
holds for any bridge function h.™/ such that both expectations are finite. The bridge
sampling estimator is then

BS
12 D

1

n1

n1X

iD1
Q�2.™1i jx/ h.™1i /

1

n2

n2X

iD1
Q�1.™2i jx/ h.™2i /

;

where the ™j i ’s are simulated from �j .™jx/ .j D 1; 2; i D 1; : : : ; nj /.
For instance, if

h.™/ D 1= Œ Q�1.™jx/ Q�2.™1i jx/� ;
then BS

12 is a ratio of harmonic means, generalising (26.9). Meng and Wong (1996)
have derived an (asymptotically) optimal bridge function

h�.™/ D n1 C n2
n1�1.™jx/C n2�2.™jx/ :

This choice is not of direct use, since the normalising constants of �1.™jx/ and
�2.™jx/ are unknown (otherwise, we should not need to resort to such techniques!).
Nonetheless, it shows that a good bridge function should cover the support of both
posteriors, with equal weights if n1 D n2.
Example 12 (Continuation of Example 2). For generalised linear models, the mean
(conditionally on the covariates) satisfies

EŒyj™� D r .™/ D 	.xtˇ/ ;

where 	 is the link function. The choice of the link function	 usually is quite open.
For instance, when the y’s take values in f0; 1g, three common choices of 	 are
(McCullagh and Nelder 1989)

	1.t/ D exp.t/=.1Cexp.t//; 	2.t/ D ˚.t/; and 	3.t/ D 1�exp.� exp.t// ;
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corresponding to the logit, probit and log–log link functions (where ˚ denotes the
c.d.f. of the N .0; 1/ distribution). If the prior distribution � on the ˇ’s is a normal
Np.�; �

2Ip/, and if the bridge function is h.ˇ/ D 1=�.ˇ/, the bridge sampling
estimate is then .1 � i < j � 3/

BS
ij D

1

n

nX

tD1
fj .ˇit jx/

1

n

nX

tD1
fi .ˇjt jx/

;

where the ˇit are generated from �i .ˇi jx/ / fi .ˇi jx/�.ˇi /, that is, from the true
posteriors for each link function.

The drawback in using bridge sampling is that the extension of the method
to cases where the two models M1 and M2 do not cover the same parameter
space, for instance because the two corresponding parameter spaces are of different
dimensions, requires the introduction of a pseudo-posterior distribution (Chen et al.
2000; Marin and Robert 2007b) that complete the smallest parameter space so
that dimensions match.9 The impact of those completion pseudo-posteriors on the
quality of the Bayes factor approximation is such that they cannot be suggested for
a general usage in Bayes factor computation.

A completely different route to the approximation of a marginal likelihood is
Chib’s (1995), which happens to be a direct application of Bayes’ theorem: given
x � fk.xj™k/ and ™k � �k.™k/ .k D 1; 2/, we have that

mk.x/ D fk.xj™/ �k.™/
�k.™jx/ ;

for every value of ™ (since both the lhs and the rhs of this equation are constant in ™).
Therefore, if an arbitrary value of ™, say ™�k , is selected – e.g., the MAP estimate –
and if a good approximation to �k.™jy/ can be constructed, denoted O�.™jy/, Chib’s
(1995) approximation to the marginal likelihood mk.x/ is

bmk.x/ D fk.yj™�k / �k.™�k /
O�k.™�k jy/

: (26.10)

As a first solution, O�.™jy/may be a Gaussian approximation based on the MLE, but
this is unlikely to be accurate in a general setting. Chib’s (1995) solution is to use
a nonparametric approximation based on a preliminary Monte Carlo Markov chain
(Sect. 26.4) sample, even though the accuracy may also suffer in large dimensions.

9 Sect. 26.4.3 covers in greater details the setting of varying dimension problems, with the
same theme that completion distributions and parameters are necessary but influential for the
performances of the approximation.
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In the special setting of latent variables models (like the mixtures of distributions
discussed in Example 6), this approximation is particularly attractive as there exists
a natural approximation to �k.™jy/, based on the Rao–Blackwell (Gelfand and
Smith 1990) estimate

O�k.™�k jy/ D
1

T

TX

tD1
�k.™

�
k jy; z.t/k / ;

where the z.t/k ’s are the latent variables simulated by the Monte Carlo Markov
chain algorithm. The estimate O�k.™�k jy/ is a parametric unbiased approximation
of �k.™�k jy/ that converges to the true density with rate O.

p
T /. This Rao–

Blackwell approximation obviously requires the full conditional density �k.™�k jy; z/
to be available in closed form (constant included) but this is the case for many
standard models. Figure 26.7 reproduces an illustration from Marin and Robert
(2007b) that compares the variability of Chib’s (1995) method against nearly
optimal harmonic and importance sampling approximations in the setting of a
probit posterior distribution. While the former solution varies more than the two

Chib Harmonic mean IS

3.06

3.08

3.10

3.12

3.14

Fig. 26.7 In the setting of the probit modelling of R Pima Indian dataset, using three covariates
and testing for the significance of the diabetes pedigree function, boxplots of 100 Chib’s, harmonic
mean and importance estimates of B01.y/, based on simulations from the prior distributions, for
2	 104 simulations (Source: Marin and Robert 2007b)
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latter solutions, its generic features make Chib’s (1995) method a reference for this
problem.

While amenable to an importance sampling technique of sorts, the alternative
approach of nested sampling (Skilling 2006) for computing evidence is discussed in
Chopin and Robert (2010) and Robert and Wraith (2009). Similarly, the specific
approach based on the Savage-Dickey (Dickey 1971; Verdinelli and Wasserman
1995) representation of the Bayes factor associated with the null hypothesis H0 W
™ D ™0, as

B01.x/ D �1.™0jx/
�1.™0/

;

can be related to the family of bridge sampling techniques, even though the initial
theoretical foundations of the method are limited, as explained in Robert and Marin
(2009). This paper engineered a general framework that produces a converging
and unbiased approximation of the Bayes factor, unrelated with the approach
of Verdinelli and Wasserman (1995), that builds upon a mixed pseudo-posterior
naturally derived from the priors under both the null and the alternative hypotheses.

As can be seen from the previous developments, such methods require a rather
careful tuning to be of any use. Therefore, they are rather difficult to employ outside
settings where pairs of models are opposed. In other words, they cannot be directly
used in general model choice settings where the parameter space (and in particular
the parameter dimension) varies across models, as in, for instance, Example 7.
To address the computational issues corresponding to these cases requires more
advanced techniques introduced in the next Section.

26.4 Markov Chain Monte Carlo Methods

As described precisely in Chap. II.3 and in Robert and Casella (2004), MCMC
methods try to overcome the limitation of regular Monte Carlo methods through the
use of a Markov chain with stationary distribution the posterior distribution. There
exist rather generic ways of producing such chains, including Metropolis–Hastings
and Gibbs algorithms. Besides the fact that stationarity of the target distribution is
enough to justify a simulation method by Markov chain generation, the idea at the
core of MCMC algorithms is that local exploration, when properly weighted, can
lead to a valid representation of the distribution of interest, as for instance, when
using the Metropolis–Hastings algorithm.

26.4.1 Metropolis–Hastings as Universal Simulator

The Metropolis–Hastings, presented in Robert and Casella (2004) and Chap. II.3,
offers a straightforward solution to the problem of simulating from the posterior
distribution �.™jx/ / f .xj™/ �.™/: starting from an arbitrary point ™0, the
corresponding Markov chain explores the surface of this posterior distribution by a
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similarly arbitrary random walk proposal q.™j™0/ that progressively visits the whole
range of the possible values of ™.

– Metropolis–Hastings Algorithm –
At iteration t

1 Generate � � q.�j™.t//, ut � U.Œ0; 1�/
2 Take

™.tC1/ D

8
<̂

:̂

�t if ut � �.�t jx/
�.™.t/jx/

q.™.t/j�t /
q.�t j™.t//

™.t/ otherwise

Example 13 (Continuation of Example 10). In the case p D 1, the probit model
defined in Example 10 can also be over-parameterised as

Pr.Yi D 1jxi/ D 1 � Pr.Yi D 0jxi / D ˚.xiˇ=/ ;

since it only depends on ˇ= . The Bayesian processing of non-identified models
poses no serious difficulty as long as the posterior distribution is well defined. This
is the case for a proper prior like

�.ˇ; 2/ / �4 expf�1=2g expf�ˇ2=50/

that corresponds to a normal distribution on ˇ and a gamma distribution on �2.
While the posterior distribution on .ˇ; / is not a standard distribution, it is
available up to a normalising constant. Therefore, it can be directly processed via an
MCMC algorithm. In this case, we chose a Gibbs sampler that simulates ˇ and 2

alternatively, from

�.ˇjx; y; / /
Y

yiD1
˚.xiˇ=/

Y

yiD0
˚.�xiˇ=/ � �.ˇ/

and
�.2jx; y; ˇ/ /

Y

yiD1
˚.xiˇ=/

Y

yiD0
˚.�xiˇ=/ � �.2/

respectively. Since both of these conditional distributions are also non-standard,
we replace the direct simulation by a one-dimensional Metropolis–Hastings step,
using normal N .ˇ.t/; 1/ and log-normal LN .log .t/; :04/ random walk proposals,
respectively. For a simulated dataset of 1; 000 points, the contour plot of the log-
posterior distribution is given in Fig. 26.8, along with the last 1,000 points of a
corresponding MCMC sample after 100,000 iterations. This graph shows a very
satisfactory repartition of the simulated parameters over the likelihood surface, with
higher concentrations near the largest posterior regions. For another simulation,
Fig. 26.9 details the first 500 steps, when started at .ˇ; 2/ D .0:1; 4:0/. Although
each step contains both a ˇ and a  proposal, some moves are either horizontal or
vertical: this corresponds to cases when either the ˇ or the  proposals have been
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Fig. 26.9 First 500 steps of the Metropolis–Hastings algorithm on the probit log-posterior
surface, when started at .ˇ; 2/ D .0:1; 4:0/

rejected. Note also the fairly rapid convergence to a modal zone of the posterior
distribution in this case.

Obviously, this is only a toy example and more realistic probit models do not
fare so well with down-the-shelf random walk Metropolis–Hastings algorithms, as
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shown for instance in Nobile (1998) (see also Robert and Casella 2004, Sect. 10.3.2,
Marin and Robert 2007a, Sect. 4.3, and Marin and Robert 2007b).10

The difficulty inherent to random walk Metropolis–Hastings algorithms is the
scaling of the proposal distribution: it must be adapted to the shape of the target
distribution so that, in a reasonable number of steps, the whole support of this
distribution can be visited. If the scale of the proposal is too small, this will not
happen as the algorithm stays “too local" and, if there are several modes on the
posterior, the algorithm may get trapped within one modal region because it cannot
reach other modal regions with jumps of too small a magnitude. The larger the
dimension p is, the harder it is to set up the right scale, though, because:

(a) The curse of dimension implies that there are more and more empty regions in
the space, that is, regions with zero posterior probability.

(b) The knowledge and intuition about the modal regions get weaker and weaker.
(c) The proper scaling involves a symmetric .p; p/matrix% in the proposal g..™�

™0/T%.™ � ™0//. Even when the matrix % is diagonal, it gets harder to scale as
the dimension increases (unless one resorts to a Gibbs like implementation,
where each direction is scaled separately).

Note also that the on-line scaling of the algorithm against the empirical acceptance
rate is inherently flawed in that (a) the process is no longer Markovian and (b) the
attraction of a modal region may give a false sense of convergence and lead to a
choice of too small a scale, simply because other modes will not be visited during
the scaling experiment.

26.4.2 Gibbs Sampling and Latent Variable Models

The Gibbs sampler is a definitely attractive algorithm for Bayesian problems
because it naturally fits the hierarchical structures so often found in such problems.
“Natural" being a rather vague notion from a simulation point of view, it routinely
happens that other algorithms fare better than the Gibbs sampler. Nonetheless, Gibbs
sampler is often worth a try (possibly with other Metropolis–Hastings refinements at
a later stage) in well-structured objects like Bayesian hierarchical models and more
general graphical models.

A very relevant illustration is made of latent variable models, where the
observational model is itself defined as a mixture model,

f .xj™/ D
Z

Z

f .xjz; ™/ g.zj™/ dz:

Such models were instrumental in promoting the Gibbs sampler in the sense that
they have the potential to make Gibbs sampling sound natural very easily. (See

10Even in the simple case of the probit model, MCMC algorithms do not always converge very
quickly, as shown in Robert and Casella (2004, Chap. 14).
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also Chap. II.3.) For instance, Tanner and Wong (1987) wrote a precursor article
to Gelfand and Smith (1990) that designed specific two-stage Gibbs samplers
for a variety of latent variable models. And many of the first applications of
Gibbs sampling in the early 90’s were actually for models of that kind. The usual
implementation of the Gibbs sampler in this case is to simulate the missing variables
Z conditional on the parameters and reciprocally, as follows:

– Latent Variable Gibbs Algorithm –

At iteration t

1 Generate z.tC1/ � g.zj™.t/; x/
2 Generate ™.tC1/ � �.™jx; z.tC1//

While we could have used the probit case as an illustration (Example 10), as done
in Chap. II.3, we choose to pick the case of mixtures (Example 6) as a better setting.

Example 14 (Continuation of Example 6). The natural missing data structure of a
mixture of distribution is historical. In one of the first mixtures to be ever studied by
Bertillon, in 1863, a bimodal structure on the height of conscripts in south eastern
France (Doubs) can be explained by the mixing of two populations of military
conscripts, one from the plains and one from the mountains (or hills). Therefore,
in the analysis of data from distributions of the form

kX

iD1
pif .xj™i / ;

a common missing data representation is to associate with each observation xj a
missing multinomial variable zj � Mk.1Ip1; : : : ; pk/ such that xj jzj D i �
f .xj™i /. In heterogeneous populations made of several homogeneous subgroups
or subpopulations, it makes sense to interpret zj as the index of the population of
origin of xj , which has been lost in the observational process.

However, mixtures are also customarily used for density approximations, as
a limited dimension proxy to non-parametric approaches. In such cases, the
components of the mixture and even the number k of components in the mixture
are often meaningless for the problem to be analysed. But this distinction between
natural and artificial completion (by the zj ’s) is lost to the MCMC sampler, whose
goal is simply to provide a Markov chain that converges to the posterior as stationary
distribution. Completion is thus, from a simulation point of view, a mean to generate
such a chain.

The most standard Gibbs sampler for mixture models (Diebolt and Robert 1994)
is thus based on the successive simulation of the zj ’s and of the ™i ’s, conditional on
one another and on the data:

1. Generate zj j™; xj .j D 1; : : : ; n/
2. Generate ™i jx; z .i D 1; : : : ; k/
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Given that the density f is most often from an exponential family, the simulation of
the ™i ’s is generally straightforward.

As an illustration, consider the (academic) case of a normal mixture with two
components, with equal known variance and fixed weights,

pN .�1; 2/C .1 � p/N .�2; 2/ : (26.11)

Assume in addition a normal N .0; 102/ prior on both means �1 and �2. It is easy
to see that �1 and �2 are independent, given .z; x/, and the respective conditional
distributions are

N

0

@
X

ziDj
xi=

�
:1C nj

�
; 2=

�
:1C nj

�
1

A ;

where nj denotes the number of zi ’s equal to j . Even more easily, it comes that the
conditional posterior distribution of z given .�1; �2/ is a product of binomials, with

Pr.Zi D 1jxi ; �1; �2/

D p expf�.xi � �1/2=22g
p expf�.xi � �1/2=22g C .1 � p/ expf�.xi � �2/2=22g :

Figure 26.10 illustrates the behaviour of the Gibbs sampler in that setting, with a
simulated dataset of 100 points from the :7N .0; 1/C :3N .2:7; 1/ distribution. The
representation of the MCMC sample after 5,000 iterations is quite in agreement
with the posterior surface, represented via a grid on the .�1; �2/ space and some
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Fig. 26.10 Gibbs sample of 5,000 points for the mixture posterior (left) and path of the last 100
consecutive steps (right) against the posterior surface (Source: Robert and Casella 2004)
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and Casella 2004)

contours. The sequence of consecutive steps represented on the left graph also shows
that the mixing behaviour is satisfactory, since the jumps are scaled in terms of the
modal region of the posterior.

This experiment gives a wrong sense of safety, though, because it does not
point out the fairly large dependence of the Gibbs sampler to the initial conditions,
already signalled in Diebolt and Robert (1994) under the name of trapping states.
Indeed, the conditioning of .�1; �2/ on z implies that the new simulations of
the means will remain very close to the previous values, especially if there are
many observations, and thus that the new allocations z will not differ much from
the previous allocations. In other words, to see a significant modification of the
allocations (and thus of the means) would require a very very large number of
iterations. Figure 26.11 illustrates this phenomenon for the same sample as in
Fig. 26.10, for a wider scale: there always exists a second mode in the posterior
distribution, which is much lower than the first mode located around .0; 2:7/.
Nonetheless, a Gibbs sampler initialised close to the second and lower mode will
not be able to leave the vicinity of this (irrelevant) mode, even after a large number
of iterations. The reason is as given above: to jump to the other mode, a majority of
zj ’s would need to change simultaneously and the probability of such a jump is too
close to 0 to let the event occur.11

11It is quite interesting to see that the mixture Gibbs sampler suffers from the same pathology as
the EM algorithm, although this is not surprising given that it is based on the same completion
scheme.
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Fig. 26.12 Track of a 1,000 iteration random walk Metropolis–Hastings chain on the posterior
surface, the starting point being indicated by a cross. (The scale of the random walk is 0.2)

The literature on this specific issue – of exploring all the modes of the posterior
distribution – has grown around the denomination of “label switching problem".
For instance, Celeux et al. (2000) have pointed out the deficiency of most MCMC
samplers in this respect, while Frühwirth-Schnatter (2001, 2004, 2006), Berkhof
et al. (2003), Jasra et al. (2005), and Geweke (2007) have proposed different devices
to overcome this difficulty, in particular when testing for the number of components.
See Lee et al. (2009) for a survey on recent developments.

This example illustrates quite convincingly that, while the completion is natural
from a model point of view (since it is a part of the definition of the model), it
does not necessarily transfer its utility for the simulation of the posterior. Actually,
when the missing variable model allows for a closed form likelihood, as is the case
for mixtures, probit models (Examples 10 and 13) and even hidden Markov models
(see Cappé et al. 2005), the whole range of the MCMC technology can be used
as well. The appeal of alternatives like random walk Metropolis–Hastings schemes
is that they remain in a smaller dimension space, since they avoid the completion
step(s), and that they are not restricted in the range of their moves.12

Example 15 (Continuation of Example 14). Given that the likelihood of a sample
.x1; : : : ; xn/ from the mixture distribution (26.11) can be computed in O.2n/
time, a regular random walk Metropolis–Hastings algorithm can be used in this
setup. Figure 26.12 shows how quickly this algorithm escapes the attraction of
the poor mode, as opposed to the Gibbs sampler of Fig. 26.11: within a few

12This wealth of possible alternatives to the completion Gibbs sampler is a mixed blessing in that
their range, for instance the scale of the random walk proposals, needs to be scaled properly to
avoid inefficiencies.
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iterations of the algorithm, the chain drifts over the poor mode and converges almost
deterministically to the proper region of the posterior surface. The random walk is
based on N .�.t/i ; 0:04/ proposals, although other scales would work as well but
would require more iterations to reach the proper model regions. For instance, a
scale of 0:005 in the Normal proposal above needs close to 5,000 iterations to attain
the main mode.

The secret of a successful MCMC implementation in such latent variable models
is to maintain the distinction between latency in models and latency in simulation
(the later being often called use of auxiliary variables). When latent variables
can be used with adequate mixing of the resulting chain and when the likelihood
cannot be computed in a closed form (as in hidden semi-Markov models, Cappé
et al. 2004), a Gibbs sampler is a rather simple solution that is often easy to
simulate from. Adding well-mixing random walk Metropolis–Hastings steps in the
simulation scheme cannot hurt the overall mixing of the chain (Robert and Casella
2004, Chap. 13), especially when several scales can be used at once (see Sect. 26.5).
Note also that the technique of tempering that flattens the target distribution in order
to facilitate its exploration by a Markov chain is available for most latent variable
models, if sometimes in rudimentary versions. See Chopin (2007) and Marin and
Robert (2007, Sect. 6.6) for an illustration in the setups of hidden Markov models
and of mixtures (Example 15), respectively. A final word is that the latent variable
completion can be conducted in an infinity of ways and that several of these should
be tried or used in parallel to increase the chances of success.

26.4.3 Reversible Jump Algorithms for Variable Dimension
Models

As described in Sect. 26.2.3, model choice is computationally different from testing
in that it considers at once a (much) wider range of models Mi and parameter
spaces $i . Although early approaches could only go through a pedestrian pairwise
comparison, a more adequate perspective is to envision the model index � as part of
the parameter to be estimated, as in (26.3). The (computational) difficulty is that we
are then dealing with a possibly infinite space13 that is the collection of unrelated
sets: how can we then simulate from the corresponding distribution?14

13The difficulty with the infinite part of the problem is easily solved in that the setting is identical
to simulation problems in (countable or uncountable) infinite spaces. When running simulations in
those spaces, some values are never visited by the simulated Markov chain and the chances a value
is visited is related with the probability of this value under the target distribution.
14Early proposals to solve the varying dimension problem involved saturation schemes where all
the parameters for all models were updated deterministically (Carlin and Chib 1995), but they do
not apply for an infinite collection of models and they need to be precisely calibrated to achieve a
sufficient amount of moves between models.
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The MCMC solution proposed by Green (1995) is called reversible jump MCMC,
because it is based on a reversibility constraint on the transitions between the sets
$i . In fact, the only real difficulty compared with previous developments is to
validate moves (or jumps) between the $i ’s, since proposals restricted to a given
$i follow from the usual (fixed-dimensional) theory. Furthermore, reversibility can
be processed at a local level: since the model indicator � is a integer-valued random
variable, we can impose reversibility for each pair .k1; k2/ of possible values of �.
The idea at the core of reversible jump MCMC is then to supplement each of the
spaces $k1 and $k2 with adequate artificial spaces in order to create a bijection
between them. For instance, if dim.$k1/ > dim.$k2/ and if the move from $k1 to
$k2 can be represented by a deterministic transformation of ™.k1/

™.k2/ D Tk1!k2.™.k1// ;

Green (1995) imposes a dimension matching condition which is that the opposite
move from$k2 to $k1 is concentrated on the curve

n
™.k1/ W ™.k2/ D Tk1!k2.™.k1//

o
:

In the general case, if ™.k1/ is completed by a simulation uk1 � gk1.uk1/ into .™.k1/;
uk1/ and ™.k2/ by uk2 � gk2.uk2/ into .™.k2/; uk2/ so that the mapping between
.™.k1/; uk1/ and .™.k2/; uk2/ is a bijection,

.™.k2/; uk2/ D Tk1!k2.™.k1/; uk1/; (26.12)

the probability of acceptance for the move from model Mk1 to model Mk2 is then

min

 
�.k2; ™

.k2//

�.k1; ™
.k1//

�21gk2 .uk2/

�12gk1 .uk1/

ˇ
ˇ
ˇ
ˇ
ˇ
@Tk1!k2.™.k1/; uk1/

@.™.k1/; uk1/

ˇ
ˇ
ˇ
ˇ
ˇ
; 1

!

;

involving

– The Jacobian of the transform Tk1!k2 ,
– The probability �ij of choosing a jump to Mkj while in Mki , and
– gi , the density of ui .

The acceptance probability for the reverse move is based on the inverse ratio if the
move from Mk2 to Mk1 also satisfies (26.12) with uk2 � gk2.uk2/.15

The pseudo-code representation of Green’s algorithm is thus as follows:

15For a simple proof that the acceptance probability guarantees that the stationary distribution is
�.k; ™.k//, see Robert and Casella (2004, Sect. 11.2.2).
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– Green’s Algorithm –

At iteration t , if x.t/ D .m; ™.m//,
1. Select model Mn with probability �mn
2. Generate umn � 'mn.u/
3. Set .™.n/; vnm/ D Tm!n.™.m/; umn/
4. Take x.tC1/ D .n; ™.n// with probability

min

 
�.n; ™.n//

�.m; ™.m//

�nm'nm.vnm/

�mn'mn.umn/

ˇ
ˇ
ˇ
ˇ
ˇ
@Tm!n.™.m/; umn/
@.™.m/; umn/

ˇ
ˇ
ˇ
ˇ
ˇ
; 1

!

;

and take x.tC1/ D x.t/ otherwise.

Even more than previous methods, the implementation of this algorithm requires
a high degree of skillfulness in picking the right proposals and the appropriate
scales. Indeed, it may be argued that the ultimate dependence of the method on the
pairwise completion schemes prevents an extension of its use by a broader audience.
This “art of reversible jump MCMC" is illustrated on the two following examples,
extracted from Robert and Casella (2004, Sect. 14.2.3).

Example 16 (Continuation of Example 6). If we consider for model Mk the k
component normal mixture distribution,

kX

jD1
pjkN .�jk; 2jk/ ;

moves between models involve changing the number of components in the mixture
and thus adding new components or removing older components or yet again
changing several components. As in Richardson and Green (1997), we can restrict
the moves when in model Mk to only models MkC1 and Mk�1. The simplest
solution is to use a birth-and-death process: The birth step consists in adding a
new normal component in the mixture generated from the prior and the death step
is the opposite, removing one of the k components at random. In this case, the
corresponding birth acceptance probability is

min

�
�.kC1/k
�k.kC1/

.k C 1/Š
kŠ

�kC1.™kC1/
�k.™k/ .k C 1/'k.kC1/.uk.kC1// ; 1

�

D min

�
�.kC1/k
�k.kC1/

%.k C 1/
%.k/

`kC1.™kC1/ .1 � pkC1/k�1
`k.™k/

; 1

�
;
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Fig. 26.13 Histogram and raw plot of 100,000 k’s produced by a reversible jump MCMC
algorithm for the Galaxy dataset

where `k denotes the likelihood of the k component mixture model Mk and %.k/ is
the prior probability of model Mk .16

While this proposal can work well in some setting, as in Richardson and Green
(1997) when the prior is calibrated against the data, it can also be inefficient, that is,
leading to a high rejection rate, if the prior is vague, since the birth proposals are not
tuned properly. A second proposal, central to the solution of Richardson and Green
(1997), is to devise more local jumps between models, called split and combine
moves, since a new component is created by splitting an existing component into
two, under some moment preservation conditions, and the reverse move consists
in combining two existing components into one, with symmetric constraints that
ensure reversibility. (See, e.g., Robert and Casella 2004, for details.)

Figures 26.13–26.15 illustrate the implementation of this algorithm for the so-
called Galaxy dataset used by Richardson and Green (1997) (see also Roeder 1992),
which contains 82 observations on the speed of galaxies. On Fig. 26.13, the MCMC
output on the number of components k is represented as a histogram on k, and

16In the birth acceptance probability, the factorials kŠ and .k C 1/Š appear as the numbers of ways
of ordering the k and kC 1 components of the mixtures. The ratio cancels with 1=.k C 1/, which
is the probability of selecting a particular component for the death step.
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Fig. 26.14 Reversible jump MCMC output on the parameters of the model M3 for the Galaxy
dataset, obtained by conditioning on k D 3. The left column gives the histogram of the weights,
means, and variances; the middle column the scatterplot of the pairs weights-means, means-
variances, and variances-weights; the right column plots the cumulated averages (over iterations)
for the weights, means, and variances

the corresponding sequence of k’s. The prior used on k is a uniform distribution
on f1; : : : ; 20g: as shown by the lower plot, most values of k are explored by the
reversible jump algorithm, but the upper bound does not appear to be restrictive
since the k.t/’s hardly ever reach this upper limit. Figure 26.14 illustrates the fact
that conditioning the output on the most likely value of k (3 here) is possible. The
nine graphs in this Figure show the joint variation of the three types of parameters, as
well as the stability of the Markov chain over the 1,000,000 iterations: the cumulated
averages are quite stable, almost from the start.

The density plotted on top of the histogram in Fig. 26.15 is another good
illustration of the inferential possibilities offered by reversible jump algorithms, as
a case of model averaging: this density is obtained as the average over iterations t of

k.t/X

jD1
p
.t/

jkN .�
.t/

jk; .
.t/

jk /
2/ ;
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Fig. 26.15 Fit of the dataset by the averaged density, EŒf .yj™/jx�

which approximates the posterior expectation EŒf .yj™/jx�, where x denotes the data
x1; : : : ; x82.

Example 17 (Continuation of Example 3). For the AR.p/ model of Example 3,
the best way to include the stationarity constraints is to use the lag-polynomial
representation

pY

iD1
.1 � �iB/ Xt D �t ; �t � N .0; 2/ ;

of model Mp , and to constrain the inverse roots, �i , to stay within the unit circle if
complex and within Œ�1; 1� if real (see, e.g. Robert 2007, Sect. 4.5.2). The associated
uniform priors for the real and complex roots �j is

�p.�/ D 1

bp=2c C 1
Y

�i2R

1

2
Ij�i j<1

Y

�i 62R

1

�
Ij�i j<1 ;

where bp=2cC1 is the number of different values of rp . This factor must be included
within the posterior distribution when using reversible jump since it does not vanish
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in the acceptance probability of a move between models Mp and Mq . Otherwise,
this results in a modification of the prior probability of each model.

Once again, a simple choice is to use a birth-and-death scheme where the birth
moves either create a real or two conjugate complex roots. As in the birth-and-death
proposal for Example 16, the acceptance probability simplifies quite dramatically
since it is for instance

min

�
�.pC1/p
�p.pC1/

.rp C 1/Š
rpŠ

bp=2c C 1
b.p C 1/=2c C 1

`pC1.™pC1/
`p.™p/

; 1

�

in the case of a move from Mp to MpC1. (As for the above mixture example, the
factorials are related to the possible choices of the created and the deleted roots.)

Figure 26.16 presents some views of the corresponding reversible jump MCMC
algorithm. Besides the ability of the algorithm to explore a range of values of k,
it also shows that Bayesian inference using these tools is much richer, since it
can, for instance, condition on or average over the order k, mix the parameters of
different models and run various tests on these parameters. A last remark on this
graph is that both the order and the value of the parameters are well estimated, with
a characteristic trimodality on the histograms of the ™i ’s, even when conditioning
on k different from 3, the value used for the simulation.

In conclusion, while reversible jump MCMC is a generic and powerful method
for handling model comparison when faced with a multitude of models, its
sensitivity to the tuning “parameters" that determine the pairwise jumps makes us
favour the alternative of computing Bayes factors. When the number of models
under comparisons is sufficiently small to allow for the computation of all marginal
likelihoods in parallel, this computational solution is more efficient. It is indeed
quite rare that the structure of the posterior under a model M1 provides information
about the structure of the posterior under another model M2, unless both models
are quite close. Intrinsically, reversible jump MCMC is a random walk over the
collection of models and, as such, looses in efficiency in its exploration of this
collection. (In particular, it almost never makes sense to implement reversible jump
MCMC when comparing a small number of models.)

26.5 More Monte Carlo Methods

While MCMC algorithms considerably expanded the range of applications of
Bayesian analysis, they are not, by any means, the end of the story! Further
developments are taking place, either at the fringe of the MCMC realm or far
away from it. We indicate below a few of the directions in Bayesian computational
Statistics, omitting many more that also are of interest...
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k, and of 2. The final graph is a scatterplot of the complex roots (for iterations where there
were complex roots). The one before last graph plots the evolution over the iterations of ™1; ™2; ™3
(Source: Robert 2003)

26.5.1 Adaptivity for MCMC Algorithms

Given the range of situations where MCMC applies, it is unrealistic to hope for a
generic MCMC sampler that would function in every possible setting. The more
generic proposals like random-walk Metropolis–Hastings algorithms are known to
fail in large dimension and disconnected supports, because they take too long to
explore the space of interest (Neal 2003). The reason for this impossibility theorem
is that, in realistic problems, the complexity of the distribution to simulation is the
very reason why MCMC is used! So it is difficult to ask for a prior opinion about
this distribution, its support or the parameters of the proposal distribution used in
the MCMC algorithm: intuition is close to void in most of these problems.
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However, the performances of off-the-shelve algorithms like the random-walk
Metropolis–Hastings scheme bring information about the distribution of interest
and, as such, should be incorporated in the design of better and more powerful
algorithms. The problem is that we usually miss the time to train the algorithm
on these previous performances and are looking for the Holy Grail of automated
MCMC procedures! While it is natural to think that the information brought by the
first steps of an MCMC algorithm should be used in later steps, there is a severe
catch: using the whole past of the “chain" implies that this is not a Markov chain
any longer. Therefore, usual convergence theorems do not apply and the validity of
the corresponding algorithms is questionable. Further, it may be that, in practice,
such algorithms do degenerate to point masses because of a too rapid decrease in
the variation of their proposal.

Example 18 (Continuation of Example 8). For the t-distribution sample, we could
fit a normal proposal from the empirical mean and variance of the previous values
of the chain,

�t D 1

t

tX

iD1
™.i/ and 2t D

1

t

tX

iD1
.™.i/ � �t/2 :

This leads to a Metropolis–Hastings algorithm with acceptance probability

nY

jD2

"
� C .xj � ™.t//2
� C .xj � �/2

#�.�C1/=2
exp�.�t � ™.t//2=22t
exp�.�t � �/2=22t

;

where � is the proposed value from N .�t ; 2t /. The invalidity of this scheme
(because of the dependence on the whole sequence of ™.i/’s till iteration t) is
illustrated in Fig. 26.17: when the range of the initial values is too small, the
sequence of ™.i/’s cannot converge to the target distribution and concentrates on
too small a support. But the problem is deeper, because even when the range of the
simulated values is correct, the (long-term) dependence on past values modifies the
distribution of the sequence. Figure 26.18 shows that, for an initial variance of 2:5,
there is a bias in the histogram, even after 25; 000 iterations and stabilisation of the
empirical mean and variance.

Even though the Markov chain is converging in distribution to the target
distribution (when using a proper, i.e. time-homogeneous updating scheme), using
past simulations to create a non-parametric approximation to the target distribution
does not work either. Figure 26.19 shows for instance the output of an adaptive
scheme in the setting of Example 18 when the proposal distribution is the Gaussian
kernel based on earlier simulations. A very large number of iterations is not
sufficient to reach an acceptable approximation of the target distribution.

The overall message is thus that, without further guidance, one should not
constantly adapt the proposal distribution on the past performances of the simulated
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chain. Either the adaptation must cease after a period of burnin (not to be taken into
account for the computations of expectations and quantities related to the target
distribution). Else, the adaptive scheme must be theoretically assess on its own
right. This later path is not easy and only a few examples can be found (so far)
in the literature. See, e.g., Gilks et al. (1998) who use regeneration to create block
independence and preserve Markovianity on the paths rather than on the values,
Haario et al. (1999, 2001) who derive a proper adaptation scheme in the spirit of
Example 18 by using a ridge-like correction to the empirical variance, and Andrieu
and Robert (2001) who propose a more general framework of valid adaptivity
based on stochastic optimisation and the Robbin-Monro algorithm. A more generic
perspective is found in Roberts and Rosenthal (2009), who tune the random walk
scale in each direction of the parameter space toward an optimal acceptance rate
of 0:44, a rate suggested in Gelman et al. (1996). Roberts and Rosenthal (2009)
provide validated constraints on the tuning scheme to the extent of offering an R
package called amcmc and described in Rosenthal (2007). More precisely, for each
component of the simulated parameter, a factor ıi corresponding to the logarithm
of the random walk standard deviation is updated every 50 iterations by adding or
subtracting a factor �t depending on whether or not the average acceptance rate on
that batch of 50 iterations and for this component was above or below 0:44. If �t
decreases to zero as min.0:01; 1=

p
t/, the conditions for convergence are satisfied.

(See Robert and Casella (2009, Sect. 8.5.2, for more details.)

26.5.2 Population Monte Carlo

To reach acceptable adaptive algorithms, while avoiding an extended study of
their theoretical properties, a better alternative is to leave the setup of Markov
chain simulations and to consider instead sequential or population Monte Carlo
methods (Cappé et al. 2004; Iba 2000) that have much more in common with
importance sampling than with MCMC. They are inspired from particle systems
that were introduced to handle rapidly changing target distributions like those found
in signal processing and imaging (Del Moral et al. 2006; Doucet et al. 2001; Gordon
et al. 1993; Shephard and Pitt 1997) but primarily handle fixed but complex target
distributions by building a sequence of increasingly better proposal distributions.17

Each iteration of the population Monte Carlo (PMC) algorithm thus produces
a sample approximately simulated from the target distribution but the iterative
structure allows for adaptivity toward the target distribution. Since the validation
is based on importance sampling principles, dependence on the past samples can be
arbitrary and the approximation to the target is valid (unbiased) at each iteration
and does not require convergence times nor stopping rules.

17The “sequential" denomination in the sequential Monte Carlo methods thus refers to the
algorithmic part, not to the statistical part.



794 C.P. Robert

If t indexes the iteration and i the sample point, consider proposal distributions
qit that simulate the x.t/i ’s and associate to each x.t/i an importance weight

%
.t/
i D �.x.t/i /

ı
qit .x

.t/
i / ; i D 1; : : : ; n :

(The proposal distribution thus depends both on the iteration and on the particle
index.) Approximations of the form

It D 1

n

nX

iD1
%
.t/
i h.x

.t/
i /

are then unbiased estimators of E� Œh.X/�, even when the importance distribution
qit depends on the entire past of the experiment. Indeed, if � denotes the vector of
past random variates that contribute to qit , and g.�/ its arbitrary distribution, we
have
Z Z

�.x/

qit .xj�/ h.x/qit .x/dx g.�/d� D
Z Z

h.x/�.x/dx g.�/d� D E� Œh.X/� :

Furthermore, assuming that the variances

var
�
%
.t/
i h.x

.t/
i /
	

exist for every 1 � i � n, we have

var .It / D 1

n2

nX

iD1
var

�
%
.t/
i h.x

.t/
i /
	
;

due to the cancelling effect of the weights %.t/i .
Since, usually, the density � is unscaled, we use instead

%
.t/
i /

�.x
.t/
i /

qit .x
.t/
i /

; i D 1; : : : ; n ;

scaled so that the %.t/i ’s sum up to 1. In this case, the unbiasedness is lost, although
it approximately holds. In fact, the estimation of the normalising constant of �
improves with each iteration t , since the overall average

$t D 1

tn

tX

�D1

nX

iD1

�.x
.�/
i /

qi� .x
.�/
i /

is convergent. Therefore, as t increases,$t contributes less and less to the variability
of It .
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However, Douc et al. (2007a) have shown that this use of the importance weights
%
.t/
i in Cappé et al. (2004) was not adaptive enough and they proposed a Rao–

Blackwellised substitute18

%
.t/
i /

�.x
.t/
i /

P
j qjt .x

.t/
i /

; i D 1; : : : ; n ;

that guaranteed an (asymptotic in n) improvement of the proposal at each iteration
t , under specific forms of the qit ’s (Cappé et al. 2008; Douc et al. 2007a,b)

Since the above establishes that an simulation scheme based on sample depen-
dent proposals is fundamentally a specific kind of importance sampling, the
following algorithm is validated by the same principles as regular importance
sampling:

– Population Monte Carlo Algorithm –

For t D 1; : : : ; T
1. For i D 1; : : : ; n,

(i) Select the generating distribution qit .�/
(ii) Generate x.t/i � qit .x/
(iii) Compute %.t/i D �.x.t/i /=

P
j qjt .x

.t/
i /

2. Normalise the %.t/i ’s to sum up to 1
3. Resample n values from the x.t/i ’s with replacement, using the

weights %.t/i , to create the sample .x.t/1 ; : : : ; x
.t/
n /

Step (i) is singled out because it is the central property of the PMC algorithm,
namely that adaptivity can be extended to the individual level and that the qit ’s can
be picked based on the performances of the previous qi.t�1/’s or even on all the
previously simulated samples, if storage allows. For instance, the qit ’s can include
large tails proposals as in the defensive sampling strategy of Hesterberg (1995),
to ensure finite variance. Similarly, Warnes’ (2001) non-parametric Gaussian
kernel approximation can be used as a proposal.19 (See also in Stavropoulos and
Titterington 2001 the smooth bootstrap technique as an earlier example of PMC
algorithm.)

18The generic Rao–Blackwellised improvement was introduced in the original MCMC paper of
Gelfand and Smith (1990) and studied by Liu et al. (1994) and Casella and Robert (1996). More
recent developments are proposed in Cornuet et al. (2009), in connection with adaptive algorithms
like PMC.
19Using a Gaussian non-parametric kernel estimator amounts to (a) sampling from the x.t/i ’s with
equal weights and (b) using a normal random walk move from the selected x.t/i , with standard
deviation equal to the bandwidth of the kernel.
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A major difference between the PMC algorithm and earlier proposals in the
particle system literature is that past dependent moves as those of Gilks and Berzuini
(2001) and Del Moral et al. (2006) remain within the MCMC framework, with
Markov transition kernels with stationary distribution equal to � .

Example 19 (Continuation of Example 14). We consider here the implementation
of the PMC algorithm in the case of the the normal mixture (26.11). As in
Example 15, a PMC sampler can be efficiently implemented without the (Gibbs)
augmentation step, using normal random walk proposals based on the previous
sample of � D .�1; �2/’s. Moreover, the difficulty inherent to random walks,
namely the selection of a “proper" scale, can be bypassed because of the adaptivity
of the PMC algorithm. Indeed, the proposals can be associated with a range of
variances vk .1 � k � K/ ranging from, e.g., 103 down to 10�3. At each step of the
algorithm, the new variances can be selected proportionally to the performances
of the scales vk on the previous iterations. For instance, a scale can be chosen
proportionally to its non-degeneracy rate in the previous iteration, that is, the
percentage of points generated with the scale vk that survived after resampling.20

The weights are then of the form

%i /
f
�

x
ˇ
ˇ̌
.�1/

.t/
i ; .�2/

.t/
i

	
�
�
.�1/

.t/
i ; .�2/

.t/
i

	

Pn
jD1 '

�
.�1/

.t/
i

ˇ
ˇ
ˇ.�1/

.t�1/
j ; vk

	
'
�
.�2/

.t/
i

ˇ
ˇ
ˇ.�2/

.t�1/
j ; vk

	
;

where '.qjs; v/ is the density of the normal distribution with mean s and variance v
at the point q.

Compared with an MCMC algorithm in the same setting (see Examples 14 and
15), the main feature of this algorithm is its ability to deal with multiscale proposals
in an unsupervised manner. The upper row of Fig. 26.21 produces the frequencies of
the five variances vk used in the proposals along iterations: The two largest variances
vk most often have a zero survival rate, but sometimes experience bursts of survival.
In fact, too large a variance mostly produces points that are irrelevant for the
posterior distribution, but once in a while a point ™.t/j gets close to one of the modes

of the posterior. When this occurs, the corresponding %j is large and ™.t/j is thus
heavily resampled. The upper right graph shows that the other proposals are rather
evenly sampled along iterations. The influence of the variation in the proposals on
the estimation of the means�1 and�2 can be seen on the middle and lower panels of
Fig. 26.21. First, the cumulative averages quickly stabilise over iterations, by virtue
of the general importance sampling proposal. Second, the corresponding variances
take longer to stabilise but this is to be expected, given the regular reappearance of
subsamples with large variances.

20When the survival rate of a proposal distribution is null, in order to avoid the complete removal
of a given scale vk , the corresponding number rk of proposals with that scale is set to a positive
value, like 1% of the sample size.
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Fig. 26.20 Histograms of the PMC sample: sample at iteration 5 (left) before resampling and
(right) after resampling

In comparison with Figs. 26.11 and 26.12, Fig. 26.22 shows that the sample
produced by the PMC algorithm is quite in agreement with the modal zone of the
posterior distribution. The second mode, which is much lower, is not preserved in
the sample after the first iteration. Figure 26.20 also shows that the weights are quite
similar, with no overwhelming weight in the sample.

The generality in the choice of the proposal distributions qit is obviously due
to the abandonment of the MCMC framework. The difference with an MCMC
framework is not simply a theoretical advantage: as seen in Sect. 26.5.1, proposals
based on the whole past of the chain do not often work. Even algorithms validated
by MCMC steps may have difficulties: in one example of Cappé et al. (2004), a
Metropolis–Hastings scheme does not work well, while a PMC algorithm based on
the same proposal produces correct answers. Population Monte Carlo algorithms
offer a theoretically valid solution to the adaptivity issue, with practical gains as
well, as exemplified in Wraith et al. (2009). The connection with nonparametric
Bayes estimation has not yet been sufficiently pursued but the convergence of
kernel-like proposals demonstrated by Cappé et al. (2008) shows this is a promising
direction.
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Fig. 26.21 Performances of the mixture PMC algorithm for 1,000 observations from a
0:2N .0; 1/ C 0:8N .2; 1/ distribution, with ™ D 1 � D 0:1, vk D 5; 2; 0:1; 0:05; 0:01, and a
population of 1,050 particles: (upper left) Number of resampled points for the variances v1 D 5

(darker) and v2 D 2; (upper right) Number of resampled points for the other variances, v3 D 0:1

is the darkest one; (middle left) Variance of the simulated �1’s along iterations; (middle right)
Cumulated average of the simulated�1’s over iterations; (lower left) Variance of the simulated �2’s
along iterations; (lower right) Cumulated average of the simulated �2’s over iterations (Source:
Cappé et al. 2004)

26.5.3 Approximate Bayesian Computation

One particular application of the Accept–Reject algorithm that has found a niche
of its own in population genetics is called approximate Bayesian computation
(ABC), following the denomination proposed by Pritchard et al. (1999). It is in
fact an appealing substitute for “exact" (meaning convergent) Bayesian algorithms
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Fig. 26.22 Representation of the log-posterior distribution with the PMC weighted sample after
30 iterations (the weights are proportional to the circles at each point) (Source: Cappé et al. 2004)

in settings where the likelihood function f .xj™/ is not available, even up to a
normalising constant, but where it can easily be simulated. The range of applications
is thus much wider than population genetics and covers for instance graphical
models and inverse problems.

Assuming, thus, that a posterior distribution �.™jx0/ / �.™/f .x0j™/ is to be
simulated, a rudimentary accept-reject algorithm generates values from the prior
and from the likelihood until the simulated observation is equal to the original
observation x0:
Repeat

Generate ™ � �.™/ and X � f .xj™/
until X D x0
Since the conditional probability of acceptance is f .x0j™/, the distribution of the
accepted ™ is truly �.™jx0/, even when f .xj™/ cannot be computed.

The above algorithm is valid, but it is unfortunately restricted to settings where
(a) �.™/ is a proper prior and (b) Pr™.X D x0/ has a positive probability
of occurrence. Even in population genetics where the outcome X is a discrete
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random variable, the size of the state-space is often such that this algorithm
cannot be implemented. The proposal of Pritchard et al. (1999) is to replace the
exact acceptance condition X D x0 in the above with an approximate condition
d.X; x0/ < �, where d is a distance and � is a tolerance level. The corresponding
ABC algorithm is thus:

– Approximate Bayesian computation Algorithm –

For i D 1; : : : ; n,

1 Generate ™i � �.™/
2 Generate xi � f .xj™i / and compute d.x0; xi /

Accept the ™i ’s such that d.xi ; x/ < �.

The output of the ABC algorithm is distributed from the distribution with
density proportional to �.™/ Pr™fd.X; x0/ < �g, where Pr™ represents the sampling
distribution of X , indexed by ™. This density is somehow mistakenly denoted
by �f™ j d.x; x0/ < �g, where the conditioning corresponds to the marginal
distribution of d.x; x0/ given x0. While unavoidable, this inherent approximation
step makes the ABC method difficult to assess and to compare with regular Monte
Carlo approaches, even though recent works replace it within a non-parametric
framework that aims at approximating the conditional density function f .xj™/ and
hence envision � as a potential bandwidth (Beaumont et al. 2002; Blum and François
2010).

Improvements on the original scheme have been achieved either by modifying
the proposal distribution of the parameter ™, in order to increase the density of x’s
within the vicinity of y (Bortot et al. 2007; Marjoram et al. 2003), or, as stated
above, by envisioning the problem as a conditional density estimation issue and by
developing techniques to allow for larger � (Beaumont et al. 2002). For instance,
Marjoram et al. (2003) defined a Markov chain Monte Carlo (MCMC) version of
the ABC algorithm that enjoys the same validity as the original, namely that, if a
Markov chain .™.t// is created via the transition function

™.tC1/ D

8
ˆ̂
<̂

ˆ̂
:̂

™0 � K.™0 j ™.t// if x � f .x j ™0/ is such that x D x0
and u � U.0; 1/ � �.™0/K.™.t/ j ™0/

�.™.t//K.™0 j ™.t// ;
™.t/ otherwise,

its stationary distribution is the posterior �.™ j x0/. Again, in most settings, exact
equality is not achievable and the above constraint x D x0 is replaced with the
approximation d.x; x0/ < �. In Beaumont et al. (2009), a population Monte Carlo
modification of ABC is introduced, resulting into the algorithm:
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– PMC-ABC Algorithm –

Given a decreasing sequence of tolerance thresholds �1 � : : : �
�T ,

1. At iteration t D 1,
For i D 1; :::; N
Simulate ™.1/i � �.™/ and x � f .x j ™.1/i / until %.x; y/ < �1
Set !.1/i D 1=N

Take �21 as twice the empirical variance of the ™.1/i ’s
2. At iteration 2 � t � T ,

For i D 1; :::; N , repeat

Pick ™?i from the ™.t�1/j ’s with probabilities !.t�1/j

generate ™.t/i j ™?i � N .™?i ; �2t / and x � f .x j ™.t/i /
until %.x; y/ < �t
Set !.t/i / �.™.t/i /=

PN
jD1 !

.t�1/
j '

n
��1t

�
™
.t/
i � ™.t�1/j

	o

Take �2tC1 as twice the weighted empirical variance of the ™.t/i ’s

From a practical viewpoint, the number of iterations T can be controlled via the
modifications in the parameters ofKt , a stopping rule being that the iterations should
stop when those parameters have settled, while the more fundamental issue of
selecting a sequence of �t ’s towards a proper approximation of the true posterior can
rely on the stabilisation of the estimators of some quantities of interest associated
with this posterior. But there is generally no fixed-cost solution that let �t decrease
to zero with t . Note also that the SMC algorithm of Del Moral et al. (2006) has
been recently extended to this ABC setup, making the resulting algorithm a direct
competitor of the above PMC-ABC algorithm.

26.6 Conclusion

This short overview of the problems and solutions considered for Bayesian Statistics
is nothing but an introduction to the game: there are much more complex problems
than those illustrated above and much more advanced techniques than those
presented in these pages. The reader is then encouraged to enter the literature on
the topic, maybe with other introductory surveys like Cappé and Robert (2000) and
Andrieu et al. (2004), but mostly through books like Chen et al. (2000), Doucet et al.
(2001), Liu (2001), Robert and Casella (2004), Albert (2007), Marin and Robert
(2007a), and Robert and Casella (2009).
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We have not mentioned so far entries to Bayesian softwares like winBUGS,
developed by the MRC Unit in Cambridge (Gilks et al. 1994; Spiegelhalter et al.
1999), Ox (Doornik et al. 2002), BATS (Pole et al. 1994), BACC (Geweke 1999)
and the Minitab package of Albert (1996), which all cover some aspects of Bayesian
computing. Obviously, these packages require some expertise from the user and are
thus more difficult of use than the classical open source or commercial softwares
like R, Splus, Statgraphics, StatXact, SPSS or SAS. In other words, they are not
black boxes that could be used by laymen with no statistical background. But this
entrance fee to the use of Bayesian softwares is inevitable, given the versatile nature
of Bayesian analysis: since it offers much more variability than standard inferential
procedures, through the choice of prior distributions and loss functions for instance,
it also requires more input from the user! And, once these preliminary steps have
been overcome, the programming involved in a software like winBUGS is rather
limited and certainly not harder than writing a code in R or Matlab.21

As stressed in this Chapter, computational issues are central to the design
and implementation of Bayesian analysis. The new era opened by the MCMC
methodology has brought much more freedom in the use of Bayesian methods,
as reflected by the increase of Bayesian studies in applied Statistics. As usually
the case, a strong increase in the use of a methodology also sees a corresponding
increase in its misuse! Inconsistent data-dependent priors and improper posteriors
are sometimes appearing in studies and, more generally, the assessment of prior
modelling (or even of MCMC convergence) are rarely conducted with sufficient
care. This is somehow a price to pay for the wider range of Bayesian studies,
while the improvement of corresponding software should bring more guidelines and
warnings about these misuses of Bayesian analysis.
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Chapter 27
Computational Methods in Survival Analysis

Toshinari Kamakura

Survival analysis is widely used in the fields of medical science, pharmaceutics,
reliability and financial engineering, and many others to analyze positive random
phenomena defined by event occurrences of particular interest. In the reliability
field, we are concerned with the time to failure of some physical component such
as an electronic device or a machine part. This article briefly describes statistical
survival techniques developed recently from the standpoint of statistical computa-
tional methods focussing on obtaining the good estimates of distribution parameters
by simple calculations based on the first moment and conditional likelihood for
eliminating nuisance parameters and approximation of the likelihoods. The method
of partial likelihood (Cox 1972, 1975) was originally proposed from the view
point of conditional likelihood for avoiding estimating the nuisance parameters
of the baseline hazards for obtaining simple and good estimates of the structure
parameters. However, in case of heavy ties of failure times calculating the partial
likelihood does not succeed. Then the approximations of the partial likelihood have
been studied, which will be described in the later section and a good approximation
method will be explained. We believe that the better approximation method and the
better statistical model should play an important role in lessening the computational
burdens greatly.

27.1 Introduction

Let T be a positive random variable with density function f .t/ and distribution
function F.t/. The survival function S.t/ is then defined as

S.t/ D 1 � F.t/ D PrfT > tg ;
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and the hazard function or hazard rate as

�.t/ D lim
h!0

Prft < T � t C hjT > tg
h

:

The hazard function can also be expressed as

�.t/ D f .t/

S.t/
: (27.1)

The right-hand side (RHS) of (27.1) becomes

f .t/

S.t/
D � d

dt
logS.t/ ;

and inversely

S.t/ D exp



�
Z t

0

�.u/du

�
: (27.2)

27.1.1 Nonparametric Model

We assume that the observed data set consists of failure or death times ti and
censoring indicators ıi , i D 1; � � � ; n. The indicator ı is unity for the case of failure
and zero for censoring. The censoring scheme is an important concept in survival
analysis in that one can observe partial information associated with the survival
random variable. This is due to some limitations such as loss to follow-up, drop-out,
termination of the study, and others.

The Kaplan–Meier method (Kaplan and Meier 1958) is currently the standard for
estimating the nonparametric survival function. For the case of a sample without any
censoring observations, the estimate exactly corresponds to the derivation from the
empirical distribution. The dataset can be arranged in table form (Table 27.1), i.e.,

where, ti is the i -th order statistic when they are arranged in ascending order for
distinct failure times, di is the number of failures at the time of ti , and ni is the
number of survivors at time ti � 0. Under this notation the Kaplan–Meier estimate
becomes

bS.t/ D
Y

j Wtj <t

�
1 � dj

nj

�
: (27.3)

Table 27.1 Failure time data
Failure times t1 t2 � � � ti � � � tk

Number of failures d1 d2 � � � di � � � dk
Number of individuals of risk set n1 n2 � � � ni � � � nk
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The standard error of the Kaplan–Meier estimate is

SE
n
bS.t/

o
D
h
bS.t/

i
8
<

:

X

j Wtj <t

dj

nj .nj � dj /

9
=

;

1=2

: (27.4)

The above formula is called “Greenwood’s formula” described by Greenwood
(1926).

27.1.2 Parametric Models

The most important and widely-used models in survival analysis are exponential,
Weibull, log-normal, log-logistic, and gamma distributions. The first two models
will be introduced for later consideration. The exponential distribution is simplistic
and easy to handle, being similar to a standard distribution in some respects, while
the Weibull distribution is a generalization of the exponential distribution and allows
inclusion of many types of shapes. Their density functions are

f .t I�/ D �e��t .�; t > 0/ (27.5)

f .t Im; �/ D m

�

�
t

�

�m�1
exp



�
�
t

�

�m�
.m; �; t > 0/; (27.6)

where the parameter � is sometimes called the failure rate in reliability engineering.
Two models may include additional threshold parameters, or guarantee times. Let �
be this threshold parameter. The Weibull density function then becomes

f .t Im; �; �/ D m

�

�
t � �
�

�m�1
exp



�
�
t � �
�

�m�
.m; �; �; t > 0/ : (27.7)

Here, note that in the case of m D 1, the Weibull probability density function
is exactly the exponential density function placing � D 1=�, and that we cannot
observe any failure times before threshold time .t < �/ or an individual cannot die
before this time.

As the Weibull distribution completely includes the exponential distribution, only
the Weibull model will be discussed further. The Weibull distribution is widely
used in reliability and biomedical engineering because of goodness of fit to data
and ease of handling. The main objective in lifetime analysis sometimes involves
(1) estimation of a few parameters which define the Weibull distribution, and
(2) evaluation of the effects of some environmental factors on lifetime distribution
using regression techniques. Inference on the quantiles of the distribution has been
previously studied in detail (Johnson et al. 1994).
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The maximum likelihood estimate (MLE) is well known, yet it is not expressed
explicitly in closed form. Accordingly, some iterative computational methods are
used. Menon (Menon 1963) provided a simple estimator of 1=m, being a consistent
estimate of 1=m, with a bias that tends to vanish as the sample size increases.
Later, Cohen (Cohen 1965; Cohen and Whitten 1988) presented a practically useful
chart for obtaining a good first approximation to the shape parameter m using the
property that the coefficient of variation of the Weibull distribution is a function
of the shape parameter m, i.e., it does not depend on �. This is described as
follows.

Let T be a random variable with probability density function (27.6), the r th
moment around the origin is then calculated as

EŒT r � D �r�
�
1C r

m

	
:

Here � .�/ is the complete gamma function. From this, the first two moments
obtained are the mean life and variance, i.e.,

EŒT � D ��
�
1C 1

m

�
;

VarŒT � D �2


�

�
1C 2

m

�
� � 2

�
1C 1

m

��
:

Considering that the coefficient of variation

CV Dp.VarŒT �/=EŒT �

does not depend on the parameter � allows obtaining simple and robust moment
estimates, which may be the initial values of the maximum likelihood calculations.
Dubey (1967) studied the behavior of the Weibull distribution in detail based on
these moments, concluding that the Weibull distribution with shape parameter m D
3:6 is relatively similar to the normal distribution.

Regarding the three-parameter Weibull described by (27.7), Cohen and Whitten
(1988) suggested using the method of moments equations, noting that

EŒT � D � C ��1.m/;
VarŒT � D �2 ˚�2.m/ � � 2

1 .m/
�
;

EŒX.1/� D � C �

n1=m
�1.m/ ;

and equating them to corresponding samples, where �r.m/ D � .1C r=m/.
As for obtaining an inference on the parameter of the mean parameter� D E.T /,

this has not yet been investigated and will now be discussed. When one would



27 Computational Methods in Survival Analysis 811

like to estimate �, use of either the MLE or the standard sample mean is best
for considering the case of an unknown shape parameter. This is true because the
asymptotic relative efficiency of the sample mean to the MLE is calculated as

ARE. NT / D nAvar. Q�/
nAvar. NT /

D 6

m2�2
� 1

CV2

�
�2

6
C fc � 1C  .1C 1=m/g2


; (27.8)

where c is Euler’s constant, .�/ a digamma function, Q� the MLE, and NT the sample
mean.

Table 27.2 gives the ARE with respect to various values of m. Note the
remarkably high efficiency of the sample mean, especially for m � 0:5, where
more than 90% efficiency is indicated. The behavior of ARE. NT / formm > 1 is that
ARE. NX/ has a local minimum 0.9979 at m D 1:7884 and a local maximum 0.9986
at m D 3:1298, and that for the larger m, ARE. NT / monotonically decreases in m
and the infimum of ARE. NT / is given in m!1;

lim
m!1ARE. NT / D 6.�2 C 6/

�4
Š 0:9775 : (27.9)

When m is known and tends to infinity, the behavior of ARE. NT / is as follows:

lim
m!1

1

.mCV/2
D 6

�2
Š 0:6079 : (27.10)

A higher relative efficiency of the sample mean for unknownm is shown compared
to known m. From a practical standpoint, the sample mean is easily calculated for
a point estimation of the Weibull mean if no censored data are included. These
results support the benefits of using the sample mean for the complete sample.

Table 27.2 ARE of the sample mean to the MLE

m eff m eff m eff

0.1 0.0018 1.1 0.9997 2.1 0.9980
0.2 0.1993 1.2 0.9993 2.2 0.9981
0.3 0.5771 1.3 0.9988 2.3 0.9982
0.4 0.8119 1.4 0.9984 2.4 0.9983
0.5 0.9216 1.5 0.9981 2.5 0.9984
0.6 0.9691 1.6 0.9980 2.6 0.9984
0.7 0.9890 1.7 0.9979 2.7 0.9985
0.8 0.9968 1.8 0.9979 2.8 0.9985
0.9 0.9995 1.9 0.9979 2.9 0.9985
1.0 1.0000 2.0 0.9980 3.0 0.9986
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27.2 Estimation of Shape or Power Parameter

Let us now consider the class of the lifetime distributions, whose distribution
functions are expressed by

F.t I˛; �; / D G
��

t � �


�˛�
; (27.11)

where G.�/ is also a distribution function. For the Weibull model, G.t/ D
1 � exp.�t/ is an exponential distribution. Nagatsuka and Kamakura (Nagatsuka
and Kamakura 2003, 2004) proposed a new method using the location-scale-free
transformation of data set to estimate the power parameter in the Castillo–Hadi
model (Castillo and Hadi 1995). That is, let T1; : : : ; Tn be independently distributed
according to the distribution function (27.11). Consider the W -transformation to be
defined as

Wi D Ti � T.1/
T.n/ � T.1/ ; .i D 2; : : : ; n � 1/; (27.12)

where T.k/ is the k-th order statistic of Ti ’s. The new random variablesWi ’s derived
by this W -transformation are then free from location and scale parameter. The
arithmetic mean of Wi ’s gives the approximation to the original distribution of T .
Let Vi ; i D 1; : : : ; n be i.i.d. distributed with common distribution function FV .v/,
and let the i -th order statistic V.i/ have the marginal distribution function FV.i/ .v/.
Then

Fv.v/ D 1

n

nX

iD1
FV.i/ .v/ : (27.13)

This equation indicates that the arithmetic mean of the marginal distributions of
n order statistics is exactly the original distribution. In the case of the Castillo–
Hadi Model, Nagatsuka and Kamakura (2004) provided a theorem regarding this
approximation, i.e.,

Theorem 1. (Nagatsuka and Kamakura 2004)
The mixture of the marginal distributions of W.i/, i D 2; : : : ; n � 1:

F .n/.w/ D 1

n � 2
n�1X

iD2
FW.i/ .w/ (27.14)

is the approximate distribution of Wi ’s and the limiting distribution (27.14) is the
power function distribution with parameter 1=˛. That is

lim
n!1

1

n � 2
n�1X

iD2
FW.i/ .w/ D w

1
˛ ; 0 < w < 1:
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In the case of the Weibull distribution, the marginal distribution of W.i/ is
calculated as

FW.i/ .w/ DPr
�
W.i/ � w

�

DPr

�
T.i/ � T.1/
T.n/ � T.1/ � w

�

D
Z 1

0

Z 1

u
n.n � 1/f .u/f .v/

"
n�2X

kDi�1

 
n � 2
k

!

� fF..1 � w/uC wv/� F.u/gk

� fF.v/� F..1 � w/uC wv/gn�k�2
#

dvdu

D
Z 1

0

Z 1

u
n.n � 1/

n�2X

kDi�1

 
n � 2
k

!

� Œ1 � exp f�˛.w; m; u; v/g � u�k

� Œv � .1 � exp f�˛.w; m; u; v/g/�n�k�2 ; (27.15)

where

˛.w; m; u; v/ D
h
.1 � w/ f� log.1 � u/g 1m C w f� log.1 � v/g 1m

im
:

Calculations show that F .n/.w/ has a first moment of

�n.m/ D
Z 1

0

˚
1 � F .n/.w/

�
dw

D � 1

n � 2 C
n.n � 1/
m

Z 1

0

Z 1

u
.v � u/n�3

� �
�
1
m
;� log.1 � u/;� log.1 � v/

�

f� log.1 � v/g 1m � f� log.1 � u/g 1m
dvdu : (27.16)

where � .�; �; �/ is the incomplete generalized gamma function defined by

� .a; z0; z1/ D
Z z1

z0

ta�1e�tdt :

Now, an estimating of the shape parameter m is obtained by equating the theoret-
ical population mean with sample mean of W -transformed W ’s. Nagatsuka and
Kamakura (2003) provided a table for obtaining estimates and concluded based
on simulation studies that the robust estimate of m is possible without using any
existing threshold parameter.
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27.3 Regression Models

Survival analysis is now a standard statistical method for lifetime data. Fundamental
and classical parametric distributions are also very important, but regression
methods are very powerful to analyze the effects of some covariates on life lengths.
Cox (1972) introduced a model for the hazard function �.t I x/ with survival time T
for an individual with possibly time-dependent covariate x, i.e.,

�.t I x/ D �0.t/ exp.ˇ>x/ ; (27.17)

where �0.t/ is an arbitrary and unspecified base-line hazard function and x> D
.x1; : : : ; xp/ and ˇ> D .ˇ1; : : : ; ˇp/. Cox generalized (27.17) this to a discrete
logistic model expressing y as

�.t I x/
1 � �.t I x/ D

�0.t/

1 � �0.t/ exp.ˇ>x/ : (27.18)

Kamakura and Yanagimoto (1983) compared the estimators of regression parame-
ters in the proportional hazards model (27.17) or (27.18) when we take the following
methods; the Breslow–Peto (Breslow 1974; Peto 1972) method, the partial likeli-
hood (Cox 1972, 1975) method and the generalized maximum likelihood method
(Kalbfleish and Prentice 1980; Miller 1981).

27.3.1 The Score Test

In many applications it is necessary to test the significance of the estimated value,
using for example the score test or the likelihood ratio test based on asymptotic
results of large sample theory. First we express the three likelihood factors defined
at each failure time as LBP , LPL, LGML corresponding to the Breslow–Peto, the
partial likelihood and the generalized maximum likelihood methods, respectively;

LBP .ˇ/ D
Qr
iD1 exp.ˇ>xi /˚Pn
iD1 exp.ˇ>xi /

�r ; (27.19)

LPL.ˇ/ D
Qr
iD1 exp.ˇ>xi /P

	

Qr
iD1 exp

�
ˇ>x i

� ; (27.20)

LGML.ˇ/ D
Qr
iD1 � exp.ˇ>xi /Qn

iD1
˚
1C � exp.ˇ>xi /

� ; (27.21)

where x1; : : : ; xn denote covariate vectors for n individuals at risk at a failure time
and x1; : : : ; xr correspond to the failures, and 	 denotes the set of all subsets
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f 1; : : : ;  r g of size r from f1; : : : ; ng. The overall likelihood obtained by each
method is the product of these cases of many failure times. It can be shown that the
first derivatives of the three log likelihoods with respect ˇ have the same values, i.e.,

rX

iD1
xj i � r

n

nX

iD1
xj i .j D 1; : : : ; p/

at ˇ D 0.
The Hessian matrices of the log likelihoods evaluated at ˇ D 0 are respectively,

�
� r
n

	
S;

�


r.n � r/
n.n � 1/

�
S;

�


r.n � r/
n2

�
S;

where S is a matrix whose elements sj k are defined by

sjk D
nX

iD1
.xj i � Nxj:/.xki � Nxk:/ :

The first two results were derived by Farewell and Prentice (1980). Maximizing out
� from LGML gives the last one, which is obtained in an unpublished manuscript.
Since

r

n
� r.n � r/
n.n � 1/ >

r.n � r/
n2

;

we conclude that the Breslow–Peto approach is the most conservative one.

27.3.2 Evaluation of Estimators in the Cox Model

Farewell and Prentice (1980) pointed out in their simulation study that when the
discrete logistic model is true the Breslow–Peto method causes downward bias
compared to the partial likelihood method. This was proven in Kamakura and
Yanagimoto (1983) for any sample when ˇ is scalar-valued, i.e.,

Theorem 2. (Kamakura and Yanagimoto 1983)
Let b̌BP be the maximum likelihood estimator of LBP .ˇ/ and b̌PL be that of
LBP .ˇ/. Suppose that all xi ’s are not identical. Then both b̌BP and b̌PL are unique,
if they exist, and sgn.b̌BP / D sgn.b̌PL/ and

ˇ
ˇ
ˇb̌BP

ˇ
ˇ
ˇ �

ˇ
ˇ
ˇb̌PL

ˇ
ˇ
ˇ : (27.22)
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The equality in (27.22) holds when b̌PL is equal to zero or the number of ties r
is equal to one.

Corollary 1. (Kamakura and Yanagimoto 1983)
The likelihood ratio test for ˇ D 0 against ˇ ¤ 0 is also conservative if we use the
Breslow–Peto method. The statement is also valid in the multivariate case.

This theorem and corollary confirm the conservatism of the Breslow–Peto
approximation in relation to Cox’s discrete model (Oaks 2001).

27.3.3 Approximation of Partial Likelihood

Yanagimoto and Kamakura (1984) proposed an approximation method using full
likelihood for the case of Cox’s discrete model. Analytically the same problems
appear in various fields of statistics. Prentice and Breslow (1978) and Farewell
(1979) remarked that the inference procedure using the logistic model contains the
same problems in case-control studies where data are summarized in multiple 2� 2
or k � 2 tables. The proportional hazards model provides a type of logistic model
for the contingency table with ordered categories (Pregibon 1982). As an extension
of the proportional hazards model, the proportional intensity model in the point
process is employed to describe an asthma attack in relation to environmental factors
(Korn and Whittemoore 1979; Yanagimoto and Kamakura 1984). For convenience,
although in some cases partial likelihood becomes conditional likelihood, we will
use the term of partial likelihood.

It is worthwhile to explore the behavior of the maximum full likelihood estimator
even when the maximum partial likelihood estimator is applicable. Both estimators
obviously behave similarly in a rough sense, yet they are different in details.
Identifying differences between the two estimators should be helpful in choosing
one of the two.

We use the notation described in the previous section for expressing the two
likelihoods. Differentiating logLPL gives

LP.ˇ/ D
rX

iD1
xi �

P
	

P
 xj exp

�
ˇ>

P
 xj

	

P
	 exp

�
ˇ>

P
 xj

	 D 0 :

Differentiating logLGML with respect to ˇ and � allows obtaining the maximum
full likelihood estimator, i.e.,

rX

iD1
xi �

nX

iD1
�xi

exp.ˇ>xi /
1C � exp.ˇ>xi /

D 0
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and
r

�
�

nX

iD1

exp.ˇ>xi /
1C � exp.ˇ>xi /

:

From the latter equation �.ˇ/ is uniquely determined for any fixed ˇ. Using �.ˇ/,
we define

LF.ˇ/ D
rX

iD1
xi �

nX

iD1
�.ˇ/xi

exp.ˇ>xi /
1C � exp.ˇ>xi /

:

The maximum full likelihood estimator, b̌GML, is a root of the equationLF.ˇ/ D 0.
We denote �.ˇ/ by � for simplicity.

Note that the entire likelihoods are the products over all distinct failure times T .
Thus the likelihood equations in a strict sense are

P
LPt.ˇ/ D 0 and

P
LFt .ˇ/ D

0, where the summations extend over t in T . As far as we are concerned, the results
in a single failure time can be straightforwardly extended to those with multiple
failure times. Let us now focus on likelihood equations of a single failure time and
suppress the suffix t .

Proposition 1. (Yanagimoto and Kamakura 1984)
LetK.ˇ/ be either ofLF.ˇ/ orLP.ˇ/. Denote

Pn
iD1 xi=n by Nx, and x.1/C� � �Cx.r/

and x.n�rC1/ C � � � C x.n/ by L.xI r/ and U.xI r/ respectively, where x.1/; : : : ; x.n/
are ordered covariates in ascending order.K.ˇ/ accordingly has the following four
properties:

(1) K.0/ D x1 C � � � C xr � r Nx.
(2) K 0.ˇ/ is negative for any ˇ, that is, K.ˇ/ is strictly decreasing.
(3) limˇ!�1K.ˇ/ D U.xI r/.
(4) limˇ!1K.ˇ/ D L.xI r/.

Extension to the case of vector parameter ˇ is straightforward. From Proposition
1 it follows that if either of the two estimators exists, then the other also exists
and they are uniquely determined. Furthermore, both the estimators have a common
sign.

Theorem 3. (Yanagimoto and Kamakura 1984)
Suppose that

P
.xi � Nx/2 ¤ 0. The functionsLP.ˇ/ andLF.ˇ/ then have a unique

intersection at ˇ D 0. It also holds that LP.ˇ/ < LF.ˇ/ for ˇ > 0. The reverse
inequality is valid for ˇ < 0.

The above theorem proves that b̌GML > b̌
PL for the case of LP.0/ D

LF.0/ > 0.
To quantitatively compare the behaviors of LF.ˇ/ and LP.ˇ/, their their power

expansions are presented near the origin. Since both functions behave similarly, it is
expected that the quantitative difference near the origin is critical over a wide range
of ˇ. Behavior near the origin is of practical importance for studying the estimator
and test procedure.
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Proposition 2. (Yanagimoto and Kamakura 1984)
The power expansions of LF.ˇ/ and LP.ˇ/ near the origin up to the third order
are as follows: for n � 4,

(1)

LF.ˇ/ �
rX

iD1
xi �

�
r Nx C r.n � r/

n2
s2ˇ C 1

2

r.n � r/.n � 2r/
n3

s3ˇ
2

C 1

6

r.n � r/
n5

˚
n.n2 � 6rnC 6r2/s4 � 3.n � 2r/2s22

�
ˇ3

;

(2) (Cox 1970)

LP.ˇ/ �
rX

iD1
xi �

"

r Nx C r.n � r/
n.n � 1/s2ˇ C

1

2

r.n � r/.n � 2r/
n.n � 1/.n � 2/ s3ˇ

2

C 1

6

r.n � r/
n2.n � 1/.n� 2/.n� 3/

˚
n.n2 � 6rnC 6r2 C n/s4

C3.r � 1/n.n � r � 1/s22
�
ˇ3

#

;

where sk DP.xi � Nx/k , k D 2; 3 and 4.

The functionLF.ˇ/ has a steeper slope near the origin than LP.ˇ/. The relative
ratio is n=.n� 1/, which indicates that LF.nˇ=.n � 1// is close to LP.ˇ/ near the
origin. The power expansion of LA.ˇ/ D LF.nˇ=.n � 1// is expressed by

LA.ˇ/ �
rX

iD1
xi �



r Nx C r.n � r/

n.n � 1/s2ˇ C
� n

n� 1
	2
c3ˇ

2 C
� n

n � 1
	3
c4ˇ

3

�
;

(27.23)
where c3 and c4 are coefficients of order 2 and 3 of LF.ˇ/. Although LA.ˇ/ is
defined to adjust the coefficient ofLF.ˇ/ of order 1 to that ofLP.ˇ/, the coefficient
of order 2 of LA.ˇ/ becomes closer to that of LP.ˇ/ than that of LF.ˇ/. The
following approximations are finally obtained.

LP.ˇ/ � LA.ˇ/; (27.24)

b̌
PL � .n � 1/b̌GML

n
: (27.25)

The proposed approximated estimator and test statistic are quite helpful in cases
of multiple 2 � 2 table when the value of both n and r are large (Yanagimoto and
Kamakura 1984).
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27.4 Multiple Failures and Counting Processes

The standard methods of survival analysis can be generalized to include multiple
failures simply defined as a series of well-defined event occurrences. For example,
in software reliability, engineers are often interested in detecting software bugs.
Inference from a single counting process has been studied in detail (Cox and Lewis
1966; Musa et al. 1987), with multiple independent processes being considered as
a means to estimate a common cumulative mean function from a nonparametric or
semi-parametric viewpoint (Lawless and Nadeau 1993; Nelson 1992). Kamakura
(1996) discussed problems associated with parametric conditional inference in
models with a common trend parameter or possibly different base-line intensity
parameters.

27.4.1 Intensity Function

For multiple failures, intensity functions correspond to hazard functions in that the
intensity function is defined as discussed next.

In time interval Œt0; t � we define the number of occurrences of events or failures
as N.t/. The Poisson counting process fN.t/ W t � t0g is given such that it satisfies
the following three conditions for t � t0.
1. PrfN.t0/ D 0g D 1
2. The increment Ns;t D N.t/ � N.s/ .t0 � s < t/ has a Poisson distribution with

the mean parameter�t ��s , for some positive and increasing function in t .
3. fNt W t � t0g is a process of independent increments. That is, for any (t0 </
t1 < t2 < � � � < tn, n increments,N.t1/�N.t0/; : : : ; N.tn/�N.tn�1/ are mutually
independent.

For this counting process fN.t/ W t � t0g we can define the intensity function as

�.t/ D lim
�!0

1

�
PrfN.t C�t/ �N.t/ D 1jH.t/g ; (27.26)

whereH.t/is the history of the process up to t :

H.t/ D fN.u/ W t0 � u � tg :

Note that

�.t/ D
Z t

t0

�.t/dt :

Expectation of EŒNs;t � becomes
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EŒNs;t � D
1X

nD0
nPrfNn;s D ng D �t ��s ; (27.27)

and

�.t/ D d

dt
�t D d

dt
EŒN.t/� : (27.28)

The nonparametric estimate of the intensity function is easy to determine and is
quite useful for observing the trend of a series of events. If a data set of failure times
ft1; t2; : : : ; tng is available, assuming constant intensity in .tk1 ; tk �, then

�.t/ D �k .tk�1 < t � tk/ ;

and the nonparametric ML estimates becomes

�k D 1

tk � tk�1 .k D 1; : : : ; n/ ; (27.29)

where t0 D 0.

27.4.2 Multiple Counting Processes

We assume several independent counting processes fNk.tk/, i.e., 0 < tk � �k; k D
1; : : : ; Kg. The cumulative mean function for Nk.t/ is expressed by

Mk.t/ D E fNk.t/g : (27.30)

Nelson (1992) described a method for estimating the cumulative mean func-
tion of an identically distributed process without assuming any Poisson process
structure, while Lawless and Nadeau (1993) developed robust variance estimates
based on the Poisson process. All these methods are basically concerned with
nonparametric estimation. Here, parametric models for effectively acquiring infor-
mation on the trend of an event occurrence are dealt with. Kamakura (1996)
considered generalized versions of two primal parametric models to multiple
independent counting processes under the framework of a nonhomogeneous Poisson
process.

Cox and Lewis (Cox and Lewis 1966) considered a log-linear model for trend
testing a singe counting process, i.e.,

�.t/ D exp.˛ C ˇt/ ; (27.31)

where �.t/ is the intensity function corresponding to the derivative of the mean
function in the continuous case. Note that for a single case the subscript k is omitted.
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They assumed the above nonhomogeneous Poisson process and gave a simple test
statistic for H0 W ˇ D 0 againstHA W ˇ ¤ 0, i.e.,

U D
Pn

iD1 ti � 1
2
�0

�0
p

n
12

: (27.32)

The distribution of this statistic steeply converges to the standard normal
distribution when n ! 1. This statistic is sometimes called the U statistic and
is frequently applied to trend testing in reliability engineering.

Kamakura (1996) generalized this log-linear model to the multiple case, with the
log-linear model for k-th individual being

�k.t/ D exp .˛k C ˇt/ : (27.33)

In this modeling we assume the common trend parameter ˇ and are mainly
interested in estimating and testing this parameter. The full likelihood for the model
becomes

L.ˇ; ˛1; ˛2; : : : ; ˛K/ D
KY

kD1

"(
nkY

iD1
�k.tki /

)

exp



�
Z �k

0

�k.u/du

�#

(27.34)

D exp

(
KX

kD1
nk˛k C ˇ

KX

kD1

nkX

iD1
tki � 1

ˇ

KX

kD1
e˛k

�
eˇ�k � 1�

)

:

If K is large, it is difficult to compute all parameter estimates based on such full
likelihood.

Given Nk.�k/ D nk; k D 1; 2; : : : ; K , conditional likelihood is considered as

CL.ˇjNk.�k/ D nk; i D 1; : : : ; K/ D
QK
kD1.nkŠ/ˇ

P
nkeˇ

PP
tki

QK
kD1

�
eˇ�k � 1�nk : (27.35)

Note that the nuisance parameter ˛k’s do not appear. Fisher information is
calculated as

I.ˇ/ D E
�
�@

2 logCL

@̌ 2



D
8
<

:

PK
kD1 nk



1
ˇ2
� �2k e

�ˇ�k

.1�e�ˇ�k /
2

�
.ˇ ¤ 0/

1
12

PK
kD1 nk�2k .ˇ D 0/

: (27.36)

The test statistic obtained from the above calculations becomes
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Uk D
logCLjˇD0p

I.0/

D
PK

kD1
Pnk

iD1 tki � 1
2

PK
kD1 nk�kq

1
12

PK
kD1 nk�2k

: (27.37)

To obtain the conditional estimate, numerical calculations are required such
as Newton–Raphson method. However, the log conditional likelihood and its
derivatives are not computable at the origin of the parameter ˇ. In such a case,
Taylor series expansions of the log conditional likelihood are used around the origin
(Kamakura 1996).

27.4.3 Power Law Model

Crow (1982) considered the power law model, sometimes called the Weibull process
model. This model was generalized to the multiple case using the following intensity
for the k-th individual (Kamakura 1996):

�k.t/ D ™kmtm�1 : (27.38)

In this case it is easy to calculate the MLE. Direct calculation of the likelihood gives
rise to the MLE bm and b™k i.e.,

bm D
PK

kD1 nk
PK

kD1
Pnk

iD1 log
�
�k
tki

	 ; (27.39)

b™k D nk

�bmk
: (27.40)

Putting

Z D 2m
PK

kD1 nk
bm

; (27.41)

the distribution of Z becomes a chi-square with 2
PK

kD1 nk degrees of freedom.
Based on this result we can make an inference of the common parameterm.

27.4.4 Models Suitable for Conditional Estimation

Estimation based on conditional likelihood allows effectively eliminating the nui-
sance parameter and obtaining information on the structure parameter. Let us now



27 Computational Methods in Survival Analysis 823

consider the class of nonhomogeneous Poisson process models which are specified
by the intensity parameterized by two parameters. The first parameter ˛ is concerned
with the base line occurrences for the individual, while the second parameter ˇ is
concerned with the trend of intensity. For simplicity, the property of the intensity
for K D 1 is examined. Using conditional likelihood is convenient because the
nuisance parameter ˛ need not be known. This is of great importance in multiple
intensity modeling, i.e.,

Theorem 4. (Kamakura 1996)
Conditional likelihood does not include the nuisance parameter ˛ iff the intensity
is factorized as two factors, a function of ˛ and a function of ˇ and the time t ,
in the class of nonhomogeneous Poisson process models. That is, the intensity is
expressed as

�.t I˛; ˇ/ D h.˛/g.ˇI t/ ; a:s: (27.42)

Several intensity models for software reliability are described in Musa et
al. (1987): the log-linear model, geometric model, inverse linear model, inverse
polynomial model, and power law model, all of which are included in this class
satisfying the condition of the theorem.
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Chapter 28
Data and Knowledge Mining

Adalbert Wilhelm

28.1 Data Dredging and Knowledge Discovery

Data mining was one of the buzz-words at the verge of the third millennium. It
was already a multi-million dollar industry in the late 1990s and experts expected a
continuing growth for the first decade of the 21st century. Although this expectation
has not quite materialized in recent years, data mining still is an important field
of scientific research with great potential for commercial usage. The ubiquitous
computer makes it possible to collect huge data bases that contain potentially
valuable information. Sophisticated analysis techniques are needed to explore these
large, often heterogeneous, data sets and to extract the small pieces of information
that are valuable to the data owner.

The importance of exploring and analyzing real data sets is not new to statistics. It
has been reinforced in the late 1960s by John W. Tukey who realized that putting too
much emphasis on the mathematical theories of statistics did not help in solving the
real world problems. It was his mantra that statistical work is detective work (Tukey
1969) and that one should let the data speak for itself. The branch of exploratory data
analysis emerged, but was dismissed by mathematical statisticians for a long period
of time. Many of them proclaimed that proper statistical analysis must be based on
hypothesis and distributional assumptions. Their argument was that looking at data
before formulating a scientific hypothesis will bias the hypothesis towards what
the data might show. The term data mining typically was used in a derogatory
connotation. The argument culminated in the reproach of improper scientific use,
the reproach of torturing the data until it confesses everything.
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The advent of information technology that allowed to easily collect and store
data of previously unimaginable quantities brought a rapid change to the scene and
superseded academic disputes. Once the computer power and technology was there,
that made it easy to collect information of all customers in a super market, or for
all customers of a telephone company, the need arose to make use of these large
information sources.

In the last few years, a strong impetus on the development of data mining
methods came from homeland security issues (Fienberg 2008). Three aspects have
received particular attention: the problem of person detection in images and video
sequences; the analysis and visualization of social networks; and the integration and
combination of various data sources as well as evidences (cf Chen et al. 2008). A
further active field is web mining which divides into web content mining, web usage
mining (cf. Zhang et al. 2009) and web structure mining.

Web usage mining aims at detecting usage patterns of web sites in order to get
a better understanding of users’ interests and needs. Both the detection of network
paths as well as the detection of similar objects are fundamental concepts in this
approach to improve customer satisfaction and to enhance e-commerce.

Web content mining is an application of text mining and aims at detecting
regularities and structures in web sites. Based on the typical unstructured data
contained in websites, including text, images, and videos, the main targets in web
content mining are categorization of documents, clustering of web sites, finding
extraction rules and patterns in the text.

Web structure mining tries to detect the linking structure underneath a web site.
While web content mining deals with the structure within web documents (intra-
document analysis), web structure mining is concerned with the hyperlinks between
web pages (inter-document structure). This line of research is closely related to
social network analysis and citation analysis. It is using graph theoretic tools and
techniques to analyze the possible paths within a website and within the internet.

Data Mining is a thriving field of research and application, to which both statis-
ticians and computer scientists have contributed new ideas and new techniques. In
this contribution, we will introduce the main components, tasks, and computational
methods for data mining. After an attempt to define data mining, we relate it to the
larger field of knowledge discovery in databases in Sect. 28.2. Section 28.3 deals
with the two flavors of learning from data: supervised and unsupervised learning.
We will then discuss the different data mining tasks in Sect. 28.4, before we present
the computational methods to tackle them in Sect. 28.5. In the final Sect. 28.6, we
present some recent trends and controversies.

28.2 Knowledge Discovery in Databases

There are almost as many differing definitions of the term “Data Mining" as there
are authors who have written about it. Since Data Mining sits at the interface of
a variety of fields, e.g. computer science, statistics, artificial intelligence, business
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information systems, and machine learning, its definition changes with the field’s
perspective. Computer scientists, typically, refer to Data Mining as a clearly
defined part of the Knowledge Discovery in Databases (KDD) process, while many
statisticians use Data Mining as a synonym for the whole KDD process.

To get a flavor of both the variation as well as the common core of data and
knowledge mining, we cite some of the definitions used in the literature.

KDD is the non-trivial process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data (Fayyad et al. 1996)

Knowledge discovery is a knowledge-intensive task consisting of complex interactions,
protracted over time, between a human and a (large) database, possibly supported by a
heterogenous suite of tools. (Brachman and Anand 1996)

[Data Mining is ] a step in the KDD process consisting of particular data mining algorithms
that, under some acceptable computational efficiency limitations, produce a particular
enumeration of patterns (Fayyad et al. 1996)

[Data Mining is ] a folklore term which indicates application, under human control,
of low-level data mining methods. Large scale automated search and interpretation of
discovered regularities belong to KDD, but are typically not considered part of data mining
(Kloesgen and Zytkow 1996)

[Data Mining is ] used to discover patterns and relationships in data, with an emphasis on
large observational data bases. It sits at the common frontiers of several fields including
Data Base Management, Artificial Intelligence, Machine Learning, Pattern Recognition,
and Data Visualization. (Friedman 1998)

[Data Mining is ] the process of secondary analysis of large databases aimed at finding
unsuspected relationships which are of interest or value to the database owners (Hand
1998)

Data Mining is the analysis of (often large) observational data sets to find unsuspected
relationships and to summarize the data in novel ways that are both understandable and
useful to the data owner (Hand et al. 2001)

From these definitions the essence is that we are talking about exploratory
analysis of large data sets. Two further aspects are the use of computer-based
methods and the notion of secondary and observational data. The latter means
that the data do not come from experimental studies and that data was originally
collected for some other purpose, either for a study with different goals or for record-
keeping reasons. These four characteristics in combination distinguish the field of
Data Mining from traditional statistics. The exploratory approach in Data Mining
clearly defines the goal of finding patterns and generating hypothesis, which might
later on be subject of designed experiments and statistical tests. Data sets can be
large at least in two different aspects. The most common one is in form of a large
number of observations (cases). Real world applications usually are also large in
respect of the number of variables (dimensions) that are represented in the data
set. Data Mining is also concerned with this side of largeness. Especially in the
field of bioinformatics, many data sets comprise only a small number of cases but
a large number of variables. Secondary analysis implies that the data can rarely be
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regarded as a random sample from the population of interest and may have quite
large selection biases. The primary focus in investigating large data sets tends not
to be the standard statistical approach of inferencing from a small sample to a large
universe, but more likely partitioning the large sample into homogeneous subsets.

The ultimate goal of Data Mining methods is not to find patterns and relationships
as such, but the focus is on extracting knowledge, on making the patterns under-
standable and usable for decision purposes. Thus, Data Mining is the component
in the KDD process that is mainly concerned with extracting patterns, while
Knowledge Mining involves evaluating and interpreting these patterns. This requires
at least that patterns found with Data Mining techniques can be described in a way
that is meaningful to the data base owner. In many instances, this description is not
enough, instead a sophisticated model of the data has to be constructed.

Data pre-processing and data cleansing is an essential part in the Data and
Knowledge Mining process. Since data mining means taking data from different
sources, collected at different time points, and at different places, integration of such
data as input for data mining algorithms is an easily recognized task, but not easily
done. Moreover, there will be missing values, changing scales of measurement, as
well as outlying and erroneous observations. To assess the data quality is a first and
important step in any scientific investigation. Simple tables and statistical graphics
give a quick and concise overview on the data, to spot data errors and inconsistencies
as well as to confirm already known features. Besides the detection of uni- or
bivariate outliers graphics and simple statistics help in assessing the quality of the
data in general and to summarize the general behavior. It is worth noting that many
organizations still report that as much as 80% of their effort for Data and Knowledge
Mining goes into supporting the data cleansing and transformation process.

28.3 Supervised and Unsupervised Learning

Data and Knowledge Mining is learning from data. In this context, data are allowed
to speak for themselves and no prior assumptions are made. This learning from data
comes in two flavors: supervised learning and unsupervised learning. In supervised
learning (often also called directed data mining) the variables under investigation
can be split into two groups: explanatory variables and one (or more) dependent
variables. The target of the analysis is to specify a relationship between the
explanatory variables and the dependent variable as it is done in regression analysis.
To apply directed data mining techniques the values of the dependent variable must
be known for a sufficiently large part of the data set.

Unsupervised learning is closer to the exploratory spirit of Data Mining as
stressed in the definitions given above. In unsupervised learning situations all
variables are treated in the same way, there is no distinction between explanatory
and dependent variables. However, in contrast to the name undirected data mining
there is still some target to achieve. This target might be as general as data reduction
or more specific like clustering. The dividing line between supervised learning and
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unsupervised learning is the same that distinguishes discriminant analysis from
cluster analysis. Supervised learning requires that the target variable is well defined
and that a sufficient number of its values are given. For unsupervised learning
typically either the target variable is unknown or has only been recorded for too
small a number of cases.

The large amount of data that is usually present in Data Mining tasks allows to
split the data file in three groups: training cases, validation cases and test cases.
Training cases are used to build a model and estimate the necessary parameters.
The validation data helps to see whether the model obtained with one chosen
sample may be generalizable to other data. In particular, it helps avoiding the
phenomenon of overfitting. Iterative methods incline to result in models that try to
do too well. The data at hand is perfectly described, but generalization to other data
yields unsatisfactory outcomes. Not only different estimates might yield different
models, usually different statistical methods or techniques are available for a certain
statistical task and the choice of a method is open to the user. Test data can be used
to assess the various methods and to pick the one that does the best job on the long
run.

Although we are dealing with large data sets and typically have abundant cases,
partially missing values and other data peculiarities can make data a scarce resource
and it might not be easily achievable to split the data into as many subsets as
there are necessary. Resampling and cross-validation techniques are often used in
combination to data and computer intensive methods in Data Mining.

28.4 Data Mining Tasks

The cycle of data and knowledge mining comprises various analysis steps, each
step focusing on a different aspect or task. Hand et al. (2001) propose the following
categorization of data mining tasks.

28.4.1 Description and Summarization

At the beginning of each data analysis is the wish and the need to get an overview
on the data, to see general trends as well as extreme values rather quickly. It
is important to familiarize with the data, to get an idea what the data might
be able to tell you, where limitations will be, and which further analyses steps
might be suitable. Typically, getting the overview will at the same time point the
analyst towards particular features, data quality problems, and additional required
background information. Summary tables, simple univariate descriptive statistics,
and simple graphics are extremely valuable tools to achieve this task.

Unwin et al. (2002) report from a study of 50,000 car insurance policies during
which the following difficulties emerged amongst others (see Fig. 28.1).
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Fig. 28.1 Linked highlighting reveals structure in the data and explains unusual results of one
variable quite reasonably. Barchart of Sex of car insurance policy holders on the left, Histogram of
year of birth of policy holders on the right. Highlighted are cases with Sex=4 (firm). The red lines
under some of the bins in the histogram indicate small counts of highlighted cases that can’t be
displayed proportionally

(a) Barcharts of the categorical variables revealed that several had too many
categories. Sex had seven, of which four were so rare as to presumably be
unknowns or errors of some kind. The third large category turned out to be very
reasonable: if a car was insured by a firm, the variable sex was coded as “firm".
This had not been explained in advance and was obviously useful for a better
grasp of the data.

(b) A histogram of date of birth showed missing values, a fairly large number
(though small percentage) of underage insured persons, and a largish number
born in 1900, who had perhaps been originally coded as “0" or “00" for unknown.
Any analytic method using such a variable could have given misleading results.

(c) Linking the barchart of gender from (a) and the histogram of age from (b)
showed quite plausibly that many firms had date of birth coded as missing, but
not all. This led to further informative discussions with the data set owners.

Checking data quality is by no means a negative part of the process. It leads to
deeper understanding of the data and to more discussions with the data set owners.
Discussions lead to more information about the data and the goals of the study.

Speed of the data processing is an important issue at this step. For simple
tasks – and data summary and description are typically considered to be simple
tasks, although it is generally not true – users are not willing to spend much time.
A frequency table or a scatterplot must be visible in the fraction of a second,
even when it comprises a million observations. Only some computer programs
are able to achieve this. Another point is a fast scan through all the variables: if
a program requires an explicit and lengthy specification of the graph or table to
be created, a user typically will end this tedious endeavor after a few instances.
Generic functions with context-sensitive and variable-type-dependent responses
provide a viable solution to this task. On the level of standard statistical data sets
this is provided by software like XploRe, S-Plus and R with their generic functions
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summary and plot. Generic functions of this kind can be enhanced by a flexible and
interactive user environment which allows to navigate through the mass of data, to
extract the variables that show interesting information on the first glance and that call
for further investigation. Currently, no system comes close to meet these demands,
future systems hopefully will do.

28.4.2 Descriptive Modeling

General descriptions and summaries are an important starting point but more
exploration of the data is usually desired. While the tasks in the previous section
have been guided by the goal of summary and data reduction, descriptive modeling
tries to find models for the data. In contrast to the subsequent section, the aim of
these models is to describe, not to predict models. As a consequence, descriptive
models are used in the setting of unsupervised learning. Typical methods of
descriptive modeling are density estimation, smoothing, data segmentation, and
clustering. There are by now some classics in the literature on density estimation
(Scott 1992) and smoothing (Härdle 1991). Clustering is a well-studied and well-
known technique in statistics. Many different approaches and algorithms, distance
measures and clustering schemes have been proposed. With large data sets all
hierarchical methods have extreme difficulties with performance. The most widely
used method of choice is k-means clustering. Although k-means is not particularly
tailored for a large number of observations, it is currently the only clustering scheme
that has gained positive reputation in both the computer science and the statistics
community. The reasoning behind cluster analysis is the assumption that the data set
contains natural clusters which, when discovered, can be characterized and labeled.
While for some cases it might be difficult to decide to which group they belong,
we assume that the resulting groups are clear-cut and carry an intrinsic meaning. In
segmentation analysis, in contrast, the user typically sets the number of groups in
advance and tries to partition all cases in homogeneous subgroups.

28.4.3 Predictive Modeling

Predictive modeling falls into the category of supervised learning, hence, one
variable is clearly labeled as target variable Y and will be explained as a function
of the other variables X . The nature of the target variable determines the type of
model: classification model, if Y is a discrete variable, or regression model, if it is
a continuous one. Many models are typically built to predict the behavior of new
cases and to extend the knowledge to objects that are new or not yet as widely
understood. Predicting the value of the stock market, the outcome of the next
governmental election, or the health status of a person are common applications.
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Banks use classification schemes to group their costumers into different categories
of risk.

Classification models follow one of three different approaches: the discriminative
approach, the regression approach, or the class-conditional approach. The discrim-
inative approach aims in directly mapping the explanatory variables X to one of
the k possible target categories y1; : : : ; yk . The input space X is hence partitioned
into different regions which have a unique class label assigned. Neural networks
and support vector machines are examples for this. The regression approach (e.g.
logistic regression) calculates the posterior class distribution P.Y j x/ for each
case and chooses the class for which the maximum probability is reached. Decision
trees (CART, C5.0, CHAID) classify for both the discriminative approach and
the regression approach, because typically the posterior class probabilities at each
leaf are calculated as well as the predicted class. The class-conditional approach
starts with specifying the class-conditional distributions P.X j yi ; ™i / explicitly.
After estimating the marginal distribution P.Y /, Bayes rule is used to derive the
conditional distribution P.Y j x/. The name Bayesian classifiers is widely used
for this approach, erroneously pointing to a Bayesian approach versus a frequentist
approach. Mostly, plug-in estimates O™i are derived via maximum likelihood. The
class-conditional approach is particularly attractive, because they allow for general
forms of the class-conditional distributions. Parametric, semi-parametric, and non-
parametric methods can be used to estimate the class-conditional distribution. The
class-conditional approach is the most complex modeling technique for classifica-
tion. The regression approach requires fewer parameters to fit, but still more than
a discriminative model. There is no general rule which approach works best, it is
mainly a question of the goal of the researcher whether posterior probabilities are
useful, e.g. to see how likely the “second best” class would be.

28.4.4 Discovering Patterns and Rules

The realm of the previous tasks has been much within the statistical tradition
in describing functional relationships between explanatory variables and target
variables. There are situations where such a functional relationship is either not
appropriate or too hard to achieve in a meaningful way. Nevertheless, there might
be a pattern in the sense that certain items, values or measurements occur frequently
together. Association Rules are a method originating from market basket analysis to
elicit patterns of common behavior.

The practical use of association rules is not restricted to finding the general
trend and the norm behavior, association rules have also been used successfully
for detecting unusual behavior in fraud detection. Another field of application for
association rules has been image and multi media analysis, using them with a focus
on the pixel level (cf. Ding et al. 2002; Ordonez and Omiecinski 1999), with a
focus on image captions and textual descriptions (cf. Wilhelm et al. 2009) or from a
perceptual perspective using a thesaurus (cf. Tešić 2004).
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The search for patterns and regularities is also one of the key targets in web usage
mining which analyzes the traces humans leave in the internet. Typically, server
logs, registration forms and other user information is analyzed to deduce patterns
and regularities within users’ behavior. Automatic analysis of web logs in various
formats has also initiated a broad discussion on privacy issues.

A particular type of patterns are relationships within networks. Initially, devel-
oped to analyze and monitor usage data in telephone networks and the world wide
web, network analysis addresses now all kind of social networks. Once again, the
easy availability of corresponding data in web 2.0 social networks ignited interest in
the matter and led to the development of appropriate analysis tools and techniques
(cf. Chau and Xu 2008)

28.4.5 Retrieving Similar Objects

The world wide web contains an enormous amount of information in electronic
journal articles, electronic catalogs, and private and commercial homepages. Having
found an interesting article or picture, it is a common desire to find similar
objects quickly. Based on key words and indexed meta-information search engines
are providing us with this desired information. They can not only work on text
documents, but to a certain extent also on images. Semi-automated picture retrieval
combines the ability of the human vision system with the search capacities of the
computer to find similar images in a data base.

In particular, the continuously increasing quantity of image data available on
the Internet necessitates efficient classification and indexing methods for easy
access and usage. The prevalent approach in current web search engines is to
associate images with text, thus allowing access to the image database via text
queries. This approach restricts the set of searchable images to those associated
with text, and can lead to errors if the associations are incorrect. To enable more
successful queries based on visual information, alternative procedures relying on
image processing have been proposed: using semantic data generated by image
interpretation techniques (e.g. Schober, Hermes, & Herzog 2005), or via a visual
vocabulary constructed from low-level image features (e.g. Sivic & Zisserman
2003).

First prototypes have been presented for an integrated procedure, relying on both
textual information (keywords extracted from captions) and on descriptors of local
image features (SIFT; Lowe 1999) in the construction of the visual vocabulary.
The visual words are prototypes representing groups of similar image features
encountered in the training data set, which are further associated to the extracted
keywords based on the frequencies of co-occurrences. This approach permits the
classification of novel images into text- derived categories using only image-based
data, and, correspondingly, the inclusion of images with no caption information in
the search space of text queries.
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28.5 Data Mining Computational Methods

When talking about Data Mining methods people tend to refer to numerical methods
mostly. However, there are many reasons to consider visual approaches to data
mining as equally important. We start with a concise discussion of numerical data
mining methods and expand a little bit more on visual data mining later.

28.5.1 Numerical Data Mining

Decision Trees

Decision trees are popular and powerful methods to classify cases as well as to
predict values. Their attractiveness is mainly due to the fact that the basic principle
of tree-based methods as well as their outcome are easy to understand. The basic
principle is the hierarchical division of all observations into subcategories in such a
way that the resulting subcategories differ from each other as much as possible while
the subcategories itself are as homogenous as possible. The outcome of a decision
tree is a rule that can easily be expressed in plain English and as easily in any data
base query language to quickly and repeatedly apply it to new data.

Decision trees are a supervised learning technique and require that we can extract
a target variable. Depending on the scale of the target variable two types of decision
trees are distinguished: classification trees, if the dependent variable is categorical,
and regression trees, if the dependent variable is continuous. A full analysis with
decision trees comprises two steps, growing a tree and pruning a tree.

Let us briefly describe the basic principle of growing a binary tree. Given
observations for n cases on the dependent variable Y and p explanatory variables
X1; : : : ; Xp we first assign all cases into the root node of the tree. The typical
algorithms are greedy algorithms that enumerate all possible splits to find the best
split for the current node under investigation. Thus, for each explanatory variableXi
all possible splits between values are examined. During this examination the cases in
the node are partitioned into two groups (for binary trees) and a diversity measure
is calculated for each potential subnode. Commonly used diversity measures are
deviance, entropy, misclassification rate, and the Gini coefficient. The one split that
yields the largest information gain will be taken. Information gain is measured here
in terms of the decrease of the diversity measure when going from the parent node
to the subnode. The algorithm uses the same process recursively to build a decision
tree for each subnode. A node will not be further split if it is pure or if one of the
subnodes would contain too few cases (Fig.28.2).

There are mainly three families of tree growing algorithms:

• The CART family (CART, IND CART, Splus CART, etc.)
• The ML family (ID3, C4.5, C5 and other derivatives, etc.)
• The AID family (THAID, CHAID, XAID, TREEDISC, etc.)
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Fig. 28.2 An example of a binary classification tree. Goal of the classification was to describe
households, in which the wife was economically active. Each branch is labeled according to the
current splitting rule. The label in each node indicates the classification taken by majority vote.
The numbers below each node give the number of misclassified observations and the total number
of observations present in this node

These families mainly differ in the type of splitting criterion they use and in the
background of their origin. The AID family grew out of the social sciences and uses
the �2-statistic for contingency tables. The ML family has its origin in computer
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science, while the CART family is more oriented to statistics using the concept of
impurity. Breiman et al. (1984) defined for each node in a tree a measure of impurity.

Definition 1. Let c1; : : : ; cK be the values of the target variable and P.ci j n/; i D
1; : : : ; K; the (estimated) probability of class ci in node n (then

PK
iD1 P.ci j n/ D

1).
The impurity of a node n is a nonnegative function i.n/ such that:

1. i.n/ has its only maximum for P.c1 j n/ D : : : D P.cK j n/ D 1
K

, i.e. the node
is as “impure” as possible.

2. i.n/ is minimal if 9i 2 1; : : : ; K such that P.ci j n/ D 1, i.e. the node contains
only cases, which have the same target value.

Some very common splitting criteria based upon impurity measures are:

• Entropy

i.n/ D �
KX

jD1
P.j jn/ logP.j jn/:

• the Gini index of diversity

i.n/ D
X

i¤j
P.i jn/P.j jn/:

Another splitting rule, which is not based on an impurity measure, is the twoing
rule: A node n is split into a left and a right node nL and nR such that

P.nL/P.nR/

4

0

@
KX

jD1
jP.j j nL/� P.j j nR/j

1

A

2

is maximised. For binary targets this rule coincides with the CHAID criterion, which
calculates the �2 value of a 2 � 2 table.

As Breiman et al. (1984) point out, the choice of the algorithm used is not as
crucial as is generally thought:

within a wide range of splitting criteria the properties of the final tree selected are
surprisingly insensitive to the choice of splitting rule (p.38).

Hand (1997), however, mentioned several problems concerning impurity func-
tions for splitting nodes, for instance

It [the Gini index] has a tendency to produce offspring nodes that are of equal size (p. 69).

Unfortunately, there is no such thing as an optimal splitting criterion. “Optimal”
splits very strongly depend on the specific application. When a decision tree is
grown, many of the branches will reflect particularities of the training data at
hand and will not generalize very well to the test data. This phenomenon is called
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overfitting, and pruning the tree is a method to address this issue. The prepruning
approach tries to implement the pruning process already in the growing phase. For
this purpose, an additional stopping criterion is built in. At each node, a split is
only performed if the information gain exceeds a certain threshold. Postpruning
reduces the complexity of a tree model by removing the branches of some nodes.
Postpruning is more effective, especially when the decision to remove a branch is
based on a diversity measure that differs from the one used in the growing phase.
Prepruning requires less computation but typically does not avoid the problem
of overfitting and leads to rather unreliable trees. Postpruning is often a semi-
automated process, including manual interactive pruning as well as cross-validation
techniques.

Classification trees have been used as a role model for a predictor in bagging
(Breiman 1996). Bagging as well as boosting (Freund and Schapire 1999) are used
to improve the accuracy of a single prediction method by gaining stability and
robustness, see also Chap. III.18.

Neural Networks

Artificial neural networks are one of the most prominent data mining techniques.
Their fame is twofold: famous for astonishing good prediction results, unfamous
for their black box behavior and lack of reproducibility of achievements. Neural
networks are a classical method for predictive modeling. They have been used for
classification and prediction to a similar extent. The basic idea of neural networks
is the perceptron (see Fig. 28.3), a feedforward neural network with an input layer
and an output layer.

The nodes of the input layer serve to introduce the values of the input variables.
In a supervised learning situation with p explanatory variables and n cases, we
hence get a network with np input nodes and n output nodes. For each output node
k D 1; : : : ; n the model output is calculated as a weighted sum of transformed input
values

ok D f .ak/ D f .
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wjkxj /:

input layer output layer
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Fig. 28.3 Model of a
perceptron with n input nodes
and n output nodes
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input layer hidden layer(s) output layer

Fig. 28.4 Multi-Layer Perceptron

The transformation function f is usually called the activation function. The basic
principle of learning a perceptron is the iterative adaptation of the weights wjk in
such a way that the error between the observed target values yi and the model output
oi is a s small as possible. The most common delta rule is a gradient method with
a tuning parameter � also known as “learning rate.” The choice of � compromises
between run time and convergence considerations.

The simple perceptron only allows to solve linearly separable problems. To
address more complex problems a multi-layer perceptron, also called feedforward
network must be used. A multi-layer perceptron (see Fig. 28.4) introduces additional
layers, so-called hidden layers, into the network topology. Each node in the hidden
and output layers operates in the same way as an output node in the perceptron.
The lack of original target values for the nodes in the hidden layers is remedied
by the backpropagation strategy. This means that the present network topology is
used in two ways: as a feedforward network to propagate the observed values of the
explanatory variables to the output layer and in reverse order to propagate the errors
of fitted values back to the input layer.

A huge variety of different models can now be achieved by using different
activation functions or different network architectures, i.e. by specifying the links
between nodes. Usually, one uses the same activation function for all nodes in
the hidden layers. The standard way of network architecture is to fully connect
all neurons to all of the units in the preceding layer. However, it is possible to
define networks that are partially-connected to only some units in the preceding
layer. Typically, the resulting fitted values will be the same (or at least very similar)
for different network architectures, summarizing in a nutshell the characteristics
of a neural net: often very good in predicting and fitting values but giving very
few insight into the functional relationship between explanatory variables and target
variable. Putting it the other way round: neural nets are the method of choice, if you
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have no idea about the functional relationship between explanatory variables and
dependent variable. If you have a strong hypothesis on the functional relationship it
is usually preferable to include this knowledge in the modeling process.

Support Vector Machines

Support vector machines are by now a must try for almost any large scale
classification or regression task. Going back to an idea by Vapnik (1979), the support
vector machine constitutes a linear classifier and became popular in the second
half of the 1990s (Vapnik 1995). By combining the linear classifier with a problem
specific kernel function (performing the so-called kernel trick), the support vector
machine operates in reproducing Kernel-Hilbert-spaces and hence can perform non-
linear classification and regression tasks. The modular set-up allows the construction
of different support vector machines that are characterized by different non-linear
decision surfaces. A detailed treatment and discussion of support vector machines
is given in Chap. III.15.

Memory Based Reasoning

Memory-Based Reasoning (MBR) tries to mimic human behavior in an automatic
way. Memories of specific events are used directly to make decisions, rather than
indirectly (as in systems which use experience to infer rules). MBR is a two
step procedure: first, identifying similar cases from experience, secondly, applying
the information from these cases to new cases. MBR is specifically well suited
to non-numerical data. MBR needs a distance measure to assign dissimilarity of
two observations and a combination function to combine the results from the
neighboring points to achieve an answer. Generating examples is much easier than
generating rules which makes MBR so attractive. However, applying rules to new
observations is much easier and faster than comparing new cases to a bulk of
memorized objects.

Association Rules

Rule induction methods are widely applied tools for mining large data bases. They
are often used as a starting point in undirected data mining, i.e. when you do not
know what specific patterns to look for. One form of rule induction methods are
association rules well-known in market basket analysis. They were proposed by
Agrawal et al. (1993) with the intention to provide an automated process, which
could find connections among items, that were not known before, especially to
answer questions like: “which items are likely to be bought together?”. Many other
areas of applications have been named from customer-tailored packages in the
telecommunication or insurance business to analyzing web links.
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In general, an association rule is an implication of the form X ! Y , where X
and Y are mutually exclusive item sets. The quality of an association rule X ! Y

is measured by two criteria: confidence and support . A rule holds with confidence
c D c.X ! Y /, if c% of transactions in D that contain X also contain Y. The rule
X ! Y has support s in the databaseD, if s% of transactions in D containX [ Y .

Most data mining software offers a procedure to generate all association rules
with confidence and support that exceed some user-specified minimum thresholds
for support (minsup) and confidence (minconf ). The procedures are typically based
on the a priori algorithm introduced by Agrawal and Srikant (1994).

There are several problems related to this procedure: the setting of the thresholds
of minimal support and confidence is crucial; choosing high support and confidence
may lead to “uninteresting” results – insofar as the resulting rules are often trivial or
well known beforehand by domain experts (Weber 1998). Lowering the minimal
thresholds can lead to a vast increase of the number of results. The standard
approach is hence to use low thresholds for generating a large number of rules and
then prune these rules to a manageable number of patterns. Pruning methods are
based on objective or subjective interestingness measures. Strength and weaknesses
of a broad class of interestingness measures are analyzed and discussed in McGarry
(2005). Confidence, support, information gain, Gini-coefficient, entropy, and lift
are some of the widely used objective measures (Bayardo and Agrawal 1999).
Subjective measures try to incorporate user and domain knowledge to adapt the
resulting rules to the current situation: a pattern which is of interest to one user
may be of no interest to another user (Silberschatz and Tuzhilin 1995). However,
it is typically not easy for the user to put his/her expectations and knowledge into
automatic procedures of rule pruning. Klemettinen et al. (1994) use rule templates
to model the user’s knowledge, while Silberschatz and Tuzhilin (1995) introduce
belief systems to describe users’ expectations.

Another source of problems stems from the inability to estimate the quality of a
rule merely from the two keys confidence and support. Graphical solutions showing
a rule in the background of the corresponding contingency table have been proposed
by Hofmann et al. (2000). Interactive methods further enhance these displays to
powerful tools in the exploration of association rules, see Hofmann and Wilhelm
(2001).

28.5.2 Visual Data Mining

Data visualization can contribute to the Data Mining process in many different ways,
primarily because the human visual system is excellent in discovering unexpected
patterns. Visual data mining does not replace other methods, but it complements
analytic approaches. Standard numerical methods to detect outliers and erroneous
observations are easier to automate and they may uncover most of the problems in
a data set but graphic displays are excellent at identifying and understanding new
and unusual problems in the quality of the data. Visualization techniques have met
interest in the data base and data mining community since the early 90s, where
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they have been extensively used to represent results of dynamic data base queries
(Keim 1995; Rogowitz and Treinish 1996; Rogowitz et al. 1996; Shneiderman
1994). The parameters of the query are visualized by sliders each representing the
range of one query parameter. The user can change the sliders interactively and
the query results are shown in a linked graphic. Different methods to represent the
distances between the query and the data items have been proposed in the literature:
pixel-oriented techniques (Keim 1997) different intensities of the highlighting color
(Tweedie and Spence 1998), or the standard linked views approach using a f0; 1g-
distance (Derthick et al. 1997). More recent discussions of visual approaches to
data mining tend to use complex static graphics more suited for presentation
than for analysis. (For examples, take a look at websites concerned with Data
Mining.) This may be for two reasons. Graphics research in computer science has
been concerned with sophisticated, computing-intensive displays (for instance in
scientific visualisation) and so it is natural to develop methods of this kind. On the
statistical side, commercial software lags substantially behind graphical research.
Few packages provide the flexibility and interactivity in graphics that is essential
for exploratory work and, of those, even fewer have made provision for the display
and graphical investigation of large data sets. Looking at the scatterplots produced
by software for large numbers of data points can reveal more about the software
than about the data. The capabilities of graphic displays for initial explorations of
a data set are past comparison. Graphic exploration to grasp the main structural
features and to get to know the data before beginning formal analysis can be carried
out swiftly and informatively. It is not just the graphic displays themselves that are
necessary, but the ability to directly work with them: to query points, symbols or
axes; to select and link cases across displays; to sort and group data; to rescale and
zoom. Interactivity not only means that the user can interact with the data, but also
that the results from the changes made by the user can be seen instantaneously.
A rapid and responsive interaction facilitates active exploration in a manner that
is inconceivable with static displays. Users can start to pose “What if” queries
spontaneously as they work through a task. Therefore, interactive displays not only
offer the possibility of comparing resulting static views of different aspects of the
data, they even encourage to draw conclusions from the way things are changing.
Visualisation is also valuable for checking, filtering and comparing results from
analytical procedures, and communication of the final outcome to the data base
owner and the decision makers is indispensable without charts. At all these stages
of the knowledge discovery process, at which contact with domain specialists is
important to turn data into knowledge, the advantages of graphical presentation of
ideas to enhance communication are considerable.

Research on interactive principles for statistical graphics can be categorized
into two classes: firstly, development of innovative tools that help making a single
display flexible and dynamic, and secondly, development of tools that operate on the
underlying data and therefore have impacts to all displays showing the same data.
Common tools of the first class are for example interactive modifiers of the bar width
of a histogram, zooming in dot or scatter plots as well as slider-controlled dynamic
changes in a graphic. The core of the second class are selection mechanisms and
linking. Various selection modes that can even be combined to a sequence help in
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choosing a specific set of data points to assign interest to them. Linking is the basic
concept giving graphical methods the capability of multivariate analysis. Linking
builds up a relation between different observations and between different displays.
It propagates the changes and selections made in one plot to all other connected
plots that deal with the same database.

Visualising Large Numbers of Cases

Data Mining is statistics at scale and speed. Large data sets can be large in two
different aspects. First, if the size of the sample investigated is fairly large it will
result in a large quantity of observations, the number of data points possibly going
towards the billions. Secondly, a large data set can also arise from investigations
with a large number of variables. For graphical as well as for analytical procedures
both these issues pose problems and require new approaches for solution.

Graphical displays are often used to provide an easy overview of the data from
which the global structure can be rapidly deduced while it is still possible at the
same time to spot individual features. For small data sets one can represent each
data point by a single graphical element, as for example in scatter plots in the form
of small circles, to ensure that all the information in the data is also represented in
the display. However, the use of point based displays reaches its limits as the number
of observations increases. A computer screen with about 1280 � 1024 pixels screen
size will possibly offer about one million pixels to be used for displaying points
the others needed for frames, scroll bars, legends, and scales. Assuming that we
need about five pixels to make a point clearly visible a natural limit for point based
displays would lie at about 200,000 observations. This number decreases even more
if we take into account that the more structure a data set shows the less spread out
are the points over the display’s range. Thus, most realistic data sets will only use
about a quarter of the available area in a graphic and thus induce that we only can
show about 50,000 observations in one point-based plot.

Analytical methods reduce the dimensions and in the extreme case condense
the data into one single number, like the mean or a regression coefficient. The
graphical analogue is to use one single graphical element to represent the data.
A single smooth density curve for example can be used to display the univariate
distributional properties of data. Note here, that as in this example, a single graphical
element can still convey much more information than a single number. The use
of smooth density curves is not only marked by a reduction in terms of graphical
elements but also by a transition from using position to encode information to using
area instead. Histograms have a long tradition in statistics for being used to display
distributional information. They are computationally simpler than smooth density
curves and indicate their local constructional properties more clearly. So, for large
data sets, area based graphics are to be preferred.

Graphical elements overlap when the values they represent fall too close together
on the scale used in the current display. Brightness of the graphical elements can be
used to visualize the extent of overplotting. The more graphical elements overlap
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Fig. 28.5 Tonal highlighting is used to show the amount of overplotting. Increasing the brightness
parameter with the overall density of the plot points towards areas with relatively high overplotting.
The left plot shows the default setting. The plot on the right with increased brightness parameter
clearly shows a pencil shape region in the center with a very high density

the brighter they are drawn. One implementation of this is tonal highlighting as
provided for dotplots and scatterplots in MANET (Hofmann 2000). This procedure
can be seen as a special kernel density estimation using a uniform kernel. Tonal
highlighting and its visual effect is based on two parameters that can be interactively
varied: the size of the graphical points used for displaying data and the maximum
brightness parameter that is the number of data points that have to overlap to yield
the maximum brightness.

For sparse plots brightness should change already with little overplotting, for
dense plots a stronger overplotting is needed to cause a change in brightness, see
Fig. 28.5.

In contrast to point oriented displays in which dense areas cause problems due
to overplotting, it is more likely that area based displays run into difficulties when
regions have too few data points. The counts for such regions might be too small
to result in an area that is perceptible to the human eye. Especially, histograms for
highly unequally dense regions will cause representational problems: according to
the scale used either the high density regions are visible or the low density regions.

Linking leads to a technical difficulty associated with large data sets and
particularly relevant to data quality. Even with a high-resolution screen it may
be necessary for each pixel to represent many points. If the number of points to
be drawn or highlighted is too small to be represented, then those points will be
invisible. This can lead to false judgments, for instance in masking unusual cases,
and needs to be avoided. One solution, which works well in practice, has been
implemented in the software MANET. Red-marking is used to indicate that some
information may be hidden. For histograms and barcharts a red line is drawn under
any bar where information may be hidden. It could be that the bar itself is too small
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to be drawn (which can happen with extreme values in histogram displays); it could
be that too few are highlighted in a bar for any highlighting to show; it could be that
too few are not highlighted in a bar so that the whole bar is, misleadingly, completely
highlighted. A related problem arises in the display of spatial data: very small areas
(often the most populous!) may not be shown and special red-marking techniques
are needed to take account of this.

Direct manipulation graphics can alleviate this problem further when there is
the possibility of easily changing the scale of a display. Here it is by no means
sufficient to have a parameter tool box in which we can insert our desired scaling.
We must be able to grab the vertical axis in a histogram to shrink or expand a scale
by simply dragging it as well as breaking a scale and using different scalings at
different parts of the range. Such a feature can be thought of as a particular variant
of logical zooming. While standard zooming enlarges the displayed graphical
elements, logical zooming works on the underlying model and changes it to display
more details. Logical zooming is quite natural when working with maps, starting
with a country map, we zoom into a regional map, a city map and finally a street
map that shows us the neighborhood in every detail.

Logical zooming for the vertical axis aims at balancing out the needs for a good
overview and the need for focussing on individual features. Area based displays like
histograms aggregate the data and lose the ability to show anomalous behavior of
single points. For large data sets this is not an unwelcome feature since huge data
sets might contain too many features to investigate. So the researcher will only focus
on phenomena that occur frequently enough.

Logical zooming is even more important when used on the x-axis to change the
level of aggregation. Again, there is not only the need to zoom in a homogeneous
way such that all bins of a histogram are treated in the same manner and use the same
scaling for all of them. Rather often, the analyst might be interested in particular
regions, for example in the center of a distribution to see whether there are any
gaps that just might be smoothed away by the graphical representation. Thus, a
very common interest is zooming into one region while still keeping the general
overview.

Logical zooming is valuable for all statistical displays that aggregate the data: for
boxplots, for example, logical zooming should result in displaying the dotplot for
the selected section or a boxplot based on the selected points only. Logical zooming
in mosaic plots would help investigating how additional variables could split up a
large cell. Hot selection as provided in DataDesk (Velleman 2000) can be seen as an
elementary form of logical zooming.

Visualising Large Numbers of Variables

Common orthogonal coordinate systems have at most three orthogonal axes for
visualization at hand. To display more variables and typically most data sets will
comprise a much larger number of variables projection techniques are widely used to
reduce the dimensionality to a manageable size. Other approaches are using matrix
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layouts for scatterplots and providing brushing techniques to visually connect points
that belong together, but this only works for a low number of dimensions. Another
approach is to use parallel coordinate systems that can deal with a larger number of
variables simultaneously. The parallel coordinate display (Inselberg 1985; Wegman
1990) sacrifices orthogonal axes by drawing the axes parallel to each other resulting
in a planar diagram where each d–dimensional point .x1; : : : ; xd / is uniquely
represented by a broken line. Current screens limit the numbers of variables that can
be simultaneously shown in parallel coordinate plots to about 30 – but, of course,
scrolling windows offer in principle unlimited capabilities.

The individual parallel coordinate axes represent one–dimensional projections of
the data. Usually, different variables will be based on different units of measurement.
Using the original scale might make inefficient use of the screen space. Using
standardized variables will ameliorate that. In certain instances the original scale
will, however, display valuable information. An easy interactive change of this
scaling is thus a particularly welcome feature. Pairwise relationships for adjacent
variables are much more easily seen than for nonadjacent variables. Since a com-
plete parallel coordinate investigation would require running through all possible
permutations, interactive facilities for manually or automatically changing the order
of the variables are needed.

Due to the point – line duality between a parallel coordinate system and a carte-
sian coordinate system the correlation of two adjacent variables is depicted by the
mutual position of the line segments: parallel line segments indicate a strong positive
correlation, a line crossing in a single point means strong negative correlation.
Since it is much easier to recognize an intersection point than almost parallel lines,
negative correlation is simpler to detect. It is helpful to have an interactive tool to
invert the range of a single variable to turn positive correlation into a negative one.
CASSATT is a JAVA application that offers a wide variety of interactive features for
parallel coordinate plots, see Winkler (2000) . Linking and highlighting interactive
statistical graphics increases the dimensionality of data that can be explored. For
highly multivariate data (i.e., more than ten to twenty variables) insight into the data
by linking low-dimensional plots can be limited. Thus the need for high-dimensional
plots arises. These plots–for example, rotating plots (grand tour, projection pursuit,
see Chap. II.12), parallel coordinate plots, or mosaic plots–can incorporate up to
ten or more variables in a single plot. Linked highlighting and alterations inside
these plots (e.g., zooming, reordering, or sorting) offer high-dimensional insights
into data sets. Multiple selections via selection sequences offer a convenient way of
interacting with high-dimensional subsets of the data using low-dimensional plots.

Visualizing Association Rules

Visualizing association rules aims at solving some major problems that come with
association rules. First of all the rules found by automatic procedures must be
filtered. Depending on what minimum confidence and what support is specified a
vast amount of rules may be generated. Among those, however, not only “interesting
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and new” results – according to the principle of KDD – are found. In supermarket
data for instance most purchases will also contain plastic or paper bags. The naive
filtering approach that searches for the rules with highest confidence and/or highest
support fails because it yields rules that are typically already known before and are
thus not of interest. So, in many cases rules that just do not pass the thresholds
can be economically better exploited and are therefore higher rated. Association
rules tend to prefer frequent events as their response (right hand side of a rule). If
P.Y / is large, then it is very likely for any small event X , that P.Y jX/ is higher
than the minimal confidence threshold. The meaning of rules found in this way, on
the other hand, is more than questionable. When dealing with different association
rules which refer to the same response, it is of interest to examine, whether the
populations described by the explanatory variables (left hand side of a rule) differ
from each other. It well could be one and the same population, and different rules
providing only different descriptions for it. – Another goal therefore is, to examine
the impact of rules on one another and to find intersections amongst them. Quite
often, slight variations of items are listed as different association rules: either the
same items alternatively take right and left hand sides of rules or sequences occur.

Besides finding new and interesting results, data mining tools are to find
explicable results. The interpretation of results therefore should be of great interest –
if one can not explain a rule at first, we could use methods of cross-classification in
the hope of finding clues within the data, which allow us to decide, whether a result
has to be considered as a peculiarity of this particular data set or can be generalized.

Since support and confidence are equally important for the conclusions drawn
from association rules any approach should visualize support and confidence of
competing rules within one display. Figure 28.6 shows a standard visualization of
association rules as a matrix of all left and right hand sides of rules. Left hand sides
are the rows, right hand sides the columns of the matrix. Each rule, which fulfills
minsupp and minconf is drawn as a square. The size of which is given by the
actual support of the rule.

This approach is rather unsatisfactory since it reaches the space limits already
for a small number of association rules. It also uses two different visual attributes
to encode support and confidence of a rule: color for the confidence and size for the
support. The ordering of colors is difficult and in no way unambiguous and depends
heavily on the used scale of the color scheme. The encoding of the support by the
size of the squares is visually problematic, since length of the square is used instead
of area. For instance the rules

turkey & hering & corned beef! olives
ham & corned beef & apples! olives

have support 11.19% and 3.1%, respectively. The factor is approx. 4, whereas the
areas differ with factor 16 which yields a lie factor as defined by Tufte (1983) of
400% .

Mosaic plots as introduced by Hartigan and Kleiner (1981) are a graphical
analogue to multivariate contingency tables. They show the frequencies in a
contingency table as a collection of rectangles whose areas represent the cell
frequencies. Large areas therefore represent large cells. The shape of a tile is
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Fig. 28.6 SAS Enterprise Miner: Visualisation of all association rules with a minimum confidence
of 99%. Each rule is represented by a square, the area of which corresponds to the support of the
rule. Color is used to encode the confidence of the rule

calculated during the (strictly hierarchical) construction. In classical mosaic plots
alternately width and height of each bin is split according to the categories of the
next variable included, in such a way, that the area of each bin is proportional to
the number of cases falling into this specific intersection of variables. Thus, viewed
statically the mosaic plot gives a graphical estimation of the joint distribution of the
variables contained. Interactive features are necessary to turn the mosaic plot into a
powerful exploration tool. In Hofmann (1999) these interactive features have been
explained with an example, the most essentials are linked highlighting, rotating,
navigating through dimensions, grouping categories, and variation of display.

Linked highlighting provides the transition to conditional distributions and
is essential for visualizing association rules. The basic approach is as follows:
Combine all variables involved in the left-hand-side X of a rule as explanatory
variables and draw them within one mosaicplot. Visualize the response Y , the right-
hand-side of the rule, in a bar chart and then by highlighting a category in the bar
chart every tile in the mosaic plot corresponds to an association rule. The amount of
highlighting in a bin in the mosaic plot gives a visual measure for the support of a
rule, the highlighting heights relative to the bin’s height give the rule’s confidence.

Figure 28.7 shows an overview of all possible association rules involving three
binary variablesX1;X2 and Y .

The bin in the bottom right corner .x1 \ x2 \ x3/ gives an example for a rule
that passes most common thresholds. It has very high confidence (the highlighting
almost fills this bin entirely), and also the support is relatively high (the bin itself,
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Barchart of Y Mosaicplot of X1,X2 and X3,

X1not X1
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not X2

not X3 not X3 X3X3

Fig. 28.7 Mosaic plot of all possible association rules of X1;X2; X3 and Y . The amount of
highlighting in a bin represents the support of a rule, while its confidence is measured by the
proportion of highlighting within a tile

and therefore the amount of highlighting, is large). The leftmost bin in the upper
row, .not x1 \ x2 \ not x3/, represents a rule with a comparable support (this bin
contains approximately the same amount of highlighting as the bin in the bottom
right corner), yet the confidence of the corresponding rule is rather low (highlighting
fills this bin to only one third, approximately). All the other possible rules have even
lower confidence and their supports are also too small to be of interest.

Rotated mosaic plots:

To make comparisons of proportions of highlighting heights more easily, it is much
better to align all bins. This yields mosaics of the following form: Starting from the
basic rectangle, the width is divided according to the first variable’s categories and
their numbers of entries. Each of these bins is divided again and again horizontally
in the same way according to the other variables. In MANET standard mosaic plots
can be interactively rotated in this form by a simple mouse click and therefore we
call these plots rotated mosaic plots. Highlighting splits the bins still vertically.
Thus highlighting heights in a p dimensional mosaic plot of variables X1; : : : ; Xp
show the conditional probabilities P.hjX1; : : : ; Xp/.

In addition, to determine the exact combination that a bin represents more easily
labels can be added underneath the mosaics (see Fig. 28.8). Each row of the labels
corresponds to one variable, the white rectangles stand for “0”s, the blacks for “1”s.
The first bin in Fig. 28.8 therefore represents the combination of “no item bought”
(all “0”s), the second bin contains all transactions, where only corned beef has
been bought, and so on. This form of diagrams is also known as doubledecker plots
introduced in Hofmann et al. (2000).
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Fig. 28.8 Doubledecker plot of three variables. The rightmost bin corresponds to the rule
heineken & coke & chicken! sardines

28.6 Trends and Controversies

Data mining and knowledge discovery is surely an important research area with a
lot of potential, but it is not a universal panacea. The ever increasing availability
of data and the increasing speed in which this data is collected and fed into the
analysis pipeline is not asking for even more sophisticated modeling and analysis
techniques with a high component of human involvement, but it calls for flexible,
fast and stable search heuristics. So, a major challenge is to incorporate as much of
the already available sophistications of models and the flexibility of the human mind
into the automated data analysis processes. Progress has been made in this respect,
but we are still a long way to go.

Surely, the amount of data to be analyzed will grow, presumably at a similar rate
as the speed of the analysis tools will grow. What has been a large data set ten years
ago, is now a toy class-room example.What is massive now, will fit in the main
memory in a few years time. Streaming data is to be analyzed to make decisions in
real-time and to keep up with important security issues in many fields (cf Gaber et al.
2005). Data handling facilities will improve and speed optimization of algorithms
will help, but the fundamental race between data growth and decreasing reaction
time will remain.

Also remain will the problem of data quality and the enormous amount of
time and effort that is needed for proper data cleaning. A small data set which is
collected with care, due diligence and a proper sampling scheme, will typically
yield more reliable results than fast search heuristics in massive data sets. A further
discussion on the use of elaborated sampling techniques within data mining might
be a worthwhile endeavour.

With all successes in finding patterns and trends and with a shift away from
analysing the mean behaviour towards exploring the unusual cases, data protection
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and privacy issues need to be incorporated in an appropriate way. Data mining has
matured as a discipline and will enjoy its adulthood.
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Chapter 29
Recursive Partitioning and Tree-based Methods

Heping Zhang

29.1 Introduction

Tree-based methods have become one of the most flexible, intuitive, and powerful
data analytic tools for exploring complex data structures. The applications of
these methods are far reaching. They include financial firms (credit cards Altman
2002; Frydman et al. 2002 and investments Brennan et al. 2001; Pace 1995),
manufacturing and marketing companies Levin et al. (1995), and pharmaceutical
companies. In the past decades, there have been many applications in genomics and
bioinformatics Zhang et al. (2001).

The best documented, and arguably most popular uses of tree-based methods
are in biomedical research for which classification is a central issue. For example,
a clinician or health scientist may be very interested in the following question
Goldman et al. (1996), Goldman et al. (1982), Zhang et al. (2001): Is this patient
with chest pain suffering a heart attack, or does he simply have a strained muscle?
To answer this question, information on this patient must be collected, and a good
diagnostic test utilizing such information must be in place. Tree-based methods
provide one solution for constructing the diagnostic test.

Classification problems also frequently arise from engineering research. Bahl
et al. (1989) introduced a tree-based language model for natural language speech
recognition. Desilva and Hull (1994) used the idea of decision trees to detect proper
nouns in document images. Geman and Jedynak (1996) used a related idea to form
an active testing model for tracking roads in satellite images. In addition, decision
trees have been used in scientific and social studies including astronomy Owens

H. Zhang (�)
Yale University School of Medicine, New Haven, CT, USA

Sun Yat-Sen University, Guangzhou, China
e-mail: heping.zhang@yale.edu; http://c2s2.yale.edu

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks
of Computational Statistics, DOI 10.1007/978-3-642-21551-3__29,
© Springer-Verlag Berlin Heidelberg 2012

853

heping.zhang@yale.edu
http://c2s2.yale.edu


854 H. Zhang

et al. (1996), chemistry Chen et al. (1998) and politics (http://www.dtreg.com/
housevotes.htm). I will revisit some of these applications later in detail.

Most commercial applications of tree-based methods have not been well-
documented through peer reviewed publications. In 1999 I helped the CLARITAS,
a marketing company, apply a tree-based method as described in Sect. 29.6 for
marketing segmentation analysis Zhang (1998). Tree-based methods have also
been frequently used in the drug development process. I have personally provided
consultations to Aventis, Inc. and Eisai Inc. for drug approvals.

The purpose of this article is to provide an overview for the construction of
the decision trees, and, particularly, the recursive partitioning technique, which
is the thrust of this methodology. In their early applications, tree-based methods
were developed primarily to facilitate the automation of classifications as an expert
system Breiman et al. (1984), Friedman (1977), Wasson et al. (1985), although
Morgan and Sonquist (1963) were motivated by the need to analyze survey data
to identify interactions, particularly in the presence of non-numerical predictors.
More recently, classification trees have not only been used for automated disease
diagnosis, but also for selecting important variables that are associated with a
disease or any response of interest Zhang and Bracken (1995), Zhang and Bracken
(1996) Zhang and Singer (2010), Zhang et al. (2003), Zhang et al. (2001).

There are different approaches to classification. First, it can be done intuitively.
For example, a physician or a group of physicians may use their experience in
caring for patients with chest pain to form a subjective opinion or an empirical
decision as to whether a new patient with chest pain is likely to suffer a heart attack,
and consequently, decide what treatment is most appropriate. Secondly, methods in
both statistical and machine learning literature have been developed, such as Fisher
linear discriminant analysis Fisher (1936) and support vector machine Cristianini
and Shawe-Taylor (2000). These methods have the parametric flavor in the sense
that the classification rule has an explicit form with only a few parameters to be
determined from a given sample that is usually referred to as learning sample.

Classification trees belong to the third type of methods for which we allow a very
general structure, e.g., the binary tree as displayed in Fig. 29.1, but the number of
“parameters” also needs to be determined from the data, and this number varies.
For this reason, classification trees are regarded as nonparametric methods. They
are adaptive to the data and are flexible, although the large number of quantities
(or parameters) to be estimated from the data makes the classification rule more
vulnerable to noise in the data.

To be more precise about the statistical problem, let us define the data structure
and introduce some notations. Suppose that we have observed p covariates, denoted
by a p-vector x; and a response y for n individuals. For the i th individual, the
measurements are

xi D .xi1; � � � ; xip/0 and yi ; i D 1; � � � ; n:

The objective is to model the probability distribution of P.y jx/ or a functional of
this conditional distribution.

http://www.dtreg.com/housevotes.htm
http://www.dtreg.com/housevotes.htm
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Fig. 29.1 Classification Tree for Colon Cancer Diagnosis Based on Gene Expression Data. Inside
each node are the number of tumor (C) and normal (N) tissues. See Zhang et al. (2001) for more
details

To appreciate how these variables are characterized in real applications, let me
examine some of the published applications.

Example 1. Levin et al. (1995) described a probability-driven, customer-oriented
decision support system for the marketing decisions of the Franklin Mint, a leading
Philadelphia-based worldwide direct response marketer of quality collectibles and
luxury home decor products. The purpose of the system is to target the “right”
audience for each promotion from among a very large marketing database, based on
the customers’ attributes and characteristics. In this case, the customers’ attributes
and characteristics constitute the x variables. Whether the targeted client is desirable
or not forms the basis for the response y:

Example 2. To screen large chemical databases in corporate collections and chem-
ical libraries, Chen et al. (1998) used recursive partitioning to develop three-
dimensional pharmacophores that can guide database screening, chemical library
design, and lead optimization. Their idea was to encode the three-dimensional
features of chemical compounds into bit strings, which we will refer to as the x
variables. Then, those features are selected in relation to the biological activities
(i.e., y) of the compounds. Here, each compound contributes an observation. Using
this idea, the authors successfully retrieved three-dimensional structure-activity
relationships from a large heterogeneous dataset of 1,644 monoamine oxidase
inhibitors. I will revisit this example in detail in Sect. 29.4.
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As we can see from the above examples, like any multivariate regression model,
the covariates or predictors in x may contain variables that can be categorical
(nominal or ordinal) or continuous. For example, ethnicity is usually treated as
categorical data and age as continuous. Some of the covariates may have missing
values. I will discuss how these missing values are handled in the tree framework.
In a nutshell, unlike what is usually done in a simple linear regression, observations
with missing information are not omitted from classification trees.

Not only can we have mixed types of predictors, but also the response variable
can be discrete (binary or multiclass), continuous, and sometimes censored. The
characteristics of the response, y; determines the method for estimating P.y jx/:
I will review a variety of tree-based methods that are adaptable to the distribution
of y: In Sect. 29.2, I will introduce the basic idea of classification trees using a
dichotomous response. Section 29.2 is followed by some in-depth discussion of
computational challenges and implementations in Sect. 29.3 and by examples in
Sect. 29.4 to illustrate how we can interpret results from tree-based analyses. One
of the most popular uses of tree-based methods is in the analysis of censored data
in which y is the time to an event and is subject to censoring. As described in
Sect. 29.5, such trees are referred to as survival trees Bacchetti and Segal (1995),
Carmelli et al. (1991), Carmelli et al. (1997), Gordon and Olshen (1985), Zhang
(1995). In Sect. 29.6, I will present an extension of the tree methodology to the
classification of a response consisting of multiple components such as an array of
respiratory symptoms Zhang (1998). Finally, I will conclude in Sect. 29.9 with some
remarks on relatively recent developments such as forests and Bayesian trees. To
illustrate the methods and their applications, some examples will be presented along
with the methods.

29.2 Basic Classification Trees

I have highlighted some applications of decision trees. Here, I will explain how
they are constructed. There has been a surge of interest lately in using decision
trees to identify genes underlying complex diseases. For this reason, I will begin the
explanation of the basic idea with a genomic example, and then will also discuss
other examples.

Zhang and his colleagues Zhang et al. (2001) analyzed a data set from the
expression profiles of 2,000 genes in 22 normal and 40 colon cancer tissues Alon
et al. (1999). In this data set, the response y equals 0 or 1 according to whether
the tissue is normal or with cancer. Each element of x is the expression profile
for one of the 2,000 genes. The objective is to identify genes and to use them to
construct a tree so that we can classify the tumor type according to the selected gene
expression profiles. Figure 29.1 is a classification tree constructed from this data
set. In what follows, I will explain how such a tree is constructed and how it can be
interpreted.
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29.2.1 Tree Growing and Recursive Partitioning

Tree construction usually comprises of two steps: growing and pruning. The
growing step begins with the root node, which is the entire learning sample. In the
present example, the root node contains the 62 tissues and it is labeled as node 1
on the top of Fig. 29.1. The most fundamental step in tree growing is to partition
the root node into two subgroups, referred to as daughter nodes, such that one
daughter node contains mostly cancer tissue and the other daughter node mostly
normal tissue. Such a partition is chosen from all possible binary splits based on the
2,000 gene expression profiles via questions like “Is the expression level of gene
1 greater than 200?” A tissue is assigned to the right or left daughter according to
whether the answer is yes or no. When all of the 62 tissues are assigned to either the
left or right daughter nodes, the distribution in terms of the number of cancer tissues
is assessed for both the left and right nodes using typically a node impurity. One of
such criteria is the entropy function

it D �pt log.pt / � .1 � pt/ log.1 � pt /;

where pt is the proportion of cancer tissue in a specified node t: This function is at
its lowest level when pt D 0 or 1. In other words, there is the least impurity when
the node is perfect. On the other hand, it reaches the maximum when pt D 1

2
; that

is, the node is equally mixed with the cancer and normal tissues.
Let L and R denote the left and right nodes, respectively. The quality of the split

s; resulting from the question “Is the expression level of gene 1 greater than 200?”
is measured by weighing iL and iR as follows:

gs D 1 � P.L/iL � P.R/iR; (29.1)

whereP.L/ andP.R/ are probabilities of tissues falling into the left and right nodes,
respectively. The split with the lowest gs is ultimately chosen to split the root node.
This very same procedure can be applied to split the two daughter nodes, leading to
the so-called recursive partitioning process. This process dies out as the sizes of the
offspring nodes become smaller and smaller and the distribution of the tissue type
becomes more and more homogeneous. The splitting stops when the node contains
only one type of tissues.

The objective of the tree growing step is to produce a tree by executing the
recursive partitioning process as far as possible. A natural concern is that such a
saturated tree is generally too big and prone to noise. This calls for the second step
to prune the saturated tree in order to obtain a reasonably sized tree that is still
discriminative of the response whereas parsimonious for interpretation and robust
with respect to the noise.
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29.2.2 Tree Pruning and Cost Complexity

For the purpose of tree pruning, Breiman et al. (1984) introduced misclassification
cost to penalize the errors of classification such as classifying a cancer tissue as a
normal one, and vice versa. The unit of misclassification cost is chosen to reflect
the seriousness of the errors because the consequence of classifying a cancer tissue
as a normal one is usually more severe than classifying a normal tissue as a cancer
one. A common practice is to assign a unit cost for classifying a normal tissue as
a cancer one and a cost, c; for classifying a cancer tissue as a normal one. Once
c is chosen, the class membership for any node can be determined to minimize
the misclassification cost. For example, the root node of Fig. 29.1 is classified as a
cancer node for any c chosen to be greater than 22

40
: While c is usually chosen to be

greater than 1, for the purpose of illustration here, if it is chosen to be 0.5, the root
node is classified as a normal node because it gives rise to a lower misclassification
cost.

When the class memberships and misclassification costs are determined for all
nodes, the misclassification cost for a tree can be computed easily by summing all
costs in the terminal nodes. A node is terminal when it is not further divided, and
other nodes are referred to as internal nodes. Precisely, the quality of a tree, denoted
by T; is reflected by the quality of its terminal nodes as follows:

R.T / D
X

t2 QT
P.t/R.t/; (29.2)

where QT is the set of terminal nodes of tree T and R.t/ the within-node misclassi-
fication cost of node t:

The ultimate objective of tree pruning is to select a subtree of the saturated tree so
that the misclassification cost of the selected subtree is the lowest on an independent,
identically distributed sample, called a test sample. In practice, we rarely have a
test sample. Breiman et al. (1984) proposed to use cross validation based on cost-
complexity. They defined the number of the terminal nodes of T; denoted by j QT j;
as the complexity of T: A penalizing cost, the so-called complexity parameter, is
assigned to one unit increase in complexity, i.e., one extra terminal node. The sum
of all costs becomes the penalty for the tree complexity, and the cost-complexity of
a tree is:

R˛.T / D R.T /C ˛j QT j; (29.3)

where ˛.> 0/ is the complexity parameter.
A useful and interesting result from Breiman et al. (1984) is that, for a given

complexity parameter, there is a unique smallest subtree of the saturated tree
that minimizes the cost-complexity measure (29.3). Furthermore, if ˛1 > ˛2 the
optimally pruned subtree corresponding to ˛1 is a subtree of the one corresponding
to ˛2: Therefore, increasing the complexity parameter produces a finite sequence of
nested optimally pruned subtrees, which makes the selection of the desirably-sized
subtree feasible.
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Although the introduction of misclassification cost and cost complexity provides
a solution to tree pruning, it is usually a subjective and difficult decision to choose
the misclassification costs for different errors. Moreover, the final tree can be
heavily dependent on such a subjective choice. From a methodological point of
view, generalizing the concept of misclassification cost is difficult when we have to
deal with more complicated responses, which I will discuss in detail later. For these
reasons, I prefer a simpler way for pruning as described by Segal (1988) and Zhang
and Singer (2010).

Let us now return to the example. In Fig. 29.1, the 62 tissues are divided into four
terminal nodes 2, 5, 6, and 7. Two of them (Nodes 2 and 7) contain 21 normal tissues
and no cancer tissue. The other two nodes (Node 5 and 6) contain 40 cancer tissues
and 1 normal tissue. Because this tree is relatively small and has nearly perfect
classification, pruning is almost unnecessary. Interestingly, this is not accidental for
analyses of many microarray data for which there are many genes and relatively few
samples.

The construction of Fig. 29.1 follows the growing procedure as described above.
First, node 1 is split into nodes 2 and 3 after examining all allowable splits from
the 2000 gene expression profiles, and the expression level of gene IL-8 and its
threshold at 60 are chosen because they result in the lowest weighted impurity of
nodes 2 and 3. A tissue is sent to the left (node 2) or right (node 3) daughter node
according to whether or not the IL-8 level is below 60. Because node 2 is pure,
no further split is necessary and it becomes a terminal node. Node 3 is split into
nodes 4 and 5 through recursive partitioning and according to whether or not the
expression of gene CANX is greater than 290, while the partition is restricted to
the 40 tissues in node 3 only. Furthermore, node 4 is subsequently partitioned into
nodes 6 and 7 according to whether or not the expression of gene RAB3B exceeds
770.

There are also many interesting applications of simple classification trees. For
example, Goldman et al. (1982) used classification trees to predict heart attacks
based on information from 482 patients. After a tree is constructed, the prediction is
made from a series of questions such as “Is the pain in the neck only?” and/or “Is the
pain in the neck and shoulder?” An appealing feature of tree-based classification is
that the classification rule is based on the answers to simple and intuitive questions
as posed here.

Although I present classification trees for a binary response, the method is similar
for a mult-level response. The impurity function can be defined as

it D �
JX

jD1
P.y D j / logfP.y D j /g;

for a J -level y: Everything else in the tree growing step as described above
is applicable. For tree pruning, the only change to be made is to define the
misclassification cost c.j jk/ from level k to level j; j; k D 1; : : : ; J:
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29.3 Computational Issues

In Sects. 29.2.1 and 29.2.2, I have explained the basic steps and concepts for tree
construction. For most users of decision trees, the implementation aspect does
not really affect the application. For methodological and software developments,
however, it is imperative to understand the computational issues. The most critical
issue is to find the optimal split efficiently for any given node. The overall strategy
is to identify the optimal split from each of the predictors and then choose the
overall best one. Choosing the overall best one is straightforward, but identifying
the optimal split from a predictor takes some efforts. The algorithm must take into
account the nature of the predictor. Although I will use a dichotomous response to
explain the ideas, the algorithm is also applicable for the other types of responses.

29.3.1 Splits Based on An Ordinal Predictor

Let us first consider a predictor with an ordinal scale such as gene expression in
Fig. 29.1 or the ratio of cash flow to total debt in Fig. 29.2. Under the tree framework,

Fig. 29.2 Classification tree for bankruptcy. B1, B2, and B3 are three groups of relatively high
risk of bankruptcy, and NB1 and NB2 are two groups of likely non-bankrupt companies. Inside the
terminal nodes (boxes) are the numbers of bankrupt and non-bankrupt companies. See Frydman
et al. (2002) for more details
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Table 29.1 Expression level of gene IL-8 in 22 normal and 40 colon cancer tissues used in
Fig. 29.1

Expression Colon Expression Colon Expression Colon Expression Colon
Level Cancer Level Cancer Level Cancer Level Cancer

23.74 N 35.95875 N 33.9725 N 45.1 N
56.91875 N 28.7675 N 28.00875 N 39.7575 N
11.37625 N 31.6975 N 30.57875 N 171.4525 N
36.8675 N 40.33875 N 76.9875 N 97.92 N
55.2 N 238.58625 N 645.99375 N 117.6025 N
113.91375 N 567.13125 N 1528.4062 Y 306.30875 Y
76.125 Y 169.1375 Y 213.6275 Y 326.42625 Y
370.04 Y 114.92375 Y 311.4375 Y 186.2775 Y
131.65875 Y 412.135 Y 284.14625 Y 1178.9188 Y
75.81375 Y 1007.5262 Y 120.72 Y 227.70625 Y
80.73875 Y 2076.9025 Y 93.3575 Y 1813.4562 Y
170.11875 Y 737.695 Y 270.19625 Y 75.95 Y
62.7375 Y 148.04125 Y 599.6975 Y 247.52625 Y
390.31125 Y 222.55875 Y 391.355 Y 249.15125 Y
117.185 Y 104.78125 Y 124.91875 Y 210.90125 Y
519.08125 Y 175.55125 Y

as long as a predictor is ordinal, we will soon see that it does not matter whether the
predictor is on a continuous or discrete scale.

Table 29.1 displays the expression levels of gene IL-8 in 22 normal and 40 colon
cancer tissues. Our objective for the time being is to split these 62 tissues into two
subsamples according to whether the expression level of gene IL-8 is greater than
a given threshold. In theory, this threshold can be anything, but practically, there is
only a finite number of them that make a difference. In other words, it takes a finite
number of steps to find an optimal threshold, although the solution is not unique.

The first step in finding an optimal threshold is to sort all expression levels, say, in
an ascending order as displayed in Table 29.2. If the threshold is below the minimum
(11.37625) or above the maximum (2076.9025), it produces an empty subsample.
Thus, the threshold should be between 11.37625 and 2076.9025. If we take a look
at the two lowest levels, 11.37625 and 23.74, it is clear that any threshold between
these two levels produces the same two subsamples (or daughter nodes). In this
example, there are 62 distinct levels of expression. Thus, we have 62 � 1 D 61

distinct ways to split the 62 samples into two daughter nodes. It is noteworthy that,
unlike this example, the number of unique levels of a predictor is usually lower than
the number of samples.

The second step in finding an optimal threshold is to move along the intervals
defined by two adjacent, distinct levels of the sorted predictor values. In Table 29.2,
we move along as follows:

Œ11:37625; 23:74/; Œ23:74; 28:00875/; : : : ; Œ56:91875; 62:7375/;

: : : ; Œ1528:4062; 1813:4562/; Œ1813:4562; 2076:9025/:
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Table 29.2 Sorted expression level of gene IL-8 in 22 normal and 40 colon cancer tissues used in
Fig. 29.1

Colon Expression Colon Expression Colon Expression Colon
Level Cancer Level Cancer Level Cancer Level Cancer

11.37625 N 23.74 N 28.00875 N 28.7675 N
30.57875 N 31.6975 N 33.9725 N 35.95875 N
36.8675 N 39.7575 N 40.33875 N 45.1 N

55.2 N 56.91875 N 62.7375 Y 75.81375 Y
75.95 Y 76.125 Y 76.9875 N 80.73875 Y

93.3575 Y 97.92 N 104.78125 Y 113.91375 N
114.92375 Y 117.185 Y 117.6025 N 120.72 Y
124.91875 Y 131.65875 Y 148.04125 Y 169.1375 Y
170.11875 Y 171.4525 N 175.55125 Y 186.2775 Y
210.90125 Y 213.6275 Y 222.55875 Y 227.70625 Y
238.58625 N 247.52625 Y 249.15125 Y 270.19625 Y
284.14625 Y 645.99375 N 306.30875 Y 311.4375 Y
326.42625 Y 370.04 Y 390.31125 Y 391.355 Y

412.135 Y 519.08125 Y 567.13125 N 599.6975 Y
737.695 Y 1007.5262 Y 1178.9188 Y 1528.4062 Y

1813.4562 Y 2076.9025 Y

Table 29.3 Search for the optimal split

Left node Right node Split

No. of No. of Node No. of No. of Node Quality
Interval Sample Cancer Impurity Sample Cancer Impurity gs

Œ11:37625; 23:74/ 1 0 0 61 40 0.6438 0.3666
Œ23:74; 28:00875/ 2 0 0 60 40 0.6365 0.3849
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

Œ56:91875; 62:7375/ 14 0 0 48 40 0.4506 0.6512
Œ62:7375; 75:81375/ 15 1 0.1030 47 39 0.4562 0.6292
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

Œ1528:4062; 1813:4562/ 60 38 0.6572 2 2 0 0.3640
Œ1813:4562; 2076:9025/ 61 39 0.6538 1 1 0 0.3568

For computation, the threshold can be chosen as the middle point of the above
intervals. For interpretation, the threshold can be rounded-off as is done to the first
split in Fig. 29.1.

We have determined the pool of the potential thresholds, which is sometimes
referred to as the allowable splits. Obviously, we can examine each threshold one at
a time and assess its quality according to (29.1).

For a large data set, this means a lot of wasted computing time. To reduce the
computation to a minimal level, let us take a careful look as to what happens when
we move the threshold from one interval to the next. In Table 29.3, as the threshold
is moved up to the next interval, the samples that were already assigned to the left
daughter stay on the left side because their expression levels are still below the new
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threshold. Most of the samples that were assigned to the right daughter stay on the
right side, except those samples whose expression levels are equal to the lower limit
of the new interval. In this particular case, there is only one sample that we need
to move from the right side to the left every time we move the threshold by one
interval. This observation implies that the node impurities and the split quality can
be computed by updating the information slightly for the small set of the samples
that are affected. Each sample in this small set is affected only once in the entire
search of the predictor. In summary, after the values of a predictor are sorted, we
can find an optimal threshold to split a node in the number of steps proportional
to the number of distinct values of the predictor, which is at most the number of
samples in the node. For the present example, any value in Œ56:91875; 62:7375/
is an optimal split. Intuitively from Table 29.3, we push the threshold as high as
possible to maintain the perfect purity of the left daughter node. In the meantime,
if we look bottom-up from the table, we also push the threshold as low as possible
to maximize the purity of the right daughter node. The interval Œ56:91875; 62:7375/
offers the best balance. In Fig. 29.1, the split is chosen at 60, although any number
in this interval is a legitimate choice.

Overall, if we have n samples in a node and p predictors, excluding the sorting
time, the final threshold for the node can be identified in at most O.np/ steps.

29.3.2 Splits Based on A Nominal Predictor

For a nominal variable, we cannot sort the values of the variable as we did in
Table 29.2. For a predictor of k levels, there are a total of 2k�1 � 1 ways to split
a node. To explain the algorithm, let me use an artificial example as summarized in
Table 29.4.

In Table 29.4, the predictor has 4 levels, giving rise to 7 possible ways to split
a node. A naive way is to assess every allowable split on an individual basis. This
could be an extensive computation when the number of levels is 10 or higher. Thus,
it is important to find a way to compute the quality of all splits in a gradual manner
as in Sect. 29.3.1. If we focus on the levels of the predictor for the left daughter node,
we can travel all 7 possible splits as follows: fAg; fABg; fBg; fBC g; fC g; fAC g;
and fABC g: The key is that every move requires either the deletion or addition of
a single level, which keeps the computation at the minimal level. Such a path of
traveling through all 2k�1 � 1 splits can be defined for any k:

Table 29.4 An artificial data set
Predictor No. of No. of Rate of
Value Normal Cancer Cancer

A 5 10 0.67
B 10 5 0.33
C 20 30 0.60
D 35 25 0.42
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There is actually a simple and quick solution for a dichotomous response. As
shown in Table 29.4, we can compute the cancer rate for every level of the nominal
predictor. During the splitting, the rates can substitute for the corresponding nominal
levels. Because the rates are ordinal, the method described in Sect. 29.3.1 can be
applied. After the optimal split is determined, we can map the rate back to the
original nominal level. For example, for the data in Table 29.4, the optimal threshold
based on the rate is in the interval Œ0:42; 0:6/; which means that the left daughter
node contains samples with levels B and D, and the right daughter node with levels
A and C. For a multiclass response, there is no apparent way to form an ordinal
surrogate for a nominal predictor.

29.3.3 Missing Values

An important feature of decision trees is their ability to deal with missing predictor
values. There are several solutions. Although there have been limited attempts
Quinlan (1989) to compare some of them, the performance of the various solutions
is largely unexplored. The choice mostly depends on the objective of the study.

The easiest approach is to treat the missing attribute as a distinct value and to
assign all samples with missing values to the same node Zhang et al. (1996). This
approach is not only simple, but also provides a clear path as to where the samples
with missing attributes end up in the tree structure.

Breiman et al. (1984) introduced and advocated surrogate splits to deal with
missing attributes. The idea is very intuitive. For example, in Table 29.2, we
considered using expression levels from gene IL-8 to split the 62 samples. What
happens if the expression level from one of the samples, say, the first one, was not
recorded? This happens in microarray experiments. Because IL-8 level is missing
for the first sample, we cannot determine whether the level is below or above 60 and
hence cannot decide whether the first sample should be assigned to the left or right
daughter node. To resolve this ambiguity, Breiman et al. (1984) proposed to seek
help from other genes that act “similarly” to IL-8. Since there are many other genes,
we can use the one that is most similar to IL-8, which leads to a surrogate for IL-8.

What we need to clarify is the meaning of similarity. To illustrate this concept,
let us consider gene CANX. Using the method described in Sect. 29.3.1, we can
find an optimal split from gene CANX. The similarity between CANX and IL-8 is
the probability that the optimal splits from these two genes assign a sample with
complete information in these two genes into the same node. This strategy is similar
to replacing a missing value in one variable in linear regression by regressing on
the non-missing value most highly correlated with it. Then, why can’t we use the
same strategy as in the linear regression? According to Breiman et al. (1984), their
strategy is more robust. The main reason is that their strategy is more specific to
the particular sample with missing attributes, and does not result in a potential
catastrophic impact for other samples with missing attributes.
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The surrogate splits have some advantages over the simpler approach as
described earlier. It makes use of other potentially useful information. Breiman
et al. (1984) also proposed to rank the importance of variables through surrogate
splits. The surrogate splits also have some limitations. First, it is uncommon, if at
all, that surrogate splits are provided in published applications. Thus, it is unrealistic
to know what the surrogate splits are and how we assign a sample with a missing
attribute. Second, there is no guarantee in a data set that we can find a satisfactory
surrogate split. Lastly, while it is a sensible idea to rank the variable importance
based on surrogate splits, there is no assurance that a predictor ranked relatively
high is necessarily predictive of the outcome, which can create a dilemma for
interpretation. More recently, the importance of a variable tends to be evaluated on
the basis of its performance in forests Breiman (1994), Zhang et al. (2003) rather
than on a single tree.

In the construction of random forests, Breiman proposed another way of
replacing missing values through an iterative process. A similar idea can be applied
for tree construction. To initialize the process, we can fill in the missing values by
the median of an ordered variable or by the category of a nominal variable with
the highest frequency. An initial tree can be constructed once all missing data are
imputed. In the next step, suppose again that in Table 29.2, the expression of gene
IL-8 is missing for the first sample. The unobserved level is estimated by a weighted
average over the samples with observed expressions for gene IL-8. Here, the weight
is the so-called proximity, which is a similarity measure between a pair of samples.
Intuitively, if the second sample is more similar to the first sample than to the third
one, we give more weight to the second sample than to the third one if the first
sample is not observed. How is the proximity defined for a pair of samples? We can
set it to zero before the initial tree is grown. Then, whenever a tree is grown, if two
samples end up in the same terminal nodes, its promixity is increased by one unit.
After the missing data are updated, a new tree is grown. Breiman recommends to
continue this process at most five times in the random forest construction. For tree
construction, it may take longer for the process to “converge,” especially when the
number of predictors is large. Nonetheless, it may still be worthwhile to repeat a few
iterations. In addition to this convergence issue, it is also difficult to track where the
samples with missing values are assigned as with the use of surrogate splits.

29.4 Interpretation

Interpretation of results from trees is usually straightforward. In Fig. 29.1, we
identified 3 genes IL-8, CANX, and RAB3B whose expression levels are highly
predictive of colon cancer. However, this does not necessarily mean that these genes
cause colon cancer. Such a conclusion requires a thorough search of the literature
and further experiments. For example, after reviewing the literature, Zhang et al.
(2001) found evidence that associates IL-8 with the stage of colon cancer Fox et al.
(1998), the migration of human clonic epithelial cell lines Toshina et al. (2000),
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and metastasis of bladder cancer Inoue et al. (2000). In addition, the expression
of the molecular chaperone CANX was found to be down-regulated in HT-29
human colon adenocarcinoma cells Yeates and Powis (1997) and to be involved
in apoptosis in human prostate epithelial tumor cells Nagata et al. (1997). Lastly,
RAB3B is a member of the RAS oncogene family. Therefore, these existing studies
provide independent support that the three genes identified in Fig. 29.1 may be in
the pathways of colon cancer. If this hypothesis could be confirmed from further
experiments, Fig. 29.1 would have another important implication. Pathologically
speaking, the 40 colon cancer samples are indistinguishable. Fig. 29.1 indicates
that those 40 samples are not homogeneous in terms of gene expression levels. If
confirmed, such a finding could be useful in cancer diagnosis and treatment.

As I stated earlier, there are numerous applications of decision trees in biomed-
ical research, including the example above. To have a glimpse of the diverse
applications of decision trees, let me review two different examples.

Example 3. Frydman and colleagues introduced recursive partitioning for finan-
cial classification Frydman et al. (2002). They considered a financial dataset of 58
bankrupt (y D 1) industrial companies that failed during 1971-81, and 142 non-
bankrupt (y D 0) manufacturing and retailing companies randomly selected from
COMPUSTAT universe. Each company forms an observational unit or the so-called
sample. Twenty financial variables with prior evidence of predicting business failure
are considered. They include the ratio of cash to total assets, the ratio of cash to
total sales, the ratio of cash flow to total debt, the ratio of current assets to current
liabilities, the ratio of current assets to total assets, the ratio of current assets to total
sales, the ratio of earnings before interest and taxes to total assets, interest coverage,
the ratio of market value of equity to total capitalization, the ratio of net income to
total assets, the ratio of quick assets to current liabilities, the ratio of quick assets
to total assets, the ratio of quick assets to total sales, the ratio of retained earnings
to total assets, the ratio of total debt to total assets, the ratio of total sales to total
assets, and the ratio of working capital to total sales.

We can see from Fig. 29.2 that the risk of bankruptcy is relatively high if the ratio
of cash flow to total debt is below 0.1309, unless both the ratio of retained earnings
to total assets and the ratio of cash to total sales are above certain levels, i.e., 0.1453
and 0.025, respectively. Even if the ratio of cash flow to total debt is above 0.1309,
there can be elevated risk of bankruptcy if the ratio of total debt to total assets is
high (above 0.6975). A tree diagram as in Fig. 29.2 offers a very clear and simple
assessment of the financial state of a company.

Example 2 (continued) I indicated earlier what the predictors and response are
for Example 2. Let us revisit this example. Unlike the other examples that I have
introduced so far, this example uses a continuous response y – the compound
potency. Because of this difference, the resulting tree is called a regression tree.
To utilize the information from the 3-dimensional structures of compounds, Chen
et al. (1998) used atom pair descriptors that are composed of the atom types of
the two component atoms and the “binned” Euclidean distance between these two
atoms. The width of each distance bin was chosen as 1.0 Å. To define predictors x
from the atom pair descriptors, the authors characterized the atom pair descriptors
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in 17 types including negative charge center (e.g., sulfinic group), positive charge
center (e.g., the nitrogen in primary, secondary, and tertiary amines), hydrogen bond
acceptor (e.g., oxygen with at least one available lone pair electron), triple bond
center, aromatic ring center, and H-bond donor hydrogen.

Figure 29.3 presents part of the regression tree that is constructed by Chen et al.
(1998). I trimmed the left hand side to fit into the space here; however, we can get
the idea from the right hand side of tree. Generally speaking, a node of size 3 or
6 such as nodes 6 and 8 is too small to be reliable. Since I do not have the data to
re-grow the tree, let us pretend that the node sizes are adequate, and concentrate on
the interpretation instead. Since the main objective of Chen et al. appears to identify
active nodes (i.e., those with high potencies), a small, inactive node is not of great
concern.

First, there is one highly active node (node 7 with potency greater than 2) in
Fig. 29.3. There are also two highly active nodes on the left hand side which are not
shown in Fig. 29.3. Supported by the literature, Chen et al. (1998) postulated that

Fig. 29.3 Regression Tree for Predicting Potencies of Compounds. Inside each node are the
number of compounds (middle) and the average potency of all compounds within the node
(bottom). Underneath each node is the selected atom pair descriptor. Above the arm is the interval
for the distance between the selected atom pair descriptor that assigns the compounds to the right
daughter node. See Chen et al. (1998) for more details
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there might be different mechanisms of action because the active nodes contain com-
pounds of very different characteristics. This is similar to the hypothesis suggested
by Fig. 29.1 that the 40 colon cancer tissues might be biologically heterogeneous.
Chen et al. concluded further that their tree demonstrates the ability to detect
multiple mechanisms of action coexisting in a large three-dimensional chemical data
set. In addition, the selected atom pair descriptors also reveal interesting features of
the monoamine oxidase (MAO) inhibitors. For instance, the “aromatic ring center–
triple bond center” pair in the first split is the structural characteristic of pargyline,
a well known MAO inhibitor.

We can see from these examples that tree-based methods tend to unravel
integrated, intuitive results whose pieces are consistent with prior findings. Not only
can we use trees for prediction, but also we may use them to identify potentially
important mechanisms or pathways for further investigation.

29.5 Survival Trees

The most popular use of tree-based methods is arguably in survival analysis for
censored time, particularly in biomedical applications. The general goal of such
applications is to identify prognostic factors that are predictive of survival outcome
and time to an event of interest. For example, Banerjee et al. (2000) reported a tree-
based analysis that enables the natural identification of prognostic groups among
patients in the perioperative phase, using information available regarding several
clinicopathologic variables. Such groupings are important because patients treated
with radical prostatectomy for clinically localized prostate carcinoma present
considerable heterogeneity in terms of disease-free survival outcome, and the
groupings allow physicians to make early yet prudent decisions regarding adjuvant
combination therapies. See, e.g., Bacchetti and Segal (1995), Carmelli et al. (1991),
Carmelli et al. (1997), Kwak et al. (1990) for additional examples.

Before pointing out the methodological challenge in extending the basic clas-
sification trees to survival trees, let me quickly introduce the censored data. Let z
denote the time to an event, which can be death or the occurrence of a disease. For a
variety of reasons including losts to follow-up and the limited period of a study, we
may not be able to observe z until the event occurs for everyone in the study. Thus,
what we actually observe is a censored time y which is smaller than or equal to z:
When z is observed, y D z: Otherwise, z is censored and y < z: Let ı D 1 or 0
denote whether z is censored or observed.

The question is how to facilitate the censored time y in the tree-based methods.
As in Sect. 29.2, we need to define a splitting criterion to divide a node into two,
and also to find a way to choose a “right-sized” tree. Many authors have proposed
different methods to address these needs. Here, I describe some of the methods.
See Crowley et al. (1995), Intrator and Kooperberg (1995), LeBlanc and Crowley
(1995), Segal (1988), Segal (1995), Zhang et al. (2001), Zhang and Singer (2010)
for more details.
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29.5.1 Maximizing Difference between Nodes

Gordon and Olshen (1985) are among the earliest to have developed survival trees.
Earlier, we focused on reducing the impurity within a node by splitting. When
two daughter nodes have low impurities, the distributions of the response tend to
differ between the two nodes. In other words, we could have achieved the same goal
by maximizing the difference between the distributions of the response in the two
daughter nodes. There are well established statistics that measure the difference in
distribution. In survival analysis, we can compute the Kaplan-Meier curves (see,
e.g., Miller 1981) separately for each node. Gordon and Olshen used the so-called
Lp Wasserstein metrics, dp.�; �/; as the measure of discrepancy between the two
survival functions. Specifically, for p D 1; the Wasserstein distance, d1.SL; SR/;
between two Kaplan-Meier curves, SL and SR; is illustrated in Fig. 29.4.

A desirable split maximizes the distance, d1.SL; SR/; where SL and SR are the
Kaplan-Meier curves for the left and right daughter nodes, respectively. Replacing
gs in (29.1) with �d1.SL; SR/ we can split the root node into two daughter nodes
and use the same recursive partitioning process as before to produce a saturated tree.

To prune a saturated survival tree, T; Gordon and Olshen (1985) generalized the
tree cost-complexity for censored data. The complexity remains the same as before,
but we need to redefine the cost R.t/; which now is measured by how far node t
deviates from a desirable node in lieu of a pure node in the binary response case. In
the present situation, a replacement for a pure node is a node � in which all observed
times are the same, and hence its Kaplan-Meier curve, ı� ; is a piecewise constant
survival function that has at most one point of discontinuity. Then, the within-node
cost, R.t/; is defined as d1.St ; ı� /: Combining this newly defined cost-complexity
with the previously described pruning step serves as a method for pruning survival
trees.

Another, perhaps more commonly used way to measure the difference in survival
distributions is to make use of the log-rank statistic. Indeed, the procedures proposed
by Ciampi et al. (1986) and Segal (1988) maximize the log-rank statistic by
comparing the survival distributions between the two daughter nodes. The authors
did not define the cost-complexity using the log-rank statistic. However, LeBlanc
and Crowley (1993) introduced the notion of “goodness-of-split” complexity as a
substitute for cost-complexity in pruning survival trees. Let G.t/ be the value of the

Fig. 29.4 The L1

wasserstein distance between
Two Kaplan-Meier curves as
measured by the area marked
with d1: Note that one curve
.SL/ is thicker than the
other .SR/
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log-rank test at node t . Then the split-complexity measure is

G.T / D
X

t 62 QT
G.t/ � ˛.j QT j � 1/:

Therneau et al. (1990) proposed another way to defineR.t/ that makes use of the
so-called martingale residuals by assuming within-node proportional hazard models
and then the least squares are computed as the cost.

In my experience, I found that Segal (1988) bottom-up procedure is practical and
easy to use. That is, for each internal node (including the root node) of a saturated
tree, we assign it a value that equals the maximum of the log-rank statistics over
all splits starting from the internal node of interest. Then, we plot the values for all
internal nodes in an increasing order and decide a threshold from the graph. If an
internal node corresponds to a smaller value than the threshold, we prune all of its
offspring. Zhang and Singer (2010) pointed out that this practical procedure can be
modified in a broad context by replacing the log-rank statistic with a test statistic
that is appropriate for comparing two samples with a defined outcome.

29.5.2 Use of Likelihood Functions

Although the concept of node impurity is very useful in the development of tree-
based methodology, that concept is closely related to the concept of likelihood as
pointed out by Zhang et al. (2001). In fact, the adoption of likelihood makes it
much easier to extend the tree-based methodology to analysis of complex dependent
variables including censored time. For example, Davis and Anderson (1989) assume
that the survival function within any given node is an exponential function with
a constant hazard. LeBlanc and Crowley (1992) and Ciampi et al. (1988) assume
different within-node hazard functions. Specifically, the hazard functions in two
daughter nodes are assumed proportional, but are unknown. In terms of estimation,
LeBlanc and Crowley (1992) use the full or partial likelihood function in the Cox
proportional hazard model whereas Ciampi et al. (1988) use a partial likelihood
function.

The most critical idea in using the likelihood is that within-node survival
functions are temporarily assumed to serve as a vehicle of finding a split instead of
believing them to be the true ones. For example, we cannot have a constant hazard
function in the left daughter node, and then another constant hazard function in
the right daughter node while assuming that the parent node also has a constant
hazard function. Here, the constant hazard function plays the role of the “sample
average.” However, after a tree is constructed, it is both reasonable and possible
that the hazard functions within the terminal nodes may become approximately
constant.
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29.5.3 A Straightforward Extension

Zhang (1995) examined a straightforward tree-based approach to censored survival
data by observing the fact that the response variable involves two dimensions:
a binary censoring indicator and the observed time. If we can split a node
so that the node impurity is “minimized” in both dimensions, the within-node
survival distribution is expected to be homogeneous. Based on this intuitive idea,
Zhang (1995) proposed to compute the within-node impurity in terms of both the
censoring indicator and the observed time first separately, and then together through
weighting. Empirically, this simple approach tends to produce trees similar to those
produced from using the log-rank test. More interestingly, empirical evidence also
suggests that this simple approach outperforms its more sophisticated counterparts
in discovering the underlying structures of data. Unfortunately, there need to be
more comparative studies to scrutinize these different methods, even though limited
simulations comparing some of the methods have been reported in the literature
Crowley et al. (1995), Crowley et al. (1997), Zhang (1995).

29.5.4 Other Developments

The methods that I described above are not designed to deal with time-dependent
covariates. Bacchetti and Segal (1995) and Huang et al. (1998) proposed similar
approaches to accommodate the time-dependent covariates in survival trees. The
main concern with these existing approaches is that the same subject can be assigned
to both the left and right daughter nodes, which is distinct from any other tree-based
methods and is potentially confusing in interpretation.

It is common in survival tree analysis that we want to stratify our sample into
a few groups that define the grades for the survival. To this end, it is useful to
combine some terminal nodes into one group, which is loosely called “amalga-
mation.” Ciampi et al. (1986) used the log-rank statistic for this purpose. LeBlanc
and Crowley (1993) proposed constructing an ordinal variable that describes the
terminal nodes. Often, we can simply examine the Kaplan-Meier curves for all
terminal nodes to determine the group membership Carmelli et al. (1997).

29.6 Tree-Based Methods for Multiple Correlated Outcomes

As pointed out by Zhang (1998), multiple binary responses arise from many
applications for which an array of health-related symptoms are of primary interest.
Most of the existing methods are parametric; see, e.g., Diggle et al. (1994) for an
excellent overview. In this section, I will describe a tree-based alternative to the
parametric methods.
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Motivated by both the broad application as well as by the need to analyze
building-related occupant complaint syndrome (BROCS), I proposed a tree-based
method to model and classify multiple binary responses Zhang (1998). Let me use
the BROCS study to explain the method.

To understand the nature of BROCS, data were collected in 1989 from 6,800
employees of the Library of Congress (LOC) and the headquarters of the Envi-
ronmental Protection Agency (EPA) in the United States. The data contain many
explanatory variables, but I extracted a subset of 22 putative risk factors, most
of which are answers to “yes or no” or frequency (never, rarely, sometimes, etc.)
questions. For example, is working space an enclosed office with door, a cubicle
without door, stacks, etc? See Table 1 of Zhang (1998) for a detailed list. In this data
set, BROCS is represented by six binary responses that cover respiratory symptoms
in the central nervous system, upper airway, pain, flu-like symptoms, eyes, and lower
airway. The primary purpose with this extracted data set is to evaluate the effect of
the important risk factors on the six responses by constructing trees.

In terms of notation, the primary distinction is that the response y for each subject
is a 6-vector. Consequently, we need to generalize the node-splitting criterion and
cost-complexity to this vector-response. As I indicated earlier, one solution is to
assume a certain type of within-node distribution for the vector-response and then
maximize the within-node likelihood for splitting. One such distribution is

f .yI	; ™/ D exp.	 0y C ™0w� A.	; ™//; (29.4)

where 	 and ™ are node-dependent parameters, A.	; ™/ is the normalization
function depending on 	 and ™, and w D P

i<j yiyj : I chose this distribution
because it is commonly used in the parametric models for multiple binary responses,
e.g., Cox (1972), Fitzmaurice and Laird (1993), Zhao and Prentice (1990). The
negative of the likelihood based on (29.4) now serves as the impurity function, and
the rest of the recursive partitioning as described before applies.

A naive approach is to treat y as a numerical vector and use a function such as
the determinant of the within-node covariance matrix of y as a measure of impurity.
If y were continuous, this approach is what Segal (1992) proposed to construct
regression trees for repeatedly measured continuous y: For binary outcomes,
however, this approach appears to suffer the well-known end-cut preference problem
in the sense that it gives preference to the splits that result in two unbalanced
daughter nodes in terms of their sizes.

One advantage of the likelihood based method is that the negative of the within-
node likelihood can also be used as the within-node cost R.t/ for tree pruning.
The main difficulty with this method is the computational burden, because every
allowable split calls for a maximization of the likelihood derived from (29.4). Some
strategies for reducing the computational time are discussed in Zhang (1998).

The criterion based on (29.4) ultimately leads to a 9 terminal nodes tree as
displayed in Fig. 29.5, which suggests that respondents belonging to terminal nodes
7 and 17 have high incidence of respiratory symptoms. This is because the working
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Fig. 29.5 Tree Structure for the risk factors of BROCS based on (29.4). Inside each node (a circle
or a box) are the node number and the number of subjects. The splitting question is given under
the node. The asterisks indicate where the subjects with missing information are assigned. The pin
diagrams under the tree show the incidence rates of the six clusters (C: CNS; U: upper airway; P:
pain; F: flu-like; E: eyes; and L: lower airway) in the nine terminal nodes. The side bar on the right
end indicates the range of 0 and 1 for the rates of all symptoms

area air quality of the people within these terminal nodes was poor, namely, often
too stuffy or sometimes dusty. On the other hand, for example, subjects in terminal
node 14 experienced the least discomfort because they had the best air quality. The
basic message from this example is that tree-based analyses often reveal findings
that are readily interpretable.

For ordinal responses, we describe the method proposed by Zhang and Ye (2008).
Let zij be the j th ordinal response in the i th subject, taking a value from 1; � � � ; K:
Note here thatK is the same for all response variables, although in principle we can
create extra levels with zero frequency to accommodate different K’s. We define
K � 1 indicator variables yijk D I.zij > k/; for k D 1; � � � ; K � 1. Recall I.�/ is
the indicator function. Let

yij D .yij;1; � � � ; yij;K�1/0;
yi D .y0i1; � � � ; y0in/0; (29.5)
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Then, the observed responses from the i th unit can be rewritten as

yi D .yi1;1; � � � ; yi1;K�1; � � � ; yin;1; � � � ; yin;K�1/0:

Now, the components of the yi are binary, and hence we can use the same procedure
described above.

29.7 Tree for Treatment Effectiveness

Although this chapter is mainly concerned with classifying a defined response, the
method can be modified for other important applications. For example, in a typical
randomized clinical trial, different treatments (say two treatments) are compared in
a study population, and the effectiveness of the treatments is assessed by averaging
the effects over the treatment arms. However, it is possible that the on-average
inferior treatment is superior in some of the patients. Because each patient is
generally assigned to one treatment, it is possible to define a response variable for
the treatment effectiveness for the single patient, and we do not know what would
happen if the patient receives the alternative medication. The trees provide a useful
framework to explore this possibility by identifying patient groups within which the
treatment effectiveness varies the greatest among the treatment arms. Even though
we cannot directly use the impurity function as defined in Sect. 29.2.1, we can
replace it with the Kullback-Leibler divergence Kullback and Leibler (1951). To
do so, let py;i .t/ D P.Y D yjt;Trt D i/ be the probability that the response is
y when a patient in node t received the i -th treatment. Then, the Kullback-Leibler
divergence within node t is

P
y py;1 log.py;1=py;2/: Note that the Kullback-Leibler

divergence is not symmetric with respect to the role of py;1 and py;2; but it is easy
to symmetrize it as follows:

DKL.t/ D
X

y

py;1 log.py;1=py;2/C
X

y

py;2 log.py;2=py;1/:

A simpler and more direct measure is the difference

DIFF.t/ D
X

y

.py;1 � py;2/2:

It is noteworthy that neitherDKL norDIFF is a distance metric and hence does
not possess the property of triangle inequality. Consequently, the result does not
necessarily improve as we split a parent node into offspring nodes. However, this
does not prevent us from splitting a node or building a tree.

We should point out that the current goal is not to find a pure node, but to find
a node within which the treatments have different effects. In other words, we want
to identify groups so that the clinicians may have the easiest time to make a clinical
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recommendation. Once the splitting criterion is chosen, the rest of the recursive
partitioning can proceed similarly. We applied this method to a clinical trial on
ovulation in a study of women with polycystic ovary syndrome, and the results of
analysis shall be reported elsewhere.

For pruning, we could also incorporate clinical information. For example, we can
merge any pair of terminal offspring nodes if the same treatment is preferred in both
of them, because the splitting does not change the clinical decision and hence is
uncalled for.

Later, we will introduce survival trees where the outcome variable is censored.
A similar issue of treatment effectiveness in terms of survival time may arise from
clinical trials. Again, one solution is to define a splitting criterion that compares the
survivorship in different treatment arms such as by examining the ratio of the hazard
ratios.

29.8 Forests

It should be clear now that tree-based data analyses are intuitive to interpret, but
there are also caveats. As discussed by Zhang and Singer (2010), first, tree structure
is prone to instability even with minor data perturbations. Second, as illustrated in
Fig. 29.1, we have data sets that include hundreds of thousands of variables. We have
to broaden the classic statistical view of “one parsimonious model” for a given data
set. Third, due to the adaptive nature of the tree construction, theoretical inference
based on a tree is usually not feasible. Generating more trees may provide an empir-
ical solution to statistical inference Zhang (1998). These lead to the idea of forest.

A forest is a constellation of any number of tree models Breiman (1996), Breiman
(2001). In computer science, a forest is an ensemble. While each individual tree
is not a good model, combining them into a committee improves the overall
performance. Having many trees also maximize the utilization of the information
in the data set, potentially unraveling alternative pathways to disease etiologies.

29.8.1 Random Forest

There are different ways of constructing a forest. Here is how a random forest is
formed.

1 Draw a bootstrap sample from the original data set.
2 Use the bootstrap to grow a tree. At each node, randomly select a fixed (much

smaller) number of the predictors and use this subset of the variables to split the
node.

3 Let the recursive partition run to the end and generate a tree.
4 Repeat Steps 1 to 3 to form a forest.
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The forest-based classification is made by the majority vote from all trees. If Step
2 is skipped, the above algorithm is called bagging (bootstraping and aggregating)
Breiman (1994).

To form and use a forest, we need to be aware of several issues. First, how many
variables should we select when splitting a node? The common recommendations
include the logarithm or square root of the original number of predictors. This could
be problematic when the number of the original predictors is huge or there are
a particularly large number of some types of variables (such as genetic markers)
Zhang and Singer (2010). Second, how many trees do we need in a forest? In
general, a forest contains hundreds or thousands of trees Breiman (2001). In a
recent study, we found that a few representive trees may be sufficient to maintain
the performance of a forest Zhang and Wang (2009). Finally, how do we identify
important variables in a forest? Breiman (2001) introduced the concept of variable
importance.

The most cited importance index is the permutation importance or often referred
to as the variable importance. For each tree in the forest, we count the number of
votes cast for the correct class. Then, we randomly permute the values of variable k
in the out-of-the-bag (oob) cases and recount the number of votes cast for the correct
class in the oob cases with the permuted values of variable k. The permutation
importance of the average of the differences between the number of votes for the
correct class in the variable-k-permuted oob data from the number of votes for the
correct class in the original oob data, over all trees in the forest.

Despite its popularity, this permutation importance index has some undesirable
properties. First, it is not necessarily positive, and does not have an upper limit.
Secondly, both the magnitudes and relative rankings of the permutation importance
for predictors are not stable if the number of predictors is much greater than the
sample size. They are also sensitive to the number of the subset variables chosen
for node splitting and to the level of correlation among the predictors Genuer
et al. (2008), Wang et al. (2010). To overcome some of these issues, Wang et al.
(2010) recently introduced a maximal conditional chi-square (MCC) importance
by taking the maximum chi-square statistic resulting from all splits in the forest
that use the same predictor. Chen et al. (2007) introduced an even simpler measure
called the depth importance by considering the location of the splitting variable as
well as its impact. Specifically, whenever node t is split based on variable k, let
L.t/ be the depth of the node and S.k; t/ be the �2 test statistic from the variable,
then 2�L.t/S.k; t/ is added up for variable k over all trees in the forest. Here, the
depth is 1 for the root node, 2 for the offspring of the root node, so on and so
forth.

29.8.2 Random Forests for Uncertain Predictors

In other sections of this chapter, we assume that predictors are observed with cer-
tainty. However, what can we do if this is not the case. Chen et al. (2007) considered
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an important application. Specifically, to identify genetic variants for complex
diseases, haplotypes are considered for association analysis. In genomewide associ-
ation studies, a haplotype is a set of single nucleotide polymorphisms (SNPs) on a
chromatid. In general, haplotypes must be statistically inferred from the SNPs Lin
et al. (2002). As a result, haplotypes are only available in frequencies. The idea in
Chen et al. (2007) is to generate data according to the distribution of the haplotypes,
which replaces Step 1 in the random forest algorithm. Then, they proceed with the
rest of the steps, except that they utilized all predictors in Step 2, although one can
certainly consider the use of a subset.

29.8.3 Deterministic Forests

The main reason that Wang et al. (2010) was able to find a small number of trees
to represent a large random forest is that there tend to be trees with comparable
structures that have similar classification performance when the number of features
is large relative to the number of samples. This observation motivated Zhang et al.
(2003) to assemble a forest with trees of similar structures and similar performance.
They called such a forest a deterministic forest. The advantage of this forest
construction is that it is a deterministic process, and hence reproducible. Through
numerical examples, they found that the predictive performance of the deterministic
forest and random forest is comparable.

29.8.4 Survival Forests

It is noteworthy that after we construct a survival tree using any of the methods
described above, we can use the same method described in this section to construct
a random survival forest. See, for example, Ishwaran et al. (2008).

29.9 Remarks

In Breiman et al. (1984), tree-based methods are presented primarily as an auto-
mated machine learning technique. There is now growing interest in applying
tree-based methods in biomedical applications, partly due to the rising challenges
in analyzing genomic data in which we have a large number of predictors and a far
smaller number of observations Zhang et al. (2001). In biomedical applications,
scientific understanding and interpretation of a fitted model are an integral part
of the learning process. In most situations, an automated tree as a whole has
characteristics that are difficult or awkward to interpret. Thus, the most effective
and productive way of conducting tree-based analyses is to transform this machine
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learning technique into a human learning technology. This requires the users to
review the computer-generated trees carefully and revise the trees using their
knowledge, which not only often simplifies the trees, but also may improve the
predictive precision of the trees, because recursive partitioning is not a forward
looking process and does not guarantee any optimality of the overall tree. Zhang
et al. (1996) called this step tree repairing. Also, by expanding a tree to a forest, we
are no longer short-sighted by the forward stepwise partitioning algorithm.

While the full potential of tree-based applications remains to be seen and
exploited, it must be made crystal clear that parametric methods such as logistic
regression and Cox models will continue to be useful statistical tools. We will see
more applications that use tree-based methods together with parametric methods
to take advantages of various types of methods. The main advantage of tree-
based methods is their flexibility and intuitive structures. However, because of their
adaptive nature, statistical inference based on tree-based methodology is generally
difficult. Despite the difficulty, some progress has been made to understand the
asymptotic behavior of tree-based inference Breiman (1994), Buhlmann and Yu
(2003), Donoho (1997), Gordon and Olshen (1978), Gordon and Olshen (1980),
Gordon and Olshen (1984), Lugosi and Nobel (1996), Nobel (1996), Nobel and
Olshen (1996).

Some attempts have been made to compare the tree-structured methods with
other methods Long et al. (1993), Segal and Bloch (1989), Selker et al. (1995). More
comparisons are still warranted, particularly in the context of genomic applications
where data reduction is necessary and statistical inference is also desirable.

One exciting development in recent years is the expansion of trees into forests.
In a typical application such as Banerjee et al. (2000), Carmelli et al. (1997),
constructing one or several trees is usually sufficient to unravel relationships
between predictors and a response. Nowadays, many studies produce massive
information such as recognizing spam mail from numerous characteristics and
identifying disease genes. One or even several trees are no longer adequate to
convey all of the critical information in the data. Construction of forests enables
us to discover data structures further and in the meantime improves classification
and predictive precision Breiman (1994), Zhang et al. (2003). The emergence of
genomic and proteomic data afford us the opportunity to construct deterministic
forest Zhang et al. (2003) by collecting a series of trees that have a similarly high
predictive quality. Not only do forests reveal more information from large data sets,
but they also outperform single trees Breiman (1994), Buhlmann and Yu (2003)
Buhlmann and Yu (2002), Zhang et al. (2003).

A by-product of forests is a collection of variables that are frequently used in the
forests, and the frequent uses are indicative of the importance of those variables.
Zhang et al. (2003) examined the frequencies of the variables in a forest and used
them to rank the variables. In this chapter, we described several measures of variable
importance.

Bayesian approaches may offer another way to construct forests by including
trees with a certain level of posterior probability. These approaches may also help us
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understand the theoretical properties of tree-based methods. However, the existing
Bayesian tree framework focuses on providing an alternative method to those that
exist. We would make important progress if we could take full advantage of the
Bayesian approach to improve our tree-based inference.

Classification and regression trees assign a subject to a particular node following
a series of boolean statements. Ciampi et al. (2002) considered a “soft” splitting
algorithm that at each node an individual goes to the right daughter node with
a certain probability, which is a function of a predictor. This approach has the
spirit of random forests. In fact, we can construct a random forest by repeating
this classification scheme.

Several companies including DTREG.com, Insightful, Palisade Corporation,
Salford Systems, and SAS market different variants of decision trees. In addition,
there are many versions of free-ware including my own version, which is distributed
from my website (http://c2s2.yale.edu).

Acknowledgements This research is supported in part by grant R01DA016750 from the National
Institutes on Drug Abuse.

References

Altman, E.I.: Bankruptcy, Credit Risk and High Yield Junk Bonds. Blackwell Publishers, Malden,
MA (2002)

Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns
of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. Proc. Natl. Acad. Sci. 96, 6745–6750 (1999)

Bacchetti, P., Segal, M.R.: Survival trees with time-dependent covariates: application to estimating
changes in the incubation period of AIDS. Lifetime Data Anal. 1, 35–47 (1995)

Bahl, L.R., Brown, P.F., de Sousa, P.V., Mercer R.L.: A tree-based language model for natural
language speech recognition. IEEE Trans. AS and SP 37, 1001–1008 (1989)

Banerjee, M., Biswas, D., Sakr, W., Wood, D.P. Jr.: Recursive partitioning for prognostic grouping
of patients with clinically localized prostate carcinoma. Cancer 89, 404–411 (2000)

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees,
Wadsworth, Belmont, California (1984)

Breiman, L.: Bagging predictors. Mach. Learn. 26, 123–140 (1994)
Breiman, L.: Bagging predictors, Mach. Learn., 26, 123–140 (1996)
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32 (2001)
Brennan, N., Parameswaran, P. et al.: A Method for Selecting Stocks within Sectors. Schroder

Salomon Smith Barney (2001)
Buhlmann, P., Yu, B.: Boosting with the L-2 loss: Regression and classification. J. Am. Stat. Assoc.

98, 324–339 (2003)
Buhlmann, P., Yu, B.: Analyzing bagging. Ann. Stat. 30, 927–961 (2002)
Carmelli, D., Halpern, J., Swan, G.E., Dame, A., McElroy, M., Gelb, A.B., Rosenman, R.H.:

27-year mortality in the western collaborative group study: construction of risk groups by
recursive partitioning. J. Clin. Epidemiol. 44, 1341–1351 (1991)

Carmelli, D., Zhang, H.P., Swan, G.E.: Obesity and 33 years of coronary heart disease and cancer
mortality in the western collaborative group study. Epidemiology 8, 378–383 (1997)

http://c2s2.yale.edu


880 H. Zhang

Chen, X., Liu, CT., Zhang, M., Zhang, H.: A forest-based approach to identifying gene and gene
gene interactions. Proc Natl Acad Sci USA, 104, 19199–19203 (2007)

Chen, X., Rusinko, A., Young, S.S.: Recursive partitioning analysis of a large structure-activity
data set using three-dimensional descriptors. J. Chem. Inform. Comput. Sci. 38, 1054–1062
(1998)

Ciampi, A., Couturier, A., Li, S.L.: Prediction trees with soft nodes for binary outcomes. Stat. Med.
21, 1145–1165 (2002)

Ciampi, A., Hogg, S., McKinney, S., Thiffault, J.: A computer program for recursive partition and
amalgamation for censored survival data. Comput Meth. Programs Biomed. 26, 239–256 (1988)

Ciampi, A., Thiffault, J., Nakache J.-P., Asselain, B.: Stratification by stepwise regression,
correspondence analysis and recursive partition: A comparison of three methods of analysis
for survival data with covariates. Comput. Stat. Data Anal. 4, 185–204 (1986)

Cox, D.R.: Regression models and life-tables (with discussion), Journal of the Royal Statistical
Society, Series B, 34, 187–220 (1972)

Cox, D.R.: The analysis of multivariate binary data. Appl. Stat. 21, 113–120 (1972)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-

based Learning Methods, Cambridge University Press, Cambridge (2000)
Crowley, J., LeBlanc, M., Gentleman, R., Salmon, S.: Exploratory methods in survival analysis.

In: Koul, H.L., Deshpande, J.V.: (eds.) IMS Lecture Notes – Monograph Series 27, pp. 55–77.
IMS, Hayward, CA (1995)

Crowley, J., LeBlanc, M., Jacobson, J., Salmon S.: Some exploratory methods for survival data.
In: Lin, D.Y., Fleming, T.R. (eds.) Proceedings of the First Seattle Symposium in Biostatistics,
Springer, New York (1997)

Davis, R., Anderson, J.: Exponential survival trees. Stat. Med. 8, 947–962 (1989)
Desilva, G.L., Hull, J.J.: Proper noun detection in document images. Pattern Recogn. 27, 311–320

(1994)
Diggle, P.J., Liang, K.Y., Zeger, S.L.: Analysis of Longitudinal Data, Oxford Science Publications,

New York (1994)
Donoho, D.L.: CART and best-ortho-basis: A connection. Ann. Stat. 25, 1870–1911 (1997)
Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7, 179–188

(1936)
Fitzmaurice, G., Laird, N.M.: A likelihood-based method for analyzing longitudinal binary

responses. Biometrika 80, 141–151 (1993)
Fox, S.H., Whalen, G.F., Sanders, M.M., Burleson, J.A., Jennings, K., Kurtzman, S., Kreutzer, D.:

Angiogenesis in normal tissue adjacent to colon cancer. J. Surg. Oncol. 69, 230–234 (1998)
Friedman, J.H.: A recursive partitioning decision rule for nonparametric classification. IEEE Trans.

Comput. C-26, 404–407 (1977)
Frydman, H., Altman, E.I., Kao, D.-I.: Introducing Recursive Partitioning for Financial Classifi-

cation: The Case of Financial Distress. In: Altman ed. Bankruptcy, pp. 37–59. Credit Risk and
High Yield Junk Bonds (2002)

Geman, D., Jedynak, B.: An active testing model for tracking roads in satellite images. IEEE Trans.
Pattern Anal. Mach. Intell. 18, 1–14 (1996)

Genuer, R., Poggi, J.M., Tuleau, C.: Random Forests: some methodological insights, Rapport de
Recherche, Institut National de Recherche en Informatique et en Automatique (2008)

Goldman, L., Cook, F., Johnson, P., Brand, D., Rouan, G., Lee, T.: Prediction of the need for
intensive care in patients who come to emergency departments with acute chest pain. New Engl.
J. Med. 334, 1498–504 (1996)

Goldman, L., Weinberg, M., Olshen, R.A., Cook, F., Sargent, R. et al.: A computer protocol to
predict myocardial infarction in emergency department patients with chest pain. New Engl.
J. Med. 307, 588–597 (1982)

Gordon, L., Olshen, R.A.: Asymptotically efficient solutions to the classification problem. Ann.
Stat. 6, 515–533 (1978)

Gordon, L., Olshen, R.A.: Consistent nonparametric regression from recursive partitioning
schemes. J. Multivariate Anal. 10, 611–627 (1980)



29 Recursive Partitioning and Tree-based Methods 881

Gordon, L., Olshen, R.A.: Almost surely consistent nonparametric regression from recursive
partitioning schemes. J. Multivariate Anal. 15, 147–163 (1984)

Gordon, L., Olshen, R.A.: Tree-structured survival analysis. Canc. Treat. Rep. 69, 1065–1069
(1985)

Huang, X., Chen, S.D., Soong, S.J.: Piecewise exponential survival trees with time-dependent
covariates. Biometrics 54, 1420–14333 (1998)

Inoue, K., Slaton, J.W., Karashima, T., Shuin, T., Sweeney, P., Millikan, R., Dinney, C.P.: The
prognostic value of angiogenesis factor expression for predicting recurrence and metastasis of
bladder cancer after neoadjuvant chemotherapy and radical cystectomy. Clin. Canc. Res. 6,
4866–4873 (2000)

Intrator, O., Kooperberg, C.: Trees and splines in survival analysis. Stat. Meth. Med. Res. 4, 237–
262 (1995)

Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Random Survival Forests, the Annals
of Applied Statistics, 2, 841–860 (2008)

Kullback, S., Leibler, R.A.: On information and sufficiency, The Annals of Mathematical Statistics,
22, 79–86 (1951)

Kwak, L.W., Halpern, J., Olshen, R.A., Horning, S.J.: Prognostic significance of actual dose
intensity in diffuse large-cell lymphoma: results of a tree-structured survival analysis. J. Clin.
Oncol. 8, 963–977 (1990)

LeBlanc, M., Crowley, J.: Relative risk trees for censored survival data. Biometrics 48, 411–425
(1992)

LeBlanc, M., Crowley, J.: Survival trees by goodness-of-split. J. Am. Stat. Assoc. 88, 457–467
(1993)

LeBlanc, M., Crowley, J.: A review of tree-based prognostic models. In: Thall, P.F. (eds/) Recent
Advances in Clinical Trial Design and Analysis, pp. 113–124. Kluwer, New York (1995)

Levin, N., Zahavi, J., Olitsky, M.: Amos – A probability-driven, customer-oriented decision
support system for target marketing of solo mailings. Eur. J. Oper. Res. 87, 708–721 (1995)

Lin, S., Cutler, D.J., Zwick, M.E., Chakravarti, A.: Haplotype inference in random population
samples, American Journal of Human Genetics, 71, 1129–1137 (2002)

Long, W.L., Griffith, J.L., Selker, H.P., D’Agostino, R.B.: A comparison of logistic regression to
decision tree induction in a medical domain. Comput. Biomed. Res. 26, 74–97 (1993)

Lugosi, G., Nobel, A.B.: Consistency of data-driven histogram methods for density estimation and
classification. Ann. Stat. 24, 687–706 (1996)

Miller, R.G.: Survival Analysis, Wiley, New York (1981)
Morgan, J.N., Sonquist, J.A.: Problems in the analysis of survey data and a proposal. J. Am. Stat.

Assoc. 58, 415–434 (1963)
Nagata, K., Okano, Y., Nozawa, Y.: Differential expression of low Mr GTP-binding proteins in

human megakaryoblastic leukemia cell line, MEG-01 and their possible involvement in the
differentiation process. Thromb. Haemostasis 77, 368–375 (1997)

Nobel, A.B.: Histogram regression estimation using data-dependent partitions. Ann. Stat. 24,
1084–1105 (1996)

Nobel, A.B., Olshen, R.A.: Termination and continuity of greedy growing for tree structured vector
quantizers. IEEE Trans. Inform. Theor. 42, 191–206 (1996)

Owens, E.A., Griffiths, R.E., Ratnatunga, K.U.: Using oblique decision trees for the morphological
classification of galaxies. Mon. Not. Roy. Astron. Soc. 281, 153–157 (1996)

Pace, R.K.: Parametric, semiparametric and nonparametric estimation of characteristic values
within mass assessment and hedonic pricing models. J. R. Estate Finance Econ. 11, 195–217
(1995)

Quinlan, J.R.: Unknown attribute values in induction. In: Proceedings of the Sixth International
Machine Learning Workshop, Morgan Kaufmann, Cornell, New York (1989)

Segal, M.R.: Regression trees for censored data. Biometrics 44, 35–48 (1988)
Segal, M.R.: Tree-structured methods for longitudinal data. J. Am. Stat. Assoc. 87, 407–418 (1992)
Segal, M.R.: Extending the elements of tree-structured regression. Stat. Meth. Med. Res. 4,

219–236 (1995)



882 H. Zhang

Segal, M.R., Bloch, D.A.: A comparison of estimated proportional hazards models and regression
trees. Stat. Med. 8, 539–550 (1989)

Selker, H.P., Griffith, J.L., Patil, S., Long, W.L., D’Agostino, R.B.: A comparison of performance
of mathematical predictive methods for medical diagnosis: Identifying acute cardiac ischemia
among emergency department patients. J. Investig. Med. 43, 468–476 (1995)

Therneau, T.M., Grambsch, P.M., Fleming, T.R.: Martingale-based residuals for survival models.
Biometrika 77, 147–160 (1990)

Toshina, K., Hirata, I., Maemura, K., Sasaki, S., Murano, M., Nitta, M., Yamauchi, H., Nishikawa,
T., Hamamoto, N., Katsu, K.: Enprostil, a prostaglandin-E-2 analogue, inhibits interleukin-8
production of human colonic epithelial cell lines. Scand. J. Immunol. 52, 570–575 (2000)

Wang, M., Chen, X., Zhang, H.: Maximal conditional chi-square importance in random forests.
Bioinformatics 26, 831–837 (2010)

Wasson, J.H., Sox, H.C., Neff, R.K., Goldman, L.: Clinical prediction rules: Applications and
methodologic standards. New Engl. J. Med. 313, 793–799 (1985)

Yeates, L.C., Powis, G.: The expression of the molecular chaperone calnexin is decreased in cancer
cells grown as colonies compared to monolayer. Biochem. Biophys. Res. Comm. 238, 66–70
(1997)

Zhang, H.P.: Splitting criteria in survival trees. In: Statistical Modelling: Proceedings of the 10th
International Workshop on Statistical Modeling, pp. 305–314. Springer (1995)

Zhang, H.P.: Classification trees for multiple binary responses. J. Am. Stat. Assoc. 93, 180–193
(1998)

Zhang, H.P., Bracken, M.B.: Tree-based risk factor analysis of preterm delivery and small-for-
gestational-age birth. Am. J. Epidemiol. 141, 70–78 (1995)

Zhang, H.P., Bracken, M.B.: Tree-based, two-stage risk factor analysis for spontaneous abortion.
Am. J. Epidemiol. 144, 989–996 (1996)

Zhang, H.P., Crowley, J., Sox, H., Olshen, R.A.: Tree structural statistical methods. Encyclopedia
of Biostatistics, 6: pp. 4561–4573. Wiley, Chichester, England (2001)

Zhang, H.P., Holford, T., Bracken, M.B.: A tree-based methods of analysis for prospective studies.
Stat. Med. 15, 37–49 (1996)

Zhang, H.P., Singer, B.: Recursive Partitioning and Its Applications. Springer, New York (2010)
Zhang, H.P., Yu, C.Y., Singer, B.: Cell and tumor classification using gene expression data:

Construction of forests. Proc. Natl. Acad. Sci. 100, 4168–4172 (2003)
Zhang, H.P., Yu, C.Y., Singer, B., Xiong, M.M.: Recursive partitioning for tumor classification

with gene expression microarray data. Proc. Natl. Acad. Sci. 98, 6730–6735 (2001)
Zhao, L.P., Prentice, R.L.: Correlated binary regression using a quadratic exponential model.

Biometrika 77, 642–648 (1990)
Zhang, H., Wang, M.: Search for the smallest random forest. Statistics and its Interface 2, 381–388

(2009)



Chapter 30
Support Vector Machines

Konrad Rieck, Sören Sonnenburg, Sebastian Mika, Christin Schäfer,
Pavel Laskov, David Tax, and Klaus-Robert Müller

30.1 Introduction

In this chapter we introduce basic concepts and ideas of the Support Vector
Machines (SVM). In the first section we formulate the learning problem in a
statistical framework. A special focus is put on the concept of consistency, which
leads to the principle of structural risk minimization (SRM). Application of these
ideas to classification problems brings us to the basic, linear formulation of the
SVM, described in Sect. 30.3. We then introduce the so called “kernel trick” as a
tool for building a non-linear SVM as well as applying an SVM to non-vectorial data
(Sect. 30.4). The practical issues of implementation of the SVM training algorithms
and the related optimization problems are the topic of Sect. 30.5. Extensions of the
SVM algorithms for the problems of non-linear regression and novelty detection
are presented in Sect. 30.6. A brief description of the most successful applications
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of the SVM is given in Sect. 30.7. Finally, in the last Sect. 30.8 we summarize the
main ideas of the chapter.

30.2 Learning from Examples

30.2.1 General Setting of Statistical Learning

The main objective of statistical learning is to find a description of an unknown
dependency between measurements of objects and certain properties of these
objects. The measurements, to be also called “input variables”, are assumed to
be observable in all objects of interest. On the contrary, the objects’ properties,
or “output variables”, are in general available only for a small subset of objects
known as examples. The purpose of estimating the dependency between the input
and output variables is to be able to determine the values of output variables for any
object of interest.

The problem of estimating an unknown dependency occurs in various practical
applications. For example, the input variables can be the prices for a set of stocks
and the output variable the direction of change in a certain stock price. As another
example, the input can be some medical parameters and the output the probability
of a patient having a certain disease. An essential feature of statistical learning is
that the information is assumed to be contained in a limited set of examples (the
sample), and the estimated dependency should be as accurate as possible for all
objects of interest.

To proceed with a formal description of main properties of statistical learning,
let us fix some notation. Let X denote the space of input variables representing the
objects, and let Y be the space of output variables. The structure of Y defines the
learning task. For example, if Y D R, the learning amounts to a regression problem,
for Y D f1; 2; 3g, the task is a classification problem with three classes, etc.

Let Z D f.xi ; yi / 2 X � Y j i D 1; : : : ;M g be a given sample. We assume
that there exists some unknown but fixed probability distribution P.X; Y / over the
space X � Y generating our data; that is, .xi ; yi / 2 Z are drawn identically and
independently from P.X; Y /.

The dependency to be estimated takes the form of a function f W X ! Y . To
decide which of many possible functions best describes the dependency observed in
the training sample, we introduce the concept of a loss function:

` W Y � Y ! R: (30.1)

Such a loss function should be bounded from below and should measure the cost
`.f .x/; y/ of discrepancy between the predicted value f .x/ 2 Y and the true
value y 2 Y . Then the risk, i.e. the expected loss incurred from using a particular
prediction function f , can be defined as:
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R.f / D EP Œ`.f .x/; y/�; (30.2)

where EP denotes the expectation with respect to the joint distribution P.X; Y / of
input and output variables.

Notice that, if we would know the joint distribution P.X; Y /, the learning
problem can be easily solved. For example, in the classification case one could
calculate the conditional probability P.Y jX/ and compute the so called “Bayes-
optimal solution”:

f �.x/ D argmax
y12Y

Z

y22Y
`.y1; y2/ P.Y D y2jX D x/: (30.3)

However, in our setup P.X; Y / is unknown, and only a sample Z is available. One
possible solution would be to estimate P.X; Y / or P.Y jX/ from the sample Z .
In many theoretical and practical approaches the inference is carried out exactly in
this way (Bishop 1995; Devroye et al. 1996; Duda et al. 2001). But it is also well
known that estimating a density from empirical data is a hard problem, especially
in the multi-dimensional case. The number of examples one needs in order to get
a reliable estimate of a density in N dimensions grows exponentially with N – a
well-known difficulty denoted as curse of dimensionality.

In the approach to be followed in this chapter we shall attempt to estimate
the function f directly from Z without using P.X; Y / or P.Y jX/. For this, the
following three steps are necessary. First, a class of functions F needs to be defined.
Second, a suitable loss ` is to be fixed. Finally, a method has to be provided to find
the function f which minimizes the risk R.f / among all f 2 F . Such method is
called an “induction principle”. Desirable properties of such an induction principle
are discussed in the next section.

30.2.2 Desirable Properties for Induction Principles

The most commonly used induction principle is the one of minimizing the empirical
risk

Remp.f / D 1

M

MX

iD1
`.f .xi /; yi /; (30.4)

which is the empirical counterpart of the expected risk (30.2). The goal of learning
in our setup is to find an algorithm that, given a training sample Z , finds a function
f 2 F that minimizes (30.4). Notice that this will not necessarily result in a unique
solution. As one can see in Fig. 30.1 more than one function can have the same (e.g.
zero) empirical risk on the same data sample.

However, these functions can take arbitrary values at other points in X ; hence
the solution that minimizes the empirical risk is not guaranteed to minimize the true
risk (30.2).



886 K. Rieck et al.

Fig. 30.1 Two functions that separate two classes of data points with zero empirical risk. Without
further information it is impossible to decide for one of them

Fig. 30.2 An illustration of underfitting and overfitting on a small sample. The simple linear
function (solid line) underfits the data and already makes training errors. The complex one (dash-
dotted line) has no training error but may not generalize well on unseen data. The function with
intermediate complexity (dashed line) seems to capture the decision boundary best

The other two phenomena arising in relation with the minimization of the
empirical risk (30.4) are overfitting and underfitting. An overly complex function
f might describe the training data well but does not generalize to unseen examples.
The converse could also happen. Assume the function class F we can choose
from is very small, e.g. it contains only a single, fixed function. Then our learning
machine would trivially be consistent, since R.f / D const for all f 2 F . But if
this single f 2 F is not by accident the rule that generates our data, the decisions are
unrelated to the concept generating our data. This phenomenon is called underfitting
(cf. Fig. 30.2).

Apparently we need some way of controlling how large the class of functions
F is, such that we avoid overfitting and underfitting and obtain solutions that
generalize well (i.e. with reasonable complexity). The questions of consistency,
overfitting and underfitting are closely related and will lead us to a concept known as
regularization (e.g. Morozov 1984; Tikhonov and Arsenin 1977) and to the principle
of Structural Risk Minimization (Vapnik 1998).

Regularization

In the previous paragraphs we have shown that for successful learning it is not
enough to find a function with minimal empirical risk. If we are interested in a
good estimation of the true risk on all possible data points, we need to introduce a
complexity control and choose our solution by minimizing the following objective
function:

Remp.f;Z/C �*.f /: (30.5)
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This equation shows a regularization approach. We add a penalty term to make the
trade-off between the complexity of the function class and the empirical error. Using
such a regularization, a bound for the true risk can be derived.

There are several possibilities to choose � and ˝ in order to derive a consistent
inductive principle. In the following sections we will describe the choice inspired
by the work of Vapnik. Other possible choices are for example Akaike information
criterion (Akaike 1974) or Mallows Cp (Mallows 1973), used in classical statistics,
as well as spline-regularization (Wahba 1980), wavelet regularization (Donoho
et al. 1996), CART (Breiman et al. 1984) and many other modern approaches.
A general foundation for regularization in model selection is given in (Barron
et al. 1999). Bartlett and Mendelson (2002) investigate regularization in the context
of SVM.

Consistency

Let us define more closely what consistency means and how it can be characterized.
Let us denote by f M the function f 2 F that minimizes (30.4) for a given training
sampleZ of sizeM . The notion of consistency implies that, asM !1, jR.f M /�
Remp.f

M /j ! 0 in probability. We have already seen in a previous example that
such convergence may not be the case in general, the reason being that f M now
depends on the sample Z . One can show that a necessary and sufficient condition
for consistency is uniform convergence, over all functions in F , of the difference
between the expected and the empirical risk to zero. This insight is summarized in
the following theorem:

Theorem 1 (Vapnik and Chervonenkis 1991). One-sided uniform convergence in
probability, i.e.

lim
M!1P

"

sup
f 2F

�
R.f /� Remp.f /

�
> �

#

D 0; (30.6)

for all � > 0, is a necessary and sufficient condition for (nontrivial) consistency of
empirical risk minimization.

Since the condition in the theorem is not only sufficient but also necessary it seems
reasonable that any “good” learning machine implementing a specific function class
should satisfy condition (30.6).

30.2.3 Structural Risk Minimization

Consequently, the question arises how one can choose function classes that satisfy
Theorem 1 in practice? It will turn out that this is possible and it crucially depends
on the question how complex the functions in the class F are, a question we have
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already seen to be equally important when talking about overfitting and underfitting.
But what does complexity mean and how can one control the size of a function
class?

The complexity of a function class can be measured by the number of different
possible combinations of outcome assignments when choosing functions from
this class. This quantity is usually difficult to obtain theoretically for useful
classes of functions. Popular approximations of this measure are covering numbers
(Shawe-Taylor et al. 1998), annealed entropy and fat-shattering dimension (Bartlett
et al. 1996), VC-entropy and VC-dimension (Vapnik 1998), or Rademacher and
Gaussian complexity (Bartlett and Mendelson 2002). We will not go into detail
about these quantities here.

A specific way of controlling the complexity of a function class is given by VC-
theory and the principle of Structural Risk Minimization (Vapnik 1998). Here the
concept of complexity is captured by the VC-dimension h of the function class F .
Roughly speaking, the VC-dimension measures how many (training) points can be
shattered (i.e. separated for all possible labellings) using functions of the class. This
quantity can be used to bound the probability that the expected error deviates much
from the empirical error for any function from the class, that is VC-style bounds
usually take the form

"

sup
f 2F

�
R.f /� Remp.f;Z/

�
> �

#

� H.F ;M; �/; (30.7)

where H is some function that depends on properties of the function class F ,
e.g. the VC-dimension, the size M of the training set and the desired closeness �.
By equating the right-hand side of (30.7) to ı > 0 and solvingH D ı for � one can
turn these bounds into expressions of the following form: with probability at least
1 � ı over the random draw of the training sample Z ,

R.f / � Remp.f;Z/C eH.F ;M; ı/; (30.8)

where eH is the penalty term that measures our degree of uncertainty. If the function
class is simple then eH is small. This penalty term usually increases if we require
a higher precision (e.g. with log. 1

ı
/) and decreases if we observe more examples

(e.g. with 1
M

or 1p
M

). Note that this prototypical bound is structurally identical to
the regularized risk functional in (30.5). The practical implication of bounds like
(30.8) is that our learning machine should be constructed such that:

1. It finds a function with a small empirical error, and
2. At the same time keeps the penalty term eH small.

Only if our learning principle can control both quantities we have a guarantee
that the expected error of our estimate will be small (cf. Fig. 30.3).

One of the most famous of these VC-style bounds is due to Vapnik and
Chervonenkis:
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uncertainty

empirical risk

low

high

complexity of Function Set
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Fig. 30.3 Schematic
illustration of (30.8). The
dash-dotted line represents
the training error (empirical
risk), the dashed line the
upper bound on the
complexity term. With higher
complexity the empirical
error decreases but the upper
bound on the risk uncertainty
becomes worse. For a certain
complexity of the function
class the best expected risk
(solid line) is obtained. Thus,
in practice the goal is to find
the best trade-off between
empirical error and
complexity

Theorem 2 (Vapnik and Chervonenkis 1991). Let h denote the VC-dimension of
the function class F and let Remp be defined by (30.4) using the 0=1-loss. For all
ı > 0 and f 2 F the inequality bounding the risk

R.f / � Remp.f;Z/C
s
h
�
ln 2M

h
C 1� � ln.ı=4/

M
(30.9)

holds with probability of at least 1 � ı for M > h over the random draw of the
training sample Z .

This theorem lays the ground for the SVM algorithm that we will consider in
more detail in Sect. 30.3.

Based on Theorem 2 the principle of Structural Risk Minimization (SRM)
has been derived (e.g. Cortes and Vapnik 1995; Vapnik 1998). According to this
principle a nested family of function classes F1 � � � � � Fk with non-decreasing
VC-dimension h1 � � � � � hk is constructed. After the solutions f1; : : : ; fk of the
empirical risk minimization (30.4) in the function classes F1; : : : ;Fk have been
found, the principle chooses the function class Fi (and the function fi ) such that an
upper bound on the generalization error like (30.9) is minimized.

30.3 Linear SVM: Learning Theory in Practice

Having summarized the prerequisites from statistical learning theory, we now
give an example of a particular learning machine that builds upon these insights.
The Support Vector Machine algorithm (SVM) developed by Vapnik and others
(e.g. Boser et al. 1992; Cortes and Vapnik 1995; Cristianini and Shawe-Taylor
2000; Müller et al. 2001; Schölkopf and Smola 2002; Vapnik 1998, and numerous
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others) is one of the most successful classification techniques over the last decade,
especially after being combined with the kernel idea which we shall discuss in
Sect. 30.4.

30.3.1 Linear Separation Planes

We are now going to discuss how one could possibly control the size of a function
class and how to select the empirical risk minimizer in this class.

In the following, let us assume that we are dealing with a two class classification
problem (i.e. Y D f�1;C1g) in a real-valued vector space, e.g. X D RN . Further,
we assume that the distribution of these two classes is such that they are linearly
separable, i.e. one can find a linear function of the inputs x 2 X such that f .x/ < 0
whenever the label y D �1 and f .x/ � 0 otherwise. This can be conveniently
expressed by a hyperplane in the space X , i.e. we are looking for a function f of
the form

f .x/ D .w>x/C b: (30.10)

Assume that the function class F we choose our solution from is the one containing
all possible hyperplanes, i.e. F D ff W X ! R j f .x/ D .w>x/ C bg. For
X D RN it is rather straightforward to show that the VC-dimension of this class
of functions will be h D N C 1, that is, in an N -dimensional space the maximal
number of points that can be separated for an arbitrary labelling using a hyperplane
is N C 1.

30.3.2 Canonical Hyperplanes and Margins

To apply the SRM principle in practice, not only must the VC-dimension of the
class of hyperplanes be finite, rather a nested structure of function classes must be
defined. To this end we define the function classes

F� D ff W RN ! R j f .x/ D .w>x/C b; kwk � �g: (30.11)

Clearly F�1 � F�2 whenever�1 � �2. But what effect does constraining the norm
of the weight vector have on the corresponding VC-dimensions of F�? It turns out
that we also get h.F�1/ � h.F�2/ for �1 � �2, as we will see shortly in (30.12).

The crucial ingredient in making the function classes F� nested is to define a
unique representation for each hyperplane. We introduce the concept of canonical
hyperplanes and the notion of margins. If the data are separable by .w; b/ then
they are also separable by any (positive) multiple of .w; b/ and hence there exist an
infinite number of representations for the same separating hyperplane. In particular,
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all function classes F� would have the same VC-dimension as they would contain
the same functions in different representations.

A canonical hyperplane with respect to a sample Z of M points is defined as a
function

f .x/ D .w>x/C b;
where w is normalized such that

min
iD1;:::;M jf .xi /j D 1:

The notion of a canonical hyperplane is illustrated in Fig. 30.4. Notice that none of
the training examples produces an absolute output that is smaller than one and the
examples closest the hyperplane have exactly an output of one, i.e. .w>x/Cb D ˙1.
In Sect. 30.5, we will see that the latter objects will be used in the description of the
hyperplane, and they are therefore called the support vectors. In Fig. 30.4 these are
the objects which are connected to the decision boundary by the dashed lines. Since
we assumed the sample Z to be linearly separable, we can turn any f that separates
the data into a canonical hyperplane by suitably normalizing the weight vector w
and adjusting the threshold b correspondingly.

The margin is defined to be the minimal Euclidean distance between any training
example xi and the separating hyperplane. Intuitively, the margin measures how
good the separation between the two classes by a hyperplane is. If this hyperplane is
in the canonical form, the margin can be measured by the length of the weight vector
w. Consider two support vectors x1 and x2 from different classes. The margin is
given by the projection of the distance between these two points on the direction
perpendicular to the hyperplane. This distance can be computed as (e.g. Vapnik
1998) �

w>

kwk .x1 � x2/
�
D 2

kwk :

w

Fig. 30.4 Linear SVM and margins. A linear SVM classifier is defined by the normal vector w of
a hyperplane and an offset b. The decision boundary is fxj.w>x/Cb D 0g (solid line). Each of the
two half spaces induced by this hyperplane corresponds to one class, i.e. f .x/ D sgn..w>x/Cb/.
The margin of a linear classifier is the minimal distance of any training point to the hyperplane.
For the case shown in the picture it is the distance between the dotted lines and the solid line
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2
2

Fig. 30.5 Illustration of why a large margin reduces the complexity of a linear hyperplane
classifier. If we choose hyperplanes with a large margin, there is only a small number of
possibilities to separate the data, i.e. the VC-dimension of F�1 is small (left panel). On the contrary,
if we allow smaller margins there are more separating hyperplanes, i.e. the VC-dimension of F�2
is large (right panel)

The smaller the norm of the weight vector w in the canonical representation, the
larger the margin.

More generally, it was shown (e.g. Vapnik 1998) that if the hyperplane is
constructed under the constraint kwk2 � � then the VC-dimension of the class
F� is bounded by

h � min.�2R2 C 1;N C 1/; (30.12)

where R is the radius of the smallest sphere around the data. Thus, if we bound the
margin of a function class from below, say by 2

�
, we can control its VC-dimension

and hence apply the SRM principle as shown in Fig. 30.5.
A particularly important insight is that the complexity only indirectly depends on

the dimensionality of the data. This is very much in contrast to density estimation,
where the problems become more difficult as the dimensionality of the data
increases. For SVM classifier, if we can achieve a large margin the problem remains
simple.

30.4 Kernel Functions

In the previous section we have seen that by restricting ourselves to linear functions
one can control the complexity of a learning machine. We have thus avoided the
problem of dealing with too complex functions at the price of being able to solve
only linearly separable problems. In the following we show how to extend the linear
SVM for constructing a rich set of non-linear decision functions by abstracting the
task of learning from the actual data representation. Based on this abstraction we
then introduce techniques for learning with structured data, such as strings and trees.
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Central to the success of non-linear SVM was the re-discovery of the so called
Reproducing Kernel Hilbert Spaces (RKHS) and Mercer’s Theorem (Boser et al.
1992). There is a large body of literature dealing with kernel functions, their
theory and applicability, see e.g. Kolmogorov (1941), Aronszajn (1950), Aizerman
et al. (1964), Boser et al. (1992) or Schölkopf and Smola (2002), Shawe-Taylor
and Cristianini (2004) for an overview. We only recall the basic definitions and
properties necessary for turning our linear, hyperplane based learning technique
into a very powerful algorithm capable of finding non-linear decision functions with
controllable complexity.

30.4.1 The Kernel Trick

The basic idea of the so called kernel methods is to first preprocess the data by some
non-linear mapping ˚ and then to apply the same linear algorithm as before but in
the image space of ˚ (cf. Fig. 30.6 for an illustration).

More formally we apply the mapping

˚ W RN ! E

x 7! ˚.x/

to the data x1; : : : ;xM 2 X and consider our algorithm in E instead of X , i.e. the
sample is preprocessed as

f.˚.x1/; y1/; : : : ; .˚.xM/; yM /g � .E � Y/M :

In certain applications we might have sufficient knowledge about our problem
such that we can design an appropriate ˚ by hand (e.g. Blankertz et al. 2002; Zien
et al. 2000). An alternative strategy is to consider a class of mappings and choose

input
space

feature
space

input
space

Φ

a b c

Fig. 30.6 Three views on the same two class separation problem (Zien et al. 2000). (a) A linear
separation of the input points is not possible without errors. Even allowing misclassification of one
data point results in a small margin. (b) A better separation is provided by a non-linear surface
in the input space. (c) This non-linear surface corresponds to a linear surface in a feature space.
Data points are mapped from input space to feature space by the function ˚ induced by the kernel
function k



894 K. Rieck et al.

the ˚ providing the best representation for a particular learning task (Braun et al.
2008). If this mapping is not too complex to compute and the space E is not too
high-dimensional, we might just explicitly apply this mapping to our data. Similar
transformations are applied in neural networks (Bishop 1995), radial basis networks
(e.g. Moody and Darken 1989) or Boosting algorithms (Freund and Schapire 1997),
where the input data is mapped to some representation given by the hidden layer,
the RBF bumps or the hypotheses space, respectively (Rätsch et al. 2002). The
difference with kernel methods, however, is that for a suitably chosen ˚ we get
an algorithm that has powerful non-linearities but is still very intuitive and retains
most of the favorable properties of its linear input space version.

The problem with explicitly using the mapping ˚ to construct a feature space is
that the resulting space can be extremely high-dimensional. As an example consider
the case when the input space X consists of images of 16 � 16 pixels, i.e. 256
dimensional vectors, and we choose 5th order monomials as non-linear features.
The dimensionality of such space would be

�
5C 256� 1

5

�
� 1010:

Such a mapping would clearly be intractable to carry out explicitly. We are not only
facing the technical problem of storing the data and doing the computations, but
we are also introducing problems due to the fact that we are now working in an
extremely sparsely sampled space.

The problems concerning the storage and the manipulation of the high dimen-
sional data, however, can be alleviated. It turns out that for a certain class of
mappings we are well able to compute scalar products in this new space even if
it is extremely high dimensional. Simplifying the above example of computing all
5th order products of 256 pixels to that of computing all 2nd order products of two
“pixels”, i.e.

x D .x1; x2/ and ˚.x/ D .x21 ;
p
2x1x2; x

2
2/;

the computation of a scalar product between two such feature space vectors can be
readily reformulated in terms of a so-called kernel function k:

.˚.x/>˚.z// D .x21;
p
2 x1x2; x

2
2/.z

2
1;
p
2 z1z2; z

2
2/
>

D ..x1; x2/.z1; z2/
>/2

D .x>z/2

DW k.x; z/:

This finding generalizes: For x; z 2 RN , and d 2 N the kernel function

k.x; z/ D .x>z/d
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computes a scalar product in the space of all products of d vector entries (monomi-
als) of x and z (Schölkopf et al. 1998b; Vapnik 1998).

The kernel trick (Aizerman et al. 1964; Boser et al. 1992; Vapnik 1998) is to
take the original algorithm and formulate it such, that we only use ˚.x/ in scalar
products. Then, if we can efficiently evaluate these scalar products, we do not need
to carry out the mapping ˚ explicitly and can still solve the problem in the huge
feature space E . Furthermore, we do not need to know the mapping ˚ but only the
kernel function.

Now we can ask two questions:

1. For which mappings ˚ does there exist a simple way to evaluate the scalar
product?

2. Under which conditions does a function k W X � X ! R correspond to a scalar
product?

The first question is difficult to answer in general. But for the second question there
exists an answer which we present in the following.

30.4.2 Feature Spaces

To address the question whether a kernel function k W X � X ! R equals a
scalar product in some feature space, let us first introduce some more notation and
definitions. Given a training sample fx1; : : : ;xM g � X , theM �M matrixK with
elementsKij D k.xi ;xj / is called the kernel matrix or the Gram matrix. AnM�M
matrixK (and any other symmetric matrix) is said to be positive semi-definite if any
quadratic form overK is positive or zero, i.e. for all ri 2 R, i D 1; : : : ;M , we have

MX

i;jD1
ri rjKij � 0: (30.13)

Positive semi-definite kernels are exactly those giving rise to a positive semi-definite
kernel matrix K for all M and all sets fx1; : : : ;xM g � X . Note that for a kernel
(and a matrix) to be positive semi-definite, it is necessary to be symmetric and non-
negative on the diagonal.

For any positive semi-definite kernel k we can construct a mapping ˚ into a
feature space E , such that k acts as a scalar product over ˚ . As a matter of fact, it is
possible to construct more than one of these spaces. We will omit many crucial
details and only present the central results. For more details see Schölkopf and
Smola (2002).

The Feature Map

Given a real-valued, positive semi-definite kernel function k, defined over a non-
empty set X , we define the feature space E as the space of all functions mapping
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from X to R, i.e. as E D RX D ff j f W X ! Rg. Notice that, unlike the example
in Fig. 30.6, this feature space is not a usual Euclidean space but rather a vector
space of functions. The mapping ˚ is now defined as

˚ W X ! RX ; ˚.x/ D k.�;x/; (30.14)

i.e. ˚ maps each x to the function k.�;x/, i.e. the kernel k where the first argument
is free and the second is fixed to x (e.g., Schölkopf et al. 1999). One can show that
the set of all linear combinations of the form

f .�/ D
MX

iD1
˛i k.�;xi /; (30.15)

for arbitrary M , ˛i 2 R, and x1; : : : ;xM forms a vector space. Especially, for all
functions of the form (30.15) one gets

hk.�;x/; f iH D f .x/;

where h�; �iH denotes the scalar product in some Hilbert space that will become
clearer below. In particular we have

hk.�;x/; k.�; z/iH D h˚.x/; ˚.z/iE
D k.x; z/:

The last property is the reason why positive semi-definite kernels are also called
reproducing kernels: they reproduce the evaluation of f on x. It also shows that k
indeed computes, as desired, the scalar product in E for ˚.x/ defined as in (30.14).
Hence (30.14) is one possible realization of the mapping associated with a kernel
and is called the feature map (for its empirical counterpart see e.g. Mika 2002).
The following is a formal definition of a Reproducing Kernel Hilbert Space (cf.
Schölkopf and Smola 2002).

Definition 1 (Reproducing Kernel Hilbert Space (RKHS)). Let X be a
nonempty set and H a Hilbert space of functions f W X ! R. Then H is called a
reproducing kernel Hilbert space endowed with the dot product h�; �i if there exists
a function k W X � X ! R with the properties that:

1. k has the reproducing property hf; k.�;x/i D f .x/ for all f 2 H, in particular
hk.�;x/; k.�; z/i D k.x; z/, and

2. k spans H, i.e. H D spanfk.�;x/jx 2 X g, where A denotes the completion of
the set A.

One can show, that the kernel k for such a RKHS is uniquely determined.
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Mercer Kernels

As a second way to identify a feature space associated with a kernel k one can use a
technique derived from Mercer’s Theorem.

The Mercer’s Theorem, which we will reproduce in the following, states that
if a function k gives rise to a positive integral operator, the evaluation of k.x; z/
can be expressed as a finite or infinite, absolute and uniformly convergent series,
almost everywhere. This series defines a feature space and an associated mapping
connected to the function k.

Let X be a finite measure space, i.e. a space with a -algebra and a measure �
satisfying �.X / � 1.

Theorem 3 (Mercer 1909). Suppose k 2 L1.X 2; �/ is a symmetric real-valued
function such that the integral operator

Tk W L2.X ; �/! L2.X ; �/; .Tkf /.x/ WD
Z

X
k.x; z/f .z/d�.z/

is positive semi-definite, i.e. for all f 2 L2.X ; �/
Z

X 2

k.x; z/f .x/f .z/d�.x/d�.z/ � 0:

Let 'j 2 L2.X ; �/ be the normalized orthogonal eigenfunctions of Tk associated
with the eigenvalues �j � 0, sorted in non-increasing order. Then:

1. .�j /j 2 l1
2. k.x; z/ D PNE

jD1 �j 'j .x/'j .z/ holds for almost all x; z. Either NE 2 N or
NE D 1; in the latter case, the series converges absolutely and uniformly for
almost all x; z.

If we choose as feature space E D lNE
2 and the mapping ˚ as

˚ W X ! l
NE
2 ; ˚.x/ D .

q
�j 'j .x//jD1;:::;NE ;

we see from the second statement in Theorem 3 that the kernel k corresponds to the
dot product in lNE

2 , i.e. k.x; z/ D h˚.x/; ˚.z/i.
The kernels satisfying the Mercer’s Theorem are called Mercer kernels. It can

be shown that, if the set X on which the kernel is defined, is compact, a kernel is
a Mercer kernel if and only if it is a positive semi-definite kernel (cf. Smola et al.
1998). Table 30.1 lists some of the most widely used kernel functions in machine
learning applications.

Note that recently Braun et al. (2008) have observed that the excellent generaliza-
tion that is typically observed when using SVMs in high-dimensional applications
with few samples is due to its very economic representation in the feature space E .
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Table 30.1 Common kernel functions:

Gaussian RBF: k.x; z/ D exp

��kx � zk2
c

�
(30.16)

Polynomial: k.x; z/ D ..x>z/C ™/d (30.17)

Inverse multi-quadric: k.x; z/ D 1pkx � zk2 C c2

E N

d

Fig. 30.7 Illustration of the feature space representation. The data is embedded in a high-
dimensional feature space E . Since only, say, N data points exist, the data given through a
normalized kernel is situated in a N -dimensional ball in E . However, only a small d -dimensional
subspace of the N -dimensional ball in E is task relevant, e.g. for the classification or regression at
hand. Thus, if the kernel is well chosen, then kernel methods make very economical use of the data
as they map the data into an effectively very low dimensional task relevant subspace of E (see also
Braun et al. 2008 for further discussion and proofs)

Given the appropriate kernel, only a very low dimensional subspace is task relevant
(see Fig. 30.7).

30.4.3 Kernels for Structured Data

Another important feature of kernel functions is that they are not restricted to
operate on vectorial data. Kernels can be defined over any type of data including
discrete and structured representations. Consequently, a large body of research
has studied kernel functions for structured data, such as for analysis of strings
and sequences (e.g. Lodhi et al. 2002; Sonnenburg et al. 2007a; Watkins 2000),
hierarchical representations and trees (e.g. Collins and Duffy 2002; Kashima and
Koyanagi 2002; Rieck et al. 2010) as well as network and graph structures (e.g.
Gärtner et al. 2004; Kashima et al. 2004; Vishwanathan et al. 2010). We herein
provide a brief introduction to kernel functions defined over strings and trees. An
extensive discussion of kernels for structured data is provided by Shawe-Taylor and
Cristianini (2004).

String Kernels

Strings and sequences are a natural representation of data in many areas of computer
science. For example, several applications in bioinformatics are concerned with
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studying strings of DNA and many tasks of information retrieval center on analysis
of text documents. Before introducing kernels for strings, let us introduce some
notation. A string or sequence x is a concatenation of symbols from an alphabet A,
such as the characters in text or the bases of DNA. The set of all possible
concatenations of symbols fromA is denoted byA� and the set of all concatenations
of length n by An

For characterizing the content of sequential data, most string kernels make use
of a predefined set L � A� of relevant strings. This set L can be interpreted as a
language that is used to capture structure contained in strings and may range from
a simple selection of interesting terms to complex constructs involving gaps and
wildcards. We focus on two basic definitions that are widely used for learning with
string kernels: words and n-grams (Fig. 30.8).

In the domain of information retrieval and natural language processing, the set L
is often defined as words of a natural language, such as English or German. In this
setting, L is either given explicitly by providing a dictionary of terms or implicitly
by partitioning strings according to a set of delimiter symbols D � A, such that

L D .A nD/�

where L corresponds to all concatenations of non-delimiter symbols. Based on this
definition, the content of a string can be described in terms of contained words from
the set L – a representation often denoted as a “bag of words” (Joachims 1999).

In several applications, however, the structure underlying sequential data is
unknown and no set of appropriate words can be defined a priori. An alternative
technique for defining the setL is to move a sliding window of length n over a string
and to extract n-grams (substrings of length n, cf. Damashek 1995). Formally, this
set can be defined as

L D An:
Using this definition of L, the content of a string can be described in terms of
contained n-grams, even if no prior knowledge about its structure is available,
for example as in many applications of bioinformatics involving DNA and protein
sequences.

Based on the set L, a feature map ˚ can be defined which embeds strings in an
jLj-dimensional vector space spanned by the strings of L, that is,

˚ W A� ! RjLj; ˚.x/ D �#w.x/
�

w2L; (30.18)

words:

n - grams:

x=

Fig. 30.8 Representations of
a string x using words and
n-grams
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where #w.x/ returns the number of occurrences of the string w in the string x.
Alternatively, #w.x/ may be defined as frequency, probability or binary flag for the
occurrences of w in x.

This feature map ˚ provides the basis for constructing a string kernel which
takes the form

k W A� �A� ! R; k.x; z/ D
X

w2L
#w.x/ � #w.z/ (30.19)

and corresponds to an inner product in the feature space spanned by the strings ofL.
Depending on the complexity of the set L, however, the dimension of this features
space may grow almost arbitrarily. Thus in practice, computation of string kernels is
rarely conducted using explicit vectors, but carried out by means of advanced data
structures, such as hash maps, Tries and suffix trees (cf. Sonnenburg et al. 2007a).
The corresponding realizations of (30.19) for words and n-grams are denoted as
Bag-of-Words Kernel (Joachims 1999) and Spectrum Kernel (Leslie et al. 2002),
respectively.

Due to the ease of incorporation with kernel-based learning methods, string
kernels have gained considerable attention in research, starting from first realiza-
tions of Haussler (1999) and Watkins (2000), and extending to domain-specific
kernels for natural language processing (Cancedda et al. 2003; Lodhi et al. 2002)
and bioinformatics (Zien et al. 2000). In particular, the challenge of uncovering
structure in DNA has influenced several extensions of the feature map in (30.18),
for example by incorporating generative models (Jaakkola et al. 2000; Tsuda et al.
2002), inexact and position-dependent matching (Leslie and Kuang 2004; Leslie
et al. 2003; Rätsch et al. 2005; Sonnenburg et al. 2006) as well as sequence
alignments (Cuturi et al. 2007; Vert et al. 2004). A discussion of several string
kernels and their implementations is provided by Sonnenburg et al. (2007a).

Tree Kernels

Besides sequences and strings, several applications of statistics and machine
learning involve tree-structured data, for example in form of parse trees in natural
language processing or molecule structures in chemistry. Formally, a tree x is an
acyclic graph with a dedicated root, where we additionally require each node x to
be labeled with a symbol. To navigate in a tree, we address the i -th child of a node
x by xi and denote the number of children by jxj. Moreover, we denote the set of all
possible trees by T . Similar to strings, we construct a feature map ˚ which embeds
a tree x in a jT j-dimensional vector space spanned by all possible trees, that is

˚ W T ! RjT j; ˚.x/ D �#t .x/
�
t2T ; (30.20)

where #t .x/ counts the occurrences of the (sub)tree t in the tree x. In contrast to
(30.18), the set T is more involved than a list of strings and thus requires special
techniques for constructing a feasible kernel function.
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A generic technique for defining kernels over structured data is the convolution
of local kernels defined over sub-structures (Haussler 1999). This concept has been
applied to tree data by Collins and Duffy (2002) for constructing a tree kernel which
implicitly computes an inner product by counting shared subtrees. Given two trees
x and y , this kernel is defined as

k.x; z/ D h˚.x/˚.z/i D
X

x2x

X

z2z

c.x; z/ (30.21)

where the counting function c recursively determines the number of shared
subtrees rooted in the tree nodes x and z.

The function c is defined as c.x; z/ D 0 if x and z have different labels and
c.x; z/ D 1 if x and z are leave nodes of the same label. In all other cases, the
definition of c follows a recursive rule given by

c.x; z/ D
jxjY

iD1
.1C c.xi ; zi //: (30.22)

To understand how the counting of subtrees relates to an inner product, let us
consider two trees x; z and a subtree t , which occurs m times in x and n times in
z. Both trees share the subtree t and we can count mn distinct pairs of t common
to x and z. If we consider the feature map ˚ given in (30.20), we have ˚t.x/ D m
and ˚t.z/ D n and also obtain ˚t.x/˚t .z/ D mn: Hence, by counting all shared
subtrees of x and z, we arrive at an inner product over the vectors ˚.x/ and ˚.z/.
As an example, Fig. 30.9 illustrates two simple trees and their shared subtrees.

Several extensions and refinements of the kernel in (30.21) have been proposed
to increase its expressiveness for specific learning tasks. For example, there exists
several variations of (30.22) which account for different types of subtrees, such as
complete trees (Vishwanathan and Smola 2004) and ordered trees (Kashima and
Koyanagi 2002). A generic extension by Moschitti (2006) allows for controlling
the vertical as well as the horizontal contribution of subtree counts. Furthermore,
different techniques have been studied for alleviating the quadratic run-time of

x= z=

(4)(4) (1) (1) (1)

Shared subtrees

Fig. 30.9 Shared subtrees of two trees. The numbers in brackets indicate the number of occur-
rences for each shared subtree pair
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counting shared subtrees, most notably the approximation framework of Rieck et al.
(2010) which enables computing tree kernels in almost linear time.

30.4.4 Properties of Kernels

Besides being useful tools for constructing non-linear classifiers or learning with
structured data, kernels possess some additional properties that make them an
interesting choice in algorithms. It was shown (Girosi et al. 1993) that using a
particular positive semi-definite kernel corresponds to an implicit choice of a reg-
ularization operator. For translation-invariant kernels, the regularization properties
can be expressed conveniently in Fourier space in terms of the frequencies (Girosi
1998; Smola et al. 1998). For example, Gaussian kernels (cf. (30.16)) correspond to
a general smoothness assumption in all k-th order derivatives (Smola et al. 1998).
Vice versa, using this correspondence kernels matching a certain prior about the
frequency content of the data can be constructed so as to reflect our prior problem
knowledge.

Furthermore, many algorithms can be formulated using so called conditionally
positive definite kernels (cf. Smola et al. 1998) which are a superclass of positive
semi-definite kernels considered so far. They can be interpreted as generalized non-
linear dissimilarity measures (opposed to just the scalar product) and are applicable
e.g. in SVM and kernel PCA.

30.5 Implementation of SVM

30.5.1 Basic Formulations

We are now at the point to merge the ideas of statistical learning, structural risk
minimization and reproducing kernels into a single algorithm, Support Vector
Machines, suitable for a wide range of practical application. The main goal of this
algorithm is to find a weight vector w separating the data Z with the largest possible
margin.

Separable Data

Assume that the data are separable. Our goal is to find the smallest possible w
without committing any error. This can be expressed by the following quadratic
optimization problem:

min
w;b

1

2
kwk2; (30.23)
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subject to yi
�
.w>xi /C b

� � 1; 8i D 1; : : : ;M:

The constraints in (30.23) assure that w and b are chosen such that no example
has a distance to the hyperplane smaller than one. The problem can be solved
directly by using a quadratic optimizer. Notice that the optimal solution renders
a canonical hyperplane. In contrast to many neural networks (e.g. Bishop 1995)
one can always find the global minimum. In fact, all minima of (30.23) are global
minima, although they might not be unique as e.g. in the case whenM < N , where
N is the dimensionality of the data.

In the formulation (30.23), referred to as the primal formulation, we are bound
to use the original data xi . In order to apply the kernel trick (cf. sect. 30.4.1) we
need to transform the problem such that the only operation involving the original
data x is an inner product between certain data points. This can be achieved by
transforming the problem to the dual formulation. The notion of duality is an
essential part of non-linear optimization theory, for details one can refer to any
standard textbook on mathematical programming (e.g. Bertsekas 1995; Luenberger
1973). For our purposes it is important that for every quadratic optimization problem
there exists a dual problem which is also a quadratic problem. If both the primal and
the dual problems have an optimal solution then the values of the objective function
at the optimal solutions coincide. This implies that by solving the dual problem –
which uses the original data x only through inner products – the solution to the
primal problem can be reconstructed.

To derive the dual of (30.23), we introduce Lagrange multipliers ˛i � 0,
i D 1; : : : ;M , one for each of the constraints in (30.23). We obtain the following
Lagrangian:

L.w; b;˛/ D 1

2
kwk2 �

MX

iD1
˛i .yi ..w>xi /C b/� 1/: (30.24)

The task is to minimize (30.24) with respect to w; b and to maximize it with respect
to ˛i . At the optimal point, we have the following saddle point equations:

@L

@b
D 0 and

@L

@w
D 0;

which translate into

MX

iD1
˛iyi D 0 and w D

MX

iD1
˛iyixi : (30.25)

From the right equation of (30.25), we find that w is contained in the subspace
spanned by the xi in the training set. By substituting (30.25) into (30.24), we get
the dual quadratic optimization problem:
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max
˛

MX

iD1
˛i � 1

2

MX

i;jD1
˛i˛j yiyj

�
x>i xj

�
; (30.26)

subject to ˛i � 0; i D 1; : : : ;M; (30.27)

MX

iD1
˛iyi D 0: (30.28)

Thus, by solving the dual optimization problem, one obtains the coefficients ˛i ,
i D 1; : : : ;M , which one needs to express the solution w. This leads to the decision
function:

f .x/ D sgn
�
.w>xi /C b

�

D sgn

 
MX

iD1
yi˛i

�
x>i x

�C b
!

: (30.29)

Note that the scalar product in this dual formulation can be directly replaced by
the kernel mapping k.xi ;x/, opening the possibility for the non-linear classifiers.
This expression does not directly depend on the dimensionalityN of the data but on
the number of training examples M . As long as we are able to evaluate the scalar
product .x>i x/ the dimensionality could be arbitrary, even infinite.

Non-separable Data

So far we have only considered the separable case which corresponds to an
empirical error of zero (cf. Theorem 2). However for many practical applications
this assumption is violated. If the data is not linearly separable then problem (30.23)
has no feasible solution. By allowing for some errors we might get better results and
avoid overfitting effects (cf. Fig. 30.2).

Therefore a “good” trade-off between the empirical risk and the complexity term
in (30.9) needs to be found. Using a technique which was first proposed in (Bennett
and Mangasarian 1992) and later used for SVMs in (Cortes and Vapnik 1995), one
introduces slack-variables to relax the hard-margin constraints:

yi ..w>xi /C b/ � 1 � �i ; �i � 0; i D 1; : : : ;M; (30.30)

additionally allowing for some classification errors. The SVM solution can then
be found by (a) keeping the upper bound on the VC dimension small and (b) by
minimizing an upper bound

PM
iD1 �i on the empirical risk, i.e. the number of training

errors. Thus, one minimizes

min
w;b;�

1

2
kwk2 C C

MX

iD1
�i ;
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where the regularization constant C > 0 determines the trade-off between the
empirical error and the complexity term. This leads to the dual problem:

max
˛

MX

iD1
˛i � 1

2

MX

i;jD1
˛i˛j yiyj

�
x>i xj

�
; (30.31)

subject to 0 � ˛i � C; i D 1; : : : ;M; (30.32)

MX

iD1
˛iyi D 0: (30.33)

From introducing the slack-variables �i , one gets the box constraints that limit the
size of the Lagrange multipliers: ˛i � C , i D 1; : : : ;M .

The threshold b can be computed by exploiting the fact that for all support vectors
xi with 0 < ˛i < C , the slack variable �i is zero. This follows from the Karush-
Kuhn-Tucker (KKT) conditions (cf. (30.34) below). Thus, for any support vector xi
with ˛i < C holds:

yi

0

@
MX

jD1
yj ˛j

�
x>i xj

�C b
1

A D 1:

Averaging over these patterns I yields a numerically stable solution:

b D 1

jI j
X

i2I

0

@yi �
MX

jD1
yj ˛j

�
x>i xj

�
1

A :

Sparsity

The Karush-Kuhn-Tucker (KKT) conditions are the necessary conditions for
an optimal solution of a non-linear programming problem (e.g. Bertsekas 1995;
Luenberger 1973). The conditions are particularly simple for the dual SVM problem
(30.31), (30.32) and (30.33) (Vapnik 1982):

˛i D 0) yif .xi / � 1 and �i D 0;
0 < ˛i < C ) yif .xi / D 1 and �i D 0;

˛i D C ) yif .xi / � 1 and �i � 0:
(30.34)

They reveal one of the most important properties of SVMs: the solution is sparse
in ˛. For all examples outside the margin area the optimal ˛i ’s are zero. Specifically,
the KKT conditions show that only such ˛i connected to a training pattern xi ,
which is either on the edge of (i.e. 0 < ˛i < C and yif .xi / D 1) or inside the
margin area (i.e. ˛i D C and yif .xi / < 1) are non-zero. These are exactly the
support vectors as mentioned in Sect. 30.3.2.
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30.5.2 Decomposition

The practical usefulness of SVM stems from their ability to provide arbitrary non-
linear separation boundaries and at the same time to control generalization ability
through the parameterC and the kernel parameters. In order to utilize these features
it is necessary to work with the dual formulation (30.31)–(30.33) of the SVM
training problem. This can be difficult from the computational point of view, for
two reasons:

1. One needs to solve the quadratic programming problem with as many variables
as the numberM of available data points (this can be quite large, up to 105–106).

2. Merely to define the quadratic problem formally, one needs to store the M �M
kernel matrix, which poses an insurmountable storage problem for large datasets.

Because of these implications, it is usually impossible to use the standard optimiza-
tion tools (e.g. MINOS, CPLEX, LOQO) for solving the SVM training problems
on datasets containing larger than 10,000 examples. In the following sections the
decomposition techniques are presented, which use the special structure of the SVM
problem to provide efficient training algorithms.

Basic Principles

The key idea of decomposition is to freeze all but a small number of optimization
variables and to solve a sequence of constant-size problems. The set of variables
optimized at a current iteration is referred to as the working set. Because the working
set is re-optimized, the value of the objective function is improved at each iteration
provided the working set is not optimal before re-optimization.

The mathematics of the decomposition technique can be best seen in the matrix
notation. Let ˛ D .˛1; : : : ˛M /

>, let y D .y1; : : : ; yM /
>, let H be the matrix with

the entriesHij D yiyj k.xi ;xj /, and let 1 denote the vector of lengthM consisting
of all 1s. Then the dual SVM problem (30.31)–(30.33) can be written in the matrix
form as:

max
˛

1>˛ � 1
2
˛>H˛; (30.35)

subject to y>˛ D 0; (30.36)

˛ � C1 � 0; (30.37)

˛ � 0: (30.38)

Let us partition the vector ˛ into ˛B of the variables to be included in the working
set at a current iteration and the vector ˛N of the remaining variables. The matrix
H is partitioned as
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H D
�
HBB HBN

HNB HNN


;

with the corresponding parts determined by the index sets B and N . By re-writing
the problem (30.35)–(30.38) using the partitioned matrix notation, and observing
that only the free variables ˛B are to be considered as variables, the following sub-
problem, to be solved at each iteration, is obtained:

max
˛

.1>B � ˛>NHNB/˛B � 1
2
˛>BHBB˛B; (30.39)

subject to y>B˛B D �yN˛N ; (30.40)

˛B � C1B � 0; (30.41)

˛B � 0: (30.42)

Choosing the size q of the working set B relatively small (usually q � 100) one can
ensure that the sub-problem (30.39)–(30.42) is easily solved by any optimization
tool.

Iteration of this procedure is carried out until the following termination criteria,
derived from Karush-Kuhn-Tucker conditions (30.34), are satisfied to the required
precision �:

b � � � yi �PM
jD1 yj ˛jK.xi ;xj / � b C �; 8i W 0 < ˛i < C; (30.43)

yi

�PM
jD1 yj ˛jK.xi ;xj /C b

	
� 1 � �; 8i W ˛i D 0; (30.44)

yi

�PM
jD1 yj ˛jK.xi ;xj /C b

	
� 1C �; 8i W ˛i D C: (30.45)

Working Set Selection: Feasible Direction Algorithms

The crucial issue in the decomposition technique presented above is the selection of
working sets. First, the provision that a working set must be sub-optimal before re-
optimization is essential to prevent the algorithm from cycling. Second, the working
set selection affects the speed of the algorithm: if sub-optimal working sets are
selected more or less at random, the algorithm converges very slowly. Finally,
the working set selection is important in theoretical analysis of decomposition
algorithms; in particular in the convergence proofs and in the analysis of the
convergence rate.

Two main approaches exist to the working set selection in the SVM decom-
position algorithms: the heuristic approach and the feasible direction approach.
The former has been used in the original paper of Osuna et al. (1997a) on SVM
decomposition and has been mainly used in the specific flavor of decomposition
algorithms called Sequential Minimal Optimization (SMO), presented in the
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next section. The feasible direction decomposition algorithms root in the SVMlight

algorithm of Joachims (1999) for pattern recognition, with the formal connection
to the feasible direction methods of non-linear programming established by Laskov
(2002).

The notion of a “feasible direction” stems from the classical techniques of
non-linear programming subject to linear constraints (Bertsekas 1995; Zoutendijk
1960). It refers to the direction along which any step of the magnitude ı satisfying
0 < ı � ı0, for some fixed ı0, results in a feasible solution to the non-linear
program. For any non-linear program, finding the feasible direction amounts to a
solution of a linear programming problem. In particular, for the dual SVM training
problem (30.31)–(30.33) the following problem must be solved:

max
d

g>d ; (30.46)

subject to y>d D 0; (30.47)

di � 0; for all ˛i D 0; (30.48)

di � 0; for all ˛i D C; (30.49)

jjd jj2 � 1; (30.50)

where g is the gradient of the objective function (30.31). Solving the feasible
direction problem exactly at each iteration is inefficient because the linear program
(30.46)–(30.50) has all M variables. However, an approximate solution to the
feasible direction problem can be efficiently found by using the normalization
di 2 f�1; 0; 1g instead of (30.50) and requiring that the number of positive direction
components is equal to the number of the negative components. In this case, the
solution is obtained by sorting all examples by the quantity giyi , and selecting q=2
examples with the largest and q=2 examples with the smallest values. In fact, by
using a Heap data structure, sorting can be avoided, and the entire selection can
be executed in O.q logM/ time. The motivation behind the quantity giyi can be
traced back to the first-order Karush-Kuhn-Tucker conditions (Laskov 2002), which
provides the solid formal background for the feasible direction SVM decomposition.

Convergence of the feasible direction SVM decomposition has been proved
by Lin (2001), and the linear convergence rate has been observed experimentally
(Laskov 2002).

Sequential Minimal Optimization

The Sequential Minimal Optimization (SMO) algorithm proposed by Platt (1999)
is another popular and efficient algorithm for the SVM training. In this algorithm
the idea of decomposition is taken to its extreme by reducing the working sets to two
points – the smallest size for which it is possible to maintain the equality constraint
(30.33). For two points the optimal solution can be computed analytically without
calling an optimization tool.
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α1 α1

α2 α2

(0, 0)

α1− α2= γ α1+ α2= γ

(α1
old, α2

old)

(α1
old, α2

old)

(0, 0)

Fig. 30.10 Constraints of the SVM training problem with two examples

The analytical computation of the optimal solution is based on the following
idea: given the solution .˛old

1 ; ˛
old
2 /, the optimal update is computed to obtain the

solution .˛new
1 ; ˛new

2 /. To carry out the update, first the constraints (30.32)–(30.33)
have to be obeyed. The geometry of these constraints depends on whether the labels
y1 and y2 are equal or not. The two possible configurations are shown in Fig. 30.10.
If y1 ¤ y2 (left picture) the solution should be sought along the line ˛1 � ˛2 D � ,
where � D ˛old

1 Cy1y2˛old
2 : If y1 D y2 (right picture) the solution should be sought

along the line ˛1 C ˛2 D � . If the solution transgresses the bound of the box, it
should be clipped at the bound.

The optimal values of the variables along the line are computed by eliminating
one of the variables through the equality constraint and finding the unconstrained
minimum of the objective function, for example, eliminating ˛1 one obtains the
following update rule for ˛2:

˛new
2 D ˛old

2 �
y2.E1 �E2/

�
; (30.51)

where

E1 DPM
jD1 yj ˛j k.x1;xj /C b � y1; (30.52)

E2 DPM
jD1 yj ˛j k.x2;xj /C b � y2; (30.53)

� D 2 k.x1;x2/� k.x1;x1/� k.x2;x2/: (30.54)

Next, the bound constraints should be taken care of. Depending on the geometry,
one computes the following lower and upper bounds on the value of the variable ˛2:
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L D
(

max .0; ˛old
2 � ˛old

1 /; if y1 ¤ y2;
max .0; ˛old

2 C ˛old
1 � C/; if y1 D y2;

H D
(

min .C; C C ˛old
2 � ˛old

1 /; if y1 ¤ y2;
min .C; ˛old

2 C ˛old
1 /; if y1 D y2:

The constrained optimum is then found by clipping the unconstrained optimum to
the ends of the line segment:

˛new
2 WD

8
ˆ̂
<

ˆ̂
:

H; if ˛new
2 � H;

L; if ˛new
2 � L;

˛new
2 ; otherwise:

Finally, the value of ˛new
1 is computed:

˛new
1 D ˛old

1 C y1y2.˛old
2 � ˛new

2 /: (30.55)

The working set selection in the SMO algorithm is carried out by means of
two heuristics. The “first choice” heuristic is responsible for the choice of the first
example in each pair. Following this heuristic, all examples that violate the KKT
condition (30.34) are used in turns as the first example in the pair. More precisely,
the algorithm makes repeated passes only through the examples whose ˛i is strictly
between then bounds, and only when all such examples satisfy the KKT conditions
the sweep over the entire data is done to bring in new examples. The “second
choice” heuristic is responsible for the selection of the second example in the pair.
It is intended to bring in such an example that results in the largest step taken
during the joint optimization (30.51). As a cheap approximation of this step the
numerator jE1�E2j is taken (the denominator, which involves evaluation of kernels,
can be expensive to compute). Following the strategy to maximize jE1 � E2j, the
SMO algorithm chooses the example with the largest E2, if E1 is negative, and the
example with the smallest E2, if E1 is positive. Under unusual circumstances, when
no progress can be made using the second heuristic above, a hierarchy of weaker
heuristics is applied, the details of which are provided by Platt (1999).

30.5.3 Incremental Support Vector Optimization

Many real-life machine learning problems can be more naturally viewed as online
rather than batch learning problems. Indeed, the data is often collected continuously
in time, and, more importantly, the concepts to be learned may also evolve in time.
Significant effort has been spent in the recent years on the development of online
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SVM learning algorithms (e.g. Kivinen et al. 2001; Ralaivola and d’Alché Buc
2001; Rüping 2002). An elegant solution to online SVM learning is the incremental
SVM proposed by Cauwenberghs and Poggio (2001), which provides a framework
for exact online learning.

The incremental SVM learning algorithm can be best presented using the
following abstract form of the SVM optimization problem:

max
�

min
0�˛�C
a>˛CbD0

W W D �c>˛C 1

2
˛>K˛C �.a>˛C b/; (30.56)

where c and a are M � 1 vectors, K is the M �M kernel matrix and b is a scalar.
By defining the meaning of the abstract parameters a, b and c for the particular
SVM problem at hand, one can use the same algorithmic structure for different
SVM algorithms. In particular, for the standard support vector classifiers (Vapnik
1998), take c D 1; a D y , b D 0 and the given regularization constant C ; the same
definition applies to the �-SVM (Schölkopf et al. 2000) except that C D 1

N�
.

The incremental SVM provides a procedure for adding one example to an
existing optimal solution. When a new point k is added, its weight ˛k is initially
set to 0. Then the weights of other points and � should be updated, in order to
obtain the optimal solution for the enlarged dataset. Likewise, when a point k is to
be removed from the dataset, its weight is forced to 0, while updating the weights
of the remaining points and � so that the solution obtained with ˛k D 0 is optimal
for the reduced dataset. The online learning follows naturally from the incremental
learning: the new example is added while some old example is removed from the
working set.

The basic principle of the incremental SVM (Cauwenberghs and Poggio 2001)
is that updates to the state of the example k should keep the remaining examples in
their optimal state. In other words, the KKT conditions (30.34) expressed for the
gradients gi :

gi D �ci CKi;W˛C �ai

8
ˆ̂
<

ˆ̂:

� 0; if ˛i D 0;
D 0; if 0 < ˛i < C ;

� 0; if ˛i D C ;
(30.57)

@W

@�
D a>˛C b D 0; (30.58)

must be maintained for all the examples, except possibly for the current example k.
Let S denote the set of unbounded support vectors and R the set of other examples.
In order to maintain the KKT conditions (30.57), one can express increments to the
weights of the unbounded support vectors and to the gradients of other examples as
a linear function of the increment of the current example’s weight�˛k :

�˛S D ˇ�˛k; �gR D ��˛k: (30.59)
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The sensitivity relations (30.59) only make sense for the fixed composition of sets S
andR. To proceed with learning, we need to detect the largest increment�˛max

k such
that the sets S and R remain intact. After changing the SVM state according to the
relations (30.59) evaluated for the increment�˛max

k , the sensitivity vectors ˇ and �
must be recomputed accordingly (depending of whether an example enters or leaves
the set S ). For the details of accounting the reader should refer to (Cauwenberghs
and Poggio 2001; Tax and Laskov 2003). The iteration terminates when the current
element satisfies the KKT conditions (30.57) as well.

30.5.4 Large-Scale Learning with SVM

The kernel trick has enabled SVMs to be applied to several domains and it has been
one of the reasons SVMs are used with great success, often delivering state-of-the-
art results. Unfortunately, it is also the kernel trick that limits the speed of applying
SVMs and renders them unsuitable in several large-scale applications. The reason
is that for predicting the class label of a single example, we need to compare it with
all support vectors, that is, computing

f .x/ D sgn

 
MX

iD1
˛iyi k.xi ;x/C b

!

:

Consequently, the speed for application of an SVM decays linearly with the number
of support vectors. It is this same operation that slows down training in most SVM
implementations and potentially the cause for a shift in interest back to linear SVMs
for large-scale applications. In the linear case, the decision of an SVM (without bias
term b) takes the form

f .x/ D sgn
�
wT x

�

and can be computed in linear time in the number of dimensions of the feature space,
i.e. O.dim.X //. Furthermore, if either the vectors x or w are sparse, this run-time
can be further reduced to processing non-zero entries only.

The first linear SVM for large-scale application has been proposed Joachims
(2006, SVMperf) and builds on solving the underlying optimization problem using
the concept of cutting planes (Kelly 1960). The resulting linear SVM achieves an
"-precise solution in time linear in the number of samples and dimensions, that is,
O.Mdim.X //.

Theorem 4 (Joachims 2006). For any " > 0; C > 0; and any training sample
Z D f.x1; y1/; : : : ; .xM ; yM /g, SVMperf terminates after at most

max



2

"
;
8 CR2

�2

�

iterations, where R D maxMiD1 jjxi jj:
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This method has been further refined by Teo et al. (2007, 2010) and later on
by Franc and Sonnenburg (2008, 2009) who improve convergence rates to O. 1

"
/.

Following a different line of research, Fan et al. (2008) have developed a dual
coordinate descent approach that performs similar, but drastically reduces memory
requirements, as no set of cutting planes needs to be stored. For that reason we will
explain this algorithm in more detail.

The idea of the dual coordinate descent method by Fan et al. (2008) is to perform
coordinate descent on a single dual variable ˛i while maintaining the SVM normal
vector w. Note that SMO (cf. Sect. 30.5.2) updates two variables at the same time,
while coordinate descent updates a single variable only. More formally, considering
the dual objective function D.˛/ D 1

2

PM
i;jD1 ˛i˛j yiyj k.xi ;xj / �PM

iD1 ˛i , one
solves the dual optimization problem for a single variable ˛i via

min
d

D.˛C d 1i/

subject to 0 � ˛i C d � C

where 1i is the vector whose i -th component is 1 while its other components are
zero, i.e. 1i D .0; : : : ; 0; 1; 0; : : : ; 0/T . By inserting .˛Cd 1i/ intoD and removing
terms independent of d , we arrive at

min
d

d 2

2
k.xi ;xi /C d

0

@
MX

jD1
yiyj k.xi ;xj /˛j � 1

1

A (30.60)

subject to 0 � ˛i C d � C:

If ˛i is optimal, that is d D 0, the projected gradient is 0 (cf. PG in Algorithm 13)
and we leave this coordinate unchanged. Otherwise, asserting k.xi ;xi / > 0 one
computes the new value of ˛i by determining the derivative of (30.60) with respect
to d . Setting the derivative to zero while ensuring 0 � ˛i � C finally leads to the
following update rule

˛i  min

 

max

 

˛i �
PM

jD1 yiyj k.xi ;xj /˛j � 1
k.xi ;xi /

; 0

!

; C

!

:

It should be noted that for efficiency the k.xi ;xi / in the denominator can be
precomputed. In addition, we know from (30.25) that w D PM

iD1 ˛iyixi and
subsequently the numerator can be written as yiwT xi �1:We avoid to recompute w
in each iteration by starting with ˛ D 0 and w D 0, and only compute updates on w
via w wC .˛i � N̨ i /yixi . As a result, dual coordinate descent closely resembles
a perceptron-style algorithm with a step size obtained via the SVM dual.

The full algorithm is outlined in Algorithm 13. It can be shown that dual
coordinate descent reaches a "-precise solution D.˛/ � D.˛�/ C " in O.log. 1

"
//

iterations with an iteration cost of O.Mdim.X // (Fan et al. 2008).
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Algorithm 13 Dual Coordinate Descent (Fan et al. 2008)
˛ D 0 and wD 0
repeat

for i D 1; : : : ;M do
G D yiwT xi � 1

PG D
8
<̂

:̂

min.G; 0/ if ˛i D 0

max.G; 0/ if ˛i D C

G if 0 < ˛i < C
if jPGj ¤ 0 then
N̨i  ˛i
˛i  min.max.˛i �G= NQii ; 0/; C /

w wC .˛i � N̨i /yixi
end if

end for
until Optimality

Besides dual coordinate descent, several other approaches for efficiently train-
ing linear SVMs have been proposed, for example, based on stochastic learning
concepts (e.g. Bordes et al. 2009; Bottou and Bousquet 2008; Shwartz et al. 2007;
Yu et al. 2010). Finally, there have been a number of attempts to combine the
advantages of fast linear SVM solvers with the non-linearity of kernels (Chang et al.
2010; Joachims and Yu 2009; Sonnenburg and Franc 2010)

30.6 Extensions of SVM

30.6.1 Regression

In this subsection we will give a short overview of the idea of Support Vector
Regression (SVR). A regression problem is given whenever Y D R for the training
dataset Z D f.xi ; yi / 2 X � Yji D 1; : : : ;M g (cf. Sect. 30.2.1) and our interest is
to find a function of the form f W X ! R.

In our discussion of statistical learning in Sect. 30.2.1 we have not talked about
loss functions except for saying that they should be non-negative functions of the
form (30.1). The particular form of the loss function depends on the learning task.
For the pattern recognition problem the 0=1-loss function was used (cf. Theorem 2).
For the regression problem the following two loss functions are common: the simple
squared loss

`.f .x/; y/ D .f .x/ � y/2; (30.61)

and the �-insensitive loss

`.f .x/; y/ D

 jf .x/� yj � �; if jf .x/ � yj > �;

0; otherwise:
(30.62)
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Fig. 30.11 The left subplot shows the two different loss functions for the regression problem. The
right subplot gives a regression function derived with an �-insensitive loss function. The solid line
indicates the function, the dashed lines indicate the �-tube around this function

For � D 0 the �-insensitive loss equals the `1-norm, otherwise it linearly penalizes
deviations from the correct predictions by more than �.

In the left subplot of Fig. 30.11 the two error functions are shown. In the right
subplot a regression function using the �-insensitive loss function is shown for some
artificial data. The dashed lines indicate the boundaries of the area where the loss is
zero (the “tube”). Clearly most of the data is within the tube.

Similarly to the classification task, one is looking for the function that best
describes the values yi . In classification one is interested in the function that
separates two classes; in contrast, in regression one looks for the function that
contains the given dataset in its �-tube. Some data points can be allowed to lie
outside the �-tube by introducing the slack-variables.

The primal formulation for the SVR is then given by:

min
w;b;�.�/

1

2
kwk2 C C

MX

iD1
.�i C ��i /;

subject to ..w>xi /C b/� yi � � C �i ;
yi � ..w>xi /C b/ � � C ��i ;
�
.�/
i � 0; i D 1; : : : ;M:

In contrast to the primal formulation for the classification task, we have to introduce
two types of slack-variables �i and ��i , one to control the error induced by
observations that are larger than the upper bound of the �-tube, and the other for
the observations smaller than the lower bound. To enable the construction of a
non-linear regression function, a dual formulation is obtained in the similar way
to the classification SVM and the kernel trick is applied.
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As a first application, SVR has been studied for analysis of time series by
Müller et al. (1997). Further applications and an extensive description of SVR are
provided by Vapnik (1998), Cristianini and Shawe-Taylor (2000), Schölkopf and
Smola (2002).

30.6.2 One-Class Classification

Another common problem of statistical learning is one-class classification (novelty
detection). Its fundamental difference from the standard classification problem is
that the training data is not identically distributed to the test data. The dataset
contains two classes: one of them, the target class, is well sampled, while the other
class it absent or sampled very sparsely. Schölkopf et al. (2001) have proposed an
approach in which the target class is separated from the origin by a hyperplane.
Alternatively (Tax and Duin 2001), the target class can be modeled by fitting a
hypersphere with minimal radius around it. We present this approach, illustrated in
Fig. 30.12, in more detail below.

Mathematically the problem of fitting a hypersphere around the data is stated as:

min
R;a

R2 C C
MX

iD0
�i ; (30.63)

subject to jjxi � ajj2 � R2 C �i ; i D 1; : : : ;M;
�i � 0;

where a is the center of the sphere, and R is the radius. Similarly to the SVM we
make a “soft” fit by allowing non-negative slacks �i . One can likewise apply the
kernel trick by deriving the dual formulation of (30.63):

max
˛

MX

iD1
˛i k.xi ;xi /� 1

2

MX

i;jD1
˛i˛j k.xi ;xj /; (30.64)

subject to 0 � ˛i � C; i D 1; : : : ;M;

R

a

Fig. 30.12 Schematic
illustration of the hypersphere
model for describing a target
class of data. The center a
and the radius R should be
optimized to minimize the
volume of the captured space
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MX

iD1
˛i D 1:

The parameter C can be interpreted (Schölkopf et al. 2001) as the reciprocal of
the quantity 1

M�
, where � is an upper bound for the fraction of objects outside the

boundary.
To decide whether a new object belongs to the target class one should determine

its position with respect to the sphere using the formula

f .x/ D sign.R2 � k.x;x/C 2
X

i

˛i k.x;xi /�
X

i;j

˛i˛j k.xi ;xj //: (30.65)

An object with positive sign belongs to the target class and vice versa. An
incremental version of the one-class classification SVM can be obtained using the
approach of Sect. 30.5.3, with the parameters of the abstract formulation (30.56)
defined as: c D diag.K/, a D y and b D �1 (Laskov et al. 2006).

30.7 Applications

30.7.1 Optical Character Recognition (OCR)

One of the first real-world experiments carried out with SVM was done at AT&T
Bell Labs using optical character recognition (OCR) data (Cortes and Vapnik 1995;
Schölkopf et al. 1995). These early experiments already showed the astonishingly
high accuracies for SVMs which was on a par with convolutive multi-layer
perceptrons. Below we list the classification performance of SVM, some variants
not discussed in this chapter, and other classifiers on the USPS (US-Postal Service)
benchmark (parts from Simard et al. 1998). The task is to classify handwritten
digits into one of ten classes. Standard SVMs as presented here already exhibit a
performance similar to other methods.

Linear PCA & Linear SVM (Schölkopf et al. 1998b) . . . . . . . . . . . . . . . . . . . . . . .8.7%
k-Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7%
LeNet1 (Bottou et al. 1994) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2%
Regularised RBF Networks (Rätsch 1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1%
Kernel-PCA & linear SVM (Schölkopf et al. 1998b) . . . . . . . . . . . . . . . . . . . . . . 4.0%
SVM (Schölkopf et al. 1995) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.0%
Invariant SVM (Schölkopf et al. 1998a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.0%
Boosting (Drucker et al. 1993) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6%
Tangent Distance (Simard et al. 1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5%
Human error rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5%
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A benchmark problem larger than the USPS dataset (7,291 patterns) was
collected by NIST and contains 120,000 handwritten digits. Invariant SVMs achieve
an error rate of 0.7% (DeCoste and Schölkopf 2002) on this challenging and more
realistic dataset, slightly better than the tangent distance method (1.1%) or single
neural networks (LeNet 5: 0.9%). An ensemble of LeNet 4 networks that was trained
on a vast number of artificially generated patterns (using invariance transformations)
is on a par with the best SVM, and also achieved the accuracy of 0.7% (LeCun et al.
1995).

30.7.2 Text Categorization and Text Mining

The high dimensional problem of text categorization is an application for which
SVMs have performed particularly well. A popular benchmark is the Reuters-
22,173 text corpus containing 21,450 news stories, collected by Reuters in 1997,
that are partitioned and indexed into 135 different categories. The features typically
used to classify Reuters documents are 10,000-dimensional vectors containing word
frequencies within a document. SVMs have achieved excellent results using such a
coding (see e.g. Joachims 1997).

30.7.3 Network Intrusion Detection

The one-class formulation of the SVM presented in Sect. 30.6.2 provides another
example for a successful application in computer security. In the last years, the
amount and diversity of computer attacks has drastically increased, rendering
regular defenses based on manually crafted detection rules almost ineffective. By
contrast, the one-class SVM provides means for identifying unknown attacks auto-
matically as novelties and thus has gained a strong focus in security research (e.g.
Eskin et al. 2002; Nassar et al. 2008; Perdisci et al. 2009; Wahl et al. 2009).

As an example of this research, we present results from an application of the one-
class SVM for detection of unknown attacks in network traffic of the FTP protocol
(see Rieck 2009). Figure 30.13 shows the detection performance of the one-class
SVM and the rule-based detection system “Snort”. For analysing network data the
one-class SVM is applied using a string kernel defined over n-grams as presented
in Sect. 30.4.3. The one-class SVM significantly outperforms the regular detection
system by identifying 80% of the unknown attacks with almost no false alarms,
demonstrating the ability of SVMs to effectively generalize from data and surpass
manually crafted rules and heuristics.
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Fig. 30.13 One-class SVM
vs. regular intrusion detection
system (Rieck 2009)

30.7.4 Bioinformatics

SVMs are widely used in bioinformatics, defining the state-of-the-art in several
applications, like splice site detection (Degroeve et al. 2005; Rätsch et al. 2007;
Sonnenburg and Franc 2010; Sonnenburg et al. 2002; Sonnenburg et al. 2007b),
detection of transcription starts (Sonnenburg et al. 2006), translation initiation
site detection (Zien et al. 2000) and detection of several other genomic signals
(Sonnenburg et al. 2008). Various further applications have been considered, like
gene array expression monitoring (Brown et al. 2000), remote protein homology
detection (Jaakkola et al. 2000; Leslie et al. 2002), protein sub-cellular localization
Ong and Zien (2008), to detect protein protein interactions (Ben-Hur and Noble
2005) to analyze phylogenetic trees Vert (2002). For further information, the
interested reader is referred to the tutorial on support vector machines and kernels
(Ben-Hur et al. 2008).

30.7.5 Other Applications

There are numerous other applications to which SVM were successfully applied.
Examples are object and face recognition tasks (Osuna et al. 1997b), inverse prob-
lems (Vapnik 1998; Weston et al. 1999), drug design in computational chemistry
(Müller et al. 2005; Warmuth et al. 2003) and brain computer interfacing (Blankertz
et al. 2007; Müller et al. 2008). A large collection of links to SVM applications is
available at www.clopinet.com/isabelle/Projects/SVM/applist.html.

www.clopinet.com/isabelle/Projects/SVM/applist.html
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30.8 Summary and Outlook

We have shown in this chapter how the problem of learning from data can be
cast formally into the problem of estimating functions from given observations.
We have reviewed some basic notation and concepts from statistics and especially
from statistical learning theory. The latter provides us with two extremely important
insights: (1) what matters the most is not the dimensionality of the data but the
complexity of the function class we choose our estimate from, (2) consistency plays
an important role in successful learning. Closely related to these two questions is
the issue of regularization. Regularization allows us to control the complexity of
our learning machine and usually suffices to achieve consistency.

As an application of statistical learning theory we have presented the technique
for constructing a maximum margin hyperplane. Whilst it is satisfactory to have
a technique at hand that implements (at least partially) what the theory justifies,
the algorithm is only capable of finding (linear) hyperplanes. To circumvent this
restriction we introduced kernel functions yielding SVMs. Kernel functions allow
us to reformulate many algorithms in some kernel feature space that is non-linearly
related to the input space and yield powerful, non-linear techniques. Moreover,
kernel functions enable us to apply learning techniques in structured domains, such
as on string, trees and graphs. This abstraction using the kernel trick is possible
whenever we are able to express an algorithm such that it only uses the data in the
form of scalar products. However, since the algorithms are still linear in the feature
space we can use the same theory and optimization strategies as before.

Kernel algorithms have seen an extensive development over the past years.
Among many theoretical (Bartlett et al. 2002; Graepel et al. 2000; Williamson
et al. 1998) and algorithmic (Joachims 1999; Platt 1999) results on SVM itself,
new algorithms using the kernel trick have been proposed (e.g. Kernel PCA
(Schölkopf et al. 1998b), Kernel ICA (Harmeling et al. 2003), temporal Kernel
CCA (Bießmann et al. 2009) or Bayes–Point machines (Herbrich et al. 2001)).
This development is still an ongoing and exciting field of study. A large collection
of SVM implementations is contained in the shogun machine learning toolbox
(Sonnenburg et al. 2010). Furthermore, various kernel-based learning methods are
available from http://mloss.org/
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Chapter 31
Learning Under Non-stationarity: Covariate
Shift Adaptation by Importance Weighting

Masashi Sugiyama

31.1 Introduction

The goal of supervised learning is to infer an unknown input-output dependency
from training samples, by which output values for unseen test input points can
be predicted. When developing a method of supervised learning, it is commonly
assumed that the input points in the training set and the input points used for
testing follow the same probability distribution (Bishop 1995; Duda et al. 2001)
Hastie et al. (2001); Schölkopf and Smola (2002); Vapnik (1998); Wahba (1990).
However, this common assumption is not fulfilled, for example, when outside of
the training region is extrapolated or when training input points are designed by an
active learning (a.k.a. experimental design) algorithm Kanamori (2007); Kanamori
and Shimodaira (2003); Sugiyama (2006); Sugiyama and Nakajima (2009); Wiens
(2000). Situations where training and test input points follow different probability
distributions but the conditional distributions of output values given input points are
unchanged are called covariate shift Shimodaira (2000). In this chapter, we review
recently proposed techniques for alleviating for the influence of covariate shift.

Under covariate shift, standard learning techniques such as maximum likelihood
estimation are biased. It was shown that the bias caused by covariate shift can be
asymptotically canceled by weighting the loss function according to the impor-
tance – the ratio of test and training input densities Quiñonero-Candela et al. (2009);
Shimodaira (2000); Sugiyama et al. (2007); Sugiyama and Müller (2005); Sugiyama
and Kawanabe (2011, to appear); Zadrozny (2004). Similarly, standard model
selection criteria such as cross-validation Stone (1974); Wahba (1990) or Akaike’s
information criterion Akaike (1974) lose their unbiasedness under covariate shift.
It was shown that proper unbiasedness can also be recovered by modifying the
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methods based on importance weighting Shimodaira (2000); Sugiyama et al. (2007);
Sugiyama and Müller (2005); Zadrozny (2004).

As explained above, the importance weight plays a central role in covariate shift
adaptation. However, since the importance weight is unknown in practice, it should
be estimated from data. A naive approach to this task is to first use kernel density
estimation Härdle et al. (2004) for obtaining estimators of the training and test input
densities, and then taking the ratio of the estimated densities. However, division
by estimated quantities can magnify the estimation error, so directly estimating the
importance weight in a single-shot process would be more preferable. Following
this idea, various methods for directly estimating the importance have been explored
Bickel et al. (2007); Cheng and Chu (2004); Ćwik and Mielniczuk (1989); Huang
et al. (2007); Kanamori et al. (2009a); Qin (1998); Silverman (1978); Sugiyama
et al. (2008). These direct estimation approaches have been demonstrated to be more
accurate than the two-step density estimation approach.

Examples of successful real-world applications of covariate shift adaptation
include brain-computer interface Sugiyama et al. (2007), robot control Akiyama
et al. (2010); Hachiya et al. (2009, 2011), speaker identification Yamada et al.
(2010a), age prediction from face images Ueki et al. (2011), wafer alignment in
semiconductor exposure apparatus Sugiyama and Nakajima (2009), and natural
language processing Tsuboi et al. (2009).

The rest of this chapter is organized as follows. In Sect. 31.2, the prob-
lem of supervised learning under covariate shift is mathematically formulated.
In Sect. 31.3, various learning methods under covariate shift are introduced. In
Sect. 31.4, the issue of model selection under covariate shift is addressed. In
Sect. 31.5, methods of importance estimation are reviewed. Finally, we conclude
in Sect. 31.6.

A more extensive description of covariate shift adaptation techniques is available
in Sugiyama and Kawanabe (2011, to appear).

31.2 Formulation of Supervised Learning Under
Covariate Shift

In this section, we formulate the supervised learning problem under covariate shift.
Let us consider the supervised learning problem of estimating an unknown input-

output dependency from training samples. Let

f.xtr
i ; y

tr
i / j xtr

i 2 X � Rd ; ytr
i 2 Y � Rgntr

iD1;

be the training samples. xtr
i is a training input point drawn from a probability

distribution with density ptr.x/. ytr
i is a training output value following a conditional

probability distribution with conditional density p.yjx D xtr
i /. p.yjx/ may be

regarded as the sum of the true output f .x/ and noise �:
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Fig. 31.1 Framework of supervised learning

y D f .x/C �:

We assume that the noise � has mean 0 and variance 2. This formulation is
summarized in Fig. 31.1.

Let .xte; yte/ be a test sample, which is not given to the user in the training
phase, but will be provided in the test phase in the future. xte 2 X is a test input
point following a probability distribution with density pte.x/, which is different
from ptr.x/. y te 2 Y is a test output value following p.yjx D xte/, which is the
same conditional density as the training phase. The goal of supervised learning is
to obtain an approximation Of .x/ to the true function f .x/ for predicting the test
output value yte. More formally, we would like to obtain the approximation Of .x/
that minimizes the test error expected over all test samples (which is called the
generalization error):

G WD E
xte

E
yte

h
loss. Of .xte/; yte/

i
;

where Exte denotes the expectation over xte drawn from pte.x/ and Eyte denotes
the expectation over yte drawn from p.yjx D xte/. loss. Oy; y/ is the loss function
which measures the discrepancy between the true output value y and its estimate Oy.
When the output domain Y is continuous, the problem is called regression and the
squared-loss is often used.

loss. Oy; y/ D . Oy � y/2:
On the other hand, when Y D fC1;�1g, the problem is called (binary) classification
and the 0/1-loss is a typical choice.

loss. Oy; y/ D
(
0 if sgn. Oy/ D y;
1 otherwise;



930 M. Sugiyama

where sgn.y/ D C1 if y � 0 and sgn.y/ D �1 if y < 0. Note that the 0/1-loss
corresponds to the misclassification rate.

We use a parametric function Of .xI ™/ for learning, where ™ is a parameter. A
model Of .xI ™/ is said to be correctly specified if there exists a parameter ™� such
that Of .xI ™�/ D f .x/; otherwise the model is said to be misspecified. In practice,
the model used for learning would be misspecified to a greater or less extent since we
do not generally have enough prior knowledge for correctly specifying the model.
Thus it is important to consider misspecified models when developing machine
learning algorithms.

In standard supervised learning theories Bishop (1995); Duda et al. (2001);
Hastie et al. (2001); Schölkopf and Smola (2002); Vapnik (1998); Wahba (1990),
the test input point xte is assumed to follow the same distribution as the training
input point xtr. On the other hand, in this chapter, we consider the situation called
covariate shift Shimodaira (2000), i.e., the training input point xtr and the test input
point xte have different distributions. Under covariate shift, most of the standard
learning techniques do not work well due to the differing distributions. Below, we
review recently developed techniques for mitigating the influence of covariate shift.

31.3 Function Learning Under Covariate Shift

A standard method to learn the parameter ™ in the model Of .xI ™/would be empirical
risk minimization (ERM) Schölkopf and Smola (2002); Vapnik (1998):

O™ERM WD argmin
™

"
1

ntr

ntrX

iD1
loss. Of .xtr

i I ™/; ytr
i /

#

:

If ptr.x/ D pte.x/, O™ERM converges to the optimal parameter ™� Shimodaira (2000):

™� WD argmin
™

ŒG�:

However, under covariate shift where ptr.x/ ¤ pte.x/, O™ERM does not converge to
™� if the model is misspecified.1

In this section, we review various learning methods for covariate shift adaptation
and show their numerical examples.

1 O™ERM still converges to ™� under covariate shift if the model is correctly specified.
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31.3.1 Importance Weighting Techniques for Covariate Shift
Adaptation

Here, we introduce various regression and classification techniques for covariate
shift adaptation.

Importance Weighted ERM

The inconsistency of ERM is due to the difference between training and test
input distributions. Importance sampling Fishman (1996) is a standard technique
to compensate for the difference of distributions. The following identity shows the
essence of importance sampling:

E
xte
Œg.xte/� D

Z
g.x/pte.x/dx D

Z
g.x/

pte.x/

ptr.x/
ptr.x/dx D E

xtr

�
g.xtr/

pte.x
tr/

ptr.xtr/


;

where Extr and Exte denote the expectations over xtr and xte drawn from ptr.x/ and
pte.x/, respectively. The quantity

pte.x/

ptr.x/

is called the importance. The above identity shows that the expectation of a function
g.x/ over pte.x/ can be computed by the importance-weighted expectation of g.x/
over ptr.x/. Thus the difference of distributions can be systematically adjusted by
importance weighting.

Applying the above importance weighting technique to ERM, we obtain
importance-weighted ERM (IWERM):

O™IWERM WD argmin
™

"
1

ntr

ntrX

iD1

pte.x
tr
i /

ptr.x
tr
i /

loss. Of .xtr
i I ™/; ytr

i /

#

:

O™IWERM converges to ™� under covariate shift, even if the model is misspecified
Shimodaira (2000). In practice, IWERM may be regularized, e.g., by slightly
flattening the importance weight and/or adding a penalty term as

argmin
™

"
1

ntr

ntrX

iD1

�
pte.x

tr
i /

ptr.x
tr
i /

��
loss. Of .xtr

i I ™/; ytr
i /C �™>™

#

;

where 0 � � � 1 is the flattening parameter, � � 0 is the regularization parameter,
and > denotes the transpose of a matrix or a vector.
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Importance-Weighted Regression Methods

Least-squares (LS) would be one of the most fundamental regression techniques.
The importance-weighted regression method for the squared-loss (see Fig. 31.2),
called importance-weighted LS (IWLS), is given as follows:

O™IWLS WD argmin
™

"
1

ntr

ntrX

iD1

�
pte.x

tr
i /

ptr.x
tr
i /

�� � Of .xtr
i I ™/ � ytr

i

	2 C �™>™
#

: (31.1)

Let us employ the following linear model:

Of .xI ™/ D
bX

`D1
™`�`.x/; (31.2)

where f�`.x/gb`D1 are fixed linearly-independent basis functions. Then the solution
O™IWLS is given analytically as

O™IWLS D .X tr>W �X tr C ntr�Ib/
�1X tr>W �y tr; (31.3)

whereX tr is the design matrix, i.e.,X tr is the ntr�b matrix with the .i; `/-th element

X tr
i;` D �`.x

tr
i /, W is the diagonal matrix with the i -th diagonal element pte.x

tr
i /

ptr.x
tr
i /

, Ib
is the b-dimensional identity matrix, and y tr is the ntr-dimensional vector with the
i -th element ytr

i .
The LS method often suffers from excessive sensitivity to outliers (i.e., irregular

values) and less reliability. A popular alternative is importance-weighted least
absolute (IWLA) regression – instead of the squared loss, the absolute loss is used
(see Fig. 31.2):

−2 0 2
0

1

2

3

4

5

y-y

Squared loss
Absolute loss
Huber loss
Deadzone−linear loss

Fig. 31.2 Loss functions for regression. y is the true output value at an input point and Oy is its
estimate
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O™IWLA D argmin
™

"
1

ntr

ntrX

iD1

�
pte.x

tr
i /

ptr.x
tr
i /

�� ˇ
ˇ̌ Of .xtr

i I ™/� ytr
i

ˇ
ˇ̌C �™>™

#

:

For the linear model (31.2), the above optimization problem is reduced to a
quadratic program, which can be solved by a standard optimization software.
If the regularization term ™>™ is replaced by the `1-regularizer

Pb
`D1 j™`j, the

optimization problem is reduced to a linear program, which may be solved more
efficiently. Furthermore, the `1-regularizer is known to induce a sparse solution
Chen et al. (1998); Tibshirani (1996); Williams (1995).

Although the LA method is robust against outliers, it tends to have a large
variance when the noise is Gaussian. The use of the Huber loss can mitigate this
problem:

O™Huber D argmin
™

"
1

ntr

ntrX

iD1

�
pte.x

tr
i /

ptr.x
tr
i /

��
��

� Of .xtr
i I ™/ � ytr

i

	
C �™>™

#

;

where � .� 0/ is the robustness parameter and �� is the Huber loss defined as follows
(see Fig. 31.2):

�� .y/ WD
8
<

:

1
2
y2 if jyj � �;
� jyj � 1

2
�2 if jyj > �:

Thus, the squared loss is applied to “good” samples with small fitting error,
and the absolute loss is applied to “bad” samples with large fitting error.
The above optimization problem can be reduced to a quadratic program
Mangasarian and Musicant (2000), which can be solved by a standard optimization
software.

Another variant of the IWLA is importance-weighted support vector regression
(IWSVR):

O™SVR D argmin
™

"
1

ntr

ntrX

iD1

�
pte.x

tr
i /

ptr.x
tr
i /

�� ˇ
ˇ̌ Of .xtr

i I ™/ � ytr
i

ˇ
ˇ̌
�
C �™>™

#

;

where j � j� is the deadzone-linear loss (or Vapnik’s �-insensitive loss) defined as
follows (see Fig. 31.2):

jxj� WD
(
0 if jxj � �;
jxj � � if jxj > �:

For the linear model (31.2), the above optimization problem is reduced to a quadratic
program Vapnik (1998), which can be solved by a standard optimization software.
If the regularization term ™>™ is replaced by the `1-regularizer

Pb
`D1 j™`j, the

optimization problem is reduced to a linear program.
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Importance-Weighted Classification Methods

In the binary classification scenario where Y D fC1;�1g, Fisher discriminant
analysis (FDA) Fisher (1936), logistic regression (LR) Hastie et al. (2001), support
vector machine (SVM) Schölkopf and Smola (2002); Vapnik (1998), and boosting
Breiman (1998); Freund and Schapire (1996); Friedman et al. (2000) would be
popular learning algorithms. They can be regarded as ERM methods with different
loss functions (see Fig. 31.3).

An importance-weighted version of FDA, IWFDA, is given by

O™IWFDA WD argmin
™

"
1

ntr

ntrX

iD1

�
pte.x

tr
i /

ptr.x
tr
i /

�� �
1 � ytr

i
Of .xtr

i I ™/
	2 C �™>™

#

;

which is essentially equivalent to (31.1) since .ytr
i /
2 D 1.

An importance-weighted version of LR, IWLR, is given by

O™IWLR WD argmin
™

"
ntrX

iD1

�
pte.x

tr
i /

ptr.x
tr
i /

��
log

�
1C exp

�
�ytr

i
Of .xtr

i I ™/
		
C �™>™

#

;

which is usually solved by (quasi-)Newton methods.
An importance-weighted version of SVM, IWSVM, is given by

O™IWSVM WD argmin
™

"
ntrX

iD1

�
pte.x

tr
i /

ptr.x
tr
i /

��
max

�
0; 1 � ytr

i
Of .xtr

i I ™/
	
C �™>™

#

;

whose solution can be obtained by a standard quadratic programming solver.
An importance-weighted version of Boosting, IWB, is given by

0/1 loss
Squared loss

Hinge loss
Logistic loss

Exponential loss

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

y y

Fig. 31.3 Loss functions for classification. y is the true output value at an input point and Oy is its
estimate
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O™IWB WD argmin
™

"
ntrX

iD1

�
pte.x

tr
i /

ptr.x
tr
i /

��
exp

�
�ytr

i
Of .xtr

i I ™/
	
C �™>™

#

;

which is usually solved by stage-wise optimization.

31.3.2 Numerical Examples

Here we illustrate the behavior of IWERM using toy regression and classification
data sets.

Regression

Let us consider one-dimensional regression problem. Let the learning target function
be f .x/ D sinc.x/, and let the training and test input densities be

ptr.x/ D N.xI 1; .1=2/2/ and pte.x/ D N.xI 2; .1=4/2/;

where N.xI�; 2/ denotes the Gaussian density with mean � and variance 2. As
illustrated in Fig. 31.5, we are considering a (weak) extrapolation problem since the
training input points are distributed in the left-hand side of the input domain and the
test input points are distributed in the right-hand side.

We create the training output value fytr
i gntr
iD1 as ytr

i D f .xtr
i /C �tr

i , where f�tr
i gntr
iD1

are i.i.d. noise drawn from N.�I 0; .1=4/2/. Let the number of training samples be
ntr D 150, and we use the following linear model:

Of .xI ™/ D ™1x C ™2:

The parameter ™ is learned by IWLS.
Here we fix the regularization parameter to � D 0, and compare the performance

of IWLS for � D 0; 0:5; 1. When � D 0, a good approximation of the left-hand side
of the sinc function can be obtained (see Fig. 31.4). However, this is not appropriate
for estimating the test output values (“�” in the figure). Thus, IWLS with � D
0 (i.e., ordinary LS) results in a large test error. Figure 31.4 depicts the learned
function when � D 1, which tends to approximate the test output values well, but
having a large variance. Figure 31.4 depicts a learned function when � D 0:5,
which yields even better estimation of the test output values for this particular data
realization.

Classification

Let us consider a binary classification problem on the two-dimensional input space.
Let the class posterior probabilities given input x be
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Fig. 31.4 An illustrative regression example with covariate shift. (a) The probability density
functions of the training and test input points and their ratio (i.e., the importance). (b–d) The
learning target function f .x/ (the solid line), training samples (“ı”), a learned function Of .x/ (the
dashed line), and test samples (“	”)

p.y D C1 jx/ D 1

2

�
1C tanh

�
x.1/ Cmin.0; x.2//

��
; (31.4)

where x D .x.1/; x.2//> and p.y D �1 jx/ D 1 � p.y D C1 jx/. The optimal
decision boundary, i.e., a set of all x such that p.y D C1 jx/ D p.y D �1 jx/ D
1=2 is illustrated in Fig. 31.5.

Let the training and test input densities be

ptr.x/ D 1

2
N

�
xI
��2
3


;

�
1 0

0 4

�
C 1

2
N

�
xI
�
2

3


;

�
1 0

0 4

�
;

pte.x/ D 1

2
N

�
xI
�
0

�1

;

�
1 0

0 1

�
C 1

2
N

�
xI
�
4

�1

;

�
1 0

0 1

�
;

where N.xI�;˙ / is the multivariate Gaussian density with mean � and covari-
ance matrix ˙ . This setup implies that we are considering a (weak) extrapola-
tion problem. Contours of the training and test input densities are illustrated in
Fig. 31.5.
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Let the number of training samples be ntr D 500, and we create training
input points fxtr

i gntr
iD1 following ptr.x/ and training output labels fy tr

i gntr
iD1 following

p.yjx D xtr
i /. Similarly, let the number of test samples be nte D 500, and we

create nte test input points fxte
j gnte
jD1 following pte.x/ and test output labels fy te

j gnte
jD1

following p.yjx D xte
j /. We use the following linear model:

Of .xI ™/ D ™1x.1/ C ™2x.2/ C ™3:

The parameter ™ is learned by IWFDA.
Here we fix the regularization parameter to � D 0, and compare the performance

of IWFDA for � D 0; 0:5; 1. Figure 31.5 depicts an example of realizations of
training and test samples, and decision boundaries obtained by IWFDA. For this
particular realization of data samples, � D 0:5 or 1 works better than � D 0.

31.4 Model Selection Under Covariate Shift

As illustrated in the previous section, importance-weighting is a promising approach
to covariate shift adaptation, given that the flattening parameter � is chosen
appropriately. Although � D 0:5 worked well both for the toy regression and
classification experiments in the previous section, � D 0:5 may not always be
the best choice. Indeed, an appropriate value of � depends on the learning target
function, models, the noise level in the training samples, etc. Therefore, model
selection needs to be appropriately carried out for enhancing the generalization
capability under covariate shift.
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Fig. 31.5 An illustrative classification example with covariate shift
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The goal of model selection is to determine the model (e.g, basis functions, the
flattening parameter � , and the regularization parameter �) so that the generalization
error is minimized Akaike (1970, 1974, 1980); Craven and Wahba (1979); Efron and
Tibshirani (1993); Ishiguro et al. (1997); Konishi and Kitagawa (1996); Mallows
(1973); Murata et al. (1994); Rissanen (1978, 1987); Schwarz (1978); Shibata
(1989); Sugiyama et al. (2004); Sugiyama and Müller (2002); Sugiyama and Ogawa
(2001); Takeuchi (1976); Vapnik (1998); Wahba (1990). The true generalization
error is not accessible since it contains the unknown learning target function. Thus,
some generalization error estimator needs to be used instead. However, standard
generalization error estimators such as cross-validation (CV) are heavily biased
under covariate shift, and therefore they are no longer reliable. In this section,
we review a modified CV method that possesses proper unbiasedness even under
covariate shift.

31.4.1 Importance-Weighted Cross-Validation

One of the popular techniques for estimating the generalization error is CV Stone
(1974); Wahba (1990). CV has been shown to give an almost unbiased estimate of
the generalization error with finite samples Luntz and Brailovsky (1969); Schölkopf
and Smola (2002). However, such almost unbiasedness is no longer fulfilled under
covariate shift.

To cope with this problem, a variant of CV called importance-weighted CV
(IWCV) has been proposed Sugiyama et al. (2007). Let us randomly divide the
training set Z D f.xtr

i ; y
tr
i /gntr

iD1 into k disjoint non-empty subsets fZi gkiD1 of
(approximately) the same size. Let Of Zi

.x/ be a function learned from fZi 0gi 0¤i
(i.e., without Zi ). Then the k-fold IWCV (kIWCV) estimate of the generalization
error G is given by

OGkIWCV D 1

k

kX

iD1

1

jZi j
X

.x;y/2Zi

pte.x/

ptr.x/
loss. Of Zi

.x/; y/;

where jZi j is the number of samples in the subset Zi .
When k D ntr, kIWCV is particularly called IW leave-one-out CV (IWLOOCV):

OGIWLOOCV D 1

ntr

ntrX

iD1

pte.x
tr
i /

ptr.x
tr
i /

loss. Of i .x
tr
i /; y

tr
i /;

where Of i .x/ is a function learned from f.xtr
i 0 ; y

tr
i 0/gi 0¤i (i.e., without .xtr

i ; y
tr
i /). It

was proved that IWLOOCV gives an almost unbiased estimate of the generalization
error even under covariate shift Sugiyama et al. (2007). More precisely, IWLOOCV
for ntr training samples gives an unbiased estimate of the generalization error for
ntr � 1 training samples:
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E
fxtr
i gntr
iD1

E
fytr
i gntr
iD1

h OGIWLOOCV

i
D E
fxtr
i gntr
iD1

E
fytr
i gntr
iD1

ŒG0� � E
fxtr
i gntr
iD1

E
fytr
i gntr
iD1

ŒG�;

where Efxtr
i gntr
iD1

denotes the expectation over fxtr
i gntr
iD1 drawn i.i.d. from ptr.x/,

Efytr
i gntr
iD1

denotes the expectation over fytr
i gntr
iD1 each drawn from p.yjx D xtr

i /, and
G0 denotes the generalization error for ntr � 1 training samples. A similar proof is
also possible for kIWCV, but the bias is slightly larger Hastie et al. (2001).

The almost unbiasedness of IWCV holds for any loss function, any model, and
any parameter learning method; even non-identifiable models Watanabe (2009) or
non-parametric learning methods Schölkopf and Smola (2002) are allowed. Thus
IWCV is a highly flexible model selection technique under covariate shift. For other
model selection criteria under covariate shift, see Shimodaira (2000) for regular
models with smooth losses and Sugiyama and Müller (2005) for linear models with
the squared loss.

31.4.2 Numerical Examples

Here we illustrate the behavior of IWCV using the same toy data sets as Sect. 31.3.2.

Regression

Let us continue the one-dimensional regression simulation in Sect. 31.3.2.
As illustrated in Fig. 31.4 in Sect. 31.3.2, IWLS with flattening parameter � D

0:5 appears to work well for that particular realization of data samples. However, the
best value of � would depend on the realization of samples. In order to investigate
this systematically, let us repeat the simulation 1,000 times with different random
seeds, i.e., in each run f.xtr

i ; �
tr
i /gntr

iD1 are randomly drawn and the scores of tenfold
IWCV and tenfold ordinary CV are calculated for � D 0; 0:1; 0:2; : : : ; 1. The means
and standard deviations of the generalization error G and its estimate by each
method are depicted as functions of � in Fig. 31.6. The graphs show that IWCV
gives very accurate unbiased estimates of the generalization error, while ordinary
CV is heavily biased.

Next we investigate the model selection performance. The flattening parameter
� is chosen from f0; 0:1; 0:2; : : : ; 1g so that the score of each model selection
criterion is minimized. The mean and standard deviation of the generalization
error G of the learned function obtained by each method over 1,000 runs are
described in Table 31.1. This shows that IWCV gives significantly smaller general-
ization errors than ordinary CV, under the t-test Henkel (1976) at the significance
level 5%. For reference, the generalization error when the flattening parameter
� is chosen optimally (i.e., in each trial, � is chosen so that the true gener-
alization error is minimized) is described as “Optimal” in the table. The result
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Fig. 31.6 Generalization error and its estimates obtained by IWCV and ordinary CV as functions
of the flattening parameter � in IWLS for the regression examples in Fig. 31.4. Thick dashed curves
in the bottom graphs depict the true generalization error for clear comparison
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Table 31.1 The mean and standard deviation of the generalization error G obtained by each
method for the toy regression data set. The best method and comparable ones by the t-test at the
significance level 5% are indicated by “ı”. For reference, the generalization error obtained with
the optimal � (i.e., the minimum generalization error) is described as “Optimal”

IWCV Ordinary CV Optimal
ı0:077˙ 0:020 0:356˙ 0:086 0:069˙ 0:011

Table 31.2 The mean and standard deviation of the generalization error G (i.e., the misclassi-
fication rate) obtained by each method for the toy classification data set. The best method and
comparable ones by the t-test at the significance level 5% are indicated by “ı”. For reference,
the generalization error obtained with the optimal � (i.e., the minimum generalization error) is
described as “Optimal”

IWCV Ordinary CV Optimal
ı0:108˙ 0:027 0:131˙ 0:029 0:091˙ 0:009

shows that the performance of IWCV is rather close to that of the optimal
choice.

Classification

Let us continue the toy classification simulation in Sect. 31.3.2.
In Fig. 31.5 in Sect. 31.3.2, IWFDA with a middle/large flattening parameter �

appears to work well for that particular realization of samples. Here, we investigate
the choice of the flattening parameter value by IWCV and ordinary CV. Figure 31.7
depicts the means and standard deviations of the generalization error G (i.e., the
misclassification rate) and its estimate by each method over 1,000 runs, as functions
of the flattening parameter � in IWFDA. The graphs clearly show that IWCV gives
much better estimates of the generalization error than ordinary CV.

Next we investigate the model selection performance. The flattening parameter �
is chosen from f0; 0:1; 0:2; : : : ; 1g so that the score of each model selection criterion
is minimized. The mean and standard deviation of the generalization error G of
the learned function obtained by each method over 1,000 runs are described in
Table 31.2. The table shows that IWCV gives significantly smaller test errors than
ordinary CV, and the performance of IWCV is rather close to that of the optimal
choice.

31.5 Importance Estimation

In the previous sections, we have seen that the importance weight

w.x/ D pte.x/

ptr.x/
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Fig. 31.7 The generalization error G (i.e., the misclassification rate) and its estimates obtained
by IWCV and ordinary CV as functions of the flattening parameter � in IWFDA for the toy
classification examples in Fig. 31.5. Thick dashed curves in the bottom graphs depict the true
generalization error for clear comparison



31 Learning Under Non-stationarity 943

plays a central role in covariate shift adaptation. However, the importance weight is
unknown in practice and needs to be estimated from data. In this section, we review
importance estimation methods.

Here we assume that in addition to the training input samples fxtr
i gntr
iD1 drawn

independently fromptr.x/, we are given test input samples fxte
j gnte
jD1 drawn indepen-

dently from pte.x/. Thus the goal of the importance estimation problem addressed
here is to estimate the importance function w.x/ from fxtr

i gntr
iD1 and fxte

j gnte
jD1.

31.5.1 Kernel Density Estimation

Kernel density estimation (KDE) is a non-parametric technique to estimate a
probability density function p.x/ from its i.i.d. samples fxi gniD1. For the Gaussian
kernel

K.x;x
0/ D exp

�
�kx � x

0k2
22

�
; (31.5)

KDE is expressed as

Op.x/ D 1

ntr.2�2/d=2

nX

`D1
K.x;x`/:

The performance of KDE depends on the choice of the kernel width  . It can be
optimized by cross-validation (CV) as follows Härdle et al. (2004): First, divide the
samples fxi gniD1 into k disjoint non-empty subsets fXrgkrD1 of (approximately) the
same size. Then obtain a density estimator OpXr .x/ from fXi gi¤r (i.e., without Xr ),
and compute its log-likelihood for the hold-out subset Xr :

1

jXr j
X

x2Xr

log OpXr .x/;

where jX j denotes the number of elements in the set X . Repeat this procedure
for r D 1; 2; : : : ; k and choose the value of  such that the average of the above
hold-out log-likelihood over all r is maximized. Note that the average hold-out log-
likelihood is an almost unbiased estimate of the Kullback-Leibler divergence from
p.x/ to Op.x/, up to an irrelevant constant.

KDE can be used for importance estimation by first obtaining density estimators
Optr.x/ and Opte.x/ separately from fxtr

i gntr
iD1 and fxte

j gnte
jD1, and then estimating the

importance by Ow.x/ D Opte.x/= Optr.x/. However, division by an estimated density
can magnify the estimation error, so directly estimating the importance weight in a
single-shot process would be more preferable.
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31.5.2 Kullback-Leibler Importance Estimation Procedure

The Kullback-Leibler importance estimation procedure (KLIEP) Sugiyama et al.
(2008) directly gives an estimate of the importance function without going through
density estimation by matching the two densities ptr.x/ and pte.x/ in terms of the
Kullback-Leibler divergence Kullback and Leibler (1951).

Let us model the importance weight w.x/ by the following kernel model:

Ow.x/ D
nteX

`D1
˛`K.x;x

te
` /;

where ˛ D .˛1; ˛2; : : : ; ˛nte/
> are parameters to be learned from data samples and

K.x;x
0/ is the Gaussian kernel (see (31.5)). An estimate of the density pte.x/ is

given by using the model Ow.x/ as Opte.x/ D Ow.x/ptr.x/. In KLIEP, the parameters
˛ are determined so that the Kullback-Leibler divergence from pte.x/ to Opte.x/ is
minimized:

KL.˛/ WD E
xte

�
log

pte.x
te/

Ow.xte/ptr.xte/


D E

xte

�
log

pte.x
te/

ptr.xte/


� E
xte

�
log Ow.xte/

�
;

where Exte denotes the expectation over xte drawn from pte.x/. The first term is a
constant, so it can be safely ignored. We define the negative of the second term by
KL0:

KL0.˛/ WD E
xte

�
log Ow.xte/

�
: (31.6)

Since Opte.x/ .D Ow.x/ptr.x// is a probability density function, it should satisfy

1 D
Z

D
Opte.x/dx D

Z

D
Ow.x/ptr.x/dx D E

xtr

� Ow.xtr/
�
: (31.7)

The KLIEP optimization problem is given by replacing the expectations in
Eqs.(31.6) and (31.7) with empirical averages:

max
f˛`gnte

`D1

2

4
nteX

jD1
log

 
nteX

`D1
˛`K.x

te
j ;x

te
` /

!3

5

subject to
1

ntr

nteX

`D1
˛`

 
ntrX

iD1
K.xtr

i ;x
te
` /

!

D 1 and ˛1; ˛2; : : : ; ˛nte � 0:

This is a convex optimization problem and the global solution – which tends to
be sparse Boyd and Vandenberghe (2004) – can be obtained, e.g., by simply
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Input: fxtr
i gntr
iD1, fxte

j gnte
jD1 , and 

Output: Ow.x/
Aj;`  � K.x

te
j ;x

te
` / for j; `D 1; 2; : : : ; nte;

b`  � 1
ntr

Pntr
iD1 K.x

tr
i ;x

te
` / for `D 1; 2; : : : ; nte;

Initialize ˛ .> 0nte/ and " .0 < "� 1);
Repeat until convergence

˛ � ˛C "A>.1nte :=A˛/; % Gradient ascent
˛ � ˛C .1� b>˛/b=.b>b/; % Constraint satisfaction
˛ � max.0nte ;˛/; % Constraint satisfaction
˛ � ˛=.b>˛/; % Constraint satisfaction

end
Ow.x/ �Pnte

`D1 ˛`K.x;x
te
` /;

Fig. 31.8 Pseudo code of KLIEP. 0nte denotes the nte-dimensional vector with all zeros, and 1nte

denotes the nte-dimensional vector with all ones. “./” indicates the element-wise division, and
inequalities and the “max” operation for vectors are applied in the element-wise manner

performing gradient ascent and feasibility satisfaction iteratively. A pseudo code is
summarized in Fig. 31.8. The Gaussian width  can be optimized by CV over KL0,
where only the test samples fxte

j gnte
jD1 are divided into k disjoint subsets Sugiyama

et al. (2008).
A MATLAB R� implementation of the entire KLIEP algorithm is available from

the following web page. http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/KLIEP/

31.5.3 Numerical Examples

Here, we illustrate the behavior of the KLIEP method.
Let us consider the following one-dimensional importance estimation problem:

ptr.x/ D N.xI 1; .1=2/2/ and pte.x/ D N.xI 2; .1=4/2/:

Let the number of training samples be ntr D 200 and the number of test samples be
nte D 1;000.

Figure 31.9 depicts the true importance and its estimates by KLIEP, where
three different Gaussian widths  D 0:02; 0:2; 0:8 are tested. The graphs show
that the performance of KLIEP is highly dependent on the Gaussian width. More
specifically, the estimated importance function Ow.x/ is highly fluctuated when  is
small, while it is overly smoothed when  is large. When  is chosen appropriately,
KLIEP seems to work reasonably well for this example.

Figure 31.10 depicts the values of the true J (see (31.6)) and its estimate by
fivefold CV; the means, the 25 percentiles, and the 75 percentiles over 100 trials are
plotted as functions of the Gaussian width  . This shows that CV gives a very good
estimate of J , which results in an appropriate choice of  .
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Fig. 31.9 Results of
importance estimation by
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is its estimation obtained by
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Fig. 31.10 Model selection curve for KLIEP. KL0 is the true score of an estimated importance

(see (31.6)) and OKL0

CV is its estimate by fivefold CV

31.6 Conclusions and Outlook

In standard supervised learning theories, test input points are assumed to follow
the same probability distribution as training input points. However, this assumption
is often violated in real-world learning problems. In this chapter, we reviewed
recently proposed techniques for covariate shift adaptation, including importance-
weighted empirical risk minimization, importance-weighted cross-validation, and
direct importance estimation.

In Sect. 31.5, we introduced the KLIEP algorithm for importance estimation,
where linearly-parameterized models were used. It was shown that the KLIEP
idea can also be naturally applied to log-linear models Tsuboi et al. (2009),
Gaussian mixture models Yamada and Sugiyama (2009), and probabilistic principal
component analysis mixture models Yamada et al. (2010b). Other than KLIEP,
various methods of direct importance estimation have also been proposed Bickel
et al. (2007); Cheng and Chu (2004); Ćwik and Mielniczuk (1989); Huang et al.
(2007); Kanamori et al. (2009a); Qin (1998); Silverman (1978). Among them, the
method proposed in Kanamori et al. (2009a) called unconstrained least-squares
importance fitting (uLSIF) gives an analytic-form solution and the solution can be
computed very efficiently in a stable manner. Thus it can be applied to large-scale
data sets.

Recently, importance estimation methods which incorporate dimensionality
reduction have been developed. A method proposed by Sugiyama et al. (2010a) uses
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a supervised dimensionality reduction technique called local Fisher discriminant
analysis Sugiyama (2007) for identifying a subspace in which two densities are
significantly different (which is called the hetero-distributional subspace). Another
method proposed by Sugiyama et al. (2011) tries to find the hetero-distributional
subspace by directly minimizing the discrepancy between the two distributions.
Theoretical analysis of importance estimation has also been conducted thoroughly
Bensaid and Fabre (2007); Chen et al. (2009); Cheng and Chu (2004); Ćwik and
Mielniczuk (1989); Gijbels and Mielniczuk (1995); Jacob and Oliveira (1997);
Kanamori et al. (2009b, 2010); Nguyen et al. (2010); Qin (1998); Silverman (1978);
Sugiyama et al. (2008).

It has been shown that various statistical data processing tasks can be solved
through importance estimation Sugiyama et al. (2009, 2012 to appear), including
multi-task learning Bickel et al. (2007), inlier-based outlier detection Hido et al.
(2008, 2011); Silverman (1978); Smola et al. (2009), change detection in time series
Kawahara and Sugiyama (2011, to appear), mutual information estimation Suzuki
et al. (2008, 2009b), independent component analysis Suzuki and Sugiyama (2011),
feature selection Suzuki et al. (2009a), sufficient dimension reduction Suzuki and
Sugiyama (2010), causal inference Yamada and Sugiyama (2010), conditional den-
sity estimation Sugiyama et al. (2010b), and probabilistic classification Sugiyama
(2010). Thus, following this line of research, further improving the accuracy and
computational efficiency of importance estimation as well as further exploring
possible application of importance estimation would be a promising direction to
be pursued.

Acknowledgements The author was supported by MEXT Grant-in-Aid for Young Scientists (A)
20680007, SCAT, and AOARD.
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Chapter 32
Saddlepoint Approximations: A Review
and Some New Applications

Simon A. Broda and Marc S. Paolella

32.1 Introduction

The saddlepoint method of approximation is attributed to Daniels (1954), and can
be described in basic terms as yielding an accurate and usually fast and very
numerically reliable approximation to the mass or density function (hereafter pdf),
and the cumulative distribution function (cdf), of a random variable, say X , based
on knowledge of its moment generating function (mgf). Denote the latter by MX.s/,
where s is the real argument of the function, such that s is contained in the
convergence strip of MX.s/, to be defined below. Several surveys and monographs
are available; the best starting point is the currently definitive exposition in Butler
(2007), along with the first textbook dedicated to the subject, Jensen (1995). Our
goal is to outline the basics of the methodology in the easiest way possible, and then
to illustrate a small subset of its many applications.

The outline of this article is as follows. Section 32.2 provides basic derivations
of the fundamental approximations, and an illustration of the mechanics via a
nontrivial example. Section 32.3 contains less well-known material on the use of
the saddlepoint approximation for partial expectations, which are of utmost value in
financial applications. Section 32.4 outlines the major results in the multivariate
case and provides an example of application to the noncentral t distribution,
the exact calculation of which, particularly in the doubly noncentral case, is
foreboding. Section 32.5 details the mechanics of the saddlepoint approximation
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for quadratic forms, and ratios of quadratic forms, which are ubiquitous in linear
regression models and time series analysis. Lastly, Sect. 32.6 provides results for a
highly relevant application in financial risk management. An appendix details the
derivation of a technical result.

32.2 Basic Derivation of the Univariate PDF and CDF
Approximations

We first briefly review some definitions and results. The mgf of random variable
X is the function MX W R 7! X�0 (where X is the extended real line) given by
s 7! E

�
esX
�
. The mgf MX is said to exist if it is finite on a neighborhood of

zero, i.e., if there is an h > 0 such that, 8s 2 .�h; h/, MX .s/ < 1. If MX

exists, then the largest (open) interval U around zero such that MX.s/ < 1 for
s 2 U is referred to as the convergence strip (of the mgf) of X . If MX exists,
then all positive moments of X exist, i.e., 8r 2 R>0, E

�jX jr� < 1, and also

M
.j /

X .s/
ˇ
ˇ
ˇ
sD0 D E

�
Xj
�
, where M

.j /

X is the j th derivative.

The cumulant generating function, or cgf, is defined as KX .s/ D log MX .s/,
with the terms �i in the series expansion KX.s/ DP1

rD0 �r sr=rŠ referred to as the
cumulants of X . The j th derivative of KX .s/ evaluated at s D 0 is thus �j . It is
straightforward to show that

�1 D �; �2 D �2; �3 D �3 and �4 D �4 � 3�22; (32.1)

where �j D EŒ.X � �/j �, and � D EŒX�.
We can now illustrate the simplest derivation of the saddlepoint approximation

(hereafter SPA) to the pdf. The SPA is usually derived as an approximation to the
pdf of the mean of n iid random variables. In such a setting, it can be shown that
the accuracy of the approximation increases as n grows. This is because the SPA
is, in fact, the first term in an asymptotic expansion. In this paper however, we will
set n D 1 and treat the SPA simply as an approximation. Butler (2007) presents
more sophisticated derivations, which add further insight into the nature of the
approximation and lend themselves to analysis of its properties and extension to
higher order terms.

Let X be a random variable, with continuous pdf fX or discrete mass function
fX , and mgf MX existing in an open neighborhoodU around zero. From (32.1), the
mean and variance of X can be expressed as K0X .0/ and K00X .0/, respectively. If Ts
is a random variable having density

fTs .xI s/ D
exsfX .x/

MX .s/
; (32.2)
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for some s 2 U , then Ts is referred to as an exponentially tilted random variable.
Notice that its density integrates to one. Its mgf and cgf are easily seen to be

MTs .t/ D
MX .t C s/

MX .s/
; KTs .t/ D KX .t C s/ �KX .s/ ;

so that E ŒTs� D K0T .0/ D K0X .s/ and V .Ts/ D K00X .s/. Let s0 2 U . Now consider
using the normal distribution to approximate the true distribution of Ts0 ; it must
have mean x0 WD K0X .s0/ and variance v0 WD K00X .s0/, and is thus given by x 7!
� .xI x0; v0/, where � is the normal pdf. Use of (32.2) then yields an approximation
for fX as

x 7! � .xI x0; v0/MX .s0/ e�s0x D 1p
2� v0

exp



� 1

2v0
.x � x0/2

�
MX .s0/ e�s0x:

The accuracy of this approximation to fX , for a fixed x, depends crucially on the
choice of s0. We know that, in general, the normal approximation to the distribution
of a random variableX is accurate near the mean of X , but degrades in the tails. As
such, we are motivated to choose an s0 such that x is close to the mean of the tilted
distribution. In particular, we would like to find a value Os such that

K0X .Os/ D x; (32.3)

for which it can be shown that a unique solution exists when Os is restricted to U , the
convergence strip of the mgf of X . The normal density approximation to the tilted
random variable with mean x at the point x is then �

�
xIK0X .Os/ ;K00X .Os/

�
, and the

approximation for fX simplifies to

OfX .x/ D 1
p
2� K00X .Os/

exp fKX .Os/ � x Osg ; x D K0X .Os/ : (32.4)

Approximation OfX is referred to as the (first order) saddlepoint approximation to
fX , where Os D Os .x/ is the solution to the saddlepoint equation, and is referred to
as the saddlepoint at x. In many applications of interest, this has to be determined
numerically. The approximation is valid for all values of x in the interior of the
support of X ; for example, if X follows a gamma distribution, then the SPA is valid
only for x > 0, and if X � Bin.n; p/, then the SPA is valid for x D 1; 2; : : : ; n� 1.

The SPA (32.4) will not, in general, integrate to one, although it will usually not
be far off. It will often be possible to re-normalize it, i.e.,

NOfX .x/ D
OfX .x/

R OfX .x/ dx
; (32.5)
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which is a proper density. In doing so, it is advantageous to change the integration
variable from x to Os in order to avoid having to solve the saddlepoint equation for
each evaluation of the integrand.

Before continuing, it is worth illustrating how the exact pdf could be recovered
from the mgf. More generally in fact, the characteristic function, or cf, is used.
It is defined as E

�
eisX

�
, where i 2 D �1, and is usually denoted as 'X .s/. Let

X be a random variable whose mgf exists. Comparing the definitions, it appears
that 'X .s/ D MX .is/, although formally, this does not make sense because we
are plugging a complex variable into a function that only admits real arguments.
Fortunately, in the vast majority of real applications, the mgf will have a functional
form which allows for complex arguments in an obvious manner. See Paolella
(2007, Sect. 1.2.4) and the references therein for further details. IfX is a continuous
random variable with pdf fX and

R1
�1 j'X.s/j ds <1, then

fX.x/ D 1

2�

Z 1

�1
e�isx'X.s/ ds; (32.6)

which is referred to as the inversion formula (for the pdf). If the cgf of X exists,
then (32.6) can be expressed as

fX.x/ D 1

2�i

Z i1

�i1
exp fKX .s/� sxg ds: (32.7)

Gil–Pelaez (1951) derived the inversion formula for the cdf as

FX.x/ D 1

2
C 1

2�

Z 1

0

eisx'X.�s/ � e�isx'X.s/
is

ds: (32.8)

Now consider the saddlepoint method. An approximation to the cdf of X could

be obtained by numerically integrating the density SPA Of or NOf . However, in a
celebrated paper, Lugannani and Rice (1980) derived a simple expression for it,
given by

OFX .x�/ D ˚ . Ow/C � . Ow/


1

Ow �
1

Ou
�
; x ¤ E ŒX� ; (32.9)

where FX .x�/ D Pr.X < x/ (strict inequality), ˚ and � are the cdf and pdf of the
standard normal distribution, respectively,

Ow D sgn .Os/
p
2Osx � 2KX .Os/; (32.10a)

and

Ou D
( OspK00X .Os/; if x is continuous,�

1 � e�Os
	p

K00X .Os/; if x is discrete.
(32.10b)
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It is important to keep in mind that (32.9) is an approximation to Pr.X < x/ and
not FX.x/ D Pr.X � x/, this being only relevant when X is discrete. There are
other expressions for the cdf approximation in the discrete case; see Butler (2007).
If x D E ŒX�, then K0X .0/ D E ŒX� and Os D 0 is the saddlepoint for E ŒX�. Thus, at
the mean, KX .0/ D 0, so that Ow D 0, rendering OF in (32.9) useless. This singularity
is removable however, and the corresponding value of the cdf approximation can be
shown to be

OFX .E ŒX�/ D 1

2
C K000X .0/
6
p
2�K00X .0/

3=2
: (32.11)

For practical use however, it is numerically wiser to use linear interpolation based
on the SPA to E ŒX�˙ �, where � is chosen small enough to ensure high accuracy,
but large enough to ensure numerical stability of (32.9) and (32.10).

The easiest way to derive (32.9) is by an application of a result due to Temme
(1982), who shows that

Z y

�1
g.x/�.x/dx � g.0/˚.y/C �.y/



g.0/ � g.y/

y

�
: (32.12)

In order to apply this, observe that an approximation to the cdf is obtained by
integrating the approximate pdf, via

FX.y/ �
Z y

�1
OfX .x/ dx D

Z y

�1
1

p
2� K00X .Os/

exp fKX .Os/ � x Osg dx

D
Z y

�1
1

p
K00X .Os/

� . Ow/ dx;

where Ow is as in (32.10a). Note that both Os and Ow depend on x through (32.3). In
order to put this in the form of (32.12), we need to change variables from x to Ow, for
which we require an expression for d Ow=dx. Differentiating both sides of (32.10a)
with respect to x yields

d Ow
dx
D Os C .x �K0X .Os//dOs=dx

Ow D OsOw ;

where the last equality follows from (32.3). Thus, changing variables from x to Ow,

FX.y/ �
Z Ow.y/

�1
Ow

OspK00X .Os/
� . Ow/ d Ow DW

Z Ow.y/

�1
g1. Ow/� . Ow/ d Ow;

where Ow.y/ corresponds to Ow evaluated at the point x D y. This is precisely in the
form of (32.12) and will yield the desired result if we can show that
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lim
Ow!0

g1 . Ow/ D lim
Ow!0

Ow
OspK00X .Os/

D 1:

As discussed above, Ow D 0 occurs at the point x D E ŒX�, where also Os D 0.
Assuming that the limit is finite, we can apply l’Hôpital’s rule, which yields

1
p

K00X .0/
lim
Ow!0
Ow
Os D

1
p

K00X .0/
lim Ow!0 d Ow=dx

lim Ow!0 dOs=dx
D 1
p

K00X .0/
lim Ow!0 Os= Ow
�
K00X .0/

��1 ; (32.13)

where
lim
Ow!0

dOs=dx D �K00X .0/
��1

is obtained by differentiating (32.3). Now the left hand side of (32.13) is the
reciprocal of the right hand side, so that the limit must be 1.

Expression (32.4) is the leading term in an asymptotic expansion; the second
order approximation is given by (see Daniels 1987)

Qf .x/ D Of .x/
�
1C O�4

8
� 5

24
O�23
�
; (32.14)

where O�i D K.i/
X .Os/ =�K00X .Os/

�i=2
. Similarly, generalizing (32.9),

QF .x/ D OF .x/ � � . Ow/


Ou�1

� O�4
8
� 5

24
O�23
�
� Ou�3 � O�3

2Ou2 C Ow
�3
�

(32.15)

for x ¤ E ŒX�. As with the first order approximation (32.9), linear interpolation
around x D E ŒX� is most effective for obtaining the limit of the approximation at
the mean of X .

Example 1. (Differences of iid gamma random variables.) Let Z D X1 � X2 for

Xi
iid� Gam .a/. It is straightforward to show that, for X � Gam .a/, MX .s/ D

.1 � s/�a, s < 1. Then

M.�X/ .s/ D E
h
es.�X/

i
DMX .�s/ ;

and it follows that the mgf of Z is given by

MZ .s/ D E
�
esZ
� D E

h
es.X1�X2/

i
DMX .s/MX .�s/

D .1 � s/�a .1C s/�a D �1 � s2��a ; jsj < 1:

Thus, KZ .s/ D �a log
�
1 � s2� for jsj < 1,
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K0Z .s/ D
2as

1 � s2 ; K00Z .s/ D 2a
�
1 � s2��1 C 4as2 �1 � s2��2 ;

and the saddlepoint Os is given by the solution of the quadratic xs2 C 2as � x D 0,
i.e., Os D ��a ˙pa2 C x2�=x such that jOsj < 1. To see which of the two roots is
correct, use the fact that a > 0 and the requirement that �1 < s < 1. To confirm
that the root with theC is the correct one, we need to show

�1 < �aC
p
a2 C x2
x

< 1:

For x > 0, simple manipulations lead to

a2 � 2ax C x2 D .a � x/2 < a2 C x2 < .x C a/2 D 2ax C a2 C x2

or �2ax C x2 < x2 < 2ax C x2, which is true. Similarly, for x < 0, we get
�2ax C x2 > x2 > 2ax C x2, which is true. To normalize the saddlepoint density
of Z, use the fact that x D K0Z .Os/ to give dx D K00Z .Os/ dOs. Then, using the above
expressions for KZ .Os/, K0Z .Os/ and K00Z .Os/, we easily get

S .a/ D
Z 1

�1
Of .x/ dx

D 1p
2�

Z 1

�1

q
K00Z .Os/ exp

˚
KZ .Os/ � OsK0Z .Os/

�
dOs (32.16)

D 1p
2�

Z 1

�1

q
2a .1 � t2/�1�2a C 4at2 .1 � t2/�2.1Ca/ exp


 �2at2
1 � t2

�
dt;

which can be numerically approximated for each value a > 0. Figure 32.1 shows
S .a/ for a D 1; 2; : : : ; 50, and shows that, as a!1, S .a/ " 1, but rather slowly.

Instead of integrating each time, one could attempt to fit a low order polynomial
or some suitable function in a to the points in the figure. Some trial and error leads
to the specification

S .a/ � 0:57801C 0:0036746a� 0:18594a1=2 C 0:39464a1=3
C0:092409 .1 � e�a/ ;

which exhibits a maximal absolute error of about 0.00045.
It is noteworthy that the SPA has no numeric trouble at all when a is close to one

or for density values in the tails, as does the inversion of the cf (32.6). �
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Fig. 32.1 Plot of S .a/ in (32.16) versus a

32.3 Partial Expectations

Suppose that random variable X has a density fX.x/. The partial expectation

GX.x/ D
Z x

�1
yfX.y/dy (32.17)

plays a vital role in certain applications in finance, for example in option pricing.
Another important application is the computation of a risk measure known as the
expected shortfall. This will be considered in more detail in Sect. 32.6 below.

As before for the pdf and cdf, we first illustrate how GX.x/ can be recovered
exactly from the moment generating function: in Broda and Paolella (2009a), it is
shown that

GX.x/ D M0X.0/
2
� 1

�

Z 1

0

Im
�
M0X.is/e�isx

� ds

s
: (32.18)

As regards the saddlepoint approximation, Martin (2006) shows that an SPA to
GX.x/ is given by

OGX.x/ D ˚ . Ow/ �C � . Ow/
��
Ow �

x

Ou
	
; (32.19)

where � D K0X.0/, and Ow and Ou are as in (32.10).
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As for the SPA to the cdf, the result is most conveniently derived by an
application of Temme’s approximation: the partial mean can be approximated as

GX.y/ �
Z y

�1
x OfX .x/ dx D

Z y

�1
x

p
2� K00X .Os/

exp fKX .Os/ � x Osg dx

D
Z y

�1
x

p
K00X .Os/

� . Ow/ dx:

Changing variables from x to Ow as before yields

GX.y/ �
Z Ow.y/

�1
x Ow

OspK00X .Os/
� . Ow/ d Ow DW

Z Ow.y/

�1
g2. Ow/� . Ow/ d Ow;

to which the approximation can be applied. The result follows by noting that

lim
Ow!0

g2 . Ow/ D lim
Ow!0

xg1. Ow/ D lim
Ow!0

x D �;

as Ow D 0 occurs at the point x D �.
Again, (32.19) is the leading term in an asymptotic expansion; the second order

approximation is derived in Broda and Paolella (2009c) as

QGX.x/ D OGX.x/� � . Ow/
�
x

Ou


1

8
O�4 � 5

24
O�23
�
� x

Ou3 �
x O�3
2Ou2 C

�

Ow3 C
1

Os Ou
�
:

Butler and Wood (2004) derive the more convenient looking

QGX.x/ D OGX.x/ � � . Ow/
�
�

Ow3 �
x

Ow3 C
1

Os Ou
�
: (32.20)

While technically only a first-order approximation, its accuracy in applications can
be quite remarkable, as illustrated in Sect. 32.6.

32.4 Vectors of Random Variables

The pmf or pdf saddlepoint approximation (32.4) generalizes naturally to the
multivariate case. For a d -dimensional random vector X having joint cgf K with
gradient K0 and Hessian K00, the approximation is given by

OfX.x/ D .2�/�d=2jK00.Os/j�1=2 exp
�
K.Os/� Os0x� ; (32.21)



962 S.A. Broda and M.S. Paolella

where the multivariate saddlepoint satisfies K0.Os/ D x for Os in the convergence
region of the mgf of X. Saddlepoint cdf approximations for the general multivariate
setting are less straightforward, and we restrict ourselves to the bivariate case.
Section 32.4.1 illustrates the SPA for the conditional distributionX j Y , Sect. 32.4.2
details the cdf approximation in the continuous bivariate case, and Sect. 32.4.3
shows a method for approximating the marginal distribution.

32.4.1 Conditional Distributions

Let K .s; t/ denote the joint cgf for continuous random variablesX and Y , assumed
convergent over S, an open neighborhood of .0; 0/. The gradient of K is K0.s; t/ D
.K0s .s; t/ ;K0t .s; t//0, where

K0s .s; t/ WD
@

@s
K .s; t/ ; K0t .s; t/ WD

@

@t
K .s; t/ ;

and

K00 .s; t/ WD
�

K00ss .s; t/ K00st .s; t/
K00t s .s; t/ K00t t .s; t/


; K00ss .s; t/ D

@2

@s2
K .s; t/ ; etc.; (32.22)

is the Hessian.
Let X be the interior of the convex hull of the joint support of .X; Y /. Skovgaard

(1987) derived a double-saddlepoint approximation for the conditional cdf ofX at x
given Y D y, for .x; y/ 2 X . In this case, the gradient is a one-to-one mapping from
the convergence strip S onto X . As the name implies, there are two saddlepoints to
compute when using this approximation. The first is the unique preimage of .x; y/
in S, denoted

�Qs; Qt�, computed as the solutions to

K0s.Qs; Qt/ D x; K0t .Qs; Qt / D y: (32.23)

This is the numerator saddlepoint in the approximation. The second saddlepoint is
found by fixing s D 0 and solving K0t

�
0; Qt0

� D y for the unique value of Qt0 in
ft W .0; t/ 2 Sg. This is the denominator saddlepoint. The cdf approximation is then
given by

Pr .X � x j Y D y/ � ˚ . Qw/C � . Qw/ ˚ Qw�1 � Qu�1� ; Qs ¤ 0; (32.24)

where

Qw D sgn .Qs/p2
q
Qsx C Qty �K

�Qs; Qt� � Qt0y CK
�
0; Qt0

�
; (32.25)

Qu D Qs
qˇ
ˇK00.Qs; Qt/ˇˇ =K00t t

�
0; Qt0

�
: (32.26)
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To see that Qw makes sense, note that

sup
.s;t /2S

Œsx C ty �K .s; t/� (32.27)

occurs at
�Qs; Qt�, as (32.23) is its critical value. Also, the supremum (32.27) must be

greater than the constrained supremum over f.0; t/ 2 Sg, which occurs at Qt0. Thus,
the term inside the square root is positive. The term Qu is also well-defined because
K00 .s; t/ is positive definite for all .s; t/ 2 S.

32.4.2 Bivariate CDF Approximation

Wang (1990) shows that a saddlepoint approximation to the cdf of X D .X; Y / at
x D .x; y/ is given by

OFX.x/ D ˚2. Qx1; Qy1; Q�/C ˚. Qw0/ QnC ˚. Qw/ Qn0 C Qn Qn0; (32.28)

where

Qx1 D sgn.Qt0/
q
2
�Qt0y �K.0; Qt0/

�
; Qw0 D sgn.Qt/

q
2
�
K.Qs; 0/ �K.Qs; Qt/C Qty�;

Qy1 D Qw � b Qx1p
1C b2 ; Q� D � bp

1C b2 ; b D Qw0 � Qx1Qw ; Qn D �. Qw/
�
1

Qw �
1

Qu

;

Qn0 D �. Qx1/
�
1

w0
� 1

Qu0

; Qu D Qs

sˇ̌
K00. Qs; Qt/ˇ̌

K00t t
�Qs; Qt� Qu0 D Qt

q
K00t t .Qs; Qt /;

Qw and the saddlepoints .Qs; Qt / and Qt0 are as in the Skovgaard approximation from
Sect. 32.4.1, and ˚2.x; y; �/ denotes the bivariate standard normal c.d.f. with
correlation �. See Paolella (2007, Sect. 5.2.2) for further details and examples of
this case. Kolassa (2003) gives an approximation valid for d > 2.

32.4.3 Marginal Distributions

Let X D .X1;X2/ be a continuous bivariate random variable with joint cumulant
generating function K.t/  K.s; t/. Consider a bijection

Y D .Y1; Y2/ D g�1.X/ D .g�11 .X/; g�12 .X//0;

so that X D g.Y/ D .g1.Y/; g2.Y//0, and denote by
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ryi g.Y/ D
�
@g1

@Yi
;
@g2

@Yi

�0
; r2yi g.Y/ D

�
@2g1

@Y 2i
;
@2g2

@Y 2i

�0
i 2 f1; 2g;

the vectors of first and second derivatives of g with respect to Yi . Interest centers
on the marginal distribution of Y1. Daniels and Young (1991) show that saddlepoint
approximations to the marginal pdf and cdf of y1 are given by

QfY1.y1/ D �. Qw/=Qu (32.29)

and

QFY1.y1/ D ˚. Qw/C �. Qw/
 
1

Qw �
Qd
Qu

!

; (32.30)

respectively, where

Qw D
q
2
�Qt0g.Qy/�K.Qt/� sgn.y1 � ˛/; Qy D .y1; Qy2/;

˛ D g�11 .K0.0//; Qd D �Qt0ry1g.Qy/
��1
;

Qu D

r
det
�
K00.Qt/�

h
ry2g.Qy/0

�
K00.Qt/��1 ry2g.Qy/C Qt0r2y2g.Qy/

i

det
�
@g=@y.Qy/� ;

and, for each value of y1, Qt and Qy2 solve the system

K0.Qt/ D g.Qy/
Qt0ry2g.Qy/ D 0:

As usual in saddlepoint applications, if additional accuracy is desired, the pdf
approximation can be renormalized by numerically integrating it over its support.

Example 2. (Student’s t) Let X1 � N.0; 1/, independent of X2 � �2n, and let X D
g.Y/ D .Y1Y2; nY

2
2 /, so that .Y1; Y2/ D g�1.X1;X2/ D

�
X1
ıp

X2=n;
p
X2=n

�0
,

and Y1 has a Student’s t distribution with n degrees of freedom. It might come as a
surprise that an SPA is available for this distribution, as its mgf obviously does not
exist. The trick is to use the definition of the t random variable as a ratio of random
variables, the components of which do in fact have mgfs. The joint cgf of .X1;X2/
is, from independence,

K.t/ D KX1.s/CKX2.t/ D
1

2
s2 � n

2
log.1 � 2t/;

where KX1 and KX2 are the cgfs of X1 and X2, respectively. The saddlepoint
.Qt; Qy2/ D .Qs; Qt ; Qy2/, Qt < 1

2
, Qy2 > 0, solves the system of equations
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s D y1y2; 1

.1 � 2t/ D y
2
2 ; sy1 C 2nty2 D 0;

which can be solved to give

Qy2 D
q
n=.y21 C n/; Qs D y1 Qy2; Qt D � y1 Qs

2n Qy2 :

The other required quantities are given by

Qd D .y1 Qy22/�1; Qu D Qy�12 ; w D
p
�2n log. Qy2/ sgn.y1/;

and, plugging in, the pdf approximation becomes

Oft .y1In/ D 1p
2�

�
n

y21 C n
� 1

2 .nC1/
; (32.31)

which is exact after re-normalization. The fact that the re-normalized SPA is exact
for the usual Student’s t distribution is remarkable, and also serves to suggest that it
will be highly accurate in the noncentral case, considered next. �

Example 3. (Noncentral Student’s t). The singly noncentral t is fundamental in
statistics, as it is the distribution associated with the power of the classic t test.
It has also gained recognition as a useful ad hoc distribution for modeling asset
returns, given its fat tails and asymmetry. In particular, it was first advocated by
Harvey and Siddique (1999) and used subsequently by others for modeling financial
asset returns, e.g., Tsionas (2002) and Broda and Paolella (2007), and for even less
common applications, such as modeling real-estate values (Coleman and Mansour
2005). Use of the MLE for point estimation will be numerically costly with the
noncentral t distribution (see the equations below for the pdf), a drawback explicitly
mentioned in Premaratne and Bera (2000, p. 6), who address it by using the Pearson
type IV distribution as an approximation to it. However, the SPA is applicable, and
even results in a closed form solution to the saddlepoint equation (in both the singly
and doubly noncentral cases), so that computation of the MLE is nearly as fast as
using the usual Student’s t distribution.

Let X � N .�; 1/ independent of Y � �2 .k; ™/. Random variable T D
X=
p
Y=k is said to follow a doubly noncentral t distribution with k degrees

of freedom, numerator noncentrality parameter � and denominator noncentrality
parameter ™. We write T � t 00.k; �; ™/. If ™ D 0, then T is singly noncentral t with
noncentrality parameter�, and we write T � t 0.k; �/. The pdf and cdf of the singly
noncentral t can be expressed as indefinite integrals or infinite sums. In particular,

FT .t I k; �/ D 2�k=2C1kk=2

� .k=2/

Z 1

0

˚ .tzI�/ zk�1 exp



�1
2
kz2
�

dz; (32.32)
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where ˚ .zI�/ is the cdf of the normal distribution with mean � and variance one,
at z. Differentiating (32.32) using Leibniz’ rule yields an expression for the pdf as

fT .t I k; �/ D K
Z 1

0

zk exp



�1
2

h
.tz � �/2 C kz2

i�
dz; K D 2�k=2C1kk=2

� .k=2/
p
2�
:

(32.33)
Also, for the pdf,

fT .t I k; �/ D e��2=2
� ..k C 1/ =2/ kk=2p

�� .k=2/

�
1

k C t2
� kC1

2

�
 1X

iD0

.t�/i

i Š

�
2

t2 C k
�i=2

� ..k C i C 1/ =2/
� ..k C 1/ =2/

!

;

(32.34)

while for the cdf, we calculate Pr .T � t/ D Pr .T � 0/CPr .0 � T � t/ for t > 0,
with Pr .T � 0/ D ˚ .��I 0/ and

Pr .0 � T � t/ D 1

2
e��2=2

1X

iD0
�i

.1=2/i=2

� .i=2C 1/
NBm.t/

�
1C i
2

;
k

2

�
; t > 0;

(32.35)
where NB is the incomplete beta ratio and m.t/ D t2 =

�
k C t2�. The derivation of

all these expressions, and equations for the cdf with t < 0, are given in Paolella
(2007, Sect. 10.4).

Now let x1 � N.�; 1/, independent of x2 � �2.k; ™/, and let x D g.y/ D
.y1y2; y

2
2k/, so that .y1; y2/ D g�1.x1; x2/ D

�
x1
ıp

x2=k;
p
x2=k

�0
and y1 �

t 00.k; �; ™/. The joint cumulant generating function of .x1; x2/ is, from indepen-
dence,

K.t/ D Kx1.t1/CKx2.t2/ D t1�C
1

2
t21 �

k

2
log.1 � 2t2/C t2™

1 � 2t2 ;

whereKx1 andKx2 are the cumulant generating functions of x1 and x2, respectively.
The saddlepoint .Ot; Oy2/ D .Ot1; Ot2; Oy2/, Ot2 < 1

2
, Oy2 > 0, solves the system of equations

�C t1 D y1y2; k

.1 � 2t2/ C
™

.1 � 2t2/2 D ny
2
2 ; t1y1 C 2nt2y2 D 0:

Straightforward calculation reveals that

Ot1 D ��C y1 Oy2; Ot2 D � y1
Ot1

2k Oy2 ; (32.36)

and Oy2 solves the cubic s.y2/ WD a3y32 C a2y22 C a1y2 C a0 D 0, where
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a3 D y41 C 2ny21 C k2; a2 D �2y31� � 2y1k�; a1 D y21�2 � ny21 � k2 � ™k;

and a0 D y1k�. Upon defining

c2 D a2

a3
; c1 D a1

a3
; c0 D a0

a3
; q D 1

3
c1 � 1

9
c22 ;

r D 1

6
.c1c2 � 3c0/� 1

27
c32 ; m D q3 C r2; and s1;2 D .r ˙

p
m/1=3;

the roots of the cubic are given by

z1 D .s1 C s2/� c2
3

and z2;3 D �1
2
.s1 C s2/� c2

3
˙ i
p
3

2
.s1 � s2/:

The saddlepoint solution is always z1, as proved in Broda and Paolella (2007). It can
also be expressed as

Oy2 D
p�4q cos

�
cos�1

�
r=
p
�q3�=3

	
� c2
3
; (32.37)

thus avoiding complex arithmetic.
With

ry1g.y/ D .y2; 0/0; ry2g.y/ D .y1; 2ny2/0;
r2y2g.y/ D .0; 2k/0; K 00.t/ D diag

�
1; 2k.1 � 2t2/�2 C 4™.1 � 2t2/�3

�
;

det
�
@g=@y

� D det
�ry1g.y/; ry2g.y/

� D 2ny22
and after some simplification, the quantities entering approximations (32.29) and
(32.30) take the simple form

d D .Ot1 Oy2/�1; u D
q
.y21 C 2k Ot2/.2k�2 C 4™�3/C 4k2 Oy22

.�
2k Oy22

	
;

w D
q
��Ot1 � k log � � 2™� Ot2 sgn

�
y1 � ˛

�
; ˛ D �=p1C ™=k;

where � D .1 � 2Ot2/�1, and Ot D .Ot1; Ot2/0 and Oy2 are given by (32.36) and (32.37),
respectively. In the singly noncentral case with ™ D 0, these reduce to

u D
p
.�y1 Oy2 C 2k/=.2k/= Oy2; and w D

q
��Ot1 � 2k log. Oy2/ sgn.y1 � �/;

where d , Ot1 and Ot2 are as before, and

Oy2 D
�y1 C

q
4k.y21 C k/C �2y21
2.y21 C k/

:
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This is the approximation given in DiCiccio and Martin (1991, p. 897, Eq. (18)). In
the central case with � D 0, we get (32.31). �

32.5 Quadratic Forms in Gaussian Vectors

The map Rn ! R is a quadratic form if it can be expressed as x 7! x0Ax, where
A is an n � n real symmetric matrix. Let A be such a matrix, and X � Nn .�;†/

with † > 0. The scalar random variable Y D X0AX is referred to as a quadratic
form (in normal variables). Quadratic forms arise ubiquitously when working with
regression and time-series models. If Y D X0BX with B not symmetric, observe
that Y 0 D Y , i.e., .X0BX/0 D X0B0X so that Y D X0

�
BC B0

�
X=2 D X0AX with

A D .BC B0/=2. Matrix A is symmetric, so there is no loss in generality in working
with symmetric matrices.

Let Y D X0AX with X � Nn .�;†/, † > 0. Let †
1
2 be a matrix such that

†
1
2†

1
2 D †. Recall that †

1
2 is easily computed using the spectral decomposition

and is symmetric and positive-definite. Then †�
1
2 X � Nn

�
†�

1
2�; I

�
. Next, write

Y D X0AX D X0IAIX D X0†�
1
2†

1
2 A†

1
2†�

1
2 X; (32.38)

and let the spectral decomposition of †
1
2 A†

1
2 be given by PƒP0, where P is an

orthogonal matrix and ƒ D diag .�1; : : : ; �n/ D Eig.†
1
2 A†

1
2 / D Eig.†A/ D

Eig.A†/. Then, from (32.38),

FY .y/ D Pr
�

X0†�
1
2 PƒP0†�

1
2 X � y

	
D Pr

�
W0ƒW � y� ; (32.39)

where

W D P0†�
1
2 X � N .�; In/ ; � D P0†�

1
2� D .�1; : : : ; �n/0 : (32.40)

This decomposition is sometimes referred to as the principle axis theorem; see
Scheffé (1959, p. 397).

Recall the definition of a noncentral �2 random variable: If .X1; : : : ; Xn/ �
Nn .�; I/, with � D .�1; : : : ; �n/

0, then X D Pn
iD1 X2

i follows a noncentral �2

distribution with n degrees of freedom and noncentrality parameter ™ D Pn
iD1 �2i .

We write X � �2 .n; ™/. Its mgf is (see, e.g., Paolella 2007, p. 346)

MX .s/ D .1 � 2s/�n=2 exp



s™

1 � 2s
�
; s < 1=2: (32.41)

From the cgf KX.s/, it follows that K0X .s/ D n .1 � 2s/�1 C ™ .1 � 2s/�2, with
higher order terms easily computed, from which we obtain
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�i D K.i/
X .0/ D 2i�1 .i � 1/Š .nC i™/ :

From (32.39) and (32.40),

W0ƒW D
rank.A/X

iD1
�iW

2
i ; W 2

i

ind� �2 �1; �2i
�
; (32.42)

is a weighted sum of rank .A/ independent noncentral �2 random variables, each
with one degree of freedom. Its SPA is straightforward, and we consider a more

general case: Let Xi
ind� �2 .ni ; ™i / and define X D Pk

iD1 aiXi , ai ¤ 0. From
(32.41),

MXi .ai s/ D .1 � 2ai s/�ni =2 exp



ai s™i

1 � 2ai s
�
; 1 � 2ai s > 0; (32.43)

so that

MX .s/ D
kY

iD1
MXi .ai s/ (32.44)

for s in a sufficiently small neighborhood of zero. For convenience, let #i D
#i .s/ D .1 � 2sai /�1. Then straightforward calculation yields

KX .s/ D 1

2

kX

iD1
ni ln#i C s

kX

iD1
ai™i #i ; K0X .s/ D

kX

iD1
ai#i .ni C ™i #i /

and

K00X .s/ D 2
kX

iD1
a2i #

2
i .ni C 2™i #i / ; K000X .s/ D 8

kX

iD1
a3i #

3
i .ni C 3™i #i / ;

and K.4/
X .s/ D 48

Pk
iD1 a4i #4i .ni C 4™i #i /, from which the SPA can be calculated

once Os is numerically determined.

Example 4. (Distribution of Sample Variance) Let X D .X1; : : : ; Xn/0 � N .�;†/
with† > 0 and consider the sample variance ofX1; : : : ; Xn. Let 1n denote a length-
n column vector of ones, Jn an n � n matrix of ones, and

M D In � 1n
�
10n1n

��1
10n D In � n�1Jn; (32.45)

a rank m D n � 1 projection matrix (with one eigenvalue equal to zero and n � 1
eigenvalues equal to one). Thus (or easily directly confirmed), M0 D M and MM D
M, so that
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Fig. 32.2 True (as calculated via inversion formula (32.6)) and 2nd order SPA density
of the sample variance S2, for a sample of size 10 for X � N .�;†/ with � D
.�2;�1; 0; 1; 2; 2; 1; 0;�1;�2/0 and † corresponding to an AR(1) process with � D 0:5. The
two graphs are optically indistinguishable; the SPA is about 14 times faster to compute

Y D
nX

iD1

�
Xi � NX

�2 D X0M0MX D X0MX

is a quadratic form. The eigenvalues f�i g of †
1
2 M†

1
2 are nonnegative because M

is positive-semidefinite and † is positive-definite. (To see this, first observe that,

if † positive-definite, then †
1
2 can be constructed, and is also positive-definite, so

that, for any vector w 2 Rn n 0, z WD †
1
2 w ¤ 0. Next, w0†

1
2 M†

1
2 w D z0Mz �

0 because M is positive-semidefinite. Of course, z0Mz � 0 also follows simply
because Y D .n � 1/S2 D X0MX cannot be negative. Thus, the eigenvalues of
†

1
2 M†

1
2 are nonnegative.)

A scale transformation yields the density fS2 .s/ D mfY .ms/, m D n �
1, while the cdf is given by FS2 .s/ D Pr .Y � ms/. To illustrate, let � D
.�2;�1; 0; 1; 2; 2; 1; 0;�1;�2/0, so that n D 10, and † corresponding to a first-
order autoregressive, or AR(1), process with parameter � D 0:5, for which the
.i; j /th element of † is given by �ji�j j=.1 � �2/. Figure 32.2 plots fS2 and
demonstrates the extreme accuracy of the SPA. �

For symmetric matrices A and B, a ratio of quadratic forms is given by

R D X0AX
X0BX

; X � Nn .�;†/ ; B ¤ 0; B � 0; † > 0; (32.46)
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and arises in many contexts in which quadratic forms appear. The restriction that
B is positive-semidefinite but nonzero ensures that the denominator is positive with
probability one. (Note that, if B has z zero eigenvalues, 0 < z < n, then there exists
a z–dimensional hyperplane Z in Rn (e.g., a line for z D 1, etc.) such that, for
X 2 Z , X0BX D 0. However, Z has measure zero in Rn so that, with probability
one, X0BX > 0.) Let †

1
2 be such that†

1
2†

1
2 D †. Then

R D X0AX
X0BX

D Z0A�Z
Z0B�Z

;

where A� D † 1
2 A†

1
2 , B� D † 1

2 B†
1
2 , and Z D †�1=2X � N

�
†�1=2�; I

	
, so that

we may assume † D I without loss of generality. Observe that, if X � N
�
0; 2I

�
,

then 2 can be factored out of the numerator and denominator, so that R does not
depend on 2.

Let X � Nn .�; I/. For computing the cdf of ratio R in (32.46) at a given value
r , construct the spectral decomposition

A � rB D PƒP0; (32.47)

ƒ D diag.�1; : : : ; �n/, and let W D P0X � N .�; In/, where � D P0� D
.�1; : : : ; �n/

0. Then

Pr .R � r/ D Pr
�
X0AX � r X0BX

� D Pr
�
X0 .A� rB/X � 0�

D Pr
�
X0PƒP0X � 0� D Pr

�
W0ƒW � 0� D FS.0/; (32.48)

where S D Pn
iD1 �iW 2

i and W 2
i

ind� �2
�
1; �2i

�
, so that S is a weighted sum of

noncentral �2 random variables, each with one degree of freedom and noncentrality
parameter �2i , i D 1; : : : ; n. The �i are the eigenvalues of A � rB, some of which,
depending on A and B, might be zero.

If B > 0, then both B1=2 and B�1=2 exist, so that R can be written as

R D X0AX
X0BX

D X0B
1
2 B� 12 AB�

1
2 B

1
2 X

X0B
1
2 B

1
2 X

D Y0CY
Y0Y

;

where Y D B1=2X and C D B�1=2AB�1=2. It is well known that, ifR D Y0CY=Y0Y,
then

cmin � R � cmax; (32.49)

where cmin and cmax refer respectively to the smallest and largest eigenvalues of C.
(Note that they are real because C is symmetric.)

From (32.48),FR.r/ D FS.0/, and, because the cf and mgf of S are tractable, the
cdf inversion formula or the saddlepoint approximation can be applied to compute



972 S.A. Broda and M.S. Paolella

FR.r/. Note that, for each value of r , (32.47) needs to be computed to obtain the �i
and �i . For large n, this will be the most time consuming part of the computation.

The characteristic function of R is not tractable in general, so that direct
application of the inversion formula is not possible. We show how an exact
calculation can be performed, and use of the saddlepoint approximation.

For the exact solution, let N and D be continuous random variables with joint
cf 'N;D and such that Pr.D > 0/ D 1 and EŒD� < 1. The crucial result is from
Geary (1944), who showed that the density of R D N=D can be written as

fR.r/ D 1

2�i

Z 1

�1

�
@'N;D.s; t/

@t



tD�rs
ds: (32.50)

With N D X0AX andD D X0BX, calculation shows that

MN;D .s; t/ D j�j� 12 exp
˚� 1

2
�0
�
I ���1��� ; � D I� 2 .sAC tB/ ;

and 'N;D.s; t/ DMN;D.is; i t/. Then, we can rewrite (32.50) as

fR.r/ D 1

�

Z 1

0

Re
�
M�.is/

�
ds; (32.51)

where M�.s/ WD Œ@MN;D.s; t/=@t �tD�rs is given in Butler and Paolella (2008) as

M�.s/D
"

nY

iD1
.1� 2s�i /�1=2

#

exp

(

s

nX

iD1

�i�
2
i

1 � 2s�i

)"

tr D�1HC �0D�1HD�1�
#

;

with spectral decomposition A � rB D PƒP0 as in (32.47),ƒ D diag.�1; : : : ; �n/,
P D Œp1; : : : ;pn�, D D I � 2sƒ, H D P0BP, � D P0�, and we have exploited the
fact that ReŒM�.is/� is an even function of s.

For use with software packages not supporting complex arithmetic, the following
result can be proven; see Broda and Paolella (2009b). LetR D X0AX

ı
X0BX, where

X � Nn .�; I/, B ¤ 0;B � 0. Then the density of R is

fR.r/ D 1

�

Z 1

0

�.u/ cosˇ.u/� uı.u/ sinˇ.u/

2�.u/
du; (32.52)

where

ˇ.u/ D 1

2

nX

iD1
arctan ai C ™i ai

ci
; �.u/ D exp

(
1

2

nX

iD1

™i bi

ci
C 1

4
ln ci

)

;

�.u/ D tr HF�1 C �0F�1.H � u2ƒHƒ/F�1�; ı.u/ D tr HƒF�1 C 2�0F�1HƒF�1�;

ai D �iu, bi D a2i , ci D 1C bi , ™i D �2i D .p0i�/2, and F D IC u2ƒ2.
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For the SPA, as before, let R D N=D with N D X0AX and D D X0BX.
The same derivation that leads to (32.50) also shows that, with C the (constructed)
random variable associated with mgf

MC .s/ D 1

EŒD�

@

@t
MN;D.s; t/

ˇ
ˇ
tD�rs; (32.53)

the density of R is
fR.r/ D EŒD�fC .0/; (32.54)

where fC is the density of C . We approximate fC with OfC , the SPA applied to
MC , so that the SPA of the density of R is, from (32.54), OfR.r/ D EŒD� OfC .0/, as
was done in Daniels (1954, Sect. 9). This leads to (see Butler and Paolella 2008 for
details)

OfR .r/ D J .Os/
p
2�K 00S .Os/

exp fKS .Os/g ; (32.55)

where KS is the c.g.f. of S in (32.48) and Os solves K0S .Os/ D 0. Quantity J .Os/ is
computed from

J .s/ D tr .UH/C �0UHU�; (32.56)

with U D .I� 2sƒ/�1, and H, P,ƒ and � are given above.
A second order saddlepoint density approximation for the general case can be

derived. In particular, from Butler (2007, p. 383),

QfR .r/ D OfR .r/ .1CO/ ; (32.57)

where OfR .r/ is given in (32.55),

O D
� O�4
8
� 5

24
O�23
�
C J 0r .Os/ O�3
2Jr .Os/

p
K 00S .Os/

� J 00r .Os/
2Jr .Os/K 00S .Os/

; (32.58)

O�i D K
.i/
S .Os/=K 00S.Os/i=2, and J 0r .Os/ D 2 tr.UƒUH/ C 4�0UƒUHU�. The second

derivative of Jr , as required in (32.58), could also be algebraically formulated, but
it is easily and accurately numerically obtained.

An important special case of the general ratio R is when � D 0. Then � D 0 and
(32.55) easily reduces to

OfR .r/ D tr .I � 2Osƒ/�1 H
q
4�
Pn

iD1 �2i .1 � 2�i Os/�2
nY

iD1
.1 � 2�i Os/�1=2 ; (32.59)

which was first derived by Lieberman (1994a,b).
If � D 0, † D 2I, and B D I, then matters simplify considerably. Firstly,

tr .I � 2Osƒ/�1 H D n, seen by noting that H D P0P D I, implying
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tr .In � 2Osƒ/�1 D
nX

iD1
.1 � 2Os�i /�1 :

Next, as the saddlepoint equation solves 0 D K0S .Os/ D
Pn

iD1 �i .1 � 2Os�i /�1, it
follows that

Pn
iD1 .1 � 2Os�i /�1 D n, because

n D
nX

iD1

1 � 2Os�i
1 � 2Os�i D

nX

iD1

1

1 � 2Os�i � 2Os
nX

iD1

�i

1 � 2Os�i :

Thus, from (32.59), OfR .r/ can be expressed as

OfR .r/ D n
Qn
iD1 .1 � 2�i Os/�1=2q

4�
Pn

iD1 �2i .1 � 2�i Os/�2
: (32.60)

It is easy to confirm that the eigenvalues of .A � rI/ are given by

�i D �i � r; � D Eig.A/: (32.61)

These need only be calculated once, so that density (32.60) is easily computed as a
function of r . This seemingly very special case often arises in various applications,
typically as the distribution of a statistic under the null hypothesis. As such, we
consider it further in the next example.

Example 5. (Ratio in the null case) In (32.46), let X � N
�
0; 2I

�
and B D I. First

note that 2 can be set to one, without loss of generality, as it can be factored out of X
and it cancels from the numerator and denominator. Let the spectral decomposition
of A be given by A D PƒP0, withƒ D diag.�1; : : : ; �n/ the eigenvalues of A. Then

R D X0AX
X0X

D X0PƒP0X
X0PP0X

D Y0ƒY
Y0Y

; (32.62)

where Y D P0X � N.0; I/. Thus, R can be expressed as

R D
Pn

iD1 �i�2iPn
iD1 �2i

DW U
V
; (32.63)

where U and V are defined to be the numerator and denominator, respectively,
and the �2i are iid central chi-square with one degree of freedom. From (32.49),
�min � R � �max, where �min and �max refer respectively to the smallest and largest
eigenvalues of A. Thus, R has finite support, and all positive moments must exist.

Calculation (see Paolella 2007, Example 2.22) shows that EŒR� D n�1
Pn

iD1
�i DW N�; and recalling the mean of �2i , we see that EŒR� D EŒU �=EŒV �, or
EŒU � D EŒR�EŒV �. This result would also be the case if R were independent
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of V , because then, EŒRV � would equal EŒR�EŒV �, so that U D RV would imply
EŒU � D EŒR�EŒV �. This motivates the possibility that R is actually independent
of V , which turns out to be true, as shown by Pitman in 1937; see Stuart and Ord
(1994, p. 529). The consequence of this is thatU D RV implies EŒU � D EŒR�EŒV �,
and, more generally, Up D .RV /p implies EŒU p� D EŒRp�EŒV p� for all p such
that the expectations exist, i.e.,

E ŒRp� D E ŒU p�

E ŒV p�
: (32.64)

It is this latter fact which is critical for the ease with which the moments ofR can be
evaluated: calculating the raw moments of R has been reduced to deriving the raw
moments of both U and V , which is straightforward.

There is another interesting consequence of this independence result. Again with
R D U=V for U D X0AX, V D X0X, X � N

�
0; 2I

�
, and � D Eig.A/, the

independence of R and V implies, for r such that min�i < r < max�i ,

FR.r/ D Pr .R � r/ D Pr .R � r j V D 1/ D Pr .U � r j V D 1/ :

The joint mgf of U and V is

MU;V .s; t/ D E ŒexpfsU C tV g�

D E

"

exp

(

s

nX

iD1
�i�

2
i C t

nX

iD1
�2i

)#

D E

"

exp

(
nX

iD1
.s�i C t/ �2i

)#

D
nY

iD1
Œ1 � 2 .s�i C t/��1=2 : (32.65)

Based on this, the conditional saddlepoint approximation discussed in Sect. 32.4.1
is applicable, and it would be of interest to compare the accuracy of the cdf
approximation from its use with the one discussed above. However, it turns out
that they are identical, as proven in Butler and Paolella (1998) in a more general
setting. �

32.6 A Finance Application

The number of papers using saddlepoint methods in finance has increased enor-
mously in the last decade, covering, among others, applications in options pricing,
credit risk and Collateralized Debt Obligations (CDOs), portfolio allocation and
risk management. A non-exhaustive collection of papers includes Rogers and Zane
(1999), Martin et al. (2001), Duffie and Pan (2001), Gordy (2002), Collin-Dufresne
and Goldstein (2002), Dembo et al. (2004), Glasserman (2004), Xiong et al.
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(2005), Yang et al. (2006), Aït-Sahalia and Yu (2006), Veilex (2007), Wong (2008),
Glasserman and Kim (2009) and Broda and Paolella (2009a).

In this section, we will consider an application to risk management. In particular,
the task is to quantify the risk associated with a portfolio of financial assets. The
first issue that needs to be addressed concerns the choice of risk measure. The most
common choice, and which is officially endorsed by the Basle committee on banking
supervision, is the so-called Value-at-Risk, or VaR. Denote the portfolio loss as L,
and suppose that L is continuous. Then, for a given confidence level .1 � ˛/, the
100.1� ˛/% VaR is defined as the .1 � ˛/% quantile of the distribution of L, i.e.,

FL

�
VaR.1�˛/L

	
D .1 � ˛/: (32.66)

A common choice for ˛ is 0.01. Intuitively, the 99% VaR is the maximum loss that
will not be exceeded in 99% of cases.

Recently, a substantial body of literature has emerged which criticizes the use
of VaR as a risk measure. The criticism is mostly based on the fact that VaR is not
subadditive, i.e., the VaR of a portfolio of assets is not guaranteed to be smaller than
or equal to the sum of the VaRs of the individual assets. This is counterintuitive
because it may discourage diversification. An alternative risk measure which does
not suffer from this drawback is the expected shortfall, or ES. For continuousL and
a given confidence level .1 � ˛/, it is defined as

ES.1�˛/L WD E
h
L j L > VaR.1�˛/L

i
;

i.e., the expected loss, conditional on the loss exceeding the VaR. Note that the
expected shortfall is related to the partial expectation via

ES.1�˛/L D EŒL�

˛
� 1
˛
GL

�
VaR.1�˛/L

	
: (32.67)

More details on the ES can be found in Broda and Paolella (2011).
As is clear from the definitions of these risk measures, their evaluation requires

a means of computing the distribution and partial expectation of L. The caveat here
is that most real portfolios contain securities which depend nonlinearly on the risk
factors (e.g., stock options and other derivatives). Replicating these nonlinearities
exactly would require a simulation approach for estimating the loss distribution,
because the exact distribution is intractable. However, reliable estimates far into
the tails require large numbers of replications, which is impractical, especially if
the securities themselves cannot be valued analytically. A trade-off often used in
practice is the so-called Delta-Gamma approximation. Suppose the portfolio value
depends on n risk factors S D .S1; : : : ; Sn/

0. Typical risk factors are stock prices,
commodity prices, or exchange rates. Defining the sensitivities ıj D @X=@Sj ,
�jk D @2X=@Sj@Sk , the portfolio loss can be locally approximated by the quadratic
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Q WD d C a0�S C�S 0A�S;

where�S WD ST � S0 are the changes in the risk factors, a D �ı, and A D � 1
2

 .

Now assume that �S � N .�;†/, and note that for d D 0 and a D 0, Q is
just a quadratic form in normal variables. Generalizing (32.44), the mgf ofQ in the
general case is derived in the appendix. It is given by

MQ .s/ D exp

(

s
�
d C�0A�C a0�

�C s2
nX

iD1

c2i
1 � 2s�i

)
nY

iD1
.1 � 2s�i /�1=2 ;

(32.68)
where†1=2A†1=2 D PƒP0 with P orthogonal,ƒ D diag .�1; : : : ; �n/ and

.c1; : : : ; cn/
0 D P0

�
†1=2a=2C†1=2A�

	
:

With the mgf of Q available, the cdf (and hence the VaR) can be computed by
means of (32.8). This has first been pursued by Rouvinez (1997) and subsequently
generalized to the case of multivariate t risk factors by Glasserman et al. (2002).
Similarly, partial expectations (and thus the expected shortfall) can be computed
from (32.18), as in Yueh and Wong (2010). Broda (forthcoming) generalized this to
the case of multivariate t risk factors, in order to account for the well-documented
heavy tails of asset returns.

Now consider the saddlepoint approximation. The cgf of Q is given by

KQ .s/ D smC s2
nX

iD1
c2i #i C

1

2

nX

iD1
ln#i ;

wherem D d C�0A�C a0� and #i D #i .s/ D .1 � 2s�i /�1. The derivatives are
easily determined to be

K0Q .s/ D mC
nX

iD1
sc2i #i C s2c2i #2i �i C #i�i ; K00Q .s/

D
nX

iD1
c2i #i C 4sc2i #2i �i C 4s2c2i #3i �2i C 2#2i �2i ;

K000Q .s/ D
nX

iD1
6c2i #

2
i �i C 24sc2i #3i �2i C 24s2c2i #4i �3i C 8#3i �3i ;

and

K000Q .s/ D
nX

iD1
48c2i #

3
i �

2
i C 192sc2i #4i �3i C 192s2c2i #5i �4i C 48#4i �4i :
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With these, the saddlepoint approximation to the cdf is straightforwardly computed
from (32.9), as in Feuerverger and Wong (2000), or from (32.15) for a second
order approximation. This has been extended to the multivariate t setting in Broda
(forthcoming) as well.

For illustration, we consider a portfolio with a stock as single risk factor. Because
it is an asymptotic expansion, the accuracy of the SPA improves as the number of
risk factors grows, so that the case of a single risk factor can serve as a worst-case
scenario. To be specific, we consider

Q D �S C�S2; �S � N.0; 1/;

which corresponds to being short a number of slightly in-the-money European Calls
on the same stock, close to expiry. The reason for considering a short position is that
the loss is bounded for long positions.

The left panel of Fig. 32.3 illustrates the SPA to the cdf of Q. The first order
(dashes) and second order (circles) SPAs are graphically almost indistinguishable
from the true cdf (solid). A clearer picture emerges from the bottom left panel,
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Fig. 32.3 Approximations to the cdf (top left) and partial expectation (top right) of a quadratic
approximation to a short position in European Calls. The bottom row shows the relative error,
defined as 100. OF �F /=min.F; 1�F / and 100. OG �G/=.EŒQ��G/, respectively. BW refers to
approximation (32.20)
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which shows the relative error, computed as . OFQ � FQ/=min.FQ; 1 � FQ/. The
second order approximation shows less than 5% error across the entire support and
thus has a clear advantage over its first order counterpart, especially in the tail.
The right panel of the same figure shows the corresponding results for the partial
expectationGQ. In addition to the first and second order SPAs, the crosses represent
approximation (32.20), which ranges between the other two in terms of accuracy.
Note also that the overall accuracy of the approximations is lower than for the cdf,
indicating that the partial expectation is a more difficult target for approximation.

Next, consider Fig. 32.4, which illustrates the approximations to the VaR (left)
and ES (right). The VaR is computed by replacing FQ with its first or second
order SPA in (32.66), while the ES is obtained from (32.67), after plugging in the
corresponding approximate VaR. For the ES, when using (32.20) to approximate the
partial expectation, we plug in the first-order VaR approximation. Interestingly, the
first order approximation to the VaR outperforms the second order SPA except in the
far tails. For the ES approximation however, the results are reversed, with the second
order approximation dominating, at under 2% relative error. Somewhat surprisingly,
the approximation based on (32.20) performs very similarly to the second order
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VaR/=VaR and 100. OES� ES/=ES, respectively
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SPA, despite the fact that both quantities which enter the approximation (the VaR
and the partial expectation) are only approximated to first order. This would seem
to suggest that a form of error cancelation is taking place.

A.1 Derivation of the mgf of Q

The mgf of Q D X0AXC a0XC d , where X � N .�;†/, is

E
�
esQ

� D 1

.2�/n=2j†j1=2
Z

Rn

exp



sx0AxC sa0xC sd

� 1
2
.x � �/0†�1.x � �/

�
dx;

and the exponent can be rearranged as

sx0AxC sa0xC sd � 1
2
.x ��/0†�1.x � �/

D �1
2

�
�0†�1� � 2sd �C 1

2
.�C s†a/0 .I � 2sA†/�1†�1.�C s†a/

� 1
2
.x �m/0.†�1 � 2sA/.x �m/;

where m D .†�1�2sA/�1†�1.�C s†a/. As† > 0 and A is finite, there exists a
neighborhoodN0 around zero such that, for s 2 N0, †�1 � 2sA > 0. Recognizing
the kernel of the multivariate normal distribution,

Z

Rn

exp

�
� 1
2
.x �m/0.†�1 � 2sA/.x �m/


dx D .2�/n=2ˇˇ.†�1 � 2sA/ˇˇ�1=2;

the integral becomes

MQ.s/ D jI � 2sA†j�1=2 � exp fEg ; (A.1)

where

E WD �1
2

�
�0†�1� � 2sd �C 1

2
.�Cs†a/0 .I � 2sA†/�1†�1.�Cs†a/: (A.2)

Now let †1=2 be the symmetric square root of † and set †1=2A†1=2 D PƒP0
with P orthogonal, and ƒ D diag .�1; : : : ; �n/ the eigenvalues of †1=2A†1=2, the
nonzero ones of which are the same as those of A†. Then, with jP0Pj D jIj D 1

and recalling that the determinant of a product is the product of the determinants,
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ˇ
ˇI� 2sA†ˇˇ D ˇ

ˇ†�1=2†1=2
ˇ
ˇ
ˇ
ˇI � 2sA†ˇˇ D ˇˇ†�1=2ˇˇ ˇˇ†1=2

ˇ
ˇ
ˇ
ˇI � 2sA†ˇˇ

D ˇ
ˇ†1=2

ˇ
ˇ
ˇ
ˇI � 2sA†ˇˇ ˇˇ†�1=2ˇˇ D ˇˇ†1=2†�1=2 � 2s†1=2A††�1=2

ˇ
ˇ

D ˇ
ˇI� 2s†1=2A†1=2

ˇ
ˇ D ˇˇI � 2sPƒP0

ˇ
ˇ D ˇˇPP0 � 2sPƒP0

ˇ
ˇ

D ˇ
ˇP
ˇ
ˇ
ˇ
ˇI � 2sƒˇˇ ˇˇP0ˇˇ D ˇˇP0ˇˇ ˇˇPˇˇ ˇˇI � 2sƒˇˇ D ˇˇP0PˇˇˇˇI � 2sƒˇˇ

D ˇ
ˇI� 2sƒˇˇ D

nY

iD1
.1 � 2s�i /;

so that ˇ
ˇI � 2sA†ˇˇ�1=2 D

nY

iD1
.1 � 2s�i /�1=2: (A.3)

Next, E in (A.2) will be simplified. First recall that .AB/�1 D B�1A�1, so that

.I � 2sA†/�1†�1 D Œ† .I � 2sA†/��1 D .† � 2s†A†/�1

D
h
†1=2

�
I� 2s†1=2A†1=2

	
†1=2

i�1

D †�1=2
�

I � 2s†1=2A†1=2
	�1

†�1=2:

Then

E D � 1
2

h
.†�1=2�/0.�†�1=2/� 2sd

i

C 1
2
.†�1=2�C s†1=2a/0.I � 2s†1=2A†1=2/�1.†�1=2�C s†1=2a/

D s.d C �0A�C a0�/

C s2

2
.†1=2aC 2†1=2A�/0.I � 2s†1=2A†1=2/�1.†1=2aC 2†1=2A�/

or

E D s.d C �0A�C a0�/

C s2

2
.†1=2aC 2†1=2A�/0PP0.I � 2s†1=2A†1=2/�1PP0.†1=2aC 2†1=2A�/

D s.d C �0A�C a0�/

C s2

2
.†1=2aC 2†1=2A�/0P.P0P � 2sP0†1=2A†1=2P/�1P0.†1=2aC 2†1=2A�/

or, with c D .c1; : : : ; cn/0 D P0.†1=2aC 2†1=2A�/,

E D s.d C �0A�C a0�/C 1

2
s2c0.I � 2sƒ/�1c:

Putting this together with (A.1), (A.2) and (A.3) gives (32.68).
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Chapter 33
Bagging, Boosting and Ensemble Methods

Peter Bühlmann

33.1 An Introduction to Ensemble Methods

Ensemble methods aim at improving the predictive performance of a given statistical
learning or model fitting technique. The general principle of ensemble methods is
to construct a linear combination of some model fitting method, instead of using a
single fit of the method.

More precisely, consider for simplicity the framework of function estimation. We
are interested in estimating a real-valued function

g W IRd ! IR

based on data .X1; Y1/; : : : ; .Xn; Yn/ whereX is a d -dimensional predictor variable
and Y a univariate response. Generalizations to other functions g.�/ and other data-
types are possible. We assume to have specified a base procedure which, given
some input data (as above), yields an estimated function Og.�/. For example, the
base procedure could be a nonparametric kernel estimator (if d is small) or a
nonparametric statistical method with some structural restrictions (for d � 2)
such as a regression tree (or class-probability estimates from a classification tree).
We can run a base procedure many times when changing the input data: the

original idea of ensemble methods is to use reweighted original data to obtain
different estimates Og1.�/; Og2.�/; Og3.�/; : : : based on different reweighted input data.
We can then construct an ensemble-based function estimate gens.�/ by taking linear
combinations of the individual function estimates Ogk.�/:
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Ogens.�/ D
MX

kD1
ck Ogk.�/; (33.1)

where the Ogk.�/ are obtained from the base procedure based on the kth reweighted
data-set. For some ensemble methods, e.g. for bagging (see Sect. 35.2), the linear
combination coefficients ck  1=M are averaging weights; for other methods, e.g.
for boosting (see Sect. 35.3),

PM
kD1 ck increases as M gets larger.

Ensemble methods became popular as a relatively simple device to improve the
predictive performance of a base procedure. There are different reasons for this:
the bagging procedure turns out to be a variance reduction scheme, at least for
some base procedures. On the other hand, boosting methods are primarily reducing
the (model) bias of the base procedure. This already indicates that bagging and
boosting are very different ensemble methods. We will argue in Sects. 33.4.1 and
33.4.7 that boosting may be even viewed as a non-ensemble method which has
tremendous advantages over ensemble (or multiple prediction) methods in terms
of interpretation.

Random forests (Breiman 2001) is a very different ensemble method than
bagging or boosting. The earliest random forest proposal is from Amit and Geman
(Amit and Geman 1997). From the perspective of prediction, random forests is about
as good as boosting, and often better than bagging. Section 33.4.12 highlights a few
more aspects.

Some rather different exposition about bagging and boosting which describes
these methods in the much broader context of many other modern statistical methods
can be found in Hastie et al. (2001).

33.2 Bagging and Related Methods

Bagging Breiman (1996a), a sobriquet for bootstrap aggregating, is an ensemble
method for improving unstable estimation or classification schemes. Breiman
Breiman (1996a) motivated bagging as a variance reduction technique for a given
base procedure, such as decision trees or methods that do variable selection and
fitting in a linear model. It has attracted much attention, probably due to its
implementational simplicity and the popularity of the bootstrap methodology. At
the time of its invention, only heuristic arguments were presented why bagging
would work. Later, it has been shown in Bühlmann and Yu (2002) that bagging is
a smoothing operation which turns out to be advantageous when aiming to improve
the predictive performance of regression or classification trees. In case of decision
trees, the theory in Bühlmann and Yu (2002) confirms Breiman’s intuition that
bagging is a variance reduction technique, reducing also the mean squared error
(MSE). The same also holds for subagging (subsample aggregating), defined in
Sect. 33.2.3, which is a computationally cheaper version than bagging. However,
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for other (even “complex”) base procedures, the variance and MSE reduction effect
of bagging is not necessarily true; this has also been shown in Buja and Stuetzle
(2006) for the simple case where the estimator is a U -statistics.

33.2.1 Bagging

Consider the regression or classification setting. The data is given as in Sect. 35.1:
we have pairs .Xi ; Yi / .i D 1; : : : ; n/, where Xi 2 IRd denotes the d -dimensional
predictor variable and the response Yi 2 IR (regression) or Yi 2 f0; 1; : : : ; J � 1g
(classification with J classes). The target function of interest is usually IEŒY jX D x�
for regression or the multivariate function IPŒY D j jX D x� .j D 0; : : : ; J �
1/ for classification. The function estimator, which is the result from a given base
procedure, is

Og.�/ D hn..X1; Y1/; : : : ; .Xn; Yn//.�/ W IRd ! IR;

where the function hn.�/ defines the estimator as a function of the data.
Bagging is defined as follows.

Bagging Algorithm

Step 1. Construct a bootstrap sample .X�1 ; Y �1 /; : : : ; .X�n ; Y �n / by randomly drawing
n times with replacement from the data .X1; Y1/; : : : ; .Xn; Yn/.

Step 2. Compute the bootstrapped estimator Og�.�/ by the plug-in principle:
Og�.�/ D hn..X�1 ; Y �1 /; : : : ; .X�n ; Y �n //.�/.
Step3. Repeat steps 1 and 2M times, whereM is often chosen as 50 or 100, yielding
Og�k.�/ .k D 1; : : : ;M /. The bagged estimator is OgBag.�/ D M�1PM

kD1 Og�k.�/.
In theory, the bagged estimator is

OgBag.�/ D IE�Œ Og�.�/�: (33.2)

The theoretical quantity in (33.2) corresponds to M D 1: the finite number M
in practice governs the accuracy of the Monte Carlo approximation but otherwise,
it shouldn’t be viewed as a tuning parameter for bagging. Whenever we discuss
properties of bagging, we think about the theoretical version in (33.2).

This is exactly Breiman’s Breiman (1996a) definition for bagging regression
estimators. For classification, we propose to average the bootstrapped probabilities
Og�kj .�/ D OIP

�
ŒY �k D j jX�k D �� .j D 0; : : : ; J � 1/ yielding an estimator for

IPŒY D j jX D �� , whereas Breiman Breiman (1996a) proposed to vote among
classifiers for constructing the bagged classifier.



988 P. Bühlmann

The empirical fact that bagging improves the predictive performance of regres-
sion and classification trees is nowadays widely documented (Borra and Di Ciaccio
2002; Breiman 1996a,b; Bühlmann and Yu 2002; Buja and Stuetzle 2006). To
give an idea about the gain in performance, we cite some of the results of
Breiman’s pioneering paper Breiman (1996a): for 7 classification problems, bagging
a classification tree improved over a single classification tree (in terms of cross-
validated misclassification error) by

33%; 47%; 30%; 23%; 20%; 22%; 27%I

in case of 5 regression data sets, bagging regression trees improved over a single
regression tree (in terms of cross-validated squared error) by

39%; 22%; 46%; 30%; 38%:

In both cases, the size of the single decision tree and of the bootstrapped trees was
chosen by optimizing a tenfold cross-validated error, i.e. using the “usual” kind
of tree procedure. Besides that the reported improvement in percentages is quite
impressive, it is worth pointing out that bagging a decision tree is almost never
worse (in terms of predictive power) than a single tree.

A trivial equality indicates the somewhat unusual approach of using the
bootstrap methodology:

OgBag.�/ D Og.�/C .IE�Œ Og�.�/� � Og.�// D Og.�/C Bias�.�/;

where Bias�.�/ is the bootstrap bias estimate of Og.�/. Instead of the usual bias
correction with a negative sign, bagging comes along with the wrong sign and
adds the bootstrap bias estimate. Thus, we would expect that bagging has a higher
bias than Og.�/, which we will argue to be true in some sense, see Sect. 33.2.2.
But according to the usual interplay between bias and variance in nonparametric
statistics, the hope is to gain more by reducing the variance than increasing the bias,
so that overall, bagging would pay-off in terms of the MSE. Again, this hope turns
out to be true for some base procedures. In fact, Breiman Breiman (1996a) described
heuristically the performance of bagging as follows: the variance of the bagged
estimator OgBag.�/ should be equal or smaller than that for the original estimator Og.�/;
and there can be a drastic variance reduction if the original estimator is “unstable”.

33.2.2 Unstable Estimators with Hard Decision Indicator

Instability often occurs when hard decisions with indicator functions are involved as
in regression or classification trees. One of the main underlying ideas why bagging
works can be demonstrated by a simple example.
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Toy Example: A Simple, Instructive Analysis

Consider the estimator

Og.x/ D 1ŒY n�x�; x 2 IR; (33.3)

where Y n D n�1Pn
iD1 Yi with Y1; : : : ; Yn i.i.d. (no predictor variables Xi are used

for this example). The target we have in mind is g.x/ D limn!1 IEŒ Og.x/�. A simple
yet precise analysis below shows that bagging is a smoothing operation. Due to the
central limit theorem we have

n1=2.Y n � �/!D N .0; 2/ .n!1/ (33.4)

with � D IEŒY1� and 2 D Var.Y1/. Then, for x in a n�1=2-neighborhood of �,

x D xn.c/ D �C cn�1=2; (33.5)

we have the distributional approximation

Og.xn.c//!D L.Z/ D 1ŒZ�c� .n!1/; Z � N .0; 1/: (33.6)

Obviously, for a fixed c, this is a hard decision function of Z. On the other hand,
averaging for the bagged estimator looks as follows. Denote by ˚.�/ the c.d.f. of a
standard normal distribution:

OgBag.xn.c// D IE�Œ1
ŒY

�

n�xn.c/�� D IE�Œ1
Œn1=2.Y

�

n�Y n/=�n1=2.xn.c/�Y n/=��

D ˚.n1=2.xn.c/ � Y n/=/C oP .1/
!D LBag.Z/ D ˚.c �Z/ .n!1/; Z � N .0; 1/; (33.7)

where the first approximation (second line) follows because the bootstrap is
consistent for the arithmetic mean Y n, i.e.,

sup
x2IR
jIP�Œn1=2.Y �n � Y n/= � x� �˚.x/j D oP .1/ .n!1/; (33.8)

and the second approximation (third line in (33.7)) holds, because of (33.4) and
the definition of xn.c/ in (33.5). Comparing with (33.6), bagging produces a soft
decision function LBag.�/ of Z: it is a shifted inverse probit, similar to a sigmoid-
type function. Figure 33.1 illustrates the two functionsL.�/ and LBag.�/.

We see that bagging is a smoothing operation. The amount of smoothing is
determined “automatically” and turns out to be very reasonable (we are not claiming
any optimality here). The effect of smoothing is that bagging reduces variance due
to a soft- instead of a hard-thresholding operation.
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Fig. 33.1 Indicator estimator from (33.3) at x D xn.0/ as in (33.5). Function L.z/ D 1Œz�0�

(solid line) and LBag.z/ (dotted line) defining the asymptotics of the estimator in (33.6) and its
bagged version in (33.7)

We can compute the first two asymptotic moments in the unstable region with
x D xn.c/.

Numerical evaluations of these first two moments and the mean squared error
(MSE) are given in Fig. 33.2. We see that in the approximate range where jcj � 2:3,
bagging improves the asymptotic MSE. The biggest gain, by a factor 3, is at the
most unstable point x D � D IEŒY1�, corresponding to c D 0. The squared bias
with bagging has only a negligible effect on the MSE (note the different scales in
Fig. 33.2). Note that we always give an a-priori advantage to the original estimator
which is asymptotically unbiased for the target as defined.

In Bühlmann and Yu (2002), this kind of analysis has been given for more general
estimators than Y n in (33.3) and also for estimation in linear models after testing.
Hard decision indicator functions are involved there as well and bagging reduces
variance due to its smoothing effect. The key to derive this property is always the
fact that the bootstrap is asymptotically consistent as in (33.8).

Regression Trees

We address here the effect of bagging in the case of decision trees which are
most often used in practice in conjunction with bagging. Decision trees consist of
piecewise constant fitted functions whose supports (for the piecewise constants) are
given by indicator functions similar to (33.3). Hence we expect bagging to bring a
significant variance reduction as in the toy example above.



33 Bagging, Boosting and Ensemble Methods 991

variance

c
-4 -2 4

0.
0

0.
10

0.
20

squared bias

c
-4 -2 4

0.
0

0.
00

2
0.

00
4

0.
00

6

AMSE

c
-4 -2

0 2 0 2

0 2 4

0.
0

0.
10

0.
20

Fig. 33.2 Indicator estimator from (33.3) at x D xn.c/ as in (33.5). Asymptotic variance, squared
bias and mean squared error (AMSE) (the target is limn!1 IEŒ Og.x/�) for the estimator Og.xn.c//
from (33.3) (solid line) and for the bagged estimator OgBag.xn.c// (dotted line) as a function of c

For simplicity of exposition, we consider first a one-dimensional predictor space
and a so-called regression stump which is a regression tree with one split and two
terminal nodes. The stump estimator (or algorithm) is then defined as the decision
tree,

Og.x/ D Ǒ`1Œx< Od� C Ǒu1Œx� Od� D Ǒ` C . Ǒu � Ǒ`/1Œ Od�x�; (33.9)

where the estimates are obtained by least squares as

. Ǒ`; Ǒu; Od/ D argminˇ`;ˇu ;d

nX

iD1
.Yi � ˇ`1ŒXi<d� � ˇu1ŒXi�d�/2:

These values are estimates for the best projected parameters defined by

.ˇ0` ; ˇ
0
u; d

0/ D argminˇ`;ˇu ;d
IEŒ.Y � ˇ`1ŒX<d� � ˇu1ŒX�d�/2�: (33.10)

The main mathematical difference of the stump in (33.9) to the toy estimator
in (33.3) is the behavior of Od in comparison to the behavior of Y n (and not the
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constants Ǒ` and Ǒu involved in the stump). It is shown in Bühlmann and Yu (2002)
that Od has convergence rate n�1=3 (in case of a smooth regression function) and a
limiting distribution which is non-Gaussian. This also explains that the bootstrap is
not consistent, but consistency as in (33.8) turned out to be crucial in our analysis
above. Bagging is still doing some kind of smoothing, but it is not known how this
behaves quantitatively. However, a computationally attractive version of bagging,
which has been found to perform often as good as bagging, turns out to be more
tractable from a theoretical point of view.

33.2.3 Subagging

Subagging is a sobriquet for subsample aggregating where subsampling is
used instead of the bootstrap for the aggregation. An estimator Og.�/ D
hn..X1; Y1/; : : : ; .Xn; Yn//.�/ is aggregated as follows:

OgSB.m/.�/ D
�
n

m

��1 X

.i1;:::;im/2I
hm..Xi1 ; Yi1/; : : : ; .Xim; Yim//.�/;

where I is the set ofm-tuples (m < n) whose elements in f1; : : : ; ng are all distinct.
This aggregation can be approximated by a stochastic computation. The subagging
algorithm is as follows.

Subagging Algorithm

Step 1. For k D 1; : : : ;M (e.g.M D 50 or 100) do:

(i) Generate a random subsample .X�k1 ; Y �k1 /; : : : ; .X�km ; Y �km / by randomly draw-
ing m times without replacement from the data .X1; Y1/; : : : ; .Xn; Yn/ (instead
of resampling with replacement in bagging).

(ii) Compute the subsampled estimator
Og�k
.m/.�/ D hm..X�k1 ; Y �k1 /; : : : ; .X�km ; Y �km //.�/.

Step 2. Average the subsampled estimators to approximate
OgSB.m/.�/ �M�1PM

kD1 Og�k.m/.�/.

As indicated in the notation, subagging depends on the subsample size m which
is a tuning parameter (in contrast to M ).

An interesting case is half subagging withm D bn=2c. More generally, we could
also use m D banc with 0 < a < 1 (i.e. m a fraction of n) and we will argue
why the usual choice m D o.n/ in subsampling for distribution estimation Politis
et al. (1999) is a bad choice. Half subagging with m D Œn=2� has been studied
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also in Buja and Stuetzle (2006): in case where Og is a U -statistic, half subagging is
exactly equivalent to bagging, and subagging yields very similar empirical results to
bagging when the estimator Og.�/ is a decision tree. Thus, if we don’t want to optimize
over the tuning parameter m, a good choice in practice is very often m D bn=2c.
Consequently, half subagging typically saves more than half of the computing time
because the computational order of an estimator Og D Og.n/ is usually at least linear
in n.

Subagging Regression Trees

We describe here in a non-technical way the main mathematical result from
Bühlmann and Yu (2002) about subagging regression trees.

The underlying assumptions for some mathematical theory are as follows. The
data generating regression model is

Yi D g.Xi /C "i ; i D 1; : : : ; n;

where X1; : : : ; Xn and "1; : : : ; "n are i.i.d. variables, independent from each other,
and IEŒ"1� D 0, IEj"1j2 < 1. The regression function g.�/ is assumed to be smooth
and the distribution of Xi and "i are assumed to have suitably regular densities.

It is then shown in Bühlmann and Yu (2002) that for m D banc .0 < a < 1/,

lim sup
n!1

IEŒ. OgSB.m/.x/ � g.x//2�
IEŒ. Ogn.x/ � g.x//2� < 1;

for x in suitable neighborhoods (depending on the fraction a) around the best
projected split points of a regression tree (e.g. the parameter d0 in (33.10) for a
stump), and where g.x/ D limn!1 IEŒ Og.x/�. That is, subagging asymptotically
reduces the MSE for x in neighborhoods around the unstable split points, a fact
which we may also compare with Fig. 33.2. Moreover, one can argue that globally,

IEŒ. OgSB.m/.X/� g.X//2�
approx.
< IEŒ. Og.X/� g.X//2�

for n large, and where the expectations are taken also over (new) predictorsX .
For subagging with small order m D o.n/, such a result is no longer true: the

reason is that small order subagging will then be dominated by a large bias (while
variance reduction is even better than for fraction subagging with m D banb; 0 <
a < 1).

Similarly as for the toy example in Sect. 33.2.2, subagging smoothes the hard
decisions in a regression tree resulting in reduced variance and MSE.



994 P. Bühlmann

33.2.4 Bagging More “Smooth” Base Procedures and Bragging

As discussed in Sects. 33.2.2 and 33.2.3, (su-)bagging smoothes out indicator
functions which are inherent in some base procedures such as decision trees. For
base procedures which are “smoother”, e.g. which do not involve hard decision
indicators, the smoothing effect of bagging is expected to cause only small effects.

For example, in Buja and Stuetzle (2006) it is proved that the effect of
bagging on the MSE is only in the second order term if the base procedure is a
U -statistic. Similarly, citing Chen and Hall (2003): “... when bagging is applied
to relatively conventional statistical problems, it cannot reliably be expected to
improve performance”. On the other hand, we routinely use nowadays “non-
conventional” methods: a simple example is variable selection and fitting in a linear
model where bagging has been demonstrated to improve predictive performance
(Breiman 1996a).

In Borra and Di Ciaccio (2002), the performance of bagging has been studied
for MARS, projection pursuit regression and regression tree base procedures:
most improvements of bagging are reported for decision trees. In Bühlmann and
Yu (2002), it is shown that bagging the basis function in MARS essentially doesn’t
change the asymptotic MSE. In Bühlmann (2003) it is empirically demonstrated in
greater detail that for finite samples, bagging MARS is by far less effective - and
sometimes very destructive - than bagging decision trees.

(Su-)bagging may also have a positive effect due to averaging over different
selected predictor variables; this is an additional effect besides smoothing out
indicator functions. In case of MARS, we could also envision that such an averaging
over different selected predictor variables would have a positive effect: in the
empirical analysis in Bühlmann (2003), this has been found to be only true when
using a robust version of aggregation, see below.

33.2.5 Bragging

Bragging stands for bootstrap robust aggregating (Bühlmann 2003): it uses the
sample median over the M bootstrap estimates Og�k.�/, instead of the sample mean
in Step 3 of the bagging algorithm.

While bragging regression trees was often found to be slightly less improving
than bagging, bragging MARS seems better than the original MARS and much
better than bagging MARS.

33.2.6 Out-of-bag Error Estimation

Bagging “automatically” yields an estimate of the out-of-sample error, sometimes
referred to as the generalization error. Consider a loss �.Y; Og.X//, measuring the



33 Bagging, Boosting and Ensemble Methods 995

discrepancy between an estimated function Og, evaluated atX , and the corresponding
response Y , e.g. �.Y; Og.X// D jY � Og.X/j2. The generalization error is then

err D IEŒ�.Y; Og.X//�;

where the expectation IE is over the training data .X1; Y1/; : : : ; .Xn; Yn/ (i.i.d. or
stationary pairs), Og.�/ a function of the training data, and .X; Y / is a new test
observation, independent from the training data but having the same distribution
as one training sample point .Xi ; Yi /.

In a bootstrap sample (in the bagging procedure), roughly exp.�1/ � 37%
of the original observations are left out: they are called “out-of-bag” observations
(Breiman 1996b). Denote by Bootk the original sample indices which were
resampled in the kth bootstrap sample; note that the out-of-bag sample observations
(in the kth bootstrap resampling stage) are then given by f1; : : : ; ng n Bootk which
can be used as test sets. The out-of-bag error estimate of bagging is then defined as

berrOB D n�1
nX

iD1
N�1M

MX

kD1
1Œ.Xi ;Yi /…Bootk��.Yi ; Og�k.Xi//;

NM D
MX

kD1
1Œ.Xi ;Yi /…Bootk�:

In Bylander (2002), a correction of the out-of-bag error estimate is proposed. Out-
of-bag estimation can also be used for other tasks, e.g. for more honest class
probability estimates in classification when bagging trees (Breiman 1996b).

33.2.7 Disadvantages

The main disadvantage of bagging, and other ensemble algorithms, is the lack of
interpretation. A linear combination of decision trees is much harder to interpret
than a single tree. Likewise: bagging a variable selection - fitting algorithm for linear
models (e.g. selecting the variables using the AIC criterion within the least-squares
estimation framework) gives little clues which of the predictor variables are actually
important.

One way out of this lack of interpretation is sometimes given within the
framework of bagging. In Efron and Tibshirani (1998), the bootstrap has been
justified to judge the importance of automatically selected variables by looking
at relative appearance-frequencies in the bootstrap runs. The bagging estimator is
the average of the fitted bootstrap functions, while the appearance frequencies of
selected variables or interactions may serve for interpretation.
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33.2.8 Other References

Bagging may also be useful as a “module” in other algorithms: BagBoosting
Bühlmann and Yu (2000) is a boosting algorithm (see Sect. 35.3) with a bagged
base-procedure, often a bagged regression tree. The theory about bagging supports
the finding that BagBoosting using bagged regression trees, which have smaller
asymptotic MSEs than trees, is often better than boosting with regression trees.
This is empirically demonstrated for a problem about tumor classification using
microarray gene expression predictors (Dettling 2004).

In Ridgeway (2002), bagging is used in conjunction with boosting (namely
for stopping boosting iterations) for density estimation. In Dudoit and Fridlyand
(2003), bagging is used in the unsupervised context of cluster analysis, reporting
improvements when using bagged clusters instead of original cluster-outputs.

33.3 Stability Selection

Subsampling or bootstrapping are simple but effective techniques for increasing
“stability” of a method. In Sect. 35.2 we discussed bagging to potentially improve
the prediction performance of an algorithm or statistical estimator. Here, we will
briefly argue that subsampling or bootstrapping and aggregation leads to increased
power for variable selection and for controlling the expected number of false
positive selections.

To simplify the exposition, we consider data

.X1; Y1/; : : : ; .Xn; Yn/ i.i.d.;

where Xi is a d -dimensional covariate and Yi a univariate response. The goal is to
select the set of active variables

S D f1 � j � d I X.j / is associated with Y g: (33.11)

Here and in the sequel, x.j / denotes the j th component of the vector x. The wording
“associated to” is very loose, of course. Depending on the context, we can use
different definitions. For example, in a linear model

Y D
pX

jD1
ˇjX

.j / C ";

we would define S D f1 � j � d I ˇj ¤ 0g. Similarly, we can use the
same definition for S in a generalized linear model with regression coefficients
ˇ1; : : : ; ˇd .
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33.3.1 Subsampling of Selection Procedure

We assume that we have specified an active set S as in (33.11) and we consider
a statistical method or algorithm OS for estimating S . As in Sect. 33.2.3, we
use subsampling with subsample size bn=2c. This yields a subsampled selection
estimate OS� and we can compute the selection probability from subsampling, for
each variable j 2 f1; : : : ; d g:

O�j D IP�Œj 2 OS��; j D 1; : : : ; d:

As in Sect. 33.2.3, we compute O�j by a stochastic approximation. Run the sub-
sampling M times, producing OS�1; : : : ; OS�M and use the right-hand side of the
following formula

O�j �M�1
MX

bD1
1Œj2 OS�b�;

as an approximation for the left-hand side. Thus, the selection probabilities O�j are
obtained by aggregating the individual selectors OS�b from many subsampling runs
b D 1; : : : ;M , where M is large, e.g.M D 100.

The set of stable selections is defined as:

OSstable.�thr / D f1 � j � d I O�j � �thrg; (33.12)

where �thr is a tuning parameter to be chosen. We refer to OSstable.�thr / also as
“stability selection” (Meinshausen and Bühlmann 2010).

As described next, the choice of the tuning parameter should be governed by
controlling some false positive error measure.

33.3.2 Controlling False Positive Selections

Denote by V D V.�thr / D OSstable.�thr / \ Sc the number of false positives
with stability selection. Assuming some exchangeability condition on the design
or covariates, which is rather restrictive, and requiring that the selection procedure
OS is performing better than random guessing, a very simple formula controls the

expected number of false positive selections:

IEŒV .�thr /� � f rac12�thr � 1q
2

d
;
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where q is an upper bound for the selection algorithm j OSbn=2cj � q based on
bn=2c observations. For example, the selector OS is a forward selection algorithm
which stops when the first q variables have been selected. More details are given in
Meinshausen and Bühlmann (2010).

33.3.3 Related Work

Theoretical and empirical results are derived in Meinshausen and Bühlmann (2010)
showing that randomizing covariates is often beneficial for improved variable or fea-
ture selection. We note that randomizing covariates has also been successfully used
in Random Forests Breiman (2001). Another relation to subsampling as described in
Sect. 33.3.1 is given by multiple sample-splitting: this technique has been used for
deriving p-values in high-dimensional regression models (Meinshausen et al. 2009).

33.4 Boosting

Boosting algorithms have been proposed in the machine learning literature by
Schapire (Schapire 1990) and Freund (Freund 1995; Freund and Schapire 1996),
see also Schapire (2002). These first algorithms have been developed as ensemble
methods. Unlike bagging which is a parallel ensemble method, boosting methods
are sequential ensemble algorithms where the weights ck in (33.1) are depending
on the previous fitted functions Og1; : : : ; Ogk�1. Boosting has been empirically
demonstrated to be very accurate in terms of classification, notably the so-called
AdaBoost algorithm (Freund and Schapire 1996). A review of boosting from a
statistical perspective is given in Bühlmann and Hothorn (2007) where many of
the concepts and algorithms are illustrated with the R-software package mboost
(Hothorn et al. 2010).

We will explain below that boosting can be viewed as a nonparametric optimiza-
tion algorithm in function space, as first pointed out by Breiman (Breiman 1998,
1999). This view turns out to be very fruitful to adapt boosting for other problems
than classification, including regression and survival analysis.

Maybe it is worth mentioning here that boosting algorithms have often better
predictive power than bagging, cf. Breiman (1998); of course, such a statement has
to be read with caution, and methods should be tried out on individual data-sets,
including e.g. cross-validation, before selecting one among a few methods.

To give an idea, we report here some empirical results from Breiman (1998)
for classification: we show below the gains (in percentage) of boosting trees over
bagging trees:
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“normal” size data-sets: 64:3%; 10:8%; 20:3%;�4:6%; 6:9%; 16:2%;

large data-sets: 37:5%; 12:6%;�50:0%; 4:0%; 28:6%:

For all data-sets, boosting trees was better than a single classification tree. The
biggest loss of 50% for boosting in comparison with bagging is for a data-set
with very low misclassification error, where bagging achieves 0.014% and boosting
0.021%.

There is a striking similarity between gradient based boosting and the Lasso
in linear or generalized linear models, as we will describe in Sect. 33.4.10. Thus,
despite substantial conceptual differences, boosting-type algorithms are implicitly
related to `1-regularization.

33.4.1 Boosting as Functional Gradient Descent

Rather than looking through the lenses of ensemble methods, boosting algorithms
can be seen as functional gradient descent techniques (Breiman 1998, 1999). The
goal is to estimate a function g W IRd ! IR, minimizing an expected loss

IEŒ�.Y; g.X//�; �.�; �/ W IR � IR! IRC; (33.13)

based on data .Xi ; Yi / .i D 1; : : : n/ as in Sect. 33.2.1. The loss function � is
typically assumed to be convex in the second argument. We consider here both
cases where the univariate response Y is continuous (regression problem) or discrete
(classification problem), since boosting is potentially useful in both cases.

As we will see in Sect. 33.4.2, boosting algorithms are pursuing a “small”
empirical risk

n�1
nX

iD1
�.Yi ; g.Xi //

by selecting a g in the linear hull of some function class, i.e. g.�/ D P
k ckgk.�/

with gk.�/’s from a function class such as trees.
The most popular loss functions, for regression and binary classification, are

given in Table 33.1.

Table 33.1 The squared error, binomial negative log-likelihood and exponential loss functions
and their population minimizers; logit.p/ D log.p=.1� p//
Boosting Loss function Population minimizer for (33.13)

L2Boost �.y; g/ D .y � g/2 g.x/D IEŒY jX D x�

LogitBoost �.y; g/ D log2.1C exp.�2.y � 1/g// g.x/D 0:5 � logit.IPŒY D 1jX D x�/

AdaBoost �.y; g/ D exp.�.2y � 1/g/ g.x/D 0:5 � logit.IPŒY D 1jX D x�/
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Fig. 33.3 Loss functions of the margin for binary classification. Zero-one misclassification loss
(black), log-likelihood loss (red), exponential loss (green), squared error loss (blue). The loss-
functions are described in Table 33.1

While the squared error loss is mainly used for regression (see Bühlmann and
Yu (2003) for classification with the squared error loss), the log-likelihood and the
exponential loss are for binary classification only.

The Margin for Classification

The form of the log-likelihood loss may be somewhat unusual: we norm it, by using
the base 2 so that it “touches” the misclassification error as an upper bound (see
Fig. 33.3), and we write it as a function of the so-called margin Qyg, where Qy D
2y � 1 2 f�1; 1g is the usual labeling from the machine learning community. Thus,
the loss is a function of the margin Qyg only; and the same is true with the exponential
loss and also the squared error loss for classification since

. Qy � g/2 D Qy2 � 2 Qyg C g2 D 1 � 2 Qyg C . Qyg/2;

using Qy2 D 1.
The misclassification loss, or zero-one loss, is 1Œ Qyg<0�, again a function of the

margin, whose population minimizer is g.x/ D 1ŒIPŒYD1jXDx�>1=2�. For readers less
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familiar with the concept of the margin, this can also be understood as follows: the
Bayes-classifier which minimizes the misclassification risk is

gBayes .x/ D 1ŒIPŒYD1jXDx�>1=2�:

We can now see that a misclassification occurs, if y D 0; gBayes .x/ D 1 or y D
1; gBayes .x/ D 0, which is equivalent to 2.y�1/gBayes .x/ < 0 or QygBayes .x/ < 0.

The (surrogate) loss functions given in Table 33.1 are all convex functions
of the margin Qyg which bound the zero-one misclassification loss from above,
see Fig. 33.3. The convexity of these surrogate loss functions is computationally
important for empirical risk minimization; minimizing the empirical zero-one loss
is computationally intractable.

33.4.2 The Generic Boosting Algorithm

Estimation of the function g.�/, which minimizes an expected loss in (33.13), is
pursued by a constrained minimization of the empirical risk n�1

Pn
iD1 �.Yi ; g.Xi //.

The constraint comes in algorithmically (and not explicitly), by the way we are
attempting to minimize the empirical risk, with a so-called functional gradient
descent. This gradient descent view has been recognized and refined by vari-
ous authors (cf. Breiman 1998, 1999; Bühlmann and Yu 2003; Friedman 2001;
Friedman et al. 2000; Mason et al. 2000). In summary, the minimizer of the
empirical risk is imposed to satisfy a “smoothness” constraint in terms of a
linear expansion of (“simple”) fits from a real-valued base procedure function
estimate.

Generic Functional Gradient Descent

Step 1 (initialization). Given data f.Xi ; Yi /I i D 1; : : : ; ng, apply the base procedure
yielding the function estimate

OF1.�/ D Og.�/;

where Og D OgX;Y D hn..X1; Y1/; : : : ; .Xn; Yn// is a function of the original data. Set
m D 1.

Step 2 (projecting gradient to learner). Compute the negative gradient vector

Ui D �@�.Yi ; g/
@g

jgD OFm.Xi /; i D 1; : : : ; n;
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evaluated at the current OFm.�/. Then, apply the base procedure to the gradient vector

OgmC1.�/;

where OgmC1 D OgX;U D hn..X1; U1/; : : : ; .Xn; Un// is a function of the original
predictor variables and the current negative gradient vector as pseudo-response.

Step 3 (line search). Do a one-dimensional numerical search for the best step-size

OsmC1 D argmins

nX

iD1
�.Yi ; OFm.Xi /C s OgmC1.Xi //:

Update,

OFmC1.�/ D OFm.�/C OsmC1 OgmC1.�/:

Step 4 (iteration). Increase m by one and repeat Steps 2 and 3 until a stopping
iterationM is achieved.

The number of iterations M is the tuning parameter of boosting. The larger it
is, the more complex the estimator. But the complexity, for example the variance of
the estimator, is not linearly increasing inM : instead, it increases very slowly asM
gets larger, see also Fig. 33.4 in Sect. 33.4.6.

Obviously, the choice of the base procedure influences the boosting estimate.
Originally, boosting has been mainly used with tree-type base procedures, typically
with small trees such as stumps (two terminal nodes) or trees having say 8 terminal
nodes (cf. Bauer and Kohavi 1999; Breiman 1998, 2004; Dettling and Bühlmann
2003; Friedman et al. 2000); see also Sect. 33.4.9. But we will demonstrate in
Sect. 33.4.7 that boosting may be very worthwhile within the class of linear, additive
or interaction models, allowing for good model interpretation.

The function estimate OgmC1 in Step 2 can be viewed as an estimate of IEŒUi jX D
x�, the expected negative gradient given the predictorX , and takes values in IR, even
in case of a classification problem with Yi in a finite set (this is different from the
AdaBoost algorithm, see below).

We call OFM .�/ the L2Boost-, LogitBoost- or AdaBoost-estimate, according to
the implementing loss function .y � g/2, log2.1C exp.�2.y � 1/g// or �.y; g/ D
exp.�.2y � 1/g/, respectively; see Table 33.1.

The original AdaBoost algorithm for classification is actually a bit different: the
base procedure fit is a classifier, and not a real-valued estimator for the conditional
probability of Y given X ; and Steps 2 and 3 are also somewhat different. Since
AdaBoost’s implementing exponential loss function is not well established in
statistics, we refer for a detailed discussion to Friedman et al. (2000). From a
statistical perspective, the squared error loss and log-likelihood loss functions are
most prominent and we describe below the corresponding boosting algorithms in
detail.
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Fig. 33.4 Mean squared error IEŒ.g.X/ � Og.X//2� for new predictor X (solid line) and
n�1

Pn
iD1 IEŒ. OFm.Xi /�g.Xi //2� (dotted line) from 100 simulations of a nonparametric regression

model with smooth regression function and Unif.Œ�1=2; 1=2�-distributed design points. Sample
size is n D 100. Left: L2Boost with cubic smoothing spline having df D 3, as a function of
boosting iterations m. Right: Cubic smoothing spline for various degrees of freedom (various
amount of smoothing)

Alternative Formulation in Function Space

In Steps 2 and 3 of the generic FGD algorithm, we associated with U1; : : : ; Un
a negative gradient vector. A reason for this can be seen from the following
formulation in function space.

Consider the empirical risk functional C.f / D n�1
Pn

iD1 �.f .Xi /; Yi / and the
inner product .f; g/n D n�1Pn

iD1 f .Xi /g.Xi /. We can then calculate the negative
(functional) Gâteaux derivative dC.�/ of the functional C.�/,

�dC.f /.x/ D � @

@˛
C.f C ˛ıx/j˛D0; f W IRp ! IR; x 2 IRp;

where ıx denotes the delta- (or indicator-) function at x 2 IRp . In particular, when
evaluating the derivative �dC at Of Œm�1� and Xi , we get

� dC. Of Œm�1�/.Xi / D n�1Ui ; (33.14)
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with U1; :::; Un exactly as in steps 2 and 3 of the generic FGD algorithm. Thus,
the negative gradient vector U1; : : : ; Un can be interpreted as a functional (Gâteaux)
derivative evaluated at the data points.

L2Boosting

Boosting using the squared error loss, L2Boost, has a simple structure: the negative
gradient in Step 2 is the classical residual vector and the line search in Step 3 is
trivial when using a base procedure which does least squares fitting.

L2Boosting Algorithm

Step 1 (initialization). As in Step 1 of generic functional gradient descent.

Step 2. Compute residuals Ui D Yi � OFm.Xi/ .i D 1; : : : ; n/ and fit the real-valued
base procedure to the current residuals (typically by (penalized) least squares) as
in Step 2 of the generic functional gradient descent; the fit is denoted by OgmC1.�/.
Update

OFmC1.�/ D OFm.�/C OgmC1.�/:

We remark here that, assuming the base procedure does some (potentially penalized)
least squares fitting of the residuals, the line search in Step 3 of the generic algorithm
becomes trivial with OsmC1 D 1.

Step 3 (iteration). Increase iteration index m by one and repeat Step 2 until a
stopping iterationM is achieved.

The estimate OFM.�/ is an estimator of the regression function IEŒY jX D ��.
L2Boosting is nothing else than repeated least squares fitting of residuals (cf.
Bühlmann and Yu 2003; Friedman 2001). With m D 2 (one boosting step), it
has already been proposed by Tukey (Tukey 1977) under the name “twicing”.
In the non-stochastic context, the L2Boosting algorithm is known as “Matching
Pursuit” (Mallat and Zhang 1993) which is popular in signal processing for fitting
overcomplete dictionaries.

LogitBoost

Boosting using the log-likelihood loss for binary classification (and more gener-
ally for multi-class problems) is known as LogitBoost (Friedman et al. 2000).
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LogitBoost uses some Newton-stepping with the Hessian, rather than the line search
in Step 3 of the generic boosting algorithm:

LogitBoost Algorithm

Step 1 (initialization). Start with conditional probability estimates Op1.Xi / D
1=2 .i D 1; : : : ; n/ (for IPŒY D 1jX D Xi�). Set m D 1.

Step 2. Compute the pseudo-response (negative gradient)

Ui D Yi � Opm.Xi/
Opm.Xi/.1 � Opm.Xi// ;

and the weights

wi D Opm.Xi /.1 � Opm.Xi//:

Fit the real-valued base procedure to the current pseudo-responseUi .i D 1; : : : ; n/
by weighted least squares, using the current weights wi .i D 1; : : : n/; the fit is
denoted by OgmC1.�/. Update

OFmC1.�/ D OFm.�/C 0:5 � OgmC1.�/

and

OpmC1.Xi/ D exp. OFmC1.Xi //
exp. OFmC1.Xi //C exp.� OFmC1.Xi //

:

Step 3 (iteration). Increase iteration index m by one and repeat Step 2 until a
stopping iterationM is achieved.

The estimate OFM.�/ is an estimator for half of the log-odds ratio 0:5 � logit.IPŒY D
1jX D �� (see Table 33.1). Thus, a classifier (under equal misclassification loss for
the labels Y D 0 and Y D 1) is

sign. OFM.�//;

and an estimate for the conditional probability IPŒY D 1jX D �� is

OpM.�/ D exp. OFM.�//
exp. OFM.�//C exp.� OFM .�//

:

A requirement for LogitBoost is that the base procedure has the option to be fitted
by weighted least squares.
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Multi-Class Problems

The LogitBoost algorithm described above can be modified for multi-class problems
where the response variable takes values in a finite set f0; 1; : : : ; J � 1g with J > 2
by using the multinomial log-likelihood loss (Friedman et al. 2000). But sometimes
it can be advantageous to run instead a binary classifier (e.g. with boosting) for many
binary problems. The most common approach is to code for J binary problems
where the j th problem assigns the response

Y .j / D
(
1; if Y D j;
0; if Y ¤ j:

i.e. the so-called “one versus all” approach. For example, if single class-label can be
distinguished well from all others, the “one versus all” approach seems adequate:
empirically, this has been reported for classifying tumor types based on microarray
gene expressions when using a LogitBoost algorithm (Dettling and Bühlmann
2003).

Other codings of a multi-class into into multiple binary problems are discussed
in Allwein et al. (2001).

33.4.3 Poisson Regression

For count data with Y 2 f0; 1; 2; : : :g, we can use Poisson regression: we
assume that Y jX D x has a Poisson(�.x/) distribution and the goal is to estimate
the function g.x/ D log.�.x//. The negative log-likelihood yields then the loss
function

�.y; g/ D �yg C exp.g/; g D log.�/;

which can be used in the functional gradient descent algorithm in Sect. 33.4.2.

33.4.4 Small Step Size

It is often better to use small step sizes instead of using the full line search step-
length OsmC1 from Step 3 in the generic boosting algorithm (or OsmC1  1 forL2Boost
or OsmC1  0:5 for LogitBoost). We advocate here to use the step-size

� OsmC1; 0 < � � 1;
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where � is constant during boosting iterations and small, e.g. � D 0:1. The param-
eter � can be seen as a simple shrinkage parameter, where we use the shrunken
� OgmC1.�/ instead of the unshrunken OgmC1.�/. Small step-sizes (or shrinkage) make
the boosting algorithm slower and require a larger numberM of iterations. However,
the computational slow-down often turns out to be advantageous for better out-
of-sample prediction performance, cf. Friedman (2001), Bühlmann and Yu (2003).
There are also some theoretical reasons to use boosting with � (infinitesimally) small
(Efron et al. 2004).

33.4.5 The Bias-Variance Trade-Off for L2Boosting

We discuss here the behavior of boosting in terms of model-complexity and
estimation error when the number of iterations increase. This is best understood
in the framework of squared error loss and L2Boosting.

We represent the base procedure as an operator

S W IRn ! IRn; .U1; : : : ; Un/T 7! . OU1; : : : ; OUn/T

which maps a (pseudo-)response vector .U1; : : : ; Un/T to its fitted values; the
predictor variables X are absorbed here into the operator notation. That is,

S.U1; : : : ; Un/T D . Og.X1/; : : : ; Og.Xn//T ;

where Og.�/ D OgX;U .�/ is the estimate from the base procedure based on data
.Xi ; Ui /; i D 1; : : : ; n. Then, the boosting operator in iterationm equals

Bm D I � .I � S/m

and the fitted values of boosting afterm iterations are

BmY D Y � .I � S/mY; Y D .Y1; : : : ; Yn/T :

Heuristically, if the base procedure satisfies kI �Sk < 1 for a suitable norm, i.e. has
a “learning capacity” such that the residual vector is shorter than the input-response
vector, we see that Bm converges to the identity I as m! 1, and BmY converges
to the fully saturated model Y as m ! 1, interpolating the response data exactly.
Thus, we have to stop the boosting algorithm at some suitable iteration number
m D M , and we see that a bias-variance trade-off is involved when varying the
iteration numberM .
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33.4.6 L2Boosting with Smoothing Spline Base Procedure for
One-Dimensional Curve Estimation

The case where the base procedure is a smoothing spline for a one-dimensional
predictorX 2 IR1 is instructive, although being only a toy example within the range
of potential applications of boosting algorithms.

In our notation from above, S denotes a smoothing spline operator which is
the solution (SY D g.X1/; : : : ; f .Xn/) of the following optimization problem (cf.
Wahba 1990)

argmingn
�1

nX

iD1
.Yi � g.Xi //2 C �

Z
g00.x/2dx:

The smoothing parameter � controls the bias-variance trade-off, and tuning the
smoothing spline estimator usually boils down to estimating a good value of �.
Alternatively, the L2Boosting approach for curve-estimation with a smoothing
spline base procedure is as follows.

Choosing the Base Procedure

Within the class of smoothing spline base procedures, we choose a spline by fixing
a smoothing parameter �. This should be done such that the base procedure has
low variance but potentially high bias: for example, we may choose � such that
the degrees of freedom df D trace.S/ is low, e.g. df D 2:5. Although the base
procedure has typically high bias, we will reduce it by pursuing suitably many
boosting iterations. Choosing the df is not really a tuning parameter: we only
have to make sure that df is small enough, so that the initial estimate (or first few
boosting estimates) are not already overfitting. This is easy to achieve in practice
and a theoretical characterization is described in Bühlmann and Yu (2003)).

Related aspects of choosing the base procedure are described in Sects. 33.4.7 and
33.4.9. The general “principle” is to choose a base procedure which has low variance
and having the property that when taking linear combinations thereof, we obtain a
model-class which is rich enough for the application at hand.

MSE Trace and Stopping

As boosting iterations proceed, the bias of the estimator will go down and the
variance will increase. However, this bias-variance exhibits a very different behavior
as when classically varying the smoothing parameter (the parameter �).

It can be shown that the variance increases with exponentially small increments
of the order exp.�Cm/; C > 0, while the bias decays quickly: the optimal
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mean squared error for the best boosting iteration m is (essentially) the same as
for the optimally selected tuning parameter � (Bühlmann and Yu 2003), but the
trace of the mean squared error is very different, see Fig. 33.4. The L2Boosting
method is much less sensitive to overfitting and hence often easier to tune.
The mentioned insensitivity about overfitting also applies to higher-dimensional
problems, implying potential advantages about tuning.

Asymptotic Optimality

Such L2Boosting with smoothing splines achieves the asymptotically optimal
minimax MSE rates, and the method can even adapt to higher order smoothness of
the true underlying function, without knowledge of the true degree of smoothness
(Bühlmann and Yu 2003).

L2Boosting Using Kernel Estimators

As pointed out above, L2Boosting of smoothing splines can achieve faster mean
squared error convergence rates than the classical O.n�4=5/, assuming that the true
underlying function is sufficiently smooth. We illustrate here a related phenomenon
with kernel estimators.

We consider fixed, univariate design points xi D i=n .i D 1; : : : ; n/ and
the Nadaraya-Watson kernel estimator for the nonparametric regression function
IEŒY jX D x�:

Og.xIh/ D .nh/�1
nX

iD1
K
�x � xi

h

	
Yi D n�1

nX

iD1
Kh.x � xi /Yi ;

where h > 0 is the bandwidth, K.�/ a kernel in the form of a probability density
which is symmetric around zero and Kh.x/ D h�1K.x=h/. It is straightforward to
derive the form of L2Boosting using m D 2 iterations (with Of Œ0�  0 and � D 1),
i.e., twicing Tukey (1977), with the Nadaraya-Watson kernel estimator:

Of Œ2�.x/ D .nh/�1
nX

iD1
K tw
h .x � xi /Yi ; K tw

h .u/ D 2Kh.u/�Kh �Kh.u/;

where Kh � Kh.u/ D n�1
Pn

rD1 Kh.u � xr/Kh.xr /. For fixed design points xi D
i=n, the kernel K tw

h .�/ is asymptotically equivalent to a higher-order kernel (which
can take negative values) yielding a squared bias term of orderO.h8/, assuming that
the true regression function is four times continuously differentiable. Thus, twicing
or L2Boosting with m D 2 iterations amounts to be a Nadaraya-Watson kernel
estimator with a higher-order kernel. This explains from another angle why boosting
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is able to improve the mean squared error rate of the base procedure. More details
including also non-equispaced designs are given in DiMarzio and Taylor (2008).

33.4.7 L2Boosting for Additive and Interaction Regression
Models

In Sect. 33.4.5, we already pointed out that L2Boosting yields another way of
regularization by seeking for a compromise between bias and variance. This
regularization turns out to be particularly powerful in the context with many
predictor variables.

Additive Modeling

Consider the component-wise smoothing spline which is defined as a smoothing
spline with one selected predictor variable X.O+/ (O+ 2 f1; : : : ; d g), where

O+ D argmin+

nX

iD1
.Yi � Og+.X.+/

i //
2;

and Og+ are smoothing splines with single predictors X.j / , all having the same low
degrees of freedom df , e.g. df D 2:5.
L2Boost with component-wise smoothing splines yields an additive model, since

in every boosting iteration, a function of one selected predictor variable is linearly
added to the current fit and hence, we can always rearrange the summands to
represent the boosting estimator as an additive function in the original variables,Pd

jD1 Omj .xj /; x 2 IRd . The estimated functions Omj .�/ are fitted in a stage-wise
fashion and they are different from the backfitting estimates in additive models
(cf. Hastie and Tibshirani 1990). Boosting has much greater flexibility to add
complexity, in a stage-wise fashion: in particular, boosting does variable selection,
since some of the predictors will never be chosen, and it assigns variable amount of
degrees of freedom to the selected components (or function estimates); the degrees
of freedom are defined below. An illustration of this interesting way to fit additive
regression models with high-dimensional predictors is given in Figs. 33.5 and 33.6
(actually, a penalized version of L2Boosting, as described below, is shown).

When using regression stumps (decision trees having two terminal nodes) as
the base procedure, we also get an additive model fit (by the same argument as
with component-wise smoothing splines). If the additive terms mj .�/ are smooth
functions of the predictor variables, the component-wise smoothing spline is often
a better base procedure than stumps (Bühlmann and Yu 2003). For the purpose of
classification, e.g. with LogitBoost, stumps often seem to do a decent job; also, if
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the predictor variables are non-continuous, component-wise smoothing splines are
often inadequate.

Finally, if the number d of predictors is “reasonable” in relation to sample size
n, boosting techniques are not necessarily better than more classical estimation
methods (Bühlmann and Yu 2003). It seems that boosting has most potential when
the predictor dimension is very high (Bühlmann and Yu 2003). Presumably, more
classical methods become then very difficult to tune while boosting seems to
produce a set of solutions (for every boosting iteration another solution) whose
best member, chosen e.g. via cross-validation, has often very good predictive
performance. A reason for the efficiency of the trace of boosting solutions is given
in Sect. 33.4.10.

Degrees of Freedom andAICc-Stopping Estimates

For component-wise base procedures, which pick one or also a pair of variables
at the time, all the component-wise fitting operators are involved: for simplicity,
we focus on additive modeling with component-wise fitting operators Sj ; j D
1; : : : ; d , e.g. the component-wise smoothing spline.

The boosting operator, when using the step size 0 < � � 1, is then of the form

Bm D I � .I � �SO+1 /.I � �SO+2 / : : : .I � �SO+m/;

where O+i 2 f1; : : : ; d g denotes the component which is picked in the component-
wise smoothing spline in the i th boosting iteration.

If the Sj ’s are all linear operators, and ignoring the effect of selecting the
components, it is reasonable to define the degrees of boosting as

df .Bm/ D trace.Bm/:

We can represent

Bm D
dX

jD1
Mj ;

where Mj D Mj;m is the linear operator which yields the fitted values for the j th
additive term, e.g. MjY D . Omj .X1/; : : : ; Omj .Xn//

T . Note that the Mj ’s can be
easily computed in an iterative way by up-dating in the i th boosting iteration as
follows:

MO+i ;new  MO+i ;old C �SO+i .I � Bi�1/

and all otherMj ; j ¤ O+i do not change. Thus, we have a decomposition of the total
degrees of freedom into the d additive terms:
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df .Bm/ D
dX

jD1
dfj;m;

dfj;m D trace.Mj /:

The individual degrees of freedom dfj;m are a useful measure to quantify the
complexity of the j th additive function estimate Omj .�/ in boosting iterationm. Note
that dfj;m will increase very sub-linearly as a function of boosting iterations m, see
also Fig. 33.4.

Having some degrees of freedom at hand, we can now use the AIC, or some
corrected version thereof, to define a stopping rule of boosting without doing some
sort of cross-validation: the corrected AIC statistic (Hurvich et al. 1998) for boosting
in the mth iteration is

AICc D log. O2/C 1C trace.Bm/=n
1 � .trace.Bm/C 2/=n; (33.15)

O2 D n�1
nX

iD1
.Yi � .BmY/i /2: (33.16)

Alternatively, we could use generalized cross-validation (cf. Hastie et al. 2001),
which involves degrees of freedom. This would exhibit the same computational
advantage, as AICc , over cross-validation: instead of running boosting multiple
times, AICc and generalized cross-validation need only one run of boosting (over a
suitable number of iterations).

Penalized L2Boosting

When viewing the AICc criterion in (33.15) as a reasonable estimate of the true
underlying mean squared error (ignoring uninteresting constants), we may attempt
to construct a boosting algorithm which reduces in every step the AICc statistic (an
estimate of the out-sample MSE) most, instead of maximally reducing the in-sample
residual sum of squares.

We describe here penalized boosting for additive model fitting using individual
smoothing splines:

Penalized L2Boost with Additive Smoothing Splines

Step 1 (initialization). As in Step 1 of L2Boost by fitting a component-wise
smoothing spline.
Step 2. Compute residuals Ui D Yi � OFm.Xi/ .i D 1; : : : ; n/. Choose the individual
smoothing spline which reducesAICc most: denote the selected component by O+mC1
and the fitted function, using the selected component O+mC1 by OgmC1.�/.
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Update

OFmC1.�/ D OFm.�/C � OgmC1.�/:

for some step size 0 < � � 1.

Step 3 (iteration). Increase iteration indexm by one and repeat Step 2 until theAICc
criterion in (33.15) cannot be improved anymore.

This algorithm cannot be written in terms of fitting a base procedure multiple
times since selecting the component O+ in Step 2 not only depends on the residuals
U1; : : : ; Un, but also on the degrees of boosting, i.e. trace.BmC1/; the latter is a
complicated, although linear function, of the boosting iterationsm0 2 f1; 2; : : : ; mg.
Penalized L2Boost yields more sparse solutions than the corresponding L2Boost
(with component-wise smoothing splines as corresponding base procedure). The
reason is that dfj;m increases only little in iteration m C 1, if the jth selected
predictor variables has already been selected many times in previous iterations; this
is directly connected to the slow increase in variance and overfitting as exemplified
in Fig. 33.4.

An illustration of penalized L2Boosting with individual smoothing splines is
shown in Figs. 33.5 and 33.6, based on simulated data. The simulation model is

X1; : : : ; Xn i.i.d. � Unif.Œ0; 1�100;

Yi D
10X

jD1
mj .X

.j //C "i .i D 1; : : : ; n/;

"1; : : : ; "n i.i.d. � N .0; 0:5/; (33.17)

where the mj ’s are smooth curves having varying curve complexities, as illustrated
in Fig. 33.6. Sample size is n D 200 which is small in comparison to d D 100 (but
the effective number of predictors is only 10).

In terms of prediction performance, penalized L2Boosting is not always better
than L2Boosting; Fig. 33.7 illustrates an advantage of penalized L2Boosting. But
penalized L2Boosting is always sparser (or at least not less sparse) than the
correspondingL2Boosting.

Obviously, penalized L2Boosting can be used for other than additive smoothing
spline model fitting. The modifications are straightforward as long as the individual
base procedures are linear operators.

Interaction Modeling

L2Boosting for additive modeling can be easily extended to interaction modeling
(having low degree of interaction). Among the most prominent case is the second
order interaction model

Pd
j;kD1 Omj;k.xj ; xk/, where Omj;k W IR2 ! IR.
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Fig. 33.5 Degrees of freedom (df ) in additive model fitting for all 100 predictor variables (from
model (33.17)) during the process of penalized L2Boosting with individual smoothing splines
(having df D trace.Sj / D 2:5 for each spline). The first ten predictor variables (separated by
the dashed line) are effective. The result is based on one realization from model (33.17) with
sample size n D 200. The plot on the lower right corresponds to the estimated optimal number of
boosting iterations using the AICc criterion in (33.15). Only three non-effective predictors have
been selected (and assigned small amount of df ), and one effective predictor has not been selected
(but whose true underlying function is close to the zero-line, see Fig. 33.6)

Boosting with a pairwise thin plate spline, which selects the best pair of predic-
tor variables yielding lowest residual sum of squares (when having the same degrees
of freedom for every thin plate spline), yields a second-order interaction model. We
demonstrate in Fig. 33.7 the effectiveness of this procedure in comparison with the
second-order MARS fit (Friedman 1991). The underlying model is the Friedman #1
model:
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Fig. 33.6 True underlying additive regression curves (black) and estimates (red) from penalized
L2Boosting as described in Fig. 33.5 (using 436 iterations, estimated from (33.15)). The last
two plots correspond to non-effective predictors (the true functions are the zero-line), where
L2Boosting assigned most df among non-effective predictors

X1; : : : ; Xn i.i.d. � Unif..Œ0; 1�d /; d 2 f10; 20g;
Yi D 10 sin.�X.1/X.2//C 20.X.3/ � 0:5/2 C 10X.4/ C 5X.5/

C"i .i D 1; : : : ; n/;
"1; : : : ; "n i.i.d � N .0; 1/: (33.18)

The sample size is chosen as n D 50 which is small in comparison to d D 20.
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Fig. 33.7 Mean squared errors for L2Boost with pairwise thin-plate splines (of two predictor
variables, having df D trace.Sj;k / D 2:5) (black), its penalized version (red) and MARS
restricted to the (correct) second order interactions (blue). The point with abscissa x=501 for the
boosting methods corresponds to the performance when estimating the number of iterations using
(33.15). Based on simulated data from model (33.18) with n D 50

In high-dimensional settings, it seems that such interactionL2Boosting is clearly
better than the more classical MARS fit, while both of them share the same superb
simplicity of interpretation.

33.4.8 Linear Modeling

L2Boosting turns out to be also very useful for linear models, in particular when
there are many predictor variables:

Y D Xˇ C "
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where we use the well-known matrix-based notation. An attractive base procedure
is component-wise linear least squares regression, using the one selected predictor
variables which reduces residual sum of squares most.

This method does variable selection, since some of the predictors will never
be picked during boosting iterations; and it assigns variable amount of degrees
of freedom (or shrinkage), as discussed for additive models above. Recent theory
shows that this method is consistent for very high-dimensional problems where
the number of predictors d D dn is allowed to grow like exp.Cn/ .C > 0/, but
the true underlying regression coefficients are sparse in terms of their `1-norm, i.e.
supn kˇk1 D supn

Pdn
jD1 jˇj j <1, where ˇ is the vector of regression coefficients

(Bühlmann 2006).

33.4.9 Boosting Trees

The most popular base procedures for boosting, at least in the machine learning
community, are trees. This may be adequate for classification, but when it comes
to regression, or also estimation of conditional probabilities IPŒY D 1jX D x�

in classification, smoother base procedures often perform better if the underlying
regression or probability curve is a smooth function of continuous predictor
variables (Bühlmann and Yu 2003).

Even when using trees, the question remains about the size of the tree. A guiding
principle is as follows: take the smallest trees, i.e. trees with the smallest number
k of terminal nodes, such that the class of linear combinations of k-node trees is
sufficiently rich for the phenomenon to be modeled; of course, there is also here a
trade-off between sample size and the complexity of the function class.

For example, when taking stumps with k D 2, the set of linear combinations
of stumps is dense in (or “yields" the) set of additive functions (Breiman 2004). In
Friedman et al. (2000), this is demonstrated from a more practical point of view.
When taking trees with three terminal nodes (k D 3), the set of linear combinations
of 3-node trees yields all second-order interaction functions. Thus, when aiming
for consistent estimation of the full regression (or conditional class-probability)
function, we should choose trees with k D d C 1 terminal nodes (in practice only
if the sample size is “sufficiently large” in relation to d ), (cf. Breiman 2004).

Consistency of the AdaBoost algorithm is proved in Jiang (2004), for example
when using trees having d C 1 terminal nodes. More refined results are given in
Mannor et al. (2002), Zhang and Yu (2005) for modified boosting procedures with
more general loss functions.

Interpretation

The main disadvantage from a statistical perspective is the lack of interpretation
when boosting trees. This is in sharp contrast to boosting for linear, additive
or interaction modeling. An approach to enhance interpretation is described in
Friedman (2001).
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33.4.10 Boosting and `1-Penalized Methods (Lasso)

Another method which does variable selection and variable amount of shrinkage
is basis pursuit (Chen et al. 1999) or Lasso (Tibshirani 1996) which employs an
`1-penalty for the coefficients in the log-likelihood.

There is an intriguing connection between L2Boosting with componentwise
linear least squares and the Lasso, as pointed out in Hastie et al. (2001). The
connection has been rigorously established in Efron et al. (2004): they consider
a version of L2Boosting, called forward stagewise linear regression (FSLR), and
they show that FSLR with infinitesimally small step-sizes (i.e., the value � in
Sect. 33.4.4) produces a set of solutions which is equivalent (as step-sizes tend to
zero) to the set of Lasso solutions when varying the regularization parameter � in
the Lasso

Ǒ.�/ D argminˇ

�
kY � Xˇk22=nC �kˇk1

�
:

The equivalence only holds though if the design matrix X satisfies a very restrictive
“positive cone condition” (Efron et al. 2004).

Despite the fact thatL2Boosting and Lasso are not equivalent methods in general,
it may be useful to interpret boosting as being “related” to `1-penalty based methods.
This is particularly interesting when looking at the problem of high-dimensional
variable selection. For the Lasso, sufficient and necessary conditions on the design
X have been derived for consistent variable selection (Meinshausen and Bühlmann
2006; Zhao and Yu 2006). In view of these rather restrictive design conditions, the
adaptive Lasso has been proposed (Zou 2006). Related to the adaptive Lasso, Twin
boosting (Bühlmann and Hothorn 2010) is a very general method, like the generic
boosting algorithm in Sect. 33.4.2 which has better variable selection properties than
boosting. Similarly, when looking at estimation error in terms of k Ǒ � ˇk1 or k Ǒ �
ˇk2, many refined results have been worked out for the Lasso (cf. Bickel et al. 2009).

33.4.11 Aggregation

In the machine learning community, there has been a substantial focus on consistent
estimation in the convex hull of function classes (cf. Bartlett 2003; Bartlett et al.
2006; Lugosi and Vayatis 2004) which is a special case of aggregation (cf. Tsybakov
2004). For example, one may want to estimate a regression or probability function
which can be written as

1X

kD1
wkgk.�/; wk � 0;

1X

kD1
wk D 1;
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where the gk.�/’s belong to a function class such as stumps or trees with a fixed
number of terminal nodes. The quantity above is a convex combination of individual
functions, in contrast to boosting which pursues linear combination of individual
functions. By scaling, which is necessary in practice and theory (cf. Lugosi and
Vayatis 2004), one can actually look at this as a linear combination of functions
whose coefficients satisfy

P
k wk D �. This then represents an `1-constraint as in

Lasso, a relation which we have already outlined above.

33.4.12 Other References

Boosting, or functional gradient descent, has also been proposed for other set-
tings than regression or classification, including survival analysis (Benner 2002),
ordinal response problems (Tutz and Hechenbichler 2005), generalized monotonic
regression (Leitenstorfer and Tutz 2007), and high-multivariate financial time series
(Audrino and Barone-Adesi 2005; Audrino and Bühlmann 2003). More references
are provided in Bühlmann and Hothorn (2007).

Random Forests (Breiman 2001) is another, powerful ensemble method which
exhibits excellent predictive performance over a wide range of problems. In addi-
tion, it assigns variable importance which is of tremendous use for feature/variable
selection and ranking features/variables (cf. Strobl et al. 2008). Some theoretical
properties are derived in Li and Jeon (2006) and Biau et al. (2008).

Support vector machines (cf. Hastie et al. 2001; Schölkopf and Smola 2002;
Vapnik 1998) have become very popular in classification due to their good perfor-
mance in a variety of data sets, similarly as boosting methods for classification. A
connection between boosting and support vector machines has been made in Rosset
et al. (2004), suggesting also a modification of support vector machines to more
sparse solutions (Zhu et al. 2004).

Acknowledgments: I would like to thank Marcel Dettling for some constructive
comments.
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Chapter 34
Heavy-Tailed Distributions in VaR Calculations

Adam Misiorek and Rafał Weron

34.1 Introduction

Market risks are the prospect of financial losses – or gains – due to unexpected
changes in market prices and rates. Evaluating the exposure to such risks is
nowadays of primary concern to risk managers in financial and non-financial
institutions alike. Since the early 1990s a commonly used market risk estimation
methodology has been the Value at Risk (VaR). A VaR measure is the highest
possible loss L incurred from holding the current portfolio over a certain period
of time at a given confidence level (Alexander 2008; Jorion 2006):

P .L > VaR/ � 1 � c; (34.1)

where c is the confidence level, typically c � 95%. By convention, L D ��X.�/,
where �X.�/ is the relative change (return) in portfolio value over the time
horizon � . Hence, large values of L correspond to large losses (or large negative
returns).

The VaR figure has two important characteristics: (1) it provides a common
consistent measure of risk across different positions and risk factors and (2) it takes
into account the correlations or dependencies between different risk factors. Because
of its intuitive appeal and simplicity, it is no surprise that within a few years VaR
has become the standard risk measure used around the world. However, it has a
number deficiencies, among them the non-subadditivity – a sum of VaR’s of two
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portfolios can be smaller than the VaR of the combined portfolio. To cope with these
shortcomings, Artzner et al. (1999) proposed an alternative measure that satisfies the
assumptions of a coherent, i.e. an adequate, risk measure. The Expected Shortfall
(ES), also called Expected Tail Loss or Conditional VaR, is the expected value of
the losses in excess of VaR, i.e. ES D E .LjL > VaR/. It is interesting to note,
that the notion of Expected Shortfall has been familiar to insurance practitioners for
decades. It is very similar to the mean excess function which is used to characterize
claim size distributions (see Chap. 9 in Cizek et al. 2011).

The essence of the VaR and ES computations is estimation of low quantiles in the
portfolio return distributions. Hence, the performance of market risk measurement
methods depends on the quality of distributional assumptions on the underlying risk
factors. Many of the concepts in theoretical and empirical finance developed over the
past decades – including the classical portfolio theory, the Black-Scholes-Merton
option pricing model and even the RiskMetrics variance-covariance approach to
VaR – rest upon the assumption that asset returns follow a normal distribution. But
is this assumption justified by empirical data?

No, it is not! It has been long known that asset returns are not normally
distributed. Rather, the empirical observations exhibit excess kurtosis (fat tails). In
Fig. 34.1 we plot a ten-year history (January 3, 2000 – December 31, 2009) of the
Deutsche Aktienindex (DAX) index, its returns (or log-returns) and the distribution
of the returns. The contrast with the Gaussian law is striking. This heavy tailed
or leptokurtic character of the distribution of price changes has been repeatedly
observed in various markets and may be quantitatively measured by the kurtosis in
excess of 3, a value obtained for the normal distribution (Guillaume et al. 1997;
Rachev and Mittnik 2000).

Interestingly, the problem of the underestimation of risk by the Gaussian
distribution has been dealt with by the regulators in an ad hoc way. The Basle
Committee on Banking Supervision (1995) suggested that for the purpose of
determining minimum capital reserves financial institutions use a ten day VaR at
the c D 99% confidence level multiplied by a safety factor s 2 Œ3; 4�, with the exact
value of s depending on the past performance of the model. It has been argued by
Stahl (1997) and Danielsson et al. (1998) that the range of the safety factor comes
from the heavy-tailed nature of the returns distribution. Indeed, if we assume that
the asset returns distribution is symmetric and has finite variance 2 then from
Chebyshev’s inequality we obtain P .L � �/ � 2=2�2, where L represents the
random loss over the specified time horizon. So if we want to calculate the upper
bound for a 99% VaR, setting 2=2�2 D 1% yields � D 7:07 , which in turn implies
that VaR99% � 7:07 . However, if we assumed a Gaussian distribution of returns
then we would have VaR99% � 2:33 , which is roughly three times lower than the
bound obtained for a heavy-tailed, finite variance distribution.

Having said this much about the inadequacy of the Gaussian distribution for
financial modeling and risk management we have no other choice but offer some
heavy-tailed alternatives. We have to mention, though, that all distributional classes
described in this chapter present computational challenge. Large parts of the text are
thus devoted to numerical issues. In Sect. 34.2 we deal with the historically earliest



34 Heavy-Tailed Distributions in VaR Calculations 1027

0 500 1000 1500 2000 2500
2000

3000

4000

5000

6000

7000

8000

9000

Days (2000.01.03 − 2009.12.31)

D
A

X
 In

de
x

0 500 1000 1500 2000 2500

−0.1

−0.05

0

0.05

0.1

Days (2000.01.03 − 2009.12.31)

R
et

ur
ns

−0.04 −0.02 0 0.02 0.04
0

0.2

0.4

0.6

0.8

1

x

C
D

F
(x

)

DAX returns
Gaussian fit

10−1

10−2

10−3

10−3 10−2 10−1
10−4

100

−x

C
D

F
(x

)

DAX returns
Gaussian fit

Fig. 34.1 Top panels: DAX daily closing values Xt and daily returns log.XtC1=Xt / from the
period January 3, 2000 – December 31, 2009. Bottom panels: Gaussian fit to the DAX daily returns
empirical cumulative distribution function (CDF). For better exposition of the fit in the central part
of the distribution the range is limited to ˙4%. The right panel is a magnification of the left tail
fit on a double logarithmic scale clearly showing the discrepancy between the data and the normal
distribution

alternative – the stable laws – and briefly characterize their recent generalizations –
the so-called truncated and tempered stable distributions. Further, in Sect. 34.3 we
study the class of generalized hyperbolic laws. Finally, in Sect. 34.4 we introduce
the notion of copulas and discuss the relation between VaR, asset portfolios and
heavy tails.

34.2 Stable Distributions

34.2.1 Definitions and Basic Properties

Since the pioneering work of Louis Bachelier in 1900, financial asset returns have
been modeled by the Gaussian distribution. The theoretical rationale for this comes
from the Central Limit Theorem (CLT), which states that the sum of a large number
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of independent, identically distributed (i.i.d.) variables – say, decisions of investors –
from a finite-variance distribution will be (asymptotically) normally distributed.
However, empirical evidence indicates that financial asset returns tend to have
heavier tails than Gaussian. Possible reasons for the failure of the CLT are infinite-
variance distributions of the variables, non-identical distributions of the variables,
dependences between the variables or any combination of the three.

The dependence issue is hard to tackle analytically, however, if only the finite
variance assumption is dropped we have a readily usable solution. Namely, the
generalized version of the CLT states that the limiting distribution of sums of such
variables is stable (Nolan 2012). This, together with the fact that stable distributions
are leptokurtic and can accommodate fat tails and asymmetry, provides us with a
theoretically justified modeling tool. Indeed, as early as in the 1960s stable laws
were proposed as an alternative model for asset returns (Mandelbrot 1963).

Stable laws – also called ˛-stable, stable Paretian or Lévy stable – were
introduced by Lévy (1925) during his investigations of the behavior of sums of
independent random variables. The name “stable” reflects the fact that a sum of
two independent random variables having a stable distribution with the same index
˛ is again stable with index ˛. Recall, that this invariance property holds also for
Gaussian variables. In fact, the Gaussian distribution is stable with ˛ D 2.

The stable distribution requires four parameters for complete description. The
index of stability ˛ 2 .0; 2�, also called the tail index, tail exponent or characteristic
exponent, determines the rate at which the tails of the distribution taper off, see the
left panel in Fig. 34.2. The skewness parameter ˇ 2 Œ�1; 1� defines the asymmetry.
When ˇ > 0, the distribution is skewed to the right, i.e. the right tail is thicker,
see the right panel in Fig. 34.2. When it is negative, it is skewed to the left. When
ˇ D 0, the distribution is symmetric about the mode (the peak) of the distribution.
As ˛ approaches 2, ˇ loses its effect and the distribution approaches the Gaussian
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Fig. 34.2 Left panel: A semilog plot of symmetric (ˇ D � D 0) stable probability density
functions (PDFs) for four different values of ˛ showing the dependence on the tail exponent. The
Gaussian (˛ D 2) PDF forms a parabola and is the only stable density with exponential tails. Right
panel: A plot of stable PDFs for ˛ D 1:1 and four different values of ˇ showing the dependence
on the skewness parameter
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distribution regardless of ˇ. The last two parameters,  > 0 and � 2 R, are the
usual scale and location parameters, respectively.

From a practitioner’s point of view the crucial drawback of the stable distribution
is that, with the exception of three special cases, its probability density function
(PDF) and cumulative distribution function (CDF) do not have closed form expres-
sions. These exceptions include the well known Gaussian (˛ D 2) law, whose
density is given by:

fG.x/ D 1p
2�

exp



� .x � �/

2

22

�
; (34.2)

and the lesser known Cauchy (˛ D 1, ˇ D 0) and Lévy (˛ D 0:5, ˇ D 1) laws.
Hence, the stable distribution can be most conveniently described by its charac-

teristic function (CF) – the inverse Fourier transform of the PDF. The most popular
parameterization of the characteristic function �.t/ ofX � S˛.; ˇ; �/, i.e. a stable
random variable with parameters ˛,  , ˇ and �, is given by (Samorodnitsky and
Taqqu 1994; Weron 1996):

log�.t/ D

8
ˆ̂<

ˆ̂
:

�˛jt j˛f1� iˇsign.t/ tan �˛
2
g C i�t; ˛ ¤ 1;

� jt jf1C iˇsign.t/ 2
�

log jt jg C i�t; ˛ D 1:
(34.3)

Note, that the traditional scale parameter  of the Gaussian distribution is not the
same as  in the above representation. A comparison of formulas (34.2) and (34.3)
yields the relation: Gaussian D

p
2 .

For numerical purposes, it is often useful to use Nolan’s (1997) parameterization:

log�0.t/ D

8
ˆ̂
<

ˆ̂
:

�˛ jt j˛f1C iˇsign.t/ tan �˛
2
Œ. jt j/1�˛ � 1�g C i�0t; ˛ ¤ 1;

� jt jf1C iˇsign.t/ 2
�

log. jt j/g C i�0t; ˛ D 1;
(34.4)

which yields a CF (and hence the PDF and CDF) jointly continuous in all four
parameters. The location parameters of the two representations (S and S0) are
related by � D �0 � ˇ tan �˛

2
for ˛ ¤ 1 and � D �0 � ˇ 2

�
log  for

˛ D 1. Moreover, when ˛ > 1 the mean of the distribution exists and is equal
to �.

The latter is a result of a more general property: the pth moment of a stable
random variable is finite if and only if p < ˛. Hence, when ˛ < 2 the variance
is infinite and the tails exhibit a power-law behavior (i.e. they are asymptotically
equivalent to a Pareto law). More precisely, using a CLT type argument it can be
shown that (Janicki and Weron 1994a; Samorodnitsky and Taqqu 1994):
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(
limx!1 x˛P .X > x/ D C˛.1C ˇ/˛;
limx!1 x˛P .X < �x/ D C˛.1C ˇ/˛;

(34.5)

where C˛ D
�
2
R1
0
x�˛ sin.x/dx

��1 D 1
�
� .˛/ sin �˛

2
. The convergence to the

power-law tail varies for different˛’s and is slower for larger values of the tail index.
Moreover, the tails of stable CDFs exhibit a crossover from an approximate power
decay with exponent ˛ > 2 to the true tail with exponent ˛. This phenomenon is
more visible for large ˛’s (Weron 2001).

34.2.2 Truncating or Tempering the Tails

Mandelbrot’s (1963) seminal work on applying stable distributions in finance
gained support in the first few years after its publication, but subsequent works
have questioned the stable distribution hypothesis, in particular, the stability under
summation (for a review see Rachev and Mittnik 2000). Over the next few years,
the stable law temporarily lost favor and alternative processes were suggested
as mechanisms generating stock returns. In the mid 1990s the stable distribution
hypothesis has made a dramatic comeback, at first in the econophysics literature.
Several authors have found a very good agreement of high-frequency returns with
a stable distribution up to six standard deviations away from the mean (Cont et al.
1997). For more extreme observations, however, the distribution they found fell off
approximately exponentially. To cope with such observations the so called truncated
Lévy distributions (TLD) were introduced by Mantegna and Stanley (1994). The
original definition postulated a sharp truncation of the stable PDF at some arbitrary
point. Later, however, exponential smoothing was proposed by Koponen (1995)
leading to the following characteristic function:

log�.t/ D � ˛

cos �˛
2

�
.t2 C �2/˛=2 cos



˛ arctan

jt j
�

�
� �˛


; (34.6)

where ˛ ¤ 1 is the tail exponent,  is the scale parameter and � is the truncation
coefficient (for simplicity ˇ and � are set to zero here). Clearly the symmetric
TLD reduces to the symmetric stable distribution (ˇ D � D 0) when � D 0.
For small and intermediate returns the TLD behaves like a stable distribution, but
for extreme returns the truncation causes the distribution to converge to a Gaussian
(hence, all moments are finite), see Fig. 34.3. Thus the observation that the asset
returns distribution is a TLD explains both the short-term stable behavior and the
long run convergence to the normal distribution (for interesting insights on the CLT-
type behavior of the TLD see a recent paper of Grabchak and Samorodnitsky 2010).

The (exponentially smoothed) TLD was not recognized in finance until the
introduction of the KoBoL (Boyarchenko and Levendorskii 2000) and CGMY
models (Carr et al. 2002). Around this time Rosinski coined the term under which
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the TLD is known today in the mathematics literature – tempered stable distribution
(TSD; see Rosinski 2007).

Despite the interesting statistical properties, the TSDs (TLDs) have not been
applied extensively to date. The most probable reason for this being the complicated
definition of the TSD. Like for stable distributions, only the characteristic function
is known. No closed form formulas exist for the density or the distribution functions.
No integral formulas, like Zolotarev’s (1986) for the stable laws (see Sect. 34.2.3),
have been discovered to date. Hence, statistical inference is, in general, limited to
ML utilizing the FFT technique for approximating the PDF (Bianchi et al. 2010;
Grabchak 2008). Moreover, compared to the stable distribution, the TSD introduces
one more parameter making the estimation procedure even more complicated. Other
parameter fitting techniques proposed so far comprise a combination of ad hoc
approaches and moment matching (Boyarchenko and Levendorskii 2000; Matacz
2000). Apart from a few special cases, also the simulation of TSD variables is
cumbersome and numerically demanding (Bianchi et al. 2010; Kawai and Masuda
2011; Poirot and Tankov 2006).
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34.2.3 Computation of Stable Density and Distribution Functions

The lack of closed form formulas for most stable densities and distribution
functions has negative consequences. Numerical approximation or direct numerical
integration have to be used, leading to a drastic increase in computational time
and loss of accuracy. Of all the attempts to be found in the literature a few are
worth mentioning. DuMouchel (1971) developed a procedure for approximating
the stable CDF using Bergström’s series expansion. Depending on the particular
range of ˛ and ˇ, Holt and Crow (1973) combined four alternative approximations
to compute the stable PDF. Both algorithms are computationally intensive and
time consuming, making maximum likelihood estimation a nontrivial task, even
for modern computers. In the late 1990s, two more efficient techniques have been
proposed.

Mittnik et al. (1999) exploited the PDF–CF relationship and applied the fast
Fourier transform (FFT). However, for data points falling between the equally
spaced FFT grid nodes an interpolation technique has to be used. The authors
suggested that linear interpolation suffices in most practical applications, see also
Rachev and Mittnik (2000). Taking a larger number of grid points increases
accuracy, however, at the expense of higher computational burden. Setting the
number of grid points to N D 213 and the grid spacing to h D 0:01 allows to
achieve comparable accuracy to the direct integration method (see below), at least
for a range of ˛’s typically found for financial data (1:6 < ˛ < 1:9).

As for the computational speed, the FFT based approach is faster for large
samples, whereas the direct integration method favors small data sets since it can
be computed at any arbitrarily chosen point. Mittnik et al. (1999) report that for
N D 213 the FFT based method is faster for samples exceeding 100 observations
and slower for smaller data sets. We must stress, however, that the FFT based
approach is not as universal as the direct integration method – it is efficient only
for large alpha’s and only as far as the PDF calculations are concerned. When
computing the CDF the former method must numerically integrate the density,
whereas the latter takes the same amount of time in both cases.

The direct integration method, proposed by Nolan (1997, 1999) consists of
a numerical integration of Zolotarev’s (1986) formulas for the density or the
distribution function. To save space we state only the formulas for the PDF.
Complete formulas can be also found in Cizek et al. (2011), Chap. 1.

Set � D �ˇ tan �˛
2

. Then the density f .xI˛; ˇ/ of a standard stable random
variable in representation S0, i.e. X � S0˛.1; ˇ; 0/, can be expressed as (note, that
Zolotarev (1986, Sect. 2.2) used another parametrization):

• When ˛ ¤ 1 and x ¤ �:

f .xI˛; ˇ/ D ˛.x � �/ 1
˛�1

� j ˛ � 1 j
Z �

2

�™0
V .™I˛; ˇ/ exp

n
�.x � �/ ˛

˛�1 V .™I˛; ˇ/
o
d™;

for x > � and f .xI˛; ˇ/ D f .�xI˛;�ˇ/ for x < �,
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• When ˛ ¤ 1 and x D �:

f .xI˛; ˇ/ D � .1C 1
˛
/ cos.�/

�.1C �2/ 1
2˛

;

• When ˛ D 1:

f .xI 1; ˇ/ D

8
ˆ̂
<

ˆ̂
:

1
2jˇj e

�x
2ˇ
R �

2

� �2 V .™I 1; ˇ/ exp
n
�e �x2ˇ V .™I 1; ˇ/

o
d™; ˇ ¤ 0;

1
�.1Cx2/ ; ˇ D 0;

where

� D
(
1
˛

arctan.��/; ˛ ¤ 1;
�
2
; ˛ D 1; (34.7)

and

V.™I˛; ˇ/ D
8
<

:
.cos˛�/

1
˛�1

�
cos ™

sin˛.�C™/
	 ˛
˛�1 cosf˛�C.˛�1/™g

cos ™ ; ˛ ¤ 1;
2
�

� �
2Cˇ™
cos ™

	
exp

n
1
ˇ
.�
2
C ˇ™/ tan ™

o
; ˛ D 1; ˇ ¤ 0:

To our best knowledge, currently no statistical computing environment offers
the computation of stable density and distribution functions in its standard release.
Users have to rely on third-party libraries or commercial products. A few are
worth mentioning. The standalone program STABLE (downloadable from John
Nolan’s web page: http://academic2.american.edu/~jpnolan/stable/stable.html) is
probably the most efficient. It was written in Fortran and calls several external IMSL
routines, see Nolan (1997) for details. Apart from speed, the STABLE program
also exhibits high relative accuracy (ca. 10�13; for default tolerance settings) for
extreme tail events and 10�10 for values used in typical financial applications (like
approximating asset return distributions). The STABLE program is also available in
library form through Robust Analysis Inc. (www.robustanalysis.com). This library
provides interfaces to Matlab, S-plus/R and Mathematica.

In the late 1990s Diethelm Würtz has initiated the development of Rmetrics,
an open source collection of S-plus/R software packages for computational finance
(www.rmetrics.org). In the fBasics package stable PDF and CDF calculations are
performed using the direct integration method, with the integrals being computed
by R’s function integrate.

The FFT based approach is utilized in Cognity, a commercial risk management
platform that offers derivatives pricing and portfolio optimization based on the
assumption of stably distributed returns (www.finanalytica.com). The FFT imple-
mentation is also available in Matlab (stablepdf_fft.m) from the Statistical Software
Components repository (http://ideas.repec.org/c/boc/bocode/m429004.html).

http://academic2.american.edu/~jpnolan/stable/stable.html
www.robustanalysis.com
www.rmetrics.org
www.finanalytica.com
http://ideas.repec.org/c/boc/bocode/m429004.html
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34.2.4 Simulation of Stable Variables

Simulating sequences of stable random variables is not straightforward, since there
are no analytic expressions for the inverse F�1.x/ nor the CDF F.x/ itself. All
standard approaches like the rejection or the inversion methods would require
tedious computations. See Chap. II.3 for a review of non-uniform random number
generation techniques.

A much more elegant and efficient solution was proposed by Chambers et al.
(1976). They noticed that a certain integral formula derived by Zolotarev (1964)
yielded the following algorithm:

• Generate a random variableU uniformly distributed on .��
2
; �
2
/ and an indepen-

dent exponential random variableW with mean 1;
• For ˛ ¤ 1 compute:

X D .1C �2/ 1
2˛

sinf˛.U C �/g
fcos.U /g1=˛

�
cosfU � ˛.U C �/g

W

 1�˛
˛

; (34.8)

• For ˛ D 1 compute:

X D 1

�


��
2
C ˇU

	
tanU � ˇ log

� �
2
W cosU
�
2
C ˇU

��
; (34.9)

where � is given by eqn. (34.7). This algorithm yields a random variable X �
S˛.1; ˇ; 0/, in representation (34.3). For a detailed proof see Weron (1996).

Given the formulas for simulation of a standard stable random variable, we can
easily simulate a stable random variable for all admissible values of the parameters
˛,  , ˇ and � using the following property. If X � S˛.1; ˇ; 0/ then

Y D
(
X C �; ˛ ¤ 1;
X C 2

�
ˇ log  C �; ˛ D 1; (34.10)

is S˛.; ˇ; �/. It is interesting to note that for ˛ D 2 (and ˇ D 0) the Chambers-
Mallows-Stuck (CMS) method reduces to the well known Box-Muller algorithm for
generating Gaussian random variables (Janicki and Weron 1994b) .

Many other approaches have been proposed in the literature, including applica-
tion of Bergström and LePage series expansions, see Mantegna (1994) and Janicki
and Kokoszka (1992), respectively. However, the CMS method is regarded as the
fastest and the most accurate. On a PC equipped with a Core 2 Duo 2.66 GHz CPU
one million variables are generated in about 1.03 s (using stablernd.m from the SSC
repository: http://ideas.repec.org/c/boc/bocode/m429003.html), compared to about
0.058 s for one million standard normal random variables obtained via the Box-
Muller algorithm (randn.m in Matlab). Because of its unquestioned superiority and
relative simplicity, the CMS method is implemented in some statistical computing

http://ideas.repec.org/c/boc/bocode/m429003.html
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environments (e.g. the rstable function in S-plus/R) even if no other routines related
to stable distributions are provided.

34.2.5 Estimation of Parameters

The lack of known closed-form density functions for all but a few members of the
stable family results in a considerable numerical complexity of statistical inference
for these distributions. For instance, maximum likelihood (ML) estimates have to be
based on numerical approximations or direct numerical integration of the formulas
presented in Sect. 34.2.3. Consequently, ML estimation is difficult to implement and
time consuming for samples encountered in modern finance. However, there are also
other numerical methods that have been found useful in practice and are discussed
in this section.

Given a sample x1; : : : ; xn of i.i.d. S˛.; ˇ; �/ observations, in what follows,
we provide estimates Ǫ , O , Ǒ and O� of all four stable law parameters. We start
the discussion with the simplest, fastest and ... least accurate quantile methods,
then develop the slower, yet much more accurate sample CF methods and, finally,
conclude with the slowest but most accurate ML approach.

All presented methods work quite well assuming that the sample under consid-
eration is indeed stable. However, testing for stability is not an easy task. Despite
some more or less successful attempts (Brcich et al. 2005; Cizek et al. 2011; Matsui
and Takemura 2008; Paolella 2001), there are no standard, widely-accepted tests
for assessing stability. A possible remedy may be to use one of the computationally
less demanding tail exponent estimators (Fan 2006; Mittnik and Paolella 1999) or
simply “visual inspection” to see whether the empirical densities resemble those of
stable laws (Nolan 2001; Weron 2001).

Sample Quantile Methods

The origins of sample quantile methods for stable laws go back to Fama and Roll
(1971), who provided very simple estimates for parameters of symmetric (ˇ D
0; � D 0) stable laws with ˛ > 1. A decade later McCulloch (1986) generalized
their method and provided consistent estimators of all four stable parameters (with
the restriction ˛ � 0:6). After McCulloch define:

v˛ D x0:95 � x0:05
x0:75 � x0:25 and vˇ D x0:95 C x0:05 � 2x0:50

x0:95 � x0:05 ; (34.11)

where xf denotes the f -th population quantile, so that S˛.; ˇ; �/.xf / D f .
Statistics v˛ and vˇ are functions of ˛ and ˇ only, i.e. they are independent of both
 and �. This relationship may be inverted and the parameters ˛ and ˇ may be
viewed as functions of v˛ and vˇ. Substituting v˛ and vˇ by their sample values and
applying linear interpolation between values found in tables given in McCulloch
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(1986) yields estimators Ǫ and Ǒ. Scale and location parameters,  and �, can be
estimated in a similar way. However, due to the discontinuity of the CF for ˛ D 1

and ˇ ¤ 0 in representation (34.3), this procedure is much more complicated.
In a recent paper, Dominicy and Veredas (2010) further extended the quantile

approach by introducing the method of simulated quantiles. It is a promising
approach which can also handle multidimensional cases as, for instance, the joint
estimation of N univariate stable distributions (but with the constraint of a common
tail index).

Sample Characteristic Function Methods

Given an i.i.d. random sample x1; : : : ; xn of size n, define the sample CF by:
O�.t/ D 1

n

Pn
jD1 exp.i txj /. Since j O�.t/j is bounded by unity all moments of O�.t/

are finite and, for any fixed t , it is the sample average of i.i.d. random variables
exp.i txj /. Hence, by the law of large numbers, O�.t/ is a consistent estimator of the
CF �.t/.

To our best knowledge, Press (1972) was the first to use the sample CF in the con-
text of statistical inference for stable laws. He proposed a simple estimation method
for all four parameters, called the method of moments, based on transformations of
the CF. However, the convergence of this method to the population values depends
on the choice of four estimation points, whose selection is problematic.

Koutrouvelis (1980) presented a much more accurate regression-type method
which starts with an initial estimate of the parameters and proceeds iteratively until
some prespecified convergence criterion is satisfied. Each iteration consists of two
weighted regression runs. The number of points to be used in these regressions
depends on the sample size and starting values of ˛. Typically no more than two or
three iterations are needed. The speed of the convergence, however, depends on the
initial estimates and the convergence criterion.

The regression method is based on the following observations concerning the CF
�.t/. First, from (34.3) we can easily derive:

log.� log j�.t/j2/ D log.2˛/C ˛ log jt j: (34.12)

The real and imaginary parts of �.t/ are for ˛ ¤ 1 given by:

<f�.t/g D exp.�jt j˛/ cos
h
�t C jt j˛ˇsign.t/ tan

�˛

2

i
; (34.13)

=f�.t/g D exp.�jt j˛/ sin
h
�t C jt j˛ˇsign.t/ tan

�˛

2

i
: (34.14)

Apart from considerations of principal values, (34.13–34.14) lead to:

arctan

�=f�.t/g
<f�.t/g

�
D �t C ˇ˛ tan

�˛

2
sign.t/jt j˛: (34.15)
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Equation (34.12) depends only on ˛ and  and suggests that we can estimate these
two parameters by regressing y D log.� log j�n.t/j2/ on w D log jt j in the model:
yk D mC˛wk C �k , where tk is an appropriate set of real numbers,m D log.2˛/,
and �k denotes an error term. Koutrouvelis (1980) proposed to use tk D �k

25
; k D

1; 2; : : : ; K; withK ranging between 9 and 134 for different values of ˛ and sample
sizes.

Once Ǫ and O have been obtained and ˛ and  have been fixed at these values,
estimates of ˇ and � can be obtained using (34.15). Next, the regressions are
repeated with Ǫ , O , Ǒ and O� as the initial parameters. The iterations continue until
a prespecified convergence criterion is satisfied. Koutrouvelis proposed to use Fama
and Roll’s (1971) formula and the 25% truncated mean for initial estimates of  and
�, respectively.

Kogon and Williams (1998) eliminated this iteration procedure and simplified
the regression method. For initial estimation they applied McCulloch’s method,
worked with the continuous representation (34.4) of the CF instead of the classical
one (34.3) and used a fixed set of only 10 equally spaced frequency points tk .
In terms of computational speed their method compares favorably to the original
method of Koutrouvelis, see Table 34.1. It has a significantly better performance
near ˛ D 1 and ˇ ¤ 0 due to the elimination of discontinuity of the CF. However,
it returns slightly worse results for other values of ˛. Matlab implementations
of McCulloch’s quantile technique (stabcull.m) and the regression approach of
Koutrouvelis (stabreg.m) are distributed with the MFE Toolbox accompanying the
monograph of Weron (2006) and can be downloaded from www.ioz.pwr.wroc.pl/
pracownicy/weron/MFE.htm.

A typical performance of the described estimators is summarized in Table 34.1.
McCulloch’s quantile technique, the regression approach of Koutrouvelis and the
method of Kogon and Williams were applied to 1,000 simulated samples of
two thousand S1:7.0:005; 0:1; 0:001/ random numbers each. McCulloch’s method
yielded the worst, but acceptable estimates and computational time significantly
lower than the regression approaches. On the other hand, both the Koutrouvelis
and the Kogon-Williams implementations yielded good estimators with the latter

Table 34.1 Comparison of McCulloch’s quantile technique, the regression approach of Koutrou-
velis and the method of Kogon and Williams for 1,000 simulated samples of two thousand
S1:7.0:005; 0:1; 0:001/ random numbers each. Parameter estimates are mean values over 1,000
samples. Values of the Mean Absolute Percentage Error (MAPE™ D 1

n

Pn
iD1 jO™� ™j=™) are given

in parentheses. In the last column CPU time factors (average computational times relative to the
method of Kogon and Williams) for one sample of 2,000 random variables are provided

Method Ǫ O Ǒ O� CPU time factor

McCulloch 1.7070 0.0050 0.1108 0.0013 0.33	
(2.72%) (2.14%) (108.97%) (29.90%)

Koutrouvelis 1.7021 0.0050 0.0933 0.0012 5.62	
(1.66%) (1.63%) (91.99%) (27.76%)

Kogon-Williams 1.7030 0.0050 0.0934 0.0010 1.00	
(1.91%) (1.71%) (99.64%) (16.72%)

www.ioz.pwr.wroc.pl/pracownicy/weron/MFE.htm
www.ioz.pwr.wroc.pl/pracownicy/weron/MFE.htm


1038 A. Misiorek and R. Weron

performing considerably faster, but slightly less accurate. We have to say, though,
that all methods had problems with estimating ˇ. Like it or not, our search for the
optimal estimation technique is not over yet. We have no other choice but turn to the
last resort – the ML method.

Maximum Likelihood Method

The maximum likelihood (ML) estimation scheme for stable distributions does not
differ from that for other laws, at least as far as the theory is concerned. For a vector
of observations x D .x1; : : : ; xn/, the ML estimate of the parameter vector ™ D
.˛; ; ˇ; �/ is obtained by maximizing the log-likelihood function:

L™.x/ D
nX

iD1
log Qf .xi I ™/; (34.16)

where Qf .�I ™/ is the stable density function. The tilde denotes the fact that, in
general, we do not know the explicit form of the stable PDF and have to approximate
it numerically. The ML methods proposed in the literature differ in the choice of
the approximating algorithm. However, all of them have an appealing common
feature – under certain regularity conditions the ML estimator is asymptotically
normal with the variance specified by the Fischer information matrix (DuMouchel
1973). The latter can be approximated either by using the Hessian matrix arising in
maximization or, as in Nolan (2001), by numerical integration.

Because of computational complexity there are only a few documented attempts
of estimating stable law parameters via maximum likelihood worth mentioning.
DuMouchel (1971) developed an approximate ML method, which was based on
grouping the data set into bins and using a combination of means to compute the
density (FFT for the central values of x and series expansions for the tails) to
compute an approximate log-likelihood function. This function was then numeri-
cally maximized.

Much better, in terms of accuracy and computational time, are more recent
ML estimation techniques. Mittnik et al. (1999) utilized the FFT approach for
approximating the stable density function, whereas Nolan (2001) used the direct
integration method. Both approaches are comparable in terms of efficiency. The
differences in performance are the result of different approximation algorithms,
see Sect. 34.2.3. Matsui and Takemura (2006) further improved Nolan’s method
for the boundary cases, i.e. in the tail and mode of the densities and in the neigh-
borhood of the Cauchy and the Gaussian distributions, but only in the symmetric
stable case.

As Ojeda (2001) observes, the ML estimates are almost always the most accurate,
closely followed by the regression-type estimates and McCulloch’s quantile method.
However, ML estimation techniques are certainly the slowest of all the discussed
methods. For instance, ML estimation for a sample of 2,000 observations using
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a gradient search routine which utilizes the direct integration method is over
11 thousand (!) times slower than the Kogon-Williams algorithm (calculations
performed on a PC running STABLE ver. 3.13; see Sect. 34.2.3 where the program
was briefly described). Clearly, the higher accuracy does not justify the application
of ML estimation in many real life problems, especially when calculations are to be
performed on-line. For this reason the program STABLE offers an alternative – a fast
quasi ML technique. It quickly approximates stable densities using a 3-dimensional
spline interpolation based on pre-computed values of the standardized stable density
on a grid of .x; ˛; ˇ/ values. At the cost of a large array of coefficients, the
interpolation is highly accurate over most values of the parameter space and
relatively fast – only ca. 13 times slower than the Kogon-Williams algorithm for
a sample of 2,000 observations.

Alternative Methods

Besides the popular methods discussed so far other estimation algorithms have
been proposed in the literature. A Bayesian Markov chain Monte Carlo (MCMC)
approach was initiated by Buckle (1995). It was later modified by Lombardi (2007)
who used an approximated version of the likelihood, instead of the twice slower
Gibbs sampler, and by Peters et al. (2011) who proposed likelihood-free Bayesian
inference for stable models.

In a recent paper Garcia et al. (2010) estimate the stable law parameters with
(constrained) indirect inference, a method particularly suited to situations where the
model of interest is difficult to estimate but relatively easy to simulate. They use
the skewed-t distribution as an auxiliary model, since it has the same number of
parameters as the stable with each parameter playing a similar role.

34.3 Generalized Hyperbolic Distributions

34.3.1 Definitions and Basic Properties

The hyperbolic law saw its appearance in finance in the mid-1990s, when a number
of authors reported that it provides a very good model for the distributions of daily
stock returns from a number of leading German enterprises (Eberlein and Keller
1995; Kuchler et al. 1999). Since then it has become a popular tool in stock price
modeling and market risk measurement (Bibby and Sorensen 2003; Chen et al.
2008; Eberlein et al. 1998; McNeil et al. 2005).

The origin of the distribution dates back to the 1940s and the empirical
observation by Ralph Bagnold that the log-histogram of the size of sand particles
tends to form a hyperbola. A formal mathematical description was developed by
Barndorff-Nielsen (1977). The hyperbolic distribution provides the possibility of
modeling heavier tails than the Gaussian, since its log-density forms a hyperbola
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Fig. 34.4 Densities and log-densities of symmetric hyperbolic, NIG and Gaussian distributions
having the same variance, see (34.31). The name of the hyperbolic distribution is derived from the
fact that its log-density forms a hyperbola, which is clearly visible in the right panel

while that of the Gaussian is a parabola, see Fig. 34.4. As we will see later in this
Section, the hyperbolic law is a member of a larger, versatile class of generalized
hyperbolic (GH) distributions, which also includes the normal-inverse Gaussian
(NIG) and variance-gamma (VG) distributions as special cases. For a concise review
of special and limiting cases of the GH distribution see Paolella (2007), Chap. 9.

The Hyperbolic Distribution

The hyperbolic distribution is defined as a normal variance-mean mixture where the
mixing distribution is the generalized inverse Gaussian (GIG) law with parameter
� D 1, i.e. it is conditionally Gaussian, see Barndorff-Nielsen (1977) and Barndorff-
Nielsen and Blaesild (1981). More precisely, a random variableZ has the hyperbolic
distribution if:

.ZjY / � N .�C ˇY; Y / ; (34.17)

where Y is a generalized inverse Gaussian GIG.� D 1; �;  / random variable and
N.m; s2/ denotes the Gaussian distribution with mean m and variance s2. The GIG
law is a very versatile positive domain distribution with the PDF given by:

fGIG.x/ D
. =�/�=2

2K�.
p
� /

x��1e�
1
2 .�x

�1C x/; x > 0; (34.18)

where the three parameters take values in one of the ranges: (1) � > 0; � 0 if
� < 0, (2) � > 0; > 0 if � D 0 or (3) � � 0;  D 0 if � > 0. The generalized
inverse Gaussian law has a number of interesting properties that we will use later in
this section. The distribution of the inverse of a GIG variable is again GIG but with
a different �, namely if:

Y � GIG.�; �;  / then Y �1 � GIG.��; �; /: (34.19)
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A GIG variable can be also reparameterized by setting a Dp�= and b D p� ,
and defining Y D a QY , where:

QY � GIG.�; b; b/: (34.20)

The normalizing constant K�.t/ in formula (34.18) is the modified Bessel
function of the third kind with index �, also known as the MacDonald function.
It is defined as:

K�.t/ D 1

2

Z 1

0

x��1e�
1
2 t.xCx�1/dx; t > 0: (34.21)

In the context of hyperbolic distributions, the Bessel functions are thoroughly
discussed in Barndorff-Nielsen and Blaesild (1981). Here we recall only two
properties that will be used later. Namely, (1) K�.t/ is symmetric with respect to
�, i.e. K�.t/ D K��.t/, and (2) for � D ˙ 1

2
it can be written in a simpler form:

K˙ 1
2
.t/ D

r
�

2
t�

1
2 e�t : (34.22)

For other values of � numerical approximations of the integral in eqn. (34.21) have
to be used, see e.g. Press et al. (1992).

Relation (34.17) implies that a hyperbolic random variable Z � H. ; ˇ; �; �/
can be represented in the form:Z � �C ˇY CpYN.0; 1/, with the CF:

�Z.u/ D eiu�
Z 1

0

eiˇzu� 12 zu2dFY .z/: (34.23)

Here FY .z/ denotes the distribution function of a GIG random variable Y with
parameter � D 1, see (34.18). Hence, the hyperbolic PDF is given by:

fH.xI ; ˇ; �; �/ D
p
 =�

2
p
 C ˇ2K1.

p
 �/

e�
p
f Cˇ2gf�C.x��/2gCˇ.x��/; (34.24)

or in an alternative parameterization (with ı D p� and ˛ D p C ˇ2) by:

fH.xI˛; ˇ; ı; �/ D
p
˛2 � ˇ2

2˛ıK1.ı
p
˛2 � ˇ2/e

�˛
p
ı2C.x��/2Cˇ.x��/: (34.25)

The latter is more popular and has the advantage of ı > 0 being the traditional scale
parameter. Out of the remaining three parameters, ˛ and ˇ determine the shape,
with ˛ being responsible for the steepness and 0 � jˇj < ˛ for the skewness, and
� 2 R is the location parameter.
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Finally, note that if we only have an efficient algorithm to compute K1, the
calculation of the PDF is straightforward. However, the CDF has to be numerically
integrated from (34.24) or (34.25).

The General Class

The generalized hyperbolic (GH) law can be represented as a normal variance-
mean mixture where the mixing distribution is the generalized inverse Gaussian
law with any � 2 R. Hence, the GH distribution is described by five parameters
™ D .�; ˛; ˇ; ı; �/, using parameterization (34.25), and its PDF is given by:

fGH.xI ™/ D �
˚
ı2 C .x � �/2� 12 .�� 12 / K�� 1

2

�
˛
p
ı2 C .x � �/2

	
eˇ.x��/;

(34.26)

where:

� D .˛2 � ˇ2/ �2p
2�˛�� 1

2 ı�K�.ı
p
˛2 � ˇ2/

: (34.27)

The tail behavior of the GH density is “semi-heavy”, i.e. the tails are lighter than
those of non-Gaussian stable laws, but much heavier than Gaussian. Formally
they are characterized by the following asymptotic relation (Barndorff-Nielsen and
Blaesild 1981):

fGH.x/ � jxj��1e.˛Cˇ/x for x !˙1; (34.28)

which can be interpreted as exponential “tempering” of the power-law tails (com-
pare with the TSD described in Sect. 34.2.2).

For jˇ C zj < ˛ the moment generating function of the GH law takes the form:

M.z/ D e�z



˛2 � ˇ2

˛2 � .ˇ C z/2

� �
2 K�

�
ı
p
˛2 � .ˇ C z/2

	

K�

�
ı
p
˛2 � ˇ2

	 : (34.29)

Note, thatM.z/ is smooth, i.e. infinitely many times differentiable, near 0 and hence
every moment exists. If we set � D ıp˛2 � ˇ2 D p � then the first two moments
lead to the following formulas for the mean and variance of a GH random variable:

EX D �C ˇı2

�

K�C1.�/
K�.�/

; (34.30)

VarX D ı2

"
K�C1.�/
�K�.�/

C ˇ2ı2

�2

(
K�C2.�/
K�.�/

�
�

K�C1.�/
�K�.�/

�2)#

: (34.31)
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The Normal-Inverse Gaussian Distribution

The normal-inverse Gaussian (NIG) laws were introduced by Barndorff-Nielsen
(1995) as a subclass of the generalized hyperbolic laws obtained for � D � 1

2
. The

density of the NIG distribution is given by:

fNIG.x/ D
˛ı

�
eı
p
˛2�ˇ2Cˇ.x��/K1.˛

p
ı2 C .x � �/2/

p
ı2 C .x � �/2 : (34.32)

Like for the hyperbolic distribution the calculation of the PDF is straightforward,
but the CDF has to be numerically integrated from eqn. (34.32).

At the expense of four parameters, the NIG distribution is able to model
asymmetric distributions with “semi-heavy” tails. However, if we let ˛ ! 0 the
NIG distribution converges to the Cauchy distribution (with location parameter �
and scale parameter ı), which exhibits extremely heavy tails. Obviously, the NIG
distribution may not be adequate to deal with cases of extremely heavy tails such
as those of Pareto or non-Gaussian stable laws. However, empirical experience
suggests excellent fits of the NIG law to financial data (Karlis 2002; Karlis and
Lillestöl 2004; Venter and de Jongh 2002).

Moreover, the class of normal-inverse Gaussian distributions possesses an
appealing feature that the class of hyperbolic laws does not have. Namely, it is
closed under convolution, i.e. a sum of two independent NIG random variables is
again NIG (Barndorff-Nielsen 1995). In particular, if X1 and X2 are independent
NIG random variables with common parameters ˛ and ˇ but having different
scale and location parameters ı1;2 and �1;2, respectively, then X D X1 C X2
is NIG.˛; ˇ; ı1 C ı1; �1 C �2/. This feature is especially useful in time scaling
of risks, e.g. in deriving 10-day risks from daily risks. Only two subclasses
of the generalized hyperbolic distributions are closed under convolution. The
other class with this important property is the class of variance-gamma (VG)
distributions, which is obtained when ı is equal to 0. This is only possible for
� > 0 and ˛ > jˇj. The VG distributions (with ˇ D 0) were introduced
to finance by Madan and Seneta (1990), long before the popularity of GH and
NIG laws.

34.3.2 Simulation of Generalized Hyperbolic Variables

The most natural way of simulating GH variables stems from the fact that they can
be represented as normal variance-mean mixtures. Since the mixing distribution is
the GIG law, the resulting algorithm reads as follows:

1. Simulate a random variable Y � GIG.�; �;  / D GIG.�; ı2; ˛2 � ˇ2/;
2. Simulate a standard normal random variable N ;
3. Return X D �C ˇY CpYN:
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The algorithm is fast and efficient if we have a handy way of simulating GIG
variates. For � D � 1

2
, i.e. when sampling from the so-called inverse Gaussian (IG)

distribution, there exists an efficient procedure that utilizes a transformation yielding
two roots. It starts with the observation that if we let # Dp�= then the IG.�;  /
density (D GIG.� 1

2
; �;  /; see eqn. (34.18)) of Y can be written as:

fIG.x/ D
r

�

2�x3
exp


 ��.x � #/2
2x#2

�
: (34.33)

Now, following Shuster (1968) we may write:

V D �.Y � #/2
Y#2

� �2.1/; (34.34)

i.e. V is distributed as a chi-square random variable with one degree of freedom.
As such it can be simply generated by taking a square of a standard normal random
number. Unfortunately, the value of Y is not uniquely determined by eqn. (34.34).
Solving this equation for Y yields two roots:

y1 D # C #

2�

�
#V �

p
4#�V C #2V 2

	
and y2 D #2

y1
:

The difficulty in generating observations with the desired distribution now lies
in choosing between the two roots. Michael et al. (1976) showed that Y can
be simulated by choosing y1 with probability #=.# C y1/. So for each random
observation V from a �2.1/ distribution the smaller root y1 has to be calculated. Then
an auxiliary Bernoulli trial is performed with probability p D #=.# C y1/. If the
trial results in a “success”, y1 is chosen; otherwise, the larger root y2 is selected.
The rnig function of the Rmetrics collection of software packages for S-plus/R (see
also Sect. 34.2.3 where Rmetrics was briefly described), utilize this routine.

In the general case, the GIG distribution – as well as the (generalized) hyperbolic
law – can be simulated via the rejection algorithm. An adaptive version of this
technique is used to obtain hyperbolic random numbers in the rhyp function of
Rmetrics. Rejection is also implemented in the HyperbolicDist package for S-plus/R
developed by David Scott, see the R-project home page http://cran.r-project.org.
The package utilizes a version of the algorithm proposed by Atkinson (1982),
i.e. rejection coupled either with a two (“GIG algorithm” for any admissible
value of �) or a three part envelope (“GIGLT1 algorithm” for 0 � � < 1).
Envelopes, also called hat or majorizing functions, provide an upper limit for
the PDF of the sampled distribution. The proper choice of such functions can
substantially increase the speed of computations, see Chap. II.3. As Atkinson (1982)
shows, once the parameter values for these envelopes have been determined, the
algorithm efficiency is reasonable for most values of the parameter space. However,
finding the appropriate parameters requires optimization and makes the technique
burdensome.

http://cran.r-project.org
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This difficulty led to a search for a short algorithm which would give comparable
efficiencies but without the drawback of extensive numerical optimizations. A
solution, based on the “ratio-of-uniforms” method, was provided by Dagpunar
(1989). First, recalling properties (34.19) and (34.20), observe that we only need
to find a method to simulate QY � GIG.�; b; b/ variables and only for � � 0. Next,
define the relocated variable QYm D QY �m, wherem D 1

b
.�� 1Cp.� � 1/2 C b2/

is the mode of the density of QY . Then the relocated variable can be generated by
taking QYm D V=U , where the pair .U; V / is uniformly distributed over the region
f.u; v/ W 0 � u � ph.v=u/g with:

h.t/ D .t Cm/��1 exp

�
�b
2

t CmC 1
t Cm

�
; for t � �m:

Since this region is irregularly shaped, it is more convenient to generate the pair
.U; V / uniformly over a minimal enclosing rectangle f.u; v/ W 0 � u � uC; v� �
v � vCg. Finally, the variate .V=U / is accepted if U 2 � h.V=U /. The efficiency
of the algorithm depends on the method of deriving and the actual choice of uC and
v˙. Further, for � � 1 and b � 1 there is no need for the shift at mode m. Such
a version of the algorithm is implemented in UNU.RAN, a library of C functions
for non-uniform random number generation developed at the Vienna University of
Economics, see http://statistik.wu-wien.ac.at/unuran.

34.3.3 Estimation of Parameters

Maximum Likelihood Method

The parameter estimation of GH distributions can be performed by the ML method,
since there exist closed-form formulas (although, involving special functions) for
the densities of these laws. The computational burden is not as heavy as for stable
laws, but it still is considerable.

In general, the ML estimation algorithm is as follows. For a vector of observa-
tions x D .x1; : : : ; xn/, the ML estimate of the parameter vector ™ D .�; ˛; ˇ; ı; �/
is obtained by maximizing the log-likelihood function:

L.xI ™/ D log � C � � 1
2

2

nX

iD1
log.ı2 C .xi � �/2/C

C
nX

iD1
log K�� 12 .˛

p
ı2 C .xi � �/2/C

nX

iD1
ˇ.xi � �/; (34.35)

where � is defined by (34.27). Obviously, for hyperbolic (� D 1) distributions the
algorithm uses simpler expressions of the log-likelihood function due to relation
(34.22).

http://statistik.wu-wien.ac.at/unuran
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The routines proposed in the literature differ in the choice of the optimization
scheme. The first software product that allowed statistical inference with hyperbolic
distributions – the HYP program – used a gradient search technique, see Blaesild
and Sorensen (1992). In a large simulation study Prause (1999) utilized the
bracketing method. Matlab functions hypest.m and nigest.m distributed with the
MFE Toolbox (Weron 2006) use yet another technique – the downhill simplex
method, with slight modifications due to parameter restrictions.

The main factor for the speed of the estimation is the number of modified
Bessel functions to compute. Note, that for � D 1 (i.e. the hyperbolic distribution)
this function appears only in the constant �. For a data set with n independent
observations we need to evaluate n and n C 1 Bessel functions for NIG and
generalized hyperbolic distributions, respectively, whereas only one for the hyper-
bolic. This leads to a considerable reduction in the time necessary to calculate
the likelihood function in the hyperbolic case. Prause (1999) reported a reduction
of ca. 33%, however, the efficiency results are highly sample and implementation
dependent.

We also have to say that the optimization is challenging. Some of the parameters
are hard to separate since a flat-tailed GH distribution with a large scale parameter
is hard to distinguish from a fat-tailed distribution with a small scale parameter, see
Barndorff-Nielsen and Blaesild (1981) who observed such a behavior already for
the hyperbolic law. The likelihood function with respect to these parameters then
becomes very flat, and may have local mimima. In the case of NIG distributions
Venter and de Jongh (2002) proposed simple estimates of ˛ and ˇ that can be used
as staring values for the ML scheme. Starting from relation (34.28) for the tails of
the NIG density (i.e. with � D �1=2) they derived the following approximation:

˛ � ˇ � 1

2

x1�f C E.X jX > x1�f /
E.X2jX > x1�f /� x1�f E.X jX > x1�f /

;

˛ C ˇ � �1
2

xf C E.X jX < xf /

E.X2jX < xf /� xf E.X jX < xf /
;

where xf is the f -th population quantile, see Sect. 34.2.5. After the choice of a
suitable value for f , Venter and de Jongh used f D 5%, the “tail estimates” of
˛ and ˇ are obtained by replacing the quantiles and expectations by their sample
values in the above relations.

Another method of providing the starting values for the ML scheme was
suggested by Prause (1999). He estimated the parameters of a symmetric (ˇ D � D
0) GH law with a reasonable kurtosis (i.e. with ı˛ � 1:04) that had the variance
equal to that of the empirical distribution.

Other Methods

Besides the ML approach other estimation methods have been proposed in the
literature. Prause (1999) tested different estimation techniques by replacing the log-
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likelihood function with other score functions, like the Anderson-Darling and or
Lp-norms. But the results were disappointing. Karlis and Lillestöl (2004) made use
of the MCMC technique (see Chap. II.4), however, again the results obtained were
not impressive. Karlis (2002) described an Expectation-Maximization (EM) type
algorithm (see Chap. II.6) for ML estimation of the NIG distribution. The algorithm
can be programmed in any statistical package supporting Bessel functions and it has
all the properties of the standard EM algorithm, like sure, but slow, convergence,
parameters in the admissible range, etc. Recently Fragiadakis et al. (2009) used this
approach to construct goodness-of-fit tests for symmetric NIG distributions. The
tests are based on a weighted integral incorporating the empirical CF of suitably
standardized data. The EM scheme can be also generalized to multivariate GH
distributions (but with fixed �, see Protassov 2004).

34.4 Value at Risk, Portfolios and Heavy Tails

34.4.1 Copulas

The facts presented in Sect. 34.1 clearly show that we not only can, but must
use heavy tailed alternatives to the Gaussian law in order to obtain acceptable
estimates of market losses. But can we substitute the Gaussian distribution with
other distributions in Value at Risk (Expected Shortfall) calculations for whole
portfolios of assets? Recall, that the definition of VaR utilizes the quantiles of the
portfolio returns distribution and not the returns distribution of individual assets in
the portfolio. If all asset return distributions are assumed to be Gaussian and linearly
dependent then the portfolio distribution is multivariate normal and well known
statistical tools can be applied (Franke et al. 2008). However, when asset returns
are distributed according to a different law (or different laws!) then the multivariate
distribution may be hard to tackle. In particular, linear correlation may no longer be
a meaningful measure of dependence.

It turns out that in this context the concept of copulas is very helpful (Joe
1997; Nelsen 1999). In rough terms, a copula is a multivariate distribution function
defined on the unit cube Œ0; 1�n, i.e. C W Œ0; 1�n ! Œ0; 1�. What is important for
VaR calculations is that a copula enables us to construct a multivariate distribution
function from the marginal (possibly different) distribution functions of n individual
asset returns in a way that takes their dependence structure into account. This
dependence structure may be no longer measured by correlation, but by other ade-
quate functions like rank correlation, comonotonicity or tail dependence (McNeil
et al. 2005). Moreover, it can be shown that for every multivariate distribution
function there exists a copula which contains all information on dependence (this
is the essence of “Sklar’s theorem”). For example, if the random variables are
independent, then the independence (or product) copula is just the product of n
variables: C.u1; : : : ; un/ D u1 � : : : � un. If the random variables have a multivariate
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normal distribution with a given covariance matrix then the Gaussian copula is
obtained.

Copula functions do not impose any restrictions on the model, so in order
to reach a model that is to be useful in a given risk management problem, a
particular specification of the copula must be chosen. From the wide variety
of copulas that exist probably the elliptical and Archimedean copulas are the
ones most often used in applications. Elliptical copulas are simply the copulas
of elliptically contoured (or elliptical) distributions, e.g. (multivariate) normal, t ,
symmetric stable and symmetric generalized hyperbolic (Fang et al. 1987). Rank
correlation and tail dependence coefficients can be easily calculated for elliptical
copulas. There are, however, drawbacks – elliptical copulas do not have closed
form expressions, are restricted to have radial symmetry and have all marginal
distributions of the same type. These restrictions may disqualify elliptical copulas
from being used in some risk management problems. In particular, there is usually
a stronger dependence between big losses (e.g. market crashes) than between big
gains. Clearly, such asymmetries cannot be modeled with elliptical copulas. In
contrast to elliptical copulas, all commonly encountered Archimedean copulas have
closed form expressions. Their popularity also stems from the fact that they allow
for a great variety of different dependence structures. Many interesting parametric
families of copulas are Archimedean, including the well known Clayton:

CC .u1; u2I ™/ D
�
u�™1 C u�™2 � 1

��1=™
; (34.36)

and Frank:

CF .u1; u2I ™/ D �1
™

log

�
1C .e�™u1 � 1/.e�™u2 � 1/

e�™ � 1
�
; (34.37)

copulas. In Fig. 34.5 their densities are plotted for sample values of the dependence
parameter ™ corresponding to the estimates obtained for the portfolio considered in
Sect. 34.4.2.

Calibration

Calibration of multivariate copula-based models can be performed in a number
of ways. Simultaneous estimation of all parameters (of the copula and marginal
distributions) using the full (or exact) maximum likelihood (FML, EML) approach
is the most direct estimation method. However, this comes at the price of solving a
complicated, multivariate and typically nonlinear optimization problem.

A feasible alternative which exploits the attractive feature of copulas for which
the dependence structure is independent of the marginal distributions is known as the
Inference Functions for Margins (IFM, see Fusai and Roncoroni 2008; Joe 1997) or
the sequential two-step maximum likelihood (TSML, see Trivedi and Zimmer 2005)
method. In this approach, first the marginals are estimated on univariate data, then
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Fig. 34.5 Densities of a two-dimensional Clayton copula CC with ™C D 0:6515 (top left) and a
two-dimensional Frank copula CF with ™F D 3:0884 (top right). Bottom panels: Contour plots of
the densities in the upper panels. Note, that with this choice of the dependence parameters (™C ; ™F )
the Clayton copula models strong dependence between big losses (u1; u2 ! 0), while the Frank
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the dependence parameter ™ is calibrated after the estimated marginals have been
substituted into the copula. The IFM method has additional variants depending upon
whether the first step is implemented parametrically or nonparametrically (using
kernel density estimates). For a bivariate copula the procedure could be summarized
as follows:

1. Using ML estimate the univariate marginal densities Ofj .xj /, j D 1; 2, for two
random i.i.d. samples xj D fxj;1; : : : ; xj;N g. In the nonparametric variant a

kernel density estimator is used to find the Ofj ’s.
2. Set uj D OFj .xj /, where Fj is the CDF corresponding to fj . The vectors uj may

be treated as realizations of uniform random variables.
3. Given uj , j D 1; 2, and a copula C with density c, the dependence parameter ™

can be estimated as follows:

O™ D arg max
™

NX

iD1
log c.Ou1;i ; Ou2;i I ™/: (34.38)
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Simulating Random Variables from Copulas

For risk management purposes, we are interested in the Value at Risk of a portfolio
of assets. While analytical methods for the computation of VaR exist for the
multivariate normal distribution (i.e. for the Gaussian copula), in most other cases
we have to use Monte Carlo simulations. A general technique for random variate
generation from copulas is the conditional distributions method (Nelsen 1999),
also called conditional sampling (Fusai and Roncoroni 2008). A random vector
.u1; : : : ; un/T having a joint distribution function C can be generated by the
following algorithm:

1. Simulate u1 � U.0; 1/,
2. For k D 2; : : : ; n simulate uk � FUk jU1:::Uk�1

.�ju1; : : : ; uk�1/.
The above function is the conditional distribution of the variableUk given the values
of U1; : : : ; Uk�1, i.e.:

FUk jU1:::Uk�1
.ukju1; : : : ; uk�1/ defD P .Uk � ukjU1 D u1; : : : ; Uk�1 D uk�1/

D @k�1Ck.u1; : : : ; uk/
@u1 : : : @uk�1

.@k�1Ck�1.u1; : : : ; uk�1/
@u1 : : : @uk�1

;

where Ck’s are k-dimensional margins of the n-dimensional copula C , i.e.

Ck.u1; : : : ; uk/ D C.u1; : : : ; uk; 1; : : : ; 1/:

The main drawback of this method is the fact that it involves a differentiation step for
each dimension of the problem. Also simulation of uk �FUk jU1:::Uk�1

.�ju1; : : : ; uk�1/
may be non-trivial. It requires drawing v from a uniform distribution and set-
ting uk �F�1Uk jU1:::Uk�1

.vju1; : : : ; uk�1/, with often having to compute F�1 numer-
ically. Hence, the conditional distributions technique is typically not practical in
higher dimensions. For this reason, alternative methods have been developed for
specific types of copulas. For instance, random variables distributed according
to Archimedean copula functions can be generated by the mixture of powers
method of Marshall and Olkin (1988), which utilizes Laplace transforms. Also
conditional sampling can be simplified for Archimedean copulas with the condi-
tional distribution FUk jU1:::Uk�1

rewritten in terms of the copula generator function.
A comprehensive list of algorithms can be found in Alexander (2008), Fusai and
Roncoroni (2008), and McNeil et al. (2005).

34.4.2 Empirical Evidence

In this section we apply the techniques discussed so far to financial data. We want
to build a VaR model for a hypothetical portfolio consisting (in equal parts) of the
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Fig. 34.6 Top left: DAX index (log-)returns and the GARCH(1,1)-based daily volatility estimate
t . Top right: t -filtered DAX returns, see eqn. (34.40). Bottom panels: The left and right tails of
the CDF of filtered returns and of four fitted distributions: Gaussian, hyperbolic, NIG, and stable
(for parameter estimates see Table 34.2). Note, that the left tail is significantly heavier than the
right tail. The latter is pretty well modeled by the Gaussian law

Deutsche Aktienindex (DAX) and the Polish WIG20 index. Both are blue chip stock
market indexes. DAX consists of the 30 major German companies trading on the
Frankfurt Stock Exchange and WIG20 of the 20 major Polish companies trading
on the Warsaw Stock Exchange. We use daily closing index values from the period
January 3, 2000 – December 31, 2009. Eliminating missing values (mostly German
and Polish holidays) we end up with 2,494 (log-)returns for each index, see the top
left panels in Figs. 34.6 and 34.7.

Building a VaR Model

Like most financial time series, also these index returns contain volatility clusters
which imply that the probability of a specific incurred loss is not the same on each
day. During days of higher volatility we should expect larger than usual losses and
during calmer days – smaller than usual. To remove volatility clusters it is necessary
to model the process that generates them. Following Barone-Adesi et al. (1999) and
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Fig. 34.7 Top left: WIG20 index (log-)returns and the GARCH(1,1)-based daily volatility estimate
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the CDF of filtered returns and of four fitted distributions: Gaussian, hyperbolic, NIG, and stable
(for parameter estimates see Table 34.3). Unlike for the DAX returns, the left tail is not significantly
heavier than the right tail

Kuester et al. (2006) we eliminate volatility clusters by filtering the returns rt with
a GARCH(1,1) process:

rt D t �t ; with t D c0 C c1r2t�1 C d12t�1; (34.39)

where c0, c1 and d1 are constants and

�t D rt

t
; (34.40)

are the filtered returns, see the top right panels in Figs. 34.6 and 34.7. We could
also insert a moving average term in the conditional mean to remove any serial
dependency if needed.

To find the right model class for each dataset we fit four distributions: Gaussian,
hyperbolic, NIG, and stable to the DAX and WIG20 filtered returns. The results are
presented in Tables 34.2 and 34.3. We also compare both fits using Kolmogorov (K)
and Anderson-Darling (AD) test statistics (D’Agostino and Stephens 1986). The
latter may be treated as a weighted Kolmogorov statistics which puts more weight
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Table 34.2 Gaussian, hyperbolic, NIG and stable fits to 2,494 filtered returns of the Deutsche
Aktienindex (DAX) from the period January 3, 2000 – December 31, 2009. The values of the
Kolmogorov (K) and Anderson-Darling (AD) goodness-of-fit statistics suggest the hyperbolic
distribution as the best model, with the NIG law following closely by

Distribution Parameters Statistics

˛  .ı/ ˇ � K AD

Gaussian 1.000 �0:007 1.858 3.554
Hyperbolic 2.769 2.009 –0.542 0:508 0.779 0.623
NIG 2.536 2.350 –0.555 0:520 0.796 0.643
Stable 1.957 0.682 –1.000 �0:019 1.389 1.697

Table 34.3 Gaussian, hyperbolic, NIG and stable fits to 2,494 filtered returns of the Polish WIG20
index from the period January 3, 2000 – December 31, 2009. Like for the filtered DAX returns, the
values of the Kolmogorov (K) and Anderson-Darling (AD) goodness-of-fit statistics suggest the
hyperbolic distribution as the best model, with the NIG law following closely by

Distribution Parameters Statistics

˛  .ı/ ˇ � K AD

Gaussian 1.003 0:008 1.584 3.500
Hyperbolic 2.048 1.284 �0:002 0:010 0.681 0.452
NIG 1.732 1.747 0:030 �0:022 0.682 0.463
Stable 1.890 0.654 0:207 0:020 0.881 1.095

to the differences in the tails of the distributions. Although no asymptotic results
are known for stable or generalized hyperbolic laws, approximate critical values for
these goodness-of-fit tests can be obtained via the bootstrap technique (Cizek et al.
2011; Stute et al. 1993). In this chapter, though, we will not perform hypothesis
testing and just compare the test values. Naturally, the lower the values the better
the fit. For both datasets, both statistics suggest the hyperbolic distribution as the
best model, with the NIG law following closely by. Note, that for the DAX filtered
returns the left tail is significantly heavier than the right tail, with the latter being
pretty well modeled by the Gaussian law, see the bottom panels in Figs. 34.6 and
34.7. This is also confirmed by very negative skewness parameters (ˇ). In contrast,
the WIG20 filtered returns are roughly symmetric.

Computing VaR and Backtesting the Models

Based on the goodness-of-fit results of Sect. 34.4.2 we use two distributional classes
for the marginals – hyperbolic or NIG (for simplicity the same distributional class
is used for both marginals). The dependence structure is modeled either by the
Clayton or the Frank copula. This leaves us with four models: Clayton(Hyp,Hyp),
Clayton(NIG,NIG), Frank(Hyp,Hyp), and Frank(NIG,NIG). As a benchmark model
we use the Filtered Historical Simulation (FHS) introduced by Barone-Adesi
et al. (1999), which has been documented to perform pretty well under different
circumstances (Kuester et al. 2006).
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(bottom) estimates for the FHS and Clayton(NIG,NIG) models. The latter yields slighly lower
(in absolute terms) VaR numbers and a better conditional coverage, especially at the 97.5% level
(see Table 34.4)

The dynamic simulation scenario consists of computing the one day VaR at
four different levels (90%, 95%, 97.5%, and 99%) for a rolling window of 500
observations (roughly two years of data). This leaves us with 2;494� 500 D 1;994
daily VaR estimates for each of the five methods, see Fig. 34.8. These forecasts are
then compared with the actual returns of the portfolio in the backtesting procedure.
Each day is marked as 0 if VaR (at a given level) is not exceeded and 1 otherwise.
The resulting sequence is Bernoulli distributed with parameter .1 � c/, see eqn.
(34.1).

Several statistical tests have been proposed for backtesting purposes. In this
study, we use Christoffersen’s (1998) approach to test the conditional coverage.
This model independent approach is designed to overcome the clustering effect. The
tests are carried out in the likelihood ratio (LR) framework. Three LR statistics are
calculated: for the unconditional coverage, independence and conditional coverage.
The former two are distributed asymptotically as �2.1/ and the latter as �2.2/. If we
condition on the first observation, then the conditional coverage LR test statistics is
the sum of the other two.
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Table 34.4 The p-values of Christoffersen’s (1998) conditional coverage test for the five consid-
ered VaR models at four different levels (90%, 95%, 97.5%, and 99%). The Clayton(NIG,NIG)
model yields the best coverage over all VaR levels, with the Clayton(Hyp,Hyp) model and FHS
following closely by. The models based on the Frank copula fail at the high VaR levels

Model VaR90% VaR95% VaR97:5% VaR99%

FHS 0.360 0.719 0.441 0.778
Clayton(Hyp, Hyp) 0.462 0.715 0.953 0.685
Frank(Hyp, Hyp) 0.401 0.103 0.028 0.003
Clayton(NIG,NIG) 0.505 0.719 0.971 0.814
Frank(NIG,NIG) 0.401 0.148 0.021 0.001

The p-values of Christoffersen’s (1998) conditional coverage test for the five
considered VaR models are displayed in Table 34.4. The models based on the
Frank copula produce disappointing results and fail at the high VaR levels. The
Clayton(NIG,NIG) model yields the best coverage over all VaR levels. The Clay-
ton(Hyp,Hyp) model is a little worse, despite a slightly better fit of the hyperbolic
distribution to the filtered returns of the portfolio components, see Tables 34.2 and
34.3. The FHS model follows closely by and underperforms only at the 97.5%
level. Perhaps, as Pritsker (2006) argues, two years of daily data (roughly 500 daily
returns) may not contain enough extreme outliers to accurately compute 2.5% VaR.

Copulas allow us to construct models which go beyond the standard notions of
correlation and multivariate Gaussian distributions. As such, in conjunction with
alternative asset returns distributions discussed earlier in this chapter, they yield an
ideal tool to model a wide variety of financial portfolios and products. No wonder
they are gradually becoming an element of good risk management practice.
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Chapter 35
Econometrics

Luc Bauwens and Jeroen V.K. Rombouts

35.1 Introduction

Since the last decade we live in a digitalized world where many actions in human
and economic life are monitored. This produces a continuous stream of new, rich
and high quality data in the form of panels, repeated cross-sections and long time
series. These data resources are available to many researchers at a low cost. This
new era is fascinating for econometricians who can address many open economic
questions. To do so, new models are developed that call for elaborate estimation
techniques. Fast personal computers play an integral part in making it possible to
deal with this increased complexity.

This chapter reviews econometric models for which statistical inference requires
intensive numerical computations. A common feature of such models is that they
incorporate unobserved (or latent) variables, in addition to observed ones. This
often implies that the latent variables have to be integrated from the joint distribution
of latent and observed variables. The implied integral is typically of high dimension
and not available analytically. Simulation methods are almost always required to
solve the computational issue, but they bring new problems. A general introduction
on simulation based inference can be found in Gouriéroux and Monfort (1997) and
Mariano et al. (2000).

The organisation of this chapter is as follows. The second section deals with
limited dependent variable models, with a focus on multi-period discrete choice
dynamic models. The third section treats the stochastic volatility (SV) model, used
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in finance and financial econometrics to calibrate the volatility of asset returns, as
an alternative to the class of generalized autoregressive conditional heteroskedastic
(GARCH) models. It also reviews related dynamic duration models. The fourth
section deals with finite mixture models and the last one with change point models.
Illustrative applications drawn from the recent literature are used. Programs and data
are on the web site www.core.ucl.ac.be/econometrics/Bauwens/HBCS/HBCS.htm.

All the models discussed in this chapter are parametric. Nonparametric and
semiparametric models may induce additional computational complexity. We refer
to Pagan and Ullah (1999), Horowitz (1998), Li and Racine (2006), Fan and Yao
(2006), and Chap. III.10 of this volume for examples on these methods.

35.2 Limited Dependent Variable Models

This section deals with models in which the dependent variable is discrete. Many
interesting problems like labour force participation, voting behavior, transport mode
choice and brand choice are discrete in nature. In particular, we consider discrete
choice models in the case where panel data are available. This allows, for example,
to follow individuals with their choices over time, so that richer behavioural models
can be constructed. Although the number of parameters in these models does not
necessarily increase, the likelihood function, and therefore estimation, becomes
more complex. In this section we describe the multinomial multiperiod probit and
the mixed multinomial logit model.

We refer to Maddala (1983) for a general introduction to limited dependent and
qualitative variables in econometrics and to Franses and Paap (2001) for a basic
introduction motivating such models in relation to marketing.

35.2.1 Multinomial Multiperiod Probit

Definition

Denote by Uijt the unobserved utility perceived by individual i who chooses
alternative j at time t . This utility may be modelled as follows

Uijt D XT
ijtˇ C �ijt (35.1)

where i D 1; : : : ; I; j D 1; : : : ; J; t D 1; : : : ; Ti , X ijt is a k-dimensional vector
of explanatory variables, ˇ is a k-dimensional parameter vector and �ijt is a random
shock known to individual i . This individual chooses alternative j in period t if

Uijt > Uimt 8j ¤ m: (35.2)
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We observe d i D .di1; : : : ; diTi /T where dit D j if individual i chooses alternative
j at time t . We suppose that there is always only one choice by each individual at
each period, i.e. choices are mutually exclusive. The multinomial multiperiod probit
model is obtained by assuming

�i D .�i11; : : : ; �iJ1; : : : ; �i1Ti ; : : : ; �iJTi /T � IIDN.0;†/ (35.3)

Consequently,

Pi D P.d i / D P

0

@
\

m¤dit

Ti\

tD1
Ui;dit ;t > Uimt

1

A

D P

0

@
\

m¤dit

Ti\

tD1
�i;dit ;t � �imt > .X imt �X i;di t ;t /

T ˇ

1

A (35.4)

is a .Ti � J /-variate integral. However, since individual choices are based on utility
comparisons, it is conventional to work in utility differences relative to alternative
J . If we multiply the utilities in (35.1) by a constant, we see that the probability
event in (35.4) is invariant, thus a different scaling of the utilities does not alter the
choices of the individuals. The rescaled relative utility is then defined as

QUijt D .Uijt � UiJ t /.11 C JJ � 21J /�1=2

D �
.X ijt �X iJ t /

Tˇ C �ijt � �iJ t
�
.11 C JJ � 21J /�1=2

D QXT

ijtˇ C Q�ijt : (35.5)

An individual chooses alternative j in period t if

QUijt > QUimt 8j ¤ m: (35.6)

As an identification restriction, one usually imposes a unit variance for the last
alternative expressed in utility differences. Define

Q�i D .Q�i11; : : : ; Q�i;J�1;1; : : : ; Q�i1Ti ; : : : ; Q�i;J�1;Ti /T � IIDN.0; Q†/ (35.7)

where Q† is the transformed† with QJ�1;J�1 D 1, so that (35.4) becomes

Pi D P

0

@
\

m¤dit

Ti\

tD1
Q�i;dit ;t � Q�imt > . QXimt � QX i;di t ;t /

Tˇ

1

A ; (35.8)

which is a Ti .J � 1/-variate integral. Note that when the Q�ijt ’s are serially
uncorrelated, this probability event can be calculated by the product of Ti integrals
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of dimension J � 1, which is easier to compute but this rules out interesting cases,
see the applications below.

Estimation

This section briefly explains how the multinomial multiperiod probit model can be
estimated in the classical or Bayesian framework. More details can be found in
Geweke et al. (1997).

Classical Estimation

Since we assume independent observations on individuals the likelihood is

P r.d j X ;ˇ; Q†/ D
IY

iD1
Pi (35.9)

where d D .d1; : : : ;dI / and X denotes all the observations on the explanatory
variables. Evaluation of this likelihood is infeasible for reasonable values of Ti
and J . Classical maximum likelihood estimation methods are usually, except in
some trivial cases, based on numerical search algorithms that require many times the
evaluation of the likelihood function and are therefore not suitable for this model.
For more information on classical estimation, see Hajivassiliou and Ruud (1994),
Gouriéroux and Monfort (1997) and Hajivassiliou and Mc Fadden (1998).

Alternative estimation methods are based on simulations of the choice probabil-
ities. The simulated maximum likelihood (SML) method maximizes the simulated
likelihood which is obtained by substituting the simulated choice probabilities in
(35.9). The method of simulated moments is a simulation based substitute for
the generalized method of moments. For further information on these estimation
methods we refer to Gouriéroux and Monfort (1997).

Bayesian Inference

The posterior density is

'.ˇ; Q† j d ;X/ / P r.d j X ;ˇ; Q†/ '.ˇ; Q†/ (35.10)

where '.ˇ; Q†/ is the prior density. This does not solve the problem of evaluating a
high dimensional integral in the likelihood and it remains hard to compute posterior
means for example. Data augmentation, see for example Tanner and Wong (1987),
provides a solution because this technique allows to set up a Gibbs sampling scheme
using distributions that are easy to draw from. The idea is to augment the parameter
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vector with QU , the latent utilities, so that the posterior density in (35.10) changes to

'.ˇ; Q†; QU j d ;X / / P r.d j X ;ˇ; Q†; QU / f . QU j ˇ; Q†/ '.ˇ; Q†/ (35.11)

implying three blocks in the Gibbs sampler: '.ˇ j Q†; QU ;d ;X/, '. Q† j ˇ; QU ;d ;X /
and '. QU j ˇ; Q†;d ;X/. For more details on the Gibbs sampler we refer to Chap. II.3
and Chap. III.11. For the first two blocks, the model in (35.5) is the conventional
regression model since the utilities, once simulated, are observed. For the last block,
remark that P r.d j X ;ˇ; Q†; QU / is an indicator function since QU is consistent with
d or not.

Applications

It is possible to extend the model in (35.5) in various ways, such as alternative
specific ˇ’s, individual heterogeneity or a dynamic specification.

Paap and Franses (2000) propose a dynamic specification

� QU i t D � QX i t .˛C ˛i /C .˘ � IJ�1/
� QU i;t�1 � QX i;t�1.ˇ C ˇi /

	

C�it (35.12)

where QU i t is the .J � 1/-dimensional vector of utilities of individual i , � QU i t DQU i t � QU i;t�1, QX i;t�1 and � QX i t are matrices of dimension .J � 1/ � k for
the explanatory variables, ˛ and ˇ are k-dimensional parameter vectors, ˘ is a
.J � 1/ � .J � 1/ parameter matrix with eigenvalues inside the unit circle, �i t �
N.0; Q†/, and ˛i and ˇi are random individual effects with the same dimension
as ˛ and ˇ. These individual heterogeneity effects are assumed to be normally
distributed: ˛i � N.0;†˛/ and ˇi � N.0;†ˇ/. The specification in (35.12) is
a vector error-correction model where the parameters ˛C ˛i and ˇ C ˇi measure
respectively the short-run and long-run effects. The parameters in ˘ determine the
speed at which deviations from the long-run relationship are adjusted.

The model parameters are ˇ;˛; Q†;˛i ;ˇi ;†ˇ;†˛ and ˘ and are augmented
by the latent utilities QUit . Bayesian inference may be done by Gibbs sampling as
described in the estimation part above. Table 35.1 describes for each of the nine
blocks which posterior distribution is used. For example, ˇ has a conditional (on all
other parameters) posterior density that is normal.

As an illustration we reproduce the results of Paap and Franses (2000), who
provided their Gauss code (which we slightly modified). They use optical scanner
data on purchases of four brands of saltine crackers. Chintagunta and Honore (1996)
use the same data set to estimate a static multinomial probit model. The data set
contains all purchases (choices) of crackers of 136 households over a period of
two years, yielding 3,292 observations. Variables such as prices of the brands and
whether there was a display and/or newspaper feature of the considered brands
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Table 35.1 Summary of conditional posteriors for (35.12)

Parameter Conditional posterior

ˇ; ˇi ; ˛; ˛i Multivariate normal distributions
Q†; †˛; †ˇ Inverted Wishart distributions

˘ Matrix normal distribution
QU i t Truncated multivariate normal

Table 35.2 Means of Xit variables in (35.12)

Sunshine Keebler Nabisco Private label

Market share 0.07 0.07 0.54 0.32
Display 0.13 0.11 0.34 0.10
Feature 0.04 0.04 0.09 0.05
Price 0.96 1.13 1.08 0.68

Table 35.3 Posterior moments of ˇ and ˛ in (35.12)

ˇ Parameter ˛ Parameter Intercepts

mean st. dev. mean st. dev. mean st. dev.

Display 0.307 (0.136) 0.102 (0.076) Sunshine �0.071 (0.253)
Feature 0.353 (0.244) 0.234 (0.090) Keebler 0.512 (0.212)
Price �1.711 (0.426) �2.226 (0.344) Nabisco 1.579 (0.354)

at the time of purchase are also observed and used as the explanatory variables
formingX ijt (and then transformed into QX ijt ). Table 35.2 gives the means of these
variables. Display and Feature are dummy variables, e.g. Sunshine was displayed 13
per cent and was featured 4 per cent of the purchase occasions. The average market
shares reflect the observed individual choices, with e.g. 7 per cent of the choices on
Sunshine.

Table 35.3 shows posterior means and standard deviations for the ˛ and ˇ
parameters. They are computed from 50,000 draws after dropping 20,000 initial
draws. The prior on Q† is inverted Wishart, denoted by IW.S ; �/, with � D 10 and
S chosen such that E. Q†/ D I3. Note that Paap and Franses (2000) use a prior

such that E. Q†�1/ D I3. For the other parameters we put uninformative priors. As
expected, Display and Feature have positive effects on the choice probabilities and
price has a negative effect. This holds both in the short run and the long run. With
respect to the private label (which serves as reference category), the posterior means
of the intercepts are positive except for the first label whose intercept is imprecisely
estimated.

Table 35.4 gives the posterior means and standard deviations of Q†, ˘ , Q†ˇ and
Q̇
˛. Note that the reported last element of Q̇ is equal to 1 in order to identify

the model. This is done, after running the Gibbs sampler with Q† unrestricted, by
dividing the variance related parameter draws by Q� J�1;J�1. The other parameter
draws are divided by the square root of the same quantity. McCulloch et al. (2000)
propose an alternative approach where Q†J�1;J�1 is fixed to 1 by construction, i.e. a
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Table 35.4 Posterior means and standard deviations of Q†, ˘ , Q†ˇ and Q†˛ in (35.12)

Q† ˘

0

BBB
B
@
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fully identified parameter approach. They write

Q† D
�
˚ C 		T 	
	T 1

�
(35.13)

and show that the conditional posterior of 	 is normal and that of ˚ is Wishart, so
that draws of Q† are easily obtained. This approach is of particular interest when
a sufficiently informative prior on Q† is used. A drawback of this approach is that
the Gibbs sampler has higher autocorrelation and that it is more sensitive to initial
conditions.

The relatively large posterior means of the diagonal elements of ˘ show
that there is persistence in brand choice. The matrices Q†ˇ and Q†˛ measure the
unobserved heterogeneity. There seems to be substantial heterogeneity across the
individuals, especially for the price of the products (see the third diagonal elements
of both matrices). The last three elements in Q†ˇ are related to the intercepts.

The multinomial probit model is frequently used for marketing purposes. For
example, Allenby and Rossi (1999) use ketchup purchase data to emphasize the
importance of a detailed understanding of the distribution of consumer heterogene-
ity and identification of preferences at the customer level.
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A related model is the multivariate probit model which relaxes the assumption
that choices are mutually exclusive, as in the multinomial model discussed before.
In that case, d i may contain several 1 s. Chib and Greenberg (1998) discuss classical
and Bayesian inference for this model. They also provide examples on voting
behavior, on health effects of air pollution and on labour force participation.

35.2.2 Mixed Multinomial Logit

Definition

The multinomial logit model is defined as in (35.1), except that the random
shock �ijt is extreme value (or Gumbel) distributed. This gives rise to the inde-
pendence from irrelevant alternatives (IIA) property which essentially means that
Cov.Uijt ; Uikt / D 0 8j; 8k. Like the probit model, the mixed multinomial logit
(MMNL) model alleviates this restrictive IIA property by treating the ˇ parameter
as a random vector with density f™.ˇ/. The latter density is called the mixing
density and is usually assumed to be a normal, lognormal, triangular or uniform
distribution. To make clear why this model does not suffer from the IIA property,
consider the following example. Suppose that there is only explanatory variable and
that ˇ � N. Ň; N2/. We can then write (35.1) as

Uijt D Xijt Ň CXijt NzC �ijt (35.14)

D Xijt Ň C ��ijt (35.15)

where z � N.0; 1/, implying that the variance of ��ijt depends on the explanatory
variable and that there is nonzero covariance between utilities for different alterna-
tives.

The mixed logit probability is given by

Pi D
Z TiY

tD1

0

@ eX
T
ijtˇ

PJ
jD1 eX

T
ijtˇ

1

Af™.ˇ/dˇ (35.16)

where the term between brackets is the logistic distribution arising from the
difference between two extreme value distributions. The model parameter is ™. Note
that one may want to keep elements of ˇ fixed as in the usual logit model. One
usually keeps random the elements of ˇ corresponding to the variables that are
believed to create correlation between alternatives. The mixed logit model is quite
general. McFadden and Train (2000) demonstrate that any random utility model can
be approximated to any degree of accuracy by a mixed logit with appropriate choice
of variables and mixing distribution.
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Estimation

Classical Estimation

Estimation of the MMNL model can be done by SML or the method of simulated
moments or simulated scores. To do this, the logit probability in (35.16) is replaced
by its simulated counterpart

SPi D 1

R

RX

rD1

TiY

tD1

0

@ eX
T
ijtˇ

r

PJ
jD1 eX

T
ijtˇ

r

1

A (35.17)

where the fˇrgRrD1 are i.i.d. draws of f™.ˇ/. The simulated likelihood is the product
of all the individual SPi ’s. The simulated log-likelihood can be maximized with
respect to ™ using numerical optimization techniques like the Newton-Raphson
algorithm. To avoid an erratic behaviour of the simulated objective function for
different values of ™, the same sequences of basic random numbers is used to
generate the sequence fˇrg used during all the iterations of the optimizer (this is
referred to as the technique of “common random numbers”).

According to Gouriéroux and Monfort (1997) the SML estimator is asymptot-
ically equivalent to the ML estimator if T (the total number of observations) and
R both tend to infinity and

p
T =R ! 0. In practice, it is sufficient to fix R at a

moderate value.
The approximation of an integral like in (35.16) by the use of pseudo-random

numbers may be questioned. Bhat (2001) implements an alternative quasi-
random SML method which uses quasi-random numbers. Like pseudo-random
sequences, quasi-random sequences, such as Halton sequences, are deterministic,
but they are more uniformly distributed in the domain of integration than
pseudo-random ones.

Bayesian Inference

Let us suppose that the mixing distribution is Gaussian, that is, the vector ˇ is
normally distributed with mean b and variance matrix W . The posterior density
for I individuals can be written as

'.b;W j d ;X / / P r.d j X ;b;W / '.b;W / (35.18)

where P r.d j X ;b;W / D QI
iD1 Pi and '.b;W / is the prior density on b andW .

Sampling from (35.18) is difficult because Pi is an integral without a closed form as
discussed above. We would like to condition on ˇ such that the choice probabilities
are easy to calculate. For this purpose we augment the model parameter vector with
ˇ. It is convenient to write ˇi instead of ˇ to interpret the random coefficients
as representing heterogeneity among individuals. The ˇi ’s are independent and
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Table 35.5 Summary of conditional posteriors for MMNL model

Parameter Conditional posterior or sampling method

b Multivariate normal distribution

W Inverted Wishart distribution

ˇI Metropolis Hastings algortihm

identically distributed with mixing distribution f .� j b;W /. The posterior can then
be written as

'.b;W ;ˇI j d ;X/ / P r.d j X ;ˇI / f .ˇI j b;W / '.b;W / (35.19)

whereˇI collects the ˇi ’s for all the I individuals. Draws from this posterior density
can be obtained by using the Gibbs sampler. Table 35.5 summarizes the three blocks
of the sampler.

For the first two blocks the conditional posterior densities are known and are
easy to sample from. The last block is more difficult. To sample from this density,
a Metropolis Hastings (MH) algorithm is set up. Note that only one iteration is
necessary such that simulation within the Gibbs sampler is avoided. See Train
(2003), Chap. 12, for a detailed description of the MH algorithm for the mixed
logit model and for guidelines about how to deal with other mixing densities. More
general information on the MH algorithm can be found in Chap. II.3.

Bayesian inference in the mixed logit model is called hierarchical Bayes because
of the hierarchy of parameters. At the first level, there is the individual parameters
ˇi which are distributed with mean ˇ and variance matrix W . The latter are called
hyper-parameters, on which we have also prior densities. They form the second level
of the hierarchy.

Application

We reproduce the results of McFadden and Train (2000) using their Gauss code
available on the web site elsa.berkeley.edu/�train/software.html. They analyse the
demand for alternative vehicles. There are 4,654 respondents who choose among
six alternatives (two alternatives run on electricity only). There are 21 explanatory
variables among which 4 are considered to have a random effect. The mixing
distributions for these random coefficients are independent normal distributions.
The model is estimated by SML and uses R D 250 replications per observation.
Table 35.6 includes partly the estimation results of the MMNL model. We report the
estimates and standard errors of the parameters of the normal mixing distributions,
but we do not report the estimates of the fixed effect parameters corresponding to
the 17 other explanatory variables. For example, the luggage space error component
induces greater covariance in the stochastic part of utility for pairs of vehicles with
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Table 35.6 SML estimates of MMNL random effect parameters

Variable Mean Standard deviation

Electric vehicle (EV) dummy �1.032 (0.503) 2.466 (0.720)
Compressed natural gass (CNG) dummy 0.626 (0.167) 1.072 (0.411)
Size 1.435 (0.499) 7.457 (2.043)
Luggage space 1.702 (0.586) 5.998 (1.664)
Robust standard errors within parentheses

greater luggage space. We refer to McFadden and Train (2000) or Brownstone and
Train (1999) for more interpretations of the results.

Train (2003) provides more information and pedagogical examples on the mixed
multinomial model.

35.3 Stochastic Volatility and Duration Models

Stochastic volatility (SV) models may be used as an alternative to generalized
autoregressive conditonal heteroskedastic (GARCH) models as a way to model
the time-varying volatility of asset returns. Time series of asset returns feature
stylized facts, the most important being volatility clustering, which produces a
slowly decreasing positive autocorrelation function of the squared returns, starting at
a low value (about 0.15). Another stylized fact is excess kurtosis of the distribution
(with respect to the Gaussian distribution). See Bollerslev et al. (1994) for a detailed
list of the stylized facts and a survey of GARCH models, Shephard (1996) for a
comparative survey of GARCH and SV models, and Ghysels et al. (1996) for a
survey of SV models focused on their theoretical foundations and their applications
in finance. The first four parts of this section deal with SV models while in
subsection 35.3.5 we survey similar models for dynamic duration analysis.

35.3.1 Canonical SV Model

The simplest version of a SV model is given by

yt D exp.ht=2/ ut ; ut � N.0; 1/; t D 1; : : : ; n;
ht D ! C ˇht�1 C vt ; vt � N.0; 1/;

(35.20)

where yt is a return measured at t , ht is the unobserved log-volatility of yt , futg and
fvtg are mutually independent sequences, .!; ˇ; / are parameters to be estimated,
jointly denoted ™. The parameter space is IR � .�1; 1/ � IRC. The restriction on
ˇ ensures the strict stationarity of yt . Estimates of ˇ are typically quite close to 1
(in agreement with the first stylized fact), thus ˇ is a “persistence” parameter of the
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volatility. The unconditonal mean of ht is � D !=.1 � ˇ/ and the second equation
may be parametrized using � by writing ht D � C ˇ.ht�1 � �/ C vt . Another
parametrization removes ! from the second equation while writing the first as yt D
� exp.ht=2/ ut where � D exp.!=2/. These different parametrizations are in one-
to-one correspondance. Which one to choose is mainly a matter of convenience and
numerical efficiency of estimation algorithms.

For further use, let y and h denote the n � 1 vectors of observed returns and
unobserved log-volatilities, respectively.

35.3.2 Estimation

Estimation of the parameters of the canonical SV model may be done by the
maximum likelihood (ML) method or by Bayesian inference. Other methods
have been used but they are not considered here. We refer to Ghysels et al.
(1996), Sect. 5, for a review. ML and, in principle, Bayesian estimation require
to compute the likelihood function of an observed sample, which is a difficult task.
Indeed, the density of y given ™ and an initial condition h0 (not explicitly written
in the following expressions) requires to compute a multiple integral which has a
dimension equal to the sample size:

f .y j™/ D
Z
f .y ;hj™/ dh (35.21)

D
Z
f .y jh; ™/f .hj™/ dh (35.22)

D
Z nY

tD1
f .yt ; ht jY t�1;H t�1; ™/ dh (35.23)

where Y t D fyigtiD1 andH t D fhi gtiD0. For model (35.20), this is

Z nY

tD1
fN .yt j0; eht /fN .ht j! C ˇht�1; 2/ dh; (35.24)

where fN .xj�; 2/ denotes the normal density function of x, with parameters� and
2. An analytical solution to the integration problem is not available. Even a term
by term numerical approximation by a quadrature rule is precluded: the integral of
N.0; exp.hn// �N.! C ˇhn�1; 2/ with respect to hn depends on hn�1, and has to
be carried over in the previous product, and so on until h1. This would result in an
explosion of the number of function evaluations. Simulation methods are therefore
used.

Two methods directly approximate (35.23): efficient importance sampling (EIS),
and Monte Carlo maximum likelihood (MCML). Another approach, which can only
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be used for Bayesian inference, works with f .y ;hj™/ as data density, and produces
a posterior joint density for ™;h given y. The posterior density is simulated by a
Monte Carlo Markov chain (MCMC) algorithm, which produces simulated values
of ™ and h. Posterior moments and marginal densities of ™ are then estimated by
their simulated sample counterparts. We pursue by describing each method.

EIS (Liesenfeld and Richard 2003)

A look at (35.24) suggests to sample R sequences fhrt � N.! C ˇht�1; 2/gntD1,
r D 1 : : : R, and to approximate it by .1=R/

PR
rD1

Qn
tD1 N.0; exp.hrt //. This direct

method proves to be inefficient. Intuitively, the sampled sequences of ht are not
linked to the observations yt . To improve upon this, the integral (35.23), which is
the convenient expression to present EIS, is expressed as

Z nY

tD1

f .yt ; ht jY t�1;H t�1; ™/
m.ht jH t�1;�t /

m.ht jH t�1;�t / dh; (35.25)

where fm.ht jH t�1;�t /gntD1 is a sequence of importance density functions, indexed
by parameters f�t g. These importance functions serve to generate R random draws
fh1t ; h2t : : : hRt gntD1, such that the integral is approximated by the sample mean

1

R

RX

rD1

nY

tD1

f .yt ; h
r
t jY t�1;H r

t�1; ™/
m.hrt jH r

t�1;�t /
: (35.26)

The essential point is to choose the form ofm./ and its auxiliary parameters�t so as
to secure a good match between the product of m.ht jH t�1;�t / and the product of
f .yt ; ht jY t�1;H t�1; ™/ viewed as a function of h. A relevant good match criterion
is provided by a choice of f�t g, for a given family of densities form./, based on the
minimization of the Monte Carlo variance of the mean (35.26). The choice of f�t g
is explained below, after the choice of m./.

A convenient choice for m./ is the Gaussian family of distributions. A Gaussian
approximation to f ./, as a function of ht , given yt and ht�1, turns out to be efficient.
It can be expressed as proportional to exp.�1;t ht C �2;th2t /, where .�1;t ; �2;t / D �t ,
the auxiliary parameters. It is convenient to multiply it with expŒ�0:5�2.�2mthtC
h2t Cm2

t /�, wheremt D !Cˇht�1, which comes from theN.mt ; 
2/ term included

in f .yt ; ht jY t�1;H t�1; ™/. The product of these two exponential functions can be
expressed as a Gaussian density N.�t ; 2t /, where

�t D 2t .mt=
2 C �1;t /; 2t D 2=.1� 22�2;t /: (35.27)

The choice of the auxiliary parameters can be split into n separate problems,
one for each t . It amounts to minimize the sum of squared deviations between
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lnf .yt jY t�1;H r
t ; ™/ plus a correction term, see (35.28), and �0;tC�1;t hrtC�2;t .hrt /2

where �0;t is an auxiliary intercept term. This problem is easily solved by ordinary
least squares. See Liesenfeld and Richard (2003) for a detailed explanation.

Let us summarize the core of the EIS algorithm in three steps (for given ™ and y):
Step 1: Generate R trajectories fhrt g using the “natural” samplers fN.mt; 

2/g.
Step 2: For each t (starting from t D n and ending at t D 1), using the R
observations generated in the previous step, estimate by OLS the regression

� 1
2
Œhrt Cy2t e�h

r
t C ��

r
tC1
rtC1

�2� �m
r
tC1


�2
� D �0;t C�1;thrt C�2;t .hrt /2C �rt (35.28)

where �rt is an error term. For t D n, the dependent variable does not include the
last two terms in the square brackets. The superscript r on �tC1, tC1 and mtC1
indicates that these quantities are evaluated using the r-th trajectory.
Step 3: Generate R trajectories fhrt g using the efficient samplers fN.�t ; 2t /g and
finally compute (35.26).

Steps 1 to 3 should be iterated about five times to improve the efficiency of
the approximations. This is done by replacing the natural sampler in step 1 by
the importance functions built in the previous iteration. It is also possible to start
step 1 of the first iteration with a more efficient sampler than the natural one.
This is achieved by multiplying the natural sampler by a normal approximation
to f .yt jht ; ht�1; ™/ / expf�0:5Œy2t exp.�ht /C ht �g. The normal approximation is
based on a second-order Taylor series expansion of the argument of the exponential
in the previous expression around ht D 0. In this way, the initial importance sampler
links yt and ht . This enables one to reduce to three (instead of five) the number of
iterations over the three steps. In practical implementations, R can be fixed to 50.
When computing (35.26) for different values of ™, such as in a numerical optimizer,
it is important to use common random numbers to generate the set of R trajectories
fhrt g that serve in the computations.

It is also easy to compute by EIS filtered estimates of functions of ht , such as the
conditional standard deviation exp.ht=2/, conditional on the past returns (but not on
the lagged unobservedht ), given a value of ™ (such as the ML estimate). Diagnostics
on the model specification are then obtained as a byproduct: if the model is correctly
specified, yt divided by the filtered estimates of exp.ht=2/ is a residual that has zero
mean, unit variance, and is serially uncorrelated (this also holds for the squared
residual).

Richard and Zhang (2007) contains a general presentation of EIS and its
properties.

MCML (Durbin and Koopman 1997)

The likelihood to be computed at y (the data) and any given ™ is equal to f .y j™/ and
is conveniently expressed as (35.22) for this method. This quantity is approximated
by importance sampling with an importance function defined from an approximating
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model. The latter is obtained by using the state space representation of the canonical
SV model (parametrized with �):

lny2t D ln �2 C ht C �t ; (35.29)

ht D ˇht�1 C vt : (35.30)

In the canonical SV model, �t D ln u2t is distributed as the logarithm of a �2.1/
random variable. However the approximating model replaces this with a Gaussian
distribution (defined below), keeping the state equation unchanged. Therefore, the
whole machinery of the Kalman filter is applicable to the approximating model,
which is a Gaussian linear state space model. If we denote by g.hjy; ™/ the
importance function that serves to simulate h (see below), we have

f .y j™/ D
Z
f .y jh; ™/f .hj™/

g.hjy; ™/ g.hjy; ™/ dh (35.31)

D g.y j™/
Z
f .y jh; ™/
g.y jh; ™/ g.hjy; ™/ dh; (35.32)

where the second equality results from g.hjy ; ™/g.y j™/ D g.y jh; ™/g.hj™/
and g.hj™/ D f .hj™/. All the densities g.:/ and g.:j:/ are defined from the
approximating Gaussian model. In particular, g.yj™/ is the likelihood function
of the Gaussian linear state space model and is easy to compute by the Kalman
filter (see the appendix to Sandman and Koopman (1998) for all details). Likewise,
g.y jh; ™/ obtains from the Gaussian densities g.ln y2t jht ; ™/ resulting from (35.29)
with �t � N.at ; s

2
t / where at and s2t are chosen so that g.y jh; ™/ is as close as

possible to f .y jh; ™/. The parameters at and s2t are chosen so that ln g.lny2t j Oht ; ™/
and ln f .lny2t j Oht ; ™/ have equal first and second derivatives, where Oht is the
smoothed value of ht provided by the Kalman filter applied to the approximating
model. Remark that this is a different criterion from that used in EIS. Finally,
g.hjy ; ™/ can be simulated with the Gaussian simulation smoother of de Jong and
Shephard (1995).

In brief, the likelihood function is approximated by

g.yj™/ 1
R

RX

rD1

f .y jhr ; ™/
g.y jhr ; ™/ (35.33)

where hr D fhrt gTtD1 is simulated independently R times with the importance
sampler and g.y j™/ is computed by the Kalman filter. Equation (35.32) and (35.33)
shows that importance sampling serves to evaluate the departure of the actual
likelihood from the likelihood of the approximating model. R is fixed to 250 in
practice.
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For SML estimation, the approximation in (35.33) is transformed in logarithm.
This induces a bias since the expectation of the log of the sample mean is not
the log of the corresponding integral in (35.32). The bias is corrected by adding
s2w=.2R Nw/ to the log of (35.33), where s2w is the sample variance of the ratios
wr D f .y jhr ; ™/=g.y jhr ; ™/ and Nw is the sample mean of the same ratios, i.e.
Nw is the sample mean appearing in (35.33). Moreover, Durbin and Koopman (1997)
use antithetic and control variables to improve the efficiency of the estimator of the
log-likelihood function.

Durbin and Koopman (2000) present several generalizations of MCML (e.g. the
case where the state variable in non-Gaussian) and develop analogous methods for
Bayesian inference.

MCMC (Kim et al. 1998)

We present briefly the “Mixture Sampler”, one of the three algorithms added by
Kim et al. (1998) to the six algorithms already in the literature at that time (see their
paper for references). They approximate the density of �t D ln u2t by a finite mixture
of seven Gaussian densities, such that in particular the first four moments of both
densities are equal. The approximating density can be written as

fa.�t / D
7X

iD1
PrŒst D i �f .�t jst D i/ D

7X

iD1
PrŒst D i �fN .�t jbi � 1:2704; c2i /

(35.34)
where st is a discrete random variable, while PrŒst D i �, bi and ci are known
constants (independent of t). The constant �1.2704 is the expected value of a
ln�2.1/ variable.

The crux of the algorithm is to add s D fstgntD1 to ™ and h in the MCMC
sampling space. This makes it possible to sample hjs; ™;y, sjh;y and ™jh;y within
a Gibbs sampling algorithm. Remark that s and ™ are independent given h and y .
Moreover, h can be sampled entirely as a vector. The intuition behind this property
is that, once s is known, the relevant term of the mixture (35.34) is known for
each observation, and since this is a Gaussian density, the whole apparatus of the
Kalman filter can be used. Actually, this a bit more involved since the relevant
Gaussian density depends on t , but an augmented Kalman filter is available for this
case.

Sampling h as one block is a big progress over previous algorithms, such as in
Jacquier et al. (1994), where each element ht is sampled individually given the other
elements of h (plus ™ and y). The slow convergence of such algorithms is due to
the high correlations between the elements of h.

Kim et al. (1998) write the model in state space form, using � rather than ! or �
as a parameter, i.e.

lny2t D ht C �t ; (35.35)

ht � � D ˇ.ht�1 � �/C vt : (35.36)
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The “Mixture Sampler” algorithm is summarized in Table 35.7. Notice that once ™
has been sampled, it is easy to transform the draws of� into equivalent draws of! or
� by using the relationships between these parameters. Since inference is Bayesian,
prior densities must be specified. For 2, an inverted gamma prior density is
convenient since the conditional posterior is in the same class and easy to simulate.
For ˇ, any prior can be used since the conditional posterior is approximated and
rejection sampling is used. A beta prior density is advocated by Kim et al. (1998).
For �, a Gaussian or uninformative prior results in a Gaussian conditional posterior.

35.3.3 Application

For illustration, estimates of the canonical SV model parameters are reported in
Table 35.8 for a series of 6,107 centred daily returns of the Standard and Poors 500
(SP500) composite price index (period: 02/01/80-30/05/03, source: Datastream).
Returns are computed as 100 times the log of the price ratios. The sample mean
and standard deviation are equal to 0.03618 and 1.0603, respectively.

We used computer codes provided by the authors cited above. For EIS, we
received the code from R. Liesenfeld, for MCML and MCMC we downloaded them
from the web site staff.feweb.vu.nl/koopman/sv.

For SML estimation by EIS or MCML, identical initial values (ˇ D 0:96,
 D 0:15, ! D 0:02 or � D 0:01) and optimization algorithms (BFGS) are used,
but in different programming environments. Therefore, the computing times are not
fully comparable, although a careful rule of thumb is that Ox is two to three times

Table 35.7 Summary of “Mixture Sampler” algorithm

Parameter Conditional posterior or sampling method

h Gaussian simulation smoother
s Univariate discrete distribution for each st
2 Inverted gamma distribution
ˇ Rejection or Metropolis-Hastings sampler
� Normal distribution

Table 35.8 ML and Bayesian estimates of SV model (35.20)

EIS (!) MCML (� ) MCMC (� )

! or � �0.00524 (0.00227) 0.863 (0.0469) 0.864 (0.0494)
ˇ 0.982 (0.00385) 0.982 (0.00389) 0.983 (0.00382)
 0.149 (0.0138) 0.147 (0.0135) 0.143 (0.0139)
llf �8023.98 �8023.80
time 2.36 min. 7.56 min. 6.23 min.
code Gauss Ox Ox
llf: value of log-likelihood function at the reported estimate; EIS, MCML, and MCMC are defined
in subsection 35.3.2
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faster than Gauss (see Cribari-Neto 1997). Reported execution times imply that EIS
appears to be at least six times faster than MCML. This is a reversal of a result
reported by Sandman and Koopman (1998) (p 289), but they compared MCML
with a precursor of EIS implemented by Danielson (1994). More importantly, the
two methods deliver quasi-identical results.

MCMC results are based on 18,000 draws after dropping 2,000 initial draws. The
posterior means and standard deviations are also quite close to the ML results. The
posterior density of  (computed by kernel estimation) is shown in Fig. 35.1 together
with the large sample normal approximation to the density of the ML estimator using
the EIS results. The execution time for MCMC is difficult to compare with the other
methods since it depends on the number of Monte Carlo draws. It is however quite
competitive since reliable results are obtained in no more time than MCML in this
example.

35.3.4 Extensions of the Canonical SV Model

The canonical model presented in (35.20) is too restrictive to fit the excess
kurtosis of many return series. Typically, the residuals of the model reveal that the
distribution of ut has fatter tails than the Gaussian distribution. The assumption
of normality is most often replaced by the assumption that ut � t.0; 1; �/, which
denotes Student-t distribution with zero mean, unit variance, and degrees of freedom
parameter � > 2. SML estimates of � are usually between 5 and 15 for stock and
foreign currency returns using daily data. Posterior means are larger because the
posterior density of has a long tail to the right.
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Fig. 35.1 Posterior density of  and normal density of the MLE
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Several other extensions of the simple SV model presented in (35.20) exist in the
literature. The mean of yt need not be zero and may be a function of explanatory
variables xt (often a lag of yt and an intercept term). Similarly ht may be a function
of observable variables (zt ) in addition to its own lags. An extended model along
these lines is

yt D xTt � C exp.ht=2/ ut ;

ht D ! C zTt ˛ C ˇht�1 C vt ;
(35.37)

It should be obvious that all these extensions are very easy to incorporate in EIS
(see Liesenfeld and Richard 2003) and MCML (see Sandman and Koopman 1998).
Bayesian estimation by MCMC remains quite usable but becomes more demanding
in research time to tailor the algorithm for achieving a good level of efficiency of the
Markov chain (see Chib et al. 2002, in particular p 301–302, for such comments).

Chib et al. (2002) also include a jump component term ktqt in the conditional
mean part to allow for irregular, transient movements in returns. The random
variable qt is equal to 1 with unknown probablity � and zero with probability 1� �,
whereas kt is the size of the jump when it occurs. These time-varying jump sizes are
assumed independent draws of ln.1 C kt / � N.�0:5ı2; ı2/, ı being an unknown
parameter representing the standard deviation of the jump size. For daily SP500
returns (period: 03/07/1962-26/08/1997) and a Student-t density for ut , Chib et al.
(2002) report posterior means of 0.002 for �, and 0.034 for ı (for prior means of
0.02 and 0.05, respectively). This implies that a jump occurs on average every 500
days, and that the variability of the jump size is on average 3.4 per cent. They also
find that the removal of the jump component from the model reduces the posterior
mean of � from 15 to 12, which corresponds to the fact that the jumps capture some
outliers.

Another extension consists of relaxing the restriction of zero correlation .�)
between ut and vt . This may be useful for stock returns for which a negative
correlation corresponds to the leverage effect of the financial literature. If the
correlation is negative, a drop of ut , interpreted as a negative shock on the return,
tends to increase vt and therefore ht . Hence volatility increases more after a negative
shock than after a positive shock of the same absolute value, which is a well-known
stylized fact. Sandman and Koopman (1998) estimate such a model by MCML,
and report O� D �0:38 for daily returns of the SP500 index (period: 02/01/80-
30/12/87), while Jacquier et al. (2004) do it by Bayesian inference using MCMC
and report a posterior mean of � equal to �0.20 on the same data. They use the
same reparametrization as in (35.13) to impose that the first diagonal element of
the covariance matrix of ut and vt must be equal to 1. This covariance matrix is
given by

† D
�
1 �

� 2

�
D
�
1  

 �2 C  2
�

(35.38)

where the last matrix is a reparametrization. This enables to use a normal prior on
the covariance  and an inverted gamma prior on �2, the conditional variance of
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vt given ut . The corresponding conditional posteriors are of the same type, so that
simulating these parameters in the MCMC algorithm is easy. This approach can also
be used if ut has a Student-t distribution.

Multivariate SV models are also on the agenda of researchers. Liesenfeld and
Richard (2003) estimate by EIS a one-factor model introduced by Shephard (1996),
using return series of four currencies. Kim et al. (1998), Sect. 6.6, explain how to
deal with the multi-factor model case by extending the MCMC algortihm reviewed
in subsection 35.3.2.

35.3.5 Stochastic Duration and Intensity Models

Models akin to the SV model have been used for dynamic duration analysis by
Bauwens and Veredas (2004) and Bauwens and Hautsch (2006). The context of
application is the analysis of a sequence of time spells between events (also called
durations) occurring on stock trading systems like the New York Stock Exchange
(NYSE). Time stamps of trades are recorded for each stock on the market during
trading hours every day, resulting in an ordered series of durations. Marks, such
as the price, the exchanged quantity, the prevailing bid and ask prices, and other
observed features may also be available, enabling to relate the durations to the marks
in a statistical model. See Bauwens and Giot (2001) for a presentation of the issues.

Let 0 D t0 < t1 < t2 < : : : < tn denote the arrival times and d1; d2 : : : dn denote
the corresponding durations, i.e. di D ti � ti�1. The stochastic conditional duration
(SCD) model of Bauwens and Veredas (2004) is defined as

di D exp. i / ui ; ui � D.�/; t D 1; : : : ; n;
 i D ! C ˇ i�1 C vi ; vi � N.0; 1/;

(35.39)

where D.�/ denotes some distribution on the positive real line, possibly depending
on a parameter � . For example, Bauwens and Veredas use the Weibull distribution
and the gamma distribution (both with shape parapeter denoted by � ).Assuming that
the distribution of ui is parameterized so that E.ui / D 1,  i is the logarithm of the
unobserved mean of di , and is modelled by a Gaussian autoregressive process of
order one. It is also assumed that fuig and fvig are mutually independent sequences.
The parameters to be estimated are .!; ˇ; ; �/, jointly denoted ™. The parameter
space is IR � .�1; 1/ � IRC � IRC.

The similarity with the canonical SV model (35.20) is striking. A major
difference is the non-normality of ui since this is by definition a positive random
variable. This feature makes it possible to identify � . Therefore, the estimation
methods available for the SV model can be adapted to the estimation of SCD
models. Bauwens and Veredas (2004) have estimated the SCD model by the quasi-
maximum likelihood (QML) method, since the first equation of the model may
be expressed as lndi D  i C ln ui . If ln ui were Gaussian, the model would be a
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Gaussian linear state space model and the Kalman filter could be directly applied.
QML relies on maximizing the likelihood function as if ln ui were Gaussian. The
QML estimator is known to be consistent but inefficient relative to the ML estimator
which would obtain if the correct distribution of ln ui were used to define the
likelihood function. Bauwens and Galli (2009) have studied by simulation the loss
of efficiency of QML relative to ML. ML estimation assuming a Weibull distribution
is done by applying the EIS algorithm. For a sample size of 500 observations, the
efficiency loss ranges from 20 to 50 per cent, except for the parameter!, for which it
is very small. They also applied the EIS method using the same data as in Bauwens
and Veredas (2004). For example, for a dataset of 1,576 volume durations of the
Boeing stock (period: September-November 1996; source: TAQ database of NYSE),
the ML estimates are: O! D �0:028, Ǒ D 0:94, O2 D 0:0159, O� D 1:73. They
imply a high persistence in the conditional mean process (corresponding to duration
clustering), a Weibull distribution with an increasing concave hazard function, and
substantial heterogeneity. Notice that an interesting feature of the SCD model is
that the distribution of ui conditional to the past information, but marginalized with
respect to the latent process, is a Weibull mixed by a lognormal distribution.

Strickland et al. (2006) have designed a MCMC algorithm for the SCD model
(35.39) assuming a standard exponential distribution for ui . The design of their
MCMC algorithm borrows features from Koopman and Durbin’s MCML approach
and one of the MCMC algorithms used for the SV model. Feng et al. (2004) have
extended the SCD model by including the additional term ıui�1 in the equation for
 i and they use MCML estimation to estimate the parameters (including ı).

As an alternative to modeling the sequence of durations, Bauwens and Hautsch
(2006) model directly the arrival times through the intensity function of the point
process. Their model specifies a dynamic intensity function, where the intensity
function is the product of two intensity components: an observable component that
depends on past arrival times, and a latent component. The logarithm of the latter
is a Gaussian autoregressive process similar to the second equation in (35.20) and
(35.39). The observable component may be a Hawkes process (Hawkes 1971) or
an autoregressive intensity model (Russell 1999). When the model is multivariate,
there is an observable intensity component specific to each particular point process,
while the latent component is common to all particular processes. Interactions
between the processes occur through the observable components and through the
common component. The latter induces similar dynamics in the particular processes,
reflecting the impact of a common factor influencing all processes. Bauwens and
Hautsch use intensity-based likelihood inference, with the EIS algorithm to deal
with the latent component.

35.4 Finite Mixture Models

Many econometric issues require models that are richer or more flexible than
the conventional regression type models. Several possibilities exist. For example,
as explained in subsection 35.2.2, the logit model is made more realistic by
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generalizing it to a mixed logit. Many models currently used in econometrics can be
generalized in such a way.

In this section, we assume that the univariate or multivariate observations yj are
considered as draws of

Qf .yj / D
GX

gD1
�gf .yj j™g/ (35.40)

with �1 C : : :C �G D 1. The densities f .�j™g/ are called component distributions.
The observation yj comes from one of these component distributions but we do
not observe to which component it belongs. The mixture problem involves making
inference about the �g’s and the parameters of the component distributions given
only a sample from the mixture. The closer the component distributions are to
each other, the more difficult this is because of problems of identifiability and
computational instability.

35.4.1 Inference and Identification

The structure of (35.40) implies that the likelihood for all the J observations
containsGJ terms

L.�; ™jy/ /
JY

jD1

0

@
GX

gD1
�gf .yj j™g/

1

A (35.41)

where � D .�1; : : : ; �G/
T and ™ D .™1; : : : ; ™G/

T contain all the parameters
and y denotes all the data. Maximum likelihood estimation using numerical
optimization techniques, requiring many evaluations of the likelihood function,
becomes cumbersome, if not unfeasible, for large G and J . This is even worse
for multivariate observations.

Bayesian inference on finite mixture distributions by MCMC sampling is
explained in Diebolt and Robert (1994). Gibbs sampling on .�; ™/ is difficult since
the posterior distributions of �j™;y and ™j�;y are generally unknown. For the same
reason as for the probit model in Sect. 35.2.1 and the stochastic volatility model in
Sect. 35.3, inference on the finite mixture model is straightforward once the state or
group of an observation is known. Data augmentation is therefore an appropriate
way to render inference easier. Define the state indicator Sj which takes value
sj D g when yj belongs to state or group g where g 2 f1; : : : ; Gg. Denote by
S the J -dimensional discrete vector containing all the state indicators. To facilitate
the inference, prior independence, that is '.�; ™;S / D '.�/'.™/'.S /, is usually
imposed. As shown in the next examples, the posterior distributions S j�; ™;y ,
™j�;S ;y and �j™;S ;y are either known distributions easy to sample from or they
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are distributions for which a second, but simpler, MCMC sampler is set up. A Gibbs
sampler with three main blocks may therefore be used.

The complete data likelihood of the finite mixture is invariant to a relabeling
of the states. This means that we can take the labeling f1; 2; : : : ; Gg and do a
permutation f�.1/; �.2/; : : : ; �.G/g without changing the value of the likelihood
function. If the prior is also invariant to relabeling then the posterior has this
property also. As a result, the posterior has potentiallyGŠ different modes. To solve
this identification or label switching problem, identification restrictions have to be
imposed.

Note that the inference described here is conditional on G, the number of
components. There are two modeling approaches to take care of G. First, one
can treat G as an extra parameter in the model as is done in Richardson and
Green (1997) who make use of the reversible jump MCMC methods. In this way,
the prior information on the number of components can be taken explicitly into
account by specifying for example a Poisson distribution on G in such a way that
it favors a small number of components. A second approach is to treat the choice
of G as a problem of model selection. Bayesian model comparison techniques (see
Chap. III.11) can be applied, for instance by the calculation of the Bayes factor, see
Cowles and Carlin (1996) and Chib (1995) for more details.

35.4.2 Examples

We review two examples. The first example fits US quarterly GNP data using a
mixture autoregressive model. The second example is about the clustering of many
GARCH models.

Mixture Autoregressive Model

Frühwirth-Schnatter (2001) uses US quarterly real GNP growth data from 1951:2
to 1984:4. This series was initially used by Hamilton (1989) and is displayed in
Fig. 35.2.

The argument is that contracting and expanding periods are generated by the
same model but with different parameters.

After some investigation using Bayesian model selection techniques, the ade-
quate specification for the US growth data is found to be the two-state mixture AR(2)
model

yt D ˇi;1yt�1 C ˇi;2yt�2 C ˇi;3
C�t;i �t;i � N.0; 2i / i D 1; 2: (35.42)
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Fig. 35.2 US real GNP growth data in percentages (1951:2–1984:4)

The idea behind the choice of two states is motivated by the contracting (negative
growth) and expanding periods (positive growth) in an economy. The conditional
posteriors for the 2i ’s are independent inverted gamma distributions. For the ˇi ’s,
the conditional posteriors are independent normal distributions. Inference for the
mixture model in (35.42) is done in two steps. The first step is to construct an
MCMC sample by running the random permutation sampler. Generally speaking,
a draw from the random permutation sampler is obtained as follows:

(1) Draw from the model by use of the Gibbs sampler for example.
(2) Relabel the states randomly.

By so-doing, one samples from the unconstrained parameter space with balanced
label switching. Note that in (2), there are GŠ possibilities to relabel when there are
G possible states.

In the second step, this sample is used to identify the model. This is done by
visual inspection of the posterior marginal and bivariate densities. Identification
restrictions need to be imposed to avoid multimodality of the posterior densities.
Once suitable restrictions are found, a final MCMC sample is constructed to obtain
the moments of the constrained posterior density. The latter sample is constructed
by permutation sampling under the restrictions, which means that (2) is replaced by
one permutation defining the constrained parameter space.

In the GNP growth data example, two identification restrictions seem possible,
namely ˇ1;1 < ˇ2;1 and ˇ1;3 < ˇ2;3, see Frühwirth-Schnatter (2001) for details.
Table 35.9 provides the posterior means and standard deviations of the ˇi;j ’s for
both identification restrictions.
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Table 35.9 Posterior means and standard deviations
ˇ1;1 < ˇ2;1 ˇ1;3 < ˇ2;3

Contraction Expansion Contraction Expansion

ˇi;1 0.166 (.125) 0.33 (0.101) 0.249 (0.164) 0.295 (0.116)
ˇi;2 0.469 (.156) �0.129 (0.093) 0.462 (0.164) �0.114 (0.098)
ˇi;3 �0.479 (.299) 1.07 (0.163) �0.557 (0.322) 1.06 (0.175)

Table 35.10 Summary of conditional posteriors

Parameter Conditional posterior or sampling method

S Multinomial distribution
� Dirichlet distribution
™ Griddy-Gibbs sampler

The GNP growth in contraction and expansion periods not only have different
unconditional means, they are also driven by different dynamics. Both identification
restrictions result in similar posterior moments.

Clustering of Many GARCH Models

Bauwens and Rombouts (2007) focus on the differentiation between the component
distributions via different conditional heteroskedasticity structures by the use of
GARCH models. In this framework, the observation yj is multivariate and the ™g’s
are the parameters of GARCH(1,1) models. The purpose is to estimate many, of
the order of several hundreds, GARCH models. Each financial time series belongs
to one of the G groups but it is not known a priori which series belongs to which
cluster.

An additional identification problem arises due to the possibility of empty
groups. If a group is empty then the posterior of ™g is equal to the prior of ™g .
Therefore an improper prior is not allowed for ™g . The identification problems
are solved by using an informative prior on each ™g . The identification restrictions
use the fact that we work with GARCH models: we select rather non-overlapping
supports for the parameters, such that the prior '.™/ D QG

gD1 '.™g/ depends on
a labeling choice. Uniform prior densities on each parameter, on finite intervals,
possibly subject to stationarity restrictions, are relatively easy to specify.

Bayesian inference is done by use of the Gibbs sampler and data augmentation.
Table 35.10 summarizes the three blocks of the sampler.
Because of the prior independence of the ™g’s, the griddy-Gibbs sampler is applied
separately G times.

As an illustration we show the posterior marginals of the following model

Qf .yj / D
3X

gD1
�gf .yj j™g/ (35.43)
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with �1 D 0:25, �2 D 0:5, J D 100 and Tj D 1000. The components are defined
more precisely as

f .yj j™g/ D
TjY

tD1
f .yj;t j™g; Ij;t / (35.44)

yj;t j™g; Ij;t � N.0; hj;t / (35.45)

hj;t D .1 � ˛g � ˇg/ Q!j C ˛g.yj;t�1/2 C ˇghj;t�1 (35.46)

where Ij;t is the information set until t � 1 containing (at least) yj;1; : : : ; yj;t�1 and
initial conditions which are assumed to be known. For the simulation of the data
Q!j is fixed equal to one which implies that the unconditional variance for every
generated data series is equal to one. However, the constant Q!j in the conditional
variance is not subject to inference, rather it is fixed at the empirical variance of
the data. Table 35.11 presents the true values, the prior intervals on the ™g’s and
posterior results on � and ™.

Bauwens and Rombouts (2007) successfully apply this model to return series of
131 US stocks. Comparing the marginal likelihoods for different models, they find
that G D 3 is the appropriate choice for the number of component distributions.

Other interesting examples of finite mixture modeling exist in the literature.
Frühwirth-Schnatter and Kaufmann (2008) develop a panel data model for clus-
tering many short time series. Their economic application concerns convergence
clubs of countries based on income data and they find two clusters. Deb and Trivedi
(1997) develop a finite mixture negative binomial count model to estimate six
measures of medical care demand by the elderly. Chib and Hamilton (2000) offer a

Table 35.11 Posterior results on � and ™ (G D 3)

�1 �2 �3

True value 0.25 0.50 0.25
Mean 0:2166 0:4981 0:2853

Standard deviation 0:0555 0:0763 0:0692

Correlation matrix 1 �0:4851 �0:2677
�0:4851 1 �0:7127
�0:2677 �0:7127 1

gD 1 gD 2 gD 3
True value ˛g 0.04 0.12 0.20

ˇg 0.90 0.60 0.40
Prior interval ˛g 0.001,0.07 0.07,0.15 0.15,0.25

ˇg 0.65,0.97 0.45,0.75 0.20,0.60
Mean ˛g 0:0435 0:1041 0:1975

ˇg 0:8758 0:5917 0:4369

Standard deviation ˛g 0:0060 0:0092 0:0132

ˇg 0:0238 0:0306 0:0350

Correlation ˛g; ˇg �0:7849 �0:71409 �0:7184
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flexible Bayesian analysis of the problem of causal inference in models with non-
randomly assigned treatments. Their approach is illustrated using hospice data and
hip fracture data.

35.5 Change Point Models

It is well known that economic time series are not stationary, especially when
observed for long periods. A source of non-stationarity is the technological and
institutional changes of the economic environment, which may occur more or less
abruptly. When changes are gradual, they do not translate immediately into observed
data as there may be threshold or ratchet effects. Econometric models with a fixed
structural form or constant parameters are thus potentially misspecified. Following
Hamilton (1989), Markov switching models allow capturing regime changes in
econometric models, by driving the parameter changes through a discrete hidden
Markov chain. At each date, the parameters of the model are in a given state
determined by a value of a discrete latent variable. At the next date, they can stay in
the same state or change to another state, among a few possible values. At a further
date, they may switch back to a previous state, i.e. states can be recurrent. In an
influential article, Chib (1998), proposes a Markov switching model specification
with non-recurrent states as a new approach to the modeling of multiple change
points or structural breaks in time series models. This type of change-point model
is essentially a Markov switching model in which the transition probabilities are
constrained so that the state variable can either stay at the current value or jump to
the next higher value associated to the next regime. The last regime is an absorbing
state. Several authors have used this change point model formulation for empirical
research, see e.g. Kim and Nelson (1999), Pastor and Stambaugh (2001), and Liu
and Maheu (2008).

Using this model framework, Pesaran et al. (2006) provide a new approach
to forecasting time series that are subject to structural breaks. Using Bayesian
inference, they propose a prediction procedure that allows for the possibility of new
breaks occurring over the forecast horizon, taking account of the size and duration
of past breaks (if any). Predictions are formed by integrating over the parameters
from the meta-distribution that characterizes the stochastic break-point process (see
Sect. 35.5.1 for details). In their application to U.S. Treasury bill rates, they find
that their method leads to better out-of-sample forecasts than a range of alternative
methods.

Koop and Potter (2007) develop a related approach to change-point modeling,
which, in contrast to Chib’s formulation, permits the number of change-points in
the observed sample to be a priori unknown. Their model assumes that regime
durations have a Poisson distribution and nests the two most common approaches:
the time-varying parameter model with a change-point every period, and the change-
point model with a small number of regimes. A MCMC sampler is constructed to
estimate a version of their model, which allows for change in conditional means and
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variances. They show how forecasting can be done in an efficient manner using
sequential importance sampling. Their empirical illustration involves U.S. GDP
growth and inflation. Yet another approach to modeling breaks in time series is pro-
posed by Giordani and Kohn (2008). They model the break process in a state space
representation through mixture distributions for the state innovations. Similarly to
Koop and Potter (2007), this allows for a random number of breaks. They illustrate
important computational efficiency gains, using an adaptive Metropolis Hastings
sampler, in applications using US real interest rate data and US inflation rate data.

Although the literature on the specification of change-point models in economics
is about a dozen years old at the time of writing of this section, many questions are
still unresolved, such as which approach is most useful for forecasting.

35.5.1 Linking Regime Parameters with a Hierarchical Prior

Let yt be the time series to be modeled over the sample period f1; 2; : : : ; T g. Let
st be an integer latent variable taking its value in the set f1; 2; : : : ; Kg, K being
assumed known. This state variable st indicates the active regime generating yt at
period t in the sense that yt is generated from the data density f .yt jY t�1; ™st /,
where Y t�1 D .Y T

0 y1 : : : yt�1/T , Y 0 being a vector of known initial conditions
(observations prior to date t D 1), and ™st is a vector of parameters indexing the
density. There are potentiallyK regimes, henceK parameter vectors ™1; ™2; : : : ; ™K .

The active regime at t is assumed to be selected by a discrete first-order Markov
process for the st process. As in Chib (1998), the transition probability matrix PK

allows either to stay in the regime operating at t � 1 or to switch to the next regime.
Therefore the elements of its main diagonal are the probabilities pk D P robŒst D
kjst�1 D k� with 0 < pk < 1 for k D 1; 2; : : : ; K � 1 and pK D 1 (implying that
P ŒsT D K� D 1). The other elements of PK which are different from 0 are just to
the right of each pk (if k < K), and are equal to 1�pk D P robŒst D kC1jst�1 D
k�. Note that the last regime is an absorbing state over the sample period. Given the
zero entries in PK , the Markov chain generates potentiallyK �1 breaks, at random
dates �k (k D 1; 2; : : : ; K � 1) defined by �k being the integer in f1; 2; : : : ; T g such
that s�k D k and s�kC1 D k C 1. A posterior density on these dates is therefore a
direct by-product of the inference on the state variables. A convenient prior density,
based on the assumption of independence between the parameters of the matrixPK ,
takes the form of a product of identical beta densities with parameters a and b:

'.p1; p2; : : : ; pK�1/ /
K�1Y

iD1
p
a�1
i .1 � pi /b�1: (35.47)

The assumption that the beta densities are identical can be easily relaxed. This prior
implies that the (strictly positive integer) duration of regime k, dk D �k � �k�1
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(setting �0 D 0 and �K D T ) is approximately geometrically distributed with
parameter pi and expected value .aC b/=a.

An essential ingredient of the model specification is the prior assumption that
the parameter vectors ™i are drawn independently from a common distribution, i.e.
™i � '.™i j™0/ where ™0 itself is a parameter vector endowed with a prior density
'.™0jA/, A denoting the prior hyper-parameters. This is called a hierarchical prior
or a meta-distribution. For example, if ™i contains location parameters and a scale
one, the prior can be a normal density on the location parameters and an inverted
gamma density on the scale one. Generally, the joint prior on the ™ parameters is

'.™0; ™1; ™2; : : : ; ™K/ D '.™0jA/
KY

iD1
'.™i j™0/: (35.48)

Behind the common prior (35.48) lies the belief that the regime parameters differ
and evolve independently of each other. Another possible prior belief is that the
regime parameters evolve in a more structured way. For example the conditional
mean of yt could be increasing (�k�1 < �k). This idea can be formalized through a
joint normal prior on .�2��1; �3��2; : : : ; �K��K�1/T with mean vectorm0 and
covariance matrix V 0, where m0 and V 0 are the hyper-parameters to be endowed
with a prior density implying thatm0 is positive with high probability.

The model is fully specified by assuming f .yt jY t�1; ™st / D N.xTt ˇst ; 
2
st
/,

where xt is a vector ofm predetermined variables and ˇst a vector of coefficients, so
that ™st D .ˇTst 2st /T . In the example of the next section, the model within a regime
is autoregressive of order p (AR(p)), i.e. xt includes the constant 1 and p lags of
yt , hence m D p C 1.

The joint posterior density of S T D .s1 s2 : : : ; sT /
0 and the parameters is

proportional to

TY

tD1
f .yt jY t�1; ™st /f .st jst�1;PK/

K�1Y

iD1
p
a�1
i .1 � pi/b�1

KY

iD1
'.™i j™0/ '.™0jA/;

where f .st jst�1;PK/ is the transition probability from state t � 1 to state t and is
one of the non null elements of PK . The parameters are ™i , i D 0; 1; : : : ; K , jointly
denoted by �K , and the diagonal elements of the matrix PK . This density lends
itself to simulation by Gibbs sampling in three blocks corresponding to the full
conditional densities:

1. '.S T j�K;PK;Y T / /QT
tD1 f .yt jY t�1; ™st /f .st jst�1;PK/,

2. '.PK jS T / /QT
tD1 f .st jst�1;PK/

QK�1
iD1 p

a�1
i .1� pi /b�1, and

3. '.�K jS T ;Y T / /QT
tD1 f .yt jY t�1; ™st /

QK
iD1 '.™i j™0/ '.™0jA/.

Sampling S T is done as explained Chib (1998). This algorithm implies that all the
states are actually sampled from their joint distribution, not one at a time given the
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other states. Sampling PK is done by simulating each pi from a beta density with
parameters a C Ti and b C 1 where Ti is the number of states equal to i in the
sampled S T vector. Sampling �K implies usually to break it into sub-blocks and
to sample each sub-block given the other and S T . All the details can be found in
Bauwens and Rombouts (2009).

The number of break points K plays a crucial role in the change point model.
Inference on this parameter is done by maximizing the marginal likelihood over a
range for K , say K 2 f1; 2; : : : ; NKg where NK is the largest number of regimes that
we wish to consider. To compute the marginal log-likelihood for the data Y T and
the modelMK with parameters�K and PK , the idea of Chib (1995) is useful. The
predictive density is related to the prior, posterior and data density by the equality

f .Y T jMK/ D f .Y T jMK;�K;PK/'.�K;PK jMK/

'.�K;PK jMK;Y T /
: (35.49)

Since this equality holds for any admissible parameter value, we can pick a value
.��K;P�K/ of the parameters, usually the posterior mean or mode, and compute

logf .Y T jMK;�
�
K;P

�
K/C log'.��K;P�K jMK/ � log'.��K;P�K jMK;Y T /

(35.50)

to approximate logf .Y T jMK/. The evaluation of the last part in (35.50) requires
further simulations. Bauwens and Rombouts (2009) perform a Monte Carlo study
and find that Chib’s method is robust with respect to the choice of the parameter
value used in the computations, among posterior mean, mode and quartiles.

Apart from break point detection, the change-point model can be used for
forecasting. Using Bayesian inference, Pesaran et al. (2006), show how to compute
predictive densities that take into account out-of-sample structural breaks. In fact,
if breaks occurred in the past, they are likely to happen in the future as well.
The posterior on ™0 plays a crucial role in the computation of predictive densities
that take into account the possibility of future breaks. The predictive densities are
obtained as a by-product of the MCMC sampler and therefore do not require extra
simulations.

35.5.2 Example

We provide the results of applying the change point model to the US industrial
production growth rate series. The sample covers the period from January 1950 to
January 2009 (709 observations) and is plotted in Fig. 35.3.

The original series, downloaded from Datastream (USIPTOT.G series), is a
volume index (equal to 100 in 2002) of the industrial production of the USA and is
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Fig. 35.3 U.S. Industrial production growth from January 1950-January 2009

Table 35.12 MLL of AR(1) models

K 1 2 3 4 5 6 7

�945.11 �894.61 �882.18 �859.11 �861.68 �864.02 �865.63
MLL: marginal log-likelihood, computed by formula (35.50) using the posterior mean

seasonally adjusted. We use an AR(1) model in each regime and limit the number
of regimes to NK D 7 at most. According to the marginal log-likelihood criterion,
see Table 35.12, the best model has three change points (or four regimes).

The posterior mean, mode, and quartiles of the parameters of the best model are
reported in Table 35.13. The posterior medians of the break dates are April 1960,
January 1984, and June 2008, as shown in Fig. 35.3. The first break corresponds to a
large reduction in the variance of the growth rate: the posterior mean of the residual
variance is divided by three. The second break corresponds to a further reduction
(division by 2:5). The last break corresponds clearly to the big recession triggered
by the subprime crisis of 2007, with a huge increase of the residual variance and a
negative average growth rate. The coefficients of the AR(1) equation are similar in
the first two regimes, and change a lot in the last two regimes, though the precision
of the estimation for the last regime is low due to the limited information available
for that regime. Finally, the probability to remain in any of the first three regimes is
close to 1, reflecting the long durations of each of these regimes. It is nevertheless
reassuring that the model can capture the last break, even if it does so with a little
delay.
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Table 35.13 Posterior results for 3-change point AR(1) model

Parameter Mean Std. dev. Mode Median q25 q75

ˇ11 0:195 0.157 0:307 0:199 0:103 0:291

ˇ12 0:470 0.093 0:441 0:470 0:415 0:526

ˇ21 0:171 0.057 0:200 0:170 0:136 0:207

ˇ22 0:405 0.062 0:395 0:405 0:368 0:443

ˇ31 0:191 0.034 0:171 0:191 0:168 0:213

ˇ32 0:100 0.067 0:144 0:099 0:059 0:139

ˇ41 �0:200 0.520 �0:036 �0:189 �0:523 0:129

ˇ42 0:184 0.354 0:463 0:179 �0:045 0:400

21 2:075 0.364 2:065 2:043 1:868 2:240

22 0:680 0.066 0:668 0:678 0:639 0:717

23 0:262 0.025 0:283 0:260 0:246 0:275

24 5:390 4.174 4:857 4:259 2:993 6:523

p1 0:988 0.011 0:996 0:991 0:984 0:995

p2 0:995 0.004 0:998 0:996 0:993 0:998

p3 0:995 0.004 0:999 0:996 0:993 0:998

Posterior density summarized by its mean, standard deviation (Std. dev.), mode, median, 0:25-
quantile (q25) and 0:75-quantile (q75). In regime i , the model is yt D ˇi1 C ˇi2yt�1 C i �t with
�t � N.0; 1/, and pk D P Œst D kjst�1 D k�
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Chapter 36
Statistical and Computational Geometry
of Biomolecular Structure

Iosif I. Vaisman

36.1 Introduction

Recent revolutionary developments in genomics and computational structural biol-
ogy lead to the rapidly increasing amount of data on biomolecular sequences
and structures. The deposition rate for both sequence and structure databases
continues to grow exponentially. The efficient utilization of this data depends on
the availability of methods and tools for biomolecular data analysis. Significant
achievements have been made in DNA and protein sequence analysis, now the
focus in bioinformatics research is shifting from sequence to structural and func-
tional data. Accurate prediction of protein three-dimensional structure from its
primary sequence represents one of the greatest challenges of modern theoretical
biology. Detailed knowledge of protein structure is essential for understanding
the mechanisms of biological processes at molecular, cellular, and evolutionary
levels. The structures of only a fraction of all known primary sequences have been
determined experimentally. Several approaches to protein structure prediction have
been developed in recent years. Many of these approaches rely on the knowledge
derived from the analysis of significant spatial and compositional patterns in known
protein structures and understanding of the role these patterns play in the extremely
complex processes, like protein folding or protein function. Such an analysis
requires an objective definition of nearest neighbor residues that can be provided
by the statistical geometry methods.

In the statistical geometry methods the nearest neighbor atoms or groups of
atoms are identified by statistical analysis of irregular polyhedra obtained as
a result of a specific tessellation in three-dimensional space. Voronoi tessellation
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Fig. 36.1 Voronoi/Delaunay
tessellation in 2D space;
Voronoi tessellation – dashed
line, Delaunay
tessellation – solid line

partitions the space into convex polytopes called Voronoi polyhedra (Voronoi 1908).
For a molecular system the Voronoi polyhedron is the region of space around
an atom, such that each point of this region is closer to the atom than to any
other atom of the system. A group of four atoms whose Voronoi polyhedra meet
at a common vertex forms another basic topological object called a Delaunay
simplex (Delaunay 1934). The results of the procedure for constructing Voronoi
polyhedra and Delaunay simplices in two dimensions are illustrated in Fig. 36.1.
The topological difference between these objects is that the Voronoi polyhedron
represents the environment of individual atoms whereas the Delaunay simplex
represents the ensemble of neighboring atoms. The Voronoi polyhedra and the
Delaunay simplices are topological duals and they are completely determined by
each other. However the Voronoi polyhedra may have different numbers of faces
and edges, while the Delaunay simplices are always tetrahedra in three-dimensional
space. These tetrahedra can be used to define objectively the nearest neighbor
entities in molecular systems.

Delaunay tessellation is a canonical tessellation of space based on nearest neigh-
bors (Aurenhammer 1991; Sugihara and Inagaki 1995). A Delaunay tessellation of
a set of points is equivalent to a convex hull of the set in one higher dimension, it
can be performed using the Quickhull algorithm developed by Barber et al. (1996).
The Quickhull algorithm is a variation of the randomized, incremental algorithm of
Clarkson and Shor. The algorithm produces the Delaunay tessellation by computing
the convex-hull of this set of points in four dimensions and is shown to be space and
time efficient.

36.2 Statistical Geometry of Molecular Systems

A statistical geometry approach to study structure of molecular systems was pio-
neered by John Bernal, who in the late 1950s suggested that “many of the properties
of liquids can be most readily appreciated in terms of the packing of irregular
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polyhedra” (Bernal 1959). Bernal pointed out that “it would be most desirable
to find the true minimum number of parameters or parametral functions defining
the statistical structure of any homogenous irregular assemblage in the way that
the lattice vectors define a regular one” (Bernal 1959). Methods of computational
geometry, Voronoi and Delaunay tessellations in particular, may be used to address
this problem. This approach, based on the Voronoi partitioning of space (Voronoi
1908) occupied by the molecule, was further developed by Finney for liquid and
glass studies (Finney 1970). Finney proposed a set of “descriptive parameters” for
packing of polyhedra in simple liquids. In the mid-1970s the statistical geometry
approach was first applied to study packing and volume distributions in proteins by
Richards (1974), Chothia (1975) and Finney (1975).

Richards applied Voronoi tessellation to calculate atomic volumes in the
experimentally solved crystallographic structures of ribonulease C and lysozyme
(Richards 1974) and Chothia extended the calculations to a larger set of proteins
(Chothia 1975). Standard Voronoi tessellation algorithm treats all atoms as points
and allocates volume to each atom regardless of the atom size, which leads to
the volume overestimate for the small atoms and underestimate for the large
ones. Richards introduced changes in the algorithm (Richards 1974) that made
Voronoi volumes proportional to the atom sizes, creating chemically more relevant
partitioning, however it has been done at the expense of the robustness of the
algorithm. The Voronoi polyhedra in this case do not fill all available space. In
addition to polyhedra around the atoms Richards’ method produces so called vertex
polyhedra in the unallocated volumes in the neighborhood of each vertex. As
a result the accuracy of the tessellation is reduced. An alternative procedure, the
“radical plane” partitioning, which is both chemically appropriate and completely
rigorous was designed by Gellatly and Finney (1982) and applied to the calculation
of protein volumes. The radical plane of two spheres is the locus of points from
which the tangent lengths to both spheres are equal. Using the three-dimensional
structure of RNAase-C as an example, they have shown that the differences between
the results from the radical plane and Richards’ methods are generally smaller than
the difference between either of those and Voronoi’s method. Both radical plane
and Richards’ methods are relatively insensitive to the treatment of surface, which
makes them preferential to other techniques (Gellatly and Finney 1982). Volume
calculation remains one of the most popular applications of Voronoi tessellation
to protein structure analysis. It has been used to evaluate the differences in amino
acid residue volumes in solution and in the interior of folded proteins (Harpaz
et al. 1994), to monitor the atomic volumes in the course of molecular dynamics
simulation of a protein (Gerstein et al. 1995), to compare the sizes of atomic
groups in proteins and organic compounds (Tsai et al. 1999), to calculate the
atomic volumes on protein-protein interfaces (Lo Conte et al. 1999), and to measure
sensitivity of residue volumes to the selection of tessellation parameters and protein
training set (Tsai and Gerstein 2002). Deviations from standard atomic volumes
in proteins determined through Voronoi tessellation correlate with crystallographic
resolution and can be used as a quality measure for crystal structures (Pontius et
al. 1996). A modified Voronoi algorithm, where dividing planes between the atoms
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were replaced by curved surfaces, defined as the set of geometrical loci with equal
orthogonal distance to the surfaces of the respective van der Waals spheres, was
proposed by Goede et al. (1997). Voronoi cells with hyperbolic surface constructed
by this algorithm improve the accuracy of volume and density calculations in
proteins (Rother et al. 2003). Another extension of the Voronoi algorithm, the
Laguerre polyhedral decomposition was applied to the analysis of the residue
packing geometry (Sadoc et al. 2003).

One of the problems in constructing Voronoi diagram for the molecular systems
is related to the difficulty of defining a closed polyhedron around the surface atoms,
which leads to ambiguities in determining their volumes and densities (a recent
example in Quillin and Matthews 2000). This problem can be addressed by the
“solvation” of the tessellated molecule in the at least one layer of solvent or by
using computed solvent-accessible surface for the external closures of Voronoi
polyhedra. The analysis of atomic volumes on the protein surface can be used
to adjust parameters of the force field for implicit solvent models, where the
solvent is represented by the generalized Born model of electrostatic salvation
which require knowledge of the volume of individual solute atoms (Schaefer et
al. 2001). Interactions between residues in proteins can be measured using the
contact area between atoms defined as the area of intersection of the van der Waals
sphere and the Voronoi polyhedron of an atom (Wernisch et al. 1999). Examining
the packing of residues in proteins by Voronoi tessellation revealed a strong
fivefold local symmetry similar to random packing of hard spheres, suggesting
a condensed matter character of folded proteins (Soyer et al. 2000). Correlations
between the geometrical parameters of Voronoi cells around residues and residue
conformations were discovered by Angelov et al. (2002). Another recent study
described application of Voronoi procedure to study atom-atom contacts in proteins
(McConkey et al. 2002).

A topological dual to Voronoi partitioning, the Delaunay tessellation (Delaunay
1934) has an additional utility as a method for non-arbitrary identification of
neighboring points in the molecular systems represented by the extended sets of
points in space. Originally the Delaunay tessellation has been applied to study
model (Voloshin et al. 1989) and simple (Medvedev et al. 1987) liquids, as well
as water (Vaisman et al. 1993) and aqueous solutions (Vaisman and Berkowitz
1992; Vaisman et al. 1994). The Delaunay tessellation proved to be a particularly
convenient and efficient descriptor of water structure, where a natural tetrahedral
arrangement of molecules is present in the first hydration shell (Vaisman et al. 1993).

The first application of the Delaunay tessellation for identification of nearest
neighbor residues in proteins and derivation of a four-body statistical potential was
developed in the mid-1990s (Singh et al. 1996). This potential has been successfully
tested for inverse protein folding (Tropsha et al. 1996), fold recognition (Zheng et al.
1997), decoy structure discrimination (Krishnamoorthy and Tropsha 2003; Munson
and Singh 1997), protein design (Weberndorfer et al. 1999), protein folding on
a lattice (Gan et al. 2001), mutant stability studies (Carter et al. 2001), computational
mutagenesis (Masso and Vaisman 2003), protein structure similarity comparison
(Bostick and Vaisman 2003), and protein structure classification (Bostick et al.
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2004). Statistical compositional analysis of Delaunay simplices revealed highly
nonrandom clustering of amino acid residues in folded proteins when all residues
were treated separately as well as when they were grouped according to their chem-
ical, structural, or genetic properties (Vaisman et al. 1998). A Delaunay tessellation
based alpha-shape procedure for protein structure analysis was developed by Liang
et al. (Liang et al. 1998a). Alpha shapes are polytopes that represent generalizations
of the convex hull. A real parameter alpha defines the “resolution” of the shape of
a point set (Edelsbrunner et al. 1983). Alpha shapes proved to be useful for the
detection of cavities and pockets in protein structures (Liang et al. 1998b,c). Several
alternative Delaunay and Voronoi based techniques for cavity identification were
described by Richards (1985), Bakowies and van Gunsteren (2002) and Chakravarty
et al. (2002). Delaunay tessellation has been also applied to compare similarity of
protein local substructures (Kobayashi et al. 1997) and to study the mechanical
response of a protein under applied pressure (Kobayashi et al. 1997).

36.3 Tetrahedrality of Delaunay Simplices
as a Structural Descriptor in Water

Quantitative measurement of local structural order in the computational models
of liquid water (and other associated liquids) is an intrinsically difficult problem.
Conventional structure descriptors, such as radial distribution functions cannot be
used to adequately evaluate structure in the specific regions of complex model
systems like multicomponent solutions or solutions of large biological molecules
(Vaisman and Berkowitz 1992). Another set of structural descriptors, the geometric
and thermodynamic parameters of hydrogen bond network depend on arbitrary
values in the hydrogen bond definition (Vaisman et al. 1994). Statistical geometry
enables a robust and accurate approach to addressing the problem of structure char-
acterization in water. The snapshot conformations from the molecular simulation of
water or aqueous solution by molecular dynamics, Monte Carlo, or other method
can be easily tessellated and geometrical parameters of the resulting Delaunay
simplices can be measured. Tetrahedrality is a quantitative measure of the degree of
distortion of the Delaunay simplices from the regular tetrahedra, that was introduced
by Medvedev et al. (1987) for simple liquids, but can be easily extended to water
and other systems. Tetrahedrality is calculated as:

T D
X

i>j

�
li � lj

�2
=15 Nl 2 ; (36.1)

where li is the length of the i -th edge, and Nl is the mean length of the edges of
the given simplex. For a regular tetrahedron with four equilateral triangular faces,
T D 0. For any irregular tetrahedron, T > 0. In case of a simulated molecular
system the tessellation produces a large number of Delaunay simplices for each
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Fig. 36.2 Distribution of tetrahedrality of water around solutes; solid line – first hydration shell,
dotted line – bulk water

snapshot conformation, and a number of such conformations can be very large as
well. If the simulated system is at equilibrium, the ergodic theorem applies, and time
averages along a system trajectory can be combined with ensemble averages over the
phase space. Such a combination increases the number of simplices for the analysis
by several orders of magnitude (103�104 simplices in a conformation multiplied
by 103�104 conformations), which affords high statistical reliability of the results.
The nature of this descriptor allows to calculate it separately in confined or limited
regions of the simulation system, e.g., in concentric spherical layers around a solute.

The distribution of water tetrahedrality in different layers around solutes depend
on the nature of the solute. In the case of charged ions, like ammonium, the
difference between tetrahedrality of bulk water and the ammonium hydration water
is particularly strong due to the strong hydrogen bonding between water and solute.
The peak of the distribution of the tetrahedrality of the ammonium hydration water
is shifted to the right which indicates that the hydration water is less tetrahedral than
bulk water (Fig. 36.2). Conversely, water in the first hydration shell of methane is
just slightly more tetrahedral than the bulk water. Thus, the hydration water around
ammonium is significantly more distorted than that around methane as one could
expect in the case of hydrophilic and hydrophobic hydration, respectively (Vaisman
et al. 1994).

It is worth to note that the presence of hydrophobic solute changes the dis-
tribution of water tetrahedrality in the same way as the decrease of temperature.
This observation is consistent with the concept of the decrease of ‘structural
temperature’ of water, surrounding hydrophobic particles, that has been discussed in
the literature for a long time. The decrease in the structural temperature corresponds
to the increased structural order of water, because any structural characteristic of
liquid must be a monotonically decreasing function of temperature. Distribution of
tetrahedrality entirely complies with this requirement.

The influence of both solutes on the water tetrahedrality is almost unobservable
beyond the first hydration shell. The distribution of tetrahedrality for both solutions
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is similar at both cutoff radii (Vaisman et al. 1994). This result indicates that
the distribution of tetrahedrality is not sensitive to the treatment of long-range
interactions. Distribution of tetrahedrality beyond the first hydration shell is similar
to that in pure water.

36.4 Spatial and Compositional Three-dimensional Patterns
in Proteins

Delaunay simplices obtained as a result of the tessellation can be used to define
objectively the nearest neighbor residues in 3D protein structures. The most
significant feature of Delaunay tessellation, as compared with other methods of
nearest neighbor identification, is that the number of nearest neighbors in three
dimensions is always four, which represents a fundamental topological property of
3D space. Statistical analysis of the amino acid composition of Delaunay simplices
provides information about spatial propensities of all quadruplets of amino acid
residues clustered together in folded protein structures. The compositional statistics
can be also used to construct four-body empirical contact potentials, which may
provide improvement over traditional pairwise statistical potentials (e.g., Miyazawa
and Jernigan 2000) for protein structure analysis and prediction.

To perform the tessellation protein residues should be represented by single
points located, for example, in the positions of the C˛ atoms or the centers of the
side chains. Tessellation training set includes high-quality representative protein
structures with low primary-sequence identity (Wang and Dunbrack 2003). The
tessellated proteins are analyzed by computing various geometrical properties and
compositional statistics of Delaunay simplices.

An example of Delaunay tessellation of a folded protein is illustrated on
Fig. 36.3 for crambin (1 crn). The tessellation of this 46-residue protein generates

Fig. 36.3 Delaunay
tessellation of crambin
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Fig. 36.4 Five classes of
Delaunay simplices

an aggregate of 192 nonoverlapping, space-filling irregular tetrahedra (Delaunay
simplices). Each Delaunay simplex uniquely defines four nearest neighbor C˛ atoms
and thus four nearest neighbor amino acid residues.

For the analysis of correlations between the structure and sequence of proteins,
we introduced a classification of simplices based on the relative positions of vertex
residues in the primary sequence (Singh et al. 1996). Two residues were defined
as distant if they were separated by one or more residues in the protein primary
sequence. Simplices were divided into five nonredundant classes: class f4g, where
all four residues in the simplex are consecutive in the protein primary sequence;
class f3; 1g, where three residues are consecutive and the fourth is a distant one; class
f2; 2g, where two pairs of consecutive residues are separated in the sequence; class
f2; 1; 1g, where two residues are consecutive, and the other two are distant both
from the first two and from each other; and class f1; 1; 1; 1g where all four residues
are distant from each other (Fig. 36.4). All five classes usually occur in any given
protein.

The differences between classes of simplices can be evaluated using geometrical
parameters of tetrahedra such as volume and tetrahedrality (36.1). Distributions of
volume and tetrahedrality for all five classes of simplices is shown in Fig. 36.5. The
sharp narrow peaks correspond to the simplices of classes f4g and f2; 2g. They tend
to have well defined distributions of volume and distortion of tetrahedrality. These
results suggest that tetrahedra of these two classes may occur in regular protein
conformations such as ˛-helices and may be indicative of a protein fold family.
We have calculated the relative frequency of occurrence of tetrahedra of each class
in each protein in a small dataset of hundred proteins from different families and
plotted the results in Fig. 36.6. The proteins were sorted in the ascending order
of fraction of tetrahedra of class f4g. Noticeably, the content of simplices of class
f3; 1g decreases with the increase of the content of class f4g simplices. According to
common classifications of protein fold families (Orengo et al. 1997), at the top level
of hierarchy most proteins can be characterized as all-alpha, all-beta, or alpha/beta.
The fold families for the proteins in the dataset are also shown in Fig. 36.6. These
results suggest that proteins having a high content of tetrahedra of classes f4g
and f2; 2g (i.e., proteins in the right part of the plot in Fig. 36.6) belong to the
family of all-alpha proteins. Similarly, proteins having a low content of tetrahedra
of classes f4g and f2; 2g but a high content of tetrahedra of classes f2; 2g and f3; 1g
(i.e., proteins in the left part of the plot in Fig. 36.6) belong to the all-beta protein
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Fig. 36.5 Distribution of tetrahedrality and volume (in Å3) of Delaunay simplices in proteins

fold family. Finally, proteins in the middle of the plot belong to the alpha/beta fold
family. Thus, the results of this analysis show that the ratio of tetrahedra of different
classes is indicative of the protein fold family.

Identification of significant patterns in biomolecular objects depends on the
possibility to distinguish what is likely from what is unlikely to occur by chance
(Karlin et al. 1991). Statistical analysis of amino acid composition of the Delaunay
simplices provides information about spatial propensities of all quadruplets of
amino acid residues to be clustered together in folded protein structures. We
analyzed the results of the Delaunay tessellation of these proteins in terms of
statistical likelihood of occurrence of four nearest neighbor amino acid residues for
all observed quadruplet combinations of 20 natural amino acids. The log-likelihood
factor, q, for each quadruplet was calculated using the following equation:
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Fig. 36.6 Classes of Delaunay simplices and protein fold families. Contents of simplices of class
f4g (solid line), class f3; 1g (dashed line), class f2; 1g (dotted line), class f2; 1g (dash-dotted line),
class f1; 1; 1; 1g (dash-dot-dotted line). Upper part of the figure displays fold family assignment:
all-alpha (circles), all-beta (squares), and alpha-beta (triangles)

qijkl D log
fijkl

pijkl
(36.2)

where i; j; k; l are any of the 20 natural amino acid residues, fijkl is the observed
normalized frequency of occurrence of a given quadruplet, and pijkl is the randomly
expected frequency of occurrence of a given quadruplet. The qijkl shows the
likelihood of finding four particular residues in one simplex. The fijkl is calculated
by dividing the total number of occurrence of each quadruplet type by the total
number of observed quadruplets of all types. The pijkl was calculated from the
following equation:

pijkl D Caiaj akal (36.3)

where ai , aj , ak , and al are the observed frequencies of occurrence of individual
amino acid residue (i.e. total number of occurrences of each residue type divided by
the total number of amino acid residues in the dataset), and C is the permutation
factor, defined as

C D 4Š
nQ

i

.ti Š/

(36.4)

where n is the number of distinct residue types in a quadruplet and ti is the number
of amino acids of type i . The factor C accounts for the permutability of replicated
residue types.

Theoretically, the maximum number of all possible quadruplets of 20 natural
amino acid residues is 8,855 .C 4

20C3C 3
20C2C 2

20CC2
20CC1

20/. The first term accounts



36 Statistical and Computational Geometry of Biomolecular Structure 1105

Fig. 36.7 Log-likelihood ratio for the Delaunay simplices

for simplices with four distinct residue types, the second – three types in 1 � 1 � 2
distribution, the third – two types in 1 � 3 distribution, the fourth – two types in
2� 2 distribution, and the fifth – four identical residues. The log-likelihood factor q
is plotted in Fig. 36.7 for all observed quadruplets of natural amino acids. Each
quadruplet is thus characterized by a certain value of the q factor which describes the
nonrandom bias for the four amino acid residues to be found in the same Delaunay
simplex. This value can be interpreted as a four-body statistical potential energy
function. The statistical potential can be used in a variety of structure prediction,
protein modeling, and computational mutagenesis applications.

Computational mutagenesis is based on the analysis of a protein potential profile,
which is constructed by summing the log-likelihood scores from (36.2) for all
simplices in which a particular residue participates. A plot of the potential profile
for a small protein, HIV-1 protease, is shown in Fig. 36.8. The shape of the potential
profile frequently reflects important features of the protein, for example, the residues
in local maxima values of the profile are usually located in the hydrophobic core of
the protein and these residues play an important role in maintaining protein stability.

A potential profile can be easily calculated for both wild type and mutant
proteins, assuming that the structural differences between them are small and that
their tessellation results are similar. In this case the difference between the profiles is
defined only by the change in composition of the simplices involving the substitution
site. The resulting difference profile provides important insights into the changes in
protein energetics due to the mutation.
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Fig. 36.8 Potential profile of HIV-1 protease

36.5 Protein Structure Comparison and Classification

Using the information from the Delaunay tessellation of a protein’s backbone, it is
possible to build a statistical representation of that protein, which takes into account
the way its sequence must “twist and turn” in order to bring each four-body residue
cluster into contact. Each residue – i; j; k, and l of a four-body cluster comprising
a simplex are nearest neighbors in Euclidean space as defined by the tessellation, but
are separated by the three distances – dij ; djk , and dkl in sequence space. Based on
this idea, we build a 1,000-tuple representation of a single protein by making use of
two metrics: (1) the Euclidean metric used to define the Delaunay tessellation of the
protein’s C˛ atomic coordinates and (2) the distance between residues in sequence
space.

If we consider a tessellated protein with N residues integrally enumerated
according to their position along the primary sequence, the length of a simplex edge
in sequence space can be defined as dij D j � i � 1, where dij is the length of the
simplex edge, ij , corresponding to the i th and j th ˛-carbons along the sequence. If
one considers the graph formed by the union of the simplex edge between the two
points i and j and the set of edges between all dij points along the sequence between
i and j , it is seen that the Euclidean simplex edge, ij , can generally be classified as
a far edge (Pandit and Amritkar 1999). Every simplex in the protein’s tessellation



36 Statistical and Computational Geometry of Biomolecular Structure 1107

will have three such edges associated with its vertices: i , j , k, and l where i; j; k,
and l are integers corresponding to C˛ atoms enumerated according to their position
along the primary sequence. Thus, we proceed to quantify the degree of “farness”
in an intuitive way, by applying a transformation, T , which maps the length, d , of
each edge to an integer value according to

T W d 7!

8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:̂

1 if d D 0
2 if d D 1
3 if d D 2
4 if d D 3
5 if 4 � d � 6
6 if 7 � d � 11
7 if 12 � d � 20
8 if 21 � d � 49
9 if 50 � d � 100
10 if d � 101

(36.5)

The reasoning behind the design of the transformation is described by Bostick
and Vaisman (2003). This transformation is used to construct an array that is
representative of the distribution of combinations of segment lengths along the
protein backbone forming four-residue clusters within the protein’s structure as
defined by the tessellation of its C˛ atomic coordinates. Each simplex in the
protein’s tessellation contributes to a 3D array, M , where Mnpr is the number of
simplices whose edges satisfy the following conditions:

1. The Euclidean length of any one simplex edge is not greater than 10 Å.
2. dij D n
3. djk D p
4. dkl D r

Condition 1 is provided because simplices with a Euclidean edge length above
10 Å are generally a result of the positions of ˛-carbons on the exterior of the
protein. We filter out contributions from these simplices to M , because they do not
represent physical interactions between the participating residues. The simplices
with the long edges are formed due to the absence of solvent and other molecules
around the protein in the tessellation, they would not have existed if the protein was
solvated. The data structure, M , contains 1,000 elements. The number of elements
is invariant with respect to the number of residues of the protein. In order to more
easily conceptualize the mapping of the protein topology to the data structure, M ,

we rewrite it as a 1,000-tuple vector
�!
M D fM000;M001; : : : ;M010;M011; : : : ;M999g.

Given that each element of this vector represents a statistical contribution to
the global topology, a comparison of two proteins making use of this mapping
must involve the evaluation of the differences in single corresponding elements
of the proteins’ 1,000-tuples. We define, therefore, a raw topological score, Q,
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representative of the topological distance between any two proteins represented by

data structures,
�!
M and

�!
M 0, as the supremum norm,

Q 
�
�
�
�
�!
M � �!M 0

�
�
�
�

sup


999X

iD0

ˇ
ˇMi �M 0i

ˇ
ˇ : (36.6)

This norm is topologically equivalent to the Euclidean norm and has the added
advantage that it is less computationally expensive to calculate.

This topological score has an obvious dependence on the sequence length
difference between the two proteins being compared due to the following implicit
relation for a single protein representation,

Ns D
999X

iD0
Mi ; (36.7)

where i is the number of simplices with no edge having a Euclidian length greater
than 10 Å, and theMi are the elements of the protein representation. In other words,
since Ns is proportional to the number of residues in the protein, the difference in
the length between two compared proteins might provide a systematic extraneous
contribution to their score, Q, in (36.6). This is not to say that the sequence length
of a protein does not play a role in its topology. In fact, the length should be quite
crucial (Bostick et al. 2004). However, the length dependence of our score implied
by (36.7) is endemic to our protein representation (derived from its tessellation), and
not due to protein topology itself. This length dependence may be removed by first
normalizing the vector representation as follows:

M�! D
�!
M
�
�
�
�!
M
�
�
�

(36.8)

resulting in the unit-vector representation, M�!. The corresponding normalized
topological score,

Q 
��
�M�!�M�!

��
�

sup
(36.9)

can be expected to be less sensitive to the chain length difference between the
two proteins being compared. Despite normalization, however, this score should
still have an inherent dependence on the length difference between the compared
proteins. A protein’s structure must be dependent on the length of its sequence,
because the number of configurational degrees of freedom in a polymer’s structure
is proportional to the number of residues it possesses. Such a dependence on the
size of compared proteins is present in geometric methods of comparison such as
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structural alignment as well, and in some cases, has been accounted for (Carugo and
Pongor 2001).

The results of topological protein structure comparison can be illustrated using
an example of proteins that belong to the same family. Six protein families were
selected from the FSSP (Families of Structurally Similar Proteins) database for
topological evaluation. We selected families that span various levels of secondary
structural content. The representatives of these families are as follows: 1alv and
1avm (having greater than 50% ˛-helical content), 2bbk and 2bpa (having greater
than 50% ˇ-sheet content), and 1hfc and 1plc (having at least 50% content that is
classified as neither ˛-helical nor ˇ-sheet). The FSSP database contains the results
of the alignments of the extended family of each of these representative chains.
Each family in the database consists of all structural neighbors excluding very close
homologs (proteins having a sequence identity greater than 70%). The topological
score was calculated for each representative in a one-against-all comparison with
its neighbors. All of the scores are plotted against RMSD for each of the families in
Fig. 36.9. A strong correlation between the topological score and structure similarity
and the power-law trend can be seen for all families.

Fig. 36.9 Topological and geometric comparison within 6 protein families
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36.6 Conclusions

Methods of statistical and computational geometry, Voronoi and Delaunay tessel-
lation in particular, play an increasingly important role in exploration of complex
nature of molecular and biomolecular structure. The range of applications of
statistical geometry for biomolecular structural studies has grown significantly in
the past decade. As the new experimental structural information on biomolecules
becomes available, the need for sophisticated and robust tools for its interpretation
will further increase. At the same time more known structure will enable the
creation of larger and better training sets for pattern identification. Existing and
new statistical geometry algorithms may prove instrumental in future developments
of methods for protein structure analysis, ab initio structure prediction, and protein
engineering.
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Chapter 37
Functional Magnetic Resonance Imaging

William F. Eddy and Rebecca L. McNamee

37.1 Introduction: Overview and Purpose of fMRI

The 2003 Nobel Prize in Medicine went to Paul Lauterbur and Sir Peter Mansfield
for the invention of magnetic resonance imaging (MRI) in the 1970s. Since its
invention MRI has rapidly changed the world of medicine; there are currently more
than 20,000 MRI scanners in the world and many millions of images are generated
by them each year. In the early 1990s, Ogawa et al. (1992), Belliveau et al. (1991)
and Kwong et al. (1992) showed that MRI could be used for the detection of brain
function. Because the technique is non-invasive and does not require the injection
of dyes or radioactive tracers, functional MRI (fMRI), has opened up opportunities
that were never before possible for studying the living human brain in its working
state.

One of the primary uses for fMRI is the mapping of brain function onto brain
structure. This is done by engaging a subject in a specific motor, sensory, or
cognitive task while collecting MR images of the brain. The regions of increased
activity are presumed to be those which perform the task. A particular example is
given in Fig. 37.1.

Although mapping of function to structure is an important use of fMRI, the
possibilities of its application for investigating the dynamics of brain function are
many. Researchers have recently begun using fMRI to study brain development in
both normal and pathological situations (Gaillard et al. 2001). The method can also
be used to examine the aging brain (Rosen et al. 2002), as well as to study the brain
under situations of learning (Poldrack 2000) and injury (McAllister et al. 1999).

Scientific fields other than psychology and neuroscience are also developing an
interest in fMRI research. For example, pharmaceutical applications may use fMRI
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Fig. 37.1 Brain activity
while performing a short term
memory task, in a high school
athlete with mild traumatic
brain injury. This single slice
shows only a portion of the
activity in the entire brain.
Because it was derived by
thresholding a test statistic
there may be both false
positive and false negative
pixels. The physical
contiguity of the regions of
activity suggests that there are
not any false positives

to investigate the brain before and after the administration of a drug, and geneticists
may be interested in how the expression of similar or different genotypes may alter
brain functioning in one individual versus another.

As the field of fMRI grows, the problems that it presents for statisticians and
other quantitative scientists are also growing. There are several reviews of fMRI
work in the statistical literature; see, e.g., Eddy et al. (1999), Lange (1996) and Lazar
et al. (2001). While collecting the data from subjects has become easier, the data
sets are usually very large (100 MB or more) and are especially variable, containing
both systematic and random noise. Storage, processing, and analysis of fMRI data
are complicated, and the computational problems are legion. In this chapter a brief
background of fMRI is first given from a physics and psychology point of view.
A full description of the fMRI data as well as the challenges that it presents from
a computational statistics viewpoint are then discussed in detail.

37.2 Background

37.2.1 Magnetic Resonance (MR)

Atomic nuclei spin like gyroscopes. When placed into a magnetic field, atomic
nuclei that are affected by magnetism (those having an odd number of protons
or neutrons or both) align their axis of rotation with the magnetic field. Like
a gyroscope the axis of rotation itself rotates; this rotation is called precession.
Each nucleus precesses within the magnetic field. The frequency of this precession,
the Larmor frequency, is proportional to the strength of the magnetic field, with
the constant of proportionality being determined by the gyromagnetic ratio of the
atomic species. The relationship can be described by the Larmor equation

!0 D �B0
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where!0 is the Larmor frequency, � is the gyromagnetic ratio, andB0 is the strength
of the applied magnetic field.

Hydrogen is currently the most widely used element for MR imaging because of
its abundance in biological tissue and the strength of the emitted signal. Hydrogen
atoms have a gyromagnetic ratio of approximately 42 MHz per Tesla. A Tesla
is a measure of the strength of the magnetic field (B0) with one Tesla equal to
10,000 gauss. For reference, one-half gauss is roughly the strength of the earth’s
magnetic field. An MR scanner that is used for functional imaging has a typical
field strength of 3 Tesla. The resulting Larmor frequency is about 126 MHz; for
comparison a kitchen microwave oven operates at about 2,450 MHz.

Some values of the constants � for other atomic species can be found at
http://www.stat.cmu.edu/~fiasco/index.php?ref=reference/ref_constants.shtml.

As the nuclei of the hydrogen atoms precess within the magnetic field, the atoms
will either line up along the field or against it (that is, the atoms will line up at either
0 or 180 ı). The strength of the magnetic field and the energy state of the system
affect the number of atoms that line up accordingly. Then, while the atoms precess
in a steady-state fashion within the magnetic field, a pulse of energy is injected into
the system in the form of a transient radio-frequency (rf) pulse perpendicular to
the B0 field at the Larmor frequency (!0). This rf pulse excites the atoms at their
resonant frequency, causing them to tilt out of alignment with the magnetic field.

As these excited atoms return to equilibrium within the magnetic field they emit
rf energy which is collected by an antenna and receiver. Their return to steady-state
is known as relaxation, and the signal that the atoms emit is known as the free-
induction decay (FID) signal. The FID signal reflects the distribution of hydrogen
atoms in the tissue and is used to construct images (see, e.g., Buxton 2002).

37.2.2 Magnetic Resonance Imaging (MRI)

As described, the basic theory of MR can be used to create images based on the
distribution of hydrogen atoms or protons in the tissue sample. Other types of atoms
can also be imaged. In these cases, the applied rf pulse must be applied at the Larmor
frequency of the atoms of interest in the tissue sample.

In order to create images using MR, an FID signal must be encoded for each
tissue dimension, and certain considerations must be made to recognize spatial
information in the tissue sample from which the FID signals are being recorded.
As outlined above, the resonant frequency at which the atoms must be excited
to flip them is dependent on the magnetic field strength. Thus, by adjusting the
magnetic field strength at certain locations in the tissue and sending rf pulses at
the corresponding resonant frequency, only atoms at the location of interest will be
excited. In this manner, spatial information can be resolved.

To aid in the understanding of this principle, consider slice selection through
a sample of tissue. As shown in Fig. 37.2, the object under consideration (in this
case a person) is placed with the xy-slice axis perpendicular to the magnetic field.

http://www.stat.cmu.edu/~fiasco/index.php?ref=reference/ref_constants.shtml
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Fig. 37.2 This figure
(redrawn from Lazar et al.
2001) is a schematic showing
how slice selection takes
place

A linear magnetic field gradient is then applied in a direction parallel to the bore
of the magnet (z-direction). In this manner, each xy-slice of the tissue is subjected
to a slightly different magnetic field strength. If the linear gradient at z is equal to
azB1 C B0, then the Larmor frequency at z D 1 becomes !1, where:

!1 D �.aB1 CB0/ :

The magnetic field strength along each slice of the tissue is now slightly different,
so the resonant frequency for each slice of the tissue will be slightly different. By
adjusting the rf pulse to correspond to !1, only slices of interest will be excited and
imaged. This same principle can be used to define spatial locations in the xy plane
as well. The interested reader should refer, for example, to Buxton’s 2002 book
Introduction to Functional Magnetic Resonance Imaging: Principles & Techniques.

The signal intensity from the tissue is a function of the density of hydrogen
atoms or protons in the tissue. The more protons in the tissue, the greater the FID
signal, and the higher the intensity value. Because different types of tissues vary
in their proton density, tissue contrast can be achieved in the images. Contrast also
depends on the tissue specific parameters, longitudinal relaxation time (T1), and
transverse relaxation time (T2). The amount of time that it takes for the longitudinal
magnetization of the tissue to return to 63% of its original value after an rf pulse is
applied is denoted T1, and the time that it takes for the transverse magnetization to
return to 37% of its original value after the applied rf pulse is denoted T2.

The imaging parameters of TR (time of repetition of the rf pulse) and TE (time of
echo before FID signal is measured) can be varied to achieve the maximum contrast
for the tissues of interest by considering their T1 and T2 properties. This process is
also known as weighting or contrasting, and images are usually T1-weighted, T2-
weighted, or proton density weighted. For example, short TRs and TEs lead to T1
weighted images, because at this time the differences due to the T1 tissue properties
will be the most apparent. In T1 weighted images, the intensity of bone tissue is
typically bright while fluids are dark.
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On the other hand, to achieve the best contrast using T2 properties, a long TR and
a long TE are used. In T2 weighted images, bone tissue is dark and fluid areas are
light. Proton density weighting is achieved by using a long TR and a short TE . With
this type of weighting, areas that have the highest proton density are the brightest.
These areas would include the cerebral spinal fluid (CSF) and gray matter. Again,
see Buxton (2002) for details; a statistical approach is given in Glad and Sebastiani
(1995).

37.2.3 Functional MRI

Early Brain Research

The mysteries of the human brain have perplexed researchers for many centuries.
Early ideas about brain functioning date at least as far back as the second century
to Galen (and even earlier), who associated imagination, intellect, and memory
with brain substance. The notion that the brain consisted of functionally discrete
areas did not become an accepted idea until the nineteenth century with the work
of Franz Joseph Gall (Finger 1994). Ensuing research involved examining the
relationships between the location of brain lesions and deficits and/or changes in
behavior as a way to attribute brain function to structure. Although the technique
was effective, this method for studying the brain was not without limitations. Since
that time, however, the field of neuroscience has grown because of the development
of new methods to explore the human brain in its living working state. These new
techniques have been given the general term functional neuroimaging.

Functional Neuroimaging

Functional neuroimaging is the term applied to techniques that can map the
activity of the living working brain in space and time. Non-invasive approaches
to this mapping have included electrophysiological measurements and metabolic
measurements. Techniques to measure the electrophysiological signals include the
electroencephalogram (EEG) and the magnetoencephalogram (MEG) (National
Research Council, 1992). These methods are thought to record (a weighted integral
of) the actual neural activity that is taking place in the brain. Although both EEG and
MEG have excellent temporal resolution, in their most common form the measured
output signals are an integration of activity from many possible unknown sources.
Furthermore, for EEGs these integrated signals are only realized after being filtered
through layers of blood vessels, fat, and bone. On the other hand, MEG generally
only measures the component of the magnetic field which is perpendicular to the
surface of the skull. Both methods typically record only a few hundred different
locations; a typical functional MRI study measures the signal at 100,000 locations
or so. Thus, the spatial resolution of both EEG and MEG is quite poor. Source
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localization is a research area devoted to trying to map the locations at which these
signals originate, but this has proven to be a very difficult task.

Functional neuroimaging measurements also include Positron Emission Tomog-
raphy (PET) and fMRI. Both of these techniques have good spatial resolution, but
unlike EEG and MEG they record responses to changes in blood flow rather than the
direct neural activity. Because of this, these techniques have relatively poor temporal
resolution.

PET imaging is carried out by labeling molecules of compounds of interest
with positron-emitting isotopes. Isotopes that are often used include Carbon-11,
Nitrogen-13, or Oxygen-15. These labeled modules are termed “probes” or “trac-
ers”. The tracers are distributed in the brain according to their delivery, uptake,
metabolism, and excretion properties. As these isotopes decay they emit a positron
and a neutrino. The neutrino cannot be detected, but each positron collides with
an electron and is annihilated. The annihilation converts the electron and positron
from mass into energy in the form of gamma rays. These gamma rays are then
detected by the scanner. PET can provide excellent measures of metabolic activity
of the brain under conditions of normal and abnormal functioning and has therefore
been a highly useful tool in studying brain activity. However, one of the main
disadvantages of PET is that it requires the injection of ionizing radiation thereby
limiting its use for human subject populations (Cherry and Phelps 1996).

Functional MRI

Functional MRI uses the same principles as MRI, but it is based on the idea that
the magnetic state of the hemoglobin in the bloodstream is dependent on whether
or not oxygen is bound to it. Deoxygenated blood is paramagnetic, meaning that
the unpaired heme groups cause it to have more magnetic susceptibility than it does
when oxygen is attached to the heme groups. In fact, the magnetic susceptibility of
blood has been shown to vary linearly with blood oxygenation; see, Thulborn et al.
(1982), Buxton (2002), Turner (1995), or Weisskoff and Kiihne (1992).

When neurons in the brain are used, their metabolic demands increase. This
begins with an increase in local glucose consumption and leads to an increase in
local cerebral blood flow. However, for reasons that are unclear, the increase in
cerebral blood flow exceeds the increase in metabolic consumption of local oxygen.
Therefore the ratio of oxygenated blood to deoxygenated blood increases in the local
blood vessels. The change in this ratio of oxygenated blood to deoxygenated blood
leads to changes in the local MR signal. Modulations in the MR signal due to this
phenomenon can be detected by the scanner and are known as Blood Oxygen Level
Dependent (BOLD) contrast. BOLD contrast is currently the main basis of fMRI;
see, e.g., Villringer (2000), Logothetis (2002), Ogawa et al. (1990), Buxton (2002),
or Turner (1995).

Several informational limitations are imposed by fMRI that should be considered
when carrying out a neuroimaging study. Leading these is the fact that fMRI is
an indirect measure of brain activity, and its exact physiological mechanism is not
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Fig. 37.3 Model of brain activity and fMRI data

known. A model of the interface between actual brain activity and the fMRI signal
is shown in Fig. 37.3. Also, the measured activity obtained with fMRI can include
many types of local brain cells because the activation that is measured is essentially
a combination of all the “brain activity” in the area. Information is thus blurred
during fMRI, since the resolution is based on the “smallest measurable vascular
unit.” Finally, as mentioned earlier, fMRI has poor temporal resolution; see, e.g.,
Villringer (2000).

In spite of these limitations, fMRI has many advantages over previously used
methods for studying the brain. fMRI has much better spatial resolution than EEG
or MEG. In fact, although the activity is lumped into small regions, these regions can
provide accuracy in the range of 1 mm or so. Next, and perhaps most importantly,
fMRI does not require the use of ionizing radiation. This allows it to be used
experimentally for many different subject types and under many different types of
situations. Other benefits include the fact that the data can be collected fairly easily,
and analysis tools are becoming more readily available as the field grows.

37.3 fMRI Data

37.3.1 Design of an fMRI Experiment

There are at least three aspects to the design of an fMRI experiment: (1) the under-
lying psychological question, (2) the MR physics that will drive the data collection,
and (3) traditional statistical design issues. These factors are not exclusive of each
other and must be carefully considered prior to the initiation of the study.

The psychological component of design depends on the type of experimental
subjects in question as well as the nature and location of the expected response. For
example, regions of brain activity could be explored for a single group of subjects, or
the location and extent of brain activation could be compared in two different subject
groups. The experimental task must also be designed in order to elicit a functional
response specific to the area of interest in the brain. A control state (such as a fixation
in a visually guided saccade task) is typically alternated with a functional state (the
saccade) in order to compare the two states and find the differentially active brain
areas.
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The MR physics component depends on the nature of the psychological stimuli,
the particular MR scanner being used, and the location of the expected response.
Several scanning parameters, such as the number and orientation of slices to
be collected, the echo time, TE , the time of repetition, TR, the flip angle, and
others, must be first chosen. The physics of the scan will depend on these chosen
parameters. The physical method for collecting each slice of data, termed the pulse
sequence, must also be selected. The pulse sequence is a small program run in the
scanner to manipulate the magnetic and rf fields, and is thus dependent on the type
of MR scanner and the pulse sequences available for use.

The statistical aspects of design will help to determine how the data will be
analyzed after collection. For example, as mentioned above, the experimental design
is often set so that the task state is alternated with a control state. The two conditions
can then be statistically compared using methods which rely on hypothesis testing
(such as t-tests). This type of experimental design is called a block design. The
block design is robust in that many repetitions of the two conditions can be carried
out, and the experimenter can then average all trials for each voxel. Although this
technique can find spatial areas of activation, it has the disadvantage of losing most
temporal aspects of the data.

In order to capture the time-dependent features of the data as well as the
spatial aspects, single trial fMRI experiments have recently become popular. These
experiments examine fMRI signal changes over time as the task is being performed
(on a voxel-by-voxel basis) rather than relying on the averaging of large time
blocks. The results from these single trial experiments are generally not as robust
as those for block designs. Furthermore, since fMRI data is typically very noisy,
the data must be pre-processed prior to analysis. The techniques for analyzing
single trial fMRI data often model those used for processing evoked potentials
EEG data (such as filtering or time-averaging of trials). Because of this, single trial
fMRI experiments have often been mislabeled as “event-related” fMRI experiment.
Figure 37.4 shows the temporal BOLD response that is generally expected from
these types of experiments.

37.3.2 Data Collection

The raw data from an MR scanner is spatial frequency data. That is, the data are the
coefficients of the Fourier representation of the object being imaged. Alternatively
we can say that the data are the inverse Fourier transform of the object. The
spatial frequency domain has been called “Fourier Space”, “frequency space”, or
most popularly “k-space”. The process of taking the inverse Fourier transform to
obtain the image has been termed “data reconstruction”. Letting F be the Fourier
transform, we have for an n �m pixel image I,

F.I / DbI �kx; ky
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Fig. 37.4 BOLD hemodynamic response curve showing the expected contrast changes elicited
from a single event. Because the contrast changes are actually due to blood flow changes rather
than a direct measure of neural activity, the time scale over which they occur is relatively slow

In k-space, the low frequencies are located in the center of the image with the
frequencies increasing outward with distance from the origin. In a typical k-space
plot (see Fig. 37.5), the bulky features of the image lie in the lower frequencies
of k-space while the higher frequencies contain the details of the image. In fMRI
both the low and high frequency information are important, and the pulse sequence
should be designed accordingly.

A typical fMRI data set might consist of a 128 by 128 array of 16 bit complex
values recorded for each of 32 two-dimensional slices at each of 450 time points
spaced about 1.5 s apart. This yields a data set of 2 � 2 � 128 � 128 � 32 � 450 D
943718400 bytes, that is approximately 1 gigabyte of data collected in less than
12 minutes. If many experiments are performed on a single subject within the
period of an hour or so, and several subjects are examined over time, the necessary
storage requirements can become quite extensive. In one of our current studies, we
anticipate collecting a total of about 700 GB of data. To help deal with this quantity,
offline data storage systems are useful. For example, optical disks, CDs, or DVDs
can be used to store large amounts of data with minimal effort.
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Fig. 37.5 Collected fMRI data. The plot on the left shows the modulus of the k-space data, and
the plot on the right shows the modulus of the image. Darker pixels indicate larger values (the
opposite of the “radiological convention” derived from X-ray images on photographic film)

37.3.3 Sources of Bias and Variance in the Data

Areas of brain activity that are found due to specific tasks are dependent on the
image to image changes in the measurements within a voxel. Therefore, to produce
valid results these changes must be specifically attributable to functional differences
in the brain elicited by the performed tasks. Unfortunately, fMRI data is beset
with many sources of bias and variability, which can lead to erroneous regions of
brain activity and false conclusions about the study. Problems in the data can arise
from many sources including the MR scanner itself, the experimental subject, and
external interference. Each of these will be discussed with a brief description of the
errors that they introduce into the data. The sources of noise in fMRI data can be
quite extensive. Although many are covered here, this summary is not exhaustive.

Noise from the Equipment

One main source of bias and systematic variation in fMRI data arises from the
MR scanner. The performance of an MR scanner can vary, which can introduce
fluctuations in the data, even when the stability measures are well within the
instrumental norms (Weisskoff 1996). Noise from the equipment can occur as
systematic or random errors.

Sources of systematic error in the data from the equipment include DC shifts
and Nyquist ghosts. DC shifts are also known as baseline errors. This source of
data bias is caused by the miscalibration of the analog-to-digital (A/D) converter;
the baseline value is not reported as zero. Nyquist ghosts, which are present only
in echo-planar imaging, also produce systematic bias in the data. Echo-planar
pulse sequences traverse k-space on a boustrophedonic path (back-and-forth as the
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ox plows the field). Nyquist ghosts are introduced through the mistiming of the
oscillating magnetic gradients. The exact time at which the gradient crosses zero is
incorrect. This timing error causes an aliasing effect in the reconstructed image and
is most prominent in the phase-encode or y direction of the fMRI scan (leading to
a ghost of the image repeated at the top and bottom of the true image). Both DC
shift errors and Nyquist ghosts that are present in the fMRI data can be corrected to
a reasonable extent.

Random errors from the equipment can also cause introduce problems in the
fMRI data. One source of unpredictable instability results from inhomogeneities
in the static magnetic field of the equipment. Magnetic field inhomogeneities have
been reported as one of the most prominent sources of distortion in fMRI studies
(Jezzard 1999). Local variations in the static magnetic field during fMRI will lead
to blurring and pixel shifts, which can introduce gross geometric distortions in
the images. This problem is especially prominent at regional boundaries in the
sample containing different magnetic susceptibility properties, for example, air-
tissue interfaces around the frontal lobes and bone-tissue interfaces (Eden and
Zeffiro 1997; Jezzard 1999).

Additionally, random instability in the MR machine can result from imperfec-
tions in the B1 field. The B1 field is ideally a linear magnetic gradient that selects
certain regions of tissue to be excited, thereby leading to the collection of single
slices. Again, problems with this linear magnetic field can lead to blurring and
geometric distortions in the data.

Noise from the Experimental Subject

As with other types of human studies, the experimental subjects can lead to large
amounts of bias and variability in the data. While the subjects themselves have
a great deal of intrinsic variability due to differences in brain sizes, shapes, and
functionality in general, the subjects can also introduce additional variability that
will “drown out” the desired results from brain activity if the investigator is not
careful.

One important source of noise from the experimental subject is due to head
motion. As previously described, BOLD fMRI studies compare very small regions
of brain tissue across a sequence of images that are taken over the course of several
minutes. While BOLD has the advantage that it requires no exogenous contrast
agents, its measurable effects are very small. Typical changes in the MR signal
due to BOLD are on the order of 1�5%, making this technique highly susceptible
to noise. If the subject makes a small movement during the scan, adjacent voxels,
which can vary in signal value by more than 10%, cause distortions in the recorded
signal information and can lead to false negative and false positive regions of
activation (Eddy et al. 1996b; Eddy and Young 2000).

Thus, to obtain valid fMRI data, the subject must remain motionless throughout
the scanning period. Motion has been shown to be correlated with stimulus related
events during visual and motion stimulation, thereby contributing to the likelihood
that the computed regions of activation are due to motion artifact rather than neural
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activity (Hajnal et al. 1994). The amount of subject motion has also been shown
to increase over time during the course of a scanning session (Green et al. 1994).
Additionally, children, elderly subjects, and subjects with mental disorders tend to
move more than healthy young adults, thereby increasing the difficulty of studying
these subjects using fMRI.

A second source of error from the experimental subject is due to “physiological
noise”, which is noise that results from the subject’s heart beat and respiration. This
type of complex noise is thought to interfere with the MR data through various
mechanisms. For example, the pulsatile motions of the brain and cerebral spinal
fluid (CSF) induced from pressure changes during both the cardiac and respiratory
cycle lead to volume changes within the head which cause displacement of tissue;
see Dagli et al. (1999). Large organ movements due to respiration are also thought to
cause fluctuations in the magnetic field, and effects of the oscillating cardiac cycle
on the BOLD signal response are unknown; see, e.g., Hu et al. (1995), Stenger et al.
(1999), Dagli et al. (1999).

There are many sources of noise associated with the experimental subject.
Thermal noise is caused by atomic vibration that occurs at any temperature above
absolute zero. Susceptibility artifacts arise from local sharp changes in magnetic
susceptibility; these occur at the boundaries of tissue types and are typically
greatest at air/tissue boundaries. Chemical shift artifacts arise from small changes
in the Larmor frequency caused by the local chemical environment. For example,
hydrogen as a component of water has a resonant frequency at 3 Tesla that is about
200 Hz higher than hydrogen as a component of fat. Typical pulse sequences include
a “fat saturation pulse” to eliminate this effect.

External Noise

Interference from outside sources can also lead to distortions and artifacts in the
data. Examples of interference sources include mechanical vibrations from other
equipment in the building or passing vehicles, and 60 (or 50) Hertz RF noise from
other nearby electrical equipment. These sources are usually considered before
installing the MR machines, and precautions are normally taken. For example, an
isolated foundation will reduce the effect of external sources of vibration; copper
shielding will reduce the effect of nearby sources of microwave radiation, and iron
shielding will reduce the effect of nearby electrical equipment (and help contain the
magnetic field itself).

37.4 Modeling and Analysis

37.4.1 An Ideal Model

From a simple statistical perspective, fMRI data can be considered as a large number
of individual voxel time series. If these individual times series were independent,
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one could use any of the models from traditional time series analysis. For example,
one could treat the brain as a linear system modulating the stimulus as its input.
A model for this system would simply estimate the coefficients of the transfer
function. Of course, there are other inputs such as heartbeat and respiration as well
as other sources of data interference which would also need to be included. Thus, an
ideal model would consist of an equation for each voxel that accounts for the true
brain signal as well as all sources of systematic and random noise. By estimating
all sources of noise and removing them appropriately for each voxel, an accurate
estimate of brain activity could be found.

As can be imagined, an ideal model for fMRI data activation is highly imprac-
tical. A typical fMRI experiment may consist of 128 � 128 � 32 voxels; therefore,
a model that consists of a separate equation for each voxel would be quite
cumbersome. Furthermore, the mere identification of each and every noise source
in an fMRI experiment alone is a difficult task. Thereby a precise quantification of
the effects of each noise source would be nearly impossible. In order to model and
analyze fMRI data in a practical manner, researchers often take an approach that is
similar to that of solving any giant problem; that is, by breaking it down into piece-
wise, practical steps. This approach allows for easier understanding of each step that
is carried out (since they are performed one at a time) while also making the analysis
computationally manageable. The piece-wise analysis steps involve first modeling
and removing identifiable noise sources, then statistically evaluating the corrected
data to estimate the amount of brain activation.

37.4.2 A Practical Approach

Preprocessing of the Data: Removal of Bias and Variance

Basically, two approaches can be employed to correct for known sources of bias
and variance in fMRI data. These are correction of the data at the time of collection
(proprocessing) and correction after data collection (post-processing). We use both
approaches, often in tandem. For example, we use various forms of head restraint
to (partially) eliminate head motion (proprocessing) and in addition we use post-
processing to correct the data for head motion in addition.

We now give several examples of how data correction can be done in a post-pro-
cessing manner. Some of these examples outline how many fMRI data processing
steps are currently carried out using FIASCO (Functional Image Analysis Soft-
ware – Computational Olio), which is a software collection that has been developed
by the authors of this paper together with others and is currently used by numerous
groups who analyze fMRI data. Details can be found at http://www.stat.cmu.edu/~
fiasco.

These examples also demonstrate that large amounts of computation are often
needed to remove bias and variance in fMRI data.

Noise from the equipment will first be addressed. Baseline noise or DC-shift
noise can be corrected fairly easily, as it is a well understood source of noise

http://www.stat.cmu.edu/~fiasco
http://www.stat.cmu.edu/~fiasco
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in the data. To adjust for baseline noise, the idea that the k-space data should
(approximately) be oscillating around 0 at the highest spatial frequencies is taken
into account. If this is not the case in the true data, the mean value at which the
high frequency data is oscillating is computed, and the k-space data is shifted by
a constant prior to correct for this source of noise (see Eddy et al. 1996a).

Nyquist ghosts are also well understood and can therefore be corrected fairly
easily. These ghosts arise from small mistimings in the gradients with respect to
the data collection. To correct for these ghosts, a phase shift is applied to each
line (the same shift for each line in the x-direction) of the complex-valued k-space
data in order to move the data back into its correct location. The best phase shift
for correction is estimated from the data by finding a value which minimizes the
magnitude of the ghosts. Typically, the center portion of the top and bottom few
lines is chosen as the target (see Eddy et al. 1996a).

Magnetic field inhomogeneities may or may not vary with time. Those which
do not vary with time can be corrected by “shimming” the magnet. Small magnetic
objects are placed around the magnet in such a way as to reduce the inhomogeneity.
Inhomogeneities associated with the subject being scanned can be corrected by
dynamic shimming of the field. This is a procedure performed by the technologist
at the time of the experiment. For further details see, e.g., Jezzard (1999) or Eden
and Zeffiro (1997).

To reduce the effects of magnetic field distortions in a post-processing manner,
the following procedure can be carried out. First a phase map can be computed from
the image information in the fMRI data. This map is thought to give an estimate
of regions of inhomogeneities in the data. Next, a 2-D polynomial can be fit to
the field map, which is then converted into a pixel shift map. The shifted pixels
are moved back to their proper locations in order to correct for the magnetic field
inhomogeneities; further details may be found in Jezzard and Balaban (1995).

Noise from the experimental subject should also be corrected to improve data
quality. As mentioned in the previous section, head motion is a major problem in
fMRI, since even relatively small amounts of head motion can lead to false positive
and false negative regions of activation. Many techniques have been considered to
reduce the amount of head motion in fMRI data. These (again) can be classified into
the categories of proprocessing and post-processing.

To reduce the amount of head motion that occurs at the time of the fMRI scan,
external restraining devices are often used. These devices range from pillows and
straps to dental bite bars and even thermoplastic face masks; see Green et al. (1994).
Head restraints can greatly reduce the amount of head motion but unfortunately
cannot alleviate head motion (or at least brain motion) altogether; see Friston et
al. (1996). In fact, Zeffiro (1996) have suggested that some types of restraints can
paradoxically increase head motion because of the discomfort they cause at pressure
points. Furthermore, some types of restraints may not be appropriate for certain
subject types such as small children and mentally disturbed subjects.

Also experimental design can be used to reduce the amount of apparent head
motion. Often head motion is associated with presentation of a stimulus or with
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physical response to the stimulus. Careful experimental design can eliminate or
largely alleviate such effects.

A second way to reduce the effect of head motion at the time of the scan is
through the use of navigator echos. Navigator echos are used before slice acquisition
in order to detect displacements of the head. These displacements are then used to
adjust the plane of excitation of the collected image accordingly. Examples include
the use of navigator echos to correct for displacements in the z-direction (see Lee
et al. 1996), and the use of navigator echos to correct for inter-image head rotation
(see Lee et al. 1998).

A final example of a prospective method to reduce head motion is a visual
feedback system that was developed by Thulborn (1999). This system provides
a subject with information about their head location through a visual feedback
system. By using this device the subject can tell if their head has moved during
the scan and can immediately correct for it.

Proprocessing techniques have many benefits. For example, the collected fMRI
data presumably has less head motion than it would have without the adaptation
to reduce for head motion. Therefore, there is less need for post-processing of
the data and less need to resample or interpolate the fMRI data; interpolation of
fMRI data can introduce additional errors. On the other hand, these techniques often
require specialized collection sequences or hardware, which can further necessitate
specialized analysis software. These techniques can also lead to the need for longer
data collection times.

Post-processing techniques are often more feasible for fMRI researchers because
they do not require specialized collection sequences or hardware. Post-processing is
mainly carried out through image registration, which involves two main steps. The
first is estimation of how much motion has occurred in the collected data, and the
second is correction of the estimated motion through resampling (or interpolation).
This process can be carried out in two dimensions for estimation and correction of
in-plane motion or three dimensions for whole head motion.

To estimate how much head motion has occurred in an fMRI data set, a reference
image must first be chosen. Any image can be chosen for this purpose (typically,
the first or middle image in the series), but a composite image such as the mean
can also be used. Next, each image in the series is compared to the reference image
using a chosen feature of the images. Image intensity is often the chosen feature, but
anatomical landmarks can also be used. Mathematically, the comparison process
finds the geometrical shift required between the reference image and the target
image to minimize an optimization criteria. The shift that minimizes this criteria
is considered to be the amount of motion that has occurred.

For two dimensional rigid motion between the current image and the reference
image we consider translations in x and y, and in-plane rotations of ˛. In three
dimensions rigid motion is even more complicated because translations can occur
in x, y, and z, and rotations can occur in the ˛, ™, or � directions. Criteria to
be minimized between the reference image and the current image have included
weighted mean square error (see Eddy et al. 1996b), variance of the image ratios
(Woods et al. 1992), and mutual information (Kim et al. 1999).
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Once the motion estimates are computed, the data are moved back to their appro-
priate locations. This is carried out by resampling or interpolation. If data relocation
is not performed in the best possible way, false correlations between image voxels
can be introduced. Eddy et al. (1996b) developed a Fourier interpolation method to
prevent introduction of these errors. Fourier interpolation is based on the Fourier
shift theorem and uses the fact that a phase shift in k-space is equal to a voxel
shift in image space. By this property, translations are corrected using phase shifts,
and analogously rotations are corrected by k-space rotations. Rotations in k-space
are implemented by factoring the two-dimensional rotation into a product of three
shearing matrices. A two-dimensional rotation matrix

�
cos˛ � sin ˛
sin ˛ cos˛

�

can be written as
0

@1 � tan
˛

2

0 1

1

A
 

1 0

sin˛ 1

!0

@1 � tan
˛

2

0 1

1

A:

Once the rotations are represented by three shearing steps, these too can be
corrected using phase shifts in Fourier space; for details see Eddy et al. (1996b).
In a comparison of different types of fMRI data interpolation algorithms, Eddy
and Young (2000) found that full Fourier interpolation was the only method which
completely preserved the original data properties. Table 37.1 is taken from that paper
and shows the error introduced by each method in performing the following motion.
Each image was rotated by �=64 radians, translated 1=4 pixel on the diagonal,
translated back 1=4 pixel, and rotated back �=64 radians. Many of the algorithms

Table 37.1 Mean Square Difference between original brain image and “motion-corrected” image
averaged over the central 40 by 40 pixel sub-image of the original 64 by 64 pixel image. The image
was rotated �=64 radians, shifted 1=4 pixel diagonally and then translated back and rotated back to
its original position; both motions were performed by the same algorithm so any differences from
the original are due to the algorithm

Method MSD

Fourier 0.00
WS16 742.86
WS8 1452.98
WS4 3136.68
NN 3830.08
Quintic 8906.20
Cubic 13864.46
WS2 28455.73
Linear 28949.22
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had major errors at the edges of the image so the statistics were only computed over
a central portion where no edge effects occurred.

Although three dimensional head motion seems more realistic for correction
of subject movements in fMRI research, the process of estimating the six motion
parameters that jointly minimize the optimization criteria can be computationally
expensive. Also note that these six parameters only account for rigid body head
motion. Data is actually collected one slice at a time; each slice is collected at
a slightly different time. Consequently, there is no three-dimensional image of the
head which can be used as a target for three dimensional registration. In spite of
these considerations, the use of post-processing motion correction techniques does
not necessitate specialized collection equipment, and if done correctly, can be quite
accurate for small motions of the head. Large head movements, greater than say
a millimeter or two, usually affect the data so much that it cannot reasonably be
used.

A second significant noise source from the experimental subject is physiological
noise, which is mainly attributed to the subject’s heart beat and respiration. Many
methods have been introduced to reduce the noise and variability caused by
physiological noise. These again have included techniques that address the problem
in a proprocessing manner, and techniques that reduce this noise during post-
processing of the data by various modeling and subtraction techniques (Biswal et
al. 1996; Chuang and Chen 2001; Glover et al. 2000; Hu et al. 1995).

Acquisition gating is most commonly used for the collection of cardiac MRI
data, but it can also be used for fMRI. This proprocessing technique only collects
the MRI data at certain points of the cardiac cycle so that noise effects due to cycle
variations can be reduced (Guimaraes et al. 1996). Although useful for cardiac MRI,
it is not as practical for fMRI research because it does not allow for continuous and
rapid data collection, which is usually desirable for fMRI research.

Post-processing techniques to correct for physiological noise have included
retrospective image sorting according to the phase of the cardiac cycle (Dagli et
al. 1999), phase correction through the assumption that the phase is uniform for
each point in k-space over many images (Wowk et al. 1997), and digital filtering
(Biswal et al. 1996). Each of these techniques have certain benefits in physiological
noise correction; however, each can also compromise the fMRI data. For example,
image reordering results in loss of temporal resolution, and digital filtering requires
the ability to acquire images rapidly as compared to the physiological noise signals.

Other approaches to physiological noise correction have included modeling of
the physiological data signals in the fMRI data and subtracting out their effects.
For example, Hu modeled respiration with a truncated Fourier Series and subtracted
this curve from the magnitude and phase components of the k-space data (Hu et al.
1995). Glover et al. (2000) carried out a similar Fourier modeling and subtraction
procedure in image space. Alternatively, Mitra and Pesaran modeled cardiac and
respiratory effects as slow amplitude, frequency-modulated sinusoids and have
removed these components from an fMRI principal component time series, which
was obtained using a spatial frequency singular value decomposition Mitra and
Pesaran (1999).
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In a more recent study carried out by the authors, cardiac data and respiratory
data were found to be significantly correlated with the k-space fMRI data. These
correlations are a function of both time and spatial frequency (McNamee and
Eddy 2003). Because of these correlations, the physiological effects can simply
be reduced by first collecting the physiological data along with the fMRI data,
regressing the fMRI data onto the physiological data (with the appropriate temporal
considerations), and subtracting out the fitted effects (McNamee and Eddy 2004).
Figure 37.6 shows the cross-correlations between the k-space phase at one spatial
frequency point and the cardiac data for one experiment.

In addition to direct modeling of known sources of noise, we also attempt to
reduce the effect of unknown sources of noise. For example, we routinely replace
outliers with less extreme values. As another example we currently remove a linear
temporal trend from each voxel times series, although we have no explanation for
the source of this linear trend.

Fig. 37.6 Cardiac data shown in relation to the correlation coefficients computed between k-space
phase and cardiac data as a function of time lag for a spatial frequency point in k-space. To
demonstrate that the time lag is slice dependent, slices are shown in the order of collection rather
than in anatomical order. Each tick-mark on the y-axis represents a unit value of 0.5. It can be
clearly noted that the correlations between the phase and cardiac data are cyclic with a period
equal to the TR (1.5 s in this case) of the study. Thus the parallel diagonal lines in the plot have
a slope of (1:5=7 D 0:214 s/slice)
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Modeling and Analysis of the Data

The very first fMRI experiments claimed to have discovered brain activation based
on simply taking the difference between the average image in one experimental
condition from the average in an alternate experimental condition. There was no
notion of variability. It quickly became apparent that accounting for the variability
was very important and fMRI analyses started using t-tests, independently on each
voxel. It then became clear that multiple testing was a very serious problem; we will
discuss this in more detail below. The t-test (and for experiments with more than
two levels, F-test) became the standard analysis method. However, it is clear that
although the stimulus switches instantaneously between experimental conditions,
the brain response (presumably being continuous) must transition to the new state
and there will be some time lag before the transition is complete. This has led
to a variety of ad hoc “models” for the shape and lag of this transition (Gamma
functions, Poissons, etc.) (see, for example, Lange and Zeger 1997).

There has been some work developing reasonable non-parametric models for
the voxel time courses (Genovese 2000) and there have been a number of “time
series” modeling approaches, using spectral analysis (Lange and Zeger 1997) and
AR models (Harrison et al. 2003).

Because a typical brain image contains more than 100,000 voxels, it is clear
that choosing a significance level of 0.05 will, even under the null hypothesis of
no difference in brain activity, lead to 5,000 or more voxels being declared active.
The earliest attempt to deal with this problem in fMRI was the split t-test, wherein
the data were divided into two (or more) temporal subsets. T-tests were calculated
separately within each subset and a voxel was declared active only if it was active
in all subsets (Schneider et al. 1993). This certainly reduced the number of false
positives, but obviously caused considerable loss of power.

Researchers quickly converged on the Bonferonni correction where one simply
divides the significance level by the number of tests as a safe way of dealing with
the problem. The loss of power is huge and some researchers started developing
methods to compensate. Forman et al. (1995) proposed the contiguity threshold
method, which relies on the presumption that if one voxel is active then adjacent
voxels are likely to be active.

The false discovery rate (FDR) controlling procedure was then introduced as an
alternate method for thresholding in the presence of multiple comparison testing.
The FDR procedure allows the user to select the maximum tolerable FDR, and the
procedures guarantees that on average the FDR will be no larger than this value.
Details of the application of FDR to fMRI data can be found in Genovese et al.
(2002).

As researchers in fMRI have discovered various general classes of statistical
models, they have been applied to these data sets. They have had varying degrees of
success and it is still the case that a linear model, often with both fixed and random
effects, is the model of choice. It is reasonably well-understood and is not too far
from what is actually believed. One critical problem is that as experimental designs
have become more complex analyses have too; often researchers are fitting models
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blindly without fully understanding some of the underlying statistical issues. The
more cautious return to their linear models.

37.5 Computational Issues

As mentioned previously, a typical fMRI data set might be about 1 GB in size and
would take less than 15 minutes to collect. Four or more such data sets may be
collected in a single experimental session with a single subject. An entire experiment
might include 20 or more subjects, and each subject might be tested twice or more.
Thus there would be 160 1 GB datasets to be analyzed. (We are currently running an
experiment with 300 subjects and each will be tested at least twice; one has already
been tested four times.)

With such large amounts of data, storage and analysis becomes an important
issue. Standard analysis of the data can take many hours, and an organized storage
system is recommended. Our recent experience is that we can process the data at the
rate of 2�3 MB per minute which implies that the entire experiment just described
would require on the order of 1,000 h of processing time.

Several packages are available for analysis of fMRI data. A few of these will be
discussed in the following section. An important point to mention before discussing
these packages is that users of fMRI software should spend some time getting to
know and understand the package they are using before carrying out their data
processing. Questions that are important to consider, for example, may be the
following. Are bias and variance in the data corrected as a routine part of data
processing? If motion correction is carried out, how is this implemented? Is any
additional error being introduced into the data as a result of this routine processing?
What kind of modeling and comparisons of the data are being carried out, and
what sort of thresholding is applied? We feel that these issues should be understood
before drawing conclusions about the fMRI data, as variations in the processing and
analysis may lead to variations in the results of the study.

37.5.1 Software Packages for fMRI Data Analysis

The large degree of complexity of fMRI data necessitates the use of pre-packaged
software tools (unless, of course, one is an extremely ambitious programmer).
Several packaged tools are described briefly below. Each software package has its
benefits and limitations; we do not provide a detailed comparison here. We will
focus a bit more on FIASCO, as we are part of the team that has developed and
maintained this package; it is in wide use and we describe several of its unique
tools.

One such software program for fMRI data processing is AFNI (Analysis of
Functional NeuroImages). This software was developed by Robert Cox, formerly of
the Medical College of Wisconsin, now at the National Institutes of Health; it is free
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to all users. The software consists of a set of C programs for processing, analyzing,
and displaying fMRI data. Currently, AFNI will run on most operating systems
excluding Windows-based platforms. The program is interactive, and several of
its benefits include its ability to read and switch between several different data
formats, 3D viewing of data, the ability to transform data into Talairach coordinates,
interactive thresholding of functional overlays onto structural images, and finally,
a new feature entitled SUMA (Surface Mapping with AFNI) that adds the ability
to perform cortical surface based functional imaging analysis using AFNI. The
homepage for AFNI is located at http://afni.nimh.nih.gov/afni/.

Brain Voyager is a commercially available tool developed by Brain Innovation
that can analyze and visualize both functional and structural MRI datasets. Brain
Voyager can run on all major computer platforms including all current versions
of Windows, as well as Linux/Unix and Macintosh systems. A user-interface is
provided, and the program boasts several up-to-date features such as the ability to
perform thresholding using the FDR technique, the ability to perform automatic
brain segmentation, brain surface reconstruction, and cortex inflation and flattening,
and the ability to analyze and integrate diffusion tensor imaging data with other
data types. More information about this product can be found at http://www.
brainvoyager.com/.

The Statistical Parametric Mapping (SPM) software package is a suite of
programs, originally developed by Karl Friston, to analyze SPECT/PET and fMRI
data using a voxel-based approach. The SPM program is also free but requires
Matlab, a licensed Mathworks product, to run. Typical analysis steps performed
by SPM include spatial normalization and smoothing of the images, parametric
statistical modeling at each voxel through the use of a general linear model, and
assessment of the computed statistical images. New functionality of SPM (released
in SPM2) can take into account more complex issues in fMRI research such as
non-sphericity, which does not restrict the user to the assumption of identically and
independently distributed errors in the selected data models. For more details about
this and other SPM specifics, the reader should refer to http://www.fil.ion.ucl.ac.uk/
spm/.

The VoxBo package advertises itself as “the software behind the brains”. The
VoxBo software is free and was developed at the University of Pennsylvania through
funding from NIDA and NIMH via a Human Brain Project/Neuroinformatics grant.
A Unix-based platform is currently required to run VoxBo, and a unique feature of
this software includes a job scheduling system for organizational purposes. Benefits
of VoxBo also include the ability carry out several data pre-processing steps such as
three dimensional motion correction as well as the ability to manipulate and model
the data in its time-series form. A web page is available at http://www.voxbo.org/.

A group including the current authors developed an fMRI analysis package
named FIASCO. This is a collection of software tools written primarily in C,
designed to analyze fMRI data using a series of processing steps. Originally,
FIASCO’s main purpose was to read the raw fMRI data, process it in a series of
steps to reduce sources of systematic error in the data, carry out statistical analysis,
and create final brain maps showing regions of neural activation. While users still

http://afni.nimh.nih.gov/afni/
http://www.brainvoyager.com/
http://www.brainvoyager.com/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.voxbo.org/
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run their fMRI data through the standard FIASCO pipeline, FIASCO has expanded
into a complex set of software tools in order to accommodate many other issues and
problems that have come up during the past decade as the field of fMRI has grown.

One unique feature of FIASCO is that several of the data-processing steps for
the purpose of reducing bias and noise are carried out in k-space. As mentioned
previously, k-space is essentially a frequency space and is the domain in which
the raw data is collected. Carrying out data correction in k-space can be beneficial
for many reasons. For example, certain types of noise in the data (such as Nyquist
ghosts, phase drifts, and physiological noise) can be more accurately modeled and
removed in k-space than in image space (McNamee and Eddy 2004). Also, images
can be resampled in k-space without the need for interpolation or smoothing, both of
which can introduce additional problems into the images (Eddy and Young 2000).

If users elect to the use the typical FIASCO pipeline for fMRI data analysis,
tools that implement k-space correction are first carried out prior to performing the
Fourier Transform. Both EPI and spiral data can be analyzed, and since both have
different types of noise, unique pipelines are used for each. For example, typical
FIASCO steps for processing EPI data include baseline correction (aka. correction
of DC shift), removal of Nyquist ghosts, motion correction, physiological noise
correction, removal of outliers and removal of unexplained data trends. All of these
correction steps with the exception of the last two are carried out in k-space. The
final steps are to perform statistical analysis and create brain maps showing the
activated areas. Users can elect to skip any of the steps of the FIASCO process.
And, they have the opportunity to add their own unique steps to the process.

As the field of fMRI grows, so does the desire to be able to perform more complex
analysis procedures on the data. The FIASCO programmers have accommodated
these needs with the creation of several unique general purpose tools. For example,
certain tools allow the user to easily manipulate fMRI data sets by cutting, pasting,
permuting, or sorting the data. More complex general purpose tools include an rpn-
math feature with built-in functions; this is essentially a calculator which allows
the user to perform arithmetic calculations using Reverse Polish Notation looping
over all the voxels in a data set. Another tool allows users to perform matrix
multiplication on fMRI data sets, and a third tool can compute eigenvalues and
eigenvectors of real symmetric matrices.

In addition to general purpose tools, FIASCO also has many special purpose tools
that can perform very specific tasks in relation to the fMRI data. Some of these
include tools that can convert between different data formats, tools that perform
specific noise reduction steps, and tools that can compute summary statistics or
perform different types of hypothesis tests on the data. A complete list of FIASCO’s
tools can be found on the web page at http://www.stat.cmu.edu/~fiasco.

The features and tools of FIASCO have allowed its users to manipulate and
experiment with fMRI data sets in unique and interesting ways. Recently, FIASCO
has been applied to many other kinds of data: genetic microarrays, protein gels,
video, PET, CT, etc.

http://www.stat.cmu.edu/~fiasco
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37.5.2 Other Computational Issues

Aside from fMRI analysis software, other types of useful computational packages
in fMRI may include software that allows the researcher to easily design and
implement a desired experimental tasks for subjects to carry out while in the MRI
scanner. For example, an fMRI study may focus on activation patterns during
a short-term memory task. Thus an experiment engaging short-term memory would
need to be carefully designed and projected into the small space of the MRI
machine. The scientist would also need some sort of feedback from the subject to
ensure that the task was being performed properly.

37.6 Conclusions

Functional MRI is a new and exciting method for studying the human brain as
it functions in its living, natural state. As the field grows and the methodology
improves, so do the many computational and statistical problems that accompany the
storage, processing, analysis, and interpretation of the data. In this chapter we have
briefly summarized some of the complexities and limitations of the method as well
as describing some of the approaches available for addressing these complexities
and limitations. The field of fMRI will, no doubt, continue to broaden and expand.
As it does so, the continued integration of scientists and researcher from many
disciplines will be necessary for fMRI to reach its full potential and to help to
uncover one of the greatest mysteries of humankind.
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Chapter 38
Network Intrusion Detection

David J. Marchette

38.1 Introduction

Attacks against computers and the Internet are in the news every week. These
primarily take the form of malicious code such as viruses and worms, or denial
of service attacks. Less commonly reported are attacks which gain access to
computers, either for the purpose of producing damage (such as defacing web sites
or deleting data) or for the opportunities such access provides to the attacker, such
as access to bank accounts or control systems of power stations. In a perspectives
article in Science (Wulf and Jones 2009) the authors argue that computer systems
are getting less secure, not more, and that traditional models of security based on
perimeter defenses are not working. They argue for a “defense in depth” approach,
but not one based on more layers of perimeter defense, but rather on different types
of defense; different security protocols; different types of detection methodologies;
security protocols and defenses designed for the specific applications. Our view is
that one of the tools needed is statistical analysis, in particular for detecting suspi-
cious activity. This chapter will discuss some of the areas in which computational
statistics can be applied to these and related problems. We focus exclusively on
the detection of attacks, rather than defense (such as firewalls and other security
protocols).

Several books are available that describe the basic ideas in intrusion detection.
These include Amoroso (1999), anonymous (1997), Bace (2000), Escamilla (1998),
Marchette (2001), Northcutt et al. (2001) and Proctor (2001). Intrusion detection is
typically split into two separate problems. Network intrusion detection typically
looks at traffic on the network, while host based intrusion detection involves
collecting data on a single host. Both involve very large and complex data sets, and
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both have aspects that lend themselves to statistical solutions. We will only touch
on a few such; the reader is encouraged to investigate the references.

There are two basic approaches to network intrusion detection. Most existing
systems rely on signatures of attacks. This approach relies on some set of features
that can be extracted from the data that indicate the existence of an attack. This
is analogous to the virus scanners, which look for a sequence of bytes that are
indicative of a virus. In the network realm, this could be attempts to access services
that are denied, malformed packets, too many failed attempts to log in, et cetera.
The second approach is anomaly detection. The “normal” activity of the network
is modeled, and outliers are indicative of attacks. The definition of “normal” is
dependent on the type of attacks that one is interested in, and requires statistical
models.

This chapter will first describe the basics of the TCP/IP protocol, sufficient
to understand the data and the examples given. Then we will look at detecting
denial of service attacks, and estimating the number of attacks on the Internet.
Network data is streaming data, and we will discuss this and some areas in which
computational statistics can play a part. This will lead to a discussion of simple
visualization techniques applied to network data, with some discussion of the types
of insights that can be gained from this. We will then take a detour from network
data and consider profiling. This will illustrate a type of anomaly detection, which
will then be discussed within a network context. Finally we discuss some statistical
techniques for anomaly detection in network security.

38.2 Basic TCP/IP

When you visit a web site, your request and the response data are sent as a
series of packets, each consisting of a header containing addressing and sequencing
information, and a payload or data section in which the information resides. Packets
are typically relatively small (less than 1500 bytes). In order to analyze the traffic
and detect attacks, one needs to collect the packets, and may need to process either
the header or the payload. We will (somewhat arbitrarily) denote an attack that can
be detected by investigating the header only a “network attack” while leaving those
that require investigation of the payload in the “host attack” realm.

One reason for this distinction is encryption. If the data are encrypted (for
example, data from a secure web site), the header remains in the clear, and so
this information is still available for analysis by the statistician. The payload is
inaccessible (assuming a sufficiently strong encryption scheme) and so cannot be
used to detect attacks until it is decrypted at the destination host. For this reason (and
others), we consider any attack that requires investigation of the data in a packet to
be better detected at the host than on the network.

There are several protocols used on the Internet to ensure a level of performance
or reliability in the communication. We will briefly discuss TCP (the Transmission
Control Protocol), since it is one of the most important ones, and will allow us to
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discuss a class of denial of service attacks. For more information about the various
protocols, see Stevens (1994).

First, however, it is necessary that we discuss the Internet Protocol (IP). This
protocol is not reliable, in the sense that there is no mechanism in place to ensure that
packets are received. The IP header contains the source and destination IP addresses,
which are 32-bit integers identifying the sending and receiving computer for the
packet. There are other fields in the packet that are used to control the routing of the
packet, et cetera, but we will not dwell on these here. As always, interested readers
should investigate Stevens (1994) or any of the many books on the TCP/IP protocol
suite.

Since IP is unreliable, a packet sent may or may not reach its destination, and
if it does not, there is no guarantee that anyone will notice. Thus, a more reliable
protocol is required. TCP implements a reliable two way communication channel,
and is used for web, email, and many other user applications. The TCP header is
shown in Fig. 38.1. The important fields, for this discussion, are the ports, sequence
numbers and flags.

The ports are a method for identifying a specific session, and can be thought of
as a 16-bit addition to the IP address that uniquely determines the session. Ports are
also used to identify the application requested. For example, port 80 is the standard
web port, and web browsers know that in order to obtain a web page from a server
they need to make a connection on this port.

To initiate and maintain a connection, the flags and sequence numbers are used.
The TCP protocol requires a three-way handshake to initiate a connection. First
the client sends a SYN packet (in this manner we will denote a packet with only
the SYN flag set; similarly with other flag combinations) to the server. The server
responds with a SYN/ACK packet, acknowledging the connection. The client then
finalizes the connection with an ACK packet. Sequence numbers are also passed,
and tracked to ensure that all sent packets are received and acknowledged, and to
allow the reconstruction of the session in the correct order. Packets that are not
acknowledged are resent, to ensure that they are ultimately received and processed.

Source Port Destination Port

Sequence Number

Acknowledgment Number

Length Reserved Flags Window Size

Checksum Urgent Pointer

Options (if any)

Fig. 38.1 The TCP header. The header is to be read left to right, top to bottom. A row corresponds
to 32 bits
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Once a session has been instantiated through the three-way handshake, packets
are acknowledged with packets in which the ACK flag is set. In this manner the
protocol can determine which packets have been received and which need to be
resent. If a packet has not been acknowledged within a given time, the packet
is resent, and this can happen several times before the system determines that
something has gone wrong and the session is dropped (usually by sending a reset
(RST) packet). Note that this means that if there is no response to the SYN/ACK
packet acknowledging the initiation of the session there will be a period (of several
seconds) in which the session is kept open by the destination host as it tries resending
the SYN/ACK hoping for a response. This is the basis of some denial of service
attacks, which we will discuss in the next section.

38.3 Passive Sensing of Denial of Service Attacks

The TCP protocol provides a simple (and popular) method for denial of service
attacks. The server has a finite number of connections that it can handle at a time,
and will refuse connections when its table is full. Thus, if an attacker can fill the
table with bogus connections, legitimate users will be locked out.

This attack relies on two fundamental flaws in the protocols. The first is that the
source IP address is never checked, and thus can be “spoofed” by putting an arbitrary
32 bit number in its place. Second, the three-way handshake requires the third
(acknowledgment) packet, and the server will wait several seconds before timing
out a connection. With each requested connection, the server allocates a space in its
table and waits for the final acknowledgment (or for the connection to time out). The
attacker can easily fill the table and keep it filled by sending spoofed SYN packets
to the server.

Thus, the attacker sends many SYN packets to the server, spoofed to appear to
come from a large number of different hosts. The server responds with SYN/ACK
packets to these hosts, and puts the connection in its table to await the final ACK, or
a time-out (usually several seconds). Since the ACK packets are not forthcoming,
the table quickly fills up, and stays full for as long as the attacker continues to send
packets.

There are clever ways to mitigate this problem, which can keep the table from
filling up. One, the “SYN-cookie” involves encoding the sequence number of the
SYN/ACK in a way that allows the server to recognize legitimate ACK packets
without needing to save a spot in the table for the connection. However, even these
can be defeated through a sufficiently high volume attack.

These unsolicited SYN/ACK packets can be observed by any network sensor,
and thus provide a method for estimating the number and severity of such attacks
throughout the Internet. These unsolicited packets are referred to as backscatter.
They may take other forms than SYN/ACK packets, depending on the type of packet
sent in the attack. See Moore et al. (2001), Marchette (2002), Marchette for more
information.
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Typically, the attacker first compromises a large number of computers, using
special distributed attack software, and it is these computers that launch the attack.
This makes it very difficult to block the attack, and essentially impossible to track
down the attacker, at least through information available to the victim.

Backscatter packets provide several opportunities for statistical analysis. They
allow the estimation of the number of attacks on the Internet in real time. One may
be able to estimate the severity of the attacks and number of attackers. Finally, it
may be possible to characterize different types of attacks or different attack tools
and identify them from the pattern of the packets. Some initial work describing
some of these ideas is found in Giles et al. (2003).

A network sensor is a computer that captures packets (usually just the packet
headers) as they traverse the network. These are usually placed either just before or
just after a firewall to collect all the packets coming into a network. Through such a
system, one can observe all the unsolicited SYN/ACK packets addressed to one of
the IP addresses owned by the network.

Note that this means that only a fraction of the backscatter packets resulting from
the attack are seen by any sensor. If we assume that the sensor is monitoring a class
B network (an address space of 65; 536 IP addresses), then we observe a random
sample of 1=65; 536 of the packets, assuming the attack selects randomly from all
232 possible IP addresses. This points to several areas of interest to statisticians: we
observe a subset of the packets sent to a subset of the victims, and wish to estimate
the number of victims, the number of packets sent to any given victim, and the
number of attackers for any given victim.

38.4 Streaming Data

Network packets are streaming data. Standard statistical and data mining methods
deal with a fixed data set. There is a concept of the size of the data set (usually
denoted n) and algorithms are chosen based in part on their performance as a
function of n. In streaming data there is no n: the data are continually captured
and must be processed as they arrive. While one may collect a set of data to use to
develop algorithms, the nonstationarity of the data requires methods that can handle
the streaming data directly, and update their models on the fly.

Consider the problem of estimating the average amount of data transferred in
a session for a web server. This is not stationary: there are diurnal effects; there
may be seasonal effects (for example at a university); there may be changes in the
content at the server. We’d like a number calculated on a window of time that allows
us to track (and account for) the normal trends and detect changes from this normal
activity.

This requires some type of windowing or recursive technique. The recursive
version of the sample mean is well known:

NXn D n � 1
n
NXn�1 C 1

n
Xn:
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Replacing n on the right hand side with a fixed constant N implements an
exponential window on the mean. This was exploited in the NIDES intrusion
detection system (Anderson et al. 1995). Similar techniques can be used to compute
other moments. An alternative formulation is:

OXn D .1 � ™/XnC1 C ™ Oxn�1;

for 0 < ™ < 1. ™ may be fixed or may itself change based on some statistic of the
data.

In fact, the kernel density estimator has a simple recursive version, that allows the
recursive estimate of the kernel density estimator at a fixed grid of points. Yamato
(1971), Wegman and Davies (1979) give two versions of this:

Ofn.x/ D n � 1
n
Ofn�1.x/C 1

nhn
K

�
x �Xn
hn

�

Lfn.x/ D n � 1
n

�
hn�1
hn

� 1
2 Lfn�1.x/C 1

nhn
K

�
x � Xn
hn

�
:

In either case, fixing n at a constant and hn either at a constant or a recursively
estimated value implements an exponentially windowed version of the kernel
estimator. (Similarly, one can phrase this in terms of ™ as was done with the
mean; see Wegman and Marchette 2004). These can in turn be used to estimate
the “normal” activity of various measurements on the network, and provide a
mechanism for detecting changes from normal, which in turn may indicate attacks.
More information on these issues can be found in Wegman and Marchette (2004).

Similar approaches can be implemented for other density estimation techniques.
In particular, the adaptive mixtures approach of Priebe (1994) has a simple recursive
formulation that can be adapted to streaming data.

There are several applications of density estimation to intrusion detection that
one might consider. It is obvious that unusually large downloads (or uploads) may
be suspicious in some environments. While it is not clear that density estimation
is needed for this application, there might be some value in detecting changes in
upload/download behavior. This can be detected through the tracking of the number
of bytes transferred per session.

Perhaps a more compelling application is the detection of trojan programs.
A trojan is a program that appears to be a legitimate program (such as a telnet server)
but acts maliciously, for example to allow access to the computer by unauthorized
users. Obviously the detection of trojans is an important aspect of computer security.

Most applications (web, email, ftp, et cetera) have assigned ports on which they
operate. Other applications may choose to use fixed ports, or may choose any
available port. Detecting new activity on a given port is a simple way to detect
a trojan program. More sophisticated trojans will replace a legitimate application,
such as a web server. It is thus desirable to determine when a legitimate application
is acting in a manner that is unusual.
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Fig. 38.2 Packet length in bytes (top) and packet inter arrival times in seconds (bottom) for web
(left) and secure shell (right) sessions. Kernel estimators were used to estimate the densities. The
inter arrival times were truncated to show the bulk of the data

Consider Fig. 38.2. We have collected data for two applications (web and secure
shell) over a period of 1 h, and estimated the densities of the packet length and inter
arrival times. As can be seen, the two applications have very different patterns for
these two measures. This is because they have different purposes: secure shell is a
terminal service which essentially sends a packet for every character typed (there
is also a data transfer mode to secure shell, but this mode was not present in these
data); web has a data transfer component with a terminal-like user interaction.

By monitoring these and other parameters, it is possible to distinguish between
many of the common applications. This can then be used to detect when an
application is acting in an unusual manner, such as when a web server is being
used to provide telnet services. See Early and Brodley (2003) for a more extensive
discussion of this.

Note that web traffic has two main peaks at either end of the extremes in packet
size. These are the requests, which are typically small, and the responses, which
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are pages or images and are broken up into the largest packets possible. The mass
between the peaks mostly represent the last packets of transfers which are not a
multiple of the maximum packet size, and small transfers that fit within a single
packet.

The inter packet arrival times for secure shell also have two peaks. The short
times correspond to responses (such as the response to a directory list command)
and to characters typed quickly. The later bump probably corresponds to the pauses
between commands, as the user processes the response. These arrival times are
very heavy tailed because of the nature of secure shell. Sessions can be left open
indefinitely, and if no activity occurs for a sufficiently long time, “keep alive”
packets are sent to ensure that the session is still valid.

In Early and Brodley (2003) it is shown, in fact, that differences in the counts for
the TCP flags can be used to differentiate applications. These, combined with mean
inter packet arrival times and packet lengths (all computed on a window of n packets
for various values of n), do a very creditable job of distinguishing applications. This
is clearly an area in which recursive methods like those mentioned above would be
of value. It also is reasonable to hypothesize that estimating densities, rather then
only computing the mean, would improve the performance.

By detecting changes in the densities of applications it may be possible to detect
when they have been compromised (or replaced) by a trojan program. It may also
be possible to detect programs that are not performing as advertised (web servers
acting like telnet servers, for example).

38.5 Visualization

Visualization of complex data is important but difficult. This is especially true
of streaming data. While many complex techniques for visualization have been
developed, simple scatter plots can be used effectively, and should not be shunned.

Figure 38.3 shows a scatter plot of source port against time for an 8 h period of
time. These are all the SYN packets coming in to a class B network (an address
space of 65,536 possible IP addresses). This graphic, while simple, provides quite a
few interesting insights.

Note that there are a number of curves in the plot. These are a result of the fact
that each time a client initiates a session with a server, it chooses a new source port,
and this corresponds to the previous source port used by the client incremented by
one. Contiguous curves correspond to connections by a single source IP. Vertical
gaps in the curves indicate that the IP visited other servers between visits to the
network. It is also easy to see the start of the work day in this plot, indicated by the
heavy over plotting on the right hand side.

The source ports range from 1,024 to 65,536. Different applications and oper-
ating systems select ports from different ranges, so one can learn quite a bit from
investigating plots like this.

The plot of Fig. 38.3 is static. Figure 38.4 is meant to illustrate a dynamic plot.
This is analogous to the waterfall plots used in signal processing. It displays a



38 Network Intrusion Detection 1147

10
00

20
00

30
00

40
00

50
00

Time (hours)
0 2 4 6 8

S
ou

rc
e 

P
or

t

Fig. 38.3 Source port versus time for all the incoming SYN packets for an 8 h period
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Fig. 38.4 Source port versus time for a short time period, the last two hours from Fig. 38.3. As
time progresses, the plot shifts from right to left, dropping the left most column and adding a new
column on the right
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snapshot in time that is continuously updated. As new observations are obtained
they are plotted on the right, with the rest of the data shifting left, dropping the left
most column. Plots like this are required for streaming data.

Simple plots can also be used to investigate various types of attacks. In Fig. 38.5
is plotted spoofed IP address against time for a denial of service attack against
a single server. Each point corresponds to a single unsolicited SYN/ACK packet
received at the sensor from a single source. This plot provides evidence that there
where actually two distinct attacks against this server. The left side of the plot shows
a distinctive stripped pattern, indicating that the spoofed IP addresses have been
selected in a systematic manner. On the right, the pattern appears to be gone, and we
observe what looks like a random pattern, giving evidence that the spoofed addresses
are selected at random (a common practice for distributed denial of service tools).
Between about 0:03 and 0:06 there is evidence of overlap of the attacks, indicating
that this server was under attack from at least two distinct programs simultaneously.

Another use of scatter plots for analysis of network data is depicted in Fig. 38.6.
These data were collected on completed sessions. The number of packets is plotted
against the number of bytes. Clearly there should be a (linear) relationship between
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Fig. 38.5 Plot of spoofed IP address against time for backscatter packets from a denial of service
attack against a single server. The IP addresses have been converted to 16-bit numbers, since in
this case they correspond to the final two octets of the IP address
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Fig. 38.6 Number of bytes transferred within a completed session plotted against the number of
packets within the session. Solid dots correspond to email sessions, circles correspond to all other
applications

these. The interesting observation is that there are several linear relationships. This is
similar to the observations made about Fig. 38.2, in which it was noted that different
applications use different packet lengths.

Figure 38.7 shows the number of bytes transferred within a session plotted
against the start time of the session. There is a lot of horizontal banding in this
plot, corresponding mostly to email traffic. It is unknown whether the distinctive
repetitive patterns are a result of spam (many email messages all the same size)
or whether there are other explanations for this. Since these data are constructed
from packet headers only, we do not have access to the payload and cannot check
this hypothesis for these data. Figure 38.8 shows a zoom of the data. The band just
below 400 bytes correspond to telnet sessions. These are most likely failed login
attempts. This is the kind of thing that one would like to detect. The ability to drill
down the plots, zooming and selecting observations to examine the original data, is
critical to intrusion detection.

High dimensional visualization techniques are clearly needed. Parallel coordi-
nates is one solution to this. In Fig. 38.9 we see session statistics for four different
applications plotted using parallel coordinates.
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Fig. 38.7 Number of bytes transferred for each session plotted against the starting time of the
session for a single day

One problem with plots like this is that of over plotting. Wegman solves this via
the use of color saturation (see Wegman and Dorfman 2001; Wilhelm et al. 1999).
Without techniques such as this it is extremely difficult to display large amounts of
data. Figure 38.9 illustrates this problem in two ways. First, consider the secure shell
data in the upper left corner. It would be reasonable to conclude from this plot that
secure shell sessions are of short duration, as compared with other sessions. This
is an artifact of the data. For these data there are only 10 secure shell sessions, and
they all happen to be of short duration. Thus, we really need to look at a lot of data
to see the true distribution for this applications. Next, look at the email plot in the
upper right. Most of the plot is black, showing extensive over plotting. Beyond the
observation that these email sessions have heavy tails in the size and duration of the
sessions, little can be gleaned from this plot.

A further point should be made about the web sessions. Some of the sessions
which are relatively small in terms of number of packets and bytes transferred have
relatively long durations. This is a result of the fact that often web sessions will not
be closed off at the end of a transfer. They are only closed when the browser goes
to another web server, or a time-out occurs. This is an interesting fact about the web
application which is easy to see in these plots.
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Fig. 38.8 The portion of the sessions in Fig. 38.7 which were less than 1,000 bytes

38.6 Profiling and Anomaly Detection

We will now briefly consider host based intrusion detection. While the data
considered is not network data, the statistical techniques used are applicable to
network problems, as will be discussed.

One of the important problems of computer security is user authentication. This is
usually performed by requiring the user to type a password at the initial login. Once
a user is logged in, there are generally no checks to ensure that the person using
the terminal is still the authorized person. User profiling seeks to address this by
extracting “person specific” information as the user interacts with the computer. By
comparing the user’s activity with a profile of the user, it is hoped that masqueraders
can be detected and locked out before they are able to do any damage.

We will discuss the usual host-based user profiling problem first, and then discuss
a network based profiling application that has a similar flavor. The mathematics and
statistics used for the two problems are very similar, only the data are different.

Several attempts have been made on this problem. Early work focused on
utilizing keystroke timings. It was hoped that people had characteristic patterns
of typing that could be discovered through measurement of the time between
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Fig. 38.9 Parallel coordinates plots of session statistics for four different applications. From left
to right, top to bottom they are: secure shell, email, web and secure web. The coordinates are the
time of the initiating SYN packet, the total number of packets, the total number of bytes sent and
the duration of the session. The axes are all scaled the same among the plots

keystrokes for words or phrases. See for example Bleha et al. (1990), Obaidat and
Sadoun (1997), Lin (1997) and Robinson et al. (1998).

This type of approach has been applied at the network level to crack passwords.
Song et al. (2001) describes using simple statistical techniques applied to packet
arrival timings to determine the length of passwords in secure shell, and even to
allow for the cracking of passwords. Secure shell is an application that allows
remote login via an encrypted pathway. It sends a packet for each character typed,
to minimize the delay for the user. Thus, by timing the packets, one can get an idea
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of what key combinations are being sent (it takes longer to type two characters with
the same finger than it does if the characters are typed by fingers on different hands,
for example). By utilizing statistics such as these, the authors were able to show that
they could dramatically reduce the search space needed to crack the passwords.

A related approach looks at extracting information from encrypted communica-
tions, in particular encrypted voice over IP (VoIP). VoIP works by digitizing speech,
compressing segments of the speech, then encrypting the segments and sending
these out as packets over the Internet. If the encryption used retains the sizes of
the packets, this information can be used to extract information about the text. In a
Wright et al. (2007) the authors show that by analyzing the pattern of packet sizes,
a classifier can be constructed to determine the language being spoken, even though
the conversation itself remains encrypted. In fact, known phrases can be detected in
the conversations. Figure 38.10 depicts one (English) utterance in the VoIP data. As
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Fig. 38.10 Wavelet transform of a section of speech from the VoIP data
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can be seen, there is quite a bit of structure in the data, and Wright et al. (2007) show
that this structure can be exploited to extract information about the conversation.
This kind of statistical analysis of encrypted information has important implications
for privacy as well as security.

Other profiling work focuses on tracking user commands. The idea is that the
command streams that users type (ignoring the arguments to the commands) could
be used to authenticate the user in much the same way that keystroke timings could.
A good discussion of this for statisticians can be found in Schonlau et al. (2001).
See also Maxion (2003), Maxion and Townsend (2002) for some critiques of this
work and extensions. The former paper considers arguments to the commands as
well.

For Microsoft Windows operating systems, user command sequences are gener-
ally not applicable. Instead, window titles may be used. These correspond roughly
to the same information that is contained in the Unix command lines. They typically
contain the application name and the arguments to the applications such as the file
open, the email subject, the web page visited, et cetera.

To illustrate this, we consider a set of data taken from six users on seven Windows
NT machines over a period of several months. All window titles generated from the
login to the logout were retained for each user/host pair (only one of the users was
observed on a second host). Each time a window became active it was recorded.
These data are a subset of a larger set. More information on these data, with some
analysis of the data and performance of various classifiers can be found in DeVault
et al. (2003).

Table 38.1 shows some statistics on these data. Three sessions are shown for
each user/host pair. The length of the login session (in seconds), the name of
the first and last applications used within the session, and the number of distinct
applications, windows and window titles are shown. The task is to extract statistics
from a completed login session that allow one to determine whether the user was the
authorized user indicated by the userid. This is an easier problem than masquerader
detection, in which one tries to detect the masquerader (or authenticate the user) as
the session progresses, and it is not assumed that the entire session corresponds to a
single user (or masquerader).

The table indicates that there is some variability among the sessions of individual
users, and this is born out by further analysis. Table 38.2 shows the most common
window titles. The number of times the title occurs in the data set, the number of
login sessions in which the title occurs, and the title itself are shown. Some words
in the titles have been obfuscated by replacement with numbers in double brackets,
to protect the privacy of the users. All common application and operating system
words were left alone. The obfuscation is consistent across all sessions: there is a
bijection between numbers and words that holds throughout the data.

Figure 38.11 shows part of a single login session. The rows and columns
correspond to the list of words (as they appear in the titles) and a dot is placed
where the word appears in both the row and column. The blocks of diagonal lines
are characteristic of a single window in session. The “plus” in the lower left corner
shows a case of the user switching windows, then switching back. This type of
behavior is seen throughout the data.
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Table 38.1 Session statistics for three login sessions for each user/host pair

User Session Login Length 1st App Last App #Apps #Wins #Titles

User1-host19 3 30;794 msoffice msoffice 6 13 134

User1-host19 5 28;788 msoffice msoffice 8 15 194

User1-host19 6 19;902 msoffice msoffice 10 25 267

User1-host5 1 3;472:47 explorer explorer 3 6 34

User1-host5 2 142:98 explorer explorer 2 3 6

User1-host5 40 21;912:79 explorer explorer 7 25 187

User19-host10 5 31;432:5 msoffice msoffice 7 8 133

User19-host10 6 16;886:3 msoffice msoffice 6 7 75

User19-host10 11 2;615:55 msoffice acrord32 6 8 45

User25-host4 2 28;362:82 explorer explorer 4 19 382

User25-host4 3 45;578:82 explorer explorer 5 16 316

User25-host4 12 6;788:44 explorer explorer 4 11 102

User4-host17 10 19;445:96 wscript explorer 8 21 452

User4-host17 30 6;310:72 explorer explorer 3 5 60

User4-host17 44 17;326:21 explorer winword 8 10 138

User7-host20 10 23;163:6 outlook outlook 5 7 51

User7-host20 11 44;004:11 wscript mapisp32 5 5 72

User7-host20 12 33;125:27 wscript outlook 5 7 166

User8-host6 1 31;395:08 wscript explorer 7 14 116

User8-host6 4 1;207:84 outlook explorer 4 4 14

User8-host6 21 134:01 cmd explorer 3 4 13

Table 38.2 Window title usage

# #Sessions Window Title

7002 425 Inbox – Microsoft Outlook
2525 411 Program Manager
2188 215 Microsoft Word
792 126 Netscape
704 156 Print
672 213 Microsoft Outlook
639 156 <<12761>> <<9227>>
592 170 <<16193>> – Message (<<16184>> <<5748>>)
555 174 <<6893>> <<13916>>
414 297 Microsoft(<<3142>>) Outlook(<<3142>>) <<7469>>
413 36 <<13683>> <<3653>> – Microsoft Internet Explorer
403 33 <<13683>> <<10676>> – Microsoft Internet Explorer
402 309 – Microsoft Outlook
401 61 Microsoft PowerPoint
198 84 http://<<1718>>.<<7267>>.<<4601>>/<<16345>>
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Fig. 38.11 First 500 words from a single session. The rows and columns correspond to words in
the order in which they appear (with duplicates). A dot is plotted in .i; j / if the same word is in
row i and column j

Many features were extracted from the data, and several feature selection and
dimensionality reduction techniques were tried. The results for these approaches
were not impressive. See DeVault et al. (2003) for more discussion.

The classifiers that worked best with these data were simple intersection classi-
fiers. For each session, the total set of window titles used (without regard to order)
was collected. Then to classify a new session, the intersection of its title set with
those from user sessions was computed, and the user with the largest intersection
was deemed to be the user of the session. Various variations on this theme were tried,
all of which performed in the mid to high 90 percent range for correct classification.

Much more needs to be done to produce a usable system. Most importantly, the
approach must move from the session level to within-session calculations. Further,
it is not important to classify the user as one of a list of users, but to simply state
whether the user’s activity matches that of the userid. It may be straight forward to
modify the intersection classifier (for example, set a threshold and if the intersection
is below the threshold, raise an alarm) but it is not clear how well this will work.

We can state a few generalities about user profiling systems. Users are quite
variable, and such systems tend to have an unacceptably high false alarm rate.
Keystroke timings tend to be much more useful when used with a password or pass
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phrase than in free typing. No single technique exists which can be used reliably to
authenticate users as they work.

The intersection classifier leads to interesting statistics. We can construct graphs
using these intersections, each node of the graph corresponding to a session, with an
edge between two nodes if their sets intersect nontrivially (or have an intersection
of size at least T ).

In another context (profiling the web server usage of users) Marchette (2003)
discusses various analyses that can be done on these graphs. This uses network
data, extracting the source and destination IP addresses from the sessions. In these
data there is a one-to-one correspondence between source IP address and user, since
all the machines considered were single user machines.

In this case the nodes correspond to users and the sets consist of the web servers
visited by the user within a period of a week. A random graph model, first described
in Karonski et al. (1999) is used as the null hypothesis corresponding to random
selection of servers. The model assumes a set S of servers from which the users
draw. To define the set of servers for a given user, each server is drawn with
probability p. Thus, given the observations of the sets Si drawn by the users, we
must estimate the two parameters of the model: m D jSj and p. These can be
estimated using maximum likelihood (see also Marchette 2004 for discussion of
this and other types of intersection graphs). With the notation

ki D jSi j

Mi D j
i[

jD1
Sj j

ui D Mi �Mi�1;

the likelihood is easily shown to be

L D
nY

jD1

 
Mj�1
kj � uj

! 
m �Mj�1

uj

!

pkj .1� p/m�kj :

Using data collected for several months, Marchette (2003) computed the prob-
ability of any given edge, under the null hypothesis, and retained those that had a
significantly large intersection (after correcting for the multiple hypotheses tested).
The most common of these were retained, and the resulting graph is shown in
Fig. 38.12.

There are two triangles in Fig. 38.12, and it turns out that the users in these
correspond to physicists working on fluid dynamics problems. Users A, D and E are
system administrators. Thus, there is some reason to believe that the relationships
we have discovered are interesting.
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Fig. 38.12 A graph of the
users with significantly large
intersections. The edges for
which the intersection size
was statistically significant
for 95% of the weeks are
shown

The model is simplistic, perhaps overly so. It is reasonable to assume that
users have different values of p, and some preliminary investigation (described
in Marchette 2003) bears this out. This is an easy modification to make. Fur-
ther, intuition tells us that perhaps all web servers should not have the same
probabilities either. This is more problematic, since we cannot have a separate
probability for each server and hope to be able to estimate them all. A reasonable
compromise might be to group servers into common/rare groups or something
similar.

The above discussion illustrates one of the methodologies used for anomaly
detection. For determining when a service, server, or user is acting in an unusual
manner, one first groups the entities using some model, then raises an alert when
an entity appears to leave the group. Alternatively, one can have a single entity, for
example “the network” or a given server, and build a model of the behavior of that
entity under normal conditions. When the behavior deviates from these conditions
by a significant amount, an alert is raised.

Other researchers have investigated the profiling of program execution, for the
purpose of detecting attacks such as buffer overflows which can cause the program
to act in an unusual way. See for example Forrest et al. (1994), Forrest et al.
(1997), Forrest and Hofmeyr (In press), Tan and Maxion (2002). Programs execute
sequences of system calls, and the patterns of system calls that occur under normal
conditions are used to detect abnormal execution.

One of the first anomaly detection systems for intrusion detection was the
Next-generation Intrusion Detection Expert System (NIDES) (Anderson et al.
1995). This system took a collection of statistics computed on both network and
host data such as load average and usage statistics, packet rates, files accessed,
protocols utilized, and so on, and combined them into a single statistic that was
modeled as a Chi-squared statistic. Alarms were sounded for large values of the
statistic, and the critical value could be determined either by reference to the Chi-
squared distribution or empirically. A number of variations on this theme have been
investigated.

One example is that of Ye et al. (2002). They propose using the Hotelling or �2

test: given a multivariate statistic X computed on a stream of data (such as one of
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the collections of variables used in the NIDES approach), compute

T 2 D n.n � p/
p.nC 1/.n � 1/.X �X/

0S�1.X � X/ (38.1)

�2 D
pX

jD1

.Xj �Xj /
2

Xj

(38.2)

where X is the mean and S is the sample covariance. If everything is normally
distributed, these have known distributions, and critical values can be set for
detection of anomalies. As always, in real problems it is advisable to set the
critical values empirically, or at least to verify that the theoretical distributions are
approximately correct. A similar approach is described in Oshima et al. (2009) for
detection of denial of service attacks, and in Zhou et al. (2006) for user profiling.

Much work has been done profiling email activity, mostly for the detection of
spam and phishing. These approaches may take a text-analysis approach (see for
example Sasaki and Shinnou 2005), or a link analysis approach (Benczúr et al.
2005). A toy example of text mining approaches to spam detection is depicted in
Fig. 38.13. Here, the text of the emails has been processed using a vector space
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Fig. 38.13 A vector space model of email text on a small set of spam documents. Spam emails
colored red, non-spam emails colored black
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(bag-of-words) model. Each email message d is represented as a vector of values
for each possible word w:

XŒd;w� D log

�
f .w; d /

f .w; C /

�
; (38.3)

where C is the corpus of all emails, and f denotes frequency: thus f .w; d / is the
frequency with which the word w occurs in the email (document) d , and f .w; C /
is the frequency with which the word occurs overall in the corpus of emails. Here,
X corresponds to mutual information. As can be seen in the figure, for this tiny
example corpus (about 400 emails), the spam separates quite well from the non-
spam.

Spam has many other properties that must be taken into account to turn a
simple like this into a useful approach to the problem, however. Spammers are
constantly modifying their emails to defeat anti-spam filters. Adaptive approaches,
and more sophisticated text analysis approaches, must be combined with approaches
that utilize the way spam is addressed and routed to produce good reliable spam
detection algorithms.

Email activity can also be profiled to look for unusual activity that could be
indicative of either a virus propagating or an insider threat. Related work can be
found in Priebe et al. (2005), where the problem of detecting an unusual pattern
of activity in an email communications graph is considered. This work defined a
scan statistic on graphs, analogous to the scan statistic approach used in many other
applications for one and two dimensional data (Glaz et al. 2010). This approach uses
scan statistics to detect regions in the time series of Enron communications graphs
in which Enron executives had an unusual amount of communication (“chatter”).
The Enron graphs correspond to directed graphs computed weekly: and edge exists
from one email address to another if there was at least one email sent during the
corresponding week.

The scan statistic for graphs is defined as follows. Given a directed graphG with
vertex set V D V.G/ and edge setE D E.G/, the digraph distance d.v;w/ between
two vertices v;w 2 V is defined to be the minimum directed path length from v to w
in G. For a non-negative integer k and vertex v 2 V consider the closed kth-order
neighborhood of v in G, denoted NkŒvIG� D fw 2 V.G/ W d.v;w/ � kg. The scan
region is the induced subdigraph of this neighborhood, denoted ˝.NkŒvIG�/. A
locality statistic at location v and scale k is any specified digraph invariant	k.vIG/
of the scan region ˝.NkŒvIG�/. The scan statistic is the maximum of the locality
statistics over the vertices.

In Priebe et al. (2005), a time series of graphs is considered,G1; : : : ; GT , and the
locality statistics are normalized: given a window width � , define

�.v; t/ D 1

�

�X

iD1
	k.vIGt�i / (38.4)
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2.v; t/ D 1

� � 1
�X

iD1
.	k.vIGt�i /� �.v; t//2 (38.5)

e	k.vIGt/ D 	k.vIGt/� �.v; t/
max.1; .v; t//

: (38.6)

Since the authors were looking for unusually large numbers of communications,
the locality statistic was the size, the number of edges in the induced subgraph. By
looking for large values ofe	k.vIGt/, anomalies can be detected. This work could be
adapted to computer intrusion detection in several ways. The graph statistic could be
modified to take the email content into account, which could be used to detect spam
and viruses; other graphs invariants could be used to detect other types of patterns of
activity; communications between computers could replace email communications
between people.

Figure 38.14 shows an anomaly detection on the Enron graphs. Here “scan0”
corresponds to vertex degree. Note that there is no detection when considering either
vertex degree or a scan region with radius 1. It is only when one considers the
2-neighborhood that the detection arises. The statistics have been scaled (analo-
gously to the scaling in (38.6)), and a detection threshold of 4 standard deviations is
indicated in the plot.

Figure 38.15 depicts the 2-neighborhood corresponding to the detection in
Fig. 38.14. The plot on the right shows the same vertices (with one other vertex)
in the previous week. Note that in the previous week the 2-neighborhood was much
smaller, and hence had fewer edges.

This detection is interesting, because the events discussed during this week are
related to the California energy crisis. A white paper was circulated by economists
indicating that the crisis was not the result of market forces. The Enron executives
felt that they would be better served if they could find an economist willing to argue
that the market was indeed the driving force, rather than manipulations by energy
companies. While this is not the sole content of the emails during this week, it does
provide an anecdote for the detection.

Adding information about the content of the emails turns the graph into an
attributed graph – the edge attributes corresponding by the email topics. Preliminary
work on this is reported in Priebe et al. (2010).

38.7 Discussion

There are many areas in which computational statistics can play a part in network
intrusion detection and other security arenas. We have seen a few in this chapter,
including modeling denial of service attacks, visualization, the analysis of streaming
data applied to network data and profiling and anomaly detection.
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Fig. 38.14 Normalized scan statistics for the Enron graphs

The biggest problems for intrusion detection systems are the false alarm rates and
the detection of novel attacks. The enormous amount of data that must be processed
requires that false alarm rates must be extremely low. Typical network data consists
of millions of packets an hour, and system administrators generally do not have time
to track down more than a few false alarms a day. Signature based systems have the
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Fig. 38.15 The 2 neighborhood of the detection. In the left plot we see the graph at the
detection week (week 109). The right plot shows the two neighborhood in the previous week (dark
edges), with the light edges showing the edges for the rest of the vertices that appear in the two
neighborhood in week 109

advantage that they rarely false alarm (assuming the signature is properly defined),
but they tend to have poor performance on novel attacks. Thus it is essential that
techniques be found that detect novelty that is “bad” without alarming on novelty
that is benign.

One area we have not discussed is modeling attack propagation. Early work
on this can be found in Kephart and White (1991, 1993). See also Wierman and
Marchette (2004) for a related model. For a discussion of the slammer worm, see
http://www.cs.berkeley.edu/~nweaver/sapphire/ The slammer worm was interesting
because the spread was self-limiting: the worm spread so fast that the available
bandwidth was reduced to the point that the worm as unable to continue to spread
at its initial rate. Models for these types of worms is an interesting area of study.
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Excess kurtosis, 1026, 1071, 1078
Exclusion restriction, 603
Expectation-conditional maximization (ECM)

algorithm, 160–161
multicycle ECM, 160–161

Expectation-conditional maximization either
(ECME) algorithm, 140, 163–164,
167

Expectation-Maximization (EM), 1047
Expectation step (E-Step), 139, 143, 155, 637,

638
exponential families, 144, 682–684
factor analysis model, 217
failure-time data, 150–152, 808
generalized linear mixed models (GLMM),

159, 160
misconceptions, 140, 154–155
mixture-of-experts model, 153
Monte Carlo (MC), 73–101, 158, 761–768
normal mixtures, 138, 148–150, 164, 165

Expected shortfall (ES), 960, 976, 977, 1026,
1047

Expected tail loss (ETL), 275, 280, 289–290,
1026

Expensive simulations, 540
Experimental area, 534, 535
EXPLOR4, 351
Exploratory data analysis (EDA), 6, 300–302,

335, 336, 338, 343, 350, 352, 358,
425, 549, 556, 567, 825

Exploratory spatial data analysis (ESDA),
358–359

ExplorN, 346, 349, 351–352, 357
Exponential density function, 809
Exponential distribution, 59, 151, 532, 533,

683, 704, 727, 809, 812, 1082
Exponential family, 143–145, 151, 154, 156,

682–683, 685, 686, 688, 692, 703,
754, 779

sufficient statistics, 143, 149, 165, 169
Extensible Markup Language (XML), 275,

283, 290–292, 377, 390, 410
Extensions of the EM algorithm, 158

incremental scheme, 164–165
Extrapolation, 935, 936
Extreme value distribution, 1068
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Factor analysis model, 142, 217, 735
Failure-time data

censored, 140, 150–152
exponential distribution, 151

False discovery rate (FDR), 1131, 1133
Fast Fourier transform (FFT), 1032
Fat-shattering dimension, 888
Fault detection, 188, 259
FDA. See Fisher discriminant analysis
FDR. See False discovery rate
FDSA. See Finite-difference SA
Feedforward network, 838
FFT. See Fast Fourier transform
FHS. See Filtered historical simulation
Filter

high-pass, 229
quadrature mirror, 229

Filtered historical simulation (FHS), 1053
Filtered returns, 1052–1053
Final prediction error (FPE), 481, 652
Financial data, 307–311
Finite-difference SA (FDSA), 185–190
Finite mixture, 1062, 1076, 1081–1087

of Gaussian densities, 1076
model, 1062, 1081–1087

Fisher consistent, 714
Fisher discriminant analysis (FDA), 934
Fisher information, 821

generalized linear model (GLM), 692
Fisher scoring algorithm, 689–691
Fitness function, 174, 191–196
Fitness proportionate selection, 193
Fitts forecasting model, 424
Flattening parameter, 931, 937, 939
Floating-point, 19–24, 26–28, 30, 31, 45,

192–193
Focusing, 338, 343–344, 586, 829
Font, 426
Forest, 875, 877

deterministic, 877
random, 875–877

Fork–join, 246, 252, 257
Forward stagewise regression, 666
Fourier space, 902, 1120, 1128
Fourier transform, 210–216, 220, 221, 223,

224, 230, 232, 490–491, 1029, 1121,
1134

FP. See Frequency polygon
FPE. See Final prediction error
Fractional design, 537
Fractional factorial designs, 538, 539
Frank copula, 1049, 1055
Frechet (Frï£¡chet) differentiable, 724, 731,

735, 741

Free-induction decay (FID) signal, 1115,
1116

Frequency domain bootstrap, 521–524
Frequency polygon (FP), 560, 561
Friedman’s index, 623
Full conditional distributions, 91, 94, 96, 167
Full likelihood, 816, 817, 821
Full-screen view, 424
Functional, 713–714, 717, 723, 732, 733

affine equivariant functionals, 736
Cauchy distribution, 720–721
constrained M-functionals, 741
covariance functional, 733–734
existence, 718, 721, 730, 735
functionals, 714, 726
functional Tsh, 715–716
functional Tss , 717, 720
least trimmed squares (LTS), 740
location, 719, 732
location functional, 717, 720, 721, 724,

729, 731, 733, 734
LTS-functional, 741
median polish, 745
M-estimators, 730–731, 734
M-functionals, 718–721, 724, 726, 731,

740
minimum covariance determinant (MCD),

734, 736
minimum volume ellipsoid (MVE)

functional, 733, 736
MM-functionals, 741
model, 405, 406, 571
neuroimaging, 1117–1118
one-step functional, 720
redescending, 720, 721
regression depth, 741
regression functional, 738
REWLS-estimators, 742
scale, 729
scale functional, 717, 719–723, 731, 732
S-functionals, 721, 729, 734, 735, 741
shortest half Tsh, 724
statistical functionals, 718
� -functionals, 741
unique, 718, 719, 729
uniqueness, 716, 719, 728, 733
uniqueness and asymptotic normality, 735

Functional Image Analysis Software–
Computational Olio (FIASCO),
1125, 1132–1134

Gain sequences, 185, 186
GAM. See Generalized additive models
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Gamma distribution, 683, 775, 809, 955, 1077,
1080, 1084

GAs. See Genetic algorithms
Gaussian copula, 1047–1048, 1050
Gaussian correlation function, 543
Gaussian/normal distribution, 59–60, 62, 79,

94, 96, 148, 176, 182, 204, 502, 522,
550, 551, 598, 602, 622–624, 636,
640, 683, 692, 712, 713, 724–727,
733, 735, 736, 741, 752, 774, 795,
810, 821, 955, 956, 965–967, 980,
989, 1026–1029, 1038, 1040, 1043,
1047, 1070, 1071, 1075, 1077, 1078,
1084

matrix, 543
truncated, 95, 96

Gaussian quadrature, 490
Gaussian simulation smoother, 1075, 1077
Gauss–Jordan elimination, 118–120
Gauss–Newton method, 672, 673
Gauss–Seidel method, 121, 124, 126
GCV. See Generalized cross validation
GDF. See Generalized degrees of freedom
GEE. See Generalized estimating equations
Gene expression data, 855
Gene expression profiles, 168
Generalization error, 929, 938
Generalized additive models (GAM), 267, 604,

706
Generalized autoregressive conditionally

heteroscedastic (GARCH) model,
506–509, 512, 1052–1053, 1062,
1071, 1083, 1085–1087

Generalized cross validation (GCV), 469,
475, 485–489, 492, 494, 584, 585,
1012

Generalized degrees of freedom (GDF), 476,
482, 484

Generalized EM (GEM) algorithm, 144, 160,
161

Generalized estimating equations (GEE), 30,
705

Generalized feedback shift register (GFSR),
49, 52–54

Generalized hyperbolic (GH) distributions,
1039–1047

estimation of parameters, 1045–1046
Generalized hyperbolic (GH) law, 1042
Generalized inverse Gaussian, 1040
Generalized linear mixed models (GLMM),

159–160, 705
Generalized linear models (GLMs), 13, 154,

159, 469, 546, 592, 600, 675,
681–708, 996, 999

Generalized maximum likelihood method, 492,
814

Generalized method of moments, 1064
Generalized partial linear models (GPLM), 706
Generalized principal components, 625–628,

634, 643
Generalized principal components analysis

(GPCA), 625–628, 634, 643
Generators, 540
Generic functions, 830–831
Genetic algorithms (GAs), 148, 173–175, 177,

179–180, 184, 190–198, 359, 654,
673

Genetic programming, 654
Geographic brushing, 358–359
Geometrically ergodic, 78, 79
Geometric distribution, 59, 516, 683
Getter, 437
GFSR. See Generalized feedback shift register
GGobi, 340, 349, 352–353, 416, 420, 421, 423,

424, 427
Gibbs sampler, 167
Gibbs sampling, 1064–1065, 1076, 1082, 1089
Gibbs sampling algorithm, 75–76, 91–95, 1076
Gibbs sampling/sampler, 91–96, 140, 166, 167,

775, 777–782, 1039, 1064–1067,
1072, 1078, 1084–1086, 1091

griddy-, 1085
mixing of, 782

Gini coefficient, 834
Givens rotations (GR), 26, 110–113
Glivenko–Cantelli theorem, 716
GLMM. See Generalized linear mixed models
GLMs. See Generalized linear models
Global optimization, 182, 184, 189, 190, 199
Global solutions, 175, 179, 195, 944
Glyph, 552
GOF. See Goodness-of-fit
Goodness-of-fit (GOF), 39, 406, 474–476,

572, 579, 583, 698, 809, 1047,
1053–1055

GPCA. See Generalized principal components
analysis

GPLM. See Generalized partial linear models
Gradient, 538

approximation, 185, 187–190
Gram–Schmidt orthogonalization, 110,

114–115, 268–269
Grand tour, 335, 337, 344–348, 351–353, 355,

357, 358, 845
Graphics algebra, 378, 379, 402, 412
Green’s algorithm, 783, 784
Greenwood’s formula, 809
Griddy-Gibbs, 1085
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Gross error model, 732
Gross error neighbourhood, 721, 722, 731,

739
gross error model, 732

Gumbel distribution, 1068
Gustafson’s law, 248–249

Hall’s index, 624
Halton sequences, 1069
Hamilton path, 306
Hampel identifier, 727, 728
Hard thresholding, 475, 989
Harmonic mean, 274, 661, 770, 771, 773
Hastings (not hastings), 1070
Hat function, 62, 63, 1044
Hat matrix, 477, 582, 587
Hawkes process, 1081
Hazard, 870

functions, 597, 600, 609, 610, 612, 704,
807–808, 814, 819, 870, 1081

rate, 807–808, 875
Head motion, 1123, 1125–1127, 1129
Heavy-tailed distributions, 1025–1055
Heisenberg’s uncertainty principle, 212
Hessian (or Jacobian) matrix, 32, 86, 105,

146–147, 154, 184–185, 189, 190,
671–674, 815, 1038

Hessian (second derivative) matrix, 86, 184,
189

Hetero-distributional subspace, 948
Heterogeneity, 262, 290, 540, 542–543,

609–612, 705, 757, 868, 1065, 1067,
1069, 1081

Heterogeneous populations, 778
Heteroscedasticity, 206, 475, 492–494
Hexagonal bins, 553, 554
Hidden Markov model, 781, 782
Hierarchical Bayes, 1070
Hierarchical command sequence, 427, 428
High breakdown affine equivariant location

and scale functionals, 731–735
High breakdown regression functional,

740–741
Higher-order kernels, 1009
Highest possible breakdown point, 722
Highest posterior region, 757
High gold prices, 310
High Performance Fortran (HPF), 244, 247,

258–261, 265–267
Histogram, 549, 558–560
Homeland security, 826
Homogeneous subsets, 828
Householder reflections (HR), 110–113

HPF. See High Performance Fortran
Huber distribution, 713–714
Huber loss, 933
Hue brushing, 348
Human-machine interaction, 188
Hyperbolic distribution, 1040–1042
Hypersurface, 311–314, 321–323, 327–329
HyperVision, 351–352
Hypotheses, 205, 362, 513, 583, 614, 648, 692,

774, 894
Hypothesis testing, 756–758, 1157

IASC. See International Association for
Statistical Computing

Identifiability, 192, 744, 745, 755, 1082, 1125
Identification, 116, 290, 352, 471, 601, 603,

607, 613, 647, 672, 703, 706, 726,
727, 736, 742, 743, 868, 928, 1067,
1082–1083, 1085, 1098, 1099, 1101,
1103, 1110, 1125

problem, 1083, 1085
restrictions, 1063, 1083–1085
single index models, 601

IFM. See Inference functions for margins
IGT. See Image grand tour
IIA. See Independence of irrelevant alternatives
i.i.d. resampling, 500, 504, 505, 517, 518, 522
Image analysis, 1125
Image grand tour (IGT), 347
Image registration, 1127
Immersive projection technology (IPT), 355,

357, 358
Importance, 941, 948
Importance functions, 762, 766–768, 770,

943–947, 1073–1075
choice of, 763, 766
with finite variance, 770

Importance sampling (IS), 82, 160, 490, 532,
546, 761, 767, 769, 771, 774, 793,
795, 796, 931, 1088

degeneracy of, 768
efficient (EIS), 1072–1075, 1077–1081
for model choice, 770
and regular Monte Carlo, 761–763, 766

Importance weighting, 927–948
IMSE. See Integrated mean square error
Incomplete-data, 139

likelihood, 142, 143, 156, 163
missing data, 139, 142, 143, 148, 154, 156,

159
problem, 139, 140, 142, 148, 166

Incremental EM (IEM) algorithm, 140, 164,
165, 169
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Independence from irrelevant alternatives
(IIA), 1068

Independence M–H, 82
Independence of irrelevant alternatives (IIA),

1068
Independent increments, 819
Indexed search, 61
Index vector error-correction model, 1065
Inefficiency factor, 79–80, 87
Inference functions for margins (IFM), 1048
Infinite collection of models, 782
Influence function, 714, 716, 724, 731
Information criterion

Akaike, 585, 651, 693, 887, 927
Bayesian, 693
Schwarz, 651, 693

Information matrix, 155, 156
complete-data, 156
expected, 155
observed, 155, 156

Informative prior, 1067, 1085
Informative restrictions, 1085
Inheritance, 441–450, 454, 455, 457–462

logical, 458–459
multiple, 449
technical, 457–458
violation of the encapsulation, 460

Initial value, 147
Injected randomness, 177, 199
Instance, 40, 105, 141, 183, 238, 243, 274,

331, 379, 438, 653, 704, 752, 828,
868, 1035, 1083

Integral, 93, 159, 210, 213, 214, 216, 223, 233,
393, 469, 481, 490, 555, 608, 714,
753–755, 770, 877, 965, 980, 1031,
1033, 1034, 1047, 1061, 1063, 1076,
1106, 1117

approximation, 579, 580, 586, 758,
761, 763–764, 1041, 1069, 1072,
1073

high dimensional, 754, 897, 1064
multiple, 530, 1072
ratio, 757, 763

Integrated mean square error (IMSE), 555,
558–510

Intensity
functions, 819–820, 1081, 1116
models, 816, 823, 1080–1081

Interactions, 536, 537, 744, 745
term, 406, 699, 700
unconditionally identifiable, 699

Interactivity, 301, 302, 841
Inter arrival time, 63, 1145
Interestingness measures, 840

Interface, 5, 244, 281, 337, 415, 437, 454, 826,
928, 1033, 1097, 1119

of computer science and statistics, 7
for derivation, 441–442

Interface Symposia, 7
Interior points, 321, 323, 327–329
International Association for Statistical

Computing (IASC), 5, 8, 10
Internet protocol (IP), 1141
Interpolation, 542–543
Intersection classifier, 1156, 1157
Intersection graph, 1157
Invariant, 60, 74, 76–79, 81, 84, 90, 92–93, 99,

100, 327, 622, 626–628, 649, 733,
902, 917, 918, 1063, 1083, 1107,
1160, 1161

Inverse Gaussian (IG) distribution, 682, 1044
Inverse iterations, 131
Inverse moments, 189
Inversion method, 36, 59, 1034
Inverted gamma, 1079
Inverted gamma density/prior, 1077, 1079,

1089
Inverted gamma distributions, 1077, 1084
Inverted Wishart (W instead of w), 1070
Inverted Wishart distributions, 1066, 1070
IP. See Internet protocol
IPT. See Immersive projection technology
IRLS. See Iteratively reweighted least squares
��-irreducible, 78
IS. See Importance sampling
Iteratively reweighted least squares (IRLS),

686, 688–690
algorithm, 153, 162

Iterative refinement, 118, 120–121
Iterative simulation algorithms, 166–167

Jacobi method, 123, 128, 129
Japanese Society of Computational Statistics

(JSCS), 5
Jasp, 269, 418
Java threads, 256–257
JSCS. See Japanese Society of Computational

Statistics
Jumping ahead, 47

Kalman filter, 1075, 1076, 1080–1081
augmented, 1076

Kaplan–Meier curves, 869, 871
Kaplan–Meier method, 808
Karush–Kuhn–Tucker (KKT) condition, 905,

910–912
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KDE. See Kernel density estimation
Kernel

density, 93, 520, 562–563
density estimation method, 62
estimation, 601, 1078
estimator, 554–555
function, 520, 522, 561, 562, 591, 706–707,

838, 892–893, 920
kernel trick, 839, 883, 893–895, 903, 912,

915–916, 920
matrix, 895, 906, 911
mercer, 897–898
smoother, 503, 506, 508–510, 572–574,

579–580, 584, 585
trick, 839

Kernel density estimation (KDE), 62, 268, 348,
520, 562, 586, 843, 928, 943, 1049,
1144

Keystroke timings, 1151, 1154, 1156–1157
KLIEP. See Kullback–Leibler importance

estimation procedure
Knowledge discovery, 14, 301, 311, 825–828,

841, 849
Kolmogoroff metric, 714–716, 722
Kolmogorov (K) statistics, 1052
Kriging, 529–531, 534, 535, 542–546
Kriging models, 535
k-space, 1120–1122, 1126, 1128–1130, 1134
Kuiper metric, 722
Kullback-Leibler discrepancy, 481–482
Kullback-Leibler divergence, 874, 944
Kullback–Leibler importance estimation

procedure (KLIEP), 944–945

Lack of fit, 533
Lagged-Fibonacci generator, 44–45, 48
Lagrange multipliers, 620, 621, 903, 905
Laplace approximation, 490
Largest nonidentifiable outlier, 728
Larmor frequency, 1114–1116, 1124
Lasso, 659, 664–668, 674, 999, 1018, 1019

computation, 675
optimization, 665

Late binding, 450–452
Latent variables, 75–76, 95–96, 667–669, 703,

772, 777–782, 1061, 1087, 1088
Latin hypercube sampling (LHS), 59, 531, 544,

545
Lattice, 36, 42–48, 51–52, 57, 75, 375, 565,

1096, 1098
Lattice structure, 42, 51
Law of large numbers, 75, 76, 78, 761, 762,

1036

LCG. See Linear congruential generator
Learning, 5, 31, 148, 299, 357, 415, 469, 535,

826, 854, 883, 927, 985, 1013, 1146
Least angle regression (LARS), 653, 659, 664,

666–667
Least median of squares LMS, 740, 741
Least-squares (LS), 105, 106, 322, 472,

516–517, 536, 558, 574, 582, 588,
645, 646, 685–686, 870, 932, 991,
1004, 1074

best linear unbiased estimator, 647
computation, 15, 105, 647, 654, 870
explicit form, 854, 1038
Gauss–Markov theorem, 647
inference, 648
multicollinearity, 650
orthogonal transformations, 647

Least trimmed squares (LTS), 740–742
Length of stay (LOS), 169
Length of the shortest half, 724
˛-Level contour, 348
Levenberg–Marquardt method, 631, 632,

672–673
Leverage effect, 1079
Leverage point, 739, 742
L1-fit, 745
LFSR. See Linear feedback shift register
LFSR113, 58
LHS. See Latin hypercube sampling
Library, 58, 245, 254–256, 259, 262, 268, 269,

337, 363, 427, 456, 460, 461, 719,
855, 872, 1033, 1045

Likelihood, 30, 73, 139, 206, 268, 406, 476,
506, 549, 571, 598, 647, 685, 720,
752, 832, 870, 927, 999, 1032, 1062,
1103, 1123

function, 141–143, 145, 146, 149, 150, 155,
156, 159, 161, 799, 870, 1046, 1047,
1062, 1064, 1072, 1075, 1081–1083

intensity-based, 1081
intractable, 752
marginal, 73, 159, 490–492, 772, 788,

1086, 1090
maximum, 30, 139, 155, 156, 268, 483,

490, 492, 598, 687–688, 810, 814,
832, 1038–1039, 1045–1047, 1049,
1072, 1157

simulated, 543, 770, 782, 798, 799, 1039,
1064, 1069, 1075

smoothing, 572, 591–594
Likelihood ratio (LR) framework, 1054
Likelihood ratio test, 692

generalized linear model (GLM), 693
Limited dependent variable, 1062–1071
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Linear congruential generator (LCG), 41–42,
46–48, 50, 52, 57

Linear discriminant analysis, 854
Linear feedback shift register (LFSR), 50, 52,

54, 57, 58
Linear index, 598
Linear recurrence, 41, 48–50, 54, 55

with carry, 48–49
modulo, 36, 41–49

Linear reduction, 620–625, 639–643
Linear regression, 105, 392, 396, 397, 420,

427–429, 486, 534–540, 543,
546, 583, 587, 645–675, 681–708,
737–742, 856, 864, 953–954

Linear smoother, 571–595
Linear system

direct methods, 117–121
Gauss–Jordan elimination, 118–120
iterative refinement, 120–121

gradient methods, 121, 126–127
conjugate gradient method, 127
Gauss–Seidel method, 126
steepest descent method, 126

iterative methods
Gauss–Seidel method, 124, 126
general principle, 121–123
Jacobi method, 123–124
successive overrelaxation (SOR)

method, 124–125
Linked brushing, 337, 341–343, 350, 351
Linked highlighting, 343, 830, 845, 847
Linked views, 341–343, 350, 841
Link function, 159, 592, 600, 682–685, 687,

693, 694, 706, 771–772
canonical, 682, 683, 690

Linking, 9, 41, 159, 234, 259, 284, 327, 336,
398, 423, 458, 592, 600, 682, 771,
826, 919, 1073, 1159

L1-minimization, 744
Local area, 534
Local bootstrap, 518–520
Local Fisher discriminant analysis, 948
Localized random search, 182–184, 186, 187
Local likelihood, 563, 589, 591, 593, 594
Local likelihood equations, 593
Local linear estimate, 574, 579
Local optimization, 148, 175, 184, 189, 193,

545
Local polynomial, 469, 579–581, 586, 591–593
Local regression, 571–595, 699, 706
Local reversibility, 90
Location functional, 713, 716, 717, 719–722,

724, 726, 729, 731, 733, 734
Location normalization, 601, 604, 607

Location-scale-free transformation, 812
Logarithm, 534
Logical zooming, 844
Logistic distribution, 598, 700, 701, 1068
Logistic regression, 934
Logit, 683, 694, 695, 699, 703, 771–772

mixed, 1068, 1070, 1082
mixed multinomial (MMNL), 1062,

1068–1071
model, 600, 681–682, 684, 694–699, 701,

713, 1062, 1068, 1070, 1081–1082
multinomial, 703–704, 1062
probability, 1068, 1069

Logit models, 600, 681–682, 684, 694–699,
711, 713, 1062, 1068, 1070,
1081–1082

Logit probability, 1068, 1069
Log-likelihood, 86, 139, 140, 143, 144

generalized linear model (GLM), 154, 159,
592

Log-linear model, 351, 408, 704, 820, 821,
823, 947

Log-logistic distribution, 598, 600, 695, 809
Lognormal distribution, 1081
Log-normal distribution, 809, 1068, 1081
Log-rank statistics, 869–871
Longitudinal, 100, 1116
Longitudinal data, 701, 705
LOS. See Length of stay
0/1-Loss, 929
Loss function, 173–177, 182, 184–188, 192,

193, 196, 661, 671, 752, 802, 884,
914, 915, 927, 929, 932, 934, 939,
999–1002, 1006, 1017

Low pass filter, 475, 578
L1-regression, 740
LR method, 127–130
LSs. See Least-squares
LTS. See Least trimmed squares
LU decomposition, 106, 108–109, 120, 121

MacDonald function, 1041
MAD. See Median absolute deviation
Magnetic field inhomogeneities, 1123, 1126
Magnetic resonance, 1114–1115
Magnetic resonance imaging, 1113–1135
Magnetism, 1114
Magnetoencephalogram (MEG), 1117–1119
Mallow Cp, 469, 887
MANET, 349–351, 843, 844, 848
Margin, 277, 284, 890–892, 902, 905, 920,

1000–1001, 1048, 1050
Marginal distribution function, 66, 812, 813
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Marginal distributions, 1048
Marginal likelihoods, 73, 159, 490–492, 612,

772, 788, 1086, 1090
Marketing, 415, 832, 853–855, 866, 1026,

1062, 1067
Market risks, 1025, 1026, 1039
Markov bootstrap, 515, 520–521, 523
Markov chain, 66, 74–80, 82–84, 88, 90,

93, 99, 101, 166, 167, 197, 198,
774–775, 778, 782, 786, 790, 793,
1079, 1087, 1088

Markov chain Monte Carlo (MCMC), 12, 66,
73–101, 140, 166, 167, 181, 490,
751, 767, 772–779, 781–790, 793,
795–797, 800, 811, 1039, 1047,
1073, 1076–1084, 1089, 1092

algorithm, 100, 140, 773–775, 785,
788–812, 1073, 1080, 1081

automated, 790
Markov chain Monte Carlo (MCMC) methods,

66, 166, 1047
Markov switching, 1085
Markov switching autoregressive model, 1087
MARSs. See Multivariate adaptive regression

splines
Martingale residuals, 870
Masking effect, 726
Mason hypergraphics, 354
Massive datasets, 552
Mathematica, 416, 430, 431, 1033
Mathematical programming, 184, 903
MATLAB R�, 945, 1033, 1034

MFE Toolbox, 1037, 1046
Matrix decompositions, 106–117, 120

Cholesky decomposition, 106–108, 134
Givens rotations (GR), 110–113
Gram–Schmidt orthogonalization, 110,

114–115
householder reflections (HR), 110–111
LU decomposition, 106, 108–109, 120,

121
QR decomposition, 109–115, 647
SVD decomposition, 106

Matrix inversion, 105, 106, 116–117, 647
Matrix linear recurrence, 49
Maximal conditional chi-square (MCC), 876
Maximally equidistributed, 51, 54
Maximization step (M-Step), 139, 143

exponential families, 144
mixture-of-experts model, 153
normal mixtures, 149

Maximum full likelihood, 816, 817
Maximum likelihood (ML), 30, 155, 483,

687–689, 832, 1157

Monte Carlo (MCML), 1072, 1074–1079,
1081

quasi-(QML), 1080, 1081
simulated, 1064, 1069–1071, 1076–1078

Maximum likelihood estimation (MLE),
85, 140–142, 145, 146, 148–151,
155–158, 163, 166, 268, 543, 547,
646, 647, 682, 718, 772, 810, 811,
822, 927, 965, 1032, 1035, 1038,
1064, 1078, 1082

global maximum, 141, 145, 146
local maximum, 141, 145–147

Maximum partial likelihood, 816
Maximum score method, 613, 614
MBR. See Memory-based reasoning
MCD. See Minimum covariance determinant
MCEM. See Monte Carlo EM algorithm
MCMC. See Markov chain Monte Carlo
MCML. See Monte Carlo maximum likelihood
MDI. See Multiple document interface
Mean, 711, 722, 723, 726, 727
Mean absolute deviation, 712
Mean squared error (MSE), 176, 188, 475,

477–482, 494, 543, 551, 555, 579,
650, 655, 657–661, 986–988, 990,
993, 994, 1003, 1008–1010, 1012,
1016

Measurement error, 542
Measurement noise, 186
Median, 274, 360, 362, 377, 394, 550, 597,

613, 614, 711–713, 715, 717,
720–722, 725, 727, 740, 741, 744,
745, 766, 865, 994, 1091, 1092

bias, 713
functional analytic, 713
location functional, 713

Median absolute deviation (MAD), 717, 719,
723, 727, 743

Median polish, 745
MEG. See Magnetoencephalogram
Memory-based reasoning (MBR), 839
ME network, 169
Menu hierarchy, 421
Mersenne twister, 49, 53, 54, 58
Message, 87, 247, 250, 259, 261, 264, 267,

430, 437, 438, 440, 444, 449, 450,
463, 790, 873

Message passing interface (MPI), 244, 247,
262–265, 268, 269

Messages, 437
M-estimation, 30, 594, 718–721, 730–732,

734, 738–739
Metaclass, 438
Metamodels, 530, 533–543, 545, 546
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Black-Box, 533–534
global, 535
polynomial, 535

Method of composition, 100
Method of moments, 810, 1036, 1064
Methods, 436

abstract, 452
overriding, 442
pure virtual, 453
virtual, 450
virtual method table (VMT), 451

Metric, 730, 731
Kolmogoroff ball, 723
Kolmogoroff metric, 713–714, 716, 722
Kolmogoroff neighbourhood, 724
Kuiper metric, 722
metric dko, 716, 717, 731
Vapnik–Cervonenkis class, 729

Metropolis–Hastings (MH) algorithm, 80–91,
165, 774–777, 781, 789, 790, 1070

Metropolis–Hastings method, 74
Metropolis method, 74, 85–86
M-functional, 718–720, 724–727, 730, 731,

734, 735, 738, 740, 741
with a redescending  -function, 721

MGF. See Moment generating function
Micromaps, 359–362
Military conscripts, 778
MIMD. See Multiple instruction stream–

multiple data stream
MiniCAVE, 357
Minimal set of variables, 314
Minimum covariance determinant (MCD),

734–736
Minimum volume ellipsoid (MVE), 733, 735,

736
Mirror filter, 229
Mirror scenarios, 539
Misclassification costs, 858, 859
Misclassification rate, 834, 930
Missing variables, simulation of, 778, 781
Misspecified models, 930
Mixed effect models, 705
Mixed model, 159–160
Mixed multinomial logit (MMNL), 1062,

1068–1071
Mixing density/distribution, 1040, 1042, 1044,

1068–1070
Mixture

Poisson distributions, 759, 1083, 1087
sampler algorithm, 1083

Mixture models, 141, 147, 166
generalized linear models, 154
linear-mixed-effects model (LMM), 168

mixture of factor analyzers, 168
normal mixtures, 140, 148–150, 157, 165,

796
Mixture-of-experts model, 140, 152–154,

161–162, 170
gating network, 152

ML. See Maximum likelihood
MLE. See Maximum likelihood estimation
MMNL. See Mixed multinomial logit
Mode

attraction, 781
tree, 549, 563

Model
AR, 517, 755
averaging, 490, 654, 759, 760, 786
binomial, 682, 683, 690, 1086
choice, 469, 692, 751, 758–760, 769, 770,

774, 782, 1062
parameter space, 759, 760
and testing, 758–760

complexity, 406, 470, 475–478, 482, 484,
832, 1007, 1099

domain, 435–438
generalised linear, 754, 757, 767, 771
generalized linear, 13, 154, 159, 469, 546,

592, 600, 675, 681–708, 996, 999
index, 470, 474, 476, 482, 782
mixture, 141, 147, 156, 157, 165, 166,

168, 777, 778, 780, 785, 947, 1062,
1084

probit, 602, 684, 696, 703, 767, 773,
775–777, 781, 1068, 1082

selection, 469–495, 583, 599, 645, 651,
653, 655–657, 660, 664, 693, 701,
706, 752, 756, 887, 927, 928,
937–941, 947, 1083

generalized linear model (GLM), 469,
675, 681–708

selection procedures, 693
Modified Bessel functions, 1041, 1046
Moment generating function (MGF), 207,

953–956, 958, 960, 962, 964, 968,
971, 973, 975, 977, 980–982, 1042

Moment index, 624
Mondrian, 342, 349–351
Monte Carlo, 7, 9, 175, 177, 178, 189, 199,

614, 766, 1078, 1099
confidence interval, 764
with importance function, 762
Markov chain (MCMC), 12, 66, 73–101,

140, 166, 167, 181, 490, 751, 767,
772–779, 781–790, 792, 794–797,
800, 802, 1039, 1046, 1076–1079,
1082–1084, 1087, 1090
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maximum likelihood (MCML), 1072,
1074–1079, 1081

Monte Carlo EM (MCEM) algorithm, 140, 158
Monte Carlo maximum likelihood (MCML),

1072, 1074–1079, 1081
Monte Carlo method, 35, 73, 157, 190, 435,

529, 530, 761–774, 788–801
and the curse of dimension, 740

Monte Carlo techniques, 761
population, 761
sequential, 530

Moore’s law, 243
Mosaic map, 553
Mosaic plots, 342, 349–351, 844, 845,

847–849
Mother wavelet, 227
MPI. See Message Passing Interface
MRA. See Multiresolution analysis
MRG. See Multiple recursive generator
MRG32k3a, 58
MSE. See Mean squared error
M-step (Maximization step), 139, 140,

143–144, 147, 150, 151, 153, 158,
160–167, 169

exponential family, 143
failure-time data, 150–152
generalized EM (GEM) algorithm, 144,

160
normal mixtures, 164

Multiclass classification, 162
Multicollinearity, 646, 649–652, 657–660,

668
exact, 645, 649, 650, 656, 662
near, 645, 647, 649, 650

Multidimensional lines, 324
Multilevel models, 269, 706
Multimodality, 191, 398, 565, 1084
Multinomial distribution, 154, 162, 703, 704,

1085
Multinomial model, 703
Multinomial responses, 703
Multinormal distribution, 65
Multiple binary responses, 871, 872
Multiple-block M–H algorithms, 88–93, 96,

100
Multiple counting processes, 820–822
Multiple document interface (MDI), 423
Multiple failures, 817, 819–823
Multiple instruction stream–multiple data

stream (MIMD), 244, 264
Multiple recursive generator (MRG), 41–47,

50, 51, 54, 55, 57, 58
Multiple recursive matrix generator, 54
Multiply-with-carry (MWC) generator, 48

Multiresolution analysis (MRA), 222–229, 235
Multiresolution kd-tree (mrkd-tree), 140, 165
Multivariate adaptive regression splines

(MARSs), 545
Multivariate normal, 1047
Multivariate relations models, 327–329
Multivariate smoothing, 571, 572, 589–595
Multivariate-t density, 86
Mutation, 192, 194–198, 654, 1105
MVE. See Minimum volume ellipsoid
MWC. See Multiply-with-carry

Nadaraya–Watson estimate, 506, 573
Negative binomial distribution, 683
Nested models, 692
(t, m, s)-net, 50
Network of workstations (NOW), 245, 246
Network sensor, 1142, 1143
Neural nets, 546
Neural networks, 142, 152, 154–155, 169, 175,

188, 192, 546, 675, 832, 837–839,
894, 903, 918

Newton–Raphson algorithm, 85, 184, 190,
593, 689, 690, 1069

Newton–Raphson method, 141, 189, 822
Newton’s method, 30–32, 105, 163, 184,

671–673
New York Stock Exchange (NYSE), 1080,

1081
Neyman–Pearson theory, 714, 756
NFL theorems. See No free lunch theorems
NLS. See Nonlinear least squares
Node

internal, 870
parent, 870
proportional hazard, 870
root, 870
terminal, 870, 872–874

Node impurity, 857, 863, 870, 871
No free lunch (NFL) theorems, 179
Noise, 533, 541

measurement error, 542
white noise, 539

Noisy measurement, 176, 177, 183–185, 187,
198

Nominal logistic regression, 703
Nonhomogeneous Poisson process, 820–823
Non-identifiable models, 939
Nonlinear least squares (NLS), 30, 601,

670–673
asymptotic normality, 671
the existence of the, 671
inference, 670, 673
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Nonlinear regression, 13, 546, 670–675,
682

Nonlinear RNGs, 55
Non-nested models, 693
Non-orientability, 330
Nonparametric autoregressive bootstrap, 518
Nonparametric curve estimation, 504, 523
Nonparametric density estimation, 549, 550,

552, 554–555, 566
Non-parametric learning methods, 939
Non-uniform memory access (NUMA), 246
Normal approximation, 205, 501–503, 516,

614, 762, 765, 955, 1074, 1078
Normal distributions, 60, 62, 79, 94, 96, 148,

176, 182, 204, 502, 522, 550, 551,
598, 602, 622–624, 636, 640, 683,
692, 712, 713, 724–727, 736, 737,
742, 753, 775, 796, 810, 955, 956,
966, 980, 1026, 1027, 1030, 1048,
1066, 1070, 1077, 1084

Normal equations, 107, 574, 646, 648, 650
Normal-inverse gaussian distribution, 1043
Normalization property, 231
Normalizing constant, 74, 81, 89, 94, 97, 98,

583, 589, 728, 737, 1041
ratios of, 89, 589

Normal reference rule, 559
Normal variance-mean mixtures, 1040, 1043
Novelty detection, 883, 916
NOW. See Network of workstations
Nugget effect, 542
Nuisance parameter, 655, 656, 683, 692, 702,

821, 823
Null deviance, 694
NUMA. See Non-uniform memory access
Numerical standard error, 79
nViZn, 361–362, 410
Nyquist ghosts, 1122–1123, 1126, 1134
NYSE. See New York Stock Exchange

Object, 12, 28, 35, 141, 174, 203, 267, 274,
300, 354, 376, 420, 435, 486, 624,
669, 687, 777, 809, 826, 854, 884,
1069, 1095, 1115

composition, 440–441, 443, 448, 457,
461

member, 436
starting, 463
types, 438

Object oriented programming (OOP), 266,
352, 435–438, 440, 443–445, 448,
450–452, 454, 463–465

typical program structure, 463

Occam’s razor, 476, 477, 489
Offset, 691, 891
Old faithful geyser, 564
Old faithful geyser data, 551, 552
OLSs. See Ordinary least squares
One at a time, 540
One-factor-at-a-time designs, 536, 538
One-way analysis of variance, 742
One-way table, 742–743
OOP. See Object oriented programming
OpenMP, 244, 246, 256–259, 265, 267
Optimal bandwidth, 556
Optimization, 538, 545

robustness, 546
Optimization/optimizer, 12, 23, 30–32, 145,

173–199, 268, 321, 388, 389, 529,
538, 545, 576, 583, 601, 620,
631, 665, 671, 673, 687, 688, 691,
849, 855, 883, 902–904, 906–908,
910–913, 920, 933, 935, 944, 1008,
1033, 1044, 1046, 1048, 1069, 1074,
1082, 1127, 1129

Ordered probit model, 703
Order of menu items, 421
Ordinal logistic regression, 703
Ordinary least squares (OLSs), 536–539, 541,

597, 603, 690, 1074
Orthogonal designs, 538, 544
Orthogonality, 537, 538
Orthogonality property, 231
Orthogonal series, 13, 555, 556, 563, 578–579
˛-Outlier, 727, 741, 742
˛-Outlier region, 727, 741, 742
Outliers, 344, 408, 544, 594, 624, 711,

725–728, 732–733, 735–737,
741–743, 745, 828, 840, 932–933,
1055, 1079, 1130, 1134, 1140

detection, 828, 840, 948
high dimensional outliers, 736
identification, 726–728, 736, 742, 743
outlier identification, 727
outlier identifier, 728
˛-outlier region, 727, 741
region, 727, 736, 741, 742
regressor-outliers, 742
response-˛-outlier region, 742

Outwards testing, 728
Ovarian cancer data, 312, 320, 321
Overdispersion, 702
Overfitting, 837
Overplotting, 843
Oversmoothed bandwidths, 557, 560
Oversmoothing, 556, 560
Overview of fundamental, 323–329
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Panel data, 611, 705, 1062, 1086
Panels, 1061, 1062, 1086
Panning, 28, 340, 343–344, 353
Parallax, 302, 307, 311
Parallel computing, 12, 134, 243–269
Parallel coordinate display, 352, 845
Parallel coordinate plots, 341, 344–346, 348,

351–353, 358, 845
Parallel coordinates, 299–302, 306, 312, 315,

316, 323–329, 351, 352, 845
Parallel virtual machine (PVM), 244, 247,

259–262, 269
Parameter–expanded EM (PX–EM) algorithm,

140, 163–164
Parameter of interest, 166, 683, 686, 754
Parameter space, constrained, 752, 1084
Parseval formula, 215
Partial autocorrelation, 755
Partial least squares (PLS), 15, 659, 663, 664,

667–670, 674, 675
algorithm, 667, 668
extensions, 668–669
latent variables, 76, 667, 669
modified Wold’s R criteria, 668
nonlinear regression, 675
Wold’s R, 668

Partial likelihood, 609, 807, 814–818, 870
Partially linear models, 603, 604
Particle systems, 793, 796
Password cracking, 1152
Pattern recognition, 148, 299–301, 476, 827,

908, 914
PCA. See Principal components analysis
Pearson statistic, 691
Penalized least squares, 576–577, 1004
Penalized likelihood, 141, 164, 579
Perfect sampling method, 101
Periodogram, 203, 211–212, 514, 521, 522
Permutation (axes), 305, 307
Permutation importance, 876
Permutation tests, 514
Person detection, 826
Physiological noise, 1124, 1129, 1134
Piecewise polynomial, 61, 576, 577
Pie chart, 348–349, 399, 420
Pilot estimate, 586
Pinch query, 305, 309
Pixel grand tour, 347
Plackett–Burman designs, 539, 541
Planes and hyperplanes, 324–327
PLS. See Partial least squares
Plug-in, 499–501, 586–587, 832, 979, 987
Plug-in bandwidth selection, 500, 587
PMC vs. MCMC, 796

Point process, 63, 323, 816, 1081, 1087
Poisson data, 704
Poisson distribution, 64–65, 702, 759, 819,

1083, 1087
Poisson process, 63, 64, 820–823
Polymorphic class, 451
Polymorphism, 447, 449–457, 877
Polynomial, 535, 536, 538

lattice, 51
LCG, 49
regression, 530, 535, 539, 545, 586, 592
terms, 581

Poly-t distribution, 753
Population, 191–198, 205, 206, 268, 291,

337, 340–342, 379–382, 386, 387,
393–395, 426, 470, 597, 601,
602, 606, 654, 759, 778, 793–798,
813–814, 828, 846, 874, 999, 1000,
1035, 1036, 1046, 1118

quantile, 1046
Population Monte Carlo (PMC) techniques,

793–798, 801
Portfolios of assets, 1047
Positron emission tomography (PET), 268,

1118, 1133, 1134
Posterior density, 85–89, 97, 98, 166, 167, 764,

1064, 1065, 1069, 1070, 1073, 1078,
1084, 1088, 1089, 1092

Posterior distribution, 73, 141, 166, 752, 754,
756, 758, 761, 763, 767, 768, 770,
773–776, 779–781, 787, 791, 796,
797, 799, 1065, 1082–1083

Posterior mean, 491, 753, 1064, 1066, 1067,
1078, 1079, 1084, 1085, 1090, 1091

Posterior probabilities, 149, 150, 153, 165,
169, 489, 756, 777, 832, 878, 935

Power expansions, 817, 818
Power-law tails, 1030, 1042
Power method, 127–129, 131
Power-of-two modulus, 46
Power parameter, 812–813
Prediction, 73, 169, 218, 286, 406, 478, 481,

485, 486, 488–490, 494, 542, 543,
549, 583, 584, 651–656, 668, 699,
754–756, 837, 859, 868, 884, 928,
996, 1007, 1013, 1095, 1105

sequential, 406
Predictive modeling, 831–832, 837
Predictive squared error (PSE), 478, 485, 494
PRESS, 486
Primitive polynomial, 41, 49
Principal components analysis (PCA), 314,

563, 620, 622, 625, 626, 628, 643,
656, 657, 902, 917, 920
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Principal components regression (PCR),
656–658

choice of principle components, 656–658
Principal curve, 635–638
Prior

proper, 761, 775, 799
Prior (density), 759

informative, 1067, 1085
uninformative, 1066, 1077

Prior distribution, 492, 751–753, 755, 759,
761, 772

conjugate, 758
selection of a, 751

Prior-posterior summary, 86, 87
PRNs. See Pseudo-random numbers
Probability of move, 74, 81–84, 89, 91
Probit

model, 598, 602, 684, 696, 703, 767, 773,
775–777, 781, 1063–1065, 1067,
1068, 1082

multinomial, 1065, 1067
multinomial multiperiod, 1062–1068
multivariate, 1068
regression, 96
static multinomial, 1065

Problem domain, 435–438
Process control, 188, 259, 314, 329
Process forking, 244, 251–253
Productivity, 425, 426, 877–878
Program execution profiling, 1158
Progress bar, 426
Projection, 114, 278, 284, 285, 323, 330, 337,

343, 344
index, 622–624, 635–636
pursuit, 346–347, 353, 590, 620, 622–625,

636, 639–643, 845, 994
pursuit guided tour, 346–347, 353
pursuit index, 346, 636
step, 637, 638

Projective plane, 305
Proportion, 5, 81, 146, 163, 392, 621–622, 726,

737, 848, 857
Proportional hazards model, 594, 609–612,

705, 814, 816
Proposal

adaptive, 796
distribution, 74, 777, 789, 790, 793, 794,

796, 797, 800
multiscale, 796

Prosection matrix, 343
Prosections, 343
Proximate planes, 326–327
Proximity, 218, 326, 865

Pruning, 760, 834, 837, 840, 857–859, 869,
872, 874

PSE. See Predictive squared error
Pseudo data, 499
Pseudo-likelihood, 702–703
Pseudorandom number generator, 177
Pseudo-random numbers (PRNs), 530, 541,

1069
Pthread library, 254–256
Pulse sequence, 1120–1122, 1124
PVM. See Parallel Virtual Machine

Q-function, 144, 145, 151–155, 158–161, 163,
166

complicated E-Step, 158–160
generalized EM (GEM) algorithm, 144
MC approximation, 158–160

QML. See Quasi-maximum likelihood
QPCA. See Quadratic principal components

analysis
QR decomposition, 109–116, 647, 648
QR method, 129, 130
Quadratic principal components analysis

(QPCA), 625, 626
Quality improvement, 188
˛-Quantile, 511–513, 724, 727, 758, 976
Quasi-likelihood, 506, 702, 703, 705–706
Quasi-maximum likelihood (QML), 1080
Quasi-random numbers, 1069
Queuing systems, 188

R, 9, 21, 51, 58, 60–62, 65, 109, 111–114, 119,
129, 220, 269, 275, 287, 288, 295,
299, 312, 320, 354, 361, 418–432,
559, 631, 634, 652, 668, 717–719,
726–730, 793, 802, 858, 870, 872,
884, 911–914, 916, 968, 971–975,
1069, 1070, 1073–1075, 1077

Radial basis networks, 155, 894
Radial functions, 546
Random effects, 100, 101, 142, 159, 168–169,

754, 1070, 1071, 1131
Random forests, 865, 875–877, 879, 986, 998,

1019
Random graph, 1157
Randomized clinical trial, 874
Random noise, 62, 175, 1114, 1125
Random number generator (RNG), 12, 35–66,

268, 441–443, 449, 455–457
approximate factoring, 45
combined generators, 54–56
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definition, 35
figure of merit, 39, 43, 50
floating-point implementation, 45
implementation, 36, 37
jumping ahead, 47
nonlinear, 36, 54–56, 63
non-uniform, 36, 58–66
period length, 55
physical device, 36–37
power-of-two modulus, 46
powers-of-two-decomposition, 45, 46
purely periodic, 37, 38, 47, 49
quality criteria, 36, 38–39
seed, 37
state, 37, 38, 40
statistical tests, 36, 39–40, 44, 55–58
streams and substreams, 38, 58

Random numbers, 36–38, 55, 58, 59, 65, 268,
269, 449, 455, 530, 532, 1037, 1044,
1069

common, 37, 59, 532, 540, 1069, 1074
PRN, 530
pseudo, 35, 37, 177, 530, 532, 533, 541,

1069
quasi, 1069

Random permutation, 65, 505–508, 514
sampler, 1084

Random perturbation vector, 188
Random search, 173, 175, 177, 179–184, 186,

187, 191, 198
Random variable, 35
Random walk M–H, 81, 86, 87, 776–777, 781,

782, 789, 790
Rank correlation, 1047
Rao–Blackwellization, 98
Rate of convergence, 30, 32, 146–147, 156,

161, 163, 165, 184, 190, 198,
502, 516, 518, 520, 555–556, 600,
603, 611, 613, 614, 664, 724, 907,
913

rate matrix, 147
Ratio

importance sampling for, 82
of integrals, 757, 763–764
and normalizing constants, 81
of posterior probabilities, 756

Rational functions, 546
Ratio-of-uniforms method, 63–64, 1045
Real-number coding, 193, 194
Recurrences Modulo 2, 49–54
Recursive interactivity, 329
Recursive partitioning, 382, 403–404, 590,

853–879
Recursive sample mean, 1143

Redescending  -function, 719, 721
Red-green blindness, 426
Reduced conditional ordinates, 98
Reformatting, 340, 343–344
REGARD, 349–351, 358
Regression, 534–542, 929, 935, 939–941

depth, 741
equivariant, 739, 740
functional, 500, 519, 585, 645, 655, 666,

670, 672, 674, 675, 691, 738–741,
915, 992, 993, 1003, 1004, 1009

linear, 535
linear regression, 737
L1-regression, 740
robust regression, 737
splines, 469, 571, 577
trees, 834, 866, 867, 872, 879, 985, 988,

990–994, 996
Regression-type bootstrap, 518–520
Regressor-outlier, 742
Regularization, 158, 886–888, 902, 905, 911,

920, 931, 933, 935, 937, 999, 1010,
1018

Regularization parameter, 931, 938
Rejection method, 62–64, 66, 181
Rejection sampling, 160, 1077
Relative projection pursuit, 624–625
REML. See Restricted maximum likelihood
Remote sensing data, 552
Replications, 541, 543, 546
Reproducible research (RR), 9
Resampling, 13, 155–157, 268, 499–524, 533,

651, 796, 797, 829, 992, 995, 1127,
1128

Resampling tests, 509–515
Rescaling, 120, 340, 343–344, 351, 561, 660,

695, 696, 841, 1063
Residuals, 23, 120, 123, 127, 394, 408,

476–477, 500, 506, 515–519, 521,
576, 589, 648, 659, 666–668, 672,
673, 688, 691, 740, 744, 745, 870,
1004, 1007, 1012–1014, 1017, 1074,
1078, 1091

Residuals generalized linear model (GLM),
688

Residual sum of squares (RSS), 476–477, 484,
485, 576, 648, 652, 655, 669, 673,
688, 1012, 1014, 1017

Resistant one-step identifier, 742
Resolution IV, 539

interactions, 539
Resolution of identity, 221
Response-outlier, 742
Response surfaces, 530
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Restricted maximum likelihood (REML), 268,
492

Reverse move
probability, 783

Reversible, 77, 84, 90, 93
Reversible jump MCMC, 783–786, 788, 1083
Ridge regression (RR), 475, 659–664, 674

almost unbiased, 661
almost unbiased feasible, 661
bias, 659, 661
choice of ridge parameter, 659–662
exact multicollinearity, 662
feasible almost unbiased, 661
feasible generalized, 661
generalized, 660–661
minimization formulation, 664
minimization problem, 660
nonlinear, 674
nonlinear regression, 673, 674
reduced-rank data, 664
ridge coefficients, 661
ridge parameter, 660, 661

Risk, 6, 84, 295, 481, 494, 529, 544, 558,
585, 586, 599, 808, 814, 832, 860,
866, 872, 873, 884–887, 889, 890,
904, 954, 960, 975–978, 999, 1001,
1025–1026, 1033, 1039, 1043,
1047–1050, 1055

analysis, 544
empirical, 885–887, 889, 890, 904, 999,

1001, 1003
expected, 885, 889, 1047
measure, 585, 960, 976, 1025–1026, 1039
regularized, 888
structural minimization, 883, 886–890, 902

RiskMetrics, 1026
Rmetrics, 1033, 1044
RNG. See Random number generator
Robbin-Monro algorithm, 793
Robust, 32, 55, 58, 112, 122, 293, 501, 529,

546, 594–595, 622, 624, 711–745,
810, 813, 820, 857, 864, 933, 994,
1033, 1071, 1090, 1099, 1110, 1120

functional, 726
location functional, 713, 716, 743
regression, 32, 594, 737, 740
scatter functional, 735
statistic, 711–745

Robustness, 46, 58, 59, 179, 183, 196, 338,
546, 713–715, 717, 719, 723, 739,
837, 933, 1097

Root-finding, 30–32, 174, 184, 186, 190
Root node, 284, 834, 857, 858, 869, 870, 876

Rotation, 111, 112, 232, 233, 284, 325, 331,
344–346, 351–354, 400, 401, 627,
628, 1114, 1127, 1128

Roulette wheel selection, 193, 196
RR. See Reproducible research
RSS. See Residual sum of squares

Sample mean, 186, 187, 203, 500, 511, 514,
518, 622, 640, 743, 810–811, 813,
994, 1073, 1076, 1077, 1143

Sampler performance, 76, 99
SAS, 58, 418, 802, 847, 879
Satellite data, 302–307
Satterwaite approximation, 588
Saturated designs, 540
Saturated model, 688, 704, 1007
Saturation brushing, 348, 351
Scalable EM algorithm, 152
Scale functional, 717, 719–724, 731–736, 741,

743
Scale normalization, 601, 611
Scales, 32, 59, 176, 203, 246, 273, 340, 376,

476, 541, 550, 601, 622, 688, 717,
759, 812, 827, 860, 912, 947, 970,
990, 1027, 1089, 1121, 1152

Scaling algorithm, 337
Scaling equation, 223, 225
Scaling function, 223, 224, 227, 229–232
Scanner data, 352, 1065
Scatter diagram, 550–552
Scatterplot, 301, 311, 316, 337–342, 344, 345,

348, 350–354, 358–359, 379, 394,
420, 423–426, 573, 786, 789, 830,
841, 843, 845

matrix, 301, 311, 337, 339–341, 344, 351,
358, 424, 425

SCD model. See Stochastic conditional
duration model

Schema theory, 196–197
Schwarz’ Bayes information, 693
Score function, 686
Screening, 541–542
Search direction, 175–177, 673
Secondary analysis, 827
Selection, 13, 186, 285, 314, 335, 469, 572,

599, 619, 645, 752, 828, 858, 887,
927, 986, 1083, 1097, 1115, 1156

Selection sequences, 343, 350, 363, 845
Self-consistency, 145
Semiparametric, 600

models, 590, 597–615, 1062
regression, 708
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Semiparametric generalized linear models,
706–708

Sensitivity analysis, 529–530, 545
Sensor placement, 188
Sequential bifurcation, 541
Sequential designs, 545
Sequential two-step maximum likelihood

(TSML), 1048
Serial tests, 56
Setter, 437
S-functional, 721, 734, 736, 741
Shape parameter, 60, 810–811, 813, 1031
Shared memory, 245–247, 249, 252–254, 257,

259, 265, 267, 269
Shortcut, 416, 421
Shortest half, 716, 721, 724, 733, 735, 740
Shrinkage estimators, 658, 666
Shrinking neighbourhood, 715
Shuffling, 55
Sieve bootstrap, 517, 518, 523, 524
Significance, 541, 542
Simulated maximum likelihood (SML), 1064,

1069–1071, 1076–1078
quasi-random, 1069

Simulated moments, 1066, 1069
Simulated scores, 1069
Simulated tempering, 101
Simulation, 4, 37, 74, 160, 174, 205, 243, 280,

436, 469, 499, 529, 588, 654, 712,
757, 813, 871, 939, 976, 1003, 1031,
1061

Simulation-based optimization, 176, 188
Simulation of generalized hyperbolic variables,

1043–1045
Simulation of stable variables, 1034–1035
Simultaneous perturbation SA (SPSA), 187
Single index model, 600–605, 607, 613, 706
Single instruction stream–multiple data stream

(SIMD), 244, 264
Single instruction stream–single data stream

(SISD), 245
Single nucleotide polymorphisms (SNPs), 877
Single trial fMRI, 1120
SIR. See Sliced inverse regression
SIRpp, 640–641
Sklar’s theorem, 1047
Slammer worm, 1163
Slash distribution, 725
Sliced inverse regression (SIR), 624–625,

639–640, 643
Slice sampling, 95, 101, 160
Slicing, 27–28, 43, 95, 101, 160, 193, 245,

251–254, 284, 285, 343, 564, 566,

624–625, 641, 643, 1114–1116,
1120, 1121, 1123, 1127, 1129, 1130

SML. See Simulated maximum likelihood
Smooth bootstrap, 795
Smoothed maximum score estimator, 614, 615
Smoothing, 13, 32, 63, 86, 146, 175, 218, 328,

339, 377, 469, 503, 554, 599, 638,
684, 721, 795, 831, 902, 986, 1030,
1075, 1133

Smoothing parameter, 473–477, 479, 485,
490, 492, 494, 554–556, 563, 571,
577–579, 582–587, 1008

SMP. See Symmetric multiprocessor
Social networks, 826
Soft thresholding, 475
Software reliability, 819, 823
Sonar data, 312, 319–320
Space filling, 544, 545
Sparse, 944

matrices, 105, 127, 131–134, 408
solution, 933

Sparse version of the IEM algorithm (SPIEM),
165

Sparsity, 590, 905
Specification search, 599, 605
Spectral density, 79, 211, 212, 215, 521–523
Spectral test, 43, 57
Spectrogram, 214
Speech recognition, 357, 853
Spider, 349–350
SPIEM. See Sparse version of the IEM

algorithm
SPIEM algorithm, 165
Spine plot, 349, 350
Spline, 13, 469, 470, 473–481, 485, 486, 488,

490–492, 494, 495, 535, 546, 555,
571, 576–577, 579, 582, 675, 887,
1003, 1008–1014, 1016, 1039

Spline smoother, 582
S-Plus, 359–360, 363–364, 830–831,

1033–1035, 1044
SPM. See Statistical parametric mapping
Spreadplots, 349
Spreadsheet, 544
SPSA. See Simultaneous perturbation SA
SPSA Web site, 188
SPSS, 361, 416, 418, 420–430, 432, 802
SQL. See Structured Query Language
Squared-loss, 929
Squeeze function, 63
SRM. See Structural risk minimization
Stable distributions, 1027–1039

maximum likelihood method, 1038–1039
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sample characteristic function methods,
1036–1038

sample quantile methods, 1035–1036
Stable/generalized hyperbolic laws, 1053
Stably bounded algebraic curve, 632–633
Standard deviation, 182, 292, 294, 493, 557,

602, 642, 712, 717, 723, 726–728,
793, 795, 939, 941, 1030, 1066,
1067, 1071, 1074, 1077–1079,
1084–1086, 1092, 1161

Standard errors, 79, 140, 155–158, 602, 615,
809, 1070, 1071

Standardization, 534
Starting value, 145–148
Starting (initial) value, 147, 149
State space, 37, 38, 75, 76, 800, 1075, 1076,

1080–1081, 1088
State space model, 1075, 1081
State space model Gaussian linear, 1075,

1080–1081
Stationarity, 197–199, 514, 523, 752, 755, 774,

787, 1071, 1085
Statistical computing, 4–13, 257, 267–268,

1033–1035
Statistical computing section, 5, 8
Statistical functional, 12, 272, 276, 279, 281,

282, 713, 714, 718, 723, 725, 741
Statistical parametric mapping (SPM), 1133
Statistical tests, 39, 56
Steepest descent method, 126, 184–185, 671
Stein-rule estimator, 658, 659, 674, 675
Stereoscopic display, 354
Stereoscopic graphic, 354
Stochastic approximation, 169, 173, 175, 177,

179, 183–190, 198, 997
Stochastic conditional duration (SCD) model,

1080, 1081
Stochastic gradient, 184, 190
Stochastic optimization, 12, 173–199
Stochastic volatility (SV) models, 1061,

1071–1072, 1075, 1077–1081
canonical, 1071–1072, 1075, 1077–1080
multivariate, 1080

Stock trading systems, 1080
Stopping rule, 30, 143, 156, 158, 793, 801,

1012
Strategic issues, 532
Streaming data, 849, 1140, 1143–1146, 1148,

1161
Structural risk minimization (SRM), 883,

886–889, 892, 902
Structured Query Language (SQL), 274, 283,

286, 291, 377, 388–389, 394, 418
Structure parameter, 807, 822

Student, 531, 541
Student-t distribution, 1078–1080
Sub-categories, 312, 319–321
Subclass, 444
Subsampling, 147, 485, 503, 514–516, 523,

613, 653, 796, 861, 986, 992,
996–998

Substitution principle, 457, 459
Subtract-with-borrow, 48
Successive overrelaxation (SOR) method, 121,

124–125
Sufficient statistic, 144, 149
Supersaturated designs, 541
Supervised learning, 148, 828–829, 831, 834,

837, 927–930, 947
Supplemented EM (SEM) algorithm, 155
Support, 38, 74–75, 81, 94, 98, 100, 131, 164,

169, 245, 252, 256, 257, 262, 264,
267, 268, 274, 279, 286, 289, 315,
328, 336, 342, 350–353, 417–418,
422, 429, 449, 454, 455, 460, 494,
509, 524, 534, 546, 562, 599, 601,
604, 607, 608, 612, 670, 755, 762,
763, 766–767, 771, 777, 789, 790,
832, 840, 845–848, 855, 866–868,
883–920, 934, 955, 962, 964, 972,
974, 979, 990, 996, 1030, 1085

Support vector machine (SVM), 131, 832, 839,
854, 883–920, 934, 1019

decomposition, 906–910
linear, 839, 854, 883, 889–893, 908, 912,

914, 917, 920
optimization, 883, 907, 908, 911–913, 920
sequential minimal optimization (SMO),

907–910
sparsity, 905

Support vector novelty detection, 883
Support vector regression (SVR), 534, 546,

914–916, 933
Surrogate data tests, 514–515
Surrogates, 530
Surrogate splits, 864, 865
Survival analysis, 14, 150, 704–705, 807–823,

868, 869, 998, 1019
Survival function, 807, 808, 869, 870
Survival model, 594, 814
Survival rate

variance, 796
Survival trees, 856, 868–871, 875, 877
Susceptibility artifacts, 1124
SVD decomposition, 106, 117, 118, 672
SVM. See Support vector machine
SVR. See Support vector regression
Symbolic regression, 546
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Symmetric command sequence, 427, 428
Symmetric multiprocessor (SMP), 246
Syn cookie, 1142
Synonym

computer experiment, 529
confounding (see Bias)

SYSTAT, 416, 419–424, 426, 428
Systems of linear equations

direct methods, 117–121
Gauss–Jordan elimination, 118–120
iterative refinement, 118, 120–121

gradient methods, 121, 126
conjugate gradient method, 127
Gauss–Seidel method, 126
steepest descent method, 126

iterative methods, 121, 122
Gauss–Seidel method, 124
general principle, 121–123
Jacobi method, 123–124
SOR method, 124–125

2 	 2 table, 816, 818, 836
Table Production Language (TPL), 389
Tactical issues, 532
Taguchi, 545
Tail dependence, 1047, 1048
Tailored M–H, 83, 86–88, 96, 100
Tailoring, 90, 760, 831, 1079
TAQ database, 1081
Target tracking, 176
Tausworthe, 52
Tausworthe generator, 49
Taylor series, 533, 535, 580
Taylor series expansions, 146, 580, 594, 822,

1074
TCP three-way handshake, 1141, 1142
t -distribution folded, 82–83, 511, 532, 587,

731, 763–764, 767, 790, 791, 953,
964, 965, 1039, 1080

Tempered stable distribution (TSD),
1030–1031

Tempering, 53, 101, 782, 1030–1031, 1042
Terminal nodes, 858–860, 865, 870–873, 991,

1002, 1010, 1017, 1019
Termination criterion, 31, 196, 907
Tesla, 1115, 1124
Test

data, 829
IS A-HAS A, 449, 457

TestU01 library, 57
Thinning, 63, 363
Threading, 244, 246, 253–259, 262, 269

Thresholding, 183, 218, 475, 480, 484, 630,
801, 809, 837, 840, 846, 847, 859,
861–864, 870, 891, 905, 989, 1087,
1114, 1131–1133, 1156, 1161

Threshold parameters, 809, 813
Time series, 82, 211, 217, 218, 239, 269,

349–350, 353, 362, 406, 501, 504,
507, 512, 514–519, 521, 524, 564,
579, 755, 916, 948, 954, 968, 1019,
1051, 1061, 1071, 1085–1088,
1124–1125, 1129–1131, 1133, 1160

Tissue contrast, 1116
TLD. See Truncated Lévy distributions
Tournament selection, 193–194
TPL. See Table Production Language
Trade-off analysis, 328
Traffic management, 188
Training data, 154–155, 344, 829, 833, 836,

886, 914, 916, 995
Training samples, 928
Transform

continuous wavelet, 219–222, 232
discrete Fourier, 29, 204, 210–212, 472,

478
discrete wavelet, 204, 232–240
empirical Fourier–Stieltjes, 204, 206
fast Fourier, 28, 29, 211, 232, 562, 1032
Fourier–Stieltjes, 206
Hilbert, 214–215
integral Fourier, 212
Laplace, 203, 207, 1050
short time Fourier, 213, 214
Wigner–Ville, 203, 204, 215–217
windowed Fourier, 212–214

Transformation
Box–Cox, 204, 206, 207, 606, 684–685
Fisher z, 204, 205

Transformation models, 600, 606–610
Transformed density rejection, 63
Transition kernel, 76–78, 83, 84, 90, 92, 93,

99, 101, 796
Transition matrix, 49, 197, 198
Translation equivariant functional, 732
Transmission control protocol, 1140
transparent ˛-level contour, 348
Trapping state, 780
Tree, 857

growing, 834, 857, 859
pruning, 857–859, 872
repairing, 878
within-node, 858

Tree-based methods, 853, 854, 856, 868,
871–874
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Trellis display, 424, 425
Triad problem, 307
Triangular distribution, 1068
Trigonometric regression, 469, 471–473, 475,

476, 478, 480, 486, 487
Trojan program, 1144, 1146
Truncated Lévy distributions (TLD), 1030
TSD. See Tempered stable distribution
Tukey’s biweight function, 719, 736
Twisted generalized feedback shift register

(GFSR), 49, 52–54
Twisted GFSR, 53
Two-way analysis of variance, 743–744

uLSIF. See Unconstrained least-squares
importance fitting

UMA. See Uniform memory access
UML. See Unified Modeling Language
UML diagram

activity, 442
class, 442
object, 442
state, 442

Unbiased risk, 558
Unbiased risk estimation, 558, 585–586
Uncertain predictors, 876–877
Unconditional coverage, 1054
Unconstrained least-squares importance fitting

(uLSIF), 947
Under-fitting, 513, 886–887
Unified Modeling Language (UML), 436,

442–443, 445, 453, 454, 456
Uniform distribution, 35, 38, 39, 59, 63–64,

66, 181, 514, 786, 1050, 1068
Uniformity, 39, 50
Uniformity measure, 38, 39, 50–51
Uniform memory access (UMA), 246
Uninformative priors, 1066, 1077
Unit measurement, 277, 379, 391–392,

717
Unobserved heterogeneity, 609–612, 1067
Unobserved (or latent) variables, 1061
Unpredictability, 41
Unsupervised learning, 148, 469, 826,

828–829, 831
User profiling, 1151, 1156, 1159
Utility/utilities, 295, 410, 781, 1062, 1063,

1065, 1068, 1070, 1098

Validation, 534, 535, 542
cross-validation, 545

Validation data, 829

Value at Risk (VaR), 976, 977, 979, 980,
1025–1055

copulas, 1027, 1047–1050
vanGogh, 424
Vanishing moments, 230–232
Vapnik–Cervonenkis class, 729
Vapnik’s 2-insensitive loss, 933
VaR. See Value at Risk
Variable

auxiliary, 95, 782
Variable selection, 470, 639, 650–657, 659,

662, 664–670, 674, 760, 986,
994–996, 1010, 1017–1019

all-subsets regression, 653–655
branch and bound, 653, 654
genetic algorithms, 654

backward elimination, 651–652, 655
cross validation, 651, 652, 655–656
forward selection, 652–653, 655
least angle regression, 653, 664
model-free, 674
pre-test estimator, 652
stepwise regression, 651

Variance estimation, 582–583, 649
Variance-gamma (VG) distributions, 1043
Variance heterogeneity, 540, 542–543
Variance reduction, 59, 65, 529, 530, 581, 986,

988, 990, 993
Variance reduction technique, 59, 529, 530,

986
Varset, 376–383, 385, 386, 390, 394, 395, 404,

405
VC-bound, 888
VC-dimension, 888–892, 904
VC-theory, 888
VDM. See Visual data mining
Vector error-correction model, 1065
Verification, 531
Virtual Data Visualizer, 357
Virtual desktop, 424
Virtual reality (VR), 336, 355–358, 363,

424
Virtual Reality Modeling Language (VRML),

357
Visual data mining (VDM), 300–311, 335,

336, 357–358, 404, 834, 840–849
Visualization, 549
Visual vocabulary, 833
Visual words, 833
Volatility, 1051

of asset returns, 1062, 1071
clusters, 1051–1052, 1071

Voting, 407, 1062, 1068
VoxBo, 1133
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VR. See Virtual reality
VRGobi, 355–357
VRML. See Virtual Reality Modeling

Language

Wasserstein metrics, 869
Waterfall plot, 1146
Wavelets, 12, 203, 204, 212, 217–240, 534,

546, 563, 887, 1153
Daubechies, 230–232
domain, 232, 233
Haar, 229–230, 233, 238
Mexican hat, 220–222
periodized, 238
regularization, 887

Web mining, 826
Weibull density function, 809
Weibull distribution, 59, 705, 809, 810, 813,

1080, 1081
Weibull process model, 822
Weighted regression, 702
Weight function, 572, 574, 581, 604, 606, 608,

612, 736

Weights
generalized linear model (GLM), 691, 701

What if, 529
White-noise, 539, 542, 543, 545
WIG20 index, 1051
Wild bootstrap, 518, 519, 523
winBUGS, 751, 802
Window titles, 1154–1156
Wishart distribution, 1066, 1070
Working correlation, 706
W-transformation, 812, 813

XGobi, 339, 346, 349, 352–353, 355, 357–359,
566

XML, 275, 283, 290–292, 377, 390, 410
XploRe, 353–354, 359, 416, 418–432,

830–831

Zebra query, 311
Zero-bias, 555
Zooming, 340, 343–345, 351, 353, 400, 841,

844, 845
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