Springer Handbooks of Computational Statistics

Series Editors

James E. Gentle
Wolfgang K. Hérdle
Yuichi Mori

For further volumes:
http://www.springer.com/series/7286

James E. Gentle « Wolfgang Karl Hardle
Yuichi Mori

Editors

Handbook of Computational
Statistics

Concepts and Methods

Second revised and updated Edition

@ Springer

Editors

James E. Gentle

George Mason University

Dept. Computational and Data Sciences
Fairfax, VA

USA

Prof. Yuichi Mori
Okayama University
Dept. Socio-Information
Okayama

Japan

ISBN 978-3-642-21550-6
DOI 10.1007/978-3-642-21551-3

Wolfgang Karl Hérdle
Humboldt-Universitit zu Berlin
L.v.Bortkiewicz Chair of Statistics
C.A.S.E. Centre f. Appl. Stat. and Econ.
School of Business and Economics
Berlin

Germany

e-ISBN 978-3-642-21551-3

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012938637

(© Springer-Verlag Berlin Heidelberg 2007, 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations

are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective

laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

PartI Computational Statistics

1

How Computational Statistics Became the Backbone of
Modern Data Science.................c.ooiiiiiiiii 3
James E. Gentle, Wolfgang Karl Hirdle, and Yuichi Mori

Part II Statistical Computing

2

10

Basic Computational Algorithms 19
John F. Monahan

Random Number Generationcooiiiiiiiini... 35
Pierre L’Ecuyer

Markov Chain Monte Carlo Technology............................... 73
Siddhartha Chib

Numerical Linear Algebra......................iiiiiiiiiiiii. 105
Lenka Cizkové and Pavel Cizek

The EM Algorithm 139

Shu Kay Ng, Thriyambakam Krishnan,
and Geoffrey J. McLachlan

Stochastic Optimization.....................ccooiiiiiiiiiiiiiiiiiiie. 173
James C. Spall

Transforms in Statistics i 203
Brani Vidakovic

Parallel Computing Techniques...............................o... 243
Junji Nakano

Statistical Databases........................ 273
Claus Boyens, Oliver Giinther, and Hans-J. Lenz

vi

11

12

13

14

15

Contents

Discovering and Visualizing Relations in High

Dimensional Data................ . 299
Alfred Inselberg
Interactive and Dynamic Graphicsoooooiiiiiiii 335

Jiirgen Symanzik

The Grammar of Graphics ... 375
Leland Wilkinson

Statistical User Interfaces........................oiiiiiiiiiian. 415
Sigbert Klinke

Object Oriented Computing....................ooiiiiiiiiiiiiiin.. 435

Miroslav Virius

Part III Statistical Methodology

16

17

18

19

20

21

22

23

24

25

26

Model Selectionc..ooiiiiiiiiiiiii i 469
Yuedong Wang

Bootstrap and Resamplingcoooiiiiiiiiiiiiiiiiinn 499
Enno Mammen and Swagata Nandi

Design and Analysis of Monte Carlo Experiments 529
Jack P.C. Kleijnen

Multivariate Density Estimation and Visualization................... 549

David W. Scott

Smoothing: Local Regression Techniques 571
Catherine Loader
Semiparametric Models................coooiiiiiiiiiiiii 597

Joel L. Horowitz

Dimension Reduction Methodsc.oiiiiiiiint 619
Masahiro Mizuta

(Non) Linear Regression Modelingc..... 645
Pavel Cizek

Generalized Linear Models.....................ooiiiiiiiiiiiii . 681
Marlene Miiller

Robust Statistics ...ttt e 711
Laurie Davies and Ursula Gather

Bayesian Computational Methods 751

Christian P. Robert

Contents

27 Computational Methods in Survival Analysis.........................
Toshinari Kamakura

28 Data and Knowledge MiningelLL.
Adalbert Wilhelm

29 Recursive Partitioning and Tree-based Methods......................
Heping Zhang

30 Support Vector Machines................c.ooooiiiiiiiiiiiiiiiiiie.
Konrad Rieck, Soren Sonnenburg, Sebastian Mika, Christin
Schifer, Pavel Laskov, David Tax, and Klaus-Robert Miiller

31 Learning Under Non-stationarity: Covariate Shift
Adaptation by Importance Weighting..................................
Masashi Sugiyama

32 Saddlepoint Approximations: A Review and Some New
Applicationso
Simon A. Broda and Marc S. Paolella

33 Bagging, Boosting and Ensemble Methods
Peter Biihimann

Part IV Selected Applications

34 Heavy-Tailed Distributions in VaR Calculations......................
Adam Misiorek and Rafal Weron

35 ECOMOMELIICS ...t e e
Luc Bauwens and Jeroen V.K. Rombouts

36 Statistical and Computational Geometry
of Biomolecular Structure
Tosif I. Vaisman

37 Functional Magnetic Resonance Imaging..............................
William F. Eddy and Rebecca L. McNamee

38 Network Intrusion Detectioncooiiiiiiiiiiiin...
David J. Marchette

vii

Contributors

Luc Bauwens Université Catholique de Louvain, Louvain-la-Neuve, Belgium,
luc.bauwens @uclouvain.be

Claus Boyens 1&1 Internet AG, Karlsruhe, Germany, claus.boyens @web.de

Simon A. Broda Department of Quantitative Economics, University of
Amsterdam, Amsterdam, The Netherlands, s.a.broda@uva.nl

Peter Bithlmann ETH Ziirich, Seminar fiir Statistik, Ziirich, Switzerland,
buhlmann @stat.math.ethz.ch

Siddhartha Chib Olin Business School, Washington University in St. Louis,
St. Louis, MO, USA, chib@wustl.edu

Pavel Cizek Department of Econometrics & Operations Research,
Tilburg University, Tilburg, The Netherlands, P.Cizek@uvt.nl

Lenka Cizkova Department of Econometrics & Operations Research,
Tilburg University, Tilburg, The Netherlands, lenka@lenka-photography.eu

Laurie Davies Universitidt Duisburg-Essen, Essen, Germany,
laurie.davies @uni-due.de

William F. Eddy Department of Statistics, Carnegie Mellon University,
Pittsburgh, PA, USA, bill@stat.cmu.edu

Ursula Gather Technische Universitidt Dortmund, Dortmund, Germany,
gather @statistik.tu-dortmund.de

James E. Gentle Department of Computational and Data Sciences,
George Mason University, Fairfax, VA, USA, jgentle@gmu.edu

Oliver Giinther Universitit Potsdam, Priasidialamt Potsdam, Germany,
guenther @wiwi.hu-berlin.de

ix

luc.bauwens@uclouvain.be
claus.boyens@web.de
s.a.broda@uva.nl
buhlmann@stat.math.ethz.ch
chib@wustl.edu
P.Cizek@uvt.nl
lenka@lenka-photography.eu
laurie.davies@uni-due.de
bill@stat.cmu.edu
gather@statistik.tu-dortmund.de
jgentle@gmu.edu
guenther@wiwi.hu-berlin.de

X Contributors

Wolfgang Karl Hirdle Humboldt-Universitit zu Berlin, L.v.Bortkiewicz Chair
of Statistics, C.A.S.E. — Centre for Applied Statistics and Economics, School of
Business and Economics, Berlin, Germany, haerdle @wiwi.hu-berlin.de

Joel L. Horowitz Department of Economics, Northwestern University, Evanston,
IL, USA, joel-horowitz@northwestern.edu

Alfred Inselberg School of Mathematical Sciences, Tel Aviv University, Tel Aviv,
Israel, aiisreal @post.tau.ac.il

Toshinari Kamakura Chuo University, Tokyo, Japan,
kamakura@indsys.chuo-u.ac.jp

Jack P.C. Kleijnen Department of Information Management/Center for
Economic Research (CentER), Tilburg University, Tilburg, The Netherlands,
Kleijnen@UvT.NL

Sigbert Klinke Ladislaus von Bortkiewicz Chair of Statistics, C.A.S.E. — Center
for Applied Statistics and Economics, Humboldt- Universitit zu Berlin, Berlin,
Germany, sigbert@wiwi.hu-berlin.de

Thriyambakam Krishnan Mu-Sigma Business Solutions Pvt. Ltd,
Kalyani Platina, K.R. Puram Hobli, Bangalore, India, krishnant001 @ gmail.com

Pierre L’Ecuyer Département d’Informatique et de Recherche Opérationnelle,
Université de Montréal, Montréal (Québec), Canada, lecuyer @iro.umontreal.ca

Pavel Laskov University of Tiibingen, Tiibingen, Germany, laskov@first.thg.de

Hans-J. Lenz Institut fiir Statistik und Okonometrie, Freie Universitit Berlin,
Berlin, Germany, Hans-J.Lenz@fu-berlin.de

Catherine Loader Department of Statistics, Case Western Reserve University,
Cleveland, OH, USA, catherine @case.edu

Enno Mammen University of Mannheim, Mannheim, Germany,
emammen @rumms.uni-mannheim.de

David J. Marchette Naval Surface Warfare Center, Dahlgren, VA, USA,
david.marchette @navy.mil

Geoffrey. J. McLachlan Department of Mathematics, University of Queensland,
Brisbane, QLD, Australia, g.mclachlan@ugq.edu.au

Rebecca L. McNamee Department of Statistics, Carnegie Mellon University,
Pittsburgh, PA, USA

Sebastian Mika idalab GmbH, Berlin, Germany, mika@idalab.de;
mika@first.thg.de

Adam Misiorek Santander Consumer Bank S.A., Wroctaw, Poland,
adam.misiorek @santanderconsumer.pl

haerdle@wiwi.hu-berlin.de
joel-horowitz@northwestern.edu
aiisreal@post.tau.ac.il
kamakura@indsys.chuo-u.ac.jp
Kleijnen@UvT.NL
sigbert@wiwi.hu-berlin.de
krishnant001@gmail.com
lecuyer@iro.umontreal.ca
laskov@first.fhg.de
Hans-J.Lenz@fu-berlin.de
catherine@case.edu
emammen@rumms.uni-mannheim.de
david.marchette@navy.mil
g.mclachlan@uq.edu.au
mika@idalab.de
mika@first.fhg.de
adam.misiorek@santanderconsumer.pl

Contributors

Masahiro Mizuta Information Initiative Center, Hokkaido University, Sapporo,
Japan, mizuta@iic.hokudai.ac.jp

John F Monahan Department of Statistics, North Carolina State University,
Raleigh, NC, USA, monahan @ncsu.edu

Yuichi Mori Department of Socio-information, Okayama University, Okayama,
Japan, mori@soci.ous.ac.jp

Klaus-Robert Miiller Berlin Institute of Technology, Berlin, Germany,
klaus-robert.mueller @tu-berlin.de

Marlene Miiller Beuth University of Applied Sciences, Berlin, Germany,
marlene.mueller @beuth-hochschule.de

Junji Nakano Department of Data Science, The Institute of Statistical
Mathematics, Tachikawa, Tokyo, Japan, nakanoj@ism.ac.jp

Swagata Nandi Indian Statistical Institute, Delhi Centre, New Delhi, India,
nandi @isid.ac.in

Shu Kay Ng School of Medicine, Griffith University, Meadowbrook, QLD,
Australia, s.ng@griffith.edu.au

Marec S. Paolella Swiss Banking Institute, University of Zurich, Zurich,
Switzerland

and

Swiss Finance Institute, Zurich, Switzerland, paolella@isb.uzh.ch

Konrad Rieck Berlin Institute of Technology, Berlin, Germany,
konrad.rieck @tu-berlin.de

Christian P. Robert Université Paris-Dauphine, CEREMADE, and
CREST-INSEE, Paris, France, Christian.Robert@ceremade.dauphine.fr

Jeroen V.K. Rombouts HEC Montréal, CIRANO, CIRPEE, CORE, Montreal,
Canada, jeroen.rombouts@hec.ca

Christin Schiifer Fraunhofer Institute FIRST, Berlin, Germany,
christin@first.fhg.de

David W. Scott Department of Statistics, Rice University, Houston, TX, USA,
scottdw @rice.edu

Soren Sonnenburg Berlin Institute of Technology, Berlin, Germany

James C. Spall The Johns Hopkins University, Applied Physics Laboratory,
Laurel, MD, USA, James.Spall @jhuapl.edu

Masashi Sugiyama Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan,
sugi@cs.titech.ac.jp

mizuta@iic.hokudai.ac.jp
monahan@ncsu.edu
mori@soci.ous.ac.jp
klaus-robert.mueller@tu-berlin.de
marlene.mueller@beuth-hochschule.de
nakanoj@ism.ac.jp
nandi@isid.ac.in
s.ng@griffith.edu.au
paolella@isb.uzh.ch
konrad.rieck@tu-berlin.de
Christian.Robert@ceremade.dauphine.fr
jeroen.rombouts@hec.ca
christin@first.fhg.de
scottdw@rice.edu
James.Spall@jhuapl.edu
sugi@cs.titech.ac.jp

xii Contributors

Jiirgen Symanzik Department of Mathematics and Statistics, Utah State
University, Logan, UT, USA, juergen.symanzik @usu.edu

David Tax Delft University of Technology, Delft, The Netherlands,
ldavidt@first.thg.de

Tosif I. Vaisman Department of Bioinformatics and Computational Biology,
George Mason University, Fairfax, VA, USA, ivaisman @gmu.edu

Brani Vidakovic The Wallace H. Coulter Department of Biomedical Engineering,
Georgia Institute of Technology, Atlanta, GA, USA, brani@bme.gatech.edu

Miroslav Virius Czech Technical University in Prague, Faculty of Nuclear
Sciences and Physical Engineering, Prague, Czech Republic,
miroslav.virius @fjfi.cvut.cz

Yuedong Wang Department of Statistics and Applied Probability, University of
California, Santa Barbara, CA, USA, yuedong @pstat.ucsb.edu

Rafat Weron Institute of Organization and Management, Wroctaw University of
Technology, Wroctaw, Poland, rafal.weron @ gmail.com

Adalbert Wilhelm Commerzbank Chair of Information Management, School of
Humanities and Social Sciences, Jacobs University Bremen gGmbH, Bremen,
Germany, a.wilhelm @jacobs-university.de

Leland Wilkinson SYSTAT Software Inc., Chicago, IL, USA,
Leland.Wilkinson @systat.com

Heping Zhang Yale University School of Medicine, New Haven, CT, USA
and
Sun Yat-Sen University, Guangzhou, China, heping.zhang@yale.edu

juergen.symanzik@usu.edu
ldavidt@first.fhg.de
ivaisman@gmu.edu
brani@bme.gatech.edu
miroslav.virius@fjfi.cvut.cz
yuedong@pstat.ucsb.edu
rafal.weron@gmail.com
a.wilhelm@jacobs-university.de
Leland.Wilkinson@systat.com
heping.zhang@yale.edu

Part I
Computational Statistics

Chapter 1
How Computational Statistics Became the
Backbone of Modern Data Science

James E. Gentle, Wolfgang Karl Hérdle, and Yuichi Mori

This first chapter serves as an introduction and overview for a collection of articles
surveying the current state of the science of computational statistics. Earlier versions
of most of these articles appeared in the first edition of Handbook of Computational
Statistics: Concepts and Methods, published in 2004.

There have been advances in all of the areas of computational statistics, so we
feel that it is time to revise and update this Handbook. This introduction is a revision
of the introductory chapter of the first edition.

1.1 Computational Statistics and Data Analysis

To do data analysis is to do computing. Statisticians have always been heavy users of
whatever computing facilities are available to them. As the computing facilities have
become more powerful over the years, those facilities have obviously decreased
the amount of effort the statistician must expend to do routine analyses. As the
computing facilities have become more powerful, an opposite result has occurred,
however; the computational aspect of the statistician’s work has increased. This is
because of paradigm shifts in statistical analysis that are enabled by the computer.

J.E. Gentle ()
Department of Computational and Data Sciences, George Mason University, Fairfax, VA, USA
e-mail: jgentle@gmu.edu

W.K. Hirdle

Humboldt-Universitit zu Berlin, L.v.Bortkiewicz Chair of Statistics, C.A.S.E. - Centre for
Applied Statistics and Economics, School of Business and Economics, Berlin, Germany
e-mail: haerdle @wiwi.hu-berlin.de

Y. Mori
Department of Socio-information, Okayama University, Okayama, Japan
e-mail: mori @soci.ous.ac.jp

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks 3
of Computational Statistics, DOI 10.1007/978-3-642-21551-3__1,
© Springer-Verlag Berlin Heidelberg 2012

jgentle@gmu.edu
haerdle@wiwi.hu-berlin.de
mori@soci.ous.ac.jp

4 J.E. Gentle et al.

Statistical analysis involves use of observational data together with domain
knowledge to develop a model to study and understand a data-generating process.
The data analysis is used to refine the model or possibly to select a different
model, to determine appropriate values for terms in the model, and to use the
model to make inferences concerning the process. This has been the paradigm
followed by statisticians for centuries. The advances in statistical theory over the
past two centuries have not changed the paradigm, but they have improved the
specific methods. The advances in computational power have enabled newer and
more complicated statistical methods. Not only has the exponentially-increasing
computational power allowed use of more detailed and better models, however,
it has shifted the paradigm slightly. Many alternative views of the data can be
examined. Many different models can be explored. Massive amounts of simulated
data can be used to study the model/data possibilities.

When exact models are mathematically intractable, approximate methods, which
are often based on asymptotics, or methods based on estimated quantities must be
employed. Advances in computational power and developments in theory have made
computational inference a viable and useful alternative to the standard methods of
asymptotic inference in traditional statistics. Computational inference is based on
simulation of statistical models.

The ability to perform large numbers of computations almost instantaneously
and to display graphical representations of results immediately has opened many
new possibilities for statistical analysis. The hardware and software to perform
these operations are readily available and are accessible to statisticians with no
special expertise in computer science. This has resulted in a two-way feedback
between statistical theory and statistical computing. The advances in statistical
computing suggest new methods and development of supporting theory; conversely,
the advances in theory and methods necessitate new computational methods.

Computing facilitates the development of statistical theory in two ways. One way
is the use of symbolic computational packages to help in mathematical derivations
(particularly in reducing the occurrences of errors in going from one line to the
next!). The other way is in the quick exploration of promising (or unpromising!)
methods by simulations. In a more formal sense also, simulations allow evaluation
and comparison of statistical methods under various alternatives. This is a widely-
used research method. For example, 66 out of 79 articles published in the Theory
and Methods section of the Journal of the American Statistical Association in 2010
reported on Monte Carlo studies of the performance of statistical methods. (In 2002,
this number was 50 out of 61 articles.) A general outline of many research articles
in statistics is

1. State the problem and summarize previous work on it.

2. Describe a new approach.

3. Work out some asymptotic properties of the new approach.

4. Conduct a Monte Carlo study showing the new approach in a favorable light.

Much of the effort in mathematical statistics has been directed toward the easy
problems of exploration of asymptotic properties. The harder problems for finite

1 Computational Statistics: An Introduction 5

samples require different methods. Carefully conducted and reported Monte Carlo
studies often provide more useful information on the relative merits of statistical
methods in finite samples from a range of model scenarios.

While to do data analysis is to compute, we do not identify all data analysis,
which necessarily uses the computer, as “statistical computing” or as “compu-
tational statistics”. By these phrases we mean something more than just using
a statistical software package to do a standard analysis. We use the term “sta-
tistical computing” to refer to the computational methods that enable statistical
methods. Statistical computing includes numerical analysis, database methodology,
computer graphics, software engineering, and the computer/human interface. We
use the term “computational statistics” somewhat more broadly to include not
only the methods of statistical computing, but also statistical methods that are
computationally intensive. Thus, to some extent, “computational statistics” refers
to a large class of modern statistical methods. Computational statistics is grounded
in mathematical statistics, statistical computing, and applied statistics. While we
distinguish “computational statistics” from “statistical computing”, the emergence
of the field of computational statistics was coincidental with that of statistical
computing, and would not have been possible without the developments in statistical
computing.

One of the most significant results of the developments in statistical computing
during the past few decades has been the statistical software package. There are
several of these, but a relatively small number that are in widespread use. While
referees and editors of scholarly journals determine what statistical theory and
methods are published, the developers of the major statistical software packages
determine what statistical methods are used. Computer programs have become
necessary for statistical analysis. The specific methods of a statistical analysis are
often determined by the available software. This, of course, is not a desirable
situation, but, ideally, the two-way feedback between statistical theory and statistical
computing dimishes the effect over time.

The importance of computing in statistics is also indicated by the fact that
there are at least ten major journals with titles that contain some variants of both
“computing” and “statistics”. The journals in the mainstream of statistics without
“computing” in their titles also have a large proportion of articles in the fields
of statistical computing and computational statistics. This is because, to a large
extent, recent developments in statistics and in the computational sciences have
gone hand in hand. There are also two well-known learned societies with a pri-
mary focus in statistical computing: the International Association for Statistical
Computing (IASC), which is an affiliated society of the International Statistical
Institute (ISI), and the Statistical Computing Section of the American Statistical
Association (ASA). There are also a number of other associations focused on
statistical computing and computational statistics, such as the Statistical Computing
Section of the Royal Statistical Society (RSS), and the Japanese Society of
Computational Statistics (JSCS).

Developments in computing and the changing role of computations in statistical
work have had significant effects on the curricula of statistical education programs

6 J.E. Gentle et al.

both at the graduate and undergraduate levels. Training in statistical computing is a
major component in some academic programs in statistics (see Gentle 2004; Lange
2004; Monahan 2004; Nolan and Temple Lang 2010). In all academic programs,
some amount of computing instruction is necessary if the student is expected to
work as a statistician. The extent and the manner of integration of computing into an
academic statistics program, of course, change with the developments in computing
hardware and software and advances in computational statistics.

‘We mentioned above the two-way feedback between statistical theory and statis-
tical computing. There is also an important two-way feedback between applications
and statistical computing, just as there has always been between applications and
any aspect of statistics. Although data scientists seek commonalities among methods
of data analysis, different areas of application often bring slightly different problems
for the data analyst to address. In recent years, an area called “data mining” or
“knowledge mining” has received much attention. The techniques used in data
mining are generally the methods of exploratory data analysis, of clustering, and of
statistical learning, applied to very large and, perhaps, diverse datasets. Scientists
and corporate managers alike have adopted data mining as a central aspect of
their work. Specific areas of application also present interesting problems to the
computational statistician. Financial applications, particularly risk management and
derivative pricing, have fostered advances in computational statistics. Biological
applications, such as bioinformatics, microarray analysis, and computational biol-
ogy, are fostering increasing levels of interaction with computational statistics.

The hallmarks of computational statistics are the use of more complicated
models, larger datasets with both more observations and more variables, unstruc-
tured and heterogeneous datasets, heavy use of visualization, and often extensive
simulations.

1.2 The Emergence of a Field of Computational Statistics

Statistical computing is truly a multidisciplinary field and the diverse problems have
created a yeasty atmosphere for research and development. This has been the case
from the beginning. The roles of statistical laboratories and the applications that
drove early developments in statistical computing are surveyed by Grier (1999).
As digital computers began to be used, the field of statistical computing came to
embrace not only numerical methods but also a variety of topics from computer
science.

The development of the field of statistical computing was quite fragmented, with
advances coming from many directions — some by persons with direct interest and
expertise in computations, and others by persons whose research interests were in
the applications, but who needed to solve a computational problem. Through the
1950s the major facts relevant to statistical computing were scattered through a
variety of journal articles and technical reports. Many results were incorporated into
computer programs by their authors and never appeared in the open literature. Some

1 Computational Statistics: An Introduction 7

persons who contributed to the development of the field of statistical computing
were not aware of the work that was beginning to put numerical analysis on a sound
footing. This hampered advances in the field.

1.2.1 Early Developments in Statistical Computing

An early book that assembled much of the extant information on digital computa-
tions in the important area of linear computations was by Dwyer (1951). In the same
year, Von Neumann’s NBS publication (Von Neumann 1951) described techniques
of random number generation and applications in Monte Carlo. At the time of
these publications, however, access to digital computers was not widespread. Dwyer
(1951) was also influential in regression computations performed on calculators.
Some techniques, such as use of “machine formulas”, persisted into the age of
digital computers.

Developments in statistical computing intensified in the 1960s, as access to
digital computers became more widespread. Grier (1991) describes some of the
effects on statistical practice by the introduction of digital computers, and how
statistical applications motivated software developments. The problems of rounding
errors in digital computations were discussed very carefully in a pioneering book by
Wilkinson (1963). A number of books on numerical analysis using digital computers
were beginning to appear. The techniques of random number generation and Monte
Carlo were described by Hammersley and Handscomb (1964). In 1967 the first book
specifically on statistical computing appeared, Hemmerle (1967).

1.2.2 Early Conferences and Formation of Learned Societies

The 1960s also saw the beginnings of conferences on statistical computing and
sections on statistical computing within the major statistical societies. The Royal
Statistical Society sponsored a conference on statistical computing in December
1966. The papers from this conference were later published in the RSS’s Applied
Statistics journal. The conference led directly to the formation of a Working Party
on Statistical Computing within the Royal Statistical Society. The first Symposium
on the Interface of Computer Science and Statistics was held February 1, 1967.
This conference has continued as an annual event with only a few exceptions
since that time (see Billard and Gentle 1993; Goodman 1993; Wegman 1993). The
attendance at the Interface Symposia initially grew rapidly year by year and peaked
at over 600 in 1979. In recent years the attendance has been slightly under 300. The
proceedings of the Symposium on the Interface have been an important repository of
developments in statistical computing. In April, 1969, an important conference on
statistical computing was held at the University of Wisconsin. The papers presented
at that conference were published in a book edited by Milton and Nelder (1969),

8 J.E. Gentle et al.

which helped to make statisticians aware of the useful developments in computing
and of their relevance to the work of applied statisticians.

In the 1970s two more important societies devoted to statistical computing were
formed. The Statistical Computing Section of the ASA was formed in 1971 (see
Chambers and Ryan 1990). The Statistical Computing Section organizes sessions
at the annual meetings of the ASA, and publishes proceedings of those sessions.
The International Association for Statistical Computing (IASC) was founded in
1977 as a Section of ISI. In the meantime, the first of the biennial COMPSTAT
Conferences on computational statistics was held in Vienna in 1974. Much later,
regional sections of the IASC were formed, one in Europe and one in Asia. The
European Regional Section of the IASC is now responsible for the organization of
the COMPSTAT conferences.

Also, beginning in the late 1960s and early 1970s, most major academic
programs in statistics offered one or more courses in statistical computing. More
importantly, perhaps, instruction in computational techniques has permeated many
of the standard courses in applied statistics.

As mentioned above, there are several journals whose titles include some
variants of both “computing” and “statistics”. The first of these, the Journal of
Statistical Computation and Simulation, was begun in 1972. There are dozens
of journals in numerical analysis and in areas such as “computational physics”,
“computational biology”, and so on, that publish articles relevant to the fields of
statistical computing and computational statistics.

By 1980 the field of statistical computing, or computational statistics, was well-
established as a distinct scientific subdiscipline. Since then, there have been regular
conferences in the field, there are scholarly societies devoted to the area, there are
several technical journals in the field, and courses in the field are regularly offered
in universities.

1.2.3 The PC

The 1980s was a period of great change in statistical computing. The personal
computer brought computing capabilities to almost everyone. With the PC came
a change not only in the number of participants in statistical computing, but, equally
important, completely different attitudes toward computing emerged. Formerly, to
do computing required an account on a mainframe computer. It required laboriously
entering arcane computer commands onto punched cards, taking these cards to a
card reader, and waiting several minutes or perhaps a few hours for some output —
which, quite often, was only a page stating that there was an error somewhere in the
program. With a personal computer for the exclusive use of the statistician, there
was no incremental costs for running programs. The interaction was personal, and
generally much faster than with a mainframe. The software for PCs was friendlier
and easier to use. As might be expected with many non-experts writing software,
however, the general quality of software probably went down.

1 Computational Statistics: An Introduction 9

The democratization of computing resulted in rapid growth in the field, and rapid
growth in software for statistical computing. It also contributed to the changing
paradigm of the data sciences.

1.2.4 The Cross Currents of Computational Statistics

Computational statistics of course is more closely related to statistics than to
any other discipline, and computationally-intensive methods are becoming more
commonly used in various areas of application of statistics. Developments in other
areas, such as computer science and numerical analysis, are also often directly
relevant to computational statistics, and the research worker in this field must scan
a wide range of literature.

Numerical methods are often developed in an ad hoc way, and may be reported
in the literature of any of a variety of disciplines. Other developments important
for statistical computing may also be reported in a wide range of journals that
statisticians are unlikely to read. Keeping abreast of relevant developments in
statistical computing is difficult not only because of the diversity of the literature, but
also because of the interrelationships between statistical computing and computer
hardware and software.

An example of an area in computational statistics in which significant devel-
opments are often made by researchers in other fields is Monte Carlo simulation.
This technique is widely used in all areas of science, and researchers in various
areas often contribute to the development of the science and art of Monte Carlo
simulation. Almost any of the methods of Monte Carlo, including random number
generation, are important in computational statistics.

1.2.5 Reproducible Research

Reproducibility in the sense of replication within experimental error has always
been a touchstone of science. In recent years, however, the term “reproducible
research” (RR), or sometimes “reproducible analysis”, has taken on a stronger
meaning. The standards for RR include provision of computer codes (preferably
in source) and/or data that would allow the reader to replicate the reported results
(see Baggerly and Berry 2011).

Many journals enforce these requirements, or at least facilitate the provisions.
The Journal of American Statistical Association, for example, encourages authors
to provide code and/or data, as well as other supporting material. This additional
material is linked with an electronic version of the article at the journal’s web site.

Many articles in computational statistics are written in X and the computa-
tions are done in R. The R code, together with any input data, allows the reader to
perform the same computations for simulations and analyses that yielded the results

10 J.E. Gentle et al.

reported in the accompanying text. The Sweave package facilitates the incorporation
of code with text in the same file (see Leisch 2002). Instructions for obtaining
Sweave as well as the current user manual can be obtained at http://www.statistik.
Imu.de/~leisch/Sweave/Sweave-manual.pdf

1.2.6 Literature

Some of the major periodicals in statistical computing and computational statistics
are listed below. Some of these journals and proceedings are refereed rather
rigorously, some refereed less so, and some are not refereed. Although most of these
serials are published in hardcopy form, most are also available electronically.

* ACM Transactions on Mathematical Software, published quarterly by the ACM
(Association for Computing Machinery), includes algorithms in Fortran and C.
Most of the algorithms are available through net1ib. The ACM collection of
algorithms is sometimes called CALGO.
www.acm.org/toms/

* ACM Transactions on Modeling and Computer Simulation, published quarterly
by the ACM.
www.acm.org/tomacs/

* Applied Statistics, published quarterly by the Royal Statistical Society. (Until
1998, it included algorithms in Fortran. Some of these algorithms, with cor-
rections, were collected by Griffiths and Hill, 1985. Most of the algorithms are
available through stat1lib at Carnegie Mellon University.)
www.rss.org.uk/publications/

e Communications in Statistics — Simulation and Computation, published quarterly
by Marcel Dekker. (Until 1996, it included algorithms in Fortran. Until 1982, this
journal was designated as Series B.)
www.dekker.com/servlet/product/productid/SAC/

* Computational Statistics published quarterly by Physica-Verlag (formerly called
Computational Statistics Quarterly).
comst.wiwi.hu-berlin.de/

* Computational Statistics. Proceedings of the xx'" Symposium on Computational
Statistics (COMPSTAT), published biennially by Physica-Verlag/Springer.

* Computational Statistics & Data Analysis, published by Elsevier Science. There
are twelve issues per year. (This is also the official journal of the International
Association for Statistical Computing and as such incorporates the Statistical
Software Newsletter.)
www.cbs.nl/isi/csda.htm

* Computing Science and Statistics. This is an annual publication containing
papers presented at the Interface Symposium. Until 1992, these proceedings were
named Computer Science and Statistics: Proceedings of the xx'* Symposium on
the Interface. (The 24th symposium was held in 1992.) In 1997, Volume 29 was

th

http://www.statistik.lmu.de/~leisch/Sweave/Sweave-manual.pdf
http://www.statistik.lmu.de/~leisch/Sweave/Sweave-manual.pdf
www.acm.org/toms/
www.acm.org/tomacs/
www.rss.org.uk/publications/
www.dekker.com/servlet/product/productid/SAC/
comst.wiwi.hu-berlin.de/
www.cbs.nl/isi/csda.htm

1 Computational Statistics: An Introduction 11

published in two issues: Number 1, which contains the papers of the regular
Interface Symposium; and Number 2, which contains papers from another
conference. The two numbers are not sequentially paginated. Since 1999, the
proceedings have been published only in CD-ROM form, by the Interface
Foundation of North America.

www.galaxy.gmu.edu/stats/IFNA.html

* Journal of Computational and Graphical Statistics, published quarterly as a joint
publication of ASA, the Institute of Mathematical Statistics, and the Interface
Foundation of North America.
www.amstat.org/publications/jcgs/

* Journal of the Japanese Society of Computational Statistics, published once a
year by JSCS.
www.jscs.or.jp/oubun/indexE.html

e Journal of Statistical Computation and Simulation, published in twelve issues
per year by Taylor & Francis.
www.tandf.co.uk/journals/titles/00949655.asp

* Journal of Statistical Software, a free on-line journal that publishes articles, book
reviews, code snippets, and software reviews.
www.jstatsoft.org/

* Proceedings of the Statistical Computing Section, published annually by ASA.
www.amstat.org/publications/

e SIAM Journal on Scientific Computing, published bimonthly by SIAM. This
journal was formerly SIAM Journal on Scientific and Statistical Computing.
www.siam.org/journals/sisc/sisc.htm

» Statistical Computing & Graphics Newsletter, published quarterly by the Statis-
tical Computing and the Statistical Graphics Sections of ASA.
www.statcomputing.org/

 Statistics and Computing, published quarterly by Chapman & Hall.

In addition to literature and learned societies in the traditional forms, an
important source of communication and a repository of information are computer
databases and forums. In some cases, the databases duplicate what is available in
some other form, but often the material and the communications facilities provided
by the computer are not available elsewhere.

1.3 This Handbook

The purpose of this handbook is the same as that of the first edition of Concepts
and Fundamentals. It is to provide a survey of the basic concepts of computational
statistics. A glance at the table of contents reveals a wide range of articles written
by experts in various subfields of computational statistics. The articles are generally
expository, taking the reader from the basic concepts to the current research trends.

www.galaxy.gmu.edu/stats/IFNA.html
www.amstat.org/publications/jcgs/
www.jscs.or.jp/oubun/indexE.html
www.tandf.co.uk/journals/titles/00949655.asp
www.jstatsoft.org/
www.amstat.org/publications/
www.siam.org/journals/sisc/sisc.htm
www.statcomputing.org/

12 J.E. Gentle et al.

The emphasis throughout, however, is on the concepts and fundamentals. Most
chapters have been revised to provide up-to-date references to the relevant literature.

We have retained the organization of the main body in three parts. Part II
on “statistical computing” addresses the computational methodology; Part III on
“statistical methodology” covers techniques of applied statistics that are computer-
intensive, or otherwise that make use of the computer as a tool of discovery, rather
than as just a large and fast calculator; and, finally, Part IV describes a number of
application areas in which computational statistics plays a major role.

1.3.1 Summary and Overview; Part I1: Statistical Computing

Statistical computing is in the interface of numerical analysis, computer science, and
statistics. This interface includes computer arithmetic, algorithms, database method-
ology, languages and other aspects of the user interface, and computer graphics.

For statistical numerical analysis, it is important to understand how the computer
does arithmetic, and more importantly what the implications are for statistical
(or other) computations. In addition to understanding of the underlying arithmetic
operations, the basic principles of numerical algorithms, such as divide and conquer,
must be in the working knowledge of persons writing numerical software for
statistical applications. Although many statisticians do not need to know the details,
it is important that all statisticians understand the implications of computations
within a system of numbers and operators that is not the same system that we are
accustomed to in mathematics. Anyone developing computer algorithms, no matter
how trivial the algorithm may appear, must understand the details of the computer
system of numbers and operators.

One of the important uses of computers in statistics, and one that is central to
computational statistics, is the simulation of random processes. This is a theme
of several chapters of this handbook, but in Part II, the basic numerical methods
relevant to simulation are discussed. These include the basics of random number
generation, including assessing the quality of random number generators, and
simulation of random samples from various distributions, as well as the class of
methods called Markov chain Monte Carlo. Statistical methods using simulated
samples are discussed further in Part III.

Some chapters of Part II address specific numerical methods, such as methods
for linear algebraic computations, for optimization, and for transforms. Separate
chapters in Part II discuss two specific areas of optimization, the EM algorithm and
its variations, and stochastic optimization. Another chapter describes transforms,
such as the well-known Fourier and wavelet transforms, that effectively restructure
a problem by changing the domain are important statistical functionals.

Other chapters of Part I focus on efficient usage of computing resources. Spe-
cific topics include parallel computing, database management methodology, issues
relating to the user interface, and even paradigms, such as an object orientation, for
software development.

1 Computational Statistics: An Introduction 13

Statistical graphics, especially interactive and dynamic graphics, play an increas-
ingly prominent role in data analysis. Two chapters of Part II are devoted to this
important area.

1.3.2 Summary and Overview; Part I11: Statistical Methodology

Part III covers several aspects of computational statistics. In this part the emphasis is
on the statistical methodology that is enabled by computing. Computers are useful
in all aspects of statistical data analysis, of course, but in Part III, and generally in
computational statistics, we focus on statistical methods that are computationally
intensive. Although a theoretical justification of these methods often depends on
asymptotic theory, in particular, on the asymptotics of the empirical cumulative
distribution function, asymptotic inference is generally replaced by computational
inference.

The first few chapters of this part deal directly with techniques of computational
inference; that is, the use of cross validation, resampling, and simulation of data-
generating processes to make decisions and to assign a level of confidence to the
decisions. Selection of a model implies consideration of more than one model.
As we suggested above, this is one of the hallmarks of computational statistics:
looking at data through a variety of models. Cross validation and its generalizations
and resampling are important techniques for addressing the problems. Resampling
methods also have much wider applicability in statistics, from estimating variances
and setting confidence regions to larger problems in statistical data analysis.
Computational inference depends on simulation of data-generating processes. Any
such simulation is an experiment, and in Part III, principles for design and analysis
of experiments using computer models are discussed.

Estimation of a multivariate probability density function is also addressed in
Part III. This area is fundamental in statistics, and it utilizes several of the standard
techniques of computational statistics, such as cross validation and visualization
methods.

The next few chapters of Part III address important issues for discovery and
analysis of relationships among variables. One class of models are asymmetric, that
is, models for the effects of a given set of variables (‘“independent variables") on
another variable or set of variables. Smoothing methods for these models, which
include use of kernels, splines, and orthogonal series, are generally nonparametric
or semiparametric. Two important types of parametric asymmetric models discussed
in Part III are generalized linear models and nonlinear regression models. In any
models that explore the relationships among variables, it is often desirable to reduce
the effective dimensionality of a problem. All of these chapters on using models of
variate relationships to analyze data emphasize the computational aspects.

One area in which computational inference has come to play a major role is
in Bayesian analysis. Computational methods have enabled a Bayesian approach in

14 J.E. Gentle et al.

practical applications, because no longer is this approach limited to simple problems
or conjugate priors.

Survival analysis, with applications in both medicine and product reliability,
has become more important in recent years. Computational methods for analyzing
models used in survival analysis are discussed in Part III.

The final chapters of Part III address an exciting area of computational statistics.
The general area may be called “data mining”, although this term has a rather
anachronistic flavor because of the hype of the mid-1990s. Other terms such as
“knowledge mining” or “knowledge discovery in databases” (“KDD”) are also used.
To emphasize the roots in artificial intelligence, which is a somewhat discredited
area, the term ‘“computational intelligence” is also used. This is an area in which
machine learning from computer science and statistical learning have merged.

1.3.3 Summary and Overview; Part IV: Statistical Methodology

Many areas of applications can only be addressed effectively using computationally-
intensive statistical methods. This is often because the input datasets are so
large, but it may also be because the problem requires consideration of a large
number of possible alternatives. In Part IV, there are separate chapters on some
areas of applications of computational statistics. One area is finance and eco-
nomics, in which heavy-tailed distributions or models with nonconstant variance are
important.

Human biology has become one of the most important areas of application, and
many computationally-intensive statistical methods have been developed, refined,
and brought to bear on problems in this area. Two important question involve the
geometrical structure of protein molecules and the functions of the various areas
in the brain. While much is known about the order of the components of the
molecules, the three-dimensional structure for most important protein molecules is
not known, and the tools for discovery of this structure need extensive development.
Understanding the functions of different areas in the brain will allow more effective
treatment of diseased or injured areas and the resumption of more normal activities
by patients with neurological disorders.

Another important area of application of computational statistics is computer
network intrusion detection. Because of the importance of computer networks
around the world, and because of their vulnerability to unauthorized or malicious
intrusion, detection has become one of the most important — and interesting — areas
for data mining.

The articles in this handbook cover the important subareas of computational
statistics and give some flavor of the wide range of applications. While the articles
emphasize the basic concepts and fundamentals of computational statistics, they
provide the reader with tools and suggestions for current research topics. The
reader may turn to a specific chapter for background reading and references on a

1 Computational Statistics: An Introduction 15

particular topic of interest, but we also suggest that the reader browse and ultimately
peruse articles on unfamiliar topics. Many surprising and interesting tidbits will be
discovered!

1.3.4 Other Handbooks in Computational Statistics

This handbook on concepts and fundamentals sets the stage for future handbooks
that go more deeply into the various subfields of computational statistics. These
handbooks will each be organized around either a specific class of theory and
methods, or else around a specific area of application.

The development of the field of computational statistics has been rather frag-
mented. We hope that the articles in this handbook series can provide a more unified
framework for the field.

In the years since the publication of the first volume in the series of Handbooks
in Computational Statistics, which covered general concepts and methods, three
other volumes have appeared. These are on somewhat more narrow topics within
the field of computational statistics: data visualization, partial least squares, and
computational finance.

References

Baggerly, K.A., Berry, D.A.: Reproducible research, AmStatNews, January, http://magazine.amstat.
org/blog/2011/01/01/scipolicyjanl1/. (2011)

Billard, L., Gentle, J.E.: The middle years of the interface. Comput. Science Stat. 25, 19-26 (1993)

Chambers, J.M., Ryan, B.F.: The ASA statistical computing section. Am. Stat. 44(2), 87-89 (1990)

Dwyer, P.S.: Linear Computations. Wiley, New York (1951)

Gentle, J.E.: Courses in statistical computing and computational statistics. Am. Stat. 58, 2-5 (2004)

Goodman, A.: Interface insights: From birth into the next century. Comput. Science Stat. 25, 14-18
(1993)

Grier, D.A.: Statistics and the introduction of digital computers. Chance 4(3), 30-36 (1991)

Grier, D.A.: Statistical laboratories and the origins of statistical computing. Chance 4(2), 14-20
(1999)

Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods, Methuen & Company, London
(1964)

Hemmerle, W.J.: Statistical Computations on a Digital Computer. Blaisdell, Waltham,
Massachusetts (1967)

Lange, K.: Computational Statistics and Optimization Theory at UCLA. Am. Stat. 58:9-11 (2004)

Leisch, F.: Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis. In
Compstat 2002 — Proceedings in Computational Statistics, edited by W. Hérdle and B. Ronz,
575-580 (2002)

Milton, R., Nelder, J. (ed.): Statistical Computation, Academic Press, New York (1969)

Monahan, J.: Teaching statistical computing at NC state. Am. Stat. 58, 6-8 (2004)

Nolan, D., Temple Lang, D.: Computing in the Statistics Curriculum. Am. Stat. 64, 97-107 (2010)

http://magazine.amstat.org/blog/2011/01/01/scipolicyjan11/
http://magazine.amstat.org/blog/2011/01/01/scipolicyjan11/

16 J.E. Gentle et al.

Von Neumann, J.: Various Techniques Used in Connection with Random Digits, National Bureau
of Standards Symposium, NBS Applied Mathematics Series 12, National Bureau of Standards
(now National Institute of Standards and Technology), Washington, DC (1951)

Wegman, E.J.: History of the Interface since 1987: The corporate era. Comput. Science Stat. 25,
27-32 (1993)

Wilkinson, J.H.: Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, NJ

(1963)

Part 11
Statistical Computing

Chapter 2
Basic Computational Algorithms

John F. Monahan

2.1 Computer Arithmetic

Numbers are the lifeblood of statistics, and computational statistics relies heavily on
how numbers are represented and manipulated on a computer. Computer hardware
and statistical software handle numbers well, and the methodology of computer
arithmetic is rarely a concern. However, whenever we push hardware and software
to their limits with difficult problems, we can see signs of the mechanics of floating
point arithmetic around the frayed edges. To work on difficult problems with
confidence and explore the frontiers of statistical methods and software, we need
to have a sound understanding of the foundations of computer arithmetic. We need
to know how arithmetic works and why things are designed the way they are.

As scientific computation began to rely heavily on computers, a monumental
decision was made during the 1960s to change from base ten arithmetic to base
two. Humans had been doing base ten arithmetic for only a few hundred years,
during which time great advances were possible in science in a short period of time.
Consequently, the resistance to this change was strong and understandable. The
motivation behind the change to base two arithmetic is merely that it is so very easy
to do addition (and subtraction) and multiplication in base two arithmetic. The steps
are easy enough that a machine can be designed — wire a board of relays — or design
a silicon chip — to do base two arithmetic. Base ten arithmetic is comparatively
quite difficult, as its recent mathematical creation would suggest. However two big
problems arise in changing from base ten to base two: (1) we need to constantly
convert numbers written in base ten by humans to base two number system and then
back again to base ten for humans to read the results, and (2) we need to understand
the limits of arithmetic in a different number system.

J.FE. Monahan (><)
Department of Statistics, North Carolina State University, Raleigh, NC, USA
e-mail: monahan @ncsu.edu

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks 19
of Computational Statistics, DOI 10.1007/978-3-642-21551-3__2,
© Springer-Verlag Berlin Heidelberg 2012

monahan@ncsu.edu

20 J.FE. Monahan
2.1.1 Integer Arithmetic

Computers use two basic ways of writing numbers: fixed point (for integers) and
floating point (for real numbers). Numbers are written on a computer following base
two positional notation. The positional number system is a convention for expressing
a number as a list of integers (digits), representing a number x in base B by a list of
digits a,,, am—1, - - . , a1, ap whose mathematical meaning is

X=au1B" " +...+aB*+aB + ay (2.1)

where the digits a; are integers in {0,..., B — 1}. We are accustomed to what
is known in the West as the Arabic numbers, 0,1,2,...,9 representing those
digits for writing for humans to read. For base two arithmetic, only two digits are
needed {0, 1}. For base sixteen, although often viewed as just a collection of four
binary digits (1 byte = 4 bits), the Arabic numbers are augmented with letters, as
{0,1,2,...,9,a,b,c,d,e, f},sothat fireen = 15en-

The system based on (2.1), known as fixed point arithmetic, is useful for writing
integers. The choice of m = 32 dominates current computer hardware, although
smaller (m = 16) choices are available via software and larger (m = 48)
hardware had been common in high performance computing. Recent advances in
computer architecture may soon lead to the standard changing to m = 64. While
the writing of a number in base two requires only the listing of its binary digits,
a convention is necessary for expression of negative numbers. The survivor of many
years of intellectual competition is the rwo’s complement convention. Here the first
(leftmost) bit is reserved for the sign, using the convention that 0 means positive and
1 means negative. Negative numbers are written by complementing each bit (replace
1 with 0, 0 with 1) and adding one to the result. For m = 16 (easier to display), this
means that 22, and its negative are written as

(0001 0110) = 22y

and
(1 110 1010) = =224, -

Following the two’s complement convention with m bits, the smallest (negative)
number that can be written is —2”~! and the largest positive number is 2! — 1;
zero has a unique representation of (0 000 --- 0000). Basic arithmetic (addition
and multiplication) using two’s complement is easy to code, essentially taking the
form of mod 2! arithmetic, with special tools for overflow and sign changes. See,
for example, Knuth (1997) for history and details, as well as algorithms for base
conversions.

The great advantage of fixed point (integer) arithmetic is that it is so very fast.
For many applications, integer arithmetic suffices, and most nonscientific computer
software only uses fixed point arithmetic. Its second advantage is that it does not

2 Basic Computational Algorithms 21

suffer from the rounding error inherent in its competitor, floating point arithmetic,
whose discussion follows.

2.1.2 Floating Point Arithmetic

To handle a larger subset of the real numbers, the positional notation system includes
an exponent to express the location of the radix point (generalization of the decimal
point), so that the usual format is a triple (sign, exponent, fraction) to represent
a number as

x = (=1)¥EBePonent (g, B~ 4 4, B + ...+ agB7Y) | (2.2)

where the fraction is expressed by its list of base B digits 0.ajazas...ay. To
preserve as much information as possible with the limited d digits to represent the
fraction, normalization is usually enforced, that is, the leading /most significant digit
a; is nonzero — except for the special case x = 0. The mathematical curiosity of
an infinite series expansion of a number has no place here where only d digits are
available. Moreover, a critical issue is what to do when only d digits are available.
Rounding to the nearest number is preferred to the alternative chopping; in the
case of representing w1 = 3.14159265...to d = 5 decimal (B =ten) digits
leads to the more accurate (4, +1,0.31416) in the case of rounding, rather than
(+,+1,0.31415) for the chopping alternative. Notice that normalization and the
use of this positional notation reflects a goal of preserving relative accuracy, or
reducing the relative error in the approximation. The expression of a real number x
in floating point arithmetic can be expressed mathematically in terms of a function
fl : R — F where F is the set of numbers that can be represented using this
notation, the set of floating point numbers. The relative accuracy of this rounding
operation can be expressed as

SIx) =1 +ux, (2.3)

where |u| < U where U is known as the machine unit. Seen in terms of the relative
error of f1(x) in approximating x, the expression above can be rewritten as

lx — fl(x)|/|x| <U for x #0.

For base B arithmetic with d digits and chopping, U = B'~?; rounding reduces U
by a factor of 2.

An important conceptual leap is the understanding that most numbers are
represented only approximately in floating point arithmetic. This extends beyond
the usual irrational numbers such as 7 or e that cannot be represented with a finite
number of digits. A novice user may enter a familiar assignment such as x = 8.6
and, observing that the computer prints out 8.6000004, may consider this an error.

22 J.F. Monahan

When the “8.6” was entered, the computer had to first parse the text “8.6” and
recognize the decimal point and arabic numbers as a representation, for humans,
of a real number with the value 8 + 6 x 10~!. The second step is to convert this
real number to a base two floating point number — approximating this base ten
number with the closest base two number — this is the function f/(-). Just as 1/3
produces the repeating decimal 0.33333... in base 10, the number 8.6 produces
arepeating binary representation 1000.100110011 .. .;,,, and is chopped or rounded
to the nearest floating point number f/(8.6). Later, in printing this same number out,
a second conversion produces the closest base 10 numberto f/(8.6) with few digits;
in this case 8.6000004, not an error at all. Common practice is to employ numbers
that are integers divided by powers of two, since they are exactly represented. For
example, distributing 1,024 equally spaced points makes more sense than the usual
1,000, since j/1024 can be exactly represented for any integer j.

A breakthrough in hardware for scientific computing came with the adoption and
implementation of the IEEE 754 binary floating point arithmetic standard, which has
standards for two levels of precision, single precision and double precision (IEEE
1985). The single precision standard uses 32 bits to represent a number: a single
bit for the sign, 8 bits for the exponent and 23 bits for the fraction. The double
precision standard requires 64 bits, using 3 more bits for the exponent and adds 29
to the fraction for a total of 52. Since the leading digit of a normalized number is
nonzero, in base two the leading digit must be one. As a result, the floating point
form (2.2) above takes a slightly modified form:

Y = (_l)signBexponenl—excess (1 + alB—l 4 azB_Z 4L+ adB—d) (24)

as the fraction is expressed by its list of binary digits 1.ajazas3...as. As a result,
while only 23 bits are stored, it works as if one more bit were stored. The exponent
using 8 bits can range from 0 to 255; however, using an excess of 127, the range
of the difference (exponent — excess) goes from —126 to 127. The finite number of
bits available for storing numbers means that the set of floating point numbers F is
a finite, discrete set. Although well-ordered, it does have a largest number, smallest
number, and smallest positive number. As a result, this IEEE Standard expresses
positive numbers from approximately 1.4 x 107 to 3.4 x 103® with a machine
unit U = 27* ~ 1077 using only 31 bits. The remaining 32nd bit is reserved for
the sign. Double precision expands the range to roughly 1033 with U = 2753 ~
107'°, so the number of accurate digits is more than doubled.

The two extreme values of the exponent are employed for special features. At
the high end, the case exponent = 255 signals two infinities (£00) with the largest
possible fraction. These values arise as the result of an overflow operation. The
most common causes are adding or multiplying two very large numbers, or from
a function call that produces a result that is larger than any floating point number.
For example, the value of exp(x) is larger than any finite number in F for x > 88.73
in single precision. Before adoption of the standard, exp(89.9) would cause the
program to cease operation due to this “exception”. Including +0co as members
of F permits the computations to continue, since a sensible result is now available.

2 Basic Computational Algorithms 23

As a result, further computations involving the value £o0o can proceed naturally,
such as 1/oo = 0. Again using the exponent = 255, but with any other fraction
represents not-a-number, usually written as “NaN”, and used to express the result
of invalid operations, such as 0/0, co — 00, 0 X 00, and square roots of negative
numbers. For statistical purposes, another important use of NaN is to designate
missing values in data. The use of infinities and NaN permit continued execution
in the case of anomalous arithmetic operations, instead of causing computation
to cease when such anomalies occur. The other extreme exponent = 0 signals
a denormalized number with the net exponent of —126 and an unnormalized
fraction, with the representation following (2.2), rather than the usual (2.4) with the
unstated and unstored 1. The denormalized numbers further expand the available
numbers in F, and permit a soft underflow. Underflow, in contrast to overflow,
arises when the result of an arithmetic operation is smaller in magnitude than the
smallest representable positive number, usually caused by multiplying two small
numbers together. These denormalized numbers begin approximately 10738 near the
reciprocal of the largest positive number. The denormalized numbers provide even
smaller numbers, down to 10~%°. Below that, the next number in F is the floating
point zero: the smallest exponent and zero fraction — all bits zero.

Most statistical software employs only double precision arithmetic, and some
users become familiar with apparent aberrant behavior such as a sum of residuals
of 107! instead of zero. While many areas of science function quite well using
single precision, some problems, especially nonlinear optimization, nevertheless
require double precision. The use of single precision requires a sound understand
of rounding error. However, the same rounding effects remain in double precision,
but because their effects are so often obscured from view, double precision may
promote a naive view that computers are perfectly accurate.

The machine unit expresses a relative accuracy in storing a real number as
a floating point number. Another similar quantity, the machine epsilon, denoted by
€m, is defined as the smallest positive number that, when added to one, gives a result
that is different from one. Mathematically, this can be written as

fl(l+x)=1for0<x<ey. (2.5)

Due to the limited precision in floating point arithmetic, adding a number that is
much smaller in magnitude than the machine epsilon will not change the result. For
example, in single precision, the closest floating point number to 1 + 2726 is 1.
Typically, both the machine unit and machine epsilon are nearly the same size, and
these terms are often used interchangeably without grave consequences.

2.1.3 Cancellation

Often one of the more surprising aspects of floating point arithmetic is that some
of the more familiar laws of algebra are occasionally violated: in particular, the

24 J.F. Monahan

associative and distributive laws. While most occurrences are just disconcerting to
those unfamiliar to computer arithmetic, one serious concern is cancellation. For
a simple example, consider the case of base ten arithmetic with d = 6 digits,
and take x = 123.456 and y = 123.332, and note that both x and y may have
been rounded, perhaps x was 123.456478 or 123.456000 or 123.455998. Now x
would be stored as (+, 3,0.123456) and y would be written as (4, 3,0.123332),
and when these two numbers are subtracted, we have the unnormalized difference
(4,3,0.000124). Normalization would lead to (+,0,.124???) where merely “?”
represents that some digits need to take their place. The simplistic option is to put
zeros, but 0.124478 is just as good an estimate of the true difference between x
and y as 0.124000, or 0.123998, for that matter. The problem with cancellation
is that the relative accuracy that floating point arithmetic aims to protect has been
corrupted by the loss of the leading significant digits. Instead of a small error in the
sixth digit, we now have that error in the third digit; the relative error has effectively
been magnified by a factor of 1,000 due to the cancellation of the first 3 digits.

The best way to deal with the potential problem caused by catastrophic cancella-
tion is to avoid them. In many cases, the cancellation may be avoided by reworking
the computations analytically to handle the cancellation:

1-2t—1 -2

1-(-2)7" = 1—21 1-21°

In this case, there is significant cancellation when ¢ is small, and catastrophic
cancellation whenever ¢ drops below the machine epsilon. Using six digit decimal
arithmetic to illustrate, at # = 0.001, the left hand expression, 1 — (1 — 21)71, gives

1.00000 — 1.00200 = 0.200000 x 10~>
while the right hand expression, —2¢ /(1 — 2t), gives
0.200401 x 1072,

the correct (rounded) result. The relative error in using the left hand expression is
an unacceptable 0.002. At = 1077, the left hand expression leads to a complete
cancellation yielding zero and a relative error of one. Just a little algebra here avoids
the most of the effect of cancellation. When the expressions involve functions, cases
where cancellation occurs can often be handled by approximations. In the case of
1 —e™, serious cancellation will occur whenever ¢ is very small. The cancellation
can be avoided for this case by using a power series expansion:

l—e' =1—-(1—t+1*/2— ..)~t—1*/2=1(1-1/2) .
When ¢ = 0.0001, the expression 1 — e™ leads to the steps

1.00000 — 0.999900 = 0.100000 x 10~ ,

2 Basic Computational Algorithms 25

while the approximation gives
(0.0001)(0.999950) = 0.999950 x 10~*

which properly approximates the result to six decimal digits. At = 107> and 107°,
similar results occur, with complete cancellation at 10~7. Often the approximation
will be accurate just when cancellation must be avoided.

One application where rounding error must be understood and cancellation
cannot be avoided is numerical differentiation, where calls to a function are used
to approximate a derivative from a first difference:

fr@)=[f(x+h)—fl/h. (2.6)

Mathematically, the accuracy of this approximation is improved by taking 4 very
small; following a quadratic Taylor’s approximation, we can estimate the error as

[fG+h) = fl/h~ f(x)+ %hf”(X).

However, when the function calls f(x) and f(x + h) are available only to limited
precision — a relative error of €,,, taking 4 smaller leads to more cancellation. The
cancellation appears as a random rounding error in the numerator of (2.6) which
becomes magnified by dividing by a small 4. Taking & larger incurs more bias
from the approximation; taking A smaller incurs larger variance from the rounding
error. Prudence dictates balancing bias and variance. Dennis and Schnabel (1983)
recommend using 7 & e,il/ 2 for first differences, but see also Bodily (2002).

The second approach for avoiding the effects of cancellation is to develop
different methods. A common cancellation problem in statistics arises from using
the formula

> oy —ny? 2.7)
i=1
for computing the sum of squares around the mean. Cancellation can be avoided by
following the more familiar two-pass method

> i =) 2.8)

i=1

but this algorithm requires all of the observations to be stored and repeated updates
are difficult. A simple adjustment to avoid cancellation, requiring only a single pass
and little storage, uses the first observation to center:

DG =M= i =) —nn -y’ (2.9)

i=1 i=1

26 J.E. Monahan

An orthogonalization method from regression using Givens rotations (see Chan et al.
1983) can do even better to find s, = > 1, (y; — ¥)*:

i =ti—1 + yi (2.10)
si = Sim1+ (iy —6)*/ (@ = 1) . Q.11
To illustrate the effect of cancellation, take the simple problem of n = 5

observations, y; = 4,152 + i so that y; = 4,153 through ys = 4,157. Again
using six decimal digits, the computations of the sum and mean encounter no
problems, and we easily get ¥ = 4,155 or 0.415500 x 10%, and }_y; = 20,775
or 0.207750 x 10°. However, each square loses some precision in rounding:

y1 =4,153, y? =4,153* = 17,247,409 roundedto 0.172474 x 10
y» = 4,154, y3 = 4,154 = 17,255,716 roundedto 0.172557 x 10
y3 = 4,155, y3 = 4,155 = 17,264,025 roundedto 0.172640 x 10°
ys = 4,156, y?=4,156" = 17,272,336 roundedto 0.172723 x 10°
ys = 4,157, y2 = 4,157 = 17,280,649 roundedto 0.172806 x 10% .

Summing the squares encounters no further rounding on its way to 0.863200 x 108,
and we compute the corrected sum of squares as

0.863200 x 10% — (0.207750 x 10°) x 4,155
0.863200 x 10® —0.863201 x 10® = —100 .

The other three algorithms, following (2.8), (2.9), (2.10), and (2.11), each give the
perfect result of 10 in this case.

Admittedly, while this example is contrived to show an absurd result, a negative
sum of squares, the equally absurd value of zero is hardly unusual. Similar computa-
tions — differences of sum of squares — are routine, especially in regression and in the
computation of eigenvalues and eigenvectors. In regression, the orthogonalization
method (2.10) and (2.11) is more commonly seen in its general form. In all these
cases, simply centering can improve the computational difficulty and reduce the
effect of limited precision arithmetic.

2.1.4 Accumulated Roundoff Error

Another problem with floating point arithmetic is the sheer accumulation of
rounding error. While many applications run well in spite of a large number
of calculations, some approaches encounter surprising problems. An enlightening
example is just to add up many ones: 1 + 1 4+ 1 + Astonishingly, this infinite

2 Basic Computational Algorithms 27

series appears to converge — the partial sums stop increasing as soon as the ratio of
the new number to be added, in this case, one, to the current sum (n) drops below
the machine epsilon. Following (2.5), we have fl(n + 1) = fl(n), from which
we find

I/n~e€, or nxl/e,.

So you will find the infinite series of ones converging to 1/¢,,. Moving to double
precision arithmetic pushes this limit of accuracy sufficiently far to avoid most
problems — but it does not eliminate them. A good mnemonic for assessing the effect
of accumulated rounding error is that doing m additions amplifies the rounding
error by a factor of m. For single precision, adding 1,000 numbers would look
like a relative error of 10™* which is often unacceptable, while moving to double
precision would lead to an error of 107!, Avoidance strategies, such as adding
smallest to largest and nested partial sums, are discussed in detail in Monahan,
(2001, Chap. 2).

2.1.5 Interval Arithmetic

One of the more interesting methods for dealing with the inaccuracies of floating
point arithmetic is interval arithmetic. The key is that a computer can only do
arithmetic operations: addition, subtraction, multiplication, and division. The novel
idea, though, is that instead of storing the number x, its lower and upper bounds
(x,X) are stored, designating an interval for x. Bounds for each of these arithmetic
operations can be then established as functions of the input. For addition, the
relationship can be written as:

X+y<x+y<x+y.

Similar bounds for the other three operations can be established. The propagation
of rounding error through each step is then captured by successive upper and
lower bounds on intermediate quantities. This is especially effective in probability
calculations using series or continued fraction expansions. The final result is an
interval that we can confidently claim contains the desired calculation. The hope
is always that interval is small. Software for performing interval arithmetic has
been implemented in a practical fashion by modifying a Fortran compiler. See, for
example, Hayes (2003) for an introductory survey, and Kearfott and Kreinovich
(1996) for articles on applications.

2.2 Algorithms

An algorithm is a list of directed actions to accomplish a designated task. Cooking
recipes are the best examples of algorithms in everyday life. The level of a cookbook
reflects the skills of the cook: a gourmet cookbook may include the instruction

28 J.F. Monahan

“saute the onion until transparent” while a beginner’s cookbook would describe
how to choose and slice the onion, what kind of pan, the level of heat, etc. Since
computers are inanimate objects incapable of thought, instructions for a computer
algorithm must go much, much further to be completely clear and unambiguous,
and include all details.

Most cooking recipes would be called single pass algorithms, since they are a list
of commands to be completed in consecutive order. Repeating the execution of the
same tasks, as in baking batches of cookies, would be described in algorithmic terms
as looping. Looping is the most common feature in mathematical algorithms, where
a specific task, or similar tasks, are to be repeated many times. The computation of
an inner product is commonly implemented using a loop:

aTb =a\by +ab, +...+a,b, ,

implemented as

s =0
doi=1ton

s =S5 +a; xXb;
end do

where the range of the loop includes the single statement with a multiplication and
addition. In an iterative algorithm, the number of times the loop is be repeated is
not known in advance, but determined by some monitoring mechanism. For math-
ematical algorithms, the focus is most often monitoring convergence of a sequence
or series. Care must be taken in implementing iterative algorithms to insure that, at
some point, the loop will be terminated, otherwise an improperly coded procedure
may proceed indefinitely in an infinite loop. Surprises occur when the convergence
of an algorithm can be proven analytically, but, because of the discrete nature of
floating point arithmetic, the procedure implementing that algorithm may not con-
verge. For example, in a square-root problem to be examined further momentarily,
we cannot find x € F so that x X x is exactly equal to 2. The square of one number
may be just below two, and the square of the next largest number in F may be larger
than 2. When monitoring convergence, common practice is to convert any test for
equality of two floating point numbers or expressions to tests of closeness:

if (abs(x*x — 2) < eps) then exit. (2.12)

Most mathematical algorithms have more sophisticated features. Some algorithms
are recursive, employing relationships such as the gamma function: I'(x 4+ 1) =
xI"(x) so that new values can be computed using previous values. Powerful
recursive algorithms, such as the Fast Fourier Transform (FFT) and sorting
algorithms, follow a divide-and-conquer paradigm: to solve a big problem, break
it into little problems and use the solutions to the little problems to solve the big
problem. In the case of sorting, the algorithm may look something like:

2 Basic Computational Algorithms 29

algorithm sort (list)

break list into two pieces: first and second

sort (first)

sort (second)

put sorted lists first and second together to form
one sorted Ilist

end algorithm sort

Implemented recursively, a big problem is quickly broken into tiny pieces and
the key to the performance of divide-and-conquer algorithms is in combining the
solutions to lots of little problems to address the big problem. In cases where these
solutions can be easily combined, these recursive algorithms can achieve remarkable
breakthroughs in performance. In the case of sorting, the standard algorithm, known
as bubblesort, takes O(n?) work to sort a problem of size n — if the size of
the problem is doubled, the work goes up by factor of 4. The Discrete Fourier
Transform, when written as the multiplication of an n x n matrix and a vector,
involves n? multiplications and additions. In both cases, the problem is broken
into two subproblems, and the mathematics of divide and conquer follows a simple
recursive relationship, that the time/work 7'(n) to solve a problem of size n is the
twice the time/work to solve two subproblem with half the size, plus the time/work
C(n), to put the solutions together:

T(n) = 2T (n/2) + C(n) . (2.13)

In both sorting and the Discrete Fourier Transform, C(n) & c¢n 4+ d, which leads
to T(n) = cnlog(n) + O(n). A function growing at the rate O(nlogn) grows
so much slower than O(n?), that the moniker “Fast” in Fast Fourier Transform
is well deserved. While some computer languages preclude the use of recursion,
recursive algorithms can often be implemented without explicit recursion through
clever programming.

The performance of an algorithm may be measured in many ways, depending on
the characteristics of the problems the it may be intended to solve. The sample
variance problem above provides an example. The simple algorithm using (2.7)
requires minimal storage and computation, but may lose accuracy when the variance
is much smaller than the mean: the common test problem for exhibiting catastrophic
cancellation employs y; = 22 + i for single precision. The two-pass method (2.8)
requires all of the observations to be stored, but provides the most accuracy and least
computation. Centering using the first observation (2.9) is nearly as fast, requires
no extra storage, and its accuracy only suffers when the first observation is unlike
the others. The last method, arising from the use of Givens transformations (2.10)
and (2.11), also requires no extra storage, gives sound accuracy, but requires more
computation. As commonly seen in the marketplace of ideas, the inferior methods
have not survived, and the remaining competitors all have tradeoffs with speed,
storage, and numerical stability.

30 J.F. Monahan
2.2.1 Iterative Algorithms

The most common difficult numerical problems in statistics involve optimization, or
root-finding: maximum likelihood, nonlinear least squares, M-estimation, solving
the likelihood equations or generalized estimating equations. And the algorithms
for solving these problems are typically iterative algorithms, using the results from
the current step to direct the next step.

To illustrate, consider the problem of computing the square root of a real
number y. Following from the previous discussion of floating point arithmetic,
we can restrict y to the interval (1,2). One approach is to view the problem as
a root-finding problem, that is, we seek x such that f(x) = x> — y = 0. The
bisection algorithm is a simple, stable method for finding a root. In this case, we
may start with an interval known to contain the root, say (xj, x;), with x; = 1
and x, = 2. Then bisection tries x3 = 1.5, the midpoint of the current interval. If
f(x3) <0, then x;3 < /Y < X2, and the root is known to belong in the new interval
(x3, x2). The algorithm continues by testing the midpoint of the current interval,
and eliminating half of the interval. The rate of convergence of this algorithm is
linear, since the interval of uncertainty, in this case, is cut by a constant (1/2) with
each step. For other algorithms, we may measure the rate at which the distance from
the root decreases. Adapting Newton’s method to this root-finding problem yields
Heron’s iteration

1
Xpg1 = E(xn +y/xa) .

Denoting the solution as x* = ,/y, the error at step n can be defined as €, =
X, — x*, leading to the relationship

1e
i =5t (2.14)

n

This relationship of the errors is usually called quadratic convergence, since the new
error is proportional to the square of the error at the previous step. The relative error
8, = (x, — x*)/x* follows a similar relationship,

6y = %53/(1 +6,) . (2.15)

Here, the number of accurate digits is doubled with each iteration. For the secant
algorithm, analysis of the error often leads to a relationship similar to (2.14), but
len+1| =~ Cley|?, with 1 < p < 2, achieving a rate of convergence known as
superlinear. For some well-defined problems, as the square root problem above, the
number of iterations needed to reduce the error or relative error below some criterion
can be determined in advance.

While we can stop this algorithm when f(x,) = 0, as discussed previously, there
may not be any floating point number that will give a zero to the function, hence the
stopping rule (2.12). Often in root-finding problems, we stop when | f(x,)| is small

2 Basic Computational Algorithms 31

enough. In some problems, the appropriate “small enough” quantity to ensure the
desired accuracy may depend on parameters of the problem, as in this case, the value
of y. As a result, termination criterion for the algorithm is changed to: stop when
the relative change in x is small

[Xn+1 — Xnl/|Xa] <6 .

While this condition may cause premature stopping in rare cases, it will prevent
infinite looping in other cases. Many optimization algorithms permit the iteration
to be terminated using any combination — and “small enough” is within the user’s
control. Nevertheless, unless the user learns a lot about the nature of the problem
at hand, an unrealistic demand for accuracy can lead to unachievable termination
criteria, and an endless search.

As discussed previously, rounding error with floating point computation affects
the level of accuracy that is possible with iterative algorithms for root-finding. In
general, the relative error in the root is at the same relative level as the computation
of the function. While optimization problems have many of the same characteristics
as root-finding problems, the effect of computational error is a bit more substantial:
k digits of accuracy in the function to be optimization can produce but k /2 digits in
the root/solution.

2.2.2 Iterative Algorithms for Optimization
and Nonlinear Equations

In the multidimensional case, the common problems are solving a system of
nonlinear equations or optimizing a function of several variables. The most common
tools for these problems are Newton’s method or secant-like variations. Given the
appropriate regularity conditions, again we can achieve quadratic convergence with
Newton’s method, and superlinear convergence with secant-like variations. In the
case of optimization, we seek to minimize f(x), and Newton’s method is based on
minimizing the quadratic approximation:

()~ fxo) + (x —x0) 'V f(x0) + (x —x0) T V? f(x0)(x — x0) .
This leads to the iteration step
XD = x 0 _[v2f (x(”))]_l VI (x™) .

In the case of solving a system of nonlinear equations, g (x) = 0, Newton’s method
arises from solving the affine (linear) approximation

g(x) ~ g (x0) + Jg (x0) (x —x9) ,

32 J.F. Monahan

leading to a similar iteration step
20D =@ [F ()] g (2™

In both cases, under suitable smoothness conditions, the Newton iteration will
achieve quadratic convergence — using norms to measure the error at each step:

R R

For both problems, Newton’s method requires the computation of lots of derivatives,
either the gradient V f(x() and Hessian V2 f(x), or the Jacobian matrix J 4 (x).
In the univariate root-finding problem, the secant method arises by approximating
the derivative with the first difference using the previous evaluation of the function.
Secant analogues can be constructed for both the optimization and nonlinear
equations problems, with similar reduction in the convergence rate: from quadratic
to superlinear.

In both problems, the scaling of the parameters is quite important, as measuring
the error with the Euclidean norm presupposes that errors in each component are
equally weighted. Most software for optimization includes a parameter vector for
suitably scaling the parameters, so that one larger parameter does not dominate the
convergence decision. In solving nonlinear equations, the condition of the problem
is given by

ey

(as in solving linear equations) and the problem of scaling involves the components
of g(x). In many statistical problems, such as robust regression, the normal
parameter scaling issues arise with the covariates and their coefficients. However,
one component of g(x), associated with the error scale parameter may be orders
of magnitude larger or smaller than the other equations. As with parameter scaling,
this is often best done by the user and is not easily overcome automatically.

With the optimization problem, there is a natural scaling with V f(x) in contrast
with the Jacobian matrix. Here, the eigenvectors of the Hessian matrix V2 f(x)
dictate the condition of the problem; see, for example, Gill et al. (1981) and Dennis
and Schnabel (1983). Again, parameter scaling remains one of the most important
tools.

References

Bodily, C.H.: Numerical Differentiation Using Statistical Design. Ph.D. Thesis, NC State Univer-
sity (2002)

Chan, T.F,, Golub, G.H., LeVeque, R.J.: Algorithms for computing the sample variance. Am. Stat.
37, 242-247 (1983)

Dennis, J.E. Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization. Prentice-
Hall, Englewood Cliffs, NJ (1983)

2 Basic Computational Algorithms 33

Gill, PE., Murray, W., Wright, M.H.: Practical Optimisation. Academic Press, London (1981)

Goldberg, D. (1991) What Every Computer Scientist Should Know About Floating-Point Arith-
metic, ACM Computing Surveys 23(1):5-48.

Hayes, B.: A lucid interval. Am. Sci. 91, 484-488 (2003)

Institute of Electrical and Electronics Engineers: A Proposed IEEE-CS Standard for Binary
Floating Point Arithmetic. Standard, 754-1985, IEEE, New York (1985)

Kearfott, R.B., Kreinovich, V. (ed.): Applications of Interval Computations. Boston, Kluwer (1996)

Knuth, D.E.: The Art of Computer Programming, Seminumerical Algorithms, (3rd edn.), Vol. 2,
Addison-Wesley, Reading MA (1997)

Monahan, J.E.: Numerical Methods of Statistics. Cambridge University Press, Cambridge (2001)

Overton, M.L.: Numerical Computing with IEEE Floating Point Arithmetic. Philadelphia, SIAM
(2001)

Chapter 3
Random Number Generation

Pierre L’Ecuyer

3.1 Introduction

The fields of probability and statistics are built over the abstract concepts of
probability space and random variable. This has given rise to elegant and powerful
mathematical theory, but exact implementation of these concepts on conventional
computers seems impossible. In practice, random variables and other random
objects are simulated by deterministic algorithms. The purpose of these algorithms
is to produce sequences of numbers or objects whose behavior is very hard to
distinguish from that of their “truly random” counterparts, at least for the application
of interest. Key requirements may differ depending on the context. For Monte Carlo
methods, the main goal is to reproduce the statistical properties on which these
methods are based, so that the Monte Carlo estimators behave as expected, whereas
for gambling machines and cryptology, observing the sequence of output values for
some time should provide no practical advantage for predicting the forthcoming
numbers better than by just guessing at random.

In computational statistics, random variate generation is usually made in two
steps: (1) generating imitations of independent and identically distributed (i.i.d.)
random variables having the uniform distribution over the interval (0, 1) and (2)
applying transformations to these i.i.d. U(0, 1) random variates to generate (or
imitate) random variates and random vectors from arbitrary distributions. These
two steps are essentially independent and the world’s best experts on them are two
different groups of scientists, with little overlap. The expression (pseudo)random
number generator (RNG) usually refers to an algorithm used for step (1).

P. L’Ecuyer (P<)

Département d’Informatique et de Recherche Opérationnelle,
Université de Montréal,

Montréal (Québec), Canada

e-mail: lecuyer@iro.umontreal.ca
http://www.iro.umontreal.ca/~lecuyer

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks 35
of Computational Statistics, DOI 10.1007/978-3-642-21551-3__3,
© Springer-Verlag Berlin Heidelberg 2012

lecuyer@iro.umontreal.ca
http://www.iro.umontreal.ca/~lecuyer

36 P. L’Ecuyer

In principle, the simplest way of generating a random variate X with distribution
function F from a U(0, 1) random variate U is to apply the inverse of F to U:

défmin{x | F(x) > U}. (3.1

X =FY(U)
This is the inversion method. It is easily seen that X has the desired distribution:
P[X < x] = P[F7'(U) < x] = P[U < F(x)] = F(x). Other methods are
sometimes preferable when F~! is too difficult or expensive to compute, as will be
seen later.

The remainder of this chapter is organized as follows. In the next section,
we give a definition and the main requirements of a uniform RNG. Generators
based on linear recurrences modulo a large integer m, their lattice structure and
quality criteria, and their implementation, are covered in Sect.3.3. In Sect. 3.4,
we have a similar discussion for RNGs based on linear recurrences modulo 2.
Nonlinear RNGs are briefly presented in Sect. 3.5. In Sect. 3.6, we discuss empirical
statistical testing of RNGs and give some examples. Section 3.7 contains a few
pointers to recommended RNGs and software. In Sect. 3.8, we cover non-uniform
random variate generators. We first discuss inversion and its implementation in
various settings. We then explain the rejection, ratio-of-uniform, composition and
convolution methods, provide pointers to other methods that apply in special cases,
and discuss multivariate distributions.

Important basic references that we recommend are Knuth (1998), L’Ecuyer
(1994, 1998), Niederreiter (1992), and Tezuka (1995) for uniform RNGs, and
Devroye (1986, 2006), Gentle (2003), and Hormann et al. (2004) for non-uniform
RNGs.

3.2 Uniform Random Number Generators

3.2.1 Physical Devices

Random numbers can be generated via physical mechanisms such as the timing
between successive events in atomic decay, thermal noise in semiconductors, photon
counting and photon trajectory detectors, and the like. A key issue when construct-
ing a RNG based on a physical device is that a “random” or “chaotic” output
does not suffice; the numbers produced must be, at least to a good approximation,
realizations of independent and uniformly distributed random variables. If the
device generates a stream of bits, which is typical, then each bit should be O or
1 with equal probability, and be independent of all the other bits. In general, this
cannot be proved, so one must rely on the results of empirical statistical testing to
get convinced that the output values have the desired statistical behavior, at least
approximately. Not all these devices are reliable, but some are and, as far as we
know, they pass all statistical tests that can be run in reasonable time.

3 Random Number Generation 37

For computational statistics, physical devices have several disadvantages com-
pared to a good algorithmic RNG that stands in a few lines of code. For example,
(a) they are much more cumbersome to install and run; (b) they are more costly; (c)
they are slower; (d) they cannot reproduce exactly the same sequence twice. Item
(d) is important in several contexts, including program verification and debugging
as well as comparison of similar systems by simulation with common random
numbers to reduce the variance (Bratley et al. 1987; Fishman 1996; Law and Kelton
2000). Nevertheless, these physical RNGs can be useful for selecting the seed of an
algorithmic RNG, more particularly for applications in cryptology and for gaming
machines, where frequent reseeding of the RNG with an external source of entropy
(or randomness) is important. A good algorithmic RNG whose seed is selected at
random can be viewed as an extensor of randomness, stretching a short random seed
into a long sequence of pseudorandom numbers.

3.2.2 Generators Based on a Deterministic Recurrence

RNGs used for simulation and other statistical applications are almost always based
on deterministic algorithms that fit the following framework, taken from L’Ecuyer
(1994): aRNG is a structure (S, i, f,U, g) where S is a finite set of states (the state
space), | is a probability distribution on S used to select the initial state (or seed)
S0, [S — S is the transition function, U is the output space, and g : S — U is
the output function. Usually, U = (0, 1), and we shall assume henceforth that this is
the case. The state of the RNG evolves according to the recurrence s; = f(s;—1), for
i > 1, and the output at step i is u; = g(s;) € U. The output values ug, uy, us, . . .
are the so-called random numbers produced by the RNG.

Because S is finite, there must be some finite / > 0 and j > 0 such that
Si+j = s;. Then, for all i > [, one has s;4; = s; and u;4+; = u;, because both
f and g are deterministic. That is, the state and output sequences are eventually
periodic. The smallest positive j for which this happens is called the period of the
RNG, and is denoted by p. When [= 0, the sequence is said to be purely periodic.
Obviously, p < |S]|, the cardinality of S. If the state has a k-bit representation on
the computer, then p < 2. Good RNGs are designed so that their period p is not
far from that upper bound. In general, the value of p may depend on the seed sy, but
good RNGs are normally designed so that the period is the same for all admissible
seeds.

In practical implementations, it is important that the output be strictly between 0
and 1, because F~'(U) is often infinite when U is 0 or 1. All good implementations
take care of that. However, for the mathematical analysis of RNGs, we often assume
that the output space is [0, 1) (i.e., 0 is admissible), because this simplifies the
analysis considerably without making much difference in the mathematical structure
of the generator.

38 P. L’Ecuyer
3.2.3 Quality Criteria

What important quality criteria should we consider when designing RNGs? An
extremely long period is obviously essential, to make sure that no wrap-around
over the cycle can occur in practice. The length of the period must be guaranteed
by a mathematical proof. The RNG must also be efficient (run fast and use only
a small amount of memory), repeatable (able to reproduce exactly the same
sequence as many times as we want), and portable (work the same way in different
software/hardware environments). The availability of efficient jump-ahead methods
that can quickly compute s; 1, given s;, for any large v and any i, is also very useful,
because it permits one to partition the RNG sequence into long disjoint streams and
substreams of random numbers, to create an arbitrary number of virtual generators
from a single RNG (Law and Kelton 2000; L’Ecuyer 2008; L’Ecuyer et al. 2002).
These virtual generators can be used on parallel processors or to support different
sources of randomness in a large simulation model, for example.

To show that these properties are not sufficient, consider a RNG with state space
S =1{0,...,2!%0 _ 1} transition function s; ; = f(s;) = (s; + 1) mod 2'°%°_ and
u; = g(s;) = s;/2'°%°, This RNG has period 2! and enjoys all the nice properties
described in the preceding paragraph, but it is far from imitating “randomness.”

A sequence of real-valued random variables ug, uy, u, ... are i.i.d. U(0, 1) if
and only if for all integers i > 0 and ¢ > 0, the vector w;; = (Ui, ..., Ujiti—1)
is uniformly distributed over the ¢#-dimensional unit hypercube (0, 1)’. Of course,
this cannot hold for algorithmic RNGs because any vector of ¢ successive values
produced by the generator must belong to the finite set

¥ = {(uo. u—1) : 50 € S}

which is the set of all vectors of ¢ successive output values, from all possible initial
states. Here we interpret ¥; as a multiset, which means that the vectors are counted
as many times as they appear, and the cardinality of ¥; is exactly equal to that of S.

Suppose we select the seed sy at random, uniformly over S. This can be
approximated by using some physical device, for example. Then, the vector ug,
has the uniform distribution over the finite set ¥;. And if the sequence is purely
periodic for all so, w;; = (u;, ..., u;i4+,—1) is also uniformly distributed over ¥; for
all i > 0. Since the goal is to approximate the uniform distribution over (0, 1),
it immediately becomes apparent that ¥; should be evenly spread over this unit
hypercube. In other words, ¥; approximates (0, 1) as the sample space from which
the vectors of successive output values are drawn randomly, so it must be a good
approximation of (0, 1)’ in some sense. The design of good-quality RNGs must
therefore involve practical ways of measuring the uniformity of the corresponding
sets ¥; even when they have huge cardinalities. In fact, a large state space S is
necessary to obtain a long period, but an even more important reason for having a
huge number of states is to make sure that ¥; can be large enough to provide a good
uniform coverage of the unit hypercube, at least for moderate values of 7.

3 Random Number Generation 39

More generally, we may also want to measure the uniformity of sets of the form
v = {(Lt,'l, . ,Ltit) | S0 € S},

where I = {iy,---,i,} is a fixed set of non-negative integers such that 0 < i; <
.-+ < I;. As a special case, we recover ¥, = ¥; when I = {0,...,t—1}. Of course,
there are so many such sets ¥; that we cannot examine the uniformity over all of
them, but we can do it over a selected class 7 of such sets deemed more important.

The uniformity of a set ¥ is typically assessed by measuring the discrepancy
between the empirical distribution of its points and the uniform distribution over
(0, 1)" (Ecuyer 2009; L’Ecuyer and Lemieux 2002; Niederreiter 1992). Discrep-
ancy measures are equivalent to goodness-of-fit test statistics for the multivariate
uniform distribution. They can be defined in many different ways. The choice of a
specific definition typically depends on the mathematical structure of the RNG to
be studied and the reason for this is very pragmatic: we must be able to compute
these measures quickly even when S has very large cardinality, for instance 22%
or more. This obviously excludes any method that requires explicit generation of
the sequence over its entire period. The selected discrepancy measure is usually
computed for each set / in a predefined class 7, these values are weighted or
normalized by factors that depend on 7, and the worst-case (or average) over J is
adopted as a figure of merit used to rank RNGs. The choice of 7 and of the weights
are arbitrary. Typically, J would contain sets / such that ¢ and i; — i are rather
small. Examples of such figures of merit will be given when we discuss specific
classes of RNGs.

3.2.4 Statistical Testing

Good RNGs are designed based on mathematical analysis of their properties, then
implemented and submitted to batteries of empirical statistical tests. These tests try
to detect empirical evidence against the null hypothesis Hy: “the u; are realizations
of i.i.d. U(0, 1) random variables.” A test can be defined by any function 7" that
maps a sequence ug, Ui, ... in (0, 1) to a real number X, and for which a good
approximation is available for the distribution of the random variable X under H,.
For the test to be implementable, X must depend on only a finite (but perhaps
random) number of u;’s. Passing many tests may improve one’s confidence in the
RNG, but never guarantees that the RNG is foolproof for all kinds of simulations.
Building a RNG that passes all statistical tests is an impossible dream. Consider,
for example, the class of all tests that examine the first (most significant) b bits of n
successive output values, uy, . .., u,—1, and return a binary value X € {0, 1}. Select
a € (0, 1) so that «2"? is an integer and let 7, o be the set of tests in this class that
return X = 1 for exactly a2’ of the 2"° possible output sequences. We say that
the sequence fails the test when X = 1. This 7, 5 is the set of all statistical tests
of (exact) level a. Its cardinality is equal to the number of ways of choosing a2"”

40 P. L’Ecuyer

distinct objects among 2"?. The chosen objects are the sequences that fail the test.
For any given output sequence, the number of tests in 7, 5 that return 1 for this
sequence is equal to the number of ways of choosing the other @2"” — 1 sequences
that also fail the test. This is the number of ways of choosing a2"® — 1 distinct
objects among 2"? — 1. In other words, as pointed out by Leeb (1995), every output
sequence fails exactly the same number of tests! Viewed from a different angle,
it is a restatement of the well-known fact that under H,, each of the 2"? possible
sequences has the same probability of occurring, so one may argue that none should
be considered more random than any other (Knuth 1998).

This viewpoint seems to lead into a dead end. For statistical testing to be
meaningful, all tests should not be considered on equal footing. So which ones are
more important? Any answer is tainted with arbitrariness. However, for large values
of n, the number of tests is huge and all but a tiny fraction are too complicated even
to be implemented. So we may say that bad RNGs are those that fail simple tests,
whereas good RNGs fail only complicated tests that are hard to find and run. This
common-sense compromise has been generally adopted in one way or another.

Experience shows that RNGs with very long periods, good structure of their set
¥, and based on recurrences that are not too simplistic, pass most reasonable tests,
whereas RNGs with short periods or bad structures are usually easy to crack by
standard statistical tests. For sensitive applications, it is a good idea, when this
is possible, to apply additional statistical tests designed in close relation with the
random variable of interest (e.g., based on a simplification of the stochastic model
being simulated, and for which the theoretical distribution can be computed).

Our discussion of statistical tests continues in Sect.3.6. A key reference is
L’Ecuyer and Simard (2007).

3.2.5 Cryptographically Strong Generators

One way of defining an ideal RNG would be that no statistical test can distinguish
its output sequence from an i.i.d. U(0, 1) sequence. If an unlimited computing time
is available, no finite-state RNG can satisfy this requirement, because by running
it long enough one can eventually figure out its periodicity. But what if we impose
a limit on the computing time? This can be analyzed formally in the framework
of asymptotic computational complexity theory, under the familiar “rough-cut”
assumption that polynomial-time algorithms are practical and others are not.
Consider a family of RNGs {G, = (Sk, pk, fi. Uk, gk), k = 1,2, ...} where Sk
of cardinality 2% (i.e., Gx has a k-bit state). Suppose that the transition and output
functions f and g can be computed in time bounded by a polynomial in k. Let 7
be the class of statistical tests that run in time bounded by a polynomial in k and
try to differentiate between the output sequence of the RNG and an i.i.d. U(0, 1)
sequence. The RNG family is called polynomial-time perfect if there is a constant
€ > 0 such that for all k, no test in 7 can differentiate correctly with probability

3 Random Number Generation 41

larger than 1/2 + e~*¢. This is equivalent to asking that no polynomial-time
algorithm can predict any given bit of #; with probability of success larger than
1/2+ e~ke after observing uo, . .., ;. This links unpredictability with statistical
uniformity and independence. For the proofs and additional details, see, e.g. Blum
et al. (1986), L’Ecuyer and Proulx (1989), Lagarias (1993), and Luby (1996).
This theoretical framework has been used to define a notion of reliable RNG in
the context of cryptography. But the guarantee is only asymptotic; it does not
necessarily tell what value of k is large enough for the RNG to be secure in practice.
Moreover, specific RNG families have been proved to be polynomial-time perfect
only under yet unproven conjectures. So far, no one has been able to prove even
their existence. Most RNGs discussed in the remainder of this chapter are known
not to be polynomial-time perfect. However, they are fast, convenient, and have
good enough statistical properties when their parameters are chosen carefully.

3.3 Linear Recurrences Modulo m

3.3.1 The Multiple Recursive Generator
The most widely used RNGs are based on the linear recurrence
X = (alx,-_l + e b apxi—k) mod m, 3.2)

where m and k are positive integers called the modulus and the order, and the

coefficients ay, ..., ay are in Z,,, interpreted as the set {0,...,m — 1} on which
all operations are performed with reduction modulo m. The state at step i is
Si = X; = (Xick41r--- ,xi)T. When m is a prime number, the finite ring Z,,

is a finite field and it is possible to choose the coefficients a; so that the period
reaches p = mk — 1 (the largest possible value) (Knuth 1998). This maximal
period is achieved if and only if the characteristic polynomial of the recurrence,
P(z) = F—a 1= —q,isa primitive polynomial over Z,,, i.e., if and only if
the smallest positive integer v such that (z” mod P(z)) mod m = 1isv = m* — 1.
Knuth (1998) explains how to verify this for a given P(z). For k > 1, for P(2) to
be a primitive polynomial, it is necessary that a; and at least another coefficient
be nonzero. Finding primitive polynomials of this form is generally easy and they
yield the simplified recurrence:

Xp = (ayXxy—r + axx,—x) mod m. (3.3)
A multiple recursive generator (MRG) uses (3.2) with a large value of m and

defines the output as u; = x; /m. For k = 1, this is the classical linear congruential
generator (LCG). In practice, the output function is modified slightly to make sure

42 P. L’Ecuyer

that u; never takes the value 0 or 1 (e.g., one may define u; = (x; + 1)/(m + 1),
oru; = x;/(m+1)if x;, > 0and u; = m/(m + 1) otherwise) but to simplify
the theoretical analysis, we will follow the common convention of assuming that
u; = x;/m (in which case u; does take the value 0 occasionally).

3.3.2 The Lattice Structure

Let e; denote the ith unit vector in k dimensions, with a 1 in position i and

0’s elsewhere. Denote by x;, X; 1, X;2,... the values of x¢, x|, X2, ... produced
by the recurrence (3.2) when the initial state Xy is e;. An arbitrary initial state
X0 = (21,... ,Zk)T can be written as the linear combination z,e; + --- 4+ zx€; and

the corresponding sequence is a linear combination of the sequences (x; 0, X; 1, - - -),
with reduction of the coordinates modulo m. Conversely, any such linear combina-
tion reduced modulo m is a sequence that can be obtained from some initial state
X € 8 = ZF. If we divide everything by m we find that for the MRG, for each
t>1,% =L, NJ[0,1) where

‘
L, = V=ZZiV:’ | z €Zy ,

i=1
is a 7-dimensional lattice in R, with basis

vi=(1,0,...,0,X14,...,X1,-1) /m

Vi = (0,0, ... 1, Xphsoo o Xpsm1)'/m

Vi+1 = (0,0,...,0,1,...,0)T

v, = (0,0,...,0,0,....).

For t < k, L, contains all vectors whose coordinates are multiples of 1/m. For
t > k, it contains a fraction m*~ of those vectors.

This lattice structure implies that the points of ¥; are distributed according to
a very regular pattern, in equidistant parallel hyperplanes. Graphical illustrations
of this, usually for LCGs, can be found in a myriad of papers and books; e.g.,
Gentle (2003), Law and Kelton (2000), and L’Ecuyer (1998). Define the dual lattice
to L, as

L¥=theR :h've Zforallve L}.

3 Random Number Generation 43

Each h € L} is a normal vector that defines a family of equidistant parallel
hyperplanes, at distance 1/|h|» apart, and these hyperplanes cover all the points
of L, unless h is an integer multiple of some other vector h’ € L. Therefore, if ¢,
is the Euclidean length of a shortest non-zero vector hin L}, then there is a family of
hyperplanes at distance 1/¢, apart that cover all the points of L,. A small £, means
there are thick slices of empty space between the hyperplanes and we want to avoid
that. A large £, means a better (more uniform) coverage of the unit hypercube by the
point set ¥,. Computing the value of 1/¢; is often called the spectral test (Fishman
1996; Knuth 1998).

The lattice property holds as well for the point sets ¥; formed by values
at arbitrary lags defined by a fixed set of indices I = {ij,---,i,}. One has
W, = L; N[0, 1)" for some lattice L;, and the largest distance between successive
hyperplanes for a family of hyperplanes that cover all the points of L; is 1/¢;,
where £; is the Euclidean length of a shortest nonzero vector in L%, the dual lattice
toL;.

The lattice L; and its dual can be constructed as explained in Couture and
L’Ecuyer (1996) and L’Ecuyer and Couture (1997). Finding the shortest nonzero
vector in a lattice with basis vy, ..., v, can be formulated as an integer programming
problem with a quadratic objective function:

t t
Minimize ||v|* = Z ZZiV;erZj

i=1j=1

subject to zj,...,z integers and not all zero. This problem can be solved by a
branch-and-bound algorithm (Fincke and Pohst 1985; L’Ecuyer and Couture 1997;
Tezuka 1995).

For any given dimension ¢ and m* points per unit of volume, there is an absolute
upper bound on the best possible value of £; (Conway and Sloane 1999; Knuth
1998; L'Ecuyer 1999b). Let £ (m*) denote such an upper bound. To define a figure
of merit that takes into account several sets 7, in different numbers of dimensions, it
is common practice to divide £; by an upper bound, to obtain a standardized value
between 0 and 1, and then take the worst case over a given class J of sets /. This
gives a figure of merit of the form

_ . * k
My = ?é{rjl EI/E‘”(m).

A value of M7 too close to zero means that L; has a bad lattice structure for
at least one of the selected sets /. We want a value as close to 1 as possible.
Computer searches for good MRGs with respect to this criterion have been reported
by L’Ecuyer et al. (1993), L’Ecuyer and Andres (1997), L’Ecuyer (1999a), for
example. In most cases, J was simply the sets of the form I = {1,...,¢} for
t < t;, where #; was an arbitrary integer ranging from 8 to 45. L’Ecuyer and
Lemieux (2000) also consider the small dimensional sets / with indices not too

44 P. L’Ecuyer

far apart. They suggest taking J = {{0,1,...,i} :i <} U{{i1,ix} : 0 =i <
b <tyU---U{ir,...,iq}:0=1i1 <...<iyg < ty} for some positive integers
d,t,...,tg. We could also take a weighted average instead of the minimum in the
definition of M 7.

An important observation is that for ¢ > k, the 7-dimensional vector h =
(-1,ay,...,a;,0,... ,O)T always belong to L}, because for any vector v € L;,
the first k + 1 coordinates of mv must satisfy the recurrence (3.2), which implies
that (—1,ay,...,ax,0,...,0)v must be an integer. Therefore, one always has 6,2 <
1+ a% + -+ a,%. Likewise, if / contains O and all indices j such that ax_; # 0,
then 6% <1+ a% + e ai ("Ecuyer 1997). This means that the sum of squares
of the coefficients a; must be large if we want to have any chance that the lattice
structure be good.

Constructing MRGs with only two nonzero coefficients and taking these coeffi-
cients small has been a very popular idea, because this makes the implementation
easier and faster (Deng and Lin 2000; Knuth 1998). However, the MRGs thus
obtained have a bad structure. As a worst-case illustration, consider the widely-
available additive or subtractive lagged-Fibonacci generator, based on the recur-
rence (3.2) where the two coefficients a, and ay are both equal to %1. In this case,
whenever I contains {0,k — r, k}, one has K% < 3, so the distance between the
hyperplanes is at least 1/+/3. In particular, for I = {0, k —r, k}, all the points of ¥;
(aside from the zero vector) are contained in only two planes! This type of structure
can have a dramatic effect on certain simulation problems and is a good reason for
staying away from these lagged-Fibonacci generators, regardless of their parame-
ters. They fail several simple empirical statistical tests (L’Ecuyer and Simard 2007).

A similar problem occurs for the “fast MRG” proposed by Deng and Lin (2000),
based on the recurrence

Xi = (=xj—1 +axi—x) mod m = ((m — 1)x;—; + ax;—;) mod m,

with a> < m. If a is small, the bound £ < 1 4 a? implies a bad lattice structure for
I = {0,k —1,k}. A more detailed analysis by L’Ecuyer and Touzin (2004) shows
that this type of generator cannot have a good lattice structure even if the condition
a’ < m is removed. Another special case proposed by Deng and Xu (2003) has the
form

X; za(xi_j2 +-~~+xi_j,) mod m. 3.4

In this case, for I = {0,k — j,—1,....k — j»,k}, the vectors (1,a,...,a) and
(a*,1,...,1) both belong to the dual lattice L7, where a* is the multiplicative
inverse of @ modulo m. So neither a nor a* should be small.

To get around this structural problem when / contains certain sets of indices,
Liischer (1994) and Knuth (1998) recommend to skip some of the output values to
break up the bad vectors. For the lagged-Fibonacci generator, for example, one can
output k successive values produced by the recurrence, then skip the next d values,
output the next k, skip the next d, and so on. A large value of d (e.g., d = 5k or
more) may get rid of the bad structure, but slows down the generator. See Wegenkittl
and Matsumoto (1999) for further discussion.

3 Random Number Generation 45
3.3.3 MRG Implementation Techniques

The modulus m is often taken as a large prime number close to the largest integer
directly representable on the computer (e.g., equal or near 23! — 1 for 32-bit
computers). Since each x;_; can be as large as m — 1, one must be careful in
computing the right side of (3.2) because the product a;x;—; is typically not
representable as an ordinary integer. Various techniques for computing this product
modulo m are discussed and compared by Fishman (1996), L’Ecuyer and Tezuka
(1991), L’Ecuyer (1999a), and L’Ecuyer and Simard (1999). Note that if a; =
m — a;. > 0, using a; is equivalent to using the negative coefficient —a}, which
is sometimes more convenient from the implementation viewpoint. In what follows,
we assume that a; can be either positive or negative.

One approach is to perform the arithmetic modulo m in 64-bit (double precision)
floating-point arithmetic (L’Ecuyer 1999a). Under this representation, assuming
that the usual IEEE floating-point standard is respected, all positive integers up
to 2°3 are represented exactly. Then, if each coefficient a j 1s selected to satisfy
laj|(m — 1) < 2%, the product |a;|x;—; will always be represented exactly and
zj = |a;|xi—; mod m can be computed by the instructions

y = lajlxi-;; zj =y—mly/m].

Similarly, if (|a;| + -+ + |ax|)(m — 1) < 2%, a;x;—; + - + ax x;—; will always be
represented exactly.

A second technique, called approximate factoring (L’Ecuyer and Co6té 1991),
uses only the integer representation and works under the condition that |a;| = i or
laj| = |m/i] for some integer i < +/m. One precomputes ¢; = |m/|a;|] and
rj =m mod |a;|. Then, z; = |a;|x;—; mod m can be computed by

y=|xi—j/q;]: z=la;j|(xi—j —yq;) — yrj;

ifz<Othenz; =z+melsez; =z

All quantities involved in these computations are integers between —m and m, so
no overflow can occur if m can be represented as an ordinary integer (e.g., m < 23!
on a 32-bit computer).

The powers-of-two decomposition approach selects coefficients a; that can be
written as a sum or difference of a small number of powers of 2 (L’Ecuyer and
Simard 1999; L’Ecuyer and Touzin 2000; Wu 1997). For example, one may take
aj = £29 £ 2" and m = 2° — h for some positive integers ¢, r, e, and h. To
compute y = 29x mod m, decompose x = zg + 2°79z; (where zo = x mod 2¢79)
and observe that

y =29(z0 + 2°79z1) mod (2° — h) = (29z + hz;) mod (2¢ — h).

46 P. L’Ecuyer

Suppose now that
h <29 and hQ?—(h+1)27) <m. (3.5)

Then, 2979 < m and hz; < m, so y can be computed by shifts, masks, additions,
subtractions, and a single multiplication by /. Intermediate results never exceed
2m — 1. Things simplify furtherif ¢ = Oorg = lorh = 1. Forh = 1, y is
obtained simply by swapping the blocks of bits zp and z; (Wu 1997). L’Ecuyer and
Simard (1999) pointed out that LCGs with parameters of the form m = 2° — 1 and
a = £29 4 2" have bad statistical properties because the recurrence does not “mix
the bits” well enough. However, good and fast (combined) MRGs can be obtained
via the power-of-two decomposition method, as explained in L’Ecuyer and Touzin
(2000).

Another idea to improve efficiency is to take all nonzero coefficients a; equal to
the same a, as in (3.4) (Deng and Xu 2003; Marsaglia 1996). Then, computing the
right side of (3.2) requires a single multiplication. Deng and Xu (2003) and Deng
(2005) provide specific parameter sets and concrete implementations for MRGs of
this type, for prime m near 23!, and for k ranging from 102 to 1597.

One may be tempted to take m equal to a power of two, say m = 2°¢, because
then the “ mod m” operation is much easier: it suffices to keep the e least significant
bits and mask-out all others. However, taking a power-of-two modulus is not
recommended because it has several strong disadvantages in terms of the quality
of the RNG (L’Ecuyer 1990, 1998). In particular, the least significant bits have very
short periodicity and the period of the recurrence (3.2) cannot exceed (2% — 1)2¢~!
ifk > 1,and 22 if k = 1 and e > 4. The maximal period achievable with k = 7
and m = 23!, for example, is more than 2'%" times smaller than the maximal period
achievable with k = 7andm =231 —1 (a prime number).

3.3.4 Combined MRGs and LCGs

The conditions that make MRG implementations run faster (e.g., only two nonzero
coefficients both close to zero) conflict with those required for having a good
lattice structure and statistical robustness. Combined MRGs are one solution to this
problem. Consider J distinct MRGs evolving in parallel, based on the recurrences

Xji = (ajslxj,,‘_l + "'+Clj,kxj",'_k) mod m; (3.6)
wherea;x #0,for j =1,...,J.Letdy,..., 8, be arbitrary integers,

i = (Sl-xl,i +"'+8_]x_]’j) mod mu, u; =Zi/m1, (37)

and
wi = (§1x1:/my + -+ 8;x;5;/my) mod 1. (3.8)

3 Random Number Generation 47

This defines two RNGs, with output sequences {u;, i > 0} and {w;, i > 0}.

Suppose that the m; are pairwise relatively prime, that §; and m; have no
common factor for each j, and that each recurrence (3.6) is purely periodic with
period p;. Letm = m; ---m and let p be the least common multiple of py, ..., p;.
Under these conditions, L’Ecuyer and Tezuka (1991) and L"Ecuyer (1996a) proved
the following: (a) the sequence (3.8) is exactly equivalent to the output sequence
of a MRG with (composite) modulus m and coefficients a; that can be computed
explicitly as explained by L’Ecuyer (1996a); (b) the two sequences in (3.7) and (3.8)
have period p; and (c) if both sequences have the same initial state, then u; = w; +¢;
where max; ¢ |€;| can be bounded explicitly by a constant € which is very small
when the m ; are close to each other.

Thus, these combined MRGs can be viewed as practical ways of implementing an
MRG with a large m and several large nonzero coefficients. The idea is to cleverly
select the components so that: (1) each one is easy to implement efficiently (e.g.,
has only two small nonzero coefficients) and (2) the MRG that corresponds to the
combination has a good lattice structure. If each m ; is prime and if each component
J has maximal period p; = mljC — 1, then each p; is even and p cannot exceed
p1---py /2’71 Tables of good parameters for combined MRGs of different sizes
that reach this upper bound are given in L’Ecuyer (1999a) and L’Ecuyer and Touzin
(2000), together with C implementations.

3.3.5 Jumping Ahead

The recurrence (3.2) can be written in matrix form as

Xi =Ax;_ymodm =1 - x;—1 mod m.
0 0 -1

Ak dg—1 =+ dy1

To jump ahead directly from x; to x;4,, for an arbitrary integer v, it suffices to
exploit the relationship

X;+» = A’x; mod m = (AY mod m)x; mod m.
If this is to be done several times for the same v, the matrix A” mod m can be

precomputed once for all. For a large v, this can be done in O(log, v) matrix
multiplications via a standard divide-and-conquer algorithm (Knuth 1998):

(AY/? mod m)(A"?> mod m) mod m if v is even;
A(A"~! mod m) mod m if v is odd.

A" modm =

48 P. L’Ecuyer
3.3.6 Linear Recurrences with Carry

These types of recurrences were introduced by Marsaglia and Zaman (1991)
to obtain a large period even when m is a power of two (in which case the
implementation may be faster). They were studied and generalized by Tezuka et al.
(1994), Couture and L’ Ecuyer (1994, 1997), and Goresky and Klapper (2003). The
basic idea is to add a carry to the linear recurrence (3.2). The general form of this
RNG, called multiply-with-carry (IMWC), can be written as

xi = (@1xi—1 + -+ + akXxi— + ¢;—1)d mod b, (3.9)

¢i = |(aoxi + arxi—1 + -+ + axxi— + ¢i—1)/b], (3.10)

(&)
ui = Xi—er1b™", (3.11)
=1

where b is a positive integer (e.g., a power of two), ay, . .., aj are arbitrary integers
such that a is relatively prime to b, and d is the multiplicative inverse of —ag
modulo b. The state at step i is s; = (Xj—+1.-..,X;.¢;)'. In practice, the sum in
(3.11) is truncated to a few terms (it could be a single term if b is large), but the
theoretical analysis is much easier for the infinite sum.

Define m = Zﬁ:o acb® and let a be the inverse of b in arithmetic modulo m,
assuming for now that m > 0. A major result proved in Tezuka et al. (1994), Couture
and L’Ecuyer (1997), and Goresky and Klapper (2003) is that if the initial states
agree, the output sequence {u;, i > 0} is exactly the same as that produced by
the LCG with modulus m and multiplier a. Therefore, the MWC can be seen as a
clever way of implementing a LCG with very large modulus. Couture and L’Ecuyer
(1997) have shown that the value of ¢, for this LCG satisfies £ < a} + -+ + a3 for
t > k, which means that the lattice structure will be bad unless the sum of squares
of coefficients a; is large.

In the original proposals of Marsaglia and Zaman (1991), called add-with-carry
and subtract-with-borrow, one has —ag = +a, = Fa; = 1 for some r < k
and the other coefficients a; are zero, so E,z < 3 fort > k and the generator has
essentially the same structural defect as the additive lagged-Fibonacci generator. In
the version studied by Couture and L’Ecuyer (1997), it was assumed that —ay =
d = 1. Then, the period cannot exceed (m — 1)/2 if b is a power of two. A concrete
implementation was given in that paper. Goresky and Klapper (2003) pointed out
that the maximal period of p = m — 1 can be achieved by allowing a more general
ap. They provided specific parameters that give the maximal period for b ranging
from 22! to 2% and p up to approximately 229!,

3 Random Number Generation 49

3.4 Generators Based on Recurrences Modulo 2

3.4.1 A General Framework

It seems natural to exploit the fact that computers work in binary arithmetic and to
design RNGs defined directly in terms of bit strings and sequences. We do this under
the following framework, taken from L’Ecuyer and Panneton (2002) and L’Ecuyer
and Panneton (2009). Let F, denote the finite field with two elements, 0 and 1,
in which the operations are equivalent to addition and multiplication modulo 2.
Consider the RNG defined by a matrix linear recurrence over [, as follows:

X = AXi. (3.12)
yi = Bx;, (3.13)
= nyf—lz_l = i Yin Viz e (3.14)
=1
where X; = (Xi0,....Xik—1)' € Ff is the k-bit state vector at step i, y; =
(Vi0s - Viw—1)" € FY is the w-bit output vector at step i, k and w are positive

integers, A is a k X k transition matrix with elements in [, B is a w X k output
transformation matrix with elements in I,, and u; € [0, 1) is the output at step i.
All operations in (3.12) and (3.13) are performed in [F;.

It is well-known (L’Ecuyer 1994; Niederreiter 1992) that when the x;’s obey
(3.12), for each j, the sequence {x; ;, i > O} follows the linear recurrence

Xij = (O(]X,'_l,j +"'+O{kx,'_k,j) mod 2, (315)
whose characteristic polynomial P(z) is the characteristic polynomial of A, i.e.,
— _ k k—1
P(z) =det(A—zl) =2" —a12’ " —-+ —og—12 — k.,

where I is the identity matrix and each «; is in [F,. The sequences {y; ;, i > 0},
for 0 < j < w, also obey the same recurrence (although some of them may follow
recurrences of shorter order as well, depending on B). We assume that oy = 1, so
that the recurrence (3.15) has order k and is purely periodic. Its period is 2% — 1
(i.e., maximal) if and only if P(z) is a primitive polynomial over [, (Knuth 1998;
Niederreiter 1992).

To jump ahead directly from x; to Xx; 4+, with this type of generator, it suffices to
precompute the matrix A" (in F,) and then multiply x; by this matrix.

Several popular classes of RNGs fit this framework as special cases, by appro-
priate choices of the matrices A and B. This includes the Tausworthe or LFSR,
polynomial LCG, GFSR, twisted GFSR, Mersenne twister, WELL, xorshift, multi-
ple recursive matrix generators, and combinations of these (L’Ecuyer and Panneton

50 P. L’Ecuyer

2009; Matsumoto and Nishimura 1998; Niederreiter 1995; Panneton and L’Ecuyer
2005; Panneton et al. 2006; Tezuka 1995). We detail some of them after discussing
measures of uniformity.

3.4.2 Measures of Uniformity

The uniformity of point sets ¥; produced by RNGs based on linear recurrences over
[, is usually assessed by measures of equidistribution defined as follows (L’Ecuyer
1996b, 2004; L’Ecuyer and Panneton 2002, 2009; Tezuka 1995). For an arbitrary
vectorq = (q1, . .. ,q,) of non-negative integers, partition the unit hypercube [0, 1)
into 29/ intervals of the same length along axis j, for each j. This determines a
partition of [0, 1) into 29174 rectangular boxes of the same size and shape. We
call this partition the q-equidissection of the unit hypercube.

For some index set I = {iy,...,i;}, if ¥; has 2% points, we say that ¥; is
q-equidistributed in base 2 if there are exactly 2¢ points in each box of the ¢-
equidissection, where k — ¢ = g; + --- + ¢,. This means that among the 2* points
(xji,...,xj,) of ¥p, if we consider the first g; bits of x,, the first ¢» bits of x;,,
..., and the first g, bits of x,, each of the 2k=4 possibilities occurs exactly the same
number of times. This is possible only if ¢ < k.

The g-equidistribution of ¥; depends only on the first ¢; bits of x;;, for1 < j <
t, for the points (x;,, ..., x;,) that belong to ¥;. The vector of these g1 +--- + ¢, =
k — g bits can always be expressed as a linear function of the k bits of the initial
state Xo, i.e., as MyXo for some (k — ¢) x k binary matrix Mg, and it is easily seen
that ¥; is q-equidistributed if and only if Mg has full rank k& — g. This provides
an easy way of checking equidistribution (L’Ecuyer 1996b; L’Ecuyer and Panneton
2009; Tezuka 1995).

If Y is (€, ..., ¢)-equidistributed for some £ > 1, it is called ¢-distributed with
£ bits of accuracy, or (t, {)-equidistributed (L'Ecuyer 1996b). The largest value of
£ for which this holds is called the resolution of the set ¥; and is denoted by ¢;.
This value has the upper bound ¢} = min(|k/¢], w). The resolution gap of ¥; is
defined as 6; = £ — £;. In the same vein as for MRGs, a worst-case figure of merit
can be defined here by

A7 = max§y,
1eJ

where 7 is a preselected class of index sets /.

The point set ¥; is a (q,k,t)-net in base 2 (often called a (¢,m,s)-net in
the context of quasi-Monte Carlo methods, where a different notation is used
Niederreiter 1992), if it is (qy, - - - , ¢;)-equidistributed in base 2 for all non-negative
integers ¢y, . ..,q, summing to k — g. We call the smallest such ¢ the g-value of
;. The smaller it is, the better. One candidate for a figure of merit could be the
g-value of ¥, for some large ¢. Although widely used to construct and evaluate
low-discrepancy point sets for quasi-Monte Carlo methods, a major drawback of

3 Random Number Generation 51

this measure is that it is too costly to compute for good long-period generators (for
which k—q is large), because there are too many vectors q for which equidistribution
needs to be checked. In practice, one must settle for figures of merit that involve a
smaller number of equidissections.

When §; = 0 for all sets I of the form / = {0,...,t — 1},for 1 <t <k, the
RNG is said to be maximally equidistributed or asymptotically random for the word
size w (L'Ecuyer 1996b; Tezuka 1995; Tootill et al. 1973). This property ensures
perfect equidistribution of all sets ¥, for any partition of the unit hypercube into
subcubes of equal sizes, as long as £ < w and the number of subcubes does
not exceed the number of points in ¥;. Large-period maximally equidistributed
generators, together with their implementations, can be found in L’Ecuyer (1999c¢),
L’Ecuyer and Panneton (2002), Panneton and L’Ecuyer (2004), and Panneton et al.
(2006), for example.

3.4.3 Lattice Structure in Spaces of Polynomials and Formal
Series

The RNGs defined via (3.12)—(3.14) do not have a lattice structure in the real space
like MRGs, but they do have a lattice structure in a space of formal series, as
explained in Couture and L’Ecuyer (2000), L’Ecuyer (2004), L’Ecuyer and Panneton
(2009), Lemieux and L’Ecuyer (2003), and Tezuka (1995). The real space R is
replaced by the space L, of formal power series with coefficients in IF,, of the form
Iy x¢z~* for some integer . In that setting, the lattices have the form

t
L, =3v(z) = Z hj(z)v;j(z) such that each i (z) € F2[z] ¢ .
j=1

where F;[7] is the ring of polynomials with coefficients in [, and the basis vectors
v;(z) are in L. The elements of the dual lattice £ are the vectors h(z) in L}
whose scalar product with any vector of £, belongs to [F,[z]. We define the mapping

(7]Lz — R by
o0 o0
[0 (Z xzz_l) = Zxﬂ_[.
l=w l=w

Then, it turns out that the point set ¥; produced by the generator is equal to
(L) N [0, 1)". Moreover, the equidistribution properties examined in Sect.3.4.2
can be expressed in terms of lengths of shortest vectors in the dual lattice, with
appropriate definitions of the length (or norm). Much of the theory and algorithms
developed for lattices in the real space can be adapted to these new types of lattices
(Couture and L’Ecuyer 2000; L’Ecuyer et al. 2009; Tezuka 1995).

52 P. L’Ecuyer
3.4.4 The LFSR Generator

The Tausworthe or linear feedback shift register (LFSR) generator (L’Ecuyer 1996b;
Tausworthe 1965; Tezuka 1995) is a special case of (3.12-3.14) with A = Aj (in
IF,) for some positive integer s, where

Ay = K , (3.16)
1
g Aj—1 e aq
ai,...,ag arein [Fp, a;y = 1, and all blank entries in the matrix are zeros. If w < k,

the matrix B contains the first w lines of the k x k identity matrix, otherwise B is
constructed as explained in L’Ecuyer and Panneton (2009). The RNG thus obtained
can be defined equivalently by

X;i = ajxj—1 + -+ agxi— mod 2, (3.17)
up = ins+é—12_l- (3.18)
(=1

Here, P(z) is the characteristic polynomial of the matrix A{), not the characteristic
polynomial of the recurrence (3.17), and the choice of s is important for determining
the quality of the generator. A frequently encountered case is when a single a;
is nonzero in addition to ay; then, P(z) is a trinomial and we have a trinomial-
based LFSR generator. These generators are known to have important statistical
deficiencies (Matsumoto and Kurita 1996; Tezuka 1995) but they can be used a
components of combined RNGs (Sect. 3.4.6).

LFSR generators can be expressed as LCGs in a space of polynomials (L’Ecuyer
1994; Tezuka 1995; Tezuka and L’Ecuyer 1991). With this representation, their
lattice structure as discussed in Sect. 3.4.3 follows immediately.

3.4.5 The GFSR and Twisted GFSR

Here we take A as the pg x pg matrix

3 Random Number Generation 53

for some positive integers p and ¢, where I, is the p x p identity matrix, S is a
p X p matrix, and the matrix I, on the first line is in columns (r — 1)p + 1 to rp
for some positive integer r. Often, w = p and B contains the first w lines of the
pq x pq identity matrix. If S is also the identity matrix, the generator thus obtained
is the trinomial-based generalized feedback shift register (GFSR), for which x; is
obtained by a bitwise exclusive-or of x;—, and x;—,. This gives a very fast RNG,
but its period cannot exceed 2¢ — 1, because each bit of x; follows the same binary
recurrence of order k = ¢, with characteristic polynomial P(z) =z —z497" — 1. It
also fails several simple empirical tests (L’Ecuyer and Simard 2007).

More generally, we can define x; as the bitwise exclusive-or of X;—,,Xi—s,,
...,Xi—r, Where ry = g, so that each bit of x; follows a recurrence in [, whose
characteristic polynomial P(z) has d + 1 nonzero terms. However, the period is
still bounded by 29 — 1, whereas considering the pg-bit state, we should rather
expect a period close to 27¢. This was the main motivation for the rwisted GFSR
(TGFSR) generator. In the original version introduced by Matsumoto and Kurita
(1992), w = p and the matrix S is defined as the transpose of Ay in (3.16), with
k replaced by p. The characteristic polynomial of A is then P(z) = Ps(z? + "),
where Ps(z) = 27 —a,z?~! — -+ — aj is the characteristic polynomial of S, and
its degree is k = pq. If the parameters are selected so that P(z) is primitive over
IF,, then the TGFSR has period 2¢ — 1. Matsumoto and Kurita (1994) pointed out
important weaknesses of the original TGFSR and proposed an improved version
that uses a well-chosen matrix B whose lines differ from those of the identity. The
operations implemented by this matrix are called tempering and their purpose is to
improve the uniformity of the points produced by the RNG.

The Mersenne twister (Matsumoto and Nishimura 1998; Nishimura 2000) is a
variant of the TGFSR where k is slightly less than pg and can be a prime number. A
specific instance named MT19937, proposed by Matsumoto and Nishimura (1998),
has become quite popular; it runs very fast and has the huge period of 29937 — 1,
However, its state x; occupies a large amount of memory (19,937 bits) and changes
very slowly as a function of i. Panneton et al. (2006) showed that as a consequence
of this slow change, if the generator starts in a state with very few bits equal to 1,
then the average output values over the next few thousand steps is likely to be much
less than 1/2. In particular, if the initial state has a single bit at 1, say randomly
selected, then we need about 3/4 million steps before the average output value gets
close to 1/2. Likewise, if two initial states differ by a single bit, it takes the same
number of steps before the corresponding outputs differ by about half of their bits.
This problem is related to the fact that the characteristic polynomial P(z) has too
few nonzero coefficients, namely 135 out of 19,938.

Panneton et al. (2006) went on to develop a class of [F,-linear generators
called well-equidistributed long-period linear (WELL), which run almost as fast
as MT19937, but whose state changes faster and whose polynomial P(z) contains
nearly 50% nonzero coefficients. They propose specific instances with periods
ranging from 2°'2 — 1 to 2***7 — 1, which are all almost (or exactly) maximally
equidistributed.

54 P. L’Ecuyer

In the multiple recursive matrix method of Niederreiter (1995), the first row of
p X p matrices in A contains arbitrary matrices. However, a fast implementation is
possible only when these matrices are sparse and have a special structure.

3.4.6 Combined Linear Generators Over IF,

Many of the best generators based on linear recurrences over [, are constructed by
combining the outputs of two or more RNGs having a simple structure. The idea
is the same as for MRGs: select simple components that can run fast but such that
their combination has a more complicated structure and highly-uniform sets ¥; for
the sets / considered important.

Consider J distinct recurrences of the form (3.12-3.13), where the jth recur-
rence has parameters (k,w,A,B) = (k;,w,A;,B;) and state x;; at step i, for
j =1,...,J. The output of the combined generator at step i is defined by

yi =Bix;; &---®Byxy,,
u, = Zyi,é—lz_[a
(=1

where @ denotes the bitwise exclusive-or operation. One can show (Tezuka 1995)
that the period p of this combined generator is the least common multiple of the
periods p; of its components. Moreover, this combined generator is equivalent to
the generator (3.12-3.14) with k = k; + --- + k;, A = diag(A;,...,Ay), and
B=(B...,By).

With this method, by selecting the parameters carefully, the combination of
LFSR generators with characteristic polynomials P (z), .. ., P;(z) gives yet another
LFSR with characteristic polynomial P(z) = P;(z) - - - Ps(z) and period equal to the
product of the periods of the components (L’Ecuyer 1996b; Tezuka 1995; Tezuka
and L’Ecuyer 1991; Wang and Compagner 1993). Tables and fast implementations
of maximally equidistributed combined LFSR generators are given in L’Ecuyer
(1999c¢).

The TGFSR and Mersenne twister generators cannot be maximally equidis-
tributed. However, concrete examples of maximally equidistributed combined
TGFSR generators with periods near 24¢ and 2'?*° can be found in L’Ecuyer and
Panneton (2002). These generators have the additional property that the resolution
gaps d; are zero for a class of small sets / with indices not too far apart.

3.5 Nonlinear RNGs

All RNGs discussed so far are based on linear recurrences and their structure may
be deemed too regular. For example, we saw earlier that the output binary sequence
{»ij. i = 0} of any IF»-linear generator obeys the linear recurrence (3.15). This can

3 Random Number Generation 55

be detected easily by applying statistical tests that measure the linear complexity
of this output sequence, or that construct “random” binary matrices from this
sequence and compute their ranks (L’Ecuyer and Simard 2007). Because of the
linear dependences between the bits, the linear complexity and the matrix ranks will
be smaller than what they should be on average. For the great majority of Monte
Carlo applications, this linearity is not a problem, because the random numbers
are transformed nonlinearly by the simulation algorithm. But for the rare situations
where it may matter, we need alternatives.

There are several ways of getting rid of the regular linear structure, including:
(1) use a nonlinear transition function f’; (2) keep the transition function linear but
use a nonlinear output function g; (3) combine two linear RNGs of different types,
such as an MRG with an F,-linear generator; (4) shuffle (randomly permute) the
output values using another generator. Several types of genuinely nonlinear RNGs
have been proposed over the years; see for example Blum et al. (1986), Eichenauer-
Herrmann (1995), Eichenauer-Herrmann et al. (1998), Hellekalek and Wegenkittl
(2003), Knuth (1998), L’Ecuyer and Proulx (1989), L’Ecuyer (1994), L’Ecuyer
and Simard (2007), Niederreiter and Shparlinski (2002), and Tezuka (1995). Their
nonlinear mappings are defined in various ways by multiplicative inversion in a
finite field, quadratic and cubic functions in the finite ring of integers modulo m,
and other more complicated transformations. Many of them have output sequences
that tend to behave much like i.i.d. U(0, 1) sequences even over their entire period
length, in contrast with “good” linear RNGs, whose point sets ¥, are much more
regular than typical random points (Eichenauer-Herrmann et al. 1998; L’Ecuyer and
Granger-Piché 2003; L'Ecuyer and Hellekalek 1998; Niederreiter and Shparlinski
2002). On the other hand, their statistical properties have been analyzed only
empirically or via asymptotic theoretical results. For specific nonlinear RNGs, the
uniformity of the point sets ¥, is very difficult to measure theoretically. Moreover,
the nonlinear RNGs are generally significantly slower than the linear ones. The
RNGs recommended for cryptology are all nonlinear.

An interesting idea for adding nonlinearity without incurring an excessive speed
penalty is to combine a small nonlinear generator with a fast long-period linear
one (Aiello et al. 1998). L’Ecuyer and Granger-Piché (2003) show how to do this
while ensuring theoretically the good uniformity properties of ¥, for the combined
generator. A fast implementation can be achieved by using precomputed tables
for the nonlinear component. Empirical studies suggest that mixed linear-nonlinear
combined generators are more robust than the linear ones with respect to statistical
tests, because of their less regular structure.

Several authors have proposed various ways of combining RNGs to produce
streams of random numbers with less regularity and better “randomness” properties;
see, e.g., Collings (1987), Knuth (1998), Gentle (2003), Law and Kelton (2000),
L’Ecuyer (1994), Fishman (1996), Marsaglia (1985), and other references given
there. This includes shuffling the output sequence of one generator using another
one (or the same one), alternating between several streams, or just adding them in
different ways. Most of these techniques are heuristics. They usually improve the
uniformity (empirically), but they can also make it worse. For random variables

56 P. L’Ecuyer

in the mathematical sense, certain types of combinations (e.g., addition modulo 1)
can provably improve the uniformity, and some authors have used this fact to argue
that combined RNGs are provably better than their components alone (Brown and
Solomon 1979; Deng and George 1990; Gentle 2003; Marsaglia 1985), but this
argument is faulty because the output sequences of RNGs are deterministic, not
sequences of independent random variables. To assess the quality of a combined
generator, one must analyze the mathematical structure of the combined generator
itself rather than the structure of its components (L’Ecuyer 1996a,b, 1998; L’Ecuyer
and Granger-Piché 2003; Tezuka 1995).

3.6 Empirical Statistical Tests

As mentioned earlier, a statistical test for RNGs is defined by a random variable X
whose distribution under H can be well approximated. When X takes the value x,
we define the right and left p-values of the test by

pr = P[X = x| Ho] and pL = P[X <x[Ho]

When testing RNGs, there is no need to prespecify the level of the test. If either
of the right or left p-value is extremely close to zero, e.g., less than 1071, then
it is clear that H, (and the RNG) must be rejected. When a suspicious p-value is
obtained, e.g., near 1072 or 1072, one can just repeat this particular test a few more
times, perhaps with a larger sample size. Almost always, things will then clarify.

Most tests are defined by partitioning the possible realizations of (uy, ..., u,—1)
into a finite number of subsets (where the integer t can be random or deterministic),
computing the probability p; of each subset j under H,, and measuring the
discrepancy between these probabilities and empirical frequencies from realizations
simulated by the RNG.

A special case that immediately comes to mind is to take T = ¢ (a constant) and
cut the interval [0, 1) into d equal segments for some positive integer d, in order
to partition the hypercube [0, 1)’ into k = d' subcubes of volume 1/k. We then
generate n points w; = (i, ..., ui+—1) € [0,1)", fori = 0,...,n — I, and count
the number N; of points falling in subcube j, for j = 0,...,k — 1. Any measure
of distance (or divergence) between the numbers N; and their expectations n/k
can define a test statistic X . The tests thus defined are generally called serial tests of
uniformity (Knuth 1998; L’Ecuyer et al. 2002). They can be sparse (if n/k < 1), or
dense (if n/k >> 1), or somewhere in between. There are also overlapping versions,
where the points are defined by w; = (u;,...,u;4,—1) fori = 0,...,n — 1 (they
have overlapping coordinates).

Special instances for which the distribution under H, is well-known are the chi-
square, the (negative) empirical entropy, and the number of collisions (L'Ecuyer
and Hellekalek 1998; L'Ecuyer et al. 2002; Read and Cressie 1988). For the latter,
the test statistic X is the number of times a point falls in a subcube that already

3 Random Number Generation 57

had a point in it. Its distribution under H, is approximately Poisson with mean
A1 = n?/(2k), if n is large and A; not too large.

A variant is the birthday spacings test, defined as follows (Knuth 1998; L’Ecuyer
and Simard 2001; Marsaglia 1985). Let /(1) < --- < I(,) be the numbers of the
subcubes that contain the points, sorted by increasing order. Define the spacings
S; = I+ — Iy, for j = 1,...,n — 1, and let X be the number of collisions
between these spacings. Under Hy, X is approximately Poisson with mean A, =
n3/(4k), if n is large and A, not too large.

Consider now a MRG, for which ¥; has a regular lattice structure. Because of
this regularity the points of ¥, will tend to be more evenly distributed among the
subcubes than random points. For a well-chosen k and large enough n, we expect
the collision test to detect this: it is likely that there will be too few collisions. In
fact, the same applies to any RNG whose set ¥; is very evenly distributed. When
a birthday spacings test with a very large k is applied to a MRG, the numbers of
the subcubes that contain one point of ¥, tend to be too evenly spaced and the test
detects this by finding too many collisions.

These specific interactions between the test and the structure of the RNG lead
to systematic patterns in the p-values of the tests. To illustrate this, suppose that
we take k slightly larger than the cardinality of ¥, (so k ~ p) and that due to
the excessive regularity, no collision is observed in the collision test. The left p-
value will then be pp ~ P[X < 0 | X ~ Poisson(A;)] = exp[-n?/(2k)]. For
this p-value to be smaller than a given €, we need a sample size n proportional
to the square root of the period p. And after that, p; decreases exponentially
fast in n?.

Extensive experiments with LCGs, MRGs, and LFSR generators confirms that
this is actually what happens with these RNGs (L’Ecuyer 2001; L’Ecuyer and
Hellekalek 1998; L’Ecuyer et al. 2002). For example, if we take ¢ = 10" and
define n as the minimal sample size n for which py < €, we find that ng ~ 16p1/ 2
(plus some noise) for LCGs that behave well in the spectral test as well as for LFSR
generators. For the birthday spacings test, the rule for LCGs is ny ~ 16p'/? instead
(L’Ecuyer and Simard 2001). So to be safe with respect to these tests, the period p
must be so large that generating more than p'/3 numbers is practically unfeasible.
This certainly disqualifies all LCGs with modulus smaller than 2'% or so.

Other types of tests for RNGs include tests based on the closest pairs of points
among n points generated in the hypercube, tests based on random walks on the real
line or over the integers, tests based on the linear complexity of a binary sequence,
tests based on the simulation of dice or poker hands, and many others (Gentle
2003; Knuth 1998; L’Ecuyer and Simard 2007; Marsaglia 1996; Rukhin et al. 2001;
Vattulainen et al. 1995).

When testing RNGs, there is no specific alternative hypothesis to H,. Different
tests are needed to detect different types of departures from H,. The TestUO] library
of L’Ecuyer and Simard (2007) implements a large collection of tests in the C
language, and also provides specific test suites with preselected parameters and
sample sizes. Some of these suites are designed for i.i.d. U(0, 1) output sequences

58 P. L’Ecuyer

and others for strings of bits. Other (smaller) test suites for RNGs are DIEHARD
(Marsaglia 1996) and the NIST suite (Rukhin et al. 2001).

3.7 Available Software and Recommendations

Applying standard statistical test suites to RNGs found in popular software (sta-
tistical and simulation software, spreadsheets, system libraries, etc.) reveals that
many of them are surprisingly poor and fail the tests spectacularly (L’Ecuyer 2001;
L’Ecuyer and Simard 2007). There is no good reason to use these poor RNGs,
because several good ones are available that are fast, portable, and pass these test
suites with flying colors.

The RNG I use most of the time is the combined MRG MRG32k3a from
L’Ecuyer (1999a). A convenient object-oriented software package with multiple
streams and substreams of random numbers, based on this generator, is described
in L’Ecuyer et al. (2002) and is available in Java, C, and C++, at http://www.iro.
umontreal.ca/~lecuyer. This tool has been included recently in several software
products, including MATLAB, SAS, R, Arena, Automod, ns3, and many more.
MRG32k3a is not the fastest RNG available, but it is very robust and reliable.
A faster alternative is MGR31k3p from L’Ecuyer and Touzin (2000). Other good
combined MRGs, some for 64-bit computers, are available in L’Ecuyer (1999a).
Even faster ones are the combined LFSRs, Mersenne twisters, and WELL generators
proposed in L’Ecuyer (1999c), L’Ecuyer and Panneton (2002), Matsumoto and
Nishimura (1998), Nishimura (2000), and Panneton et al. (2006). When speed is a
concern, I personally use LFSR113 or LFSR258 from L’Ecuyer (1999c). Software
tools that provide multiple streams and substreams with most of these generators
(except the ones with very large state) are available in the SSJ library (L’Ecuyer
2008).

3.8 Non-Uniform Random Variate Generation

Like for the uniform case, non-uniform variate generation often involves approxima-
tions and compromises. The first requirement is, of course, correctness. This does
not mean that the generated random variate X must always have exactly the required
distribution, because this would sometimes be much too costly or even impossible.
But we must have a good approximation and, preferably, some understanding of
the quality of that approximation. Robustness is also important: when the accuracy
depends on the parameters of the distribution, it must be good uniformly over the
entire range of parameter values that we are interested in.

The method must also be efficient both in terms of speed and memory usage.
Often, it is possible to increase the speed by using more memory (e.g, for larger
precomputed tables) or by relaxing the accuracy requirements. Some methods need

http://www.iro.umontreal.ca/~lecuyer
http://www.iro.umontreal.ca/~lecuyer

3 Random Number Generation 59

a one-time setup to compute constants and construct tables. The setup time can be
significant but may be well worth spending if it is amortized by a large number of
subsequent calls to the generator. For example, it makes sense to invest in a more
extensive setup if we plan to make a million calls to a given generator than if we
expert to make only a few calls, assuming that this investment can improve the speed
of the generator sufficiently.

In general, compromises must be made between simplicity of the algorithm,
quality of the approximation, robustness with respect to the distribution parameters,
and efficiency (generation speed, memory requirements, and setup time).

In many situations, compatibility with variance reduction techniques is another
important issue (Asmussen and Glynn 2007; Bratley et al. 1987; Law and Kelton
2000). We may be willing to sacrifice the speed of the generator to preserve
inversion, because the gain in efficiency obtained via the variance reduction methods
may more than compensate (sometimes by orders of magnitude) for the slightly
slower generator.

3.8.1 Inversion

The inversion method, defined in the introduction, should be the method of choice
for generating non-uniform random variates in a majority of situations. The fact
that X = F~'(U) is a monotone (non-decreasing) function of U makes this
method compatible with important variance reductions techniques such as common
random numbers, antithetic variates, Latin hypercube sampling, and randomized
quasi-Monte Carlo methods (Bratley et al. 1987; Law and Kelton 2000; L’Ecuyer
and Lemieux 2000; L’Ecuyer et al. 2009).

For some distributions, an analytic expression can be obtained for the inverse
distribution function F~! and inversion can be easily implemented. As an example,
consider the Weibull distribution function with parameters ¢ > 0 and § > 0, defined
by F(x) = 1—exp[—(x/B)*] for x > 0.1tis easy to see that F~'(U) = B[—In(1—
U)]'/%. For @ = 1, we have the special case of the exponential distribution with
mean .

For an example of a simple discrete distribution, suppose that P[X = i] = p;
where pg = 0.6, p; = 0.3, p» = 0.1, and p; = 0 elsewhere. The inversion method
in this case will return 0 if U < 0.6, 1if 0.6 < U < 0.9, and 2 if U > 0.9. For
the discrete uniform distribution over {0, ...,k — 1}, return X = |kU |. As another
example, let X have the geometric distribution with parameter p, so P[X = x] =
p(1—p)*forx =0,1,2,...,where 0 < p < 1. Then, F(x) = 1 — (1 — p)lx+1l
for x > 0 and one can show that X = F~'(U) = [In(1 — U)/In(1 — p)] — 1.

For other distributions (e.g., the normal, Student, chi-square) there is no closed-
form expression for F~! but good numerical approximations are available (Bratley
et al. 1987; Gentle 2003; Hormann et al. 2004; Marsaglia et al. 1994). When the
distribution has only scale and location parameters, we need to approximate F~!
only for a standardized version of the distribution. For the normal distribution, for

60 P. L’Ecuyer

example, it suffices to have an efficient method for evaluating the inverse distribution
function of a N (0, 1) random variable Z, since a normal with mean p and variance
o2 can be generated by X = 0Z + pu.

When shape parameters are involved (e.g., the gamma and beta distributions),
things are more complicated because F ! then depends on the parameters in a more
fundamental manner.

Hormann and Leydold (2003) propose a general adaptive and automatic method
that constructs a highly accurate Hermite interpolation method of F~'. In a one-
time setup, their method produces tables for the interpolation points and coefficients.
Random variate generation using these tables is then quite fast.

A less efficient but simpler way of implementing inversion when a method is
available for computing F is via binary search (Cheng 1998). If the density is
also available and if it is unimodal with known mode, a Newton-Raphson iteration
method can advantageously replace the binary search (Cheng 1998; Devroye 1986).

To implement inversion for general discrete distributions, sequential search and
binary search with look-up tables are the standard methods (Bratley et al. 1987;
Cheng 1998). For a discrete distribution over the values x; < --- < Xxj, one first
tabulates the pairs (x;, F(x;)), where F(x;) = P[X < x;]fori = 1,...,k. To
generate X, it then suffices to generate U ~ U(0, 1), find I = min{i | F(x;) > U},
and return X = x;. The following algorithms do that.

Sequential search (needs O (k) iterations in the worst case);
generate U ~ U(0, 1); leti = 1;
while F(x;) <U doi =i+ 1;
return x;.

Binary search (needs O(log k) iterations in the worst case);
generate U ~ U(0,1); letL =0and R =k;
while L < R —1do
m = |(L+ R)/2];
if F(x,,) <U then L = melse R = m;
/* Invariant: at this stage, the index / isin {L + 1,..., R}. */
return xg.

These algorithms can be modified in many different ways. For example, if k =
00, in the binary search, one can start with an arbitrary value of R, double it until
F(xgr) > U, and start the algorithm with this R and L = R/2. Of course, only
a finite portion of the table (a portion that contains most of the probability mass)
would be precomputed in this case, the other values can be computed only when
needed. This can also be done if k is finite but large.

Another class of techniques use indexing or buckets to speed up the search
(Bratley et al. 1987; Chen and Asau 1974; Devroye 1986). For example, one can
partition the interval (0, 1) into ¢ subintervals of equal sizes and use (pre-tabulated)
initial values of (L, R) that depend on the subinterval in which U falls. For the
subinterval [j/c, (j + 1)/c) the values of L and R would be L; = F~!(j/c)
and R; = F7Y((j + 1)/c), for j = 0,...,c — 1. The subinterval number that

3 Random Number Generation 61

corresponds to a given U is simply J = |cU |. Once we know that subinterval,
we can search it by linear of binary search. With a larger value of ¢ the search
is faster (on the average) but the setup is more costly and a larger amount of
memory is needed. So a compromise must be made depending on the situation
(e.g., the value of k, the number of variates we expect to generate, etc.). For
¢ = 1, we recover the basic sequential and binary search algorithms given above.
A well-implemented indexed search with a large enough ¢ is competitive with the
alias method (described in the next paragraph). A combined indexed/binary search
algorithm is given below. An easy adaptation gives the combined indexed/sequential
search, which is generally preferable when k/c is small, because it has smaller
overhead.

Indexed search (combined with binary search);
generate U ~ U(0,1); letJ = |cU]|,L =Ly,and R = Ry;
while L < R —1do

m=|(L+ R)/2|;
if F(x,,) <U then L = melse R = m;
return xg.

These search methods are also useful for piecewise-linear (or piecewise-
polynomial) distribution functions. Essentially, it suffices to add an interpolation
step at the end of the algorithm, after the appropriate linear (or polynomial) piece
has been determined (Bratley et al. 1987).

Finally, the stochastic model itself can sometimes be selected in a way that
makes inversion easier. For example, one can fit a parametric, highly-flexible, and
easily computable inverse distribution function F ! to the data, directly or indirectly
(Nelson and Yamnitsky 1998).

There are situations where speed is important and where non-inversion methods
are appropriate. In forthcoming subsections, we outline the main non-inversion
methods.

3.8.2 The Alias Method

Sequential and binary search require O(k) and O(logk) time, respectively, in
the worst case, to generate a random variate X by inversion over the finite set
{x1, ..., x¢}. The alias method (Walker 1977) can generate such a X in O(1) time
per variate, after a table setup that takes O (k) time and space. On the other hand, it
does not implement inversion, i.e., the transformation from U to X is not monotone.

To explain the idea, consider a bar diagram of the distribution, where each index
i has a bar of height p; = P[X = x;]. The idea is to “equalize” the bars so that they
all have height 1/k, by cutting-off bar pieces and transferring them to other bars.
This is done in a way that in the new diagram, each bar i contains one piece of size g;
(say) from the original bar i and one piece of size 1/k — g; from another bar whose
index j, denoted A(i), is called the alias value of i. The setup procedure initializes

62 P. L’Ecuyer

two tables, A and R, where A(7) is the alias value of i and R(i) = (i — 1)/k + q;.
See Devroye (1986) and Law and Kelton (2000) for the details. To generate X, we
generate U ~ U|0, 1], define I = [kU]7, and return X = x; if U < R(/) and
X = x4(1) otherwise.

There is a version of the alias method for continuous distributions, called
the acceptance-complement method (Devroye 1986; Gentle 2003; Kronmal and
Peterson 1984). The idea is to decompose the density f of the target distribution
as the convex combination of two densities f; and f>, f = wfi + (1 —w) f, for
some real number w € (0, 1), in a way that w f; < g for some other density g and so
that it is easy to generate from g and f,. The algorithm works as follows: Generate
X from density g and U ~ U(0,1); if Ug(X) < wfi(Y) return X, otherwise
generate a new X from density f; and return it.

3.8.3 Kernel Density Estimation and Generation

Instead of selecting a parametric distribution that is hard to invert and estimating
the parameters, one can estimate the density via a kernel density estimation method
for which random variate generation is very easy (Devroye 1986; Hérmann et al.
2004). In the case of a Gaussian kernel, for example, on can generate variates simply
by selecting one observation at random from the data and adding random noise
generated form a normal distribution with mean zero. However, this method is not
equivalent to inversion. Because of the added noise, selecting a larger observation
does not necessarily guarantee a larger value for the generated variate.

3.8.4 The Rejection Method

Suppose we want to generate X from a complicated density f. In fact f may be

known only up to a multiplicative constant x > 0, i.e., we know only « 1. If we know

f, we may just take k = 1. We select another density r such that « f(x) < #(x) &

ar(x) for all x for some constant a, and such that generating variates ¥ from the
density r is easy. The function ¢ is called a hat function or majorizing function. By
integrating this inequality with respect to x on both sides, we find that k < a. The
following rejection method generates X with density f (Devroye 1986; Evans and
Swartz 2000; von Neumann 1951):

Rejection method,;
repeat
generate Y from the density r and U ~ U(0, 1), independent;
until Ut (Y) <k f(Y);
return X =Y.

The number R of turns into the “repeat” loop is one plus a geometric random
variable with parameter «/a, so E[R] = a/«. Thus, we want a/k > 1 to be as

3 Random Number Generation 63

small as possible, i.e., we want to minimize the area between « f and ¢. There is
generally a compromise between bringing a/k close to 1 and keeping r simple.

When « f is expensive to compute, we can also use squeeze functions ¢ and g,
that are faster to evaluate and such that ¢, (x) < xf(x) < ¢2(x) < t(x) for all x. To
verify the condition Ut (Y) < «f(Y), we first check if Ut(Y) < q(Y), in which
case we accept ¥ immediately, otherwise we check if Ut(Y) > ¢»(Y), in which
case we reject Y immediately. The value of « f(Y') must be computed only when
Ut(Y) falls between the two squeezes. Sequences of embedded squeezes can also
be used, where the primary ones are the least expensive to compute, the secondary
ones are a little more expensive but closer to « f, etc.

It is common practice to transform the density f by a smooth increasing function
T (e.g., T(x) = logx or T(x) = —x~'/?) selected so that it is easier to construct
good hat and squeeze functions (often piecewise linear) for the transformed density
T(f(-)). By transforming back to the original scale, we get hat and squeeze
functions for f. This is the transformed density rejection method, which has several
variants and extensions (Devroye 1986; Evans and Swartz 2000; Hormann et al.
2004).

The rejection method works for discrete distributions as well; it suffices to
replace densities by probability mass functions.

3.8.5 Thinning for Point Processes with Time-Varying Rates

Thinning is a cousin of acceptance-rejection, often used for generating events from a
non-homogeneous Poisson process. Suppose the process has rate A(¢) at time ¢, with
A(t) < A for all 7, where A is a finite constant. One can generate Poisson pseudo-
arrivals at constant rate A by generating interarrival times that are i.i.d. exponentials
of mean 1/A. Then, a pseudo-arrival at time ¢ is accepted (becomes an arrival) with
probability A(z)/A (i.e., if U < A(¢)/A, where U is an independent U [0, 1]), and
rejected with probability 1 — A(7)/A. Non-homogeneous Poisson processes can also
be generated by inversion (Bratley et al. 1987). The idea is to apply a nonlinear
transformation to the time scale to make the process homogeneous with rate 1 in the
new time scale. Arrival times are generated in this new time scale (which is easy),
and then transformed back to the original time scale. The method can be adapted to
other types of point processes with time-varying rates.

3.8.6 The Ratio-of-Uniforms Method

If f is a density over the real-line, k an arbitrary positive constant, and the pair
(U, V) has the uniform distribution over the set

C= {(u, v) € R? such that 0 < u < ,/Kf(v/u)} ,

64 P. L’Ecuyer

then V/U has density f (Devroye 1986; Gentle 2003; Kinderman and Monahan
1977). This interesting property can be exploited to generate X with density f:
generate (U, V') uniformly over C and return X = V/U. This is the ratio-of-
uniforms method. The key issue is how do we generate a point uniformly over C. In
the cases where this can be done efficiently, we immediately have an efficient way
of generating X .

The most frequent approach for generating (U, V) uniformly over C is the
rejection method: Define a region C, that contains C and in which it is easy to
generate a point uniformly (for example, a rectangular box or a polygonal region).
To generate X, repeat: generate (U, V') uniformly over C,, until it belongs to C. Then
return X = V/U. If there is another region C; contained in C and for which it is
very fast to check if a point (U, V) is in Cy, this C; can also be used as a squeeze
to accelerate the verification that the point belongs to C. Several special cases and
refinements are described in Devroye (1986), Gentle (2003), Leydold (2000), and
other references given there.

3.8.7 Composition and Convolution

Suppose F is a convex combination of several distributions, i.e., F(x) =
Zj p; Fj(x), or more generally F(x) = [F,(x)dH(y). To generate from F,
one can generate J = j with probability p; (or Y from H), then generate X from
F; (or Fy). This method, called the composition algorithm, is useful for generating
from compound distributions such as the hyperexponential or from compound
Poisson processes. It is also frequently used to design specialized algorithms for
generating from complicated densities. The idea is to partition the area under the
complicated density into pieces, where piece j has surface p;. To generate X,
first select a piece (choose piece j with probability p;), then draw a random point
uniformly over that piece and project it to the horizontal axis. If the partition is
defined so that it is fast and easy to generate from the large pieces, then X will
be returned very quickly most of the time. The rejection method with a squeeze is
often used to generate from some of the pieces.

A dual method to composition is the convolution method, which can be used
when X = Y, + Y, 4+ .-+ + Y,, where the Y;’s are independent with specified
distributions. With this method, one just generates the Y;’s and sum up. This requires
at least n uniforms. Examples of random variables that can be expressed as sums like
this include the hypoexponential, Erlang, and binomial distributions.

3.8.8 Other Special Techniques

Specialized and sometimes very elegant techniques have been designed for com-
monly used distributions such as the Poisson distribution with small mean, the

3 Random Number Generation 65

normal (e.g., the Box-Muller and the polar methods), for generating points uni-
formly on a k-dimensional sphere, for generating random permutations, and so
on. Details can be found, e.g., in Bratley et al. (1987), Cheng (1998), Devroye
(1986), Fishman (1996), Gentle (2003). Many of those methods are based on a
clever multivariate change of variables, defined so that the random variates or
random vectors in the new coordinates are much easier to generate. In the Box-
Muller and Polar methods, for example, a pair of independent standard normals
is generated in polar coordinates, and then transformed back into rectangular
coordinates.

Recently, there has been an effort in developing automatic or black box algo-
rithms for generating variates from an arbitrary (known) density, and reliable
software that implements these methods (Hormann and Leydold 2000; Hormann
et al. 2004; Leydold 2009).

3.8.9 Multivariate Distributions

Inversion does not directly apply to generate a d-dimensional random vector X =
(X1,...,Xq)T, because the inverse of its distribution function is not well defined. In
some cases, one can generate the first coordinate X; by inversion from its marginal
distribution, then generate X, by inversion from its marginal distribution conditional
on X, then generate X3 by inversion from its marginal distribution conditional on
(X1, X»), and so on. But this is not always possible and convenient.

Simple and elegant methods are available for certain classes of distributions. For
example, if X has a multinormal distribution with mean vector ; and covariance
matrix X, then one can decompose ¥ = AAT for some matrix A, generate a vector
Z of d independent standard normal random variable (with mean 0 and variance 1),
usually by inversion, and return X = o + AZ. One way to decompose X' is via the
Cholesky decomposition, for which A is lower triangular, but there are many other
possibilities, including the eigendecomposition as in principal component analysis.
The choice of decomposition can have a large impact on the variance reduction in
the context of randomized quasi-Monte Carlo integration, by concentrating more of
the variance on the first few uniform random numbers that are generated L’Ecuyer
(2009).

Multivariate normals are often used to generate vectors from other distributions.
For example, to generate a random point on a d-dimensional sphere of radius r
centered at zero, one can generate a vector Z of independent standard normals
(this amounts to generating a random direction), then normalize its length to r.
More generally, by putting X = RZ/||Z| where R has an arbitrary distribution
over (0,00), one generates a vector with a radially symmetric distribution. As a
special case, if R has the Student distribution, X is multivariate Student. As a further
generalization, let X = u + RAZ/|Z|| where Z is multinormal in k dimensions
and A is a d x k matrix. This X has an elliptic multivariate distribution.

66 P. L’Ecuyer

A richer class of multivariate distributions are defined via copula methods
(Asmussen and Glynn 2007; Hormann et al. 2004; Nelsen 1999). Start with
an arbitrary d-dimensional distribution function G with continuous marginals
Gj, generate Y = (Y1,..., Ya;)T from G, and let U = (Uy,...,U;) =
(G1(Y1),...,Gq(Yyq))T. These U ; have the uniform distribution over (0, 1), but
they are not independent in general. The distribution function of U is the copula
associated with G and it specifies the dependence structure of the vector U. In
fact, any multivariate distribution function over (0, 1)¢ with uniform marginals is
a copula. To generate X = (X),...,Xy)" with arbitrary marginal distribution
functions F; and dependence structure specified by this copula, put X; = F j_l ;)
for each j. A popular choice for G is the multinormal distribution with standard
normal marginals; then Y and U are easy to generate, and one can select the
correlation matrix of Y to approximate a target correlation (or rank correlation)
matrix for X. It can usually match the correlations pretty well. But to approximate
the whole dependence structure in general, a much richer variety of copulas is
required (Asmussen and Glynn 2007; Hormann et al. 2004; Nelsen 1999).

The rejection method extends easily to the multivariate case. For a target
d-dimensional density f known up to the multiplicative constant «, pick a d-
dimensional density r such that k f(x) < ar(x) for all x and some constant a,
and such that sampling random vectors Y from r is easy. To generate X with
density f, generate Y from r and U uniform over (0, 1) independent of Y, until
Uar(Y) < «f(Y),and return X = Y.

There are many situations where one wishes to generate random vectors X from
quite complicated distributions and no efficient method is available to do it exactly.
One very important approach that often permit one to generate X approximately
from the target distribution is the Markov chain Monte Carlo (MCMC) method. In
a nutshell, it constructs an artificial Markov chain whose steady-state distribution
is the target distribution of X, and runs the Markov chain for a large number of
steps, until it is deemed sufficiently close to steady-state. Then the state of the
chain has a distribution close to the target one. MCMC is covered elsewhere in this
handbook.

Acknowledgements This work has been supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and a Canada Research Chair to the author. Wolfgang
Hormann, Josef Leydold, Frangois Panneton, and Richard Simard made helpful comments and
corrections on an earlier draft. The author has been asked to write chapters on Random Number
Generation for several handbooks and encyclopedia over the years. Inevitably, there is a large
amount of duplication between these chapters.

References

Aiello, W., Rajagopalan, S., Venkatesan, R.: Design of practical and provably good random number
generators. J. Algorithm. 29(2), 358-389 (1998)
Asmussen, S., Glynn, P.W. Stochastic simulation, Springer, New York (2007)

3 Random Number Generation 67

Blum, L., Blum, M., Schub, M.: A simple unpredictable pseudo-random number generator. SIAM
J. Comput. 15(2), 364-383 (1986)

Bratley, P., Fox, B.L., Schrage, L.E.: A Guide to Simulation. (2nd edn.), Springer, New York, NY
(1987)

Brown, M., Solomon, H.: On combining pseudorandom number generators. Ann. Stat. 1, 691-695
(1979)

Chen, H.C., Asau, Y.: On generating random variates from an empirical distribution. AIEE Trans.
6, 163-166 (1974)

Cheng, R.C.H.: Random variate generation. In: Banks, J. (eds.) Handbook of Simulation, pp. 139—
172. Wiley (1998); chapter 5.

Collings, B.J.: Compound random number generators. J. Am. Stat. Assoc. 82(398), 525-527
(1987)

Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups. (3rd edn.) Grundlehren der
Mathematischen Wissenschaften 290. Springer, New York (1999)

Couture, R., L’Ecuyer, P.: On the lattice structure of certain linear congruential sequences related
to AWC/SWB generators. Math. Comput. 62(206), 798-808 (1994)

Couture, R., L’Ecuyer, P.: Orbits and lattices for linear random number generators with composite
moduli. Math. Comput. 65(213), 189-201 (1996)

Couture, R., L’Ecuyer, P.: Distribution properties of multiply-with-carry random number genera-
tors. Math. Comput. 66(218), 591-607 (1997)

Couture, R., L’Ecuyer, P.: Lattice computations for random numbers. Math. Comput. 69(230),
757-765 (2000)

Deng, L.-Y.: Efficient and portable multiple recursive generators of large order. ACM Trans.
Model. Comput. Simulat. 15(1), 1-13 (2005)

Deng, L.-Y., George, E.O.: Generation of uniform variates from several nearly uniformly dis-
tributed variables. Comm. Stat. B19(1), 145-154 (1990)

Deng, L.-Y., Lin, D.K.J.: Random number generation for the new century. Am. Stat. 54(2), 145-
150 (2000)

Deng, L.-Y., Xu, H.: A system of high-dimensional, efficient, long-cycle and portable uniform
random number generators. ACM Trans. Model. Comput. Simulat. 13(4), 299-309 (2003)

Devroye, L.: Non-uniform Random Variate Generation, Springer, New York, NY (1986)

Devroye, L.: Nonuniform random variate generation. In: Simulation, Henderson, S.G., Nelson,
B.L. (eds.) Handbooks in Operations Research and Management Science, pp. 83—121. Elsevier,
Amsterdam, Netherlands (2006); Chapter 4.

Eichenauer-Herrmann, J.: Pseudorandom number generation by nonlinear methods. Int. Stat. Rev.
63, 247-255 (1995)

Eichenauer-Herrmann, J., Herrmann, E., Wegenkittl, S.: A survey of quadratic and inversive
congruential pseudorandom numbers. In: Hellekalek, P., Larcher, G., Niederreiter, H., Zinterhof,
P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1996, Lecture Notes in Statistics, vol.
127, pp. 66-97. Springer, New York, NY (1998)

Evans, M., Swartz, T.: Approximating Integrals via Monte Carlo and Deterministic Methods,
Oxford University Press, Oxford, UK (2000)

Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice,
including a complexity analysis. Math. Comput. 44, 463—471 (1985)

Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and applications. Springer Series in Opera-
tions Research. Springer, New York, NY (1996)

Gentle, J.E.: Random Number Generation and Monte Carlo methods. (2nd edn.), Springer, New
York, NY (2003)

Goresky, M., Klapper, A.: Efficient multiply-with-carry random number generators with maximal
period. ACM Trans. Model. Comput. Simulat. 13(4), 310-321 (2003)

Hellekalek, P., Wegenkittl, S.: Empirical evidence concerning AES. ACM Trans. Model. Comput.
Simulat. 13(4), 322-333 (2003)

68 P. L’Ecuyer

Hormann, W., Leydold, J.: Dec. Automatic random variate generation for simulation input. In:
Joines, J.A., Barton, R.R., Kang, K., Fishwick, P.A. (eds.) In: Proceedings of the 2000 Winter
Simulation Conference, pp. 675-682. IEEE Press, Pistacaway, NJ (2000)

Hormann, W., Leydold, J.: Continuous random variate generation by fast numerical inversion.
ACM Trans. Model. Comput. Simulat. 13(4), 347-362 (2003)

Hoérmann, W., Leydold, J., Derflinger, G.: Automatic Nonuniform Random Variate Generation.
Springer, Berlin (2004)

Kinderman, A.J., Monahan, J.F.: Computer generation of random variables using the ratio of
uniform deviates. ACM Trans. Math. Software 3, 257-260 (1977)

Knuth, D.E.: The art of Computer Programming, Seminumerical Algorithms, vol. 2, (3rd edn.)
Addison-Wesley, Reading, MA (1998)

Kronmal, R.A., Peterson, A.V.: An Acceptance-complement Analogue of the Mixture-plus-
acceptance-rejection Method for Generating Random Variables. ACM Trans. Math. Software
10, 271-281 (1984)

Lagarias, J.C.: Pseudorandom numbers. Stat. Sci. 8(1), 31-39 (1993)

Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. (3rd edn.), McGraw-Hill, New York,
NY (2000)

L’Ecuyer, P.: Random numbers for simulation. Comm. ACM 33(10), 85-97 (1990)

L’Ecuyer, P.: Uniform random number generation. Ann. Oper. Res. 53, 77-120 (1994)

L’Ecuyer, P.: Combined multiple recursive random number generators. Oper. Res. 44(5), 816-822
(1996a)

L’Ecuyer, P.: Maximally equidistributed combined Tausworthe generators. Math. Comput.
65(213), 203-213 (1996b)

L’Ecuyer, P.: Bad lattice structures for vectors of non-successive values produced by some linear
recurrences. INFORMS J. Comput. 9(1), 57-60 (1997)

L’Ecuyer, P.: Random number generation. In: Banks, J. (eds.) Handbook of Simulation, pp. 93—
137. Wiley (1998); chapter 4.

L’Ecuyer, P.: Good parameters and implementations for combined multiple recursive random
number generators. Oper. Res. 47(1), 159-164 (1999a)

L’Ecuyer, P.: Tables of linear congruential generators of different sizes and good lattice structure.
Math. Comput. 68(225), 249-260 (1999b)

L’Ecuyer, P.: Tables of maximally equidistributed combined LFSR generators. Math. Comput.
68(225), 261-269 (1999¢)

L’Ecuyer, P.: Software for uniform random number generation: Distinguishing the good and the
bad. In: Proceedings of the 2001 Winter Simulation Conference, pp. 95-105. IEEE Press,
Pistacaway, NJ (2001)

L’Ecuyer, P.: Polynomial integration lattices. In: Niederreiter, H. (eds.) Monte Carlo and Quasi-
Monte Carlo Methods 2002, pp. 73-98. Springer, Berlin (2004)

L’Ecuyer, P.: SSJ: A Java library for stochastic simulation. Software user’s guide, available at http://
www.iro.umontreal.ca/~lecuyer (2008)

L’Ecuyer, P.: Quasi-Monte Carlo methods with applications in finance. Finance Stochast. 13(3),
307-349 (2009)

L’Ecuyer, P., Andres, T.H.: A random number generator based on the combination of four LCGs.
Math. Comput. Simul. 44, 99-107 (1997)

L’Ecuyer, P., Blouin, F., Couture, R.: A search for good multiple recursive random number
generators. ACM Trans. Model. Comput. Simulat. 3(2), 87-98 (1993)

L’Ecuyer, P., Coté, S.: Implementing a random number package with splitting facilities. ACM
Trans. Math. Software 17(1), 98-111 (1991)

L’Ecuyer, P., Couture, R.: An implementation of the lattice and spectral tests for multiple recursive
linear random number generators. INFORMS J. Comput. 9(2), 206-217 (1997)

L’Ecuyer, P., Granger-Piché, J.: Combined generators with components from different families.
Math. Comput. Simul. 62, 395-404 (2003)

http://www.iro.umontreal.ca/~lecuyer
http://www.iro.umontreal.ca/~lecuyer

3 Random Number Generation 69

L’Ecuyer, P., Hellekalek, P.: Random number generators: Selection criteria and testing.
In: Hellekalek, P., Larcher, G. (eds.) Random and Quasi-Random Point Sets, Lecture Notes
in Statistics, vol. 138, pp. 223-265. Springer New York, NY (1998)

L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Manag. Sci. 46(9), 1214-1235
(2000)

L’Ecuyer, P., Lemieux, C.: Recent advances in randomized quasi-Monte Carlo methods. In: Dror,
M., L’Ecuyer, P., Szidarovszky, F. (eds.) Modeling Uncertainty: An Examination of Stochastic
Theory, Methods, and Applications, pp. 419-474. Kluwer Academic, Boston (2002)

L’Ecuyer, P., Mandjes, M., Tuffin, B.: Importance sampling and rare event simulation. In: Rubino,
G., Tuffin, B. (eds.) Rare Event Simulation Using Monte Carlo Methods, 17-38. Wiley (2009);
Chapter 2.

L’Ecuyer, P., Panneton, F.: Construction of equidistributed generators based on linear recurrences
modulo 2. In: Fang, K.-T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte
Carlo Methods 2000, pp. 318-330. Springer, Berlin (2002)

L’Ecuyer, P., Panneton, F.: F,-linear random number generators. In: Alexopoulos, C., Goldsman,
D.J.R. (eds.) Advancing the Frontiers of Simulation: A Festschrift in Honor of George Samuel
Fishman, Wilson, pp. 169-193. Springer, New York (2009)

L’Ecuyer, P., Proulx, R.: Dec. About polynomial-time “unpredictable” generators. In: Proceedings
of the 1989 Winter Simulation Conference, pp. 467-476: IEEE Press, New York (1989)

L’Ecuyer, P, Simard, R.: Beware of linear congruential generators with multipliers of the form
a = £29 £ 2". ACM Trans. Math. Software 25(3), 367-374 (1999)

L’Ecuyer, P, Simard, R.: On the performance of birthday spacings tests for certain families of
random number generators. Math. Comput. Simul. 55(1-3), 131-137 (2001)

L’Ecuyer, P., Simard, R.: TestUO1: A C library for empirical testing of random number generators.
ACM Trans. Math. Software 33(4), Article 22 (2007)

L’Ecuyer, P., Simard, R., Chen, E.J., Kelton, W.D.: An object-oriented random-number package
with many long streams and substreams. Oper. Res. 50(6), 1073-1075 (2002)

L’Ecuyer, P., Simard, R., Wegenkittl, S.: Sparse serial tests of uniformity for random number
generators. SIAM J. Sci. Comput. 24(2), 652-668 (2002)

L’Ecuyer, P.,, Tezuka, S.: Structural properties for two classes of combined random number
generators. Math. Comput. 57(196), 735-746 (1991)

L’Ecuyer, P., Touzin, R.: Fast combined multiple recursive generators with multipliers of the form
a = £29 &+ 2", In: Joines, J.A., Barton, R.R., Kang, K., Fishwick, P.A. (eds.) Proceedings of
the 2000 Winter Simulation Conference, pp. 683—-689. IEEE Press, Pistacaway, NJ (2000)

L’Ecuyer, P., Touzin, R.: On the Deng-Lin random number generators and related methods. Stat.
Comput. 14, 5-9 (2004)

Leeb, H.: Random numbers for computer simulation. Master’s thesis, University of Salzburg
(1995)

Lemieux, C., L’Ecuyer, P.: Randomized polynomial lattice rules for multivariate integration and
simulation. SIAM J. Sci. Comput. 24(5), 1768-1789 (2003)

Leydold, J.: Automatic sampling with the ratio-of-uniform method. ACM Trans. Math. Software
26(1), 78-98 (2000)

Leydold, J.: UNU.RAN—universal non-uniform random number generators. Available at http://
statmath.wu.ac.at/unuran/ (2009)

Luby, M.: Pseudorandomness and cryptographic applications. Princeton: Princeton University
Press (1996)

Liischer, M.: A portable high-quality random number generator for lattice field theory simulations.
Comput. Phys. Comm. 79, 100-110 (1994)

Marsaglia, G.: A current view of random number generators. In Computer Science and Statistics,
Sixteenth Symposium on the Interface, pp. 3—10. Elsevier Science Publishers, North-Holland,
Amsterdam (1985)

Marsaglia, G.: The Marsaglia random number CDROM including the DIEHARD battery of tests
of randomness. See http://stat.fsu.edu/pub/diehard (1996)

http://statmath.wu.ac.at/unuran/
http://statmath.wu.ac.at/unuran/
http://stat.fsu.edu/pub/diehard

70 P. L’Ecuyer

Marsaglia, G., Zaman, A.: A new class of random number generators. Ann. Appl. Probab. 1, 462—
480 (1991)

Marsaglia, G., Zaman, A., Marsaglia, J.C.W.: Rapid evaluation of the inverse normal distribution
function. Stat. Probab. Lett. 19, 259-266 (1994)

Matsumoto, M., Kurita, Y.: Twisted GFSR generators. ACM Trans. Model. Comput. Simul. 2(3),
179-194 (1992)

Matsumoto, M., Kurita, Y.: Twisted GFSR generators II. ACM Trans. Model. Comput. Simul. 4(3),
254-266 (1994)

Matsumoto, M., Kurita, Y.: Strong deviations from randomness in m-sequences based on trinomi-
als. ACM Trans. Model. Comput. Simul. 6(2), 99-106 (1996)

Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3-30 (1998)

Nelsen, R.B.: An introduction to copulas, Lecture Notes in Statistics. vol. 139, Springer, New York,
NY (1999)

Nelson, B.L., Yamnitsky, M.: Input modeling tools for complex problems. In: Proceedings of the
1998 Winter Simulation Conference, pp. 105—-112. IEEE Press, Piscataway, NJ (1998)

Niederreiter, H.: Random number generation and quasi-Monte Carlo methods, SIAM CBMS-NSF
Regional Conference Series in Applied Mathematics. vol. 63 SIAM, Philadelphia, PA (1992)

Niederreiter, H.: The multiple-recursive matrix method for pseudorandom number generation.
Finite Fields Appl. 1, 3-30 (1995)

Niederreiter, H., Shparlinski, L.LE.: Recent advances in the theory of nonlinear pseudorandom
number generators. In: Fang, K.-T., Hickernell, FJ., Niederreiter, H. (eds.) Monte Carlo and
Quasi-Monte Carlo Methods 2000, pp. 86—102. Springer, Berlin (2002)

Nishimura, T.: Tables of 64-bit Mersenne twisters. ACM Trans. Model. Comput. Simul. 10(4),
348-357 (2000)

Panneton, F., L’Ecuyer, P.: Random number generators based on linear recurrences in Fow. In:
Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2002, pp. 367-378.
Springer, Berlin (2004)

Panneton, F.,, L’Ecuyer, P.: On the xorshift random number generators. ACM Trans. Model.
Comput. Simul. 15(4), 346-361 (2005)

Panneton, F., L’Ecuyer, P., Matsumoto, M.: Improved long-period generators based on linear
recurrences modulo 2. ACM Trans. Math. Software 32(1), 1-16 (2006)

Read, T.R.C., Cressie, N.A.C.: Goodness-of-fit statistics for discrete multivariate data. Springer
Series in Statistics. Springer, New York, NY (1988)

Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M.,
Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for random and pseudorandom
number generators for cryptographic applications. NIST special publication 800-22, National
Institute of Standards and Technology (NIST), Gaithersburg, MD, USA (2001); See http://csrc.
nist.gov/rng/.

Tausworthe, R.C.: Random numbers generated by linear recurrence modulo two. Math. Comput.
19, 201-209 (1965)

Tezuka, S.: Uniform random numbers: Theory and practice. Kluwer Academic Publishers,
Norwell, MA (1995)

Tezuka, S., L’Ecuyer, P.: Efficient and portable combined Tausworthe random number generators.
ACM Trans. Model. Comput. Simul. 1(2), 99-112 (1991)

Tezuka, S., L’Ecuyer, P.,, Couture, R.: On the add-with-carry and subtract-with-borrow random
number generators. ACM Trans. Model. Comput. Simul. 3(4), 315-331 (1994)

Tootill, J.PR., Robinson, W.D., Eagle, D.J.: An asymptotically random Tausworthe sequence.
J. ACM 20, 469481 (1973)

Vattulainen, I., Ala-Nissila, T., Kankaala, K.: Physical models as tests of randomness. Phys. Rev.
E 52(3), 3205-3213 (1995)

von Neumann, J.: Various techniques used in connection with random digits. In: A.S.H. et al.
(eds.) The Monte Carlo Method, vol. 12, pp. 36-38. National Bureau of Standards, Applied
Mathematics Series (1951)

http://csrc.nist.gov/rng/
http://csrc.nist.gov/rng/

3 Random Number Generation 71

Walker, A.J.: An efficient method for generating discrete random variables with general distribu-
tions. ACM Trans. Math. Software 3, 253-256 (1977)

Wang, D., Compagner, A.: On the use of reducible polynomials as random number generators.
Math. Comput. 60, 363-374 (1993)

Wegenkittl, S., Matsumoto, M.: Getting rid of correlations among pseudorandom numbers:
Discarding versus tempering. ACM Trans. Model. Comput. Simul. 9(3), 282-294 (1999)

Wu, P--C.: Multiplicative, congruential random number generators with multiplier £2%1 4= 2% and
modulus 27 — 1. ACM Trans. Math. Software 23(2), 255-265 (1997)

Chapter 4
Markov Chain Monte Carlo Technology

Siddhartha Chib

4.1 Introduction

In the past fifteen years computational statistics has been enriched by a powerful,
somewhat abstract method of generating variates from a target probability distribu-
tion that is based on Markov chains whose stationary distribution is the probability
distribution of interest. This class of methods, popularly referred to as Markov chain
Monte Carlo methods, or simply MCMC methods, have been influential in the
modern practice of Bayesian statistics where these methods are used to summarize
the posterior distributions that arise in the context of the Bayesian prior-posterior
analysis (Besag et al. 1995; Chib and Greenberg 1995; Gelfand and Smith 1990;
Smith and Roberts 1993; Tanner and Wong 1987; Tierney 1994, 1996; Carlin and
Louis 2000; Chen et al. 2000; Chib 2001; Congdon 2001; Gammerman 1997;
Gelman et al. 2003; Gilks et al. 1996; Liu 2001; Robert 2001; Robert and Casella
1999; Tanner 1996). MCMC methods have proved useful in practically all aspects
of Bayesian inference, for example, in the context of prediction problems and in
the computation of quantities, such as the marginal likelihood, that are used for
comparing competing Bayesian models.

A central reason for the widespread interest in MCMC methods is that these
methods are extremely general and versatile and can be used to sample univariate
and multivariate distributions when other methods (for example classical methods
that produce independent and identically distributed draws) either fail or are difficult
to implement. The fact that MCMC methods produce dependent draws causes no
substantive complications in summarizing the target distribution. For example, if
(. ¢} are draws from a (say continuous) target distribution 77 (¥), where
¥ € R, then the expectation of 4 (¥) under 7 can be estimated by the average

S. Chib (2<)

Olin Business School, Washington University in St. Louis
St. Louis, MO 63130, USA

e-mail: chib@wustl.edu

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks 73
of Computational Statistics, DOI 10.1007/978-3-642-21551-3__4,
© Springer-Verlag Berlin Heidelberg 2012

chib@wustl.edu

74 S. Chib

M

M7 " h(yY)) (4.1)
j=1
as in the case of random samples, because suitable laws of large numbers for Markov
chains can be used to show that

M

M) > [e
Jj=1 Rd

as the simulation sample size M becomes large.

Another reason for the interest in MCMC methods is that, somewhat surprisingly,
it is rather straightforward to construct one or more Markov chains whose limiting
invariant distribution is the desired target distribution. One way to construct the
appropriate Markov chain is by a method called the Metropolis method which
was introduced by Metropolis et al. (1953) in connection with work related to the
hydrogen bomb project. In this method, the Markov chain simulation is constructed
by a recursive two step process. Given the current iterate ¥ /), a proposal value ¥ is
drawn from a distribution ¢ (¥ /), -), such that ¥ is symmetrically distributed about
the current value ¥ /). In the second step, this proposal value is accepted as the next
iterate ¥ T of the Markov chain with probability

D 9’} = mi PN
a () y) —mln{I, n(r//(f))}
If the proposal value is rejected, then ¥+ is taken to be the current value.
The method is simple to implement, even in multivariate settings, and was widely
used by physicists in computational statistical mechanics and quantum field theory
to sample the coordinates of a point in phase space. In those settings, and in
subsequent statistical problems, it is helpful that the method can be implemented
without knowledge of the normalizing constant of & since that constant cancels in
the determination of the probability a(y /), ¥').

The requirement that the proposal distribution be symmetric about the current
value was relaxed by Hastings (1970). The resulting method, commonly called the
Metropolis—Hastings (M—H) method, relies on the same two steps of the Metropolis
method except that the probability of move is given by

) q(.¥Y)
T (,/,(j)) q (./,(j), ,/,/)

o (1/r(j), ¥’) =min{ 1,

which clearly reduces to the Metropolis probability of move when the proposal
distribution is symmetric in its arguments. Starting with an arbitrary value ¥ (© in
the support of the target distributions, iterations of this two step process produce the

4 Markov Chain Monte Carlo Technology 75

(correlated) sequence of values

O g O y@

Typically, a certain number of values (say ng) at the start of this sequence are
discarded and the subsequent (say) M values are used as variates from the target
distribution.

In applications when the dimension of ¥ is large it may be preferable to construct
the Markov chain simulation by first grouping the variables ¥ into smaller blocks.
For simplicity suppose that two blocks are adequate and that ¥ is written as
(Y1, ¥2), with ¢ € 24 C M9 . In that case, the M—H chain can be constructed
by:

e Updating ¥ given ((1j) ;j)) to produce 1//(1j) and then
* Updating ¥, given (1//(1j+1), 1//2”) to produce]/,(2j+1),

which completes one cycle through two sub-moves. Chib and Greenberg (1995) who
emphasized and highlighted such M—H chains have referred to them as multiple-
block M-H algorithms.

Despite the long vintage of the M—H method, the contemporary interest in
MCMC methods was sparked by work on a related MCMC method, the Gibbs
sampling algorithm. The Gibbs sampling algorithm is one of the simplest Markov
chain Monte Carlo algorithms and has its origins in the work of Besag (1974)
on spatial lattice systems, Geman and Geman (1984) on the problem of image
processing, and Tanner and Wong (1987) on missing data problems. The paper by
Gelfand and Smith (1990) helped to demonstrate the value of the Gibbs algorithm
for a range of problems in Bayesian analysis. In the Gibbs sampling method, the
Markov chain is constructed by simulating the conditional distributions that are
implied by 7 (¥). In particular, if ¥ is split into two components ¥; and ¥,
then the Gibbs method proceeds through the recursive sampling of the conditional
distributions 7 (¥ 1 |¥2) and 7 (¥,|¥ 1), where the most recent value of ¥, is used in
the first simulation and the most recent value of ¥ in the second simulation. This
method is most simple to implement when each conditional distribution is a known
distribution that is easy to sample. As we show below, the Gibbs sampling method
is a special case of the multiple block M—H algorithm.

4.1.1 Organization

The rest of the chapter is organized as follows. In Sect.4.2 we summarize the
relevant Markov chain theory that justifies simulation by MCMC methods. In
particular, we provide the conditions under which discrete-time and continuous state
space Markov chains satisfy a law of large numbers and a central limit theorem. The
M-H algorithm is discussed in Sect. 4.3 followed by the Gibbs sampling algorithm

76 S. Chib

in Sect.4.4. Section 4.5 deals with MCMC methods with latent variables and
Sect. 4.6 with ways of estimating the marginal densities based on the MCMC output.
Issues related to sampler performance are considered in Sect. 4.7 and strategies for
improving the mixing of the Markov chains in Sect. 4.8. Section 4.9 concludes with
brief comments about new and emerging directions in MCMC methods.

4.2 Markov Chains

Markov chain Monte Carlo is a method to sample a given multivariate distribu-
tion 7* by constructing a suitable Markov chain with the property that its limiting,
invariant distribution, is the target distribution 7*. In most problems of interest,
the distribution 7* is absolutely continuous and, as a result, the theory of MCMC
methods is based on that of Markov chains on continuous state spaces outlined, for
example, in Nummelin (1984) and Meyn and Tweedie (1993). Tierney (1994) is the
fundamental reference for drawing the connections between this elaborate Markov
chain theory and MCMC methods. Basically, the goal of the analysis is to specify
conditions under which the constructed Markov chain converges to the invariant
distribution, and conditions under which sample path averages based on the output
of the Markov chain satisfy a law of large numbers and a central limit theorem.

4.2.1 Definitions and Results

A Markov chain is a collection of random variables (or vectors) @ = {®; :i € T}
where T = {0, 1, 2, ...}. The evolution of the Markov chain on a space 2 C N7 is
governed by the transition kernel

P(x,A)EPI‘(¢,'+1 EA|¢,‘ :x,¢j,j <i)
=PI'(¢,'+1€A|¢Z‘=X), XEQ, ACQ,

where the second line embodies the Markov property that the distribution of each
succeeding state in the sequence, given the current and the past states, depends only
on the current state.

Generally, the transition kernel in Markov chain simulations has both a continu-
ous and discrete component. For some function p(x, y) : 2 x 2 — R+, the kernel
can be expressed as

P(x,dy) = p(x,y)dy +r(x)s(dy), (4.2)

where p(x,x) = 0, 6,(dy) = 1if x € dy and 0O otherwise, r(x) = 1 —
f o P(x,y)dy. This transition kernel specifies that transitions from x to y occur
according to p(x, y) and transitions from x to x occur with probability r(x).

4 Markov Chain Monte Carlo Technology 77

The transition kernel is thus the distribution of @; | given that #; = x. The nth
step ahead transition kernel is given by

PO (x,) =/P(x,dy)P<"—1>(y,A>,
2

where P (x,dy) = P(x,dy) and

P(x,A) :/P(x,dy). 4.3)
A

The goal is to find conditions under which the nth iterate of the transition kernel
converges to the invariant distribution 7* as n — co. The invariant distribution is
one that satisfies

7*(dy) = / P(x,dy)n(x)dx , (4.4)
7]

where 7 is the density of 7* with respect to the Lebesgue measure. The invariance
condition states that if @; is distributed according to 7™, then all subsequent
elements of the chain are also distributed as 7 *. Markov chain samplers are invariant
by construction and therefore the existence of the invariant distribution does not
have to be checked.

A Markov chain is reversible if the function p(x, y) in (4.2) satisfies

f@)px,y)= f(y)p(y.x). (4.5)

for a density f(-). If this condition holds, it can be shown that f(-) = 7 (-) and has
* as an invariant distribution (Tierney 1994). To verify this we evaluate the right
hand side of (4.4):

/P(x,A)n(x)dx :/{/p(x,y)dy} w(x)dx —i—/r(x)r?x(A)n(x)dx
A

=/;{/p(x,y)7r(x)dx} dy+/;r(x)ﬂ(x)dx

:A{/p(y,x)n(y)dx} dy+/Ar(x)7T(x)dx

- / (= r(y)r(y)dy + / Fe)m(x) dx
A A

_ /;n(y)dy . (4.6)

78 S. Chib

A minimal requirement on the Markov chain for it to satisfy a law of large
numbers is the requirement of 7 *-irreducibility. This means that the chain is able
to visit all sets with positive probability under 7* from any starting point in 2.
Formally, a Markov chain is said to be 7 *-irreducible if for every x € £2,

7*(A4) > 0= P(®; € A|®y=1x)>0

for some i > 1. If the space £2 is connected and the function p(x, y) is positive
and continuous, then the Markov chain with transition kernel given by (4.3) and
invariant distribution 7* is 7 *-irreducible.

Another important property of a chain is aperiodicity, which ensures that the
chain does not cycle through a finite number of sets. A Markov chain is aperiodic
if there exists no partition of £ = (Do, Dy,..., D ,—1) for some p > 2 such that
P(¢l € Dimod(p)|¢0 (S} Do) = 1foralli.

These definitions allow us to state the following results from Tierney (1994)
which form the basis for Markov chain Monte Carlo methods. The first of these
results gives conditions under which a strong law of large numbers holds and the
second gives conditions under which the probability density of the M th iterate of
the Markov chain converges to its unique, invariant density.

Theorem 1. Suppose {®;} is a w*-irreducible Markov chain with transition kernel
P(-,-) and invariant distribution *, then 7* is the unique invariant distribution of
P(-,-) and for all 7*-integrable real-valued functions h,

1 M
MZh(q)i) - /h(x)n(x)dx as M — o0, a.s.

i=1

Theorem 2. Suppose {®;} is a w*-irreducible, aperiodic Markov chain with
transition kernel P(-,-) and invariant distribution 7*. Then for m*-almost every
x € 82, and all sets A

| PM(x,A)—7a*(A) |- 0 as M — oo,

where || - || denotes the total variation distance.

A further strengthening of the conditions is required to obtain a central limit
theorem for sample-path averages. A key requirement is that of an ergodic chain,
i.e., chains that are irreducible, aperiodic and positive Harris-recurrent (for a def-
inition of the latter, see Tierney (1994)). In addition, one needs the notion of
geometric ergodicity. An ergodic Markov chain with invariant distribution 7* is
a geometrically ergodic if there exists a non-negative real-valued function (bounded
in expectation under 77*) and a positive constant r < 1 such that

I PY(x, 4) =" (A) ||= Clx)r"

4 Markov Chain Monte Carlo Technology 79

for all x and all n and sets A. Chan and Ledolter (1995) show that if the Markov
chain is ergodic, has invariant distribution 7*, and is geometrically ergodic, then
for all L? measurable functions &, taken to be scalar-valued for simplicity, and any
initial distribution, the distribution of ~/M (}; u — Eh) converges weakly to a normal
distribution with mean zero and variance 013 > (0, where

. 1 M
hy = MZh(¢i)

i=1

Eh = /h(q))n(q))dq)
and -
o = Varh(®@g) + 2 Cov [{h(®). h(P1)}] . (4.7)
k=1

4.2.2 Computation of Numerical Accuracy
and Inefficiency Factor

The square root of o,f is the numerical standard error of /1 um - To describe estimators
of o,f that are consistent in M, let Z; = h(®;) (i < M). Then, due to the fact that
{Z;} is a dependent sequence

Var (EM) - M—ZijcOv (Z;. Z)
J»

M
— 2Ar2
="M) pyj
jk=1

M S
1+22(1—M)ps} :
s=1

where s? is the sample variance of {Z;} and p, is the estimated autocorrelation
at lag s (see Ripley 1987, Chap. 6). If p; > 0 for each s, then this variance is
larger than s?/ M which is the variance under independence. Another estimate of
the variance can be found by consistently estimating the spectral density f of {Z;}
at frequency zero and using the fact that Var (hy) = 2/ M, where t> = 27 £(0).
Finally, a traditional approach to finding the variance is by the method of batch
means. In this approach, the data (Z, ..., Z),) is divided into k batches of length
m withmeans B; = m~! [Zi-1ym+1+-..+Z;y] and the variance of};M estimated as

— SZM—I

80 S. Chib

. 1 k _
Var (/’ZM> = m Z (B, — B) s (48)

i=l1

where the batch size m is chosen to ensure that the first order serial correlation of
the batch means is less than 0.05.

Given the numerical variance it is common to calculate the inefficiency factor,
which is also called the autocorrelation time, defined as

Var (}; M)
Krn = —— 2 4.9
h s2 / M)
This quantity is interpreted as the ratio of the numerical variance of h M to the
variance of /1, based on independent draws, and its inverse is the relative numerical
efficiency defined in Geweke (1992). Because independence sampling produces an
autocorrelation time that is theoretically equal to one and Markov chain sampling
produces autocorrelation times that are bigger than one, the inefficiency factor
serves to quantify the relative efficiency loss in the computation of Ay, from
correlated versus independent samples.

4.3 Metropolis—Hastings Algorithm

This powerful algorithm provides a general approach for producing a correlated
sequence of draws from the target density that may be difficult to sample by
a classical independence method. The goal is to simulate the d-dimensional
distribution 7*(¢), ¥ € ¥ C R that has density (¥) with respect to some
dominating measure. To define the algorithm, let ¢(¥, ¥’) denote a source density
for a candidate draw ¥’ given the current value v in the sampled sequence. The
density g (¥, ¥') is referred to as the proposal or candidate generating density. Then,
the M-H algorithm is defined by two steps: a first step in which a proposal value is
drawn from the candidate generating density and a second step in which the proposal
value is accepted as the next iterate in the Markov chain according to the probability

a(y,¥’), where

(Y)q' ¥) _ / |
m[m’l} if 7). ¥)>0;

1 otherwise .

a(y.y) = (4.10)

If the proposal value is rejected, then the next sampled value is taken to be the
current value. In algorithmic form, the simulated values are obtained by the
following recursive procedure.

4 Markov Chain Monte Carlo Technology 81

Algorithm 1 Metropolis—Hastings

1. Specify an initial value ¥ ©:
2. Repeatfor j = 1,2,..., M.

(a) Propose
v~ g ()
(b) Let
PUtH = ¥ it Unif(0,) <a(yV,y) ;

¥) otherwise .

3. Return the values {y ", @, ..., Yy

Typically, a certain number of values (say 7o) at the start of this sequence
are discarded after which the chain is assumed to have converged to it invariant
distribution and the subsequent draws are taken as approximate variates from 7.
Because theoretical calculation of the burn-in is not easy it is important that the
proposal density is chosen to ensure that the chain makes large moves through
the support of the invariant distribution without staying at one place for many
iterations. Generally, the empirical behavior of the M—H output is monitored by
the autocorrelation time of each component of ¥ and by the acceptance rate, which
is the proportion of times a move is made as the sampling proceeds.

One should observe that the target density appears as a ratio in the probability
a(¥, ¥’) and therefore the algorithm can be implemented without knowledge of
the normalizing constant of 7 (-). Furthermore, if the candidate-generating density
is symmetric, i.e. ¢(¥,¥’) = q(¥’, ¥), the acceptance probability only contains
the ratio = (¥') /7 (¥); hence, if 7 (¥') > 7 (¥), the chain moves to ¥’, otherwise it
moves with probability given by 7 (¥’) /7 (¥). The latter is the algorithm originally
proposed by Metropolis et al. (1953). This version of the algorithm is illustrated in
Fig.4.1.

Different proposal densities give rise to specific versions of the M—H algorithm,
each with the correct invariant distribution 7. One family of candidate-generating
densities is given by g(¢,¥’) = q(¥’ — ¥). The candidate ¥’ is thus drawn
according to the process ¥’ = ¥ + z, where z follows the distribution ¢. Since
the candidate is equal to the current value plus noise, this case is called a random
walk M—H chain. Possible choices for ¢ include the multivariate normal density and
the multivariate-¢. The random walk M—H chain is perhaps the simplest version of
the M-H algorithm (and was the one used by Metropolis et al. 1953) and popular
in applications. One has to be careful, however, in setting the variance of z; if it
is too large it is possible that the chain may remain stuck at a particular value
for many iterations while if it is too small the chain will tend to make small
moves and move inefficiently through the support of the target distribution. In
both cases the generated draws that will be highly serially correlated. Note that
when ¢ is symmetric, ¢(z) = ¢(—z) and the probability of move only contains the

82 S. Chib

Higher density proposal

T(y(+5)) Current point

~

n(y(i))

m(y)

Lower density point

/

m(y(*))

() (i) ()

Fig. 4.1 Original Metropolis algorithm: higher density proposal is accepted with probability one
and the lower density proposal with probability o

ratio w(Y') /7 (¥). As mentioned earlier, the same reduction occurs if g(¢, ¥') =
g’ ¥).

Hastings (1970) considers a second family of candidate-generating densities
that are given by the form ¢(¥,¥’) = ¢(y). Tierney (1994) refers to this as
an independence M—H chain because, in contrast to the random walk chain, the
candidates are drawn independently of the current location ¢. In this case, the
probability of move becomes

a(r/f,w/f’>=min{w("”) 1} :

w(y)

where w(¥) = (¥)/q(¥) is the ratio of the target and proposal densities. For this
method to work and not get stuck in the tails of r, it is important that the proposal
density have thicker tails than 7. A similar requirement is placed on the importance
sampling function in the method of importance sampling (Geweke 1989). In fact,
Mengersen and Tweedie (1996) show that if w(y) is uniformly bounded then the
resulting Markov chain is ergodic.

Chib and Greenberg (1994, 1995) discuss a way of formulating proposal densities
in the context of time series autoregressive-moving average models that has a bear-
ing on the choice of proposal density for the independence M—H chain. They suggest
matching the proposal density to the target at the mode by a multivariate normal or

4 Markov Chain Monte Carlo Technology 83

multivariate-¢ distribution with location given by the mode of the target and the
dispersion given by inverse of the Hessian evaluated at the mode. Specifically, the
parameters of the proposal density are taken to be

m = argmaxlog7(¢¥) and

-1
Ve %_azlogn(w)}
Y=

599 , 4.11)

v

where 7 is a tuning parameter that is adjusted to control the acceptance rate. The
proposal density is then specified as g(¢') = f(¥'|m,V), where f is some
multivariate density. This may be called a tailored M—H chain.

Another way to generate proposal values is through a Markov chain version of
the accept-reject method. In this version, due to Tierney (1994), and considered
in detail by Chib and Greenberg (1995), a pseudo accept-reject step is used to
generate candidates for an M—H algorithm. Suppose ¢ > 0 is a known constant
and h(¥) a source density. Let C = {¢ : 7 (¥) < ch(¥)} denote the set of
value for which ch(¢¥) dominates the target density and assume that this set has
high probability under 7*. Given ") = ¥, the next value ¥ "+ is obtained as
follows: First, a candidate value ¥’ is obtained, independent of the current value ¥,
by applying the accept-reject algorithm with ch(-) as the “pseudo dominating”
density. The candidates ¥’ that are produced under this scheme have density

q(¥') o< min{m(y¥’), ch(¥')}. If we let w(¥) = ¢ 'm(¥)/h(¥) then it can be
shown that the M—H probability of move is given by

1 if yeC
a(P. ¥ = 1/w¥) if y¢C, ¢y eC . (4.12)
min {w(¥")/w(¥), 1} if ¥ ¢C, ¢ ¢C

4.3.1 Convergence Results

In the M-H algorithm the transition kernel of the chain is given by
P(Y.dy") =q. ¥, ¥)dy +r)sy(dy’), (4.13)
where 8y (dy') = 1if ¥ € dy’ and 0 otherwise and

) = 1—/q(w,w’)a(w,v/)d¢’ .

2

Thus, transitions from ¥ to ¥’ (¥’ # ¥) are made according to the density

84 S. Chib

pW.¥)=q@ V(. ¥). ¥ #Y’

while transitions from ¥ to ¥ occur with probability r(¢¥). In other words, the
density function implied by this transition kernel is of mixed type,

KW ¥") =q@). ¥) +r@)s @) (4.14)

having both a continuous and discrete component, where now, with change of
notation, 8y (¢’) is the Dirac delta function defined as §,(¢¥') = 0 for ¥’ # ¢
and [, 8y (¥)dy' = 1.

Chib and Greenberg (1995) provide a way to derive and interpret the probability
of move a (¥, ¥’). Consider the proposal density g (¢, ¥’). This proposal density ¢
is not likely to be reversible for m (if it were then we would be done and
M-H sampling would not be necessary). Without loss of generality, suppose that
a(P)q(¥,¥') > 7(¥)q(¥’, ¥) implying that the rate of transitions from ¥ to ¥’
exceed those in the reverse direction. To reduce the transitions from ¥ to ¥’ one
can introduce a function 0 < «a(¢,¥’) < 1 such that 7(Y)q (¥, ¥ (¥, ¥’) =
7 (¥)q(¥’, ¥). Solving for a (¢, ¥’) yields the probability of move in the M—H
algorithm. This calculation reveals the important point that the function p (¥, ¥') =
q(¥, ¥ (P, ¥') is reversible by construction, i.e., it satisfies the condition

q. Y e) w() =g)@ P)r(Y) . (4.15)

It immediately follows, therefore, from the argument in (4.6) that the M—H kernel
has 7 (¥) as its invariant density.

It is not difficult to provide conditions under which the Markov chain generated
by the M—H algorithm satisfies the conditions of Propositions 1-2. The conditions of
Proposition 1 are satisfied by the M—H chain if ¢ (¥, ¥') is positive for (¥, ¥’) and
continuous and the set ¥ is connected. In addition, the conditions of Proposition 2
are satisfied if ¢ is not reversible (which is the usual situation) which leads to
a chain that is aperiodic. Conditions for ergodicity, required for use of the central
limit theorem, are satisfied if in addition 7 is bounded. Other similar conditions are
provided by Robert and Casella (1999).

4.3.2 Example

To illustrate the M—H algorithm, consider the binary response data in Table 4.1,
taken from Fahrmeir and Tutz (1997), on the occurrence or non-occurrence of
infection following birth by caesarean section. The response variable y is one if the
caesarean birth resulted in an infection, and zero if not. There are three covariates:
X1, an indicator of whether the caesarean was non-planned; x,, an indicator of
whether risk factors were present at the time of birth and x3, an indicator of whether

4 Markov Chain Monte Carlo Technology 85

Table 4.1 Caesarean infection data

Y (1/0) X X2 X3
11/87 1 1 1
1/17 0 1 1
0/2 0 0 |
23/3 1 1 0
28/30 0 1 0
0/9 1 0 0
8/32 0 0 0

antibiotics were given as a prophylaxis. The data in the table contains information
from 251 births. Under the column of the response, an entry such as 11/87 means
that there were 98 deliveries with covariates (1,1, 1) of whom 11 developed an
infection and 87 did not.

Suppose that the probability of infection for the ith birth (i < 251) is

Pr(y; = 1lx;. B) = @(x;B) . (4.16)
B ~ N4(0,51,), 4.17)
where x; = (1,Xx;1,Xi2,X;3)" is the covariate vector, B = (Bo.B1. B2, B3) is

the vector of unknown coefficients, @ is the cdf of the standard normal random
variable and 1 4 is the four-dimensional identity matrix. The target posterior density,
under the assumption that the outcomes y = (), y2, ..., ¥251) are conditionally
independent, is

251
w(Bly) B []o (x78)" (1-o (7B}

i=1

where () is the density of the N (0, 1014) distribution.

Random Walk Proposal Density
To define the proposal density, let

ﬁ = (—1.093022 0.607643 1.197543 —1.904739)"
be the MLE found using the Newton—Raphson algorithm and let

0.040745 —0.007038 —0.039399 0.004829
0.073101 —0.006940 —0.050162

0.062292 —0.016803

0.080788

86 S. Chib

Table 4.2 Caesarean data: Prior-posterior summary based on 5000 draws (beyond a burn-in of
100 cycles) from the random-walk M—H algorithm

Prior Posterior
Mean Std dev Mean Std dev Lower Upper
Bo 0.000 3.162 —1.110 0.224 —1.553 —0.677
B 0.000 3.162 0.612 0.254 0.116 1.127
B2 0.000 3.162 1.198 0.263 0.689 1.725
B3 0.000 3.162 —1.901 0.275 —2.477 —1.354

be the symmetric matrix obtained by inverting the negative of the Hessian matrix
(the matrix of second derivatives) of the log-likelihood function evaluated at . Now
generate the proposal values by the random walk:

B = ﬂ(j_l) 4+ W)

eV ~ Ny4(0, V), (4.18)

which leads to the original Metropolis method. From a run of 5000 iterations of the
algorithm beyond a burn-in of a 100 iterations we get the prior-posterior summary
that is reported in Table 4.2, which contains the first two moments of the prior
and posterior and the 2.5th (lower) and 97.5th (upper) percentiles of the marginal
densities of .

As expected, both the first and second covariates increase the probability
of infection while the third covariate (the antibiotics prophylaxis) reduces the
probability of infection.

To get an idea of the form of the posterior density we plot in Fig.4.1 the
four marginal posterior densities. The density plots are obtained by smoothing the
histogram of the simulated values with a Gaussian kernel. In the same plot we also
report the autocorrelation functions (correlation against lag) for each of the sampled
parameter values. The autocorrelation plots provide information of the extent of
serial dependence in the sampled values. Here we see that the serial correlations
start out high but decline to almost zero by lag twenty.

Tailored Proposal Density

To see the difference in results, the M-H algorithm is next implemented with
a tailored proposal density. In this scheme one utilizes both 8 and V' that were
defined above. We let the proposal density be f7(B8|8,V,15), a multivariate-
density with fifteen degrees of freedom. This proposal density is similar to the
random-walk proposal except that the distribution is centered at the fixed point .
The prior-posterior summary based on 5,000 draws of the M—H algorithm with
this proposal density is given in Table 4.3. We see that the marginal posterior
moments are similar to those in Table 4.1. The marginal posterior densities are

4 Markov Chain Monte Carlo Technology 87

Table 4.3 Caesarean data: Prior-posterior summary based on 5,000 draws (beyond a burn-in of
100 cycles) from the tailored M—H algorithm

Prior Posterior
Mean Std dev Mean Std dev Lower Upper
Bo 0.000 3.162 —1.080 0.220 —1.526 —0.670
B 0.000 3.162 0.593 0.249 0.116 1.095
B2 0.000 3.162 1.181 0.254 0.680 1.694
B3 0.000 3.162 —1.889 0.266 —2.421 —1.385
800
600
>
(&)
c
S 400
o
L
200
-4 -2 -0 -2 0 2 0 2 4 -4 -2 0
By B, B, B,
1
0.8
c
i)
g 0.6
2
g 04
=}
<
o [HHIHm H\HHH [
0 10 20 0 10 20 0 10 20 0 10 20

Fig. 4.2 Caesarean data with random-walk M—-H algorithm: Marginal posterior densities (top
panel) and autocorrelation plot (bottom panel)

reported in the top panel of Fig. 4.2. These are virtually identical to those computed
using the random-walk M-H algorithm. The most notable difference is in the
serial correlation plots which decline much more quickly to zero indicating that
the algorithm is mixing well. The same information is revealed by the inefficiency
factors which are much closer to one than those from the previous algorithm.

The message from this analysis is that the two proposal densities produce
similar results, with the differences appearing only in the autocorrelation plots (and
inefficiency factors) of the sampled draws (Fig. 4.3).

88 S. Chib

1000

800
600

400

200 k
0

Frequency

o o o
A O o

Autocorrelation

o
o

[. L1, | . L1 . [.
0
0 10 20 0 10 20 0 10 20 0 10 20

Fig. 4.3 Caesarean data with tailored M—H algorithm: Marginal posterior densities (top panel)
and autocorrelation plot (bottom panel)

4.3.3 Multiple-Block M-H Algorithm

In applications when the dimension of ¥ is large, it can be difficult to construct
a single block M-H algorithm that converges rapidly to the target density. In such
cases, it is helpful to break up the variate space into smaller blocks and to then
construct a Markov chain with these smaller blocks. Suppose, for illustration, that
¥ is split into two vector blocks (¥, ¥,). For example, in a regression model, one
block may consist of the regression coefficients and the other block may consist of
the error variance. Next, for each block, let

QWL YY) T W YY) .

denote the corresponding proposal density. Here each proposal density gy is allowed
to depend on the data and the current value of the remaining block. Also define (by
analogy with the single-block case)

a(Yi 2D (¥, ¥ilY2)
EAUA BN AUS

(Y1, ¥¥2) = min] 1 (4.19)

4 Markov Chain Monte Carlo Technology 89

and

(LY)W, ¥alY)
"YW YY))

as the probability of move for block ¥, (k = 1,2) conditioned on the other block.
The conditional densities

a(¥2. ¥hly. ¥1) = min 1

(4.20)

7(Y1l¥2) and 7w (Y2|¥1)

that appear in these functions are called the full conditional densities. By Bayes
theorem each is proportional to the joint density. For example,

(Y1) x7(¥1,¥2) ,

and, therefore, the probabilities of move in (4.19) and (4.20) can be expressed
equivalently in terms of the kernel of the joint posterior density 7 (¥ |, ¥») because
the normalizing constant of the full conditional density (the norming constant in the
latter expression) cancels in forming the ratio.

With these inputs, one sweep of the multiple-block M—H algorithm is completed
by updating each block, say sequentially in fixed order, using a M—H step with the
above probabilities of move, given the most current value of the other block.

Algorithm 2 Multiple-Block Metropolis—Hastings

1. Specify an initial value @ = (1#50), ;0)):
2. Repeatfor j = 1,2,...,n0 + M.

(a) Repeatfork =1,2

I. Propose a value for the kth block, conditioned on the previous value of kth block, and
the current value of the other block ¥ _:

Vi~ a (w7)

II. Calculate the probability of move

7 (Wily—) g (Wi v 19 }

G=1 = mi
o ('/’k] Yily, W—k) - {1’ h ('/’/(cj_l)hﬁfk) qk ('/’/(cj_l)’ 'ﬁl/c"ﬁ*")

III. Update the kth block as

G v, with prob oy (w,(cjil), 1/’;/¢|'ﬁfk)
¥y = (=1 . _ G=1 ’
Uy withprob 1 —oy (¥ ¥V

3. Return the values {y oD ot gty

90 S. Chib

The extension of this method to more than two blocks is straightforward.
The transition kernel of the resulting Markov chain is given by the product of
transition kernels

2
P(.dy') =[] P (¥x. d¥i|¥—) 4.21)
k=1

This transition kernel is not reversible, as can be easily checked, because under fixed
sequential updating of the blocks updating in the reverse order never occurs. The
multiple-block M—H algorithm, however, satisfies the weaker condition of invari-
ance. To show this, we utilize the fact that each sub-move satisfies local reversibility
(Chib and Jeliazkov 2001) and therefore the transition kernel P, (¥, d¥|¥>) has
”1*|2('|¢2) as its local invariant distribution with density nf‘lz('lwz), ie.,

widvlve) = [PGy dy . @2

Similarly, the conditional transition kernel P,(¥,,d¥2|¥;) has 712*“(-|1//1) as
its invariant distribution, for a given value of ¥ ;. Then, the kernel formed by
multiplying the conditional kernels is invariant for 7 * (-, -):

// P W02 oo, d WS W)l 92 d o d
Z/Pz('ﬁz,dl”/ﬂl”/l) [/ Pl(l”l,d'ﬁWz)Huz('ﬁlhﬁz)dVM} 1w (Y2) d¥s

- / P, W41)Tl (AW [2) T2 (W2) d 2

7T2|1(¢2|¢/1)7Tfk(d¢/1)
72 (¥2)

= 7F(d¥) / Para. AW W) (Bal W) d s
=y (dy)y, (dy5|Y))
= (@Y. dy)) |

/ Py d) () d s

where the third line follows from (4.22), the fourth from Bayes theorem, the sixth
from assumed invariance of P,, and the last from the law of total probability.

The implication of this result is that it allows us to take draws in succession from
each of the kernels, instead of having to run each to convergence for every value of
the conditioning variable.

Remark 1. Versions of either random-walk or tailored proposal densities can be
used in this algorithm, analogous to the single-block case. For example, Chib and
Greenberg (1995) determine the proposal densities g; by tailoring to w(¥x, ¥ —x)
in which case the proposal density is not fixed but varies across iterations. An

4 Markov Chain Monte Carlo Technology 91

important special case occurs if each proposal density is taken to be the full
conditional density of that block. Specifically, if we set

Q1 (W(lj_l)v '/’/1|1ﬁ2) =n(¥1¥2) .

and

a2 (W97 W) = 7@

then an interesting simplification occurs. The probability of move (for the first
block) becomes

w (wilwa) 7 (w7)
7 (v l2) 7 (v 1v2)

o (w7 wily2) = min {1,

:17

and similarly for the second block, implying that if proposal values are drawn from
their full conditional densities then the proposal values are accepted with probability
one. This special case of the multiple-block M—H algorithm (in which each block
is proposed using its full conditional distribution) is called the Gibbs sampling
algorithm.

4.4 The Gibbs Sampling Algorithm

The Gibbs sampling algorithm is one of the simplest Markov chain Monte Carlo
algorithms. It was introduced by Geman and Geman (1984) in the context of image
processing and then discussed in the context of missing data problems by Tanner
and Wong (1987). The paper by Gelfand and Smith (1990) helped to demonstrate
the value of the Gibbs algorithm for a range of problems in Bayesian analysis.

4.4.1 The Algorithm

To define the Gibbs sampling algorithm, let the set of full conditional distributions
be

{”('ﬁlhﬁz»---,l/’p); 7T(¢2|¢17 '/,37"'710p); ---77[('#17'1#17"'710(2’—1)} .

Now one cycle of the Gibbs sampling algorithm is completed by simulating
{wk},f: , from these distributions, recursively refreshing the conditioning variables.
When d = 2 one obtains the two block Gibbs sampler that appears in Tanner and

92 S. Chib

Wong (1987). The Gibbs sampler in which each block is revised in fixed order is
defined as follows.

Algorithm 3 Gibbs Sampling

I _ (O).
1. Specify an initial value @ = (1/t1 R)
2. Repeatfor j = 1,2,..., M.

Generate ng_l) from 7 (1/11|1ﬁ;j), Vo wi,”)
Generate ngJrl) from 7 (1//2|1/t§j+1), ng) (,,j))

Generate wﬁ!*” from 7 (¢p|1ﬁ(lj+l), c w(,fjl)).

3. Return the values {y, y @ ... y@®}.

It follows that the transition density of moving from wl(cj) to 1//,9 BT given by
(+D G+ () j
w (Wl)

since when the kth block is reached, the previous (k — 1) blocks have been updated.
Thus, the transition density of the chain, under the maintained assumption that 7 is
absolutely continuous, is given by the product of transition kernels for each block:

V4
K@.¥) =[] (zpkmﬁf“’,..., ,(gj”,z//,?jl,...,wy) . (4.23)

k=1

To illustrate the manner in which the blocks are revised, we consider a two block
case, each with a single component, and trace out in Fig. 4.4 a possible trajectory of
the sampling algorithm. The contours in the plot represent the joint distribution of ¢
and the labels “(0)”, “(1)” etc., denote the simulated values. Note that one iteration
of the algorithm is completed after both components are revised. Also notice that
each component is revised along the direction of the coordinate axes. This feature
can be a source of problems if the two components are highly correlated because
then the contours get compressed and movements along the coordinate axes tend to
produce small moves. We return to this issue below.

4.4.2 Invariance of the Gibbs Markov Chain

The Gibbs transition kernel is invariant by construction. This is a consequence of the
fact that the Gibbs algorithm is a special case of the multiple-block M—H algorithm

4 Markov Chain Monte Carlo Technology 93

Fig. 4.4 Gibbs sampling algorithm in two dimensions starting from an initial point and then
completing three iterations

which is invariant, as was established in the last section. Invariance can also be
confirmed directly. Consider for simplicity a two block sampler with transition
kernel density

K. ¥') = a1 [¥2)x(F3]¥)) -

To check invariance we have to show that

/ KA w @1) d v d v
- / A (W) B)d Yrd

is equal to (¥, ¥). This holds because 7 (¥5|¥) comes out of the integral, and
the integral over ¥ and ¥, produces 7 (¢}). This calculation can be extended to
any number of blocks. It may be noted that the Gibbs Markov chain is not reversible.
Reversible Gibbs samplers are discussed by Liu et al. (1995).

4.4.3 Sufficient Conditions for Convergence

Under rather general conditions, the Markov chain generated by the Gibbs sampling
algorithm converges to the target density as the number of iterations become large.
Formally, if we let K(¥, ¥') represent the transition density of the Gibbs algorithm
and let K™ (¢, ¥') be the density of the draw ¥’ after M iterations given the

94 S. Chib

starting value ¥, then
KM (v O 9) 7@ >0, as M —oo. (4.24)

Roberts and Smith (1994) (see also Chan 1993) have shown that the conditions of
Proposition 2 are satisfied under the following conditions: (1) 7 (¢) > 0 implies
there exists an open neighborhood Ny containing ¥ and € > 0 such that, for all
V¥ e Ny, n(y') = € > 0;(2) [f(¥)dyy is locally bounded for all k, where ¥«
is the kth block of parameters; and (3) the support of ¥ is arc connected.

These conditions are satisfied in a wide range of problems.

4.4.4 Example: Simulating a Truncated Multivariate Normal

Consider the question of sampling a trivariate normal distribution truncated to the
positive orthant. In particular, suppose that the target distribution is

n(¥) = In (. 2) (¢ € A)

1
Pr(y € A)
o fy(p, Z)I(¥ € A)

where p = (0.5,1,1.5), X' is in equi-correlated form with units on the diagonal
and 0.7 on the off-diagonal, A = (0, 00) x (0, 00) x (0, 00) and Pr(¢y € A) is the
normalizing constant which is difficult to compute. In this case, the Gibbs sampler
is defined with the blocks V1, ¥, ¥3 and the full conditional distributions

(il ¥3) s w(@Walv, vs) s w(Ys|v, v) |

where each of the these full conditional distributions is univariate truncated normal
restricted to the interval (0, 00):

T (il i) o« fv (Vi + CLE L (ke — i) - T
—CLZ2,Ch) (Y € (0,00)) (4.25)

Cr =Cov¥i,¥—k), Xk = Var(Y—x) and p—r = E(¥—i). Figure 4.5 gives
the marginal distribution of each component of v from a Gibbs sampling run of
M = 10000 iterations with a burn-in of 100 cycles. The figures includes both
the histograms of the sampled values and the Rao—-Blackwellized estimates of the
marginal densities (see Sect. 4.6 below) based on the averaging of (4.25) over the
simulated values of ¥ _ . The agreement between the two density estimates is close.
In the bottom panel of Fig. 4.5 we plot the autocorrelation function of the sampled
draws. The rapid decline in the autocorrelations for higher lags indicates that the
sampler is mixing well.

4 Markov Chain Monte Carlo Technology 95

1000 —— 1200 1200
wo | N R A
800 ’ ‘ 1000 / s 1000 'l \
5, 700 800 ‘ 800
2 600
[}
S 500 600 600
o
&’ 400
200 400 400
200 200 200
100
0 0 0
o 1 2 3 4 5 0 2 4 6 0 2 4 6
v, v, A
1 1 1
0.9 0.9 0.9
0.8 0.8 0.8
S o7 0.7 0.7
S
< 06 0.6 0.6
[
S o0s 0.5 05
8 04 0.4 0.4
=]
2 03 0.3 0.3
0.2 0.2 0.2
0.1 ‘ 0.1 0.1 |
L1, “ll L [T
0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Fig. 4.5 Marginal distributions of i in truncated multivariate normal example (fop panel).
Histograms of the sampled values and Rao—Blackwellized estimates of the densities are shown.
Autocorrelation plots of the Gibbs MCMC chain are in the bottom panel. Graphs are based on
10,000 iterations following a burn-in of 500 cycles

4.5 MCMC Sampling with Latent Variables

In designing MCMC simulations, it is sometimes helpful to modify the target
distribution by introducing latent variables or auxiliary variables into the sampling.
This idea was called data augmentation by Tanner and Wong (1987) in the context
of missing data problems. Slice sampling, which we do not discuss in this chapter,
is a particular way of introducing auxiliary variables into the sampling, for example
see Damien et al. (1999).

To fix notations, suppose that z denotes a vector of latent variables and let
the modified target distribution be 7 (¥,z). If the latent variables are tactically
introduced, the conditional distribution of ¥ (or sub components of ¥) given z may
be easy to derive. Then, a multiple-block M—H simulation is conducted with the
blocks ¥ and z leading to the sample

('/,(,,0+1)’Z(n0+1)) L (w(no+M)’z(no+M)) ~n(¥,7),

where the draws on ¥, ignoring those on the latent data, are from 7 (¢), as required.

96 S. Chib

To demonstrate this technique in action, we return to the probit regression
example discussed in Sect.4.3.2 to show how a MCMC sampler can be developed
with the help of latent variables. The approach, introduced by Albert and Chib
(1993), capitalizes on the simplifications afforded by introducing latent or auxiliary
data into the sampling.

The model is rewritten as

Zi|ﬂNN(x;ﬂsl)s
yi=I[Zi>O], lfn,

B ~ Ni(Bo, Bo) - (4.26)
This specification is equivalent to the probit regression model since
Pr(y; = l|x;, B) = Pr(z > Olx;, B) = @(x;B) .

Now the Albert—Chib algorithm proceeds with the sampling of the full conditional
distributions

ﬂlys{zi}; {Zi}lyvﬂs

where both these distributions are tractable (i.e., requiring no M—H steps). In
particular, the distribution of 8 conditioned on the latent data becomes independent
of the observed data and has the same form as in the Gaussian linear regression
model with the response data given by {z;} and is multivariate normal with mean
B = B(By'Bo+ Y.'_, xiz) and variance matrix B = (By' + >/_ x;x))7".
Next, the distribution of the latent data conditioned on the data and the parameters
factor into a set of n independent distributions with each depending on the data
through y;:

n
ily. B = [ailyi. B
i=1

where the distribution z;|y;, B is the normal distribution z;|B truncated by the
knowledge of y;; if y; = 0, then z; < 0 and if y; = 1, then z; > 0. Thus,
one samples z; from TN —00)(x/B.1) if y; = 0 and from TN (o) (x/B,1) if
yi = 1, where TN (4 (1, 0?) denotes the N (i1, 0%) distribution truncated to the
region (a, b).

The results, based on 5,000 MCMC draws beyond a burn-in of a 100 iterations,
are reported in Fig. 4.4. The results are close to those presented above, especially to
the ones from the tailored M—H chain (Fig. 4.6).

4.6 Estimation of Density Ordinates

‘We mention that if the full conditional densities are available, whether in the context
of the multiple-block M—H algorithm or that of the Gibbs sampler, then the MCMC
output can be used to estimate posterior marginal density functions (Gelfand and

4 Markov Chain Monte Carlo Technology 97

1000

800

600

400

Frequency

200

0

0.8
0.6

0.4

0.2
L.
0 10

0

Autocorrelation

10

10 10

Fig. 4.6 Caesarean data with Albert—Chib algorithm: Marginal posterior densities (top panel) and
autocorrelation plot (bottom panel)

20 O 20 O 20 O 20

Smith 1990; Tanner and Wong 1987). We exploit the fact that the marginal density
of ¥ at the point ¥ is

T(¥7) = / T —) T d P

where as before ¥_; = ¥\ ¥ . Provided the normalizing constant of 7 (1//7; |10_k)
is known, an estimate of the marginal density is available as an average of the full
conditional density over the simulated values of ¥ _j:

M
w =M Y 7 (viv?) .
j=1
Under the assumptions of Proposition 1,
M

M_IZJT(WZW(_Q) —-a(yr), as M —oo.

j=1

98 S. Chib

Gelfand and Smith (1990) refer to this approach as Rao—Blackwellization because
of the connections with the Rao—Blackwell theorem in classical statistics. That
connection is more clearly seen in the context of estimating (say) the mean of ¥,
E(Yx) = [Yrw(¥i)d ¥i. By the law of the iterated expectation,

E@Wi) = EXEWr|¥—x)}
and therefore the estimates ”
MYy
j=l1
and

M
MY E (welw)

j=1
both converge to E(¥x) as M — oo. Under iid sampling, and under Markov
sampling provided some conditions are satisfied — see Liu et al. (1994), Casella and
Robert (1996) and Robert and Casella (1999), it can be shown that the variance of
the latter estimate is smaller than that of the former. Thus, it can help to average
the conditional mean E (¢ |¥—x), if that were available, rather than average the
draws directly. Gelfand and Smith (1990) appeal to this analogy to argue that the
Rao-Blackwellized estimate of the density is preferable to that based on the method
of kernel smoothing. Chib (1995) extends the Rao—Blackwellization approach to
estimate reduced conditional ordinates defined as the density of ¥, conditioned on
one or more of the remaining blocks. Finally, Chen (1994) provides an importance
weighted estimate of the marginal density for cases where the conditional posterior
density does not have a known normalizing constant. Chen’s estimator is based on
the identity
T(Yr ¥—r)
(i, ¥—k)

where w(¥i|¥) is a completely known conditional density whose support is
equal to the support of the full conditional density 7 (¥|¥—i). In this form,
the normalizing constant of the full conditional density is not required and given
a sample of draws {y (V... ¢} from 7 (¢), a Monte Carlo estimate of the
marginal density is given by

A (¥]) = / WY) T (A Y .

('/’k"/’(]))

Chen (1994) discusses the choice of the conditional density w. Since it depends on
¥k, the choice of w will vary from one sampled draw to the next.

M
AT =M™ Z m‘,/,m
j=1

4 Markov Chain Monte Carlo Technology 99
4.7 Sampler Performance and Diagnostics

In implementing a MCMC method it is important to assess the performance of the
sampling algorithm to determine the rate of mixing and the size of the burn-in, both
having implications for the number of iterations required to get reliable answers.
A large literature has emerged on these issues, for example, Robert (1995), Tanner
(1996, Sect.6.3), Cowles and Carlin (1996), Gammermann (1997, Sect.5.4) and
Robert and Casella (1999), but the ideas, although related in many ways, have not
coalesced into a single prescription.

One approach for determining sampler performance and the size of the burn-
in time is to employ analytical methods to the specified Markov chain, prior to
sampling. This approach is exemplified in the work of, for example, Polson (1996),
Roberts and Tweedie (1996) and Rosenthal (1995). Two factors have inhibited
the growth and application of these methods. The first is that the calculations are
difficult and problem-specific and, second, the upper bounds for the burn-in that
emerge from such calculations are usually conservative.

At this time the more popular approach is to utilize the sampled draws to
assess both the performance of the algorithm and its approach to the invariant
distribution. Several such relatively informal methods are available. Gelfand and
Smith (1990) recommend monitoring the evolution of the quantiles as the sampling
proceeds. Another useful diagnostic, one that is perhaps the most direct, are
autocorrelation plots (and autocorrelation times) of the sampled output. Slowly
decaying correlations indicate problems with the mixing of the chain. It is also
useful in connection with M—H Markov chains to monitor the acceptance rate of
the proposal values with low rates implying “stickiness” in the sampled values and
thus a slower approach to the invariant distribution.

Somewhat more formal sample-based diagnostics are summarized in the CODA
routines provided by Best et al. (1995). Although these diagnostics often go under
the name “convergence diagnostics” they are in principle approaches that detect lack
of convergence. Detection of convergence based entirely on the sampled output,
without analysis of the target distribution, is perhaps impossible. Cowles and Carlin
(1996) discuss and evaluate thirteen such diagnostics (for example, those proposed
by Geweke 1992; Raftery and Lewis 1992; Ritter and Tanner 1992; Gelman and
Rubin 1992; Gelman and Rubin 1992; and Zellner and Min 1995, amongst others)
without arriving at a consensus. Difficulties in evaluating these methods stem from
the fact that some of these methods apply only to Gibbs Markov chains (for example,
those of Ritter and Tanner 1992; and Zellner and Min 1995) while others are based
on the output not just of a single chain but on that of multiple chains specifically
run from “disparate starting values” as in the method of Gelman and Rubin (1992).
Finally, some methods assess the behavior of univariate moment estimates (as in the
approach of Geweke 1992; and Gelman and Rubin 1992) while others are concerned
with the behavior of the entire transition kernel (as in Ritter and Tanner 1992; and
Zellner and Min 1995).

100 S. Chib
4.8 Strategies for Improving Mixing

In practice, while implementing MCMC methods it is important to construct
samplers that mix well, where mixing is measured by the autocorrelation time,
because such samplers can be expected to converge more quickly to the invariant
distribution. Over the years a number of different recipes for designing samplers
with low autocorrelation times have been proposed although it may sometimes be
difficult, because of the complexity of the problem, to apply any of these recipes.

4.8.1 Choice of Blocking

As a general rule, sets of parameters that are highly correlated should be treated as
one block when applying the multiple-block M—H algorithm. Otherwise, it would be
difficult to develop proposal densities that lead to large moves through the support
of the target distribution.

Blocks can be combined by the method of composition. For example, suppose
that ¥ 1, ¥, and ¥3 denote three blocks and that the distribution ¥ |¥ 3 is tractable
(i.e., can be sampled directly). Then, the blocks (¥, ¥,) can be collapsed by
first sampling ¥; from ¥ |¥3 followed by ¥, from ¥, |¥;, ¥3. This amounts to
a two block MCMC algorithm. In addition, if it is possible to sample (¥, ¥2)
marginalized over ¥3 then the number of blocks is reduced to one. Liu et al.
(1994) discuss the value of these strategies in the context of a three-block Gibbs
MCMC chains. Roberts and Sahu (1997) provide further discussion of the role of
blocking in the context of Gibbs Markov chains used to sample multivariate normal
target distributions.

4.8.2 Tuning the Proposal Density

As mentioned above, the proposal density in a M—H algorithm has an important
bearing on the mixing of the MCMC chain. Fortunately, one has great flexibility
in the choice of candidate generating density and it is possible to adapt the choice
to the given problem. For example, Chib et al. (1998) develop and compare four
different choices in longitudinal random effects models for count data. In this
problem, each cluster (or individual) has its own random effects and each of these
has to be sampled from an intractable target distribution. If one lets n denote the
number of clusters, where 7 is typically large, say in excess of a thousand, then the
number of blocks in the MCMC implementation is # + 3 (n for each of the random
effect distributions, two for the fixed effects and one for the variance components
matrix). For this problem, the multiple-block M—-H algorithm requires n + 1 M-H
steps within one iteration of the algorithm. Tailored proposal densities are therefore

4 Markov Chain Monte Carlo Technology 101

computationally expensive but one can use a mixture of proposal densities where
a less demanding proposal, for example a random walk proposal, is combined with
the tailored proposal to sample each of the n random effect target distributions.
Further discussion of mixture proposal densities is contained in Tierney (1994).

4.8.3 Other Strategies

Other approaches have also been discussed in the literature. Marinari and Parsi
(1992) develop the simulated tempering method whereas Geyer and Thompson
(1995) develop a related technique that they call the Metropolis-coupled MCMC
method. Both these approaches rely on a series of transition kernels {K1, ..., K}
where only K| has m* as the stationary distribution. The other kernels have
equilibrium distributions 7;, which Geyer and Thompson (1995) take to be 7; (¥) =
7(¥)/i, i = 2,...,m. This specification produces a set of target distributions
that have higher variance than 7*. Once the transition kernels and equilibrium
distributions are specified then the Metropolis-coupled MCMC method requires
that each of the m kernels be used in parallel. At each iteration, after the m draws
have been obtained, one randomly selects two chains to see if the states should be
swapped. The probability of swap is based on the M—H acceptance condition. At
the conclusion of the sampling, inference is based on the sequence of draws that
correspond to the distribution 7*. These methods promote rapid mixing because
draws from the various “flatter” target densities have a chance of being swapped
with the draws from the base kernel K. Thus, variates that are unlikely under the
transition K; have a chance of being included in the chain, leading to more rapid
exploration of the parameter space.

4.9 Concluding Remarks

In this survey we have provided an outline of Markov chain Monte Carlo methods.
These methods provide a set of general recipes for sampling intractable multivariate
distributions and have proved vital in the recent virtually revolutionary evolution
and growth of Bayesian statistics. Refinements and extensions of these methods
continue to occur. Two recent developments are the slice sampling method discussed
by Mira and Tierney (2002), Damien et al. (1999) and Roberts and Rosenthal
(1999) and the perfect sampling method proposed by Propp and Wilson (1996). The
slice sampling method is based on the introduction of auxiliary uniform random
variables to simplify the sampling and improve mixing while the perfect sampling
method uses Markov chain coupling to generate an exact draw from the target
distribution.

102 S. Chib

References

Albert, J., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat.
Assoc. 88, 669-679 (1993)

Besag, J.: Spatial interaction and the statistical analysis of lattice systems (withdiscussion). J. Roy.
Stat. Soc. B 36, 192-236 (1974)

Besag, J., Green, E., Higdon, D., Mengersen, K.L.: Bayesian computation and stochastic systems
(with discussion). Stat. Sci. 10, 3-66 (1995)

Best, N.G., Cowles, M.K., Vines, S.K.: CODA: Convergence diagnostics and output analysis
software for Gibbs sampling. Technical report, Cambridge MRC Biostatistics Unit (1995)

Carlin, B.P, Louis, T.: Bayes and Empirical Bayes Methods for Data Analysis, (2nd edn.),
Chapman and Hall, London (2000)

Casella, G., Robert, C.P.: Rao-Blackwellization of sampling schemes. Biometrika 83, 81-94
(1996)

Chan, K.S.: Asymptotic behavior of the Gibbs sampler. J. Am. Stat. Assoc. 88, 320-326 (1993)

Chan, K.S., Ledolter, J.: Monte Carlo EM estimation for time series models involving counts.
J. Am. Stat. Assoc. 90, 242-252 (1995)

Chen, M-H.: Importance-weighted marginal Bayesian posterior density estimation. J. Am. Stat.
Assoc. 89, 818-824 (1994)

Chen, M-H., Shao, Qi-M., Ibrahim, J.G.: Monte Carlo Methods in Bayesian Computation.
Springer, New York (2000)

Chib, S.: Marginal likelihood from the Gibbs output. J. Am. Stat. Assoc. 90, 1313-1321 (1995)

Chib, S.: Markov Chain Monte Carlo Methods: Computation and Inference. In: Heckman, J.J.,
Leamer, E. (eds.) Handbook of Econometrics, Vol. 5, pp. 3569-3649. North Holland, Amster-
dam (2001)

Chib, S., Greenberg, E.: Bayes inference for regression models with ARMA(p,q) errors.
J. Econometrics 64, 183-206 (1994)

Chib, S., Greenberg, E.: Understanding the Metropolis—Hastings algorithm. Am. Stat. 49, 327-335
(1995)

Chib, S., Greenberg, E.: Markov chain Monte Carlo simulation methods in econometrics.
Economet. Theor. 12, 409-431 (1996)

Chib, S., Greenberg, E., Winklemann, R.: Posterior simulation and Bayes factors in panel count
data models. J. Econometrics 86, 33—54 (1998)

Chib, S., Jeliazkov, I.: Marginal likelihood from the Metropolis—Hastings output. J. Am. Stat.
Assoc. 96, 270-281 (2001)

Congdon, P.: Bayesian Statistical Modeling. Wiley, Chicester (20011)

Cowles, M.K., Carlin, B.: Markov chain Monte Carlo convergence diagnostics: A comparative
review. J. Am. Stat. Assoc. 91, 883-904 (1996)

Damien, P., Wakefield, J., Walker, S.: Gibbs Sampling for Bayesian nonconjugate and hierarchical
models using auxiliary variables. J. Roy. Stat. Soc. B 61, 331-344 (1999)

Gammerman, D.: Markov chain Monte Carlo: Stochastic Simulation for Bayesian Inference.
Chapman and Hall, London (1997)

Gelfand, A.E., Smith, A.FM.: Sampling-based approaches to calculating marginal densities.
J. Am. Stat. Assoc. 85: 398409 (1990)

Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Stat. Sci.
4,457-472 (1992)

Gelman, A., Meng, X.L., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, (2nd edn.), Chapman
and Hall, London (2003)

Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of
images. IEEE Trans. Pattern Anal. Mach. Intell. 12, 609-628 (1984)

Geweke, J.: Bayesian inference in econometric models using Monte Carlo integration. Economet-
rica 57, 1317-1340 (1989)

4 Markov Chain Monte Carlo Technology 103

Geweke, J.: Evaluating the accuracy of sampling-based approaches to the calculation of posterior
moments. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.EM. (eds.) Bayesian
Statistics, pp. 169—193, Oxford University Press, New York (1992)

Geyer, C., Thompson, E.A.: Annealing markov chain monte carlo with applications to ancestral
inference. J. Am. Stat. Assoc. 90, 909-920 (1995)

Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice, Chapman
and Hall, London (1996)

Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications.
Biometrika 57, 97-109 (1970)

Liu, J.S.: Monte Carlo Strategies in Scientific Computing, Springer, New York (2001)

Liu, J.S., Wong, W.H., Kong, A.: Covariance structure of the gibbs sampler with applications to
the comparisons of estimators and data augmentation schemes. Biometrika 81, 27-40 (1994)
Liu, J.S., Wong, W.H., Kong, A.: Covariance structure and convergence rate of the Gibbs sampler

with various scans. J. Roy. Stat. Soc. B 5§7, 157-169 (1995)

Marinari, E., Parsi, G.: Simulated tempering: A new Monte Carlo scheme. Europhys. Lett. 19,
451-458 (1992)

Mengersen, K.L., Tweedie, R.L.: Rates of convergence of the Hastings and Metropolis algorithms.
Ann. Stat. 24, 101-121 (1996)

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state
calculations by fast computing machines. J. Chem. Phys. 21, 1087-1092 (1953)

Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, London (1993)

Mira, A., Tierney, L.: Efficiency and convergence properties of slice samplers. Scand. J. Stat. 29,
1-12 (2002)

Nummelin, E.: General Irreducible Markov Chains and Non-negative Operators. Cambridge
University Press, Cambridge (1984)

Polson, N.G.: Convergence of Markov Chain Monte Carlo algorithms. In: Bernardo, J.M.,
Berger, J.O., Dawid, A.P., Smith, A.EM. (eds.) Proceedings of the Fifth Valencia International
Conference on Bayesian Statistics. pp. 297-323. Oxford University Press, Oxford (1996)

Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and applications to
statistical mechanics. Random Struct. Algorithm. 9, 223-252 (1996)

Raftery, A.E., Lewis, S.M.: How many iterations in the Gibbs sampler? In: Bernardo, J.M.,
Berger, J.O., Dawid, A.P., Smith, A.FE.M. (eds.) Proceedings of the Fourth Valencia International
Conference on Bayesian Statistics. pp. 763—774. Oxford University Press, New York (1992)

Ripley, B.: Stochastic Simulation. Wiley, New York (1987)

Ritter, C, Tanner, M.A.: Facilitating the gibbs sampler: The gibbs stopper and the Griddy-Gibbs
sampler. J. Am. Stat. Assoc. 87, 861-868 (1992)

Robert C.P.: Convergence control methods for Markov chain Monte Carlo algorithms. Stat. Sci.
10, 231-253 (1995)

Robert, C.P.: Bayesian Choice. (2nd ed.), Springer, New York (2001)

Robert, C.P.,, Casella, G.: Monte Carlo Statistical Methods. Springer, New York (1999)

Roberts, G.O., Rosenthal, J.S.: Convergence of slice sampler Markov chains. J. Roy. Stat. Soc. B
61, 643-660 (1999)

Roberts, G.O., Sahu, S.K.: Updating schemes, correlation structure, blocking, and parametization
for the Gibbs sampler. J. Roy. Stat. Soc. B 59, 291-317 (1997)

Roberts, G.O., Smith, A.EM.: Some simple conditions for the convergence of the Gibbs sampler
and Metropolis—Hastings algorithms. Stochas. Process. Appls. 49, 207-216 (1994)

Roberts, G.O., Tweedie, R.L.: Geometric convergence and central limit theorems for multidimen-
sional Hastings and Metropolis algorithms. Biometrika 83, 95-110 (1996)

Rosenthal, J.S.: Minorization conditions and convergence rates for Markov chain Monte Carlo.
J. Am. Stat. Assoc. 90, 558-566 (1995)

Smith, A.E.M., Roberts, G.O.: Bayesian computation via the Gibbs sampler and related Markov
chain Monte Carlo methods. J. Roy. Stat. Soc. B 55, 3-24 (1993)

Tanner, M.A.: Tools for Statistical Inference, (3rd edn.), Springer, New York (1996)

104 S. Chib

Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation. J. Am.
Stat. Assoc. 82, 528-549 (1987)
Tierney, L.: Markov chains for exploring posterior distributions (with discussion). Ann. Stat. 22,

1701-1762 (1994)
Zellner, A., Min, C.: Gibbs sampler convergence criteria. J. Am. Stat. Assoc. 90, 921-927 (1995)

Chapter 5
Numerical Linear Algebra

Lenka Cizkova and Pavel Cizek

Many methods of computational statistics lead to matrix-algebra or numerical-
mathematics problems. For example, the least squares method in linear regression
reduces to solving a system of linear equations, see Chap. III.8. The principal
components method is based on finding eigenvalues and eigenvectors of a matrix, see
Chap. II1.6. Nonlinear optimization methods such as Newton’s method often employ
the inversion of a Hessian matrix. In all these cases, we need numerical linear algebra.

Usually, one has a data matrix X of (explanatory) variables, and in the case of
regression, a data vector y for dependent variable. Then the matrix defining a system
of equations, being inverted or decomposed typically correspondsto X or X ' X. We
refer to the matrix being analyzed as A = {4;; },m="1 ;=1 € R™*" and to its columns
as Ay = {Ai}’L,. k = 1,...,n.In the case of linear equations, b = {b;}/_, € R"
represents the right-hand side throughout this chapter. Further, the eigenvalues and
singular values of A are denoted by A; and o;, respectively, and the corresponding
eigenvectors g;,i = 1,...,n. Finally, we denote the n xn identity and zero matrices
by I,, and 0,, respectively.

In this chapter, we first study various matrix decompositions (Sect. 5.1), which
facilitate numerically stable algorithms for solving systems of linear equations and
matrix inversions. Next, we discuss specific direct and iterative methods for solving
linear systems (Sects. 5.2 and 5.3). Further, we concentrate on finding eigenvalues
and eigenvectors of a matrix in Sect.5.4. Finally, we provide an overview of
numerical methods for large problems with sparse matrices (Sect. 5.5).

Let us note that most of the mentioned methods work under specific conditions
given in existence theorems, which we state without proofs. Unless said otherwise,
the proofs can be found in Harville (1997), for instance. Moreover, implementations
of the algorithms described here can be found, for example, in Anderson et al. (1999)
and Press et al. (1992).

L. Cizkova - P. Cizek ()

Department of Econometrics & Operations Research,
Tilburg University, Tilburg, The Netherlands

e-mail: P.Cizek @uvt.nl; lenka@lenka-photography.eu

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks 105
of Computational Statistics, DOI 10.1007/978-3-642-21551-3__5,
© Springer-Verlag Berlin Heidelberg 2012

P.Cizek@uvt.nl
lenka@lenka-photography.eu

106 L. Cizkovi and P. Cizek
5.1 Matrix Decompositions

This section covers relevant matrix decompositions and basic numerical methods.
Decompositions provide a numerically stable way to solve a system of linear
equations, as shown already in Wampler (1970), and to invert a matrix. Additionally,
they provide an important tool for analyzing the numerical stability of a system.

Some of most frequently used decompositions are the Cholesky, QR, LU,
and SVD decompositions. We start with the Cholesky and LU decompositions,
which work only with positive definite and nonsingular diagonally dominant square
matrices, respectively (Sects.5.1.1 and 5.1.2). Later, we explore more general
and in statistics more widely used QR and SVD decompositions, which can be
applied to any matrix (Sects.5.1.3 and 5.1.4). Finally, we briefly describe the
use of decompositions for matrix inversion, although one rarely needs to invert
a matrix (Sect.5.1.5). Monographs Gentle (1998), Harville (1997), Higham (2002)
and Stewart (1998) include extensive discussions of matrix decompositions.

All mentioned decompositions allow us to transform a general system of linear
equations to a system with an upper triangular, a diagonal, or a lower triangular
coefficient matrix: Ux = b, Dx = b, or Lx = b, respectively. Such systems are
easy to solve with a very high accuracy by back substitution, see Higham (1989).
Assuming the respective coefficient matrix A has a full rank, one can find a solution

of Ux = b, where U = {Uj;}]_, ;_,, by evaluating

Xi = Uil_»l bi — Z Uijxj (51)

fori =n,..., 1. Analogously for Lx = b, where L = {L;; } one evaluates

fori =1,...,n

=l,j=1

i—1
Xi = Ll_ll bi — ZL,’ij . (52)

J=1

For discussion of systems of equations that do not have a full rank, see for example
Higham (2002).

5.1.1 Cholesky Decomposition

The Cholesky factorization, first published by Benoit (1924), was originally devel-
oped to solve least squares problems in geodesy and topography. This factorization,
in statistics also referred to as “square root method,” is a triangular decomposition.
Providing matrix A is positive definite, the Cholesky decomposition finds a trian-
gular matrix U that multiplied by its own transpose leads back to matrix A. That is,
U can be thought of as a square root of A.

5 Numerical Linear Algebra 107

Theorem 1. Let matrix A € R"*" be symmetric and positive definite. Then there

exists a unique upper triangular matrix U with positive diagonal elements such that
A=U"U.

The matrix U is called the Cholesky factor of A and the relation A = U'U is
called the Cholesky factorization.

Obviously, decomposing a system Ax = b to UTUx = b allows us to solve
two triangular systems: Uz = b for z and then Ux = z for x. This is similar to the
original Gauss approach for solving a positive definite system of normal equations
XTXx = XTh. Gauss solved the normal equations by a symmetry-preserving
elimination and used the back substitution to solve for x.

Let us now describe the algorithm for finding the Cholesky decomposition, which
is illustrated on Fig.5.1. One of the interesting features of the algorithm is that in
the ith iteration we obtain the Cholesky decomposition of the ith leading principal

i\

minor of A, {Ax}_ ;-

Algorithm 4

for i=1 to n
i—1 2 172
Uii ==(A[i—'§:k:1LQi>
for j=i+l1 to n

Uy, = (A[j - U Ukj)/ Uii

end
end

The Cholesky decomposition described in Algorithm 4 is a numerically stable
procedure, see Martin et al. (1965) and Meinguet (1983), which can be at the
same time implemented in a very efficient way. Computed values U;; can be stored

Fig. 5.1 Rowwise Cholesky N
algorithm

108 L. Cizkova and P. Cizek

in place of original A;;, and thus, no extra memory is needed. Moreover, let us
note that while Algorithm 4 describes the rowwise decomposition (U is computed
row by row), there are also a columnwise version and a version with diagonal
pivoting, which is also applicable to semidefinite matrices. Finally, there are also
modifications of the algorithm, such as blockwise decomposition, that are suitable
for very large problems and parallelization; see Bjorck (1996), Gallivan et al. (1990)
and Nool (1995).

5.1.2 LU Decomposition

The LU decomposition is another method reducing a square matrix A to a product
of two triangular matrices (lower triangular L and upper triangular U). Contrary to
the Cholesky decomposition, it does not require a positive definite matrix A, but
there is no guarantee that L = U

Theorem 2. Let the matrix A € R™" satisfy following conditions:

A A Ay App Ags
Aql 75 0, det(A“ A12) 75 0, det| Ay Ay Ax
S Az; Az Aszs

£0. ..., detd £0.

Then there exists a unique lower triangular matrix L with ones on a diagonal,
a unique upper triangular matrix U with ones on a diagonal and a unique diagonal
matrix D such that A = L DU.

Note that for any nonsingular matrix 4 there is always a row permutation P such
that the permuted matrix PA satisfies the assumptions of Theorem 2. Further,
a more frequently used version of this theorem factorizes A to a lower triangular
matrix L’ = L D and an upper triangular matrix U’ = U. Finally, Zou (1991)
gave alternative conditions for the existence of the LU decomposition: A € R"*"
is nonsingular and A7 is diagonally dominant (i.e., |A;;| > ZLU# |A;j| for
j=1,...,n).

Similarly to the Cholesky decomposition, the LU decomposition reduces solving
a system of linear equations Ax = LUx = b to solving two triangular systems:
Lz = b, wherez = Ux, and Ux = z.

Finding the LU decomposition of A is described in Algorithm 5. Since it
is equivalent to solving a system of linear equations by the Gauss elimination,
which searches just for U and ignores L, we refer a reader to Sect. 5.2, where its
advantages (e.g., easy implementation, speed) and disadvantages (e.g., numerical
instability without pivoting) are discussed.

5 Numerical Linear Algebra 109

Algorithm 5

L=0,U=1I,
for i = 1 ton
for j =1 ton

Ly =A;— Yich Ljk Ui

end
for j =1+ 1 ton
i—1
Uj = (Aij - Z;c:1 LikUkj) /Lii
end

end

Finally, note that there are also generalizations of LU to non-square and singular
matrices, such as rank revealing LU factorization; see Pan (2000) and Miranian and
Gu (2003).

5.1.3 QR Decomposition

One of the most important matrix transformations is the QR decomposition. It splits
a general matrix A to an orthonormal matrix @, that is, a matrix with columns
orthogonal to each other and its Euclidian norm equal to 1, and to an upper triangular
matrix R. Thus, a suitably chosen orthogonal matrix @ will triangularize the given
matrix A4.

Theorem 3. Let matrix A € R™*" with m > n. Then there exist an orthonormal
matrix Q € R™ and an upper triangular matrix R € R"*" with nonnegative

diagonal elements such that
R
A =
o(y)

(the QR decomposition of the matrix A).

If A is a nonsingular square matrix, an even slightly stronger result can be
obtained: uniqueness of the QR decomposition.

Theorem 4. Let matrix A € R"™" be nonsingular. Then there exist a unique
orthonormal matrix Q € R™" and a unique upper triangular matrix R € R"*"
with positive diagonal elements such that A = QR.

The use of the QR decomposition for solving a system of equations Ax =
O Rx = b consists in multiplying the whole system by the orthonormal matrix Q T,
Q7 Q = I, and then solving the remaining upper triangular system Rx = Q 'b.

110 L. Cizkova and P. Cizek

This method guarantees numerical stability by minimizing errors caused by machine
roundoffs (see the end of this section for details).

The QR decomposition is usually constructed by finding one orthonormal vector
(one column of @) after another. This can be achieved using the so-called ele-
mentary orthogonal transformations such as Householder reflections, Householder
(1958), or Givens rotations, Givens (1958), that are described in the following
subsections. These transformations are related to the solution of the following
standard task.

Problem 1. Given a vector x € R™, x ## 0, find an orthogonal matrix M € R™*"
suchthat M T x = ||x||,-e;, wheree; = (1,0,...,0) " denotes the first unit vector.

In the rest of this section, we will first discuss how Householder reflections and
Givens rotations can be used for solving Problem 1. Next, using these elementary
results, we show how one can construct the QR decomposition. Finally, we briefly
mention the Gram—Schmidt orthogonalization method, which also provides a way
to find the QR decomposition.

Householder Reflections

The QR decomposition using Householder reflections (HR) was developed
by Golub (1965). Householder reflection (or Householder transformation) is
a matrix P,

1 1
P=1- —uuT, c=-u'u , (5.3)
c 2

where u is a Householder vector. By definition, the matrix P is orthonormal and
symmetric. Moreover, for any x € R™, it holds that

Px :x—%(u—rx)u .
Therefore, to apply HR one does not need to explicitly compute the matrix P itself.
Additionally, it holds Pu = —u and Px € span{x,u}. This means that HR reflects
a vector x with respect to the hyperplane with normal vector, see Fig.5.2. u (hence
the name Householder reflection).
To solve Problem 1 using some HR, we search for a vector u# such that x will be
reflected to the x-axis. This holds for the following choice of u:

u=x+s|xlr-er. s1=200x;>0)—1, (5.4)
where x; = x e, denotes the first element of the vector x and I(-) represents an

indicator. For this reflection, it holds that ¢ from (5.3) equals ||x||2(||x|2 + |x1]) and
Px = —s;||x||2 - e as one can verify by substituting (5.4) into (5.3).

5 Numerical Linear Algebra 111

Fig. 5.2 Reflection with
respect to the hyperplane with
a normal vector u

Px

span(u)*

Givens Rotations

A Givens rotation (GR) in m dimensions (or Givens transformation) is defined by
an orthonormal matrix R;; (a) € R™",

1 0 - 0
0
c s !
Rij(0) = | : : , (5.5
—s c j

where ¢ = cosa and s = sina forae € Rand 1 <i < j < n. Thus, the rotation
R;; (x) represents a plane rotation in the space spanned by the unit vectors e; and
e ; by an angle «. In two dimensions, rotation R j»(c),

c s
—§ C

Ri(a) = (

), c=cosx, §=sina,

represents a clockwise rotation by an angle «; see Fig. 5.3.

Now, let us have a look at how GRs can be used for solving Problem 1. A GR
of a vector x = (x1,...,X,) € R™ by an angle o results in R;;j(¢)x = y =
(1»....ym) " such that

Xk for k#i,j,
Yk = ycx; + 5x; for k=1,

—sx; +cx; for k=j.

For a vector x with nonzero elements x; or x;, setting d = (x,2 + x?)l/ 2 c=x;/d,
s = x;/d leads to

112 L. Cizkova and P. Cizek

Fig. 5.3 Rotation of x in
a plane by an angle «

X2

-X,sina+x,cosa =y,

X, ¥i= X,COS0+X,SInot

() ()=(5)

Thus, using GR with this specific choice of ¢ and s (referred further as R ?j) implies
that the j th component of the vector x vanishes. Similarly to HRs, it is not necessary
to explicitly construct the whole matrix P to transform x since the rotation is fully
described by only two numbers: ¢ and s. This elementary rotation R?j does not
however constitute a solution to Problem 1 yet: we need to combine more of them.

The next step employs a simple fact that the pre- or postmultiplication of
a vector x or a matrix A by any GR R;;(«) affects only the ith and jth rows
and columns, respectively. Hence, one can combine several rotations without one
rotation spoiling the result of another rotation. (Consequently, GRs are more flexible
than HRs). Two typical ways how GRs are used for solving Problem 1 mentioned
in Sect.5.1.3 follow:

1. R(l)nR(l)_n_1 ... R?3R?2x = de;. Here the kth component of the vector x van-
ishes after the Givens rotation R(l)k. The previously zeroed elements x7, . . ., Xg—|
are not changed because rotation R affects only the first and kth component.

2. R,R%,...R)_, ,x = de. Here the kth component vanishes by the rotation
Ric—1 k-

Finally, there are several algorithms for computing the Givens rotations that
improve over the straightforward evaluation of R?jx. A robust algorithm mini-
mizing the loss of precision is given in Bjorck (1996). An algorithm minimizing
memory requirements was proposed by Stewart (1976). On the other hand, Gen-
tleman (1973) and Hammarling (1974) proposed modifications aiming to minimize
the number of arithmetic operations.

QR Decomposition by Householder Reflections or Givens Rotations

An appropriate combination of HRs or GRs, respectively, can be used to compute
the QR decomposition of a given matrix A € R™" m > n, in a following

5 Numerical Linear Algebra 113

way. Let @;,i = 1,...,n — 1, denote an orthonormal matrix in R”>*" such that
premultiplication of B = Q;—_;--- Q1A by Q; can zero all elements in the ith
column that are below the diagonal and such that the previous columns 1,...,i —1

are not affected at all. Such a matrix can be a blockwise diagonal matrix with blocks
being the identity matrix I;_; and a matrix M solving Problem 1 for the vector
composed of elements in the ith column of B that lie on and below the diagonal.
The first part I;_; guarantees that the columns 1,...,i — 1 of matrix B are not
affected by multiplication, whereas the second block M transforms all elements in
the i th column that are below the diagonal to zero. Naturally, matrix M can be found
by means of HRs or GRs as described in previous paragraphs.

This way, we construct a series of matrices Q1, ..., @, such that
R
0. -0u-(*).
0
Since all matrices Q1, ..., @, are orthonormal, @, = @, --- Q1 is also orthonor-

mal and its inverse equals its transpose: Q ;! = Q;'— Hence,

a=@00(7)=2(5)

as described in Theorem 3.

We describe now the QR algorithm using HRs or GRs. Let M(x) denote the
orthonormal matrix from Problem 1 constructed for a vector x by one of the
discussed methods.

Algorithm 6

0=1I,

R=4

for i =1 ton
x = {Ru -,

_(ILi-1 O

0= ("5 win)
0=0:0
R=0QR

end

Q = QT n.n

R = {Rfj}[:l,jzl

There are also modifications of this basic algorithm employing pivoting for better
numerical performance and even revealing rank of the system, see Hong and Tan
(1992) and Higham (2000) for instance. An error analysis of the QR decomposition
by HRs and GRs are given by Gentleman (1975) and Higham (2000), respectively.

114 L. Cizkovi and P. Cizek
Gram-Schmidt Orthogonalization

Given a nonsingular matrix A € R™" ,m > n, the Gram—Schmidt orthogonal-
ization constructs a matrix @ such that the columns of Q are orthonormal to each
other and span the same space as the columns of A. Thus, A can be expressed as
Q multiplied by another matrix R, whereby the Gram—Schmidt orthogonalization
process (GS) ensures that R is an upper triangular matrix. Consequently, GS can be
used to construct the QR decomposition of a matrix A. A survey of GS variants and
their properties is given by Bjorck (1994).

The classical Gram—Schmidt (CGS) process constructs the orthonormal basis
stepwise. The first column @ of Q is simply normalized A4 ;. Having constructed
aorthonormalbase Q 1.x = {Q1,..., Qk}, the next column Q4 is proportional to
A (41 minus its projection to the space span{Q j.r }. Thus, Q ;4 is by its definition
orthogonal to span{ Q |« }, and at the same time, the first k columns of A and Q span
the same linear space. The elements of the triangular matrix R from Theorem 3 are
then coordinates of the columns of A given the columns of Q as a basis.

Algorithm 7
for 1 =1 ton
for j =1 toi -1
Rji =0/ A,
end -
Qi=A4,—Y_R;iQ;
1/2
Ri= (0 Q)
0:=0;/Ri
end

Similarly to many decomposition algorithms, also CGS allows a memory
efficient implementation since the computed orthonormal columns of Q can rewrite
the original columns of A. Despite this feature and mathematical correctness, the
CGS algorithm does not always behave well numerically because numerical errors
can very quickly accumulate. For example, an error made in computing Q | affects
@, errors in both of these terms (although caused initially just by an error in Q)
adversely influence Q3 and so on. Fortunately, there is a modified Gram—Schmidt
(MGS) procedure, which prevents such an error accumulation by subtracting linear
combinations of Q directly from A before constructing following orthonormal
vectors. (Surprisingly, MGS is historically older than CGS.)

Apart from this algorithm (the row version of MGS), there are also a column
version of MGS by Bjorck (1994) and MGS modifications employing iterative
orthogonalization and pivoting by Dax (2000). Numerical superiority of MGS over
CGS was experimentally established already by Rice (1966). This result is also
theoretically supported by the GS error analysis in Bjorck (1994), who uncovered
numerical equivalence of the QR decompositions done by MGS and HRs.

5 Numerical Linear Algebra 115

Algorithm 8
for i =1 ton
0:=4;
1/2
Ru=(Q?QJ/
Qi =0;/Rii
for j =1+ 1 ton
R;i=0]4;

Aj=A; —R;Q;
end
end

5.1.4 Singular Value Decomposition

The singular value decomposition (SVD) plays an important role in numerical
linear algebra and in many statistical techniques as well. Using two orthonormal
matrices, SVD can diagonalize any matrix A and the results of SVD can tell
a lot about (numerical) properties of the matrix. (This is closely related to the
eigenvalue decomposition: any symmetric square matrix A can be diagonalized,
A = VDV where D is a diagonal matrix containing the eigenvalues of A and V
is an orthonormal matrix.)

Theorem 5. Let A € R™ " be a matrix of rank r. Then there exist orthonormal
matrices U € R™" and V € R™" and a diagonal matrix D € R™ ", with the

diagonal elements 01 > 02 > ... > 0, > Or4] = ... = Omin{mny = 0, such that
A=UDVT.
Numbers o7, . .., Omingm) represent the singular values of A. Columns U; and V;

of matrices U and V are called the left and right singular vectors of A associated
with singular value o;, respectively, because AV; = o;U; and U,-TA = 0; V,-T,i =
1,...,min{m,n}.

Similarly to the QR decomposition, SVD offers a numerically stable way to
solve a system of linear equations. Given a system Ax = UDV'x = b, one
can transformitto UT Ax = DV'x = U b and solve it in two trivial steps: first,
finding a solution z of Dz = UTh, and second, setting x = Vz, which is equivalent
toV'x =z

On the other hand, the power of SVD lies in its relation to many important
matrix properties; see Trefethen and Bau (1997), for instance. First of all, the
singular values of a matrix A are equal to the (positive) square roots of the
eigenvalues of ATA and AAT, whereby the associated left and right singular
vectors are identical with the corresponding eigenvectors. Thus, one can compute
the eigenvalues of AT A directly from the original matrix A. Second, the number
of nonzero singular values equals the rank of a matrix. Consequently, SVD can
be used to find an effective rank of a matrix, to check a near singularity and to

116 L. Cizkova and P. Cizek

compute the condition number of a matrix. That is, it allows to assess conditioning
and sensitivity to errors of a given system of equations. Finally, let us note that
there are far more uses of SVD: identification of the null space of A, null(4) =
span{Vi+1, ..., V,}: computation of the matrix pseudo-inverse, A~ = VD~ U";
low-rank approximations and so on. See Bjorck (1996) and Trefethen and Bau
(1997) for details.

Let us now present an overview of algorithms for computing the SVD decom-
position, which are not described in details due to their extent. The first stable
algorithm for computing the SVD was suggested by Golub and Kahan (1965). It
involved reduction of a matrix A to its bidiagonal form by HRs, with singular
values and vectors being computed as eigenvalues and eigenvectors of a specific
tridiagonal matrix using a method based on Sturm sequences. The final form of the
QR algorithm for computing SVD, which has been the preferred SVD method for
dense matrices up to now, is due to Golub and Reinsch (1970); see Anderson et al.
(1999), Bjorck (1996) or Gentle (1998) for the description of the algorithm and some
modifications. An alternative approach based on Jacobi algorithm was given by Hari
and Veselic (1987). Latest contributions to the pool of computational methods for
SVD, including von Matt (1995), Demmel et al. (1999) and Higham (2000), aim
to improve the accuracy of singular values and computational speed using recent
advances in the QR decomposition.

5.1.5 Matrix Inversion

In previous sections, we described how matrix decompositions can be used for solv-
ing systems of linear equations. Let us now discuss the use of matrix decompositions
for inverting a nonsingular squared matrix A € R"*", although matrix inversion is
not needed very often. All discussed matrix decomposition construct two or more
matrices Aq,..., Ag suchthat A = A¢-...- A4, where matrices A;,[=1,....,d,
are orthonormal, triangular, or diagonal. Because A™' = A;'-...- A7, we just
need to be able to invert orthonormal and triangular matrices (a diagonal matrix is
a special case of a triangular matrix).

First, an orthonormal matrix Q satisfies by definition QT Q = QQ ' = I,.
Thus, inversion is in this case equivalent to the transposition of a matrix:
0'=0".

Second, inverting an upper triangular matrix U can be done by solving directly
XU = I, which leads to the backward substitution method. Let X = {X;; }/”", =1
denote the searched for inverse matrix U~".

The inversion of a lower triangular matrix L can be done analogously: the
algorithm is applied to L T, that is, Uij isreplaced by L;; fori,j = 1,...,n.

There are several other algorithms available such as forward substitution or
blockwise inversion. Designed for a faster and more (time) efficient computation,
their numerical behavior does not significantly differ from the presented algorithm.
See Croz and Higham (1992) for an overview and numerical study.

5 Numerical Linear Algebra 117

Algorithm 9

X=0,
for i = n to 1
Xii =1/Uy
for j =1+ 1 ton

X =— (Z;ﬁ:[-{-l X Uik) /Ujj

end
end

5.2 Direct Methods for Solving Linear Systems

A system of linear equations can be written in the matrix notation as
Ax =5, (5.6)

where A denotes the coefficient matrix, b is the right-hand side, and x represents
the solution vector we search for. The system (5.6) has a solution if and only if b
belongs to the vector space spanned by the columns of A.

e If m < n, that is, the number of equations is smaller than the number of
unknown variables, or if m > n but A does not have a full rank (which means
that some equations are linear combinations of the other ones), the system is
underdetermined and there are either no solution at all or infinitely many of them.
In the latter case, any solution can be written as a sum of a particular solution and
a vector from the nullspace of A . Finding the solution space can involve the SVD
decomposition (Sect. 5.1.4).

e If m > n and the matrix A has a full rank, that is, if the number of equations
is greater than the number of unknown variables, there is generally no solution
and the system is overdetermined. One can search some x such that the distance
between A x and b is minimized, which leads to the linear least-squares problem
if distance is measured by L, norm; see Chap. IIL.8.

e If m = n and the matrix A is nonsingular, the system (5.6) has a unique solution.
Methods suitable for this case will be discussed in the rest of this section as well
as in Sect.5.3.

From here on, we concentrate on systems of equations with unique solutions.
There are two basic classes of methods for solving system (5.6). The first class
is represented by direct methods. They theoretically give an exact solution in a
(predictable) finite number of steps. Unfortunately, this does not have to be true
in computational praxis due to rounding errors: an error made in one step spreads in
all following steps. Classical direct methods are discussed in this section. Moreover,
solving an equation system by means of matrix decompositions, as discussed in
Sect. 5.1, can be classified as a direct method as well. The second class is called
iterative methods, which construct a series of solution approximations that (under

118 L. Cizkova and P. Cizek

some assumptions) converges to the solution of the system. Iterative methods are
discussed in Sect. 5.3. Finally, note that some methods are on the borderline between
the two classes; for example, gradient methods (Sect. 5.3.5) and iterative refinement
(Sect.5.2.2).

Further, the direct methods discussed in this section are not necessarily optimal
for an arbitrary system (5.6). Let us deal with the main exceptions. First, even
if a unique solution exist, numerical methods can fail to find the solution: if the
number of unknown variables 7 is large, rounding errors can accumulate and result
in a wrong solution. The same applies very much to systems with a nearly singular
coefficient matrix. One alternative is to use iterative methods (Sect.5.3), which
are less sensitive to these problems. Another approach is to use the QR or SVD
decompositions (Sect. 5.1), which can transform some nearly singular problems to
nonsingular ones. Second, very large problems including hundreds or thousands of
equations and unknown variables may be very time demanding to solve by standard
direct methods. On the other hand, their coefficient matrices are often sparse, that is,
most of their elements are zeros. Special strategies to store and solve such problems
are discussed in Sect. 5.5.

To conclude these remarks, let us mention a close relation between solving the
system (5.6) and computing the inverse matrix 4~

 Having an algorithm that for a matrix A computes 4 !, we can find the solution
to (5.6)asx = A~ 'b;

 An algorithm solving the system (5.6) can be used to compute A~ as follows.
Solve n linear systems Ax; = e;,i = 1,...,n (or the corresponding system
with multiple right-hand sides), where e; denotes the ith unit vector. Then
A7V = (x1,...,x,).

In the rest of this section, we concentrate on the Gauss—Jordan elimination
(Sect.5.2.1) and its modifications and extensions, such as iterative refinement
(Sect.5.2.2). A wealth of information on direct methods can be found in mono-
graphs Axelsson (1994), Gentle (1998) and Golub and van Loan (1996).

5.2.1 Gauss—Jordan Elimination

In this subsection, we will simultaneously solve the linear systems

Axlzbl, Ax2=b2, ey Akabk
and a matrix equation AX = B, where X, B € R™ (its solutionis X = A~!B,
yielding the inverse A~! for a special choice B = I,). They can be written as
a linear matrix equation

Alxi|xa|. .. |xk|X] = [b1]b2] ... |bi|B], (5.7)

where the operator | stands for column augmentation.

5 Numerical Linear Algebra 119

The Gauss—Jordan elimination (GJ) is based on elementary operations that do
not affect the solution of an equation system. The solution of (5.7) will not change
if we perform any of the following operations:

 Interchanging any two rows of A and the corresponding rows of b;’s and B,
i=1,....k;

e Multiplying a row of A and the same row of b;’s and B by a nonzero number,
i=1,....k;

e Adding to a chosen row of A and the same row of b;’s and B a linear
combination of otherrows,i = 1,...,k.

Interchanging any two columns of A is possible too, but it has to be followed by
interchanging the corresponding rows of all solutions x; and X as well as of right
sides b; and B,i = 1,... k. Each row or column operation described above is
equivalent to the pre- or postmultiplication of the system by a certain elementary
matrix R or C, respectively, that are results of the same operation applied to the
identity matrix I,.

GJ is a technique that applies one or more of these elementary operations
to (5.7) so that A becomes the identity matrix I,. Simultaneously, the right-
hand side becomes the set of solutions. Denoting R;,i = 1,..., O, the matrices
corresponding to the ith row operation, the combination of all operations has to
constitute inverse A™' = Rp-...-R3R2Ri andhencex = Rg-...-R3RR1b. The
exact choice of these elementary operation is described in the following paragraph.

Pivoting in Gauss-Jordan Elimination

Let us now discuss several well-known variants of the Gauss—Jordan elimination.
GJ without pivoting does not interchange any rows or columns; only multiplication
and addition of rows are permitted. First, nonzero nondiagonal elements in the first
column A are eliminated: the first row of (5.7) is divided by its diagonal element
Aj; and the A;;-multiple of the modified first row is subtracted from the ith row,
i = 2,...,n. We can proceed the same way for all n columns of A, and thus,
transform A to the identity matrix I,. It is easy to see that the method fails if the
diagonal element in a column to be eliminated, the so-called pivot, is zero in some
step. Even if this is not the case, one should be aware that GJ without pivoting is
numerically unstable.

On the other hand, the GJ method becomes stable when using pivoting. This
means that one can interchange rows (partial pivoting) or rows and columns (full
pivoting) to put a suitable matrix element to the position of the current pivot. Since
it is desirable to keep the already constructed part of the identify matrix, only
rows below and columns right to the current pivot are considered. GJ with full
pivoting is numerically stable. From the application point of view, GJ with partial
pivoting is numerically stable too, although there are artificial examples where it
fails. Additionally, the advantage of partial pivoting (compared to full pivoting) is
that it does not change the order of solution components.

120 L. Cizkova and P. Cizek

There are various strategies to choose a pivot. A very good choice is the largest
available element (in absolute value). This procedure depends however on the
original scaling of the equations. Implicit pivoting takes scaling into account and
chooses a pivot as if the original system were rescaled so that the largest element of
each row would be equal to one.

Finally, let us add several concluding remarks on efficiency of GJ and its
relationship to matrix decompositions. As shown, GJ can efficiently solve problems
with multiple right-hand sides known in advance and compute A~ at the same
time. On the other hand, if it is necessary to solve later a new system with
the same coefficient matrix A but a new right-hand side b, one has to start the
whole elimination process again, which is time demanding, or compute A~'h
using the previously computed inverse matrix A~!, which leads to further error
accumulation. In praxis, one should prefer matrix decompositions, which do not
have this drawback. Specifically, the LU decomposition (Sect. 5.1.2) is equivalent to
GJ (with the same kind of pivoting applied in both cases) and allows us to repeatedly
solve systems with the same coefficient matrix in an efficient way.

5.2.2 lIterative Refinement

In the introduction to Sect. 5.2, we noted that direct methods are rather sensitive to
rounding errors. Iterative refinement offers a way to improve the solution obtained
by any direct method, unless the system matrix A is too ill-conditioned or even
singular.

Let x; denote an initially computed (approximate) solution of (5.6). Iterative
refinement is a process constructing a series x;,7 = 1,2, ..., as described in Algo-
rithm 10. First, given a solution x;, the residuum r; = Ax; — b is computed. Then,
one obtains the correction Ax; by solving the original system with residuum r; on
the right-hand side. It is reasonable to carry out the computation of residuals r; in

Algorithm 10
Repeat for i=1,2,...
compute r; = b — Ax;
solve AAx; =r; for Ax;
set X4 =x; + Ax;

until the desired precision is achieved.

a higher precision because a lot of cancellation occurs if x; is a good approximation.
Nevertheless, provided that the coefficient matrix A is not too ill-conditioned, Skeel
(1980) proved that GJ with partial pivoting and only one step of iterative refinement
computed in a fixed precision is stable (it has a relative backward error proportional
to the used precision). In spite of this result, one can recommend to use iterative
refinement repeatedly until the desired precision is reached.

5 Numerical Linear Algebra 121

Additionally, an important feature of iterative refinement is its low computational
costs. Provided that a system is solved by means of decompositions (e.g., GJ is
implemented as the LU decomposition), a factorization of A is available already
after computing the initial solution x ;. Subsequently, solving any system with the
same coefficient matrix A, such as A Ax; = r;, can be done fast and efficiently
and the computational costs of iterative refinement are small.

5.3 Iterative Methods for Solving Linear Systems

Direct methods for solving linear systems theoretically give the exact solution
in a finite number of steps, see Sect.5.2. Unfortunately, this is rarely true in
applications because of rounding errors: an error made in one step spreads further in
all following steps! Contrary to direct methods, iterative methods construct a series
of solution approximations such that it converges to the exact solution of a system.
Their main advantage is that they are self-correcting, see Sect. 5.3.1.

In this section, we first discuss general principles of iterative methods that solve
linear system (5.6), Ax = b, whereby we assume that A € R"*" and the system
has exactly one solution x, (see Sect.5.2 for more details on other cases). Later,
we describe most common iterative methods: the Jacobi, Gauss—Seidel, successive
overrelaxation, and gradient methods (Sects. 5.3.2-5.3.5). Monographs containing
detailed discussion of these methods include Bjorck (1996), Golub and van Loan
(1996) and Hackbusch (1994). Although we treat these methods separately from the
direct methods, let us mention here that iterative methods can usually benefit from
a combination with the Gauss elimination, see Milaszewicz (1987) and Alanelli and
Hadjidimos (2004), for instance.

To unify the presentation of all methods, let D, L, and U denote the diagonal,
lower triangular and upper triangular parts of a matrix A throughout this section:

A;j for i=7, A;; for i >7,
Dj=1" L= -
0 otherwise ; 0 otherwise ;
Aj; for i<j,
Uy =4"" -7
0 otherwise .

5.3.1 General Principle of Iterative Methods for Linear Systems

An iterative method for solving a linear system Ax = b constructs an iteration
series x;, i = 0,1,2,..., that under some conditions converges to the exact
solution x, of the system (Ax, = b). Thus, it is necessary to choose a starting

point x and iteratively apply a rule that computes x; 4 from an already known x;.

122 L. Cizkova and P. Cizek

A starting vector x is usually chosen as some approximation of x. (Luckily, its
choice cannot cause divergence of a convergent method.) Next, given x;,7 € N, the
subsequent element of the series is computed using a rule of the form

xi+1:B,-xi+C,-b, 1=0,1,2,..., (5.8)

where B;,C; € R™" | € N, are matrix series. Different choices of B; and C;
define different iterative methods.

Let us discuss now a minimal set of conditions on B; and C; in (5.8) that
guarantee the convergence of an iterative method. First of all, it has to hold that
B; + C;A = I, foralli € N, or equivalently,

x,=Bix,+Cib=(B; +C;A)x, , ieN. (5.9)

In other words, once the iterative process reaches the exact solution x,, all
consecutive iterations should stay equal to x, and the method cannot depart from
this solution. Second, starting from a point xo, # x., we have to ensure that
approximations x; will converge to x, as i increases.

Theorem 6. An iteration series x; given by (5.8) converges to the solution of
system (5.6) for any chosen x iff

4lim B,‘B,‘_l ...B() =0.
1 —>00
In praxis, stationary iterative methods are used, that is, methods with constant
B; = B and C; = C,i € N. Consequently, an iteration series is then constructed
using
xXit1=Bx;+Cb, i=0,12,... (5.10)

and the convergence condition in Theorem 6 has a simpler form.

Theorem 7. An iteration series x; given by (5.10) converges to the solution
of system (5.6) for any chosen x¢ iff the spectral radius p(B) < 1, where
p(B) = max;=i__, |Ailand A\, ..., A, represent the eigenvalues of B.

Note that the convergence condition p(B) < 1 holds, for example, if |B|| < 1
in any matrix norm. Moreover, Theorem 7 guarantees the self-correcting property
of iterative methods since convergence takes place independent of the starting
value x. Thus, if computational errors adversely affect x; during the ith iteration,
x; can be considered as a new starting vector and the iterative method will further
converge. Consequently, the iterative methods are in general more robust than the
direct ones.

5 Numerical Linear Algebra 123

Apparently, such an iterative process can continue arbitrarily long unless x; =
x, at some point. This is impractical and usually unnecessary. Therefore, one uses
stopping (or convergence) criteria that stop the iterative process when a pre-specified
condition is met. Commonly used stopping criteria are based on the change of the
solution or residual vector achieved during one iteration. Specifically, given a small
e > 0, the iterative process is stopped after the ith iteration when ||x; — x;—1|| <,
lri—ri—1]| < e,or|r;| <e wherer; = Ax;—b is aresidual vector. Additionally,
a maximum acceptable number of iterations is usually specified.

5.3.2 Jacobi Method

The Jacobi method is motivated by the following observation. Let A have nonzero
diagonal elements (the rows of any nonsingular matrix can be reorganized to achieve
this). Then the diagonal part D of A is nonsingular and the system (5.6) can be
rewritten as Dx + (L 4+ U)x = b. Consequently,

x =D7'[(-L —U)x +b].

Replacing x on the left-hand side by x;4; and x on the right-hand side by x; leads
to the iteration formula of the Jacobi method:

Xi4+1 = —D_I(L + U)xi + D_lb .
The intuition of the Jacobi method is very simple: given an approximation x ¢
of the solution, let us express the kth component x; of x as a function of the other
components from the kth equation and compute x; given x°¢:

new 1 ¢ old
X0 ym bi ; A x| (5.11)
J#k
k=1,....n (see Fig.5.4).

The Jacobi method converges for any starting vector x as long as p(D~'(L +
U)) < 1, see Theorem 7. This condition is satisfied for a relatively big class of matri-
ces including diagonally dominant matrices (matrices A such that Z;l'=1, i lAi| =
|A;i| fori = 1,...,n), and symmetric matrices A suchthat D, A =L + D + U,
and —L + D — U are all positive definite. Although there are many improvements
to the basic principle of the Jacobi method in terms of convergence to x., see
Sects.5.3.3 and 5.3.4, its advantage is an easy and fast implementation (elements
of a new iteration x; can be computed independently of each other).

124 L. Cizkova and P. Cizek

Xnew + Xold — b

Fig. 5.4 Scheme of the Jacobi method

chw + Xold — b

Fig. 5.5 Scheme of the Gauss—Seidel method

5.3.3 Gauss—Seidel Method

Analogously to the Jacobi method, we can rewrite system (5.6) as (L +D)x+Ux =
b, which further implies x = (L + D)~'[~Ux + b]. This leads to the iteration
formula of the Gauss—Seidel method:

xip1=—(L+D)'Ux; + (L+D)'b. (5.12)
The main difference to the Jacobi methods lies in a more efficient use of (5.11).
When computing the kth element x;°%, the first k — 1 elements x]°V, ... X
are already known (and presumably more precise than x?ld, e ,x,‘(’lfl). Thus, it

is possible to use these new values instead of the old ones and speed up the
convergence (see Fig. 5.5 for a scheme). Moreover, using this strategy, the newly
computed elements of x; can directly overwrite the respective elements of x; and
save memory this way.

Following the Theorem 7, the Gauss—Seidel method converges for any starting
vector x if p((L + D)™'U) < 1. This condition holds, for example, for diagonally
dominant matrices as well as for positive definite ones.

5.3.4 Successive Overrelaxation Method

The successive overrelaxation (SOR) method aims to further refine the Gauss—
Seidel method. The Gauss—Seidel formula (5.12) can be rewritten as

5 Numerical Linear Algebra 125

xip1=x;i =D [{Lxit1 + (D 4+ U)x;} —b]l =x;, — A; ,

which describes the difference A; between x;4; and x; expressed for the kth
element of x;(y1) from the kth equation, k = 1,...,n. The question SOR poses
is whether the method can converge faster if we “overly” correct x;; in each step;
that is, if x; is corrected by a multiple w of A; in each iteration. This idea leads to
the SOR formula:

xit1 =% —oD'[{Lx;11 + (D + U)x;} - b],
or in the form (5.10),
xit1 =MD +ol) {1 —-w)D —oUlx; + o(D +oL)'b . (5.13)

The parameter w is called the (over)relaxation parameter and it can be shown that
SOR converges only for w € (0, 2), a result derived by Kahan (1958).

A good choice of parameter @ can speed up convergence, as measured by the
spectral radius of the corresponding iteration matrix B (see Theorem 7; a lower
spectral radius p(B) means faster convergence). There is a choice of literature
devoted to the optimal setting of relaxation parameter: see Hadjidimos (2000)
for a recent overview of the main results concerning SOR. We just present one
important result, which is due to Young (1954).

Definition 1. A matrix A4 is said to be two-cyclic consistently ordered if the eigen-
values of the matrix M(a) = aD~'L + a~'D~'U, a # 0, are independent of .

Theorem 8. Let the matrix A be two-cyclic consistently ordered. Let the respective
Gauss—Seidel iteration matrix B = —(L + D)™'U have the spectral radius p(B) <
1. Then the optimal relaxation parameter @ in SOR is given by

2

Wopt = —————F————
" 1+ /T—p(B)

and for this optimal value it holds p(B; wops) = Wepr — 1.

Using SOR with the optimal relaxation parameter significantly increases the rate
of convergence. Note however that the convergence acceleration is obtained only for
 very close to wep. If wyp cannot be computed exactly, it is better to take w slightly
larger rather than smaller. Golub and van Loan (1996) describe an approximation
algorithm for p(B).

On the other hand, if the assumptions of Theorem 8 are not satisfied, one can
employ the symmetric SOR (SSOR), which performs the SOR iteration twice:
once as usual, see (5.13), and once with interchanged L and U. SSOR requires
more computations per iteration and usually converges slower, but it works for any
positive definite matrix and can be combined with various acceleration techniques.
See Bjorck (1996) and Hadjidimos (2000) for details.

126 L. Cizkova and P. Cizek
5.3.5 Gradient Methods

Gradient iterative methods are based on the assumption that A is a symmetric
positive definite matrix A. They use this assumption to reformulate (5.6) as
a minimization problem: x, is the only minimum of the quadratic form

1
Ox) = ExTAx —x'b.

Given this minimization problem, gradient methods construct an iteration
series of vectors converging to x, using the following principle. Having the ith
approximation x;, choose a direction v; and find a number «; such that the new
vector

Xit1 =X; +ov;

is a minimum of Q(x) on the line x; 4+ av;, @ € R. Various choices of directions
v; then render different gradient methods, which are in general nonstationary
(v; changes in each iteration). We discuss here three methods: the Gauss—Seidel
(as a gradient method), steepest descent and conjugate gradients methods.

Gauss—Seidel Method as a Gradient Method

Interestingly, the Gauss—Seidel method can be seen as a gradient method for the
choice
Vin+i = €, k=0,1,2,..., i=1,...,l’l,

where e; denotes the 7th unit vector. The kth Gauss—Seidel iteration corresponds to
n subiterations with vy, 4; fori = 1,...,n.

Steepest Descent Method

The steepest descent method is based on the direction v; given by the gradient of
Q(x) at x;. Denoting the residuum of the ith approximation r; = b — Ax;, the
iteration formula is
Ty,
rr
rlAr;

Xit1 =X; + ri,

where r; represents the direction v; and its coefficient is the Q(x)-minimizing
choice of «;. By definition, this method reduces Q(x;) at each step, but it is not
very effective. The conjugate gradient method discussed in the next subsection will
usually perform better.

5 Numerical Linear Algebra 127

Conjugate Gradient Method

In the conjugate gradient (CG) method proposed by Hestenes and Stiefel (1952), the
directions v; are generated by the A -orthogonalization of residuum vectors. Given
a symmetric positive definite matrix A, A-orthogonalization is a procedure that
constructs a series of linearly independent vectors v; such that vlTA v; =0fori #
J (conjugacy or A -orthogonality condition). It can be used to solve the system (5.6)
as follows (r; = b — A x; represents residuals).

Algorithm 11
Vo =Fyg = b — Axo
do

o = (viTrf)/(viTAvi)
Xit1 =X; +ov;
Fi4d1 = F; —a;Av;
Bi =~ Arip)/(v] Av))
Vig1 = Fig1 + Bivi
until a stop criterion holds

An interesting theoretic property of CG is that it reaches the exact solution in at
most 1 steps because there are not more than n (A -)orthogonal vectors. Thus, CG is
not a truly iterative method. (This does not have to be the case if A is a singular or
non-square matrix, see Kammerer and Nashed 1972.) On the other hand, it is usually
used as an iterative method, because it can give a solution within the given accuracy
much earlier than after n iterations. Moreover, if the approximate solution x, after
n iterations is not accurate enough (due to computational errors), the algorithm can
be restarted with x¢ set to x,. Finally, let us note that CG is attractive for use with
large sparse matrices because it addresses A only by its multiplication by a vector.
This operation can be done very efficiently for a properly stored sparse matrix, see
Sect.5.5.

The principle of CG has many extensions that are applicable also for nonsym-
metric nonsingular matrices: for example, generalized minimal residual, Saad and
Schultz (1986); (stabilized) biconjugate gradients, Vorst (1992); or quasi-minimal
residual, Freund and Nachtigal (1991).

5.4 Eigenvalues and Eigenvectors

In this section, we deal with methods for computing eigenvalues and eigenvectors
of a matrix A € R™". First, we discuss a simple power method for computing
one or few eigenvalues (Sect.5.4.1). Next, we concentrate on methods performing
the complete eigenanalysis, that is, finding all eigenvalues (the Jacobi, QR, and LR
methods in Sects. 5.4.2-5.4.5). Finally, we briefly describe a way to improve already

128 L. Cizkova and P. Cizek

computed eigenvalues and to find the corresponding eigenvector. Additionally, note
that eigenanalysis can be also done by means of SVD, see Sect.5.1.4. For more
details on the described as well as some other methods, one can consult monographs
by Gentle (1998), Golub and van Loan (1996), Press et al. (1992) and Stoer and
Bulirsch (2002).

Before discussing specific methods, let us describe the principle common to most
of them. We assume that A € R"*" has eigenvalues |A;| > [A;] > ... > |A,]. To
find all eigenvalues, we transform the original matrix A to a simpler matrix B such
that it is similar to A (recall that matrices A and B are similar if there is a matrix
T such that B = T~'AT). The similarity of A and B is crucial since it guarantees
that both matrices have the same eigenvalues and their eigenvectors follow simple
relation: if g is an eigenvector of B corresponding to its eigenvalue A, then Tg is
an eigenvector of A corresponding to the same eigenvalue A.

There are two basic strategies to construct a similarity transformation B of the
original matrix A . First, one can use a series of simple transformations, such as GRs,
and eliminate elements of A one by one (see the Jacobi method, Sect. 5.4.2). This
approach is often used to transform A to its tridiagonal or upper Hessenberg forms.
(Matrix B has the upper Hessenberg form if it is an upper triangular except for the
first subdiagonal; thatis, A;; = Ofori > j+1,wherei, j = 1,...,n). Second, one
can also factorize A into A = F; Fg and switch the order of factors, B = FpF
(similarity of A and B follows from B = FgrF; = FZIA F ;). This is used for
example by the LR method (Sect. 5.4.5). Finally, there are methods combining both
approaches.

5.4.1 Power Method

In its basic form, the power method aims at finding only the largest eigenvalue A
of a matrix A and the corresponding eigenvector. Let us assume that the matrix 4
has a dominant eigenvalue (JA;| > |A;]) and n linearly independent eigenvectors.
The power method constructs two series ¢; and x;,i € N, that convergeto A; and
to the corresponding eigenvector g, respectively. Starting from a vector x that is
not orthogonal to g, one only has to iteratively compute A x; and split it to its norm
¢i+1 and the normalized vector x; 41, see Algorithm 5.4.1. Usually, the Euclidian
(ci+1 = ||Ax;|]2) and maximum (¢; 41 = max;=1,_, |(Ax;);|) norms are used.

Algorithm 12

i=0
do
i=i+1
Xj41=Ax;
cit1 = [[Ax;il
Xi1 = Xi41/Ci+1
until a stop criterion holds

5 Numerical Linear Algebra 129

Although assessing the validity of assumptions is far from trivial, one can usually
easily recognize whether the method converges from the behaviour of the two
constructed series.

Furthermore, the power method can be extended to search also for other
eigenvalues; for example, the smallest one and the second largest one. First, if A is
nonsingular, we can apply the power method to A ™! to find the smallest eigenvalue
A, because 1/A, is the largest eigenvalue of A~'. Second, if we need more
eigenvalues and A is already known, we can use a reduction method to construct
amatrix B that has the same eigenvalues and eigenvectors as A except for A}, which
is replaced by zero eigenvalue. To do so, we need to find a (normalized) eigenvector
hi of AT corresponding to A; (A and AT have the same eigenvalues) and to set
B =A—-X\h 1h1T- Naturally, this process can be repeated to find the third and
further eigenvalues.

Finally, let us mention that the power method can be used also for some matrices
without dominant eigenvalue (e.g., matrices with A = ... = A, for some 1 <
p < n). For further extensions of the power method see Sidi (1989), for instance.

5.4.2 Jacobi Method

For a symmetric matrix A, the Jacobi method constructs a series of orthogonal
matrices R;, i € N, such that the matrix T; = R;r ... R;rA R, ... R; converges
to a diagonal matrix D. Each matrix R; is a GR matrix defined in (5.5), whereby
the angle « is chosen so that one nonzero element (7;) jx becomes zero in T; 4.
Formulas for computing R; given the element (J, k) to be zeroed are described in
Gentle (1998), for instance. Once the matrix A is diagonalized this way, the diagonal
of D contains the eigenvalues of A and the columns of matrix R = Ry ... R;
represent the associated eigenvectors.

There are various strategies to choose an element (j, k) which will be zeroed
in the next step. The classical Jacobi method chooses the largest off-diagonal
element in absolute value and it is known to converge. (Since searching the maximal
element is time consuming, various systematic schemes were developed, but their
convergence cannot be often guaranteed.) Because the Jacobi method is relatively
slow, other methods are usually preferred (e.g., the QR method). On the other
hand, it has recently become interesting again because of its accuracy and easy
parallelization (Higham 1997; Zhou and Brent 2003).

5.4.3 Givens and Householder Reductions

The Givens and Householder methods use a similar principle as the Jacobi method.
A series of GRs or HRs, designed such that they form similarity transformations,
is applied to a symmetric matrix A in order to transformed it to a tridiagonal

130 L. Cizkova and P. Cizek

matrix. (A tridiagonal matrix is the Hessenberg form for symmetric matrices.) This
tridiagonal matrix is then subject to one of the iterative methods, such as the QR
or LR methods discussed in the following paragraphs. Formulas for Givens and
Householder similarity transformations are given in Press et al. (1992), for instance.

5.4.4 QR Method

The QR method is one of the most frequently used methods for the complete
eigenanalysis of a nonsymmetric matrix, despite the fact that its convergence is not
ensured. A typical algorithm proceeds as follows. In the first step, the matrix A
is transformed into a Hessenberg matrix using Givens or Householder similarity
transformations (see Sects.5.1.3 and 5.4.3). In the second step, this Hessenberg
matrix is subject to the iterative process called chasing. In each iteration, similarity
transformations, such as GRs, are first used to create nonzero entries in positions
(i+2,i),(i+3,i)and (i +3,i + 1) fori = 1. Next, similarity transformations
are repeatedly used to zero elements (i + 2,i) and (i + 3,i) and to move these
“nonzeros” towards the lower right corner of the matrix (i.e., to elements (i + 2,1i),
(i +3,i)and (i +3,i + 1) fori =i + 1). As a result of chasing, one or two
eigenvalues can be extracted. If A4, ,—; becomes zero (or negligible) after chasing,
element A, , is an eigenvalue. Consequently, we can delete the nth row and column
of the matrix and apply chasing to this smaller matrix to find another eigenvalue.
Similarly, if A,—; ,—> becomes zero (or negligible), the two eigenvalues of the 2 x 2
submatrix in the lower right corner are eigenvalues of 4. Subsequently, we can
delete last two rows and columns and continue with the next iteration.

Since a more detailed description of the whole iterative process goes beyond
the extent of this contribution, we refer a reader to Gentle (1998) for a shorter
discussion and to Golub and van Loan (1996) and Press et al. (1992) for a more
detailed discussion of the QR method.

5.4.5 LR Method

The LR method is based on a simple observation that decomposing a matrix A into
A = F Fp and multiplying the factors in the inverse order results in a matrix
B = FrF, similar to A. Using the LU decomposing (Sect.5.1.2), the LR method
constructs a matrix series A; fori € N, where A; = A and

A; = L;U; — Aiq1=UlL;,

where L; is a lower triangular matrix and U; is an upper triangular matrix with
ones on its diagonal. For a wide class of matrices, including symmetric positive

5 Numerical Linear Algebra 131

definite matrices, A; and L; are proved to converge to the same lower triangular
matrix L, whereby the eigenvalues of A form the diagonal of L and are ordered by
the decreasing absolute value.

5.4.6 Inverse Iterations

The method of inverse iterations can be used to improve an approximation A* of an
eigenvalue A of a matrix A . The method is based on the fact that the eigenvector g
associated with A is also an eigenvector of A= (A-1D! associated with
the eigenvalue A = (A — A*)™!. For an initial approximation A* close to A, A is the
dominant eigenvalue of A . Thus, it can be computed by the power method described
in Sect.5.4.1, whereby A* could be modified in each iteration in order to improve
the approximation of A.

This method is not very efficient without a good starting approximation, and
therefore, it is not suitable for the complete eigenanalysis. On the other hand, the use
of the power method makes it suitable for searching of the eigenvector g associated
with A. Thus, the method of inverse iterations often complements methods for
complete eigenanalysis and serves then as a tool for eigenvector analysis. For this
purpose, one does not have to perform the iterative improvement of initial A*:
applying the power method on A = (A — A*I)7! suffices. See Ipsen (1997), Press
et al. (1992) and Stoer and Bulirsch (2002) for more details.

5.5 Sparse Matrices

Numerical problems arising in some applications, such as seemingly unrelated
regressions, spatial statistics, or support vector machines (Chap. III.15), are sparse:
they often involve large matrices, which have only a small number of nonzero
elements. (It is difficult to specify what exactly “small number” is.) From the
practical point of view, a matrix is sparse if it has so many zero elements that it
is worth to inspect their structure and use appropriate methods to save storage and
the number of operations. Some sparse matrices show a regular pattern of nonzero
elements (e.g., band matrices), while some exhibit a rather irregular pattern. In both
cases, solving the respective problem efficiently means to store and operate on only
nonzero elements and to keep the “fill,” the number of newly generated nonzero
elements, as small as possible.

In this section, we first discuss some of storage schemes for sparse matrices,
which could indicate what types of problems can be effectively treated as sparse
ones (Sect.5.5.1). Later, we give examples of classical algorithms adopted for
sparse matrices (Sect. 5.5.2). Monographs introducing a range of methods for sparse
matrices include Duff et al. (1989), Hackbusch (1994) and Saad (2003).

132 L. Cizkovi and P. Cizek
5.5.1 Storage Schemes for Sparse Matrices

To save storage, only nonzero elements of a sparse vector or matrix should be stored.
There are various storage schemes, which require approximately from two to five
times the number of nonzero elements to store a vector or a matrix. Unfortunately,
there is no standard scheme. We discuss here the widely used and sufficiently
general compressed (row) storage for vectors and for general and banded matrices.

The compressed form of a vector x consists of a triplet (c, i,70), where ¢ is
a vector containing nonzero elements of x, i is an integer vector containing the
indices of elements stored in ¢ and ng specifies the number of nonzero elements.
The stored elements are related to the original vector by formula x4 = ¢; for
j =1,...,n0. To give an example, the vector x = (0,0, 3,0,—8,1.5,0,0,0, 16,0)
could be stored as

¢c=(3.15-8,16), i=(3.6,510), np=4.

Obviously, there is no need to store the elements in the original order. Therefore,
adding new nonzero elements is easy. Operations involving more sparse vectors are
simpler if we can directly access elements of one vector, that is, if one of the vectors
is “uncompressed.” For example, computing the inner producta = x " y of a sparse
vector x stored in the compressed form with a sparse uncompressed vector y follows
the algorithm

a=0; for j=1,...,n0: a=a-+yg-cj.

The compressed row storage for matrices is a generalization of the vector
concept. We store the nonzero elements of A as a set of sparse row (or column)
vectors in the compressed form. The main difference is that, instead of a single
number 1y, we need to store a whole vector ny specifying the positions of the first
row elements of A in c¢. For example, the matrix

A1 A 0 0 O
Ay 0 0 Ay O
A= 0 0 0 A3 O
0 0 Agyzs 0 Ays
0 A5 0 0 0O As

(=l el o]

would be represented rowwise as
¢ = (A1, Aa|Aa1, Azg| Azg| Agz, Ags| Asa, Ase)
i =(1,2]1,4/4]3,5|2,6),
ny = (1,3,5,6,8,10) .

5 Numerical Linear Algebra 133

(The sign “|” just emphasizes the end of a row and has no consequence for the
storage itself.) As in the case of vectors, the elements in each row do not have
to be ordered. Consequently, there is no direct access to a particular element A;;
stored in ¢. Nevertheless, retrieving a row is easy: it suffices to examine the part
of i corresponding to the ith row, which is given by ny. On the contrary, retrieving
a column involves a search through the whole storage scheme. Therefore, if a fast
access to columns is necessary, it is preferable to simultaneously store A rowwise
and columnwise.
A special type of sparse matrices are matrices with a banded structure.

Definition 2. The row bandwidth of a matrix A € R™*" is defined as
W) = max (i;(4) = fi(4) +1) .

where f;(A) = min{j|A;; # 0}and/;(A) = max{j|A;; # O} are column indices
of the first and last nonzero elements in the ith row of 4.

A banded matrix A is considered to be sparse if w(4) < n. Contrary to the
general case, vector ¢ of a banded matrix typically contains for each row all elements
between the first and last nonzero ones. Thus, the storage scheme does not have to
include in # all column indices, only one index for the first nonzero element in a row.
On the other hand, zeros within the band have to be stored as well. For example, the
matrix
Ay A, 0 0 O

0 A22 0 A24 0
0 0 0 Az O
0 0 Ay 0 Ays

A =

would be represented as

¢ = (A1, A12|An, 0, Axy|A34|Ag3, 0, Ays) .
i =(1,2,4,3),
no = (1,3,6,7,10) .

An interesting observation is that the row bandwidth w(A) can be influenced
by column permutations. The fill-minimizing column orderings are discussed by
Bjorck (1996) and George and Ng (1983), for instance.

Details on some other storage schemes can be found in Duff et al. (1989) and
Press et al. (1992).

5.5.2 Methods for Sparse Matrices

Methods for sparse matrices are still subject to intensive research. Moreover, the
choice of a suitable method for a given problem (and even the choice of an

134 L. Cizkova and P. Cizek

algorithm for elementary operations such as matrix-vector multiplication) depends
on many factors, including dimension, matrix type storage scheme, and compu-
tational environment (e.g., storage in virtual memory vs. auxiliary storage; vector
vs. parallel computing, etc.). Therefore, we provide only a general overview
and references to most general results. More details can be found in Bjorck
(1996), Dongarra and Eijkhout (2000), Duff et al. (1989), Hackbusch (1994) and
Saad (2003).

First, many discussed algorithms can be relatively easily adopted for banded
matrices. For example, having a row-based storage scheme, one just needs to
modify the summation limits in the row version of Cholesky decomposition.
Moreover, the positions of nonzero elements can be determined in advance
(Ng and Peyton 1993).

Second, the algorithms for general sparse matrices are more complicated.
A graph representation may be used to capture the nonzero pattern of a matrix as
well as to predict the pattern of the result (e.g., the nonzero pattern of AT A, the
Cholesky factor U, etc.). To give an overview, methods adopted for sparse matrices
include, but are not limited to, usually used decompositions (e.g., Cholesky, Ng and
Peyton 1993; LU and LDU, Mittal and Al-Kurdi 2002; QR, George and Liu 1987,
and Heath 1984), solving systems of equations by direct (Gupta 2002; Tran et al.
1996) and iterative methods (Makinson and Shah 1986; Zlatev and Nielsen 1988)
and searching eigenvalues (Bergamaschi and Putti 2002; Golub et al. 2000).

References

Alanelli, M., Hadjidimos, A.: Block Gauss elimination followed by a classical iterative method for
the solution of linear systems. J. Comput. Appl. Math. 163(2), 381-400 (2004)

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D., Green-
baum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, (3rd edn.),
SIAM Press, Philadelphia, USA (1999)

Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge, UK (1994)

Bergamaschi, L., Putti, M.: Numerical comparison of iterative eigensolvers for large sparse
symmetric positive definite matrices. Comput. Meth. Appl. Mech. Eng. 191, 5233-5247 (2002)

Benoit, C.: Note sur une methode de résolution des equations normales provenant de 1’application
de la methode des moindres carres 4 un systifjme d’eéquations lineaires en nombre inferieur &
celui des inconnues. Application de la meéthode 4 la resolution d’un systi£jme defini d’equations
lineaires (Procedé du Commandant Cholesky). Bull. geodesique 2, 5-77 (1924)

Bjorck, A.: Numerics of Gram—Schmidt Orthogonalization. Lin. Algebra Appl. 198, 297-316
(1994)

Bjorck, A.: Numerical Methods for Least Squares Problems. SIAM Press, Philadelphia, USA
(1996)

Croz, J.D., Higham, N.J.: Stability of methods for matrix inversion. IMA J. Numer. Anal. 12, 1-19
(1992)

Dax, A.: A modified Gram—-Schmidt algorithm with iterative orthogonalization and column
pivoting. Lin. Algebra Appl. 310, 25-42 (2000)

Demmel, J.W., Gu, M., Eisenstat, S., Slapnitar, 1., Veselit, K., Drma&, Z.: Computing the singular
value decomposition with high relative accuracy. Lin. Algebra Appl. 299, 21-80 (1999)

5 Numerical Linear Algebra 135

Dongarra, J.J., Eijkhout, V.: Numerical linear algebra algorithms and software. J. Comput. Appl.
Math. 123, 489-514 (2000)

Duff, LS., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University
Press, USA (1989)

Freund, R., Nachtigal, N.: QMR: a quasi-minimal residual method for non-Hermitian linear
systems. Numer. Math. 60, 315-339 (1991)

Gallivan, K.A., Plemmons, R.J., Sameh, A.H.: Parallel algorithms for dense linear algebra
computations. SIAM Rev. 32, 54-135 (1990)

Gentle, J.E.: Numerical Linear Algebra for Applications in Statistics. Springer, New York, USA
(1998)

Gentleman, W.M.: Least squares computations by Givens transformations without square roots.
J. Inst. Math. Appl. 12, 329-336 (1973)

Gentleman, W.M.: Error analysis of QR decomposition by Givens transformations. Lin. Algebra
Appl. 10, 189-197 (1975)

George, A., Liu, J.W.H.: Householder reflections versus givens rotations in sparse orthogonal
decomposition. Lin. Algebra Appl. 88, 223-238 (1987)

George, J.A., Ng, E.G.: On row and column orderings for sparse least squares problems. SIAM
J. Numer. Anal. 20, 326-344 (1983)

Givens, W.: Computation of Plane Unitary Rotations Transforming a General Matrix to Triangular
Form. J. SIAM 6(1), 26-50 (1958)

Golub, G.H.: Numerical methods for solving least squares problems. Numer. Math. 7, 206-216
(1965)

Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM J.
Numer. Anal. B 2, 205-224 (1965)

Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solution. Numer. Math.
14, 403420 (1970)

Golub, G.H., van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore,
Maryland (1996)

Golub, G.H., Zhang, Z., Zha, H.: Large sparse symmetric eigenvalue problems with homogeneous
linear constraints: the Lanczos process with inner-outer iterations. Lin. Algebra Appl. 309, 289—
306 (2000)

Gupta, A.: Recent Advances in Direct Methods for Solving Unsymmetric Sparse Systems of Linear
Equations. ACM Trans. Math. Software 28, 301-324 (2002)

Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Springer, New York,
USA (1994)

Hadjidimos, A.: Successive Overrelaxation (SOR) and related methods. J. Comput. Appl. Math.
123, 177-199 (2000)

Hammarling, S.: A note on modifications to the Givens plane rotation. J. Inst. Math. Appl. 13,
215-218 (1974)

Hari, V., Veseli¢, K.: On Jacobi methods for singular value decompositions. SIAM J. Sci. Stat.
Comput. 8, 741-754 (1987)

Harville, D.A.: Matrix Algebra from a Statistician’s Perspective. Springer, New York, USA (1997)

Heath, M.T.: Numerical methods for large sparse linear least squares problems. SIAM J. Sci. Stat.
Comput. 26, 497-513 (1984)

Hestenes, M.R., Stiefel, E.: Method of conjugate gradients for solving linear systems. J. Res. Nat.
Bur. Standards B 49, 409-436 (1952)

Higham, N.J.: The accuracy of solutions to triangular systems. SIAM J. Numer. Anal. 26, 1252—
1265 (1989)

Higham, N.J.: Recent Developments in Dense Numerical Linear Algebra. In: Duff, 1.S., Wat-
son, G.A. (eds.) State of the Art in Numerical Analysis. Oxford University Press, Oxford (1997)

Higham, N.J.: QR factorization with complete pivoting and accurate computation of the SVD. Lin.
Algebra Appl. 309, 153-174 (2000)

Higham, N.J.: Accuracy and Stability of Numerical Algorithms. (2nd edn.), SIAM Press, Philadel-
phia, USA (2002)

136 L. Cizkova and P. Cizek

Hong, Y.P., Tan, C.T.: Rank-revealing QR fatorizations and the singular value decomposition.
Math. Comput. 58, 213-232 (1992)

Householder, A.S.: Unitary triangularization of a nonsymmetric matrix. J. Assoc. Comput.
Machinery 5, 339-342 (1958)

Ipsen, I.C.F.: Computing an Eigenvector with Inverse Iteration. SIAM Rev. 39, 254-291 (1997)

Kahan, W.: Gauss—Seidel Methods of Solving Large Systems of Linear Equations. Doctoral thesis,
University of Toronto, Toronto, Canada (1958)

Kammerer, W.J., Nashed, M.Z.: On the convergence of the conjugate gradient method for singular
linear operator equations. SIAM J. Numer. Anal. 9, 165-181 (1972)

Makinson, G.J., Shah, A.A.: An iterative solution method for solving sparse nonsymmetric linear
systems. J. Comput. Appl. Math. 15, 339-352 (1986)

Martin, R.S., Peters, G., Wilkinson, J.H.: Symmetric decomposition of a positive definite matrix.
In: Wilkinson, J.H., Reinsch, C. (eds.) Linear Algebra (Handbook for Automation Computation.
vol. 2, Springer, Heidelberg, Germany (1965)

Meinguet, J.: Refined error analysis of cholesky factorization. SIAM J. Numer. Anal. 20, 1243—
1250 (1983)

Milaszewicz, J.P.: Improving Jacobi and Gauss—Seidel Iterations. Lin. Algebra Appl. 93, 161-170
(1987)

Miranian, L., Gu, M.: Strong rank revealing LU factorizations. Lin. Algebra Appl. 367, 1-16
(2003)

Mittal, R.C., Al-Kurdi, A.: LU-decomposition and numerical structure for solving large sparse
nonsymmetric linear systems. Comput. Math. Appl. 43, 131-155 (2002)

Ng, E.G., Peyton, B.W.: Block Sparse Cholesky Algorithm on Advanced Uniprocessor Computers.
SIAM J. Sci. Comput. 14, 1034—1056 (1993)

Nool, M.: Explicit parallel block Cholesky algorithms on the CRAY APP. Appl. Numer. Math. 19,
91-114 (1995)

Pan, C.T.: On the existence and computation of rank revealing LU factorizations. Lin. Algebra
Appl. 316, 199-222 (2000)

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: the Art of
Scientific Computing. (2nd edn). Cambridge University Press, Cambridge, UK (1992)

Rice, J.R.: Experiments on Gram—Schmidt orthogonalization. Math. Comput. 20, 325-328 (1966)

Saad, Y.: Iterative Methods for Sparse Linear Systems. (2nd edn.). SIAM Press, USA (2003)

Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsym-
metric linear systems. SIAM J. Sci. Stat. Comput. 7, 856-869 (1986)

Sidi, A.: On extensions of the power method for normal operators. Lin. Algebra Appl. 120, 207—
224 (1989)

Skeel, R.D.: Iterative refinement implies numerical stability for Gaussian elimination. Math.
Comput. 35, 817-832 (1980)

Stewart, G.W.: The economical storage of plane rotations. Numer. Math. 25, 137-138 (1976)

Stewart, G.W.: Matrix Algorithms, Volume I: Basic Decompositions. SIAM Press, Philadelphia,
USA (1998)

Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. (3rd edn.). Springer, New York, USA
(2002)

Tran, T.M., Gruber, R., Appert, K., Wuthrich, S.: A direct parallel sparse matrix solver. Comput.
Phys. Comm. 96, 118-128 (1996)

Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM Press, Philadelphia, USA (1997)

von Matt, U.: The Orthogonal QD-Algorithm. In: Moonen, M., De Moor, B. (eds.) SVD and Signal
Processing, III: Algorithms, Architectures and Applications. Elsevier, Amsterdam (1995)

Vorst, V.D.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631-644 (1992)

Wampler, R.H.: A report on the accuracy of some widely used least squares computer programs.
J. Am. Stat. Assoc. 65, 549-565 (1970)

5 Numerical Linear Algebra 137

Young, D.M.: Iterative methods for solving partial differential equations of elliptic type. Trans.
Am. Math. Soc. 76, 92-111 (1954)

Zhou, B.B., Brent, R.P.: An efficient method for computing eigenvalues of a real normal matrix.
J. Parallel Distr. Comput. 63, 638—648 (2003)

Zlatev, Z., Nielsen, H.B.: Solving large and sparse linear least-squares problems by conjugate
gradient algorithms. Comput. Math. Appl. 15, 185-202 (1988)

Zou, Q.: An observation on Gauss elimination. Comput. Math. Appl. 22, 69-70 (1991)

Chapter 6
The EM Algorithm

Shu Kay Ng, Thriyambakam Krishnan, and Geoffrey J. McLachlan

6.1 Introduction

The Expectation-Maximization (EM) algorithm is a broadly applicable approach
to the iterative computation of maximum likelihood (ML) estimates, useful in a
variety of incomplete-data problems. It is based on the idea of solving a succession
of simpler problems that are obtained by augmenting the original observed variables
(the incomplete data) with a set of additional variables that are unobservable or
unavailable to the user. These additional data are referred to as the missing data in
the EM framework. The EM algorithm is closely related to the ad hoc approach
to estimation with missing data, where the parameters are estimated after filling
in initial values for the missing data. The latter are then updated by their predicted
values using these initial parameter estimates. The parameters are then re-estimated,
and so on, proceeding iteratively until convergence. On each iteration of the EM
algorithm, there are two steps called the Expectation step (or the E-step) and
the Maximization step (or the M-step). The name “EM algorithm” was given by
Dempster et al. (1977) in their fundamental paper.

The EM algorithm has a number of desirable properties, such as its numerical
stability, reliable global convergence, and simplicity of implementation. However,
the EM algorithm is not without its limitations. In its basic form, the EM algorithm

S.K. Ng (<)
School of Medicine, Griffith University, Meadowbrook, QLD 4131, Australia
e-mail: s.ng@griffith.edu.au

T. Krishnan

Mu-Sigma Business Solutions Pvt. Ltd, Kalyani Platina, K.R. Puram Hobli,
Bangalore, India

e-mail: krishnant001 @gmail.com

G.J. McLachlan
Department of Mathematics, University of Queensland, Brisbane, QLD, Australia
e-mail: g.mclachlan@ugq.edu.au

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks 139
of Computational Statistics, DOI 10.1007/978-3-642-21551-3_6,
© Springer-Verlag Berlin Heidelberg 2012

s.ng@griffith.edu.au
krishnant001@gmail.com
g.mclachlan@uq.edu.au

140 S.K. Nget al.

lacks of an in-built procedure to compute the covariance matrix of the parameter
estimates and it is sometimes very slow to converge. Moreover, certain complex
incomplete-data problems lead to intractable E-steps and M-steps. The first edition
of the book chapter published in 2004 covered the basic theoretical framework of
the EM algorithm and discussed further extensions of the EM algorithm to handle
complex problems. The second edition attempts to capture advanced developments
in EM methodology in recent years. In particular, there are many connections
between the EM algorithm and Markov chain Monte Carlo algorithms. Furthermore,
the key idea of the EM algorithm where a function of the log likelihood is
maximized in a iterative procedure occurs in other optimization procedures as
well, leading to a more general way of treating EM algorithm as an optimization
procedure. Capturing the above developments in the second edition has led to the
addition of new examples in the applications of the EM algorithm or its variants to
complex problems, especially in the related fields of biomedical and health sciences.

The remaining of Sect. 6.1 focusses on a brief description of ML estimation and
the incomplete-data structure of the EM algorithm. The basic theoretical framework
of the EM algorithm is presented in Sect.6.2. In particular, the monotonicity of
the algorithm, convergence, and rate of convergence properties are systematically
examined. In Sect. 6.3, the EM methodology presented in this chapter is illustrated
in some commonly occurring situations such as the fitting of normal mixtures
and missing observations in terms of censored failure times. Another example
is provided in which the EM algorithm is used to train a mixture-of-experts
model. Consideration is given also to clarify some misconceptions about the
implementation of the E-step, and the important issue associated with the use of
the EM algorithm, namely the provision of standard errors. We discuss further
modifications and extensions to the EM algorithm in Sect. 6.4. In particular, the
extensions of the EM algorithm known as the Monte Carlo EM, ECM, ECME,
AECM, and PX-EM algorithms are considered. With the considerable attention
being given to the analysis of large data sets, as in typical data mining applications,
recent work on speeding up the implementation of the EM algorithm is discussed.
These include the IEM, SPIEM, and the use of multiresolution kd-trees. In Sect. 6.5,
the relationship of the EM algorithm to other data augmentation techniques, such
as the Gibbs sampler and MCMC methods is presented briefly. The Bayesian
perspective is also included by showing how the EM algorithm and its variants can
be adapted to compute the maximum a posteriori (MAP) estimate. We conclude the
chapter with a brief account of the applications of the EM algorithm in such topical
and interesting areas as bioinformatics and health sciences.

6.1.1 Maximum Likelihood Estimation

Maximum likelihood estimation and likelihood-based inference are of central
importance in statistical theory and data analysis. Maximum likelihood estimation
is a general-purpose method with attractive properties. It is the most-often used

6 The EM Algorithm 141

estimation technique in the frequentist framework, and it can be equally applied to
find the mode of the posterior distribution in a Bayesian framework (Chap. I11.26).
Often Bayesian solutions are justified with the help of likelihoods and maximum
likelihood estimates (MLE), and Bayesian solutions are similar to penalized likeli-
hood estimates. Maximum likelihood estimation is an ubiquitous technique and is
used extensively in every area where statistical techniques are used.

We assume that the observed data y has probability density function (p.d.f.)
g(y; ¥), where ¥ is the vector containing the unknown parameters in the pos-
tulated form for the p.d.f. of Y. Our objective is to maximize the likelihood
L(W) = g(y; ¥) as a function of ¥, over the parameter space §2. That is,

AL(W) /0¥ =0,
or equivalently, on the log likelihood,
dlog L(W)/o¥ = 0. (6.1)

The aim of ML estimation is to determine an estimate !@ so that it defines a
sequence of roots of (6.1) that is consistent and asymptotically efficient. Such a
sequence is known to exist under suitable regularity conditions (Cramér 1946).
With probability tending to one, these roots correspond to local maxima in the
interior of §2. For estimation models in general, the likelihood usually has a global
maximum in the interior of §2. Then typically a sequence of roots of (6.1) with the
desired asymptotic properties is provided by taking ¥ to be the root that globally
maximizes L (¥); in this case, ¥ is the MLE. We shall henceforth refer to ¥ as the
MLE, even in situations where it may not globally maximize the likelihood. Indeed,
in some of the examples on mixture models (McLachlan and Peel 2000, Chap. 3),
the likelihood is unbounded. However, for these models there may still exist under
the usual regularity conditions a sequence of roots of (6.1) with the properties of
consistency, efficiency, and asymptotic normality (McLachlan and Basford 1988,
Chap. 12).

When the likelihood or log likelihood is quadratic in the parameters as in the
case of independent normally distributed observations, its maximum can be obtained
by solving a system of linear equations in parameters. However, often in practice
the likelihood function is not quadratic giving rise to nonlinearity problems in ML
estimation. Examples of such situations are: (a) models leading to means which are
nonlinear in parameters; (b) despite a possible linear structure, the likelihood is not
quadratic in parameters due to, for instance, non-normal errors, missing data, or
dependence.

Traditionally ML estimation in these situations has been carried out using
numerical iterative methods of solution of equations such as the Newton—Raphson
(NR) method and its variants like Fisher’s method of scoring. Under reasonable
assumptions on L(¥) and a sufficiently accurate starting value, the sequence of
iterates {lP(k)} produced by the NR method enjoys local quadratic convergence to
a solution ¥™* of (6.1). Quadratic convergence is regarded as the major strength of

142 S.K. Nget al.

the NR method. But in applications, these methods could be tedious analytically
and computationally even in fairly simple cases; see McLachlan and Krishnan
(2008, Sect. 1.3) and Meng and van Dyk (1997). The EM algorithm offers an
attractive alternative in a variety of settings. It is now a popular tool for iterative
ML estimation in a variety of problems involving missing data or incomplete
information.

6.1.2 Idea Behind the EM Algorithm: Incomplete-Data
Structure

In the application of statistical methods, one is often faced with the problem of
estimation of parameters when the likelihood function is complicated in structure
resulting in difficult-to-compute maximization problems. This difficulty could
be analytical or computational or both. Some examples are grouped, censored
or truncated data, multivariate data with some missing observations, multiway
frequency data with a complex cell probability structure, and data from mixtures
of distributions. In many of these problems, it is often possible to formulate an
associated statistical problem with the same parameters with “augmented data” from
which it is possible to work out the MLE in an analytically and computationally
simpler manner. The augmented data could be called the “complete data” and
the available data could be called the “incomplete data”, and the corresponding
likelihoods, the “complete-data likelihood” and the “incomplete-data likelihood”,
respectively. The EM Algorithm is a generic method for computing the MLE of
an incomplete-data problem by formulating an associated complete-data problem,
and exploiting the simplicity of the MLE of the latter to compute the MLE of
the former. The augmented part of the data could also be called “missing data”,
with respect to the actual incomplete-data problem on hand. The missing data
need not necessarily be missing in the practical sense of the word. It may just
be a conceptually convenient technical device. Thus the phrase “incomplete data”
is used quite broadly to represent a variety of statistical data models, including
mixtures, convolutions, random effects, grouping, censoring, truncated and missing
observations.

A brief history of the EM algorithm can be found in McLachlan and Krishnan
(2008, Sect. 1.8). In their fundamental paper, Dempster et al. (1977) synthesized
earlier formulations of this algorithm in many particular cases and presented a
general formulation of this method of finding MLE in a variety of problems. Since
then the EM algorithm has been applied in a staggering variety of general statistical
problems such as resolution of mixtures, multiway contingency tables, variance
components estimation, factor analysis, as well as in specialized applications in such
areas as genetics, medical imaging, and neural networks.

6 The EM Algorithm 143

6.2 Basic Theoretical Framework of the EM Algorithm

6.2.1 The E- and M-Steps

Within the incomplete-data framework of the EM algorithm, we let x denote the
vector containing the complete data and we let z denote the vector containing the
missing data. Even when a problem does not at first appear to be an incomplete-data
one, computation of the MLE is often greatly facilitated by artificially formulating it
to be as such. This is because the EM algorithm exploits the reduced complexity of
ML estimation given the complete data. For many statistical problems the complete-
data likelihood has a nice form.

We let g.(x; ¥) denote the p.d.f. of the random vector X corresponding to the
complete-data vector x. Then the complete-data log likelihood function that could
be formed for ¥ if x were fully observable is given by

logL.(¥) =logg.(x; ¥).

The EM algorithm approaches the problem of solving the incomplete-data likeli-
hood equation (6.1) indirectly by proceeding iteratively in terms of log L. (¥). As
it is unobservable, it is replaced by its conditional expectation given y, using the
current fit for ¥. On the (k + 1)th iteration of the EM algorithm,

E-Step: Compute Q (¥; W), where

QW ¥W) = Egwilog L (¥)]y}. (6.2)
M-Step: Choose ¥ %+ to be any value of ¥ € £2 that maximizes Q (¥; w).
QWD wg®y > o why v c Q. (6.3)

The E- and M-steps are alternated repeatedly until convergence, which may be
determined, for instance, by using a suitable stopping rule like ||¥ %) —w®)|| < ¢
for some ¢ > 0 with some appropriate norm | - || or the difference L(¥ **+D) —
L(w®) changes by an arbitrarily small amount in the case of convergence of the
sequence of likelihood values {L (¥ ®)}.

It can be shown that both the E- and M-steps will have particularly simple forms
when g.(x; ¥) is from an exponential family:

ge(x: W) = b(x)exp{e (¥)t(x)}/a(¥), (6.4)

where #(x) is a k x 1 (k > d) vector of complete-data sufficient statistics and
¢(¥)is a k x 1 vector function of the parameter vector ¥, and a(¥) and b(x) are
scalar functions. Here d is the number of unknown parameters in ¥. Members of
the exponential family include most common distributions, such as the multivariate

144 S.K. Nget al.

normal, Poisson, multinomial and others. For exponential families, the E-step can
be written as

QW:; ¥Y) = Egw(logh(x)y) + ¢ ()" —loga(¥),

where %) = E.I,<k){t(X)|y} is an estimator of the sufficient statistic. The
M-step maximizes the Q-function with respect to ¥; but Eq,(k) (logh(x)|y) does
not depend on ¥ . Hence it is sufficient to write:
E-Step: Compute

19 = Egu{t(X)|y}.

M-Step: Compute

wk+h) — argm;x[c—r(!?)t(k) —loga(¥)].

In Example 2 of Sect.6.3.2, the complete-data p.d.f. has an exponential family
representation. We shall show how the implementation of the EM algorithm can
be simplified.

6.2.2 Generalized EM Algorithm

Often in practice, the solution to the M-step exists in closed form. In those instances
where it does not, it may not be feasible to attempt to find the value of ¥ that
globally maximizes the function Q(¥; w®)) . For such situations, Dempster et al.
(1977) defined a generalized EM (GEM) algorithm for which the M-Step requires
¥ **D o be chosen such that

Q('I/(k+l); !F(k)) > Q(!p(k); lI/(k)) (6.5)

holds. That is, one chooses ¥ **1 to increase the Q-function, Q (¥; ¥®)), over its
value at W = ¥®_ rather than to maximize it over all ¥ € £ in (6.3).

It is of interest to note that the EM (GEM) algorithm as described above
implicitly defines a mapping ¥ — M (¥), from the parameter space £ to itself
such that

v — M ®y (k=0,1,2,..)).

The function M is called the EM mapping. We shall use this function in our
subsequent discussion on the convergence property of the EM algorithm.

6.2.3 Convergence of the EM Algorithm

Letk(x|y; ¥) = g.(x: ¥)/g(y: ¥) be the conditional density of X givenY = y.
Then the complete-data log likelihood can be expressed by

6 The EM Algorithm 145
log L. (¥) = logge(x; ¥) =log L(¥) + logk(x|y: ¥). (6.6)

Taking expectations on both sides of (6.6) with respect to the conditional distribution
x|y using the fit ¥ ® for ¥, we have

QW wW)y =logL(W) + HW; v®), 6.7)

where H(W; w) = E g wilogk(X|y: ¥)|y}. It follows from (6.7) that

log L(#**D) —log LA@®W) = (0@ "V W) — 9@ ®; wW)y
—~(HW@* D, gy — gar®; g®)) 6.8)

By Jensen’s inequality and the concavity of the logarithmic function, we have
HW* D, g ®y < gw®, w®)) From (6.3) or (6.5), the first difference on
the right-hand side of (6.8) is nonnegative. Hence, the likelihood function is not
decreased after an EM or GEM iteration:

L@ DYy > Lw®) (k=0,1,2,..)). (6.9)

A consequence of (6.9) is the self-consistency of the EM algorithm. Thus for a
bounded sequence of likelihood values {L(¥*))}, L(¥®) converges monotoni-
cally to some L*. Now questions naturally arise as to the conditions under which
L* corresponds to a stationary value and when this stationary value is at least a local
maximum if not a global maximum. Examples are known where the EM algorithm
converges to a local minimum and to a saddle point of the likelihood (McLachlan and
Krishnan 2008, Sect. 3.6). There are also questions of convergence of the sequence
of EM iterates, that is, of the sequence of parameter values {¥ ®)} to the MLE.

Wu (1983) investigates in detail several convergence issues of the EM algorithm
in its generality, and their relationship to other optimization methods. He shows
that when the complete data are from a curved exponential family with compact
parameter space, and when the Q-function satisfies a certain mild differentiability
condition, then any EM sequence converges to a stationary point (not necessarily
a maximum) of the likelihood function. If L(¥) has multiple stationary points,
convergence of the EM sequence to either type (local or global maximizers, saddle
points) depends upon the starting value ¥ for ¥. If L(¥) is unimodal in £ and
satisfies the same differentiability condition, then any sequence {¥ ®)} will converge
to the unique MLE of ¥, irrespective of its starting value.

To be more specific, one of the basic convergence results of the EM algorithm is
the following:

log L(M (¥)) = log L(¥)

with equality if and only if

OMW); ¥)=Q0W:¥) and k(x|y; M(¥)) = k(x|y; ¥).

146 S.K. Nget al.

This means that the likelihood function increases at each iteration of the EM
algorithm, until the condition for equality is satisfied and a fixed point of the iteration
is reached. If ¥ is an MLE, so that log L(!@) > logL (W), YW € £, then
log L(M('IA/)) = log L(lIAI). Thus MLE are fixed points of the EM algorithm. If we
have the likelihood function bounded (as might happen in many cases of interest),
the EM sequence {¥)} yields a bounded nondecreasing sequence {log Lw®)n
which must converge as k — oo.

The theorem does not quite imply that fixed points of the EM algorithm are in fact
MLEs. This is however true under fairly general conditions. For proofs and other
details, see McLachlan and Krishnan (2008, Sect. 3.5) and Wu (1983). Furthermore,
if a sequence of EM iterates {¥)} satisfy the conditions

1. [00(¥; w<k>)/aw1W=W<k+l) =0, and

2. The sequence {¥®} converges to some value ¥* and logk(x|y; ¥) is suffi-
ciently smooth,

then we have [dlog L(¥)/0%]y _g+ = 0; see Little and Rubin (2002) and Wu
(1983). Thus, despite the earlier convergence results, there is no guarantee that the
convergence will be to a global maximum. For likelihood functions with multiple
maxima, convergence will be to a local maximum which depends on the starting
value ¥ ©

In some estimation problems with constrained parameter spaces, the parameter
value maximizing the log likelihood is on the boundary of the parameter space. Here
some elements of the EM sequence may lie on the boundary, thus not fulfilling Wu’s
conditions for convergence. Nettleton (1999) extends Wu’s convergence results to
the case of constrained parameter spaces and establishes some stricter conditions to
guarantee convergence of the EM likelihood sequence to some local maximum and
the EM parameter iterates to converge to the MLE.

6.2.4 Rate of Convergence of the EM Algorithm

The rate of convergence of the EM algorithm is usually slower than the quadratic
convergence typically available with Newton-type methods. Dempster et al. (1977)
show that the rate of convergence of the EM algorithm is linear and the rate depends
on the proportion of information in the observed data. Thus in comparison to the
formulated complete-data problem, if a large portion of data is missing, convergence
can be quite slow.

Recall the EM mapping M defined in Sect. 6.2.2. If ¥ %) converges to some point
¥* and M (W) is continuous, then ¥* is a fixed point of the algorithm; that is, ¥ *
must satisfy ¥* = M (¥*). By a Taylor series expansion of & **D = M (w®))
about the point ¥ ¥ = ¥* we have in a neighborhood of ¥* that

vk g & gt (wh —),

6 The EM Algorithm 147

where J (¥) is the d x d Jacobian matrix for M(¥) = (M\(¥),...,M;(¥)) T,
having (i, j)th element r;; (¥) equal to

rij (W) = aMz (!p)/alll,

where ¥; = (¥); and d is the dimension of ¥. Thus, in a neighborhood of ¥ *, the
EM algorithm is essentially a linear iteration with rate matrix J (¥™), since J(¥*)
is typically nonzero. For this reason, J (¥*) is often referred to as the matrix rate
of convergence. For vector ¥, a measure of the actual observed convergence rate is
the global rate of convergence, which is defined as

r=lim | ¢®F) g/ e®@ —wr
k—o00

where || - || is any norm on d-dimensional Euclidean space %¢. It is noted that the
observed rate of convergence equals the largest eigenvalue of J (¥ ™) under certain
regularity conditions (Meng and van Dyk 1997). As a large value of r implies slow
convergence, the global speed of convergence is defined to be s = 1 — r (Meng
1994); see also McLachlan and Krishnan (2008, Sect. 3.9).

6.2.5 Initialization of the EM Algorithm

The EM algorithm will converge very slowly if a poor choice of initial value ¥ ©
were used. Indeed, in some cases where the likelihood is unbounded on the edge
of the parameter space, the sequence of estimates {¥ (k)} generated by the EM
algorithm may diverge if ¥ @ js chosen too close to the boundary. Also, with
applications where the likelihood equation has multiple roots corresponding to local
maxima, the EM algorithm should be applied from a wide choice of starting values
in any search for all local maxima. A variation of the EM algorithm (Wright and
Kennedy 2000) uses interval analysis methods to locate multiple stationary points
of a log likelihood within any designated region of the parameter space; see also
McLachlan and Krishnan (2008, Sect. 7.9).

Different ways of specification of initial value have been considered specifically
within the mixture models framework. With the EMMIX program (McLachlan and
Peel 2000, pp. 343-344), an initial parameter value can be obtained automatically
using either random partitions of the data, k-means clustering algorithm, or
hierarchical clustering methods. With random starts, the effect of the central limit
theorem tends to have the component parameters initially being similar at least in
large samples. With the EMMIX program, there is an additional option for random
starts to reduce this effect by first selecting a random subsample from the data, which
is then randomly assigned to the g components. As described in McLachlan and Peel
(2000, Sect. 2.12), the subsample has to be sufficiently large to ensure that the first
M-step is able to produce a nondegenerate estimate of the parameter vector ¥.

148 S.K. Nget al.

Ueda and Nakano (1998) considered a deterministic annealing EM (DAEM)
algorithm in order for the EM iterative process to be able to recover from a poor
choice of starting value. They proposed using the principle of maximum entropy and
the statistical mechanics analogy, whereby a parameter, say @, is introduced with
1/6 corresponding to the “temperature” in an annealing sense. With their DAEM
algorithm, the E-step is effected by averaging log L.(¥) over the distribution taken
to be proportional to that of the current estimate of the conditional density of
the complete data (given the observed data) raised to the power of 8; see for
example McLachlan and Peel (2000, pp. 58-60). Recently, Pernkopf and Bouchaffra
(2005) combined genetic algorithms (GA) and the EM algorithm for fitting normal
mixtures, where the proposed algorithm is less sensitive to its initialization and
enables escaping from local optimal solutions.

6.3 Examples of the EM Algorithm

6.3.1 Example 1: Normal Mixtures

One of the classical formulation of the statistical pattern recognition involves a
mixture of p-dimensional normal distributions with a finite number, say g, of
components in some unknown proportions 7y, ..., 7, that sum to one. Here, we
have n independent observations y |, y,, ..., ¥, from the mixture density

g
f:iw) =) "mp(yip,.).

i=1

where ¢ (y; pu;, X;) denotes the p-dimensional normal density function with mean
vector u; and covariance matrix X; (i = 1,...,g). The vector ¥ of unknown
parameters consists of the mixing proportions my,...,m,—, the elements of the
component means f;, and the distinct elements of the component-covariance
matrices X';. The problem of estimating ¥ is an instance of the problem of
resolution of mixtures or in pattern recognition parlance an “unsupervised learning
problem”.

Consider the corresponding “supervised learning problem”, where observations
on the random vector X = (Z,Y) are x; = (z1,y,), X2 = (22,¥3)s---,
X, = (24, y,). Here z; is the unobservable component-indicator vector, where the
ith element z; of z; is taken to be one or zero according as the jth observation
does or does not come from the ith component (j = 1,...,n). The MLE problem
is far simpler here with easy closed-form MLE. The classificatory vectors z =
(le, e ,z;,r)T could be called the missing data. The unsupervised learning problem
could be called the incomplete-data problem and the supervised learning problem
the complete-data problem. A relatively simple iterative method for computing the

6 The EM Algorithm 149

MLE for the unsupervised problem could be given exploiting the simplicity of the
MLE for the supervised problem. This is the essence of the EM algorithm.
The complete-data log likelihood function for ¥ is given by

g n
log L (¥) =YY zj{logm; +logd(y;ipm;. X)}. (6.10)

i=1j=1

Now the EM algorithm for this problem starts with some initial value ¥ ® for the
parameters. As log L.(¥) in (6.10) is a linear function of the unobservable data z
for this problem, the calculation of Q(¥; ¥®) on the E-step is effected simply
by replacing z;; by its current conditional expectation given the observed data y,
which is the usual posterior probability of the jth observation arising from the ith
component

k 0 ek
L0 _ o(Ziry) = ()¢(y,, “ E()

T; (k) ij

i =Ly Zz=1”/(k)¢(yj? ® z)’

From (6.10), it follows that
g n «
oW w®) =33 Wlogm +log(yipni. £y (6.11)
i=1j=1

For mixtures with normal component densities, it is computationally advantageous
to work in terms of the sufficient statistics (Ng and McLachlan 2003) given by

(k) (k)
Til Z tl

j=1

®) ®)
T Z Lj Yj
T = er]")y v (6.12)

By differentiating (6.11) with respect to ¥ on the basis of the sufficient statistics in
(6.12), the M -step exists in closed form as

ﬂ§k+1) — T<(k)/n

k+1 k k
W = 1)

-1 T
s =) - T STE T (6.13)

150 S.K. Nget al.

The E- and M-steps are then iterated until convergence. Unlike in the MLE for
the supervised problem, in the M-step of the unsupervised problem, the posterior

probabilities 7;;, which are between 0 and 1, are used. The mean vectors u; and
the covariance matrix X; (i = 1,..., g) are computed using the ri(j{c)
weighted averages.

In the case of unrestricted component-covariance matrices X;, L(¥) is
unbounded, as each data point gives rise to a singularity on the edge of the parameter
space (McLachlan and Peel 2000, Sect. 3.8). In practice, the component-covariance
matrices X'; can be restricted to being the same, ¥; = ¥ (i = 1,...,g), where
¥ is unspecified. In this case of homoscedastic normal components, the updated

estimate of the common component-covariance matrix X is given by

as weights in

g
E(k-i—l) — ZTi(lk)El(k-i-l)/n’

i=1

where ¥ ka) is given by (6.13), and the updates of 7; and u; are as above in the
heteroscedastic case.

6.3.2 Example 2: Censored Failure-Time Data

In survival or reliability analyses, the focus is the distribution of time 7" to the
occurrence of some event that represents failure (for computational methods in
survival analysis see also Chap. IT1.27). In many situations, there will be individuals
who do not fail at the end of the study, or individuals who withdraw from the study
before it ends. Such observations are censored, as we know only that their failure

times are greater than particular values. We let y = (¢, 61, ..., Cn, (‘)’,,)T denote the
observed failure-time data, where §; = 0 or 1 according as the jth observation 7 is
censored or uncensored at ¢; (j = 1,...,n). Thatis, if 7; is uncensored, t; = c;,

whereas if 1; > ¢}, itis censored at ¢;.
In the particular case where the p.d.f. for 7" is exponential with mean p, we have

S) = exp(—t/ W 000 (t) (1> 0), (6.14)

where the indicator function /(p«)(f) = 1 for t > 0 and is zero elsewhere. The
unknown parameter vector ¥ is now a scalar, being equal to p. Denote by s the
number of uncensored observations. By re-ordering the data so that the uncensored
observations precede censored observations. It can be shown that the log likelihood
function for w is given by

log L(n) = —slog,u—ch/u. (6.15)
j=1

6 The EM Algorithm 151

By equating the derivative of (6.15) to zero, the MLE of p is
n
L=y ci/s. (6.16)
j=1

Thus there is no need for the iterative computation of ft. But in this simple case,
it is instructive to demonstrate how the EM algorithm would work and how its
implementation could be simplified as the complete-data log likelihood belongs to
the regular exponential family (see Sect. 6.2.1).

The complete-data vector x can be declared to be x = (71, ... ,ts,zT)T, where
2 = (ty+1.....1,) " contains the unobservable realizations of the n — s censored
random variables. The complete-data log likelihood is given by

log L (1) = —nlogp— Y " t;/p. (6.17)

J=1

As log L. (1) is a linear function of the unobservable data z, the E-step is effected
simply by replacing z by its current conditional expectation given y. By the lack of
memory of the exponential distribution, the conditional distribution of T; —c; given
that T; > c¢; is still exponential with mean . So, we have

E,w(T;|y) = E o (T;|T; > ¢;) =c; + p® (6.18)

for j =54 1,...,n. Accordingly, the Q-function is given by

O(u: p®) = —nlogp—p=" 2> ¢; + (n—s)u®
j=1

In the M-step, we have

n
pkF = ch + (n—s)p® /n (6.19)

Jj=1

On putting u*+Y = p® = ;1* in (6.19) and solving for u*, we have for s < n
that * = fi. That is, the EM sequence {;*)} has the MLE f& as its unique limit
point, as k — 00; see McLachlan and Krishnan (2008, Sect. 1.5.2).

From (6.17), it can be seen that log L. (1) has the exponential family form (6.4)
with canonical parameter ;4~! and sufficient statistic #(X) = Z’;=1 T';. Hence,
from (6.18), the E-step requires the calculation of %) = Z'}-=1 cj+ (n—s)p®.
The M-step then yields 1 * 1 as the value of . that satisfies the equation

152 S.K. Nget al.

t® = E {t(X)} =np.

This latter equation can be seen to be equivalent to (6.19), as derived by direct
differentiation of the Q-function.

6.3.3 Example 3: Mixture-of-Experts Models

Among the various kinds of modular networks, mixtures-of-experts (Jacobs et al.
1991) and hierarchical mixtures-of-experts (Jordan and Jacobs 1994) are of much
interest due to their wide applicability and the advantage of fast learning via the
EM algorithm (Jordan and Xu 1995; Ng and McLachlan 2004a). In mixture-of-
experts (ME) networks, there are a finite number, say m, of modules, referred to as
expert networks. These expert networks approximate the distribution of the output
Yy ; within each region of the input space. The expert network maps its input x ; to
an output, the density f;(y ;[x;;05), where 0 is a vector of unknown parameters
for the hth expert network. It is assumed that different experts are appropriate in
different regions of the input space. The gating network provides a set of scalar
coefficients 7r; (x ;; &) that weight the contributions of the various experts, where o
is a vector of unknown parameters in the gating network. Therefore, the final output
of the ME neural network is a weighted sum of all the output vectors produced by
expert networks:

m
SOylx @) = mx s e) fily;|x;: 04), (6.20)
h=1
where ¥ = (aT, 0T, e, 0;)T is the vector of all the unknown parameters. The

output of the gating network is modeled by the softmax function as

o exp(v;l'—x) .
mp(x;0) = —Z;,LI exp(v,Tx) (h=1,...,m), (6.21)

where v, is the weight vector of the Ath expert in the gating network and v,, = 0.
It is implicitly assumed that the first element of x is one, to account for an intercept
term. It follows from (6.21) that & contains the elementsinv, (h = 1,...,m —1).

To apply the EM algorithm to the ME networks, we introduce the indicator
variables zj;, where zj,; is one or zero according to whether y j belongs or does
not belong to the Ath expert (Ng and McLachlan 2004a). The complete-data log
likelihood for ¥ is given by

log Lo(¥) = Y Y zyllogmy(x ;@) +log fu(y;1x;: 01)}. (6.22)
j=lh=1

6 The EM Algorithm 153

On the (k 4 1)th iteration, the E-step calculates the Q-function as

Q(w’ !p(k)) — Ew(k){logL(r(Wﬂy’ x}

=D Egw(Zily x){logmy(x ;@) +log fu(y;]x,:60,)}
j=1h=1
= Qo + Oy, (6.23)

where the Q-function can be decomposed into two terms with respect to o and
0, (h=1,...,m),respectively, as

n m
0, = Z ‘L’}(;) log m; (x 5 0), (6.24)
j=lh=1
and .
Qp =Y > 1 log fi(y,lx,:05). (6.25)
j=1h=1
where

k
‘L’]gj) = E.I,(k)(Zhj|y,x)

=y (x:0®) fi (12105 3w (e a®) £y lx 09

r=1

is the current estimated posterior probability that y ; belongs to the Ath expert (h =
1,...,m).

Hence, the M-step consists of two separate maximization problems. With the
gating network (6.21), the updated estimate of a**1) is obtained by solving

Z (fﬁf) - ezp_(lvhx’)T)xj =0 (h=1,....m—1), (626)
j=1 1+ 35, exp(v) x))

which is a set of non-linear equations with (m — 1) p unknown parameters, where p

is the dimensionof x; (j = 1,...,n). It can be seen from (6.26) that the non-linear
equation for the /th expert depends not only on the parameter vector vy, but also on
other parameter vectors v; (I = 1,...,m — 1). In other words, each parameter

vector v, cannot be updated independently. With the iterative reweighted least
squares (IRLS) algorithm presented in Jordan and Jacobs (1994), the independence
assumption on these parameter vectors was used implicitly and each parameter
vector was updated independently and in parallel as

154 S.K. Nget al.

-1
~ ~ #20.\ 90
(s+1) () o @
v, =V, — Y (—BthhT) o, (h=1,....m—1), (6.27)

where y, < 1 is the learning rate (Jordan and Xu 1995). That is, there are m — 1
sets of non-linear equations each with p variables instead of a set of non-linear
equations with (m — 1) p variables. In Jordan and Jacobs (1994), the iteration (6.27)
is referred to as the inner loop of the EM algorithm. This inner loop is terminated
when the algorithm has converged or the algorithm has still not converged after
some pre-specified number of iterations. The above independence assumption on
the parameter vectors is equivalent to the adoption of an incomplete Hessian matrix
of the O-function (Ng and McLachlan 2004a).

The densities fi(y;|x;;04) (h = 1,...,m) can be assumed to belong to the
exponential family (Jordan and Jacobs 1994). In this case, the ME model (6.20) will
have the form of a mixture of generalized linear models (McLachlan and Peel 2000,

Sect. 5.13). The updated estimate of 0,(1k+1) is obtained by solving
Y o olog fuly;|x;:04)/00, =0 (h=1.....m). (6.28)
j=1

Equation (6.28) can be solved separately for each expert (h = 1,...,m) when

the density f;(y;|x;;05) is assumed to be normally distributed. With some other
members of the exponential family such as multinomial distribution, (6.28) requires
iterative methods to solve; see Example 5 in Sect. 6.4.2.

6.3.4 Misconceptions on the E-Step

Examples 1 to 3 may have given an impression that the E-step consists in simply
replacing the missing data by their conditional expectations given the observed data
at current parameter values. However, this will be valid only if the complete-data
log likelihood log L. (¥) were a linear function of the missing data z. Unfortunately,
it is not always true in general. Rather, as should be clear from the general theory
described in Sect. 6.2.1, the E-step consists in replacing log L. (¥) by its conditional
expectation given the observed data at current parameter values. Flury and Zoppé
(2000) give an example to demonstrate the point that the E-step does not always
consist in plugging in “estimates” for missing data. Similar misconceptions exist in
the applications of the EM algorithm to train neural networks. Let

GloyDT DT (6.29)

denote the n examples available for training a neural network, where x ; is an input
feature vector and y ; is an output vector (j = 1,...,n). In the training process, the

6 The EM Algorithm 155

unknown parameters in the neural network, denoted by a vector ¥, are inferred from
the observed training data given by (6.29). We let x = (xlT, .. ,an)T and y =
(le, ey ynT)T. In order to estimate ¥ by the statistical technique of maximum
likelihood, we have to impose a statistical distribution for the observed data (6.29),
which will allow us to form a log likelihood function, log L(¥; y, x), for ¥. In
general, we proceed conditionally on the values for the input variable x; that is, we
shall consider the specification of the conditional distribution of the random variable
Y corresponding to the observed output y given the input x; see, for example, (6.20)
in Sect. 6.3.3.

Within the EM framework, the unknown vector ¥ is estimated by consideration
of the complete-data log likelihood formed on the basis of both the observed and the
missing data z, log L.(¥; y, z, x). On the (k + 1)th iteration of the EM algorithm,
the E-step computes the Q-function, which is given by

QW ¥Y) = EguilogLe(¥: y. 2. x)|y. x}. (6.30)

In some instances, a modified form of the EM algorithm is being used unwittingly
in that on the E-step, the Q-function is effected simply by replacing the random vec-
tor z by its conditional expectation. That s, (6.30) is computed by the approximation

QW: ¥") ~logL.(¥; y.Z. x), (6.31)

where
Z = E!p(k){Z|y, x}.

As described above, the approximation (6.31) will be invalid when the complete-
data log likelihood is non-linear in z, for example, in the multilayer perceptron
networks or the radial basis function networks with regression weights; see Ng and
McLachlan (2004a).

6.3.5 Provision of Standard Errors

Several methods have been suggested in the EM literature for augmenting the EM
computation with some computation for obtaining an estimate of the covariance
matrix of the computed MLE. Many such methods attempt to exploit the com-
putations in the EM steps. These methods are based on the observed information
matrix I (¥; y), the expected information matrix Z(¥) or on resampling methods.
Baker (1992) reviews such methods and also develops a method for computing
the observed information matrix in the case of categorical data. Jamshidian and
Jennrich (2000) review more recent methods including the Supplemented EM
(SEM) algorithm of Meng and Rubin (1991) and suggest some newer methods based
on numerical differentiation.

Theoretically one may compute the asymptotic covariance matrix by inverting
the observed or expected information matrix at the MLE. In practice, however, this

156 S.K. Nget al.

may be tedious analytically or computationally, defeating one of the advantages of
the EM approach. Louis (1982) extracts the observed information matrix in terms
of the conditional moments of the gradient and curvature of the complete-data
log likelihood function introduced within the EM framework. These conditional
moments are generally easier to work out than the corresponding derivatives of the
incomplete-data log likelihood function. An alternative approach is to numerically
differentiate the likelihood function to obtain the Hessian. In an EM-aided differ-
entiation approach, Meilijson (1989) suggests perturbation of the incomplete-data
score vector to compute the observed information matrix. In the SEM algorithm
(Meng and Rubin 1991), numerical techniques are used to compute the derivative
of the EM operator M to obtain the observed information matrix. The basic idea is
to use the fact that the rate of convergence is governed by the fraction of the missing
information to find the increased variability due to missing information to add to
the assessed complete-data covariance matrix. More specifically, let V' denote the
asymptotic covariance matrix of the MLE ¥. Meng and Rubin (1991) show that

I\ y) =17'(F: y) + AV, (6.32)

where AV = {I, — J(¥)} " J(W)Z;'(¥: y) and Z.(¥: y) is the conditional
expected complete-data information matrix, and where I,; denotes the d x d
identity matrix. Thus the diagonal elements of AV give the increases in the
asymptotic variances of the components of ¥ due to missing data. For a wide
class of problems where the complete-data density is from the regular exponential
family, the evaluation of Z. (¥ y) is readily facilitated by standard complete-data
computations (McLachlan and Krishnan 2008, Sect. 4.5). The calculation of J(¥)
can be readily obtained by using only EM code via numerically differentiation of
M(W). Let v = w**D where the sequence of EM iterates has been stopped
according to a suitable stopping rule. Let M; be the ith component of M (¥). Let
u'/) be a column d-vector with the jth coordinate 1 and others 0. With a possibly
different EM sequence v® et r; ; be the (i, j)th element of J (!ﬁ), we have

. o e

o _ M+ W@ — &)~

ij (k) > :
v,

k+D (k)

Use a suitable stopping rule like |r; y rij | < /€ to stop each of the sequences

rij (i,j =1,2,...,d) and take ri’; = r,-(;cH); see McLachlan and Krishnan (2008,
Sect.4.5).

It is important to emphasize that estimates of the covariance matrix of the MLE
based on the expected or observed information matrices are guaranteed to be valid
inferentially only asymptotically. In particular for mixture models, it is well known
that the sample size 7 has to be very large before the asymptotic theory of maximum
likelihood applies. A resampling approach, the bootstrap (Efron 1979; Efron and
Tibshirani 1993), has been considered to tackle this problem; see also Chernick

6 The EM Algorithm 157

(2008) for recent developments of the bootstrap in statistics. Basford et al. (1997)
compared the bootstrap and information-based approaches for some normal mixture
models and found that unless the sample size was very large, the standard errors
obtained by an information-based approach were too unstable to be recommended.

The bootstrap is a powerful technique that permits the variability in a random
quantity to be assessed using just the data at hand. Standard error estimation of ¥
may be implemented according to the bootstrap as follows. Further discussion on
bootstrap and resampling methods can be found in Chaps. II1.17 and III.18 of this
handbook.

1. A new set of data, y*, called the bootstrap sample, is generated according to Ia R
an estimate of the distribution function of ¥ formed from the original observed
data y. That is, in the case where y contains the observed values of a random
sample of size n, y* consists of the observed values of the random sample

A

* % 1.1.d.
VAT Gale S o)

where the estimate F (now denoting the distribution function of a single
observation Y ;) is held fixed at its observed value.

2. The EM algorithm is applied to the bootstrap observed data y* to compute the
MLE for this data set, lIA/* .

3. The bootstrap covariance matrix of ¥ is given by

Cov*(F") = E*[{¥" — E*(0)" — E*"))7], (6.33)

where E* denotes expectation over the bootstrap distribution specified by F.

The bootstrap covariance matrix can be approximated by Monte Carlo methods.
Steps 1 and 2 are repeated independently a number of times (say, B) to give
B independent realizations of UI;*, denoted by !@T, el lI;Z Then (6.33) can be
approximated by the sample covariance matrix of these B bootstrap replications to
give

B —* . x —%*
Cov* (") ~ Y (W, —0)@, —¥)T /(B-1), (6.34)
b=1

—k
where ¥ = Zf=1 v : /B. The standard error of the ith element of ¥ can be
estimated by the positive square root of the ith diagonal element of (6.34). It has
been shown that 50 to 100 bootstrap replications are generally sufficient for standard
error estimation (Efron and Tibshirani 1993).

In Step 1 above, the nonparametric version of the bootstrap would take F to
be the empirical distribution function formed from the observed data y. Situations
where we may wish to use the latter include problems where the observed data are
censored or are missing in the conventional sense.

158 S.K. Nget al.
6.4 Variations on the EM Algorithm

In this section, further modifications and extensions to the EM algorithm are
considered. In general, there are extensions of the EM algorithm:

1. To produce standard errors of the MLE using the EM.

2. To surmount problems of difficult E-step and/or M-step computations.
3. To tackle problems of slow convergence.

4. In the direction of Bayesian or regularized or penalized ML estimations.

We have already discussed methods like the SEM algorithm for producing standard
errors of EM-computed MLE in Sect. 6.3.5. The modification of the EM algorithm
for Bayesian inference will be discussed in Sect. 6.5.1. In this section, we shall focus
on the problems of complicated E- or M-steps and of slow convergence of the EM
algorithm.

6.4.1 Complicated E-Step

In some applications of the EM algorithm, the E-step is complex and does not admit
a close-form solution to the Q-function. In this case, the E-step at the (k + 1)th
iteration may be executed by a Monte Carlo (MC) process:

1. Make M independent draws of the missing values Z, z\'*), ..., z®M¥) from the
conditional distribution k (z|y; ¥ ®).
2. Approximate the Q-function as

M
1
Q(F: ¥ & Qu (W W) = - 3 logk (W™ y).
m=1

In the M-step, the Q-function is maximized over ¥ to obtain ¥ (k+1) The variant
is known as the Monte Carlo EM (MCEM) algorithm (Wei and Tanner 1990). As
MC error is introduced at the E-step, the monotonicity property is lost. But in
certain cases, the algorithm gets close to a maximizer with a high probability (Booth
and Hobert 1999). The problems of specifying M and monitoring convergence are
of central importance in the routine use of the algorithm (Levine and Fan 2004).
Wei and Tanner (1990) recommend small values of M be used in initial stages
and be increased as the algorithm moves closer to convergence. As to monitoring
convergence, they recommend that the values of ¥ %) be plotted against k and when
convergence is indicated by the stabilization of the process with random fluctuations
about ¥, the process may be terminated or continued with a larger value of M.
Alternative schemes for specifying M and stopping rule are considered by Booth
and Hobert (1999) and McCulloch (1997). The computation of standard errors with
MCEM algorithm is discussed in Robert and Casella (2004, Sect. 5.3).

6 The EM Algorithm 159

Example 4: Generalized Linear Mixed Models

Generalized linear mixed models (GLMM) are extensions of generalized linear
models (GLM) (McCullagh and Nelder 1989) that incorporate random effects
in the linear predictor of the GLM (more material on the GLM can be found
in Chap.1I1.24). We let y = (yi,...,y,)' denote the observed data vector.
Conditional on the unobservable random effects vector, u = (uy,..., uq)T, we
assume that y arise from a GLM. The conditional mean p; = E(y;|u) is related
to the linear predictor n; = x;!—ﬂ + z;!—u by the link function g(u;) = n, (j =
1,...,n), where B is a p-vector of fixed effects and x ; and z; are, respectively, p-
vector and g-vector of explanatory variables associated with the fixed and random
effects. This formulation encompasses the modeling of data involving multiple
sources of random error, such as repeated measures within subjects and clustered
data collected from some experimental units (Breslow and Clayton 1993; Ng et al.
2004).

We let the distribution for u be g(u; D) that depends on parameters D. The
observed data y are conditionally independent with density functions of the form

f(jlu: B.k) = explmk™"{0;y; —b(0,)} + c(y;: K], (6.35)

where 0; is the canonical parameter, « is the dispersion parameter, and m; is the
known prior weight. The conditional mean and canonical parameters are related
through the equation p; = b’(6;), where the prime denotes differentiation with
respect to 6. Let ¥ denotes the vector of unknown parameters within g, x, and D.
The likelihood function for ¥ is given by

L@) = [T]70)lu: Bt D (6.36)
=1

which cannot usually be evaluated in closed form and has an intractable integral
whose dimension depends on the structure of the random effects.
Within the EM framework, the random effects are considered as missing data.

The complete data is then x = (yT, uT)T and the complete-data log likelihood is
given by
log Lo(%) =) log f(y;|u; B.x) + log g(u; D). (6.37)
j=1

On the (k + 1)th iteration of the EM algorithm, the E-step involves the computation
of the Q-function, Q(¥; w®)) = Ew(k){log L.(¥)|y}, where the expectation is

with respect to the conditional distribution of u| y with current parameter value ¥ ®
As this conditional distribution involves the (marginal) likelihood function L(¥)
given in (6.36), an analytical evaluation of the Q-function for the model (6.35) will
be impossible outside the normal theory mixed model (Booth and Hobert 1999). The
MCEM algorithm can be adopted to tackle this problem by replacing the expectation

160 S.K. Nget al.

in the E-step with a MC approximation. Letu'®), ..., u™® denote a random sample
from k(u|y; ¥®) at the (k + 1)th iteration. A MC approximation of the Q-function
is given by

M
Ou@:) = 23 flog f(y1a™); B.6) + logg@™: DY} (638)

m=1

From (6.38), it can be seen that the first term of the approximated Q-function
involves only parameters 8 and «, while the second term involves only D. Thus,
the maximization in the MC M-step is usually relatively simple within the GLMM
context (McCulloch 1997).

Alternative simulation schemes for # can be used for (6.38). For example, Booth
and Hobert (1999) proposed the rejection sampling and a multivariate ¢ importance
sampling approximations. McCulloch (1997) considered dependent MC samples
using MC Newton-Raphson (MCNR) algorithm. A two-slice EM algorithm has
developed by Vaida and Meng (2005) to handle GLMM with binary response, where
the MC E-step is implemented via a slice sampler.

6.4.2 Complicated M-Step

One of major reasons for the popularity of the EM algorithm is that the M-
step involves only complete-data ML estimation, which is often computationally
simple. But if the complete-data ML estimation is rather complicated, then the EM
algorithm is less attractive. In many cases, however, complete-data ML estimation
is relatively simple if maximization process on the M-step is undertaken conditional
on some functions of the parameters under estimation. To this end, Meng and Rubin
(1993) introduce a class of GEM algorithms, which they call the Expectation—
Conditional Maximization (ECM) algorithm.

ECM and Multicycle ECM Algorithms

The ECM algorithm takes advantage of the simplicity of complete-data conditional
maximization by replacing a complicated M-step of the EM algorithm with several
computationally simpler conditional maximization (CM) steps. Each of these CM-
steps maximizes the Q-function found in the preceding E-step subject to constraints
on ¥, where the collection of all constraints is such that the maximization is over
the full parameter space of ¥.

A CM-step might be in closed form or it might itself require iteration, but because
the CM maximizations are over smaller dimensional spaces, often they are simpler,
faster, and more stable than the corresponding full maximizations called for on
the M-step of the EM algorithm, especially when iteration is required. The ECM
algorithm typically converges more slowly than the EM in terms of number of

6 The EM Algorithm 161

iterations, but can be faster in total computer time. More importantly, the ECM
algorithm preserves the appealing convergence properties of the EM algorithm, such
as its monotone convergence.

We suppose that the M-step is replaced by S > 1 steps and let w K+5/5) denote
the value of ¥ on the sth CM-step of the (k + 1)th iteration. In many applications of
the ECM algorithm, the S CM-steps correspond to the situation where the parameter
vector ¥ is partitioned into S subvectors,

=, ... vH

The sth CM-step then requires the maximization of the Q-function with respect
to the sth subvector ¥ with the other (S — 1) subvectors held fixed at their
current values. The convergence properties and the rate of convergence of the ECM
algorithm have been discussed in Meng (1994), Meng and Rubin (1993), and Sexton
and Swensen (2000); see also the discussion in McLachlan and Krishnan (2008,
Sect.5.2.3), where the link to the monotone convergence of Iterative Proportional
Fitting with complete data (Bishop et al. 2007, Chap. 3) is described.
It can be shown that

QW W) = QD g) = = 0@ W), (6.39)

which implies that the ECM algorithm is a GEM algorithm and so possesses its
desirable convergence properties. As noted in Sect. 6.2.3, the inequality (6.39) is a
sufficient condition for

L@y = L®)

to hold. In many cases, the computation of an E-step may be much cheaper than the
computation of the CM-steps. Hence one might wish to perform one E-step before
each CM-step. A cycle is defined to be one E-step followed by one CM-step. The
corresponding algorithm is called the multicycle ECM (Meng and Rubin 1993). A
multicycle ECM may not necessarily be a GEM algorithm; that is, the inequality
(6.39) may not be hold. However, it is not difficult to show that the multicycle ECM
algorithm monotonically increases the likelihood function L(¥) after each cycle,
and hence, after each iteration. The convergence results of the ECM algorithm
apply to a multicycle version of it. An obvious disadvantage of using a multicycle
ECM algorithm is the extra computation at each iteration. Intuitively, as a tradeoff,
one might expect it to result in larger increases in the log likelihood function per
iteration since the Q-function is being updated more often (Meng 1994; Meng and
Rubin 1993).

Example 5: Mixture-of-Experts Models for Multiclass Classification

It is reported in the literature that ME networks trained by the EM algorithm using
the IRLS algorithm in the inner loop of the M-step often performed poorly in
multiclass classification because of the incorrect independence assumption (Chen

162 S.K. Nget al.

etal. 1999); see also the discussion in Sect. 6.3.3. In this section, we present an ECM
algorithm to train ME networks for multiclass classification such that the parameters
in the gating and expert networks are separable. It follows that the independence
assumption is not required and the parameters in both (6.26) and (6.28) can be
updated separately; see, for example, Ng and McLachlan (2004a) and Ng et al.
(2006a).

For multiclass classification, the densities fi(y;|x;:04) (h = 1,...,m) are
modelled by a multinomial distribution consisting of one draw on multiple (say, g)
categories. That is, we have

g1 T Yij Yei
exp(w,; X ;) 1
'x',01 == o — ! — k]
Jn(yjlx;,0n) ||() <1+Zf

i 0
i WL+ 28 exp(w)] x ;) Zexpw] x ;)

(6.40)
where 6 contains the elements in wy; (i = 1,...,g — 1). Equation (6.28) in
Sect. 6.3.3 thus becomes

n T
exp(w] x) .
r,ﬁf)<y,-,-— e)x,:o (i=1,....g—1) (641
j=1 I+ Zr=l exp(whrxj)
for h = 1,...,m, which are m sets of non-linear equations each with (g — 1)p

unknown parameters.

With the ECM algorithm, the M-step is replaced by several computation-
ally simpler CM-steps. For example, the parameter vector « is partitioned as
(vI'—, ... ,v;'n—_l)T. On the (k + 1)th iteration of the ECM algorithm, the E-step is
the same as given in Equations (6.23)—(6.25) for the EM algorithm, but the M-step
of the latter is replaced by (m — 1) CM-steps, as follows:

* CM:-step 1: Caleulate v\t by maximizing Q, withv, (I = 2,....m —1) fixed
at v(k)
Pl
e CM-step 2: Calculate v;kﬂ) by maximizing Q, with v; fixed at v(1k+l) andv; (I =

3,....,m—1) ﬁxedatv?k).

e CM-step (m — 1) : Calculate vg::ll)) by maximizing Q, withv; (I = 1,...,m —
2) fixed at v§k+l).

As each CM-step above corresponds to a separable set of the parameters in v
forh = 1,...,m — 1, it can be obtained using the IRLS approach; see Ng and
McLachlan (2004a).

6.4.3 Speeding Up Convergence

Several suggestions are available in the literature for speeding up convergence,
some of a general kind and some problem-specific; see for example McLachlan

6 The EM Algorithm 163

and Krishnan (2008, Chap.4). Most of them are based on standard numerical
analytic methods and suggest a hybrid of EM with methods based on Aitken
acceleration, over-relaxation, line searches, Newton methods, conjugate gradients,
etc. Unfortunately, the general behaviour of these hybrids is not always clear and
they may not yield monotonic increases in the log likelihood over iterations. There
are also methods that approach the problem of speeding up convergence in terms
of “efficient” data augmentation scheme (Meng and van Dyk 1997). Since the
convergence rate of the EM algorithm increases with the proportion of observed
information in the prescribed EM framework (Sect.6.2.4), the basic idea of the
scheme is to search for an efficient way of augmenting the observed data. By
efficient, they mean less augmentation of the observed data (greater speed of
convergence) while maintaining the simplicity and stability of the EM algorithm. A
common trade-off is that the resulting E- and/or M-steps may be made appreciably
more difficult to implement. To this end, Meng and van Dyk (1997) introduce a
working parameter in their specification of the complete data to index a class of
possible schemes to facilitate the search.

ECME, AECM, and PX-EM Algorithms

Liu and Rubin (1994, 1998) present an extension of the ECM algorithm called the
ECME (expectation—conditional maximization either) algorithm. Here the “either”
refers to the fact that with this extension, each CM-step either maximizes the Q-
function or the actual (incomplete-data) log likelihood function log L(¥), subject
to the same constraints on ¥. The latter choice should lead to faster convergence as
no augmentation is involved. Typically, the ECME algorithm is more tedious to code
than the ECM algorithm, but the reward of faster convergence is often worthwhile
especially because it allows convergence to be more easily assessed.

A further extension of the EM algorithm, called the Space-Alternating General-
ized EM (SAGE), has been proposed by Fessler and Hero (1994), where they update
sequentially small subsets of parameters using appropriately smaller complete data
spaces. This approach is eminently suitable for situations like image reconstruction
where the parameters are large in number. Meng and van Dyk (1997) combined the
ECME and SAGE algorithms. The so-called Alternating ECM (AECM) algorithm
allows the data augmentation scheme to vary where necessary over the CM-steps,
within and between iterations. With this flexible data augmentation and model
reduction schemes, the amount of data augmentation decreases and hence efficient
computations are achieved.

In contrast to the AECM algorithm where the optimal value of the working
parameter is determined before EM iterations, a variant is considered by Liu et al.
(1998) which maximizes the complete-data log likelihood as a function of the
working parameter within each EM iteration. The so-called parameter-expanded
EM (PX-EM) algorithm has been used for fast stable computation of MLE in a wide
range of models (Little and Rubin 2002). This variant has been further developed,
known as the one-step-late PX-EM algorithm, to compute maximum a posteriori

164 S.K. Nget al.

(MAP) or maximum penalized likelihood (MPL) estimates (van Dyk and Tang
2003). Analogous convergence results hold for the ECME, AECM, and PX-EM
algorithms as for the EM and ECM algorithms. More importantly, these algorithms
preserve the monotone convergence of the EM algorithm.

Incremental Scheme of the EM Algorithm

The EM algorithm can be viewed as alternating minimization of a joint function
between a parameter space §2 and a family of distributions @ over the unobserved
variables (Csiszdr and Tusnddy 1984; Hathaway 1986). Let z denote the vector
containing the unobservable data and let P be any distribution defined over the
support of Z. The joint function is defined as

D(P,W)=—logL(¥)+ KL[P,g(z|y; ¥)], (6.42)

where g(z|y; ¥) is the conditional distribution of Z given the observed data and
KL[P, g(z|y; ¥)]is the Kullback-Leibler information that measures the divergence
of P relative to g(z|y; ¥). Hathaway (1986) shows that, given the current estimates
w® the E-step on the (k 4 1)th scan corresponds to the minimization of (6.42)
with respect to P over @. For fixed P+ the M-step then minimizes (6.42) with
respect to ¥ over £2.

From this perspective, Neal and Hinton (1998) justify an incremental variant
of the EM algorithm in which only a block of unobserved data is calculated in
each E-step at a time before performing a M-step. A scan of the incremental EM
(IEM) algorithm thus consists of B “partial” E-steps and B M-steps, where B is
the total number of blocks of data. This variant of the EM algorithm has been
shown empirically to give faster convergence compared to the EM algorithm in
applications where the M-step is computationally simple, for example, in fitting
multivariate normal mixtures (Ng and McLachlan 2003, 2004b). With the IEM
algorithm, Neal and Hinton (1998) showed that the partial E-step and the M-step
both monotonically increase F(P,¥) = —D(P,¥) and if a local maximum (or
saddle point) of F(P,¥) occurs at P* and ¥*, then a local maximum (or saddle
point) of the log likelihood occurs at ¥* as well. Although the IEM algorithm can
possess stable convergence to stationary points in the log likelihood under slightly
stronger conditions of Wu (1983) for the EM algorithm, the current theoretical
results for the IEM algorithm do not quarantine monotonic behaviour of the log
likelihood as the EM algorithm does. The same argument for proving that the
EM algorithm always increases the log likelihood cannot be adopted here, as the
estimate of ¥ in Q(¥; ¥®)) of (6.7) is changing at each iteration within each scan
(Ng and McLachlan 2003). However, it is noted that F (P, ¥) can be considered
as a lower bound on the log likelihood since the Kullback-Leibler information is
non-negative. For given P, as obtained in the partial E-step, the M-step increases
F (P, W) with respect to ¥ . It follows that

6 The EM Algorithm 165

F(P,wkTGTD/B)y > p(p g k+b/B)y (b=0,...,B-1).

That is, the lower bound of the log likelihood is monotonic increasing after each
iteration.

The argument for improved rate of convergence is that the IEM algorithm
exploits new information more quickly rather than waiting for a complete scan of
the data before parameters are updated by an M-step. Another method suggested by
Neal and Hinton (1998) is the sparse EM (SPEM) algorithm. In fitting a mixture
model to a data set by ML via the EM, the current estimates of some posterior
probabilities ri(;{) for a given data point y ; are often close to zero. For example, if

ri(]k) < 0.005 for the first two components of a four-component mixture being fitted,
then with the SPEM algorithm we would fix ri(j{c) (1=1,2) for membership of y;

with respect to the first two components at their current values and only update ri(f)

(i=3,4) for the last two components. This sparse E-step will take time proportional
to the number of components that needed to be updated. A sparse version of the
IEM algorithm (SPIEM) can be formulated by combining the partial E-step and
the sparse E-step. With these versions, the likelihood is still found to be increased
after each scan. Ng and McLachlan (2003) study the relative performances of these
algorithms with various number of blocks B for the fitting of normal mixtures. They
propose to choose B to be that factor of n that is the closest to B* = round(n*/?) for
unrestricted component-covariance matrices, where round(r) rounds r to the nearest
integer.

Ng and McLachlan (2004b) propose to speed up further the IEM and SPIEM
algorithms for the fitting of normal mixtures by imposing a multiresolution kd-tree
(mrkd-tree) structure in performing the E-step. Here kd stands for k-dimensional
where, in our notation, k = p, the dimension of an observation y ;. The mrkd-
tree is a binary tree that recursively splits the whole set of data points into
partition (Moore 1999). The contribution of all the data points in a tree node to
the sufficient statistics is simplified by calculating at the mean of these data points
to save time. The mrkd-tree approach does not guarantee the desirable reliable
convergence properties of the EM algorithm. However, the IEM-based mrkd-
tree algorithms have been shown empirically to give a monotonic convergence as
reliable as the EM algorithm when the size of leaf nodes are sufficiently small (Ng
and McLachlan 2004b). It is noted that the number of leaf nodes will increase
dramatically when the dimension of the data points p increases. This implies
that mrkd-trees-based algorithms will not be able to speed up the EM algorithm
for applications to high dimensional data (Ng and McLachlan 2004b). Recently,
a number of techniques have been developed to reduce dimensionality without
losing significant information and separability among mixture components; see, for
example, the matrix factorization approach of Nikulin and McLachlan (2010) and
the references therein.

166 S.K. Nget al.

6.5 Miscellaneous Topics on the EM Algorithm

6.5.1 EM Algorithm for MAP Estimation

Although we have focussed on the application of the EM algorithm for computing
MLE:s in a frequentist framework, it can be equally applied to find the mode of the
posterior distribution in a Bayesian framework. This problem is analogous to MLE
and hence the EM algorithm and its variants can be adapted to compute maximum
a posteriori (MAP) estimates. The computation of the MAP estimate in a Bayesian
framework via the EM algorithm corresponds to the consideration of some prior
density for ¥. The E-step is effectively the same as for the computation of the MLE
of ¥ in a frequentist framework, requiring the calculation of the Q-function. The
M-step differs in that the objective function for the maximization process is equal
to the Q-function, augmented by the log prior density. The combination of prior and
sample information provides a posterior distribution of the parameter on which the
estimation is based.

The advent of inexpensive high speed computers and the simultaneous rapid
development in posterior simulation techniques such as Markov chain Monte Carlo
(MCMC) methods (Gelfand and Smith 1990) enable Bayesian estimation to be
undertaken. In particular, posterior quantities of interest can be approximated
through the use of MCMC methods such as the Gibbs sampler. Such methods allow
the construction of an ergodic Markov chain with stationary distribution equal to the
posterior distribution of the parameter of interest. A concise theoretical treatment of
MCMC is provided in Gamerman and Lopes (2006) and Robert and Casella (2004);
see also McLachlan and Krishnan (2008, Chap. 8) and the references therein. A
detailed description of the MCMC technology can also be found in Chap. I1.4.

Although the application of MCMC methods is now routine, there are some
difficulties that have to be addressed with the Bayesian approach, particularly in
the context of mixture models. One main hindrance is that improper priors yield
improper posterior distributions. Another hindrance is that when the number of
components g is unknown, the parameter space is simultaneously ill-defined and of
infinite dimension. This prevents the use of classical testing procedures and priors
(McLachlan and Peel 2000, Chap. 4).

6.5.2 Iterative Simulation Algorithms

In computing Bayesian solutions to incomplete-data problems, iterative simulation
techniques have been adopted to find the MAP estimates or estimating the entire
posterior density. These iterative simulation techniques are conceptually similar to
the EM algorithm, simply replacing the E- and M-steps by draws from the current
conditional distribution of the missing data and ¥, respectively. However, in some
methods such as the MCEM algorithm described in Sect. 6.4.1, only the E-step is

6 The EM Algorithm 167

so implemented. Many of these methods can be interpreted as iterative simulation
analogs of the various versions of the EM and its extensions. Some examples are
Stochastic EM, Data Augmentation algorithm, and MCMC methods such as the
Gibbs sampler (McLachlan and Krishnan 2008, Chap. 6). Here, we give a very brief
outline of the Gibbs sampler; see also Chap. I1.4 of this handbook and the references
therein.

The Gibbs sampler is extensively used in many Bayesian problems where the
joint distribution is too complicated to handle, but the conditional distributions are
often easy enough to draw from; see Casella and George (1992). On the Gibbs
sampler, an approximate sample from p(¥ | y) is obtained by simulating directly
from the (full) conditional distribution of a subvector of ¥ given all the other
parameters in ¥ and y. We write ¥ = (¥y,...,¥) in component form, a d-
dimensional Gibbs sampler makes a Markov transition from ¥ ® to w* D yia g
successive simulations as follows:

(1) Draw ¢* from p(¥ | y; ¥V, ---,‘I’,ﬁk)l
(2) Draw l1/2(k+1) from p(¥; | y; llfl(k+l), lI/3(k) ...,llflgk)).

(d) Draw "V from p(wy | y; w*D, ey,

The vector sequence {¥ (k)} thus generated is known to be a realization of a homo-
geneous Markov Chain. Many interesting properties of such a Markov sequence
have been established, including geometric convergence, as k — oo; to a unique
stationary distribution that is the posterior density p(llfl(k) e llfcf,k) | y) under
certain conditions; see Roberts and Polson (1994). Among other sampling methods,
there is the Metropolis-Hastings algorithm (Hastings 1970), which, in contrast to the
Gibbs sampler, accepts the candidate simulated component in ¥ with some defined
probability (McLachlan and Peel 2000, Chap. 4).

The Gibbs sampler and other such iterative simulation techniques being Bayesian
in their point of view consider both parameters and missing values as random vari-
ables and both are subjected to random draw operations. In the iterative algorithms
under a frequentist framework, like the EM-type algorithms, parameters are sub-
jected to a maximization operation and missing values are subjected to an averaging
operation. Thus the various versions of the Gibbs sampler can be viewed as stochas-
tic analogs of the EM, ECM, and ECME algorithms (Robert and Casella 2004).
Besides these connections, the EM-type algorithms also come in useful as starting
points for iterative simulation algorithms where typically regions of high density are
not known a priori (McLachlan and Krishnan 2008, Sect. 6.10). The relationship
between the EM algorithm and the Gibbs sampler and the connection between their
convergence properties have been examined in Sahu and Roberts (1999).

168 S.K. Nget al.
6.5.3 Further Applications of the EM Algorithm

Since the publication of Dempster et al. (1977), the number, variety, and range
of applications of the EM algorithm and its extensions have been tremendous.
Applications in many different contexts can be found in monographs Little and
Rubin (2002), McLachlan et al. (2004), McLachlan and Krishnan (2008), and
McLachlan and Peel (2000). We conclude the chapter with a quick summary of
some of the more interesting and topical applications of the EM algorithm.

Bioinformatics: EMMIX-GENE and EMMIX-WIRE Procedures

In bioinformatics, much attention is centered on the cluster analysis of the tissue
samples and also the genes. The clustering of tumour tisses can play a useful role
in the discovery and understanding of new subtypes of diseases (McLachlan et al.
2002), while the clustering of gene expression profiles contributes significantly to
the elucidation of unknown gene function, the validation of gene discoveries and
the interpretation of biological processes (Ng et al. 2006b). The EM algorithm
and its variants have been applied to tackle some of the problems arisen in such
applications. For example, the clustering of tumour tissues on the basis of genes
expression is a nonstandard cluster analysis problem since the dimension of each
tissue sample is so much greater than the number of tissues. The EMMIX-GENE
procedure of McLachlan et al. (2002) handles the problem of a high-dimensional
feature vector by using mixtures of factor analyzers whereby the component
correlations between the genes are explained by their conditional linear dependence
on a small number of latent or unobservable factors specific to each component.
The mixtures of factor analyzers model can be fitted by using the AECM algorithm
(Meng and van Dyk 1997); see, for example, McLachlan et al. (2004).

The clustering of gene profiles is also not straightforward as the profiles of the
genes are not all independently distributed and the expression levels may have
been obtained from an experimental design involving replicated arrays (Lee et al.
2000; Pavlidis et al. 2003). Similarly, in time-course studies (Storey et al. 2005),
where expression levels are measured under various conditions or at different
time points, gene expressions obtained from the same condition (tissue sample)
are correlated. Ng et al. (2006b) have developed a random-effects model that
provides a unified approach to the clustering of genes with correlated expression
levels measured in a wide variety of experimental situations. The EMMIX-WIRE
procedure of Ng et al. (2006b) formulates a linear-mixed-effects model (LMM) for
the mixture components in which both gene-specific and tissue-specific random
effects are incorporated in the modelling of the microarray data. In their model,
the gene profiles are not all independently distributed as genes within the same
component in the mixture model are allowed to be dependent due to the presence
of the tissue-specific random effects. This problem is circumvented by proceeding
conditionally on the tissue-specific random effects, as given these terms, the gene

6 The EM Algorithm 169

profiles are all conditionally independent. In this way, Ng et al. (2006b) showed that
the unknown parameter vector ¥ can be estimated by ML via the EM algorithm
under a conditional mode, where both the E- and M-steps are carried out in
closed form.

Health Science: On-Line Prediction of Hospital Resource Utilization

The continuing development and innovative use of information technology in health
care has played a significant role in contributing and advancing this active and
burgeoning field. Inpatient length of stay (LOS) is an important measure of hospital
activity and health care utilization. It is also considered to be a measurement of
disease severity and patient acuity (Ng et al. 2006a; Pofahl et al. 1998). Length of
stay predictions have therefore important implications in various aspects of health
care decision support systems. Most prediction tools use a batch-mode training
process. That is, the model is trained only after the entire training set is available.
Such a training method is unrealistic in the prediction of LOS as the data become
available over time and the input-output pattern of data changes dynamically over
time.

An intelligent ME network for on-line prediction of LOS via an incremental
ECM algorithm has been proposed by Ng et al. (2006a). The strength of an
incremental training process is that it enables the network to be updated when
an input-output datum becomes known. These on-line and incremental updating
features increase the simulation between neural networks and human decision
making capability in terms of learning from “every” experience. In addition, an
on-line process is capable of providing an output whenever a new datum becomes
available. This on-the-spot information is therefore more useful and practical for
adaptive training of model parameters and making decisions (Jepson et al. 2003;
Lai and Fang 2005), especially when one deals with a tremendous amount of data.

The incremental training process for on-line prediction is formulated based on
the incremental scheme of the EM algorithm described in Sect.6.4.3; see also
Ng and McLachlan (2003) and Ng et al. (2006a). In particular, the unknown
parameters are updated in the CM-step when a single input-output datum is
available. Also, a discount parameter is introduced to gradually “forget” the effect
of previous estimated posterior probabilities obtained from earlier less-accurate
estimates (Jordan and Jacobs 1994; Sato and Ishii 2000). It implies that the sufficient
statistics required in the CM-step are decayed exponentially with a multiplicative
discount factor as the training proceeds. When the discount parameter is scheduled
to approach one as the iteration tends to infinity, the updating rules so formed can
be considered as a stochastic approximation for obtaining the ML estimators (Sato
and Ishii 2000; Titterington 1984).

170 S.K. Nget al.

References

Baker, S.G.: A simple method for computing the observed information matrix when using the EM
algorithm with categorical data. J. Comput. Graph. Stat. 1, 6376 (1992)

Basford, K.E., Greenway, D.R., McLachlan, G.J., Peel, D.: Standard errors of fitted means under
normal mixture models. Comput. Stat. 12, 1-17 (1997)

Bishop, Y.M.M., Fienberg, S.E., Holland, P.W.: Discrete Multivariate Analysis: Theory and
Practice. Springer, New York (2007)

Booth, J.G., Hobert, J.P.: Maximizing generalized linear mixed model likelihoods with an
automated Monte Carlo EM algorithm. J. Roy. Stat. Soc. B 61, 265-285 (1999)

Breslow, N.E., Clayton, D.G.: Approximate inference in generalized linear mixed models. J. Am.
Stat. Assoc. 88, 9-25 (1993)

Casella, G., George, E.I.: Explaining the Gibbs sampler. Am. Stat. 46, 167-174 (1992)

Chen, K., Xu, L., Chi, H.: Improved learning algorithms for mixture of experts in multiclass
classification. Neural Netw. 12, 1229-1252 (1999)

Chernick, M.R.: Bootstrap Methods: A Guide for Practitioners and Researchers. Wiley, Hoboken,
New Jersey (2008)

Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton, New Jersey
(1946)

Csiszar, 1., Tusnady, G.: Information geometry and alternating minimization procedure. In:
Dudewicz, E.J., Plachky, D., Sen, PK. (eds.) Recent Results in Estimation Theory and Related
Topics, pp. 205-237. R. Oldenbourg, Munich (1984)

Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM
algorithm. J. Roy. Stat. Soc. B 39, 1-38 (1977)

Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1-26 (1979)

Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Chapman & Hall, London (1993)

Fessler, J.A., Hero, A.O.: Space-alternating generalized expectation-maximization algorithm.
IEEE Trans. Signal. Process. 42, 2664-2677 (1994)

Flury, B., Zoppé, A.: Exercises in EM. Am. Stat. 54, 207-209 (2000)

Gamerman, D., Lopes, H.F.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian
Inference, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL (2006)

Gelfand, A.E., Smith, A.FEM.: Sampling-based approaches to calculating marginal densities.
J. Am. Stat. Assoc. 85, 398-409 (1990)

Hathaway, R.J.: Another interpretation of the EM algorithm for mixture distributions. Stat. Probab.
Lett. 4, 53-56 (1986)

Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications.
Biometrika 57, 97-109 (1970)

Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural
Comput. 3, 79-87 (1991)

Jamshidian, M., Jennrich, R.I.: Standard errors for EM estimation. J. Roy. Stat. Soc. B 62, 257-270
(2000)

Jepson, A.D., Fleet, D.J., EI-Maraghi, T.F.: Robust online appearance models for visual tracking.
IEEE Trans. Pattern Anal. Mach. Intell. 25, 1296-1311 (2003)

Jordan, ML, Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm. Neural Comput.
6, 181-214 (1994)

Jordan, M1, Xu, L.: Convergence results for the EM approach to mixtures of experts architectures.
Neural Netw. 8, 1409-1431 (1995)

Lai, S.H., Fang, M.: An adaptive window width/center adjustment system with online training
capabilities for MR images. Artif. Intell. Med. 33, 89—-101 (2005)

Lee, M.L.T., Kuo, F.C., Whitmore, G.A., Sklar, J.: Importance of replication in microarray gene
expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc.
Natl. Acad. Sci. USA 97, 9834-9838 (2000)

6 The EM Algorithm 171

Levine, R., Fan, J.J.: An automated (Markov chain) Monte Carlo EM algorithm. J. Stat. Comput.
Simulat. 74, 349-359 (2004)

Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley, New York
(2002)

Liu, C., Rubin, D.B.: The ECME algorithm: a simple extension of EM and ECM with faster
monotone convergence. Biometrika 81, 633—648 (1994)

Liu, C., Rubin, D.B.: Maximum likelihood estimation of factor analysis using the ECME algorithm
with complete and incomplete data. Stat. Sin. 8, 729-747 (1998)

Liu, C., Rubin, D.B., Wu, Y.N.: Parameter expansion to accelerate EM: the PX-EM algorithm.
Biometrika 85, 755-770 (1998)

Louis, T.A.: Finding the observed information matrix when using the EM algorithm. J. Roy. Stat.
Soc. B 44, 226-233 (1982)

McCullagh, P.A., Nelder, J.: Generalized Linear Models, 2nd edn. Chapman & Hall, London
(1989)

McCulloch, C.E.: Maximum likelihood algorithms for generalized linear mixed models. J. Am.
Stat. Assoc. 92, 162-170 (1997)

McLachlan, G.J., Basford, K.E.: Mixture Models: Inference and Applications to Clustering. Marcel
Dekker, New York (1988)

McLachlan, G.J., Bean, R.W., Peel, D.: A mixture model-based approach to the clustering of
microarray expression data. Bioinformatics 18, 413422 (2002)

McLachlan, G.J., Do, K.A., Ambroise, C.: Analyzing Microarray Gene Expression Data. Wiley,
New York (2004)

McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions, 2nd edn. Wiley, Hoboken,
New Jersey (2008)

McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

Meilijson, I.: A fast improvement of the EM algorithm in its own terms. J. Roy. Stat. Soc. B 51,
127-138 (1989)

Meng, X.L.: On the rate of convergence of the ECM algorithm. Ann. Stat. 22, 326-339 (1994)

Meng, X.L., Rubin, D.B.: Using EM to obtain asymptotic variance-covariance matrices: the SEM
algorithm. J. Am. Stat. Assoc. 86, 899-909 (1991)

Meng, X.L., Rubin, D.B.: Maximum likelihood estimation via the ECM algorithm: a general
framework. Biometrika 80, 267-278 (1993)

Meng, X.L., van Dyk, D.: The EM algorithm — an old folk song sung to a fast new tune. J. Roy.
Stat. Soc. B 59, 511-567 (1997)

Moore, A.W.: Very fast EM-based mixture model clustering using multiresolution kd-trees. In:
Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) Advances in Neural Information Processing
Systems 11, pp. 543-549. MIT Press, MA (1999)

Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental, sparse, and other
variants. In: Jordan, M.I. (ed.) Learning in Graphical Models, pp. 355-368. Kluwer, Dordrecht
(1998)

Nettleton, D.: Convergence properties of the EM algorithm in constrained parameter spaces. Can.
J. Stat. 27, 639-648 (1999)

Ng, S.K., McLachlan, G.J.: On the choice of the number of blocks with the incremental EM
algorithm for the fitting of normal mixtures. Stat. Comput. 13, 45-55 (2003)

Ng, S.K., McLachlan, G.J (2004a). Using the EM algorithm to train neural networks: misconcep-
tions and a new algorithm for multiclass classification. IEEE Trans. Neural Netw. 15, 738-749.

Ng, S.K., McLachlan, G.J (2004b). Speeding up the EM algorithm for mixture model-based
segmentation of magnetic resonance images. Pattern Recogn. 37, 1573-1589.

Ng, S.K., McLachlan, G.J., Lee, A.H (2006a). An incremental EM-based learning approach for
on-line prediction of hospital resource utilization. Artif. Intell. Med. 36, 257-267.

Ng, S.K., McLachlan, G.J., Wang, K., Ben-Tovim Jones, L., Ng, SSW (2006b). A mixture
model with random-effects components for clustering correlated gene-expression profiles.
Bioinformatics 22, 1745-1752.

172 S.K. Nget al.

Ng, S.K., McLachlan, G.J., Yau, K.K.W., Lee, A.H.: Modelling the distribution of ischaemic
stroke-specific survival time using an EM-based mixture approach with random effects adjust-
ment. Stat. Med. 23, 2729-2744 (2004)

Nikulin, V., McLachlan, G.J.: A gradient-based algorithm for matrix factorization applied to
dimensionality reduction. In: Fred, A., Filipe, J., Gamboa, H. (eds.) Proceedings of BIOSTEC
2010, the 3rd International Joint Conference on Biomedical Engineering Systems and Tech-
nologies, pp. 147-152. Institute for Systems and Technologies of Information, Control and
Communication, Portugal (2010)

Pavlidis, P, Li, Q., Noble, W.S.: The effect of replication on gene expression microarray
experiments. Bioinformatics 19, 1620-1627 (2003)

Pernkopf, F., Bouchaffra, D.: Genetic-based EM algorithm for learning Gaussian mixture models.
IEEE Trans. Pattern Anal. Mach. Intell. 27, 1344-1348 (2005)

Pofahl, W.E., Walczak, S.M., Rhone, E., Izenberg, S.D.: Use of an artificial neural network to
predict length of stay in acute pancreatitis. Am. Surg. 64, 868-872 (1998)

Robert, C.P.,, Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004)

Roberts, G.O., Polson, N.G.: On the geometric convergence of the Gibbs sampler. J. Roy. Stat.
Soc. B 56, 377-384 (1994)

Sahu, S.K., Roberts, G.O.: On convergence of the EM algorithm and the Gibbs sampler. Stat.
Comput. 9, 55-64 (1999)

Sato, M., Ishii, S.: On-line EM algorithm for the normalized Gaussian network. Neural Comput.
12, 407-432 (2000)

Sexton, J., Swensen, A.R.: ECM algorithms that converge at the rate of EM. Biometrika 87, 651—
662 (2000)

Storey, J.D., Xiao, W., Leek, J.T., Tompkins, R.G., Davis, R.W.: Significance analysis of time
course microarray experiments. Proc. Natl. Acad. Sci. USA 102, 12837-12842 (2005)

Titterington, D.M.: Recursive parameter estimation using incomplete data. J. Roy. Stat. Soc. B 46,
257-267 (1984)

Ueda, N., Nakano, R.: Deterministic annealing EM algorithm. Neural Netw. 11, 271-282 (1998)

van Dyk, D.A., Tang, R.: The one-step-late PXEM algorithm. Stat. Comput. 13, 137-152 (2003)

Vaida, F., Meng, X.L.: Two-slice EM algorithms for fitting generalized linear mixed models with
binary response. Stat. Modelling 5, 229-242 (2005)

Wei, G.C.G., Tanner, M.A.: A Monte Carlo implementation of the EM algorithm and the poor
man’s data augmentation algorithms. J. Am. Stat. Assoc. 85, 699-704 (1990)

Wright, K., Kennedy, W.J.: An interval analysis approach to the EM algorithm. J. Comput. Graph.
Stat. 9, 303-318 (2000)

Wau, C.EJ.: On the convergence properties of the EM algorithm. Ann. Stat. 11, 95-103 (1983)

Chapter 7
Stochastic Optimization

James C. Spall

Stochastic optimization algorithms have been growing rapidly in popularity over the
last decade or two, with a number of methods now becoming “industry standard”
approaches for solving challenging optimization problems. This chapter provides a
synopsis of some of the critical issues associated with stochastic optimization and
a gives a summary of several popular algorithms. Much more complete discussions
are available in the indicated references.

To help constrain the scope of this article, we restrict our attention to methods
using only measurements of the criterion (loss function). Hence, we do not cover the
many stochastic methods using information such as gradients of the loss function.
Section 7.1 discusses some general issues in stochastic optimization. Section 7.2
discusses random search methods, which are simple and surprisingly powerful
in many applications. Section 7.3 discusses stochastic approximation, which is a
foundational approach in stochastic optimization. Section 7.4 discusses a popular
method that is based on connections to natural evolution — genetic algorithms.
Finally, Sect. 7.5 offers some concluding remarks.

7.1 Introduction

7.1.1 General Background

Stochastic optimization plays a significant role in the analysis, design, and operation
of modern systems. Methods for stochastic optimization provide a means of coping
with inherent system noise and coping with models or systems that are highly

J.C. Spall (24)
The Johns Hopkins University, Applied Physics Laboratory Laurel, MD, USA
e-mail: James.Spall @jhuapl.edu

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks 173
of Computational Statistics, DOI 10.1007/978-3-642-21551-3__7,
© Springer-Verlag Berlin Heidelberg 2012

James.Spall@jhuapl.edu

174 J.C. Spall

nonlinear, high dimensional, or otherwise inappropriate for classical deterministic
methods of optimization. Stochastic optimization algorithms have broad application
to problems in statistics (e.g., design of experiments and response surface mod-
eling), science, engineering, and business. Algorithms that employ some form of
stochastic optimization have become widely available. For example, many modern
data mining packages include methods such as simulated annealing and genetic
algorithms as tools for extracting patterns in data.

Specific applications include business (making short- and long-term investment
decisions in order to increase profit), aerospace engineering (running computer
simulations to refine the design of a missile or aircraft), medicine (designing
laboratory experiments to extract the maximum information about the efficacy of
a new drug), and traffic engineering (setting the timing for the signals in a traffic
network). There are, of course, many other applications.

Let us introduce some concepts and notation. Suppose ® is the domain of
allowable values for a vector 8. The fundamental problem of interest is to find
the value(s) of a vector ® € ® that minimize a scalar-valued loss function L(0).
Other common names for L are performance measure, objective function, measure-
of-effectiveness (MOE), fitness function (or negative fitness function), or criterion.
While this problem refers to minimizing a loss function, a maximization problem
(e.g., maximizing profit) can be trivially converted to a minimization problem
by changing the sign of the criterion. This chapter focuses on the problem of
minimization. In some cases (i.e., differentiable L), the minimization problem can
be converted to a root-finding problem of finding 0 such thatg(8) = dL(0)/96 = 0.
Of course, this conversion must be done with care because such a root may not
correspond to a global minimum of L.

The three remaining subsections in this section define some basic quantities,
discuss some contrasts between (classical) deterministic optimization and stochastic
optimization, and discuss some basic properties and fundamental limits. This section
provides the foundation for interpreting the algorithm presentations in Sects. 7.2
to 7.4. There are many other references that give general reviews of various
aspects of stochastic optimization. Among these are Arsham (1998), Fouskakis
and Draper (2002), Fu (2002), Gosavi (2003), Michalewicz and Fogel (2000),
Spall (2003), and Cochran (2011; see topic area “stochastic optimization™).

7.1.2 Formal Problem Statement

The problem of minimizing a loss function L = L(0)can be formally represented
as finding the set:

e0* = arglenig LO)={0*"c®:L(0O%) <L(0)foralld € O}, (7.1)
en

7 Stochastic Optimization 175

where 0 is the p—dimensional vector of parameters that are being adjusted and
® C RP”. The “arg mingee” statement in (7.1) should be read as: ®* is the set of
values 0 = 0 (0 the “argument” in “arg min”) that minimize L(0) subject to 6*
satisfying the constraints represented in the set ©. The elements 0* € ©* C © are
equivalent solutions in the sense that they yield identical values of the loss function.
The solution set ®* in (7.1) may be a unique point, a countable (finite or infinite)
collection of points, or a set containing an uncountable number of points.

For ease of exposition, this chapter generally focuses on continuous optimization
problems, although some of the methods may also be used in discrete problems. In
the continuous case, it is often assumed that L is a “smooth” (perhaps several times
differentiable) function of 6. Continuous problems arise frequently in applications
such as model fitting (parameter estimation), adaptive control, neural network
training, signal processing, and experimental design. Discrete optimization (or
combinatorial optimization) is a large subject unto itself (resource allocation,
network routing, policy planning, etc.).

A major issue in optimization is distinguishing between global and local optima.
All other factors being equal, one would always want a globally optimal solution to
the optimization problem (i.e., at least one 0* in the set of values ®*). In practice,
however, it may not be feasible to find a global solution and one must be satisfied
with obtaining a local solution. For example, L may be shaped such that there is a
clearly defined minimum point over a broad region of the domain ®, while there is
a very narrow spike at a distant point. If the trough of this spike is lower than any
point in the broad region, the local optimal solution is better than any nearby 0, but
it is not be the best possible 6.

It is usually only possible to ensure that an algorithm approaches a local
minimum with a finite amount of resources being put into the optimization process.
That is, it is easy to construct functions that will “fool” any known algorithm,
unless the algorithm is given explicit prior information about the location of the
global solution — certainly not a case of practical interest! However, since the
local minimum may still yield a significantly improved solution (relative to no
formal optimization process at all), the local minimum may be a fully acceptable
solution for the resources available (human time, money, computer time, etc.) to be
spent on the optimization. However, we discuss several algorithms (random search,
stochastic approximation, and genetic algorithms) that are sometimes able to find
global solutions from among multiple local solutions.

7.1.3 Contrast of Stochastic and Deterministic Optimization

As a chapter on stochastic optimization, the algorithms considered here apply
where:

L. There is random noise in the measurements of L(0)

— and/or —

IL. There is a random (Monte Carlo) choice made in the search direction as the
algorithm iterates toward a solution.

176 J.C. Spall

In contrast, classical deterministic optimization assumes that perfect information
is available about the loss function (and derivatives, if relevant) and that this
information is used to determine the search direction in a deterministic manner at
every step of the algorithm. In many practical problems, such information is not
available. We discuss properties I and II below.

Let 0, be the generic notation for the estimate for § at the kth iteration of
whatever algorithm is being consi(;lered, k =0, 1, 2,.... Throughout this chapter,
the specific mathematical form of 0, will change as the algorithm being considered
changes. The following notation is used to represent noisy measurements of L at a
specific 0:

y(©0) = L(0) +¢(9), (7.2)

where ¢ represents the noise terms. Note that the noise terms show dependence on
0. This dependence is relevant for many applications. It indicates that the common
statistical assumption of independent, identically distributed (i.i.d.) noise does not
necessarily apply since 6 will be changing as the search process proceeds.

Relative to property I, noise fundamentally alters the search and optimization
process because the algorithm is getting potentially misleading information through-
out the search process. For example, as described in Example 1.4 of Spall (2003),
consider the following loss function with a scalar 8: L(0) = e~*!%sin(20). If
the domain for optimization is ® = [0,7], the (unique) minimum occurs at
0* = 3¢/4 ~ 2.36, as shown in Fig.7.1. Suppose that the analyst carrying
out the optimization is not able to calculate L(0), obtaining instead only noisy
measurements y(0) = L(0) 4+ ¢, where the noises ¢ are i.i.d. with distribution
N(0,0.5%) (a normal distribution with mean zero and variance 0.5%). The analyst
uses the y(8) measurements in conjunction with an algorithm to attempt to find 6*.

Consider the experiment depicted in Fig. 7.1 (with data generated via MATLAB).
Based on the simple method of collecting one measurement at each increment of 0.1
over the interval defined by ® (including the endpoints O and 7), the analyst would
falsely conclude that the minimum is at 6 = 5.9. As shown, this false minimum is
far from the actual 6*.

Noise in the loss function measurements arises in almost any case where physical
system measurements or computer simulations are used to approximate a steady-
state criterion. Some specific areas of relevance include real-time estimation and
control problems where data are collected “on the fly” as a system is operating
and problems where large-scale simulations are run as estimates of actual system
behavior.

Let us summarize two distinct problems involving noise in the loss function
measurements: target tracking and simulation-based optimization. In the tracking
problem there is a mean-squared error (MSE) criterion of the form

LO)=F (||actual output — desired 0utput||2> .

7 Stochastic Optimization 177

True
Minimum i False
(e*) ! Minimum
_2 L L
0 1 2 3 4 5 6 7

Fig. 7.1 Simple loss function L(0) with indicated minimum 6*. Note how noise causes the
algorithm to be deceived into sensing that the minimum is at the indicated false minimum.
(Reprinted from Spall, J.C.: Introduction to stochastic search and optimization: estimation,
simulation, and control. Wiley, (2003) with permission of John Wiley & Sons, Inc.)

The stochastic optimization algorithm uses the actual (observed) squared error
y(8) = | - ||?, which is equivalent to an observation of L embedded in noise. In
the simulation problem, let L(0) be the loss function representing some type of
“average” performance for the system. A single run of a Monte Carlo simulation
at a specific value of 0 provides a noisy measurement: y(0) = L(0)+ noise at 0.
(Note that it is rarely desirable to spend computational resources in averaging many
simulation runs at a given value of 0; in optimization, it is typically necessary to
consider many values of 0.) The above problems are described in more detail in
Examples 1.5 and 1.6 in Spall (2003).

Relative to the other defining property of stochastic optimization, property II
(i.e., randomness in the search direction), it is sometimes beneficial to deliberately
introduce randomness into the search process as a means of speeding convergence
and making the algorithm less sensitive to modeling errors. This injected (Monte
Carlo) randomness is usually created via computer-based pseudorandom number
generators. One of the roles of injected randomness in stochastic optimization is to
allow for “surprise” movements to unexplored areas of the search space that may
contain an unexpectedly good 0 value. This is especially relevant in seeking out a
global optimum among multiple local solutions. Some algorithms that use injected
randomness are random search (Sect.7.2), simultaneous perturbation stochastic
approximation (Sect. 7.3), and genetic algorithms (Sect. 7.4).

178 J.C. Spall
7.1.4 Some Principles of Stochastic Optimization

The discussion above is intended to motivate some of the issues and challenges
in stochastic optimization. Let us now summarize some important issues for the
implementation and interpretation of results in stochastic optimization.

The first issue we mention is the fundamental limits in optimization with only
noisy information about the L function. Foremost, perhaps, is that the statistical
error of the information fed into the algorithm — and the resulting error of the output
of the algorithm — can only be reduced by incurring a significant cost in number of
function evaluations. For the simple case of independent noise, the error decreases
at the rate 1/ VN, where N represents the number of L measurements fed into the
algorithm. This is a classical result in statistics, indicating that a 25-fold increase in
function evaluations reduces the error by a factor of five.

A further limit for multivariate (p > 1) optimization is that the volume of the
search region generally grows rapidly with dimension. This implies that one must
usually exploit problem structure to have a hope of getting a reasonable solution in
a high-dimensional problem.

All practical problems involve at least some restrictions on 0, although in some
applications it may be possible to effectively ignore the constraints. Constraints can
be encountered in many different ways, as motivated by the specific application.
Note that the constraint set ® does not necessarily correspond to the set of
allowable values for 0 in the search since some problems allow for the “trial”
values of the search to be outside the set of allowable final estimates. Constraints
are usually handled in practice on an ad hoc basis, especially tuned to the problem
at hand. There are few general, practical methods that apply broadly in stochastic
optimization. Michalewicz and Fogel (2000, Chap. 9), for example, discuss some of
the practical methods by which constraints are handled in evolutionary computation.
Similar methods apply in other stochastic algorithms.

In general search and optimization, it is very difficult (perhaps impossible) to
develop automated methods for indicating when the algorithm is close enough
to the solution that it can be stopped. Without prior knowledge, there is always
the possibility that 8 could lie in some unexplored region of the search space.
This applies even when the functions involved are relatively benign; see Solis and
Wets (1981) for mention of this in the context of twice-differentiable convex L.
Difficulties are compounded when the function measurements include noise.

It is quite normal for the environment to change over time. Hence, the solution to
a problem now may not be the best (or even a good) solution to the corresponding
problem in the future. In some search and optimization problems, the algorithm will
be explicitly designed to adapt to a changing environment and automatically provide
anew estimate at the optimal value (e.g., a control system). In other cases, one needs
to restart the process and find a new solution. In either sense, the problem solving
may never stop!

In reading or contributing to the literature on stochastic optimization, it is
important to recognize the limits of numerical comparisons by Monte Carlo. Monte

7 Stochastic Optimization 179

Carlo studies can be a sound scientific method of gaining insight and can be a
useful supplement to theory, much of which is based on asymptotic (infinite sample)
analysis. In fact, it is especially popular in certain branches of optimization to
create “test suites” of problems, where various algorithms compete against each
other. A danger arises, however, in making broadclaims about the performance of
individual algorithms based on the results of numerical studies. Performance can
vary tremendously under even small changes in the form of the functions involved or
the coefficient settings within the algorithms themselves. One must be careful about
drawing conclusions beyond those directly supported by the specific numerical
studies performed. For purposes of drawing objective conclusions about the relative
performance of algorithms, it is preferable to use both theory and numerical studies.

Some real systems have one (unique) globally “best” operating point (8*) in the
domain ® while others have multiple global solutions (in either case, of course,
there could be many locallyoptimal solutions). To avoid excessively cumbersome
discussion of algorithms and supporting implementation issues and theory, we often
refer to “the” solution 8 (versus “a” solution). In practice, an analyst may be
quite satisfied to reach a solution at or close to any one 0* € ©*,

The so-called no free lunch (NFL) theorems provide a formal basis for the
intuitively appealing idea that there is a fundamental tradeoff between algorithm
efficiency and algorithm robustness (reliability and stability in a broad range of
problems). In essence, algorithms that are very efficient on one type of problem are
not automatically efficient on problems of a different type. Hence, there can never
be a universally best search algorithm just as there is rarely (never?) a universally
best solution to any general problem of society. Wolpert and Macready (1997)
provided a general formal structure for the NFL theorems, although the general
ideas had been around for a long time prior to their paper (Wolpert and Macready
were the ones to coin the expression “no free lunch” in this search and optimization
context). The NFL theorems are established for discrete optimization with a finite
(but arbitrarily large) number of options. However, their applicability includes most
practical continuous problems because virtually all optimization is carried out on
32- or 64-bit digital computers. The theorems apply to the cases of both noise-
free and noisy loss measurements. NFL states, in essence, that an algorithm that is
effective on one class of problems is guaranteed to be ineffective on another class.
Spall (2003, Sects. 1.2.2 and 10.6) provides more-detailed discussion on the basis
and implications of NFL.

We are now in a position to discuss several popular stochastic optimization
methods. The summaries here are just that — summaries. Much more complete
discussions are available in the indicated references or in Spall (2003). We let 0
represent the estimate for 0 at the kth iteration of an algorithm under consideration.
Section 7.2 discusses random search methods, which are simple and surprisingly
powerful in many applications. Section 7.3 discusses stochastic approximation and
Sect. 7.4 discusses the popular genetic algorithms. Because of the relative brevity
of this review, there are many methods of stochastic optimization not covered here,
including simulated annealing, stochastic programming, evolutionary computation

180 J.C. Spall

other than genetic algorithms, temporal difference methods, and so on. Readers
with an interest in one of those may consult the references mentioned at the end
of Sect.7.1.1.

7.2 Random Search

This section describes some simple methods based on the notion of randomly
searching over the domain of interest. Section7.2.1 gives a short discussion of
general issues in direct random search methods. The algorithms discussed in
Sect.7.2.2 represent two versions of random search.

7.2.1 Some General Properties of Direct Random Search

Consider the problem of trying to find the optimal 8 € ® based on noise-free
measurements of . = L(0). Random search methods are perhaps the simplest
methods of stochastic optimization in such a setting and can be quite effective in
many problems. Their relative simplicity is an appealing feature to both practitioners
and theoreticians. These direct random search methods have a number of advantages
relative to most other search methods. The advantages include relative ease of cod-
ing in software, the need to only obtain L measurements (versus gradients or other
ancillary information), reasonable computational efficiency (especially for those
direct search algorithms that make use of some local information in their search),
broad applicability to non-trivial loss functions and/or to that may be continuous,
discrete, or some hybrid form, and a strong theoretical foundation. Some of these
attributes were mentioned in the forward-looking paper of Karnopp (1963). A good
recent survey of random search and related methods is Kolda et al. (2003).

7.2.2 Two Algorithms for Random Search

This section describes two direct random search techniques. These two algorithms
represent only a tiny fraction of available methods. Solis and Wets (1981) and
Zhigljavsky (1991) are among many references discussing these and other random
search methods. The two algorithms here are intended to convey the essential flavor
of most available direct random search algorithms. With the exception of some
discussion at the end of the subsection, the methods here assume perfect (noise-
free) values of L.

The first method we discuss is “blind random search.” This is the simplest
random search method, where the current sampling for does not take into account
the previous samples. That is, this blind search approach does not adapt the current

7 Stochastic Optimization 181

sampling strategy to information that has been garnered in the search process. The
approach can be implemented in batch (non-recursive) form simply by laying down
a number of points in ® and taking the value of 0 yielding the lowest L value as
our estimate of the optimum. The approach can be conveniently implemented in
recursive form as we illustrate below.

The simplest setting for conducting the random sampling of new (candidate)
values of 0 is when © is a hypercube and we are using uniformly generated values of
0. The uniform distribution is continuous or discrete for the elements of § depending
on the definitions for these elements. In fact, the blind search form of the algorithm
is unique among all general stochastic optimization algorithms in that it is the only
one without any adjustable algorithm coefficients that need to be “tuned” to the
problem at hand. (Of course, a de facto tuning decision has been made by choosing
the uniform distribution for sampling.)

For a domain ® that is not a hypercube or for other sampling distributions,
one may use transformations, rejection methods, or Markov chain Monte Carlo
to generate the sample 0 values (see, e.g., Gentle 2003). For example, if ® is an
irregular shape, one can generate a sample on a hypercube superset containing ®
and then reject the sample point if it lies outside of ©.

The steps for a recursive implementation of blind random search are given below.
This method applies when 0 has continuous, discrete, or hybrid elements.

Blind Random Search

step O (Imitialization)Choose an initial value of 0, say 60 € 0, either randomly or
deterministically. (If random, usually a uniform distribution on © is used.)
Calculate L(8¢). Setk = 0.

step 1 Generate a new independent value 8,y (k + 1) € ©, according to the chosen
probability distribution. If L(Opew(k+1)) < L(0g),set 041 = Open(k+1).
Else, take 0,4+ = 0.

step 2 Stop if the maximum number of L evaluations has been reached or the user
is otherwise satisfied with the current estimate for 0 via appropriate stopping
criteria; else, return to step 1 with the new k set to the former k + 1.

The above algorithm converges almost surely (a.s.) to ©* under very general
conditions (see, e.g., Spall 2003, pp. 40—41). Of course, convergence alone is an
incomplete indication of the performance of the algorithm. It is also of interest to
examine the rate of convergence. The rate is intended to tell the analyst how close
0 is likely to be to 8* for a given cost of search. While blind random search is a
reasonable algorithm when 0 is low dimensional, it can be shown that the method
is generally a very slow algorithm for even moderately dimensioned 9 (see, e.g.,
Spall 2003, pp. 42—43). This is a direct consequence of the exponential increase
in the size of the search space as p increases. As an illustration, Spall (2003,
Example 2.2) considers a case where ® = [0, 1]” (the p-dimensional hypercube

182 J.C. Spall

with minimum and maximum values of 0 and 1 for each component of 6) and where
one wishes to guarantee with probability 0.90 that each element of 0 is within 0.04
units of the optimal value. As p increases from one to ten, there is an approximate
10'°-fold increase in the number of loss function evaluations required.

Blind search is the simplest random search in that the sampling generating the
new 0 value does not take account of where the previous estimates of § have been.
The random search algorithm below is slightly more sophisticated in that the random
sampling is a function of the position of the current best estimate for 6. In this way,
the search is more localized in the neighborhood of that estimate, allowing for a
better exploitation of information that has previously been obtained about the shape
of the loss function.

The localized algorithm is presented below. This algorithm was described in
Matyas (1965). Note that the use of the term “localized” here pertains to the
sampling strategy and does not imply that the algorithm is only useful for local
(versus global) optimization in the sense described in Sect. 7.1. In fact, the algorithm
has global convergence properties as described below. As with blind search, the
algorithm may be used for continuous or discrete problems.

Localized Random Search

step O (Initialization)Pick an initial guess 0, € O, either randomly or with prior
information. Set k = 0.

step I Generate an independent random vector d; € R” and add it to the current 8
value, (-)k Check if (-)k + dj € O.If (-)k + d; ¢ O, generate a new dj and
repeat or, alternatively, move (-)k + d|. to the nearest valid point within ®. Let
Onew (k + 1) equal 04 + di € ® or the aforementioned nearest valid point in
0.

step2 If L(Opew(k + 1)) < L(ék), set ék+1 = Bew(k + 1); else, set ék+1 = ék.

step 3 Stop if the maximum number of L evaluations has been reached or the user
is otherwise satisfied with the current estimate for 0 via appropriate stopping
criteria; else, return to step 1 with the new k set to the former k + 1.

For continuous problems, Matyas (1965) and others have used the (multivariate)
normal distribution for generating dx. However, the user is free to set the distribution
of the deviation vector dj. The distribution should have mean zero and each
component should have a variation (e.g., standard deviation) consistent with the
magnitudes of the corresponding 0 elements. This allows the algorithm to assign
roughly equal weight to each of the components of 6 as it moves through the
search space. Although not formally allowed in the convergence theory, it is often
advantageous in practice if the variability in dy is reduced as k increases. This allows
one to focus the search more tightly as evidence is accrued on the location of the
solution (as expressed by the location of our current estimate 0).

7 Stochastic Optimization 183

The convergence theory for the localized algorithms tends to be more restrictive
than the theory for blind search. Solis and Wets (1981) provide a theorem for
global convergence of localized algorithms, but the theorem conditions may not be
verifiable in practice. An earlier theorem from Matyas (1965) (with proof corrected
in Baba et al. 1977) provides for global convergence of the localized search above
if L is a continuous function. The convergence is in the “in probability” sense.
The theorem allows for more than one global minimum to exist in ®. Therefore, in
general, the result provides no guarantee of ék ever settling near any one value 6*.
We present the theorem statement below.

Convergence theorem for localized search. Let ®* represent the set of global
minima for L (see Sect.7.1). Suppose that L is continuous on a bounded domain ©
and that if 0, + dix ¢ © at a given iteration, a new dj is randomly generated. For
any > 0, let Ry = Jprce+{0|L(8) — L(0%)| < n}. Then, for di having an i.i.d.
N(0, 1,) distribution, limy o P(8; € R;) = 1.

The above algorithm might be considered the most naive of the localized random
search algorithms. More sophisticated approaches are also easy to implement. For
instance, if a search in one direction increases L, then it is likely to be beneficial to
move in the opposite direction. Further, successive iterations in a direction that tend
to consistently reduce L should encourage further iterations in the same direction.
Many algorithms exploiting these simple properties exist (e.g., Solis and Wets 1981;
Zhigljavsky 1991).

In spite of its simplicity, the localized search algorithm is surprisingly effective
in a wide range of problems. Several demonstrations are given in Sects.2.2.2 to 2.4
in Spall (2003).

The random search algorithms above are usually based on perfect (noise-free)
measurements of the loss function. This is generally considered a critical part of
such algorithms (Pflug 1996, p. 25). In contrast to the noise-free case, random search
methods with noisy loss evaluations of the form y(0) = L(0) + (8) generally do
not formally converge.

There are, however, means by which the random search techniques can be
modified to accommodate noisy measurements, at least on a heuristic basis. Some
of the limited formal convergence theory for random search as applied to the noisy
measurement case includes Yakowitz (1973, Sect.4.4.4) and Zhigljavsky (1991,
Chap. 3). Spall (2003, Sect.2.3) discusses some practical methods for coping with
noise, including simple averaging of the noisy loss function evaluations y () at each
value of § generated in the search process and a modification of the algorithm’s key
decision criterion (step 1 of blind random search and step 2 of localized random
search) to build in some robustness to the noise. However, the averaging method
can be costly since the error decreases only at the rate of 1/+/N when averaging
N function evaluations with independent noise. Likewise, the altered threshold may
be costly by rejecting too many changes in @ due to the conservative nature of the
modified criterion. The presence of noise in the loss evaluations makes the optimiza-
tion problem so much more challenging that there is little choice but to accept these
penalties if one wants to use a simple random search. We see in the next section that

184 J.C. Spall

stochastic approximation tends to be more adept at coping with noise at the price of
a more restrictive problem setting than the noise-free convergence theorem above.

7.3 Stochastic Approximation

7.3.1 Introduction

Stochastic approximation (SA) is a cornerstone of stochastic optimization. Robbins
and Monro (1951) introduced SA as a general root-finding method when only noisy
measurements of the underlying function are available. Let us now discuss some
aspects of SA as applied to the more specific problem of root-finding in the context
of optimization. With a differentiable loss function L(0), recall the familiar set of p
equations and p unknowns for use in finding a minimum 0 *:

JaL
— =0. 7.3
0 (7.3)

g(®) =
(Of course, side conditions are required to guarantee that a root of (7.3) is a mini-
mum, not a maximum or saddlepoint.) Note that (7.3) is nominally only directed at
local optimization problems, although some extensions to global optimization are
possible, as briefly discussed in Sect. 7.3.3. There are a number of approaches for
solving the problem represented by (7.3) when direct (usually noisy) measurements
of the gradient g are available. These typically go by the name of stochastic gradient
methods (e.g., Spall 2003, Chap. 5). In contrast to the stochastic gradient approach
— but consistent with the emphasis in the random search and genetic algorithms
(Sects. 7.2 and 7.4 here) — let us focus on SA when only measurements of L are
available. However, unlike the emphasis in random search and genetic algorithms,
we consider noisy measurements of L.
To motivate the general SA approach, first recall the familiar form for the
unconstrained deterministic steepest descent algorithm for solving (7.3):

01 = 0 — arg(0y),

where the gain (or step size) satisfies ax > 0 (see, e.g., Bazaraa et al. 1993, pp.
300-308 or any other book on mathematical programming; Spall 2003, Sect. 1.4).
This algorithm requires exact knowledge of g. Steepest descent converges to 6*
under certain fairly general conditions. (A notable variation of steepest descent is
the Newton-Raphson algorithm [sometimes called Newton’s method; e.g., Bazaraa
et al. 1993, pp. 308-312], which has the form 0,1, = 0; — a;H(0;) 'g(01),
where H(-) is the Hessian [second derivative] matrix of L. Under more restrictive
conditions, the Newton—Raphson algorithm has a much faster rate of convergence
to 0 than steepest descent. However, with its requirement for a Hessian matrix, it

7 Stochastic Optimization 185

is generally more challenging to implement. An SA version of Newton—Raphson is
discussed briefly at the end of Sect.7.3.3.

Unlike with steepest descent, it is assumed here that we have no direct knowledge
of g. The recursive procedure of interest is in the general SA form

01 = 0p — 18 (01), (7.4)

where g, (é x) is the estimate of g at the iterate ék based on measurements of the
loss function. Hence, (7.4) is analogous to the steepest descent algorithm, with
the gradient estimate g,(0) replacing the direct gradient g at 6 = 0.. The gain
ar > 0 here also acts in a way similar to its role in the steepest descent form. Under
appropriate conditions, the iteration in (7.4) converges to 0* in some stochastic
sense (usually almost surely, a.s.). (There are constrained forms of SA, but we do
not discuss those here; see, e.g., Spall 2003, Chaps. 4-8).

Sections 7.3.2 and 7.3.3 discuss two SA methods for carrying out the optimiza-
tion task using noisy measurements of the loss function. Section 7.3.2 discusses the
traditional finite-difference SA method and Sect.7.3.3 discusses the more recent
simultaneous perturbation method.

7.3.2 Finite-Difference SA

The essential part of (7.4) is the gradient approximation g (ék). The traditional
means of forming the approximation is the finite-difference method. Expression
(7.4) with this approximation represents the finite-difference SA (FDSA) algorithm.
One-sided gradient approximations involve measurements y(0;) and y(0; +
perturbation), while two-sided approximations involve measurements of the form
(8 £ perturbation). The two-sided FD approximation for use with (7.4) is

yOr + cidy) — y (O — i)
2¢k

2.(60) = : : (7.5)
YO, +cké,) — y(Or — ik),)
ZCk

where &; denotes a vector with a 1 in the ith place and 0’s elsewhere and ¢ > 0
defines the difference magnitude. The pair {ai, ci } are the gains (or gain sequences)
for the FDSA algorithm. The two-sided form in (7.5) is the obvious multivariate
extension of the scalar two-sided form in Kiefer and Wolfowitz (1952). The initial
multivariate method in Blum (1954) used a one-sided approximation.

It is of fundamental importance to determine conditions such that 8, as shown
in (7.4) and (7.5) converges to 0* in some appropriate stochastic sense. The
convergence theory for the FDSA algorithm is similar to “standard” convergence

186 J.C. Spall

theory for the root-finding SA algorithm of Robbins and Monro (1951). Additional
difficulties, however, arise due to a bias in g, ((-) &) as an estimator of g(Ok) That is,
standard conditions for convergence of SA require unbiased estimates of g(-) at all
k. On the other hand, g, (0%), as shown in (7.5), is a biased estimator, with the bias
having a magnitude of order c/%- We do not present the details of the convergence
theory here, as it is available in many other references (e.g., Fabian 1971; Kushner
and Yin 2003, Chaps.5-8; Ruppert 1991; Spall 2003, Chap. 6). However, let us
note that the standard conditions on the gain sequences are:a; > 0, ¢ > 0, ax —
0,ck = 0. 72gar = oo, and Y j2gal/ci < oo. The choice of these gain
sequences is critical to the performance of the method. Common forms for the
sequences are:

a C
ap = ———— and ¢ = ———,
“T Uk + 1+ A Tk + 1y

where the coefficients a, ¢, o, and y are strictly positive and A > 0. The user
must choose these coefficients, a process usually based on a combination of the
theoretical restrictions above, trial-and-error numerical experimentation, and basic
problem knowledge. In some cases, it is possible to partially automate the selection
of the gains (see, e.g., Spall 2003, Sect. 6).

Let us summarize a numerical example based on the following p = 10 loss

function:
10 10

L(0) =6"B"BO +0.1) " (B6); +0.01) (BY);.

i=1 i=1

where (-); represents the ith component of the argument vector B, and B is such
that 10B is an upper triangular matrix of 1’s. The minimum occurs at 8* = 0 with
L(0*) = 0; all runs are initialized at 6, = [1,1,...,1]7 (so L(8y) = 4.178).
Suppose that the measurement noise ¢ is independent, identically distributed (i.i.d.)
N(0,1). All iterates 0, are constrained to be in © = [—5, 5]'°. If an iterate falls
outside of ®, each individual component of the candidate 6 that violates the interval
[—5, 5] is mapped to it nearest endpoint £5. The subsequent gradient estimate is
formed at the modified (valid) 0 value. (The perturbed values ék =+ ¢ &; are allowed
to go outside of ®.)

Using n = 1,000 loss measurements per run, we compare FDSA with the
localized random search method of Sect. 7.2. Based on principles for gain selection
in Spall (2003, Sect. 6) together with some limited trial-and-error experimentation,
we chosea = 05, ¢ = 1, A = 5, a = 0.602, and y = 0.101 for FDSA
and an average of 20 loss measurements per iteration with normally distributed
perturbations having distribution N (0, 0.5%I) for the random search method.

Figure 7.2 summarizes the results. Each curve represents the sample mean of 50
independent replications. An individual replication of one of the two algorithms has
much more variation than the corresponding smoothed curve in the figure.

Figure7.2 shows that both algorithms produce an overall reduction in the true
loss function as the number of measurements approach 1,000. The curves illustrate

7 Stochastic Optimization 187

5 : :

14 =
L)

(log Random search
scale)
FDSA
0.1
0.05 T ; T ™ T T
0 200 400 600 800 1000

Number of Loss Measurements

Fig. 7.2 Comparison of FDSA and localized random search. Each curve represents sample mean
of 50 independent replications

that FDSA outperforms random search in this case. To make the comparison fair,
attempts were made to tune each algorithm to provide approximately the best
performance possible. Of course, one must be careful about using this example to
infer that such a result holds in other problems as well.

7.3.3 Simultaneous Perturbation SA

The FDSA algorithm of Sect.7.3.2 is a standard SA method for carrying out opti-
mization with noisy measurement of the loss function. However, as the dimension
p grows large, the number of loss measurements required may become prohibitive.
That is, each two-sided gradient approximation requires 2p loss measurements.
More recently, the simultaneous perturbation SA (SPSA) method was introduced,
requiring only two measurements per iteration to form a gradient approximation
independent of the dimension p. This provides the potential for a large savings in
the overall cost of optimization.

Beginning with the generic SA form in (7.4), we now present the SP form of the
gradient approximation. In this form, all elements of 0, are randomly perturbed
together to obtain two loss measurements y(-). For the two-sided SP gradient
approximation, this leads to

188 J.C. Spall

¥ O + cxAp) —y B —cxAp)

2k Ag
8(0x) = :
y Bx + kM) =y Bx — i Ag) (7.6)
ch Ak],
YO, +ckAp) =y O —cxA) 17
— o [ag. 885
where the mean-zero p-dimensional random perturbation vector, Ay = [Ag,
Ao, ..., Akp]T, has a user-specified distribution satisfying certain conditions and

¢k is a positive scalar (as with FDSA). Because the numerator is the same in all
p components of g, (ék), the number of loss measurements needed to estimate the
gradient in SPSA is fwo, regardless of the dimension p.

Relative to FDSA, the p-fold measurement savings per iteration, of course,
provides only the potential for SPSA to achieve large savings in the total number of
measurements required to estimate § when p is large. This potential is realized if the
number of iterations required for effective convergence to an optimum 0* does not
increase in a way to cancel the measurement savings per gradient approximation.
One can use asymptotic distribution theory to address this issue. In particular, both
FDSA and SPSA are known to be asymptotically normally distributed under very
similar conditions. One can use this asymptotic distribution result to characterize the
mean-squared error £ (||ék — 0*||?) for the two algorithms for large k. Fortunately,
under fairly broad conditions, the p-fold savings at each iteration is preserved across
iterations. In particular, based on asymptotic considerations:

Under reasonably general conditions (see Spall 1992, or Spall 2003,
Chap. 7), the SPSA and FDSA algorithms achieve the same level of statistical
accuracy for a given number of iterations even though SPSA uses only 1/p
times the number of function evaluations of FDSA (since each gradient
approximation uses only 1/ p the number of function evaluations).

The SPSA Web site www.jhuapl.edu/SPSA includes many references on the
theory and application of SPSA. On this Web site, one can find many accounts of
numerical studies that are consistent with the efficiency statement above. (Of course,
given that the statement is based on asymptotic arguments and associated regularity
conditions, one should not assume that the result always holds.) In addition, there
are references describing many applications. These include queuing systems, pat-
tern recognition, industrial quality improvement, aircraft design, simulation-based
optimization, bioprocess control, neural network training, chemical process control,
fault detection, human-machine interaction, sensor placement and configuration,
and vehicle traffic management.

We do not present here the formal conditions for convergence and asymptotic
normality of SPSA, as such conditions are available in many references (e.g.,
Dippon and Renz 1997; Gerencsér et al. 1999; Spall 1992; Spall 2003, Chap. 7).

www.jhuapl.edu/SPSA

7 Stochastic Optimization 189

These conditions are essentially identical to the standard conditions for convergence
of SA algorithms, with the exception of the additional conditions on the user-
generated perturbation vector Ay.

The choice of the distribution for generating the Aj is important to the
performance of the algorithm. The standard conditions for the elements Ay of Ay
are that the {Ay;} are independent for all k, i, identically distributed for all i at each
k, symmetrically distributed about zero and uniformly bounded in magnitude for all
k. In addition, there is an important inverse moments condition:

| 2
E||l— <C

forsome t > 0 and C > 0. The role of this condition is to control the variation of the
elements of g, (ék) (which have Ay; in the denominator). One simple and popular
distribution that satisfies the inverse moments condition is the symmetric Bernoulli
41 distribution. (In fact, as discussed in Spall 2003, Sect.7.7, this distribution can
be shown to be optimal under general conditions when using asymptotic considera-
tions.) Two common mean-zero distributions that do not satisfy the inverse moments
condition are symmetric uniform and normal with mean zero. The failure of both
of these distributions is a consequence of the amount of probability mass near zero.
Exercise 7.3 in Spall (2003), illustrates the dramatic performance degradation that
can occur through using distributions that violate the inverse moments condition.

As with any real-world implementation of stochastic optimization, there are
important practical considerations when using SPSA. One is to attempt to define
0 so that the magnitudes of the 6 elements are similar to one another. This desire
is apparent by noting that the magnitudes of all components in the perturbations
cx A are identical in the case where identical Bernoulli distributions are used.
Although it is not always possible to choose the definition of the elements in 0,
in most cases an analyst will have the flexibility to specify the units for 6 to ensure
similar magnitudes. Another important consideration is the choice of the gains a,
ci . The principles described for FDSA above apply to SPSA as well. Section 7.5 of
Spall (2003), provides additional practical guidance.

There have been a number of important extensions of the basic SPSA method
represented by the combination of (7.4) and (7.5). Three such extensions are to
the problem of global (versus local) optimization, to discrete (versus continuous)
problems, and to include second-order-type information (Hessian matrix) with the
aim of creating a stochastic analogue to the deterministic Newton—Raphson method.

The use of SPSA for global minimization among multiple local minima is
discussed in Maryak and Chin (2008). One of their approaches relies on injecting
Monte Carlo noise in the right-hand side of the basic SPSA updating step in (7.4).
This approach is a common way of converting SA algorithms to global optimizers
through the additional “bounce” introduced into the algorithm (Yin 1999). Maryak
and Chin (2008) also show that basic SPSA without injected noise (i.e., (7.4)
and (7.6) without modification) may, under certain conditions, be a global optimizer.
Formal justification for this result follows because the random error in the SP

190 J.C. Spall

gradient approximation acts in a way that is statistically equivalent to the injected
noise mentioned above.

Discrete optimization problems (where § may take on discrete or combined
discrete/continuous values) are discussed in Gerencsér et al. (1999), Hill (2005),
and Wang and Spall (2011). Discrete SPSA relies on a fixed-gain (constant a; and
ci) version of the standard SPSA method. The parameter estimates produced are
constrained to lie on a discrete-valued grid. Although gradients do not exist in
this setting, the approximation in (7.6) (appropriately modified) is still useful as
an efficient measure of slope information.

Finally, using the simultaneous perturbation idea, it is possible to construct
a simple method for estimating the Hessian (or Jacobian) matrix of L while,
concurrently, estimating the primary parameters of interest (). This adaptive
SPSA (ASP) approach produces a stochastic analogue to the deterministic Newton-
Raphson algorithm (e.g., Bazaraa et al. 1993, pp. 308-312), leading to a recursion
that is optimal or near-optimal in its rate of convergence and asymptotic error. The
approach applies in both the gradient-free setting emphasized in this section and
in the root-finding/stochastic gradient-based (Robbins-Monro) setting reviewed in
Spall (2003, Chaps. 4 and 5). Like the standard SPSA algorithm, the ASP algorithm
requires only a small number of loss function (or gradient, if relevant) measurements
per iteration — independent of the problem dimension — to adaptively estimate the
Hessian and parameters of primary interest. Further information is available at
Spall (2000) or Spall (2003, Sect.7.8). A recent paper (Spall 2009) presents two
enhancements to ASP, one related to feedback to reduce the error and the other
enhancement related to optimal weighting of input information. Both enhancements
are aimed at improving the quality of the estimates for underlying Hessian (or
Jacobian) matrices, thereby improving the quality of the estimates for the primary
parameters of interest 0.

The Hessian estimation aspect of ASP is also useful in non-SA applications, such
as calculating the Fisher information matrix (FIM) for problems where the FIM is
difficult to obtain analytically (e.g., Spall 2005; Das et al. 2010). The FIM has wide
applications in areas such as uncertainty calculation (Ljung 1999, pp. 215-219),
experimental design (Spall 2003, Chap. 17; Spall 2010), and Bayesian prior distri-
bution selection (Jeffreys 1946). The Hessian estimation provides an efficient Monte
Carlo method for determining the FIM in difficult high-dimensional problems.

7.4 Genetic Algorithms

7.4.1 Introduction

Genetic algorithms (GAs) represent a popular approach to stochastic optimization,
especially as relates to the global optimization problem of finding the best solution
among multiple local mimima. (GAs may be used in general search problems that

7 Stochastic Optimization 191

are not directly represented as stochastic optimization problems, but we focus here
on their use in optimization.) GAs represent a special case of the more general
class of evolutionary computation algorithms (which also includes methods such
as evolutionary programming and evolution strategies). The GA applies when the
elements of are real-, discrete-, or complex-valued. As suggested by the name, the
GA is based loosely on principles of natural evolution and survival of the fittest. In
fact, in GA terminology, an equivalent maximizationcriterion, such as —L(0) (or its
analogue based on a bit-string form of 0), is often referred to as the fitness function
to emphasize the evolutionary concept of the fittest of a species.

A fundamental difference between GAs and the random search and SA algo-
rithms considered in Sects.7.2 and 7.3 is that GAs work with a population of
candidate solutions to the problem. The previous algorithms worked with one
solution and moved toward the optimum by updating this one estimate. GAs
simultaneously consider multiple candidate solutions to the problem of minimizing
L and iterate by moving this population of solutions toward a global optimum. The
terms generation and iteration are used interchangeably to describe the process
of transforming one population of solutions to another. Figure 7.3 illustrates the
successful operations of a GA for a population of size 12 with problem dimension
p = 2. In this conceptual illustration, the population of solutions eventually come
together at the global optimum.

The use of a population versus a single solution affects in a basic way the range of
practical problems that can be considered. In particular, GAs tend to be best suited
to problems where the loss function evaluations are computer-based calculations
such as complex function evaluations or simulations. This contrasts with the single-
solution approaches discussed earlier, where the loss function evaluations may
represent computer-based calculations or physical experiments. Population-based
approaches are not generally feasible when working with real-time physical exper-
iments. Implementing a GA with physical experiments requires that either there
be multiple identical experimental setups (parallel processing) or that the single
experimental apparatus be set to the same state prior to each population member’s
loss evaluation (serial processing). These situations do not occur often in practice.

=z -l =

S~—_after 7

iterations

Fig. 7.3 Minimization of multimodal loss function. Successful operations of a GA with a
population of 12 candidate solutions clustering around the global minimum after some number
of iterations (generations). (Reprinted from Spall, J.C.: Introduction to stochastic search and
optimization: estimation, simulation, and control. Wiley, (2003) with permission of John Wiley
& Sons, Inc.)

192 J.C. Spall

Specific values of 6 in the population are referred to as chromosomes. The
central idea in a GA is to move a set (population) of chromosomes from an initial
collection of values to a point where the fitness function is optimized. We let N
denote the population size (number of chromosomes in the population). Most of
the early work in the field came from those in the fields of computer science
and artificial intelligence. More recently, interest has extended to essentially all
branches of business, engineering, and science where search and optimization are
of interest. The widespread interest in GAs appears to be due to the success in
solving many difficult optimization problems. Unfortunately, to an extent greater
than with other methods, some interest appears also to be due to a regrettable
amount of “salesmanship” and exaggerated claims. (For example, in a recent
software advertisement, the claim is made that the software .. .uses GAs to solve
any optimization problem.” Such statements are provably false.) While GAs are
important tools within stochastic optimization, there is no formal evidence of
consistently superior performance — relative to other appropriate types of stochastic
algorithms — in any broad, identifiable class of problems.

Let us now give a very brief historical account. The reader is directed to
Goldberg (1989, Chap. 4), Mitchell (1996, Chap. 1),Michalewicz (1996, pp. 1-10),
Fogel (2000, Chap.3), and Spall (2003, Sect.9.2) for more complete historical
discussions. There had been some success in creating mathematical analogues of
biological evolution for purposes of search and optimization since at least the 1950s
(e.g., Box 1957). The cornerstones of modern evolutionary computation — evolution
strategies, evolutionary programming, and GAs — were developed independently of
each other in the 1960s and 1970s. John Holland at the University of Michigan
published the seminal monograph Adaptation in Natural and Artificial Systems
(Holland 1975). There was subsequently a sprinkle of publications, leading to the
first full-fledged textbook Goldberg (1989). Activity in GAs grew rapidly beginning
in the mid-1980s, roughly coinciding with resurgent activity in other artificial
intelligence-type areas such as neural networks and fuzzy logic. There are now
many conferences and books in the area of evolutionary computation (especially
GAs), together with countless other publications.

7.4.2 Chromosome Coding and the Basic GA Operations

This section summarizes some aspects of the encoding process for the population
chromosomes and discusses the selection, elitism, crossover, and mutation opera-
tions. These operations are combined to produce the steps of the GA.

An essential aspect of GAs is the encoding of the N values of 0 appearing in
the population. This encoding is critical to the GA operations and the associated
decoding to return to the natural problem space in 0. Standard binary (0, 1)
bit strings have traditionally been the most common encoding method, but other
methods include gray coding (which also uses (0, 1) strings, but differs in the way
the bits are arranged) and basic computer-based floating-point representation of the

7 Stochastic Optimization 193

real numbers in 0. This 10-character coding is often referred to as real-number
coding since it operates as if working with 0 directly. Based largely on successful
numerical implementations, this natural representation of 6 has grown more popular
over time. Details and further references on the above and other coding schemes
are given in Michalewicz (1996, Chap. 5), Mitchell (1996, Sects.5.1.1 and 5.1.2),
Fogel (2000, Sects. 3.5 and 4.3), and Spall (2003, Sect. 9.3).

Let us now describe the basic operations mentioned above. For consistency
with standard GA terminology, let us assume that L(0) has been transformed to
a fitness function with higher values being better. A common transformation is to
simply set the fitness function to —L(0) 4+ C, where C > 0 is a constant that
ensures that the fitness function is nonnegative on ® (nonnegativity is only required
in some GA implementations). Hence, the operations below are described for a
maximization problem. It is also assumed here that the fitness evaluations are noise-
free. Unless otherwise noted, the operations below apply with any coding scheme
for the chromosomes.

The selection and elitism steps occur after evaluating the fitness function for the
current population of chromosomes. A subset of chromosomes is selected to use
as parents for the succeeding generation. This operation is where the survival of
the fittest principle arises, as the parents are chosen according to their fitness value.
While the aim is to emphasize the fitter chromosomes in the selection process, it is
important that not foo much priority is given to the chromosomes with the highest
fitness values early in the optimization process. Too much emphasis of the fitter
chromosomes may tend to reduce the diversity needed for an adequate search of
the domain of interest, possibly causing premature convergence in a local optimum.
Hence methods for selection allow with some nonzero probability the selection of
chromosomes that are suboptimal.

Associated with the selection step is the optional “elitism” strategy, where the
N, < N best chromosomes (as determined from their fitness evaluations) are placed
directly into the next generation. This guarantees the preservation of the N, best
chromosomes at each generation. Note that the elitist chromosomes in the original
population are also eligible for selection and subsequent recombination.

As with the coding operation for 8, many schemes have been proposed for the
selection process of choosing parents for subsequent recombination. One of the
most popular methods is roulette wheel selection (also called fitness proportionate
selection). In this selection method, the fitness functions must be nonnegative
on ®. An individual’s slice of a Monte Carlo-based roulette wheel is an area
proportional to its fitness. The “wheel” is spun in a simulated fashion N — N,
times and the parents are chosen based on where the pointer stops. Another
popular approach is called tournament selection. In this method, chromosomes are
compared in a “tournament,” with the better chromosome being more likely to
win. The tournament process is continued by sampling (with replacement) from
the original population until a full complement of parents has been chosen. The
most common tournament method is the binary approach, where one selects two
pairs of chromosomes and chooses as the two parents the chromosome in each pair
having the higher fitness value. Empirical evidence suggests that the tournament

194 J.C. Spall

Parents Children
1101]101101 1101/011010

m—
1001/011010 1001]101101

Fig. 7.4 Example of crossover operator under binary coding with one splice point

selection method often performs better than roulette selection. (Unlike tournament
selection, roulette selection is very sensitive to the scaling of the fitness function.)
Mitchell (1996, Sect. 5.4) provides a good survey of several other selection methods.

The crossover operation creates offspring of the pairs of parents from the
selection step. A crossover probability P, is used to determine if the offspring
represents a blend of the chromosomes of the parents. If no crossover takes place,
then the two offspring are clones of the two parents. If crossover does take place,
then the two offspring are produced according to an interchange of parts of the
chromosome structure of the two parents. Figure 7.4 illustrates this for the case of a
ten-bit binary representation of the chromosomes. This example shows one-point
crossover, where the bits appearing after one randomly chosen dividing (splice)
point in the chromosome are interchanged. In general, one can have a number of
splice points up to the number of bits in the chromosomes minus one, but one-point
crossover appears to be the most commonly used.

Note that the crossover operator also applies directly with real-number coding
since there is nothing directly connected to binary coding in crossover. All
that is required are two lists of compatible symbols. For example, one-point
crossover applied to the chromosomes (0 values) [6.7, —7.4,4.0,3.9|6.2, —1.5] and
[—3.8,5.3,9.2,-0.6|8.4, —5.1] yields the two children: [6.7,—7.4,4.0,3.9,8.4,
—5.1]and [-3.8,5.3,9.2,-0.6,6.2, —1.5].

The final operation we discuss is mutation. Because the initial population may
not contain enough variability to find the solution via crossover operations alone, the
GA also uses a mutation operator where the chromosomes are randomly changed.
For the binary coding, the mutation is usually done on a bit-by-bit basis where a
chosen bit is flipped from O to 1, or vice versa. Mutation of a given bit occurs
with small probability P,,. Real-number coding requires a different type of mutation
operator. That is, with a (0, 1)-based coding, an opposite is uniquely defined, but
with a real number, there is no clearly defined opposite (e.g., it does not make sense
to “flip” the 2.74 element). Probably the most common type of mutation operator
is simply to add small independent normal (or other) random vectors to each of the
chromosomes (the 8 values) in the population.

As discussed in Sect. 7.1.4, there is no easy way to know when a stochastic
optimization algorithm has effectively converged to an optimum. This includes GAs.
The one obvious means of stopping a GA is to end the search when a budget
of fitness (equivalently, loss) function evaluations has been spent. Alternatively,
termination may be performed heuristically based on subjective and objective

7 Stochastic Optimization 195

impressions about convergence. In the case where noise-free fitness measurements
are available, criteria based on fitness evaluations may be most useful. For example,
a fairly natural criterion suggested in Schwefel (1995, p. 145) is to stop when
the maximum and minimum fitness values over the N population values within
a generation are sufficiently close to one another. However, this criterion provides
no formal guarantee that the algorithm has found a global solution.

7.4.3 The Core Genetic Algorithm

The steps of a basic form of the GA are given below. These steps are general enough
to govern many (perhaps most) modern implementations of GAs, including those in
modern commercial software. Of course, the performance of a GA typically depends
greatly on the implementation details, just as with other stochastic optimization
algorithms. Some of these practical implementation issues are taken up in the next
section.

Core GA Steps for Noise-Free Fitness Evaluations

step O (Initialization) Randomly generate an initial population of N chromosomes
and evaluate the fitness function (the conversion of L(0) to a function to be
maximized for the encoded version of 0) for each of the chromosomes.

step 1 (Parent selection) Set N, = 0 if elitism strategy is not used; 0 < N, < N
otherwise. Select with replacement N — N, parents from the full population
(including the N, elitist elements). The parents are selected according to their
fitness, with those chromosomes having a higher fitness value being selected
more often.

step 2 (Crossover) For each pair of parents identified in step 1, perform crossover
on the parents at a randomly (perhaps uniformly) chosen splice point (or
points if using multi-point crossover) with probability P,.. If no crossover
takes place (probability 1 — P,), then form two offspring that are exact copies
(clones) of the two parents.

step 3 (Replacement and mutation) While retaining the N, best chromosomes
from the previous generation, replace the remaining N — N, chromosomes
with the current population of offspring from step 2. For the bit-based
implementations, mutate the individual bits with probability P,; for real
coded implementations, use an alternative form of “small” modification (in
either case, one has the option of choosing whether to make the N, elitist
chromosomes candidates for mutation).

step 4 (Fitness and end test) Compute the fitness values for the new population of
N chromosomes. Terminate the algorithm if the stopping criterion is met or
if the budget of fitness function evaluations is exhausted; else return to step 1.

196 J.C. Spall
7.4.4 Some Implementation Aspects

While the above steps provide the broad outline for many modern implementations
of GAs, there are some important implementation aspects that must be decided
before a practical implementation. This section outlines a few of those aspects.
More detailed discussions are given in Mitchell (1996, Chap. 5), Michalewicz (1996,
Chaps. 4-6), Fogel (2000, Chaps. 3 and 4), Goldberg (2002, Chap. 12), and other
references mentioned below. A countless number of numerical studies have been
reported in the literature; we do not add to that list here.

As with other stochastic optimization methods, the choice of algorithm-specific
coefficients has a significant impact on performance. With GAs, there is a relatively
large number of user decisions required. The following must be set: the choice
of chromosome encoding, the population size (N), the probability distribution
generating the initial population, the strategy for parent selection (roulette wheel
or otherwise), the number of splice points in the crossover, the crossover probability
(P,.), the mutation probability (P,,), the number of retained chromosomes in elitism
(N.), and some termination criterion. Some typical values for these quantities are
discussed, for example, in Mitchell (1996, pp. 175-177) and Spall (2003, Sect. 9.6).

Constraints on L(0) (or the equivalent fitness function) and/or § are of major
importance in practice. The bit-based implementation of GAs provide a natural way
of implementing component-wise lower and upper bounds on the elements of 6
(i.e., a hypercube constraint). More general approaches to handling constraints are
discussed in Michalewicz (1996, Chap. 8 and Sects. 4.5 and 15.3) and Michalewicz
and Fogel (2000, Chap.9).

Until now, it has been assumed that the fitness function is observed without noise.
One of the two possible defining characteristics of stochastic optimization, however,
is optimization with noise in the function measurements (property I in Sect. 7.1.3).
There appears to be relatively little formal analysis of GAs in the presence of noise,
although the application and testing of GAs in such cases has been carried out since
at least the mid-1970s (e.g., De Jong 1975, p. 203). A large number of numerical
studies are in the literature (e.g., the references and studies in Spall (2003, Sects. 9.6
and 9.7). As with other algorithms, there is a fundamental tradeoff of more accurate
information for each function input (typically, via an averaging of the inputs) and
fewer function inputs versus less accurate (“raw”) information to the algorithm
together with a greater number of inputs to the algorithm. There appears to be no
rigorous comparison of GAs with other algorithms regarding relative robustness to
noise. Regarding noise, Michalewicz and Fogel (2000, p. 325) state: “There really
are no effective heuristics to guide the choices to be made that will work in general.”

7.4.5 Some Comments on the Theory for GAs

One of the key innovations in Holland (1975) was the attempt to put GAs
on a stronger theoretical footing than the previous ad hoc treatments. He did

7 Stochastic Optimization 197

this by the introduction of schema theory. While many aspects and implications
of schema theory have subsequently been challenged (Reeves and Rowe 2003,
Chap. 3; Spall 2003, Sect. 10.3), some aspects remain viable. In particular, schema
theory itselfis generally correct (subject to a few modifications), although many
of the assumed implications have not been correct. With the appropriate caveats
and restrictions, schema theory provides some intuitive explanation for the good
performance that is frequently observed with GAs.

More recently, Markov chains have been used to provide a formal structure for
analyzing GAs. First, let us mention one negative result. Markov chains can be used
to show that a canonical GA without elitism is (in general) provably nonconvergent
(Rudolph 1994). That is, with a GA that does not hold onto the best solution at
each generation, there is the possibility (through crossover and mutation) that a
chromosome corresponding to 0* will be lost. (Note that the GA without elitism
corresponds to the form in Holland 1975.)

On the other hand, conditions for the formal convergence of GAs to an
optimal 0* (or its coded equivalent) are presented in Vose (1999, Chaps. 13 and
14), Fogel (1999, Chap.4), (Reeves and Rowe 2003, Chap. 6), and Spall (2003,
Sect. 10.5), among other references. Consider a binary bit-coded GA with a
population size of N and a string length of B bits per chromosome. Then the total
number of possible unique populations is:

N +28 -1 (N 428 —1)!
Ne = = TOE_D)INT
N (2B —1)IN!

(Suzuki 1995). It is possible to construct an Np x Np Markov transition matrix P,
where the ijth element is the probability of transitioning from the i th population of
N chromosomes to the jth population of the same size. These elements depend in
anontrivial way on N, the crossover rate, and the mutation rate; the number of elite
chromosomes is assumed to be N, = 1 (Suzuki 1995). Let p, be an Np x 1 vector
having jth component py(j) equal to the probability that the kth generation will
result in population j, j =1, 2, ..., Np.
From basic Markov chain theory,
Pisy =P =pi P

where p,, is an initial probability distribution. A standard result in Markov chain
theory is that if the chain is irreducible and ergodic (see, e.g., Spall 2003, Appendix
E, Theorem E.1), then the limiting distribution of the GA exists and satisfies the
stationarity equation. (Recall from basic Markov chain theory that irreducibility
indicates that any state may be reached from any other state after a finite number
of steps.) However, the chain for a GA is not irreducible because the GA cannot
move to a population whose best fitness value is lower than the current best fitness
(hence, the convergence Theorem E.1 in Spall 2003, does not apply). Nevertheless,
the chain does have a unique limiting value p” satisfying the stationarity equation
p" = p'P. An individual element in P can be computed according to the
formulas in Suzuki (1995) and Stark and Spall (2003). These elements depend in

198 J.C. Spall

a nontrivial way on N, the crossover rate, and the mutation rate; the number of elite
chromosomes is assumed to be N, = 1.

Suppose that 0 is unique (i.e., ©* is the singleton 0*). Let J € {1, 2,..., Np}
be the set of indices corresponding to the populations that contain at least one
chromosome representing 0*. So, for example, if J = {1,6, Np — 3}, then each of
the three populations indexed by 1, 6 and Np — 3 contains at least one chromosome
that, when decoded, is equal to 8*. Under the above-mentioned assumptions of
irreducibility and ergodicity, Y ;c, pi = 1, where p; is the ith element of p. Hence,
a GA with N, = 1 and a transition matrix that is irreducible and ergodic converges
in probability to 6*.

To establish the fact of convergence alone, it may not be necessary to compute
the P matrix. Rather, it suffices to know that the chain is irreducible and ergodic.
(For example, Rudolph 1997, p. 125, shows that the Markov chain approach yields
convergence when 0 < P,, < 1.) However, P must be explicitly computed to get
the rate of convergence information that is available from p, . This is rarely possible
in practice because the number of states in the Markov chain (and hence dimension
of the Markov transition matrix) grows very rapidly with increases in the population
size and/or the number of bits used in coding for the population elements. For
example, in even a trivial problem of N = B = 6, there are ~ 10 states and
~ 10'® elements in the transition matrix; this problem is much smaller than any
practical GA, which can easily have 50 to 100 population elements and 15 to 40
bits per population element (leading to well over 10'% states, with each element
in the corresponding row and column in the transition matrix requiring significant
computation).

7.5 Concluding Remarks

Stochastic optimization is a major branch of computational statistics. This chapter
has been a whirlwind tour through some important issues and methods in stochastic
optimization. Stochastic optimization applies when there are noisy measurements
of the criterion being optimized and/or there is an injected Monte Carlo randomness
as part of the algorithm. Of necessity, we cover only a small fraction of available
methods in this relatively brief review, although the methods described (random
search, stochastic approximation, and genetic algorithms) are representative of a
broad range of important and widely used algorithms. Further, the treatment here
on the specific algorithms is relatively brief. In particular, the subjects covered in
this chapter of approximately 30 pages are treated in over 160 pages in Spall (2003,
Chaps. 1-2, 6-8, and 9-10) and are given an even more detailed treatment in the
many specialized books or other references.

There are many challenges to carrying out real-world optimization, including the
presence of noise in the function evaluations, the difficulties in distinguishing a glob-
ally optimal solution from locally optimal solutions, the “curse of dimensionality,”
the difficulties associated with nontrivial constraints, and the lack of stationarity in

7 Stochastic Optimization 199

the solution as a result of the conditions of the problem changing over time. Stochas-
tic optimization methods are especially useful in treating some of these challenges.
In particular, by definition, they are designed for noisy function evaluations. Further,
when considering injected (Monte Carlo) randomness (property II in Sect.7.1.3),
certain stochastic optimization algorithms will (under conditions, of course) serve
as global optimizers. That is, the injected randomness provides enough “bounce’ to
the algorithm to allow for escape from local minima en route to achieving a global
minimum.

In summary, while classical deterministic optimization methods (linear and
nonlinear programming) are effective for a range of problems, stochastic methods
are able to handle many of the problems for which deterministic methods are inap-
propriate. It is hoped that this summary gives the reader a flavor of the issues, algo-
rithms, and challenges in carrying out optimization in the face of stochastic effects.

Acknowledgements I appreciate the helpful comments of Dr. Stacy Hill on a draft version of this
chapter. Funding was provided by the U.S. Navy (contract N00024-03-D-6606) and the JHU/APL
Independent Research and Development (IRAD) Program. Selected parts of this article have been
reprinted, by permission, from J.C. Spall, Introduction to Stochastic Search and Optimization,
(©2003 by John Wiley and Sons, Inc.

References

Arsham, H.: Techniques for Monte Carlo optimizing. Monte Carlo Methods Appl. 4, 181-229
(1998)

Baba, N., Shoman, T., Sawaragi, Y.: A modified convergence theorem for a random optimization
method. Inf. Sci. 13, 159-166 (1977)

Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear programming: theory and algorithms. Wiley,
New York (1993)

Blum, J.R.: Multidimensional stochastic approximation methods. Ann. Math. Stat. 25, 737-744
(1954)

Box, G.E.P.: Evolutionary operation: a method for increasing industrial productivity. J. R. Stat.
Soc. Ser. C: Appl. Stat. 6, 81-101 (1957)

Cochran, J.J. (ed.): Encyclopedia of operations research and management science. Wiley, Hoboken
(2011)

Das, S., Spall, J.C., Ghanem, R.: Efficient Monte Carlo computation of Fisher information matrix
using prior information. Comput. Stat. Data Anal. 54(2), 272-289 (2010)

De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D.
dissertation, University of Michigan (University Microfilms no. 76-9381) (1975)

Dippon, J., Renz, J.: Weighted means in stochastic approximation of minima. SIAM J. Contr.
Optim. 35, 1811-1827 (1997)

Fabian, V.: Stochastic approximation. In: Rustigi, J.S. (ed.) Optimizing methods in statistics,
pp- 439—470. Academic, New York (1971)

Fogel, D.B.: Evolutionary computation: toward a new philosophy of machine intelligence. IEEE,
Piscataway (2000)

Fouskakis, D., Draper, D.: Stochastic optimization: a review. Int. Stat. Rev. 70, 315-349 (2002)

Fu, M.C.: Optimization for simulation: theory vs. practice. INFORMS J. Comput. 14, 192-227
(2002)

Gentle, J.E.: Random number generation and Monte Carlo methods. Springer, New York (2003)

200 J.C. Spall

Gerencsér, L.: Convergence rate of moments in stochastic approximation with simultaneous
perturbation gradient approximation and resetting. IEEE Trans. Autom. Control 44, 894-905
(1999)

Gerencsér, L., Hill, S.D., Vago, Z.: Optimization over discrete sets via SPSA. In: Proceedings of
the IEEE Conference on Decision and Control, Phoenix, 7-10 December 1999, 1791-1795
Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-

Wesley, Reading (1989)

Goldberg, D.E.: The design of innovation: lessons from and for competent genetic algorithms.
Kluwer Academic, Boston (2002)

Gosavi, A.: Simulation-based optimization: parametric optimization techniques and reinforcement
learning. Kluwer Academic, Boston (2003)

Hill, S.D.: Discrete stochastic approximation with application to resource allocation. Johns
Hopkins APL Tech. Dig. 26, 15-21 (2005)

Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann
Arbor (1975)

Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond.
A: Math. Phys. Sci. 186, 453-461 (1946)

Karnopp, D.C.: Random search techniques for optimization problems. Automatica 1, 111-121
(1963)

Kiefer, J., Wolfowitz, J.: Stochastic estimation of a regression function. Ann. Math. Stat. 23,
462-466 (1952)

Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some
classical and modern methods. SIAM Rev. 45, 385-482 (2003)

Kushner, H.J., Yin, G.G.: Stochastic approximation and recursive algorithms and applications.
Springer, New York (2003)

Ljung, L.: System identification — theory for the user. Prentice Hall PTR, Upper Saddle River
(1999)

Maryak, J.L., Chin, D.C.: Global random optimization by simultaneous perturbation stochastic
approximation. IEEE Trans. Autom. Control 53, 780-783 (2008)

Matyas, J.: Random optimization. Autom. Remote Control 26, 244-251 (1965)

Michalewicz, Z.: Genetic algorithms + data structures = evolution programs. Springer, New York
(1996)

Michalewicz, Z., Fogel, D.B.: How to solve it: modern heuristics. Springer, New York (2000)

Mitchell, M.: An introduction to genetic algorithms. MIT Press, Cambridge (1996)

Nelder, J. A., Mead, R., A simplex method for function minimization. Comput. J., 7, 308-313
(1965)

Pflug, G.C.h.: Optimization of stochastic models: the interface between simulation and optimiza-
tion. Kluwer Academic, Boston (1996)

Reeves, C.R., Rowe, J.E.: Genetic algorithms — principles and perspectives: a guide to GA theory.
Kluwer Academic, Boston (2003)

Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400-407 (1951)

Rudolph, G.: Convergence analysis of Canonical genetic algorithms. IEEE Trans. Neural Netw. 5,
96-101 (1994)

Rudolph, G.: Convergence properties of evolutionary algorithms. Kovac, Hamburg (1997)

Ruppert, D.: Stochastic approximation. In: Ghosh, B.K., Sen, P.K. (eds.) Handbook of sequential
analysis, pp. 503-529. Dekker, New York (1991)

Schwefel, H.P.: Evolution and optimum seeking. Wiley, New York (1995)

Solis, FJ., Wets, J.B.: Minimization by random search techniques. Math. Oper. Res. 6, 19-30
(1981)

Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Trans. Autom. Control 37, 332-341 (1992)

Spall, J.C.: Adaptive stochastic approximation by the simultaneous perturbation method. IEEE
Trans. Autom. Control 45, 1839-1853 (2000)

7 Stochastic Optimization 201

Spall, J.C.: Introduction to stochastic search and optimization: estimation, simulation, and control.
Wiley, Hoboken (2003)

Spall, J.C.: Monte Carlo computation of the Fisher information matrix in nonstandard settings.
J. Comput. Graph. Stat. 14(4), 889-909 (2005)

Spall, J.C.: Feedback and weighting mechanisms for improving Jacobian estimates in the adaptive
simultaneous perturbation algorithm. IEEE Trans. Autom. Control 54(6), 1216-1229 (2009)
Spall, J.C.: Factorial design for choosing input values in experimentation: generating informative

data for system identification. IEEE Control Syst. Mag. 30(5), 38-53 (2010)

Stark, D.R., Spall, J.C.: Rate of convergence in evolutionary computation. In: Proceedings of the
American Control Conference, Denver, 4—6 June 2003

Suzuki, J.: A Markov chain analysis on simple genetic algorithms. IEEE Trans. Syst. Man. Cybern.
25, 655-659 (1995)

Vose, M.: The simple genetic algorithm. MIT Press, Cambridge (1999)

Wang, Q., Spall, J.C.: Discrete simultaneous perturbation stochastic approximation on loss
functions with noisy measurements. In: Proceedings of the American Control Conference, San
Francisco, 29 June-1 July 2011, pp. 4520-4525 (paper FrB10.3) (2011)

Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol.
Comput. 1, 67-82 (1997)

Yakowitz, S.J., Fisher, L.: On sequential search for the maximum of an unknown function. J. Math.
Anal, Appl. 41, 234-259 (1973)

Yin, G.: Rates of convergence for a class of global stochastic optimization algorithms. SIAM
J. Optim. 10, 99-120 (1999)

Zhigljavsky, A.A.: Theory of global random search. Kluwer Academic, Boston (1991)

Chapter 8
Transforms in Statistics

Brani Vidakovic

It is not an overstatement to say that statistics is based on various transformations
of data. Basic statistical summaries such as the sample mean, variance, z-scores,
histograms, etc., are all transformed data. Some more advanced summaries, such
as principal components, periodograms, empirical characteristic functions, etc., are
also examples of transformed data. To give a just coverage of transforms utilized
in statistics will take a size of a monograph. In this chapter we will focus only
on several important transforms with the emphasis on novel multiscale transforms
(wavelet transforms and its relatives).

Transformations in statistics are utilized for several reasons, but unifying argu-
ments are that transformed data:

(1) Are easier to report, store, and analyze,

(2) Comply better with a particular modeling framework, and

(3) Allow for an additional insight to the phenomenon not available in the domain
of non-transformed data.

For example, variance stabilizing transformations, symmetrizing transforma-
tions, transformations to additivity, Laplace, Fourier, Wavelet, Gabor, Wigner—Ville,
Hugh, Mellin, transforms all satisfy one or more of points listed in (1-3).

We emphasize that words transformation and transform are often used inter-
changeably. However, the semantic meaning of the two words seem to be slightly
different. For the word transformation, the synonyms are alteration, evolution,
change, reconfiguration. On the other hand, the word transform carries the meaning
of a more radical change in which the nature and/or structure of the transformed
object are altered. In our context, it is natural that processes which alter the data
leaving them unreduced in the same domain should be called transformations (for

B. Vidakovic (P<)

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology
2101 Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332-0535, USA

e-mail: brani @bme.gatech.edu

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks 203
of Computational Statistics, DOI 10.1007/978-3-642-21551-3_8,
© Springer-Verlag Berlin Heidelberg 2012

brani@bme.gatech.edu

204 B. Vidakovic

example Box—Cox transformation) and the processes that radically change the
nature, structure, domain, and dimension of data should be called transforms (for
example Wigner—Ville transform).

In this chapter we focus mainly on transforms providing an additional insight on
data. After the introduction discussing three examples, several important transforms
are overviewed. We selected discrete Fourier, Hilbert, and Wigner—Ville transforms,
discussed in Sect. 8.2, and given their recent popularity, continuous and discrete
wavelet transforms discussed in Sects. 8.3 and 8.4.

8.1 Introduction

As an “appetizer” we give two simple examples of use of transformations in
statistics, Fisher z and Box—Cox transformations as well as the empirical Fourier—
Stieltjes transform.

Example 1. Assume that we are looking for variance transformation ¥ = ¢ (X), in
the case where Var X = 0)2((w) is a function of the mean u = E X. The first order
Taylor expansion of ¥ (X)) about mean pu is

X)) =0 () + (X =)' (w) + O[(X —p)?] .
Ignoring quadratic and higher order terms we see that
E9(X)~0, Vard(X)~E[(X —p)? (W] = [z?’(x)]zoi(u) .
If Var (#(X)) is to be ¢2, we obtain
[(0] o3 () = ¢?

resulting in

ﬁ(x):c/ >

ox(x)
This is a theoretical basis for the so-called Fisher z-transformation.
Let (X11, X21), ..., (X1n, X2,) be a sample from bivariate normal distribution

No(ar, o, 07,035, p),and X; = 1/n Y Xy, i = 1,2,
The Pearson coefficient of linear correlation

Y (X — X)) (X — Xo)
- \2 _ 271/2
[ZLl (X1 = X1)" - 200 (X2 — X2)]

r =

has a complicated distribution involving special functions, e.g., Anderson (1984,
p. 113). However, it is well known that the asymptotic distribution for r is normal

—_— 2 2
N(p, “Tp)) Since the variance is a function of mean,

8 Transforms in Statistics 205
¢ f
Hp) = / dp

:cf/(l_ 1+p)dp

1
%ﬁlog(l+p)+k

is known as Fisher z-transformation for the correlation coefficient (usually for ¢ =
1/+/n and k = 0). Assume that r and p are mapped to z and ¢ as

1 1 1 1
z= =log S =arctanh r, ¢ = —log tte = arctanh p .
2 1—r 2 1—p

The distribution of 7z is approximately normal N (¢, 1/(n—3)) and this approximation
is quite accurate when p?/n? is small and when 7 is as low as 20. The use of Fisher
z-transformation is illustrated on finding the confidence intervals for p and testing
hypotheses about p.

To exemplify the above, we generated n = 30 pairs of normally distributed
random samples with theoretical correlation V2 /2. This was done by generating
two i.i.d. normal samples a, and b of length 30 and taking the transformation x; =
a + b, x, = b. The sample correlation coefficient r is found. This was repeated
M = 10,000 times. The histogram of 10,000 sample correlation coefficients is
shown in Fig. 8.1a. The histogram of z-transformed r’s is shown in Fig. 8.1b with
superimposed normal approximation N (arctanh (+/2/2), 1/(30 — 3)).

(1) For example, (1 —) 100% confidence interval for p is:

—101 _ —1¢7 _
|:tanh (z — %) , tanh (z + %)] ,

b
i
‘\
{
051 ‘ fr
\l\ |
g
il .
% Y 1 T

Fig. 8.1 (a) Simulational run of 10,000 r’s from the bivariate population having theorethical p =
«/5/ 2.; (b) The same r’s transformed to z’s with the normal approximation superimposed

-

206 B. Vidakovic

where 7 = arctanh (r) and tanhx = (e* —e™)/(e* + e™) and @ stands for the
standard normal cumulative distribution function.

If r = —0.5687 and n = 28 7 = —0.6456, 71, = —0.6456 — 1.96/5 = —1.0376
and zy = —0.6456 + 1.96/5 = —0.2536. In terms of p the 95% confidence interval
is [-0.7769, —0.2483].

(2) Assume that two samples of size n; and n,, respectively, are obtained
form two different bivariate normal populations. We are interested in testing
Hy : p1 = py against the two sided alternative. After observing r; and r;
and transforming them to z; and zp, we conclude that the p-value of the test is

20 (=21 — 22|/ /1/(n1 = 3) + 1/(n2 = 3)).

Example 2. Box and Cox (1964) introduced a family of transformations, indexed
by real parameter A, applicable to positive data X1, ..., X,,

Xr—1
y, — > A#0

log X; , A=0.

(8.1)

This transformation is mostly applied to responses in linear models exhibiting
non-normality and/or heteroscedasticity. For properly selected A, transformed data
Y1,Y, may look “more normal” and amenable to standard modeling techniques.
The parameter A is selected by maximizing the log-likelihood,

n n 1 n _
(A—l)ZlogXi—Elog {;Z(n—n)z] , (8.2)

i=1 i=1

where Y; are givenin (8.1) and Y, = 1/n Z?:l Y;.

As an illustration, we apply the Box—Cox transformation to apparently skewed
data of CEO salaries.

Forbes magazine published data on the best small firms in 1993. These were
firms with annual sales of more than five and less than $350 million. Firms were
ranked by five-year average return on investment. One of the variables extracted is
the annual salary of the chief executive officer for the first 60 ranked firms (since
one datum is missing, the sample size is 59). Figure 8.2a shows the histogram of row
data (salaries). The data show moderate skeweness to the right. Figure 8.2b gives the
values of likelihood in (8.2) for different values of A. Note that (8.2) is maximized
for A approximately equal to 0.45. Figure 8.2c gives the transformed data by Box—
Cox transformation with A = 0.45. The histogram of transformed salaries is notably
symetrized.

Example 3. As an example of transforms utilized in statistics, we provide an appli-
cation of empirical Fourier—Stieltjes transform (empirical characteristic function) in
testing for the independence.

The characteristic function of a probability distribution F is defined as its
Fourier—Stieltjes transform,

8 Transforms in Statistics 207

a b
16 : -312
14 1 -314
12
B -316
10
-318
8
-320
6
-322
4
5] -324
0 -3261
0 200 400 600 800 1000 1200 02 0 02 04 06 08 1 1.2
C
14
12
10
s |
6
4
2
0
0 10 20 30 40 50

Fig. 8.2 (a) Histogram of row data (CEO salaries); (b) Log-likelihood is maximized at A = 0.45;
and (c) Histogram of Box—Cox-transformed data

¢x(t) = E exp(itX) , (8.3)

where E is expectation and random variable X has distribution function F. It is well
known that the correspondence of characteristic functions and distribution functions
is 1-1, and that closeness in the domain of characteristic functions corresponds
to closeness in the domain of distribution functions. In addition to uniqueness,
characteristic functions are bounded. The same does not hold for moment generating
functions which are Laplace transforms of distribution functions.

For a sample X, X5,...,X, one defines empirical characteristic function

©*(1) as
1 n
X0 =~ explitX;).
=1

The result by Feuerverger and Mureika (1977) establishes the large sample proper-
ties of the empirical characteristic function.

208 B. Vidakovic

Theorem 1. Forany T < oo
P | lim sup |p*(t) —p(®)|=0|=1
n—o0 |[|§T

holds. Moreover, when n — 00, the stochastic process

Y, (1) = V/n(¢*() — @) . |t|<T,

converges in distribution to a complex-valued Gaussian zero-mean process Y (t)
satisfying Y(t) = Y(—t) and

E(YOYG)) = ¢l +5) — p(0)(s) ,
where m denotes complex conjugate of Y (t).

Following Murata (2001) we describe how the empirical characteristic function
can be used in testing for the independence of two components in bivariate
distributions.

Given the bivariate sample (X;, Y;),i = 1,...,n, we are interested in testing for
independence of the components X and Y. The test can be based on the following
bivariate process,

Zu(t.5) = Vn (pxy (t +5) —ox (D@3 () .

where oy (t +5) = 1/n Y exp(itX; +isY;).
Murata (2001) shows that Z,, (¢, s) has Gaussian weak limit and that

Var Z,(t.5) ~ [0320 = (05 0)*] [07 29) = (¢})] . and
Cov (Z,(t.). Z,(1.9) ~ (1= gz OF) (1 = lg; (5)) .
The statistics
T(t,s) = RZ,(t.s) SZ,(t.s) T RZ,(t.s) SZ.(t.s))
has approximately y? distribution with 2 degrees of freedom for any ¢ and s finite.

Symbols 9 and 3 stand for the real and imaginary parts of a complex number. The
matrix X' is 2 x 2 matrix with entries

cu = %[%Var (Za(t.5)) + Cov (zn(t,s),m)]

8 Transforms in Statistics 209

1
S12 =621 = ESVar(Z,,(t,s)) , and

cn = % [—ERVar (Z,(t,5)) + Cov (Zn(t’s)7 Zn(t,s))] .

Any fixed pair ¢, s gives a valid test, and in the numerical example we selected = 1
and s = 1 for calculational convenience.

We generated two independent components from the Beta(1, 2) distribution of
size n = 2,000 and found T statistics and corresponding p-values M = 2,000
times. Figure 8.3a,b depicts histograms of T statistics and p values based on
2,000 simulations. Since the generated components X and Y are independent, the
histogram for 7" agrees with asymptotic)(% distribution, and of course, the p-values
are uniform on [0, 1]. In Fig. 8.3¢ we show the p-values when the components X and
Y are not independent. Using two independent Beta(1,2) components X and Y,
the second component Y is constructed as ¥ = 0.03X + 0.97Y”. Notice that for

a b
500 80
450 701 1 L n [
400 | - T
60 - - w
350 | = M
300 %0 [
250 40
200 30
150
20
100
1
” H m O
e 0
% 5 10 5 0 02 0.4 06 0.8 1
Cc
700 =
600
500
400
300
200
100
0
0 02 04 06 0.8 1

Fig. 8.3 (a) Histogram of observed 7 statistics with theoretical X% distribution; (b) p-values of
the test when components are independent; and (c) p-values if the test when the second component
is a mixture of an independent sample and 3% of the first component

210 B. Vidakovic

majority of simulational runs the independence hypothesis is rejected, i.e., the p-
values cluster around 0.

8.2 Fourier and Related Transforms

Functional series have a long history that can be traced back to the early nine-
teenth century. French mathematician (and politician) Jean-Baptiste-Joseph Fourier,
decomposed a continuous, periodic on [—, 7] function f(x) into the series od sines
and cosines,

o0
dago .
> + Zan cosnx + b, sinnx ,
n=1
where the coefficients a, and b, are defined as

g

1
a, = — f(x)cosnxdx, n
b4

0,1,2,...

-7

1 o
b, = — f(x)sinnxdx, n=12,....
T

-

The sequences {a,, n = 0,1,...} and {b,, n = 1,2,...} can be viewed as
a transform of the original function f. It is interesting that at the time of Fourier’s
discovery the very notion of function was not precisely defined. Fourier methods
have long history in statistics especially in the theory of nonparametric function and
density estimation and characteristic functions.

There are three types of Fourier transforms: integral, serial, and discrete. Next,
we focus on discrete transforms and some modifications of the integral transform.

8.2.1 Discrete Fourier Transform

The discrete Fourier transform (DFT) of a sequence f = {f,, n =0,1,...,N—1}
is defined as

F =

N—1
anwr]l\lk, k:O,...,N—l} s
n=0

where wy = e "27/N The inverse is

N—-1
1
f= gﬁZka;"k, nzO,...,N—l}
k=0

8 Transforms in Statistics 211

The DFT can be interpreted as the multiplication of the input vector by a matrix;
therefore, the discrete Fourier transform is a linear operator. If @ = {Q,x =
e 127ky v, then F = Q - f. The matrix Q is unitary (up to a scale factor),
i.e., 0*Q = NI, where [is the identity matrix and Q* is the conjugate transpose
of 0.

There are many uses of discrete Fourier transform in statistics. It turns cyclic
convolutions into component-wise multiplication, and the fast version of DFT
has a low computational complexity of O(nlog(n)), meaning that the number of
operations needed to transform an input of size n is proportional to n log(n). For
atheory and various other uses of DFT in various fields reader is directed to Brigham
(1988).

We focus on estimation of a spectral density from the observed data, as an
important statistical task in a variety of applied fields in which the information about
frequency behavior of the phenomena is of interest.

Let {X,,t € Z} be a a real, weakly stationary time series with zero mean and
autocovariance function y(h) = EX(t+h)X(¢). An absolutely summable complex-
valued function y () defined on integers is the autocovariance function of X, if and

only if the function
o0

1 —ihw
f@)=2-3" ylhe (8.4)
h=—00

is non-negative for all w € [, 7]. The function f(w) is called the spectral density
associated with covariance function y (%), and is in fact a version of discrete Fourier
transform of the autocovariance function y (h). The spectral density of a stationary
process is a symmetric and non-negative function. Given the spectral density, the
autocovariance function can uniquely be recovered via inverse Fourier transform,

vy = | f@e"dw, h=0+1,+2,....

-

A traditional statistic used as an estimator of the spectral density is the peri-

odogram. The periodogram /(w), based on a sample X, ..., X7—; is defined as
= 2
_ —itw;
(o)) = AT ;X,e ren (8.5)
where w; is the Fourier frequency w;, = 2xj/T, j = [-T/2] + 1,...,

—1,0,1,...,[T/2]. By adiscrete version of the sampling theorem it holds that /()
is uniquely determined for all ® € [—x,], given its values at Fourier frequencies.

Calculationally, the periodogram is found by using fast Fourier transform.
A simple matlab m-function calculating the periodogram is

function out = periodogram(ts)
out = abs(fftshift (fft(ts - mean(ts)))).”2/(2+«pixlength(ts));

212 B. Vidakovic

An application of spectral and log-spectral estimation involves famous Wolf’s
sunspot data set. Although in this situation the statistician does not know the “true”
signal, the theory developed by solar scientists helps to evaluate performance of the
algorithm.

The Sun’s activity peaks every 11 years, creating storms on the surface of our star
that disrupt the Earth’s magnetic field. These “solar hurricanes” can cause severe
problems for electricity transmission systems. An example of influence of such
periodic activity to everyday life is 1989 power blackout in the American northeast.

Efforts to monitor the amount and variation of the Sun’s activity by counting
spots on it have a long and rich history. Relatively complete visual estimates of daily
activity date back to 1818, monthly averages can be extrapolated back to 1,749, and
estimates of annual values can be similarly determined back to 1,700. Although
Galileo made observations of sunspot numbers in the early seventeenth century, the
modern era of sunspot counting began in the mid-1,800s with the research of Bern
Observatory director Rudolph Wolf, who introduced what he called the Universal
Sunspot Number as an estimate of the solar activity. The square root of Wolf’s yearly
sunspot numbers are given in Fig. 8.4a, data from Tong (1996), p. 471. Because of
wavelet data processing we selected a sample of size a power of two, i.e., only
256 observations from 1733 till 1998. The square root transformation was applied
to symmetrize and de-trend the Wolf’s counts. Figure 8.4b gives a raw periodogram,
while Fig. 8.4c shows the estimator of log-spectral density (Pensky and Vidakovic
2003).

The estimator reveals a peak at frequency w* = 0.58, corresponding to the
Schwabe’s cycle ranging from 9 to 11.5 (years), with an average of 277/0.58 ~ 10.8
years. The Schwabe cycle is the period between two subsequent maxima or minima
the solar activity, although the solar physicists often think in terms of a 22-year
magnetic cycle since the sun’s magnetic poles reverse direction every 11 years.

8.2.2 Windowed Fourier Transform

Windowed Fourier Transforms are important in providing simultaneous insight
in time and frequency behavior of the functions. Standard Fourier Transforms
describing the data in the “Fourier domain™ are precise in frequency, but not
in time. Small changes in the signal (data) at one location cause change in
the Fourier domain globally. It was of interest to have transformed domains
that are simultaneously precise in both time and frequency domains. Unfortu-
nately, the precision of such an insight is limited by the Heisenberg’s Uncertainty
Principle.

Suppose f(¢) is a signal of finite energy. In mathematical terms, the integral of
its modulus squared is finite, or shortly, f belongs to IL,(R) space.

The integral Fourier transform of the signal

FUHE = f&) = /R Fye"Edr (8.6)

8 Transforms in Statistics 213
a b
60
6
50
al
40
2
0 30
) 20
-4 10
-6 vy P
1750 1800 1850 1900 1950 A) 0 > 4
(o]
’
0
-1
-2
-3
-4 . ‘ . ‘ ‘ ‘
0.5 1 1.5 2 25 3

Fig. 8.4 (a) Square roots of Wolf’s yearly sunspot numbers from 1732-1988 (256 observations);
(b) Raw periodogram; (¢) An estimator of the log-spectra. The frequency w™* = 0.58 corresponds
to Schwabe’s period of 10.8 (years)

describes the allocation of energy content of a signal at different frequencies, but
the time-related information is lost.

Windowed Fourier transform (also called short time Fourier transform, STFT)
was introduced by Gabor (1946), to measure time-localized frequencies of sound.
An atom in Gabor’s decomposition is defined via:

Zug(t) =gt —u) .
where g is a real, symmetric, and properly normalized “window” function. [||g|| =

1 so that ||gu¢|| = 1]
If f € L,(R), then windowed Fourier transform is defined as

SFW.E) = (f: gue) = /R F(Og(t —wyeds 8.7)

214 B. Vidakovic

The chief use of windowed Fourier transforms is to analyze time/frequency
distribution of signal energy, via a spectrogram.
The spectrogram,

oo 2
Psf@d) =157 =| [forc e ar

expresses the energy distribution in the signal f, with respect to time and frequency
simultaneously.
The following are some basic properties of STFT. Let f € LL,(IR?). Then

[Inverse STFT] f(r):i / / Sf(u,€)gt —u)e'deédu (8.8)
2 Jr Jr
and
[Energy Conservation] /|f(t)|2dt = L/ / ISf(u,&))* dédu. (8.9)
R 27 Jr JR

The following is a characterizing property of STFT:
Let @ € L,(R?). There exist f € L,(R?) such that ®@(u,£) = Sf(u, £) if and
only if

@, £0) = 5 /R /R O, E)K (o, 0, Eo. &) dud (8.10)

where

K(ug, u,&,8) = (gu,é, guofo) - /Rg(t —u)g(t — uo)e_i(éo_S)tdt . (8.11)

8.2.3 Hilbert Transform

We next describe the Hilbert transform and its use in defining instantaneous
frequency, an important measure in statistical analysis of signals.
The Hilbert transform of the function signal g(¢) is defined by
1 o0
Hy(t) = —(VP)/ 8@ 4, (8.12)
s oo I —

Because of the possible singularity at T = ¢, the integral is to be considered as
a Cauchy principal value, (VP). From (8.12) we see that H,(?) is a convolution,

1/(mwt) % g(¢).

The spectrum of H,(¢) is related to that of g(¢). From the convolution equation,

FH) = F (:) Flg(0)).

nt

8 Transforms in Statistics 215

where F is the Fourier transform. With a real signal g(¢#) one can associate
a complex function with the real part equal to g(¢#) and the imaginary part equal
to H(g(1)), h(t) = g(r) —iH(g(1)).

In statistical signal analysis this associated complex function /A (¢) is known as
analytic signal (or causal signal, since };(S) = 0, for £ < 0). Analytic signals are
important since they possess unique phase ¢ (¢) which leads to the definition of the
instantaneous frequency.

If h(t) is represented as a(z) - exp{i¢(¢)}, then the quantity d¢/d¢ is instan-
taneous frequency of the signal g(¢), at time ¢. For more discussion and use of
instantaneous frequency, the reader is directed to Flandrin (1992, 1999).

8.2.4 Wigner-Ville Transforms

Wigner—Ville Transform (or Distribution) is the method to represent data (signals)
in the time/frequency domain. In statistics, Wigner—Ville transform provide a tool
to define localized spectral density for the nonstationary processes (Fig. 8.5).

Ville (1948) introduced the quadratic form that measures a local time-frequency
energy:

Py f(u§) = / £ 2) e (w5) e ar
R 2 2

where f* is conjugate of f.

The Wigner-Ville transform is always real since f(u + 3)f*(u — 3) has
Hermitian symmetry in t.

Time and frequency are symmetric in Py f(u, £), by applying Parseval formula

one gets,

55

50

45

[kHz]

40

35

30

0 0.2 0.4 0.6 0.8 1 0.35 0.4 0.45 0.5
Time [ms] [ms]

Fig. 8.5 (a) Sonar signal from flying bat; (b) its Wigner—Ville transform

216 B. Vidakovic

Pofws =5 [F(e+3) 7/ (e=L)emay. sy
For any f € L,(R)
/R Py f§)du = f©F . (8.14)

i.e., the time marginalization reproduces power spectrum, and

/R Py f(u.£)dE = 2x| fW)P . (8.15)

i.e, the frequency marginalization is proportional to the squared modulus of the
signal.

Integral (8.13) states that one-dimensional Fourier transform of ge¢(u) =
Py f(u, &), with respect to u is,

G =7(e+1) 7 (e-2).

Ify =0,8:(0) = fR ge(u)d u, which proves (8.14). Similarly for (8.15).
For example:

(1) If f(t) = 1(~T <t < T), then

Py f(u.E) = wlw <u<T).

Plot Py f(u, §).
(2) If f(¢) = exp{ir(t + at?/2)}, then Py (u, &) = 21w8(E — A(1 + au)).
(3) A Gaussian f(t) = (o27w)~"/* exp(—t?/(20?)) is transformed into

1 u?)
Py f.§) = —exp (—; 0%) |

In this case, Py f(u, &) = | f(u)|*-] f(é) |?. The Gaussian is the only (up to time and
frequency shifts) distribution for which Wigner—Ville transform remains positive.
Some basic properties of Wigner—Ville transforms are listed in Table 8.1.

Next we show that expected value of Wigner—Ville transform of a random process
can serve as a definition for generalized spectrum of a non-stationary process. Let
X(t) be real-valued zero-mean random process with covariance function

EX(1)X(s) = R(t,s) = R (u n %,u . %) —Cu,1),

8 Transforms in Statistics 217

Table 8.1 Properties of Wigner—Ville transform

Function Wigner—Ville
70 Py f(.6)

e’ f(1) Py f(u,§)

St —uo) Py f(u—up,§)
el £ (1) Py f(u, § — &)
¢’ (1) Py f(u, & = 2au)
= f(t/s) Py f(u/s, s&)

after substitutiont = ¢ —sandu = (t + 5)/2.
Now, if the process X (¢) is stationary, then C(u, 7) is a function of t only and

Px(§) = /_oo C(r)e %dr

is its power spectrum.
For arbitrary process Flandrin (1999) defined “power spectrum” as

Px(£) = /_oo C(u,t)e "dr .

oo

Thus, Py (€) can be represented as E Py X (u, £), where

[e.]

PyX(u,) = / X (u + %) X (u - %) et .

—00

For more information on Wigner—Ville transforms and their statistical use the
reader is directed to Baraniuk (1994), Carmona et al. (1998), Flandrin (1999), Mallat
(1999), among others.

8.3 Wavelets and Other Multiscale Transforms

Given their recent popularity and clear evidence of wide applicability the
most of the space in this chapter is devoted to Wavelet transforms. Statistical
multiscale modeling has, in recent decade, become a well established area in
both theoretical and applied statistics, with impact to developments in statistical
methodology.

Wavelet-based methods are important in statistics in areas such as regression,
density and function estimation, factor analysis, modeling and forecasting in
time series analysis, in assessing self-similarity and fractality in data, in spatial
statistics.

218 B. Vidakovic

The attention of the statistical community was attracted in late 1980s and early
1990s, when Donoho, Johnstone, and their coauthors demonstrated that wavelet
thresholding, a simple denoising procedure, had desirable statistical optimality
properties. Since then, wavelets have proved useful in many statistical disciplines,
notably in nonparametric statistics and time series analysis. Bayesian concepts and
modeling approaches have, more recently, been identified as providing promising
contexts for wavelet-based denoising applications.

In addition to replacing traditional orthonormal bases in a variety statistical prob-
lems, wavelets brought novel techniques and invigorated some of the existing ones.

8.3.1 A Case Study

We start first with a statistical application of wavelet transforms. This example
emphasizes specificity of wavelet-based denoising not shared by standard state-of-
art denoising techniques.

A researcher in geology was interested in predicting earthquakes by the level of
water in nearby wells. She had a large (8,192 = 2!3 measurements) data set of water
levels taken every hour in a period of time of about one year in a California well.
Here is the description of the problem.

The ability of water wells to act as strain meters has been observed for centuries. The

Chinese, for example, have records of water flowing from wells prior to earthquakes. Lab

studies indicate that a seismic slip occurs along a fault prior to rupture. Recent work has

attempted to quantify this response, in an effort to use water wells as sensitive indicators

of volumetric strain. If this is possible, water wells could aid in earthquake prediction by

sensing precursory earthquake strain.

We have water level records from six wells in southern California, collected over a six
year time span. At least 13 moderate size earthquakes (magnitude 4.0-6.0) occurred in
close proximity to the wells during this time interval. There is a significant amount of
noise in the water level record which must first be filtered out. Environmental factors
such as earth tides and atmospheric pressure create noise with frequencies ranging from
seasonal to semidiurnal. The amount of rainfall also affects the water level, as do surface
loading, pumping, recharge (such as an increase in water level due to irrigation), and sonic
booms, to name a few. Once the noise is subtracted from the signal, the record can be
analyzed for changes in water level, either an increase or a decrease depending upon
whether the aquifer is experiencing a tensile or compressional volume strain, just prior to an
earthquake.

A plot of the raw data for hourly measurements over one year (8,192 = 213
observations) is given in Fig. 8.6a, with a close-up in Fig. 8.6b. After applying the
wavelet transform and further processing the wavelet coefficients (thresholding),
we obtained a fairly clean signal with a big jump at the earthquake time. The
wavelet-denoised data are given in Fig.8.6d. The magnitude of the water level
change at the earthquake time did not get distorted in contrast to traditional
smoothing techniques. This local adaptivity is a desirable feature of wavelet
methods.

For example, Fig. 8.6c, is denoised signal after applying supsmo smoothing
procedure. Note that the earthquake jump is smoothed, as well.

8 Transforms in Statistics 219

-53.1 -53.0
1 1
531 -53.0
1 1

-53.2
1
-53.2
1

Level
Level

-53.4 -53.3
| 1
-53.4 -53.3
1 1

-53.5
L
-53.5
L

T T T T T T T T T
400 500 600 416.0 4165 417.0 4175 4180 4185

Julian Day Julian Day

-53.1
|

-53.2
|

-53.2 -531
1 1

-53.3
1
Level
-533
1

Level
-53.4
1
-53.4
1

-53.5
1

-53.5
1

-53.6
1

T T T T T T
400 500 600 400 500 600
Julian Day Julian Day

Fig. 8.6 (a) shows n = 8,192 hourly measurements of the water level for a well in an earthquake
zone. Notice the wide range of water levels at the time of an earthquake around ¢t = 417.
(b) focusses on the data around the earthquake time. (¢) demonstrates action of a standard smoother
supsmo, and (d) depicts a wavelet based reconstruction

8.3.2 Continuous Wavelet Transform

The first theoretical results in wavelets had been concerned with continuous wavelet
decompositions of functions and go back to the early 1980s. Papers of Morlet

220 B. Vidakovic

et al. (1982) and Grossmann and Morlet (1984, 1985) were among the first on this
subject.

Let ¥, 5(x), a € R\{0},b € R be a family of functions defined as translations
and re-scales of a single function ¥ (x) € L,(R),

1 x—>b
) = —— , 8.16
b = v (77 (8.16)

Normalization constant 1/+/|a| ensures that the norm ||, ;(x)|| is independent
of a and b. The function ¥ (called the wavelet function is assumed to satisfy the
admissibility condition,

v 2
cy :/ W@, < . (8.17)
R o]

where ¥(w) = [, ¥ (x)e™ ™ dx is the Fourier transform of v (x). The admissibility
condition (8.17) implies

0=v(0) = /W(x)dx .

Also, if [Y(x)dx = 0and [(1 + |[x|*)|¥(x)|dx < oo for some o > 0, then

Cw < 0Q0.
Wavelet functions are usually normalized to “have unit energy”, i.e.,
[[Yan ()] = 1.
For example, the second derivative of the Gaussian function,
Yo =2 [-ce P =c(1-x) e, = 2
dx? ’ 37 ’
is an example of an admissible wavelet, called Mexican Hat or Marr’s wavelet, see

Fig.8.7.
For any square integrable function f(x), the continuous wavelet transform is
defined as a function of two variables

CWT 1(@.b) = (. Van) = / FO)Tardx .

Here the dilation and translation parameters, a and b, respectively, vary continu-
ously over R\ {0} x R.

Figure 8.8 gives the doppler test function, f = 1/(t+0.05)/¢(1 —¢) sin(27x-
1.05), 0 < ¢ < 1, and its continuous wavelet transform. The wavelet used was
Mexican Hat. Notice the distribution of “energy” in the time/frequency plane in
Fig. 8.8b.

8 Transforms in Statistics 221

— Mexican Hat P
1.4 H ==+ FT Mexican Hat |\ ! \ 8
1

X or

Fig. 8.7 Mexican hat wavelet (solid line) and its Fourier transform (dashed line)

Resolution of Identity

When the admissibility condition is satisfied, i.e., Cy < o0, it is possible to find

the inverse continuous transform via the relation known as resolution of identity or

Calderon’s reproducing identity,

dadb
a2

1
0= [OV @b

The continuous wavelet transform of a function of one variable is a function of
two variables. Clearly, the transform is redundant. To “minimize” the transform one
can select discrete values of a and b and still have a lossless transform. This is
achieved by so called critical sampling.

The critical sampling defined by

a=2", b=k2", jkel, (8.18)

will produce the minimal, but complete basis. Any coarser sampling will not
produce a unique inverse transform. Moreover under mild conditions on the wavelet
function ¥, such sampling produces an orthogonal basis {¥/ ; (x) = 2//2y(2/ x—k),
J.k € Z}. To formally describe properties of minimal and orthogonal wavelet bases
a multiresolution formalism is needed.

222 B. Vidakovic

0.4r
0.31

0.1

-0.1

o

10} :

20t]

30]

40}]

50 1

60 r 1

200 400 600 800 1000

Fig. 8.8 (a) Doppler signal; (b) Continuous wavelet transform of doppler signal by the Mexican
hat wavelet

8.3.3 Multiresolution Analysis

Fundamental for construction of critically sampled orthogonal wavelets is a notion
of multiresolution analysis introduced by Mallat (1989a,b). A multiresolution
analysis (MRA) is a sequence of closed subspaces V,,,n € Z in L,(R) such that
they lie in a containment hierarchy

8 Transforms in Statistics 223

e CVacVayocWVyechclh,c--- (8.19)

The nested spaces have an intersection that contains only the zero function and
a union that contains all square integrable functions.

MV, =40}, UV, =LyR).

(With 4 we denoted the closure of a set A). The hierarchy (8.19) is constructed such
that V' -spaces are self-similar,

f@x)ev;, iff f(x)eV. (8.20)

with the requirement that there exists a scaling function ¢ € Vy whose integer-
translates span the space V),

o =1/ eL.R)| f(x) =) adx—kyp
k

and for which the family {¢(e — k), k € Z} is an orthonormal basis. It can be
assumed that [¢(x)dx > 0. With this assumption this integral is in fact equal to 1.
Because of containment V, C V), the function ¢(x) € V, can be represented as
a linear combination of functions from V1, i.e.,

P(x) =Y V29 2x — k). (8.21)

keZ

for some coefficients hy, k € 7. This equation called the scaling equation
(or two-scale equation) is fundamental in constructing, exploring, and utilizing
wavelets.

Theorem 2. For the scaling function it holds

[peoax=1.

or, equivalently,
®0)=1,

where @ (w) is Fourier transform of ¢, fR o (x)e % dx.

The coefficients &, in (8.21) are important in efficient application of wavelet
transforms. The (possibly infinite) vector h = {h,, n € Z} will be called a wavelet
filter: It is a low-pass (averaging) filter as will become clear later by its analysis in
the Fourier domain.

224 B. Vidakovic

To further explore properties of multiresolution analysis subspaces and their
bases, we will often work in the Fourier domain.

It will be convenient to use Fourier domain for subsequent analysis of wavelet
paradigm. Define the function m as follows:

mo(w) = \/_ > e = %H(w) . (8.22)
keZ

The function in (8.22) is sometimes called the transfer function and it describes the
behavior of the associated filter & in the Fourier domain. Notice that the function m
is 2m-periodic and that filter taps {h,, n € Z} are in fact the Fourier coefficients in
the Fourier serias of H(w) = v/2mo(w).

In the Fourier domain the relation (8.21) becomes

®(w) = my (%) @ (%) , (8.23)

where @ (w) is the Fourier transform of ¢ (x). Indeed,
D(w) = / ¢ (x)e *dx
—o0
00 .
= Z V2hy / ¢(2x — k)e ¥ dx

— Z —1kw/2/ ¢(2x k)e—l(Zx k)w/Zd(zx k)

- Z hk e (2)
n(2)es)

By iterating (8.23), one gets

o(w) =]O_O[mo (;”—n) , (8.24)
n=1

which is convergent under very mild conditions concerning the rates of decay of the
scaling function ¢.

Next, we prove two important properties of wavelet filters associated with an
orthogonal multiresolution analysis, normalization and orthogonality.

8 Transforms in Statistics 225

Normalization

Y e =V2. (8.25)

keZ
Proof:

/¢(x)dx = «/Eth/qﬁQx—k)dx
k

= ﬁth%/q&(Zx—k)d(Zx—k)
k

= gzk:hk/gb(x)dx.

Since [¢(x)dx # 0 by assumption, (8.25) follows.
This result also follows from m1((0) = 1.

Orthogonality

Forany ! € Z,
D i =6 . (8.26)
k

Proof': Notice first that from the scaling equation (8.21) it follows that

p)P(x —1) = V2 hip(2x —k)p(x — 1) (8.27)
k
= V2 hpQ2x —k)V2Y hwp2(x —1) —m) .
k m

By integrating the both sides in (8.27) we obtain

1
§ =2 Zk: hi [Z fim /¢(2x —k)¢p(2x —21 —m) d(2x)j|
=" hihwbeartm
k m
= thhk—zl .
k

The last line is obtained by taking k = 2/ + m.

226 B. Vidakovic

An important special case is / = 0 for which (8.26) becomes
Z h=1. (8.28)
k

The fact that the system {¢(e — k), k € Z} constitutes an orthonormal basis for
Vo can be expressed in the Fourier domain in terms of either @ (w) or mo(w).
In terms of @(w),

> @@ +2rh) =1. (8.29)

[=—00

From the Plancherel identity and the 27 -periodicity of e®* it follows

5 /R $ (0P —R)dx

= %/ﬂg@(m)@(a))em’kdw

1 27 X

= — > P + 2n) Pt do . (8.30)
27 0 oo

The last line in (8.30) is the Fourier coefficient a; in the Fourier series decomposi-
tion of

fl@)= Y |®@+27D).
l=—00

Due to the uniqueness of Fourier representation, f(w) = 1. As a side result, we
obtain that @(2wn) = 0, n # 0, and), ¢(x —n) = 1. The last result follows
from inspection of coefficients ¢, in the Fourier decomposition of), ¢(x —n), the
series Y, cxe? k¥ As this function is 1-periodic,

1 00
o = /0 (Z (]5()(? —I’l)) e—2rrikxdx — /; ¢(x)e—2rrikxdx — @(27‘[/() — 807/(.

Remark 1. Utilizing the identity (8.29), any set of independent functions spanning
Vo, {¢(x — k), k € Z}, can be orthogonalized in the Fourier domain. The
orthonormal basis is generated by integer-shifts of the function

F @) . (8.31)

VIR [0 + 212

This normalization in the Fourier domain is used in constructing of some wavelet
bases.

8 Transforms in Statistics 227

Orthogonality condition 8.29 can be expressed in terms of m as:
Imo(@)[* + [mo(w + m)* = 1. (8.32)

Since Y 72 |®(Q2w + 2Im)|> = 1, then by (8.23)

> Imo(@ + Im) P |P(w + Im))P = 1. (8.33)

I=—00

Now split the sum in (8.33) into two sums — one with odd and the other with even
indices, i.e.,

o0
L=)" |mo(w + 2km)]* | (e + 2km)* +

k=—00

> mo(w + 2k + D) [P0 + 2k + D)) .

k=—00

To simplify the above expression, we use (8.29) and the 2 -periodicity of mo(w).

1= |mo(@)? Y|P+ 2km)* + [mo(w + m) D |®((@ + 1) + 2k7)|*

k=—00 k=—00

= |mo(w)[* + |mo(w + 7).

Whenever a sequence of subspaces satisfies MRA properties, there exists (though
not unique) an orthonormal basis for L, (R),

{Win(x) =272y (2/x k), jkel} (8.34)

such that {v/ % (x), j-fixed, k € Z} is an orthonormal basis of the “difference space”
W; = V;41 © V;. The function ¥ (x) = vo(x) is called a wavelet function or
informally the mother wavelet.

Next, we discuss the derivation of a wavelet function from the scaling function.
Since ¥ (x) € V; (because of the containment Wy C V), it can be represented as

Yx) = evV2p2x —k) . (8.35)

keZ

for some coefficients g, k € Z.
Define

1 .
mi(w) = 75 > g (8.36)
k

228 B. Vidakovic

By mimicking what was done with m, we obtain the Fourier counterpart of (8.35),

w w

W (w) = m, (5) @ (5) . (8.37)

The spaces W}, and V} are orthogonal by construction. Therefore,

0= / V(x)p(x — k)dx % / ¥ (w)P(w)e'“*dw

1 2 90 -
> W(o+2n)P(w + 2m)etdw .

[=—00

27 Jo

By repeating the Fourier series argument, as in (8.29), we conclude

Y W+ 2n)d(w +201) = 0.

[=—o00

By taking into account the definitions of m(and m, and by the derivation as
in (8.32), we find

mi(w)my(w) + mi(w + 7)mo(w + 7) = 0. (8.38)

From (8.38), we conclude that there exists a function A(w) such that

(my (@), m1 (@ + 7)) = AMo) (mo(w), —mo(a))) . (8.39)

By substituting § = w + 7 and by using the 2m-periodicity of mo and m;, we
conclude that

AMw) = —Aw+7), and (8.40)
AM(w) is 2m-periodic .

Any function A(w) of the form e §(2w), where S is an LL,([0, 27]), 27-periodic
function, will satisfy (8.38); however, only the functions for which |A(w)| = 1 will
define an orthogonal basis ¥ of L, (R).

To summarize, we choose A(w) such that:

(1) A(w) is 27 -periodic,
2) Mw) =—A(w + 7), and
3) M) =1.

Standard choices for A(w) are —e7@_e7iv and el®; however, any other function
satisfying (1)—(3) will generate a valid m;. We choose to define m;(w) as

8 Transforms in Statistics 229

mi(w) = —e “mo(w + 1) . (8.41)

since it leads to a convenient and standard connection between the filters & and g.
The form of m, and (8.29) imply that {1/ (e — k), k € Z} is an orthonormal basis
for W.
Since |m(w)| = |mo(w +)|, the orthogonality condition (8.32) can be
rewritten as
Imo(@)* + [mi(@)? = 1. (8.42)

By comparing the definition of m in (8.36) with

1 .
ml(w) — _eTio___ Z hkel(w-i-n)k
V24
1 .
- Z(_l)l—khke—lw(l—k)
V24

1)
— E Z(_l)nhl_ne—m}n)

we relate g, and h,, as
gn = (=1)"hi—y . (8.43)

In signal processing literature, (8.43) is known as the quadrature mirror relation
and the filters & and g as quadrature mirror filters.

Remark 2. Choosing A(w) = e leads to the rarely used high-pass filter g, =
(=1)""'h_,_,. It is convenient to define g, as (—1)"/1_,+ 5, where M is a “shift
constant.” Such re-indexing of g affects only the shift-location of the wavelet
function.

8.3.4 Haar Wavelets

In addition to their simplicity and formidable applicability, Haar wavelets have
tremendous educational value. Here we illustrate some of the relations discussed
in the Sect. 8.3.3 using the Haar wavelet. We start with scaling function ¢ (x) =
1(0 < x < 1) and pretend that everything else is unknown. By inspection of simple
graphs of two scaled Haar wavelets ¢(2x) and ¢ (2x + 1) stuck to each other, we
conclude that the scaling (8.21) is

P(x) =¢(2x) +¢(2x - 1)
1

ﬁﬁgb@x -1, (8.44)

1
= Eﬁgb@x) +

230 B. Vidakovic

which yields the wavelet filter coefficients:

ho =h, =

-

The transfer functions are

()_L 1 iwo +L L) _ L™
’"“”‘ﬁ(ﬁe) fz(ﬁe)‘ 2

and
—iw,_ | N —iw 1 1 iw | _ l—e™
mi(w) = —e “mo(w +) = —e (2 2e) = 5 .
Notice that mo(w) = |mo(@)[e¥® = cos(w/2) - e7/* (after cosx = (e +
e)/2). Since p(w) = —9%, the Haar wavelet has linear phase, i.., the scaling

function is symmetric in the time domain. The orthogonality condition |mg(w)|*> +
|mi(w)|? = 1is easily verified, as well.
Relation (8.37) becomes

vo = () =5 (5) g ()

and by applying the inverse Fourier transform we obtain

v(x) =¢2x) —¢2x—1)

in the time-domain. Therefore we “have found” the Haar wavelet function ¥. From
the expression for m; or by inspecting the representation of ¥ (x) by ¢(2x) and
¢ (2x — 1), we “conclude” that gy = —g_; = —=

Although the Haar wavelets are well localized in the time domain, in the
frequency domain they decay at the slow rate of O(1/n) and are not effective in
approximating smooth functions.

8.3.5 Daubechies’ Wavelets

The most important family of wavelets was discovered by Ingrid Daubechies and
fully described in Daubechies (1992). This family is compactly supported with
various degrees of smoothness.

The formal derivation of Daubechies’ wavelets goes beyond the scope of this
chapter, but the filter coefficients of some of its family members can be found by
following considerations.

For example, to derive the filter taps of a wavelet with N vanishing moments, or
equivalently, 2N filter taps, we use the following equations.

8 Transforms in Statistics 231

The normalization property of scaling function implies

2N—1

Zhl:ﬁ

requirement for vanishing moments for wavelet function ¥ leads to

2N—1
Y (=D'i*hi =0, k=01..N-1,

i=0
and, finally, the orthogonality property can be expressed as

2N—1

> hihiva =8 k=01, N-1.
i=0

We obtained 2N + 1 equations with 2N unknowns; however the system is
solvable since the equations are not linearly independent.

Example 4. For N = 2, we obtain the system:

h0+h1+h2+h3=\/§
hg+ht+h3+h}=1
—hy + 2hy, —3h3 = 0, ’
hohy +hih; =0

1+4/3 _ 343 V3
= e = g and by =

which has a solution k¢ = _}[

For N = 4, the system is

ho + hy + ha + hy + hy + hs + he + hy = /2
hg+ht+h3+hi+hi+hi+hl+hi=1
ho—hy+hy—h3+hy —hs+he—h; =0

hohy + hyhs + hohy + hshs + hahe + hshy =0

hohs + hihs + hohe + hsh7 =0

hohe +hih7 =0

Oho — 1hy + 2hy — 3h3 + 4hy — 5hs + 6hg — Th7 =0

0hg — 1hy + 4hy — 9h3 + 16hy — 25hs + 36he — 49h7 = 0
0ho — 1hy + 8hy —27h3 + 64hy — 125hs + 216hg — 343h7 =0 .

Figure 8.9 depicts two scaling function and wavelet pairs from the Daubechies
family. Figure 8.9a,b depict the pair with two vanishing moments, while Fig. 8.9¢c,d
depict the pair with four vanishing moments.

232 B. Vidakovic

1.2
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-1 -0.5 0 0.5 1 1.5 2
c d
1 0.8
0.8 0.6
0.6 04
0.4 0.2
02 0
-0.2
0
-0.4
-0.2
-0.6
0 1 2 3 4 5 6 7 -3 -2 -1 0 1 2 3 4

Fig. 8.9 Wavelet functions from Daubechies family. (a) Daubechies scaling function, 2 vanishing
moments, 4 tap filter (b) Wavelet function corresponding to (a), (¢) Daubechies scaling function,
4 vanishing moments, 8 tap filter (d) Wavelet function corresponding to (c)

8.4 Discrete Wavelet Transforms

Discrete wavelet transforms (DWT) are applied to discrete data sets and produce
discrete outputs. Transforming signals and data vectors by DWT is a process that
resembles the fast Fourier transform (FFT), the Fourier method applied to a set of
discrete measurements.

The analogy between Fourier and wavelet methods is even more complete
(Table 8.2) when we take into account the continuous wavelet transform and wavelet
series expansions.

Discrete wavelet transforms map data from the time domain (the original or input
data vector) to the wavelet domain. The result is a vector of the same size. Wavelet
transforms are linear and they can be defined by matrices of dimension n x n if they
are applied to inputs of size n. Depending on boundary conditions, such matrices
can be either orthogonal or “close” to orthogonal. When the matrix is orthogonal,
the corresponding transform is a rotation in R” in which the data (a n-typle) is
a point in R”. The coordinates of the point in the rotated space comprise the

8 Transforms in Statistics 233

Table 8.2 The analogy between Fourier and wavelet methods

Fourier Fourier Fourier Discrete
Methods Integrals Series Fourier transforms
Wavelet Continuous Wavelet Discrete
Methods Wavelet transforms Series Wavelet transforms

Fig. 8.10 A function ' ' '
interpolating y on [0, 8) 21 —_—
1 —_—
of i
-1r 4
-2+ 4
-3}

discrete wavelet transform of the original coordinates. Here we provide two toy
examples.

Example 5. Let the vector be (1,2) and let M(1,2) be the point in R? with
coordinates given by the data vector. The rotation of the coordinate axes by an
angle of /4 can be interpreted as a DWT in the Haar wavelet basis. The rotation
matrix is L
W= cos% sin% (v &~

cos —sin % % —%

and the discrete wavelet transform of (1,2) is W - (1,2) = (3/+/2,—1//2).

Notice that the energy (squared distance of the point from the origin) is preserved,
12 4+ 22 = (1/2)% + (+/3/2)2, since W is a rotation.

Example 6. Let y = (1,0,—3,2,1,0,1,2). The associated function f is given
in Fig.8.10. The values f(n) = y,, n = 0,1,...,7 are interpolated by
a piecewise constant function. We assume that f* belongs to Haar’s multiresolution
space Vj.

The following matrix equation gives the connection between y and the wavelet
coefficients (data in the wavelet domain).

234 B. Vidakovic

1 L 1
1 |y 2 0l 00 0
111 g _1L g o 90 €00
IR EE I
AR I AL
| Wi w02 00 =50 !
11 g _1 g o o L dxn
2 W2 2v2 2 V2 dos
L 2 T N 19 o0 o |t
L2v2 242 2 V2 -
The solution is _ _
[coo | “/\/EE
doo _1
dyo .
an|_| 3
dx 72
dri _175
d» —=
o B
- L V2
Thus,
f=N2¢_30—V2Y_30+ V20— Y21
1 5 1 1
+ E‘ﬁ—l,o - Ew—l,l + %1/’—1.2 - %1/’—1.3 . (8.45)

The solution is easy to verify. For example, when x € [0, 1),

1 1 1 1 1 1 1
f(x):ﬁ-m—\/i-m—kl-i-kﬁ'E:§+§=1(=YO).

Applying wavelet transforms by multiplying the input vector with an appropriate
orthogonal matrix is conceptually straightforward task, but of limited practical
value. Storing and manipulating the transformation matrices for long inputs (n >
2,000) may not even be feasible.

This obstacle is solved by the link of discrete wavelet transforms with fast
filtering algorithms from the field of signal and image processing.

8 Transforms in Statistics 235
8.4.1 The Cascade Algorithm

Mallat (1989a,b) was the first to link wavelets, multiresolution analyses and cascade
algorithms in a formal way. Mallat’s cascade algorithm gives a constructive and
efficient recipe for performing the discrete wavelet transform. It relates the wavelet
coefficients from different levels in the transform by filtering with wavelet filter A
and and its mirror counterpart g.

It is convenient to link the original data with the space V;, where J is often O or
logn, where n is a dyadic size of data. Then, coarser smooth and complementing
detail spaces are (Vy—1, Wy—1), (Vj—2, W), etc. Decreasing the index in V-
spaces is equivalent to coarsening the approximation to the data.

By a straightforward substitution of indices in the scaling (8.21) and (8.35), one
obtains

¢j—11(x) = th—zl¢jk(x) and V¥;—1.(x) = ng—21¢jk(x) . (8.46)

keZ keZ

The relations in (8.46) are fundamental in developing the cascade algorithm.

In a multiresolution analysis, ... € V;—y C V; C V;41 C Since
Vi = Vj—1 & W;_, any function v; € V; can be represented uniquely as
vi(x) =vj_1(x)+wj_i(x),wherev;,_; € V;_yandw;_; € W;_;.Itis customary
to denote the coefficients associated with ¢;x(x) and ¥ (x) by cjx and dji,
respectively.

Thus,

0= Y et
k

= i1 () + Y djr -1 (x)
l i

vj_l(x) + wj_l(x) .

By using the general scaling (8.46), orthogonality of w; i (x) and ¢; 1 ;(x) for any
j and /, and additivity of inner products, we obtain

cj—11 = (vj,dj-11)

= <Vj, th—21¢j,k>
3

= hi—a(vi.$jx) (8.47)
k

= th—zlcj,k .
3

236 B. Vidakovic

Similarly dj_1; = Y, 8k—2Cjk-

The cascade algorithm works in the reverse direction as well. Coefficients in
the next finer scale corresponding to V; can be obtained from the coefficients
corresponding to V;_ and W;_;. The relation

Cik =(vj.djx)

=Y cjidj-ri-bik) + Y dj1i (Y11 br) (8.43)
1 I

= ch—l,lhk—ﬂ + Zdj—l,lgk—zl ,
/ /

describes a single step in the reconstruction algorithm.

The discrete wavelet transform can be described in terms of operators. Let the
operators H and G acting on a sequence a = {a,,n € Z}, satisfy the following
coordinate-wise relations:

(Ha)k = Zhn—Zkan (ga)k = Zgn—Zkan 5

and their adjoint operators H* and G* satisfy:

(H*a)y =Y hw-owar (G @)y =) gn-aiax .
k k

where h = {h,} is wavelet filter and g = {g,} its quadrature-mirror counterpart.
Denote the original signal by ¢/) = {C](CJ)}. If the signal is of length 27, then

¢'/) can be interpolated by the function f(x) = Y c,ij) ¢(x — k) from V;. In each
step of the wavelet transform, we move to the next coarser approximation (level)
¢~V by applying the operator H, ¢/ =" = Hc¢/). The “detail information,” lost by
approximating ¢ /) by the “averaged” ¢~V is contained in vector d V™D = G ().

The discrete wavelet transform of a sequence y = ¢/) of length 2/ can then be
represented as

(cV70.aV=0,aU=D gD, gy (8.49)

Notice that the lengths of y and its transform in (8.49) coincide. Because of
decimation, the length of ¢ is twice the length of ¢V~ and 2/ = 277 +
S 2 1<k<J.

For an illustration of (8.49), see Fig. 8.11. By utilizing the operator notation, it is
possible to summarize the discrete wavelet transform (curtailed at level k) in a single
line:

yi (Hy GH Yy, . GH? Y. GHy. Gy) .

8 Transforms in Statistics 237

dr-v do-2 d -+ do-»
g g / / g
(J) (J-1) (J-2) (J-k+1) (J-k)
C c c c c
H H H

Fig. 8.11 Forward wavelet transform of depth k (DWT is a vector of coefficients connected by
double lines)

RN 1\

e _.EB (u) _>EB e

Fig. 8.12 Inverse transform

The number k can be any arbitrary integer between 1 and J and it is associated with
the coarsest “smooth” space, V;_, up to which the transform was curtailed. In terms
of multiresolution spaces, (8.49) corresponds to the multiresolution decomposition
Vik @ Wik ® Wik @ ... ® Wy_1. When k = J the vector ¢© contains
a single element, ¢(©.

If the wavelet filter length exceeds 2, one needs to define actions of the filter
beyond the boundaries of the sequence to which the filter is applied. Different
policies are possible. The most common is a periodic extension of the original
signal.

The reconstruction formula is also simple in terms of operators H* and G*. They
are applied on ¢/~ and d V™Y, respectively, and the results are added (Fig. 8.12).
The vector ¢/ is reconstructed as

¢V =H*eU™D 4 g*atu=h (8.50)
Recursive application of (8.50) leads to

(H*y, GH 'y,GH?y,GHy,Gy)

_ (C(J—k)’d(J—k)’d(J—k-H)’ . ’d(J—Z)’d(J—l))

k—
N Z k 1= Ig*d(J—k+i) + (%*)kcu—k) =y.
i=1

238 B. Vidakovic

Example7. Let y = (1,0,—3,2,1,0,1,2) be an exemplary set we want to
transform by Haar’'s DWT. Let k = J = 3, i.e., the coarsest approximation and
detail levels will contain a single point each. The decomposition algorithm applied
ony = (1,0,-3,2,1,0,1,2) is given schematically in Fig. 8.13.

For the Haar wavelet, the operators H and G are given by (Ha)r =
S ok = Y, Am@miok = hoas + hias1 = (as + az41)/~/2. Similarly,
(Ga)k = 3, Gn—akln = Yy Emm+2k = 0G2k + &1a2k+1 = (A2 — Q2gt1)/ V2.

The reconstruction algorithm is given in Fig.8.14. In the process of recon-
struction, (H*a), = Y ; hp—orar, and (G*a), = Y, gu—akax. For instance, the
first line in Fig. 8.14 recovers the object {1, 1} from /2 by applying #*. Indeed,
(H*{ao})o = hov/2 = 1 and (H*{ao})1 = hv2 = 1.

We already mentioned that when the length of the filter exceeds 2, boundary
problems occur since the convolution goes outside the range of data.

There are several approaches to resolving the boundary problem. The signal
may be continued in a periodic way (..., Yn—1, Yu|V1, ¥2,-..), symmetric way
(- s Yn=1, Yn|Yn=1, Yn—2, - . .), padded by a constant, or extrapolated as a polyno-
mial. Wavelet transforms can be confined to an interval (in the sense of Cohen
et al. (1993) and periodic and symmetric extensions can be viewed as special cases.
Periodized wavelet

transforms are also defined in a simple way.

If the length of the data set is not a power of 2, but of the form M 2K for M odd
and K a positive integer, then only K steps in the decomposition algorithm can be

y =c® ’ 1 0 -3 2 1 0 1 2 ‘
g H
@ El _ 5 E Y
d 2 72 72 72
|
Ne) ‘ E _ L E 3 ‘
7z V3 vl V2
g H
da® ‘ 1 1 ‘
e
U
G| |H
0
4© 32

Fig. 8.13 An illustration of a decomposition procedure

8 Transforms in Statistics 239

o e
d© 9 . [4 3

1 g* 1 1 1 1
av 1 4 —— | & v |
+
1_1 1 3
@ [_1L 1L 3 " [1 T 1 1 1 3 3‘
S v v By v 7 3 T3 "3 3 3 7 3
o1 5 1 1 g* T 1 5 5 1 1 1 1
dP |\ %~ v ‘5—5 -5 3 3 -3 3 5‘
+
|10-3 1012‘

Fig. 8.14 An illustration of a reconstruction procedure

performed. For precise descriptions of conceptual and calculational hurdles caused
by boundaries and data sets whose lengths are not a power of 2, we direct the reader
to the monograph by Wickerhauser (1994).

In this section we discussed the most basic wavelet transform. Various gener-
alizations include biorthogonal wavelets, multiwavelets, nonseparable multidimen-
sional wavelet transforms, complex wavelets, lazy wavelets, and many more.

For various statistical applications of wavelets (nonparametric regression, density
estimation, time series, deconvolutions, etc.) we direct the reader to Antoniadis
(1997), Hifjrdle et al. (1998), Vidakovic (1999). An excellent monograph by Walter
and Shen (2000) discusses statistical applications of wavelets and various other
orthogonal systems.

8.4.2 Matlab Implementation of Cascade Algorithm

The following two matlab m-files implement discrete wavelet transform and its
inverse, with periodic handling of boundaries. The data needs to be of dyadic size
(power of 2). The programs are didactic, rather than efficient. For an excellent and

240 B. Vidakovic

comprehensive wavelet package, we direct the reader to wavelab802 module
(http://www-stat.stanford.edu/~wavelab/) maintained by Donoho and his coauthors.

function dwtr = dwtr(data, L, filterh)

function dwtr = dwt(data, filterh, L);
Calculates the DWT of periodic data set

with scaling filter filterh and L scales.

o° o° o o°

o°

Example of Use:
data = [1 0 -3 2 1 0 1 2]; filter = [sqgrt(2)/2 sqgrt(2)/2];
wt = DWTR(data, 3, filter)

o°

o° o°

n = length(filterh); $Length of wavelet filter

C = data; %$Data \qut{live} in V. J

dwtr = []; %At the beginning dwtr empty
H = fliplr(filterh); $Flip because of convolution
G = filterh; $Make quadrature mirror
G(1l:2:n) = -G(1:2:n); % counterpart

o°

Start cascade
Length needed to

for j = 1:L
nn = length(C);

o

C = [C(mod((-(n-1):-1),nn)+1) Cl; % make periodic

D = conv(C,G); %$Convolve,

D = D([n:2: (n+nn-2)1+1) ; % keep periodic, decimate

C = conv(C,H); %$Convolve,

C = C([n:2: (n+nn-2)1+1) ; % keep periodic, decimate

dwtr = [D,dwtr]; %$Add detail level to dwtr
end; %Back to cascade or end

o°

dwtr = [C, dwtr]; Add the last \qut{smooth} part
function data = idwtr(wtr, L, filterh)

% function data = idwt (wtr, L, filterh);

% Calculates the IDWT of wavelet

% transform wtr using wavelet filter

% \qut{filterh} and L scales.

% Example:

%$>> max (abs(data - IDWTR(DWTR (data,3,filter), 3,filter))

%ans = 4.4409e-016

nn = length(wtr) ; n = length(filterh); %$Lengths
if nargin==2, L = round(log2(nn)); end; %Depth of transform

H = filterh; $Wavelet H filter
G = fliplr(H); G(2:2:n) = -G(2:2:n); $Wavelet G filter
LL = nn/(2°L) ; $Number of scaling coeffs
C = wtr(l:LL); %$Scaling coeffs
for j = 1:L %$Cascade algorithm
w = mod(0:n/2-1,LL)+1; $Make periodic
D = wtr(LL+1:2x%LL); $Wavelet coeffs
Cu(l:2:2+LL+n) = [C C(1,w)]; $Upsample & keep periodic
Du(l:2:2+LL+n) = [D D(1,w)]; $Upsample & keep periodic
C = conv(Cu,H) + conv(Du,G); %$Convolve & add
C = C([n:n+2%LL-1]1-1); %$Periodic part
LL = 2+LL; $Double the size of level
end;
data = C; %$The inverse DWT

8.5 Conclusion

In this chapter we gave an overview of several transforms useful in computational
statistics. We emphasized frequency and scale domain transforms (Fourier and
wavelet) since they provide an insight to the phenomena, not available in the

http://www-stat.stanford.edu/~{ }wavelab/

8 Transforms in Statistics 241

domain of untransformed data. Moreover, multiscale transforms are relatively
new, and as such deserve more attention. It was pretentious to title this chapter
Transforms in Statistics, since literally several dozens important transforms are not
even mentioned. As it was hinted in the introduction, a just task of overviewing all
important transformations used in statistical practice would take a space of a large
monograph.

Acknowledgements Work on this chapter was supported by DOD/NSA Grant E-24-60R at
Georgia Institute of Technology. Editor Jim Gentle read early versions of the chapter and gave
many valuable comments. All matlab programs that produced figures and simulations are
available from the author at request.

References

Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, (2nd edn.), Wiley, New York
(1984)

Antoniadis, A.: Wavelets in statistics: A review. J. Ital. Stat. Soc. 6, 97-144 (1997)

Baraniuk, R.G.: Wigner—Ville spectrum estimation via wavelet soft—tresholding. In: Proceedings of
IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Philadelphia,
PA, USA (1994)

Box, G.E.P,, Cox, D.R.: An analysis of transformations, J. Roy. Stat. Soc. 26, 211-243 discussion
244-252 (1964)

Brigham, E.O.: The Fast Fourier Transform and Its Applications, Prentice-Hall, Englewood Cliffs,
NJ (1988)

Carmona, R., Hwang, W-L., Torrésani, B.: Practical Time-Frequency Analysis, Wavelet Analysis
and its Applications, vol. 9, Academic Press, San Diego (1998)

Cohen, A, Daubechies, 1., Vial, P.. Wavelets on the interval and fast wavelet transforms. Appl.
Comput. Harmon. Anal. 1(1), 54-81 (1993)

Daubechies, I.: Ten Lectures on Wavelets, Number 61 in CBMS-NSF Series in Applied Mathe-
matics, STAM, Philadelphia (1992)

Feuerverger, A., Mureika, R.: The empirical characteristic function and its applications, Ann. Stat.
5, 88-97 (1977)

Flandrin, P.: Time-scale analyses and self-similar stochastic processes. In: Byrnes et al. (eds.)
Wavelets and Their Applications, vol. 442, pp. 121-142. NATO ASI Series (1992)

Flandrin, P.: Time-Frequency/Time-scale Analysis, p. 386. Academic Press, New York
(Orlando.FL/London) (1999)

Gabor, D.: Theory of comunication. J. IEEE 93, 429-457 (1946)

Grossmann, A., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of
constant shape. SIAM J. Math. 15, 723-736 (1984)

Grossmann, A., Morlet, J.: Decomposition of functions into wavelets of constant shape and related
transforms. In: Streit, L. (eds.) Mathematics and physics, lectures on recent results, World
Scientific, River Edge, NJ (1985)

Hi£;rdle, W., Kerkyacharian, G., Pickard, D., Tsybakov, A.: Wavelets, Approximation, and
Statistical Applications, Lecture Notes in Statistics 129. Springer, New York (1998)

Mallat, S.G.: Multiresolution approximations and wavelet orthonormal bases of IL?(R). Trans.
Amer. Math. Soc. 315, 69-87 (1989a)

Mallat, S.G.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE
Trans. on Patt. Anal. Mach. Intell. 11(7), 674-693 (1989b)

Mallat, S.G.: A Wavelet Tour of Signal Processing, (2nd edn.), Academic Press, San Diego (1999)

242 B. Vidakovic

Morlet, J., Arens, G., Fourgeau, E., Giard, D.: Wave propagation and sampling theory. Geophys.
47, 203-236 (1982)

Murata, N.: Properties of the empirical characteristic function and its application to testing for
independence. In: Lee, Jung, Makeig, Sejnowski (eds.) Proceedings ICA2001, 3rd International
Conference on Independent Component Analysis, San Diego, CA, USA (2001)

Pensky, M., Vidakovic, B., De Canditiis, D.: Bayesian decision theoretic scale-adaptive estimation
of log-spectral density. Statistica Sinica 17, 635-666 (2007)

Tong, H.: Non-Linear Time Series, Clarendon Press, Oxford (1996)

Vidakovic, B.: Statistical Modeling by Wavelets, Wiley, NY (1999)

Ville, J.: Théorie et applications de la notion de signal analytique. Cables et Transm. 2A, 61-74
(1948)

Walter, G.G., Shen, X.: Wavelets and Other Orthogonal Systems, (2nd edn.), CRC Press (2000)

Wickerhauser, M. V.: Adapted Wavelet Analysis from Theory to Software, A K Peters, Ltd.,
Wellesley, MA (1994)

Chapter 9
Parallel Computing Techniques

Junji Nakano

9.1 Introduction

Parallel computing means to divide a job into several tasks and use more than
one processor simultaneously to perform these tasks. Assume you have developed
anew estimation method for the parameters of a complicated statistical model. After
you prove the asymptotic characteristics of the method (for instance, asymptotic
distribution of the estimator), you wish to perform many simulations to assure the
goodness of the method for reasonable numbers of data values and for different
values of parameters. You must generate simulated data, for example, 100,000 times
for each length and parameter value. The total simulation work requires a huge
number of random number generations and takes a long time on your PC. If you
use 100 PCs in your institute to run these simulations simultaneously, you may
expect that the total execution time will be 1/100. This is the simple idea of parallel
computing.

Computer scientists noticed the importance of parallel computing many years
ago (Flynn 1966). It is true that the recent development of computer hardware
has been very rapid. Over roughly 40 years from 1961, the so called “Moore’s
law” holds: the number of transistors per silicon chip has doubled approximately
every 18 months (Tuomi 2002). This means that the capacity of memory chips
and processor speeds have also increased roughly exponentially. In addition, hard
disk capacity has increased dramatically. Consequently, modern personal computers
are more powerful than “super computers” were a decade ago. Unfortunately,
even such powerful personal computers are not sufficient for our requirements. In
statistical analysis, for example, while computers are becoming more powerful,

J. Nakano (°<)

Department of Data Science, The Institute of Statistical Mathematics
Tachikawa, Tokyo, Japan

e-mail: nakanoj@ism.ac.jp

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks 243
of Computational Statistics, DOI 10.1007/978-3-642-21551-3_9,
© Springer-Verlag Berlin Heidelberg 2012

nakanoj@ism.ac.jp

244 J. Nakano

data volumes are becoming larger and statistical techniques are becoming more
computer intensive. We are continuously forced to realize more powerful computing
environments for statistical analysis. Parallel computing is thought to be the most
promising technique.

However, parallel computing has not been popular among statisticians until
recently (Schervish 1988). One reason is that parallel computing was available only
on very expensive computers, which were installed at some computer centers in
universities or research institutes. Few statisticians could use these systems easily.
Further, software for parallel computing was not well prepared for general use.

Recently, cheap and powerful personal computers changed this situation. The
Beowulf project (Sterling et al. 1999), which realized a powerful computer sys-
tem by using many PCs connected by a network, was a milestone in parallel
computer development. Freely available software products for parallel computing
have become more mature. Thus, parallel computing has now become easy for
statisticians to access.

In this chapter, we describe an overview of available technologies for parallel
computing and give examples of their use in statistics. The next section considers
the basic ideas of parallel computing, including memory architectures. Section 9.3
introduces the available software technologies such as process forking, threading,
OpenMP, PVM (Parallel Virtual Machine), MPI (Message Passing Interface) and
HPF (High Performance Fortran). The last section describes some examples of
parallel computing in statistics.

9.2 Basic Ideas

Two important parts of computer hardware are the processor, which performs
computations, and memory, in which programs and data are stored. A processor
is also often called a central processing unit (CPU). Modern computer systems
adopt a stored programming architecture: all the program instructions are stored in
memory together with processed data and are executed sequentially by a processor
according to the instructions.

In a traditional single processor computer, a single stream of instructions is
generated from the program, and these instructions operate on a single stream of
data. Flynn (1966) called this arrangement a single instruction stream—single data
stream (SISD) computer.

On the other hand, a parallel computer system uses several processors, and is
realized as a single instruction stream—multiple data stream (SIMD) computer or
a multiple instruction stream—multiple data stream (MIMD) computer. SIMD refers
to a form of parallel execution in which all processors execute the same operation
on different data at the same time, and is often associated with performing the same
operation on every element of a vector or array. MIMD refers to parallel execution
in which each processor works independently; for example, one processor might
update a database file while another processor handles a graphic display.

9 Parallel Computing Techniques 245

The fundamental software of a modern computer system is an operating system
such as UNIX or Microsoft Windows. They support multiple users and multiple
tasks, even on single processor systems, by adopting time-slicing mechanisms, in
which a processor executes tasks cyclically. In parallel computer systems, some
tasks are executed on different processors simultaneously.

9.2.1 Memory Architectures of Parallel Computers

The traditional computer system has a single processor (or CPU) that can access
all of the memory (Fig.9.1). Parallel computers use more than one processor
simultaneously for a single calculation task. There are two simple methods to
increase the number of available processors in a single system. One method is to
add processors to the traditional single processor system without changing other
parts. Because all the memory is shared by all processors, such systems are called
shared memory systems (Fig. 9.2). An example of a shared memory system is a dual
processor personal computer, where the motherboard has two sockets for CPUs.
When we mount one CPU, it works as a traditional single processor system. If
we mount two CPUs, both processors can access all the memory in the PC, and it
works as a shared memory system. A second method is to connect traditional single
processor computers by a network. This is called a distributed memory system,
because the memory is used by a single processor locally and is “distributed”
over the whole system (Fig.9.3). An example of a distributed memory system is
a network of workstations, in which each node computer works independently and
communicates with the others through a network to solve a single problem.

Integration of shared memory and distributed memory is possible (Fig.9.4).
Network-connected PCs that each have two processors can be considered a dis-
tributed shared memory system.

Memory
P
Fig. 9.1 Traditional system cPU
Memory
Fig. 9.2 Shared memory CPU | | CPU | | CPU
system

Memory| |Memory| [Memory
CPU CPU CPU

Fig. 9.3 Distributed memory
system]]]

246 J. Nakano

Memory Memory Memory
CPU||CPU||CPU CPU||CPU||CPU CPU||CPU||CPU

Fig. 9.4 Distributed shared memory system

Shared Memory Systems

In the simple shared memory realization, all the processors can access all the mem-
ory at the same speed by using a common memory bus. This is known as a uniform
memory access (UMA) configuration. Performance in a UMA system is limited by
the memory bus bandwidth; adding processors to the system beyond some point
does not increase performance linearly, because signals from processors flow on the
same memory bus and often cause collisions. Typically, UMA configurations do not
scale well beyond 10-20 processors.

To improve communication between processors and memory, a non-uniform
memory access (NUMA) configuration is used. In NUMA systems, all processors
have access to all the memory, but the cost of accessing a specific location in
memory is different for different processors, because different regions of memory
are on physically different buses. Even if we adopt a NUMA configuration, it is not
efficient to use more than 100 processors in a shared memory system.

A shared memory system is also a symmetric multiprocessor (SMP) system, in
which any processor can do equally well any piece of work.

In a shared memory system, a single copy of an operating system is in charge
of all the processors and the memory. It usually uses a programming model called
“fork—join”. Each program begins by executing just a single task, called the master.
When the first parallel work is reached, the master spawns (or forks) additional tasks
(called slaves or workers), which will “join” to the master when they finish their
work (the middle figure in Fig.9.5). Such activities can be programmed by using
software technologies such as process, thread or OpenMP, which will be explained
in the next section.

Distributed Memory Systems

In a distributed memory system, each node computer is an independent computer
that has, at least, processor and memory, and the nodes are connected together by
a network. This so called “network of workstations” (NOW) is the cheapest way
to construct a distributed memory system, because we can utilize many different
kinds of workstations available, connected by a network, without adding any new
hardware. However, NOW is sometimes ineffective for heavy computation, because,
for example, general purpose networks are slow, and nodes may be unexpectedly
used for other work, so that it is difficult to schedule them efficiently.

9 Parallel Computing Techniques 247

Single Computer Shared Memory Distributed Memory
Memory Memory Memory Memory Memory
cPU cru | | cru | | cru cPU CcPU CPU

Serial Section

@ 2/ NP/ \ . R/ -
Time :8\\\\< }Parallellzable m —m

Sections

Fig. 9.5 Typical parallel computing execution

Nowadays, “Beowulf class cluster computers” are popular for distributed mem-
ory parallel computing (Sterling et al. 1999). These are a kind of NOW, but
there are slight differences. First, the nodes in the cluster are the same kind of
workstation or PC, and are dedicated to the cluster calculation tasks. Typically,
node computers share the working directory on the hard disk and have no display
or keyboard. The interconnection network is isolated from external networks and
is also dedicated to the cluster, and communication among the nodes can be done
without further authentication. Operating system parameters are tuned to improve
the total performance for parallel computing. All these characteristics help the
performance of the parallel computing on the cluster.

Distributed memory systems have no memory bus problem. Each processor can
use the full bandwidth to its own local memory without interference from other
processors. Thus, there is no inherent limit to the number of processors. The size of
the system is constrained only by the network used to connect the node computers.
Some distributed memory systems consist of several thousand processors.

As nodes in a distributed memory system share no memory at all, exchange of
information among processors is more difficult than in a shared memory system.
We usually adopt a message passing programming model on a distributed memory
system; we organize a program as a set of independent tasks that communicate with
each other via messages. This introduces two sources of overhead: it takes time
to construct and send a message from one processor to another, and the receiving
processor must be interrupted to deal with messages from other processors.

Available message passing libraries are PVM and MPI . The right figure in
Fig. 9.5 shows an execution image of MPI. HPF is also mainly used in distributed
memory systems. These libraries are illustrated in the next section.

248 J. Nakano
9.2.2 Costs for Parallel Computing

We expect that the calculation speed increases n times if we use n processors instead
of one. We also wish to use multiprocessor systems just like an ordinary single
processor system. However, some costs are incurred in realizing parallel computing.
They include the non-parallel characteristics of the problem, communication costs
such as distributing and gathering data and/or programs, the difficulty of program-
ming for synchronization among executions and unexpected influences of cache
memory. All these factors reduce the effect of parallelization.

Amdahl’s Law

All programming tasks include non-parallelizable or serial parts, which cannot be
executed on several processors, for example, summarizing calculation results and
writing them to the display or file. Assume the ratio of computing time for the serial
parts to the whole task is f (0 < f < 1). If a single processor requires f; time to
complete the task, (1 — f)¢, computation time is used for the parallelizable task and
f'ty computation time is used for the serial task. If we use n processors, the elapsed
time for execution of the parallelizable task will be at least (1 — f)t,/n, while the
execution time of the serial task remains f;. Thus, the ratio of execution time for n
processors to that for one processor, S(7), which is called the speedup factor, is

t n

TS+ (- f/n A+ m-Df"

This equation is known as “Amdahl’s law” (Amdahl 1967). When n is large, it
converges to 1/ f, that is, the effect of parallel computing is limited. For example,
if f = 5%, the maximum possible speedup is 20, even if we use an infinite number
of processors. This may discourage the use of parallel computing.

Of course, as f goes to zero, S(n) converges to n, which is an ideal situation.

S(n)

Gustafson’s Law

Amdahl’s law considers the situation where the task size is fixed and the number
of processors increases. In real problems, however, we wish to perform larger tasks
when the number of processors increases. For example, assume time s is required
for preparing a task, and time p is required for the (moderate) simulation task. When
a parallel computer is available, we wish to perform more simulations, typically, n
times larger simulations than the original ones by n processors. To perform this
simulation, a single processor system requires s + np time, while the n-processor
system requires s + p time. The speedup factor is

9 Parallel Computing Techniques 249

s+np

S(n) = P

This equation is called “Gustafson’s law” (Gustafson 1988). Note that if we define
f = s/(s + np), this is as same as Amdahl’s law. However, when n becomes
large, S () becomes large linearly. This means that parallel computing is useful for
large-scale problems in which the serial part does not increase as the problem size
increases. If s approaches zero, S(n) converges to 7, the ideal situation.

Other Costs

If we divide one task into several small tasks and execute them in parallel, we must
wait until all the child tasks have been completed: we must synchronize executions.
As the slowest child task determines the total execution time, child tasks should be
designed to have almost the same execution times, otherwise some processors may
be idle while others have tasks queuing for execution. Techniques that aim to spread
tasks among the processors equally are called load balancing and are not easy.

In a shared memory system, exchange of information among processors is
performed by variables stored in the shared memory. If several tasks use one variable
almost simultaneously, it may cause trouble. Consider two tasks trying to decrease
the value of variable x by one. Assume x = 3; task 1 obtains this value, decreases
it and writes 2 into x. If task 2 tries to do the same task before task 1 finishes its
work, task 2 also obtains the value 3, and writes 2 into x. Thus, the final result is
2, although x should have decreased twice. To avoid such a maloperation, task 2
must wait until task 1 finishes. All parallel computing software can handle this
synchronization problem, typically by using a lock-unlock mechanism.

An important hardware aspect of shared memory systems is cache memory.
As the advances in main memory technology do not keep up with processor
innovations, memory access is very slow compared with processor speed. In order
to solve this problem, another layer of memory has been added between a processor
and main memory, called the cache. It is a small amount of very fast, expensive
memory, that operates close to the speed of the processor. A separate cache
controller monitors memory accesses and loads data and instructions in blocks of
contiguous locations from memory into the cache. Once the content of memory
is stored in the cache, the processor can operate at full speed by using them.
Sometimes, the cache contents are different from the necessary ones. In these cases,
the processor is stalled and has to wait while the necessary data is newly loaded from
memory into the cache. This mechanism works well in a single processor system.

All processors in a shared memory system have their own caches. Suppose
several processors access the same location of memory and copy them into their
caches. If one processor changes the value of the memory in that location, other
processors should not use the value in their caches. A cache coherence protocol is
used to notify this information among caches. A common cache coherence protocol
is an invalidate policy; when one copy of memory is altered, the same data in

250 J. Nakano

any other cache is invalidated (by resetting a valid bit in the cache). In shared
memory systems, cache coherence is done in the hardware and the programmer
need not worry about cache coherence. However, it may cause the slowdown of
the calculation speed. Note that caches handle blocks of memory. If one processor
writes to one part of the block, copies of the whole block in other caches are
invalidated though the actual data is not shared. This is known as false sharing
and can damage the performance of the cache in a shared memory system. We are
sometimes required to write programs considering the amount of the cache memory
in a shared memory system to achieve enough performance.

Distributed memory systems require communication among node computers.
Such communication is affected by several factors, including network bandwidth,
network latency and communication latency. Network bandwidth is the number of
bits that can be transmitted in unit time. Network latency is the time to prepare
a message for sending it through the network. Communication latency is the
total time to send the message, including software overhead and interface delays.
Generally, communication is expensive compared with processor work.

If a problem can be divided into small tasks that are completely independent
and require no or very little synchronization and communication, the problem
is called “embarrassingly parallel”. Clearly, embarrassingly parallel problems are
particularly suitable for parallel computing.

9.3 Parallel Computing Software

Several well-designed software technologies are available for utilizing parallel
computing hardware. Note that each of them is suitable for a specific hardware
architecture.

In this section, we use as an example the calculation of the value of 7 by the
approximation formula

Fig. 9.6 Calculation of

9 Parallel Computing Techniques 251

1 n
™= / 1;42(“ ~ > %~
o 1+ TS+ (5P

The case n = 10 is illustrated in Fig. 9.6.

A C program to calculate the last term is given in Listing 9.3. The main
calculation is performed in the for statement, which is easily divided into parallel-
executed parts; this is an example of an embarrassingly parallel problem. We show
several parallel computing techniques by using this example in this section. We
choose this simple example to keep the length of following example source codes
as small as possible and to give a rough idea of parallel computing techniques.
Note that this example is so simple that only the most fundamental parts of each
technique will be used and explained. Many important details of each technique are
left to references.

#include <stdio.h>

main (int argc, char xxargv)

{
int n, 1i;
double d, s, x, pi;
n = atoi(argv([1l]);
d = 1.0/n;
s = 0.0;
for (i=1; i<=n; i++){
x = (1-0.5)xd;
S 4= 4.0/ (1.0+x*X) ;
}
pi = dxs;
printf ("pi=%.15f\n", pi);
}

9.3.1 Process Forking

Modern operating systems have multi-user and multi-task features even on a single
processor; many users can use a single processor system and can seemingly perform
many tasks at the same time. This is usually realized by multi-process mechanisms
(Tanenbaum 2001).

UNIX-like operating systems are based on the notion of a process. A process
is an entity that executes a given piece of code, has its own execution stack, its
own set of memory pages, its own file descriptors table and a unique process ID.
Multiprocessing is realized by time-slicing the use of the processor. This technology
repeatedly assigns the processor to each process for a short time. As the processor
is very fast compared with human activities, it looks as though it is working

252 J. Nakano

simultaneously for several users. In shared memory systems, multiprocessing may
be performed simultaneously on several processors. Multiprocessing mechanisms
are a simple tool for realizing parallel computing.

We can use two processes to calculate the for loop in Listing 9.3, by using
the process-handling functions of UNIX operating systems: fork (), wait () and
exit (). The function fork () creates a new copy process of an existing process.
The new process is called the child process, and the original process is called the
parent. The return value from fork () is used to distinguish the parent from the
child; the parent receives the child’s process id, but the child receives zero. By
using this mechanism, an if statement, for example, can be used to prescribe
different work for the parent and the child. The child process finishes by calling
the exit () function, and the parent process waits for the end of the child process
by using the wait () function. This fork—join mechanism is fundamental to the
UNIX operating system, in which the first process to start invokes another process
by forking. This procedure is repeated until enough processes are invoked. Although
this mechanism was originally developed for one processor and a time-slicing
system, UNIX operating systems that support shared memory can run processes
on different processors simultaneously.

As processes are independent and share only a limited set of common resources
automatically, we must write a program for information exchange among processes.
In our example, we use functions to handle shared memory segments: shmget (),
shmat () and shmctl (). shmget () allocates a shared memory segment,
shmat () attaches the shared memory segment to the process, and shmctl ()
allows the user to set information such as the owner, group and permissions on
the shared memory segment. When the parent process uses fork (), the shared
memory segment is inherited by the child process and both processes can access it.

Listing 9.3.1 shows a two-process version of Listing 9.3. In the for statement,
the parent process works for i = 2,4,6,..., while the child process works for
i =1,3,5,...The child process stores its result to * shared and the parent process
receives the value and adds it to its own result, then prints the final result.

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/ipc.h>
#include <sys/shm.h>
main (int argc, char xxargv)
{

int n, 1i;

double d, s, x, pi;

int shmid, iproc;

pid t pid;

double xshared;

n = atoi(argvl[1l]);

d =1.0/n;

9 Parallel Computing Techniques 253

shmid = shmget (IPC_PRIVATE,

sizeof (double), (IPC_CREAT | 0600));
shared = shmat (shmid, 0, 0);
shmctl (shmid, IPC RMID, O0);

iproc = 0;

if ((pid = fork()) == -1) {
fprintf (stderr, "The fork failed!\n");
exit (0) ;

} else {
if (pid != 0) iproc = 1 ;

}

s = 0.0;

for (i=iproc+l; i<=n; i+=2) {

x = (1i-0.5)*d;
S += 4.0/ (1.0+x*x) ;
}
pi = dxs;
if (pid == 0) {
*shared = pi;
exit (0) ;
} else {
wait (0) ;
pi = pi + xshared;
printf ("pi=%.15f\n", pi);
}
}

Forking, however, is not appropriate for parallel computing. Much time and
memory is required to duplicate everything in the parent process. Further, a com-
plete copy is not always required, because, for example, the forked child process
starts execution at the point of the fork.

9.3.2 Threading

As a process created using the UNIX fork () function is expensive in setup
time and memory space, it is sometimes called a “heavyweight” process. Often
a partial copy of the process is enough and other parts can be shared. Such
copies can be realized by a thread or “lightweight” process. A thread is a stream
of instructions that can be scheduled as an independent unit. It is important to
understand the difference between a thread and a process. A process contains two
kinds of information: resources that are available to the entire process such as
program instructions, global data and working directory, and schedulable entities,

254 J. Nakano

which include program counters and stacks. A thread is an entity within a process
that consists of the schedulable part of the process.

In a single processor system, threads are executed by time-slicing, but shared
memory parallel computers can assign threads to different processors.

Pthread Library

There were many thread libraries in the C language for specific shared memory
systems. Now, however, the Pthread library is a standard thread library for many
systems (Butenhof 1997). The Pthread API is defined in the ANSI/IEEE POSIX
1003.1-1995 standard, which can be purchased from IEEE.

Listing 9.3.2 is an example program to calculate 7 by using the Pthread library.
The program creates a thread using the function pthread create (), then
assigns a unique identifier to a variable of type pthread_t. The caller provides
a function that will be executed by the thread. The function pthread exit () is
used to terminate itself. The function pthread join () is analogousto wait ()
for forking, but any thread may join any other thread in the process, that is, there is
no parent—child relationship.

As multi-threaded applications execute instructions concurrently, access to
process-wide (or interprocess) shared memory requires a mechanism for coordi-
nation or synchronization among threads. It is realized by mutual exclusion (mutex)
locks. Mutexes furnish the means to guard data structures from concurrent modi-
fication. When one thread has locked the mutex, this mechanism precludes other
threads from changing the contents of the protected structure until the locker per-
forms the corresponding mutex unlock. Functions pthread mutex init (),
pthread mutex lock() and pthread mutex unlock () are used for
this purpose.

The compiled executable file is invoked from a command line with two
arguments: n and the number of threads, which is copied to the global
variable num_threads. The ith thread of the function PIworker, which
receives the value i from the original process, calculates a summation for about
n/num_threads times. Each thread adds its result to a global variable pi. As
the variable pi should not be accessed by more than one thread simultaneously,
this operation is locked and unlocked by the mutex mechanism.

#include <stdio.h>

#include <pthread.h>

int n, num threads;

double d, pi;

pthread mutex t reduction mutex;
pthread t xtid;

void xPIworker (void xarg)

{

9 Parallel Computing Techniques 255

}

int 1, myid;

double s, x, mypi;

myid = x(int *)arg;

s = 0.

for (i
X =
s

}

mypi = dxs;

pthread mutex lock (&reduction mutex) ;

pi += mypi;

pthread mutex unlock (&reduction mutex) ;

pthread exit (0);

o

=myid+1l; i<=n; i+=num threads) {
(1-0.5) %d;
= 4.0/ (1.0+x*x) ;

+

main (int argc, char xxargv)

{

}

int 1i;

int *id;

n = atoi(argvl[l]);
num_threads = atoi(argv[2]);

d =1.0/n;

pi = 0.0;

id = (int %) calloc(n,sizeof (int)) ;
tid = (pthread t) calloc(num threads,

sizeof (pthread t));
if (pthread mutex init (&reduction mutex,NULL)) {
fprintf (stderr, "Cannot init lock\n");
exit (0) ;
}i

for (i=0; i<num threads; i++) ({

id[i] = 1i;
if (pthread create(&tid[i], NULL,
PIworker, (void *)&id[i])) {
exit (1) ;

}i
}i
for (i=0; i<num threads; i++)
pthread join(tid[i],NULL) ;
printf ("pi=%.15f\n", pi);

We note that it is not easy to write multi-threaded applications in the C language,
even if we use the Pthread library. As the Pthread library was added to the C
language later, there are no assurances that original basic libraries are “thread-safe”.
The term thread-safe means that a given library function is implemented in such
a manner that it can be executed correctly by multiple concurrent threads of execu-

256 J. Nakano

tion. We must be careful to use thread-safe functions in multi-thread programming.
The Pthread library is mainly used by professional system programmers to support
advanced parallel computing technologies such as OpenMP.

Java Threads

The Java language supports threads as one of its essential features (Oaks and Wong
1999). The Java library provides a Thread class that supports a rich collection
of methods: for example, the method start () causes the thread to execute the
method run (), the method join () waits for the thread to finish execution. The
lock—unlock mechanism can be easily realized by the synchronized declaration.
All fundamental libraries are thread-safe. These features make Java suitable for
thread programming.

public class PiJavaThread ({
int n, numThreads;
double pi = 0.0;
synchronized void addPi (double p) {
pi += p;
1
public PiJavaThread (int nd, int nt) {
n = nd;
numThreads = nt;
Thread threads[] = new Thread [numThreads] ;
for (int i=0; i<numThreads; i++) {
threads[i] = new Thread (new PIworker(i)) ;
threads [i] .start () ;
1
for (int i=0; i<numThreads; i++) {
try {
threads[i] .join() ;
} catch (InterruptedException e) {
e.printStackTrace () ;

}
}
}

class PIworker implements Runnable
int myid;
public PIworker (int id)
myid = id;
}
public void run() {
double d, s, x;
d =1.0/n;

9 Parallel Computing Techniques 257

s = 0.0;

for (int i=myid+1l; i<=n; i+=numThreads)
x = (1-0.5)xd;
S += 4. 0/(1.0+x*x);

}
addPi (dxs) ;
}
}
public static void main(Stringl[] args) {
PiJavaThread piJdavaThread
= new PiJavaThread (Integer.parselnt (args[0]),
Integer.parselnt (args([1])) ;
System.out.println(" pi = " + piJavaThread.pi)

7

}
}

Listing 9.3.2 is an example program to calculate the value of m using the
Java language. This program is almost the same as the Pthread example. As the
method declaration for addPi () contains the keyword synchronized, it can be
performed by only one thread; other threads must wait until the addP1i () method
of the currently executing thread finishes.

Although the Java language is designed to be thread-safe and provides several
means for thread programming, it is still difficult to write efficient application
programs in Java. Java’s tools are generally well suited to system programming
applications, such as graphical user interfaces and distributed systems, because they
provide synchronization operations that are detailed and powerful, but unstructured
and complex. They can be considered an assembly language for thread program-
ming. Thus, it is not easy to use them for statistical programming.

9.3.3 OpenMP

OpenMP is a directive-based parallelization technique (Chandra et al. 2001) that
supports fork—join parallelism and is mainly for shared memory systems. The MP
in OpenMP stands for “Multi Processing”. It supports Fortran (77 and 90), C and
C++, and is suitable for numerical calculation, including statistical computing. It is
standardized for portability by the OpenMP Architecture Review Board (OpenMP
Architecture Review Board 2004). The first Fortran specification 1.0 was released
in 1997, and was updated as Fortran specification 1.1 in 1999. New features were
added as Fortran specification 2.0 in 2000. Several commercial compilers support
OpenMP.

We use the Fortran language for our examples in this section, because Fortran
is still mainly used for high-performance computers focused on large numerical
computation. Fortran is one of the oldest computer languages and has many reliable

258 J. Nakano

and efficient numerical libraries and compilers. The Fortran program for the simple
s computation is shown in Listing 9.3.3.

We note that C (and C++) are also used for large numerical computations and
are now supported to the same extent as Fortran. The following examples can easily
be replaced by C programs (except the HPF examples) but we omit them for space
reasons.

integer n, i
double precision d, s, x, pi
write (%, *) 'n?’
read(*,*) n
d =1.0/n
s = 0.0
do i=1, n
x = (1-0.5)=xd
S = S+4.0/(1.0+x*x)
enddo
pi = dxs
write(%,100) pi
100 format(’ pi = ', £20.15)
end

We can parallelize this program simply by using OpenMP directives (List-
ing 9.3.3).

integer n, i
double precision d, s, x, pi
write (%, %) ’'n?’
read(*,*) n
d=1.0/n
s = 0.0
1SOMP PARALLEL PRIVATE (x), SHARED (d)
1 SOMP& REDUCTION (+: s)
1SOMP DO
do i1 =1, n
X = (i-0.5)=*d
S = s5+4.0/(1.0+x*x)
end do
I1SOMP END DO
ISOMP END PARALLEL
pi = dxs
write(%,100) pi
100 format (* pi = ’, £20.15)
end

Lines started by ! SOMP are OpenMP directives to specify parallel computing.
Each OpenMP directive starts with ! SOMP, followed by a directive and, optionally,

9 Parallel Computing Techniques 259

clauses. For example, “!$OMP PARALLEL” and “!$SOMP END PARALLEL”
encloses a parallel region and all code lexically enclosed is executed by all
threads. The number of threads is usually specified by an environmental variable
OMP_NUM THREADS in the shell environment. We also require a process distri-
bution directive “! SOMP DO” and “! $SOMP END DO” to enclose a loop that is
to be executed in parallel. Within a parallel region, data can either be private to
each executing thread, or be shared among threads. By default, all data in static
extents are shared (an exception is the loop variable of the parallel loop, which is
always private). In the example, shared scope is not desirable for x and s, so we
use a suitable clause to make them private: “! SOMP PARALLEL PRIVATE (X,
s)”. By default, data in dynamic extent (subroutine calls) are private (an exception
is data with the SAVE attribute), and data in COMMON blocks are shared.

An OpenMP compiler will automatically translate this program into a Pthread
program that can be executed by several processors on shared memory systems.

934 PVM

PVM (Parallel Virtual Machine) is one of the first widely used message passing
programming systems. It was designed to link separate host machines to form
a virtual machine, which is a single manageable computing resource (Geist et al.
1994). It is (mainly) suitable for heterogeneous distributed memory systems. The
first version of PVM was written in 1989 at Oak Ridge National Laboratory, but
was not released publicly. Version 2 was written at the University of Tennessee
Knoxville and released in 1991. Version 3 was redesigned and released in 1993.
Version 3.4 was released in 1997. The newest minor version, 3.3.4, was released in
2001 (PVM Project Members 2004).

PVM is freely available and portable (available on Windows and several UNIX
systems). It is mainly used in Fortran, C and C++, and extended to be used in many
other languages, such as Tcl/Tk, Perl and Python.

The PVM system is composed of two parts: a PVM daemon program (pvmd)
and libraries of PVM interface routines. Pvimd provides communication and process
control between computers. One pvmd runs on each host of a virtual machine.
It serves as a message router and controller, and provides a point of contact,
authentication, process control and fault detection. The first pvimd (which must be
started by the user) is designated the master, while the others (started by the master)
are called slaves or workers.

PVM libraries such as 1ibpvm3.a and 1ibfpvm3 . a allow a task to interface
with the pvmd and other tasks. They contain functions for packing and unpacking
messages, and functions to perform PVM calls by using the message functions to
send service requests to the pvmd.

Example Fortran programs are in Listings 9.3.4 and 9.3 .4.

260

10

20

100

program pimaster

include ' /usr/share/pvm3/include/fpvm3.h’
integer n, 1

double precision d, s, pi

integer mytid,numprocs,tids(0:32),status
integer numt,msgtype, info

characterx8 arch

write(%,*) ’'n, numprocs?’

read (%, *) n, numprocs

call PVMFMYTID (mytid)

arch = ’"«’
call PVMFSPAWN (’'piworker’, PVMDEFAULT, arch,
S numprocs, tids, numt)
if(numt .lt. numprocs) then
write (%, *) ’‘trouble spawning’
call PVMFEXIT (info)
stop
endif
d =1.0/n

msgtype = 0
do 10 i=0, numprocs-1
call PVMFINITSEND (PVMDEFAULT, info)

call PVMFPACK (INTEGER4, numprocs, 1, 1,

call PVMFPACK (INTEGER4, i, 1, 1,

call PVMFPACK (INTEGER4, n, 1, 1,

call PVMFPACK (REALS, d, 1, 1,
()

call PVMFSEND
continue
s=0.0
msgtype = 5
do 20 i1=0, numprocs-1
call PVMFRECV (-1,msgtype, info)
call PVMFUNPACK (REALS8,x,1,1,info)
S = S+X
continue
pi = dxs
write(%,100) pi
format (' pi = ’, £20.15)
call PVMFEXIT (info)
end

tids (i) ,msgtype, info

program piworker

include ' /usr/share/pvm3/include/fpvm3.h’
integer n, 1

double precision s, x, d

J. Nakano

info
info
info
info

—_— — ~— ~—

9 Parallel Computing Techniques 261

integer mytid,myid,numprocs,msgtype,master, info
call PVMFMYTID (mytid)

msgtype = 0

call PVMFRECV (-1,msgtype, info)

call PVMFUNPACK (INTEGER4, numprocs, 1, 1, info)
call PVMFUNPACK (INTEGER4, myid, 1, 1, info)
call PVMFUNPACK (INTEGER4, n, 1, 1, info)
call PVMFUNPACK (REALS, 4, 1, 1, info)
s = 0.0
do 10 1 = myid+1, n, numprocs

x = (1i-0.5)=*d

S = S+4.0/(1.0+x*x)

10 continue

call PVMFINITSEND (PVMDEFAULT, info)
call PVMFPACK (REALS, s,1,1, info)
call PVMFPARENT (master)

msgtype = 5

call PVMFSEND (master,msgtype, info)
call PVMFEXIT (info)

end

Listing 9.3.4 is the master program, and Listing 9.3.4 is the slave program, and
its compiled executable file name should be piworker. Both programs include the
Fortran PVM header file fpvm3 . h.

The first PVM call PYMFMYTID () in the master program informs the pvmd of
its existence and assigns a task id to the calling task.

After the program is enrolled in the virtual machine, the master program spawns
slave processes by the routine PVMFSPAWN (). The first argument is a string
containing the name of the executable file that is to be used. The fourth argument
specifies the number of copies of the task to be spawned and the fifth argument is
an integer array that is to contain the task ids of all tasks successfully spawned.
The routine returns the number of tasks that were successfully created via the last
argument.

To send a message from one task to another, a send buffer is created to hold
the data. The routine PVMFINITSEND () creates and clears the buffer and returns
a buffer identifier. The buffer must be packed with data to be sent by the routine
PVMFPACK (). The first argument specifies the type of data to be packed. The
second argument is the first item to be packed, the third is the total number of items
to be packed and the fourth is the stride to use when packing. A single message
can contain any number of different data types; however, we should ensure that
the received message is unpacked in the same way it was originally packed by the
routine PVMFUNPACK () . The routine PVMFSEND () attaches an integer label of
msgtype and sends the contents of the send buffer to the task specified by the first
argument.

262 J. Nakano

After the required data have been distributed to each worker process, the master
program must receive a partial sum from each of the worker processes by the
PVMFRECYV () routine. This receives a message from the task specified by the first
argument with the label of the second argument and places it into the receive buffer.
Note that a value of -1 for an argument will match with any task id and/or label.
The master program expects a label value of 5 on messages from the worker tasks.

The wunpacking routine PVMFUNPACK() has the same arguments as
PVMFPACK() . The second argument shows where the first item unpacked is to
be stored.

After the sum has been computed and printed, the master task informs the PVM
daemon that it is withdrawing from the virtual machine. This is done by calling the
routine PVMFEXIT ().

The worker program uses the same PVM routines as the master program. It also
uses PVMFPARENT () routine to find the task id of the master task that spawned
the current task.

When we compile Fortran PVM codes, we must link in both the PVM Fortran
library and the standard PVM library compiled for the target machine architecture.
Before executing the program, the executables of the worker program should be
available in a specific directory on all the slave nodes. The default authentication is
performed by rsh call.

9.3.5 MPI

MPI (Message Passing Interface) is the most widely used parallel computing
technique. It specifies a library for adding message passing mechanisms to existing
languages such as Fortran or C. MPI is mainly used for homogeneous distributed
memory systems.

MPI appeared after PVM. PVM was a research effort and did not address the
full spectrum of issues: it lacked vendor support, and was not implemented at the
most efficient level for a particular hardware. The MPI Forum (Message Passing
Interface MPI) was organized in 1992 with broad participation by vendors (such
as IBM, Intel, SGI), portability library writers (including PVM), and users such as
application scientists and library writers. MPI-1.1 was released in 1995, MPI-1.2
was released in 1997, and MPI-2 was released in 1997.

MPI-1 has several functions that were not implemented in PVM. Communicators
encapsulate communication spaces for library safety. Data types reduce copying
costs and permit heterogeneity. Multiple communication modes allow precise buffer
management. MPI-1 has extensive collective operations for scalable global commu-
nication, and supports process topologies that permit efficient process placement
and user views of process layout (Gropp et al. 1999a).

In MPI-2, other functions were added: extensions to the message passing model,
dynamic process management, one-sided operations (remote memory access),
parallel I/O, thread support, C++ and Fortran 90 bindings, and extended collective
operations (Gropp et al. 1999b).

9 Parallel Computing Techniques 263

MPI implementations are released from both vendors and research groups.
MPICH (MPICH Team 2004) and LAM/MPI (LAM Team 2004) are widely used
free implementations.

Although MPI has more than 150 routines, many parallel programs can be
written using just six routines, only two of which are non-trivial: MPT INIT (),
MPI FINALIZE(),MPI COMM SIZE(),MPI COMM RANK (),MPI SEND()
and MPI_RECV (). An example program is shown in Listing 9.3.5.

include 'mpif.h’
integer n, 1
double precision d, s, x, pi, temp
integer myid, numprocs, ierr, status(3)
integer sumtag, sizetag, master
call MPI_INIT(ierr)
call MPI_COMM SIZE (MPI_COMM_WORLD,numprocs, ierr)
call MPI_COMM RANK (MPI_COMM WORLD,myid,ierr)
sizetag = 10
sumtag = 17
master = 0
if (myid .eqg. master) then

write (*,*) 'n?’

read(*,*) n

do i = 1, numprocs-1

call MPI SEND(n,1,MPI INTEGER,i,sizetag,

$ MPI_COMM WORLD, ierr)

enddo
else

call MPI RECV(n,1,MPI INTEGER,master,sizetag,
S MPI COMM WORLD, status,ierr)
endif
d=1.0/n
s = 0.0
do 1 = myid+1l, n, numprocs

X (i-0.5)xd

s S+4.0/ (1.04+x%x)
enddo
pli = d=s
if (myid .ne. master) then

call MPI SEND(pi,1,MPI DOUBLE PRECISION,

S master, sumtag,MPI_COMM_WORLD, ierr)
else
do i = 1, numprocs-1
call MPI RECV (temp, 1,MPI DOUBLE PRECISION,
S i, sumtag,MPI_ COMM WORLD, status, ierr)

pi = pi+temp

264 J. Nakano

enddo

endif

if (myid .eqg. master) then
write (%, 100) pi

100 format (* pi = ’, £20.15)
endif
call MPI_FINALIZE (ierr)
end

MPI follows the single program-multiple data (SPMD) parallel execution model.
SPMD is a restricted version of MIMD in which all processors run the same
programs, but unlike SIMD, each processor may take a different flow path in the
common program.

If the example program is stored in file prog8. £, typical command lines for
executing it are

£77 -o prog8 prog8.f -lmpi
mpirun -np 5 prog8

where the command mpirun starts five copies of process prog8 simultane-
ously. All processes communicate via MPI routines.

The first MPI call must be MPI _INIT (), which initializes the message passing
routines. In MPI, we can divide our tasks into groups, called communicators.
MPI COMM SIZE() is used to find the number of tasks in a specified MPI
communicator. In the example, we use the communicator MPI _COMM_ WORLD,
which includes all MPI processes. MPI _COMM_RANK () finds the rank (the name
or identifier) of the tasks running the code. Each task in a communicator is assigned
an identifying number from 0 to numprocs-1.

MPI_ SEND () allows the passing of any kind of variable, even a large array, to
any group of tasks. The first argument is the variable we want to send, the second
argument is the number of elements passed. The third argument is the kind of
variable, the fourth is the id number of the task to which we send the message, and
the fifth is a message tag by which the receiver verifies that it receives the message it
expects. Once a message is sent, we must receive it on another task. The arguments
of the routine MPI_RECV () are similar to those of MPI_SEND () . When we finish
with the message passing routines, we must close out the MPI routines by the call
MPI FINALIZE().

In parallel computing, collective operations often appears. MPI supports useful
routines for them. MPI_BCAST distributes data from one process to all others in
a communicator. MPI_REDUCE combines data from all processes in a communica-
tor and returns it to one process. In many numerical algorithms, SEND/RECEIVE
can be replaced by BCAST/REDUCE, improving both simplicity and efficiency.
Listing 9.3.5 can be replaced by Listing 9.3.5 (some parts of Listing 8 are omitted).

master = 0
if (myid .eqg. master) then

9 Parallel Computing Techniques 265

write (*,*) ’'n?’
read(*,*) n
endif
call MPI BCAST(n,1,MPI INTEGER,master,
$ MPI_ COMM WORLD, ierr)
d 1.0/n
s = 0.0

enddo
pi = dxs
call MPI REDUCE (pi, temp,1,MPI DOUBLE PRECISION,
S MPI SUM,master,MPI COMM WORLD, ierr)
pi = temp
if (myid .eg. master) then
write (%, 100) pi

In distributed shared memory systems, both OpenMP and MPI can be used
together to use all the processors efficiently. Again, Listing 9.3.5 can be replaced
by Listing 9.3.5 (the same parts of Listing 9.3.5 are omitted) to use OpenMP.

d 1.0/n

s = 0.0
1 SOMP PARALLEL PRIVATE (x), SHARED (d)
1 SOMP& REDUCTION (+: s)

1SOMP DO
do i = myid+1l, n, numprocs
x = (1-0.5)=*d
S = s+4.0/(1.0+4x*x)
enddo

I'SOMP END DO
1 SOMP END PARALLEL
pi = dxs
if (myid .ne. master) then

9.3.6 HPF

HPF (High Performance Fortran) is a Fortran 90 with further data parallel program-
ming features (Koelbel et al. 1993). In data parallel programming, we specify which
processor owns what data, and the owner of the data does the computation on the
data (Owner-computes rule).

266 J. Nakano

Fortran 90 provides many features that are well suited to data parallel program-
ming, such as array processing syntax, new functions for array calculations, modular
programming constructs and object-oriented programming features.

HPF adds additional features to enable data parallel programming. We use
compiler directives to distribute data on the processors, to align arrays and to declare
that a loop can be calculated in parallel without affecting the numerical results. HPF
also has a loop control structure that is more flexible than DO, and new intrinsic
functions for array calculations.

The High Performance Fortran Forum (HPFF) (High Performance Fortran Forum
2004) is a coalition of industry, academic and laboratory representatives, and defined
HPF 1.0 in 1993. HPF 1.1 was released in 1994 and HPF 2.0 was released in 1997.
Several commercial and free HPF compilers are now available.

Listing 9.3.6 is an example program for calculating 7 in HPF.

integer n, 1i
double precision d, s, pi
double precision, dimension (:),
] allocatable :: x, vy
IHPF$ PROCESSORS procs (4)
IHPF$ DISTRIBUTE x (CYCLIC) ONTO procs
IHPF$ ALIGN y (i) WITH x(i)
write(x,*) 'n?’
read(*,*) n
allocate(x(n))
allocate(y(n))
d=1.0/n
|HPFS INDEPENDENT
FORALL (i = 1:n)
x(i) = (1-0.5)*d
yv(i) = 4.0/(1.0 + x(i)#*x(1))
end FORALL
pi = dxSUM(
write (%, 1
100 format(’ pi = ', £20.15)
deallocate (x)
deallocate (y)
end

VHPFS is used for all HPF compiler directives. We note that this is a comment
to non-HPF compilers and is ignored by them. The PROCESSORS directive
specifies the shape of the grid of abstract processors. Another example “!HPFS$
PROCESSORS exprocs (6,2)” specifies a 6 x 2 array of 12 abstract processors
labelled exprocs.

The DISTRIBUTE directive partitions an array by specifying a regular distribu-
tion pattern for each dimension ONTO the arrangement of abstract processors. The
CYCLIC pattern spreads the elements one per processor, wrapping around when it

9 Parallel Computing Techniques 267

runs out of processors, i.e., this pattern distributes the data in the same way that
the program in Listing 9.3.5 performs. Another pattern is BLOCK, which breaks the
array into equal-sized blocks, one per processor. The rank of the abstract processor
grid must be equal to the number of distributed axes of the array.

The ALIGN directive is used to specify relationships between data objects. In the
example program, elements of x and y that have the same index are placed on the
same processor.

The INDEPENDENT directive informs the compiler that in the execution of the
FORALL construct or the do loop, no iteration affects any other iteration in any way.

The FORALL statement is a data parallel construct that defines the assignment
of multiple elements in an array but does not restrict the order of assignment to
individual elements. Note that the do loop executes on each element in a rigidly
defined order.

The SUM intrinsic function performs reduction on whole arrays.

We may compare HPF with OpenMP, because both systems use compiler
directives in a standard language (Fortran) syntax. In OpenMP, the user specifies
the distribution of iterations, while in HPF, the user specifies the distribution of
data. In other words, OpenMP adopts the instruction parallel programming model
while HPF adopts data parallel programming model. OpenMP is suitable for shared
memory systems whereas HPF is suitable for distributed memory systems.

9.4 Parallel Computing in Statistics

9.4.1 Parallel Applications in Statistical Computing

The most important thing in parallel computing is to divide a job into small tasks
for parallel execution. We call the amount of independent parallel processing that
can occur before requiring some sort of communication or synchronization the
“granularity”. Fine granularity may allow only a few arithmetic operations between
processing one message and the next, whereas coarse granularity may allow
millions. Although the parallel computing techniques described above can support
programming of any granularity, coarse granularity is preferable for many statistical
tasks. Fine granularity requires much information exchange among processors and
it is difficult to write the required programs. Fortunately, many statistical tasks are
easily divided into coarse granular tasks. Some of them are embarrassingly parallel.

In data analysis, we often wish to perform the same statistical calculations
on many data sets. Each calculation for a data set is performed independently
from other data sets, so the calculations can be performed simultaneously. For
example, Hegland et al. (1999) implemented the backfitting algorithm to estimate
a generalized additive model for a large data set by dividing it into small data sets,
fitting a function in parallel and merging them together. Beddo (2002) performed
parallel multiple correspondence analysis by dividing an original data set and
merging their calculation results.

268 J. Nakano

Another embarrassingly parallel example is a simulation or a resampling com-
putation, which generates new data sets by using a random number generating
mechanism based on a given data set or parameters. We calculate some statistics
for those data sets, repeat such operations many times and summarize their results
to show empirical distribution characteristics of the statistics. In this case, all cal-
culations are performed simultaneously except the last part. Beddo (2002) provided
an example of bootstrapping from parallel multiple correspondence analysis.

We must be careful that random numbers are appropriately generated in parallel
execution. For example, random seeds for each process should all be different
values, at least. SPRNG (Mascagni 1999) is a useful random number generator for
parallel programming. It allows for the dynamic creation of independent random
number streams on parallel machines without interprocessor communication. It
is available in the MPI environment and the macro SIMPLE SPRNG should be
defined to invoke the simple interface. Then the macro USE_MPI is defined to
instruct SPRNG to make MPI calls during initialization. Fortran users should
include the header file sprng £ .hand call sprng () to obtain a double precision
random number in (0, 1). In compiling, the libraries 1 iblcg. a and the MPI library
should be linked.

The maximum likelihood method requires much computation and can be par-
allelized. Jones et al. (1999) describes a parallel implementation of the maximum
likelihood estimation using the EM algorithm for positron emission tomography
image reconstruction. Swann (2002) showed maximum likelihood estimation for
a simple econometric problem with Fortran code and a full explanation of MPIL
Malard (2002) solved a restricted maximum likelihood estimation of variance-
covariance matrix by using freely available toolkits: the portable extensible toolkit
for scientific computation (PETSc) and the toolkit for advanced optimazation (TAO)
(Balay et al. 2001) which are built on MPI.

Optimization with dynamic programming requires much computation and is
suitable for parallel computing. Hardwick et al. (1999) used this technique to solve
sequential allocation problems involving three Bernoulli populations. Christofides
et al. (1999) applied it to the problem of discretizing multidimensional probability
functions.

Racine (2002) demonstrated that kernel density estimation is also calculated
efficiently in parallel.

9.4.2 Parallel Software for Statistics

Several commercial and non-commercial parallel linear algebra packages that are
useful for statistical computation are available for Fortran and/or C. We mention
two non-commercial packages with freely available source codes: ScaLAPACK
(Blackford et al. 1997) supports MPI and PVM, and PLAPACK (van de Geijin
1997) supports MPI. Murphy et al. (1999) described the work to transfer sequential

9 Parallel Computing Techniques 269

libraries (Gram-Schmidt orthogonalization and linear least squares with equally
constraints) to parallel systems by using Fortran with MPI.

Although we have many statistical software products, few of them have parallel
features. Parallel statistical systems are still at the research stage. Bull et al. (1999)
ported a multilevel modeling package MLn into a shared memory system by using
C++ with threads. Yamamoto and Nakano (2002) explained a system for time series
analysis that has functions to use several computers via Tkpvm, an implementation
of PVM in the Tcl/Tk language.

The statistical systems R (The R Development Core Team 2004) and S (Cham-
bers 1998) have some projects to add parallel computing features. Temple Lang
(1997) added thread functions to S. PVM and MPI are directly available from
R via the rpvm (Li and Rossini 2001) and Rmpi (Yu 2002) packages. They are
used to realize the package “snow” (Rossini et al. 2003), which implements simple
commands for using a workstation cluster for embarrassingly parallel computations
in R. A simple example session is:

> ¢l <- makeCluster (2, type = "PVM")

> clusterSetupSPRNG (cl)

> clusterCall (cl, runif, 3)

[[1]]

[1] 0.749391854 0.007316102 0.152742874

[[2]]
[1] 0.8424790 0.8896625 0.2256776

where a PVM cluster of two computers is started by the first command and
the SPRNG library is prepared by the second command. Three uniform random
numbers are generated on each computer and the results are printed by the third
command.

The statistical system “Jasp” (Nakano et al. 2000) is implementing experimental
parallel computing functions via network functions of the Java language (see also
http://jasp.ism.ac.jp/).

References

Amdahl, G.M.: Validity of the single-processor approach to achieving large scale computing
capabilities. In AFIPS Conference Proceedings, vol. 30, pp. 483-485 (1967)

Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M., Mclnnes, L.C., Smith, B.F,,
Zhang, H.: PETSc home page (2001); http://www.mcs.anl.gov/petsc

Beddo, V.: Applications of parallel programming in Statistics. Ph.D. dissertation, University of
California, Los Angeles (2002); http://theses.stat.ucla.edu/19/parallel_programming_beddo.pdf

Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, 1., Dongarra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK
Users’ Guide. SIAM Press (1997)

Bull, .M., Riley, G.D., Rasbash, J., Goldstein, H.: Parallel implementation of a multilevel
modelling package. Comput. Stat. Data Anal. 31(4), 457-474 (1999)

http://jasp.ism.ac.jp/
http://www.mcs.anl.gov/petsc
http://theses.stat.ucla.edu/19/parallel_programming_beddo.pdf

270 J. Nakano

Butenhof, D.R.: Programming with POSIX Threads. Addison Wesley, Reading, MA, USA (1997)

Chambers, J.M.: Programming with Data: A Guide to the S Language. Springer, Berlin (1998)

Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R. Parallel Programming
in OpenMP. Morgan Kaufman, Los Altos, CA (2001)

Christofides, A., Tanyi, B., Christofides, D., Whobrey, D., Christofides, N.: The optimal discretiza-
tion of probability density functions. Comput. Stat. Data Anal. 31(4), 475-486 (1999)

Flynn, M.: Very high-speed computing systems. Proc. IEEE 54(12), 1901-1909 (1966)

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.S.: PVM: Parallel
Virtual Machine: A Users’ Guide and Tutorial for Networked Parallel Computing. MIT Press,
Cambridge, MA (1994)

Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message-
Passing Interface, 2nd Edition. MIT Press, Cambridge, MA (1999a)

Gropp, W., Lusk, E., Thakur, R.: Using MPI-2: Advanced Features of the Message-Passing
Interface. MIT Press, Cambridge, MA (1999b)

Gustafson, J.L.: Reevaluating amdahl’s law. Comm. ACM 31(5), 532-533 (1988)

Hardwick, J., Oehmke, R., Stout, Q.F.: A program for sequential allocation of three bermoulli
populations. Comput. Stat. Data Anal. 31(4), 397416 (1999)

Hegland, M., Mclntosh, I., Turlach, B.A.: A parallel solver for generalized additive models.
Comput. Stat. Data Anal. 31(4), 377-396 (1999)

High Performance Fortran Forum: HPF: The high performance fortran home page (2004); http://
www.crpe.rice.edu/HPFF/.

Jones, H., Mitra, G., Parkinson, D., Spinks, T.: A parallel implementation of the maximum
likelihood method in positron emission tomography image reconstruction. Comput. Stat. Data
Anal. 31(4), 417-439 (1999)

Koelbel, C.H., Loveman, D.B., Schreiber, R.S., Steele, J. G.L., Zosel, M.E.: The High Performance
Fortran Handbook. MIT Press, Cambridge, MA (1993)

LAM Team: LAM/MPI parallel computing (2004); http://www.lam-mpi.org/.

Li, N., Rossini, A.: RPVM: Cluster statistical computing in R. R News 1(3), 4-7 (2001); http://
CRAN.R-project.org/doc/Rnews/.

Malard, J.M.: Parallel restricted maximum likelihood estimation for linear models with a dense
exogenous matrix. Parall. Comput. 28(2), 343-353 (2002)

Mascagni, M.: SPRNG: A scalable library for pseudorandom number generation. In: Spanier, J. et
al. (eds.) Proceedings of the Third International Conference on Monte Carlo and Quasi Monte
Carlo Methods in Scientific Computing. Springer, Berlin (1999)

Message Passing Interface (MPI) Forum: Message passing interface (MPI) forum home page
(2004); http://www.mpi-forum.org/.

MPICH Team: MPICH — A portable mpi implementation (2004); http://www-unix.mcs.anl.gov/
mpi/mpich/.

Murphy, K., Clint, M., Perrott, R.H.: Re-engineering statistical software for efficient parallel
execution. Comput. Stat. Data Anal. 31(4), 441-456 (1999)

Nakano, J., Fujiwara, T., Yamamoto, Y., Kobayashi, I.: A statistical package based on Pnuts. In:
Bethlehem, J.G., van der Heijden, P.G.M. (eds.) COMPSTAT 2000 Proceedings in Computa-
tional Statistics, pp. 361-366. Physica, Wurzburg (Wien) (2000)

Oaks, S., Wong, H.: Java Threads. (2nd edn.), O’Reilly (1999)

OpenMP Architecture Review Board: OpenMP: Simple, portable, scalable SMP programming
(2004); http://www.openmp.org/.

PVM Project Members: PVM: Parallel virtual machine (2004); http://www.csm.ornl.gov/pvm/
pvm_home.html.

Racine, J.: Parallel distributed kernel estimation. Comput. Stat. Data Anal. 40(2), 293-302 (2002)

Rossini, A., Tierney, L., Li, N.: Simple parallel statistical computing in R. UW Biostatistics
working paper series, Paper 193, University of Washington, USA (2003); http://www.bepress.
com/uwbiostat/paper193.

Schervish, M.J.: Applications of parallel computation to statistical inference. J. Aner. Statist.
Assoc. 83, 976-983 (1988)

http://www.crpc.rice.edu/HPFF/
http://www.crpc.rice.edu/HPFF/
http://www.lam-mpi.org/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.mpi-forum.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.openmp.org/
http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.bepress.com/uwbiostat/paper193
http://www.bepress.com/uwbiostat/paper193

9 Parallel Computing Techniques 271

Sterling, T., Salmon, J., Becker, D.J., Savarese, D.F.: How to Build a Beowulf : A Guide to the
Implementation and Application of PC Clusters. MIT Press, Cambridge, MA (1999)

Swann, C.A.: Maximum likelihood estimation using parallel computing: An introduction to MPI.
Comput. Econ. 19, 145-178 (2002)

Tanenbaum, A.S.: Modern Operating Systems. (2nd edn.), Prentice Hall, Netherland (2001)

Temple Lang, D.: A multi-threaded extension to a high level interactive statistical computing
environment. Ph.D. dissertation, University of California, Berkeley (1997); http://cm.bell-labs.
com/stat/doc/multi-threaded-S.ps.

The R Development Core Team: The R project for statistical computing (2004);
http://www.r-project.org/.

Tuomi, I.: The lives and death of moore’s law. First Monday 7(11), (2002); http://firstmonday.org/
issues/issue7_11/tuomi/index.html.

van de Geijin, R.A.: Using PLAPACK. MIT Press, Cambridge, MA (1997)

Yamamoto, Y., Nakano, J.: Distributed processing functions of a time series analysis system. J. Jpn.
Soc. Comput. Stat. 15(1), 65-77 (2002)

Yu, H.: Rmpi: Parallel statistical computing in R. R News 2(2), 10-14 (2002); http://CRAN.R-
project.org/doc/Rnews/.

http://cm.bell-labs.com/stat/doc/multi-threaded-S.ps
http://cm.bell-labs.com/stat/doc/multi-threaded-S.ps
http://www.r-project.org/
http://firstmonday.org/issues/issue7_11/tuomi/index.html
http://firstmonday.org/issues/issue7_11/tuomi/index.html
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

Chapter 10
Statistical Databases

Claus Boyens, Oliver Giinther, and Hans-J. Lenz

10.1 Introduction

Most data collected in technology, statistics and science is still stored in simple flat
files, usually as data matrices with rows identified by a case identifier (case_id),
columns corresponding to attributes (variables), and numerical data types for the
elements of each data matrix due to a universal numeric coding of all attributes.
Each row (tuple) carries the (coded) values of the attributes, besides the case_id.
Due to an encoding that maps even a symbolic domain to a numerical one, all matrix
entries have a numeric data type. The scales of the attributes — nominal, ordinal and
cardinal — may of course be quite different.

A simple example is given by census data stored at statistical offices in
files according to a schema like census questionnaire (case_ id,
age-group, gender, profession, ...). While science gains their data
from observational sampling or experiments, statistical agencies collect their data
still mostly off-line from surveys, reports or census. Industry and services get their
data on-line from their business processes, i.e., from their logistical, production
and administrative transactions. A typical example is sales data, which may be
represented by a schema like

sales (transaction id, customer id, date, product
name, quantity, price, amount) .

C. Boyens
1 & 1 Internet AG Karlsruhe, Germany
e-mail: claus.boyens @web.de

O. Giinther
Universitidt Potsdam, Présidialamt, Potsdam, Germany
e-mail: guenther@wiwi.hu-berlin.de

H.-J. Lenz (04)
Institut fiir Statistik und Okonometrie, Freie Universitit Berlin, Berlin, Germany
e-mail: Hans-J.Lenz@fu-berlin.de

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks 273
of Computational Statistics, DOI 10.1007/978-3-642-21551-3__10,
© Springer-Verlag Berlin Heidelberg 2012

claus.boyens@web.de
guenther@wiwi.hu-berlin.de
Hans-J.Lenz@fu-berlin.de

274 C. Boyens et al.

Such data is called microdata, since it is kept in its original form and is not
divisible but atomic. In the business area such data is labeled as on-line transaction
data because it is subject to frequent updates and is the basis for the bulk of
continuous business transactions. The use of a simple file system to store microdata
is rarely a good choice because of a lack of independence between applications and
data, safety and integrity, and, consequently, retrieval problems with especially ad
hoc queries. Such data should rather be stored as tables of a relational database.
A database management system (DBMS) asserts safety, integrity and retrieval
flexibility. For instance, a query like “Find prices and amount of all sales since year
2001 where customer equals 007 and product 4711” can be simply stated in SQL
(structured query language) as

SELECT price, amount FROM sales
WHERE year $\ge $ 2001

AND customer id = 007

AND product name = 4711;

It is interesting to note that SQL provides for a set of query operators that is
relationally complete. One may thus process any reasonable query as long as it does
not involve “transitive closure”, i.e. a potentially infinite loop based on some logical
inference (such as a part-of hierarchy).

Macrodata is derived from microdata by applying statistical functions, aggre-
gation and grouping, and consequently has a larger granularity. For example, a
business analyst might be interested in a three-way table (data cube) of total sales
classified by month and year, customer id and product name. Such
retrieval can be achieved on sales by the command:

SELECT SUM (sales), date.month, date.year,
customer id, product name
FROM sales Group BY date.month, date.year,
customer id, product name;

This type of activities is coined on-line analytical operations (OLAP), which
expresses clearly its objective, i.e. a statistical analysis of data for planning, decision
support, and controlling.

As we shall see later there does not exist a clear boundary between retrieval
and statistical modeling. However, a statistical function like sum (or average) must
be selected for a specific query, which does imply some basic statistical modeling.
Consequently, a closed set of operators does not exist for such multi-way tables,
cf. consider as an example average (avg), median and geometric or harmonic mean.
Moreover, two further problems are involved. First of all, the question arises which
data structure is efficient, and secondly, what kind of background information
is needed to efficiently access data, to assist the database administrator and the
interpretation of real data by the end user? This leads to discuss metadata as
data about real data and functions involved. Modern database management systems
encapsulate metadata in a repository (integrated metadata database).

In the following we are first concerned with some fundamentals of database
management. Then we turn to the architecture of a statistical database or a data

10 Statistical Databases 275

warehouse and some concepts related to it. We pay special attention to conceptual
data structures and their related operators, the summarizability problem, and the
specifics of hierarchically structured attributes like time and space. We discuss
metadata, access methods and ETL (“extraction, transformation, and loading”). We
close with metadata and XML, and privacy.

10.2 Fundamentals of Data Management

We start our discussion with file systems, have a look at database systems useful
to store transactions or microdata, and finally turn to data warehouses which host
micro and macro data either in a real (materialized) or virtual form.

10.2.1 File Systems

Data is classically stored in files. All statistical packages offer this facility. Files
can be viewed as a conceptually related set R of records, which are represented
by a given record type, see Wirth (1986), and an access mode (direct, indexed or
sequential). If the records have a numeric type for each of its fields and the access
mode is sequential, then a data matrix can be stored in a sequential file. A collection
of such files is called a file system (FS), if there exist logical relations between files
f € FS, a set of constraints on FS and application software. Typical applications
in statistics are simple surveys like price surveys, where in most cases only one
file is needed. A more complex file system is compulsory if, for instance, stratified
or panel sampling designs are considered, where various sampling periods, areas,
objects and units (carriers of interest) are involved. Note, that relational data mining
as described by Dzeroski and Lavrac (2001) and Wrobel (2001), is devoted to such
data structures.

File systems are appropriate if only single user-access and weakly logically
connected files with simple constraints are effective. Note, that application programs
must be specially tailored to execute queries, and to achieve data safety and
security. This implies data dependence between the application software and the
files referenced, which reduces the program’s flexibility with respect to structural
changes of the data structure and the ease of “on-the-fly” querying. These pitfalls
can be overcome by database systems.

10.2.2 Relational Database Systems

Multi-user access, complex data structures, data independence, disclosure control
and logical constraints ask for a relational database system (RDBS). It consists of

276 C. Boyens et al.

a set T of relations (flat tables) together with a set S of corresponding schemas
and a set C of constraints, a database management system (DBMS) and application
software. A database schema describes the attributes (variables) of a specific table,
its data types and roles. It defines further the underlying constraints which represent
either schema based or semantic restrictions. For instance, there are entity or key
and referential integrity constraints as well as business rules to be considered, see
Elmasri and Navathe (2006). To avoid redundancy and anomalies during insert,
delete or update transactions, those tables should be transformed into a “normal
form”, see Elmasri and Navathe (2006). As an example, we take a Census. When
we look at the RDBS ’Census’ from a conceptual point of view, there are four table
schemas involved: Census-questionnaire, household, dwelling, and employment.
We shall consider only the first two in some detail, and select only some few
attributes for the sake of brevity. The first schema is

census_questionnaire(case id, household id, age-group,
gender, profession,...).

Its first four attributes are numeric and the fourth one is of type “string”. The
attribute case id acts as a primary key. Therefore it is underlined. The remaining
attributes of this table are functionally dependent on it. Because a key attribute
uniquely identifies any tuple (record) of the corresponding table (set of tuples),
there is one (entity integrity) constraint among others saying that duplicates in a
given table are not allowed. Note, that attribute household id acts as a foreign
key because it is defined as a primary key in the relation household. In order to
mention just one semantic constraint, the domain of the identifier case id may
be restricted to the set of non-negative integers, i.e. cardinals.

The other schema is

household (household id, case-id, role,...).

The first two attributes have a numeric domain, while role is of type “string”
with the value set }*“member”, “owner”}. Of course, we have again the constraint
on household id that duplicates are not allowed, but we need at least one
further restriction to ensure reference integrity, i.e., whenever there exist entries
of people grouped together in a household, each of their corresponding records in
census_questionnaire has to exist.

Last but not least, we reconsider our sales example from the introduction. The
schema is

sales (transaction id, customer id, date, product
name, quantity, price, amount)

The primary key is transaction_id, which implies that only one product
can be part of any sales transaction. Evidently, this scheme is not normalized,
because price depends on product name besides of transaction id,
and we have the balance equation amount=quantity X price. The relation
itself is of degree (number of attributes) seven. The six attributes (customer id,
date, ..., amount) span a six-dimensional data space, where each tuple
has six data items and is identified by its corresponding transaction id. We
represent four tuples only in the table below to illustrate the difference between

10 Statistical Databases 277

a schema and its corresponding relation (Table 10.1). We use abbreviations in the
header of the table sales.

The need of various users for different data can be satisfied by the concept of
virtual relations (views), which can be created by an appropriate external schema of
a given user coherently related to the underlying conceptual schema of the database
system.

Note that the term “table” used in a relational database to store such information
is quite different from the tables statisticians use for the same purpose. Table 10.2
shows the representation of the same information in a different table structure that
allows the natural computation of aggregates along rows and columns (“marginal
sums” etc.). Note that this table structure cannot be mapped directly into a relational
database context due to the margins (total or ALL), see Gray et al. (1996).

Let us close this example with a discussion of the background information
needed. We mentioned above metadata like schema names, attribute names, data
types, roles (key vs. non key, null values allowed vs. not allowed) of attributes,
constraints etc. All this can be considered as technical metadata. Moreover, we need
further metadata of a semantic and statistical type. Take for instance the attributes
quantity, price, and amount. What is their definition? As far as amount
is concerned we have “amount=quantity X price”.Furthermore, we need
the corresponding measurement units which may be units, e/unit, and e. As far
as data collection at Statistical Offices is concerned, we may need information
about the periodicity of data surveys like “annual”, “quarterly” or “monthly”. With
respect to data analysis we may be interested in the measurement scale. While

Table 10.1 Relational table sales of degree 7 and cardinality 4

Transaction_id Customer_id Date Product_name Quantity Price =~ Amount
015 A 4Jan 97 Tennis shoes 200 95 19,000.00
018 A 4 Jan 97 Tennis balls 300 1.50 450.00
004 A 3Jan 97 Tennis nets 350 27 9,450.00
009 C 3Jan 97 Tennis shoes 100 95 9,500.00

Table 10.2 Sales data in the form of the three-way statistical table total sales with
dimensions (date, customer id, product name)

Tennis shoes Tennis balls Tennis nets

3 Jan 1997

Customer A 0 0 350
Customer B 0 0 0
Customer C 100 0 0
Total 100 0 350
4 Jan 1997

Customer A 300 400 450
Customer B 1,100 1,100 800
Customer C 600 1, 600 350

Total 2,350 3,400 1,900

278 C. Boyens et al.

product_name has a nominal scale allowing only operations like “equal” and
“not equal”, the attributes quantity, price, and amount have a metric scale
allowing for all basic numerical operations. There exist further ambiguities. For
example, the generation mode of the attribute sales may have the categories “real”,
“simulated” or “forecasted”. There may further vagueness exist about sales of
category “real” unless its update state is set to “final”, and not to “provisional”.

10.2.3 Data Warehouse Systems (DWS)

A data warehouse system consists of a (replicated) micro database DB, a set of mate-
rialized or virtual multi-way tables (data cubes) needed to represent macro (pre-
aggregated and grouped) data, a data warehouse management system (DWMS), and
a repository, which stores all required technical, statistical and semantic metadata.

As an example of a data cube, we remind the reader of the three-way table
presented above:

total sales (date.month, date.year, customer id,
product name, sum (sales)).

This table is represented in a relational form, where date, customer id, and
product_ name are concatenated as a primary key. These attributes are called
dimensions. Evidently, the non-key attribute sum (sales) is fully dependent upon
this key, i.e. given the values of date.month, date.year, customer id,
product_name there exist one and only one value of sum (sales) if missing
values (null values) are excluded.

Views are useful again and can be provided by joining cubes or sub-cubes in
combination with table projections to lower dimensions. It is worthwhile consid-
ering separately the attributes sum (sales), date and pro-duct name.
The first attribute is sometimes called summary attribute and is composed of the
statistical sum applied to the attribute sales, see Shoshani (1997). This operation
is feasible because the function sum and the attribute sales have an identical
statistical data type, i.e., a metric or cardinal scale. Moreover, the attribute sales
is of attribute type £1low, but not stock. While summarizing over flows (rates) is
reasonable, such an operation over stocks like “monthly number of customers” is
nonsense. Evidently, such and further integrity constraints of semantic type must be
effective for a DWS, in order to protect the naive user from nonsense queries. This
is extremely important for data warehousing, because contrary to database queries,
the application of statistical functions is an inherent part of any query.

Furthermore, there exists a specific problem related to date. This attribute
can be decomposed into month and year but these components are functionally
dependent, i.e., for a given month of a calendar year the year is fixed. We thus
have (month, year) — year as a functional dependency. Therefore only one
dimension called date is used for the two attributes month and year in the data
cube above. There may be further temporal levels of the hierarchy time like hour,
day, month, quarter, and year. Such hierarchical attributes are called taxonomies
and need special attention; see Lehner et al. (1998), Lenz and Thalheim (2009). It

10 Statistical Databases 279

Fig. 10.1 The product product _all
taxonomy with a weak
functional dependency

product_groupl product_group2
/ \ (product
tennis balls ten/nl|s s\hoes hame)
color size width color tennis nets

is quite remarkable that all dimensions can be allocated to three main groups only:
time, location and subject. This is called the 3D-principle, see Lenz (1994).

Let us have a further look at taxonomies that are unbalanced and asymmetric.
This may happen in case of a product or regional hierarchy. In our running example
the subgroups tennis shoes and balls may be grouped together as product-group
1, while tennis nets build-up product-group 2, but are free of sub-grouping. Both
groups 1 and 2 build the root group product-all. As sub-groups exist only for shoes
and balls, sub-groups are no longer functionally dependent on product name,
but only weakly functionally dependent, see Lehner et al. (1998), Fig. 10.1. This
implies that queries, which involve sub-grouping over products, are not feasible and
must be refused. Further pitfalls of operations on a data-cube are given in Lenz and
Shoshani (1997) and Lenz and Thalheim (2001).

It becomes evident that real data without metadata is more or less useless
especially for on-line analytical processing (OLAP). A repository with metadata is
a prerequisite of any OLTP or OLAP DBS engineering and any sound data analysis
or data mining.

10.3 Architectures, Concepts, and Operators

We first consider the architecture of micro or operational data used for on-line
transaction processing (OLTP), and then illustrate the different architecture of macro
or analytical data used for decision support and its relation to operational data, see
OLAP. We note that the key features of a DBS for OLTP data are: transaction-
oriented, measurement- or record-based, real time processing of inserts, deletes
and updates of records. In contrary, a DWS for OLAP data is characterized by
the features: subject-oriented, integrated and aggregated, calendar or fiscal period
related, and non-volatile, see Inmon (1992).

10.3.1 Architecture of a Database System for OLTP

The architecture of database system (DBS) can be represented by the quintuple
(data sources, application server, DB server with a DBMS, application server, DB

280 C. Boyens et al.

aCC@SSI

Businf:ss load /| pp Server | Application
Operations (DBMS) Server
A
read/ write read
A
i —
-

Fig. 10.2 Architecture of a DBS used to manage and query operational data

and repository); see also Fig. 10.2. As mentioned above, business processes act as
data sources in commercial systems, while at statistical offices data is supplied by
surveys, periodic reports or a census. Similarly, in science the data is generated by
observations or measurements collected by operating sensors, field or simulation
experiments. We represent the architecture in Fig. 10.2.

As an example from business we consider a company, which manages wages
and salaries of its employees. The data is generated by bookkeeping, the DBMS
administers the real and metadata, processes queries, and controls transactions.
The application server is responsible for running the software for wage and salary
computation, while the client is used as a presentation layer for the employees
according to their access rights.

10.3.2 Architecture of a Data Warehouse

The main components of the architecture of any OLAP application are hetero-
geneous data sources S like internal or external databases or files, an OLAP
server with DWMS, DW, Repository and Data Marts, and OLAP clients. The
DWMS is responsible for the load management, query management and warehouse
management.

The data warehouse (see Fig. 10.3) incorporates data replications, archived data
and aggregated data stored as data cubes. The departmental view on the whole data
is given by subsets of the data cube, called data marts.

As can be seen from Fig. 10.3, analytical processing is concerned with data from
various data sources, i.e., external or internal (operational) data. These sources are
integrated by ETL in data marts in a unified manner. The data marts can be viewed
as collections of data cubes.

10 Statistical Databases 281

Data sources OLAP server OLAP clients

extract ‘
external data Ny
P

operational data

data marts

Fig. 10.3 DW architecture

There exist two types of OLAP clients:

(i) stand-alone applications like spreadsheets with a DW interface, and
(i) Web clients that use an Internet browser and some applets.

10.3.3 Concepts (ROLAP, MOLAP, HOLAP, Cube Operators)

As we have seen above, the schema of a data cube consists of a cube identifier
(name), a list of identifying attributes called dimensions and -optional- a statistical
function like min, max, count (frequency), sum, avg (arithmetic mean) applied to
a summary attribute. Furthermore, the data types and roles of the attributes and
integrity constraints must be given. As an example we take from above the data
cube “sales cross-classified by month and year, customer and product™:

total sales (date.month, date.year, customer id,
product name, sum(sales)).

Evidently, the dimensions span a three-dimensional space on which the statistical
function sum (sales) is defined. The corresponding data types are date (mm,
yyyy), integer, string and decimal.

Relational OLAP (ROLAP)

In the following we map the conceptual schema of a data cube into a relational
database schema. This approach is called ROLAP for Relational OLAP, see
Raden (1996). There exist two schemas, star and snowflake schemas. As illustrated
in Fig. 10.4, the star schema refers to two types of corresponding tables:

1. A fact table with a primary key reference to each dimension and the facts
which are composed of at least one statistical function and —optional- a summary
attribute.

282 C. Boyens et al.

Date
Date_id
month-no
month-label
year-no Fact table sales Customer
year label sum(sales) Customer_id
level
e . cust-label
Date_id . cust-group-no
Product Product_id cust-group-
Customer_id
Product_id - label
— level
group-no
group-label
sub-group-no
sub-group
label
level

Fig. 10.4 Star schema of a three-dimensional data cube
(one fact table, three dimension tables; the product hierarchy is assumed to have two levels)

2. A dimension table for each dimension with a primary key and a level indicator
for each entry of a hierarchical attribute.

The star schema models all kind of hierarchical attributes including parallel
hierarchies see Lehner et al. (1998). The schema is not normalized as becomes
obvious, for example, from the dimension table Date. The attributes month and
year are nested, which implies some redundancy. For small or medium-sized data
volumes, such schemas have a sufficient performance because join operations are
only necessary between the fact table and the related dimension tables.

In order to normalize tables by level attributes, the snowflake schema was
introduced. Instead of modelling each dimension by one table, a table is created for
each level of a hierarchical attribute. The schemas involved are related by identifiers,
which play the role either of a primary or a foreign key. In Fig. 10.5 we display
only the normalized dimension tables Month and Year and the fact table Sales.
The identifiers are month-no in the fact table and dimension table Month and
year-no in the dimension table Year.

It can be shown that the normalization is lossless by applying an inner join to the
tables of a snowflake schema.

Other Storage Modes (MOLAP, HOLAP)

The above conceptual model of a star or snowflake schema may lead to the wrong
conclusion that data cubes are exclusively represented by a relational data model
approach. There exist further storage modes, which are in use.

10 Statistical Databases 283

Fig. 10.5 Data cube sales Month FactTable Sales
represented (fractionally) as a

snowflake schema month-no \ sum(sales)...

month-label
year-no

month-no

Year |

year-no
year-label

The main advantage of ROLAP lies in the reliability, security and ease of
loading of the data warehouse based on Relational DBMS (RDBMS) technology.
As was mentioned above, this is achieved due to the mapping of facts into a
normalized relation and dimension into a mostly non-normalized relation of a
relational database. As the set of statistical functions in SQL is too restrictive, some
of the functionality of OLAP must be added to the application server. An example
is to find the fop-ten among all products sold in a given period.

Multi-dimensional OLAP (MOLAP) makes use of specially tailored data struc-
tures like arrays and associated dimension lists or bitmaps. The operational data is
extracted and stored as aggregates in those structures. The performance is acceptable
for up to medium-sized data sets (<1 Gbyte). There exists a multi-dimensional
query language called MDX (multidimensional expressions), see Microsoft 1998.
“XML for Analysis” defines a standardized programming interface for an OLAP
server, see http://www.xmla.org. An OLAP client encodes a query of a data cube
and inserts it into a XML document, which specifies the method “execute” and
the accompanying parameters according to the “Simple Object Access Protocol”
(SOAP). This document is transmitted over the Internet based on the “Hypertext
Transfer Protocol” (HTTP). After decoding the OLAP server executes the query, and
sends the data back in a XML document to the client according to SOAP. For further
details see Messerschmidt and Schweinsberg (2003). MOLAP has the disadvantage
of “miss hits” if a data cube cannot be stored fully in-core and an access to a second
storage device is necessary. Moreover, array compression or sparse array handling
is needed because mostly the data cube or, equivalently, the arrays are sparse.

Hybrid OLAP (HOLAP) tries to combine the advantages of relational and multi-
dimensional database technology. The relational model is used to store replicated
and low-level aggregates, while the multi-dimensional model is responsible for
high-level aggregates.

Data Cube Operators
Data cubes are used for analytical purposes and not for (simple) transaction

processing. Therefore a clear boundary does not exist between data extraction or
retrieval and data analysis. This implies that there does not exist a minimal, closed

http://www.xmla.org

284 C. Boyens et al.

and complete set of OLAP operators. The mostly built-in operators on data cubes
in commercial DWs are the following; see Shoshani (1997), Jarke et al. (2000), and
Lenz and Thalheim (2009).

Slicing 0.(T) is to select data from a cube T according to a fixed condi-
tion c. This operation is called in Statistics conditioning if only frequencies
(counts) applied to multi-way tables are considered. For example, we can retrieve
data from total_sales according t0 Oproguct 14, customer_id, month,
year=97 (total sales).

Dicing m.(T) is table projection on T by selecting a sub-cube T’ of some
lower dimension c than the original cube T has. This operation is equivalent to
marginalization in Statistics, i.e. projection of a data space into a lower dimension.
For instance mgate, customer 1a (total_sales) retrieves a sub-cube of total
sales cross-classified by date and customer.

Table aggregation (roll-up) and disaggregation (drill-down) are meaningful
operations on data cubes if at least on dimension is hierarchical. For example
Pyear.customer_id product_id (EOotal_sales) is a query for less fine-grained data, i.e.
for years and summarizing over all months per year. This specific operation is
called temporal aggregation. We observe that such an operation is not allowable if
a type conflict happens with respect to the summary attribute. This is the case if the
attribute “sales” is substituted by “no of employees”, see Lenz and Shoshani (1997).

Drill-across 8)gye], node, attribute(T) is @ navigation on the same level through
the various sub trees of a hierarchical attribute starting at a given node. For example,
retrieving products from level 1 (product—group) with start at product group 1 (shoes
and balls) of the taxonomy “Product” delivers data about tennis nets.

In order to compute ratios, products etc. of data cubes the join operator
ye(T, Tz) is needed. For instance, as sales=turnover X price we have
sales=y (turnover, price).

We note that there exist further operators like pivot (rotation of a cube), see
Jarke et al. (2000), or cube, which was introduced by Gray et al. (1996). It delivers
the margins ALL for any subset of dimensions.

10.3.4 Summarizability and Normal Forms

The main objective of summarizability is to guarantee correct results of the
cube operation roll-up and the utilization of statistical (aggregation) functions
like min, max, avg, sum and count under all circumstances, see Lenz
and Shoshani (1997). The corresponding integrity constraints are based on non-
overlapping levels of dimensions, completeness and type compatibility. The first
condition assures that each node of taxonomy has at most one preceding node except
for the root node. The second one ascertains that any node on a low level granularity
is directly linked to at least one node of a higher granularity. Type compatibility
guarantees that the application of any statistical function to a summary attribute is
feasible from a statistical point of view. In a preceding section we mentioned the

10 Statistical Databases 285

unfeasibility of aggregation of stocks over time. Another example is the misuse of
the sum operator applied to numerically coded professions.

As Lehner et al. (1998) pointed out, the integrity constraint of completeness
may turn out to be too restrictive. This happens if structural missing values (null
values) in taxonomies exist. For example, the German state Bavaria is divided into
regions called “Kreise”. Berlin is a city as well as an autonomous German state. It
is not divided into regions, but into suburbs called “Bezirke”. In such cases a con-
text sensitive summarizability constraint is appropriate. The authors consequently
proposed three multi-dimensional normal forms for fact tables. Lechtenborger and
Vossen (2001) improved the design of such normal forms.

10.3.5 Comparison of Terminologies

To sum up this chapter, the following tables compare the terminology of statistical
databases and OLAP, see Shoshani (1997) (Tables 10.3 and 10.4).

10.4 Access Methods

10.4.1 Views (Virtual Tables)

Statistical databases are often accessed by different users with different intentions
and different access rights. As already indicated in Sect. 10.2.2, these different
requirements can be accounted for by using views. These views are derived virtual

Table 10.3 Comparison of concepts

Statistical databases OLAP

Categorical attribute Dimension
Structural attribute Dimension hierarchy
Category value Dimension value
Summary attribute Fact

Multi-way table Data cube

Cross product Multidimensionality

Table 10.4 Comparison of operators

Statistical databases OLAP

Table projection Dice

Table selection Slice

Table aggregation Roll-up
Table disaggregation Drill-down
Table join term missing
Term missing Drill across

Viewing Pivoting

286 C. Boyens et al.

tables, which are computed from (actually stored) base tables; see Elmasri and
Navathe (2006). There are two main purposes for the use of views.

1. It makes the use of the DBS or DW more convenient for the user by providing
only customized parts of the whole data cube.

2. It enforces security constraints by restricting operations on the base tables and
by granting users access to their specific views only.

The following SQL statement creates a view for the manager of the product “Tennis
Nets” from our example in Table 10.1. It only permits to look up the revenues
for Tennis Nets while for all other products, viewing the sales and modifying the
corresponding base tables is not possible.

CREATE VIEW tennis nets manager AS
SELECT date.month, date.year, customer_ id, sum(sales)
FROM total sales WHERE product name='‘Tennis Nets'’’;

Views can never contain information that is not present in the base tables. This is
true because the database system translates all view queries into equivalent queries
that refer only to the given base tables.

Base tables of a data warehouse may contain billions of tuples. Scanning these
tables can be time-consuming and may slow down the interaction between the
decision support system and the user significantly. One strategy to speed up the
access to aggregated data is to pre-compute a range of probable queries and to
store the results in materialized views, see Gupta et al. (1997). The access to these
materialized views is then much faster than computing data on demand. Yet there
are drawbacks to this strategy. The pre-computed data need space, the prediction of
the users’ queries may be difficult, and each change in the base table requires an
update of the materialized view, too. Furthermore, real-time data warehousing as
being mandatory in RFID technology increases the existence of computing power
for synchronized updates. This is known as the view maintenance problem, see
Huyn (1997).

10.4.2 Tree-based Indexing

The tables of a DW can physically be accessed either by a sequential scan or
by random access. With today’s hard disk technology, a sequential scan is 10 to
20 times faster than random access, see Jiirgens (2002). That means if more than
approximately 5% to 10% of the data has to be accessed it is faster to scan the entire
table than addressing specific tuples via random access. In order to avoid full table
scans, the number of tuples involved in the result computation has to be reduced.
This can be achieved via index structures, which permit a fast look-up of specific
tuples.

The best-known index structure for one-dimensional data (i.e. data with just
one key such as product_name) is the B-tree; see Bayer and McCreight (1972),

10 Statistical Databases 287

Comer (1979). Pointers to the data items are stored in the leaf nodes of a balanced
tree. The B-tree is a very general and flexible index structure, yet in some specific
cases it may be outperformed by different kinds of hashing, see Gaede and
Giinther (1998).

The universal B-tree (UB-tree, see Bayer 1997) is an extension of the B-tree
for indexing multidimensional data such as total sales (date.month,
date.year, customer id, product name, sum(sales)). The
approach partitions the multidimensional data space into squares each of which
is captured by a space-filling Z-curve, see Fig. 10.6. For each record, the Z-address
of the square, which contains the key values is computed. These Z-addresses are
one-dimensional and serve as the new primary keys for the records, which can then
be indexed with a standard B-tree.

Another approach for indexing multidimensional data is the R-free, see
Guttman (1984). It uses rectangles to represent multidimensional intervals. The
leaf rectangles correspond to entries in the database. The parent nodes contain
all child nodes and the minimal bounding rectangle. The root rectangle covers
the entire query space. An example of how to store sales indexes in an R-tree
when product name and customer_id build the concatenated primary key is
shown in Fig. 10.7. The minimal bounding rectangle of the dashed-line rectangles
A, B, and C constitutes the entire search space.

Refinements are the RT-tree of Sellis et al (1985), the R*-tree of Beckmann
et al. (1990) and a slightly improved version called R} -tree of Jiirgens (2002).

10.4.3 Bitmap Index Structures

An important alternative to tree index structures is bitmap indexing. For each value
of an attribute, a bitmap vector indicates whether or not it is assumed in the
records of the table, see Chan and Ionanidis (1998), O’Neil and Quass (1997),

consumer id

Fig. 10.6 The UB-tree:
partition and capture of J

multidimensional space with
the Z-curve product_name

A
v

288 C. Boyens et al.

Fig. 10.7 An exemplary A I e .
R-tree

consumer id

A
\4

product_name

Table 10.5 Bitmap index for the attribute product name

Transaction_id Tennis balls Tennis nets Tennis shoes
015 0 0 1
018 1 0 0
004 0 1 0
009 0 0 1

Wu and Buchmann (1998). Table 10.5 shows a bitmap index for the attribute
product_name corresponding to the example presented in Table 10.1. There are
three bitmaps needed to represent each value of attribute product name.

The bitmap vector for the attribute value Tennis Ballsis (0, 1,0, 0)T.Sucha
set of bitmap vectors is created for all dimensions. In our total sales example,
bitmap indexes have to be created further for (date.month, date.year) and
customer id.

The size of the bitmap index depends on the number of tuples and on the
cardinality of the attribute domain. The required operations on bitmaps are simple
and therefore very fast. Thus loading blocks from disc and performing the basic
Boolean operations is efficient, especially if the number of dimensions is high,
see Jiirgens (2002). As bitmaps are often sparse, they are well suited for com-
pression techniques. This is the reason why many commercial database systems
are implemented using bitmaps. However, standard bitmaps indexes become space
consuming for high attribute’s domain cardinality, and they are not very efficient for
(low dimensional) range queries, which are typical for DW systems.

Several approaches have been proposed to overcome these drawbacks like the
multi-component equality encoded bitmap index, see Chan and Ionanidis (1998).
The basic idea is to compress bitmap indexes by encoding all values into a smaller
number system by applying modular multiplication. This significantly reduces the
space requirements for attributes of high cardinality.

10 Statistical Databases 289

To summarize, bitmaps are more suited for high-dimensional queries with low
attribute cardinality. Tree index structures are better for low-dimensional range
queries with attributes of high cardinality.

10.5 Extraction, Transformation and Loading (ETL)

ETL is a shorthand notation for a workflow of the initial popularization or a follow-
up update of a DW, a data mart or an OLAP application. In the first step data
must be extracted from various autonomous, often heterogeneous data sources and
temporarily stored in a so-called staging area of a DWS. Transformation means to
modify data, schema and data quality according to requirement specifications of the
DWS. Loading is the integration of replicated and aggregated data in the DW. As
the data volume may be huge, incremental loading within pre-selected time slots by
means of a bulk loader is appropriate.

10.5.1 Extraction

Extraction can be triggered by events linked to time and state of a running DBS or
can be executed under human control. Mostly extraction is deferred according to an
extraction schedule supplied by monitoring of the DWS. However, changes of data
in the source system are tracked in real time, if the actuality of data is mandatory for
some decision makers, see Kimball (1996) or real-time processing based on sensors
is involved.

As the data sources are generally heterogeneous, the efforts to wrap single
data sources can be enormous. Therefore software companies defined standard
interfaces, which are supported by almost all DBMS and ETL tools. For example,
the OLE DB provider for ODBC, see Microsoft (1998, 2003), Oracle (2003), and
IBM (2003).

10.5.2 Transformation

Transformations are needed to resolve conflicts of schema and data integration and
to improve data quality, see Davis and Gather, Chapter\ref{II1.9}.

We first turn to the first type of conflicts. Spaccapietra et al (1992) consider four
classes of conflicts of schema integration, which are to be resolved in each case.

(i) Semantic conflicts exist, if two source schemas refer to the same object, but
the corresponding set of attributes is not identical, i.e. the class extensions are

290 C. Boyens et al.

different. As an example take two customer files. One record structure includes
the attribute name gender, while it is missing in the other one.

(i) A second kind of conflict of integration happens if synonyms, homonyms,
different data types, domains or measurements units exist. For instance, think
of the synonym part/article, a homonym like water/money pool, string/date as a
domain, and Euro/USD. The ambiguity of our natural language becomes clear
when one thinks of the meaning of “name” — family name, nickname, clerical
name, former family name, artist name, friar name etc.

(iii) Schema heterogeneity conflicts appear if the source schemas differ from the
target schema of the DW. For example, sales and departments can be modeled
as two relations Sales and Department of a relational data model or as
a nested relation Department\Sales as part of an object oriented model.
Another kind of conflict corresponds to the mapping of local source keys to
global surrogates; see Bauer and Giinzel (2001). This problem gets tightened if
entity identification is necessary in order decide whether a pair of records from
two data sources refer to same entity or not. Fellegi and Sunter (1969) were
the first to solve this problem by the record-linkage technique, which is now
considered as a special classification method; see Neiling (2003).

(iv) Structural conflicts are present if the representation of an object is different in
two schemas. There may only one customer schema exist with the attribute
gender in order to discriminate between “males” and “females”. Alterna-
tively, there may be two schemas in use, one linked to “females”, the other
one to “males”.

The second type of conflicts, i.e., conflicts of data integration, happens, if false
or differently represented data are to be integrated. False data are generated by
erroneous or obsolete entries. Differences in representation are caused by non-
identical coding like male/female versus 0/1 or by different sizes of rounding-off
errors.

10.6 Metadata and XML

McCarthy (1982) described metadata as data about data. However, the technical
progress of OLTP and OLAP database systems, workflow techniques and infor-
mation dissemination has made it necessary, to use a more general definition of
metadata.

Metadata is now interpreted as any kind of integrated data used for the design,
implementation and usage of an information system. This implies that metadata
not only describes real data, but functions or methods, workflows, data suppliers
or sources and data receivers or sinks, too. It does not only give background
information about the technology of a DBS or DWS, but about its semantic,
structure, statistics and functionality. Especially, the semantic metadata enable the

10 Statistical Databases 291

Fig. 10.8 Statistical view of
metadata Chronicle
v P
Statistical Survey pre sequence g
Framework /Report succ
h
v
Rules l—» Stati§tical < » Attribute
Object (Variable)
P\T
is a
definition
data data
matrix cube

common user to retrieve definitions of an attribute, to select and filter values of meta
attributes, and to navigate through taxonomies.

In Fig. 10.8 we present a view of a conceptually designed metadata. Its core is
given by a statistical object, which is either a specialisation of a data matrix or a data
cube. It is uniquely described by a definition, and is related in a many to many way to
validation and processing rules, surveys or reports and attributes. As we present only
a view, no further refinement is given with respect to attributes like role (measure,
key, property), scale (nominal, ordinal, cardinal), ontology or even domain (natural,
coded) etc. Each statistical object is linked to at least one survey or report. Surveys
or reports can be related to a preceding or succeeding one, are related to a statistical
framework (“statistical documentation”) giving details about the sampling scheme
and frame, the corresponding population and statistical estimation methods, and
are associated to a chronicle as a calendar of events. Furthermore references to
the specific literature and law are allowed. The corresponding substructure is not
displayed in Fig. 10.8. For further information about the metadata structure from
the user’s point of view, see Lenz (1994).

As metadata is stored and can be retrieved similar to real data, it is captured in
a repository and is managed by a metadata manager. A repository can be accessed
by users, administrators and software engineers according to their privileges and
read/write rights.

Repositories are offered from all vendors. Microsoft (2001) labelled its repos-
itory “metadata services”, and it is integrated in its SQL server. Alliances were
founded to harmonize the metadata models and to standardize the exchange formats.
Leading examples are the “Open Information Model” of the “Metadata Coalition
(MDC”), see http://www.mdcinfo.com, and the “Common Warehouse Metamodel
(CWM)”, which was developed by the “Object Management Group” (OMG), see

http://www.mdcinfo.com,

292 C. Boyens et al.

http://www.omg.org. Since the year 2000 both groups were fused and try to merge
their models. Due to the increasing importance of XML and XML databases, import
and export format of metadata based on XML is becoming an industrial standard.
This happened to OLAP client-server architectures, see “XML for Analysis” as
referred in Sect. 10.3.3.

10.7 Privacy and Security

10.7.1 Preventing Disclosure of Confidential Information

The statistical databases that are built by government agencies and non-profit
organizations often contain confidential information such as income, credit ratings,
type of disease or test scores of individuals. In corporate data warehouses, some
strategic figures that are not related to individuals like sales for recently launched
products may also be confidential. Whenever sensitive data is exchanged, it must
be transmitted over a secure channel like the Secure Socket Layer (SSL), see
Netscape (1996) in order to prevent unauthorized use of the system. For the purposes
of this chapter, we assume that adequate measures for security and access control
are in place, see Stallings (1999).

However, even if the information in the statistical database safely reaches the
correct address, the system has to ensure that the released information does not
compromise the privacy of individuals or other confidential information. Privacy
breaches do not only occur as obvious disclosures of individual values in single
queries. Often, the combination of multiple non-confidential query results may
allow for the inference of new confidential facts that were formerly unknown.

We give an example. From Table 10.1, we take the total sales for Tennis Shoes
(28,500), Tennis Balls (450), Tennis Nets (9450) and a fourth, new product (Tennis
Socks, 500). We assume that sum queries for groups of products are allowed but
that single, product-specific sales values are confidential. After querying the sum
for balls and shoes (28,950) and for balls and socks (950), the user can infer an
interval of [28,000; 28,950] for the sales of shoes, as sales cannot be negative. The
length of the interval, which is the maximum error of the user’s estimation of the
confidential shoe sales, is only 3.3% of the actual value. This particular case of
disclosure is called interval inference; see Li et al. (2002). Other types of inference
include exact inference (concluding the exact value of 28,500 for shoes sales) and
statistical inference (inferring estimates like mean

XTennis Shoes = 30, 000 and standard deviation STennis Shoes = 5,000).

If a researcher is granted ad-hoc access to a statistical database, there are basi-
cally two different approaches to protect information that is private and confidential
from being revealed by a malevolent snooper; cf. Fig. 10.9, and see Adam and
Wortmann (1989), Willenborg and de Waal (1996) and Agrawal and Srikant (2000).
In the first approach, the kind and number of queries that a researcher poses

http://www.omg.org.

10 Statistical Databases 293

to the statistical database (SDB) is restricted (query restriction). In the second
approach, the entire database is subject to a manipulation that protects single
values but preserves the statistical properties which are of interest to the user.
Then the perturbed database can be accessed by a researcher without restrictions
(data perturbation). In the following, we give an overview of disclosure protection
techniques of this kind.

10.7.2 Query Set Restriction

With this approach a query is either denied or responded with an exact answer as
the upper sketch in Fig. 10.9 indicates.

Query set size control, Fellegi (1972) works by setting lower and upper bounds
for the size of the query answer set based on the properties of the database and on the
preferences fixed by the database administrator. If the number of returned records
did not lie within these bounds, the information request would have to be rejected
and the query answer is denied. As queries that are issued sequentially by one user
often have a large numbers of entities in common, an improvement is the restriction
of these entities to a maximum number, see Dobkin et al. (1979). Although popular,
this method is not robust enough as a stand-alone solution, see Denning (1982).

Auditing involves keeping up-to-date logs of all queries made by each user and
constantly checking for possible disclosures whenever a new query is issued. One
major drawback of this method is that it requires huge amounts of storage and CPU
time to keep these logs updated. A well-known implementation of such an audit
system is Audit Expert by Chin and Ozsoyoglu (1982). It uses binary matrices; see

a
Query set restriction

- Restricted queries 2
<

SDB Researcher
Exact responses _
or denials g
b
Data perturbation
. 2
- Queries
SDB De;ta . Pertur- Researcher
M bated | perturbated responses

SDB

>

Fig. 10.9 (a) Query set restriction and (b) data perturbation
Adam and Wortmann (1989)

294 C. Boyens et al.

bitmap indexes in Sect. 10.4.3, to indicate whether or not a record was involved in a
query.

Cell suppression, see Cox (1980) is an important method for categorical
databases when information is published in tabular form. Especially Census Bureaus
often make use of tabular data and publish counts of individuals based on different
categories. One of the main privacy objectives is to avoid answers of small size. For
example, if a snooper knows somebody’s residence, age and employer, he can issue
a query for (ZIP=10,178, age=57, employer=“ABC”). If the answer is
one entity, the snooper could go on and query for (ZIP=10,178, age=57,
employer=" ABC”, diagnosis=“depression”). If the answer is one
again, the database is compromised and the person with the diagnosis identified.
The cells should have to be suppressed. A common criterion to decide whether
or not to suppress a cell is the N—k rule where a cell is suppressed if the top N
respondents contribute at least k% of the cell total. N and k are parameters that are
fixed by the database administrator, i.e. the Census Bureau. In the exemplary case
of N = 2 and k = 10%, a cell which indicates aggregated income ($10M) of 100
individuals would have to be suppressed if the top two earners’ aggregate income
exceeded $1M.

10.7.3 Data Perturbation

In the query restriction approach, either exact data is delivered from the original
database or the query is denied. As depicted in the lower part of Fig.10.9, an
alternative is to perturb the original values such that confidential, individual data
become useless for a snooper while the statistical properties of the attribute are
preserved. The manipulated data is stored in a second database and is then freely
accessible for the users.

If in Table 10.1, we permute the sales of tennis balls, tennis nets, and tennis shoes,
individual sales data is not correct anymore. But the arithmetic average and the
standard deviation of the attribute sales stay the same. This procedure is called data
swapping, see Denning (1982).

Noise addition for numerical attributes, see Traub et al. (1984), means adding a
disturbing term to each value: Y; = Xj + ex, where X} is the original value and
ey adheres to a given probability distribution with mean zero. As for every value X
value, the perturbation ey is fixed, conducting multiple queries does not refine the
snooper’s search for confidential single values.

A hybrid approach are random-sample queries, Denning (1982), where a sample
is drawn from the query set in such a way that each entity of the complete set is
included in the sample with probability P. If, for example, the sample of a count
query has n entities, then the size of the not perturbed query set can be estimated as
n/P.If P is large, there should be a set-size restriction to avoid small query sets
where all entities are included.

10 Statistical Databases 295
10.7.4 Disclosure Risk vs. Data Utility

All methods presented in the preceding sections aim at lowering the disclosure risk
for data that is private and confidential. But at the same time, each of these methods
reduces, in some way, the utility of the data for the legitimate data user. Duncan
and Keller-McNulty (2001) present a formal framework to measure this trade-off
between disclosure risk and data utility, the Risk-Utility (R — U) map. There are
numberless measures for disclosure risk, see Domingo-Ferrer et al. (2002) for an
excellent overview. We already gave an intuitive measure for interval inference. The
sales for tennis shoes were predicted with an error of only 3.3%, see Sect. 10.7.1.

However, it is far more difficult to measure data utility because it strongly
depends on the varying preferences of the data user. Especially for this reason,
classifying statistical disclosure control methods as presented here on an absolute
scale is almost an impossible task.

References

Adam, N., Wortmann, J.: Security-control methods for statistical databases: a comparative study.
ACM Comput. Surv. 21(4), 515-556 (1989)

Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (2000)

Bauer, A., Giinzel, H. (eds.): Data warehouse systeme. dpunkt, Heidelberg (2001)

Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes. Acta Inform.
1(3), 173-189 (1972)

Bayer, R.: The universal B-tree for multidimensional indexing: general concepts. In: World-wide
computing and its applications ‘97 (WWCA ‘97). Lecture Notes on Computer Science. vol.
10-11, Springer, Tsukuba (1997)

Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust
access method for points and rectangles. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, New York (1990)

Chan, C.Y., Ionanidis, Y.E.: Bitmap index design and evaluation. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data (1998)

Chin, FY., Ozsoyoglu, G.: Auditing and inference control in statistical databases. IEEE Trans.
Softw. Eng. 8(6), 574-582 (1982)

Comer, D.: The ubiquitous B-tree. ACM Comput. Surv. 11(2), 121-138 (1979)

Cox, L.H.: Suppression methodology and statistical disclosure control. J. Am. Stat. Assoc. 75(370)
(1980)

Denning, D.E.: Cryptography and data security. Addison-Wesley (1982)

Dobkin, D., Jones, A.K., Lipton, R.J.: Secure databases: protection against user influence. ACM
Transactions on Database Systems. 4(1), 97-106 (1979)

Domingo-Ferrer, J., Oganian, A., Torra, V.: Information-theoretic disclosure risk measures in sta-
tistical disclosure control of tabular data. In: Proceedings of the 14th International Conference
on Scientific and Statistical Database Management (SSDBM ‘02) (2002)

Duncan, G., Keller-McNulty, S.: Disclosure risk vs. data utility: the R-U confidentiality map.
Technical Report. Statistical Sciences Group. Los Alamos National Laboratory (2001)

Dzeroski, S., Lavrac N. (eds.): Relational data mining. Springer, Heidelberg (2001)

Elmasri, R., Navathe, S.B.: Fundamentals of database systems. Addison-Wesley (2006)

296 C. Boyens et al.

Fellegi, I.P., Sunter, A.B.: A theory of record linkage. J. Am. Stat. Assoc. 40, 1183-1210 (1969)

Fellegi, I.P.: On the question of statistical confidentiality. J. Am. Stat. Assoc. 67(337), 7-18 (1972)

Gaede, V., Giinther, O.: Multidimensional access methods. ACM Comput. Surv. 30(2), 170-231
(1998)

Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data cube: a relational aggregation operator
generalizing group-by, cross-tab, and sub-total. In: Proceedings of the 12th International
Conference on Data Engineering (ICDE’96), pp. 29-53. IEEE Computer Society, New Orleans
(1996)

Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J.D.: Index selection for OLAP. In: Pro-
ceedings of the Thirteenth International Conference on Data Engineering (ICDE ‘97). IEEE
Computer Society, Birmingham (1997)

Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data (1984)

Huyn, N.: Multiple-view self-maintenance in data warehousing environments. In: Proceedings of
the 23rd Conference on Very Large Databases (VLDB), (1997)

IBM: DB2 OLAP Server. http://www-3.ibm.com/software/data/db2/db2olap/library.html (2003)

Inmon, W.H.: Building the data warehouse. Wiley, New York (1992)

Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of data warehouses. Springer,
Berlin (2003)

Jiirgens, M.: Index structures for data warehouses.In: Springer lecture notes in computer science,
Berlin (2002)

Kimball, R.: The data warehouse toolkit. Wiley, New York (1996)

Li, Y., Wang, L., Wang, X., Jajodia, S.: Auditing interval-based inference. In: Proceedings of the
14th Conference on Advanced Information Systems Engineering (CAiSE’02), Toronto (2002)

Lehner, W., Albrecht, J., Wedekind, H.: Normal forms for multidimensional databases. In:
Proceedings of the 10th International Conference on Scientific and Statistical Data Management
(SSDBM’98), Capri (1998)

Lenz, H.J.: A rigorous treatment of microdata, macrodata and metadata. In: Dutter, R. (ed.)
Proceedings in computational statistics. Physica, Heidelberg (1994)

Lenz, H.J., Shoshani, A.: Summarizability in OLAP and statistical databases, In: Proceedings of
the 10th International Conference on Scientific and Statistical Data Management (SSDBM °97),
Washington (1997)

Lenz, H.J., Thalheim, B.: OLAP databases and aggregation functions. In: Proceedings of the
14th International Conference on Scientific and Statistical Data Management (SSDBM ‘01),
Washington (2001)

Lenz, H.J., Thalheim, B.: A formal framework of aggregation for the OLAP-OLTP model,
J. Univers. Comp. Sci. 15(1) (2009)

Lechtenborger, J., Vossen, G.: Quality-oriented data warehouse schema design. In: Information
technology. 45, 190-195 (2001)

McCarthy, J.: Metadata management for large statistical databases. In: Proceedings of the Eight
International Conference on Very Large Data Bases, Mexico City (1982)

Messerschmidt, H., Schweinsberg, K.: OLAP mit dem SQL-Server. dpunkt, Heidelberg (2003)

Microsoft: OLE DB for OLAP programmer’s reference (1998)

Microsoft: Microsoft SQL server: data transformation services (DTS). http://www.microsoft.com/
sql/evaluation/features/datatran.asp (2003)

O’Neil, P, Quass, D.: Improved query performance with variant indexes. SIGMOD Rec. 26(2),
38-49 (1997)

Oracle: Oracle warehouse builder — product information. http://otn.oracle.com/products/
warehouse/index.html (2003)

Neiling, M.: Identifizierung von Realwelt-Objekten in multiplen Datenbanken. Ph.D. dissertation,
University of Cottbus, Germany (2003)

Netscape: Secure Socket Layer 3.0 Specification. http://wp.netscape.com/eng/ss13/ (1996)

Raden, N.: Star Schema 101. Archer Decision Sciences, Santa Barbara, http://members.aol.com/
nraden/str101_e.htm(2000.12.12) (1996)

http://www-3.ibm.com/software/data/db2/db2olap/library.html
http://www.microsoft.com/sql/evaluation/features/datatran.asp
http://www.microsoft.com/sql/evaluation/features/datatran.asp
http://otn.oracle.com/products/warehouse/index.html
http://otn.oracle.com/products/warehouse/index.html
http://wp.netscape.com/eng/ssl3/
http://members.aol.com/nraden/str101{_}e.htm (2000.12.12)
http://members.aol.com/nraden/str101{_}e.htm (2000.12.12)

10 Statistical Databases 297

Shoshani, A.: OLAP and statistical databases: similarities and differences. In: Proceedings of the
Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles and Database Systems
(PODS’97), Tucson (1997)

Spaccapietra, S., Parent, C., Dupont, Y.: Model independent assertions for integration of heteroge-
neous schemas. VLDB J. 1(1), 81-126 (1992)

Stallings, W.: Cryptography and network security, principles and practice. Addison-Wesley (1999)

Traub, J.F., Yemini, Y., Wozniakowski, H.: The statistical security of a statistical database. ACM
Trans. Database Syst. 9(4), 672—-679 (1984)

Willenborg, L., de Waal, T.: Statistical disclosure control in practice. Springer, New York (1996)

Wirth, N.: Algorithms and data structures. Englewood Cliffs, Prentice Hall (1986)

Wrobel, S.: Inductive logic programming for knowledge discovery in databases. In: Dzeroski, S.,
Lavrac, N. (eds.) Relational data mining. Springer, Heidelberg (2001)

Wu, M.C., Buchmann, A.P.: Encoded bitmap indexing for data warehouses. In: Proceedings of the
14th International Conference on Data Engineering (ICDE), 220-230 (1998)

Chapter 11
Discovering and Visualizing Relations in High
Dimensional Data

Alfred Inselberg

11.1 Introduction

Visualization flourished in Geometry. Legend has it that Archimedes was absorbed
in a diagram when he was killed by a Roman soldier. “Do not disturb my circles” he
pleaded as he was being struck by the sword ... the first reported death in defense
of visualization. Visual interaction with diagrams is interwoven with the testing of
conjectures and construction of proofs. Our tremendous pattern recognition enables
us to extract insight from images. This essence of visualization is abstracted and
adapted in the more general problem-solving process to the extent that we form a
mental image of a problem we are trying to solve and at times we say see when
we mean understand. My interest in visualization was sparked and nourished while
learning geometry. Later, while studying multi-dimensional geometry I struggled
with the thought of displaying multidimensional geometry and multivariate prob-
lems. What emerged is Parallel Coordinates (Inselberg 1985 and earlier).

In the Euclidean plane R? with xy-Cartesian coordinates, N copies of the real
line R labeled X, X,, ..., Xy are placed equidistant and perpendicular to the
x-axis as shown in Fig. 11.1. They are the axes of the Parallel Coordinates system
for the Euclidean N-dimensional space R”, all having the same positive orientation

as the y-axis. A point C with coordinates (¢; , ¢z, ... , cy) is represented by the
complete polygonal line C (i.e. the lines containing the segments between the axes)
whose N vertices are at the ¢; value on the X;-axis fori = 1,..., N. In this way, a

1-1 correspondence between points in R" and planar polygonal lines with vertices
on the parallel axes is established. In principle, a large number of axes can be placed
and be seen parallel to each other. The representation of points is deceptively simple

A. Inselberg (D<)
School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
e-mail: aiisreal @post.tau.ac.il

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks 299
of Computational Statistics, DOI 10.1007/978-3-642-21551-3__11,
© Springer-Verlag Berlin Heidelberg 2012

aiisreal@post.tau.ac.il

300 A. Inselberg

Fig. 11.1 The polygonal line Y
C represents the point
C = (c1,02,¢3,¢4,¢5)

and much development with additional ideas is needed to enable the visualization
of multivariate relations or equivalently multidimensional objects.

Many contributed to the development, colleagues and students: B. Dimsdale
Inselberg and Dimsdale (1990), A. Hurwitz, T. Chomut Chomut (1987), M. Boz
Inselberget al. (1991), M. Reif Inselberg et al. (1987), P.Fiorini Fiorini and Inselberg
(1989), J. Eickemeyer Eickemeyer (1992), C.K.Hung Hung and Inselberg (1992), A.
Chatterjee Chatterjee (1995) and T. Mastkewich Matskewich et al. (2000) and others
S. Cohan & Yang Cohan and Yang (1986), H.Hinterberger Schmid and Hinterberger
(1994), P.Fiorini Fiorini and Inselberg (1989), C.Gennings et al. Gennings et al.
(1990), E. Wegman Wegman (1990), A. Desai & L. Walters Desai and Walters
(1991) and more. Progress continued A.Chatterjee et al. Chatterjee et al. (1993),
M.Ward et al Ward (1994), C.Jones Jones (1996), Inselberg (1997), Inselberg and
Avidan (1999) to the more recent work of H. Hauser Hauser (2005), H. Choi
and Heejo Lee Choi and Lee (2005), G. Conti Conti (2007), M. Theus and S.
Urbanek Theus and Urbanek (2009) and others increased the body of knowledge and
versatility of ||-cs. The last chapter in Inselberg (2009) contains the exciting recent
contributions of S. Cohen-Ganor — Displaying Several Lines Efficiently, N. Shahaf —
Separating Point Clusters on Different Planes, C. K. Hung — Surface Representation
and Developable Quadrics, Y. Singer & O. Greenshpan — Network Visualization
and Analysis, and Y. Yaari — To See C2, The Visualization of Complex Valued
Functions. And this list is by no means exhaustive. As of this writing a query for
“parallel coordinates” on Google returned about 140,000 “hits”.

11.2 Visual Data Mining

The first, and still more widespread, application of parallel coordinates is for
exploratory data analysis (EDA). That is, the discovery of data subsets (relations)
fulfilling given objectives. A dataset with M items has 2™ subsets anyone of which

11 Discovering and Visualizing Relations in High Dimensional Data 301

may be the one we really want. Our fantastic pattern-recognition ability and a good
data display can penetrate this combinatorial explosion by recognizing patterns and
the multivariate relations they represent. Extracting insight from images is the crux
of data visualization.

For the visualization of multivariate problems numerous mappings encoding
multidimensional information visually into 2-D or 3-D (see Friendly and al (2005)
and Tufte (1996) have been invented to augment our perception, which is limited
by our 3-dimensional habitation. Wonderful successes like Minard’s “Napoleon’s
March to Moscow”, Snow’s “dot map” and others are ad hoc (i.e. one-of-a-
kind) and exceptional. Succinct multivariate relations are rarely apparent from
static displays; interactivity is essential. Searching a dataset with M items for
interesting, depending on the objectives, properties is inherently hard. The visual
cues, our eyes can pick from a good data display, navigate the knowledge discovery
process. Clearly, if the transformation : data — picture clobbers information a great
deal is lost right at the start. Good displays of datasets with N variables should
preserve information and work for any number of variables N Also they need to
be computationally and space efficienct. These considerations limit the use of the
scatterplot matrix (abbr. SM) and other methods. For our purposes, the crucial value
and role of visualization is not seeing “zillions of objects” but rather recognizing
relations among them.

11.2.1 Exploratory Data Analysis with Parallel Coordinates

Parallel coordinates transform multivariate relations into 2-D patterns suitable for
exploration and analysis. The exploration! paradigm is that of a detective, starting
from the data, searching for clues leading to conjectures, testing, backtracking until
voila ... the “culprit” is discovered. The task is especially intricate when there are
many variables (i.e. dimensions).

During the ensuing interaction think, dear reader, how similar queries can be
done using other exploration methodologies including the ubiquitous spread-sheets.
More important, what visual clues are available that would prompt the use of such
queries. Recall that in ||-cs due to the point <> line and other dualities, some but not
all actions are best performed in the dual. The queries, which are the “cutting tools”,
operate on the display i.e. the dual. Their design should exploit the methodology’s
strengths and avoid its weaknesses; rather than mimic the action of queries operating
on standard “non-dual” displays. As a surgeon’s many specialized cutting tools,
one of our early software versions had lots of specialized queries. Not only was it
hard to classify and remember them but they still could not handle all situations
encountered. After experimentation, few (3) intuitive atomic queries were chosen

'The venerable name “Exploratory Data Analysis” EDA is used interchangeably with the currently
more fashionable “Visual Data Mining”.

302 A. Inselberg

which can be combined via boolean operations to form complex intricate cuts.
Even for relatively small datasets the ||-cs display can look uninformative and
intimidating. Lack of understanding the basic underlying geometry and poor choice
of queries limits the use of ||-cs to unrealistically small datasets. Summarizing, the
requirements for successful exploratory data analysis are:

* An informative display without loss of information of the data,
e Good choice of queries, and
e Skillful interaction with the display.

Aside from starting the exploration without biases it is essential to understand
the objectives. The task in the first example is the detection and location of various
ground features (i.e. built-up areas, vegetation, water etc) on the map. There is
a prominent lake, on the lower-left corner with an unusual shape like an upward
pointing “finger”.

11.2.2 An Easy First Study: Satellite Data

The first advice is not to let the picture intimidate you as can easily happen by
taking an uninformed look at Fig. 11.4(left) showing the dataset to be explored. It
consists of over 9,000 measurements with 9 variables, the first two (X, Y') specify
the location on the map in Fig. 11.2(left), a portion of Slovenia, where 7 types of
ground emissions are measured by satellite. The ground location, (X, Y'), of one
data item is shown in Fig. 11.2 (right), which corresponds to the map’s region and
remains open during the exploration. The query, shown in Fig. 11.3(left), used to
select the data item is called Pinch. It is activated by the button P on the tool bar. By
means of this query, a bunch of polygonal lines (i.e. data items) can be chosen by
being “pinched” in-between the axes. The cursor’s movement changes the position
of the selected arrow-head which is the larger of the two shown. In due course
various parts of the GUI are explained(Parallax).”

Follow up on anything that catches the eyes, gaps, regularities, holes, twists,
peaks & valleys, density contrasts like the one at the lower values of B3 through
B7. Using the Interval query, activated by the I button, starting at the minimum we
grab the low range of B4 (between the arrowheads) stopping at the dense part as
shown in Fig. 11.3 (right). The result, on the left of Fig. 11.4, is amazing. Voila we
found the water the lake is clearly visible together with two other regions which in
the map turn up to be small streams. Our scrutiny having been rewarded we recall the
adage that a good thing may be worth repeating. Examining for density variations
now within the selected lower interval of B4 we notice another. The lowest part is
much denser. Experimenting a bit, appreciating the importance of interactivity, we

2MDG’s Ltd proprietary software — All Rights Reserved, is used by permission.
3Suggesting that the Landsat Thematic mapper band 4 filters out water though unknown to me.

11 Discovering and Visualizing Relations in High Dimensional Data 303

% U
W

Fig. 11.2 Seven types of ground emissions were measured on this region of Slovenia.
Measurements made by the LandSat Thematic Mapper. Thanks and acknowledgement to Dr. Ana
Tretjak and Dr. Niko Schlamberger, Statistics Office of Slovenia, for providing the data. (Right)
The display is the map’s rectangular region. The dot marks the position where the 7-tuple shown
in the next figure was measured

Fig. 11.3 (Left) Query selecting a single data item. (Right) Finding water regions.

(Left)The X,Y (position, also shown on the right of Fig.11.2), and values of the 7-tuple
(B1, B2, B3, B4, B5, B6, B7) at that point. (Right)The contrast due to density differences around
the lower values of B4 is the visual cue prompting this query

select the sparse portion, Fig. 11.5, which defines the water’s edge (right) 11.4 and
in fact more. By dropping the lower arrow we see the lake filling up starting from
the edge i.e. shallow water first. So the lower values of B4 reveal the water and the
lowest “measure” the water’s depth; not bad for few minutes of playing around.
But all this pertains to a single variable when we are supposed to be demon-
strating multivariate exploration. This is a valid point but we did pick B4 among

304 A. Inselberg

Fig. 11.4 (Left)The lake — result of query shown in Fig. 11.4 (Right).
On the right is just the lake’s edge. It is the result of query shown in Fig. 11.5

Fig. 11.5 Query finding the water’s edge

several variables. Further, this is a nice “warm-up” for the subsequent more involved
examples enabling us to show two of the queries. The astute observer must have
already noticed the regularity, the vertical bands, between the B1, B2 and B3 axes.
This is where the angle query, activated by the A button, comes into play. As
the name implies it selects groups of lines within a user-specified angle range. A
data subset is selected between the B2, B3 axes as shown, with enlarged inter-
axes distance better showing the vertical bands, in Fig. 11.6 (left) to select a data
subset which corresponds on the map to regions with high vegetation. Clicking the
A button and placing the cursor on the middle of one axis opens an angle, with
vertex on the mid-range of the previous(left) axis, whose range is controlled by
the arrow movements on the right axis. Actually this “rule” (i.e. relation among
some parameters) for finding vegetation can be refined by twicking a couple of more
parameters. This raises the topic of rule finding in general, Classification, which is
taken up in Sect. 11.3.

11 Discovering and Visualizing Relations in High Dimensional Data 305

Fig. 11.6 Finding regions with vegetation

The angle and pinch queries are motivated by the € line — point 0 duality

d b
V- xz—mx1+b<—>£—(— 1—m) (11.1)
m J—

in ||-coords illustrated in Fig. 11.7 where the inter-axes distance is d. As seen from
its x-coordinate, the point { lies between the parallel axes when the line’s slope
m < 0, to the right of the)?2 axis for 0 < m < 1 and left of)fl for m > 1. Lines
with m = 1 are mapped to the direction with slope b/d in the on the xy-plane; with
d the inter-axes distance and b the constant (intercept) in the equation of £. This
points out that dualities properly reside in the Projective, the directions being the
ideal points, rather than the Euclidean plane. For sets of points having a “general”
direction with negative slope, i.e. are “negatively correlated”, the lines representing
them in ||-cs cross each other in between the axes and they can be selected with the
pinch query. For positively correlated sets of points their corresponding lines cross
outside the axes and can be selected with the angle query. All this exemplifies the
need to understand some of the basic geometry so as to work effectively with the
queries and of course, at first, design them well. The three atomic queries having
been introduced there remains to learn how they can be combined to construct
complex queries.

Prior to that, Fig. 11.6 (left) begs the question: “what if the B2 and B3 axes
were not adjacent”? Then the pattern and hence their pairwise relation would
be missed. Clearly the axes-permutation used for the exploration is important. In
particular what is the minimum number of permutations among N -axes containing
the adjacencies for all pairs of axes? It turns out that M permutations are needed
foreven N = 2M and M + 1 for odd N = 2M + 1. It is fun to see why.
Label the N vertices of a graph with the index of the variables X;, i = 1,..., N

306 A. Inselberg

; ‘
% m=|+too m|=0
x — o
m>1 - —0<m<1
X1 X —m <0 —
Y L2 "
[‘:(‘—li) {:xo=mx;+b ‘
A, T 1l=m’l-m SR
— mag+ b Ay
a,
2 / Ay
Ay /77101+l)
" |
x ‘ x
a, ay - _
o, X, X,
X X,

Fig. 11.7 Parallel coordinates induce a point { < { line duality (left).

(Right) The horizontal position of the point l representing the line £ is determined only by the
line’s slope m. The vertical line £ : x; = a is represented by the point { at the value a; on the X;
axis

Fig. 11.8 (Left) Graph

1
corresponds to the (axes) ;
index permutation 126354. !
(Right) The complete graph 6 e 2 6 L 2
as the union of the 3 distinct N z ! .

1
|
Hamiltonian paths starting N \ A
successively at the vertices VAN \ N
I AN

1,2,3 !

ot
/.
S

wW

ot

)
A

as shown in Fig. 11.8 for N = 6. An edge joining vertex i with j signifies that
the axes indexed by i, j are adjacent. The graph on the left is a Hamilton path
for it contains all the vertices. Such paths have been studied starting with Euler
in the eighteenth century with modern applications to the “travelling salesman”
problem and elsewhere (Harary 1969 pp. 66, Bollobas 1979 pp. 12). The graph
corresponds to the axes index permutation 126354. On the right, the union with the
additional two Hamiltonian paths, starting at vertices 2 and 3, forms the complete
graph which contains all possible edges. Hence the 3 permutations 126354, 231465,
342516 contain all possible adjacent pairs; just try it. The remaining permutations

11 Discovering and Visualizing Relations in High Dimensional Data 307

are obtained from the first by successively adding / mod 6 to each digit and this
works for general N. This early result and recent ones appears in the comprehensive
paper by C. Hurley and W. Olford Hurley and Olford (2010). An important more
general question, let’s call it the the triad problem, is “what is the minimum number
of permutations needed containing all adjacent triple variables displays?” Clearly
this is relevant for in |-cs adjacent order-independent triples appear, revealing
their interelations, and can lead to the faster discovery of more global multivariate
relations. This problem may be of interest in social networks in finding common
friends between pairs of members. Apparently it is an open question and hopefully
this discussion may motivate and inspire readers to contribute a solution.

Returning to EDA, the icon with the Rubik’s Cube on Parallax’s toolbar activates
a permutation editor which automatically generates the Hamiltonian permutations
(abbr. HP). After scrutinizing the dataset display the recommended next step is
to run through the O(N/2) HP. This is how all nice adjacencies such as the one
in Fig. 11.6 are discovered. Then using the editor, patch your own custom-made
permutation containing all the parts you like in the HP. With this preprocessing cost
the user sets her own best permutation to work with. Of course, there is nothing
to prevent the inclusion of axes several times in different positions as well as
experimenting with different permutations in the course of the exploration.

11.2.3 Compound Querries: Financial Data

T o be explored next is the financial dataset shown in Fig. 11.9, the goal being to
discover relations useful for investments and trading. The data for the years 1986
(second tick on the 3rd axes) and 1992 are selected and compared. In 1986 the
Yen had the greater volatility among the 3 currencies, interests varied in the mid-
range, gold had a price gap while SP500 was uniformly low. By comparison in
1992, the Yen was stable while the Sterling was very volatile (possibly due to
Soros’ speculation that year), interests and gold price were low and the SP500 was
uniformly high. Two Interval queries are combined with the OR boolean operator
(i.e. Union) to obtain this picture.

We continue “looking for the gold” by checking out patterns that caught our
attention. The data for 1986 is isolated in Fig. 11.10 and the lower range in the gold
price gap is selected. Gold prices were low until the 2nd week in August when they
jumped and stayed higher. The exploration was carried out in the presence of four
financial experts who carefully recorded the relation between low Yen, high 3MTB
rates and low Gold prices. By the way, low Yen rate of exchange means the Yen has
high value relative to the US $.

There are two bunches of crossing lines between 6th and 7th axes in Fig. 11.9
which together comprise more than 80% of the dataset. This and recalling the
previous discussion on the line <— point mapping in Fig. 11.7 points out the strong
negative correlation between Yen and 3MTB rates. The smaller cluster in Fig. 11.11
(left) is selected. Moving from the top range of any of the two axes, with the I query,

308 A. Inselberg

Fig. 11.9 Financial data.

Quotes by Week-on Mondays, Month, Year — the first 3 axes fix the date; Sterling, Dmark, Yen
rates per $ 4th, 5th, 6th axes; 3MTB, 30YTB interest rates in %, 7th, 8th axes; Gold in $/ounce,
9th, SP500 index values on 10th axes

Fig. 11.10 Gold prices In 1986.
Gold prices jumped in the 2nd week of August. Note the correlation between the low Yen, high
3MTB rates and low Gold price range

and lowering the range causes the other variable’s range to rise and is a nice way to
show negative correlation interactively.

For the contrarians among us, we check also for positive correlation Fig. 11.11
(right). We find that it exists when Gold prices are low to mid-range as happened
for a period in the 1990s. This is a free investment tip for bucking the main trend
shown in Fig. 11.11 (left). It is also a nice opportunity for showing the inversion
feature activated by the icon with 2 cyclical arrows. A variable is selected and the

11 Discovering and Visualizing Relations in High Dimensional Data 309

Fig. 11.11 (Left) Negative correlation. (Right) Positive correlation.
(Left)The crossing lines between the 6th and 7th axes in Fig. 11.9 show strong negative correlation
between Yen and 3MTB rates. One cluster is selected with the Pinch query and combined with
the high and low ranges on the Yen axis.(Right) A positively correlated cluster where the Yen and
3MTB rates move together when Gold prices are low to mid-range

Fig. 11.12 (Left)Inverting the 3MTB axis. (Right) Variations in exchange rates.
Now the lines between the Yen-3MTB and 3MTB-30MTB axes in Fig. 11.11 (right) cross.
Variations in the rate of exchange of the currencies correlate with movements in the price of Gold

min/max values on that axes are inverted. Diverging lines (as for + correlation)
now intersect Fig. 11.12 (left) making it easier visually to spot the crossing and
hence the correlation. Actually, the recommendation is to work with the A query
experimenting with various angle ranges using the inversion to check out or confirm
special clusters.

When stuck don’t just stand there but vary one of the variables watching
for interesting variations in the other variables. Doing this on the Yen axis,
Fig. 11.12(left) we strike another gold connection. The (rough) intersection of a
bunch of lines joining Yen to the Dmark corresponds, by the duality, to their rate of
exchange. When the rate of exchange changes so does the intersection and the price
of Gold! That is movements in currency exchange rates and the price range of Gold
go together. Are there any indications that are associated with the high range of
Gold? The top price range is selected, Fig. 11.13 (left), and prompted by the result

310 A. Inselberg

Fig. 11.13 (Left) High Gold. (Right) Two price ranges of Gold.

(Left) Note the perfect straight line in the Sterling vs. Dmark plot. The slope is the rate of exchange
between them and which remains constant when Gold prices peak. (Right) The associated Sterling
vs. Dmark plots show no regularity

Fig. 11.14 (Left)The complement of an I query. (Right) Yen stable.
(Right) For the Yen trading in a narrow range, high Dmark goes with low 3MTB rates, low Dmark
goes with high 3MTB rates, while mid 3MTB rates go with high Gold

of the previous query we check out the exchange rate between Sterling and Dmark
(or Yen) and the resul is stunning: a perfect straight line. The slope is the rate of
exchange which is constant when Gold tops out. The relation between Sterling and
Dmark is checked for different price ranges of Gold, Fig. 11.13 (right), and the only
regularity found is the one straight-line above. Aside from the trading guideline it
establishes, it suggests “behind-the-scenes manipulation of the Gold market” ...
we could have said that but we won’t. We perish this thought and proceed with
the boolean complement, Fig. 11.14(left) of an I (or any other) query. Not finding
anything we select a narrow but dense range on the Yen, Fig. 11.14 (right) and notice
an interesting relation between Dmark, interest rates and Gold.

There is an exploratory step akin to “multidimensional contouring” which we
fondly call Zebra activated by the last icon button on the right with the appropriate
skin-color. A variable axis is selected, the SP500 axis in Fig.11.15 (left), and
divided into a number (user specified) intervals (here it is 4) and colored differently.
This shows the connections (influence) of the intervals with the remaining variables

11 Discovering and Visualizing Relations in High Dimensional Data 311

Fig. 11.15 (Left) The zebra query. (Right) The rule for high SP500.

(Left)It partitions and colors the segments of values differently. A variable, here the SP500 axis, is
divided it into equal (here 4) intervals. This quickly reveals interelationships. Note especially those
for the highest SP500 range. (Right) Both 3MTB (the “short-bond” as it is called) and Gold are
low and in this order of importance

which here is richly structured especially for the highest range. So what does
it take for the SP500 to rise? This is a good question and helps introduce
Parallax’s classifier. The result, shown in Fig. 11.15 (right) confirms the investment
community’s experience that low 3MTB and Gold correlate with high SP500. A
comparison with the results obtained on this dataset with other visualization tools
would be instructive though unfortunately not available. Still let us consider such
an analysis done by the scatterplot matrix. There are 10 variables (axes) which
requires 45 pairwise scatterplots. Let us assume that each is no larger than 5 x 5
cm square and a large screen monitor is available. Varying 1, 2 or more variables
in tandem and observing the effects simultaneously over all the variables in the 45
squares may be possible but quite challenging. By contrast, the effects of varying
Dmark, conditionally for stable Yen, are easily seen on the two interest rates, Gold
as well as the remaining variables in one Fig. 11.14 (right). This example illustrates
the difficulties due to high representational complexity which is O(N?) for the
scatterplot matrix but O(N) for ||-coords.

11.3 Classification

Though it is fun to do this data exploration, the level of skill and patience
required tends to discourage some users. So there have been persistent requests and
admonitions for tools which at least partially automate the knowledge discovery.
Here the Nested Cavities* (abbr. NC) classifier Inselberg and Avidan (2000) is
revisited and substantially improved. For a dataset P and a subset S the goal is
to construct a rule distinguishing the elements of S from those in P — S. NC is a
geometrical algorithm which builds a sequence of nested unbounded parallelopipeds

“My dentist really liked this name!

312 A. Inselberg

of minimal dimensionality containing subsets of P, from which a hypersurface
(the rule) containing the subset S emerges. The partitioning of P — § and S
into disjoint subsets is very useful when the original rule obtained is either too
complex or imprecise. By applying NC to the partitions of S a simpler and more
precise classification may be obtained. This process is illustrated on a (sonar) dataset
with 60 variables and two categories (“mines” and “rocks”) resulting in significant
improvements of the original rule. Such a situation is generic and occurs with other
datasets as illustrated with a similar decompositions of a financial dataset producing
two sets of conditions determing gold prices. Yet another example is a dataset
pertaining to ovarian cancer which is decomposed by NC to distinct cases of this
cancer. We propose including such partitioning for the classification of datasets. The
process may be automated and also allows the classification of the sub-categories to
be done in parallel.

The classifier’s output may also be that there is insufficient information to obtain
the desired distinction. What can be done when the classifier either fails to converge
or the rule it yielded is very complex or not accurate? It turns out that the classifier
reveals the dataset’s structure pointing out how it can partitioned into sub-categories
which can be more simply and accurately classified.

To understand the key idea and make this section reasonably self-sufficient an
overview of the classification algorithm is presented. It is illustrated on a dataset
with 32 variables and 2 categories obtaining an accurate rule using the classifier
as originally proposed. The motivation for the extension is described next with a
dataset having 60 variables and two categories. Though the resulting rule is not
accurate the dataset’s structure is revealed yielding a partition which substantially
improves the classification. The presentation is intuitive and technical details for the
implementation are not elaborated.

11.3.1 Classification Algorithm

With parallel coordinates Inselberg (2009) a dataset P with N variables is trans-
formed into a set of points in N -dimensional space. In this setting, the designated
subset S can be described by means of a hypersurface which encloses just the
points of S. In practical situations the strict enclosure requirement is dropped
and some points of S may be omitted (“false negatives”), while some points of
P — § are allowed (“false positives”) in the hypersurface. The description of such a
hypersurface provides a rule for identifying, within an acceptable error, the elements
of S. It turns out that using Parallel Coordinates not only enables the efficient
construction of the hypersurface but also the visualization of the rule.

At first the algorithm determines a tight upper bound for the dimension R of S.
For example, P may be a 3-dimensional set of points but all point of S may be on
a plane; in which case S has dimension 2. Once R is determined R variables out of
the N are chosen according to their predictive value and the construction process,
schematically shown in Fig. 11.16, operates only on these R selected variables. It is
accomplished by:

11 Discovering and Visualizing Relations in High Dimensional Data 313

° oNGre
S s
[] £ ™ 1
° S
(RO .
O S U S o
[) L S‘o’ % ’0\'.”0\’4'0 ORI
O S e TS
S ‘%0&$A/AQA. ORI l’s&,‘(?::g
L4 S NI 25ed g
S ORI RO .
"i:::?’t’,}"‘t’s‘ T cz‘i"@@@ ‘\”0"2:1 ’
"‘:5‘0""0,(AR KRS KX
RS R RIS oo
QKA OGNS e
o N5k : 5 e
° RO aza: I
Yoo @RS,
KX v»%:@o:‘
RISRIBER O e
. A SRR s
N O v L]
R R R s R R o B
SRS ‘\Q SRR RGN o
. R S R AT
NS RN NS Q(X%
B e T S s
SRL IS sa e
RN

0L
2
o5et
5

X
&

X
400

?0

b

ot

I
%
X

XX

O <—— clements of S

Fig. 11.16 Construction of enclosure for the Nested Cavities algorithm. The first “wrapping”
S is the convex hull of the points of S which also includes some points of P — S. The second
wrapping S, is the convex hull of these points and it includes some points of S which are enclosed
with the third wrapping S3. To simplify the wrappings are shown as convex hulls rather than as
approximations. Here the selected set is S = (S1 — S2) U (S3 — S;) where Sy = 0

e Use of a “wrapping” algorithm to enclose the points of S in a hypersurface S;
containing S and typically also some points of P — S;s0 S C ;.

e The points in (P — §) N S are isolated and the wrapping algorithm is applied to
enclose them, and usually also some points of S}, producing a new hypersurface
S> with § D (Sl — Sz),

e The points in S not included in S; — S, are next marked for input to the wrapping
algorithm, a new hypersurface S3 is produced containing these points as well as
some other points in P — (S} — Sy) resultingin § C (S; — S,) U S3,

* The process is repeated alternatively producing upper and lower containment

bounds for §; termination occurs when an error criterion is satisfied or when
convergence is not achieved.

The algorithm decomposes P into nested subsets, hence the name Nested
Cavities (abbr. NC) for the classifier. The nested subsets are disjoint so they are
partitions of P. Let us illustrate all this with an example on a real dataset with 2

categories and 32 variables x|, X7, ..., x3,. The rule found by the NC classifier is
shown in Fig. 11.18 and Fig. 11.19.

SBy S; C Sk it is meant that the set of points enclosed in the hypersurface S; is contained in the
set of points enclosed by the hypersurface Sy.

314 A. Inselberg

Basically, the “wrapping” algorithm produces a convex-hull approximation; the
technical details are not needed here. The efficiency of the version implemented
here is due to the use of the ||-cs representations of N-dimensional objects Inselberg
(2009) applied in the description of the resulting hypersurface. It can and does
happen that the process does not converge when P does not contain sufficient
information to characterize S. It may also happen that S is so “porous” (i.e. sponge-
like) that an inordinate number of iterations are required.

At step r the output is the description of the set S, which consists of:

e A list of the minimum number of variables needed to describe S without loss
of information. Unlike other methods, like the Principal Component Analysis
(PCA), the classifier discards only the redundant variables. It is important to
clarify this point. A subset S of a multidimensional set P is not necessarily of
the same dimensionality as P. So the classifier finds the dimensionality of S in
terms of the original variables and retains only those needed for describing S.
That is, it finds the basis in the mathematical sense of the smallest subspace
containing S, or more precisely the current approximation for it. This basis
is the minimal set M, of variables needed to describe §; alternatively the
“features” of S. We call this process dimensionality selection to distinguish it
from dimensionality reduction which is usually done with loss of information.
Retaining the original variables is important in the applications where the domain
experts have developed intuition about the variables they measure. The classifier
presents M, ordered according to a criterion which optimizes the clarity of
separation. In addition the classifier’s output describes:

e The current approximation of the rule stated in terms of conditions on the
variables M,, which constitutes the description of the current hypersurface.

So on convergence, say at step 2n, the description of S provided is :

S~ (S1—8)U(S3—8) U...U(S2—1— S2).

this being the terminating expression resulting from the algorithm. The implemen-
tation allows the user to select a subset of the available variables and restrict the rule
generation to these variables. In certain applications, such as process control, not
all variables can be controlled and hence it would be useful to have a rule involving
such variables that are “accessible” in a meaningful way.

The results (precision of rule) obtained by the NC classifier applied to bench-
mark datasets were the most accurate when compared to those obtained by 22 other
well-known classifiers (see Inselberg and Avidan 2000).

11.3.2 Tracing some Steps

A dataset with 32 variables xj,x;,...,x3 having 2 categories each having
300 points in Fig.11.17 is chosen to exemplify the process. The NC classifier

11 Discovering and Visualizing Relations in High Dimensional Data 315

Fig. 11.17 Two categories colored differently each have 300 data points. Category 1 is selected
by the query indicated with the downward and upward arrowheads at the bottom of the first axis

applied to category 1 found that only the variables xii, x14, X3, X10, X12, X9, X7,
X23,x13 are needed to specify the classification rule in only one iteration and
about 6% error. The order of the variables is significant and is discussed shortly.
The second iteration involves additionally x;, x5, x¢ reducing the error to 4%.
The result is shown in Fig. 11.18; the separation achieved is striking. See also
further cross-sections in Fig. 11.19 which reveal two tight-fiting “pretsels” winding
in 9-dimensions. As recommended by H. Hinterberger Schmid and Hinterberger
(1994) more than one display, here parallel coordinate and scaterplots, are used for
supporting comparisons, confirming and clarifying the results.

For the example it suffices to use unbounded parallelopipeds for the wrapping.
Let I, be the range of the variable x; within the set of points C in S (here category
1); that is from the minimum to the maximum values of x;. Further, let C; be the
number of data points in the global set P with range I;. Specifically, as shown in
Fig. 11.20, Cy; has 484 points and, Fig. 11.21, C}4 has 510 points. So the algorithms
first step is to find the C; and put them in ascending order i.e. here C;; < Cyy
and in general C;, < Cj,... < C;, where m is the number of variables (here
m = 32). Next starting with j; the range of each variable is restricted in the order
J1, J2, ... observing the number of points C;, in the P with these restrictions. At
some stage either C;, = C}, | for k < m and procecure stops or C;,, is reached and
then terminates. The k at termination is the dimensionality of S. Here, Fig. 11.22,
C11NCy4 = 400. This is what determines the order of the 9 variables chosen here by
NCie. j; = 11, /o = 14,..., jgs = 23, jo = 13. In turn, restricting the ranges of
variables on P in this order sequentially reduces most rapidly the number of points
approximating S with one iteration. That is,

316 A. Inselberg

the dooen Uuey Y Lpes vew Joser Wndos afishes Lscohen e Heo

Fig. 11.18 The dataset with 32 variables is shown in the background. It has 2 categories whose
points are differencly colored. The table contains the explicit rule. The left scatterplot shows
the first two consecutive variables. The classifier found that only 9 variables, whose ranges are
indicated by the downward and upward arrowheads on their axis, are needed to describe the rule
with a precision of 4%. The plot of the right shows the two best predictors and the separation
achieved between the two categories

Ci1 = 484 > 400 > 370 > 350 > ...308 > 305,

terminates with jo = 13. Restricting the range of any other variable x; to I, does
not reduce the number of points further in the resulting set which at all times must
contain the selected subset S. Precisely for this reason we consider the dimension
of S in this case to be 9 as it is completely contained withing the unbounded par-
allelopiped determined by the restricted ranges of the 9 aforementioned variables.
This is also the reason for considering x|, as the best predictor, x4 as the second
best predictor and so on. This is a measure of the variables’ relative importance
and has considerable practical significance when there are missing values whose
influence diminishes in the same order.

With one more iteration the number of points selected by the rule is exactly those
contained in S (i.e. 300). For this iteration another parallelopiped is constructed
within the one obtained in the first iteration and deleted creating a cavity. In this
way the process carves out unwanted parts and provides the separation shown.
Parallel coordinates are used internally in the implementation taking advantage of

the efficient intersection and containment algorithms Inselberg (2009). The overall
computational complexity is O(N?2| P|) where N is the number of variables and | P |
is the number of points in P.

Two error estimates are used: Train & Test and Cross-correlation. When the rule
involves several iterations an additional criterion is employed to avoid overfiting.

11 Discovering and Visualizing Relations in High Dimensional Data 317

I Scatter plot of x12 vs. x14 8 (=] - Dekto slected pobon o |
12 = d 10 =
s
R 1 Ll T 1 L

Fig. 11.19 Various cross-sections of the hypersurface corresponding to the classification rule for
category 1 above

Ele fwom Quey Yer Dwes vew Scses Window shidbr Ossshen £l Hep

Fig. 11.20 Restricting the range of the first variable x;; chosen by the classifier eliminates 116
of the points in category 2

318 A. Inselberg

[l gooen Quey Yer Dos vew Scse indow alishein [wchen ol Heo

S

" m Classifin. E]

Total sowe 600 Lol |
Comtanation frd
?fﬁm _| Diaghagtinn. Trpainierval |

Fig. 11.21 Restricting the range of the second variable x4 eliminates only 90 of the points in
category 2 showing why x1; (above) is a better predictor for category 1 than x4

[l foows Quiy Yo Dpss ew Gl Windo it [sfen fhe Heo

Scatter plot of x11

Fig. 11.22 Restricting both x4 and x;; eliminates 200 points of category 2. The remaining 100
points of category 2 are eliminated by applying the subsequent conditions specified by the rule

Namely, the rule error is traced iteration by iterations and the process is stopped
when the error increases compares to the previous. As pointed out in Inselberg and
Avidan (2000), the rule obtained by the NC classifier were applied to 4 bench-mark
datasets and were the most accurate compared to those obtained by 22 other well
known classifiers.

11 Discovering and Visualizing Relations in High Dimensional Data 319

5586:s
iy

]
=
o

dggasysady

06 -
i
3
-
i
®

=
I

EEESEIRY

R
=2
as
&

Fig. 11.23 Sonar dataset with 60 variables and 2 categories. The NC classifier partitions the
dataset into 3 nested subsets indicated by the 3 rectangles, in middle of the lower row, with 148,
51 and 14 items each. To improve the visual clarity some of the variables (axes) not needed in the
rule were removed

Due to the short exposition in Inselberg and Avidan (2000) questions were raised
by a number number of users on detailed aspects of the NC algorithm. This detailed
explanation is intended to demistify some of the nuances, present the updates
introduced in the meantime and provide foundational understanding for the new
idea introduced next.

11.3.3 Partioning into Sub-categories

As one might expect things do not always work out as nicely as for the example.
The sonar dataset from UCI (0000) has been a real classification challenge. It has 60
variables, 208 observations and 2 categories 1 for Mines with 111 observations and
0 for Rocks with 97 data points. Applying the NC classifier partitions the dataset
into 3 nested subsets Sy, S, S3, with 148, 51 and 14 items respectively, The rule
obtained involves about 35 variables and an unacceptable high error of about 45%.
The result, demarcating the nesting (by the rectangles in the lower row) and showing
some of the variables used in the rule is shown in Fig. 11.23.

The schematic in Fig. 11.24 clarifies the partition of the dataset into 4 disjoint
sets, M| =, M, for the mines and R;, R, for the “rocks”. These are obtained by
S3 = Mz, Rz = Sz — S3, Ml = Sl — Sz and R1 = All — Sl where All stands

320 A. Inselberg

Fig. 11.24 Schematic of the /—All, 208

M = M, U M,. Together My, 97
with the notation is the

number of items contained in M,, 14
each subset

/// /) 527;: 14
|

for the full dataset. This is a very useful insight into the structure of the dataset and
motivates the idea. The bulk of the mines are in M; which has the higher values of
the variables needed to specify the rule. By contrast, the subset M, = S3 is a small
“island”, having the smaller variable values, surrounded by R, differs markedly
from M. Why not split M into two classes as suggested by the picture, finding the
rules separately and use them if they are more precise than the one found at first,
and it works!

Consider R U M| and apply the NC classifier. A rule distinguishing M, from R
is found needing only 4 variables. Due to small size of M| the error estimates, with
either cross-correlation or train-and-test the number of “false-negatives” were high,
about 30%, though the “false-positives” were about 5% yielding a weighted average
error of about 15%. For another interesting comparison distinguishing M; from M,
NCyields a rule with 5 variables and an 8% average error. It is clear that M| is easily
distinguished both from the “rocks” and the larger class of mines M. This strongly
suggests that there are two very different types of mines included in this dataset. To
summarize part of NC’s output, indicated by the rectangles in the lower row, gives
the decomposition of the dataset into nested subsets. From these one or more of the
categories can be partitioned to obtain a more accurate and simpler rule. While this
has been observed for some time it was only investigated recently. Of course, the
idea of partitioning is inherent in classification which after all pertains to the division
of a dataset and differentiating between the parts. While there is a lot of literature
on partitions in data mining i.e. Han and Kamber (2001) and Agarwal et al. (1999)
this specific method has apparently not been suggested. Such a decomposition can
clearly be automated and also the classification of the new categories can be done
in parallel.

We have encountered similar situations with other datasets. From the 1986-year
subset of the financial dataset in the previous section, classification with NC showed
that there are two different sets of conditions which cause the price of gold to
rise. These are better characterized separately as for the sonar dataset. Interestingly,
the price of Yen is involved in one of the conditions but not the other. Another
such example is shown in Fig. 11.25 for a dataset with measurements on ovarian
cancer having 50 variables and 3 of categories (types of cancer). Classification

11 Discovering and Visualizing Relations in High Dimensional Data 321

fai:

H22: 601 169 and
B %33: 377 2447 ana
R <48:0.21-11.75 and
Wl 18: 22834245 and
g 123420063 and

¥2:318-191.51 and
Al 7466546179 and
ll #9008 17488 and

0311 - 2817 and
266+ 3585 and
25- 3052 and
3759028 and
4878899 and
A0318-0 and
A5:11.09- 6304 and
Xa9:003- 3246

21581 - 046 and

fll %1:947-15075 and
23897783 and
46 : 751012 and

[l <B:046-107.17 and

#10:-3907 - 27.42 and

Fig. 11.25 This a dataset with measurements pertaining to ovarian cancer having 50 variables
and 3 categories. Classification by NC of one category yields a complex and inaccurate rule. It
also partitions it into 2 sub-categories yielding simpler and more precise rule. This may suggest
that this type of cancer has two different descriptions (morphologies)

of one category yielded a complex and imprecise rule. However, it also showed
a decomposition into two sub-classes for which good rules were obtained. Since
different descriptors were involved for each sub-class the thought arises that the
cancer types are really different. These examples are generic of a common problem
in classification, and for these we offer a time-honored solution: divide and
conquer.

11.4 Visual & Computational Models

Finally we illustrate the methodology’s ability to model multivariate relations in
terms of hypersurfaces — just as we model a relation between two variables as
a region in a 2-D plane. Then by using an interior point algorithm, as shown
in Fig. 11.32 of the next section, with the model we can do trade-off analyses,
discover sensitivities, understand the impact of constraints, and in some cases do
optimization. For this purpose we shall use a dataset consisting of the outputs of
various economic sectors and other expenditures of a particular (and real) country.
It consists of the monetary values over several years for the Agricultural, Fishing,

322 A. Inselberg

7108 3301 49513 1030.87 253.09 31910 1687.51 417403 471.08 708 3901 49511 1030.87 25309 31900 168751 417403 471.08

AN NN
| NEEEEY

-

L~ —]—]

] (—

il
e 4

e Pt — 531 3197
AOL50 22001 38030 705.85 186.87 26710 123831 3197.75 4010 pysg 2z 36030 7O ﬁﬁ A0 123631 319775 401.50
Ag Fi Mi Man Com Gov Oth GNP

&

Ay Fi Mi Man Con Gov Oth GNP Ag

Fig. 11.26 (Left) Model of a country’s economy. (Right) Competition for labor between the
Fishing & Mining sectors.
Choosing high Agricultural and high Fishing output forces low Mining output

and Mining sector outputs, Manufacturing and Construction industries, together
with Government, Miscellaneous spending and resulting GNP; eight variables
altogether. We will not take up the full ramifications of constructing a model from
data. Rather, we want to illustrate how ||-coords may be used as a modeling tool.
Using the Least Squares technique we “fit” a function to this dataset and are not
concerned at this stage whether the choice is “good” or not. The function obtained
bounds a region in R® and is represented by the upper and lower curves shown in
Fig. 11.26.

The picture is in effect a simple visual model of the country’s economy,
incorporating its capabilities, limitations and interelationships among the sectors. A
point interior to the region, satisfies all the constraints simultaneously, and therefore
represents (i.e. the 8-tuple of values) a feasible economic policy for that country.
Using the interior point algorithm we can construct such points. It can be done
interactively by sequentially choosing values of the variables and we see the result
of one such choice in Fig. 11.26(left). Once a value of the first variable is chosen (in
this case the Agricultural output) within its range, the dimensionality of the region
is reduced by one. In fact, the upper and lower curves between the 2nd and 3rd
axes correspond to the resulting 7-dimensional hypersurface and show the available
range of the second variable Fishing reduced by the constraint. This can be seen
(but not shown here) for the rest of the variables. That is, due to the relationship
between the 8 variables, a constraint on one of them impacts all the remaining
ones and restricts their range. The display allows us to experiment and actually
see the impact of such decisions downstream. By interactively varying the chosen
value for the first variable we found, that it not possible to have a policy that favors
Agriculture without also favoring Fishing and vice versa.

Proceeding, a very high value from the available range of Fishing is chosen and it
corresponds to very low values of the Mining sector. By contrast in Fig. 11.26(right)
we see that a low value in Fishing yields high values for the Mining sector. This
inverse correlation was examined and it was found that the country in question has a
large number of migrating semi-skilled workers. When the fishing industry is doing
well most of them are attracted to it leaving few available to work in the mines and

11 Discovering and Visualizing Relations in High Dimensional Data 323

vice versa. The comparison between the two figures shows the competition for the
same resource between Mining and Fishing. It is especially instructive to discover
this interactively. The construction of the interior point proceeds in the same way. In
the next section in the discussion on surfaces this construction is shown for higher
dimensional hypersurfaces.

11.5 Parallel Coordinates: Overview of the Fundamentals

This section is for readers interested in the foundational understanding of the
methodology. The overview covers recent results and future prospects. For deeper
excursions to ||-cs readers are referred to the textbook Inselberg (2009).

11.5.1 Lines

An N-dimensional line £ can be described by the (N — 1) linear equations:

6172 Lo X2 = mox; + bz
s 1 ox3 =m3xy + b3
¢ (11.2)
Cicii t xi =mixi—1 + b
Inoin ¢ Xy =myxy—1 + by

each with a pair of adjacently indexed variables. In the x;_;x;-plane the relation
labeled ¢;—1;, N = 2,..., N is aline, and by the line <> point duality, (11.1), it can
be represented by the point

- 1 . b;
iy = ((1——771,) +(@-2), (1_—mi)) (11.3)

Here the inter-axes distance is 1 so that i — 2 is distance between the y (or X 1) and
X;—j axes. Actually any N — 1 independent equations like

bijixi=mjx;+bi;, (11.4)

can equivalently specify the line £, for (11.4) is the projection of £ on the x;x; 2-D
plane and N — 1 such independent projections completely describe £. There is a
beautiful and very important relationship illustrated in (left) Fig. 11.27.

For a line £ in 3-D the three points {5, 3,3 are collinear; the line so
determined is denoted by L. It is easy to see that a polygonal line on all the N — 1

324 A. Inselberg

Fig. 11.27 Properties of multidimensional lines.
(Left)The 3 points ¢; ;, {; ks {; . are collinear for i # j # k. (Right) A line interval in 10-D

points, given by (11.3) or their equivalent, represents a point on the line £. Two
points in RY determine a line £, so starting with the two polygonal lines the N — 1
intersections of their X;_, X; portions are the Z, 1; representing points for £. A
line interval in 10-D and several of its points is seen on the (right) Fig.11.27. By
the way, the indexing of the points £, usually not shown to conserve display space,
is essential and must be accessible when needed.

11.5.2 Planes & Hyperplanes

While a line can be determined from its projections, a plane even in 3-D can
not. A new approach is called for Eickemeyer (1992). Rather than discerning a p-
dimensional object from its points, it is described in terms of its (p-1)-dimensional
subsets constructed from the points. Let’s see how this works. In Fig. 11.28 (left)
polygonal lines representing a set of coplanar points in 3-D are seen. From this
picture even the most persistent pattern-seeker can not detect any clues hinting at a
relation among the three variables much less a linear one. The plane has dimension
p = 1 so we look at /ines (having dimension p — 1 = 1) on the plane constructed
so that each pair of polygonal lines the lines L of the 3 point collinearity shown
in Fig. 11.27 (left) are obtained. The result, shown on the right, is stunning. All the
L lines intersect at a point which turns out to be characteristic of coplanarity but
not enough to specify the plane. Translating the first axis X, to the position X1/,
one unit to the right of the X; axis and repeating the construction, based on the
axes triple X,, X3, X/, yields a second point shown in Fig. 11.29(left). For a plane
described by:

T C1Xp + Xy +e3x3 = ¢, (11.5)

the Cartesian coordinates of the two points, in the order they are constructed, are
respectively

11 Discovering and Visualizing Relations in High Dimensional Data 325

™~

S

.

~

\
.
NN

Fig. 11.28 Coplanarity>.

(Left)The polygonal lines on the first 3 axes represent a set of coplanar points in 3-D.(Right)
Coplanarity! Forming lines on the plane, with the 3-point-collinearity property Fig. 11.27(left),
the resulting lines intersect at poit

- [+t 2c Co {3+t o
=g) =T) (11.6)

for S = ¢; + ¢ + c¢3. Three subscripts correspond to the 3 variables appearing in
the plane’s equation and the axes triple used for their construction, and distinguish
them from the points with two subscripts representing lines. The 2nd and 3rd axes
can also be consecutively translated, as indicated in Fig. 11.28(left), repeating the
construction to generate two more points denoted by /273, T173. These points
can also be found otherwise in an easier way. The gist of all this is shown in
Fig. 11.29(right). The distance between successive points is 3¢;. The equation of
the plane 7 can actually be read from the picture!

In general, a hyperlane in N-dimensions is represented uniquely by (N — 1)
points each with N indices. There is an algorithm which constructs these points
recursively, raising the dimensionality by one at each step, as is done here starting
from points (0-dimensional) and constructing lines (1-dimensional). By the way, all
the nice higher dimensional projective dualities like point <> hyperplane, rotation
<> translation etc hold. Further, a multidimensional object, represented in ||-cs,
can still be recognized after it has been acted on by projective transformation (i.e.
translation, rotation, scaling and perspective). The recursive construction and its
properties are at the heart of the ||-cs visualization.

326 A. Inselberg

3

=

IS
5
E‘

: /s o
¢ 2 2/}
H

CF+et+cy

3 3¢y~ 3¢,

X, X, X, Xy Xy Xy

Fig. 11.29 Plane representation.

(Left)The two points where the lines intersect uniquely determine a plane 7 in 3-D. (Right) From
four points, constructed similarty by consecutive axes translation, the coefficients of = : ¢;x; +
¢2X7 + ¢3x3 = ¢ can be read from the picture!

Challenge: Visualizing Families of Proximate Planes

Returning to 3-D, it turns out that for points as in Fig. 11.28 which are “nearly”
coplanar (i.e. have small errors) the construction produces a pattern very similar to
that in Fig. 11.29(left). A little experiment is in order. Let us consider a family of
proximate (i.e. close) planes generated by

I={r:cix;i+cxa+cx3=co, ¢ €le;,¢], i=0,1,2,3, (11.7)

randomly chosing values of the ¢; within the allowed intervals to determine several
planes = € [, keeping at first co = 1, and plotting the two points 23, 723 as
shown in Fig. 11.30 (left). Not only is closeness apparent but more significantly the
distribution of the points is not chaotic. The outline of two hexagonal patterns can
be discerned. The family of “close” planes is visualizable but also the variations in
several directions. These polygons can be easily constructed making it possible to
see, estimate and compare errors or proximity interactively.

It can be proved that in 3-D the set of pairs of points representing the family of
proximate planes form two convex hexagons when ¢y = 1 with an example is shown
in Fig. 11.30 (right), and are contained in octagons each with two vertical edges
for varying cp. In general, a family of proximate hypeplanes in N-D is represented
by N — 1 convex 2N-agons when ¢y = 1 or 2(N + 1)-agons for ¢y varying.
These polygonal regions can be constructed with O(N') computational complexity.
Choosing a point in one of the polygonal regions, an algorithm matches the possible
remaining N — 2 points, one each from the remaining convex polygons, which
represent and identify hyperplanes in the family by N — 1 points.

11 Discovering and Visualizing Relations in High Dimensional Data 327

0.8 —
0.6 7
0.4 —

0.2 —

Fig. 11.30 A family of close planes.

(Left) Pair of point clusters representing close planes. (Right) The hexagonal regions (interior) are
the regions containing the points 71,3 (leff) and 73 for the family of planes with ¢o = 1 and
c1 € [1/3,1.5],¢; € [1/3,2.5],¢5 € [1/3,1]. For ¢ varying, here ¢y € [0.85, 1.15], the regions
(exterior) are octagonal with two vertical edges

We pose the thesis that visualization is not about seeing lots of things but
rather discovering relations among them. While the display of randomly sampled
points from a family of proximate hyperplanes is utterly chaotic (the mess in
Fig. 11.28 (right) from points in just one plane), their proximate coplanarity
relation corresponds to a clear and compact pattern. With ||-cs we can focus and
concentrate the relational information into patterns rather than wallow in the details,
ergo the remark “without loss of information” when referring to ||-cs. This is the
methodology’s real strength and where he future lies. Here then is a visualization
challenge: how else can proximate coplanarity be detected and seen?

11.5.3 Nonlinear Multivariate Relations: Hypersurfaces

A relation among 2 real variables is represented geometrically by a unique region in
2-D. Analogously, a relation between N variables corresponds to a hypersurface in
N-D, hence the need to say something about the representation of hypersurfaces in
|I-cs. A smooth surface in 3-D (and also N-D) can be described as the envelope of all
its tangent planes. This is the basis for the representation shown in Fig. 11.31. Every
point of the surface is mapped into the two points representing the tangent plane at
the point. This generates 2 planar regions and for N-D there are N — 1 such regions.
These regions are linked, just as the polygons above, to provide the proper N — 1
points representing each tangent hyperplane and from which the hypersurface can be
reconstructed. Classes of surfaces can be immediately distinguished from their ||-cs
display. For developable surfaces the regions consists of boundary curves only with

328 A. Inselberg

Fig. 11.31 Surface y
representation.

A smooth surface o is
represented by two planar
regions 07133, 0231/ consisting
of pairs of points representing
its tangent planes

no interior points, regions for ruled surfaces have grids consisting of straight lines,
quadric surfaces have regions with conic boundaries; these are some examples.
There is a simpler but inexact surface representation which is useful when used
judiciously as in the previous example Fig. 11.26. The polygonal lines representing
points on the boundary are plotted and their envelope “represents” the surface; the
“” are a reminder that this is not a unique representation. In Fig. 11.32 (left) are
the upper and lower envelopes for a sphere in 5-D consisting of 4 overlapping
hyperbolae which must be distinguished from those in Fig. 11.31 (right), which is
exact and, interestingly enough are also hyperbolae, the curves determined by points
representing the sphere’s tangent planes. Retaining the exact surface description
(i.e. its equation) internally, interior points can be constructed and displayed as
shown for the 5-D sphere in Fig. 11.32 (left). On the right the same construction
is shown but for a more complex 20-dimensional convex hypersurface (“model”).
The intermediate curves (upper and lower) also provide valuable information
and previews of coming attractions. They indicate a neighborhood of the point
(represented by the polygonal line) and provide a feel for the local curvature. Note
the narrow strips around X13, X14, X15 (as compared to the surrounding ones),
indicating that at this state these are the critical variables where the point is bumping
the boundary. A theorem guarantees that a polygonal line which is in-between all
the intermediate curves/envelopes represents an interior point of the hypersurface
and all interior points can be found in this way. If the polygonal line is tangent at
anyone of the intermediate curves then it represents a boundary point, while if it
crosses anyone of the intermediate curves it represents an exterior point. The later
enables us to see, in an application, the first variable for which the construction failed
and what is needed to make corrections. By varying the choice of value over the
available range of the variable interactively, sensitive regions (where small changes
produce large changes downstream) and other properties of the model can be easily
discovered. Once the construction of a point is completed it is possible to vary the
values of each variable and see how this effects the remaining variables. So one can
do trade-off analysis in this way and provide a powerful tool for, Decision Support,

11 Discovering and Visualizing Relations in High Dimensional Data 329

X1 X2 X3 X4 X5 X6 X7 X8 X8 X10 Xi1X12 Xi3 xi4 x15 x16 x17 18 X18 x20

Fig. 11.32 Interior point construction.
The interior point (polygonal line) construction on a sphere in 5-D (left) and for a convex
hypersurface in 20-D (right)

Process Control and other applications. As new data becomes available the model
can be updated so that decisions are made based on the most recent information.
This algorithm is used in the earlier example, shown in Fig. 11.26, to interact with a
model of a country’s economy.

11.6 Future

We are drowing in data and starving for knowledge

Searching for patterns in the |-cs data display is what skillful exploration
is about. If there are multivariate relations in the display the patterns are there
though they may be obscured by overlaps and that is not all. Our vision is not
multidimensional. We do not perceive a room which is 3-dimensional from its points
which are 0-dimensional, but from the 2-dimensional planes which enclose and
define it. The recursive construction algorithm does exactly that for the visualization
of p-dimensional objects from their p — 1-dimensional subsets; one dimension
less. We advocate including this algorithm within our armory of interactive analysis
tools — recursive interactivity! Revisit Figs. 11.27 and 11.28 to note that relational
information resides at the crossings. Whatever p-dimensional relations exist are
revealed by the pattern from the representation of the tangent hypeplanes of the
corresponding hypersurface. The polygonal lines are completely discarded for
the relation is concentrated in the pattern: linear relations into points, proximate
coplanarity into convex polygons, quadrics into conics and more.

330 A. Inselberg

What can be achieved in the representation of complex relations by patterns is
illustrated with some examples (a comprehensive coverage of surface representation
is in Hung and Inselberg 2007) in Figs. 11.33—-11.36, bumps, cusps, folds, non-
orientability, hypersphere, convex and non-convex surfaces. Many of these results
were first discovered visually and then lead to mathematical proofs; in the true
spirit of Geometry. These are state of the art results showing what is achievable
and how easily it generalizes to N-D. Can one imagine a higher dimensional
non-orientable surface like the Mobius strip, non-convexities (bumps, crevices
etc) which unlike projections are not hidden in the representation. New vistas
for visualization emerge, transforming (rotating, translating) objects in N -space
seeing the result in the representations, exploring for invariants which characterize
surface properties (i.e. convexity, ruled etc), developing intelligent agents to aid the
exploration, classifying objects according to application-specific taxonomies and
more. The challenge is speeding up the algorithms to reach real-time performance
breaching the gridlock of multidimensional visualization. The secrets of massive

Fig. 11.33 A developable surface is represented by 2 curves. The line of cusps (left) is represented
by the 2 inflection points (one on each curve) (right). The crossing curves represent the plane
tangent to both leaves of the surface — a bitangent. The green and blue curves represent the 7y and
7y points respectively. The corresponding hypersurface in N-D is represented by (N — 1) such
curves

Fig. 11.34 Mobius strip and its representation. The two cusps on the left show that it corresponds
to an “inflection-point in 3-D” the twist — see the duality in Fig. 11.33

11 Discovering and Visualizing Relations in High Dimensional Data 331

Fig. 11.35 Representation of a sphere centered at the origin (/eft) and after a translation along the
X axis (right) causing the two hyperbolas to rotate in opposite directions. This is an instance of
the translation <> rotation. In N — D a sphere is represented by N — 1 hyperbolae — see Fig. 11.32

Fig. 11.36 Convex surfaces are represented by hyperbolic-like regions (left).
Non-convexities: “bump” (center), three “dimples” represented by swirls (right)

datasets can then be unveiled and the multidimensional relations seen as patterns —
their multidimensional graphs.

Acknowledgements I am grateful to David Adjiashvili who wrote the magnificent interactive
software diplaying the ||-cs representation of surfaces seen in Fig.11.33 through 11.36. Senior
Fellow San Diego SuperComputing Center & Multidimensional Graphs Ltd, Raanana 43556, Israel

References

Agarwal, R., Gehrke, J.E., Gunopoulos, D., Raghavan, P.: Automatic Subspace Clustering of High
Dimensional data for Data Mining. USA Patent 6003029 (1999)
Bollobas, B.: Graph Theory. Springer, New York (1979)

332 A. Inselberg

Chatterjee, A.: Visualizing Multidimensional Polytopes and Topologies for Tolerances. Ph.D.
thesis, Department of Computer Science, University of Southern California (1995)

Chatterjee, A., Das, P.P., Bhattacharya, S.: Visualization in linear programming using parallel
coordinates. Pattern Recogn. 26-11, 1725-36 (1993)

Choi, H., Lee, H.: PCAV: Internet Attack Visualization in Parallel Coordinates, LNCS 3783, 454—
466. Springer, New York (2005)

Chomut, T.: Exploratory Data Analysis in Parallel Coordinates. M.Sc. thesis, Department of
Computer Science, UCLA (1987)

Cohan, S.M., Yang, D.C.H.: Mobility analysis in parallel coordinates. J. Mech. Mach. 21, 63-71
(1986)

Conti, G.: Security Data Visualization. No Starch Press, San Francisco (2007)

Desai, A., Walters, L.C.: Graphical representation of data envelopment analyses:management
implications from parallel axes representations. Dec. Scien. 22(2), 335-353 (1991)

Eickemeyer, J.: Visualizing p-flats in N-space using Parallel Coordinates. Ph.D. thesis, Department
of Computer Science, UCLA (1992)

Fiorini, P, Inselberg, A.: Configuration Space Representation in Parallel Coordinates. IEEE Conf.
Rob. Aut. 1215-1220 (1989)

Friendly, M., al: Milestones in Thematic Cartography. www.math.yorku.ca/scs/SCS/Gallery/
milestones/ (2005)

Gennings, C., Dawson, K.S., Carter, W.H., Myers, R.H.: Interpreting plots of a multidimensional
dose-response surface in parallel coordinates. Biometrics 46, 719-35 (1990)

Han, J., Kamber, M.: Data Mining Concepts and Technology. Morgan-Kaufman, San Francisco
(2001)

Harary, F.: Graph Theory. Addison-Wesley, Reading, Mass (1969)

Hauser, H.: Parallel Sets: Visual Analysis of Categorical Data. Proceedings of IEEE Infovis (2005)

Hung, C.K., Inselberg, A.: Parallel Coordinate Representation of Smooth Hypersurfaces. USC
Tech. Report # CS - 92 -531, Los Angeles (1992)

Hung, C.K., Inselberg, A.: Description of Surfaces in Parallel Coordinates by Linked Planar
Regions, Mathematics of Surfaces XII, 177-208, LNCS 4647. Springer, New York (2007)

Hurley, C.B., Olford, R.W.: Pairwise Display of High-Dimensional Information via Eulerian Tours
and Hamiltonian Decompositions, Journal of Computational and Graphical Statistics 19(4),
861-886 (2010).

Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1, 69-97 (1985)

Inselberg, A.: Multidimensional Detective, in Proceedings of IEEE Information Visualization 97,
100-107. IEEE Computer Society, Los Alamitos, CA (1997)

Inselberg, A.: Parallel Coordinates : VISUAL Multidimensional Geometry and its Applications.
Springer, New York (2009)

Inselberg, A., Avidan, T.: The Automated Multidimensional Detective, In Proceedings of IEEE
Information Visualization 99, 112-119. IEEE Computer Society, Los Alamitos, CA (1999)
Inselberg, A., Avidan, T.: Classification and Visualization for High-Dimensional Data, In Proceed-

ings of KDD, 370-4. ACM, New York (2000)

Inselberg, A., Boz, M., Dimsdale, B.: Planar Conflict Resolution Algorithm for Air-Traffic Control
and the One-Shot Problem, in IBM PASC Tech. Rep. G320-3559. IBM Palo Alto Scientific
Center (1991)

Inselberg, A., Dimsdale, B.: Parallel Coordinates: A Tool For Visualizing Multi-Dimensional
Geometry, Proceedings of IEEE Conference on Visualization, 361-378. IEEE Computer
Society, Los Alamitos, CA (1990)

Inselberg, A., Reif, M., Chomut, T.: Convexity algorithms in parallel coordinates. J. ACM 34,
765-801 (1987)

Jones, C.: Visualization and Optimization. Kluwer Academic Publishers, Boston (1996)

Matskewich, T., Inselberg, A., Bercovier, M.: Approximated Planes in Parallel Coordinates. In
Proceedings of Geometry Modeling Conference, St. Malo, Vanderbilt University Press, 257—
266 (2000)

www.math.yorku.ca/scs/SCS/Gallery/milestones/
www.math.yorku.ca/scs/SCS/Gallery/milestones/

11 Discovering and Visualizing Relations in High Dimensional Data 333

Schmid, C., Hinterberger, H.: Comparative Multivariate Vis. Across Conceptually Different
Graphic Displays, in Proceedings of 7th SSDBM. IEEE Computer Society, Los Alamitos, CA
(1994)

Theus, M., Urbanek, S.: Interactive Graphics for Data Analysis. CRC Press, Boca Raton FL (2009)

Tufte, E.R.: Visual Explanation. Graphic Press, Connecticut (1996)

UCI. Machine Learning Database Repository at. www.ics.uci.edu/~mlearn/MLRepository.html.

Ward, M.O.: XmdvTool: integrating multiple methods for visualizing multivariate data, Proceed-
ings IEEE Conference on Visualization, CA, 326-333. IEEE Computer Society, Los Alamitos,
CA (1994)

Wegman, E.: Hyperdimensional data analysis using parallel coordinates. J. Am. Stat. Assoc. 85,
664—675 (1990)

www.ics.uci.edu/~mlearn/MLRepository.html

Chapter 12
Interactive and Dynamic Graphics

Jiirgen Symanzik

12.1 Introduction

Interactive and dynamic statistical graphics enable data analysts in all fields to
carry out visual investigations leading to insights into relationships in complex
data. Interactive and dynamic statistical graphics involve methods for viewing data
in the form of point clouds or modeled surfaces. Higher-dimensional data can be
projected into one-, two- or three-dimensional planes in a set of multiple views or
as a continuous sequence of views which constitutes motion through the higher-
dimensional space containing the data.

Strictly, there is some difference between interactive graphics and dynamic
graphics. When speaking of interactive graphics only, we usually mean that a user
actively interacts with, i.e., manipulates, the visible graphics by input devices such
as keyboard, mouse, or others and makes changes based on the visible result. When
speaking of dynamic graphics only, we usually mean that the visible graphics
change on the computer screen without further user interaction. An example for
interactive graphics might be the selection of interval lengths and starting points
when trying to construct an optimal histogram while looking at previous histograms.
An example for dynamic graphics might be an indefinitely long grand tour with no
user interaction. Typically, interactive graphics and dynamic graphics are closely
related and we will not make any further distinction among the two here and just
speak of interactive and dynamic statistical graphics.

Two terms closely related to interactive and dynamic statistical graphics are
exploratory data analysis (EDA) and visual data mining (VDM).

EDA, as defined by Tukey (1977), “is detective work—numerical detective
work—or counting detective work—or graphical detective work.” Modern
techniques and software in EDA, based on interactive and dynamic statistical

J. Symanzik (P<)
Department of Mathematics and Statistics, Utah State University, Logan, UT, USA
e-mail: juergen.symanzik @usu.edu

J.E. Gentle et al. (eds.), Handbook of Computational Statistics, Springer Handbooks 335
of Computational Statistics, DOI 10.1007/978-3-642-21551-3__12,
© Springer-Verlag Berlin Heidelberg 2012

juergen.symanzik@usu.edu

336 J. Symanzik

graphics, are a continuation of Tukey’s idea to use graphics to find structure,
general concepts, unexpected behavior, etc. in data sets by looking at the data. To
cite Tukey (1977) again, “today, exploratory and confirmatory can—and should—
proceed side by side.” Interactive and dynamic statistical graphics should not
replace common analytic and inferential statistical methods—they should rather
extend these classical methods of data analysis.

Data mining (DM) itself (Klosgen and Zytkow 2002; Witten and Frank 2000),
see also Chap.III.13, is a field whose scientific basis has only began to be explored
over the last few years. DM exists as a result of the convergence of several fields
including data bases, statistics, and artificial intelligence. Friedman (1998) discusses
the connection between DM and statistics in more details and Wegman (2000)
provides a definition of DM that links it with EDA and graphics: “Data mining is
exploratory data analysis with little or no human interaction using computationally
feasible techniques, i.e., the attempt to find interesting structure unknown a priori.”
Simultaneously with an increasing interest in DM there has been the evolution of
computer graphics, especially in the area of virtual reality (VR). Within the statistics
framework, the area of EDA has evolved into a more sophisticated area of interactive
and dynamic statistical graphics. Recently, DM has been combined with statistical
graphics, resulting in VDM (Bohlen et al. 2003; Cox et al. 1997; Inselberg 1998;
Macedo et al. 2000; Symanzik et al. 1999a). However, there exist several different
definitions of the term VDM. Soukop and Davidson (2002) dedicate less than one
page to “dynamic visualizations that allow user interaction” in their book on VDM.

In this chapter we will provide a general overview on existing methods and
software for interactive and dynamic graphics. We will also provide a snapshot of
current developments that may become a standard in the near future but may also be
quickly forgotten again. All sections are supported by an extensive list of references
that will allow every reader from novice to expert to become more familiar with
a particular concept of interactive and dynamic graphics. More specifically, in
Sect. 12.2, we will discuss early developments and software related to interactive
and dynamic graphics. In Sect. 12.3, we will discuss the main concepts and in
Sect. 12.4 some software products related to interactive and dynamic graphics.
Interactive 3D graphics will be discussed in Sect. 12.5 and applications of interactive
and dynamic graphics in geography, medicine, and environmental sciences will be
discussed in Sect. 12.6. We conclude this chapter with an outlook on possible future
developments in Sect. 12.7.

All graphical displays throughout this chapter are based on the “Places” data set
that was distributed to interested members of the American Statistical Association
(ASA) several years ago so that they could apply contemporary data analytic
methods to describe these data and then present results in a poster session at the
ASA annual conference. The data are taken from the Places Rated Almanac (Boyer
and Savageau 1981). The data are reproduced on disk by kind permission of the
publisher, and with the request that the copyright notice of Rand McNally, and the
names of the authors appear in any paper or presentation using these data. The data
consist of nine measures of livability for 329 cities in the U.S.: Climate and Terrain,
HousingCost, Health Care and Environment, Crime, Transportation, Education,

12 Interactive and Dynamic Graphics 337

The Arts, Recreation, and Economics. For all but two of the above criteria, the
higher the score, the better. For HousingCost and Crime, the lower the score
the better. The scores are computed using several statistics for each criterion (see
the Places Rated Almanac for details). Latitude and longitude have been added by
Paul Tukey. Population numbers have been added as well.

12.2 Early Developments and Software

There is a strong history of statistical graphics research on developing tools for
visualizing relationships between many variables. Much of this work is documented
in videos available from the ASA Statistical Graphics Section Video Library at
http://stat-graphics.org/movies/

Additional material on statistical graphics can also be found in journals such
as “Journal of Computational and Graphical Statistics”, “Computational Statistics”,
and “Computational Statistics & Data Analysis” and in “Computing Science and
Statistics”, the proceedings of the Interface conferences. The following paragraphs
only serve as a basic overview for readers unfamiliar with dynamic statistical
graphics but they are not intended as a full introduction into this topic.

A video clip of the successive stages in a multidimensional scaling algorithm
(Kruskal 1962) is one of the first examples how to apply dynamic statistical
graphics. A second example by Chang (1970) shows an interactive search for a
structured two-dimensional projection in five dimensions where three of the five
dimensions are noise. PRIM-9 (Picturing, Rotation, Isolation and Masking in up
to 9 dimensions), documented in Fisherkeller et al. (1974a) and Fisherkeller et al.
(1974b), is the landmark example of early dynamic statistical graphics. Projections
formed the fundamental part of the visualization system and were complemented
with isolation and masking. A good explanation of the importance of projection as
a tool for visualizing structure in high-dimensional data can be found in Furnas and
Buja (1994).

One major breakthrough in using projections for visualizing higher dimensions
was made by Asimov (1985) in his work on the grand tour. The grand tour, further
exploited in Buja and Asimov (1986a), in an abstract sense shows a viewer all
possible projections in a continuous stream (which could be considered to be
moving planes through p-dimensional space). Several possibilities for “showing
all possible projections” were explored in the original work, but the most successful
method to arise from it is based on interpolating between random planes. Another
common approach to displaying high-dimensional data can be found in Becker
and Cleveland (1988) where data is plotted in a scatterplot matrix, i.e., a matrix
of pairwise scatterplots. Users can do linked brushing among the plots, i.e., mark
points with different symbols and colors, while this information is also immediately
displayed in all related (linked) plots.

http://stat-graphics.org/movies/

338 J. Symanzik

The historical development of interactive and dynamic statistical graphics is well
documented in a series of books and articles. Chambers et al. (1983) and du Toit
et al. (1986) can be placed somewhere inbetween Tukey’s original idea of EDA and
the beginning of modern dynamic and interactive statistical graphics. Wegman and
DePriest (1986) is a collection of papers presented at a workshop sponsored by the
Office of Naval Research (ONR), held in Luray, Virginia, from 24 through 27 May,
1983. About half of the papers are related to statistical image processing while the
other half is related to (interactive) statistical graphics. Cleveland and McGill (1988)
contains a collection of papers about dynamic graphics for statistics, originally
published between 1969 through 1988. This book is a very good reference to see
the progress in dynamic graphics concepts and software over two decades, starting
from the very early stages through the late 1980s. Buja and Tukey (1991) is based
on the proceedings of the Institute for Mathematics and its Applications (IMA)
1989 summer program on “Robustness, Diagnostics, Computing and Graphics in
Statistics”. An earlier “Handbook of Statistics, Volume 9, Computational Statistics”,
edited by Rao (1993), contains several then state-of-the-art overviews on interactive
and dynamic statistical graphics, most notably the chapters by Wegman and Carr
(1993) and Young et al. (1993). Nagel et al. (1996) dedicate two (out of six) chapters
of their book to dynamic graphics—one being an overview and one discussing
applications. Theus (1996) is fully dedicated to the theory and applications of
interactive statistical graphics. Wilhelm et al. (1996) contains reviews of software
for interactive statistical graphics.

Major statistical journals often dedicate special issues to interactive and dynamic
graphics, e.g., “Computational Statistics” (Volume 14, Issue 1, 1999) on “Interactive
Graphical Data Analysis” and “Computational Statistics & Data Analysis” (Volume
43, Number 4, 2003) on “Data Visualization”. A strong case for the use of statistical
graphics has been made by Andreas Buja (Symanzik 2008).

12.3 Concepts of Interactive and Dynamic Graphics

This section will provide some deeper insights into concepts of interactive and
dynamic graphics mentioned in the previous sections. Buja et al. (1996) contains a
taxonomy of interactive data visualization based on the notions of focusing, linking,
and arranging views of data. Unwin (1999) discusses some of the main concepts in
the context of interactive graphics software.

12.3.1 Scatterplots and Scatterplot Matrices

Perhaps the most basic concepts for statistical graphics are scatterplots (see
Figs. 12.1-12.3 and 12.4). In a simple scatterplot, we place different symbols
(sometimes also called glyphs) at x- and y-positions in a two-dimensional plot

12 Interactive and Dynamic Graphics 339

I Plecesshp
-

¥ Slaws.ahp
=]

¥ Blusbackshp
-

Fig. 12.1 Screenshot of the “Places” data in ArcView/XGobi. A map view of the 329 spatial
locations is displayed in ArcView at the top. The two XGobi windows at the bottom are showing
scatterplots of Crime (horizontal) vs. Education (vertical) [left] and Recreation (horizontal) vs.
Arts (vertical) [right]. Locations of high Crime have been brushed and identified, representing
some of the big cities in the U.S. Also, locations of high Education (above 3,500) have been
brushed, mostly representing locations in the northeastern U.S. All displays have been linked

area. These positions are determined by two of the variables. The type, size, and
color of the symbols may depend on additional variables. Usually, explanatory
information such as axes, labels, legends, and titles are added to a scatterplot.
Additional information such as a regression line or a smoothed curve can be added
as well.

If the data consist of more than two variables (e.g., somewhere between three
to ten), the data can be displayed by a scatterplot matrix (see Figs. 12.2 and
12.3) that shows all pairwise scatterplots of the variables. The essential property
of a scatterplot matrix is that any adjacent pair of plots have one of their axes
in common. When plotting the full array of all n x (n — 1) pairwise scatterplots,
each plot in the upper triangle of plots has a matching plot in the lower triangle
of plots, with the exception that the axes in these pairs of plots have been flipped.
Therefore, sometimes only the upper or lower triangle of scatterplots is displayed;
thus gaining plotting speed and allowing each individual plot to be somewhat larger.

340 J. Symanzik

? pesss i
File Display ViewMode Tools Options DisplayTres _elﬂ File Options
AYFiot | ¥ | Climate E Educ
Plot cycling x| ¥| Housingcost g_ . T
By -
A Cyela x| Y| Hithcars o3 . ‘-.'.:- L I
o "

X v | Crime = T i iy IR

No fixed axes - — 2] ™ .
¥| ¥| Transp 0 o= et

T [g ~ g § %
x lT Educ 0] O Lt -

Change direction ¥| v| Ade E » o L
= 2
%| Y| Recreat [iplaces 0> ..
¥| ¥| Econ E: Crir
%| ¥ | casehum File O O pne— OO0 5 o O
%] Y| Long
I = E - Ej Ed
x| Y| Lat
x| v| Pop .
I T " Educ - Hnn are = Crime " Trans sp @ Adts
X| ¥ | Sthum

Iph-‘_;.-} rated: 329 x 14 (C:\

UEWPapers'2004_HCS\iata\places_GGob HithCarg N HithCa HithCare HithCape
< places rated: Scatterplot HHIC dre =rirme #«rsp ' Ars

File Cptions

it
" m W /\ i
‘

m

Afs Afs Ars

i
- Pop — oS o - ol I, Aits

Fig. 12.2 Screenshot of the “Places” data in GGobi. A scatterplot of Crime (horizontal) vs.
Education (vertical) is displayed at the top right, a scatterplot matrix of five of the variables is
displayed at the bottom right, and a density (/D) plot of Population is displayed at the bottom left.
The data has been brushed with respect to Population: one group for a Population less than 500,000,
one group for a Population between 500,000 and 1,000,000, and one group for a Population
above 1,000,000. The scatterplot of Crime and Education seems to reveal that higher Population
is associated with higher Crime and higher Education. The scatterplot matrix seems to reveal that
higher Population is also associated with higher Arts and higher HealthCare. All displays have
been linked.

Early examples of scatterplot matrices can be found in Chambers et al. (1983)
and Cleveland (1985) for example. In fact, Chambers et al. (1983) initially called
an array of pairwise scatterplots for three variables a draftsman’s display and for
four (or more) variables a generalized draftsman’s display. In their (generalized)
draftsman’s display, each point is plotted with the same symbol. When encoding
additional information through the use of different plotting symbols, Chambers
etal. (1983) speak of symbolic (generalized) draftsman’s displays. Today, we hardly
make any distinction of these different types of displays and just speak of scatterplot
matrices.

Murdoch (2002) and Unwin (2002) discuss features good scatterplots and related
interactive software should provide, e.g., meaningful axes and scales, features for
rescaling and reformatting, good handling of overlapping points and missing data,
panning and zooming, and querying of points. Carr et al. (1987) describes tech-
niques for scatterplot matrices particularly useful for large numbers of observations.

12 Interactive and Dynamic Graphics 341

F W[o [EL M e ®E) w0 0 ¢ 0 K ow|[Speed ——1 Apha

p— S

Bl Casebum

Econ

Educ
Transp
Crime:

HithCare

HousingCost

Climate

Fou Help, press F1 Recreat 255, Econ 255 (00 (229

Fig. 12.3 Screenshot of the “Places” data in CrystalVision. A parallel coordinate plot of all
variables is shown as the main plot. A scatterplot matrix of all variables with a scatterplot of Crime
(horizontal) vs. Education (vertical) is shown as a popup in the top right. The data has been brushed
according to high and low Population. According to the parallel coordinate plot, higher Population
is associated with higher Arts and HousingCost. The scatterplot of Crime and Education seems
to reveal that higher Population is also associated with higher Crime and higher Education.All
displays have been linked

12.3.2 Brushing and Linked Brushing/Linked Views

Brushing, as introduced in Becker and Cleveland (1988) and Becker et al. (1988b),
initially was considered as a collection of several dynamic graphical methods for
analyzing data displayed in a scatterplot matrix. The central idea behind brushing is
a brush, usually a rectangular area on the computer screen, that is moved by the data
analyst to different positions on the scatterplot or any other graphical display. Four
brushing operations were introduced in Becker and Cleveland (1988): highlight,
shadow highlight, delete, and label. The most commonly used brushing technique
is highlighting—often in the context of linked brushing, i.e., for linked views. All
points that are inside the brush in the currently selected display are highlighted, i.e.,
marked with a different symbol or color. Simultaneously, points that correspond to
those points are automatically highlighted with the same symbol/color in all linked
views.

342 J. Symanzik

[Mondiianiplaces_Mondrian tst] 7 & Mo aic|CrimeGroup, EducGroup. PopGioup] I [=] |

Fle Fiot Oplions Window

{HERCare

Crime

CrimeGroup
Transp
Educ
Educroup
arts
Fecrest
Econ
Casehium

Larg
Lat =

"

£ Potioc: MRRRRTTES] [5ol Clmoe s

Arts
.

.
23640

S

3
i 1o
_i: 5149 iR
== r 1
105

;
1145 8625 HithCare

Fig. 12.4 Screenshot of the “Places” data in Mondrian. The variables Crime, Education, and
Population have been discretized for this figure. A mosaic plot of Crime (first vertical division,
grouped as below 1,000 [/eft] and above 1,000 [right]), Education (first horizontal division, grouped
as 2,700 to 3,500 [fop], below 2,700 [middle], and above 3,500 [bottom]), and Population (second
vertical division, grouped as 500,000 to 1,000,000 [left], below 500,000 [middle], and above
1,000,000 [right]) is displayed at the top right. A histogram of Transportation is shown at the
bottom left, boxplots of HealthCare and Arts are shown at the bottom middle, and a scatterplot
of Climate (horizontal) vs. HousingCost (vertical) is shown at the bottom right. The mosaic plot
shows that Crime, Education, and Population are not independent. The different displays show how
average Transportation (that has been brushed in the histogram) is related to the other variables.
All displays have been linked

A very useful brushing technique is the transient paint mode. As the brush is
moved, the new points that come inside the brush are highlighted while points that
move outside the brush are no longer highlighted.

While brushing initially was only developed for scatterplot matrices, it quickly
has been adapted to other types of linked graphical displays. Linked brushing among
different displays is one of the most useful techniques used within dynamic and
statistical graphics. Linked brushing can be applied to graphical representation of
continuous data, summary data such as histograms (Stuetzle 1988), or even displays
of categorical data such as mosaic plots (Hofmann 2000, 2003). All dynamic
statistical graphics software packages support linked brushing among different types
of graphical displays these days.

12 Interactive and Dynamic Graphics 343

When dealing with massive data sets, it is often beneficial to focus on particular
subgroups of the data and also be able to quickly return to a previous stage of
the analysis. Selection sequences (Hofmann and Theus 1998; Theus et al. 1998)
are an extension of the conventional linked-highlighting paradigm as they store the
whole hierarchical path of a selection and allow an easy editing, redefinition, and
interrogation of each selection in the path of the analysis. In a selection sequence,
we can easily jump from one branch of the hierarchic selection tree to another.

12.3.3 Focusing, Zooming, Panning, Slicing, Rescaling,
and Reformatting

Focusing techniques, as introduced in Buja et al. (1991), are based on the idea that it
often might be easier for a human analyst to understand several individual displays,
each focused on a particular aspect of the underlying data, rather than looking at the
full data set. Focusing techniques include subset selection techniques, e.g., panning
and zooming or slicing, and dimensionality reduction techniques, e.g., projection.
Methods for focusing can be automatic, interactive, or a combination of both. While
focusing shows only part of the data at a time, it is important to display multiple
linked views of the data, perhaps each focusing on a different aspect of the data, to
maintain the full picture of the data.

Zooming is a technique that can be used for inspecting details of the data when
overplotting arises. Zooming can be done via some kind of a magnifying glass or
by manually selecting subsections of the visible axes, e.g., via sliders. The main
idea behind zooming is that when several points overplot in the full display, it
may indeed turn out that these points are exactly the same when zooming into the
neighborhood of these points—or, what most frequently happens, that these points
have a particular structure and are not exactly the same.

Panning is closely related to zooming. An analyst should know which subset of
the data is currently visible. Therefore, an information plot should reveal the current
location on which subregion we have zoomed.

Slicing, as described in Furnas (1988) and Furnas and Buja (1994), is a technique
that takes sections (or slices) of a high-dimensional data set. While slicing (and
projections) are useful means for an exploratory data analysis, these techniques also
have their limitations. However, these limitations may be overcome by combining
slicing and projections in so-called prosections (Furnas and Buja 1994). An exten-
sion of individual prosection views is the prosection matrix (Tweedie and Spence
1998), some kind of a density plot summarizing multi-dimensional volumetric
information. The prosection matrix is a useful representation for engineering
design, allowing an analyst to interactively find a design that leads to a maximal
manufacturing yield.

Rescaling is a technique to quickly change the scale of the displayed variables,
e.g., by taking the log, square root, standardize, or by mapping to a 0—1 scale. When

344 J. Symanzik

looking at multiple variables, it might also be beneficial to have a common scale
(from the minimum across all variables to the maximum across all variables). By
interactively rescaling variables, an analyst may identify useful transformations for
a follow-up modeling step of the data.

Reformatting includes features as simple as swapping x and y axes in a scatterplot
or changing the order of coordinate axes in a parallel coordinate plot.

Unwin (2002) provides more details on several of the techniques described
above.

12.3.4 Rotations and Projections

Rotation, as introduced in Fisherkeller et al. (1974b) and later refined in Becker
et al. (1988b), is a very powerful tool for understanding relationships among three
or more variables. The familiar planar scatterplot is enhanced by rotation to give the
illusion of a third dimension. We typically rotate plots in search of some interesting
views that do not align with the plot axes and therefore cannot be seen in a scatterplot
matrix. Usually, a three-dimensional point cloud representing three of the variables
is shown rotating on a computer screen. The rotation shows us different views of
the points and it produces a 3D effect while moving, allowing us to see depth. Basic
rotation controls with a mouse have been introduced in Becker et al. (1988b).

Mathematically speaking, each rotation within a 3D space onto a 2D computer
screen is based on a projection. Obviously, it is mathematically possible to project
high-dimensional data onto low-dimensional subspaces and gain insights into the
underlying data through dynamic visualizations of such projections. One particular
example of a continuous sequence of projections, the grand tour, will be discussed
in the next section. Cook and Buja (1997) discuss methods how to manually control
high-dimensional data projections. Cook (1997) provides a variety of training data
sets that help new users get a visual feeling of the underlying high-dimensional data
set when seen as a projection into low-dimensional space.

12.3.5 Grand Tour

Often, simple plot rotation, as discussed in the previous section, does not suffice to
see all interesting views of the data. To produce a plethora of possible interesting
views, the grand tour has been introduced in Asimov (1985) and Buja and Asimov
(1986b). In Asimov (1985), the grand tour has been described as “a method for
viewing multivariate statistical data via orthogonal projections onto a sequence of
two-dimensional subspaces. The sequence of subspaces is chosen so that it is dense
in the set of all two-dimensional subspaces.” Some of the features the grand tour
can be used for are examining the overall structure and finding clusters or outliers
in high-dimensional data sets.

12 Interactive and Dynamic Graphics 345

In the context of the grand tour, an alternating sequence of brushing, looking
at additional projections from the grand tour, brushing, and so on, is referred to as
the brush-tour strategy in the remainder of this chapter. We can only be sure that
a cluster visible in one projection of the grand tour really is a cluster if its points
remain close to each other in a series of projections and these points move similarly
when the grand tour is activated. If points move apart, we probably found several
subclusters instead of one larger cluster.

Wegman (1992) discusses a form of the grand tour for general d-dimensional
space. The algorithms for computing a grand tour are relatively computation-
ally intensive. Wegman and Shen (1993) discuss an approximate one- and two-
dimensional grand tour algorithm that was much more computationally efficient
than the Asimov winding algorithm. That algorithm was motivated in part by a
discussion of the Andrews (multidimensional data) plot, discussed in Sect. 12.3.9,
which can also be regarded as a highly restricted pseudo tour.

12.3.6 Parallel Coordinate Plots

Parallel coordinate plots (Inselberg 1985, 2009; Wegman 1990) (see Fig. 12.3) are a
geometric device for displaying points in high-dimensional spaces, in particular,
for dimensions greater than three. The idea is to sacrifice orthogonal axes by
drawing the axes parallel to each other resulting in a planar diagram where each
d-dimensional point (x1, ..., X;) is uniquely represented by a continuous line. The
parallel coordinate representation enjoys some elegant duality properties with the
usual Cartesian coordinates and allows interpretations of statistical data in a manner
quite analogous to two-dimensional Cartesian scatterplots. This duality of points
in Cartesian plots and lines in parallel coordinates extends to conic sections. This
means that an ellipse in Cartesian coordinates maps into a hyperbola in parallel
coordinates. Similarly, rotations in Cartesian coordinates become translations in
parallel coordinates.

The individual parallel coordinate axes represent one-dimensional projections
of the data. We can isolate clusters by looking for separation between data points
on any axis or between any pair of axes. Because of the connectedness of the
multidimensional parallel coordinate diagram, it is usually easy to see whether or
not this clustering propagates through other dimensions.

The use of parallel coordinate plots for a d-dimensional grand tour sequence,
sometimes called a parallel coordinate grand tour, has been described in Wegman
(1992) and Wegman and Carr (1993). By using such a parallel coordinate grand
tour, an analyst can find orientations where one or more clusters are evident. The
general strategy for detecting clusters is the following: We begin with a static plot
of the data in parallel coordinates. If there are any gaps along a horizontal axis
(which incidentally does not need to coincide with the coordinate axes), then we
color the individual clusters with distinct colors. Once all clusters are identified
in the original coordinate system, we run the grand tour until an orientation of

346 J. Symanzik

the axes is found in which another gap in one of the horizontal axes is found.
Again we color the individual subclusters with distinct colors. This procedure is
repeated until no further subclusters can be identified. This is another example of
the brush—tour strategy referred to in Sect. 12.3.5. Indeed, when to stop is a matter
of judgement, since the procedure can be repeated until practically every data point
can be individually colored. The crucial issue, which really depends on the dynamic
graphics, is to see that clusters identified in this manner track coherently with the
grand tour animation. That is, data points of the same color stay together as the
grand tour rotation proceeds. If they do not, then there are likely to be substructures
that can be identified through further grand tour exploration.

Slopes of parallel coordinate line segments can also be used to distinguish
clusters. That is, if a group of line segments slopes, say, at 45° to the horizontal and
another group slopes at, say, at 135° to the horizontal, then even though the lines
fully overlap in both adjacent parallel coordinate axes and there is no horizontal
gap, these sets of lines represent two distinct clusters of points. Fortunately, when
such indication of clustering exists, the grand tour will also find an orientation of
axes in which there is a horizontal gap. Thus the general strategy is to alternate
color brushing of newly discovered clusters with grand tour rotations until no further
clusters can be easily identified.

In some software packages, the parallel axes in a parallel coordinate plot are
drawn as horizontal lines (e.g., in ExplorN) while in other software packages they
are drawn as vertical lines (e.g., in XGobi). While it may be argued that this makes
no difference from a mathematical point of view, the wider aspect ratio in the
horizontal mode coupled with a more usual sense of plotting data along an abscissa
rather than along the ordinate tends to allow for an easier human interpretation.
Detailed interpretations are given in Wegman (1990).

12.3.7 Projection Pursuit and Projection Pursuit Guided Tours

While the grand tour, as discussed in Sect. 12.3.5, is a dynamic tool, projection
pursuit (Friedman and Tukey 1974; Huber 1985; Kruskal 1969), see also Chap. I11.6,
is a static tool. Projection pursuit results in a series of static plots of projections
that are classified as “interesting” with respect to a particular projection pursuit
index. Many projection pursuit indexes, e.g., the ones discussed in Jones and
Sibson (1987), Friedman (1987), Hall (1989), Morton (1989), Morton (1992), Cook
et al. (1993), and Posse (1995), are based on the idea to search for the most non-
normal projections. Usually, each projection pursuit index, a function of all possible
projections of the data, results in many hills and valleys. Friedman (1987) suggests
a projection pursuit algorithm that initially searches for relatively high values of the
function and then starts derivative-based searches to find the global maximum.

The combination of grand tour and projection pursuit, called projection pursuit
guided tour (Cook et al. 1995), helps to direct the grand tour towards “interesting”
projections. This combination of the two methods into an interactive and dynamic

12 Interactive and Dynamic Graphics 347

framework not only shows the “interesting” projections but it maintains the motion
so the user has a feeling how successive “interesting” projections have been
obtained.

12.3.8 Pixel or Image Grand Tours

The idea of the pixel or image grand tour (IGT) evolved from an initial application
of one-dimensional tours to image data. Multiple registered images can be regarded
as a multidimensional image in which each pixel location has a vector attached to
it. For example, ordinary red, green, and blue (RGB) color images are vector-valued
images. The basic idea of the image tour is to apply the same one-dimensional
grand tour to each vector for all pixel locations in an image. This combines the
vectors into a scalar function of time which can be rendered as a time-varying
gray-scale image. The Wegman and Shen (1993) algorithm generalizes easily
to two dimensions, so that an alternate approach to the IGT is to project the
multidimensional vector into two dimensions and render the image as a false
color image with two complementary colors such as red and cyan. It should be
noted that red and cyan are complementary colors in the RGB color model used
for most computer monitors whereas red and green are complementary colors in
the conventional color model, introduced by the Commission Internationale de I’
Eclairage (CIE) in 1931. A detailed comparison of these two and other color models
can be found in Foley et al. (1990), Chap. 13. The initial discussion of the IGT was
given by Wegman et al. (1998). Additional examples of the IGT can be found in
Symanzik et al. (2002b).

Currently, the IGT software, written in C++ by Qiang Luo, is available for Silicon
Graphics, Inc., (SGI) workstations. To obtain a fast rendering rate of large images,
the software intensively uses SGI hardware features such as the ¢-channel hardware.
There exists also a MATLAB version of the IGT written by Wendy Martinez. Both
versions of the IGT software are not accessible through a Web site but can be
obtained from the corresponding software developers.

12.3.9 Andrews Plots

The Andrews (multidimensional data) plot, as introduced in Andrews (1972) is
based on a series of Fourier interpolations of the coordinates of multi-dimensional
data points. Points that are close in some metric will tend to have similar Fourier
interpolations and therefore will tend to cluster in the Andrews plot. Thus, the
Andrews plot is an informative graphical tool most useful to detect clustering.
Ideas underlying the Andrews plot and the grand tour are quite similar. However,
in contrast to the grand tour, the Andrews plot is a static plot while the grand
tour is dynamic. Although dynamic renditions of the Andrews plot exist, and

348 J. Symanzik

these sometimes also are (incorrectly) referred to as one-dimensional grand tour
(Crawford and Fall 1990), the Andrews plot is not a grand tour since it cannot
sweep out all possible directions as pointed out in Wegman and Shen (1993). Three-
dimensional generalizations of the Andrews plot and other pseudo grand tours have
been introduced in Wegman and Shen (1993) as well.

12.3.10 Density Plots, Binning, and Brushing with Hue
and Saturation

Carr et al. (1987) present techniques for visualizing data in scatterplots and
scatterplot matrices when the data consists of a large number of observations, i.e.,
when overplotting of points frequently occurs using standard techniques. A key idea
to address in the visualization of a large number of observations is based on the
estimation and representation of densities. For this purpose, the data is often binned
into an 7 X n matrix for two-dimensional representation (or an 7 X n X n matrix
for three-dimensional representation). Possibilities to visualize the number of data
points in each bin can be based on gray-scale (or color) density representations or
by symbol area such as using differently sized hexagon symbols, where the area of
the plot symbol is proportional to the count in each bin. Carr (1991) further extends
these ideas and presents additional low-dimensional displays for data that consists
of a large number of observations. Scott (1992) provides a general overview on
techniques for density estimation, including averaged shifted histograms (ASH) and
kernel density estimators, including possible visualization techniques via contour
surfaces, (transparent) a-level contours, and contour shells. Further details on
multivariate density estimation and visualization can be found in Chap. II1.4.
Wegman and Luo (1997a) use hue and saturation for plotting and brushing.
For each individual point, the hue is almost fully desaturated with black. When
points are overplotted, the hue components are added. The saturation level should be
interactively adjustable by the analyst. If many points overplot, the pixel will be fully
saturated. If fewer points overplot, the pixel will be shown in a less saturated color.
Often, computer hardware devices such as the a-channel allow the blending of pixel
intensities with no speed penalties. When using saturation for parallel coordinate
plots and the level of saturation corresponds with the degree of overplotting, this
creates a kind of parallel coordinate density plot (Wegman and Luo 1997a,b).

12.3.11 Interactive and Dynamic Graphics for Categorical Data

Although categorical data are quite common in the real world, little research has
been done for their analysis and visualization when compared to quantitative data.
However, there exist useful interactive and dynamic graphics for categorical data
(Ostermann and Nagel 1993; Theus and Wilhelm 1998). For example, brushing and

12 Interactive and Dynamic Graphics 349

linking of categorical data represented via bar charts and pie charts can be as useful
as for quantitative data (Hummel 1996). Modified bar charts where the same height
is used for each category and the width is varied according to the number of counts
are called spine plots (Hummel 1996). When interactively highlighting a category
of interest, spine plots allow the analyst to visually compare the proportions in the
different subcategories by looking at the heights of the highlighted areas. Examples
of interactive graphics for categorical data such as spine plots and interactive mosaic
plots (see Fig. 12.4) can be found in Hofmann (2000, 2003). Valero-Mora et al.
(2003) discuss spreadplots (and their implementation in ViSta), a method for laying
out and simultaneously controlling graphics for categorical data.

Blasius and Greenacre (1998) present a collection of papers dealing with the
visualization of categorical data. Main topics include graphics for visualization,
correspondence analysis, multidimensional scaling and biplots, and visualization
and modeling. Several of these approaches benefit from interactive and dynamic
graphics.

12.4 Graphical Software

In this section, we concentrate on three main streams of software for interactive
and dynamic statistical graphics: Software developed by researchers affiliated with
the University of Augsburg, in particular REGARD, MANET, and Mondrian;
software developed by researchers affiliated with George Mason University (GMU),
in particular ExplorN and CrystalVision; and software developed by researchers
affiliated with Bell Labs, AT&T, and Iowa State University (ISU), in particular
XGobi and GGobi. Wilhelm et al. (1996) contains an in depth review of software for
interactive statistical graphics. Wilhelm et al. (1999) is one of the few publications
where the different interactive graphical concepts provided by these three main
streams (represented by MANET, ExplorN, and XGobi, respectively) are applied to
the same data set and thus allow a direct comparison of their features and capabilities
in visual clustering and classification.

12.4.1 REGARD, MANET, and Mondrian

In this section we present a series of software developments that was initiated in
the late 1980’s by John Haslett and Antony Unwin at Trinity College, Dublin,
and later was continued by Antony Unwin and his collaborators at the Institut fiir
Mathematik, University of Augsburg. Other main collaborators that contributed to
the development of these software tools that should be mentioned here are Heike
Hofmann, Martin Theus, Adalbert Wilhelm, and Graham Wills.

Some of the early developments are Diamond Fast (Unwin and Wills 1988) and
Spider (Craig et al. 1989). Diamond Fast is a software package for the exploration

350 J. Symanzik

of multiple time series with interactive graphics. Spider is a software package for
the exploration of spatially referenced data. One of its main features are moving
statistics, an extension of brushing for spatial data (Craig et al. 1989). Spider also
supports histograms, density estimates, scatterplot matrices, and linked brushing. It
runs on Macintosh computers only.

REGARD (Unwin 1994; Unwin et al. 1990) is a software package that also
provides high interaction graphics tools for spatial data. REGARD stands for
“Radical Effective Graphical Analysis of Regional Data” and runs on Macintosh
computers only. REGARD supports four types of layers of spatial data, i.e., points,
regions, lines, and pictures. The central display in REGARD is the map window
that is linked to statistical displays such as boxplots, scatterplots, and rotating plots.
A map may be loaded as one picture in a picture layer or as several pictures in
several layers, thus allowing to turn on or off different aspects of a map (such as
state boundaries or a road network). Additional interactive features are interrogation,
highlighting, resizing, and rescaling. Advanced features include zooming into
submaps, animation across ordered variables, cross-layer linking, network analysis
tools, and interactive query tools across all graphical displays.

MANET (Unwin et al. 1996) is a statistical graphics research program for EDA
and written in C++. MANET stands for “Missings Are Now Equally Treated” and
runs on Macintosh computers only. It is freely available from the following Web
site: http://stats.math.uni-augsburg.de/Manet/.

MANET offers all standard one- and two-dimensional graphics for continuous
data as well as for discrete data: dotplots, scatterplots, histograms, boxplots, bar
charts. Some special graphics for discrete and spatial data are integrated: spine plots,
mosaic plots and polygon plots. MANET grew out of a project to keep track of miss-
ing values in statistical graphics. In MANET all displays are fully linked and instan-
taneously updated. Displays are kept as simple as possible to not distract the user.

The standard use of linked views in MANET is to highlight clusters that are
apparent in one dimension and to see these one-dimensional clusters in the light
of other variables. By systematically subsetting the sample points, we can also
detect two- and higher-dimensional clusters. Once a cluster has been detected, a
classification rule can be set up by taking the boundary values of the cluster. In
MANET those values can easily be obtained by interrogating the plot symbols.

One-dimensional views show the one-dimensional clusters directly. Two-
dimensional clusters become visible by highlighting a subset in one variable and
conditioning another plot on this subset. For three- and higher-dimensional clusters,
we have to combine various subsets in different plots into one conditioning set and
then we have to look at the remaining plots to check for clusters. The generation
of such combined selections is not only possible in MANET but it is also very
efficiently implemented through selection sequences.

In MANET, both dotplots and boxplots are drawn in a non-standard way. In
dotplots the brightness of a point shows the frequency of its occurrence. This
method, called tonal highlighting, is used to visualize overplotting of points. A
bright color represents many points while a dark color represents just a few points.

http://stats.math.uni-augsburg.de/Manet/

12 Interactive and Dynamic Graphics 351

There is no tonal highlighting for selected points in MANET. The layout of boxplots
is changed so that a standard boxplot can be superimposed for selected points. The
inner fifty percent box is drawn as a dark grey box. The outer regions, usually
represented as whiskers, are drawn as light grey boxes.

A recent new development, Mondrian (Theus 2002, 2003; Theus and Urbanek
2009), is a data visualization system written in JAVA and therefore runs on any
hardware platform. Mondrian is freely available from the following Web site: http://
www.rosuda.org/Mondrian/.

The main emphasis of Mondrian is on visualization techniques for categorical
and geographical data. All plots in Mondrian (see Fig. 12.4) are fully linked and
offer various interrogations. Any case selected in one plot in Mondrian is highlighted
in all other linked plots. Currently, implemented plots comprise mosaic plots,
scatterplots, maps, bar charts, boxplots, histograms, and parallel coordinate plots.
Mosaic plots in Mondrian are fully interactive. This includes not only linking,
highlighting and interrogations, but also an interactive graphical modeling technique
for loglinear models.

12.4.2 HyperVision, ExplorN, and CrystalVision

In this section we present a series of software developments that was initiated
in the late 1980s by Daniel B. Carr (initially while at Battelle Pacific Northwest
Laboratories) and Edward J. Wegman at GMU. Other main collaborators that
contributed to the development of these software tools that should be mentioned
here are Qiang Luo and Wesley L. Nicholson.

EXPLOR4 (Carr and Nicholson 1988) is a research tool, originally implemented
on a VAX 11/780 and written in FORTRAN. Its main features are rotation, masking,
scatterplots and scatterplot matrix, ray glyph plots, and stereo views.

HyperVision, presented in Bolorforoush and Wegman (1988), is a software
product that has been implemented in PASCAL on an IBM RT under the AIX
operating system as well as for MS-DOS machines. The latter implementation
has a mouse-driven painting capability and can do real-time rotations of 3D
scatterplots. Other displays are parallel coordinate plots, parallel coordinate density
plots, relative slope plots, and color histograms. The main interactive features in
HyperVision in addition to linked brushing are highlighting, zooming, and nonlinear
rescaling of each axis.

ExplorN (Carr et al. 1997) is a more advanced software package than HyperVi-
sion and EXPLORA4, but with similar basic features. It runs on SGI workstations
only, using either the GL or the OpenGL tools.

ExplorN supports scatterplot matrices, parallel coordinate plots, icon-enhanced
three-dimensional stereoscopic plots, d-dimensional grand tours and partial grand
tours (i.e., tours based on a subset of the variables with the remaining variables being
held fixed), and saturation brushing all in a high interaction graphics package.

http://www.rosuda.org/Mondrian/
http://www.rosuda.org/Mondrian/

352 J. Symanzik

The ExplorN software is intended to demonstrate principles rather than to be an
operational tool so that some refinements normally found in operational software
are not there. These include history tracking, easy point identification, identification
of mixture weights in the grand tour, relabeling of axes during and after a grand tour
as well as simultaneous multiple window views.

Although ExplorN also supports conventional scatterplots and scatterplot matri-
ces, one of its outstanding features are parallel coordinate displays and partial
grand tours. Since it is easy to see pairwise relationships for adjacent variables in
parallel coordinate plots, but less easy for nonadjacent variables, a complete parallel
coordinate investigation would require running through all possible permutations.
Instead of this, we recommend using the d-dimensional parallel coordinate grand
tour that is implemented in ExplorN. An important interactive procedure for finding
clusters using parallel coordinate plots is via the brush—tour.

CrystalVision is a recently developed successor of ExplorN, freely accessible
at http://crystalvision.galaxy.gmu.edu/. Its main advantage over the older package
is that it is available for PCs. Similar to ExplorN, CrystalVision’s (see Fig. 12.3)
main focus is on parallel coordinate plots, scatterplots, and grand tour animations.
Examples of its use, e.g., its EDA techniques applied to scanner data provided by
the U.S. Bureau of Labor Statistics (BLS), can be found in Wegman and Dorfman
(2003).

12.4.3 Data Viewer, XGobi, and GGobi

In this section we present a series of software developments that was initiated in the
mid 1980s by Andreas Buja, Deborah F. Swayne, and Dianne Cook at the University
of Washington, Bellcore, AT&T Bell Labs, and ISU. Other main collaborators that
contributed to the development of these software tools that should be mentioned
here are Catherine Hurley, John A. McDonald, and Duncan Temple Lang.

The Data Viewer (Buja et al. 1988, 1986; Hurley 1988, 1989; Hurley and Buja
1990) is a software package originally developed on a Symbolics Lisp Machine
that supports object-oriented programming. The Data Viewer is a system for the
exploratory analysis of high-dimensional data sets that allows interactive labeling,
identification, brushing, and linked windows. Additional features are viewport
transformations such as expanding or shrinking of the data and shifting of the
data. The Data Viewer supports several types of projections, including simple 3D
rotations, correlation tour (Buja et al. 1988), and grand tour.

Many of the design and layout concepts of the Data Viewer as well as parts of
its functionality provided the basic ideas for the follow-up XGobi (see Fig. 12.1),
first described in Swayne et al. (1991) and Swayne and Cook (1992). Development
on XGobi took place for about a decade; its almost final version is documented in
Swayne et al. (1998). XGobi is implemented in the X Windows System, so it runs on
any UNIX system, and it runs under Microsoft Windows or the Macintosh operating
system if an X emulator is used. XGobi can be freely downloaded from http://www.
research.att.com/areas/stat/xgobi/.

http://crystalvision.galaxy.gmu.edu/
http://www.research.att.com/areas/stat/xgobi/
http://www.research.att.com/areas/stat/xgobi/

12 Interactive and Dynamic Graphics 353

XGobi is a data visualization system with interactive and dynamic methods for
the manipulation of views of data. It offers 2D displays of projections of points and
lines in high-dimensional spaces, as well as parallel coordinate plots. Projection
tools include dotplots and ASH of single variables, scatterplots of pairs of variables,
3D data rotations, and grand tours. Views of the data can be panned and zoomed.
Points can be labeled and brushed with glyphs and colors. Lines can be edited and
colored. Several XGobi processes can be run simultaneously and linked for labeling,
brushing, and sharing of projections. Missing data are accommodated and their
patterns can be examined; multiple imputations can be given to XGobi for rapid
visual diagnostics (Swayne and Buja 1998). XGobi can be cloned, i.e., an identical
new XGobi process with exactly the same data and all brushing information can be
invoked.

Rotating plots are nowadays implemented in most statistical packages, but the
implementation in XGobi goes beyond most of the others. In addition to the standard
grand tour, XGobi supports the projection pursuit guided tour. More details on
projection pursuit indices available in XGobi can be found in Cook et al. (1993) and
Cook et al. (1995). Additional index functions that result in speed improvements of
the calculations have been presented in Klinke and Cook (1997).

GGobi (Swayne et al. 2003; Cook and Swayne 2007) is a direct descendant of
XGobi, but it has been thoroughly redesigned. GGobi (see Fig. 12.2) can be freely
downloaded from http://www.ggobi.org/.

At first glance, GGobi looks quite unlike XGobi because GGobi uses a newer
graphical toolkit called GTK+ (http://www.gtk.org), with a more contemporary
look and feel and a larger set of user interface components. Through the use of
GTK+, GGobi can be used directly on Microsoft Windows, without any emulator.
In addition, GGobi can be used on any UNIX and Linux system.

In contrast to XGobi, the plot window in GGobi has been separated from
the control panel. In XGobi, there is in general a single plot per process; to
look at multiple views of the same data, we have to launch multiple XGobi
processes. In contrast, a single GGobi session can support multiple plots of various
types: scatterplots, parallel coordinate plots, scatterplot matrices, and time series
plots have been implemented thus far. Other changes in GGobi’s appearance and
repertoire of tools (when compared to XGobi) include an interactive color lookup
table manager, the ability to add variables “on the fly”, and a new interface for
view scaling (panning and zooming). At this point, some of the advanced grand
tour and projection pursuit guided tour features from XGobi have not been fully
reimplemented in GGobi (but hopefully will be available in the near future).

12.4.4 Other Graphical Software

While the previous sections summarize software that focuses on interactive and
dynamic graphics, there exist several statistical languages that provide a tight
integration of interactive graphics and numerical computations. Examples for such

http://www.ggobi.org/
http://www.gtk.org

354 J. Symanzik

languages are S/S-PLUS (Becker 1994; Becker et al. 1988a; Chambers 1997), R
(Ihaka and Gentleman 1996), and XploRe (Hérdle et al. 1995). Other examples
of software that link interactive graphics, computation, and spread sheets, often
through the Web, are the Data Representation System (DRS) by Inoue et al. (2002),
DAVIS by Huh and Song (2002), KyPlot by Yoshioka (2002), and the XploRe
Quantlet Client/Server (XQC/XQS) architecture (Kleinow and Lehmann 2002).

12.5 Interactive 3D Graphics

A natural extension of 2D interactive and dynamic graphics is the use of anaglyphs
and stereoscopic displays on a computer screen and eventually the use of VR
environments to obtain a 3D representation of statistical data and linked objects
from geography or medicine.

12.5.1 Anaglyphs

A German teacher, Wilhelm Rollmann, initially described the effect of stereoscopic
graphics drawn in red and green colors that are looked at with the naked eye
(Rollmann 1853a), i.e., what is now called free-viewing stereoscopic images. Later
the same year, Rollmann (1853b) describes the effect of looking at such colored
pictures using filter glasses of corresponding complementary colors. As a reminder,
red and green are complementary colors in the conventional color model whereas
red and cyan are complementary colors in the RGB color model used for most
computer monitors. Eventually, the work by Wilhelm Rollmann has been judged
by Vuibert (1912) and Rosch (1954) as the birth of anaglyphs. The mathematics
underlying anaglyphs and stereoscopic displays can be found in Hodges (1992) and
Wegman and Carr (1993) for example.

Stereoscopic displays and anaglyphs have been used within statistics by Daniel
B. Carr, Richard J. Littlefield, and Wesley L. Nicholson (Carr and Littlefield
1983; Carr et al. 1983; Carr and Nicholson 1985; Carr et al. 1986). In particular
anaglyphs can be considered as an important means to represent three-dimensional
pictures on flat surfaces. They have been used in a variety of sciences but they
found only little use in statistics. One of the first implementations of red—green
anaglyphs was the “real-time rotation of three-dimensional scatterplots” in the
Mason Hypergraphics software package, described in Bolorforoush and Wegman
(1988), page 125. Independently from the work on anaglyphs conducted in the
U.S., interactive statistical anaglyph programs also were developed by Franz
Hering, Jiirgen Symanzik, and Stephan von der Weydt at the Fachbereich Statistik,
University of Dortmund (Hering 1994; Hering and Symanzik 1992; Hering and
von der Weydt 1989; Symanzik 1992, 1993a,b).

12 Interactive and Dynamic Graphics 355

Wegman and DePriest (1986) is one of the rare sources in statistics where
anaglyphs are used in the papers of Banchoff (1986), Carr et al. (1986), and Gabriel
and Odoroff (1986). Moreover, Wegman and DePriest (1986) seems to be the first
statistical reference where colored (red—green) anaglyphs have been published in
print.

12.5.2 Virtual Reality

Many different definitions of the term VR can be found throughout the literature.
Cruz-Neira (1993) summarizes several possible definitions of VR, including the
following working definition for this chapter: “Virtual reality refers to immersive,
interactive, multi-sensory, viewer-centered, three-dimensional computer generated
environments and the combination of technologies required to build these environ-
ments.” A brief chronology of events that influenced the development of VR can
be found in Cruz-Neira (1993). A more detailed overview on VR can be found in
Pimentel and Teixeira (1995) or Vince (1995) for example.

Carolina Cruz-Neira and her colleagues developed an ambitious visualization
environment at the Electronic Visualization Lab (EVL) of the University of Illinois
in Chicago, known simply as the CAVE (Cruz-Neira 1995; Cruz-Neira et al.
1993a,b, 1992; Roy et al. 1995). The abbreviation CAVE stands for CAVE Audio
Visual Experience Automatic Virtual Environment. Carolina Cruz-Neira moved to
ISU in 1995 where she was involved in the development of a second, larger
CAVE-like environment known as the C2. The CAVE, C2, and several other of its
successors belong to immersive projection technology (IPT) systems where the user
is visually immersed within the virtual environment.

The use of ISU’s C2 for statistical visualization is based on the framework of
three-dimensional projections of p-dimensional data, using as a basis the methods
developed and available in XGobi. The implementation of some of the basic XGobi
features in the C2 resulted in VRGobi (see Fig. 12.5). The main difference between
XGobi and VRGobi is that the XGobi user interface is rather like a desktop with
pages of paper whereas VRGobi is more like having the whole room at the user’s
disposal for the data analysis.

VRGobi and the statistical visualization in the C2 have been extensively explored
and documented in the literature (Cook 2001; Cook et al. 1998, 1997a; Nelson
et al. 1998, 1999; Symanzik et al. 1996a, 1997). Main developers of VRGobi, over
time, were Dianne Cook and Carolina Cruz-Neira, with major contributions by Brad
Kohlmeyer, Uli Lechner, Nicholas Lewin, Laura Nelson, and Jiirgen Symanzik.
Additional information on VRGobi can be found at http://www.las.iastate.edu/
newnews/Cook0219.html.

The initial implementation of VRGobi contains a three-dimensional grand tour.
Taking arbitrary three-dimensional projections can expose features of the data not
visible in one-dimensional or two-dimensional marginal plots.

http://www.las.iastate.edu/newnews/Cook0219.html
http://www.las.iastate.edu/newnews/Cook0219.html

356 J. Symanzik

Fig. 12.5 Screenshots of the “Places” data in VRGobi, previously published in Symanzik et al.
(1996a). A map view [left] and a three-dimensional point cloud displaying HousingCost, Climate,
and Education are shown [right]. The control panel, glyph types, and the boundary box that delimits
the plot area are visible [top row]. Cities with nice Climate and high HousingCost have been
brushed and happen to fall into California [middle row]. Among the brushed points is one city (San
Francisco) with an outstanding value for Education [bottom row]. When running VRGobi in the
C2 (instead of producing screenshots from one of the control monitors), the rendered arm may be
replaced by a human user who is possibly wearing a data glove

One of the most difficult developments for VRGobi was the user interface
(and not the statistical display components). While it is relatively simple to create
popup menus that allow to select colors and symbols for brushing in a desktop
environment, designing an appealing and operational three-dimensional interface

12 Interactive and Dynamic Graphics 357

for the C2 was a real challenge. Eventually, four main components make up
VRGobi: the viewing box, the three-dimensional control panel, the variable spheres
(similar to the variable circles used in XGobi), and possibly a map view.

A three-dimensional map view, if used, allows the user to explore data in its
spatial context within VRGobi, similar to the ArcView/XGobi link (Cook et al.
1996, 1997b) for the desktop.

IPT environments are remarkably different from display devices that are com-
monly available for data analysis. They extend beyond the small gain of one more
dimension of viewing space, to being a completely defined “real” world space. In
VRGobi, the temptation is to grab the objects or climb a mountain in the map view
and to step aside when a point approaches our face during the grand tour. The objects
surround the viewer and it is possible to walk through the data.

In Nelson et al. (1998, 1999), experiments have been conducted on structure
detection, visualization, and ease of interaction. Because only 15 human subjects
participated in these experiments, it could not be expected that statistically signif-
icant results were obtained. However, at least these experiments showed that there
was a clear trend that the test subjects performed considerably better on visualization
tasks in the C2 than with XGobi on the workstation display. In contrast, interaction
tasks such as brushing provided better results for the workstation. However, subjects
with some limited VR experiences already performed considerably better on the
interaction tasks in the C2 than subjects with no prior VR experience, suggesting
that there is some learning needed to effectively use the VR hardware.

The high cost factor of the CAVE, C2, and similar IPT environments motivated
the development of the PC-based MiniCAVE environment. The MiniCAVE is an
immersive stereoscopic projection-based VR environment developed at GMU. It is
oriented toward group interactions. As such, it is particularly suited to collaborative
efforts in scientific visualization, data analysis, and VDM.

Initially researchers began with a 333 megahertz Pentium II machine running
Windows NT. The SGI-based VR applications that make use of the OpenGL
standard could be ported relatively easily to a PC environment. Using the Windows
NT drivers, it was also possible to integrate the Crystal Eyes shutter glasses into
the PC environment. The development of the MiniCAVE, now patented (Patent No.
6,448,965 “Voice-Controlled Immersive Virtual Reality System”) to GMU, has been
documented in Wegman et al. (1999) and Wegman and Symanzik (2002).

The one-wall MiniCAVE with speech recognition has been implemented on a
dual 450 megahertz Pentium III machine at GMU. In addition, a polarized light
LCD projector with both front and rear projection is used. Versions of ExplorN and
Crystal Vision have been ported to the MiniCAVE environment.

In addition to the work on VR-based data visualization conducted at ISU and
GMU, independent work also has been conducted elsewhere, e.g., at Georgia Tech
and the Delft Technical University, The Netherlands, resulting in the Virtual Data
Visualizer (van Teylingen et al. 1997), and at the University of South Carolina, using
the Virtual Reality Modeling Language (VRML) for VR applications on the World
Wide Web (Rossini and West 1998). Bohlen et al. (2003) describe 3DVDM, a 3D

358 J. Symanzik

VDM system, that is aimed at the visual exploration of large data bases. More details
are available at http://www.inf.unibz.it/dis/projects/3dvdm/.

Cook (2001) lists three fields, “environmental studies, especially data having a
spatial component; shape statistics; and manufacturing quality control”, that would
benefit most from VR and other IPT environments. Certainly, recent experimental
desktop links of VR and visualization software with spatial statistical applications
such as the links between ViRGIS and RA3;DIO with XGobi (Schneider et al. 2000;
Symanzik et al. 1998b) would benefit considerably when being conducted in an IPT
environment. In addition to the fields in Cook (2001), we think that medical, genetic,
and biological statistical data would also considerably benefit when being explored
in an IPT environment.

12.6 Applications in Geography, Medicine, and Environmental
Sciences

12.6.1 Geographic Brushing and Exploratory Spatial Data
Analysis

Linking statistical plots with geography for analyzing spatially referenced data
has been discussed widely in recent years. Monmonier (1988, 1989) describe a
conceptual framework for geographical representations in statistical graphics and
introduce the term geographic brushing in reference to interacting with the map view
of geographically referenced data. But geographic brushing does not only mean pure
interaction with the map. In addition, this term has a much broader meaning, e.g.,
finding neighboring points and spatial structure in a geographic setting.

In fact, the idea to apply interactive and dynamic graphics for EDA in a spatial
(geographic) context resulted in the term exploratory spatial data analysis (ESDA).
However, ESDA is more than just EDA applied to spatial data. In fact, specialized
ESDA methods have been developed that take the special nature of spatial data
explicitly into account. ESDA is discussed in more details in Anselin (1998),
Anselin (1999), and Fotheringham et al. (2000), Chap. 4. Edsall (2003) provides
examples for the use of dynamic and interactive parallel coordinate plots for the
exploration of large spatial and spatio-temporal data bases.

Many software solutions have been developed that link geographic displays with
interactive statistical software packages. In McDonald and Willis (1987), a grand
tour is linked to an image to assess the clustering of landscape types in the band
space of a LandSat image taken over Manaus, Brazil. In Carr et al. (1987) and
Monmonier (1989), a scatterplot matrix is linked to a map view. In REGARD, map
views are linked with histograms and scatterplots and, moreover, diagnostic plots
for assessing spatial dependence are also available. Another exploratory system that
links histograms and scatterplots with latitude and longitude (and depth) coordinates
is discussed in MacDougall (1992). In Carr et al. (1992), (bivariate) ray-glyph maps

http://www.inf.unibz.it/dis/projects/3dvdm/

12 Interactive and Dynamic Graphics 359

have been linked with scatterplots. Nagel (1994) discusses the interactive analysis
of spatial data, mostly environmental and disease data, under ISP. Klein and Moreira
(1994) report on an interface between the image program MTID and XGobi,
used for the exploratory analysis of agricultural images. DiBiase et al. (1994)
provide an overview on existing multivariate (statistical) displays for geographic
data. Other developments are the cartographic data visualizer, cdv (Dykes 1996),
where a variety of plots are linked with geography, the Space-Time—Attribute
Creature/Movie, STAC/M (Openshaw and Perrée 1996), that searches for patterns
in Geographic Information System (GIS) data bases under the control of a Genetic
Algorithm, and an exploratory spatial analysis system in XLisp-Stat (Brunsdon and
Charlton 1996).

In combination with the GIS ArcView, XGobi and XploRe also have been used
to detect structure and abnormalities in geographically referenced d