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Preface 
 
 
 The first two editions of this book were published thirteen and eight years ago.  
The first edition was a fairly successful attempt to provide a practical, easy-to-read, 
basic statistics book for two primary audiences, those in the pharmaceutical industry 
and those in pharmacy practice. Reviewing the contents and current uses of the first 
edition, several shortcomings were identified, corrected and greatly expanded in the 
second edition. This third edition represents not only an update of the previous two 
editions, but a continuing expansion on topics relevant to both intended audiences. As 
described later, most of the expanded information in this third edition related to 
allowing statistical software to accomplish the same results as identified through hand 
calculations.  
 The author has been fortunate to have taught over 100 statistics short courses 
since the 1999 release of the first edition. Valuable input through the learners 
attending these classes and new examples from these individuals have been helpful in 
identifying missing materials in the previous editions. In addition, the author had the 
opportunity to work closely with a variety of excellent statisticians. Both of these 
activities have helped contribute to the updating and expansions since the first book.  
 The continuing title of the book, Basic Statistics and Pharmaceutical Statistical 
Applications, is probably a misnomer.  The goal of the first edition was to create an 
elementary traditional statistical textbook to explain tests commonly seen in the 
literature or required to evaluate simple data sets. By expanding the contents, 
primarily in the second edition, the material in this edition well exceeded what would 
be expected in a basic statistics book.   
 
A Book for Non-Statisticians 
 
 As stated in the preface of the first edition, statistics provide useful methods to 
analyze the world around us, evaluate the findings and hopefully make beneficial 
decisions. These various tests provide a methodology for answering questions faced 
by pharmacists and members of the pharmaceutical industry. Statistics provide a 
means for summarizing data and making constructive decisions about the observed 
outcomes and their potential impact. This organized approach to evaluating observed 
data help us avoid jumping to conclusions and making choices that may be unwise or 
even dangerous to individuals served by our profession. 
 In 2005, at one of the author’s Land O’Lakes Conferences, Wendell C. Smith, 
formerly a statistician with Eli Lilly, made two interesting statements during his 
presentation. The first was that statistics “provides methods and tools for decision 
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making in the face of uncertainty”. As will be seen throughout this book, these 
statistical “tools” help identify differences or relationships in data where variability or 
uncertainty exists. An analogy from the preface in the first edition was used to 
describe the materials in the first eight chapters of this book.  The analogy related to a  
heavy object suspended in midair, held in place by a rope. By definition a rope is a 
flexible line composed of fibers twisted together to give tensile strength to the line. 
The strength of a rope is based on the interwoven nature of this series of fibers. The 
individual fibers by themselves can support very little weight, but combined and 
wrapped with other fibers can form a product capable of supporting a great deal of 
weight. Statistics can be thought of in similar terms. A very useful and powerful 
device, a statistical test is based on a number of unique interwoven areas, such as 
types of variables, random sampling, probability, measures of central tendency and 
hypothesis testing. In order to understand how statistical tests work, it is necessary to 
have a general understanding of how these individual areas (fibers) work together to 
make the test (rope) a strong and effective procedure. At the same time a poorly 
knotted rope will eventually weaken and untie. Similarly, poorly designed 
experiments and/or inappropriate statistical tests will eventually fail, producing 
erroneous results. Treating Smith’s reference to statistics as a tool in the face of 
uncertainty, the information in the first section of this book will briefly explore some 
of the basic fibers involved in strengthening this rope or tool we call statistics. The 
later chapters deal with specific tests. The incorrect use of statistics (through their 
inappropriate application) or misinterpretation of the results of the statistical test can 
be as dangerous as using faulty or biased data to reach the decision. Our statistical 
rope could quickly fray and the object come crashing to the ground.  
 Wendell Smith’s second statement was that research involves “collaboration 
among participating scientists”. His definition for scientists covered both traditional 
scientists (e.g., medicinal chemistry, pharmacology, pharmacy practitioner) and the 
statistical scientists (e.g., professional statistician). In research, the assistance and 
guidance of a professional statistician can help in avoiding certain problems and 
pitfalls. Conversely, to be effective, the statistician needs the input and expertise of 
scientists involved with the product, service or data being evaluated. It is a 
collaborative effort with shared expertise. 
 Unfortunately, many individuals fear, even hate, statistics. Why? There appear to 
be two major reasons for this dislike. The first is the naive belief that statistics is 
associated with higher mathematics and therefore difficult to learn. On the contrary, 
as seen in the following pages, most basic statistical tests involve four-function math 
(+, -, x, ÷), with a few square roots thrown in for good measure. Hopefully, even the 
mathematically challenged learner will benefit and increase his or her confidence 
using these procedures. The second major reason for disliking this area of 
mathematics is the association with unpleasant past experiences with statistics. In 
many cases, undergraduate and graduate courses are taught by individuals who are 
deeply concerned and interested in how statistical formulae work and the rationale 
behind the manipulation of the data. Unfortunately they may spend too much time on 
the derivation of the statistical tests, rather than focusing on practical day-to-day uses 
for these tools and successful interpretation of their results. One of the primary goals 
of this book is to dispel some of the fear and anxiety associated with the basic 
statistical tests used in the pharmacy profession and to assist individuals using 
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statistical computer software to help them interpret their results correctly. 
 By using worked out examples, individuals can understand how the mathematics 
work and the logic behind many of the equations used in this book. By seeing and 
doing the formulae the learner can better understand the outcome of the test rather 
than just letting the computer report the end reportable values. 
 
Purpose of This Book 
 
 The purpose of this book has not changed since the first edition. It is to serve as 
an introduction to statistics for undergraduate and graduate students in pharmacy, as 
well as a reference guide for individuals in various pharmacy settings, including the 
pharmaceutical industry. It is designed for individuals desiring a brief introduction to 
the field of statistics, as well as those in need of a quick reference for statistical 
problem solving. It is a handbook, a guide and a reference for researchers in need of 
methods to statistically analyze data. It does not deal with the theoretical basis or 
derivation of most of the formulae presented; rather, it serves as a quick and practical 
tool for the application of the most commonly employed statistical tests. Now with 
the third edition, it also provides information on software applications to assist with 
the evaluation of data. 
 A greater knowledge of statistics can assist pharmacy students, pharmacists and 
individuals working in the pharmaceutical industry in at least four ways:  
 
 1. When reading articles in a refereed journal we assume that the material has 

been thoroughly checked and the information presented is accurate. 
Unfortunately, reviews of the medical literature have found numerous errors 
and these will be discussed in Chapter 24. It is important to be cognizant of 
possible statistical mistakes when reading the literature. 

 2. Pharmacists and pharmacy decision makers are constantly gathering data to 
improve or justify their professional services, or are involved in clinical trials 
to help identify more effective therapies for their patient clientele. Use of the 
appropriate statistical test and correct interpretation of the results can assist 
in supporting new programs or expanded services. 

 3. Scientists working in the pharmaceutical industry are constantly presented 
with data and knowledge of the use of both descriptive and inferential 
statistics can be helpful for preparing reports, submitting regulatory 
documentation, or other problem-solving activities. 

 4. For pharmacists, the Board of Pharmaceutical Specialties has developed 
board certification for pharmacotherapy with the designation “Board 
Certified Pharmacotherapy Specialist.” Certification requires the candidate 
to pass a rigorous examination that includes therapeutics, research design, 
basic data analysis and biostatistics, clinical pharmacokinetics and 
knowledge of physical examination findings. An increased comfort level 
with statistics and greater understanding of the appropriate tests can assist 
with this endeavor. 
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How is This Book Similar to the First Two Editions? 
 
 The approach to presenting the topic of statistics has not changed since the first 
two editions. The book is still divided into three major sections: 1) the underpinnings 
required to understand inferential statistical tests; 2) inferential statistics to help in 
problem solving; and 3) supportive materials in the form of flow charts and tables.  
 The second section presents the various statistical tests commonly found in 
pharmacy and the pharmaceutical literature. A cursory view of today's literature 
indicates that these same tests are still commonly used. Each chapter includes 
example problems. The problems are derived from the areas of pharmacy, analytical 
chemistry, and clinical drug trials. The focus in these chapters is on: 1) the most 
commonly used tests; 2) when these tests should be used; 3) conditions that are 
required for their correct use; and 4) how to properly interpret the results. Some 
sections of the second edition and this edition present a variety of tests to accomplish 
the same purpose and which rarely appear together in other available statistics books. 
All are intended to provide a useful guide or reference for evaluating research data or 
understanding the published literature. 
 The last section of the book consists of a flow chart to aid in the selection of the 
most appropriate test given the types of variables involved, tables for the 
interpretation of the significance of the statistical results, and a quick reference list of 
steps to follow to perform tests on two types of computer software. 
 
How Does This Book Represent an Improvement over Previous Editions? 
 
 There are still the same number of chapters as the last edition, but each chapter in 
the second edition has been reviewed and edited to clarify or expand on information 
previously discussed. Virtually every chapter has some new information either in the 
form of additional paragraphs or entirely new sections. 
 Some of the smaller enhancements in this edition include: 1) a discussion of 
nonprobability sampling procedures (Chapter 3); 2) determining if data is normally 
distributed (Chapter 5); 3) evaluation of covariances (Chapter 13); 4) expanding the 
discussion of regression analysis to include confidence intervals around the intercept 
point, lack-of-fit test; discussion of curvilinear and nonlinear models and expansion of 
the discussion on multiple linear regression (Chapter 14); 5) expansion of the chi 
square tests associated with goodness-of-fit and test for trends with ordinal data 
(Chapter 16); 6) expansion of the use of the Wilcoxon and other tests related to 
survival statistics (Chapter 20); 7) major additions nonparametric procedures 
including the one-sided sign test, Wilcoxon signed-ranks test and Mood’s median test 
(Chapter 21); and 8) a discussion of testing for precision equivalence (Chapter 22). 
 The majority of the new information relates to the use of Excel® and Minitab® for 
performing statistical analysis. There are many books available on how to use Excel, 
but very few mention or go into detail on the use of the “Data Analysis” add-in 
available on with this Microsoft Windows® program. These limited statistical analysis 
programs are available on most individuals’ laptop or desktop computers without the 
requirement of purchasing additional software. The other software package discussed 
is Minitab 16. It has many more statistical programs than available on Excel and has 
been available since the late 1960s. It also was chosen because of the author’s 
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experience with Minitab due to periodical teaching short courses for a major 
pharmaceutical manufacturer where medical liaisons have Minitab on their laptops. 
These courses consisted of teaching both basic statistics and how to use this software. 
So rather than dealing with multiple packages, Minitab became the preferred 
software. Is there any best software available? That question is hard to answer. 
Minitab is easy to use, provides simple and concise output and covers a wide variety 
of tests. The important thing for users to determine is which software is acceptable for 
the type of data they commonly encounter and if it has the required applications. 

All chapters except the last one have example problems related to the tests 
discussed in each chapter. Another major change in this edition of the book has been 
the removal of the answers from each chapter and placement in Appendix D. This 
was intended to streamline the chapters and concentrate on essential information in 
each chapters. 
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Symbols 
 
 
 
  α (alpha) type I error; probability used in statistical tables, p 
  α′  Bonferroni adjusted type I error, Sidák test statistic 
  αew  experimentwise error rate = 1 − (1 − α)C 
  β (beta) type II error; population slope 
  1 − β power 
 β1, β2, β3 regression coefficients (beta weights) 
 Γ  (gamma) Goodman-Kruskal’s gamma statistic 
 δ (delta) difference 
  η (eta) correlation ratio  
  θ (theta) equivalence interval  
  κ (kappa) Cohen’s kappa statistic 
  μ (mu) population mean 
  μ0  target mean in control charts 
  μd  population mean difference (matched-pair t-test) 
 Xμ   mean of the sampling distribution of X   

  ν (nu) degrees of freedom in analysis of variance 
  ρ (rho) Spearman rank correlation coefficient; population correlation 

coefficient 
  ρα Cronbach’s alpha statistic 
  ρKR20, ρKR21 Kuder-Richardson test statistics 
  σ (sigma) population standard deviation  
  σ2  population variance 
 Xσ   standard deviation of the sampling distribution of X  

  τb (tau) Kendall’s tau-b statistic 
  τc   Kendall’s tau-c statistic 
  φ (phi) phi coefficient, phi statistic 
  χ2 (chi) chi square coefficient  
  χ2

CMH Cochran-Mantel-Haenszel chi square test statistic 
  χ2

corrected Yates’ correction for continuity statistic 
  χ2

McNemar McNemar test statistic 
 χ2

MH Mantel-Haenszel chi square test statistic 
 χ2

r  Friedman two-way analysis of variance test statistic 
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  ψI  (psi) estimator for Scheffé’s procedure 
  ϖ2 (omega) coefficient of determination for nonlinearity 
  a  y-intercept, intercept of a sample regression line 
 2

nA   Anderson-Darling test statistic 
  ADi  absolute deviation 
  ARR absolute risk reduction 
  b  sample slope, slope of a sample regression line 
  c or C number of columns in a contingency table; number of possible 

comparison with two levels;  Cochran’s C test statistic; Pearson’s C 
statistic, contingency coefficient 

 C* Sakoda’s adjusted Pearson’s C statistic 
  cf  cumulative frequency 
  CI  confidence interval 
  CEO control event odds 
  CER control event rate 
  Cp, Cpk, Cpm process capability indexes 
  CV  coefficient of variation 
  D difference between pairs of values or ranks; Durbin-Watson 

coefficient 
  D Komogorov-Smirnov goodness-of-fit test statistic 
 d   sample mean difference (matched-pair t-test) 
 df  degrees of freedom 
 dxy, dyx Somers’ D statistic 
  e  2.7183, the base of natural logarithms 
  E  event or expected frequency with chi square 
  E2  coefficient of nonlinear correlation 
  E(T) expected total value for Wilcoxon matched-pairs test 
  E(x) expected value 
  EEO experimental event odds 
  EER experimental event rate 
  f  frequency, frequency count 
  F  analysis of variance coefficient, test statistic 
  Fmax Hartley’s F-max test statistic 
  FN   false-negative results 
  FP  false-positive results 
  H   Kruskal-Wallis test statistic 
  H′  Kruskal-Wallis test statistic corrected for ties 
  H0  null hypothesis, hypothesis under test 
  H1  alternate hypothesis, research hypothesis 
 )t(ĥ i  hazard rate 
  Kintervals number of class intervals in a histogram 
  L  Lord’s range test statistic 
  LCL lower control line in a control chart 
  LSL lower specification limit for capability indices 
  LTL lower tolerance limit 
  LR+, LR- likelihood ratio 



Symbols xxv

  Log logarithm to the base 10 
  M  median, huge rule outlier test statistic 
  MSB mean square between 
  MSE mean squared error 
  MSR mean squared residual 
  MSRx mean squared treatment effect 
  MSW mean square within 
  n  number of values or data points in a sample 
  N  number of values in a population, total number of observations 
  n!  factorial 

 







x
n

 combination statement 

  NNT number needed to treat 
  O  observed frequency with chi square 
  OR  odds ratio 
  p probability, level of significance, type I error; Fisher’s exact test 

statistic; median test statistic 
  p(E) probability of event E 
 p(x)  probability of outcome x 
  p(E1 and E2) probability that both events E1 and E2 will occur 
  p(E1 ∩ E2) probability that both events E1 and E2 will occur 
  p(E1 or E2) probability that either event E1 or E2 will occur 
  p(E1 ∪ E2) probability that either event E1 or E2 will occur 
  p(E1  E2) probability that event E1 will occur given E2 has occurred 
  nPx  permutation notation 
  PVN predicted value negative 
  PVP predicted value positive 
  q  studentized range statistic 
  Q  Cochran’s Q test statistic; Yule’s Q statistic 
  Q1  25th percentile  
  Q3  75th percentile 
  r  correlation coefficient, Pearson’s correlation 
  r or R number of rows in a contingency table 
  R  range  
  r2  coefficient of determination 
  R2  coefficient of multiple determination 
  rxy  reliability coefficient, correlation statistic 
  R1,R2 sum of ranks for samples of n1, n2  in Mann-Whitney U test 
  rf  relative frequency 
  RR  relative risk 
  RRMH Mantel-Haenszel relative risk ratio 
  RRR relative risk reduction 
  RSD relative standard deviation 
  S or SD sample standard deviation 
  S2  sample variance or Scheffé’s value 
  Sp  pooled standard deviation 
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 2
pS   pooled variance 

  Sy/x  standard error of the estimate for linear regression 
  Sr  residual standard deviation 
 iŜ   survival function estimate 
  SE  standard error term 
  SEM standard error of the mean, standard error 
  SE( )ĥi  standard error of the hazard rate 

  SE( iŜ ) standard error of the survival function estimate 
  SIQR semi-interquartile range 
  t  t-test statistic 
  T Wilcoxon signed rank test statistic; Tshuprow’s T statistic; extreme 

studentized deviate test statistic, Grubbs’ test statistic 
  TN  true-negative results 
  TP  true-positive results 
  U  Mann-Whitney U test statistic 
  UC  Theil’s uncertainty coefficient 
  UCL upper control line in a control chart 
  USL upper specification limit for capability indices 
  UTL upper tolerance limit  
  V  Cramer’s V statistic 
  x  variable used to predict y in regression model 
  xi  any data point or value 
  x′i  transformed data point 
 X   sample mean 
 GX  geometric mean; grand mean 
  w  width of a class interval 
  W Shapiro-Wilk’s W test statistic; Kendall’s coefficient of 

concordance 
  y  variable used to predict x in regression model 
  Y  Yule’s Y statistic 
  z  z-test statistic 
  Z0  reliability coefficient for repeatability and reproducibility 
  zx  standardized score for an abscissa 
  zy  standardized score for an ordinate 
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Introduction 
 
 
 
 Statistics can be simply defined as the acquisition of knowledge through the 
process of observation. We observe information or data about a particular 
phenomenon and from these observations we attempt to increase our understanding of 
the event that data represents. According to Conover (1999), it provides a means to 
measure the amount of subjectivity that goes into researcher’s conclusions, separating 
“science” from “opinion.” Physical reality provides the data for this knowledge and 
statistical tests provide the tools by which decisions can be made. 
 
Types of Statistics 
 
 As noted by Daniel (1978) “...statistics is a field of study concerned with (1) the 
organization and summarization of data, and (2) the drawing of inferences about a 
body of data when only a part of the data are observed.” All statistical procedures can 
be divided into two general categories: descriptive or inferential. Descriptive 
statistics, as the name implies, describe data that we collect or observe (empirical 
data). They represent all of the procedures that can be used to organize, summarize, 
display, and categorize data collected for a certain experiment or event. Examples 
include: the frequencies and associated percentages; the average or range of 
outcomes; and pie charts, bar graphs or other visual representations for data. These 
types of statistics communicate information, they provide organization and summary 
for data, or afford a visual display. Such statistics must: 1) provide an accurate 
representation of the observed outcomes; 2) be presented as clear and understandable 
as possible; and 3) be as efficient and effective as possible. In order to perform 
inferential statistics described below, one must first calculate the descriptive statistics 
because these values or numbers will be used in calculations required for the 
inferential statistic. 
 Inferential statistics (sometimes referred to as analytical statistics or inductive 
statistics) represent a wide range of procedures that are traditionally thought of as 
statistical tests (e.g., student t-tests, analysis of variances, correlation, regression or 
various chi square and related tests). These statistics infer or make predictions about a 
larger body of information based on a sample (a small subunit) from that body. It is 
important to realize that the performance of an inferential statistical test involves 
more than simple mathematical manipulation. The reason for using these statistical 
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tests is to solve a problem, answer a question or at a minimum provide direction to an 
answer. Therefore, inferential statistics actually involves a series of steps: 1) 
establishing a research question; 2) formulating a hypothesis that will be tested; 3) 
selecting the most appropriate test based on the type of data collected; 4) selecting the 
data correctly; 5) collecting the required data or observations; 6) performing the 
statistical test; and 7) making a decision based on the result of the test. This last step, 
the decision making, will result in either the rejection of or failure to reject the 
statement (hypothesis) being tested and will ultimately answer the research question 
posed in the first step of the process. These seven steps will be discussed in more 
detail at the end of this chapter. 
 The first sections of this book will deal mainly with descriptive statistics, 
including presentation modes (Chapter 4) and with data distribution and measures of 
central tendency (Chapters 5 and 6). These measured characteristics of the observed 
data have implications for the inferential tests that follow. Chapter 8 on hypothesis 
testing provides guidance for the development of statements that will be evaluated 
through the inferential statistics. The information beginning with Chapter 9 covers 
specific inferential statistical tests that can be used to make decisions about an entire 
set of data based on the small subset of information selected. 
 In fact, statistics deal with both the known and unknown. As researchers, we 
collect data from experiments and then we present these initial findings in concise and 
accurate compilations (known − the descriptive statistics). However, in most cases the 
data that we collect represent only a small portion (a sample) of a larger set of 
information (a population) for which we desire information. Through a series of 
mathematical manipulations the researcher will make certain guess or statement 
(unknown − the inferential statement) about this larger population.  
 
Parameters and Statistics 
 
 As mentioned, statistical data usually involve a relatively small portion of an 
entire population, and through numerical manipulation, decisions and interpretations 
(inferences) are made about that population. To illustrate the use of statistics and 
some of the terms presented later in this chapter, consider the following example: 
 
 A pharmaceutical manufacturing company produces a specific 

dosage form of a drug in batches (lots) of 50,000 tablets. In other 
words, one complete production cycle is represented by 50,000 
tablets. 

 
 Parameters are characteristics of populations. In this particular case the 
population would be composed of one lot of 50,000 units. To define one of the 
population’s parameters, we could weigh each of the 50,000 tablets and then be able 
to: 1) calculate the average weight for the entire lot; and 2) determine the range of 
weights within this one particular batch by looking at the difference between the two 
extreme weights (both lightest and heaviest tablet). This would give us the exact 
weight parameters for the total batch; however, it would be a very time-consuming 
process. An even more extreme situation would be to use a Stokes or Strong-Cobb 
hardness tester to measure the hardness of each tablet. We could then determine the 
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average hardness of the total batch, but in the process we would destroy all 50,000 
tablets. This is obviously not a good manufacturing procedure. 
 In most cases, calculating an exact population parameter may be either 
impractical or impossible (e.g., required destructive testing as shown in the previous 
example). Therefore, we sample from a given population, perform a statistical 
analysis on this information, and make a statement (inference) regarding the entire 
population. Statistics are characteristics of a sample we create by selecting a subset of 
the population, They represent summary measures computed on observed sample 
values. For the above example, it would be more practical to periodically withdraw 20 
tablets during the manufacturing process, then perform weight and hardness tests on 
the tablets, and assume these sample statistics for this subset are representative of the 
entire population of 50,000 units. 
 Continuing with our manufacturing example, assume that we are interested in the 
average weight for each tablet (the research question). We assume there is some 
variability, however small, in the weights of the tablets. Using a process described in 
Chapter 3, we will sample 20 tablets that are representative of the 50,000 tablets in 
the lot and these will become our best “guess” of the true average weight. These 20 
tablets are weighed and their weights are averaged to produce an average sample 
weight. With some statistical manipulation (discussed in Chapter 7) we can make an 
educated guess about the actual average weight for the entire population of 50,000 
tablets. As explained in Chapter 7, we would create a confidence interval and make a 
statement such as “with 95% certainty, the true average weight for the tablets in this 
lot is somewhere between 156.3 and 158.4 milligrams.” Statistical inference involves 
the degree of confidence we can place on the accuracy of the sample measurements to 
represent the population parameter. 
 It is important to note (and will be further discussed in Chapter 8) that if we are 
good scientists and are careful and accurate about our sample collection and 
summary, then our descriptive statistic should be 100% accurate for the sample 
information. However, when we make inferences or statements about a larger 
population from which we have sampled, because they are educated guesses, we must 
accept a certain percentage of chance (risk) that an inference may be wrong. 
Therefore, descriptive statistics can be considered accurate, but inferential statistics 
are always associated with a certain (hopefully small) chance of error or being wrong 
in our decision (Figure 1.1). 
 For consistency in this book, parameters or population values are represented by 
Greek symbols (e.g., μ, σ, ψ) and sample descriptive statistics are denoted by letters 
(e.g., X , S2, r).  
 Samples, which we have noted are only a small subset of a much larger 
population, are used for nearly all inferential statistical tests. Through the use of 
formulas these descriptive sample results are utilized to make predictions (inferences) 
about the population from which they were sampled. Examples will be presented with 
all inferential statistics starting with Chapter 9. 
 
Sampling and Independent Observations 
 
 One of the underlying assumptions for any inferential test is that the data 
obtained from a population are collected through some random sampling process. As 



Chapter 1 4

 

 
 

Figure 1.1 Descriptive and inferential statistics. 
 
discussed in Chapter 3, in a completely random sample, each individual member or 
observation in the population has an equal chance of being selected for the sample. In 
the above example, sampling was conducted in such a matter that theoretically each 
of the 50,000 tablets has an equal chance (probability) of being selected. 
 The second required assumption for any inferential statistical test is that the 
observations be measured independent of each other. Therefore, no member of the 
sample should affect the outcome of any other member of the sample. The simplest 
example of this type of independence would be the proctoring of an examination to 
ensure that students do not cheat, thereby assuring independent performance by each 
person being tested. In the case of laboratory analysis, equipment should be properly 
cleaned and calibrated, so that the seventh sample assayed is not influenced by the 
sixth sample and the seventh sample does not affect any remaining assays. In other 
words, an independent observation or result must represent an outcome not dependent 
on the result of any other observation, either past or future.  
 Formulas used in this book assume that the sample is obtain by random sampling 
or equivalent procedure and that there is independence among observations in the 
sample.  
 
Types of Variables 
 
 A variable is any attribute, characteristic, or measurable property that can vary 
from one observation to another. Any observation could have an infinite number of 
variables, such as height, weight, color, or density. For example, consider pharmacy 
students in a specific graduating class (at the moment the degree is awarded). Just a 
few of the numerous variables that could be associated with each student include: 
 
  gender 
  height 
  weight 
  marital status 

Population
Parameter

(Unknown)

Sample
Statistic

Mathematical
Manipulation

Inferential
Statistic

Best
Estimate

Descriptive
Statistic
(Known)

Random
Sample
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  class rank 
  previous undergraduate degree (yes/no) 
  systolic blood pressure 
  blood type (A, B, AB, O) 
  blood glucose level 
  accepted into graduate school (yes/no) 
  final examination score in physical pharmacy 
 
The number of possible variables is limited only by our imagination. Also, the fact 
that we can measure a certain characteristic implies that students will differ with 
respect to that characteristic, and thus the characteristic becomes a variable (sometime 
referred to as a variate). Variables may be simply dichotomized as either discrete or 
continuous. The determination of whether a variable is discrete or continuous is 
critical in selecting the appropriate test required for statistical analysis.  
 A discrete variable is characterized by gaps or interruptions. These types of 
variables are also referred to as “qualitative,” “category,” or “nominal” variables. 
These variables involve placing observations into a specific, finite number of 
categories or classifications. Examples include distinct colors, dosage form (tablets 
versus capsules), and passage or failure of a specific assay criteria. Discrete variables 
can represent predetermined blocks of data, such as above and below a midpoint in a 
distribution. With relationship to the population, discrete variables for a sample must 
be both exhaustive and mutually exclusive. Levels of a discrete variable are 
exhaustive when the categories of that variable account for all possible outcomes. For 
example, males and females are exhaustive for the population of human beings based 
on gender; whereas age groups 0-20, 21-40, 41-60, and 61-80 are not exhaustive 
because there are humans over 80 years old. Similarly, levels of a discrete variable 
must be created that are mutually exclusive where categories do not have members in 
common with each other. Age groupings 0-20, 20-40, 40-60, and 60-80 are not 
mutually exclusive because ages 20, 40, and 60 are each included in two of the 
discrete groups. To represent a mutually exclusive and exhaustive set of categories, 
the age groupings should be as follows: 20 years or less, 21-40 years, 41-60 years, or 
61 and older. A second example for a discrete variable might be a predetermined 
dissolution criterion for tablets. In this case the outcomes are represented by two 
mutually exclusive and exhaustive results; either the tablet passes or fails the 
specified criteria. From the above list of possible variables for pharmacy graduates, 
discrete variables include: 
 
  gender 
  marital status 
  previous undergraduate degree (yes/no) 
  blood type (A, B, AB, O) 
  accepted into graduate school (yes/no) 
 
 In contrast, a continuous variable has no gaps or interruptions. Also referred to 
as “quantitative” variables, they are probably the most commonly encountered 
variables in pharmacy research. Where discrete variables usually imply some form of 
counting, continuous variables involve measurements. Examples include age, percent, 
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viscosity, or blood glucose levels. In the case of our pharmacy graduates, continuous 
variables would include: 
 
  height 
  weight 
  class rank 
  systolic blood pressure 
  blood glucose level 
  final examination score in physical pharmacy 
    
 With a discrete variable, outcomes or measures are clearly separated from one 
another (e.g., males and females). With continuous variables it is possible to imagine 
more possible values between them. Theoretically, no matter how close two measures 
are together, a difference could be found if a more precise instrument were used. 
Consider age, which is a continuous variable; it can be measured by years, months, 
days, hours, minutes, seconds, or even fractions of a second. Time in years may be 
appropriate for a person’s age, but for measures of disintegration or time to complete 
a task, minutes and seconds would be more beneficial. Any measurement result for a 
continuous variable actually represents a range of possible outcomes and in theory, 
this range for a continuous variable is considered the distance or interval from half a 
unit below to half a unit above the value. These numbers (“real limits”) are useful in 
providing an accurate interpretation of statistical tests using interval or ratio scales, 
which are discussed below. To illustrate this, assume the most precise analytical 
balance in a laboratory measures the weight of a sample to be 247 mg. If we could 
locate a more exact balance we might find that the sample actually weighs 247.2 mg. 
An even more precise instrument could identify the weight in micrograms or 
nanograms. Therefore, our original weight of 247 mg actually represents an infinite 
range of weights from the real limits 246.5 to 247.5 mg. The major limitation in 
measuring a continuous variable is the sensitivity or precision of the instrumentation 
used to create a measured value. 
 Occasionally, a continuous variable is presented on a rating scale or modified 
into a discrete variable. For example, study results may be: 1) dichotomized either 
above or below the midpoint, 2) arbitrarily classified as high, medium, or low results, 
or 3) measured on a continuum that either “passes” or “fails” a predefined level. Even 
though each of these examples represents the results of a continuous measurement, by 
placing them a priori (before the test) on a rating scale they can be handled as discrete 
variables. 
 Parallel nomenclature for measurements of a variable could be in terms of types 
of scales, with a scale of measurement implying a set of numbers. As mentioned, 
discrete variables would involve the simplest type. Also called a nominal scale (from 
the Latin word nominalis meaning “of a name”), observations are qualitatively 
classified based on a characteristic being measured. They differ only in kind and 
cannot be arranged in any meaningful order (e.g., largest to smallest). Examples of 
nominal scale measurements would be male versus female, a tablet versus a capsule 
versus a solution, or survival versus death. 
 The second type of measure scale is the ordinal scale, in which quantitative 
observations are related to each other or some predetermined criteria. There is a 
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hierarchy to the levels of the scale with some type of rank order. We are not 
concerned here with the amount of difference between two observations, but their 
relative positions (for example, if the second observation is less than, equal to, or 
greater than the first observation). Ordinal scales may be used when it is not possible 
to make more precise measurements. For example, seen below is a scale for 
measuring the state of cognitive impairment in Alzheimer’s patients using a seven-
point scale (Morris, 1994).  
 

Cognitive Performance Scale Description 
0 Intact 
1 Border-Line Intact 
2 Mild Impairment 
3 Moderate Impairment 
4 Moderate to Severe Impairment 
5 Severe Impairment 
6 Very Severe Impairment 

 
The numbers are attached simply to show the arranged order, not the degree of 
difference between the various measures. With ordinal scales, even though order 
exists among categories, the magnitude of the difference between two adjacent levels 
is not the same throughout the scale. For example, is the magnitude of difference 
between mild and moderate impairment (previous scale), the same as the magnitude 
between severe and very severe impairment? Ordinal scales are extremely important 
in nonparametric statistical procedures (Chapter 21). Both nominal and ordinal scales 
are sometimes referred to as nonmetric scales. Also, for both of these nonmetric 
scales it is possible to have only two possible levels. These are termed dichotomous 
or binary variables. If there are no relative positions (i.e., males versus females) it is 
a dichotomous nominal variable. If there is a relative position (e.g., passing or failing 
a criterion) the variable is a dichotomous ordinal scale.  
 The third type of measurement scale is the interval scale, where the difference 
between each level of the scale is equal. The scales represent a quantitative variable 
with equal differences between scale values; however, ratios between the scale values 
have no meaning because of an arbitrary zero. For example the ratio between 40°F 
and 20°F does not imply that the former measure is twice as hot as the second.  
 If a genuine zero is within an interval scale it becomes a ratio scale, for example, 
measures of weight or height. If an object weighs 500 mg and a second object weighs 
250 mg, the first object is twice the weight of the second. Other examples of ratio 
scales would include percentage scales and frequency counts. With interval and ratio 
scales most arithmetic operations (e.g., addition and subtraction) are permissible with 
these numbers. Ratio and interval scales are sometimes referred to as metric scales. 
 
Independent and Dependent Variables 
 
 In addition to a variable being defined as continuous or discrete, it may also be 
considered independent or dependent. Most statistical tests require one or more 
independent variables that are established in advance and controlled by the 
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researcher. Also called a predictor variable, the independent variable allows us to 
control some of the research environment. At least one dependent variable is then 
measured against its independent counterpart(s). These response or criterion 
variables are beyond our control and dependent on the levels of the independent 
variable used in the study. Independent variables are usually qualitative (nominal) 
variables but also may be continuous or ordinal. For example, subjects in a clinical 
trial are assigned to a new drug therapy or control group, their selection is made 
before the study and this becomes the independent variable (treatment versus control). 
The therapeutic outcomes (e.g., decreased blood pressure, pharmacokinetic data, 
length of hospitalization) are variables dependent on the group to which they were 
assigned. A second example is a measure of the amount of active ingredient in the 
core tablet portion of an enteric-coated tablet for the same medication, using the same 
process, at three different manufacturing facilities (New Jersey, Puerto Rico and 
India). The independent variable is the facility location (a discrete variable with three 
levels) and the dependent variable would be the average content (amount of active 
ingredient) of the drug at each facility. Note in the second example that only three 
facilities are used in the study and each sample must come from one of these sites and 
cannot come from two different locations at the same time; thus representing mutually 
exclusive and exhaustive observations that fulfill the requirements for a discrete 
variable. It is assumed that samples were selected appropriately (through some 
random process, discussed in Chapter 3), content is measured using the same 
apparatus and using the same procedures, and conducted in such a manner that each 
result is independent of any other sample. 
 In designing any research study, the investigator must control or remove as many 
variables as possible, measure the outcome of only the dependent variable, and 
compare these results based on the different levels or categories of the independent 
variable(s). The extraneous factors that might influence the dependent variable’s 
results are known as confounding or nuisance variables. In the previous example, 
using different instruments to measure the contents at different sites may produce 
different results even though the tablets are the same at all three sites. 
 
Selection of the Appropriate Statistical Test 
 
 In order to select the correct inferential test procedure, it is essential that as 
researchers, we understand the variables involved with our data. Which variables are 
involved for a specific statistical test? Which variable or variables are under the 
researcher’s control (independent) and which are not (dependent)? Is the independent 
variable discrete or continuous? Is the dependent variable continuous or discrete? As 
seen in Appendix A, answering these questions automatically gives direction toward 
the correct inferential statistical procedure to use in a given situation. All the 
statistical procedures listed in the flow chart in Appendix A will be discussed in 
Chapters 9 through 23. To illustrate the use of this Appendix, consider the previous 
example on clinical trials (measure of therapeutic outcomes based on assignment to 
the treatment or control group). Starting in the box in the upper left corner of Panel A 
in Appendix A, the first question would be: Is there an independent, researcher-
controlled variable? The answer is yes, we assign volunteers to either the 
experimental or control groups. Therefore, we would proceed down the panel to the 
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next box: is the independent variable continuous or discrete? It is discrete, because we 
have two nominal levels that are mutually exclusive and exhaustive. Continuing down 
Panel A, are the results reported as a percentage or proportion of a certain outcome? 
Assuming that our results represent length of hospital stay in days, the answer would 
be no and we again continue down the page to the next decision box. Is the dependent 
variable continuous or discrete? Obviously number of days is a continuous measure; 
therefore we proceed to Panel B. The first question in Panel B asks the number of 
discrete independent variables. In this example there is only one, whether the 
volunteer received the study drug or control. Moving down Panel B, what is the 
number of levels (categories) within the independent variable? There are only two, 
therefore we continue down this panel. The next decision will be explained in Chapter 
9, but for the moment we will accept the fact that the data are not paired and move 
down once again to the last box on the left side of Panel B. Similarly, for the point of 
our current discussion we will assume that the population variance is unknown and 
that our sample is from a population in which the dependent variable is normally 
distributed and that both levels produce a similar distribution of values (these will be 
explained in Chapter 6). Thus, we continue to the right and then down to the last point 
on the right side of the panel and find that the most appropriate inferential statistical 
test for our clinical trial would be a two-sample t-test. 
 
Procedures for Inferential Statistical Tests 
 
 Most individuals envision statistics as a labyrinth of numerical machinations. 
Thus, they are fearful of exploring the subject. As mentioned in the Preface, the 
statistics in this book rely primarily on the four basic arithmetic functions and an 
occasional square root. The effective use of statistics requires more than knowledge 
of the mathematical required formulas. This is especially true today, when personal 
computers can quickly analyze sample data. There are several important parts to 
completing an appropriate statistical test. 
 
 1. Establish a research question. It is impossible to acquire new 

knowledge and to conduct research without a clear idea of what you 
wish to explore. For example, we would like to know if three batches of 
a specific drug are the same regarding their content uniformity. Simply 
stated: are these three batches equal? 

 
 2. Formulate a hypothesis. Although covered in a later chapter, we 

should formulate a hypothesis that will be either rejected or not rejected 
based on the results of the statistical test. In this case, the hypothesis that 
is being tested is that Batch A equals Batch B equals Batch C. The only 
alternative to this hypothesis is that the batches are not all equal to each 
other. 

 
 3. Select an appropriate test. Using information about the data 

(identifying the dependent and independent variables) the correct test is 
selected based on whether these variables are discrete or continuous. For 
example, batches A, B, and C represent an independent variable with 
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three discrete levels and the assay result for the drug’s contents is a 
continuous variable (%) dependent upon the batch from which it was 
selected. Therefore, the most appropriate statistical test would be one 
that can handle a continuous dependent variable and a discrete 
independent variable with three categories. If we once again proceeded 
through Appendix A we would conclude that the “analysis of variance” 
test would be most appropriate (assuming normality and homogeneity of 
variance, terms discussed later in this book). A common mistake is to 
collect the data first, without consideration of these first three 
requirements for statistical tests, only to realize that a statistical 
judgment cannot be made because of the arbitrary format of the data. 

 
 4. Sample correctly. The sample should be randomly selected from each 

batch (Chapter 3). An appropriate sample size should be selected to 
provide the most accurate results (Chapter 8). 

 
 5. Collect data. The collection should ensure that each observed result is 

independent of any other assay. 
 
 6. Perform test. Only this portion of the statistical process actually 

involves the number crunching associated with statistical analysis. Many 
commercially available computer packages are available to save us the 
tedium of detailed mathematical manipulations.  

 
7. Make a decision. Based on the data collected and statistical 

manipulation of the sample data, a statement (inference) is made 
regarding the entire population from which the sample was drawn. In 
our example, based on the results of the test statistics, the hypothesis 
that all three batches are equal (based on content uniformity), is either 
rejected or the sample does not provide enough information to reject the 
hypothesis. As discussed in Chapter 8, the initial hypothesis can be 
rejected, but never proven true. 

 
 To comprehend the principles underlying many of the inferential statistical tests 
it is necessary that we have a general understanding of probability theory and the role 
that probability plays in statistical decision making. The next chapter focuses on this 
particular area. 
 
Applications of Computer Software 
 
 Many commercial software packages are available for presenting descriptive 
statistics or doing inferential statistical analysis. They are easier, quicker, and more 
accurate compared to hand calculations (as will be illustrated in later chapters). With 
easy access to computer software, step 6 in the previous section may be the least 
important component of a statistical test. However, commercial software can give the 
user a false sense of security and it is important to understand the software and how to 
enter and query the data. The availability of software makes the task easier but does 
not eliminate the need for a good understanding of basic statistics and which test is 
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appropriate for the given situation. Even using sophisticated packages the researcher 
still needs to interpret the output and determine what the results mean with respect to 
the model used for the analysis.  
 Two commercially available packages will be demonstrated in this book - Excel® 
by Microsoft and Minitab® 16 by Minitab, Inc. These were chosen because of the 
easy access to Excel and the fact that the author uses Minitab for teaching statistics to 
selected groups of pharmacists. Many other software packages are available. 
Examples include BMDP, JMP, SAS, SPSS, Statgraphics and Systat (current websites 
for each are listed in the references at the end of this chapter). No software package is 
“perfect” and before purchasing any package the potential users should determine the 
types of applications they commonly require, access a demonstration version of the 
software, and determine if it meets their needs. 
 The format used for discussing the software will start with a line indicating the 
terms appearing in the title bar of the software and any subsequent dropdown menu 
selections from the title bar. 
 

Title Bar  First Dropdown  Second Dropdown  etc. 
 
Note with Minitab that the underscored letters or numbers when combined with the 
ALT key will produce the same results as left clicking on the dropdown option. 
Selections on various intermediate menus will be in italic and areas requiring 
information or final command options will be in “quotation marks”. For example, 
using Minitab to perform a two-sample t-test in Chapter 7 the access to the 
application would be: 
 

Stat  Basic Statistics  2-sample t… 
 
Followed by moving of the selected independent variable form the left column to the 
“Subscripts:” box and the dependent variable to the “Samples:” box. The Options 
menu can be selected for one-tailed test where the “Alternative:” selection can be 
made for “greater than” or “less than”.  For Excel, all function commands will be 
presented as BOLDED.CAPS. 
 Excel is available on must computers using Microsoft software and should 
represent a negligible cost for the interested user. Applications discussed are available 
with both Excel 97-2003 and Excel 2010. It is assumed that the reader knows how to 
initiate and enter data into Excel. Many of the actions will require the functions box in 
the upper center of the screen (Figure 1.2). This is initiated by entering an equals sign 
in a cell and selecting from the functions listed on the left hand side of the screen. 
Excel 2010 also includes statistical add-ins which appear as “Data Analysis” in the 
upper right corner when “Data” is initiated on the top application title bar (Figure 
1.3). If the “Data Analysis” does not appear, it can be added by selecting “File” on the 
application title bar and choosing “Option”, followed by Add-Ins, selecting “Analysis 
ToolPak” and OK (Figure 1.4). Notation used in the following chapters will be: 
 

File  Options  Add-Ins  Analysis ToolPak  OK 
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Figure 1.2 Example of Excel function window and dropdown menu. 

 

 
Figure 1.3 Data analysis location with Excel 2010. 

 
 
This will place the “Data Analysis’ on the second bar to the right. The same 
application is available with Excel 97-2003: 
 

Tools  Add-Ins  Analysis ToolPak  OK 
 
To initiate the “Data Analysis” with Excel 97-2003 select “Data Analysis” under the 
“Tools” menu. Both versions provide the menu in Figure 1.5. 
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Figure 1.4 Add-in Options with Excel 2010. 

 

 
Figure 1.5 Data analysis menu with Excel. 

 
 With Minitab most of the statistical operations will involve pointing and clicking 
on the “Stats” and “Graph” commands on the application title bar (Figure 1.6). Once 
again, it is assumed that reader is familiar with data entry and manipulation using 
Minitab. If not, you are encouraged to explore the downloadable user’s guide “Meet 
Minitab 16” listed in the suggested readings, especially the sections on “Opening a 
Worksheet”.  
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Figure 1.6 Application title bar in Minitab. 
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Example Problems (Answers are provided in Appendix D) 
 
1. Which of the following selected variables, associated with clinical trials of a 

drug, are discrete variables and which are continuous? 
 
  Experimental versus control (placebo) 
  Dosage form − table/capsule/other 
  Bioavailability measurements (Cmax, Tmax, AUC) 
  Test drug versus reference standard 
  Fed versus fasted state (before/after meals) 
  Prolactin levels (ng/l) 
  Manufacturer (generic versus brand) 
  Male versus female subjects 
  Age (in years) 
  Smoking history (cigarettes per day) 
  “Normal” versus geriatric population 
  
2. Which of the following selected variables associated with a random sample of 

50,000 tablets, mentioned earlier in this chapter, are discrete variables and which 
are continuous? 

 
  Amount of active ingredient (content uniformity) 
  Dissolution test − pass or fail criteria 
  Disintegration rate 
   Change in manufacturing process − old process versus new 
  Friability − pass or fail criteria 
  Hardness 
  Impurities − present or absent 
  Size − thickness/diameter 
  Tablet weight 
  Immediate release or sustained release 
  Formulation A, B, or C 
  
3. The ability to identify independent and dependent variables, and determine if 

these variables are discrete or continuous is critical to statistical testing. In the 
examples listed below, identify the following: 

 
 Is there an independent variable? Is this independent variable continuous or 

discrete? What is the dependent variable? Is this dependent variable continuous 
or discrete? 

 
a. During a clinical trial, volunteers were randomly divided into two groups 

and administered either: 1) the Innovator antipsychotic medication or 2) 
Acme Chemical generic equivalent of the same drug. Listed below are the 
results of the trial (Cmax). Is there any difference between the two 
manufacturers’ drugs based on this one pharmacokinetic property? 
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Result of Clinical Trial for Cmax (ng/ml) 
 Innovator Acme Chemical 

Mean 289.7 281.6 
S.D. 18.1 20.8 

n 24 23 
 
b. During a cholera outbreak in a war-devastated country, records for one 

hospital were examined for the survival of children contracting the disease. 
These records also reported the children’s nutritional status. Was there a 
significant relationship between their nutrition and survival rate? 

 
 Nutritional Status 
 Poor (N1) Good (N2) 

Survived (S1) 72 79 
Died (S2) 87 32 

  
c. Samples were taken from a specific batch of drug and randomly divided into 

two groups of tablets. One group was assayed by the manufacturer’s own 
quality control laboratories. The second group of tablets was sent to a 
contract laboratory for identical analysis. 

 
Percentage of Labeled Amount of Drug 

Manufacturer Contract Lab 
101.1 98.8 97.5 99.1 
100.6 99.0 101.1 98.7 
100.8 98.7 97.8 99.5 

 
d. An instrument manufacturer ran a series of tests to compare the pass or fail 

rate of a new piece of disintegration equipment. Samples were taken from a 
single batch of uncoated tablets. Two different temperatures were used and 
tested for compendia recommended times. Success was defined as all six 
tablets disintegrating in the disintegration equipment. 

 
 Success Failure  
39°C 96 4 100 
35°C 88 12 100 
 184 16 200 

 
e. Three physicians were selected for a study to evaluate the length of stay for 

patients undergoing a major surgical procedure. All these procedures 
occurred in the same hospital and were without complications. Eight records 
were randomly selected from patients treated over the past twelve months. 
Was there a significant difference, by physician, in the length of stay for 
these surgical patients? 
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Days in the Hospital 
Physician A Physician B Physician C 

9 10 8 
12 6 9 
10 7 12 
7 10 10 

11 11 14 
13 9 10 
8 9 8 

13 11 15 
 

f. Acme Chemical and Dye received from the same raw material supplier three 
batches of oil from three different production sites. Samples were drawn 
from drums at each location and compared to determine if the viscosity was 
the same for each batch. 

 
Batch A Batch B Batch C 

10.23 10.24 10.25 
10.33 10.28 10.20 
10.28 10.20 10.21 
10.27 10.21 10.18 
10.30 10.26 10.22 

 
g. Two different scales were used to measure patient anxiety levels upon 

admission to a hospital. Method A was an established test instrument, while 
Method B (which had been developed by the researchers) was quicker and 
an easier instrument to administer. Was there a correlation between the two 
measures? 

 
Method A Method B  Method A Method B 

55 90  52 97 
66 117  36 78 
46 94  44 84 
77 124  55 112 
57 105  53 102 
59 115  67 112 
70 125  72 130 
57 97    
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2 
 
Probability 
 
 
 As mentioned in the previous chapter, statistics involve more than simply the 
gathering and tabulating of data. Inferential statistics are concerned with the 
interpretation and evaluation of data and making statements about larger populations. 
The development of the theories of probability resulted in an increased scope of 
statistical applications. Probability can be considered the “essential thread” that runs 
throughout all statistical inference (Kachigan, 1991). 
 
Classic Probability 
 
 Statistical concepts covered in this book are essentially derived from probability 
theory. Thus, it would be only logical to begin our discussion of statistics by 
reviewing some of the fundamentals of probability. The probability of an event 
[p(E)] is the likelihood of that occurrence. It is associated with discrete variables. The 
probability of any event is the number of times or ways an event can occur (m) 
divided by the total number of possible associated events (N): 
 

N
m = p(E)                                        Eq. 2.1 

 
In other words, probability is the fraction of time in which the event will occur, given 
many opportunities for its occurrence. For example, if we toss a fair coin, there are 
only two possible outcomes (a head or a tail). The likelihood that one event, for 
example a tail, is 1/2 or p(Tail) = 0.5.  
 

0.50 = 
2
1 = )Tp( ail  

 
A synonym for probability is proportion. If the decimal point is moved two numbers 
to the right, the probability can be expressed as a percentage. In the previous example, 
the proportion of tails is 0.5 or there is a 50% chance of tossing a tail or 50% of the 
time we would expect a tail to result from a toss of a fair coin. 
 The universe (N), which represents all possible outcomes, is also referred to as 
the outcome space or sample space. Note that the outcomes forming this sample 
space are mutually exclusive and exhaustive. The outcomes that fulfill these two 
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requirements are called simple outcomes. Other common examples of probabilities 
can be associated with a normal deck of playing cards. What is the probability of 
drawing a red card from a deck of playing cards? There are 52 cards in a deck, of 
which 26 are red; therefore, the probability of drawing a red card is 
 

0.50 = 
2
1 = 

52
26 = )Rp( ed  

 
Note that cards must be red or black, and cannot be both; thus, representing mutually 
exclusive and exhaustive simple outcomes. What is the probability of drawing a 
queen from the deck? With four queens per deck the probability is 
 

0.077 = 
13
1 = 

52
4 = )Qp( ueen  

 
Lastly, what is the probability of drawing a diamond from the deck? There are 13 
diamonds per deck with an associated probability of 
 

0.25 = 
4
1 = 

52
13 = )Dp( iamond  

 
Does this guarantee that if we draw four cards one will be a diamond? No. Probability 
is the likelihood of the occurrence of an outcome over the “long run.” However, if we 
draw a card, note its suit, replace the card, and continue to do this 100, 1000, or 
10,000 times we will see the results become closer to if not equal to 25% diamonds.  
 There are three general rules regarding all probabilities. First, a probability 
cannot be negative. Even an impossible outcome would have p(E) = 0. Second, the 
sum of probabilities of all mutually exclusive outcomes for a discrete variable is equal 
to one. For example, with the tossing of a coin, the probability of a head equals 0.50, 
the probability of a tail also equals 0.50 and the sum of both outcomes equals 1.0. 
Thus the probability of an outcome cannot be less than 0 or more than 1. 
 

1  p(E)  0 ≤≤  
 

A probability equal to zero indicates that it is impossible for that event to occur. For 
example, what is the probability of drawing a “blue” card from a standard deck of 
playing cards? Such an outcome would be impossible and have a probability of zero. 
This is sometime referred to as an empty set. In contrast, a probability of 1.0 means 
that particular event will occur with utter certainty or a sure event. 
 At times our primary interest may not be in a single outcome, but with a group of 
simple outcomes. Such a collection is referred to as a composite outcome. The third 
general rule, because of the addition theorem, is that the likelihood of two or more 
mutually exclusive outcomes equals the sum of their individual probabilities. 
 

)Ep( + )Ep( = )E or Ep( jiji                              Eq. 2.2 
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For example, the probability of a composite outcome of drawing a face card (jack, 
queen, or king) would equal the sum of their probabilities. 
 

0.231 = 
13
3 = 

13
1+

13
1+

13
1 = )Jp(+)Qp(+)Kp( = )Fp( ackueeningcard ace  

 
For any outcome E, there is a complementary event ( E ), which can be considered 
“not E” or “E not.” Since either E or E  must occur, but both cannot occur at the same 
time, then P(E) + P( E ) = 1 or written for the complement 
 

p(E)  1 = )Ep( −                                           Eq. 2.3 
 
The complement is equal to all possible outcomes minus the event under 
consideration. In one of the previous examples, it was determined that the probability 
of drawing a queen from a deck of cards is 0.077. The complimentary probability, or 
the probability of “not a queen” is 
 

0.923 = 0.077  1 = )Qp(  1 = )Qp( ueenueen −−  
 
 Our deck of cards could be considered a universe or a population of well-defined 
objects. Probabilities can then be visualized using simple schematics as illustrated in 
Figure 2.1. Figure 2.1-A illustrates the previous example of the likelihood of selecting 
a queen or a card that is not a queen. Note that the two outcomes are visually mutually 
exclusive and exhaustive. This type of figure can be helpful when more than one 
variable is involved. 
 Probabilities can be either theoretical or empirical. The previous examples with a 
deck of cards can be considered theoretical probabilities because we can base our 
decision on formal or logical grounds. In contrast, empirical probabilities are based 
on prior experience or observation of prior behavior. For example, the likelihood of a 
55 year-old female dying of lung cancer cannot be based on any formal or logical 
considerations. Instead, probabilities associated with risk factors and previous 
mortalities would contribute to such an empirical probability.  
 A visual method for identifying all of the possible outcomes in a probability 
exercise is the tree diagram. Branches from the tree correspond to the possible 
results. Figure 2.2 displays the possible outcome from tossing three fair coins. 
 
Probability Involving Two Variables 
 
 In the case of two different variables (e.g., playing card suit and card value), it is 
necessary to consider the likelihood of both variables occurring, p(A) and p(B), which 
are not mutually exclusive. A conjoint or union (A∪B) is used when calculating the 
probability of either A or B occurring. An intersect (A∩B) or joint probability is 
employed when calculating the probability of both A and B occurring at the same 
time. The probability of an intersect is either given, or in the case of theoretical 
 



Chapter 2 22 

A B 

 

C – Intersect D - Conjoint 

 

Figure 2.1 Schematics of various probability distributions. 

 
probabilities, easily determined using the multiplication theorem, in which p(A and 
B) = p(A) × p(B) if A and B are independent of each other.  
  

p(B)  p(A) = B)  p(A ×∩                                   Eq. 2.4 
 
For example what is the probability of drawing a card that is both a queen and a heart 
(Figure 2.1-C)? 
 

52/1)HQ(p)heartandqueen(p =∩=  
 

 52/14/113/1)heart(p)queen(p)heartandqueen(p =×=×=  
  
In this case there is obviously only one queen of hearts in a deck of cards. What is the 
probability of drawing either a queen or a red card from the deck? Looking at Figure 
2.1-D it is possible to see that using the addition theorem the probability of queen and 
the probability of a heart could be added together. However, the intersect represents 
an overlapping of the two probabilities or the p(A or B) equals the sum of the two 
probabilities minus the probability associated with the intersect.  

 
B)  p(Ap(B) + p(A) = B)  p(A ∩−∪                           Eq. 2.5 
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Figure 2.2 Tree diagram of the result of tossing three fair coins.

 
Therefore, if we subtract one of the two intercept areas seen in Figure 2.1-C we can 
compute the conjoint: 
 

)HQ(p)H(p)Q(p)HQ(p)heartorqueen(p ∩−+=∪=  
 

52/1652/152/1352/4)heartorqueen(p =−+=  
 

Here there are 13 heart cards and four queens for a total of 17, but one of the queens 
is also a heart, thus the 16 possible outcomes. The conjoint is sometimes referred to as 
the additive rule for two events that are not mutually exclusive. 
 To illustrate these points further, consider the following example using empirical 
probability data. In a national survey, conducted in the early 1990s, on the availability 
of various types of hardware required to utilize different methods of programming for 
continuing pharmaceutical education, it was found that out of the 807 respondents: 
419 had access to a personal computer capable of downloading external software; 572 
had cable television in their homes; and 292 had both personal computers and cable 
television. Assuming that this sample is representative of all pharmacists nationally, 
what was the probability (at that point in time) of selecting a pharmacist at random 
and finding that this individual had access to a personal computer? 
 

0.519 = 
807
419 = 

N
m(PC) = p(PC)  

 
What is the probability of selecting a pharmacist at random and finding that this 
individual had cable television? 
 

0.709 = 
807
572 = 

N
m(TV) = p(TV)  

 

Coin 1 Coin 2 Coin 3

   H
   H

   T
   H

   H
   T

   T

   H
   H

   T
   T

   H
   T

   T
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What is the probability of selecting a pharmacist at random and finding that this 
individual did not have cable television? 
 

0.291 = 
807

572)(807 = 
N

m(noTV) = p(noTV) −  

 
or considering p(noTV) as a complement 
 

0.291 = 0.709  1 = p(TV)  1 = p(noTV) −−  
 
Note that the sum of all possible outcomes for cable television equals 1. 
 

1.000 = 0.291 + 0.709 = p(noTV) + p(TV) = TV) p(cable Total  
 
What is the probability of selecting a pharmacist at random who had both access to a 
personal computer and cable television? 
 

0.362 = 
807
292 = 

N
TV)m(PC = TV)p(PC ∩

∩  

 
Conditional Probability 
 
 Many times it is necessary to calculate the probability of an outcome, given that a 
certain value is already known for a second variable. For example, what is the 
probability of event A occurring given the fact that only a certain level (or outcome) 
of a second variable (B) is considered. 
 

p(B)
B)p(A = B)|p(A = B given p(A) ∩                            Eq. 2.6 

 
For example, what is the probability of drawing a queen of hearts from a stack of 
cards containing only the heart cards from a single deck? 
 

1/13 = 
13/52
1/52 = 

p(H)
H)p(Q = heart)|p(queen ∩  

 
In this example, if all the hearts are removed from a deck of cards, 1/13 is the 
probability of selecting a queen from the extracted hearts. 
 Another way to consider the multiplication theorem in probability for two 
events that are not mutually exclusive is based on conditional probabilities. The 
probability of the joint occurrence (A∩B) is equal to the product of the conditional 
probability of A given B times the probability of B (if p(B) > 0): 
 

p(B) B)|p(A = B)p(A∩                                    Eq. 2.7 
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From the previous example, if a selected pharmacist had a personal computer, what is 
the probability that this same individual also had cable television? 
 

0.697 = 
(0.519)
(0.362) = 

) p(PC
) TV  p(PC = ) PC | p(TV ∩  

 
If the selected pharmacist had cable television, what is the probability that this same 
individual also had access to a personal computer? 
 

0.511 = 
(0.709)
(0.362) = 

) p(TV
) TV  p(PC = ) TV | p(PC ∩  

 
 Conditional probability can be extremely useful in determining if two variables 
are independent of each other or if some type of interaction occurs. For example, 
consider the above example of pharmacists with cable television and/or personal 
computers. The data could be arranged as follows, with those pharmacists having both 
cable television and personal computers counted in the upper left box. 
 

 Cable TV No Cable TV  
Computer    
No Computer    

 
Assume for the moment that only 300 pharmacists were involved in the sample and 
by chance 50% of these pharmacists had personal computers: 
 

 Cable TV No Cable TV  
Computer   150 
No Computer   150 
 200 100 300 

 
If there is no relationship between cable TV and personal computer ownership 
(independence) then we would expect the same proportion of computer owners and 
those not owning computers to have cable TV service (100 and 100 in each of the left 
boxes) and the same proportion of individuals not receiving cable: 
 

 Cable TV ( A ) No Cable TV ( A )  

Computer (B) 100 50 150 

No Computer ( B ) 100 50 150 
 200 100 300 

 
In this example: 
 

TV) p(Cable = Computer) No|TV p(Cable = Computer)|TV p(Cable  
 
Thus, p(A∩B) will equal p(A) if the outcomes for A and B are independent of each 
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Table 2.1 Outcomes Expected from Rolling Two Dice  

Outcome Die 1 Die 2 Freq. Outcome Die 1 Die 2 Freq. 

2 1 1 1 8 2 6 5 
     3 5  
3 1 2 2  4 4  
 2 1   5 3  
     6 2  
4 1 3 3     
 2 2  9 3 6 4 
 3 1   4 5  
     5 4  
5 1 4 4  6 3  
 2 3      
 3 2  10 4 6 3 
 4 1   5 5  
     6 4  
6 1 5 5     
 2 4  11 5 6 2 
 3 3   6 5  
 4 2      
 5 1  12 6 6 1 
        
7 1 6 6     
 2 5      
 3 4  Total possible ways = 36 
 4 3      
 5 2      
 6 1      

 
other. This aspect of conditional probability is extremely important when discussing 
the chi square test of independence in Chapter 16. 
 
Probability Distribution  
 
 A discrete random variable is any discrete variable with levels that have 
associated probabilities and these associated probabilities can be displayed as a 
distribution. Many times a graph or table can be used to illustrate the outcomes for 
these discrete random variables. For example, consider the rolling of two fair dice. 
There is only one possible way to roll a two: a one (on die 1) and a one (on die 2). 
Two outcomes could produce a three: a one (on die 1) and a two (on die 2); or a two 
(on die 1) and a one (on die 2). Table 2.1 represents all the possible outcomes from 
rolling two dice.  
 Knowing the frequency of each possible outcome and the total number of 
possible events (N), it is possible to calculate the probability of any given outcome 
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Table 2.2 Probability of Outcomes Expected from Rolling Two Dice 

 
Outcome 

 
Frequency 

 
Probability 

Cumulative 
Probability 

2 1 0.0278 0.0278 
3 2 0.0556 0.0834 
4 3 0.0833 0.1667 
5 4 0.1111 0.2778 
6 5 0.1389 0.4167 
7 6 0.1666 0.5833 
8 5 0.1389 0.7222 
9 4 0.1111 0.8333 

10 3 0.0833 0.9166 
11 2 0.0556 0.9722 
12 1 0.0278 1.0000 
Σ = 36 1.0000  

 
 (Eq. 2.1). If fair dice are used the probability of rolling a two is: 
 

0.0278 = 
36
1 = p(2)  

 
Whereas the probability of a three is: 
 

0.0556 = 
36
2 = p(3)  

 
Therefore it is possible to construct a table of probabilities for all outcomes for this 
given event (rolling two dice). As seen in Table 2.2, the first column represents the 
outcome, and the second and third columns indicate the associated frequency and 
probability for each outcome, respectively. The fourth column is the accumulation of 
probabilities from smallest to largest outcome. For example, the cumulative 
probability for four or less is the sum of the probabilities of one, two, three, and four 
(Eq. 2.2). Obviously the probabilities for any discrete probability distribution when 
added together should add up to 1.0 (except for rounding errors) since it represents all 
possible outcomes and serves as a quick check to determine that all possible outcomes 
have been considered. In order to prepare a probability table, two criteria are 
necessary: 1) each outcome probability must be equal to or greater than zero and less 
than or equal to one; and 2) the sum of all the individual probabilities must equal 
1.00. Note once again that these are mutually exclusive and exhaustive outcomes. If 
two dice are rolled on a hard flat surface there are only 11 possible outcomes (3.5, 
6.7, or 11.1 are impossible outcomes). Also, two different results cannot occur at the 
same time. 
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Table 2.3 Probabilities of Various Poker Hands 

Possible Hands Ways to Make p  
Royal flush (ace through ten, same suit) 4 .000002 
Straight flush (five cards in sequence, same suit) 40 .000015 
Four of a kind 624 .00024 
Full house (three of a kind and a pair) 3,744 .0014 
Flush (five cards, same suit) 5,108 .0020 
Straight (five cards in sequence) 10,200 .0039 
Three of a kind 54,912 .0211 
Two pairs 123,552 .0475 
One pair 1,098,240 .4226 
Nothing 1,302,540 .5012 
                          Totals 2,598,964 .99996 

Modified from: Kimble, G.A. (1978). How to Use (and Misuse) Statistics. Prentice-
Hall, Englewood Cliffs, NJ, p. 91. 

 
Many of the founders of probability were extremely interested in games of 

chance and in some cases were compulsive gamblers (Bernstein, 1996). Therefore, for 
those readers interested in vacationing or attending conventions in Las Vegas or 
Atlantic City, Table 2.3 presents a summary of the possible hands one could be dealt 
during a poker game. Notice these also represent mutually exclusive and exhaustive 
events. Half the time you will get a hand with nothing, only 7.6% of the time will you 
receive two pairs or better (1 - 0.9238). Note also that we are dealt only one hand at a 
time. Each hand that is dealt should be independent of the previous hand, assuming 
we have an honest dealer and that numerous individual decks are combined to 
produce the dealer’s deck. Therefore, the cards received on the tenth deal should not 
be influenced by the ninth hand. This fact dispels the gambler’s fallacy that 
eventually the cards will improve if one plays long enough. As a parallel, assume that 
a fair coin is tossed ten times and the results are all heads. The likelihood of this 
occurring is 0.1%, which will be proven later. Would it not be wise to call tails on the 
eleventh toss? Not really; if the coin is fair you still have a 50/50 chance of seeing a 
head on the eleventh toss, even though there have been ten previous heads. 
 
Counting Techniques 
 
 With the previous example, it is relatively easy to calculate the number of 
possible outcomes of rolling two dice. However, larger sets of information become 
more difficult and time consuming. The use of various counting techniques can assist 
with these calculations. 
 Factorials are used in counting techniques. Written as n!, a factorial is the 
product of all whole numbers from 1 to n. 
 

(1) ... 3)2)(n1)(nn(n = n! −−−                                Eq. 2.8 
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Figure 2.3 Possible ways to arrange five tablets with tablet “A” first. 

 
For example: 
 

40,320 = 1  2  3  4  5  6  7  8 = 8! ⋅⋅⋅⋅⋅⋅⋅  
 
Because an explanation is beyond the scope of this book, we will accept by definition 
that: 
 

1.0 = 0!                                                Eq. 2.9 
 
 Permutations represent the number of possible ways objects can be arranged 
where order is important. For example, how many different orders (arrangements) 
can be assigned to five sample bottles in a row (bottles labeled A, B, C, D and E)? 
First let us consider the possible arrangements if bottle A is selected first (Figure 2.3). 
Thus, if A is first, there are 24 possible ways to arrange the remaining bottles. Similar 
results would occur if bottles B, C, D, or E are taken first. The resultant number of 
permutations being: 
 

tsarrangemenpossible 120 = 5  24 −  

First Second Third Fourth Fifth Outcome

A B C D E 1
E D 2

D C E 3
E C 4

E C D 5
D C 6

C B D E 7
E D 8

D B E 9
E B 10

E B D 11
D B 12

D B C E 13
E C 14

C B E 15
E B 16

E C B 17
B C 18

E B C D 19
D C 20

C B D 21
D B 22

D B C 23
C B 24
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Figure 2.4 Possible ways to arrange three out of five tablets with tablet “A” first. 

 
This is identical to a five-factorial arrangement: 
 

120 = 1  2  3  4  5 = 5! ⋅⋅⋅⋅  
 
Thus, when order is important, a permutation for n objects is n!. In other words, there 
are n! possible ways to arrange n distinguishable objects. 
 If the permutation involves less than the total n, a factorial adjustment is easily 
calculated. In the above example how many possible ways could three of the five 
bottles can be arranged? Once again, let us look at the possibilities if bottle A is 
selected first (Figure 2.4). In this case, there are 12 possible ways to arrange the 
bottles when A is assayed first. Thus, the total possible ways to assay three out of five 
bottles is: 

 
 ways60 = 5  12 ⋅  

 
An easier way to calculate these permutations is to use the formula: 
 

x)!-(n
n! = P  xn                                            Eq. 2.10 

 
where n is the total number of possible objects and x is the number in the 
arrangement. In the example cited above, the possible number of arrangements 
for selecting five bottles, three at a time, is: 
 

60 = 
12

12345
 = 

2!
5! = 

x)!-(n
n! = P  35 ×

××××
 

 

First Second Third Outcome

A B C 1
D 2
E 3

C B 4
D 5
E 6

D B 7
C 8
E 9

E B 10
C 11
D 12
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 Combinations are used when the order of the observations is not important. For 
example, assume we want to assay the contents of three of the five bottles described 
above instead of arranging them in a row. The important feature is which three are 
selected, not the order in which they are chosen. As discussed in the previous chapter, 
independence is critical to any statistical analysis. Therefore, the order in which they 
are selected is irrelevant.  
 In the above example of five sample bottles, the results of the assay the contents 
for three out of five bottles is the important aspect, not the order in which the bottles 
were assayed. Orders A-B-C (1 in Figure 2.4), B-C-A, C-A-B, B-A-C, A-C-B (4 in 
Figure 2.4), and C-B-A would yield the same results. Thus the total possible 
combinations, regardless of order, can be reduced from 60 to only 10 possibilities. 
Using factorials for calculating larger combinations, the formula would be as follows: 
 

x)!(nx!
n! = 

x

n
−







                                          Eq. 2.11 

 
Once again, n is the total number of possible objects and x is the number of objects 
selected for the combination. In the example previously cited: 

 

10 = 
1)1)(22(3
12345

 = 
3!2!
5! = 

x)!(nx!
n! = 

x

n
×××
××××

−






  

 
 Consider the following example. During the production of a parenteral agent, the 
manufacturer samples 25 vials per hour for use in various quality control tests. Five of 
these vials sampled each hour are used for tests of contamination. How many possible 
ways could these vials be selected for contamination testing for one specific hour? 
 

53,130 = 
20!12345

20!2122232425
 = 

5! 20!
25! = 

5

25
×××××

×××××







  

 
In this particular case, the order with which the samples are evaluated is unimportant 
and therefore produces 53,130 possible sample combinations. 
 In a second example involving a dose proportionality study, 60 volunteers are 
randomly assigned to ten groups of six subjects each for the various segments (or 
legs) of a study. The first group receives the lowest dose, the second group receives 
the second lowest dose, up to the last group which receives the largest dose. At the 
last minute the sponsor of the study decides to reduce the maximum dose and will 
require only the first six segments of the study. How many ways can the assigned 
groups be selected for this abbreviated study? 
 

151,200 = 
4!

4!5678910
 = 

6!-10
10!=P  106

××××××  

 
With the groupings of subjects, order is important since each group will receive 
progressively larger dosages of the drug. With the order being important, there are 
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Figure 2.5 FACT function using Excel. 

 

 
Figure 2.6 PERMUT function using Excel. 

 

 
Figure 2.7 COMBIN function using Excel. 

 



Probability 33 

151,200 different way of selecting six of the ten groups of volunteers. 
Excel can be used for all the previous counting techniques by selecting different 

“function” options. For factorials use function argument FACT and enter the number 
for which a factorial value is required (Figure 2.5). For permutations select function 
argument PERMUT, enter the total number of possible objects (n – “number”) and 
the possible number in the arrangement (x – “Number_chosen”) as seen in Figure 2.6. 
For a combination use function argument COMBIN (Figure 2.7), enter the total 
number of possible objects (n – “number”) and the possible number in the 
arrangement (x – “Number_chosen”). 
 
Binomial Distribution 
 
 The binomial distribution is one of the most commonly encountered probability 
distributions. It consists of two mutually exclusive outcomes, sometimes referred to 
as Bernoulli trials. The distribution was developed by the Swiss mathematician 
Jakob Bernoulli in the 1600s (Dawson and Trapp, 2001). The simplest example would 
be a coin toss, where the probability of tossing a head is .50 and a tail is .50. If we 
toss two fair coins the possible results are displayed in the upper half of Figure 2.8. 
Note that these probabilities are excellent examples of the multiplication theorem. 
The first example is an example of two mutually exclusive outcomes (heads on the 
first coin and heads on the second coin). 
 

0.25 = 0)(0.50)(0.5 = )H)p(Hp( = )HHp( 2121 ∩  
 
 

Two Coins 
 Coin 1 Coin 2  Outcome Probability 
 H H  1/4 0.25 of 2 heads 
 H 

T 
T 
H 

 1/2 0.50 of 1 head 
 

 T T  1/4 0.25 of 0 heads 
      
Three Coins 
 Coin 1 Coin 2 Coin 3 Outcome Probability 
 H H H 1/8 0.125 of 3 heads 
 H 

H 
T 

H 
T 
H 

T 
H 
H 

3/8 0.375 of 2 heads 

 H 
T 
T 

T 
H 
T 

T 
T 
H 

3/8 0.375 of 1 head 

 T T T 1/8 0.125 of 0 heads 

Figure 2.8 Probability of outcomes from tossing two or three coins. 
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        Frequency Matrix 
n     1     f 

1    1 1    2 

2    1 2 1    4 

3   1 3 3 1   8 

4   1 4 6 4 1   16 

5  1 5 10 10 5 1  32 

6  1 6 15 20 15 6 1  64 

7 1 7 21 35 35 21 7 1 128 

          

        Probability Matrix 
n         p 

1    .5000 .5000    1.00 

2      .2500 .5000 .2500      1.00 

3   .1250 .3750 .3750 .1250   1.00 

4    .0625 .2500 .3750 .2500 .0625    1.00 

5  .0313 .1562 .3125 .3125 .1562 .0313  1.00 

6  .0156 .0938 .2344 .3125 .2344 .0938 .0156  1.00 

7 .0078 .0547 .1641 .2734 .2734 .1641 .0547 .0078 1.00 

          

Figure 2.9 Pascal’s triangle. 

 
This is identical to the third possible outcome of zero heads, as seen in Figure 2.8. In 
the case of one head, we see a conditional probability. 
 

0.50 = 
0.50
0.25 = 

)Hp(
)HHp(=)H|Hp(

1

12
12

∩  

 
The total outcomes for two coins are three combinations and four permutations. If we 
increase the number of fair coins to three we see the results in the bottom of Figure 
2.8, where there are four combinations and eight permutations. 
 Obviously, the possible combinations and permutations become more difficult to 
define as the number of coins or observations increase. In 1303 Chu Shih-chieh, a 
Chinese mathematician, created what he called the “precious mirror of the four 
elements” (Bernstein, 1996). This later became known as Pascal’s triangle and 
provides a method for calculating outcomes associated with events where the 
likelihood of success is 50% and failure is 50%. Figure 2.9 illustrates this triangle, the 
numbers in the upper portion represent frequency counts, and the lower half show 
proportions or probability. With respect to the frequencies, the two numbers in the top 
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line of the bolded triangles are summed to create the third lower point of the triangle. 
The total of all the frequencies for each row is summed in the far right column. To 
create the lower triangle in Figure 2.9, each frequency is divided by the sum of 
frequencies for that row. The result is a matrix that gives the probability of various 
outcomes (given a 50% chance of success). Notice the second and third rows in the 
probability matrix are identical to the results reported in Figure 2.8 for two and three 
coin tosses. 
 For example, assuming we toss a coin six times, what is the probability that we 
will get two heads? Referring to Figure 2.9, we would go down the sixth row of the 
probability matrix. The first probability (0.0156) is associated with no heads, the 
second (0.0938) only one head, the third (0.2344) for two heads, and so on to the last 
probability (0.0156) associated with all six tosses being heads. Thus, if we toss a fair 
coin six times, we would expect two heads approximately 23% of the time. 

 Unfortunately Pascal’s triangle works only for dichotomous outcomes, which 
represent a 50/50 chance of occurring (each outcome has a probability of 0.50). The 
binomial equation, which follows Pascal’s triangle, is based on the experiments of 
Jacob Bernoulli in the late 1600s (Bernstein, 1996, p.123). This can be used to 
calculate the likelihood associated with any number of successful outcomes regardless 
of the probability associated with that success, providing the probabilities of the 
independent events are known. The probability for each individual outcome can be 
calculated using the following formula: 
 

qp 
x

n
 = p(x) x-nx








                                      Eq. 2.12 

 
where n is the number of possible outcomes, x is number of successful outcomes, p is 
probability of success and q is the probability of failure (or not success, 1 − p). For 
example, what is the probability of having two heads out of six coin tosses? 

 

)(.5)(.5
2

6
 = p(2) = qp 

x

n
 = p(x) 2-62x-nx

















 

 

0.2344 = .0625)15(0.25)(0 = )(.5)(.5
2!4!
6! = p(2) 42  

 
Here we produce the exact same results as seen with Pascal’s triangle. 
 Four conditions must be met in order to calculate a binomial equation: 1) there 
must be a fixed number of trials (n); 2) each trial can result in only one of two 
possible outcomes that are defined as a success or failure; 3) the probability of 
success (p) is constant; and 4) each of the trials produces independent results, 
unaffected by any previous trial. 
 Using the binomial equation we can create a probability table to represent the 
associated probabilities. Again, let us use the example of coin tossing. The possible 
outcomes for heads based on ten tosses of a fair coin (or tossing ten separate fair coins 
at one time) would result in the distribution presented in Table 2.4. Using a binomial 
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Table 2.4 Possible Results from Tossing a Fair Coin Ten Times 

Outcome - f(x) 
(number of heads) 

 
p(f(x)) 

 
Cumulative p(f(x)) 

0 0.001 0.001 
1 0.010 0.011 
2 0.044 0.055 
3 0.117 0.172 
4 0.205 0.377 
5 0.246 0.623 
6 0.205 0.828 
7 0.117 0.945 
8 0.044 0.989 
9 0.010 0.999 

10 0.001 1.000 

 
table it is possible to answer all types of probability questions by referring to the 
individual probabilities or the cumulative probabilities. For example, what is the 
probability of one head in ten tosses of a fair coin? 
 

0.010 = p(1)  
 
What is the probability of less than three heads in ten tosses? 
 

0.055 = 0.044 + 0.010 + 0.001 = p(2)+p(1)+p(0) = p(0,1,2)  
 
Because of the addition theorem we can sum all the probabilities for events less than 
three heads. Alternatively, we could read the results off the cumulative table, p(<3) = 
0.055. What is the probability of seven or more heads in ten tosses? 
 

0.172 = 0.001 + 0.010 + 0.044 + 0.117 = )p(7,8,9,10  
 
Or, to read off the cumulative table for 1 − p(<7) = 1 − 0.828 = 0.172. What is the 
probability of four to six heads in ten tosses? 
 

0.656 = 0.172  0.828 = 4)p(< less) or p(6 −−  
 

0.656 = 0.205 + 0.246 + 0.205 = p(4,5,6)  
 
 The binomial distribution can be applied to much of the data that is encountered 
in pharmacy research. For example: 
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 - LD50 determination (animals live or die after dosing; used to determine 
the dose that kills 50% of the animals). 

 - ED50 determination (drug is effective or not effective; used to determine 
the dose that is effective in 50% of the animals). 

 - Sampling for defects (in quality control; product is sampled for defects 
and tablets are acceptable or unacceptable). 

 - Clinical trials (treatment is successful or not successful). 
 - Formulation modification (palpability preference for old and new 

formulation) (Bolton, 1984). 
 

Excel can be used to calculate the binomial probability distribution by selecting 
the functions BINOMDIST or BINOM.DIST and entering the number of successes 
(Number_s), number of trials (Trials), the probability of success (Probability_s) and 
whether you want actual probability or cumulative probability (Cumulative: TRUE 
for cumulative or FALSE for actual probability for the number of successes (Figure 
2.10). For example, consider results in Table 2.4 for the probability of two heads 
(success) out of ten coin tosses. Excel function commands would result in the 
following: 
 

BINOM.DIST (2,10,0.50,FALSE) = 0.043945 
 

If one were interested in the cumulative probability (zero, one, or two heads in six 
tosses) the commands and results would be: 
 

BINOM.DIST (2,10,0.50,TRUE) = 0.054688 
 
Poisson Distribution 
 
 Another discrete probability distribution is the Poisson distribution. As will be 
discussed in Chapter 6, the binomial distribution tends to be bell-shaped as n 
increases for any fixed value of p. However, dichotomous outcomes in which one of 
the two results is rare or has a very small probability of occurrence (e.g., 0.02 or 
0.05), the binomial distribution will more than likely not produce a desired bell-
shaped distribution. A process first introduced by Siméon Poisson in 1837 can be 
used to calculate probabilities associated with various events when p is relatively 
small: 

 

e 
x!

 = p(x) )-(
x

μμ                                        Eq. 2.13 

 
where e is the constant 2.7183, the base of natural logarithms. In this case the best 
estimate of μ is np (the symbol μ will be discussed later in Chapter 5) or the symbol 
lambda (λ). Therefore, the formula can be rewritten: 
 

x
x

)-np(
x

e
!x

ore 
x!

)(np = p(x) −λ                           Eq. 2.14 
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Figure 2.10 BINOMDIST function using Excel. 

 
It can be shown, for every x, that p(x) is equal to or greater than zero and that the sum 
of all the p(x) equals 1.0, thus satisfying the requirements for a probability 
distribution. This produces a slightly more conservative distribution, with larger p-
values associated with 0 and smaller numbers of outcomes. Because the two events of 
the Poisson distribution are mutually exclusive they can be summed similar to our 
discussion of a probability distribution. 
 For example, during production of a dosage form, the pharmaceutical company 
normally expects to have 0.5% of the tablets in a batch to have less than 95% of the 
labeled amount of a drug. These are defined as sub-potent tablets. If 30 tablets are 
randomly sampled from a batch, what is the probability of finding three sub-potent 
tablets? In this example: p = 0.005, the probability of a sub-potent tablet; n is 30 for 
the total sample size and x is 3 for the outcome of interest and np = 30(0.005) = 0.15. 
 

048400.0 = )86078.0)(.0005625.0( = e 3!
]15.0[ = p(3) )15.0-(

3
 

 
There is less than a 0.1% likelihood of randomly sampling and finding three sub-
potent tablets out of 30. What is the probability of finding one defective tablet? 
 

129106.0 = )86078.0)(.15.0( = e 1!
]15.0[ = p(1) )15.0-(

1
 

 
We have a roughly 13% chance of randomly sampling 30 tablets and having one sub-
potent tablet. Listed below is a comparison of the difference between results using the 
binomial and Poisson processes: 
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Number of defective tablets Poisson p(f(x)) Binomial p(f(x)) 
0 0.860708 0.860384 
1 0.129106 0.129706 
2 0.009682 0.009451 
3 0.000484 0.000443 
4 0.000018 0.000015 

 
 It is possible to take this one step further and create a binomial distribution table 
for the probability of defective tablets and criteria for batch acceptance or rejection. 
Based on a sample of 20 tablets: 
 

Defective tablets Poisson p(f(x)) Cumulative p(f(x)) 
0 0.860708 0.860708 
1 0.129106 0.989814 
2 0.009682 0.999497 
3 0.000484 0.999981 
4 0.000018 0.999999 

 
Thus, there is a 99% chance (0.989814) of finding one or no sub-potent tablets in 30 
samples if there is an expected 0.5% rate. Finding more than one sub-potent tablet is a 
rare occurrence and can serve as a basis for rejecting a production batch, depending 
upon the manufacturer’s specifications. 

Excel can be used to calculate the Poisson probability distribution by selecting 
the Function POISSON or POISSON.DIST (both do the same calculations and 
require the same input) and entering the number of successes (X), the np or λ value 
(Mean), and whether you want actually probability or cumulative probability 
(Cumulative: TRUE for cumulative or FALSE for actual probability for the number 
of successes; see Figure 2.11). For example, consider results above for the probability 
of one sub-potent tablet out of 30 tablets sampled.  The Excel function commands 
would be as follows: 
 

POISSON (1,0.15,FALSE) = 0.129106 
 
If you were interested in the cumulative probability (zero or one sub-potent tablet) the 
entry and results would be: 
 

POISSON (1,0.15,TRUE) = 0.989814 
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Figure 2.11 POISSON function using Excel. 
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Example Problems (Answers are provided in Appendix D) 
 
1. A total of 150 healthy females volunteered to take part in a multicenter study of a 

new urine testing kit to determine pregnancy. One-half of the volunteers were 
pregnant, in their first trimester. Urinary pHs were recorded and 62 of the 
volunteers were found to have a urine pH less than 7.0 (acidic) at the time of the 
study. Also, 36 of these women with acidic urine were also pregnant. 

 
 If one volunteer is selected at random: 
 
 a. What is the probability the person is pregnant? 
 
 b. What is the probability the person has urine that is acidic (less than pH 7)? 
 
 c. What is the probability the person has a urine that is basic (pH equal to or 

greater than 7)? 
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 d. What is the probability that the person is both pregnant and has urine that is 
acidic (less than pH 7)? 

 
 e. What is the probability that the person is either pregnant or has urine that is 

acidic (or less than pH 7)? 
 
 f. If one volunteer is selected at random from only those women with acidic 

urinary pHs, what is the probability that the person is also pregnant? 
 
 g. If one volunteer is selected at random from only the pregnant women, what 

is the probability that the person has a urine pH of 7.0 or greater? 
 
2. Three laboratory technicians work in a quality control laboratory with five 

different pieces of analytical equipment. Each technician is qualified to operate 
each piece of equipment. How many different ways can each piece of the 
equipment be assigned to each technician? 

 
3. Ten tablets are available for analysis, but because of time restrictions the scientist 

will only be able to sample five tablets. How many possible ways can these 
tablets be sampled? 

 
4. With early detection, the probability of surviving a certain type of cancer is 0.60. 

During a mass screening effort eight individuals were diagnosed to have early 
manifestations of this cancer.  

 
 a. What is the probability that all eight patients will survive their cancer? 
 
 b. What is the probability that half will die of the cancer? 
 
5. Newly designed shipping containers for ampules were compared to the existing 

one to determine if the number of broken units could be reduced. One hundred 
shipping containers of each design (old and new) were subjected to identical 
rigorous abuse. The containers were evaluated and failures were defined as 
containers with more than 1% of the ampules broken. A total of 15 failures were 
observed and 12 of those failures were with the old container. If one container 
was selected at random: 

 
 a. What is the probability that the container will be of the new design? 
  
 b. What is the probability that the container will be a “failure”? 
 
 c. What is the probability that the container will be a “success”? 
 
 d. What is the probability that the container will be both an old container 

design and a “failure”? 
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 e. What is the probability that the container will be either of the old design or a 
“failure”? 

 
 f. If one container is selected at random from only the new containers, what is 

the probability that the container will be a “failure”? 
 
 g. If one container is selected at random from only the old container design, 

what is the probability that the container will be a “success”? 
 
6. An in-service director for Galaxy Drugs is preparing a program for new 

employees. She has eight topics to cover and they may be covered in any order. 
 
 a. How many different programs (variations on eight topics) is it possible for 

her to prepare? 

 
 b. At the last minute she finds that she has time for only six topics. How many 

different programs is it possible for her to present if all are equally 
important? 

 
  If order is important? 
 
  If order is not important? 
 
7. Calculate the following: 
 

 a. 








2

6
 b. 









5

9
 c. 









3

30
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3 
 
Sampling 
 
 
 
 Samples from a population represent the best estimate we have of the true 
parameters of that population. Two underlining assumptions for all statistical tests are 
that: 1) the samples are randomly selected or assigned at random to the different 
levels of the independent variable and 2) observations are measured independently of 
each other. Therefore, ensuring that samples are randomly selected from the study 
population is critical for all statistical procedures.  

The target population is that population about which the researcher desires 
information. However, the population from which actual information is extracted is 
the sampled population. For example, assume a Phase III study is being designed to 
assess the effects of a new drug on patients with congestive heart failure (CHF). The 
study protocol will identify inclusion and exclusion criteria to carefully define 
“congestive heart failure.” It would be impossible to sample all the people in the 
world who meet the definition and make up the target population. Instead the 
researchers focus on a multicenter, worldwide study where local principal 
investigators recruit volunteers who meet the criteria for the study. This sampled 
population (which is similar to the target population, at least with respect to the 
characteristics under investigation) is then tested with the drug. Based on the design 
of the study, the volunteers will be further divided into two groups: the first receiving 
the new drug for CHF, the second group receiving the current gold standard for 
treating CHF. The decision of which therapy is received would be based on simple 
random assignment of the volunteers to one of the two therapies. 

 
Random Sampling 
 
 As mentioned in Chapter 1, as researchers we will be interested in identifying 
characteristics of a population (parameters). In most cases it will not be possible to 
obtain all the information about that particular characteristic. Instead, a sample will be 
obtained that will hopefully represent a suitably selected subset of the population. The 
probability theories presented in Chapter 2, and upon which statistics is based, require 
randomness.  
 In order to be a random sample, all elements of the population must have an 
equal chance (probability) of being included in the sample. In other words, each of the 
50,000 tablets coming off a scale-up production run should have an equal likelihood 
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of being selected for analysis. If the manufacturer in the above example sampled 
tablets only at the beginning or the end of the production run, the results may not be 
representative of all the tablets. A procedure should be developed to ensure periodic 
sampling, for example, every 30 minutes during the production run. 
 Simple random sampling may be accomplished for a smaller number of units 
by using a random numbers table or by numbers generated at random using a 
calculator or computer. For example, assume that we are in a quality control 
department and want to analyze a batch of ointments. Samples have been collected 
during the production run and 250 tubes are available in the quality control 
department (these tubes are numbered in order from the first sample to the 250th 
tube). Because of time and expense, we are only able to analyze 10 tubes. The 10 
samples would be our best guess of the target population (the production) represented 
by the 250 tubes of ointment (the sampling population).  
 The best way to select the 10 ointment tubes is through the use of a random 
numbers table (Table B1, Appendix B). Random numbers tables, usually generated by 
computers, are such that each digit (1, 2, 3, etc.) has the probability of occurring (0.10) 
and theoretically each pair of numbers (21, 22, 23, etc.) or triplicate (111, 112, 113, etc.) 
would have the same probability of occurrence, 0.01 and 0.001, respectively. We would 
begin using a random numbers table by dropping a pencil or pen point on the table to 
find an arbitrary starting point. To illustrate the use of this table, assume the pencil lands 
at the beginning of the sixth column, eighth row, in our Table B1: 
 

23616 
 
We have decided a priori (before the fact; before the dropping of the pencil point) to 
select numbers moving to the right of the point. We could have also decided to move to 
the left, up or down the table. Because we are sampling tubes between 001 and 250, the 
number would be selected in groupings of three digits.  
 

23616 
 

Thus, the first number would be 236 or the 236th ointment sample would be selected. 
The next grouping of three digits to the right would include the last two digits of this 
column and the first digit of the next column to the right. 
 

23616  45170 
 
The 164th ointment tube would be the second sample. Note there is nothing significant 
about the placements of the vertical and horizontal breaks in Table B1, they are simply 
included to make the table easier to read and use. The third set of three digits (517) 
exceeds the largest number (250) and would be ignored. Continuing to the right in groups 
of three digits, the third sample would be the 78th tube.  
 

23616  45170  78646 
 
To this point the first three samples would be ointment tubes 236, 164, and 078. The next 
three groupings all exceed 250 and would be ignored. 
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23616  45170  78646  77552  01582 
23616  45170  78646  77552  01582 
23616  45170  78646  77552  01582 

 
The next sample that can be selected from this row is 158. The fourth sample is the 
158th ointment tube. 
 

23616  45170  78646  77552  01582 
 
The researcher has decided to continue down the page (the individual could have used 
the same procedure moving up the page). Therefore, the last digit in the eighth row is 
combined with the first two digits in the ninth row to create the next sampling possibility. 
 

  ………  23616  45170  78646  77552  01582 
11004  06949  40228 ….   

 
With the 211th tube as the fifth sample, the remaining samples are selected moving 
across the row and ignoring numbers in excess of 250. 
 
 11004  06949  40228  95804  06583  10471  83884  27164  50516  89635 
 11004  06949  40228  95804  06583  10471  83884  27164  50516  89635 
 11004  06949  40228  95804  06583  10471  83884  27164  50516  89635 
 11004  06949  40228  95804  06583  10471  83884  27164  50516  89635 
 11004  06949  40228  95804  06583  10471  83884  27164  50516  89635 
 
If any of the three digit number combinations had already been selected, it would also be 
ignored and the researcher would continue to the right until ten numbers were randomly 
selected. In this particular random sampling example, the ten tubes selected to be 
analyzed were: 

Tubes 
004 078 
022 158 
047 164 
065 211 
069 236 

 
Dropping the pencil at another location would have created an entirely different set of 
numbers. Thus, using this procedure, all of the ointment tubes have an equal 
likelihood of being selected. 
 
Using Minitab® or Excel® to Generate a Random Sample 

 
Minitab can be used for generating a random sample, if data have already been 

collected and there is a reason for a random sample from that “sampled population.” 
The steps in Minitab are 
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Calc  Random Data   Sample from Columns 
 
The sample size is “Number of rows to sample:”, the location of the original sampled 
population is “From Columns:” and the location for the sample results is “Store 
samples in:”.  Seen Figure 3.1, ten random samples were selected from the first 
column (250 observations) and the values for those samples were placed in the third 
column. Note that Minitab does not indicate which samples are actually selected, only 
the value associated with each sample. Do not initiate the “Sample with replacement” 
option. Excel can produce similar results using Sampling under the Data Analysis 
option (Figure 3.2), where the “Input range:” is the sampled population, the sample 
size in “Number of Samples:” and the sample results begin at the “Output Range:” 
location. 
Excel can be used to generate random numbers for sampling purposes or to create a 
random numbers table using the function RAND which will create a decimal.  This 
could be multiplied in the function window by 100 for a two digit random number or 
1000 to create a three digit number (Figure 3.3).   A limitation with RAND is that it is 
a volatile function and will change every time a new action is taken.  In Figure 3.4, 
the screen to the left in the original number randomly generated a new number in cell 
A1.  When a new random number is created for cell A2, the number in A1 changes. 
 

 

 
Figure 3.1 Illustration of random sampling using Minitab. 
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Figure 3.2 Illustration of random sampling using Excel. 

 

 
Figure 3.3 RAND function using Excel. 

 
Every time a new random number is generated all previous ones will be changed. In 
Figure 3.4, the two random numbers would be 31 and 46 (with conventional 
rounding).  There is also a RANDBETWEEN function in Excel where the upper and 
lower limits of the population can be specified (Figure 3.5). The statement in the 
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Figure 3.4 Volatile nature of the RAND function. 

 

 
Figure 3.5 RANDBETWEEN function using Excel. 

 
A1 cell can then be copied and duplicated in multiple cells to generate Table 3.1 
(where the “bottom” is one and the “top” is 30).  Note once again that these cells are 
volatile and change each time a new action is taken.  Also, Excel allows 
replacements, so it is possible to get the same number multiple times, so sampling 
need to continue until 15 unique numbers are generated to create the experimental 
group in Table 3.1 and all other remaining numbers (30 or less) automatically become 
the control group. 
 
Other Probability Sampling Procedures 
 
 The best representation of a given target population comes from a probability 
sample of either the target population or the sampled population. Examples of a 
probability sample include a simple random sample, as well as systematic, stratified, 
and cluster samples. These types of sampling are often used because they are 
convenient, relatively easy to accomplish, and often more realistic than pure random 
sampling. Selective sampling offers a practical means for producing a sample that is 
representative of all the units in the population. A sample is biased when it is not 
representative and every attempt should be made to avoid this situation.  
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Table 3.1 Table of Volunteers Meeting Inclusion and Exclusion Criteria 

Experimental Group Volunteer Number Control Group Volunteer Number 

2 11 20 28 1 9 16 23 
3 12 21 29 5 10 18 25 
4 14 24 30 6 13 19 26 
7 17 27  8 15 22  

 
 Systematic sampling is a process by which every nth object is selected. Consider a 
mailing list for a survey. The list is too large for us to mail to everyone in this population. 
Therefore, we select every 6th or 10th name from the list to reduce the size of the mailing 
while still sampling across the entire list (A-Z). The limitation is that certain 
combinations may be eliminated as possible samples (i.e., spouses or identical twins with 
the same last names); therefore, producing a situation where everyone on the mailing 
does not have an equal chance of being selected. In the pharmaceutical industry this 
might be done during the production run of a certain tablet, where at selected time 
periods (every 30 or 60 minutes) tablets are randomly selected as they come off the tablet 
press and weighed to ensure the process is within control specifications. In this 
production example, the time selected during the hour can be randomly chosen in an 
attempt to detect any periodicity (regular pattern) in the production run. 
 In stratified sampling the population is divided into groups (strata) with similar 
characteristics and then individuals or objects can be randomly selected from each group. 
For example, in another study we may wish to ensure a certain percentage of smokers 
(25%) are represented in both the control and experimental groups in a clinical trial (n = 
100 per group). First the volunteers meeting the inclusion and exclusion criteria are 
stratified into smokers and nonsmokers. Then, 25 smokers are randomly selected for the 
experimental group and an additional 25 smokers are randomly selected as controls. 
Similarly two groups of 75 nonsmoking volunteers are randomly selected to complete the 
study design. Stratified sampling is recommended when the strata are very different from 
each other and all of the objects or individuals within each stratum are similar. 
 Also known as “multistage” sampling, cluster sampling is employed when there are 
many individual “primary” units that are clustered together in “secondary” larger units 
that can be subsampled. For example, individual tablets (primary) are contained in bottles 
(secondary) sampled at the end of a production run. Assume that 150 containers of a bulk 
powder chemical arrive at a pharmaceutical manufacturer and the quality control 
laboratory needs to sample these for the accuracy of the chemical or lack of 
contaminants. Rather than sampling each container they randomly select ten containers. 
Then within each of the ten containers they further extract random samples (from the top, 
middle, or bottom) to be assayed.  
 In the final analysis, the probability sampling procedure that is chosen by the 
investigator depends on the experimental situation. There are several factors to be 
considered when choosing a sampling technique. They include: 1) cost of sampling, 
both associated expense and labor; 2) practicality, using a random number table for 
one million tablets during a production run would be unrealistic if not impossible to 
accomplish; 3) the nature of the population the sample is taken from: periodicity, 
unique strata or clustering of smaller units within larger ones; and 4) the desired 
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accuracy and precision of the sample. 
 
Nonprobability Sampling Procedures 
 
 Other methods of sampling do not meet the criteria for probability sampling 
(each unit or member having an equal probability of being selected). Results from 
nonprobability sampling have limited value and should not be used to make statistical 
inferences, but only as generalizations about the populations. Examples of 
nonprobability samples would include: case study samples, convenience samples, 
judgmental samples mechanical samples, quote samples, or snowball samples. 
 Case study sampling is a sampling technique used where the researcher is 
limited to a single patient or small group of patients, often with similar characteristics. 
 Convenience sampling involves items, objects or persons arbitrarily selected at 
the convenience of the researcher. Usually the researcher makes limited effort to 
ensure that the sample accurately represents the population from which the subset is 
supposedly sampled. Examples include co-workers, friends, people in close proximity 
or samples already collected and available in a convenient location. This is commonly 
seen in clinical trials because of the advantage of logistics and costs. 
 Judgmental sampling is nonprobability sampling where the researchers, based 
on personal experience or familiarity, choose the sample they feel are most suitable 
for the study. This method (also called purposive or selective sampling) is used when 
there are very few people or objects with the characteristics for the area being 
researched.  
 Mechanical sampling is typically used for collecting samples of solids, liquids 
or gases where devices such as thief probes are used to collect samples. Care is taken 
to ensure that the sample is representative, but specific locations may be sampled 
where there are potential hot spots or sources that may indicate lack of homogeneity. 
This is a nonprobability version of cluster sampling. 
 Quota sampling is used where quotas are established prior to sample collection 
(i.e., 50% females) and the researchers choose volunteers until the quotas are met. 
Sometimes referred to as ad hoc quota sampling, it is a nonprobability version of 
stratified sampling. 
 Referral sampling occurs where current volunteers in the study are used to 
recruit more subjects for the same study. Synonyms include chain, chain-referral or 
snowball sampling. The latter term is derived from an analogy with the growth of a 
rolling snowball. This could be seen with volunteers for a clinical trial, especially 
those that provide financial incentives for early volunteers to recruit peers.  
  
Random Assignment to Two or More Experimental Levels 
 
 Even if the initial pool of objects or people selected by probability or non-
probability sampling procedures, it is critically important to randomly divide them 
into the different experimental levels involved in the study. Let us assume we are 
involved in a clinical trial comparing a new oral anticoagulant to warfarin. We want 
to follow the patients for a set period of time to determine changes in their clotting 
time. Even if we use a sample of convenience by recruiting these volunteers (patients 
visiting our anticoagulation clinic over a four week period) every effort should be 
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Table 3.2 Results of Weights for Tablets (mg) 

Sample Weight Sample Weight Sample Weight Sample Weight 
1 649 14 653 27 645 40 650 
2 654 15 646 28 650 41 651 
3 644 16 644 29 656 42 639 
4 648 17 649 30 649 43 648 
5 650 18 647 31 649 44 652 
6 636 19 650 32 657 45 648 
7 652 20 652 33 643 46 669 
8 662 21 646 34 653 47 647 
9 646 22 648 35 645 48 664 
10 650 23 655 36 650 49 649 
11 648 24 651 37 647 50 653 
12 651 25 642 38 651   
13 660 26 647 39 654   

 
made to ensure that each individual has an equal probability of being assigned to each 
treatment option. This can be accomplished by simple randomization, using a random 
numbers table to assign volunteers to one of the two treatment levels. Let’s assume 30 
patients meet the inclusion and exclusion criteria and are willing to take part in the 
study. Patients would be assigned numbers, possibly in the order they were enrolled. 
Then a random numbers table (Table B2 in Appendix B) would be used to create a 
table similar to Table 3.2, where the experimental group would receive the new oral 
anticoagulant and the control group would receive the more traditional warfarin 
therapy. 
 
Precision, Accuracy, and Bias 
 
 As mentioned, it is desirable that sample data be representative of the true 
population from which it is sampled and every effort should be made to ensure this is 
accomplished.  
 Precision refers to how closely data are grouped together or the compactness of the 
sample data. Illustrated  in Figure 3.6 are data that are less scattered or closely clustered 
data, which have greater precision (Samples A and C). Also included is Sample B with a 
great deal of scatter and which does not have good precision. Precision measures the 
variability of a group of measurements. A precise set of measurements is compact and, as 
discussed in Chapter 5, is reflected by a small standard deviation or a small relative 
standard deviation.  
 However, assume that the boxes for Samples A, B, and C represent the true value for 
the population from which the samples were taken. In this example, even though 
Samples A and C have good precision, Sample C provided the only accurate predictor of 
the population. Accuracy is concerned with “correctness” of the results and how closely 
the sample data represents the true value of the population. It is desirable to have data 
that is both accurate and precise.  
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Sample A Sample B Sample C 
        
 
           

  
                      
            

 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 Samples comparing precision and accuracy. 

 
 An analogy for precision and accuracy is to consider Figure 3.6 as an example of 
target shooting with the box representing bull’s-eyes. Sample C is desired because all of 
the shots are compacted near or within the bull’s-eye of the target. Sample B is less 
precise, yet some shots reach the center of the target. Sample A is probably the most 
precise, but it lacks accuracy. This lack of accuracy is bias. Bias can be thought of as 
systematic error that causes some type of constant error in the measurement or 
idiosyncrasy with the measurement system. In the example of target shooting, the system 
error might be improper adjustment of the aiming apparatus or failure to account for 
wind velocity, either of which would cause a constant error. In a laboratory environment, 
systematic errors could be caused by contamination, calibration errors, losses or 
degradation of the product, sampling errors, unsuitable methods, or through operator 
incompetence. Ideally, investigators should use random sampling to avoid selection bias. 
Selection bias occurs when certain characteristics make potential observations more (or 
less) likely to be included in the study. For example, always sampling from the top of 
storage drums may bias the results based on particle size, assuming smaller particles 
settle to the lower regions of the drums. Bias can result from incorrect sampling, 
inappropriate experimental design, inadequate blinding, or mistakes (blunders) in 
observing or recording the data. 
 Even random samples of the same pool of objects (i.e., tablets of a particular batch) 
are very unlikely to be exactly the same. For example, the average weights of ten tablets 
will vary from sample to sample. Multiple samples from the same pool or population will 
result in a distribution of possible outcomes, which is called the sampling distribution 
(Chapter 6). All data points in a set of data are subject to two different types of error: 
systematic and random errors. Random errors, or chance errors, are unpredictable and 
will vary in sign (+ or −) and magnitude; but systematic errors always have the same sign 
and magnitude, and produce biases. 
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Reliability and Validity 
 
 Closely related to the accuracy of the sample data are its reliability and validity. 
Reliability is a collection of factors and judgments that, when taken together, are a 
measure of reproducibility. Reliability is the consistency of measures and deals with the 
amount of error associated with the measured values. In order for data to be reliable, all 
sources of error and their magnitude should be known, including both constant errors 
(bias) and random (chance) errors. With respect to this measure of reproducibility, if 
subjects are tested twice and there is a strong relationship between successive 
measurements (correlation, Chapter 13) this is referred to as test-retest reliability. It is a 
method of pairing the scores on the first test and the retest to determine the reliability. A 
second type of reliability measure, in the case of a knowledge test, is to divide the test 
into two portions: one score on the odd items and one score on the even items (or first 
half and second half of the test). If there is a strong relationship between the scores on the 
two halves it is called split-half reliability. Reliability is basic to every measurement 
situation and interpretation that we place on our sample data (see Chapter 17). 
 Validity refers to the fact that the data represents a true measurement. A valid 
piece of data describes or measures what it is supposed to represent. It is possible for a 
sample to be reliable without being valid, but it cannot be valid without being reliable. 
Therefore, the degree of validity for a set of measurements is limited by its degree of 
reliability. Also, if randomness is removed from the sampling technique used to collect 
data, it potentially removes the validity of our estimation of a population parameter. 
 
Suggested Supplemental Readings 
 
Bolton, S. (1997). Pharmaceutical Statistics: Practical and Clinical Applications, Third 
edition, Marcel Dekker, New York, pp. 102-109. 
 
Forthofer, R.N. and Lee, E.S. (1995). Introduction to Biostatistics: A Guide to 
Design, Analysis and Discovery, Academic Press, San Diego, pp. 23-35. 
 
Example Problems (Answers are provided in Appendix D) 
 
1. Using the random numbers table presented as Table B1 in Appendix B, randomly 

sample five tablets from Table 3.2. Calculate the average for the three values 
obtained by the sample (add the five numbers and divide by five). 

 
2. Repeat the above sampling exercise five times and record the average for each 

sample. Are these averages identical? 
 
3. From the discussion in Chapter 2, how many possible samples (n = 5) could be 

randomly selected from the data in Table 3.2? 
 
 



 



55 

 
 
 
4 
 
Presentation Modes 
 
 
 
 Data can be communicated in one of four different methods: 1) verbal; 2) written 
descriptions; 3) tables; or 4) graphic presentations. This chapter will focus on the 
latter two methods for presenting descriptive statistics. As will be seen in subsequent 
chapters, a primary reason for using statistics is to estimate some unknown property 
of a population. In this chapter and the next, descriptor graphs and statistics are 
discussed and will used as the best estimates or estimators of the true population from 
which they have been sampled. Often the graphic representation of data may be 
beneficial for describing and/or explaining research data. The main purpose in using a 
graph is to present a visual representation of the data and the distribution of 
observations. 
 The old adage “a picture is worth a thousand words” can be especially 
appropriate with respect to graphic representation of statistical data. Visualizing data 
can be useful when reviewing preliminary data, for interpreting the results of 
inferential statistics, and for detecting possible extreme or erroneous data (outliers). A 
variety of graphic displays exist and a few of the most common are presented in this 
chapter.  
 
Tabulation of Data 
 
 The simplest and least informative way to present experimental results is to list 
the observations (raw scores or raw data). For example, working in a quality control 
laboratory we are requested to sample 30 tetracycline capsules during a production 
run and to report to the supervisor the results of this sample. Assume the information 
in Table 4.1 represents the assay results for the random sample of 30 capsules. Data 
presented in this format is relatively useless other than to merely provide the 
individual results.  
 We could arrange the results of the 30 samples in order from the smallest assay 
result to the largest (Table 4.2). With this ordinal ranking of the data we begin to see 
certain characteristics of our data: 1) most of the observations cluster near the middle 
of the distribution (e.g., 250 mg) and 2) the spread of outcomes varies from as small 
as 245 mg to as large as 254 mg. 
 The purpose of descriptive statistics is to organize and summarize information; 
therefore, tables and graphics can be used to present this data in a more useful format. 
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Table 4.1 Results from the Assay of 30 Tetracycline Capsules 

Capsule # mg Capsule # mg Capsule # mg 
1 251 11 250 21 250 
2 250 12 253 22 254 
3 253 13 251 23 248 
4 249 14 250 24 252 
5 250 15 249 25 251 
6 252 16 252 26 248 
7 247 17 251 27 250 
8 248 18 249 28 247 
9 254 19 246 29 251 

10 245 20 250 30 249 
 

Table 4.2 Rank Ordering from Smallest to Largest 

Rank mg Rank mg Rank mg 
1 245 11 249 21 251 
2 246 12 250 22 251 
3 247 13 250 23 251 
4 247 14 250 24 252 
5 248 15 250 25 252 
6 248 16 250 26 252 
7 248 17 250 27 253 
8 249 18 250 28 253 
9 249 19 251 29 254 

10 249 20 251 30 254 
 
What we are doing is called the process of data reduction: trying to take data and 
reduce it to more manageable information. The assay results seen in Tables 4.1 and 
4.2 represent a continuous variable (mg of drug present); however, as mentioned in 
Chapter 1, continuous data can be grouped together to form categories and then 
handled as a discrete variable. Assume that the desired amount (labeled amount) of 
tetracycline is 250 mg per capsule. The data can be summarized to report results: 1) 
focusing on those capsules which meet or exceed the labeled amount: 

 
Outcome n % 
<250 mg 
≥250 mg 
         Total 

11 
19 
30 

36.7   
63.3  

100.0   
 
(n representing the number of occurrences in a given level of this now discrete 
variable); 2) showing capsules that do not exceed the labeled amount:  
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Outcome f % 
≤250 mg 
>250 mg 
         Total 

18 
12 
30 

60.0   
40.0  

100.0   
 
(the number of occurrences can also be listed as f or the frequency of the outcomes,); 
or 3) listing those capsules that exactly meet the label claim and those which fall 
above or below the desired amount: 
 

Outcome  f cf  % cum. % 
<250 mg 
=250 mg 
>250 mg 

 11 
7 

12 

11 
18 
30 

 36.7  
23.3  
40.0  

36.7   
60.0   

100.0   
 
In this last table on which the cumulative frequencies (cf) and cumulative percentages 
(cum. %) are reported, in addition to the frequency and percentage, the frequency or 
number of observations for each discrete level appears in the second column. Since 
the three categories are in an ascending or ordinal arrangement (smallest to largest) 
the third column represents the cumulative frequency, which is obtained by 
summing the frequencies for the level of interest plus each preceding discrete level. 
The last two columns report the percentages associated with each level of the discrete 
variable. The fourth column, also called the relative frequency (rf), is the frequency 
converted to the percentage of the total number of observations. The last column 
shows the cumulative outcomes expressed as cumulative percent or proportion of 
the observations. One of the problems associated with converting a continuous, 
quantitative variable into a categorical, discrete variable is a loss of information. 
Notice in the last table that 10 different values (ranging from 245 to 254 mg) have 
been collapsed into only three discrete intervals. Also notice in all three tables above, 
we have created mutually exclusive and exhaustive categories. 
 
Visual Displays for Discrete Variables 
 

Often simple data, such as the previous example, can be presented in a graphic 
form. Bar graphs are appropriate for visualizing the frequencies associated with 
different levels of a discrete variable. Also referred to as block diagrams, they are 
drawn with spaces between the bars symbolizing the discontinuity among the levels 
of the discrete variable (this is in contrast to histograms for continuous data that will 
be discussed later). In Figure 4.1, information is presented using the three mutually 
exclusive and exhaustive levels created for the data in Table 4.2. In preparing bar 
graphs, the horizontal plane (x-axis or abscissa) usually represents observed values or 
the discrete levels of the variable (in this case <250, =250, or >250 mg.). The vertical 
axis (y-axis or ordinate) represents the frequency or proportion of observations (in 
this case the frequency). Bar charts can be rotated 90 degrees and presented as a 
horizontal orientation and well as vertical one presented in Figure 4.1. 
 A line chart is similar to a bar chart except that thin lines, instead of thicker bars,  
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Figure 4.1 Example of a bar graph. 

 

  

Line Chart Point Plot 

Figure 4.2 Examples of a line chart and point plot. 

 

Figure 4.3 Example of a pictogram. 

 
are used to represent the frequency associated with each level of the discrete variable. 
Point plots are identical to line charts; however, instead of a line a number of points 
or dots equivalent to the frequency are stacked vertically for each value of the 
horizontal axis. Also referred to as dot diagrams, point plots are useful for small data 
sets. Using the data presented in Table 4.2, a corresponding line chart and dot 
diagram are presented in Figure 4.2. 
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Figure 4.4 Example of a pie chart using Minitab. 

 
  Pictograms are similar to bar charts. They present the same type of information, 
but the bars are replaced with a representative number of icons. This type of 
presentation for descriptive statistics dates back to the beginning of civilization when 
pictorial images were used to record numbers of people, animals, or objects (Figure 
4.3). 
 Pie charts provide a method for viewing and comparing levels of a discrete 
variable in relationship to a variable as a whole. Whenever a data set can be divided 
into parts, a pie chart may provide the most convenient and effective 
method for presenting the data (Figure 4.4). 
 
Visual Displays for Continuous Variables 
 
 The stem-and-leaf plot is a visual presentation for continuous data. Also referred 
to as a stemplot, it contains features common to both the frequency distribution and 
dot diagrams. Digits, instead of bars, are used to illustrate the spread and shape of the 
distribution. Each piece of data is divided into “leading” and “trailing” digits. For 
example, based on the range of data points, the value 125 could be divided into either 
12 and 5, or 1 and 25, as the leading and trailing digits. All the leading digits are 
sorted from lowest to highest and listed to the left of a vertical line. These digits 
become the stem. The trailing digits are then written in the appropriate row to the 
right of the vertical line. These become the leaves. The frequency or “depth” of the 
number of leaves at each value in the lead digit of the stem are listed on the left side 
and can be used to calculate the median, quartiles, or percentiles. An M and Q are 
placed on the vertical line to identify the median and quartiles. These measures of 
central tendency will be discussed in the next chapter. For the present, the median 
represents that value below which 50% of the observations fall. The quartiles are the 
values below which 25% and 75% of the data would be located. For example, the data 
presented for 125 patients in Table 4.3 can be graphically represented by the stemplot 
in Figure 4.5. The appearance of the stemplot is similar to a horizontal bar graph 
(rotated 90 degrees from the previous example of a bar graph); however, individual 
data values are retained. Also shown are the maximum and minimum scores, and also 
the range (distance from the largest to smallest observation) can be easily calculated. 
The stem-and-leaf plot also could be expanded to provide more information about the 
distribution. In the above example, if each stem unit was divided into halves (upper  
 

<250
(36.7%)

>250
(40.0%)

=250
(23.3%)
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Table 4.3 Cmax Calculations for Bigomycin in Micrograms (mcg) 

739 775 765 751 761 738 759 761 764 765 749 767 
764 743 739 759 752 762 730 734 759 745 743 745 
751 760 768 766 756 741 741 774 756 749 760 765 
743 752 729 735 725 750 745 745 738 763 752 737 
706 769 760 755 767 750 728 778 740 741 771 752 
756 746 788 743 725 765 754 766 755 772 758 763 
734 728 755 778 785 718 730 731 714 752 770 732 
770 755 720 754 764 731 790 793 753 780 732 751 
766 751 762 734 755 761 740 767 775 755 766 736 
755 755 770 741 751 774 780 724 720 746 754 766 
743 743 775 732 762        

 
Frequency Stem  Leaves 
 1 70  6 
 2 71  48 
 8 72  00455889 
18 73  001122244456788999 
19 74 Q 0011113333355556699 
31 75 M 0011111222223444555555556668999 
28 76 Q 0001112223344455556666677789 
12 77  000124455588 
4 78  0058 
2 79  03 
125    

Figure 4.5 Example of a stem-and-leaf plot. 

 
and lower), then the leaves would be established for 70.0 to 70.4, 70.5 to 70.9, 80.0 to 
80.4, etc.  
 A back-to-back stemplot could be used to visually compare two sets of data. 
For example the information in Table 4.4 is plotted in Figure 4.6. Visually the data 
obtained for the two formulations appear to be different. In Chapter 9, we will 
reevaluate these data to determine if there is a statistically significant difference or if 
the difference could be due to some type of random difference. 
 Similar to the back-to-back stemplot, the cross diagram is a simple graphic 
representation for two or more levels of a discrete independent variable and a 
dependent continuous variable. The values for the dependent variable are represented 
on a horizontal or vertical line (Figure 4.7). Data are plotted on each side of the line 
based on which level of the independent variable they represent. 

One simple plot that displays a great deal of information about a continuous 
variable is the box-and-whisker plot (Figure 4.8). The box plot illustrates the bulk of 
the data as a rectangular box in which the upper and lower lines represent the third 
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Table 4.4 Cmax Values for Two Formulations of the Same Drug 

Formulation A Formulation B 

125 130 135 126 140 135 130 128 127 149 151 130 
128 121 123 126 121 133 141 145 132 132 141 129 
131 129 120 117 126 127 133 136 138 142 130 122 
119 133 125 120 136 122 129 150 148 136 138 140 

 
 

Formulation A     Formulation B 

97 11  
98766655321100 12 27899 

6553310 13 0002236688 
0 14 0112589 
 15 01 

Figure 4.6 Example of a back-to-back stem-and-leaf plot. 

 
 

 
 

Figure 4.7 Example of a cross diagram. 

 
quartile (75% of observations below Q3) and first quartile (25% of observations below 
Q1), respectively. The second quartile (50% of the observations below this point) is 
depicted as a horizontal line through the box. The arithmetic average may or may not 
be shown as an x. Vertical lines (whiskers) extend from the top and bottom lines of 
the box to an upper and lower adjacent value. The adjacent values equal three semi-
interquartile ranges (SIQRs) above and below the median. The SIQR is the distance 
between the upper or lower quartile and the median, or: 
 

2
)Q  Q(

 = SIQR 13 −
                                            Eq. 4.1 

 
Observations that fall above or below the adjacent values can be identified as 
potential outliers (Chapter 23). 
 Both the stem-and-leaf plots and the box-and-whisker plots are examples of 
exploratory data analysis (EDA) techniques. These procedures were developed by 
John Tukey and colleagues in the 1960’s (Tukey, 1977). They provide the researcher 
 

Level 1                     x x     xx  xx   x

Level 2                            x x x   x xx    x
                 30                    50                   70                    90
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Figure 4.8 Example of a box and whisker plot. 

 
with a visual method for identifying trends, relationships, or unexpected patterns in 
sample data. 
 Similar to bar charts and point plots, histograms are useful for displaying the 
distribution for a continuous variable, especially as sample sizes become larger or if it 
becomes impractical to plot each of the different values observed in the data. The 
vertical bars are connected and reflect the continuous nature of the observed values. 
Each bar represents a single value or a range of values within the width of that bar. 
For example, a histogram representing the 30 tetracycline capsules listed in Table 4.1 
is presented in Figure 4.9. Each value represents a continuous variable and the 
equipment used had precision to measure to only the whole mg (e.g., 248 or 251 mg). 
If more exact instruments were available, the measurements might be in tenths or 
hundredths of a milligram. Therefore, the value of 248 really represents an infinite 
number of possible outcomes between 0.5 mg below and 0.5 mg above that particular 
measure (247.5 to 248.5 mg). Similarly, the value 250 represents all possible results 
between 249.5 and 250.5 mg. The histogram representing this continuum is presented 
in Figure 4.10. 
 The data in Figure 4.10 represent an ungrouped frequency distribution, which 
is a visual representation of each possible outcome and its associated frequency (e.g., 
for the interval 246.5 to 247.5 the frequency is two). Such a distribution shows the 
extremes of the outcomes, as well as how they are distributed and if they tend to 
concentrate in the center or to one end of the scale. Unfortunately, with large data sets 
or where there is increased precision in the measurement, ungrouped frequency 
distributions may become cumbersome and produce a histogram with many points on 
the abscissa with frequency counts of only one or two per level. A more practical 
approach would be to group observed values or outcomes into class intervals. In a 
grouped frequency distribution: 1) all class intervals must be the same width, or 
size; 2) the intervals are mutually exclusive and exhaustive; and 3) the interval widths 
should be assigned so the lowest interval includes the smallest observed outcome and 
the top interval includes the largest observed outcome. The number of class intervals 
 

+3 SIQR

o       Outlier

Median
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First Quartile (25%ile
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Figure 4.9 Example of a histogram. 

 

 

Figure 4.10 Example of a histogram with correction for continuity. 

 
and their size (boundaries) must be specified. Two questions exist regarding these 
intervals: how many intervals should be used and what should be the width for each 
interval? To illustrate this process, consider the pharmacokinetic data presented in 
Table 4.3, representing a sample of patients (n = 125) receiving the fictitious drug 
bigomycin. As mentioned previously, the range is the difference between the largest 
and smallest value in a set of observations and represents the simplest method for 
reporting the dispersion of the data. In this example the largest observation is 792 
mcg and the smallest is 706 mcg. The difference represents the range of the 
observations: 
 

mcg 86 = mcg 706  mcg 792 −  
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Table 4.5 Number of Intervals for Various 
Sample Sizes Using Sturges’ Rule 

Sample Size K Intervals 
23-45 6 
46-90 7 
91-181 8 

182-363 9 
364-726 10 

727-1454 11 
1455-2909 12 

 
But into how many class intervals should this data be divided? Some authors provide 
approximations such as 10 to 20 (Snedecor and Cochran, 1989), 8 to 12 (Bolton, 
2004), or 5 to 15 intervals (Forthofer and Lee, 1995). However, Sturges’ rule 
(Sturges, 1926) provides a less arbitrary guide to determine the number of intervals 
based on the sample size (n): 

 
(n)log 3.32 + 1 = K 10intervals                                      Eq. 4.2 

 
A quick reference on the number of intervals for various sample sizes based on 
Sturges’ rule is presented in Table 4.5. The interval width is found by dividing the 
range by the prescribed number of intervals: 
 

K
range = )w( width                                             Eq. 4.3 

 
In our current example, for a sample size of 125 and a range of 86, the number of 
intervals and width of those intervals would be: 
 

intervals 8  7.97 = 3.32(2.10)+1 = (125)log 3.32+1 = K 10 ≈  
 

mcg 11  10.75 = 
8

86 = 
K

range = w ≈  

 
Thus, the most representative histogram would consist of eight intervals, each with a 
width of 11. In order to include the smallest and largest values the sections of the 
histogram would be divided as seen in the first column of Table 4.6. However, the 
values represent a continuous variable; therefore, correcting for continuity, the true 
boundaries (interval boundary values) of each interval of the histogram and their 
associated frequencies would be the second column of Table 4.6. 
 Note that the distribution represents eight intervals that are mutually exclusive 
and exhaust all possible outcomes. The histogram would appear as presented in 
Figure 4.11. The center of this distribution can be calculated, as well as a measure of 
dispersion and these will be discussed in the following chapter. 
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Table 4.6 Example of Intervals Created Using Sturges’ Rule 

Interval Interval Boundary Values Midpoint (mi) Frequency 
706-716 705.5-716.5 711 2 
717-727 716.5-727.5 722 6 
728-738 727.5-738.5 733 18 
739-749 738.5-749.5 744 22 
750-760 749.5-760.5 755 35 
761-771 760.5-771.5 766 28 
772-782 771.5-782.5 777 10 
783-793 782.5-793.5 788 4 

 
 

 
 

Figure 4.11  Histogram for data presented in Table 4.3 using Sturges’ rule. 

 
 A frequency polygon can be constructed by placing a dot at the midpoint for 
each class interval in the histogram and then these dots are connected by straight 
lines. This frequency polygon gives a better concept of the shape of the distribution. 
The class interval midpoint for a section in a histogram is calculated as follows: 
 

2
point lowest+highest = Midpoint                                 Eq. 4.4 

 
For class interval 705.5 to 716.6 the midpoint would be: 
 

711 = 
2

716.5+705.5 = 
2

point lowest+highest = Midpoint  

 
The midpoints for the above histogram are also presented in Table 4.6. The frequency 
polygon is then created by listing the midpoints on the x-axis, frequencies on the y-
axis, and drawing lines to connect the midpoints for each interval as presented in 
Figure 4.12 for the previous data. The midpoint of the class interval represents all the 
values within that interval and will be used in drawing frequency polygons and in the 
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Figure 4.12 Example of a frequency polygon. 

 
 

 
 

Figure 4.13 Example of a cumulative frequency polygon. 

 
calculation of measures of central tendency (Chapter 5). Unfortunately there is some 
loss of precision with grouped frequency distribution because only one value (the 
midpoint) represents all the various data points within the class interval.  
 At times it may be desirable to prepare graphs that show how the values 
accumulate from lowest class intervals to highest. These cumulative frequency 
polygons display the frequency or percentage of the observed values falling below 
each interval. By using such a drawing it is possible to establish certain percentiles. 
Figure 4.13 shows a cumulative frequency polygon for the same data presented in the 
above frequency polygon (data from Table 4.3). Note that lines are drawn from the 
25th (Q1), 50th (Q2), and 75th (Q3) percentile on the y-axis (point at which 25, 50, 
and 75% of the results fall below) and where they cross the polygon is the 
approximation of each percentile. If the population from which the sample 
approximates a normal or bell-shaped distribution, the cumulative distribution is 
usually S-shaped or ogive. 
 If there were an infinite number of midpoints (the interval width in both the 
histogram and frequency polygon approaches zero), it would be represented by a 
smooth curve. The skewness of a distribution describes the direction of the stringing 
out of the tail of the curve (Figure 4.14). In a positively skewed distribution most of 
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Positive Skew Negative Skew 

Figure 4.14 Examples of skewed distributions. 

 
the values in the frequency distribution are at the left end of the distribution with a 
few high values causing a tapering of the curve to the right side of the distribution. In 
contrast, a negatively skewed distribution has most of the values at the right side of 
the distribution with a few low values causing a tapering of the curve to the left side 
of the distribution. Another way to think of skewness is the amount of tilt or lack of 
tilt in a distribution.  
 If a sample were normally distributed it would not be skewed to the left or right, 
but would be symmetrical in shape. The normal distribution and its characteristics 
will be discussed at great length in Chapter 6. 

 

 
 
 Kurtosis is a property associated with a frequency distribution and refers to the 
shape of the distribution of values regarding its relative flatness and peakedness. 
Mesokurtic is a frequency distribution that has the characteristics of a normal bell-
shaped distribution. If the normal distribution is more peaked than a traditional bell- 
shaped curve is it termed leptokurtic and platykurtic refers to a shape that is less 
peaked or flatter than the normal bell-shaped curve. 
 Measures of skew and kurtosis will be discussed in Chapter 6. 
 
Visual Displays for Two or More Continuous Variables 
 
 A scatter diagram or scatter plot is an extremely useful graphic presentation for 
showing the relationship between two continuous variables. The two-dimensional plot 
has both horizontal and vertical axes that cover the range of values for the two 
variables. Plotted data points represent paired observations for both the x and y 
variables (Figure 4.15). These types of plots are valuable for correlation and 
regression inferential tests (Chapters 13 and 14). 
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Figure 4.15 Example of a scatter diagram. 

 

Figure 4.16 Example of a sequence plot. 

 
 A sequence plot is a plot where the horizontal axis represents a logical or 
physical sequencing of data. An example might be a measurement of successive lots 
of a particular product, where the vertical axis is a continuous variable and the 
horizontal axis represents the first lot, followed by the second, then the third, etc. If 
time is considered, then data is arranged chronologically on the horizontal axis. This 
time series graph is a visual representation of changes in data over time, in which the 
dependent variable is placed on the y-axis (Figure 4.16). 
 Further data reduction techniques for continuous data will be presented in the 
next chapter where we will explore methods for defining the center of distributions 
and how data are distributed around that center. However, visual or graphic 
techniques should be considered as a possible alternative to obtain a “feel” for the 
shape of the statistical descriptive data. 
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Figure 4.17 Histogram of data in Table 4.3 using Minitab. 

 
Using Excel® or Minitab® for Visual Displays 
 

Excel has several graph options. Data for each variable should be arranged by 
column or row. Graphic options are found under “Insert” on the title bar and listed 
under the “Chart” options. Options for discrete variables include: 1) for a vertical bar 
graph, select “column”; 2) for a horizontal bar graph, use “bar”; and 3) for a pie chart 
select “pie”. For continuous variables choices include “line” and “scatter” for two 
continuous variables. All graphics offer a variety of presentation styles. 

Minitab provides more graphic options. Data must be recorded as one column per 
variable and the column number (C#) will be requested for each operation. All visual 
displays are listed under “Graph” title bar. For discrete variables they include “Bar 
Chart…” (vertical), “Pie Chart…”, and “Dotplot…”. For continuous variables there 
are “Histogram…”, “Stem-and-Leaf…”, “Boxplot…” for box-and-whisker plot, and a 
“Time Series Plot…”; as well a “Scatterplot…” for two continuous variables. With 
the histogram option, Minitab selects the number of intervals using an algorithm 
different from Sturges’ rule. In most cases Minitab will create more intervals than 
calculated using Sturges’ rule (compare Figures 4.11 and 4.17). 
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Example Problems (Answers are provided in Appendix D) 
 
1. During clinical trials, observed adverse effects are often classified by the 

following scale: 
 
 Mild:  Experience was trivial and did not cause any real 

problem. 
 Moderate: Experience was a problem but did not interfere 

significantly with patient’s daily activities or clinical 
status. 

 Severe:  Experience interfered significantly with the normal 
daily activities or clinical status. 

 
 Based on 1109 patients involved in the Phase I and II clinical trials for 

bigomycin, it was observed that 810 experienced no adverse effects, while 215, 
72, and 12 subjects suffered from mild, moderate, and severe adverse effects, 
respectively. Prepare visual and tabular presentations for this data.  

 
2. The following assay results (percentage of label claim) were observed in 50 

random samples during a production run. 
 

102 100 96 99 101 102 100 105 97 100 
92 103 101 100 99 102 96 100 101 98 

107 95 98 100 100 99 97 104 101 103 
98 101 100 105 99 101 102 100 87 98 

101 103 93 99 101 97 100 102 99 104 
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 Report these results as a box-and-whisker plot, stemplot, and histogram. 
 
3. During a study of particle sizes for a blended powder mixture, the results of 

percent of powder retained on the various sizes were 50.1%, 27.2%, 10.4%, 
6.0%, and 5.1% in sieve mesh sizes of 425, 180, 150, 90, and 75 μM, 
respectively. Only 1.2% was captured on the pan (<75 μM). Prepare visual and 
tabular presentations for these data. 

 
4. Comparison of two methods for measuring anxiety in patients is listed below: 
 

Method A Method B  Method A Method B 
55 90  52 97 
66 117  61 110 
46 94  44 84 
63 124  55 112 
57 105  53 102 
59 115  67 112 
70 125  72 130 
57 97    

 
 Prepare a scatter plot to display the relationship between these two variables. 
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5 
 
Measures of Central Tendency 
 
 
 
 Central tendency involves description statistics for the observed results of a 
continuous variable and takes into consideration two important aspects: 1) the center 
of that distribution and 2) how the observations are dispersed within the distribution. 
Three points are associated with the center (mode, median, and mean) and three other 
measures are concerned with the dispersion (range, variance, and standard deviation). 
 Measures of central tendency can be used when dealing with ordinal, interval, or 
ratio scales. It would seem logical, with any of these continuous scales, to be 
interested in where the center of the distribution is located and how observations tend 
to cluster around or disperse from this center. Many inferential statistical tests involve 
continuous variables (see Appendix A) and all require information about the central 
tendency of associated sample data. 
 
Centers of a Continuous Distribution 
 
 The sample mode is simply that value with the greatest frequency of occurrence. 
In other words, the value that is most “popular” in a continuous distribution of scores. 
For example, what is the mode for the following group of observations? 
 

2, 6, 7, 5, 3, 8, 7, 6, 5, 3, 2, 5, 4, 6, 8, 3, 4, 4, 7, 6, 5, 1, 5 
 
Graphically the distribution would look as presented in Figure 5.1. In this distribution 
of observations, the modal value is 5 because it has the greatest frequency. The mode 
is the simplest, but least useful measure of the center for a distribution. The mode is 
most useful when continuous data has been divided into categories (e.g., a histogram) 
or where it represents the category with the greatest frequency. 
 A distribution may be multimodal and have several different values that have the 
same greatest relative frequency. Such a distribution may have several peaks. An 
example of a bimodal distribution appears below with slow and fast metabolizers of 
isoniazid (Figure 5.2). The first peak (to the left) represents a central point for the 
rapid metabolizers (a lower concentration of drug after six hours) and the second peak 
depicts the slow metabolizers where higher concentrations are seen at the same point 
in time. 
 The sample median is the center point for any distribution of scores. It 
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Figure 5.1 Histogram of sample data. 

 

 
 

Figure 5.2 Bimodal distribution (Evans, 1960). 

 
represents that value below which 50% of all scores are located. The median (from 
the Latin word medianus or “middle”) divides the distribution into two equal parts 
(the 50th percentile). For example, using the same data as the previous example for 
the mode, a rank ordering of the scores from lowest to highest would produce the 
following: 
  

Example 5A:   1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8 
 
In this case 5 is the median, which is the value that falls in the exact center of the 
distribution. If there is an even number of observations, the 50th percentile is between 
the two most central values and the median would be the average of those two central 
scores. For example, in the following set of numbers the median (represented by an 
underlined area) is located between the two center values (ten data points are above 
and ten data points are below this center):  
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Example 5B:  20, 22, 23, 24, 24, 24, 25, 25, 25, 25, __  
26, 26, 26, 27, 27, 28, 28, 28, 29, 30 

 
The calculation of the median would be: 
 

25.5 = 
2

26 + 25
 

 
The median value is a better estimate of the center of a distribution than the mode. 
However, it is neither affected by, nor representative, of extreme values in the sample 
distribution. For example, consider the following two samples: 
 
 Example 5C - Table weights in milligrams:  
 Sample 1 36, 45, 48, 50, 50, 51, 51, 53, 54 
 Sample 2 47, 48, 49, 50, 50, 51, 52, 57, 68 
 
Even though both samples have the same median (50 mg), Sample 1 appears to have 
more observations that are relatively smaller and Sample 2 has more samples that are 
larger. The two samples appear to be different, yet both produce the same median. If 
possible, a measure of the center for a given distribution should consider all extreme 
data points (e.g., 36 and 68). However, at the same time, this inability to be affected 
by extreme values also represents one of the advantages of using the median as a 
measure of the center. The median is a robust statistic and not affected by any one 
observation. As will be seen in Chapter 23, an outlier or atypical data point, can 
strongly affect the arithmetic center of the distribution, especially in small sample 
sizes. The median is insensitive to these extreme values. 
 The median is a relative measure, in that it is defined by its position in relation to 
the other ordered values for a set of data points. In certain cases it may be desirable to 
describe a particular value with respect to its position related to other values. The 
most effective way to do this is in terms of its percentile location (the percent of 
observations that data point exceeds): 
 

100  
values of number total

value given the than less values of number = percentile ×          Eq. 5.1 

 
For example consider Table 4.2 where 30 tetracycline capsules were placed in ranked 
order from smallest to largest. If one were interested in the percentile for 252 mg (the 
24th largest value) the calculation would be 
 

percentile77 = 100  
30
23 = percentile ×  

 
Thus, 252 mg represents the 77th percentile for the data presented in Table 4.2. At the 
same time, when using percentiles, it is possible to calculate variability in a 
distribution, especially a distribution that is skewed in one direction. In this case, the 
measure would be the interquartile range (IQR) or interrange (the distance 
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between the 25th and the 75th percentiles). 
 

  
 
 The sample mean is what is commonly referred to as the average. It is the 
weighted center point of a distribution, and is computed by summing all the 
observations and dividing by the total number of observations. 
 

n
x ...  x  x  x = X n321 ++++

 

 

The character X  (x-bar) will be used to symbolize the sample mean. The observed 
values of a given variable are designated with the same letter (usually x) and each 
individual value is distinguished with a subscript number or letter. For example xi 
indicates the ith observation in a set of data. The symbol sigma () indicates the 
addition (summation) of all variable observations. Also referred to as the arithmetic 
mean, the formula for this equation is written as follows: 
 

n

x
 = X

i
n

=1i


                                                  Eq. 5.2 

 
In this equation, all observations (xi) for variable x are added together from the first 
(i=1) to the last (n) observation and divided by the total number of sample 
observations (n). Equation 5.2 can be simplified as follows: 
 

n
x = X 

 

 
 The advantage in using the mean over the other measures of central tendency is 
that it takes into consideration how far each observation differs from the center and 
allows for extreme scores to impact this measure of center. Other measures do not 
account for this consideration. The mean can be thought of as a balancing point or 
center of gravity for our distribution. For the above Example 5A the mean would be: 
 

4.9 = 
23

5...+7+6+2 = X  
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We typically calculate a mean (and other measures of central tendency) to one 
decimal point beyond the precision of the observed data. In this case the precison of 
the data in Example 5A is to the whole number, thus the mean is expressed in tenths. 
Other authors have established more definitive rules for rounding and significant 
figures (Torbeck, 2004).  
 In the third example (Example 5C − tablet weights), the two medians were 
identical, and the means for the two samples differ because the extreme measures 
(i.e., 36 and 68 mg) were considered in this weighted measure of central tendency: 
 

Sample 1:    X 1 = 48.7 mg 

Sample 2:     X 2 = 52.4 mg 
 
The relative positioning of the three measures of a continuous variable’s center can 
give a quick, rough estimate of the shape of the distribution. As will be discussed in 
the next chapter, in a normal (bell-shaped) distribution the mode = median = mean; in 
the case of a positively skewed distribution the mode < median < mean and for a 
negatively skewed distribution the mode > median > mean. 
 If data is normally distributed, or the sample is assumed to be drawn from a 
normally distributed population, the mean and standard deviation are the best 
measures of central tendency. The median is the preferred measure of central 
tendency in skewed distributions where there are a few extreme values (either small 
or large). In such cases the interquartile range is the appropriate measure of 
dispersion. 
 
Dispersion within a Continuous Distribution 
 
 The mean is only one dimension in the measure of central tendency, namely, the 
weighted middle of the sampling distribution. Seen in Figure 5.3 are two distributions  
that have the exact same median (5) and the same mean (4.9). However, the 
dispersions of data around the center of these two distributions are considerably 
different. Thus, measures of central tendency should also be concerned with the 
spread or concentration of data points around the center of the distribution. 
 The sample range is the simplest method for reporting a distribution of 
observations and represents the difference between the largest and smallest value in a 
set of outcomes. In Example 5A the largest observation is 8 and the smallest is 1. The 
range for these observations is 7. Similarly, the ranges for the two sample batches of 
tablet weights in Example 5C are: 
 
 Sample 1:     54 − 36 = 18 mg Sample 2:     68 − 47 = 21 mg 
 
Some texts and statisticians prefer to correct for continuity (due to the fact that the 
continuous variable actually extends to one decimal smaller and larger than the 
measure). In Sample 1 listed above, 54 to 36, would be 54 to 36 inclusive or 54.5 to 
35.5. In this case the range would be: 
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Figure 5.3 Example of distributions with the same mean and median. 

 
 

1 + n)observatio smallest  nobservatio (largest = R −  

 
mg19 = 1 + 36  54 = R −  

 
If the range were measured in tenths, then 0.1 would be added; if the range is in 
hundredths, then add an additional 0.01, and so on. 
 A second measure of dispersion already discussed is the interquartile range. Even 
though the range and interquartile range are quick and easy measures of dispersion, 
they possess a limitation similar to the median; specifically they do not account for 
the actual numerical value of every individual observation. Much like the mean, a 
measure is needed to account for how each observation varies from the center of the 
distribution. 
 One possible measure would be to determine the distance between each value 
and the center (Figure 5.4). Unfortunately, because the distances to the left and to the 
right of the mean are equal (since the mean is the weighted center), the sum of all the 

individual differences (xi- X ) equals zero and provides no useful information. 
Therefore, the sum of all the squared differences between the individual observations 
 

Figure 5.4 Distribution of observations around the mean. 
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and the mean is computed, and divided by the number of degrees of freedom (n − 1). 
This average of the squared deviations produces an intermediate measure known as 
the sample variance: 
 

1-n
)X-x( ...  )X-x(  )X-x(  )X-x( = S
2

n
2

3
2

2
2

12 ++++
 

 
 Degrees of freedom (df) is used to correct for bias in the results that would occur 
if just the number of observations (n) was used in the denominator. If the average 
squared deviation is calculated by dividing the summed squared differences by n 
observations, it tends to underestimate the variance. The term “degrees of freedom” is 
best examined by considering the example where the sum of all the deviations 

(xi  − X ) equals zero. All but one number has the “freedom” to vary. Once we know 
all but the last data point (n − 1), we can predict the last value because the sum of all 
the deviations must equal zero. Therefore, to prevent bias, most statistical analyses 
involve degrees of freedom (n − 1) rather than the total sample size (n). The sample 
variance formula can be written: 
 

1n
)Xx( = S
2

i2
−
−

                                               Eq. 5.3 

 
Obviously as the size of our sample of data increases, the effect of dividing by n or n-
1 becomes negligible. However, for theoretical purposes, degrees of freedom will 
continually appear in descriptive as well as inferential equations. 
 The variance, using the data from Example 5A (with a mean of 4.9), is calculated 
as follows: 
 

3.8 = 
123

)4.9-(5 ... + )4.9-(7 + )4.9-(6 + )4.9-(2 = S
2222

2
−

 

 
An easier method for calculating the variance (especially for computers) would be as 
follows: 
 

1)n(n
)x()xn( = S
22

2
−
−

                                            Eq. 5.4 

 
where each observation is squared and both the sum of the observation and the sum of 
the observations squared are entered into the formula. Algebraically, this produces the 
exact same results as the original variance formula (Eq. 5.3). Once again, using data 
from Example 5A, this method produces the same variance: 
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xi xi
2 

2 4 
6 36 
... ... 
5 25 

112 628 
 

 

23(22)
)(11223(628) = 

1)n(n
)x()xn( = S

222
2 −

−
−

 

 

3.8 = 
506
1900 = 

506
1254414444 = S 2 −

 

 
The two previous equations represent different ways to calculate the same value. The 
first (Eq. 5.3) is a definitional formula because it defines how the variance term is 
calculated (the average of the squared deviants). The second (Eq. 5.4) is a 
computational formula because it represents an easier formula to compute using 
computer software or a hand calculator. Throughout this book there will be examples 
of formulas using either the definitional or computational approaches or both. 

 Variance is only an intermediate measure of dispersion. Each difference (xi − X ) 
was squared to produce the variance term. The square root of the variance is needed 
to return the results to the same measurement scale used for the mean (for example, if 
the mean is expressed in milligrams, then this new measure, called the standard 
deviation, will also be expressed as milligrams). 
 The sample standard deviation (S or SD) is the square root of the variance. It 
also measures variability about the mean and is most commonly used to express the 
dispersion of the observations. 
 

S = S 2                                                       Eq. 5.5 

 
Using the previous set of data as an example: 
 

1.9 = 3.8 = S  
 
Since the standard deviation can be thought of as the square root of the mean of the 
squared deviations, some textbooks refer to variance as the root mean square, or 
RMS value.  
 It is important to note that the variance has no relevant term of measurement, but 
the standard deviation is expressed in the same units as the mean. For the sake of 
illustration, consider the observations for the two samples of tablet weights in 
Example 5C: 
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 X   S2  S  n 

Sample 1 48.7 29.5 5.4 9 
Sample 2 54.4 42.3 6.5 9 

 
In this case the average weights of the tablets in Sample 1 would be 48.7 mg with a 
standard deviation of 5.4 mg. The variance is simply 29.5, not 29.5 mg or mg 
squared. 
 To illustrate the use of central tendency measurements, thirty bottles of a cough 
syrup are randomly sampled from a production line and the results are reported in 
Table 5.1. The descriptive statistics reporting the measures of central tendency for the 
sample would be: 
 
 Mode: 120.1 ml (largest frequency with 3 outcomes) 
 
 Median: The average of the center two values (15th and 16th ranks in the 

right columns) 
 

ml 120.05 = 
2

120.1 + 120.0
 

 
 Mean: Weighted average of all 30 samples 
 

ml 120.05 = 
30

...119.7+120.2+120.7 = X  

 
 

Table 5.1. Data for Samples of Bottles of Cough Syrup 

Original Samples (volume in ml) Samples Ordered 
Smallest to Largest Sample  Volume Sample Volume 

1 120.7 16 119.0 118.3 120.1 
2 120.2 17 121.1 118.5 120.1 
3 119.6 18 121.7 118.9 120.1 
4 120.1 19 119.2 119.0 120.2 
5 121.3 20 120.0 119.0 120.2 
6 120.7 21 120.8 119.2 120.4 
7 121.0 22 119.9 119.6 120.5 
8 119.7 23 119.8 119.7 120.7 
9 118.3 24 119.9 119.7 120.7 

10 118.9 25 120.2 119.8 120.8 
11 120.5 26 120.0 119.8 121.0 
12 121.4 27 120.1 119.9 121.1 
13 120.4 28 119.0 119.9 121.3 
14 118.5 29 120.1 120.0 121.4 
15 119.8 30 119.7 120.0 121.7 
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 Range: 121.7 − 118.3 = 3.4 ml 
   (or 3.5 = 121.75 − 118.25 if an inclusive range) 
 
 Variance (definitional formula): 

 

0.70 = 
30(29)

)120.05...(119.7+)120.05(120.7 = S
22

2 −−
 

  
 Standard deviation: 
 

ml 0.84 = 0.70 = S  
 
 Summary data, presented in reports, posters or journal articles, usually report 
only the mean, standard deviation and sometimes the number of observations. The 
mean and standard deviation are usually presented as mean ± standard deviation. 
However, the reader should be cautious if the author does not clearly indicate what is 
represented on the right of the ± sign. As discussed in Chapter 7 it could represent a 
measure which is not the standard deviation. 
 
Population versus Sample Measures of Central Tendency 
 
 The statistics presented thus far have represented means, variances, and standard 
deviations calculated for sample data and not an entire population. The major reason 
for conducting a statistical analysis is to use sample data as an estimate of the 
parameters for the entire population of events. For example, it is impractical, and 
impossible if destructive methods are used, to sample all the tablets in a particular 
batch. Therefore, compendia or in-house standards for content uniformity testing 
might consist of a sample of 30 tablets randomly selected from a batch of many 
thousands or millions of tablets.  
 Parameters are to populations as statistics are to samples. As seen in Table 5.2, 
the observed statistics (mean and standard deviation from the sample) are the best 
estimates of the true population parameters (the population mean and population 
standard deviation). Note in Table 5.2 that the Greek symbols μ (mu) and σ (sigma) 
are used to represent the population mean and population standard deviation, 
respectively. Also, in the formulas that follow, N replaces n for the total observations 
in a population. These symbols will be used throughout the book with Greek symbols 
referring to population parameters. 
 The population mean is calculated using a formula identical to the sample mean: 
 

N

X
 = 

i
N

1=i


μ                                                     Eq. 5.6 

 
The formula for the population variance is similar to that of the sample estimate, 
except that the numerator is divided by the number of all observations (N). If all the 
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Table 5.2 Symbols Used for Sample and Population 
Measures of Central Tendency 

 Sample 
Statistic 

Population 
Parameter 

Mean X  μ 
Variance S2 σ2 

Standard deviation S σ 
Number of observations n N 

 
 
data is known about the population, it is not necessary to use degrees of freedom to 
correct for bias. 
 

N

)x(
 = 

2
i

N

=1i2
μ

σ
−

                                                Eq. 5.7 

 
Similar to the sample standard deviation, the population standard deviation is the 
square root of the population variance. 
 

σσ 2 =                                                       Eq. 5.8 

 
One should be cautious using scientific or programmable calculators when computing 
the standard deviation. Some calculators may compute the population standard 
deviation, some the sample standard deviations and others can display both measures. 
It is important to know which measure of dispersion is calculated by your calculator, 
especially when dealing with smaller sample sizes. A quick and simple check to 
determine the type of standard deviation(s) displayed on a calculator is to enter the 
three values 1, 2, and 3. The mean is obviously 2.0. If a sample standard deviation (S) 
is calculated the result will be 1.0; whereas the population standard deviation (σ) is 
0.8165.  
 
Measurements Related to the Sample Standard Deviation  
 
 The variability of data may often be better described as a relative variation rather 
than as an absolute variation (e.g., the standard deviation). This can be accomplished 
by calculating the coefficient of variation (CV) that is the ratio of the standard 
deviation to the mean. 
 

mean
deviation standard = CV                                        Eq. 5.9 
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Table 5.3 Examples with Relative Standard Deviations 

 Assayed Amount of Drug % Labeled Claim 

 9.96   99.6   996     99.6 
 10.05   100.5   1005   100.5 
 9.92   99.2   992     99.2 
 9.92   99.2   992     99.2 
 9.86   98.6   986     98.6 
 9.85   98.5   985     98.5 
 10.01 100.1   1001   100.1 
 9.90   99.0   990     99.0 
 9.96   99.6   996     99.6 
 9.86   98.6   986     98.6 

Mean = 9.929   99.29   992.9   99.29 
S.D. = 0.067  0.666  6.657  0.666 
RSD =  0.67%    0.67%    0.67% 0.67% 

 
 
The CV is usually expressed as a percentage (relative standard deviation or RSD) 
and can be useful in many instances because it places variability in perspective to the 
distribution center.  
 

(percent) 100  CV = RSD ×                                     Eq. 5.10 

 
In the previous Example 5A (CV = 1.94/4.87 = 0.398 and RSD = 0.398 × 100 = 39.8), 
the standard deviation is 40% of the mean. In the previous example of the liquid 
volumes (Table 5.1), the coefficient of variation and RSD would be: 
 

0.007 = 
120.05
0.835 = CV  

 
0.7% = 100  0.007 = RSD ×  

 
Thus, relative standard deviations present an additional method of expressing this 
variability, which takes into account its relative magnitude (expressed as the ratio of 
the standard deviation to the mean). Table 5.3 illustrates the amount of assayed drug 
and the second and third columns represent 10- and 100-fold increases in the original 
values. These increases also result in a 10- and 100-fold increase in both the mean and 
standard deviation, but the relative standard deviation remains constant. In the 
pharmaceutical industry, this can be used as a measure of precision between various 
batches of a drug, if measures are based on percent label claim (column 4 in Table 
5.3). 
 A second example illustrating the relative standard deviation would be the peak 
area on an HPLC reading: 
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 HPLC Peak (x) x2 
Run 1 59.45   3534.30   
Run 2 59.50   3540.25   
Run 3 58.70   3445.69   
Run 4 59.25   3510.56   

 236.90   14030.80   
 
Measures of central tendency are as follows: 
 
 Mean: 
 

ml 59.23 = 
4

236.9 = X  

 
 Variance (computational formula): 
 

0.13 = 
4(3)

)(236.9  4(14030.8) = S
2

2 −
 

 
 Standard deviation: 
 

ml 0.36 = 0.13 = S  
 
 Coefficient of variation: 
 

0.0061 = 
59.23
0.36 = C.V.  

 
 Relative standard deviation: 
 

0.61% = 100  0.0061 = RSD ×  
 
Trimmed Mean 
 

In certain software statistical packages a trimmed mean is reported in the 
descriptive results along with the algebraic mean. This measure represents the 
weighted center for the majority of the data, but “trims” the extreme values, usually 
5%, from each end of the distribution. The remaining 90% of the data is then used to 
compute the mean. This offers two advantages over the arithmetic mean: 1) it 
eliminates outliers (Chapter 23); and 2) for positively or negatively skewed 
distributions it approximates the median and gives a better estimate of center. The 
disadvantages are that it could greatly decrease the variance for the sample data and 
may eliminate important information provided by outliers. In the case of a normal, 
bell-shaped distribution (Chapter 6), removal of 5% of the upper end of the 
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Figure 5.5 Various distributions prior to trimming the mean. 
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distribution and removal of 5% of the lower end will not affect the mean because of 
the symmetry of the distribution. To illustrate this, consider three distributions (Figure 
5.5) each representing a sample of 200 observations: 1) A is approximately normally 
distributed; 2) B is positively skewed; and 3) C is negatively skewed. Measures of 
center would be as follows: 
 

Distribution Mean Trimmed Mean Median 

A. Normal distribution 10.37 10.35 10.0 
B. Positive skew 7.470    7.144    7.0 
C. Negative skew 17.545   17.767    18.0 

 
The problem rests with the reduced spread when the data is trimmed: 
 

 Standard Deviation 

Distribution Untrimmed Trimmed 

A. Normal distribution 3.665 2.963 
B. Positive skew 4.527 3.472 
C. Negative skew 5.125 4.337 

 
As seen in these examples, the standard deviation is decreased from 15.3 to 23.3% by 
simply removing the extreme 10% of the distribution. 
 
Using Excel® or Minitab® for Measures of Central Tendency 
 
 Excel has several function options that produce descriptive statistics. These are 
listed in Table 5.4. Also under the “data analysis” command, multiple descriptive 
statistics can be created with one command using the “Descriptive Statistics” option 
and the “Summary Statistics” command (Figure 5.6). 
 

Data  Data Analysis  Descriptive Statistics  Summary Statistics 
 

All these test require that you indicate a range of cells where the data is located 
(“Input Range”) and where the output should be reported, either starting at a specific 
cell (“Output Range”) or creating a new worksheet. Figure 5.7 show a typical Excel 
output for the “descriptive statistics” procedure (data from Table 4.3). The variance 
represents the sample statistic. Skew and kurtosis will be discussed in Chapter 6 and 
standard error will be addressed in Chapter 7. 
 Minitab offers a similar descriptive statistics option, but with more choices. It is 
accessed by choosing “Stat” on the title bar and “Basic Statistics” and “Display 
Description Statistics” from the two dropdown menus: 
 

Stat  Basic Statistics  Display Description Statistics 
 
Pick the column(s) of data you wish to evaluate and select “Statistics” to choose from 
the available options (Figure 5.8). All or part of the options can be selected. 
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Table 5.4  Excel Function Commands for Descriptive Statistics 

Statistics Excel Function 

Mode MODE 
Median MEDIAN 
Mean AVERAGE 
Smallest Data Point MIN 
Largest Data Point MAX 
Range =MAX-MIN 
Variance (sample) VAR 
Variance (population) VAR.P 
Standard Deviation (sample) STDEV 
Standard Deviation (population) STDEV.P 
Coefficient of Variation =STDEV/AVERAGE 

 
 
 Additional options with Minitab include: sum x, sum x2, coefficient of variance 
(without needing to do a separate calculation), trimmed mean, first and third quartile 
and IQR. Note that the Minitab’s “coefficient of variation” is the relative standard 
deviation (CV x 100%) and the trimmed mean represents the result of removing the 
extreme 10% of the values (5% from each end of the distribution of observation). 
MSSD stands for the mean of the squared successive differences, is used primarily for 
 
 

 

Figure 5.6 Descriptive Statistic options. 
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Figure 5.7 Output from Excel descriptive statistics command. 

 

 

Figure 5.8 Options for descriptive statistics available with Minitab. 
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Figure 5.9 Output from Minitab descriptive statistics command. 

 
quality control statistics, and will be discussed in Chapter 7. Once again, skew, 
kurtosis and standard error will be discussed in following chapters. Minitab offers 
also a dropdown menu where several individual items in Figure 5.8 can be calculated, 
but only one descriptive statistic at a time: 
 

Calc  Column Statistics 
 

It is much easier to select the “Basic Statistics” option to select the required 
information. Results for the data presented in Table 4.3 using Minitab are seen in 
Figure 5.9. In most cases you would select only those options of interest for your 
research and produce a less complicated output. 
 
Alternative Computational Methods for Calculating Central Tendency 
 
 Various other methods can be used to determine sample means and standard 
deviations. They include calculations from binomial distributions, probability 
distributions, and frequency distributions.  
 Binomial Distribution. As mentioned in Chapter 2, the binomial 
distribution is concerned with two mutually exclusive outcomes. If the probability of 
one of the outcomes is known, the mean (or expected value, E(x)) and standard 
deviation for the distribution can be calculated. In this case the measure of central 
tendency represents the mean and standard deviation of the values taken by the 
variable in many repeated binomial experiments. For example, if we flipped a fair 
coin 1000 times, we would expect on the average to have 500 heads (defined as 
success with p = 0.50). The mean is  

 

         p  n = E(x) or X ⋅                                              Eq. 5.11 

 
with a variance of 
 

q  p n = Var(x) or S 2 ⋅⋅                                          Eq. 5.12 
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and standard deviation of 
 

q  p  n = S ⋅⋅                                                    Eq. 5.13 

 
where p is the probability of success, q the probability of failure (1.00 − p) and n is 
total number of outcomes or observations. The binomial distribution tends to the 
normal distribution as n increases, however, in small samples the distribution may be 
noticeably skewed. For that reason, np should be greater than 5 to use this 
approximation. 
 As an example, the probability of rolling a six on one toss of the die is 0.1667. If 
a single die is tossed 50 times what is the expected number of times a six will appear? 
What is the variability of this expected outcome? In this case p(6) = 1/6 = 0.1667; 
q(not 6) = 1 − 0.1667 = 0.8333; and n is 50 for the sample size. 
 

8.3 = .1667)0(50)( = np = E(x)  

 
The average number of times six would appear in 50 rolls is 8.3 times. The standard 
deviation would be: 
 

2.6 = .833)0.1667)(0(50)( = npq = S  

 
 Probability Distribution. If the probabilities of all possible outcomes are 
known, the mean and standard deviation for the distribution can be calculated by first 
creating a table: 
 

x p(x) x⋅p(x) x2⋅p(x) 
x1 p(x1) x1⋅p(x1) x1⋅x1⋅p(x1) 
x2 p(x2) x2⋅p(x2) x2⋅x2⋅p(x2) 
... ... ... ... 
xn p(xn) xn⋅p(xn) xn⋅xn⋅p(xn) 

Σ = 1.00 Σ(x⋅p(x)) Σ(x2⋅p(x)) 
 
where xi is the occurrence and p(xi) is the probability of that occurrence. The mean is 
represented by the sum of the third column: 
 

p(x))  (x = X ⋅                                                  Eq. 5.14 

 
The variance and standard deviations involve the sums of the third and fourth 
columns: 
 

]p(x))  (x[ p(x))]   x([ = S 222 ⋅−⋅                                  Eq. 5.15 
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]p(x))  (x[ p(x))]   x([ = S 22 ⋅−⋅                                  Eq. 5.16 

 
 To illustrate the process, what is the mean and standard deviation for the 
following values and their respective probabilities of occurrence? 

 

Value Probability  Value Probability  Value Probability 

0 0.07776  4 0.11646  8 0.00017 
1 0.22680  5 0.04042  9 0.00001 
2 0.29700  6 0.00971  10 0.00000 
3 0.22995  7 0.00150    

 
 x p(x) x⋅p(x) x2⋅p(x) 
1 0.22680 0.22680 0.22680 
2 0.29700 0.59400 1.18800 
3 0.22995 0.68985 2.06955 
4 0.11646 0.46584 1.86336 
5 0.04042 0.20210 1.01050 
6 0.00971 0.05826  0.34956 
7 0.00150 0.01050  0.07350 
8 0.00017 0.00136  0.01088 
9 0.00001 0.00009  0.00081 
10 0.00000 0.00000  0.00000 
 = 1.00000 2.24880 6.79296 

 

2.25 = 2.2488 = p(x))(x = X ⋅  

 

74.1)24880.2(79296.6]p(x))(x[p(x))]x([ = S 2222 =−=⋅−⋅  

 

1.32 = 1.74 = S = S 2  

 
 Frequency Distribution. If data is presented that reports the frequency of each 
occurrence (for example, the frequency of response to a Likert-type scale), the mean 
and standard deviation can be calculated as follows where xi is the event and f(xi) is 
the frequency associated with that event. 
 

x f(x) x⋅f(x) x2⋅f(x) 
x1 f(x1) x1⋅f(x1) x1⋅x1⋅f(x1) 
x2 f(x2) x2⋅f(x2) x2⋅x2⋅f(x2) 
x3 f(x3) x3⋅f(x3) x3⋅x3⋅f(x3) 
... ... ... ... 
xn f(xn) xn⋅f(xn) xn⋅xn⋅f(xn) 

Σ = Σf(x) = N Σ(x⋅f(x)) Σ(x2⋅f(x)) 
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The mean is: 
 

 
N

f(x))  (x = X ⋅
                                                Eq. 5.17 

 
In this case N represents the sum of all the sample frequencies (n1 + n2 ...+ ni) and not 
a population N. The variance is: 
 

1)N(N
](x)) f  (x[ (x))]  f  x([ N = S

22
2

−
⋅−⋅

                            Eq. 5.18 

 
with a standard deviation of: 
 

1)N(N
](x)) f (x[ (x))]  f  x(N[ = S

22

−
⋅−⋅

                             Eq. 5.19 

 
 For an example using a frequency distribution, consider a final examination in 
which 12 pharmacy students scored 10 points, 28 scored 9, 35 scored 8, 26 scored 7, 
15 scored 6, 8 scored 5, and one student scored 4. What are the mean and standard 
deviation on this final examination? 

 

x f(x) x⋅f(x) x2⋅f(x) 
10 12 120  1200 
9 28 252  2268 
8 35 280  2240 
7 26 182  1274 
6 15  90    540 
5 8  40    200 
4 1   4      16 

 = 125 968  7738 

 
 

7.74 = 
125
968 = 

N
f(x))  (x = X ⋅

 

 

1.95 = 
125(124)

)(968125(7738) = 
1)N(N

](x)) f  (x[ (x))]  f  x([ N = S
222

2 −
−

⋅−⋅
 

 

1.40 = 1.95 = S = S 2  
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Table 5.5 Intervals Created Using Sturges’ Rule for Table 4.3 

Interval Range Midpoint  Frequency  mifi mi
2fi 

705.5-716.5 711 2 1,422  1,011,042 
716.5-727.5 722 6 4,332  3,127,704 
727.5-738.5 733 18 13,194  9,671,202 
738.5-749.5 744 22 16,368  12,177,792 
749.5-760.5 755 35 26,425  19,950,875 
760.5-771.5 766 28 21,448  16,429,168 
771.5-782.5 777 10 7,770  6,037,290 
782.5-793.5 788 4 3,152  2,483,776 

       = 125 94,111  70,888,849 

 
 
 Central Tendency from a Histogram. An estimate of the mean and standard 
deviation involves using the frequency distribution and the midpoint of each interval.  
For example, for the first interval in Table 5.5, the midpoint would be: 
 

711 = 
2

716.5+705.5 = 
2

points lowest+highest = Midpoint               Eq. 5.20 

 
A table can be prepared by tabulating the midpoints and their associated frequencies: 
 

Interval Range Midpoint (mi) Frequency (fi) mifi mi
2fi 

Interval 1 m1 f1 m1f1 m1
2f1 

Interval 2 m2 f2 m2f2 m2
2f2 

Interval 3 m3 f3 m3f3 m3
2f3 

... ... ... ... ... 
Interval n mn fn mnfn mn

2fn 
  = n mifi mi

2fi 
 
The midpoint of each class interval, mi, was weighted by its corresponding frequency 
of occurrence  fi. The computation of the mean and standard deviation involves a table 
similar to that used for frequency distributions discussed under central tendency. With 
a mean of  
 

N
f m = X ii

                                               Eq. 5.21 

 
a variance of 
 

1)n(n
)f m()fmn(

 = S
2

iii
2
i2

−
−

                                 Eq. 5.22 
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and a standard deviation as the square root of the variance of 
 

1)n(n
)f m()fmn(

 = S
2

iii
2
i

−
−

                                 Eq. 5.23 

 
Using the pharmacokinetic example in Chapter 4 (Table 4.3), the mean and standard 
deviation are calculated below. How accurate is the measure of the mean and standard 
deviation using Sturges’ Rule to create the histogram? The data is presented in Table 
5.4 and the calculations of the mean and standard deviation using the above formulas 
are presented below. The sample statistics for all the observations presented in the 
original table of Cmax is: Mean = 752.4 mcg and S.D. = 16.8 mcg. In this particular 
case, there is less than 5% difference between the means and standard deviations, 
which were calculated from the raw data and calculated from the intervals created by 
Sturges’ rule. 
 

mcg 752.9 = 
125

94,111 = X  

 

125(124)
)(94,111,849)125(70,888 = S
2

2 −
 

 

272.63 = 
15,500

4,225.804 = S2  

 

mcg 16.51 = 272.63 = S = S 2  

 
 If one were interested in calculating the median for a histogram the following 
formula could be used: 
 

















 −
⋅+=

f

F
2
n

wLMedian                                    Eq. 5.24 

 
where L is the lower limit of the interval that contains the median, w is the width of 
the class interval for each interval, n is the total sample size, F is the cumulative 
frequency corresponding to the lower limit of the interval (cumulative frequency for 
all the intervals in the histogram below the one containing the median), and f is the 
number of observations in the interval that contains the median. Using the example in 
Table 5.5, the interval with the median is 749.5 to 760.5, because 48 observations fall 
below 749.5 mcg (38.4%) and 83 observations are below 760.5 mcg (66.4%). With a 
width of 11 mcg, the median is: 
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1.754
35

48
2

125

115.749Median =
















 −
⋅+=  
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Example Problems (Answers are provided in Appendix D) 
 
1. Pharmacy students completing the final examination for a pharmacokinetics 

course received the following scores. Report the range, median, mean, variance, 
and standard deviation for these results. 

 

Student % Student % Student % Student % 

001 85 009 78 017 77 025 97 
002 79 010 85 018 83 026 76 
003 98 011 77 019 87 027 69 
004 84 012 86 020 78 028 86 
005 72 013 90 021 60 029 80 
006 84 014 84 022 88 030 92 
007 70 015 75 023 87 031 85 
008 90 016 96 024 82 032 80 

 
2. Calculate the measures of central tendency for noradrenaline levels (nmol/L) 

obtained during a clinical trial involving 15 subjects. 
 

2.5 2.6 2.5 2.4 2.4 

2.5 2.5 2.6 2.5 2.6 

2.3 2.7 2.3 2.8 2.2 
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3. Calculate the measures of central tendency for prolactin levels (ng/L) obtained 
during a clinical trial involving 10 subjects. 

 
9.4 7.0 7.6 6.3 6.7 

8.6 6.8 10.6 8.9 9.4 
 
4. In a study designed to measure the effectiveness of a new analgesic agent, 8 mg 

of drug was administered to 15 laboratory animals. The animals were subjected 
to the Randall-Selitto paw pressure test and the following results (in grams) were 
observed. 

    

Number Response Number Response Number Response 

1 240 6 260 11 265 
2 295 7 275 12 240 
3 225 8 245 13 260 
4 250 9 225 14 275 
5 245 10 260 15 250 

 
 Calculate the mean, median, variance, and standard deviation for this data. 
 
5. Using Excel or Minitab, report the various measures for central tendency for the 

30 samples of tetracycline capsules presented in Table 4.1. 
 
6. Listed below are the results of a first time in human clinical trial of a new agent 

with 90 mg/tablet administered to six healthy male volunteers. Use Excel or 
Minitab to report the measures of central tendency for these Cmax results.  

 
Cmax for Initial Pharmacokinetic with New Agent 

Subject Number Cmax (ng/ml) 
001 60 
002 71 
003 111 
004 46 
005 81 
006 96 

 
7. A Midwestern CRO runs a series of IgA analysis for setting specifications.  

Analytical results from eight different batches are as follows.  Report the 
descriptive statistics for the analyses.   

 
Lot IgA (mcg/ml)  Lot IgA (mcg/ml) 
1 150  5 117 
2 135  6 147 
3 141  7 162 
4 144  8 141 
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8. In a Phase I study 40 mg of the active ingredient was administered to twelve 
healthy male volunteers.  The AUC results are as follows: 

 
AUC for Phase I Pharmacokinetic Study 

Subject Number AUC (mg/L·H) 

01 1.37 
02 1.33 
03 1.89 
04 1.48 
05 1.65 
06 1.40 
07 1.31 
08 1.26 
09 1.44 
10 1.53 
11 1.70 
12 1.30 

 
 Assuming the data is from a normally distributed population, calculate the 

measures of central tendency.  
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6 
 
The Normal Distribution and  
Data Transformation 
 
 
 
 Described as a “bell-shaped” curve, the normal distribution is a symmetrical 
distribution that is one of the most commonly occurring outcomes in nature and its 
presence is assumed in several of the most commonly used statistical tests. Properties 
of the normal distribution have a very important role in the statistical theory of 
drawing inferences about population parameters (estimating confidence intervals) 
based on samples drawn from that population.  
 There are ways to transform initial data to produce distributions approximating a 
normal distribution. Various graphic and mathematical methods are available to test 
for normality. 
 
The Normal Distribution 
 
 The normal distribution is the most important distribution in statistics. This curve 
is a special frequency distribution that describes the population distribution of many 
continuously distributed biological traits. The normal distribution is often referred to 
as the Gaussian distribution, after the mathematician Carl Friedrich Gauss, even 
though a formula to calculate a normal distribution was first reported by the French 
mathematician Abraham DeMoivre in the mid-eighteenth century (Porter, 1986). 
 

 
 
It is critical at this point to realize that we are focusing our initial discussion on the 
total population, not a sample. As mentioned in the previous chapter, in the 
population, the mean is expressed as μ and standard deviation as σ. Sample data ( X
and S) are the best estimates of these population parameters and the distribution of the 

   Mean
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Figure 6.1 Proportions between various standard deviations 
under a normal distribution. 

 
sample data provides the best estimator of the population distribution. 
 The characteristics of a normal distribution are as follows. First, the normal 
distribution is continuous and the curve is symmetrical about the mean. Second, the 
mode, median, and mean are equal and represent the middle of the distribution. Third, 
since the mean and median are the same, the 50th percentile is at the mean with an 
equal amount of area under the curve, above and below the mean. Fourth, the 
probability of all possible outcomes is equal to 1.0, therefore, the total area under the 
curve is equal to 1.0. Since the mean is the 50th percentle, the area to left or right of 
the mean equals 0.5. Fifth, by definition, the area under the curve between one 
standard deviation above and one standard deviation below the mean contains an area 
equal to approximately 68% of the total area under the curve. At two standard 
deviations this area is approximately 95%. Sixth, as distance from the mean (in the 
positive or negative direction) approaches infinity, the frequency of occurrences 
approaches zero. This last point illustrates the fact that most observations cluster 
around the center of the distribution and very few data points occur at the extremes of 
the distribution. Also, if the curve is infinite in its bounds we cannot set absolute 
external limits on the distribution. 

 The frequency distribution (curve) for a normal distribution is defined as follows: 
 

e
2

1 = f 2/2)2-xi(-
i

σμ
πσ

                                  Eq. 6.1 

 
where: π (pi) = 3.14159 and e = 2.71828 (the base of natural logarithms). 
 In a normal distribution, the area under the curve between the mean and one 
standard deviation is approximately 34%. Because of the symmetry of the 
distribution, 68% of the curve would be divided equally above and below the mean. 
Why 34%? Why not a nice round number like 35%, 30%, or even better, 25%? The 
standard deviation is that point of inflection on the normal curve where the frequency 
distribution stops its descent to the baseline and begins to pull parallel with the x-axis. 
Areas or proportions of the normal distribution associated with various standard 
deviations are seen in Figure 6.1. 
 The term “the bell-shaped curve” is a misnomer since there are many bell-shaped 
 

-3    -2 -1 0 1 2 3

0.341 0.341

0.135 0.135

0.022 0.022
0.002 0.002
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Figure 6.2 Example of three normal distributions with 
different means and different standard deviations. 

 

Figure 6.3 Example of three normal distributions 
with the same mean and different standard deviations. 

 
curves, ranging from those that are extremely peaked with very small ranges to those 
that are much flatter with wide distributions (Figure 6.2). A normal distribution is 
completely dependent on its parameters of μ and σ. A standardized normal 
distribution has been created to compare and compute variations in such a distribution 
regardless of center or spread from the center. In this standard normal distribution the 
mean equals 0 (Figure 6.3). The spread of the distribution is also standardized by 
setting one standard deviation equal to +1 or −1, and two standard deviations equal to 
+2 or –2 (Figure 6.4). 
 As seen previously, the area between +2 and −2 is approximately 95%. 
Additionally, fractions of a standard deviation are calculated and their equivalent 
areas presented. If such a distribution can be created (with a mean equal to 0 and 
standard deviation equal to 1) then the equation for the frequency distribution (Eq. 
6.1) can be simplified to: 
 
 

A

B

C

0

A

C

B
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Figure 6.4 Standard normal distribution. 

 

e
2
1 = f /2)2xi(-

i π
 

 

718282.
2.5066272

1 = f /2)2xi(-
i  

 

08443711. = f /2)2xi(-
i                                         Eq. 6.2 

 
Table 6.1 is an abbreviation of a standard normal distribution (a more complete 
distribution is presented in Table B2 in Appendix B, where every hundredth of the z-
distribution is defined between 0.01 to 3.69). An important feature of the standard 
normal distribution is that the number of standard deviations away from the 
population mean can be expressed as a given percent or proportion of the area of the 
curve. The symbol z, by convention, symbolizes the number of standard deviations 
away from the population mean. The numbers in these tables represent the area of the 
curve that falls between the mean (z = 0) and that point on the distribution above the 
mean (e.g., z = +1.5, would be the point at 1.5 standard deviations above the mean). 
Since the mean is the 50th percentile, the area of the curve that falls below the mean 
(or below zero) is 0.5000. Because a normal distribution is symmetrical, this table 
could also represent the various areas below the mean. For example, for z = −1.5 (or 
1.5 standard deviations below the mean), z represents the same area from 0 to −1.5, as 
the area from 0 to +1.5. A z-value tells us how far above and below the mean any 
given score is in units of the standard deviation. 
 Using the information in Table 6.1, the area under the curve that falls below +2 
would be the area between +2 and 0, plus the area below 0. 
 

Area (< +2) = Area (between 0 and +2) + Area (below 0) 
Area (< +2) = 0.4772 + 0.5000 = 0.9772 

 
These probabilities can be summed because of the addition theorem discussed in 
Chapter 2. 

Z
-3 -2 -1 0 1 2 3
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Table 6.1 Selected Areas of a Normal Standardized Distribution 
(Proportion of the Curve between 0 and z) 

z Area z Area z Area 

0.00 0.0000 1.00 0.3413 2.00 0.4772 
0.05 0.0199 1.05 0.3531 2.05 0.4798 
0.10 0.0398 1.10 0.3543 2.10 0.4821 
0.15 0.0596 1.15 0.3749 2.15 0.4842 
0.20 0.0793 1.20 0.3849 2.20 0.4861 
0.25 0.0987 1.25 0.3944 2.25 0.4878 
0.30 0.1179 1.30 0.4032 2.30 0.4893 
0.35 0.1368 1.35 0.4115 2.35 0.4906 
0.40 0.1554 1.40 0.4192 2.40 0.4918 
0.45 0.1736 1.45 0.4265 2.45 0.4929 
0.50 0.1915 1.50 0.4332 2.50 0.4938 
0.55 0.2088 1.55 0.4394 2.55 0.4946 
0.60 0.2257 1.60 0.4452 2.60 0.4953 
0.65 0.2422 1.65 0.4505 2.65 0.4960 
0.70 0.2580 1.70 0.4554 2.70 0.4965 
0.75 0.2734 1.75 0.4599 2.75 0.4970 
0.80 0.2881 1.80 0.4641 2.80 0.4974 
0.85 0.3023 1.85 0.4678 2.85 0.4978 
0.90 0.3159 1.90 0.4713 2.90 0.4981 
0.95 0.3289 1.95 0.4744 2.95 0.4984 

 
 All possible events would fall within this standard normal distribution (p(x) = 
1.00). Since the probability of all events equals 1.00 and the total area under the curve 
equals 1.00, then various areas within a normalized standard distribution can also 
represent probabilities of certain outcomes. In the above example, the area under the 
curve below two standard deviations (represented as +2) was 0.9972. This can also be 
thought of as the probability of an outcome being less than two standard deviations 
above the mean. Conversely, the probability of being two or more standard deviations 
above the mean would be 1.0000 − 0.9772 or 0.0228. 
 Between three standard deviations above and below the mean, approximately 
99.8% of the observations will occur. Therefore, assuming a normal distribution, a 
quick method for roughly approximating the standard deviation is to divide the range 
of the observations by six, since almost all observations will fall within these six 
intervals. For example, consider the data in Table 4.3. The true standard deviation for 
this data is 16.8 mcg. The range of 86 mcg, divided by six would give a rough 
approximation of 14.3 mcg for the standard deviation (the actual S is 16.8 mcg as 
seen in Figure 5.7). 
 It is possible to calculate the probability of any particular outcome within a 
normal distribution. The areas within specified portions of our curve represent the 
probability of the values of interest lying between the vertical lines. To illustrate this, 
consider a large container of tablets (representing a total population) that is expected 
to be normally distributed with respect to the tablet weight. What is the probability of 
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randomly sampling a tablet that weighs within 1.5 standard deviations of the mean? 

 
 
Because weight is a continuous variable, we are concerned with p(> −1.5 or < +1.5). 
From Table 6.1: 
 
 p(z < +1.5) = Area between 0 and +1.5 = 0.4332 
 p(z > −1.5) = Area between 0 and −1.5 = 0.4332 
 p(z  −1.5 to +1.5) =   0.8664 
 
There is a probability of 0.8664 (or 87% chance) of sampling a tablet within 1.5 
standard deviations of the mean. What is the probability of sampling a tablet greater 
than 2.25 standard deviations above the mean? 
 

 
 
First, we know that the total area above the mean is 0.5000. By reading Table 6.1, the 
area between 2.25 standard deviations (z = 2.25) and the mean is 0.4878 (the area 
between 0 and +2.25). Therefore the probability of sampling a tablet weighing more 
than 2.25 standard deviations above the mean weight is: 
  

p(z > +2.25) = 0.5000 − 0.4878 = 0.0122 
 
If we wish to know the probability of a tablet being less than 2.25 standard deviations 
above the mean, the complement probability of being less than a z-value of +2.25 is: 
 

p(z < +2.25) = 1 − p(z > +2.25) = 1.000 − 0.0122 = 0.9878 
 
Also calculated as: 
 

p(z < +2.25) = p(z < 0) + p(z < 2.25) = 0.5000 + 0.4878 = 0.9878 

   
-1.5 +1.5

   
+2.25
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If the mean and standard deviation of a population are known, the exact location (z 
above or below the mean) for any observation can be calculated using the following 
formula: 
 

σ
μ−= xz                                               Eq. 6.3 

 
Because values in a normal distribution are on a continuous scale and are handled as 
continuous variables, we must correct for continuity. Values for x would be as follows 
for some arbitrary measures in mg: 
 

Likelihood of being:  greater then 185 mg = 
less than 200 mg = 

200 mg or greater = 
between and including 185 and 200 mg = 

p(>185.5) 
p(<199.5) 
p(>199.5) 
p(>184.5 and <200.5) 

 
To examine this, consider a sample from a known population with expected 
population parameters (previous estimates of the population mean and standard 
deviation, for example based on prior production runs for a specific hard shell 
capsule). With an expected population mean assay of 750 mg and a population 
standard deviation of 60 mg, what is the probability of sampling a capsule with an 
assay greater than 850 mg? 
 

 
 
As a continuous variable, the p(>850 mg) is actually p(>850.5 mg) when corrected for 
continuity. 
 

68.1
60

5.100
60

7505.850xz +==−=−=
σ

μ  

 
p(z > +1.68) = 0.5000 − p(z < 1.68) = 0.5000 − 0.4535 = 0.0465 

 
 
Given the same population as above, what is the probability of randomly sampling a 
capsule with an assay between 700 and 825 mg? 
 

   
850.5
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Once again correcting for continuity, p(<825 mg) is rewritten as p(<825.5 mg) and 
p(>700 mg) is really p(>699.5 mg). 
 

26.1
60

5.75
60

7505.825xz +==−=−=
σ

μ  

 

84.0
60

5.50
60

7505.699xz −=−=−=−=
σ

μ  

 
 p(between 699.5 and 825.5) = p(z < +1.26) + p(z > −0.84)  

           = 0.3962 + 0.2995 = 0.6957  
 
Given the same population, what is the probability of randomly sampling a capsule 
with an assay less than 600 mg? 
 

 
 
As a continuous variable, p(<600 mg) is p(>599.5 mg): 
 

5.2
60

5.150
60

7505.599xz −=−=−=−=
σ

μ  

 
p(z < −2.5) = 0.5000 − p(z < 2.5) = 0.5000 − 0.4938 = 0.0062 

 
Thus, in these examples with the given population mean and standard deviation, the 
likelihood of randomly sampling a capsule greater than 850 mg is approximately 5%, 
a capsule less than 600 mg is less than 1%, and a capsule between 700 and 825 mg is 
almost 70%. 

   
699.5 825.5

   
599.5
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 Lastly, the probability of obtaining any one particular value is zero, but we can 
determine probabilities for specific ranges. Correcting for continuity, the value 750 
(the mean) actually represents an infinite number of possible values between 749.5 
and 750.5 mg. The area under the curve between the center and the upper limit would 
be 
 

01.0
60

5.0
60

7505.750xz +==−=−=
σ

μ  

 
p(z < 0.01) = 0.004 

 
Since there would be an identical area between 749.5 and the mean, the total 
proportion associated with 750 mg would be 
 

p(750 mg) = 0.008 
 
 In the previous examples we knew both the population mean (μ) and the 
population standard deviation (σ). However, in most statistical investigations this 
information is not available and formulas must be employed that use estimates of 
these parameters based on the sample results. 
 Important z-values related to other areas under the curve for a normal distribution 
include: 
 

90% −1.64 < z < +1.64 
95% −1.96 < z < +1.96 
99% −2.57 < z < +2.57 

 
Determining if the Distribution is Normal 
 

The sample used in a study is our best guess of the characteristics of the 
population: the center, the dispersion, and the shape of the distribution. Therefore, the 
appearance of the sample is our best estimate whether or not the population is 
normally distributed. In the absence of any information that would disprove 
normality, it is assumed that a normal distribution exists (e.g., initial sample does not 
look extremely skewed or bimodal).  

One quick method to determine if the population is normally distributed is to 
determine if the sample mean and median are approximately equal. If they are about 
the same (similar in value) then the population probably has a normal distribution. If 
the mean is substantially greater than the median, the population is probably 
positively skewed and if the mean is substantially less than the median, a negatively 
skewed population probably exists.  

Normality can be estimated visually by looking at a histogram or box plot of the 
sample data, or by plotting data on graph paper or probability paper. Using a box-
and-whisker plot (described in Chapter 4), it would reflect a normally distributed 
population if the top and bottom lines of the box plot (25th and 75th percentiles) were 
approximately equidistant from the center line (the median). Visually inspecting a 
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histogram can indicate if the distribution for sample data is approximately normal, 
with most of the results clustering near the center and few observations at each end of 
the distribution. A scatter plot (also described in Chapter 4) can use sample data to 
plot a theoretical cumulative distribution function (cdf) on the x-axis against actual 
cumulative distribution functions on the y-axis. If normality exists a straight line will 
be produced. Finally a scatter plot reflecting a quantile-by-quantile plot, with the 
expected cumulative distributions by quintiles for a normal distribution on one axis 
and of the quantiles for the observed sample data on the other axis, should create a 45 
degree line. The quantile-by-quantile plot could be used in a similar manner for other 
well-defined distributions. 
 Two other similar visual methods to determine if sample data is consistent with 
expectations for a normal distribution are to plot a cumulative frequency curve 
using normal graph paper or a normal probability plot using special graph paper 
known as probability paper. In a cumulative frequency curve, data is arranged in 
order of increasing size and plotted on normal graph paper: 
 

100  
n

frequency cumulative =frequency  cumulative % ×  

 
If the data came from a normally distributed population, the result will be an S-shaped 
curve. 
 Probability paper (e.g., National #12-083 or Keuffel and Esser #46-8000) has a 
unique nonlinear scale on the cumulative frequency axis that will convert the S-
shaped curve to a straight line. The normal probability plot or P-P plot will produce a 
45 degree straight line that can be drawn through the percent cumulative frequency 
data points if the estimated population is normally distributed. If a curvilinear 
relationship exists, the population distribution is skewed. Using the distribution 
presented in Table 6.2, Figure 6.5 illustrates the data presented as a: a) box-and-
whisker plot; b) histogram; 3) cumulative frequency curve; and 4) probability plot.  
 The skew of a distribution also can be estimated numerically using the formula: 
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A value close to zero indicates symmetric data. If the results are negative it indicates a 
negative skew and positive a positive skew. The larger the value (negative or 
positive), the greater the skew. One rule of thumb for the significance of skew is 
provided by Bulmer (1967): highly skewed data if greater than +1 or less than −1; 
moderate skew if between 0.5 and 1.0 (positive or negative); and approximately 
symmetrical if less than +0.5 or more than −0.5. For the data presented in Table 6.2 
the distribution would be considered approximately symmetrical. 
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Table 6.2. Assay Results for 100 Randomly Sampled Tablets 

Tablet Assay f cf 
112 1 1 
116 1 2 
117 2 4 
118 2 6 
119 4 10 
120 5 15 
121 7 22 
122 8 30 
123 8 38 
124 10 48 
125 11 59 
126 7 66 
127 8 74 
128 6 80 
129 6 86 
130 3 89 
131 3 92 
132 2 94 
133 2 96 
134 1 97 
135 1 98 
137 1 99 
140 1 100 

 
As mentioned in Chapter 4, kurtosis is the characteristic of a frequency 

distribution that refers to the shape of the distribution of values regarding its relative 
flatness and peakedness. It indicates the extent to which a distribution is more peaked 
or flat-topped than a normal distribution. For the normal distribution, the theoretical 
kurtosis value equals zero and the distribution is described as mesokurtic. If the 
distribution has long tails (relatively larger tails), the statistic will be greater than zero 
and called leptokurtic. One estimate of kurtosis from sample data is: 
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A rule-of-thumb kurtosis should be within the +3 to −3 range when the data are 
normally distributed. Negative kurtosis means there are too many cases in the tails of 
the distribution; whereas a positive kurtosis reflects too few cases in the tails. Using 
the data presented in Table 6.2, the mean is 124.95 with a standard deviation of 4.63 
and the kurtosis is: 
  



Chapter 6 110

135

125

115

 
130120

20

10

0

 
a. Box-and Whisker Plot b. Histogram 

c. Cumulative Frequency Curve 

.01

.05
.10

.20

.30

.40

.50

.60

.70

.80

.90

.95

.99

Pr
ob

ab
ili

ty

115 125120 130 135  
d. Probability Paper 

Figure 6.5 Various visual methods for determining normality. 
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The result is well below a +3 and one can assume normality, which is similar to the 
visual results observed in Figure 6.5.  

Several statistical procedures exist to test for population normality based on 
sample data. These tests include: 1) chi-square goodness-of-fit test; 2) the 
Kolmogorov-Smirnov D test; 4) Anderson-Darling test; 5) the Lilliefors test and 6) 
Shapiro-Wilk W test. Both the chi-square goodness-of-fit test and Kolmogorov-
Smirnov (K-S) test will be described in Chapters 16 and 21, respectively, with fully 
worked out examples. The Anderson-Darling test is covered in detail in Chapter 21. 

Both the Anderson-Darling test and Lilliefors test are modifications of the K-S 
test and the latter is sometimes referred to as the Kolmogorov-Smirnov Lilliefors 
test. Without the Lilliefors correction, the K-S test is more conservative (greater 
likelihood of rejecting a normality). The Anderson-Darling test gives more weight to 
the tallies of the distribution than the K-S test. When sample size is large, one should 
be cautious because even small deviations from normality can be significant with the 
K-S test or chi-square goodness-of-fit tests. Information about these tests can be 
found in D’Agostino and Stephens (1986).  
 The Shapiro-Wilk W test is another standard test for normality and is 
recommended for smaller sample sizes (2000 or less). It is conducted by regressing 
the quantiles of the observed data against that of the best-fit for the normal 
distribution. The Shapiro-Wilk W-statistic is calculated as follows.  

( )
( )


−
=
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i

2
ii

Xx

xa
W                                           Eq. 6.6 

where the xi’s are the ordered sample values (x(1) is the smallest) and the ai’s are 
coefficients from a table, based on the means and variances of the ordered statistics of 
a sample from a normal distribution (Shapiro and Wilk, 1965). The resultant W-
statistic (ranging from 0 to 1) is then compared to a table of critical values. Computer 
software computes the W-statistic and corresponding p-value. A significant statistic 
(small values for W, with corresponding p-value <0.05) would result in rejecting the 
assumption that the sample comes from a normally distributed population.  

All of the previously mentioned tests are classified as empirical distribution 
function statistics or EDF tests. They involve making a good guess of the “true 
distribution function” (in this case a normal distribution) and by using the observed 
results from a random sample. Graphs can be constructed, where the empirical 
distribution function, S(x), is always a step function and each step has a height 1/n. 
These graphs and/or the above statistics are computed to determine the amount of 
discrepancy between the theoretical, F(x) distribution and the experimental 
(empirical) results. 
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Data Transformations: An Overview 
 

A normal distribution is defined by its mean (μ) and its standard deviation (σ). 
When a sample is taken from a normal distribution population, X  and S summarize 
all of the information available in the sample about the parent distribution. 
Unfortunately, the ability to use X  and S as summary statistics does not apply to 
nonnormal distributions. Certain inferential statistics, such as confidence intervals 
(Chapter 7), cannot be applied, and if applied, intervals tend to be wider and tests of 
hypothesis (Chapter 8) have less power. Also, as will be seen in future chapters, 
inferential statistical tests are based on assumptions and the validity of results 
obtained from these tests will depend on how well these assumptions were met. One 
assumption for several commonly used tests (e.g., t-test, F-test, correlation) is that the 
data is sampled from a normally distributed population. As seen in the previous 
section it is possible graphically or through statistical procedures to determine if the 
population (via sample results) is normally distributed. What if the population is 
assumed to be nonnormal in its distribution? Through the use of various 
transformation procedures, nonnormally distributed data can be altered to create a 
new distribution that approximates the symmetric bell-shaped curve of a normal 
distribution. We have already seen an example of data transformation when we 
created a standard normal distribution where a normal distribution was created with a 
mean of 0 and a standard deviation of 1. Distributions were standardized by changing 
the original data points to standard scores (z-scores) using Eq. 6.3.  
 
Lognormal Transformation and the Geometric Mean 
 

The most commonly encountered transformations are involved with populations 
that appear to be positively skewed. In this case, logarithmic or lognormal 
transformations are used when most of the values are to the left of the distribution 
(near zero) and few values are in the right side of the curve. This process involves 
converting each number to its logarithmic form: 
 

)xlog(x ii =′                                           Eq. 6.7 
 
Logarithms in base 10 are usually used, but any base would be satisfactory. Use of 
data transformations should make theoretical sense. Note that the log of zero is 
undefined and will lead to error messages. If zeros are present in the sample, one can 
pick an arbitrary small value (e.g., 0.0001) and replace all zeros with that value. Some 
statisticians prefer the following equation based on theoretical grounds and it is 
preferred when dealing with small numbers of observations. Also, this equation 
removes the problem of dealing with zeros: 
 

)1xlog(x ii +=′                                       Eq. 6.8 
 

Either transformation can be used if the variable effects are multiplicative rather than 
additive. 
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Normal Scale 

 

Logarithmic Scale 

 

Figure 6.6 Comparisons of data on normal and logarithmic scales. 

 
 For calculating the center of the logarithmic transformation of data, the 
geometric mean is reported. Because of the few extreme values to the right of the 
curve, the arithmetic mean ( X ) would be “pulled” to the right. Performing a 
logarithmic transformation would produce a distribution that is approximately a 
normal distribution and the final mean will be more to the “left” and thus closer to the 
median of the original distribution. 
 This process involves converting each number to its logarithmic form (Eq. 6.7 or 
Eq. 6.8). These values are summed and divided by the total number of observations to 
produce an average logarithmic value. This value is then converted back to real 
numbers (original units of measure) by taking the antilog, which represents the 
geometric mean.  
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n

)xlog(
( antilog = X i

G
                                Eq. 6.9 

 
Illustrated below are two sets of identical data, with the left on a normal scale and the 
right using a logarithmic scale (Figure 6.6). Notice the line on the normal scale 
appears to be skewed while on the logarithmic scale it appears to be more bell-
shaped. A positively skewed distribution, as seen above, is often referred to as a log-
normal distribution. 
 To illustrate this process, consider the Tmax data observed in 12 health volunteers, 
which appears in Table 6.3. The arithmetic mean ( X ) is 2.33 and the median is 1.65. 
The few extreme scores in this skewed distribution have pulled the mean to the right 
of the median. The conversion to a logarithmic transformation of scores is seen in the 
last column of Table 6.3. The mean for the logarithmic transformed scores is: 
 

0.304 = 
12

0.857 ... + 0.146 + 0.079 = log Average  

 
 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

7

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

1

2

3

4

5

6

7



Chapter 6 114

 Table 6.3 Tmax Results in Ascending Order 

Subject Tmax Log Transformation 

3 1.2 0.079 
5 1.4 0.146 
9 1.5 0.176 

10 1.5 0.176 
12 1.6 0.204 
1 1.6 0.204 
6 1.7 0.230 
2 1.8 0.255 
8 2.1 0.322 
4 2.6 0.415 

11 3.8 0.580 
7 7.2 0.857 

 = 28.0  3.644 
 
Converted back to the antilog, the geometric mean is: 
 

2.01 = (0.304) antilog = X G  
 
If Eq. 6.8 were used to calculate the log values, the geometric mean would be 
reported as the antilog of the mean minus one. Notice that the geometric mean is 
much closer to the median of the original distribution of Tmax data. An alternate 
formula for calculating the geometric mean is to take the nth root of the product of all 
the observations: 
 

n
G dataallofproductX =                                    Eq. 6.10 

 
This gives the same result as the logarithmic transformation. 
 

01.22.7...5.14.12.1X 12G =×××=  
 
If Eq. 6.9 were used, one would be added to each value and one subtracted from the 
final result. 
 Excel calculates the geometric mean by using the Function option GEOMEAN. 
 
Other Types of Transformations 
 
 The square-root transformation is similar to the lognormal transformation and 
useful for more positively skewed data. The transformed data is the square root of 
each original measurement and is used when the data consist of counts. 
 

ii xx =′                                           Eq. 6.11 
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or 
 

5.0xx ii +=′                                        Eq. 6.12 
 
The square-root transformation is useful when the sample means are approximately 
proportional to the variances of the samples. Using the second equation (Eq. 6.12) 
avoids potential problems with zeros in the data and is useful for small data sets. This 
can be helpful for Poisson distributions, for example, counts associated with rare 
events such as number of defects in a production run.  
 The reciprocal transformation is also for positively skewed data. Also called 
inverse transformation, this can be used when standard deviation is proportional to 
the square root of the mean and data is clustering near zero: 
 

i
i x

1x =′                                              Eq. 6.13 

or  
 

1x
1x
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=′                                            Eq. 6.14 

 
For example, a few patients may take a very long time to respond to a given therapy 
and cause a skewed distribution. The reciprocal transformation helps make this type 
of data more symmetrical. Thus, there are three transformations that can be used to 
normalize positively skewed data (logarithmic, square root, and reciprocal 
transformations). The inverse (reciprocal) transformation can be used for the most 
extreme cases of positive skewing. For less severely skewed data the recommended 
transformation is logarithmic and the square root for more positively skewed 
distribution. For Poisson distributions it is recommended to normalize the distribution 
using the square root transformation.  
  Theoretically, proportions for binomial distribution are approximately normally 
distributed when p is near 0.50. However, as p goes to extremes (0 to 20% and 80 to 
100%), normality is lost. If the square root of each proportion in a binomial 
distribution is transformed to its arcsine, the resultant proportions p' will have a 
distribution that is approximately normal.  
 

parcsinp =′                                       Eq. 6.15 
 

This transformation is referred to as the arcsine transformation, arcsine square 
root transformation, angular transformation, or inverse sine tranformation. This 
transformation is used only when the data are proportions or percents.  

For data that is negatively skewed (tailing to the left), subtract each data point 
from the largest data point and add one to each resulting value. This will result in a 
positively skewed distribution. This positively skewed distribution, based on the 
severity of the skew, can be transformed using square root, logarithmic, or inverse 
transforms. If the data is negatively skewed for proportional data (0 ≤ p ≤ 1) a 
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different log transformation equation can be employed: 
 









−
=′

x1
xlogxi                                       Eq. 6.16 

 
If transformations are used to modify the data to produce data that assumes the 

shape of a normal distribution, then mathematical manipulations for the subsequent 
statistical test are performed on the transformed data, not the original data. 
 
Using Excel® or Minitab® for Evaluating Normality 
 
 Excel has function options for both kurtosis (KURT) and skew (SKEW) using 
Eq. 6.4 and 6.5. Both kurtosis and skew also are reported as part of the descriptive 
statistics option under data analysis (see Figure 5.7). 
 

Data  Data Analysis  Descriptive Statistics  Summary Statistics 
 

For Minitab skew and kurtosis can both be evaluated as part of the display 
descriptive statistics options in Figure 5.8. 
 

Stat  Basic Statistics  Display Description Statistics 
 
For the data presented in Table 6.2 the Minitab summary would look as follows: 
 

 
 

Minitab provides three tests to evaluate normality:1) Anderson Darling; 2) 
Kolmogorov-Smirnov and 3) the Ryan-Joiner test which is similar to the Shapiro-
Wilk W test. These are located under “Normality Test” under the Basic Statistics 
menu: 
 

Stat  Basic Statistics  Normality Test 
 
All produce a graphic result and data are evaluated based on their proximity to a 
straight line on probability paper as presented in Figure 6.7 for the Anderson Darling 
evaluation of the data in Table 6.2. The important feature is the p-value to the right of 
the graph. An explanation of the meaning of the p-value will be discussed in the 
following chapter. For the current discussion, assume that the distribution is 
symmetrical if the p > 0.05. 

In addition Minitab can perform the Anderson Darling normality test as part of 
the results when the “Graphical Summary” option is selected from the basic statistics 
menu: 
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Figure 6.7 Anderson Darling graphic display with Minitab. 

 

 
Stat  Basic Statistics  Graphical Summary 

 
Figure 6.8 displays the results for the data in Table 6.2.  
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Figure 6.8 Results of a graphical summary with Minitab. 
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Example Problems (Answers are provided in Appendix D) 
 
1. Listed in Table 6.4 are the times to maximum concentration observed during a 

clinical trial. It is believed that the data is positively skewed. Calculate the 
median, mean, and geometric mean. Based on the sample, does the population 
appear to be positively skewed? 

 
2. Recalculate the data in Table 6.4 using the square root and reciprocal 

transformation methods. Calculate the transformed mean and then transform the 
mean back into the original units of measure. 
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Table 6.4 Clinical Trial Results - Tmax (in hours) 

Subject tmax Subject tmax Subject tmax 
A 1.41 F 1.96 K 1.62 
B 1.81 G 0.78 L 1.15 
C 3.25 H 1.51 M 2.03 
D 1.37 I 1.18 N 2.21 
E 1.09 J 2.56 O 0.91 

 
3. Repeat question 8 in Chapter 5 assuming the data is positively skewed and 

calculate the geometric mean for the sample data. 
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7 
 
Confidence Intervals and 
Tolerance Limits 
 
 
 

Intervals can be created to estimate population characteristics based on sample 
data. A confidence interval estimate the true population mean based on the best 
estimator available, the sample means. Although we will never know the exact 
population mean we can create a range of possible values for the mean and know that 
the population mean is located within that interval. Similarly, we can use tolerance 
limits to once again use the sample mean and sample standard deviation to estimate 
range within which we would expect to find a certain percentage of the observations. 
In both cases, we can never be 100% certain of our results, but can assume we are 
correct with a certain amount of confidence in the intervals we create. 
 
Sampling Distribution 
 
 If we have a population and withdraw a random sample of observations from that 
population, we could calculate a sample mean and a sample standard deviation. As 
mentioned previously, sample statistics would be our best estimates of the true 
population parameters. 
      

X sample  ≈  μ population 
 S sample  ≈  σ population 

 
The characteristics of dispersion or variability are not unique to samples alone. 
Individual samples can also vary around the population mean. Just by chance, or luck, 
we could have sampled from the upper or lower ends of the population distribution 
and calculated a sample mean that was too high or too low. Through no fault of our 
own, our estimate of the population mean would be erroneous. 
 To illustrate this point, let us return to the pharmacokinetic data used in Chapter 
4. From this example, we will assume that the data in Table 4.3 represented the entire 
population of pharmacokinetic studies ever conducted on this drug. Due to budgetary 
restraints or time, we were only able to analyze five samples from this population. 
How many possible ways could five samples be randomly selected from this data? 
Based on the combination formula (Eq. 2.11) there would be 
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Table 7.1 Possible Samples from Population Presented as Table 4.3 

 Sample A Sample B Sample C Sample D 
 706 731 724 778 
 714 760 752 785 
 718 752 762 788 
 720 736 734 790 
 724 785 775 793 

Mean = 716.4 752.8 749.4 786.8 
S.D. =     6.8  21.5  20.6    5.7 

 
 

5234,531,27 = 
20!1 5!

125! = 
5

125








 

 
possible ways. Thus, it is possible to sample these 125 values in over 234 million 
different ways and because they are sampled at random, each possible combination 
has an equal likelihood of being selected. Therefore, by chance alone we could 
sample the smallest five values in our population (Sample A) or the largest five 
(Sample D) or any combination between these extremes (Table 7.1). Samples B and C 
were generated using the Random Numbers Table B1 in Appendix B. 
 The mean is a more efficient estimate of the center, because with repeated 
samples of the same size from a given population, the mean will show less variation 
than either the mode or the median. Statisticians have defined this outcome as the 
central limit theorem and its derivation is beyond the scope of this book. However, 
there are three important characteristics that will be utilized in future statistical tests. 
 

1. The mean of all possible sample means is equal to the mean of the 
original population from which they were sampled. 

 
μ = X X                                                 Eq. 7.1 

 
  If we averaged all 234,531,275 possible sample means, this grand 

mean or mean of the mean would equal the population mean (μ = 
752.4 mcg for N = 125) from which they were sampled. 

 
2. The standard deviation for all possible sample means is equal to the 

population standard deviation divided by the square root of the 
sample size. 

 

n
 = X

σσ                                               Eq. 7.2 

 
 Similar to the mean of the sample means, the standard deviation for 
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all the possible means would equal the population standard 
deviation divided by the square root of the sample size. The 
standard deviation for the means is referred to as the standard 
error of the mean or SEM. 

 
 3. Regardless of whether the population is normally distributed or 

skewed, if we plot all the possible sample means, the frequency 
distribution will approximate that of a normal distribution, based on 
the central limit theorem. This theorem is critical to many 
statistical formulas because it justifies the assumption of normality. 
This will approximate a normal distribution, regardless of the 
distribution of the original population, when the sample size is 
relatively large. To demonstrate this point, Figure 7.1 illustrates the 
distribution of sample means (n = 3) resulting from a normal, 
skewed and rectangular distribution. All three resultant possible 
means take on an approximate normal distribution.  As the sample 
size increases the distribution becomes even more Gaussian. In fact, 
a sample size as small as n = 30 will often result in a near-normal 
sampling distribution (Kachigan, 1991).  

 
 If all 234,531,275 possible means were plotted, they would produce a frequency 
distribution that is normally distributed. Because the sample means are normally 
distributed, values in the normal standardized distribution (z distribution) will also 
apply to the distribution of sample means. For example, of all the possible sample 
means: 
 
 68% fall within + or − 1.00 SEM 
 90% fall within + or − 1.64 SEM 
 95% fall within + or − 1.96 SEM 
 99% fall within + or − 2.57 SEM 
 
The distribution of the mean will be a probability distribution, consisting of various 
values and their associated probabilities, and if we sample from any population, the 
resultant means will be distributed on a normal bell-shaped curve. Most will be near 
the center and 5% will be outside 1.96 standard errors of the distribution. 
 
Standard Error of the Mean versus the Standard Deviation 
 
 As seen in the previous section, in a sampling distribution, the overall mean of 
the means would be equal to the population mean and the dispersion would depend on 
the amount of variance in the population. Obviously, the more we know about our 
population (the larger the sample size), the better our estimate of the population 
center. The best estimate of the population standard deviation is the sample standard 
deviation, which can be used to replace the σ in Eq. 7.2 to produce an estimate of the 
standard error of the mean based on sample data: 
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Original Sample Data All Possible Sample Means (n = 3) 
  

 
 
 

 
 
 

 
 
 
 

 
Figure 7.1 Examples of all possible sample means. 
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 SEM= 
n

S = S x                                         Eq. 7.3 

 
The standard deviation (S or SD) describes the variability within a sample; whereas 
the standard error of the mean (SEM) represents the possible variability of the mean 
itself. The SEM is sometimes referred to as the standard error (SE) and describes 
the variation of all possible sample means and equals the SD of the sample data 
divided by the square root of the sample size. As can be seen by the formula, the 
distribution of sample means (the standard error of the mean) will always be smaller 
than the dispersion of the sample (the standard deviation). 
 Authors may erroneously present the distribution of sample results by using the 
SEM to represent dispersion because there appears to be less variability. This may be 
misleading since the SEM has a different meaning from the SD. The SEM is smaller 
than the SD and the intentional presentation of the SEM instead of the larger SD is a 
manipulation to make data look more precise. The SEM is extremely important in the 
estimation of a true population mean, based on sample results. However, because it is 
disproportionately low, it should never be used as a measure of the distribution of 
sample results. For example, the SEM from our previous example of liquid fill 
volumes (Table 5.1) is much smaller (by a factor of almost six) than the calculated 
standard deviation: 
 

0.152 = 
30

0.835 = SEM  

 
By convention, the term standard error refers to the variability of a sampling 
distribution. However, authors still use the standard error of the mean to present 
sample distributions, because the SEM is much smaller than the SD and presents a 
much smaller variation of the results. An even more troublesome occurrence is the 
failure of authors to indicate in reports or publications whether a result represents an 
SD or an SEM. For example, a poster or report simply states “456.1 ± 1.3” with no 
indication of what the term to the right of the ± sign represents. Is this a very tight 
SD? Is it the SEM? Could it even be the RSD? Without proper labeling, the reader 
would never know what the dispersion term represents. 
 Standard error of the mean can be considered as a measure of precision. 
Obviously, the smaller the SEM, the more confident we can be that our sample mean 
is closer to the true population mean. However, at the same time, large increases in 
sample size produce relatively small changes in this measure of precision. For 
example, using a constant sample SD of 21.5 for sample B, presented above, the 
measure of SEM changes very little as sample sizes increase past 30 (Figure 7.2). A 
general rule of thumb is that with samples of 30 or more observations, it is safe to use 
the sample standard deviation as an estimate of population standard deviation. 
 
Confidence Intervals 
 
 As discussed in Chapter 5, using a random sample and independent measures, 
one can calculate measures of central tendency ( X and S). The result represents 
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Figure 7.2 Variation in standard error of the means by sample size. 

 
only one sample that belongs to a distribution of many possible sample means. 
Because we are dealing with a sample and in most cases do not know the true 
population parameters, we often must make a statistical “guess” at these parameters. 
For example, the previous samples A through D (Table 7.1) all have calculated 
means, any of which could be the true mean for the population from which they were 
randomly sampled. In order to define the true population mean, we need to allow for a 
range of possible means based on our estimate: 
 

Factor
Fudge""

   
 MeanSample

Estimate
  =  

Mean
Population

±  

 
This single estimate of the population mean (based on the sample) can be referred to 
as a point estimate. The result is a range of possible outcomes defined as boundary 
values, interval estimators, or confidence limits. At the same time, we would like to 
have a certain amount of confidence in our statement that the population mean falls 
within these boundary values. For example, we may want to be 95% certain that we 
are correct, or 99% certain. Note again that because it is a sample, not an entire 
population, we cannot be 100% certain of our prediction. The only way to be 100% 
certain would be to measure every item in the population and in most cases that is 
either impractical or impossible to accomplish. Therefore, in order to have a certain 
confidence in our decision (i.e., 95% or 99% certain) we need to add to our equation a 
factor to allow us this confidence: 
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×±             Eq. 7.4 

 
This reliability coefficient (sometime referred to as the confidence coefficient) can be 
obtained from the normal standardized distribution. For example if we want to be 
certain 95% of the time, we will allow an error 5% of the time. We could err on the 
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high side or low side and if we wanted our error divided equally between the two 
extremes, we would allow a 2.5% error too high in our estimation and 2.5% too low 
in our estimate of the true population mean. In Table B2 of Appendix B we find that 
95% of the area under the curve falls between −1.96 z and +1.96 z. This follows the 
theory of the normal distribution where 95% of the values, or in this case sample 
means, fall within 1.96 standard error of the mean units. The actual calculation for the 
95% confidence interval would be:  
 

n
  Z  X  =  /2)-(1

σμ α ×±                                   Eq. 7.5 

 
The symbol α/2 will be defined in the next chapter. For the time being, assume α/2 is 
represented by 1.96 for the case of a 95% confidence interval and the equation would 
be: 
 

n
 (1.96)  X  =  σμ ±  

 
The standard error term or standard error of the mean term is calculated based on the 
population standard deviation and specific sample size. If the confidence interval 
were to change to 99% or 90%, the reliability coefficient would change to 2.57 and 
1.64, respectively (based on values in Table B1 where 0.99 and 0.90 of the area fall 
under the curve). In creating a range of possible outcomes instead of one specific 
measure, “it is better to be approximately correct, than precisely wrong” (Kachigan, 
1991, p. 99). 
 Many of the following chapters will deal with the topic of confidence intervals 
and tests involved in this area. But at this point let us assume that we know the 
population standard deviation (σ), possibly through historical data or previous tests. 
In the case of the pharmacokinetic data (Table 4.3), the population standard deviation 
is known to be 16.8, based on the data in the table which represents the population, 
and was calculated using the formula to calculate a population standard deviation 
(Eqs. 5.7 and 5.8). Using the four samples from the population and presented in Table 
7.1 it is possible to estimate the population mean based on data for each sample. For 
example, with Sample A: 
 

14.7  716.4 = 
5

16.8 1.96  716.4 = ±±μ  

 
mcg 731.1 <  < 701.7 μ  

 
The best estimate of the population mean (for the researcher using Sample A) would 
be between 701.7 and 731.1 mcg. Note that the “fudge factor” will remain the same 
for all four samples since the reliability coefficient will remain constant (1.96) and the 
error term (the population standard deviation divided by square root of the sample 
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Figure 7.3 Sample results compared with the population mean. 

 
size) does not change. Therefore the results for the other three samples would be: 

 
  Sample B:  μ = 752.8 ± 14.7 
  738.1 < μ < 767.5 mcg 
 
  Sample C:  μ = 749.4 ± 14.7 
  734.7 < μ < 764.1 mcg 
 
  Sample D:  μ = 786.8 ± 14.7 
  772.1 < μ < 801.5 mcg 
 
From our previous discussion of presentation mode, the true population mean for 
these 125 data points is a Cmax of 752.4 mcg. In the case of samples B and C, the true 
population mean did fall within the 95% confidence interval and we were correct in 
our prediction of this mean. However, with the extreme samples (A and D) the 
population mean falls outside the confidence interval (Figure 7.3). With over 234 
million possible samples and using the reliability coefficient (95%), almost 12 million 
possible samples (5%) will give us erroneous results. 
 Adjusting the confidence interval can increase the likelihood of predicting the 
correct population mean. One more sample was drawn consisting of five outcomes 
and the calculated mean is 768.4. If a 95% confidence interval is calculated, the 
population mean falls outside the interval. 
 

14.7  768.4 = 
5

16.8 1.96  768.4 = ±±μ  

 
mcg783.1 <  < 753.7 μ  
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Figure 7.4 Sample results with different confidence levels 
compared with the true population mean. 

 
However, if we decrease our confidence to 90%, the true population mean (μ = 752.4 
mcg) falls even further outside the interval. 
 

12.4  768.4 = 
5

16.8 1.64  768.4 = ±±μ  

 
mcg 780.8 <  < 756.0 μ  

 
Similarly, if we increase our confidence to 99%, the true population mean will be 
found within the predicted limits. 
 

19.3 768.4 = 
5

16.8 2.57  768.4 = ±±μ  

 
mcg787.7 <  < 749.1 μ  

 
As seen in Figure 7.4, as the percentage of confidence increases, the width of the 
confidence interval increases. Creation and adjustment of the confidence intervals is 
the basis upon which statistical analysis and hypothesis testing is based. 
 What we have accomplished is our first inferential statistic: to make a statement 
about a population parameter (μ) based on a subset of that population ( X ). The z-test 
is the oldest of the statistical tests and was often called the critical ratio in early 
statistical literature. The interval estimate is our best guess, with a certain degree of 
confidence, where the actual parameter exists. We must allow for a certain amount of 
error (e.g., 5% or 1%) since we do not know the entire population. As shown in 
Figure 7.4, as our error decreases, the width of our interval estimate will increase. In 
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order to be 100% confident, our estimate of the interval would be from −∞ to +∞ 
(negative to positive infinity). Also as can be seen in the formula for the confidence 
interval estimate, with a large sample size, the standard error term will decrease and 
our interval width will decrease. Relating back to terms defined in Chapter 3, we can 
relate confidence interval in terms of precision and the confidence level is what we 
establish as our reliability. 
 As we shall see in future chapters, a basic assumption for many statistical tests 
(e.g., student t-test, F-test, correlation) is that populations from which the samples are 
selected are composed of random outcomes that approximate a normal distribution. If 
this is true, then we know many characteristics about our population with respect to 
its mean and standard deviation. 
 The one troublesome feature of Eq. 7.5 is the fact that it is highly unlikely that 
we will know a population standard deviation (σ). An example of an exception might 
be a quality control situation where a measurement has been repeated many times and 
is based on historical data. As will be shown in the next section, one could make a 
reasonable guess of what σ should be based on past outcomes. However, in Chapter 8 
we will find an alternative test for creating a confidence interval when the population 
standard deviation is unknown or cannot be approximated. 
 
Statistical Control Charts 
 
 Quality control charts represent an example of the application of confidence 
intervals using σ or an approximation of the population standard deviation. 
Traditionally, control charts have been used during manufacturing to monitor 
production runs and ensure the quality of the finished product. More recently these 
charts have been used to monitor the quality of health care systems, along with 
techniques such as cause-and-effect diagrams, quality-function deployment and 
process-flow analysis (Laffel, 1989; Wadsworth, 1985). Our discussion of control 
charts will focus on production issues, but the process could be easily applied to the 
monitoring of quality performance indicators in the provision of health services. 
 Statistical quality control is the process of assessing the status of a specific 
characteristic or characteristics, over a period of time, with respect to some target value 
or goal. During the production process, control charts provide a visual method for 
evaluating an intermediate or the final product during the ongoing process. They can be 
used to identify problems during production and document the history of a specific batch 
or run. 
  The use of control charts is one of the most common applications of statistics to the 
process of pharmaceutical quality control. The design of such charts was originally 
developed by Walter Shewhart of Bell Telephone Laboratories in 1931 (Shewhart, 
1931). Over the years, modifications have been made, but most of the original 
characteristics of the Shewhart control chart remain today. Control charts assess and 
monitor the variability of a specific characteristic, which is assumed to exist under 
relatively homogeneous and stable conditions. There are generally two types of control 
charts: 1) measuring consistency of the production run around a target value (property 
chart) and 2) measuring the variability of the samples (precision chart).  
 To assess and monitor a given characteristic during a production run, we 
periodically sample items (e.g., tablets, vials) using random or selected sampling and 
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measure the specific characteristic or variable (e.g., weight, hardness). The results are 
plotted on a two-dimensional graph. The x-axis is a “time-ordered” sequence. The 
outcomes or changes are plotted on the y-axis over this time period to determine if the 
process is under control.  
 A sampling plan is developed to determine times, at equal intervals, during 
which samples are selected. In the case of a selected sampling scheme (e.g., every 15 
minutes samples are selected from a production line), it is assumed that individual 
samples are withdrawn at random. How often should a sample be selected? The 
length of time between samples is dependent on the stability of the process being 
measured. A relatively stable process (for example, weights of finished tablets in a 
production run), may require only occasional monitoring, (e.g., every 30 minutes). A 
more volatile product or one with potential for large deviations from the target 
outcome may require more frequent sampling. When drawing samples for control 
charts, the time intervals should be consistent (every 30 minutes or 60 minutes, etc.) 
and the sample sizes should be equal. The size and frequency of the sample is 
dependent on the nature of the control process and desired precision. Sample sizes as 
small as four or five observations have been recommended (Bolton, 2004, p. 376). 
 The creation of a quality control chart is a relatively simple procedure. Time 
intervals are located on the x-axis and outcomes for the characteristic of interest 
(variable or property) are measured on the y-axis. The “property” chart uses either a 
single measurement (sometimes referred to as an x-chart) or the mean of several 
measurements (a mean chart) of a selected variable (e.g., capsule weight, tablet 
hardness, fill volume of a liquid into a bottle). The mean chart ( X chart) would be 
preferable to a simple x-chart because it is less sensitive to extreme results because 
these would offset when all the measures are averaged. Also, an x-chart consists of a 
series of single measures and does not provide any information about the variance of 
outcomes at specific time periods. 
 Control charts contain a central line running through the chart parallel to the x-axis. 
This central line represents the “target” or “ideal” goal and is often based on historical 
data from scale up through initial full-scale runs. Also referred to as the average line, it 
defines the target for the variable being plotted. This is seen as the center line in Figure 
7.5. In an ideal world, if a process is under control all results would fall on the central 
line. Unfortunately most outcomes will be observed to fall above or below the line, due 
to simple random error. The distance from the central line and the actual point measures 
variability. Thus, in addition to identifying a central line it is important to determine 
acceptable limits, above and below this line, within which observations should fall.
 There are two types of variability that can be seen in statistical control charts: 1) 
common cause variability and 2) assignable cause variability. Common cause variation 
is due to random error or normal variability attributed to the sampling process. This type 
of error is due to natural random error or error inherent in the process. Assignable cause 
variation is systematic error or bias that occurs in excess of the common-cause 
variability of the process. Also called special-cause variation, it is the responsibility of 
the person controlling the process to identify the cause of this variation, correct it and 
maintain a process that is under control. When the control chart shows excessive 
variation from the ideal outcome the process is said to be “out of statistical control.” 
Thus, the required measures for constructing a statistical quality control chart are: 1) a 
sampling plan (size and length of time interval); 2) a target value; and 3) an estimate of 
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Figure 7.5 Traditional quality control chart. 
 
the random error. As we shall see, the last measurement is based on either the expected 
standard deviation or range. 
 How much deviation from the central line is acceptable? The original Shewhart 
format utilized the population standard deviation (σ) and created action lines at three 
standard deviations above and below the target value. These lines were referred to as the 
three-sigma limits or the upper and lower control limits (UCL and LCL).  

 

n
3 + target = UCL σ                                           Eq. 7.6 

 

n
3  target = LCL σ−                                            Eq. 7.7 

 
where n is the number of samples at each time point. These are the boundaries within 
which essentially all of the sample data should fall if the process is under statistical 
control. In order to create these upper and lower action lines we need to be able to 
estimate the population standard deviation. This could be based on historical data about a 
particular product or process, or it can be estimated from previous samples.  
 One method for estimating σ is to calculate an average or “pooled” sample standard 
deviation. This can be calculated by averaging standard deviations from previous runs: 
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where k is the number of sample standard deviations. Averaging the sum of the squared 
standard deviations is sometimes referred to as the within-sample estimate of variance 
or random error: 
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=σ                                           Eq. 7.9 

 
Either the pooled sample standard deviation or the square root of the within-sample 
estimate of variance can provide a rough estimate of the true population standard 
deviation. Since the pooled sample standard deviation is an estimate sigma, it can be used 
to substitute for the population standard deviation 
 

n

3S
 + target = UCL p                                           Eq. 7.10 

 

n

3S
  target = LCL p−                                            Eq. 7.11 

 
More recent control charts incorporate additional limits called warning lines. This 
method involves establishing two sets of lines: warning lines at two sigmas and action 
lines at three sigmas (see Figure 7.5). Because they only involve two standard deviations 
above and below the target line, the warning limits are always narrower and do not 
demand the immediate intervention seen with the action lines. The warning lines would 
be calculated as follows: 

 

n
2   = 0w
σμμ ±                                              Eq. 7.12 

 
and the action lines are: 
 

n
3   = 0a
σμμ ±                                              Eq. 7.13 

 
Some control charting systems even evaluate observations falling outside one 
standard deviation beyond the central line. As discussed, virtually all samples will fall 
between ± 3-sigma, 95% will be located within ± 2-sigma and approximately 2/3 are 
contained within ± 1-sigma. Therefore, deviations outside any of these three 
parameters can be used to monitor production. Possible indicators of a process 
becoming “out-of-control” would be two successive samples outside the 2-sigma limit 
or four successive samples outside the 1-sigma limit or any systematic trends (several 
consecutive samples in the same direction) up or down from the central line (Taylor, 
1987, pp. 135-136).  
 As mentioned previously, two components that can influence a control chart are: 
1) the variable or property of interest (systematic or assignable cause variability) and 
2) the precision of the measurement (random or common-cause variability). The 
center, warning and action lines monitor a given property in a quality control chart. 
However, we are also concerned about the precision or variability of our sample (the 
random variability). Standard deviations and ranges can be used as a measure of 
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consistency of the samples. Variations in these measures are not seen in a simple 
Shewhart chart. A precision chart measures the amount of random error and consists of 
plotting the sample standard deviation (or the sample range) against the time-ordered 
sequence in parallel with the control chart for the sample means. For plotting the sample 
standard deviations, the pooled sample standard deviation becomes the “target” for 
variability and is once again substituted as an estimate of the population standard 
deviation for a precision chart 
 

n

3S
 +  S= UCL p

pD                                           Eq. 7.14 

 

n
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   S= LCL p

pD −                                            Eq. 7.15 

 
In addition to creating a control chart based on the standard deviation, a similar chart 
can be produced using the easiest of all measures of dispersion, the range. The central 
line for a range chart is calculated similar to the line used for the property chart. An 
average range is computed based on past observations. 
 

k
R...RRR

R k321 +++
=                                      Eq. 7.16 

 
Obviously the range is easier to calculate and is as efficient as the standard deviation to 
measure deviations from the central line if the sample size is greater than 5 (Mason, 
1989, p. 66). Also, to calculate R , there should be at least 8 observations and 
preferably at least 15 for any given time period (Taylor, 1987, p. 140). This 
alternative method can be used to for calculating the action lines property chart 
utilizing R  and an A-value from Table 7.2. 
 

RA + target = UCL                                           Eq. 7.17 
 

RA  target = LCL −                                            Eq. 7.18 
 
Using the above formula will produce action lines similar to those created using Eq. 7.10 
and 7.11. 
 To calculate the action lines for a precision chart for variations in the range, as a 
measure of dispersion, a value similar to the reliability coefficient portion of Eq. 7.5 is 
selected from Table 7.2. The DL and DU-values from the table for the lower and upper 
limits, respectively, are used in the following formulas: 
 

RDUCL UD =                                          Eq. 7.19 
 

  RDUCL LD =                                           Eq. 7.20 
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Table 7.2 Factors for Determining Upper and Lower 3σ Limits for Mean and 
Range Quality Control Charts 

  Factors for Range Chart 
Sample Size 

of Subgroup, N 
A: Factor for 

X_ Chart 
DL for Lower 

Limit 
DU for Upper 

Limit 
2 1.88 0 3.27 
3 1.02 0 2.57 
4 0.73 0 2.28 
5 0.58 0 2.11 
6 0.48 0 2.00 
7 0.42 0.08 1.92 
8 0.37 0.14 1.86 
9 0.34 0.18 1.82 
10 0.31 0.22 1.78 
15 0.22 0.35 1.65 
20 0.18 0.41 1.59 

From: Bolton, S. (1997). Pharmaceutical Statistics: Practical and Clinical 
Applications, Third edition, Marcel Dekker, Inc., New York, p. 658. Reproduced 
with permission of the publisher. 

 
 
As more is known about the total population (e.g., larger sample sizes), the values in 
Table 7.2 become smaller and the action lines come closer together. Also, based on the 
values in the table, the lines around the average range will not be symmetrical and the 
upper action line will always be further from the central, target range. By presenting 
these two plots in parallel, it is possible to monitor both the variability of the 
characteristic being measured, as well as the precision of the measurements at each 
specific time period. 
 As an example consider the tablet weights sampled over 12 time points presented 
in Table 7.3. The best estimate of center would be the average of the sample means 
which is 200.07 mg. The creation of the control chart by using the sample standard 
deviations would be as follows: 
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Table 7.3. Sample Weights (mg) Observed during a Production Run 

Date Time Samples Mean   SD Range 
9/6 9:00 200.5 198.5 205.2 201.8 198.3 200.86 2.83 6.9 

 9:30 199.4 200.4 204.8 200.6 198.6 200.76 2.40 6.2 
 10:00 201.5 197.4 200.9 202.3 199.5 200.32 1.93 4.9 
 10:30 199.9 196.6 200 201.5 197.9 199.18 1.93 4.9 
 11:00 200.5 200.8 204.3 199.4 202.1 201.42 1.88 4.9 
 11:30 200.9 198.1 203.1 199.2 203.4 200.94 2.34 5.3 
 12:00 201.3 196.7 200.3 200.1 203.2 200.32 2.37 6.5 
 12:30 198.1 198 200.4 200.5 199.9 199.38 1.24 2.5 
 13:00 199.8 197.3 202.3 198.4 200.5 199.66 1.93 5 
 13:30 198.8 196.4 203.6 199.1 197.5 199.08 2.75 7.2 
 14:00 199.2 197.6 201.1 199.6 198.8 199.26 1.27 3.5 
 14:30 200 196.8 202.2 201.8 197.3 199.62 2.49 5.4 

Average: 200.07 2.11 5.27 

 

72.0
5

)11.2(311.2
n

3S
   S= LCL p

pD −=−=−  

 
Since a negative deviation is impossible the results for the lower limit for the standard 
deviation would be truncated at zero. The results are plotted in Figure 7.5. If instead the 
researcher decided to use only the range, the results would be slightly different, where the 
average is 5.27: 
 

13.203)27.5)(58.0(07.200RA + target = UCL =+=
  

01.197)27.5)(58.0(07.200RA - target = LCL =−=  
 

12.11)27.5(11.2RDUCL UD ===  
   

0)27.5(0RDUCL LD ===  
 
Notice the intervals created using the ranges are wider because less information is 
known about each sample, only two data points for the extreme values. 

Sometime moving averages and/or moving ranges are used for control charts. 
In these cases, the first two or three samples are averaged and the results used as the 
point on the control chart. When the next sample is collected, the first value is 
dropped and a new average is plotted (for both the mean and the range). This process 
continues, averaging including a new observation and excluding the earliest previous 
number continued for the whole data set. This yields a series of means and ranges 
representing the average of multiple consecutive data points. The average range is 
replaced by the average moving range 
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1k
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+++=                    Eq. 7.21 

 
where each MRi is the average of Ri+Ri-1 and the estimate of the population standard 
deviation is 
 

128.1
AMRS =                                             Eq. 7.22 

 
For the previous example the results using the moving average would be: target = 
4.60; UCL = 202.74; LCL = 197.40; UCLD = 9.70; LCLD = 0 which are much closer 
to the results using the pooled sample standard deviation. 
 A second type of control chart is the cumulative sum or CUSUM charting 
technique. It is considered more sensitive than Shewhart control charts to modest 
changes in the characteristic being monitored (Mason, 1989, p. 66). The CUSUM 
charts are more effective in identifying gradual approaches to out-of-control 
conditions. The name CUSUM is from the fact that successive deviations are 
accumulated from a fixed reference point in the process. It provides a running, visual 
summation of deviations, from some preselected reference point. There is evidence of 
a special-cause variation when the cumulative sum of the deviations is extremely 
large or extremely small. Further information on CUSUM charts can be found in 
Mason’s book (Mason, 1989, pp. 67-70). 
 
Process Capability Indices 
 

Process capability is a measure of the inherent variability of a process removing 
any undesirable special causes that might increase variability. It is the smallest 
variability due solely to common causes. In manufacturing it is a measurement of the 
degree to which the process is meeting the manufacturing requirements. It is the 
repeatability and consistency of that process and is relative to the customer 
requirements in terms of specification limits for the product. 

Possible special causes of variability include different production sites, different 
equipment, and different operators running that equipment. One way to eliminate 
these special causes is to collect data using the same operator on the same machine, 
measuring the same batch of materials. 

Studies of process capability are designed to determine what the process is 
“capable” of doing under controlled conditions (removing any special causes for 
variability). Another benefit of studying the process capability is to determine the 
stability of the process by comparing the output of a stable process with the process 
specifications or by comparing the normal variability of a stable process with the 
process specification limits. 

Process capability compares the process outcome that is “in control” with the 
specification limits by measures called capacity indices. This comparison is a ratio of 
the deviation between the process specifications (called the specification width) to the 
deviation of the process values based on six process standard deviation units (referred 
to as the process width). A “capable process” is defined as one in which all the   
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Figure 7.6 Illustration of a distribution within specification limits. 

 
measurements fall inside the predetermined specification limits (Figure 7.6). 

Capability indices are equations employed to place the distribution from a 
specific process in relationship to the product specifications. Capability indices are 
used to determine, given normal variation, if the process is capable of meeting 
established specifications. Thus, it is assumed that data points are sampled from a 
normally distributed population. Process capability is expressed as an index and there 
are three different indices, labeled Cp, Cpk and Cpm. These capability indices are valid 
only when there is a large sample size, usually a minimum of 50 data points. These 
should be consecutive data points, in at least 10 subgroups, each with 5 observations.  

Several symbols are used in the calculations of the capability indices. T is the 
target value for the product. The μ is the process mean and σ is the measure of 
dispersion based on historical experience with the process (often T and μ are the same 
value). The USL and LSL are the upper and lower specification limits, respectively. 
The manufacture sets the specification limits. The specification range is the difference 
between the USL and LSL. 
 

LSLUSLrangeionSpecificat −=                         Eq. 7.23 
 

The specification range is usually from −3σ to +3σ, or a six-sigma spread. As seen in 
the previous chapter, approximately 99.7% of the area under a normal distribution 
would be within the plus or minus three sigmas. Thus, the total variability or spread in 
outcomes should have a total variation of approximately six sigmas.  

Cp is a simple index that relates the acceptable variability of the specification 
limits to the natural variation of the process (expressed as 6σ). It is sometimes 
referred to as the population capability or process potential. The Cp calculated as 
follows: 
 
 

LSL USL
Actual process variability

Acceptable process variability
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Figure 7.7 Distributions for various Cp values. 
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Various Cp results are illustrated in Figure 7.7. If the Cp is less than one, the 

process variation exceeds specification, and a significant number of defects may be 
found. A Cp of less than one indicates that it is not a capable process; not capable of 
meeting specifications regardless of where the process mean is located. In these cases 
the process spread is greater than USL-LSL.  
If the Cp equals one, the process is just meeting specifications and a minimum of 
0.3% (100%-99.7%) defects will be detected if the process is centered at the target. 
This would be when a process is just barely capable; the process variability matches 6 
σ. The Cp evaluates the spread of the process relative to the specification width, it 
does not provide information on how well the process average, μ , is centered with 
respect to the target value, T. If the process mean shifts slightly to the left or to the 
right, a significant amount of production output will exceed one of the two 
specification limits. In this case, the process must be watched closely to identify any 
shifts from the mean. Control charts are excellent for such monitoring. 

If the Cp is greater than one, the process variation is less than the specification 
limits, but the defect rate might be greater if the process is not centered on the target 
value (T). Also, the Cp can be highly inaccurate and misleading if the data is not 
 

LSL USL

Cp = 1.00

LSL USL

Cp < 1.00

LSL USL

Cp = 2.00

LSL USL

Cp = 1.33
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Table 7.4 Cp Values Assuming that the Center of the Distibution is μ 

USL−LSL Cp Rejects (parts per million) % of Specification Used 
6σ 1.000 2,700 100 
8σ 1.333 64 75 

10σ 1.667 0.6 60 
12σ 2.000 0.002 50 
 
 

sampled from a normally distributed population. Table 7.4 indicates the expected 
number of defects for various levels of Cp. As seen in Table 7.4 the greater the Cp the 
more likely the process variability will fall within the specification spread (6 sigma is 
less than USL−LSL). For example, with a Cp of 2.0 indicates a process distribution 
where 12 sigmas would fit between the USL and LSL. If a manufacturer can tighten 
its specification limits, it might be able to claim that its product is more consistent or 
uniform than its competitors. Some pharmaceutical manufacturers are establishing 
specific process capabilities targets. As a starting point they may require a Cp of 1.33 
for supplier qualifications and have a desired goal of 2.0. 

 A second process capability index is Cpk and comparing it to the Cp it is possible 
to get an indication of the difference between μ and T. The Cpk is calculated as 
follows: 
 





 −−=

σ
μ

σ
μ

3
LSL,

3
USLminC pk                               Eq. 7.25 

 
and the smaller of the two values (min) in the parentheses is reported as the Cpk. If the 
process approaches a normal distribution and is in statistical control, the Cpk may be 
used to estimate the expected percent of defective products, similar to the Cp. 

An alternative method for estimating the Cpk is: 
 

)k1(CC ppk −=                                       Eq. 7.26 
 
where k is the scaled distance between the midpoint of the specification range m and 
the process mean, μ. This k-value comes from the Japanese word katayori, which 
means deviation. The specification range is calculated as follows: 
 

2
LSLUSLm +=                                         Eq. 7.27 

 
and the k value is derived using the equation 
 

2
LSLUSL

m
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−
−
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μ

                                         Eq. 7.28 
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The resultant k must be greater or equal to zero and less than or equal to one. When 
the m and μ are equal, k = 0 in Eq. 7.26 and Cpk = Cp. The difference between the Cp 
and Cpk is represented by the k-value, and indicates how much of the process 
capability is lost due to poor centering. For example, suppose that k = 0.25 and the Cp 
= 2.00, the Cpk would be reduced to: 
 

50.1)25.01(00.2C pk =−=  
 
If the process can be centered, this capability index would increase by 33%. This 
deviation from the center (T) can be calculated as follows: 
 

%100
C
C

pk

p ×=δ                                        Eq. 7.29 

 
For this example: 
 

%3.33%100
50.1
00.2 =×=δ  

 
The third capability index is Cpm; sometimes referred to as the Taguchi capability 

(named after Genichi Taguchi). This was developed in the late 1980s and the index, 
similar to the Cpk, accounts for the proximity of the process mean to a designated 
target mean, T. 
 

22
pm

)T(6

LSLUSLC
−+

−=
μσ

                                 Eq. 7.30 

 
If the process mean is centered between the specification limits and the process mean 
equals the target mean (T), then Cp = Cpk = Cpm. The Cpk and Cpm are the better indices 
because they account for deviations between the process center and the target center 
in the distribution. 

If the population standard deviation (σ) is unknown, sample estimates can be 
used by replacing σ with the sample standard deviation (S). Slight modifications are 
made on the previous equations and a hat is added above each index to indicate that it 
is an estimate based on sample variability: 
 

S6
LSLUSLĈ p

−=                                         Eq. 7.31 
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22
pm

)TX(S6

LSLUSLĈ
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−=                                  Eq. 7.33 

 
The k-deviation can also be calculated based on sample data. The sample mean ( X ) 
is the best estimate of μ and the sample estimate of k and Cpk would be: 
 

2
LSLUSL
Xm

k̂
−

−
=                                        Eq. 7.34 

and 
 

)k̂1(ĈĈ ppk −=                                     Eq. 7.35 
 
If 0 ≤ k ≤ 1; then: 
 

ppk ĈĈ ≤                                        Eq. 7.36 

 
As an example, consider the data presented in Table 7.5 which represent 60 samples 
randomly selected during the production of a product. The manufacturer has set the 
specification limits to be within 3% of label claim (T = 100%, USL = 103%, LSL = 
97%). From previous production experience with the product the expected mean (μ) 
and standard deviation (σ) are 100 and 1%, respectively. However, the sample results 
are X = 100.1 and S = 0.25. The process capability indices are: 
 

00.4
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or as an alternative for Cpk: 
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Table 7.5. Sample Results Observed during a Production Run 

Time Sample Results  Mean S.D. Range 

0:05 100.3 100.5 100.0  100.12 0.26 0.7 
 99.8 99.9 100.2     

0:20 99.9 100.2 100.4  100.07 0.27 0.7 
 100.3 99.7 99.9     

0:35 100.1 100.0 100.5  100.20 0.18 0.5 
 100.3 100.2 100.1     

0:50 100.2 99.5 99.9  100.08 0.38 1.1 
 100.3 100.0 100.6     

1:05 100.2 100.3 99.8  100.08 0.17 0.5 
 100.0 100.1 100.1     

1:20 100.1 100.3 99.9  100.08 0.23 0.6 
 100.4 99.8 100.0     

1:35 99.8 100.2 99.6  100.03 0.31 0.9 
 100.5 100.0 100.1     

1:50 100.2 100.3 100.0  100.13 0.20 0.5 
 100.4 99.9 100.0     

2:05 100.8 100.2 99.8  100.15 0.36 1.0 
 100.0 99.9 100.2     

2:20 99.9 100.4 100.1  100.07 0.26 0.7 
 100.3 100.0 99.7     

      
  Total for all 

samples: 100.10 0.25  

 
 

033.0
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87.3)967.0(00.4)033.01(00.4)k̂1(ĈĈ ppk ==−=−=  

 
It is possible to do unilateral, or one-sided tests, for determining process 

capabilities. The previous examples were bilateral, or two-sided cases, and involved 
both the USL and LSL. For the unilateral case either the USL or LSL is used alone: 

 

S3
XUSLĈ pu

−=                                        Eq. 7.37 
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S3
LSLXĈ pl

−=                                        Eq. 7.38 

 
and by extension the Cp is: 
 

2
ĈĈ

Ĉ pupl
p

+
=                                       Eq. 7.39 

 
and Cpk is the smaller value for either Cpl or Cpu: 
 

[ ]puplpk Ĉ,ĈminĈ =                                   Eq. 7.40 
 

In addition, estimators can be used replacing μ and σ with X  and S. 
It is possible to calculate a confidence interval for the capability indices. Once 

again, we are assuming a normal distribution population. For the Cpk a confidence 
interval can be calculated using the following equation: 
 

)1n(2
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1zĈC

2
pk

2/1pkpk −
+±= −α                       Eq. 7.41 

 
Like Eq. 7.4, our best estimate of the true Cpk is our sample estimate ( pkĈ ). How 

confident we are in our decision is controlled by the reliability coefficient (z1-α/2) and 
error term, which in this case is the portion of the equation included in the square root 
term. This equation is similar to Eq. 7.5 and if we wish to be 95% confident in our 
decision the reliability coefficient would be 1.96. The resulting confidence interval is 
evaluated base on its proximity to 1.0, because a capability index of 1.0 just meets 
specifications (the ratio of the process specifications to the deviation of the process 
values is 1.0). The concept of interpreting ratios will be discussed in greater detail in 
Chapter 18. However, at this point assume that if our confidence interval has values 
that are all greater than 1.0 that we are 95% confident that we have a capable process. 
Using our previous example, where pkĈ  = 3.87 and n = 60, the confidence interval 
would be: 
 

70.087.3
)59(2
)87.3(

)60(9
196.187.3C

2

pk ±=+±=  

 
57.4C17.3 pk <<  

 
Our interpretation is that we are 95% confident that the true Cpk is somewhere 
between 3.17 and 4.57. A value of 1.0 or less cannot possibly fall within this interval; 
therefore we have good process capability. Confidence intervals can be calculated for 
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other capability indices, but unfortunately these intervals involve distributions that 
will not be covered until later chapters in this book (the chi-square distribution for Cp 
and the one-tailed t-distribution for Cpu and Cpl) and are beyond the scope of this 
book. A reference for calculating these intervals is Bissell (1990). 

If sample data comes from a process that does not appear to be normally 
distributed it is recommended that the data be transformed to create normality or use a 
nonparametric alternative index (Cnpk), which is based on the median:  
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)005(.pmedian

LSLmedian,
median)995(.p

medianUSLminĈnpk             Eq. 7.42 

 
where p(0.995) and p(0.005) are the 99.5th and 0.5th percentiles of the sample data. 
More Information about these tests can be found in Johnson and Kotz (1993) or Bothe 
(1997). 

 
Tolerance Limits  
 

In the discussion of confidence intervals we employed the process of estimating a 
range of possible values for the population mean (μ) based on sample data ( x ). The 
result was an interval within which we predicted the true population mean was 
located. However, sometimes the investigator might be more interested in the 
approximate range of values for a particular population (e.g., tablets produced during 
a specific run). In this case, tolerance limits indicate the limits (above, or below) 
within which we would expect to find a given proportion of items from the 
population. It is possible to create both one-sided and two-sided limits. In the case of 
the two-sided limits tolerance test, with statistical manipulation it is possible to 
calculate two values (the lower tolerance limit or LTL and the upper tolerance limit or 
UTL) between which we have a certain degree of confidence that a given proportion 
(p) of the population will exist. With the one-sided test, we can identify a single value 
(XL), above which at least a proportion (p) will occur with a certain level of 
confidence.  

Suppose we are producing a specific batch of tablets and we know that there is a 
certain amount of variation in the process. Therefore, over time, the weights of the 
tablets will vary slightly. Obviously, it is possible to take samples during the 
production run and calculate the mean ( X ) and standard deviation (S). But we would 
like to know lower and upper limits on the tablet weights produced during this 
specific batch. Therefore we need to use a test that can estimate prescribed extremes 
in our data, rather than estimate the true center for the population. 

In most cases it is impossible to measure the entire population and know the “real 
world” limits for all tablets produced during a specific run. However, we can 
determine limits within which we would expect to find 90%, 95%, or 99% of all the 
tablets produced. If we wanted to know the limits for 99% of all tablets we could 
create a “tolerance limit for 99% of the population.” However as seen previously, we 
can never be 100% confident in our projection based on sample data, but we can 
predict with 95% confidence in our decision. Therefore, it should be possible to 
perform a statistical test to identify a “95% tolerance limits for 99% of the 
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population.” This reliability coefficient or confidence coefficient is sometime noted 
by the Greek letter gamma (γ ). 

If it is assumed that the weights of all tablets, when plotted, would produce a 
bell-shaped curve (data are normally distributed) then we can calculate the tolerance 
limits using the following formulas: 
 

KSXLTL −=                                         Eq. 7.43 
 

KSXUTL +=                                         Eq. 7.44 
 
where K is a new reliability coefficient. K-values for the two-tailed test can be found 
in Table B3 (Appendix B) and represent the two-tailed test for creating both the upper 
and lower tolerance limits. 

Table B3 is divided into three major columns, each representing our traditional 
confidence level (1 − α/2). Numbers in the center third of Table B3 would be used if 
we wish to be 95% confident (γ ) in our decision. Each major section of the table is 
further divided into the subsections, or columns, that represent the proportion of the 
population we wish to define. For example, between our tolerance limits we would 
expect 95%, 99%, or 99.9% of all the population outcomes to be located.  

Assume we randomly sample 30 tablets during the course of a production run 
(Table 7.6) and find the sample mean ( X ) and standard deviation (S) to be 99.96% 
label claim and 0.286%, respectively. Within what limits would we expect 99% of all 
the tablets to fall with 95% confidence? Using Table B3 for this example, with 95% 
certainty, we want to identify the limits within which we would expect 99% of our 
population. The 95% certainty is found in the center third of the table and 99% of the 
population is defined by the K-value in the sixth column from the left. If our sample 
size involves 30 tablets, then the K-value of 3.350 is found in the sixth column on the 
row where n = 30. The calculation for the tolerance limits would be as follows: 
 

%00.99)286.0)(350.3(96.99LTL =−=  
 

%92.100)286.0)(350.3(96.99UTL =+=  
 
Thus, with 95% confidence, we would expect 99% of all tablets to contain between 
99.0% and 100.9% of the label claim. 

The same procedure is used for the one-tailed test, except new K-values are taken 
from a one-tailed table (Appendix B, Table B4) and a new equation is used to 
determine a proportion of the population above a given value: 
 

KSXX L −=                                          Eq. 7.45 
 
or below a given point: 
 

KSXXU +=                                          Eq. 7.46 
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Table 7.6 Tablets Randomly Sampled from a Production Run (% label claim) 

100.0 100.3   99.1 100.1   99.9   99.8 
  99.5   99.9 100.0   99.9 100.1   99.9 
100.4   99.8 100.2 100.3 100.0 100.1 
100.2 100.2 100.1 100.0   99.6 100.0 
100.0   99.8 100.3 100.2   99.4   99.8 

 
 
Using the same data presented in Table 7.6, 99% of the population would be above 
(with K = 3.064 for p = 0.99 and γ = 0.95): 
 

%08.99)286.0)(064.3(96.99X L =−=  
 
with 95% confidence. 

The previously calculated tolerance limits assume that the sample is taken from a 
normal distribution population. If the distribution is not normal, then the true 
proportion p of the population between the tolerance limits will vary from the 
intended p depending on the amount of departure from normality. The greater the 
departure from normality the greater the difference and the tolerance limits obtained 
tend to be substantially wider than those assuming normality. Natrella (1963) 
provides guidance for nonnormal conditions and statistical tables for such situations. 
 
Using Excel® and Minitab® for Applications Discussed in this Chapter 
 
 Excel 2010 has several function (ƒx) options that can be used with a normal 
distribution and for confidence intervals for the z-test. Instead of referring to Table B2 
to determine critical area under the curve for a normal distribution, various function 
options are available. For a standardized normal distribution, the area under the curve 
below any point in the distribution can be determined using NORM.S.INV 
(NORMSINV in versions before 2010). Excel will request probability for the area 
below a given point. The result will be the z-value (e.g., if provided 0.025, Excel will 
give −1.96). Conversely, if the interest is in the proportion of the curve falling below 
a certain point in a standardized normal distribution this can be determined using 
NORM.S.DIST (NORMSDIST in versions before 2010). Excel will request z-value 
and a “true” to a logic statement regarding the cumulative distribution below that 
point. The result will be the proportion under the curve below that point in the curve 
(e.g. if provided +1.96, Excel will give 0.975).  
 Instead of  standardized normal scores, if evaluating actual data and one wishes 
to determine similar results where values are represented by raw scores there are two 
more options. Assuming a normal distribution and a known or estimated population 
standard deviation, the area under the curve below any point in the distribution can be 
determined using NORM.INV (NORMINV in versions before 2010). Excel will 
request the population mean and standard deviation, and the logic request of “true” 
for cumulative probability. The result will be a point in the distribution measures in 
the appropriate units. For any point in the distribution (assuming normality and given 
the population standard deviation) the area under the curve below that point can be 
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determined using NORM.DIST (NORMDIST in versions before 2010). Excel will 
request the value of interest, the mean and standard deviation for the population, and 
the logic statement regarding a cumulative distribution. The result will be the 
proportion below that point in the curve. Since we know that the area below and 
above any given point must sum to one, it is possible to determine the proportion of 
the area above any given point by subtracting the probability of being below that 
point from one (1 - NORM.DIST). 
 There is a function option to help create the confidence interval for a one-sample 
z-test. The function is CONFIDENCE.NORM (in Excel 2010) which will create that 
portion of the equation (Eq. 7.5) that includes the reliability coefficient and error 
term. Excel will prompt for the “alpha” (amount of Type I error), the population 
standard deviation and the sample size. The resultant value needs to be added and 
subtracted from the sample mean to create the confidence interval. Older versions of 
Excel labeled this function as CONFIDENCE. 
 Minitab offers an application that directly calculates the confidence interval for 
the one-sample z-test if the population standard deviation is known. 
 

Stat  Basic Statistics  1-sample Z…  
 

Figure 7.8  illustrates the decisions required for a one-sample z-test for the data from 
Sample B in Table 7.1 with the known σ = 16.8. The variable(s) to be evaluated can 
be selected by double clicking on those available in the box to the left. “Graphic” 
options include a histogram, an individual value plot or a box plot of the data. 
“Options” allows one to change in the confidence interval from the default value on 
95% or to create a one-tailed interval. The results for a 95% confidence interval are 
presented in Figure 7.9, which are the same (with slight discrepancy due to rounding) 
as the hand calculation earlier in this chapter. 

Minitab can be used to create the control charts described in the chapter, 
determine the process capability indices and establish confidence and tolerance 
intervals. Note that there are variations of the formulas presented in this chapter and 
Minitab may give slightly different results, based on the formulas used and rounding 
during hand calculations. 

A variety of control charts can be produced using Minitab including mean charts 
(Xbar), range charts (R…), and charts based on the pooled sample standard deviation 
(S...). All the charts are located at  
 

Stat  Control Charts  Variables Charts for Subgroups 
 
Single charts can be selected or combinations such as “Xbar-R…” for paralled mean 
and range charts or “Xbar-S…” for mean and standard deviations charts (an example 
is Figure 7.10). For a simple x-chart or moving range chart the option would be 
 

Stat  Control Charts  Variables Charts for Individuals 
 
Options include Individual for a simple x-chart and Moving Range for a moving range 
chart.  
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Figure 7.8 Options for one-sample z-test with Minitab. 

 

 
Figure 7.9 Outcome report for a one-sample z-test with Minitab. 

 
 For evaluating statistical process capability Minitab offers a variety of options 
and the most comprehensive is the “Capacity Sixpack”. All of the previous discussion 
assumed that the sample came from a normally distributed population. Minitab offers 
the options for data from nonnormal distributions. 
 

Stat  Quality Tools  Capacity Sixpack  Normal 
 
All data should be placed in one column in sequential order by the times the data were 
collected (Single Column:). The number of observations per time period can be noted 
by time or a consistent number for each time period (use a constant or an ID column). 
The USL and LSL must be included and data could consist of only sample 
information or estimates of the population added as optional information. The output 
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Figure 7.10 Quality control charts for the means and ranges 

for the data presented in Table 7.3. 
 
form Capacity Sixpack provides much more information than discussed in this 
chapter, as well as visual graphics for the data. The evaluations of data presented and 
previously calculated for Table 7.5 are presented in Figure 7.11. In addition to the 
graphic presentations, note that the Cp and Cpk are reported in the lower right corner 
under “Capability Plot”. If concerned that the sample distribution (best estimate of the 
population distribution) may not be normally distributed, a quick check to see if the 
Anderson Darling normality test (Chapter 6) has a p-value is greater than 0.05 is 
possible (Chapter 6). 
 

Stat  Basic Statistics  Graphical Summary 
 
 The confidence interval discussed in this chapter requires knowledge of the 
population standard deviation (σ). The confidence intervals created by Minitab use 
the sample standard deviation (S) which may result in completely different outcomes 
based on the sample size. A discussion of these types of confidence intervals will be 
deferred to Chapter 9. The tolerance limits are available at 
 

Stat  Quality Tools  Tolerance Interval  
 
Enter the column containing the information and select “Option” where you can 
select: 1) the level of confidence in the decision; 2) the percent of products within the 
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Figure 7.11  Example of output using Minitab “Capacity Sixpack.” 

 
interval; and 3) whether the tolerance interval is two-tailed or setting only a single 
upper or lower limit. Results from the data presented in Table 7.6 are shown in Figure 
7.12. 
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Figure 7.12  Example of output using Minitab “Tolerance Interval.” 
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Example Problems (Answers are provided in Appendix D) 
 
1. Assume that three assays are selected at random from the following results: 
 

Tablet 
Number 

Assay 
(mg) 

Tablet 
Number 

Assay 
(mg) 

Tablet 
Number 

Assay 
(mg) 

1 75 11 73 21 80 
2 74 12 77 22 75 
3 72 13 75 23 76 
4 78 14 74 24 73 
5 78 15 72 25 79 
6 74 16 74 26 76 
7 75 17 77 27 73 
8 77 18 76 28 75 
9 76 19 74 29 76 

10 78 20 77 30 75 
 

 The resultant sample consists of tablets 05, 16, and 27. 
 
 a. Based on this one sample and assuming that the population standard 

deviation (σ) is known to be 2.01, calculate 95% confidence intervals for the 
population mean. 

 
 b. Again, based on this one sample, calculate the 90% and 99% confidence 

intervals for the population mean. How do these results compare to the 95% 
confidence interval for the same sample in the previous example? 

 
 c. Assuming the true population mean (μ) is 75.47 for all 30 data points, did 

our one sample create confidence intervals at the 90%, 95%, and 99% levels, 
which included the population mean? 

 
2. Assuming the true population mean (μ) is 75.47 and the population standard 

deviation (σ) is 2.01 for the question 1, calculate the following:  
 

a. How many different samples of n = 3 can be selected from the above 
population of 30 data points? 
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 b. What would be the grand mean for all the possible samples of n = 3? 
 
 c. What would be the standard deviation for all the possible samples of n = 3? 
 
3. During scale-up and initial production of an intravenous product in a 5-cc vial, it 

was found that the standard deviation for volume fill was 0.2 cc. Create a 
Shewhart control chart to monitor the fill rates of the production vials. Monitor 
the precision assuming the range is 0.6 cc (6 × σ) and the each sample size is 10 
vials. 

 
4. During a production run of an injectable agent, 20 ampules are randomly 

sampled. Listed below are the volumes contained in each ampule. What are the 
tolerance limits, by volume, within which we would expect to find 99% of the 
total ampules in the run and have 99% confidence in our decision? 

 
1.99 2.00 2.02 1.98 
2.01 2.01 2.01 2.02 
2.00 1.98 1.99 2.00 
1.98 1.99 2.00 2.01 
2.03 2.00 2.00 1.99 

 
5. Assume that a manufacturer has set the upper and lower specification limits to be 

within 20% of the target for a given process (USL = 1.20 and LSL = 0.80). A 
random sample of 100 samples during a production run presents with X  = 0.93 
and S = 0.06. Is this a capable process? Assuming a normally distributed 
population, use the three difference indices described in the chapter. 

 
6. During the production of a specific solid dosage form it is expected that the 

standard deviation (σ) for the specific strength will be approximately 3.5 mg, 
based on experience with the product. Twenty tablets are sampled at random 
from Batch #1234 and found to have a mean assay of 48.3 mg. With 95% 
confidence, does this sample come from a batch with the correct strength (50 mg) 
or is this batch subpotent?  
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8 
 
Hypothesis Testing 
 
 
 
 Hypothesis testing is the process of inferring from a sample whether to reject a 
certain statement about a population or populations. The sample is assumed to be a 
small representative proportion of the total population. Hypotheses are established 
and two errors can occur, rejection of a true hypothesis or failing to reject a false 
hypothesis. 
 As mentioned in the beginning of Chapter 1, inferential statistical tests are 
intended to help answer questions confronting the researcher. Statistical analysis is 
based on hypotheses that are formulated and then tested. Often in published articles, 
these hypotheses or questions are described as the “objectives” or “purposes” of the 
study. 
 
Hypothesis Testing 
 
 Sometimes referred to as significance testing, hypothesis testing is the process of 
inferring from a sample whether to reject a certain statement about the population 
from which the sample was taken.  
 
    Hypothesis: Fact A 
    Alternative: Fact A is false 
 
Researchers must carefully define the population about which they plan to make 
inferences and then randomly select samples or subjects that should be representative 
of this population. For example, if 100 capsules were drawn at random from one 
particular batch of a medication and some analytical procedure was performed on the 
sample, this measurement could be considered indicative of the population. In this 
case, the population is only those capsules in that specific batch and cannot be 
generalized to other batches of the same medication. Similarly, pharmacokinetic 
results from a Phase I clinical trial performed only on healthy male volunteers 
between 18 and 45 years old, are not necessarily reflective of the responses expected 
in females, children, geriatric patients, or even individuals with the specific illness for 
which the drug is intended to treat.  
 In addition, with any inferential statistical test it is assumed that the individual 
measurements are independent of one another and any one measurement will not 
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influence the outcome of any other member of the sample. Also, the stated hypotheses 
should be free from apparent prejudgment or bias. Lastly, the hypotheses should be 
well-defined and clearly stated. Thus, the results of the statistical test will determine 
which hypothesis is correct. 
 The hypothesis may be rejected, meaning the evidence from the sample casts 
enough doubt on the hypothesis for us to say with some degree of certainty that the 
hypothesis is false. If the null hypothesis is rejected we accept the alternative 
hypothesis, which is the statement the researcher is usually trying to prove. On the 
other hand, the hypothesis may not be rejected if we are unable to statistically 
contradict it. Using an inferential statistic there are two possible outcomes: 
 
   H0: Null hypothesis (hypothesis under test) 
   H1: Alternative hypothesis (research hypothesis) 
 
By convention, the null hypothesis is stated as no real differences in the outcomes or 
a relationship of zero (a null relationship). For example, if we are comparing three 
levels of a discrete independent variable (μ1, μ2, μ3), the null hypothesis would be 
stated μ1 = μ2 = μ3. The evaluation then attempts to nullify the hypothesis of no 
significant difference in favor of an alternative research hypothesis. The type of null 
hypothesis will depend upon the types of variables and the outcomes the researcher is 
interested in measuring. Examples of other hypotheses that will be discussed in later 
chapters are presented in Table 8.1. 
 The two hypotheses must be mutually exclusive and exhaustive. They cannot 
both occur and they include all possible outcomes. 
 
    H0: Hypothesis A 
    H1: Hypothesis A is false 
 
The sample values, if they are randomly sampled and measured independently, are the 
best estimate of the population values; therefore, in the case of two levels of a discrete 
independent variable: 
 
    1X  ≈ μ1         and       2X  ≈  μ2 
 
With the null hypothesis as a hypothesis of no difference, we are stating that the two 
populations under the hypothesis are the same: 
 

H0:  μ1 = μ2 
 
We are really testing our sample data 1X  = 2X  and inferring that these data are 
representative of the population μ1 = μ2, allowing for a certain amount of error in our 
decision. The alternative hypothesis is either accepted or rejected based upon the 
decision about the hypothesis under test. Thus, an inference can be defined as any 
conclusion that is drawn from a statistical evaluation. 
 Statistics from our sample provide us with a basis for estimating the probability 
that some observed difference between samples should be expected due to sampling 
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Table 8.1 Examples of Null Hypotheses  

Chapters Statistical Tests Null Hypothesis 
9 Two-sample t-test µ1 = µ2  or  µ1 - µ2 = 0 
9 Paired t-test µd = 0 

10 One-way analysis of variance µ1 = µ2 = µ3 =…µk 
13 Correlation rxy = 0 
14 Linear regression No linear regression 

16-18 Tests of association No association 
21 Nonparametric tests Same population 

 
error. Two approaches could be used: 1) create a confidence interval or 2) establish a 
ratio and compare the resultant test statistic to a predetermined critical value. The 
former has already been employed in the previous chapter, with the establishment of a 
confidence interval for a population parameter based on sample results.  
 

Error
Standard

    
tCoefficien
yReliabilit

    
 MeanSample

Estimate
  =  

Mean
Population

×±  

 
In the second method we would calculate a “test statistic” (a value based on the 
manipulation of sample data). This value is compared to a preset “critical” value 
(usually found in a special table) based on a specific acceptable error rate (e.g., 5%).  
In most cases this involves a ratio, simplified to the following: 
 

ErrordardtanS
ComparisonofMeasure

StatisticTest =  

 
If the test statistic is extremely rare it will be to the extreme of our critical value and 
we will reject the hypothesis under test in favor of the research hypothesis, which is 
the only possible alternative. For example, assume that we are interested in the 
hypothesis H0: μ1 = μ2. If we calculate a test statistic to evaluate this hypothesis we 
would expect our calculated statistic to equal zero if the two populations are identical. 
As this test statistic becomes larger, or to an extreme of zero (either in the positive or 
negative direction), it becomes more likely that the two populations are not equal. In 
other words, as the absolute value of the calculated test statistic becomes large, there 
is a smaller probability that H0 is true and that this difference is not due to chance 
error alone. The critical values for most statistical tests indicate an extreme at which 
we reject H0 and conclude that H1 is the true situation (in this case that μ1 ≠ μ2). 
 The statistical test results have only two possible outcomes, either we cannot 
reject H0 or we reject H0 in favor of H1. At the same time, if all the facts were known 
(the real world) or we had data for the entire population(s), the hypothesis (H0) is 
either true or false for the population(s) that the sample represents. This is represented 
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  The Real World  
  H0 is true H0 is false  

Results of 
Statistical 

Test 

Fail to 
Reject H0 

  
 
 

 

 
Reject H0 

 
 

 
 
 

 

     

Figure 8.1 Types of errors that can occur with hypothesis testing. 

 
in Figure 8.1 where we want our results to fall into either of the two clear areas. If the 
results fall into either of the shaded areas, these are considered mistakes or errors. 
 An analogy to hypothesis testing can be seen in American jurisprudence 
(Kachigan, 1991). Illustrated below are the possible results from a jury trial. 
 
  H0: Person is innocent of crime 
  H1: Person is guilty of crime 
 
During the trial, the jury will be presented with data (information, exhibits, 
testimonies, evidence) that will help, or hinder, their decision-making process (Figure 
8.2). The original hypothesis is that the person is innocent until proven guilty. 
Evidence will conflict and the jury will never know the true situation, but will be 
required to render a decision. They will find the defendant either guilty or not guilty, 
when in fact if all the data were known, the person is either guilty or innocent of the 
crime. Two errors are possible: 1) sending an innocent person to prison (error I) or 2) 
freeing a guilty person (error II). For most, the former error would be the more 
grievous of the two mistakes.  
 
 

  All the Facts are Known  
  Person is 

Innocent 
Person is 

Guilty 
 

 
Jury’s 

Verdict  

Not 
Guilty 

 
 
 

 
ERROR II 

 

  
Guilty 

 
ERROR I 

 

 
 

 

 

Figure 8.2  Jurisprudence example. 
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Note that in this analogy, if the jury fails to find the person guilty their decision is 
not that the person is “innocent.” Instead they render a verdict of “not guilty” (they 
failed to have enough evidence to prove guilt). In a similar vein, the decision is not to 
accept a null hypothesis, but to fail to reject it. If we cannot reject the null hypothesis, 
it does not prove that the statement is actually true. It only indicates that there is 
insufficient evidence to justify rejection. One cannot prove a null hypothesis and can 
only fail to reject it.  
 It is hoped that outcomes from our court system will end in the clear areas of the 
previous illustration and the innocent are freed and the guilty sent to jail. Similarly, it 
is hoped that the results of our statistical analysis will not fall into the shaded error 
regions. Like our system of jurisprudence, a statistical test can only disprove the null 
hypothesis; it can never prove the hypothesis is true. 
 
Types of Errors 
 
 Similar to our jurisprudence example, there are two possible errors associated 
with hypothesis testing. Type I error is the probability of rejecting a true null 
hypothesis (H0) and Type II error is the probability of accepting a false H0. Type I 
error is also called the level of significance and uses the symbol α or p. Like sending 
an innocent person to jail, this is the most important error to minimize or control. 
Fortunately, the researcher has more control over the amount of acceptable Type I 
error. Alternatively, our level of confidence in our decision, or confidence level, is 1 - 
α (the probability of all outcomes less Type I error). 
 Type II error is symbolized using the Greek letter beta (β ). The probability of 
rejecting a false H0 is called power (1 − β). In hypothesis testing we always want to 
minimize the α and maximize 1 − β. Continuing with our previous example of two 
populations being equal or not equal, the hypotheses are 
 
     H0:  μ1 =  μ2 
     H1:  μ1 ≠  μ2 
 
with the four potential outcomes presented in Figure 8.3: 
 

1 − α: 
α: 

1 − β: 
β: 

Do not reject H0 when in fact μ1 = μ2 is true 
Reject H0 when in fact μ1 = μ2 is true 
Reject H0 when in fact μ1 = μ2 is false 
Do not reject H0 when in fact μ1 = μ2 is false 

 
 In Chapter 3 we discussed the different types of errors in research (random and 
systematic). Statistics allow us to estimate the extent of our random errors or establish 
acceptable levels of random errors. Systematic error is controlled through the 
experimental design used in the study (including random sampling and 
independence). In many cases systematic errors are predictable and often 
unidirectional. Random errors are unpredictable and relate to sample deviations that 
were discussed in the previous chapter. 
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  The Real World  

  H0 is true H0 is false  
Results of 
Statistical 

Test 

Fail to 
Reject H0 

 
1 − α 

 
β 

 

  
Reject H0 

 

 
α , p 

 

 
1 − β 

 

 

Figure 8.3  Illustration of possible results from hypothesis testing. 

 
Type I Error 
 
 The Type I error rate (α) should be established before making statistical 
computations. By convention, a probability of less than 5% (α < 0.05 or a 1/20 
chance) is usually considered an unlikely event. However, we may wish to establish 
more stringent criteria (i.e., 0.01, 0.001) or a less demanding level (e.g., 0.10, 0.20) 
depending on the type of experiment and impact of erroneous decisions. For the 
purposes of this book, the error rates will usually be established at either 0.05 or 0.01. 
The term “statistically significant” is used to indicate that the sample data is 
incompatible with the null hypothesis for the proposed population and that it is 
rejected in favor of the alternate hypothesis. 
 If Type I error (α) must be chosen before the data is gathered, it prevents the 
researcher from choosing a significance level to fit the test statistic resulting from 
statistical testing of the data. A decision rule is established, which is a statement in 
hypothesis testing that determines whether the hypothesis under test should be 
rejected; for example, “with α = 0.05, reject H0 if … .” After the data is analyzed (by 
hand or via computer) the p-value is reported to indicate the amount of possible error 
in the decision if the null hypothesis is rejected.  Both symbols represent Type I 
errors: α is an a priori determination and the p value is a post hoc measure of error. 
 In the previous illustration of pharmacokinetic data (Table 4.3), we found that 
there were over 234 million possible samples (n = 5), which produced a normally 
distributed array of possible outcomes. Using any one of these samples it is possible 
to estimate the population mean (Eq. 7.5): 
 

n
  Z  X  =  /2)-(1

σμ α ×±  

 
Using this equation we can predict a range of possible values within which the true 
population would fall. If we set the reliability coefficient to α = 0.05, then 95% of the 
possible samples would create intervals that correctly include the population mean (μ) 
based on the sample mean ( X ). Conversely, only 5% of the potential samples 
produce estimated ranges that do not include the true population mean. 
 As will be shown in the next chapter, the reverse of this procedure is to use a 
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statistical formula, calculate a “test statistic” and then compare it to a critical number 
from a specific table in Appendix B. If the “statistic” is to the extreme of the table 
value, H0 is rejected. Again, if we allow for a 5% Type I error rate, 95% of the time 
our results should be correct. However, through sampling distribution and random 
error, we could still be wrong 5% (α) of the time due to chance error in sampling. 
 The acceptance region is that area in a statistical distribution where the 
outcomes will not lead to a rejection of the hypothesis under test. In contrast, the 
rejection region, or critical region, represents outcomes in a statistical distribution, 
which lead to the rejection of the hypothesis under test and acceptance of the 
alternative hypothesis. In other words, outcomes in the acceptance region could occur 
as a result of random or chance error. However, the likelihood of an occurrence 
falling in the critical region is so rare that this result cannot be attributed to chance 
alone. 
 The critical value is that value in a statistical test that divides the range of all 
possible values into an acceptance and a rejection region for the purposes of 
hypothesis testing. For example (to be further discussed in Chapter 10): 
 

With α = .05, reject H0 if F > F3,120(0.95) = 2.68 
 
In this particular case, if “F” (which is calculated through a mathematical procedure) 
is greater than “F3,120(0.95)” (which is found in a statistical table), then the null 
hypothesis is rejected in favor of the alternative. 
 To illustrate the above discussion, assume we are testing the fact that two 
samples come from different populations (μA ≠ μB). Our null hypothesis would be that 
the two populations are equal and, if mutually exclusive and exhaustive, the only 
alternate hypothesis would be that they are not the same. 
 

H0: μA = μB 
H1: μA ≠ μB 

 
The best, and only, estimate of the populations are the two sample means ( AX , BX ). 
Based on the discussion in the previous chapter on sampling distributions, we know 
that sample means can vary and this variability is the standard error of the mean. 
Obviously, if the two sample means are the same we cannot reject the null hypothesis. 
But what if one is 10% larger than the other? Or 20%? Or even 100%? Where do we 
“draw the line” and establish a point at which we must reject the null hypothesis of 
equality? At what point can the difference no longer be attributed to random error or 
chance alone? As illustrated in Figure 8.4, this point is our critical value. If we exceed 
this point there is a significant difference. If the sample difference is zero or less than 
the critical value, then this difference could be attributed to chance error due to the 
potential distribution associated with samples. 
 Statistics provides us with tools for making statements about our certainty that 
there are real differences, as opposed to only chance differences between populations 
based on sample observations. The decision rule, with assistance from tables in 
Appendix B, establishes the critical value. The numerical manipulations presented in 
the following chapters will produce the test statistic. If we fail to reject the null 
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Figure 8.4 The critical value. 

 
hypothesis, then there is insufficient evidence available to conclude that H0 is false. 
 Our hypothesis can be bidirectional or unidirectional. For example, assume we 
are not making a prediction that one outcome is better or worse than the other. Using 
the previous example: 
 

H0: μA = μB 
H1: μA ≠ μB 

 
In this case the alternate hypothesis only measures that there is a difference and μA 
could be significantly larger or smaller than μB. If α = 0.05, then we need to divide it 
equally between the two extremes of our sampling distribution of outcomes and create 
two rejection regions (Figure 8.5). We then demarcate finite regions of their 
distribution. The range of these demarcations define the limits beyond which the null 
hypothesis will be rejected. 
 

Figure 8.5 Two-tailed 95% confidence interval. 

Critical Value0

Small difference
due to chance

Large difference
probably not due
to chance alone 

No difference

Acceptance Region
Rejection Region

   

.95

.025 .025

+1.96-1.96 Z



Hypothesis Testing 163

Figure 8.6 One-tailed 95% confidence interval. 
 
 An alternative approach would be to create a directional hypothesis where we 
predict that one population is larger or smaller than the other: 
 
    H0: μA ≤ μB 
    H1: μA > μB 
 
In this case, if we reject H0 we would conclude that population A is significantly 
larger than population B (Figure 8.6). Also referred to as truncated, curtailed, or 
one-sided hypotheses, we must be absolutely certain, usually on logical grounds, that 
the third omitted outcome (μA < μB) has a zero probability of occurring. The one-
tailed test should never be used unless there is a specific reason for being directional. 
 
Type II Error and Power 
 
 Type II error and power are closely associated with sample size and the amount 
of difference the researcher wishes to detect. We are primarily interested in power, 
which is the complement of Type II error (β ). Symbolized as 1 − β, power is the 
ability of a statistical test to identify a significant difference if such a difference truly 
exists. It is dependent on several factors including the size of the groups as well as the 
size of the difference in outcomes. In hypothesis testing, it is important to have a 
sizable sample to allow statistical tests to show significant differences where they 
exist.  
 Power is more difficult to understand than Type I error, where we simply select 
from a statistical table the amount of error we will tolerate in rejecting a true null 
hypotheses. We are concerned with the ability to reject a false H0. In the simplest 
example (H0: μ1 = μ2), we need the ability to reject this hypothesis if it is false and 
accept the alternative hypothesis (H1: μ1 ≠ μ2).  
 Let us assume for the moment that we know, or can approximate the population 
variance as a measure of dispersion. We could estimate our Type II error using the 
following equation:  
 

   

.95
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+1.64Z



Chapter 8 164

2/2
z

n
2

z αβ
σ

δ −=                                  Eq. 8.1 

 
In this equation, σ2 represents the variance of the population (assuming the two 
samples are the same {μ1=μ2}, then the dispersion will be the same for σ1 and σ2); δ is 
the detectable difference we want to be able to identify if μ1 ≠ μ2; n is the sample size 
for each level of the independent variable (assuming equal n); and zα/2 is the amount 
of Type I error preselected for our analysis. zα/2 is expressed as a z-value from the 
normal standardized distribution (Table B2 in Appendix B). Obviously, zβ represents 
the amount of Type II error, again expressed as a value in the normalized standard 
distribution and reporting the probability (β) of being greater than zβ. The 
complement of  β would be the power associated with our statistical test (1 − β). 
 As seen in Eq. 8.1, Type II error is a one-tailed distribution (zβ); whereas the 
Type I error rate may be set either unidirectional (zα) or bidirectional (zα/2). This can 
be explained through using the simplest hypothesis (H0: μ1 − μ2 = 0), where we want 
to be able to reject this hypothesis if there is a true difference and accept the 
alternative hypothesis (H0: μ1 − μ2 ≠ 0). The question that needs to be asked is how 
large should the difference be in order to accept this alternative hypothesis? Figure 
8.7 illustrates the relationship between Type I and II errors. In this figure, Type I error 
is divided equally between the two tails of our null hypothesis and the Type II errors 
to the left side of the distribution for the alternative hypothesis (if it is true). Notice 
the common point where both types of errors end, which becomes our decision point 
to accept or reject the null hypothesis. 
 

 
Figure 8.7 Comparisons of sampling distributions under H0 and H1. 
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 To illustrate this point, assume we are comparing samples from two tablet 
production runs (batches) and are concerned that there might be a difference in the 
average weights of the tablets. Based on historical data for the production of this 
dosage form, we expect a standard deviation of approximately 8 mg (σ 2 = 64). If the 
two runs are not the same with respect to tablet weight (μ1 ≠ μ2), we want to be able to 
identify true population differences as small as 10 mg (δ). At the same time, we 
would like to be 95% confident in our decision (zα/2 = 1.96). We sample 6 tablets from 
each batch. The Type II error calculation is as follows: 
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σ

δ −=  

 

96.1

6
)8(2

10z
2

−=β  

 
21.096.117.2z =−=β  

 
The value zβ represents the point on a normal distribution, below which the β 
proportion of the curve falls. In other words the probability of being below this point 
is the Type II error. Looking at the normal standardized distribution table we see that 
the proportion of the curve between 0 and z = 0.21 is 0.0832. The area below the 
curve (Table B2, Appendix B), representing the Type II error, is 0.4168 (0.5000 − 
0.0832). Thus, for this particular problem we have power less than 60% (1 − 0.4168) 
to detect a 10-mg difference, if such a difference exists.  
 As will be discussed later, if we can increase our sample size we will increase our 
power. Let us assume that we double our sample, collecting 12 tablets from each 
batch, then zβ would be: 
 

10.196.106.396.1

12
)8(2

10z
2

=−=−=β  

 
Once again referring to the normal standardized distribution table, we see that the 
proportion of the curve between 0 and z = 1.10 is 0.3643. In this case the area below 
the curve, representing the Type II error, is 0.1357 (0.5000 − 0.3643). In this second 
case, by doubling the sample size we produce power greater than 86% (1 − 0.1357) to 
detect a 10-mg difference, if such a difference exists. 
 We can modify Eq. 8.1 slightly to identify the sample size required to produce a 
given power.  
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Using the same example, assume that we still wish to be able to detect a 10-mg 
difference between the two batches with 95% confidence (zα/2 = 1.96). In this case, we 
also wish to have at least 80% power (the ability to reject H0 when H0 is false). 
Therefore β (1 − power) is the point on our normal standardized distribution below 
which 20% (or 0.20 proportion of the area of the curve) falls. At the same time 0.30 
will fall between that point and 0 (0.50 − 0.20). Once again looking at Table B2 in 
Appendix B we find that proportion (0.2995) to be located at a z-value of 0.84. Note 
in Figure 8.7 that the critical values are based on α/2 (two-tailed) and 1 − β (one-
tailed). 
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Therefore, to ensure a power of at least 80% we should have 11 samples (rounding up 
the 10.04 to the next whole number).  
 Four characteristics are considered regarding power: 1) sample size; 2) the 
dispersion of the data; 3) amount of Type I error; and 4) the amount of difference to 
be detected.  
 

Error I Type + 

n
Dispersion

Difference Detectable = ErrorIIType             Eq. 8.3 

 
Using Eq. 8.1, it is possible to modify one of the four factors affecting power to detect 
differences: 1) as the detectable difference increases the power will increase; 2) as 
sample size increases the denominator decreases and the power once again increases; 
3) as the dispersion increases the denominator increases and the power decreases; and 
4) as the amount of Type I error decreases it will result in a decreased power. These 
are graphically illustrated in the following series of figures (Figures 8.8 through 8.11).  
 The only way to reduce both types of error is to increase the sample size. Thus, 
for a given level of significance (α), larger sample sizes will result in greater power. 
Using data from the previous example, Figure 8.8 illustrates the importance of sample 
size. With α, δ and the dispersion remaining the same, as we increase the sample size, 
the Type II error decreases and the power increases. Therefore, small sample sizes 
generally lack statistical power and are more likely to fail to identify important 
differences because the test results will be statistically insignificant. 
 Obviously, if they exist, it is easier to detect large differences than very small 
ones. The importance of detectable differences is seen in Figure 8.9 where the sample 
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Figure 8.8 Effect of changes in sample size on statistical power 

(constants δ = 10, σ2 = 68, α = 0.05). 
 
 

 

Figure 8.9 Effect of changes in detectable differences on statistical power 
(constants n =10, σ2 = 64, α = 0.05). 

 
size is constant (n = 10), the estimated variance is 64 and α remains constant at 0.05. 
The only change is the amount of difference we wish to detect. As difference 
increases, power also increases. If we are interested in detecting a difference between 
two populations, obviously the larger the difference, the easier it is to detect. Again, 
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Figure 8.10 Effect of changes in variance on statistical power 

(constants n = 10, δ = 10, α = 0.05). 

 
the question we must ask ourselves is how small a difference do we want to be able to 
detect or how small should a difference be to be worth detecting? 
 As seen in Eq. 8.1, the amount of dispersion or uncertainty can also influence 
power. Figure 8.10 displays the decrease in power that is associated with greater 
variance in the sample data. Conversely, as the variance within the population 
decreases, the power of the test to detect a fixed difference (δ) will increase. 
 Generally Type II error is neither known nor specified in an experimental design. 
Both types of error (I and II) are related inversely to each other. If we lower α without 
changing the sample size, we will increase the probability of having a Type II error 
and consequently decrease the power. Figure 8.11 illustrates changes in power for two 
different levels of Type I error with increasing sample sizes. As we increase our 
confidence that there is a difference (making α smaller), we also increase the chance 
of missing a true difference, increasing β or decreasing power. 
 In addition to the above four factors, the number of treatment levels must also be 
factored in when considering designs that are more complicated than comparing two 
levels of a discrete independent variable. 
 The size of the sample, or number of observations, is extremely important to 
statistical research design. We can increase the power of a statistical test without 
sacrificing our confidence level (1 − α) solely by increasing our sample size. 
Unfortunately, sometimes the sample sizes required to satisfy the desired power are 
extremely large with respect to time and cost considerations. The ways to reduce the 
required sample size are to increase the precision of the test (or instrument) or to 
increase the minimal acceptable level of detectable differences.  
 The problem with the previous example is that the formula is limited to only two 
levels of discrete independent variables. Also, we must know the population variance. 
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Figure 8.11 Effect of changes in sample sizes on statistical power for 

two levels of Type I error (constants δ = 10, σ2 = 68). 

 
Therefore, Eq. 8.1 represents only one unique method of determining Type II error 
(specifically for the alternative hypothesis that two population means are not equal). 
Numerous formulas exist that can be used to calculate the appropriate sample size 
under different criteria. These include power curves presented by Kirk (1968), based 
on α, 1 − β, and the number of levels of the independent variable; and Young’s 
nomograms (1983) for sample size determination. An excellent reference for many of 
these methods is presented by Jerrold Zar. Listed in Table 8.2 are pages from Zar’s 
book for power and sample size determination for many of the statistical tests 
presented in the remainder of this book. A discussion of power and sample size for 
binomial tests was given by Bolton (2004). 
 Power is often calculated after the experiment has been completed. In these post 
hoc cases the sample standard deviation can be substituted for σ. In general, Type II 
error is neither known nor specified in an experimental design. For a given sample 
size, α and β are inversely proportional. If we lower α without changing the sample 
size, we will increase the probability of a Type II error and consequently decrease the 
power (1 − β). The more “powerful” the test, the better the chances are that the null 
hypothesis will be rejected, when the null hypothesis is in fact false. The greater the 
power, the more sensitive the statistical test.  
 Even though it is important to have a large enough sample size to be able to 
detect important differences, having too large a sample size may result in a significant 
finding even though for all practical purposes the difference is unimportant, thus 
producing results that are statistically significant, but have clinically insignificant 
differences.  For example, in a recent article by Al-Khatib and others (2011), a 
demographic significant difference (p < 0.001) was reported between the ages for the 
two groups compared.  Data from a non-evidence-based group had an average age of 
67 years, whereas the average age for the evidence-based group was 66 years. Was 
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Table 8.2 Formulas for Determination of Statistical Power and 
Sample Size Selection 

Chapter Statistical Test Page(s) in Zar 
9 One-sample t-test 114-118 
9 Two-sample t-test 147-151 
9 Paired t-test 182 

10 One-way analysis of variance 207-214 
12 Two-way analysis of variance 275-277 
13 Correlation 386-390 
14 Linear regression 355 
15 One-sample Z-test of proportions 539-542 
15 Two-sample Z-test of proportions 552-555 

From: Zar, J.H. (2010). Biostatistical Analysis, Fifth edition, 
Prentice Hall, Upper Saddle River, NJ. 

 
the one year difference significant?   Yes, if one considers the sample size (25,145 for 
the first groups and n = 86,562 for the second).  Clearly the large sample size resulted 
in the significant difference, even though a one year age difference was probably 
unimportant.   
 One of the advantages of statistical analysis and hypothesis testing is that its 
principles are general and applicable to data from any field of study (i.e., biological, 
physical, or behavioral). All of the tests presented in this book can be applied to data 
regardless of the source of the information or the branch of science or academia from 
which it was derived. As mentioned in Chapter 1 and seen in Appendix A, the most 
important first step in selecting the most appropriate statistic is to identify the 
independent and dependent variables and define them as discrete or continuous.  

In evaluating different tests for analyzing the same data set, we would like to use 
the most efficient test possible. Efficiency is a relative term, but provides a method 
for comparing the same sample size required with different tests that will provide the 
same amount of Type I and Type II errors. Obviously the test requiring the smallest 
sample size is the most efficient. Assume that Test A and Test B represent two 
statistical methods for testing the same H1 against the same null H0, with the same 
critical levels for α and β. The relative efficiency of Test A to Test B is the ratio of 
the sample size (n1/n2). The problem is finding power determination to estimate the 
sample size required for the desired levels of α and β. Finally, we can assess a 
potential bias nature of a test by evaluating α and β. An unbiased test is one in which 
the probability of rejecting H0 when H0 is false is always greater than or equal to the 
probability of rejecting H0 when H0 is true (i.e., 1 − β  ≥ α). It is possible to have a 
test result in p = 0.60 (obviously not significant) and a failure to reject the null 
hypothesis. But at the same time we calculate the power (after the fact) to be 0.75. In 
this example we would have a biased test result. 
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Experimental Errors and Propagation of Errors 
 
  In evaluating the results of data collected in a study, the values for the data will 
be dependent upon the accuracy of the experimental measurement. This accuracy will 
be reflected in the subsequent conclusions and recommendations based on the study. 
The experimental error is the amount of uncertainty that is associated with any data 
set. The true error is the difference between the observed measurement and the true 
value of that quantity. For example this difference could be between a sample mean 
and the actual mean of the population from which the sample was taken. In the real 
world that true value is rarely known. This true error is composed of both systematic 
error and random error. As discussed previously, inaccuracy is a reflection of 
systematic error and can be reduced or eliminated using care in designing a study and 
measuring the results. Random error is represented by Type I and Type II errors and 
is the uncertainty inherent in the variable being measured. One of the most effective 
ways to reduce random errors is through repeated measures or by replicating the 
experiment. 
 The process of error analysis is studying and evaluating experimental errors (both 
systematic and random). The primary goals are to: 1) estimate the magnitude of 
experimental errors and 2) reduce the amount of errors. The challenge is to minimize 
errors so that proper conclusion can be drawn from the experiment. Since “good” 
science is based on measurements and the interpretation of those measurements, it is 
important to keep uncertainties at a minimum. The topic of systematic error has 
already been discussed in Chapter 3. Control of random error has been the focus of 
this chapter.  
 Random error exists in all measurement; if none exists, one needs a measurement 
instrument with greater precision. As seen in Chapter 5 the random error in a sample 
can be expressed by either the standard deviation (S) or the RSD (relative standard 
deviation). If we can directly measure our variable of interest, the S and RSD provide 
an assessment of the precision of the measurement. What if we cannot measure 
something directly, but need to calculate it based on several different variables? For 
example, consider the area of a flat rectangular surface. In this case we could measure 
the length and width of the rectangle and compute the area as A = L ⋅ W. However, 
several different measures of these same distances could have variable results (by 
different individuals, at different times, under different conditions, using different 
instruments, etc.). Both the length and width measurements could have an amount of 
associated uncertainty (measured as the standard deviation): 
 

WWLL SXWSXL ±=±=  
 
For calculation of the area our best estimate would involve the averages for the length 
and width. 
 

WL XXA ⋅=  
 
What about the measure of dispersion for this area? Could we simply sum the two 
standard deviations (for length and width), take the larger of the two, or create some 
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average standard deviation? To handle this type of situation we need a method for 
dealing with the proliferation of error associated with the two dispersions that are 
related to each other, in this example the calculation of the area. 

Often in experiments the final results may not be measurable, but are the results 
of some adding, subtracting, multiplying, or dividing of the results of the other 
original measurements. It becomes necessary to estimate the errors based on these 
types of mathematical manipulations. This combining of uncertainties from separate 
measures is referred to as propagation of errors. It is the resultant measure of 
dispersion where the results are dependent on a number of different independent 
variables, each of which is measured. Each independent variable will be associated 
with the total measure of uncertainty (error). Similar to the previous example of 
surface areas, error components are estimated from repeating the measurement 
several times (or taking numerous samples) to calculate a measure of dispersion for 
the results (sample standard deviations or the relative standard deviations). The 
question is how to handle the variability of these independent variables. 
 Assume there is a serial progression and the first step involves a certain amount 
of error. The error would be compounded with the error associated with the second 
step in the procedure. This is further compounded with the third step, and so forth 
until the last step in a procedure. 
 There are two methods for dealing with the propagation of error and the choice 
depends on the mathematical process that takes place. For addition or subtraction (i.e., 
the previous serial example) the error term is based on the uncertainty measured by 
the variances of the independent measurements: 
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For multiplication or division (e.g., surface area example) the error term is based on 
the relative uncertainty (RSD) of the independent measurements: 
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This relative term is then converted to the standard deviation: 
 

100
)MeanFinal(RSDS Total

Total =                                 Eq. 8.6 

 
To illustrate these methods consider the following example. To calculate the 

molarity for mercuric nitrate it is necessary to calculate both a mass and volume 
measurement: 
 

)mlml)(2)(44.58(
)mg(NaClMassMolarity

blanktitrant −
=  
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Table 8.3 Results of Experiment for Mercuric Nitrate 

Mass 
(NaCl) ml titrant ml blank ml used Molarity 
16.24 6.5045 0.1904 6.3141 0.02201 
16.22 6.5143 0.1904 6.3239 0.02194 
16.27 6.5287 0.1904 6.3383 0.02196 
16.17 6.5017 0.1904 6.3113 0.02192 
16.23 6.5157 0.1904 6.3253 0.02195 
16.24 6.5293 0.1904 6.3389 0.02192 
16.228 = Mean = 6.3253 0.02195 

0.033 = SD = 0.0116 0.00003 
 
 
Taking six samples, the mass (weight) will have a variance term and the volume will 
also have some variability. At the same time the blank used to measure the volume 
will vary. Listed in Table 8.3 are the results of the experiment. Without compensating 
for propagation of error the results for the six samples would be a mean of 0.02195 ± 
a standard deviation of 0.00003. However, the molarity is based on a division of the 
mass by the volume, but first there is the issue of variability in the volume term. The 
ml blank was based on the following triplicate measure: 
 

ml titrant ml blank ml used 
0.2003 0 0.2003 
0.1754 0 0.1754 
0.1956 0 0.1956 

 mean = 0.1904 

 SD = 0.0132 
 
Therefore the propagation of error for the (mltitrant − mlblank) is calculated as follows: 
 

0176.0)0132.0()0116.0(S...SSSS 222
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The calculation of the propagation of error for the molarity is further based on 
division and thus the relative deviations of the mass (0.033/16.228 ⋅ 100 = 0.2034%) 
and already propagated volume (RSD = 0.0176/6.3253 ⋅ 100 = 0.2782%): 
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00008.0
100

)02195.0)(3446.0(
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Total ===  

 
As a result a more accurate measure of uncertainty associated with molarity, 
correction for the propagation of error, would be 0.02195 ± 0.00008. 
 For additional information on propagation of error refer to Taylor (1997). 
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Example Problems (Answers are provided in Appendix D) 
 
1. Write the alternate hypothesis for each of the following null hypotheses: 

a. μA = μB 

 b. μH ≥ μL 
 c. μ1 = μ2 = μ3 = μ4 = μ5 = μ6 
 d. μA ≤ μB 
 e. μ = 125 
 f. Populations C, D, E, F, and G are the same 
 g. Both samples come from the same population 

 
2. If power is calculated to be 85%, with a Type I error rate of 5%, what are the 

percentages associated with the four possible outcomes associated with 
hypothesis testing? What if the power was only 72%? 

 
3. In order to calculate the average density of objects it is necessary to calculate the 

weight and volume of each object and calculate density using the formula: 
density = mass/volume. Initial data based on 10 objects provide the following 
information (means and standard deviations): 

 
    Weight = 10.6 ± 0.6 gm 
    Volume = 4.9 ± 0.3 ml 
 

Report the mean and standard deviation for the density of these objects. 
 
4. Analyzing a drug substance compared to its reference standard produces the 

following results. 
  
   103.5%  99.2%  Mean = 99.97 
   101.2%  100.9%       SD = 2.42 
   96.6%  98.4% 
 
 If the reference standard has a 2% variability, what is the total uncertainty? 
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9 
 
The t-Tests 
 
 
 
 The initial eight chapters of this book focused on the “threads” associated with 
the statistical tests that will be discussed in the following chapters. The order of 
presentation of these statistical tests is based on the types of variables (continuous or 
discrete) that researchers may encounter in their design of experiments. As noted in 
Chapter 1, independent variables are defined as those which the researcher can 
control (i.e., assignment to a control or experimental group); whereas, dependent 
variables fall outside the control of the researcher and are measured as outcomes or 
responses (i.e., pharmacokinetic responses). It should be noted that other authors may 
use the terms factors or predictor variables to describe what we have defined as 
independent variables or response variables to describe dependent variables. We will 
continue to use the terms used in the preceding chapters. 
 Chapters 9 through 12 (t-tests, one-way analysis of variance, post hoc procedures 
and factorial designs) are concerned with independent variables that are discrete and 
outcomes measured on some continuum (dependent variable). Chapters 13, 14, and 20 
discuss tests where both the dependent and independent variables are presented on 
continuous scales (i.e., correlation, regression, survival analyses). Chapters 15 
through 19 (z-test of proportions, chi square tests, and measures of association) 
continue the presentation of tests concerned with discrete independent variables, but 
in these chapters the dependent variable is measured as a discrete outcome (i.e., pass 
or fail, live or die). Chapter 21 provides nonparametric or distribution-free statistics 
for evaluating data that does not meet the criteria required for many of the tests 
presented in Chapters 9 through 14.  
 
Parametric Procedures 
 
 The parametric procedures include the t-tests, analysis of variance (ANOVAs or 
F-tests), correlation and linear regression; Chapters 9, 10, 13, and 14 respectively. In 
addition to the requirements that the samples must be randomly selected from their 
population and independently measured, two additional parameters must be met. 
First, it must be assumed that the sample is drawn from a population whose 
distribution approximates that of a normal distribution. Second, when two or more 
distributions are being compared, there must be homogeneity of variance or 
homoscedasticity (sample variances must be approximately equal). A rule of thumb 
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is that if the largest variance divided by the smallest variance is less than two, then 
homogeneity may be assumed. More specific tests for homoscedasticity will be 
discussed in the next chapter. With both the t-tests and F-tests there is an independent 
discrete variable containing one or more levels and a dependent variable that is 
measured on a continuous scale. Three types of parametric tests are presented in this 
chapter: 1) one-sample t-test; 2) two-sample t-test; and 3) paired t-test. In each case, 
the independent variable is discrete and the dependent variable represents 
continuously distributed data. 
 
The t-Distribution 
 
 In Chapters 6 and 7, discussion focused on the standardized normal distribution, 
the standard error of the mean and the use of the z-test to create a confidence interval. 
This interval is the researcher’s “best guess” of a range of scores within which the 
true population mean will fall (Eq. 7.5): 
 

n
 (1.96)  X  =  σμ ±  

 
The disadvantage with this formula is the requirement that the population standard 
deviation (σ) must be known. In most research, the population standard deviation is 
unknown or at best a rough estimate can be made based on previous research (i.e., 
initial clinical trials or previous production runs). As seen in Figure 7.1, the larger the 
sample size the more constant the value of the standard error of the mean; therefore, 
the z-test is accurate only for large samples. From this it would seem logical that the 
researcher should produce a more conservative statistic as sample sizes become 
smaller and less information is known about the true population variance. This was 
noted and rationalized by William S. Gossett in an excellent 1908 article (Student, 
1908). He published this work under the pseudonym “Student” because he worked for 
Guinness Brewing Company. At that time writing and publishing scientific papers 
was against company policy (Salsburg, 2002). The distribution became known as the 
Student t-distribution and subsequent tests are called Student t-tests or simply t-tests. 
 The t-tests, and their associated frequency distributions, are used 1) to compare 
one sample to a known population or value or 2) to compare two samples to each 
other and make inferences to their populations. These are the most commonly used 
tests to compare two samples because in most cases the population variances are 
unknown. To correct for this, the t-tables are used, which adjust the z-values from a 
normal distribution to account for sample sizes. Note in the abbreviated t-table below 
(Table 9.1), that any t-value at infinity degrees of freedom is equal to the 
corresponding z-value for a given Type I error (α). In other words, the t-table is 
nothing more than a normal standardized distribution (z-table), which corrects for the 
number of observations per sample.  
 Like the normal distribution, the shape of the Student t-distribution is 
symmetrical and the mean value is zero. The exact shape of the curve depends on the 
degrees of freedom, which was previously defined at n − 1. As the sample sizes get 
smaller, the amplitude of the curve becomes shorter and the range becomes wider 
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Table 9.1 Selected Values for the t-distribution for (1 − α/2) 

d.f. t.95 t.975 t.995 

5 2.015 2.570 4.032 
10 1.812 2.228 3.169 
20 1.724 2.086 2.845 
30 1.697 2.042 2.750 
60 1.670 2.000 2.660 
120 1.657 1.979 2.617 
∞ 1.645 1.960 2.576 

 
 
(Figure 9.1). A more complete table of t-values is presented in Table B5 in Appendix 
B. Note that Table 9.1 is designed for two-tailed bidirectional tests. The Type I error 
rate is divided in half (α/2). In the case of 95% confidence, there is a 2.5% chance of 
being wrong to the high side of the distribution and a 2.5% chance of error to the 
lower tail of the distribution. Therefore, allowing for a 5% error divided in half and 
subtracted from all possible outcomes (1 − α/2) the symbol of t.975 presented in the 
second column of Table 9.1 represents the column for 95% confidence.  
 

α = 0.05 
α/2 = 0.025 

1 − α/2 = 0.975 
 
Reviewing the table, the first column is degrees of freedom (n − 1), the third column 
represents critical values for 90% confidence levels, the fourth for 95%, and the last 
for 99.99% confidence intervals. As the number of observations decreases, the 
Student t-value increases and the spread of the distribution increases to give a more 
conservative estimate, because less information is known about the population 
variance. 
 
 

Figure 9.1 Comparison of curves for a t-distribution and a z-distribution. 

 

Normal 
Distribution

Student t
Distribution
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One-Tailed versus Two-Tailed Tests 
 
 There are two ways in which the Type I error (α) can be distributed. In a 
two-tailed test the rejection region is equally divided between the two ends of the 
sampling distribution (α/2) as described above. For example, assume we are 
comparing a new drug to a traditional therapeutic modality. With a two-tailed test we 
are not predicting that one drug is superior to the other. The alternative hypothesis is 
that they are different. 

 
    H0: μnew drug  = μold drug 
    H1: μnew drug  ≠ μold drug 
 
Assuming we would like to be 95% confident in our decision, the sampling error 
could result in a sample that is too high (2.5%) or too low (2.5%) based on chance 
sampling error. This would represent a total error rate of 5%. The rejection region for 
a two-tailed test where p < 0.05 and df = ∞ is illustrated as Figure 9.2. 
 In contrast, a one-tailed test is a test of hypothesis in which the rejection region 
is placed entirely at one end of the sampling distribution. In our current example, 
assume we want to prove that the new drug is superior to traditional therapy: 
 
    H0: μnew drug  ≤ μold drug 
    H1: μnew drug  > μold drug 
 
If a one-tailed test is used, all the α is loaded on one side of the equation and the 
decision rule with α = 0.05, would be to reject H0 if t > tdf(1 − α). Once again we 
would like to be 95% confident in our decision. The rejection region for a one-tailed 
test where p < 0.05 and df = ∞ is seen in Figure 9.3. In our example, what if our drug 
was truly inferior to the older drug? Using a one-tailed test we would not be able to 
prove this result. For that reason, as noted in the previous chapter, the one-tailed test 
should never be used unless there is a specific justification for being directional. 
Table B6 in Appendix B provides critical t-values for both one-tailed and two-tailed 
tests. 
 Failure to reject the null hypothesis does not mean that this hypothesis is 
accepted as truth. Much like the jurisprudence example in the previous chapter, the 
defendant is acquitted as “not guilty,” as contrasted to “innocent.” Thus, we fail to 
reject the null hypothesis, we do not prove that the null hypothesis is true. Insufficient 
evidence is available to conclude that H0 is false. 
 
One-Sample t-Tests 
 
 The one-sample case can be used to either estimate the population mean or 
compare the sample mean to an expected population mean. In the first method, a 
sample is taken on some measurable continuous data and the researcher wishes to 
“guess” at the true population mean. In a previous chapter, 30 bottles of a cough 
syrup are randomly sampled from a production line (Table 5.1). From this 
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Figure 9.2 Graphic representation of a two-tailed test. 

Figure 9.3 Graphic representation of a one-tailed test. 

 
information, it was found that the sample mean equaled 120.05 ml with a standard 
deviation of 0.84 ml. This data could be used to predict the mean for the entire 
population of cough syrup in this production lot. With 95% certainty, the confidence 
interval would be: 
 

n
S  /2)(1t  X = -1n ⋅−± αμ                                      Eq. 9.1 

 
Notice that the population standard deviation in the error term portion of the z-test 
(Eq. 7.5) has been replaced with the sample standard deviation. The expression 
tn-1(1 − α/2) is the t-value in Tables B5 or B6 in Appendix B for 29 observations or 
n − 1 degrees of freedom.1 

                                                 
    1  Note that exactly 29 degrees of freedom are not listed in Tables B5 or B6, but the value can 

be interpolated from a comparison of values for 25 and 30 df. The difference between 25 and 
30 df is equivalent to 0.017 (2.059 − 2.042). 

   1/5 = x/0.017        x = 0.003 
 Therefore, t29(.975) = 2.042 + 0.003 = 2.045 
 Alternatively, as described later in this chapter, Excel can be used to identify the exact value 

for any number of degrees of freedom.   

   

.95 .025.025
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0.31  120.05 = 
30

0.84  (2.045)  120.05 = ±⋅±μ  

 
120.36 <  < 119.74 μ  

 
The value 2.045 is an interpolation of the t-value between 30 and 25 degrees of 
freedom in Table B5. Therefore, based on our sample of 30 bottles, it is estimated 
with 95% confidence that the average volume per bottle for the true population (all 
bottles in the production lot) is between 119.74 and 120.34 ml. 
 With 99% confidence the values would be calculated as follows: 
 

0.42  120.05 = 
30

0.84  (2.757)  120.05 = ±±μ  

 
where 2.757 represents an interpolated value from Tables B5 or B6 for 29 degrees of 
freedom at α = 0.01. 
 

120.47<<119.63 μ  
 
Note that in order to express greater confidence in our decision regarding the 
population mean, the range of our estimate increases. If it were acceptable to be less 
confident (90% or 80% certain that the population mean was within the estimated 
range) the width of the interval would decrease. 
 One method for decreasing the size of the confidence interval is to increase the 
sample size. As seen in Equation 9.1, an increase in sample size will not only result in 
a smaller value for tn-1(1 − α/2), but the denominator (square root of n) will increase 
causing a decrease in the standard error portion of the equation. To illustrate this, 
assume the sample standard deviation remains constant for Sample B in the example 
of Cmax presented in Chapter 7 (Table 7.1), where the X = 752.8, S = 21.5, and n = 5. 
With t4(.975) = 2.78, our best guess of the population mean would be: 
 

n
S  /2)(1t  X = -1n αμ −±  

 

26.73  752.8 = 
5

21.5  (2.78)  752.8 = ±±μ  

 
779.53 <  < 726.07 μ  

 
If the sample size were increased to 25, where t24(0.975) ≈ 2.06, the new confidence 
interval would be: 
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8.86  752.8 = 
25

21.5  (2.06)  752.8 = ±±μ  

 
761.66 <  < 743.94 μ  

 
If we had the ability, funds and time to have another five-fold increase to 125 
samples, where t124(.975) ≈ 1.98, the confidence interval would shrink to the 
following size: 
 

3.81  752.8 = 
125

21.5  (1.98)  752.8 = ±±μ  

 
756.61 <  < 748.99 μ  

    
This “shrinking” in the size of the confidence interval can be graphically seen in 
Figure 9.4. Obviously, the more we know about the population, as reflected by a large 
sample size, the more precisely we can estimate the population mean. 
 

 
Two-Sample t-Tests 
 
 A two-sample t-test compares two levels of a discrete independent variable to 
determine, based on the sample statistics, if their respective populations are the same 
or different. Two approaches can be taken in performing a two-sample t-test: 1) 
establish a confidence interval for the population differences or 2) compare test 
results to a critical value. Either method will produce the same results and the same 
decision will be made with respect to the null hypothesis. The same example for the 
two-sample t-test will be used to illustrate these two methods of hypothesis testing. 
The hypotheses can be written as two identical statements. 
 
      Confidence Interval Critical Value 
   The population means are the same:   H0:  μ1 − μ2 = 0   H0:  μ1 = μ2   
   The population means are different:   H1:  μ1 − μ2  ≠ 0   H1:  μ1  ≠ μ2  
 
Note that the hypotheses are saying the same thing. For the null hypothesis μ1 and μ2 
are the same and the alternative (mutually exclusive and exhaustive) statement is that 
they are different. 
 The first method for calculating a two-sample t-test is an extension of the 
methodology used in performing a one-sample t-test. An interval is established based 
upon the estimated centers of the distributions (sample means), their respective 
standard error of the means, and a selected reliability coefficient to reflect how 
confident we wish to be in our final decision (Eq. 7.4).  
 

Error
Standard

 
tCoefficien
yReliabilit

  
Difference

Sample
 = 

Difference
Population

×±  
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Figure 9.4 Effect of sample size on width of confidence intervals.  

 
The statistical formula compares the central tendencies of two different samples and 
based on the results determines whether their respective populations are presumed 
equal or not. For the resulting confidence interval, the researcher looks for the 
presence or absence of zero within the interval. If they are equal, H0: μ1 − μ2 = 0, then 
a zero difference must fall within the confidence interval. If they are not equal, H1: μ1 
− μ2 ≠ 0, then zero does not fall within the estimated population interval and the 
difference cannot be attributed only to random error.  
 In the one-sample t-test the standard deviation (or variance) was critical to the 
calculation of the error term in Eq. 7.4. In the two-sample case, the variances should 
be close together (homogeneity of variance requirement), but more than likely they 
will not be identical. The simplest way to calculate a central variance term would be 
to average the two variances: 
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average                                               Eq. 9.2 

 
Unfortunately the number of observations per level may not be the same; therefore, it 
is necessary to “pool” these two variances and weigh them by the number of 
observations per discrete level of the independent variable. 
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Using this latter equation, differences in sample sizes are accounted for by producing 
a pooled variance (Sp

2). 
 The confidence interval for the difference between the population means, based 
on the sample means, is calculated using the following equation: 
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Here 1X  and 2X  represent the two sample means and n1 and n2 are their respective 
sample sizes. The expression ( 1X  − 2X ) serves as our best estimate of the true 
population difference (μ1 − μ2). 
 The second alternative method for testing the hypothesis is to create a statistical 
ratio and compare this to the critical value for a particular level of confidence. We can 
think of this t-test as the ratio: 
 

meanstheofondistributi
meansthe betweendifference

 = t                                Eq. 9.5 

 
Obviously, if the difference between the samples is zero, the numerator would be 
zero, the resultant t-value would also be zero and the researcher would conclude no 
significant difference. As the difference between the sample means becomes larger, 
the numerator increases, the t-value increases and there is a greater likelihood that the 
difference is not due to chance error alone. Looking at the illustrations in Figure 9.5, 
it is more likely that the groups to the left are significantly different because the 
numerator will be large; whereas the pair to the right will have a larger denominator 
because of the large overlap of the spreads of the distributions. But how far to the 
extreme does the calculated t-value in Equation 9.5 need to be in order to be 
significant? Greater than 1? Or 2? Or 50? The critical value is selected off the Student 
t-table (Table B5, Appendix B) based on the number of degrees of freedom. This is 
the same value we previously referred to as the reliability coefficient. In the case of a 
two-sample t-test the degrees of freedom are n1 − 1 plus n2 − 1, or the total number of 
observations (N) minus the number of discrete levels of the independent variable (2). 
This is more commonly written n1 + n2 − 2.  
 

df = n1 + n2 − 2 = (n1 − 1) + (n2 − 1) = N − 2 
 
Notice this was the denominator in our calculation of the pooled variance (Eq. 9.3). 
 The variance also influences the calculated t-value. As observations cluster closer 
together, it is likely that smaller differences between means may be significant. With 
respect to Equation 9.5, as the variance becomes smaller the denominator in the ratio 
becomes smaller and the t-value will increase. If the t-value is to the extreme of the 
critical value then the null hypothesis will be rejected in favor of the alternative 
hypothesis. Once again the pooled variance (Eq. 9.3) is used to calculate this t-value: 
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Figure 9.5 Comparison of two different means with similar dispersions. 

 
Note that the numerator is the best guess of the true difference in the population(s) in 
Eq. 9.4 and the denominator is the standard error term in the same equation.  
 As discussed in the next section, the t-test can be either one-tailed or two-tailed. 
For the moment we shall focus only on two-tailed tests: 
 

H0: μ1 = μ2 
H1: μ1 ≠ μ2 

 
and no prediction will be made whether μ1 or μ2 is larger. In this case the decision 
rule is, with α equal to a set value (usually 0.05): 
 

reject H0 if t > tdf(1 − α/2) or if t < −tdf(1 − α/2) 
 
Note that the calculated t-value can be either positive or negative depending on which 
sample mean is considered first. Thus, the resultant t-value can be either positive or 
negative. Again, if the value resulting from Eq. 9.6 is to the extreme (farther from 
zero to the positive or negative direction) of the critical value, there is sufficient 
reason to reject the null hypothesis and conclude that this difference cannot be 
explained by chance error alone. 
 The use of these two different approaches for using the t-test in hypothesis testing 
is presented in the following example. An investigator used a study to compare two 
formulations of a drug to determine the time to maximum concentration (Cmax). Is 
there a significant difference between the two formulations (Table 9.2)? The first 
approach is to establish a confidence interval where the hypotheses are: 
 
     H0: μA − μB = 0 
     H1: μA − μB ≠ 0 
 
The test statistic is Eq. 9.4 and the decision rule is, with α = 0.05, reject H0 if zero 
does not fall within the confidence interval. The computations involve first 
calculating the pooled variance and then the confidence interval with 95% 
confidence: 
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Table 9.2 Cmax Values for Two Formulations of the Same Drug 

Formulation A Formulation B 

125 130 135 126 140 135 130 128 127 149 151 130 
128 121 123 126 121 133 141 145 132 132 141 129 
131 129 120 117 126 127 133 136 138 142 130 122 
119 133 125 120 136 122 129 150 148 136 138 140 

   Mean (ng/ml)  127.00 
   Standard deviation    6.14 
   Subjects    24 

   Mean (ng/ml)  136.54 
   Standard deviation    8.09 
   Subjects   24 
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Thus, since zero is not within the confidence interval, reject H0 and conclude that 
there is a significant difference, with formulation A reaching a significantly lower 
Cmax. A zero outcome (H0) is not a possible outcome with 95% confidence.  
 The second approach is to compare a calculated t-value to its corresponding 
critical value on the t-table (Table B5), where the hypotheses are: 
 
     H0: μA = μB 
     H1: μA ≠ μB 
 
The test statistic is Eq. 9.6 and the decision rule is, with α = 0.05, reject H0 if t > 
t46(0.025) or t < −t46(0.025). In this case with 46 degrees of freedom, reject H0 if t > 
2.01 or t < −2.01. The computations are as follows: 
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The results show that the calculated t-value is smaller than (to the extreme negative 
side of) the critical-t of −2.01. Therefore; we would reject H0, conclude that there is a 
significant difference, with formulation B reaching a significantly higher Cmax. In both 
cases, the results of the statistical test were identical, the rejection of the null 
hypothesis. With only two formulas being compared, the initial data can be looked at 
and the results can state that there were was a significant difference between the two 
formulations, and that with 95% confidence (α = 0.05) Formula B has a significantly 
higher Cmax. 
 
Computer Generated p-values 
 
 Most computer software will generate not only a test statistic (e.g., Eq. 9.6) but 
also an associated p-value. As mentioned in Chapter 8, this p-value is a post hoc 
representation of the amount of Type I error base on the data in the test. In other 
words, this is probability of rejecting the null hypothesis when in fact the null 
hypothesis is true. In most cases this value should be 0.05 or less (95% confidence in 
the decision to reject the null hypothesis). For example, in the previous comparison of 
two formulations (Table 9.2) the computer printout would be t = −4.61, p = 
0.0000329. This can be interpreted, if one rejects the null hypothesis the change of the 
decision being wrong is less than 0.004%, far less than 5%; therefore, reject the null 
hypothesis with confidence in the decision. 
 
Corrected Degrees of Freedom for Unequal Variances 
 

As a parametric procedure, the two-sample t-test assumes that the population(s) 
from which the samples are taken are normally distributed and that they are 
approximately equal in their dispersion (homogeneity of variance). Tests for 
normality were discussed in Chapter 6 and tests for homogeneity of variance will be 
discussed in Chapter 10. As seen previously, the degrees of freedom involved with 
the two-sample case are calculated as n1 + n2 − 2. However in certain computer 
software packages the number of degrees of freedom reported on the output may be  
less than n1 + n2 − 2. This is due to a correction factor based on deviations from the 
ideal situation where the variances are identical and both sample sizes are equal. This 
correction factor (Satterthwaite, 1946) is referred to as Welch-Satterthwaite solution 
or simply the Satterthwaite solution: 
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This corrected result, producing a reduced number of degrees of freedom, is used as 
the reliability coefficient in our confidence interval or the new critical value in the 
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ratio method for determining significance. For example, if the data presented in Table 
9.2 were run on Minitab or Excel for unequal variances (described later) the resultant 
output would be t = −4.60, df = 42, p = 0.0000367. Note that the number of degrees 
of freedom decreased from 44 to 42. In this case there is a very slight difference in the 
results because there were equal cell sizes (n = 24) and the difference was due solely 
to the variances: 
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Equation 9.7 can be used as a check to determine if the degrees of feedom are the 
same as those calculated using the Satterthwaite solution. 
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Therefore, the adjusted degrees of freedom are the same as those presented in the 
computer printouts and the reliability coefficient would be adjusted for 42 rather than 
the original 46 degrees of freedom. For this example, the reliability coefficient or 
critical value for rejection would still be 2.01. However, when sample sizes get small 
this correction factor can result in a much larger reliability coefficient. 

Basically three factors influence the t-test (and other parametric procedures): 1) 
normality; 2) similar variances; and 3) sample size. Parametric statistics are robust 
and moderate violations of these parametric assumptions have little effect in most 
cases (Cohen, pp. 266, 267). But what if there are violations in normality, homo-
geneity, and sample size at the same time? This may invalidate the use of the 
parametric statistic. The one factor that the researcher can control is sample size. Thus 
every effort should be made to keep the sample sizes the same, allowing for minor 
deviations from normality and slightly different variances. 
 
One-Sample t-Test Revisited for Critical Values 
 
 The one-sample t-test can also use an established critical value as a method for 
testing the null hypothesis that a sample is taken from a certain population. Using the 
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previous sample of 30 bottles of cough syrup (Table 5.1), assume that we expect this 
particular syrup to have a fill volume of 120.0 ml. In this case our expected 
population center (μ0) is 120 ml. Is this sample taken from that population? 
 
  H0: μ = μ0 = 120.0  
  H1: μ ≠ μ0 
 
The null hypothesis is that the samples come from a given population and that any 
difference has arisen simply by chance. The one-sample t-test enables us to determine 
the likelihood of this hypothesis. The test statistic is: 
 

n
S
  X

 = t 0μ−
                                                   Eq. 9.8 

 
The decision rule can be established based on the researcher’s desired confidence 
(acceptable amount of Type I error) in the outcome of the hypothesis testing. With 
1 − α  equal to 0.95 (95% confidence) the decision rule is, reject H0 if t > t29(1 − α/2) 
or if t < −t29(1 − α/2), where t29(1 − α/2) is 2.045. For 99% confidence, the decision 
rule would be, with α = 0.01, reject H0 if t > +2.756 or if t < −2.756. Therefore if the 
t-value we calculate is to the extreme of 2.045 (positive or negative) H0 can be 
rejected with 95% confidence in the decision. If the result is to the extreme of 2.756, 
H0 is rejected with 99% confidence. The calculation of the t-value or t-statistic is: 
 

0.33 = 
0.15
0.05 = 

30
0.84

120.00  120.05 = t −
 

 
Similar to both the 95% and 99% confidence interval created in a previous section, 
where 120.0 fell within the interval, we cannot reject the hypothesis that the sample is 
equal to the expected population mean of 120 ml. Stated differently, we cannot reject 
the hypothesis that our sample is taken from a population with a mean of 120 ml.  
 
Matched Pair t-Test (Difference t-Test) 
 
 The matched pair, or paired t-test, is used when complete independence does not 
exist between the two samples, two time periods or repeated measures. For example, 
in a pretest-posttest design, where the same individual takes both tests, it is assumed 
that the results on the posttest will be affected (not independently) by the pretest. The 
individual actually serves as a control. Therefore the test statistic is not concerned 
with differences between groups, but actual individual subject differences. The 
hypotheses are associated with the mean difference in the population based on sample 
data: 
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     H0: μd = 0 
     H1: μd ≠ 0 
 
To perform the test a table showing the differences must be created and used to 
calculate the mean difference and the standard deviation of the difference between the 
two sample measurements. 
 

Before After d (After − Before) d2 
x1 x'1 d1 = (x'1 − x1) d1

2 
x2 x'2 d2 = (x'2 − x2) d2

2 
x3 x'3 d3 = (x'3 − x3) d3

2 
... ... ... ... 
xn x'n dn = (x'n − xn) dn

2 
                       
  Σd Σd2 

 
Each row represents an individual’s score or response. The first two columns are the 
actual outcomes. The third column is the difference between the first two columns per 
individual. Traditionally the first measure (before) is subtracted from the second 
measurement (after). Therefore a positive difference represents a larger outcome on 
the second measure. The mean difference is calculated: 
 

n
d = X d


                                                 Eq. 9.9 

 
and the standard deviation of the difference is the square root of the variance 
difference: 
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S = S 2
dd                                                 Eq. 9.11 

 
The t-value calculations are as follows, depending on use of the confidence interval or 
ratio approach for evaluating the results. Very similar to the one-sample t-test, the 
confidence interval would be: 
 

n
S  /2)(t  X = d

1-ndd ⋅± αμ                                    Eq. 9.12 

 
Interpreted the same as the two-sample t-test, if zero falls within the confidence 
interval, a zero outcome is possible and we fail to reject the H0. Alternatively, if all 
the possible values in the confidence interval are positive or all are negative, we reject 
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the null hypothesis and conclude that there is a significant difference. 
 The second method for hypothesis testing would be to: 1) establish a decision 
rule based on a critical t-value from Tables B5 or B6; 2) calculate a t-value based on 
the ratio of the difference divided by the distribution; and 3) reject the hypothesis 
under test if the t-value that is calculated is more to the extreme than the critical value 
off the table. Similar to previous tests, our estimator is in the numerator and an error 
term in the denominator: 
 

n
S
X

  =  t
d

d                                                 Eq. 9.13 

 
Like the decision rules for hypothesis testing with the two-sample case, the test can be 
either one-tailed or two-tailed. In the one-tailed paired t-test, the hypotheses would be 
either: 
 
    H0: μd ≤ 0 or H0: μd ≥ 0 
    H1: μd > 0  H1: μd < 0 
 
and the decision rule would be, with α = 0.05, reject H0 if t > tdf(1 − α). In the two-
tailed test we again split the Type I error between the two tails with our hypotheses 
being: 
 

H0: μd = 0 
H1: μd ≠ 0 

 
the decision rule with α = 0.05, is to reject H0 if t > tdf(1 − α/2) or if t < −tdf(1 − α/2).  
 Because we are interested in differences in each individual, with the matched-
paired t-test the degrees of freedom (df) value is concerned with the number of pairs 
of individual differences rather than the total number of data points collected. 
 

df = n − 1 (number of pairs) 
 
The following illustrates the use of a one-tailed matched paired t-test. A preliminary 
study was conducted to determine if a new antihypertensive agent could lower the 
diastolic blood pressure in normal individuals. Initial clinical results are presented in 
the second and third columns of Table 9.3. Because this is a one-tailed test (did the 
new drug lower the blood pressure, indicating a desired direction for the alternate 
hypothesis), the hypotheses are as follows: 
 
     H0: μd ≥ 0 
     H1: μd < 0 
 
In this case a rise in blood pressure or no change in blood pressure would result in a 
failure to reject H0. Only if there was a significant decrease in the blood pressure 
would we reject H0 in favor of the alternative hypothesis. 
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Table 9.3 Diastolic Blood Pressure with a New Antihypertensive 

Subject Before After d (after − before) d2 
1 68 66 −2 4 
2 83 80 −3 9 
3 72 67 −5 25 
4 75 74 −1 1 
5 79 70 −9 81 
6 71 77 +6 36 
7 65 64 −1 1 
8 76 70 −6 36 
9 78 76 −2 4 

10 68 66 −2 4 
11 85 81 −4 16 
12 74 68 −6 36 

   = −35 253 
 
 
 In this first example we will first establish a critical t-value and use the ratio 
method (Eq. 9.13) for testing the null hypothesis. The decision rule would be, with α 
= 0.05, reject H0 if t < −t11(0.95), which is 1.795 in Table B5 (note that this is a one-
tailed test; therefore, the critical value comes from the third column, t95 the same 
value is listed in the second column in Table B6). In this case we have set up our 
experiment to determine if there is a significant decrease in blood pressure and the 
difference we record is based on the second measure (after) minus the original results 
(before). Therefore a “good” or “desirable” response would be a negative number. If 
the ratio we calculate using the t-test is a negative value to the extreme of the critical 
value we can reject the H0. Because we are performing a one-tailed test we need to be 
extremely careful about the signs (positive or negative).  
 The calculations for the mean difference and standard deviation of the difference 
are as follows: 
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3.70 = 13.72 = S = S 2
dd  

 
The calculation of the t-value would be: 
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32.7 = 
1.07
2.92 = 

12
03.7

2.92  =  t −−−  

 
Therefore, based on a computed t-value less than the critical t-value of −1.795, the 
decision is to reject H0 and conclude that there was a significant decrease in the 
diastolic blood pressure. 
 Using this same example, it is possible to calculate a confidence interval with α = 
0.05. If zero falls within the confidence interval, then zero difference between the two 
measures is a possible outcome and the null hypothesis cannot be rejected. From the 
previous example we know that dX  = −2.92, Sd = 3.70 and n = 12. From Table B6 in 
Appendix B the reliability coefficient for 11 degrees of freedom (n − 1) is  
t11(1 − α) = 1.795 at 95% confidence. Calculation of the confidence interval is 
 

n
S 1/2)(t  X = d

1-ndd −± αμ  

 

1.92  2.92 = 
12

03.7 (1.795)  2.92- = d ±−±μ  

 
1.00 <  < 4.84 d −− μ  

 
Since zero does not fall within the interval and in fact all possible outcomes are in the 
negative direction, it could be concluded with 95% certainty that there was a 
significant decrease in blood pressure. The results are exactly the same as found when 
the t-ratio was calculated the first time. Based on the confidence interval approach it 
can be estimated that the true population decrease in diastolic blood pressure is 
between 1.00 and 4.84 mm/Hg. 
 
Using Excel® or Minitab® for Student t-tests 
 
 Excel 2010 has several function (ƒx) options that can be used for t-test 
applications. Instead of referring to Tables B5 and B6 to determine critical values for 
the test statistic (or reliability coefficients for confidence intervals) it can be 
determined using the function T.INV.2T for the two-tailed distribution or T.INV for 
a one-tailed distribution. Either function will prompt for the probability (as a decimal) 
and the degrees of freedom. For older versions of Excel, the TINV function will give 
the two-tailed distribution only. Other Excel 2010 functions allow one to determine 
the p-value for a calculated t-statistic: T.DIST.2T for a two-tailed probability and 
T.DIST.RT for the one-tailed option. Either function will prompt for the calculated t-
value and the degrees of freedom. Older versions of Excel included TDIST to 
calculate only the two-tailed probability. 
 There is a function option to help create the confidence interval for a one-sample 
t-test. The function is CONFIDENCE.T (in Excel 2010) which will create that 
portion of Eq. 9.1 that includes the reliability coefficient and error term. Excel will 
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prompted for the “alpha” (amount of Type I error), the sample standard deviation and 
the sample size. The resultant value needs to be added and subtracted from the sample 
mean to create the confidence interval. 
 There are three t-test options as part of the data analysis tools: 1) t-test: two-
sample assuming equal variances; 2) t-test: two-sample assuming unequal variances; 
and 3) t-test: paired two sample for means. 

 
Data  Data Analysis  t-test: Two-Sample Assuming Unequal Variance 
Data  Data Analysis  t-test: Two-Sample Assuming Equal Variances 

Data  Data Analysis  t-test: Paired Two Sample for Means 
 

The difference between the first two options for the two-sample case is that the 
application of the Satterthwaite solution to the option for “t-Test: Assuming Unequal 
Variances”. As seen in Figure 9.6, one needs to identify the columns and range in 
which each level of the independent variable is located (Variable 1 Range and 
Variable 2 Range); set the “Hypothesized Mean Difference” to zero (H0: μ1 − μ2 = 0); 
change the Type I error if 0.05 is not acceptable; and identify where the outcomes 
should be reported, either starting at a cell on the current page (per this example, 
$D$2) or on a new worksheet (by default). Using the data in our previous example 
(Table 9.2) the results appear in Figure 9.7. This figure represents the results for “t-
Test: Two-sample Assuming Equal Variances” and the columns have been expanded 
for better readability. The means and variance for each level of the independent 
variable are reported at the top of the results. Near the center are the calculated t-
statistic and the degrees of freedom. At the bottom are the results for both a one-tailed 
and two-tailed test. The “t Critical …-tail” would correspond to the value from Tables 
B5 or B6 and the “P(T<=t) …-tail” is the p-value based on the number of tails.  

 
 

 
Figure 9.6 Options for a two-sample t-test with Excel. 
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Figure 9.7 Outcome report for a two-sample t-test with Excel. 

 
 
 This example illustrates one disadvantage with Excel − each level of the 
independent variable is represented as a column (or row), whereas most computer 
software requires that the data be arranged with each column representing one 
variable and each row representing an observation. Therefore, data used in other 
software packages need to be modified to be used in Excel. In the previous example, 
for the data in Table 9.2, most software would have “formulation” in one column (A 
or B) and the respective Cmax value in a second column, as will be illustrated below 
using Minitab. 
 For the paired t-test the input requirements are similar to the two-sample 
example. As seen in Figure 9.6, one column represents the before measurement and 
second column represents the after measurement. Using this format a positive t-value 
will indicate a more positive result on the post measure. The outputs for the paired 
results are similar to the two-sample case and presented in Figure 9.8 for data in Table 
9.3. The “Pearson correlation” has no relevance to the interpretation of the paired t-
test and will be discussed in Chapter 13. It is recommended to use the post-
measurement as “Variable 1 Range” and “Variable 2 Range” as the pre-measurement. 
Using this approach a positive t-value will indicate an increase on the post-
measurement. For the example illustrated in Figure 9.8, the significant negative t-
value indicated a significant decrease in the diastolic blood pressure. 
 Minitab offers a applications for the one-sample, two-sample and paired tests. To 
access these tests choose “Stat” on the title bar, then “Basic Statistics” and the 
appropriate t-test:  
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Figure 9.8 Outcome report for a paired t-test with Excel. 

 
Stat  Basic Statistics  1-sample t… one sample CI 

Stat  Basic Statistics  2-sample t… two-sample t-test 
Stat  Basic Statistics  Paired t… one sample CI 

 
Like most software packages, each column represents a variable and each row an 
observation. Columns are chosen for Minitab based on whether they independent or 
dependent variables. Figure 9.9 illustrates the decisions required for a one-sample t-
test for the data from Sample B in Table 7.1. Graphic… options include a histogram, 
an individual value plot or a box plot. Options… allows one to change in the 
confidence interval from the default value on 95% or to create a one-tailed interval. 
The results for a 95% confidence interval are presented in Figure 9.10. 
 For the two-sample t-test, Minitab automatically applies the Satterthwaite 
solution and down-regulates the degrees of freedom to adjust for differences in 
sample sizes or variances. Figure 9.11 illustrated the decisions required for a two-
sample t-test for the data in Table 9.2. The “Subscripts” is the column with the 
independent variable and the “Samples” is the column with the dependent variable. 
These are selected by double clicking on the variables in the box on the left. 
Graphic… options include an individual value plot or a box plot for each level of the 
independent variable. Options… allows one to change in the confidence interval from 
the default value on 95%, create a one-tailed interval, or change the predicted 
difference from the default of zero. The Satterthwaite solution can be overridden by 
selecting the “Assume equal variances” seen in Figure 9.11. The output for the two-
sample t-test for data in Table 9.2 is presented in Figure 9.12. Notice that the results 
provide both the confidence interval and ratio approaches to the t-test.  
 For the paired t-test, data is arranged in Minitab similar to Excel, with the pre- 
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Figure 9.9 Options for one-sample t-test with Minitab. 

 
 

 

Figure 9.10 Outcome report for a one-sample t-test with Minitab. 

 
measurements in one column and post-measurements in a second column. Figure 9.13 
illustrated the decisions required for a paired t-test for the data in Table 9.3. The 
“First Sample” should be the column for the post-measurement and the “Second 
Sample” should be the column for the pre-measurement. Similar to Excel this will 
produce a positive t-value if there is an increase in the latter measurement. Graphic… 
options include a histogram of the differences, an individual value plot for each level 
or a box plot of the differences. Options… allows one to change the confidence 
interval from the default value on 95%, create a one-tailed interval, or change the 
predicted difference from the default of zero. The output for the paired t-test for data 
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Figure 9.11 Options for one-sample t-test with Minitab.

 
 

Figure 9.12 Outcome report for a two-sample t-test with Minitab. 
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Figure 9.13 Options for a paired t-test with Minitab.

 
in Table 9.3 is presented in Figure 9.14. Once again note that the results provide both 
the confidence interval and ratio approaches to the t-test. 
 Minitab offers some very nice additional features for the t-tests. If one has the 
mean, standard deviation and sample size already available, they can be simply 
entered into the “Summarized data” option in Figures 9.9, 9.11, and 9.13. Also, if data 
happens to be arranged in columns as required by Excel, the two-sample t-test in 
Minitab can handle this format using the “Samples in different columns” option in 
Figure 9.11. 
 
 

 

Figure 9.14 Outcome report for a paired t-test with Minitab. 
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Examples in this section were taken from previous data in the chapter and the 
results (less minor rounding differences) were identical to the results worked out by 
hand. 
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Example Problems (Answers are provided in Appendix D) 
 
1. Two groups of physical therapy patients are subjected to two different treatment 

regimens. At the end of the study period, patients are evaluated on specific 
criteria to measure the percent of desired range of motion. Do the results listed 
below indicate a significant difference between the two therapies at the 95% 
confidence level? 

 
Group 1  Group 2 

78 
87 
75 
88 
91 

82 
87 
65 
80 

 75 
88 
93 
86 
84 
71 

91 
79 
81 
86 
89 
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Table 9.4 FEV1 Data 

Subject 
number 

Before 
administration 

FEV1 3 hours           
after administration 

1 3.0 3.1 
2 3.6 3.9 
3 3.5 3.7 
4 3.8 3.8 
5 3.3 3.2 
6 3.9 3.8 
7 3.1 3.4 
8 3.2 3.3 
9 3.5 3.6 

10 3.4 3.4 
11 3.5 3.7 
12 3.6 3.5 

 
 
2. Twelve subjects in a clinical trial to evaluate the effectiveness of a new 

bronchodilator were assessed for changes in their pulmonary function. Forced 
expiratory volume in one second (FEV1) measurements were taken before and 
three hours after drug administration (Table 9.4).  

 
 a. What is t(1-α/2) for α = 0.05? 
 b. Construct a 95% confidence interval for the difference between population 

means. 
 c. Use a t-test to compare the two groups. 
 
3. Calculate the mean, standard deviation, relative standard deviation, and 95% 

confidence interval for each of the time periods presented in the following 
dissolution profile (percentage of label claim): 
 

 Time (minutes) 
Sample 10 20 30 45 60 

1 60.3 95.7 97.6 98.6 98.7 
2 53.9 95.6 97.5 98.6 98.7 
3 70.4 95.1 96.8 97.9 98.0 
4 61.7 95.3 97.2 98.0 98.2 
5 64.4 92.8 95.0 95.8 96.0 
6 59.3 96.3 98.3 99.1 99.2 

 
4. Samples are taken from a specific batch of drug and randomly divided into two 

groups of tablets. One group is assayed by the manufacturer’s own quality 
control laboratories. The second group of tablets is sent to a contract laboratory 
for identical analysis. Is there a significant difference between the results 
generated by the two labs? 
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Manufacturer  Contract Lab 
101.1  97.5 
100.6  101.1 
98.8  99.1 
99.0  98.7 
100.8  97.8 
98.7  99.5 

 
 a. What is t(1-α/2) for α = 0.05? 
 b. Construct a 95% confidence interval for the difference between population 

means. 
 c. Use a t-test to compare the two groups. 
 
5. A first-time-in-man clinical trial was conducted to determine the pharmacokinetic 

parameters for a new calcium channel blocker. The study involved 20 healthy 
adult males and yielded the following Cmax data (maximum serum concentration 
in ng/ml): 

 
   715, 728, 735, 716, 706, 715, 712, 717, 731, 709, 
   722, 701, 698, 741, 723, 718, 726, 716, 720, 721 
  
 Compute a 95% confidence interval for the population mean for this 

pharmacokinetic parameter. 
  
6. Following training on content uniformity testing, comparisons are made between 

the analytical result of the newly trained chemist with those of a senior chemist. 
Samples of four different drugs (compressed tablets) are selected from different 
batches and assayed by both individuals. These results are listed in Table 9.5. 
Was there a significant difference between the results from these two scientists? 
 
 

Table 9.5 Comparison of Two Chemists 

Sample 
Drug, Batch 

New 
Chemist 

Senior 
Chemist 

A,42 99.8 99.9 
A,43 99.6 99.8 
A,44 101.5 100.7 
B,96 99.5 100.1 
B,97 99.2 98.9 

C,112 100.8 101.0 
C,113 98.7 97.9 
D,21 100.1 99.9 
D,22 99.0 99.3 
D,23 99.1 99.2 
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7. An examination evaluating cognitive knowledge in basic pharmacology was 
mailed to a random sample of all pharmacists in a particular state.  Those 
responding were classified as either hospital or community pharmacists.  The 
examination results were: 

 
 Hospital Pharmacists Community Pharmacists 
Mean Score  82.1 79.9 
Variance 151.29 210.25 
Respondents 129 142 

 
 Assuming that these respondents are representative of their particular popula-

tions, is there any significant difference between the types of practice based on 
the examination results? 

 
8. A study was undertaken to determine the cost effectiveness of a new treatment 

procedure for peritoneal adhesiolysis.  Twelve pairs of individuals who did not 
have complications were used in the study, and each pair was matched on degree 
of illness, laboratory values, sex, and age.  One member of each pair was 
randomly assigned to receive the conventional treatment, while the other member 
of the pair received the new therapeutic intervention.  Based on the data in Table 
9.6, is there sufficient data to conclude at a 5% level of significance that the new 
therapy is more cost effective than the standard? 

 
9. In a major cooperative of hospitals the average length of stay for kidney 

transplant patients is 21.6 days.  In one particular hospital the average time for 51 
patients was only 18.2 days with a standard deviation of 8.3 days.  From the data 
available, is the length of stay at this particular hospital significantly less than 
expected for all the hospitals in the cooperative? 

 
 

Table 9.6  Cost in Dollars 

Pair New Conventional 
1 11,813 13,112 
2 6,112 8,762 
3 13,276 14,762 
4 11,335 10,605 
5 8,415 6,430 
6 12,762 11,990 
7 7,501 9,650 
8 3,610 7,519 
9 9,337 11,754 

10 6,538 8,985 
11 5,097 4,228 
12 10,410 12,667 
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10 
 
One-Way Analysis of Variance (ANOVA) 
 
 
 
 Where the t-test was appropriate for the one- or two-sample cases (one or two 
levels of the discrete independent variable), the F-test or one-way analysis of variance 
provides an extension to k levels of the independent variable. The calculation involves 
an analysis of variance of the individual sample means around a central grand mean. 
Like the t-test, the dependent variable represents data from a continuous distribution. 
The analysis of variance is also referred to as the F-test, after R.A. Fisher, a British 
statistician who developed this test during the 1920s (Salsburg, 2002). This chapter 
will focus on the one-way analysis of variance (abbreviated with the acronym 
ANOVA), which involves only one independent discrete variable and one dependent 
continuous variable.  
 
Hypothesis Testing with the One-Way ANOVA 
 

There are numerous synonyms for the one-way ANOVA including: univariate 
ANOVA, simple ANOVA, single-classification ANOVA, or one-factor ANOVA. 
The hypotheses associated with the one-way analysis of variance can be expanded to 
any number (k) levels of the discrete independent variable. 
 
     H0: μ1 = μ2 = μ3 ... = μk 
     H1: H0 is false 
 
The null hypothesis states that there are no differences among the population means, 
and that any fluctuations in the sample means are due to chance variability only. 

The ANOVA represents a variety of techniques used to identify and measure 
sources of variation within a collection of observations, hence the analysis of variance 
name. The ANOVA has the same assumption as those seen with the t-test: 1) sample 
sizes are relatively equal; 2) the variances are similar (homogeneity of variance); and 
3) the dependent variable is sampled from a normally distributed population. In fact 
the t-test could be considered a special case of the one-way ANOVA where k = 2. 
Factors that can affect whether differences are statistically significant include: 1) 
amount of the difference between the sample means; 2) the variances of the 
dependent variable (wide or narrow dispersion); and 3) the sample size (larger 
samples provide more reliable  information). 
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 Note that the alternative hypothesis does not say that all samples are unequal, nor 
does it tell where any inequalities exist. The test results merely identify that a 
difference does occur somewhere among the population means. In order to find where 
these differences are some form of multiple comparison procedure should be 
performed if the null hypothesis is rejected (Chapter 11). 
 
The F-Distribution 
 
 A full discussion of the derivation of the sampling distribution associated with 
the analysis of variance is beyond the scope of this text. A more complete description 
can be found in Kachigan (1991). The simplest approach would be to consider the 
ratio of variances for two samples randomly selected from a normally distributed 
population. The ratio of the variances, based on sample sizes of n1 and n2 , would be: 
 

S

S
 = F

2
2

2
1  

 
Assuming the sample was taken from the same population, the ratio of the variances 
would be: 
 

1 =  = )
S
SE( = E(F) 2

2

2
2

2
1

σ
σ  

 
However, due to the variations in sampling distributions (Chapter 7), some variation 
from E(F) = 1 would be expected by chance alone due to expected difference between 
the two sample variances. Based on previous discussions in Chapter 7 it would be 
expected that the variation of the sampling distribution of S2 should depend on the 
sample size n and the larger the sample size, the smaller that variation. Thus, sample 
size is important to calculating the various F-distributions. 
 As will be shown in the next section, the F-test will create such a ratio comparing 
the variation among the levels of the independent variable and the variation within the 
samples. Curves have been developed that provide values that are likely to be 
exceeded only 5% or 1% of the time by chance alone (Figure 10.1). Obviously if the 
calculated F-value is much larger than one and exceeds the critical value indicated 
below, it is most likely not due to random error. Because of the mathematical 
manipulations discussed later in this chapter the calculated F-statistic must be 
positive. Therefore, unlike the t-test, we are only interested in only positive values to 
the extreme of our critical value. Similar to the t-distribution, the F-distribution is a 
series of curves, whose shapes differ based on the degrees of freedom. As will be seen 
later in the chapter, the decision to accept or reject the null hypothesis, based on the 
shape of the F-distribution, is dependent on both the total sample size and the number 
of levels associated with the discrete independent variable. As the number of degrees 
of freedom gets larger, the F-distribution will approach the shape of a normal 
distribution. A listing of the critical F-values (Fc) is given in Table B7 of Appendix B.  
Similar to the t-test, Excel can be used to generate the critical value, which will be 
discussed at the end of this chapter. 
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Figure 10.1 Example of an F-distribution. 

 
Test Statistic 
 
 The analysis of variance involves determining if the observed sample values 
belong to the same population, regardless of the level of the discrete variable (group), 
or whether the observations in at least one of these groups come from a different 
population. 
 

H0: μ1 = μ2 = μ3 ... = μk = μ 
 
To obtain an F-value we need two estimates of the population variance. It is 
necessary to examine the variability (analysis of the variance) of observations within 
groups as well as between groups. With the t-test, we computed a t-statistic by 
calculating the ratio of the difference between the two means over the distribution of 
the means (represented by the pooled variance). The F-statistic is computed using a 
simplified ratio similar to the t-test. 
 

meanstheofdifferencethe of error standard
means the between difference

 = F                 Eq. 10.1 

 
The actual calculation of the F-statistic is as follows: 
 

MS
MS = F

W

B                                                    Eq. 10.2 

 
This formula shows the overall variability between the samples means (MSB or mean 
squared between) and at the same time it corrects for the dispersion of data points 
within each sample (MSW or mean squared within). The actual calculations for the 
MSB and MSW will be discussed in the following two sections. Obviously, the greater 
the differences among the sample means (the numerator), the less likely that all the 
samples were selected from the same population (all the samples represent 
populations that are the same or are equal). If all the sample means are equal, the 

2.06 3.87

 0.05

 0.01

F6,20

0
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numerator measuring the differences among the means will be zero and the 
corresponding F-statistics also will be zero. As the F-statistic increases it becomes 
likely that a significant difference exists. Like the t-test, it is necessary to determine if 
the calculated F-value is large enough to represent a true difference between the 
populations sampled or if the difference is merely due to chance error or sampling 
variation. The decision rule to reject the null hypothesis of equality is stated as 
follows: 
 

with α = 0.05, reject H0 if F > Fν1,ν2(1 − α) 
 
The critical F-value is associated with two separate degrees of freedom. The 
numerator degrees of freedom (ν1) equals k − 1 or the number of treatment levels 
minus one; and the denominator degrees of freedom (ν2) equals N − k or the total 
number of observations minus the number of treatment levels (k). 
 An analogy can be made between the F-distribution and the t-distribution. As will 
be seen in the following sections, the process involves a squaring of the differences 
between sample means the total mean for all the sample observations. Values for the 
F-distribution for two levels of the discrete independent variable will be identical to 
the corresponding t-distribution value, squared. In other words, with only two levels 
of the independent variable F1,N-2 equals (tN-2)2, or (tn1+n2-2)2, for the same level of 
confidence (1 − α). This is illustrated in Table 10.1. As might be expected, the 
outcome for an F-test on data with only two levels of a discrete independent variable 
will be the same as a t-test if performed on that same information. For example based 
on the data presented previously in Table 9.2, the result of the t-test was t = −4.61, p 
< 0.0000329, whereas the one-way ANOVA performed on the same data would result 
in F = 21.19, p < 0.0000329. Each test gives identical p-values.  
 To calculate the F-statistic for the decision rule either definitional or 
computational formulas may be used. With the exception of rounding errors, both 
methods will produce the same results. In the former case the sample means and 
standard deviations are used: 
 
  X 1, X 2, ... X  k = sample means 
   S1

2, S2
2, ... Sk

2 = sample variance 
   n1, n2, ... nk = sample sizes 
   N = total number of observations 
   k = number of discrete levels (treatment levels) of the independent variable 
 
In the computational formula: 1) individual observations; 2) the sum of observations 
for each level of the discrete independent variable; and 3) the total sum of all 
observations, are squared and manipulated to produce the same outcome. The analysis 
of variance is a statistical procedure to analyze the overall dispersion for data in our 
sample outcomes. The computational method will be described later in this chapter. 
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Table 10.1 Comparison of Critical Value between t- and F-Distributions 

 α = 0.05 α = 0.01 
df t N-2 (t N-2 )2 F1,N-2 t N-2 (t N-2 )2 F1,N-2 

15 2.131 4.54 4.54 2.946 8.68 8.68 
30 2.042 4.17 4.17 2.750 7.56 7.56 
60 2.000 4.00 4.00 2.660 7.08 7.08 
120 1.979 3.92 3.92 2.617 6.85 6.85 
∞ 1.960 3.84 3.84 2.576 6.63 6.63 

Note: t- and F-values taken from Tables B5 and B7 in Appendix B, 
respectively. 

 
 
ANOVA Definitional Formula 
 
 The denominator of the F-statistic (Eq. 10.2), the mean square within (MSW), is 
calculated in the same way as the pooled variance is calculated for the t-test, except 
expanded to k levels instead of only two levels as found in the t-test. 
 

K-N
S1)n( ...  S1)n(  S1)n(  S1)n(

 = MS
2
kk

2
33

2
22

2
11

W
−++−+−+−

          Eq. 10.3 

 
Note the similarity of this formula and the pooled variance for the t-test (Eq. 9.3). 
Since no single sample variance is a better measure of dispersion than the other 
sample variances, our best estimate is to pool the variances and create a single 
estimate for within variation. The mean square within is often referred to as the 
mean-squared error (MSE) or pooled-within-group variance (Sw

2) and these terms 
are synonymous. 
 

MSW = MSE = Sw
2 

 
The mean squared within is a measure of random variability or random error among 
the measured objects and is not the same as the variability of the total set (N). 
 In the t-test, the numerator was the difference between two means (Eq. 9.6), 
which was easily calculated by subtracting one mean from the other. But how do we 
calculate a measure of difference when there are more than two means? In the 
ANOVA, there are k different means; therefore a measure is calculated to represent 
the variability among the different means. This measure of dispersion of the means is 
calculated similarly to a previous dispersion term, the variance (Eq. 5.3). First, the 
center (the grand mean) for all sample observations is calculated. Then the squared 
differences between each sample mean and the grand central mean are calculated. 
This measures an analysis of the variance between the individual sample means and 
the total center for all the sample observations. The grand mean or pooled mean is 
computed: 
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N
)Xn( ...  )Xn(  )Xn(  )Xn( = X kk332211G

++++                 Eq. 10.4 

 
This grand mean represents a weighted combination of all the sample means and an 
approximation of the center for all the individual sample observations. From it, the 
mean squared between (MSB) is calculated similar to a sample variance (Eq. 5.3) by 
squaring the difference between each sample mean and the grand mean, and 
multiplying by the number of observations associated with each sample mean; this is 
then divided by the numerator degrees of freedom: 
 

1K
)XX(n ...  )XX(n  )XX(n = MS
2

Gkk
2

G22
2

G11
B −

−++−+−          Eq. 10.5 

 
Finally the F-statistic is based on the ratio of the difference between the means over 
the distribution of their data points (Eq. 10.2): 
 

MS
MS = F

W

B  

 
In both the F-test and the t-test, the numerator of the final ratio considers differences 
between the means and the denominator takes into account how data are distributed 
around these means. The greater the spread of the sample observations, the larger the 
denominator, the smaller the calculated statistic and thus a lesser likelihood of 
rejecting H0. The greater the differences between the means, the larger the numerator, 
the larger the calculated statistic, and the greater the likelihood of rejecting H0 in 
favor of H1. In other words, as the centers (means) get further apart the calculated F-
value will increase and there is a greater likelihood that the difference will be 
significant. Conversely, as the dispersion becomes larger, the calculated F-value will 
decrease and the observed difference will more than likely be caused by random error. 
 To illustrate this method of determining the F-statistic, assume that during the 
manufacturing of a specific enteric-coated tablet, samples were periodically selected 
from production lines at three different facilities. Weights were taken for 15 tablets 
and their average weights are listed in Table 10.2. The research question would be: is 
there any significant difference in weights of the tablets among the three facilities? 
The hypotheses would be: 
 
   H0: μfacility A = μfacility B = μfacility C 
   H1: H0 is false 
 
The decision rule is with α = 0.05, reject H0 if F > F2,42(0.95) = 3.23. This value is 
approximated from Table B7 in Appendix B, where 2 is selected from the first 
column (k − 1) and 42 approximated from the second column (N − k) and the value is 
selected from the fourth column, (1 − α = 0.95) is 3.24 (an interpolation between 3.23 
for 40 df and 3.15 for 60 df). The computations are as follows: 
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Table 10.2 Average Weights in Enteric Coated Tablets (in mg) 

Facility A Facility B Facility C 
277.3 278.4 271.6 275.5 275.5 272.3 
280.3 272.9 274.8 274.0 274.2 273.4 
279.1 274.7 271.2 274.9 267.5 275.1 
275.2 276.8 277.6 269.2 274.2 273.7 
273.6 269.1 274.5 283.2 270.5 268.7 
276.7 276.3 275.7 280.6 284.4 275.0 
281.7 273.1 276.1 274.6 275.6 268.3 
278.7  275.9  277.1  

  Mean = 276.26 
  S.D. = 3.27 

  Mean = 275.29 
  S.D. = 3.46 

  Mean = 273.70 
  S.D. = 4.16  

 
 

KN
S1)n( + S1)n( + S1)n(
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2
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2
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2
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13.32 = 
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)14(4.16 + )14(3.46 + )14(3.27
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W  

 

N
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275.08 = 
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15(273.70) + 15(275.29) + 15(276.26) = X G  
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2
)275.08-15(273.70 + )275.08-15(275.29 + )275.08-15(276.26

 = MS
222
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25.06 = MSB  

 

1.88 = 
13.32
25.06 = 

MS
MS = F

W

B  

 
Thus based on the test results, the decision is with F < 3.23, do not reject H0, and 
conclude that there is inadequate information to show a significant difference between 
the three facilities. 
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ANOVA Computational Formula 
 
 The computation technique is an alternative short cut, which arrives at the same 
results as the definitional method, except the formulas involve the raw data, and the 
means and standard deviations are neither calculated nor needed in the equations. 
Using this technique the MSW and MSB (also known as the mean sum of squares) are 
arrived at by two steps. First the sums of the squared deviations are obtained and then 
these sums are divided by their respective degrees of freedom (i.e., numerator or 
denominator degrees of freedom). Figure 10.2 illustrates the layout for data treated by 
the computational formula. This type of mathematical notation will be used with 
similar formulas in future chapters. In the notation scheme, xjk refers to the jth 
observation in the kth level of the discrete independent variable, where k varies from 
1 to k (the number of groups in the analysis), and j varies from 1 to nj (the number of 
observations in the kth group). In addition, the sums for each of the columns are 
added together (xT) to represent the sum total for all the observations (NK). 
 A series of intermediate equations are calculated. Intermediate I is the sum of all 
the squared individual observations. 
 

)x( ...  )x(  )xx = I 2
kn

2
a2

2
a12

jk

n

1=i

K

1=k
( = +++                  Eq. 10.6 

 
Intermediate II is the square of the total sum of all observations, divided by the total 
number of observations. 
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x
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                                  Eq. 10.7 

 
 

             Treatments (levels) 
 A B C … K  

 xa1 xb1 xc1 … xk1  
 xa2 xb2 xc2 … xk2  
 xa3 xb3 xc3 … xk3  
 … … … … …  
 xan xbn xcn … xkn  
 ____ ____ ____ __ ____  

 xA xB xC ... xK  
xT = total sum of   
observations 

Observations 
 per level = 

 
nA 

 
nB 

 
nC 

 
... 

 
nK 

Figure 10.2 Data format for the ANOVA computational formula. 
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Intermediate III involves summing each column (level of the discrete variable), 
squaring that sum, and dividing by the number of observations in the column. Then 
the results for each column are summed. 
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            Eq. 10.8 

 
These intermediate equations are used to determine the various sums of squares that 
appear in a traditional ANOVA table: 

 
IIIIISS B −=                                          Eq. 10.9 

 
IIIISSW −=                                         Eq. 10.10 

 
IIISST −=                                          Eq. 10.11 

 
Note that the sum of squared deviations for the within groups (SSW) and between 
groups (SSB) should add to the total sum of the squares (SST) and this relationship can 
serve as a quick check of our mathematical calculations. 
 

TWB SSSSSS =+  
 
 The ANOVA table is used to calculate the F-statistic. Each sum of squares is 
divided by their respective degrees of freedom and the resultant mean squares are 
used in the formula present for determining the F-statistic (Eq. 10.2): 
 

 
Source 

Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Square 

 
F 

Between 
Groups 

k − 1 III − II III − II 
k − 1 

MSB 
MSW 

Within 
Groups 

N − k I − III I − III 
N − k 

 

Total N − 1 I − II   
 
 This method can be applied to the same problem that was used for the 
definitional formula. The hypotheses, test statistic, decision rule, and critical value 
(Fcritical = 3.23) remain the same for the data presented in Table 10.2. In Table 10.3 the 
same data is presented, but includes the sums of the various columns. The 
mathematics for the computational formula are as follows: 
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Table 10.3 Average Weights of Enteric-Coated Tablets (in mg) 

Facility A Facility B Facility C 
277.3  271.6  275.5  
280.3  274.8  274.2  
279.1  271.2  267.5  

…  …  …  
273.1  274.6  268.3  

xA = 4143.9 xB = 4129.4 xC = 4105.5 

x = 12378.8 
 
 

583,405,824. = )(268.3 ... + )(280.3 + )(277.3 = x = I 2222
jk  

 
[ ]

323,405,215. = 
45

)(12378.8 = 
N

x = II
2

k

jk
2

 

 
[ ]

453,405,265. = 
15

)(4105.5 + 
15

)(4129.4 + 
15

)(4143.9 = 
n
x = III

222

k

jk
2

  

 
13.5032.215,405,345.265,405,3IIIIISS B =−=−=  

 
13.55945.265,405,358.824,405,3IIIISSW =−=−=  

 
26.60932.215,405,358.824,405,3IIISST =−=−=  

 
13.5013.55926.609SSSSSS TWB +==+  

 
The ANOVA table for this example would be: 
 

Source df SS MS F 
Between 2 50.13 25.07 1.88 
Within 42 559.13 13.31  
Total 44 609.26   

 
The decision rule is the same, with F < 3.23, do not reject H0. Note that the results are 
identical to those using the definitional formula, with possible minor rounding 
differences in the mean square column. 
 A second example of a one-way analysis of variance, seen below, is a case where 
Cmax measurements (maximum concentrations in micrograms per milliliter) were 
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found for four different formulations of a particular drug.1 The researcher wished to 
determine if there was a significant difference in the Cmax for the definitional 
formulations. 
 

Cmax in mcg/ml: Mean S.D. n 
Formulation A 123.2 12.8 20 
Formulation B 105.6 11.6 20 
Formulation C 116.4 14.6 19 
Formulation D 113.5 10.0 18 

 
In this case the hypotheses are: 
 
    H0: μA = μB = μC = μD 
    H1: H0 is false 
 
The hypothesis under test is that the four formulas of the study drug produce the same 
Cmax, on the average. If this is rejected then the alternate hypothesis is accepted, 
namely that some difference exists somewhere among the four formulations. Using 
Eq. 10.2, our decision rule is, with α = 0.05, reject H0 if F > F3,73(0.95) = 2.74. This 
critical value comes from Table B7 in Appendix B, with k − 1 or 3 in the first column, 
N − k or 73 approximated in the second column and 2.74 interpolated from the fourth 
column (between 60 and 120 df) at 95% confidence. 
 The computations using the definitional formula would be: 

 

KN
S1)n( + S1)n( + S1)n( + S1)n(

 = MS
2
DD

2
CC

2
BB

2
AA

W −
−−−−

 

 

153.51 = 
73

)17(10.0 + )18(14.6 + )19(11.6 + )19(12.8
 = MS

2222

W  

 

N
)Xn( + )Xn( + )Xn( + )Xn(

 = X DDCCBBAA
G  

 

114.68 = 
77

18(113.5) + 19(116.4) + 20(105.6) + 20(123.2) = X G  

 
                                                 
1 It should be noted that in most cases distributions of Cmax data would be positively 

skewed and a lognormal transformation be required.  However, for our purposes we 
will assume that the sample data approximates a normal distribution.  Also note that 
the variances, squares of the standard deviations, are similar and we can assume 
homogeneity of variances.  Specific tests for homogeneity are presented in the last 
section of this chapter. 
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1K
)XX(n + )XX(n + )XX(n + )XX(n = MS
2

GDD
2

GCC
2

GBB
2

GAA
B −

−−−−
 

 

3
)114.6818(113.5 ... + )114.6820(105.6 + )114.6820(123.2

 = MS
222

B
−−−

 

 
1060.67 = MSB  
 

6.91 = 
153.51

1060.67 = 
MS
MS = F

W

B  

 
The decision based on the sample data is, with F > 2.74, reject H0 and conclude there 
is a difference between the various formulations. 
 This last example shows an important feature of the analysis of variance. In this 
particular case, H0 was rejected and therefore μA = μB = μC = μD is not true. However, 
the results of the statistical test do not tell us where the difference or differences 
among the four populations occur. Looking at the data it appears that Formulation A 
has a Cmax that is significantly longer than the other formulations. Yet, at the same 
time Formulation B has a significantly shorter Cmax. In fact, all four formulations 
could be significantly different from each other. The F-value that was calculated does 
not provide an answer to where the significant differences exist. In order to determine 
this, some type of post hoc or multiple comparisons procedure needs to be performed 
(Chapter 11). 
 
Randomized Block Design 
 
 The one-way analysis of variance has been presented as a logical extension of the 
t-test to more than two levels of the independent variable and the randomized block 
design can be thought of as an expansion of the paired t-test to three or more 
measures of the same subject or sample. Also known as the randomized complete 
block design, it represents a two-dimensional design for repeated measures with one 
observation per cell. 
 The randomized block design was developed in the 1920s by R. A. Fisher, to 
evaluate methods for improving agricultural experiments (Fisher, 1926). To eliminate 
variability between different locations of fields, his research design first divided the 
land into blocks. The area within each block were assumed to be relatively 
homogeneous. Then each of the blocks was further subdivided into plots and each 
plot within a given block received one of the treatments under consideration. 
Therefore, only one plot within each block received a specific treatment and each 
block contained plots that represented all the treatments. 
 Using this design, subjects are assigned to blocks in order to reduce variability 
within each treatment level. The randomized block design can be used for a variety of 
situations where there is a need for homogeneous blocks. The observations or subjects 
within each block are more homogeneous than subjects within the different blocks. 
For example, assume that the age of volunteers may influence the study results and 
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Table 10.4 Randomized Block Design 

Age Treatment 1 Treatment 2 Treatment 3 
21-25 1 volunteer 1 volunteer 1 volunteer 
26-30 1 volunteer 1 volunteer 1 volunteer 
31-35 1 volunteer 1 volunteer 1 volunteer 
... ... ... ... 
61-65 1 volunteer 1 volunteer 1 volunteer 

 
 
the researcher wants to include all possible age groups with each of the possible 
treatment levels. Volunteers are divided into groups based on age (e.g., 21-25, 26-30, 
31-35, etc.), then one subject from each age group is randomly selected to receive 
each treatment (Table 10.4). In this randomized block design, each age group 
represents one block and there is only one observation per cell (called experimental 
units). Like Fisher’s agricultural experiments, each treatment is administered to each 
block and each block receives every treatment. The rows represent the blocking effect 
and the columns show the treatment effect. 

 As a second example, with three treatment levels (three assay methods), assume 
that instead of 24 tablets randomly sampled from one production run, we sample from 
8 different runs. Then taking samples from each run, we have the same analyst 
evaluate each on the batches using the three assay methods. In this case we assume 
that each of our individual production runs is more homogeneous than total mixing of 
all 24 samples across the 8 runs. As seen in Figure 10.3, three samples in each row 
comprise a block from the same production run. Note there is still only one 
observation per cell. Differences between the means for the columns reflect treatment 
effects (in this case the difference between the three methods) and differences 
between the mean for each row reflect the differences between the production runs. 
 As seen in Figure 10.3 the independent variables are 1) the treatment levels that 
appear in the columns (main effect) and 2) the blocks seen in the rows that are sub-
levels of the data. The assumptions are that: 1) there has been random independent 
sampling; 2) at each treatment level, the outcomes are normally distributed and 
variances for groups at different treatment levels are similar (homogeneity of 
variance); and 3) block and treatment effects are additive (no interaction between the 
treatments and blocks). The hypotheses are as follows: 
 
   H0: μA = μB  for two treatment levels 
   H1: μA ≠ μB 
 
   H0: μA = μB = ... μK  for three or more treatment levels 
   H1: H0 is false 
 
As seen in the hypotheses, the main interest is in treatment effects and the blocking is 
used to eliminate any extraneous source of variation. The decision rule is, with α = 
0.05, reject H0 if F > Fk-1,j-1(1 − α). The critical F-value is based on k − 1 treatment 
levels as the numerator degrees of freedom, and j − 1 blocks as the denominator 
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M1

 
M2 

  
Mk 

Sum by 
Block 

Block 
Means 

Block (batch) b1  x11 x12 … x1k xb1 X b1 
Block (batch) b2 x21 x22 … x2k xb2 X b2 
Block (batch) b3 x31 x32 … x3k xb3 X b3 
Block (batch) b4 x41 x42 … x4k xb4 X b4 
… … … … … … … 
Block (batch) bj xj1 xj2 … Xjk xbj X bj 

Sum by column xt1 xt2 … xtk xjk  

Treatment means X 1 X 2 … X k   

Figure 10.3 Data format for a randomized block design. 
 
 
degrees of freedom. The data is presented as follows: 

 
 Treatment Levels 

Blocks K1 K2 ... Kk 
B1 x11 x21 ... xk1 
B2 x12 x22 ... xk2 
... ... ... ... ... 
Bj x1j x2j ... xkj 

 
The formula and ANOVA table are similar to those involved in the computational 
formulas for the one-way ANOVA. In this case there are four intermediate 
calculations, including one that measures the variability of blocks (IIIR) as well as one 
that measures the variability of the methods or treatment effect (IIIC). The total sum of 
squares for the randomized block design is composed of the sums of squares 
attributed to the treatments, the blocks, and random error. Similar to the 
computational formula for the one-way ANOVA, Intermediate I is the sum of all the 
squared individual observations. 
 

 x   = I 2
kj

J

1=j

K

1=k
                                              Eq. 10.12 

 
Intermediate II is the square of the total sum of all observations, divided by the product 
of the number of treatments (K) times the number of blocks (J). 
 



One-way Analysis of Variances (ANOVA) 219

kj

x  

 = II
kj

J

1=j

K

1=k

2














                                          Eq. 10.13 

 
Intermediate IIIR for the block effect is calculated by adding up all the sums (second to 
the last column in Figure 10.3) for each block and dividing by the number of treatment 
levels. 
 

k

x   

 = III

kj
J

1=j

2
K

1=k
R














                                        Eq. 10.14 

 
Intermediate IIIC for the treatment effect is calculated by adding up all the sums second 
to the last row in Figure 10.3) for each treatment and dividing by the number of blocks. 
 

j

x   

 = III
kj

K

1=k

2J

1=j
C














                                         Eq. 10.15 

 
 The intermediate results are used to calculate each of these various sum of 
squares: 
 

IIISSSS TTotal −==                                 Eq. 10.16 
 

IIIIISSSS RBBlocks −==                               Eq. 10.17 
 

IIIIISSSS CRxTreatment −==                             Eq. 10.18 
 

RxBTsidualReError SSSSSSSSSS −−==                     Eq. 10.19 
 
 An ANOVA table is constructed and each sum of squares is divided by its 
corresponding degrees of freedom to produce a mean square (Figure 10.4).  
 The F-value is calculated by dividing the mean square for the treatment effect by 
the mean square error (also referred to as the mean square residual): 
 

MS
MS = F

R

Rx                                                Eq. 10.20 

 
If the calculated F-value exceeds the critical value (Fc) for k − 1 and j − 1 degrees of 
freedom, H0 is rejected and it is assumed that there is a significant difference between 
the treatment effects. 
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Source df SS MS F 

Treatment k − 1 SSRx 
SSRx 

k − 1 
MSRx 
MSR 

Blocks j − 1 SSB 
SSB 

j − 1 
 

Residual (k − 1)(j − 1) SSR 
SSR 

(k − 1)(j − 1) 
 

Total N − 1 SST   

Figure 10.4 ANOVA Table for a randomized block design. 
 
 
 One of the most common uses for the randomized block design involves cross-
over clinical drug trials. Crossover studies, are experimental designs in which each 
patient receives two or more treatments that are being evaluated. The order in which 
patients receive the various treatments is decided through a random assignment 
process (for example, if only treatments A and B are being evaluated, half the patients 
would be randomly assigned to receive A first, the other half would receive A 
second). This design is in contrast to parallel studies and self-controlled studies. In 
parallel studies, two or more treatments are evaluated concurrently in separate, 
randomly assigned, groups of patients. An example of a parallel study would be the 
first question in the problem set in Chapter 9, where physical therapy patients were 
assigned (presumably by a randomized process) to two different treatment regimens 
and evaluated (using a two-sample t-test) for outcomes as measured by range of 
motion. A self-controlled study, is one in which only one treatment is evaluated and 
the same patients are evaluated during treatment and at least one period when no 
treatment is present. The second question in the problem set for Chapter 9 offers an 
example of a self-controlled study in which the same patients were measured before 
and after treatment with a new bronchodilator and their responses evaluated using a 
paired t-test.  
 The major advantage of the crossover design is that each patients serves as his or 
her own control, which eliminates subject-to-subject variability in response to the 
treatments being evaluated. The term “randomized” in the title of this design refers to 
the order in which patients are assigned to the various treatments. With each patient 
serving as a block in the design there is increased precision, because of decreased 
random error and a more accurate estimate of true treatment differences. Major 
disadvantages with crossover experiments are that: 1) the patient may change over 
time (the disease state becomes worse, affecting later measurements); 2) with 
increased time there is a chance for subjects to withdraw or drop out of the study, 
which results in decreased sample size; 3) there may be a carryover effect of the first 
treatment affecting subsequent treatments; and 4) the first treatment may introduce 
permanent physiological changes affecting later measurements. These latter two 
problems can be evaluated using a two-way analysis of variance design, discussed in  
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Table 10.5 Diastolic Blood Pressure with a New Antihypertensive 

Blocks 
(Subject) 

Treatment 1 
(Before) 

Treatment 2 
(After) 

 
 

 
Mean 

1 68 66 134 67 
2 83 80 163 81.5 
3 72 67 139 69.5 
4 75 74 149 74.5 
5 79 70 149 74.5 
6 71 77 148 74 
7 65 64 129 64.5 
8 76 70 146 73 
9 78 76 154 77 

10 68 66 134 67 
11 85 81 166 83 
12 74 68 142 71 

 = 894   859   1753     
Mean =     74.50     71.58   

 
 
Chapter 12, where two independent variables (treatment and order of treatment) can 
be assessed concurrently. Additional information about these types of experimental 
designs are presented by Bolton (2004) and Freidman and colleagues (1985). 

 As mentioned previously, a paired t-test could be considered a special case of the 
randomized block design with only two treatment levels. For example, the data 
appearing in the first three columns of Table 9.3 could be considered a randomized 
design (Table 10.5). Each subject represents one of twelve blocks, with two treatment 
measures (before and after). In this particular case the null hypothesis states that there 
is no difference between the two treatment periods (before versus after): 

 
      H0: μB = μA 
      H1: μB ≠ μA 
 
The decision rule is with α = 0.05, reject H0 if F > F1,11(.95), which is 4.90 
(interpolated from Table B7). The calculations are as follows: 
 

x   = I 2
kj

J

1=j

K

1=k
  

 
877,128 = )...(68 + )(72 + )(83 + )(68 = I 2222  
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093.0833,128 = 
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)(859 + )(894
 = III

22
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IIISSSS TTotal −==  

 
9583.8340417.042,128877,128SST =−=  

 
IIIIISSSS RBBlocks −==  

 
4583.7080417.042,1285.750,128SS B =−=  

 
IIIIISSSS CRxTreatment −==  

 
0416.510417.042,1280833.093,128SS Rx =−=  

 
RxBTsidualReError SSSSSSSSSS −−==  

 
4584.750416.514583.7089583.834SS sidualRe =−−=  
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The ANOVA table is: 
 

Source df SS MS F 
Treatment 1 51.0416  51.0416 7.44 
Blocks 11 708.4583  64.4053  
Residual 11  75.4584 6.8599  
Total 23  834.9583   

 
With the calculated F-value greater than the critical value of 4.90, the decision is to 
reject H0 and conclude that there is a significant difference between the before and 
after measurements with the after measure of diastolic blood pressure significantly 
lower than that before therapy. These results are exactly the same as observed in the 
paired t-test example in the previous chapter (both test results with a p < 0.02).2 The 
utility of this method is that it can be expanded to more than just two levels of 
treatment. 
 As will be discussed later, Excel refers to this type of test as “ANOVA: two 
factor without replication” and reports an F-value and corresponding p-value for the 
blocks as well as the main treatment effect. 
 
Homogeneity of Variance 
 
 It is important that we address the issue of homoscedasticity. One of the criteria 
required to perform any parametric procedure is that the dispersion within the 
different levels of the discrete independent variable be approximately equal. The 
reason that homogeneity of variance is important is that the error term denominator of 
the F-ratio (MSW) is an average for variances as the different levels of the independent 
variable weighted by the size of each group. When these individual variances differ 
greatly this average becomes a useless summary for these measures of dispersions. As 
mentioned in Chapter 9 a simple rule of thumb is that the ratio of largest to smallest 
group variances should be 2.0 or less. Because of the robustness of the F-distribution, 
differences with variances can be tolerated if sample sizes are equal (Cochran, 1947; 
Box, 1954). However, for samples that are unequal in size, a marked difference in 
variances can affect the statistical outcomes.  
 Several tests are also available to determine if there is a lack of homogeneity. The 
simplest is Hartley’s F-max test. Using this test the following hypotheses of equal 
variances are tested: 
 
     H0: σ1

2 = σ2
2 = σ3

2 ... = σk
2 

     H1: H0 is false 
 
The test statistic is a simple ratio between the largest and smallest variances: 

                                                 
2 Using Excel® the p-value can be calculated for t = 2.73 using the T.DIST.2T 
function (p = 0.01958) as well as the p-value for F = 7.44 using the F.DIST.RT 
function (p = 0.01966).  The minor difference is due to rounding before the final t- 
and F-values were reported. 
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S

S
 = F 2

smallest

2
largest

max                                             Eq. 10.21 

 
The resultant Fmax value is compared to a critical value from Table B8 (Appendix B) 
for k levels of the discrete independent variable and n − 1 degrees of freedom, based 
on n observations per level of the independent variable (equal cell size). If Fmax 
exceeds the critical value, H0 is rejected and the researcher cannot assume that there is 
homogeneity. For example, consider the previous example comparing the weights of 
tablets from three different facilities (Table 10.2). The largest variance is from facility 
C at 17.31 (4.162) and the smallest from Facility A is 10.69 (3.272). Can the 
investigator assume that there is homogeneity of variance?  
 
    H0: σA

2 = σB
2 = σC

2 
    H1: H0 is false 
 
With α = 0.05, H0 would be rejected if Fmax exceeds the critical F3,14, which is 
approximately 3.75. Calculation of the test statistic is: 
 

1.62 = 
10.69
17.31 = 

S

S
 = F 2

smallest

2
largest

max  

 
With Fmax less than 3.75 the researcher would fail to reject the null hypothesis with 
95% confidence and would assume that the sample variances are all equal. 
 A second procedure that can be used for unequal cell sizes (differing numbers of 
observations per level of the independent variable) would be Cochran’s C test, 
which compares the ratio of the largest sample variance with the sum of all variances:  
 

S

S
=C 2

k

2
largest


                                                Eq. 10.22 

 
Once again a table of critical values is required (Table B9, Appendix B). The 
calculated C ratio is compared to a critical value from Table B9 for k levels of the 
independent variable in the samples and n − 1 observations per sample. If C exceeds 
the critical value, H0 is rejected and the researcher cannot assume that there is 
homogeneity. Using the same example as above, with α = 0.05, H0 would be rejected 
if C exceeds the critical C-value, which is approximately 0.5666. Calculation of the 
test statistic is: 
 

.43310 = 
39.97
17.31 = 

)(4.16+)(3.46+)(3.27
)(4.16 = 

S

S
 = C 222

2

2
k

2
largest


 

 
With C less than 0.5666 the exact same result occurs as was found with the Hartley 
Fmax results. 
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 If the cell size differs slightly, the largest of the n’s can be used to determine the 
degrees of freedom. Consider the second ANOVA example with four different 
formulations (A, B, C, and D) and cell sizes of 20, 20, 19, and 18, respectively. In this 
case n = 20, n − 1 = 19 and the critical values for C by interpolation would be 0.4355. 
The test statistic would be: 
 

.34860 = 
)(10.0+)(14.6+)(11.6+)(12.8

)(14.6
 = C

2222

2
 

 
In both cases, the statistics are less than the critical values; the researcher fails to 
reject H0 and assume that there is homogeneity of variance. 

Another alternative procedure that involves more complex calculations is 
Bartlett’s test, which is an older test based on a chi-square test (Chapter 16) with 
(k − 1) degrees of freedom (Barlett, 1937). This test is described in Kirk’s book 
(1968). Levene’s test and Brown and Forsythe’s test are two other tests for 
homogeneity that might be found on computer software packages. The Brown and 
Forsythe’s test is based on Levene’s test, but is more robust when groups are unequal 
in size. However, because the F-test is so robust regarding violations of the 
assumption of homogeneity of variance, in most cases these tests of homogeneity are 
usually not required if equal sample sizes are maintained. 
 
Using Excel® or Minitab® for One-Way ANOVAs 
 
 Excel 2010 has several function (ƒx) options that are very similar to those used 
for t-test applications in the previous chapter. Instead of referring to Table B7 to 
determine critical values for the test statistic they can be determined using the 
function F.INV.RT. For older versions of Excel this command was FINV. Either 
function will prompt for the probability (as a decimal), the numerator degrees of 
freedom (Deg_freedom1) and the denominator degrees of freedom (Deg_freedom2). 
Caution should be noted here. Excel 2010 has the command F.INV and this command 
will identify the location for a certain probability on the LEFT end of the curve. Other 
Excel functions allow one to determine the p-value for a calculated t-statistic; 
F.DIST.RT (for Excel 2010) or FDIST (for older versions). Either function will 
prompt for the calculated F-value, the numerator and denominator degrees of 
freedom. Once again caution is needed because F.DIST in Excel 2010 will do the 
calculation for the LEFT side of the distribution.  
 The one-way ANOVA is available as part of the Excel data analysis tools:  

 
Data  Data Analysis  Anova: Single Factor 

 
Similar to the t-test, each level of the independent variable is represented by a 
different column (or row). As seen in Figure 10.5, one needs to identify the columns 
and range in which each level of the independent variable is located (“Input Range:”); 
if representing data by column or row, the amount of acceptable Type I error 
(“Alpha:”); and identify where the outcomes should be reported, either starting at a 
cell on the current page (per this example, $E$2) or on a new worksheet (by default). 
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Figure 10.5 Options for the one-sample ANOVA with Excel. 

 
Using the data in our previous example (Table 10.2) the results appear in Figure 10.6. 
The means and variance for each level of the independent variable are reported at the 
top of the results. The ANOVA table is reported next. The last three columns of the 
table present: 1) the F-statistic, 2) the associated p-value, and 3) the critical value 
required to reject the null hypotheses with the type I error selected in Figure 10.5. 
  

 
Figure 10.6 Outcome report for the one-way ANOVA with Excel. 
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 It is possible to use Excel to evaluate a complete randomized block design. As 
noted earlier Excel refers to this as two-factor ANOVA: 
 

Data  Data Analysis  Anova: Two-Factor Without Replicates 
 
The data is arranged on the Excel spreadsheet with each column representing a level 
of the independent variable (e.g., treatment level) and each row representing a block. 
There is only one observation per cell. As seen in Figure 10.7, the columns and range 
are required (Input Range:) along with the amount of acceptable Type I error 
(“Alpha:”); and the user must identify where the outcomes should be reported, either 
starting at a cell on the current page (per this example, $E$2) or on a new worksheet 
(by default). Using the data in our previous example (Table 10.5) the results appear in 
Figure 10.8. Note that F-statistics and p-values are reported for both the independent 
variable and the block effect. The treatment effect is reported second as the 
“columns” outcome. 

 Minitab offers the one-way ANOVA under “Stat” on the title bar:  
 

Stat  ANOVA  One-way… 
 

Like most software packages, each column represents a variable and each row an 
observation. Columns are chosen for Minitab based on whether they independent or 
dependent variables. Figure 10.9 illustrates the decisions required for a one-way 
ANOVA for the data from Table 10.2. The dependent variable is labeled “Response” 
and the independent variable is the “Factor”. These are selected by double clicking on 
the variables in the box on the left. The confidence level can be changed from the 
default 1 - α of 95% if desired. Graphs… option includes individual value plots or  
box plots for each level of the independent variable. The Comparisons… option will 
be discussed in the next chapter. The results of the analysis are presented in Figure 
10.10. The top portion is the traditional ANOVA table with the F-statistic and 
 
 

 
Figure 10.7 Options for a complete randomized block design with Excel. 
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Figure 10.8 Outcome report for a complete randomized block design with Excel. 

 
associated p-value on the right side. Near the bottom is an illustration of the 95% 
confidence interval for each level of the independent variable.  

If data happens to be arranged in Minitab using the prescribed manner for Excel 
(each column represents one level of the independent) there is an alternative method 
for performing the test: 
 

Stat  ANOVA  One-way (Unstacked)… 
 
Here the columns that represent the various levels of the independent variable are 
double clicked from the box on left side and added to the “Responses (in separate 
columns)” location.. Similar choices for the “One-way…” are available. 
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Figure 10.9 Options for the one-way ANOVA with Minitab. 
 

Figure 10.10 Outcome report for the one-way ANOVA with Minitab. 

 
Minitab offers both Bartlett’s and Levene’s tests for assessing homogeneity of 

variance. Both tests are located under the ANOVA option: 
 

Stat  ANOVA  Test for equal variances… 
 
As with the one-way ANOVA, “Response” represents the dependent variable and 
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“Factor” is the independent variable. Both tests will be automatically run and results 
reported graphically and in text format (Figure 10.11). Even though these tests were 
not discussed in this chapter, their interpretation would be similar to Hartley’s and 
Cochran’s tests. The important aspect is the p-value reported by either test. If greater 
than 0.05 the null hypothesis of equal variances cannot be rejected. As seen in Figure 
10.11, neither one was significant and the hand calculated results for Hartley’s F-max 
and Cochran’s C test, the hypothesis of equal variances cannot be rejected. 

The example in this section was taken from previous data in the chapter and the 
results (minor rounding differences) were identical to the results worked out by hand. 
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Example Problems (Answers are provided in Appendix D) 
 
1. In a collaborative trial, four laboratories were sent samples from the same batch 

of a pharmaceutical product and requested to perform ten assays and report the 
results based on percentage of a labeled amount of the drug (Table 10.6). Were 
there any significant differences based on the laboratory performing the analysis? 
 

 
Table 10.6 Data from Four Different Laboratories 

        Lab (A) Lab (B) Lab (C) Lab (D) 
100.0 99.5 99.6 99.8 
99.8 100.0 99.3 100.5 
99.5 99.3 99.5 100.0 

100.1 99.9 99.1 100.1 
99.7 100.3 99.7 99.4 
99.9 99.5 99.6 99.6 

100.4 99.6 99.4 100.2 
100.0 98.9 99.5 99.9 
99.7 99.8 99.5 100.4 
99.9 100.1 99.9 100.1 

     =   999.0 996.9 995.1 1000.0 
    

Mean  =  99.90 99.69 99.51 100.00 
S.D.  =  0.25 0.41 0.22 0.34 
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Table 10.7 Viscosity of Different Batches of a Product 

 Viscosity 
Batch A 

Viscosity 
Batch B 

Viscosity 
Batch C 

 

 10.23 
10.33 
10.28 
10.27 
10.30 

10.24 
10.28 
10.20 
10.21 
10.26 

10.25 
10.20 
10.21 
10.18 
10.22 

 

 = 51.41 51.19 51.06  = 153.66 

 
 
2. In the previous example, perform a test to determine if there is homogeneity of 

variance. 
 
3. Acme Chemical and Dye received from the same raw material supplier three 

batches of oil from three different production sites. Samples were drawn from 
drums at each location and compared to determine if the viscosity was the same 
for each batch (Table 10.7). Are the viscosities the same regardless of the batch? 

 
4. During a clinical trial, Acme Chemical wants to compare two possible generic 

formulations to the currently available brand product (reference standard). Based 
on the following results (Table 10.8), is there a significant difference between the 
two Acme formulations and the reference standard? 

 
 

Table 10.8 Original Data for Two Different Formulations 

 Plasma Elimination Half-Life (in minutes) 

 Formulation A Formulation B Reference Standard 
Subject 001 206 207 208 
Subject 002 212 218 217 
Subject 003 203 199 204 
Subject 004 211 210 213 
Subject 005 205 209 209 
Subject 006 209 205 209 
Subject 007 217 213 225 
Subject 008 197 203 196 
Subject 009 208 207 212 
Subject 010 199 195 202 
Subject 011 208 208 210 
Subject 012 214 222 219 
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Table 10.9  Days in the Hospital 

Physician A Physician B Physician C 
9 10 8 

12 6 9 
10 7 12 
7 10 10 

11 11 14 
13 9 10 
8 9 8 

13 11 15 
Mean = 10.38 

S.D. = 2.26 
Mean = 9.13 
S.D. = 1.81 

Mean = 10.75 
S.D. = 2.66 

 
 
5. Three physicians were selected for a study to evaluate the length of stay for 

patients undergoing a major surgical procedure.  All these procedures occurred in 
the same hospital and were without complications.  Eight records were randomly 
selected from patients treated over the past 12 months (Table 10.9).  Was there a 
significant difference, by physician, in the length of stay for these patients? 

 
6. To evaluate the responsiveness of individuals receiving various commercially 

available benzodiazepines, volunteers were administered these drugs and 
subjected to a computer simulated driving test.  Twelve volunteers were 
randomly divided into four groups, each receiving one of three benzodiazepines 
or a placebo.  At two week intervals they were crossed over to other agents and 
retested until each volunteer had received each active drug and the placebo.  
Driving abilities were measured 2 hours after the drug administration (at 
approximately the Cmax for the benzodiazepines).  The higher the score, the 
greater the number of driving errors. The results are listed below: 

 
Benzo (A) Benzo (B) Benzo (C) Placebo 

58 
54 
52 
62 
51 
55 
45 
63 
56 
57 
50 
60 

62 
55 
58 
56 
60 
48 
73 
57 
64 
51 
68 
69 

53 
45 
48 
46 
58 
61 
52 
51 
55 
48 
62 
49 

50 
51 
53 
57 
61 
49 
50 
60 
40 
47 
46 
43 
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7. Replicate measures are made on samples from various batches of a specific 
biological product.  The researcher is concerned that the first measure may 
influence the outcome on the second measure.  Using a complete randomized 
block design, is there independence (no effect) between the first and second 
replicate measures? 

 
 Treatment (% recovered) 
 Replicate 1 Replicate 2 
Batch A 93.502 92.319 
Batch C 91.177 92.230 
Batch D 87.304 87.496 
Batch D2 81.275 80.564 
Batch G 79.865 79.259 
Batch G2 81.722 80.931 
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11 
 
Multiple Comparison Tests 
 
 
 
 As discussed in the previous chapter, rejection of the null hypothesis in the one-
way analysis of variance simply proves that some significant difference exists 
between at least two levels of the discrete independent variable. Unfortunately the 
ANOVA does not identify the exact location of the difference(s). Multiple 
comparison tests can be used to reevaluate the data for a significant ANOVA and 
identify where the difference(s) exist while maintaining an overall Type I error rate 
(α) at the same level as that used to test the original null hypothesis for the one-way 
ANOVA. Assuming an analysis of variance was conducted with α = 0.05 and the H0 
was rejected, then the multiple comparison tests will keep the error rate constant at 
0.05. 
 
Error Associated with Multiple t-Tests 
 
 Sometimes researchers performing multiple t-tests between various two levels of 
the independent variable err (called pair-wise combinations). It should be noted that 
the use of the term “pair-wise” refers to comparisons involving two levels of the 
discrete independent variable and should not be confused with “paired” tests, which 
involve repeated measures (e.g., paired t-test). By using multiple t-tests the 
researcher actually compounds the Type I error rate. This compounding of the error is 
referred to as the experimentwise error rate. For example, if there are three levels 
for the independent variable, there are three possible comparisons: 
 

3 = 
2!1!
3! = 

2

3







  

 
which are A versus B, B versus C, and A versus C. An alternative formula for the 
number pair-wise comparisons is simply using the k number of levels of the 
independent variable: 
 

2
)1k(k

)!2k(!2
)!2k)(1k(kC 2k

−
=

−
−−

=                          Eq. 11.1 
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Table 11.1 Experimentwise Error Rates for Multiple Paired t-Tests after 
a Significant ANOVA 

 
Number of Groups 
(Discrete levels) 

Number of 
Possible Paired 
Comparisons 

Level of Significance 
Used in Each t-Test 

0.05 0.01 
2 1 0.05  0.01  
3 3 0.143 0.030 
4 6 0.265 0.059 
5 10 0.401 0.096 
6 15 0.536 0.140 
7 21 0.659 0.190 
8 28 0.762 0.245 

 
 
In the previous example with k = 3, the results would be identical: 
 

3
2

)2(3C 23 ==  

 
A simple way of thinking about this compounding error rate would be that if each t-
test were conducted with α = 0.05, then the error rate would be three comparisons 
times 0.05, or a 0.15 error rate. Seen in Table 11.1, as the number of levels of the 
independent variable increases and the number of intersample comparisons (e.g., pair-
wise comparisons) increases at a rapid rate, thus greatly increasing the level of α. The 
actual calculation for compounding the error or experimentwise error rate is: 
 

)(1  1 = C
ew αα −−                                           Eq. 11.2 

 
where C is the total number of possible independent t-tests comparing only two levels 
of the discrete independent variable. Table 11.1 lists the experimental error rate for 
various pair-wise combinations. The third column is for the 95% confidence level and 
the fourth for the 99% confidence level. One could also think of these comparison as 
a “family” of possible pair-wise comparisons. These tests are used to ensure that the 
probability is held constant for the family’s multiple comparisons. Thus, a synonym 
for experimentwise error rate is familywise error rate (FWE = αew).  
 
Overview of Multiple Comparison Tests 
 

As will be seen, there are many multiple comparison tests. Multiple comparison 
procedures can be divided into a priori and post hoc tests (planned and unplanned 
tests). This chapter will present most of the multiple comparison tests in the following 
order: 1) planned pair-wise comparisons; 2) post hoc pair-wise tests; and 3) complex 
comparisons using Scheffé’s procedures. 

A second way to divide these tests is into: 1) single-step methods and 2) 
stepwise, sequential methods (Table 11.2). In the former case, there are simultaneous 
confidence intervals that allow directional decisions. Tests in the latter group are 
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Table 11.2. Multiple Comparison Tests 

Single-Step Methods Stepwise (Step-Down) Methods 
Bonferroni Student-Newman-Keul (SNK) 

Sidák REGWQ 
Dunnett REGWF 

Fisher LSD Duncan 
Tukey HSD Tukey’s-b 

Tukey-Kramer Bonferroni-Holm 
Scheffé Sidák-Holm 

Hochberg’s GF2  
Gabriel  

 
 

limited to hypotheses testing, but are usually more powerful. Thus, if the primary goal 
is not hypothesis testing or confidence intervals are not needed, the stepwise methods 
are preferable. Stepwise tests usually involve a range test. Most of these multiple 
comparison tests listed in Table 11.2 will be discussed in this chapter.  

Certain multiple comparison tests are defined as “exact tests.” These exact tests 
are procedures where the experimentwise error rate is exactly equal to α for balanced 
as well as unbalanced one-way designs (balanced designs involve an equal number of 
observations per level of the independent variable). Other tests, such as the REGWQ, 
REGWF, SNK, and Duncan tests are recommend for balanced designs only. 

The standard error term used for most multiple comparison tests is based on 
modifications of the following: 
 

21
E n

1
n
1MSSE +=                                   Eq. 11.3 

 
where the MSE (which is the same as the MSW) is taken from the original ANOVA 
table. 

The one-way ANOVA is a robust test and can tolerate some deviation from the 
parameter of equal variances. However, most of the commonly used post hoc 
procedures require equal variances (Tukey HSD, Fisher LSD, Student-Newman-Keul, 
Duncan); other more obscure tests do not require this assumption (Games-Howell, 
Dunnett’s T3, Dunnett’s C, and Tamhane’s T2 tests). 

Because there are a variety of multiple comparison tests to choose from, it is 
important to understand these tests and choose the most appropriate one. The test 
should not be picked at random, and more importantly, it should not be chosen based 
on the results of the various tests (for example, looking at the results for many 
different multiple comparison tests and picking the one that gives researcher’s desired 
outcome). Just like any other statistical test the comparisons test should be chosen 
before the initial ANOVA is computed. Different situations require the use of 
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Figure 11.1 Algorithm for choosing multiple comparison procedures. 

 
different multiple comparison tests and there does not appear to be agreement on a 
“best” procedure to use routinely. Figure 11.1 provide a rough algorithm for selecting 
a multiple comparison test. 
 
The q-Statistic 
 

The q-statistic (also known as the q range statistic or Studentized range 
statistic) is commonly used in coefficients for multiple comparison tests (planned and 
post hoc). As the number of comparisons between group increases, there is an 
expected increase in variability and the researcher should compensate for this by 
using a more conservative test; if not, the likelihood of Type I errors increases 
considerably. The q-statistic provides this more conservative approach. Both the q- 
and t-statistics use the difference between means in the numerator. However, the q- 
statistic uses the standard error of the mean in the denominator, whereas the t-statistic 
uses the standard error of the difference between the means. Thus, instead of 
measuring the difference between two means, like the t-statistic, the q-statistic tests 
the probability that the largest and smallest sample means were sampled from the 
same population. Similar to using the t-statistic, if the computed q-statistic is not as 
large as the critical q-value from a table, then the researcher cannot reject the null 
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hypothesis that the groups do not differ at the given alpha significance level. It 
follows that if the null hypothesis is not rejected comparing the largest and smallest 
sample means, then all intermediate means representing the other levels of the 
discrete independent variable are also drawn from the same population. The general 
formula for the q-statistic is: 
 

SE
XX

q BA −
=                                           Eq. 11.4 

 
The SE term is defined differently for various multiple comparison procedures, the 
more popular of these will be discussed below. Also, the q-value can be used as a 
reliability coefficient to build a confidence interval: 
 

)SE)(q()XX( criticalBABA ±−=− μμ                      Eq. 11.5 
 
The q-critical can be found in the Studentized range distribution in Table B10 in 
Appendix B and is usually defined as q1-α,k-1,N-k where k − 1 and N − k are the degrees 
of freedom from the ANOVA table for the within and between effects. Certain 
multiple comparison statistics define these numerator and denominator degrees of 
freedom differently and these will be noted below. 

One can think of the Studentized range test as a traditional t-test, where the 
critical values have been adjusted based on the number of sample means being 
compared. It replaces the traditional one-way analysis of variance with a test that 
compares only the largest and the smallest means in the experiment. The q-statistic is 
basically an adjusted t-test between the largest and smallest means.  

 

n
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Above is an expansion of the t-statistic: 1) for equal sample sizes and 2) replacing the 
pooled variance for the MSerror, which are the same. The q-statistic is the same with 
the removal of the square root of two in the denominator: 
 

n
MS

XX
q

E

21 −
=                                             Eq. 11.7 

 
Planned Multiple Comparisons 
 
 The student t-test can be used to compare only two levels of the independent 
variable and is only recommended when the researcher has a single planned 
comparison, based on a priori theory, established before running the initial analysis 
 



Chapter 11 240

Table 11.3 Bonferroni Adjustment for Maintaining an Experimental 
Error Rate of 0.05 

Number of 
Discrete 
Levels 

Number of 
Possible Paired 
Comparisons 

 
Bonferroni 
Adjustment 

Estimate Critical 
Value for Infinite 

Degrees of Freedom 

2 1 0.0500    1.960 
3 3 0.0167 2.394 
4 6 0.0083  2.638 
5 10 0.0050  2.807 
6 15 0.0037  2.935 
7 21 0.0024  3.038 
8 28 0.0018 3.124 
9 36 0.0014 3.197 

10 45 0.0011 3.261 

 
 
of variance. Bonferroni, Sidák, Dunn, and Dunnett’s tests are planned multiple 
comparison tests, not post hoc procedures since decisions are made prior to 
calculating the original analysis of variance. Following the rejection of the global null 
hypothesis for the one-way ANOVA, a post hoc procedure should be used to identify 
specific significant differences. These post hoc methods are described following the a 
priori methods described below. Most results will be expressed as confidence 
intervals similar to the previous example (Eq. 11.5). 
 
Bonferroni Adjustment 

 
The Bonferroni adjustment (or Bonferroni test) is the simplest multiple 

comparison test and involves multiple t-tests. In this procedure the experimentwise 
error rate is kept constant (usually 0.05) by dividing the Type I error by the total 
number of possible or planned pair-wise comparisons (C).  
 

C
' αα =                                               Eq. 11.8 

 
Experimentwise error rate is not exactly equal to α, but is less than α in most 
situations. Unfortunately, the Bonferroni test may be too conservative and not have 
enough power to detect significant differences. Plus, tables of critical t-values may be 
hard to find for the required α'. For example, with three levels of an independent 
variable, C = 3 and α' = 0.0167 (if the original ANOVA was tested at 0.05). Table 
11.3 lists various adjustments for an infinite number of observations. These were 
calculated under the assumption that the t-value is at infinity and uses the 
standardized normal distribution and z-values for the various adjusted p-values (α). 
Notice how the critical value increases as the number of levels of the discrete 
independent variable increases, thus controlling increased experimentwise error rate.  
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 What if there are less than an infinite number of observations? Other tables are 
available in various textbooks for smaller sample sizes and smaller α values than 
those in the third column of Table 11.3. As seen in Table B5 (Appendix B), for larger 
sample sizes the reliability coefficient is very close to the t-value at infinity (1.96). 
For example, at 80 degrees of freedom the critical t-value = 2.00. Therefore, Table 
11.3 can be used as a rough approximation for the required critical value.1 

To illustrate both multiple t-tests and Bonferroni’s adjustment, consider the first 
example in the problem set in Chapter 10 where a significant difference was found 
with a Type I error rate of 0.05, leading to the rejection of the following “global” null 
hypothesis associated with the original one-way analysis of variance: 
 

H0: μA = μB = μC = μD 
 
The data used for this example were:  
 

Concentration in mcg/ml: Mean S.D. n 
Formulation A 123.2 12.8 20 
Formulation B 105.6 11.6 20 
Formulation C 116.4 14.6 19 
Formulation D 113.5 10.0 18 

 
Since there are four levels of the discrete independent variable and six possible pair-
wise comparisons, the Bonferroni’s adjustment of the α would be 0.008 and a very 
rough approximation for the reliability coefficient would be 2.65 from Table 11.3. 
Confidence intervals can be created using the following formula (Eq. 9.4): 
 

n
S

+
n
S

2.65  )XX( = 
2

2
P

1

2
P

2121 ±−− μμ  

 
If we compare the results for all six pair-wise t-tests and six tests with Bonferroni’s 
adjustment, there are more significant findings with the multiple t-test due to the 
experimentwise error (Table 11.4). 
 Performing unadjusted multiple t-tests is one of the major errors found in the 
literature (Glantz, 1980). When the independent variable has more than two discrete 
levels, an ANOVA followed by an appropriate multiple comparison procedure is the 
correct test, not multiple t-tests. As seen in Table 11.4, when multiple independent t-
tests are applied to the same set of data, it becomes increasingly likely that a 
significant outcome will result by chance alone. 
 
 
 

                                                 
1 The t-values can be obtained using Microsoft Excel by determining α' (α/C) and 
using the function T.INV (α', df). 
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Table 11.4 Results with Multiple t-Tests and the Bonferroni Adjustment 

 
Pairing 

Multiple t-Tests  Bonferroni Adjustments 

Confidence Interval  Confidence Interval 

AX  − BX  +9.79<μA − μB<+25.41 *  +7.38<μA − μB<+27.82 * 

AX  − CX  −2.07<μA − μC<+15.674  −0.24<μA − μC<+13.84 

AX  − DX  +2.11<μA − μD<+17.29 *  +3.29<μA − μD<+16.11 * 

BX  − CX  −19.31<μB − μC<−2.29 *  −21.95<μB − μC<+0.35 

BX  − DX  −15.04<μB − μD<−0.76 *  −17.26<μB − μD<+1.46 

CX  − DX  −5.46<μC − μD<+11.26  −8.06<μC  −μD<+13.86 

* Significant at p < 0.05. 
 
 
Sidák Test  
 
The Sidák test (or Dunn-Sidák test) is a variation of the Bonferroni test using a t-test 
for pair-wise multiple comparisons. For this test, the Type I error rate is modified to 
slightly smaller adjusted p-values than for the Bonferroni test. The Sidák procedure is 
slightly more powerful than the Bonferroni procedure and guarantees to control for 
experimentwise error when there are independent comparisons (orthogonal contrasts). 

 
C/1)1(1' αα −−=                                     Eq. 11.9 

 
Once again the problem of identifying appropriate tables limits the usefulness of this 
procedure (in the previous example C = 3 and α' = 0.01695). 
 
Dunn’s Multiple Comparisons 
 
 Dunn’s procedure (also called a Bonferroni t statistic, Bonferroni corrected 
test, or Fisher protected LSD test) calculates mean differences for all pair-wise 
comparisons and compares these differences to a critical value extracted from a table. 
As an extension of the Bonferroni adjustment it is recommended for multiple planned 
comparisons, if the number of pair-wise comparisons is not large. As seen in Table 
11.1, as larger numbers of comparisons are made, one is increasing the likelihood of a 
Type I error. Thus, as the number of comparisons increase, a more stringent α level 
must be used to maintain an overall experimentwise Type I error rate consistent with 
the Type I error rate in the original analysis of variance. For most of the multiple 
comparison tests we will continue using the same example from Chapter 10, where it 
was found that a significant difference existed somewhere between the following 
means: 



Multiple Comparison Tests 243

Concentration in mcg/ml: Mean n  

Formulation A 123.2 20 MSW = MSE = 153.51 
Formulation B 105.6 20  
Formulation C 116.4 19 ν2 = N−K = 73 
Formulation D 113.5 18  

 
The total number of possible pair-wise comparisons is: 
 

6 = 
2!2!
4! = 

2

4
 = C 







  

 
The absolute difference for each pair-wise comparison is computed: 
 
   ⏐ X A − X B⏐ = 17.6 ⏐ X B − X C⏐ = 10.8 
   ⏐ X A− X C⏐ = 6.8 ⏐ X B − X D⏐ = 7.9 
   ⏐ X A − X D⏐ = 9.7 ⏐ X C − X D⏐ = 2.9 
 
A value is extracted from the table of Dunn’s percentage points (Table B11, 
Appendix B). This value takes into consideration: 1) the total number of possible pair-
wise comparisons (C); 2) the original denominator degrees of freedom (N − k) for the 
ANOVA; and 3) the Type I error rate used in the original ANOVA (e.g., α = 0.05). 
As seen in Table B11, the first column is the number of possible combinations, the 
Type I error rate is in the second column, and the remaining columns relate to the N − 
k degrees of freedom. In this particular example the table value is 
 

t'Dα;C;N-K = t'D.05;6;73 ≈ 2.72 
 
This number is then inserted into the calculation of a critical Dunn’s value: 
 

)
n
1+

n
1(  MS Dt = d

21
EK-NC;/2; ⋅′ α                              Eq. 11.10 

 
If the absolute mean difference is greater than the calculated d-value there is a 
significant difference between the two means. The calculation of the d-value for the 
first pair-wise comparison is: 
 

10.66 = 2)(2.72)(3.9 = )
20
1+

20
1( 153.51 (2.72) = d ⋅  

 
Our decision, with ⏐ AX − BX ⏐ difference greater than the calculated d-value of 
10.66 is to reject μA = μB and conclude that there is a significant difference between 
these two population means. 
 An alternative method is to create a confidence interval similar to the t-test: 
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)
n
1+

n
1(  MS Dt  )XX( = -

21
EK-NC;/2;2121 ⋅′±− αμμ           Eq. 11.11 

 
Notice how this equation is exactly the same in layout as all previous confidence 
intervals (estimate ± reliability coefficient × error term). For the first pair-wise 
comparison: 
 

)
20
1+

20
1(  153.51 2.72  105.6)  (123.2 = - BA ±−μμ  

 
10.66  (17.6) = - BA ±μμ  

 
28.26 < - < 6.94 BA μμ  

 
Since zero does not fall within the interval, there is a significant difference between 
Formulations A and B. Note the same results occurred with the Bonferroni 
adjustment. However, two important features appear with Dunn’s procedure: 1) the 
table of critical values allows for better corrections for smaller sample sizes and 2) by 
using the MSE the entire variance from the original ANOVA is considered rather than 
only the pooled variance for the pair-wise comparison. 
 Using the original method for the calculation of the d-value, the d-value for this 
second pair-wise comparison is: 
 

10.80 = 7)(2.72)(3.9 = )
19
1+

20
1(  153.51 (2.72) = d  

 
Here the decision, with ⏐ AX − CX ⏐ greater than 10.80, we fail to reject μA − μC, thus 
we fail to find that there is a significant difference between these two levels. Similarly 
the confidence interval is: 
 

)
19
1+

20
1(  153.51 2.72  116.4)  (123.2 = - CA ⋅±−μμ  

 
17.60 <  < -4.00 BA μμ −  

 
With zero within the confidence interval, the same results are obtained and we cannot 
conclude that there is a difference. The Dunn’s test is not recommended when the 
investigator plans to perform all possible pair-wise comparisons, but for this example 
all possible pair-wise comparisons will be tested. 
 Table 11.5 presents a summary of all pair-wise comparisons. We can conclude 
that Formulation B has a significantly lower maximum concentration than 
Formulation A, and that there appear to be no other significant pair-wise comparisons. 
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Table 11.5 Results of Dunn’s Multiple Comparisons 

Pairing Confidence Interval Results 

AX  − BX  +6.94 < μA − μB < +28.26 Significant 

AX  − CX  −4.00 < μA − μC < +17.60  

AX  − DX  −1.25 < μA − μD < +20.65  

BX  − CX  −21.64 < μB − μC < +0.04  

BX  − DX  −18.85 < μB − μD <+3.05  

CX  − DX  −8.18 < μC − μD < +13.98  

 
 
Dunnett’s Test 
  

The last planned multiple comparison test is used when various treatment groups 
are compared to a single control group. This test was developed by C.W. Dunnett and 
is based on a modification of the q-statistic (1955). It is an exact test (the 
experimentwise error rated exactly equal to α) for both balanced and unbalanced one-
way designs. It generally has better power than alternative tests. Significance can be 
tested using the following ratio based on the q-statistic: 
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q                                    Eq. 11.12 

 
where iX  is the sample mean for one experimental groups, the CX  is the mean for 
the control group and n’s are the sample sizes for the experimental and control 
groups. For this test the null hypothesis would be that each experimental group equals 
the control group. 
 
    H0:  μI  = μC 
    H1:  μI  ≠ μC 
 
All the experimental groups and the control group are placed in order based on the 
magnitude of their means. Then a range (p) is determined for the number of inclusive 
means between the experimental group being considered and the control group. For 
example, consider the following means ranked from smallest to largest: 
 

243C15 XXXXXX  
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Table 11.6 Approximate Sample Sizes for the Control Group in a Dunnett’s Test 
Based on Number of Samples in the Other Treatment Levels 

Sample size in 
Other Treatment 

Groups 

k-Levels of Independent including Control Group 
 

3 
 
4 

 
5 

 
6 

 
7 

 
8 

 
10 

10 14 17 20 22 24 26 30 
15 21 25 30 33 36 39 45 
20 28 34 40 44 48 52 60 
25 35 43 50 55 60 65 75 
30 42 51 60 66 72 78 90 
50 70 85 100 110 120 130 150 
100 140 170 200 220 240 260 300 

 
 
In this example, if group 5 were to be compared to the control, the p-range would be 
three (three means are included in the range between 5X  and CX ). Similarly, if the 
second group ( 2X ) were compared to the control, the p-range would be four. This p-
value is used in the decision rule:  
 

Reject H0 if q > qα,p,N-k 
 
The critical q-values are found in Table B12 (Appendix B). This table represents 
values for two-tailed tests only; tables are available in other texts for one-tailed 
Dunnett tests (Zar, 2010). 
 An alternative approach would be to create a confidence interval: 
 

( ) 







+±−=− −

iC
EkN,p,iCiC n

1
n
1MSqXX αμμ            Eq.11.13 

 
The interpretation of this test would be similar to the two-sample t-test confidence 
interval. If zero falls with in the confidence interval, the null hypothesis cannot be 
rejected. If all the values in the interval are positive or negative values, the null 
hypothesis is rejected.  

For these comparisons, the control group should have more observations than the 
other comparison groups. It is recommended that the ideal size for the control groups 
should be approximately 1k −  times larger than the sample sizes for the 
experimental groups. Table 11.6 lists a comparison of the number of observations 
required in the control group for various numbers of observations in each treatment 
group.  

 As an example of Dunnett’s test, consider a study to evaluate the responsiveness 
of individuals receiving various commercially available benzodiazepines. Volunteers 
were administered these drugs and subjected to a computer-simulated driving test. 
Volunteers are randomly assigned to three treatment groups receiving different 
benzodiazepines (ni = 12) and a control group receiving a placebo (n = 24). In this 
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Table 11.7 Data for a Dunnett Example 

 Drug A Drug B Drug D Placebo (Control) 
 57 60 53 50  57 
 53 56 45 51  58 
 51 56 48 53  49 
 61 54 46 52  50 
 50 58 58 61  55 
 54 50 61 49  40 
 46 69 52 50  47 
 62 55 51 60  46 
 55 62 55 45  43 
 56 53 48 47  50 
 49 66 62 48  51 
 59 64 49 43  53 

Mean = 54.42 58.58 52.33 50.33 
 
 

study the higher the score, the greater the number of driving errors. The results of the 
study are presented in Table 11.7. Performing an ANOVA on this data, it was 
determined that there was a significant difference and the null hypotheses of μA = μB 
= μD = μPlacebo was rejected (decision rule: with α = 0.05, reject H0 if F > F.05,3,56(0.95) 
≈ 2.77): 
 

59.6 = 
93.28
6.190 = 

MS
MS = F

W

B  

 
The order of the different sample means is: 
 

CDAB XXXX <<<  
 
With the MSE = MSW = 28.93 and qα/2,p,N-k = q.05,3,56 = 2.27, the comparison for 
benzodiazepine A to the control group using Dunnett’s test and subsequent 
confidence interval is as follows: 
 

( ) 





 +±−=−

12
1

24
193.2827.242.5433.50AC μμ  

 
32.409.4AC ±−=− μμ  

 
23.041.8 AC +<−<− μμ  

 
With zero within the interval, there is no significant difference between 
benzodiazepine A and the control. Similar results are seen with benzodiazepine D 
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where p = 2: 
 

( ) 





 +±−=−

12
1

24
193.2800.233.5233.50DC μμ  

 
80.180.5 AC +<−<− μμ  

 
But there is a significant difference between benzodiazepine B and the control group 
(p = 4): 
 

( ) 





 +±−=−

12
1

24
193.2841.258.5833.50BC μμ  

 
67.383.12 AC −<−<− μμ  

 
Post Hoc Procedures 
 

Post hoc procedures or a posteriori tests are used when the researcher is 
interested in evaluating differences, but not limited to those specified in advance 
(required for the Bonferroni, Dunn, or Dunnett’s tests). Many of these types of tests 
are based on a q-statistic. As seen in Chapter 10 there are two underlying assumptions 
associated with the one-way analysis of variance, namely, population normality and 
homogeneity of variance. Homogeneity of variance is the more serious assumption. 
However, the ANOVA is a robust statistic and can tolerate minor deviations from the 
ideal. Equal sample sizes should be the goal to maximum power and robustness of the 
ANOVA. These same rules apply to post hoc procedures. 
 
Tukey HSD Test  
 

The Tukey HSD test (honestly significant difference test) is a post hoc procedure 
that can be used for all pair-wise comparisons between levels of the discrete 
independent variable. The Tukey HSD test is also referred to as HDS test or the 
Tukey test. It is based on the Studentized range distribution (q-statistic) and is 
preferred when the number of groups is large since it is a conservative pair-wise 
comparison test. Large numbers of groups threaten to inflate the Type I error rate. It is 
recommended to use the Tukey HSD test if it is required to test all pair-wise 
comparisons of the means and present confidence intervals. When all pair-wise 
comparisons are being tested, the Tukey HSD test is more powerful than the Dunn 
test. Therefore, the Dunn test would be recommended for a small partial set of pair-
wise comparisons and the Tukey test would be employed when all pair-wise 
comparisons are considered a posteriori. The Tukey HSD test is limited to only pair-
wise comparisons and preferably equal sample sizes (balanced design).  

For each pair-wise comparison the following hypotheses are tested.  
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H0:  μA = μB 
H1:  μA ≠ μB 

 
Using the following statistic 
 

n
MS

XX
q

E

BA −
=                                         Eq. 11.14 

 
the decision rule is 
 

With α = .05, reject H0 if q > qα,k,N-k or q < −qα,k,N-k 
 
Where α is usually consistent with the value used for the original one-way analysis of 
variance, k is the number of levels of the independent variable and N − k represents 
the denominator degrees of freedom from the ANOVA table. The q-value is obtained 
from Table B10 (Appendix B).  

The Tukey-Kramer test is a modification of the formula to accommodate for 
unequal cell sizes: 
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Both these formulas (Eqs. 11.14 and 11.15) can be modified to create confidence 
intervals: 
 

n
MS)q()XX( E

kN,k,BABA −±−=− αμμ                Eq. 11.16 
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)q()XX( αμμ        Eq. 11.17 

 
Interpretation of the results would be similar to those used for confidence intervals 
involving two-sample t-tests; if zero is within the interval there is no significant 
difference and if zero is outside the interval there is a significant difference between 
the population means based on the two sample means being tested. 
 Using the previous example with the four formulations, the critical value from 
Table B10 is 3.73 for q with k = 4 number of means and N − k = 73 degrees of 
freedom with 95% confidence (1 − α). A comparison between Formulas A and D 
would be computed as follows: 
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Table 11.8 Results of the Tukey-Kramer Test Comparisons 

Pairing Confidence Interval Results 

AX  − BX  +7.27 < μA − μB < +27.93 Significant 

AX  − CX  −3.68 < μA − μC < +17.28  

AX  − DX  −0.92 < μA − μD < +20.32  

BX  − CX  −21.28 < μB − μC < −0.32 Significant 

BX  − DX  −18.53 < μB − μD < +2.73  

CX  − DX  −7.84 < μC − μD < +13.64  

 
 

3.40 = 
2.85
9.7 = 

18
1+

20
1 

2
153.51

113.5  123.2 = q









−  

 
Since 3.40 is less than the critical value of 3.73 we would fail to reject the hypothesis 
that μA = μD and conclude that no difference could be found between these two 
formulas. Similar results would obtained creating a confidence interval: 
 







⋅±−

18
1+

20
1 

2
153.51  733.  113.5)  (123.2 =  - DA μμ  

 
2.610  (9.7) = DA ±− μμ  

 
32.20 <  <92.0 DA μμ −−  

 
Since zero falls within the interval, the decision is that there is no significant 
difference between Formulations A and D. A summary of all possible pair-wise 
comparisons using the Tukey-Kramer test is presented in Table 11.8. 

It is possible to reject H0 with the original ANOVA and the Tukey tests fail to 
detect a pair-wise difference. This is due to the fact that the ANOVA is a more 
powerful test than multiple comparison tests. In this case repeating the study with a 
larger sample size would tend to result in a greater likelihood of identifying a 
significant difference using one of the multiple comparison tests. Alternatively, tests 
like Scheffé could be used to make more complex comparisons.  

Two other post hoc procedures are modifications of the Tukey HSD test based on 
the q-statistic. The first is the Tukey’s wholly significant difference (WSD) test 
(also called the Tukey WDS or Tukey-b test). It is a less conservative stepwise 
procedure. The critical value of Tukey WSD is the average of the corresponding 
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values for the Tukey’s HSD test and the Newman-Keuls test. The second procedure is 
Games-Howell test (also known as the Games and Howell’s modification of Tukey’s 
HSD or GH test). This pair-wise test is designed for unequal variances and/or 
unequal sample sizes. The GH test is a relatively liberal post hoc procedure and can 
be too liberal when the sample size is small and it is recommended that individual 
levels of the independent variable have sample sizes greater than five. Discussions of 
these tests can be found in Toothaker’s book on multiple comparisons (Toothaker, 
1991). 
 
Student Newman-Keuls Test 
 
 The Student Newman-Keul test (also referred to as the Newman-Keuls test or 
SNK test) is a stepwise, multiple range post hoc procedure, based on the q-statistic, 
which compares every mean with every other mean in a pair-wise fashion. Notice the 
formula is identical to that used for the Tukey and Tukey-Kramer tests. For balanced 
designs the formula is: 

 

n
MS

XX
q

E

BA −
=                                         Eq. 11.18 

For unbalanced designs use: 
 










−

n
1+
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MS

X  X = q

BA

E

BA                                     Eq. 11.19 

 
The Tukey HSD and Student Newman-Keuls tests are run exactly the same except the 
Tukey test maintains a constant k-value for the number of levels of the independent 
variable and with the SNK test the value is based on the number of steps inclusive of 
the means being compared. The Tukey test is more conservative, but it is an exact test 
and will keep alpha at 0.05 for all pair-wise comparisons, regardless of the number of 
means in the study. 

Sample means are first rank-ordered in ascending or descending order. The 
number of means between two means being compared (including those two means) 
become the range. In these cases, the critical value is qα,p,N-k, where p is the range. The 
p-range is sometimes referred to as “steps.” The difference in this process compared 
to the HSD test is that the critical values for the Tukey test remain constant for all 
comparisons but the critical values for the SNK differ based on the size of the 
stepwise differences. SNK tends to be less conservative than the Tukey test and will 
result in the identification of more significantly different pair-wise comparisons than 
Tukey. Also, it should be used cautiously for unbalanced cases. 
 The calculated q-statistic is compared to the critical values listed in Table B10 of 
Appendix B. The denominator degrees of freedom used are similar to the previous 
procedures and are the same as the original denominator degrees of freedom for the F-
test (N − k). One additional piece of information is required to read the critical value, 
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namely the distance in steps (or range). For example, listed below are means used 
previously, but reordered from the highest to the lowest mean: 
 
  Formulation A 123.2 
  Formulation C 116.4 
  Formulation D 113.5 
  Formulation B 105.6 
 
The step difference between Formulation A and Formulation C is two (p = 2) and the 
number of steps between Formulation A and Formulation B is four (p = 4). This 
difference is used to select the appropriate column from Table B10. As seen in Table 
B10, the first column is the denominator degrees of freedom (N − k), the Type I error 
rate is in the second column, and the remaining columns relate to the number of mean 
steps. In the above example if we were to select the critical value for a comparison 
between Formulations A and D the step difference would be three and the N − k 
degrees of freedom is 73, giving a critical value for α = 0.05 of approximately 3.39. 
The decision rule is with α = 0.05, reject the H0: μA = μD if q > q.05,3,73 ≈ 3.39 and the 
computation is: 
 

3.40 = 
2.85
9.7 = 

18
1+

20
1 

2
153.51

113.5  123.2 = q









−  

 
In this case, q is greater than the critical q-value; therefore, we would reject the H0 
that they are equal. Step-down procedures (such as the SNK test) do not provide 
confidence intervals, but just divide pair-wise differences into possible overlapping 
groups.  
 Similarly, the comparison between Formulations B and D would involve only a 
two “step difference”; therefore, the decision rule for this comparison is, with α = 
0.05, reject H0: μB = μD if q > q.05,2,73 ≈ 2.82 and the computation is: 
 

2.77 = 
2.85
7.9 = 

18
1+

20
1 

2
153.51

105.6  113.5 = q









−  

 
Here the calculated q-value is less than the critical q-value, therefore we cannot reject 
the hypothesis that the formulations are equal. A summary of all possible pair-wise 
comparisons using the Newman-Keuls test is presented in Table 11.9. 
 A modification of the SNK test is the Ryan-Einot-Gabriel-Welch range test, 
which is abbreviated as the REGWQ test or Ryan test. In this adjustment the critical 
values decrease as “stretch” size decreases (the range from highest to lowest mean in 
the set being considered). It is based on the q-distribution. Like the Newman-Keuls 
test, the Ryan test is a step-down procedure and is not recommended for unbalanced 
design, but is a more conservative test for balanced designs. In this case the family- 
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Table 11.9 Results of Newman-Keuls’ Comparisons 

Pairing q-Statistic Critical Value Results 

AX  − BX  6.35 3.73 Significant 

AX  − CX  2.24 2.82  

AX  − DX  3.41 3.39 Significant 

BX  − CX  3.85 3.39 Significant 

BX  − DX  2.78 2.82  

CX  − DX  1.01 2.82  

 
 
wise error rate does not exceed alpha and the REGWQ is generally considered more 
powerful than the Tukey test. The Ryan test F (or REGWF) is a further modification 
of the SNK test, but based on the F-distribution and it is more computationally intense 
and more powerful than the REGWQ. More information about these tests can be 
found in Toothaker’s book (Toothaker, 1991). 
  
Fisher LSD Test  
 

The Fisher LSD (least significant difference) test is a post hoc procedure based 
on the t-statistic and not a range test (q-statistic). Developed by R.A. Fisher, this test 
is also referred to as the LSD test or protected t-test. The process compares all 
possible pair-wise means after a significant F-test rejects the null hypothesis that all 
levels of the independent variable are equal. The Fisher LSD can handle all pair-wise 
comparisons and equal sample sizes are not required.  
 

( )
2

E

1

E
kN,2/12121 n

MS
n

MS
tXX +±−=− −−αμμ            Eq. 11.20 

 
This method is quick, though a less rigorous post hoc procedure and has some control 
over the experimentwise error rate. The problem with this approach is that it can lead 
to a greater experimentwise error rate if most population means are equal but only one 
or two are different. Homogeneity of variance is typically assumed for Fisher’s LSD. 
Even though the LSD test can handle unpaired contrasts, it is not to be recommended 
for multiple comparisons. The Scheffé test is suited for multiple contrasts (complex 
comparisons). 
 Similar to previous examples, using this test, a comparison of Formulations A 
and D produces the following: 
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Table 11.10 Results of Fisher LSD Pair-wise Comparisons 

Pairing Confidence Interval Results 

AX  − BX  +9.80 < μA − μB < +25.40 Significant 

AX  − CX  −1.10 < μA − μC < +14.70  

AX  − DX  +1.69 < μA − μD < +17.71 Significant 

BX  − CX  −2.90 < μB − μC < +18.70  

BX  − DX  −0.11 < μB − μD < +15.91  

CX  − DX  −5.20 < μC − μD < +11.00  

 
 

( )
18

51.153
20

51.15399.15.1132.123DA +±−=− μμ  

 
01.87.9DA ±=− μμ  

 
71.17 <  <69.1 DA +−+ μμ  

 
Similar to previous methods, there is a significant difference because zero is not 
within the confidence interval, and cannot be a possible outcome. Results for all pair-
wise post hoc comparisons using the Fisher LSD test are presented in Table 11.10. 
 As seen in the above example and Table 11.10, the LSD test is the most liberal of 
the post hoc tests while controlling the experimentwise Type I error rate at a selected 
level (typically 5%). In contrast to the HSD test, the LSD intervals are narrower than 
the HSD intervals, making it easier to find a significant difference. Thus the LSD test 
is a less conservative post hoc procedure than the HSD test. The Fisher-Hayter test 
is a modification of the LSD test designed to control for the liberal α significance 
level seen with the LSD test. It can be used when all pair-wise comparisons are done 
post hoc, but unfortunately the power may be low for fewer pair-wise comparisons. 
 
Scheffé Procedure 
 
 Scheffé’s procedure for pair-wise and multiple comparisons offers several 
advantages over the previous methods: 1) this procedure allows not only pair-wise, 
but also complex comparisons; 2) Scheffé’s procedure guarantees finding a 
significant comparison if there was a significant F-value in the original ANOVA; and 
3) the Type I error rate remains constant with the error rate used in the original 
ANOVA for both pair-wise and complex comparisons. Regarding the second point, 
results that might not be logical or interpretable, a hypothetical example may be 
useful for illustrative purposes. Assume that pharmacists are administered a cognitive 
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test to assess their knowledge of some therapeutic class of medication. The findings 
listed below, result in a significant one-way ANOVA for the four levels of a discrete 
independent variable (note that the levels are mutually exclusive and exhaustive).  
 
   Level Years of Experience Mean Score 
    A   10 or less    94.8 
    B   11-20     85.1 
    C   21-30     91.3 
    D   More than 30    87.9 
 
However, no significant pair-wise comparisons could be found and when each 
experience level was compared to all the other three levels there were no significant 
differences. The only statistically significant difference was between levels A and C 
combined and levels B and D combined, with levels B and D significantly lower. 
How can these results be explained logically? Do pharmacists have a mental 
dormancy during their second decade of practice, but awaken during the third decade? 
What about support for Mark Twain’s adage “When I was a boy of fourteen, my 
father was so ignorant I could hardly stand to have the old man around. But when I 
got to be twenty-one, I was astonished by how much he'd learned in seven years”; do 
parents appear to become smarter as a child passes into adulthood? Could it be during 
the second decade that many of the pharmacists had teenage sons or daughters and 
really were not very bright, but the pharmacists become smarter as their children enter 
adulthood and the real world? Whatever the reason, a logical assessment of the 
finding is difficult, if not impossible, and makes interpretation difficult. 
 The first step is to establish a Scheffé value, which is expressed as follows: 
 

))(1F1)((K = S = )value (Scheffe K1,NK
22 α−− −−  

 
This procedure does not require any additional tables. The Scheffé value is nothing 
more than the critical F-value used in the original ANOVA multiplied by the 
numerator degrees of freedom (k − 1). The Scheffé value is used in the following to 
create a confidence interval:  
 

)ˆ( Var  S  ˆ  i
2

ii ψψψ ⋅±=                                 Eq. 11.21 
 
where iψ  (psi) is the estimated population difference and iψ̂  (psi hat) is the sample 
difference. This iψ̂  can represent either a pair-wise or complex comparison: 
 

)comparison wise(pair  X  X = ˆ 21i −−ψ  
 

)comparison (complex   )X + X1/2(X = ˆ 321i −ψ  
 

The measure of the standard error term for this equation is slightly more complex than 
the previous two methods: 
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n
a

MS = )ˆVar(
k

2
k

Ei ⋅ψ                                       Eq. 11.22 

 
In this formula, ak represents the prefix to each of the mean values. 
 

nn2211i X)a( ... + X)a( + X)a( = ψ̂  
 
For example, consider the following simple pair-wise example: 
 

21i X  X = ˆ −ψ  
 
This also can be written as: 
 

21i X1)( + X(+1) = ˆ −ψ  
 
where the two aks equal +1 and −1. A second example, involving a complex 
comparison is: 

)X +X1/2(  X = ˆ 321i −ψ  
 
Once again the formula can be rewritten as: 
 

321i X1/2)( + X1/2)( + X(+1) = ˆ −−ψ  
 
where the three aks equal +1, −1/2, and −1/2. As a quick check, for all comparisons 
the sum of the absolute aks (⏐ak⏐) must equal 2. In each example the ak is squared 
and divided by the number of observations associated with the sample mean and the 
sum of these ratios is multiplied by MSE, or MSW, taken from the ANOVA table in the 
original analysis of variance (Eq. 11.22). If zero does not fall within the confidence 
interval produced by the formula (Eq. 11.21), it is assumed that there is a significant 
difference in the comparison being made. Conversely, if zero falls in the interval no 
significant difference is found. 
 Using the same example for the previous post hoc procedures, where do the 
significant pair-wise differences exist between the various formulations? 
 

8.22 = 3(2.74) = .95))0(F(3)( = S = )value(Scheffe 3,73
22  

 
The first pair-wise comparison is between Formulations A and B, where: 
 

17.6 = ˆ         B versus A nFormulatio = 11 ψψ  
 
The computation is as follows: 
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Table 11.11 Results of Scheffé’s Pair-wise Comparisons 

Pairing Confidence Interval Results 

AX  − BX  +6.37 < μA − μB < +28.83 Significant 

AX  − CX  −4.58 < μA − μC < +18.18  

AX  − DX  −1.84 < μA − μD < +21.24  

BX  − CX  −22.18 < μB − μC < +0.58  

BX  − DX  −19.44 < μB − μD < +3.64  

CX  − DX  −8.78 < μC − μD < +14.58  
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ψ  
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28.83+ <  < +6.37 1ψ  

 
Because zero does not fall in the confidence interval, the decision is to reject H0, that 
Formulation A and Formulation B have the same Cmax, and conclude that a difference 
exists. The second pair-wise comparison is between Formulation A and C, with: 

 
6.8 = ˆ         C versus A nFormulatio = 22 ψψ  

 
The calculation of the confidence interval is: 
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 −
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75)(8.22)(15.  6.8+ = 2 ±ψ  

 
18.18+ <  < 4.58 2ψ−  

 
In this case, with zero inside the confidence interval, the decision is that the null 
hypothesis that Formulation A has the same Cmax as Formulation C cannot be rejected. 
 A summary of all possible pair-wise comparisons using Scheffé’s procedure 
appears in Table 11.11.  
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Table 11.12 Comparison of Results for Various Post hoc Procedures 

 
Pairing 

 
Mean Δ 

Bonferroni 
Adjustment 

 
Dunn’s 

Newman-
Keuls 

 
Scheffé 

A vs. B 17.6 Significant Significant Significant Significant 
B vs. C 10.8 Significant  Significant  
A vs. D 9.5   Significant  
B vs. D 7.9     
A vs. C 6.8     
C vs. D 2.9     

 
 
The Scheffé test is not appropriate for planned comparisons. It should be restricted to 
post hoc comparisons where there are a large number of pair-wise comparisons and 
mainly for complex comparisons. Interestingly each of the three methods gives 
slightly different results. From this one example, the Scheffé and Dunn procedures 
appear to be the most conservative tests and the Newman-Keuls test more liberal 
(Table 11.12). All three procedures found a significant difference between the two 
extreme means (Formulations A and B); however, results varied for the other pair-
wise comparisons. 
 
Scheffé Procedure for Complex Comparisons 
 
 In the above example it was possible, by all four methods used, to identify 
significant pair-wise differences comparing the means of sample groups and 
extrapolating those differences to the populations which they represent. But what if 
all possible pair-wise comparisons were made and no significant differences were 
found? For example, suppose instead we actually found slightly different data among 
the four formulations (modified from the previous example):  
 

Concentration in mcg/ml: Mean S.D. n 
Formulation A 119.7 11.2 20 
Formulation B 110.9 9.9 20 
Formulation C 117.7 9.5 19 
Formulation D 112.6 8.9 18 

 
In this case the calculated F-value (3.48) exceeds the critical F-value (2.74). 
Therefore, the null hypothesis that all formulations are equal is rejected. 
Unfortunately, none of the Scheffé pair-wise comparisons is significant. 
 As mentioned previously, the Scheffé test also can be used for complex 
comparisons. This process begins by comparing individual levels (one formulation), 
to the average of the other combined levels (average of remaining three formulations) 
and determining if one is significantly larger or smaller than the rest. For example, the 
formulation with the smallest Cmax can be compared to the remaining three groups: 
 

112.6) + 117.7 + 1/3(119.7  110.9 = ˆ 7 −ψ  
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with the appropriate ak being: 
 

5.77- = 112.6 1/3)( + 117.7 1/3)( + 119.7 1/3)( + 110.9 (+1) = ˆ 7 −−−ψ  
 
The computations for the confidence interval, with the calculated MSE of 98.86 from 
the original ANOVA, are: 
 

56.6 = 
18

).33(
+

19
).33(

+
20

)33(
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20
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98.86 = )ˆvar(
2222
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 −−−
ψ  

 
7.39  5.77 = )65(8.22)(6.  5.77- = 7 ±−±ψ  

 
1.62+ <  < 13.16 7ψ−  

 
Unfortunately, in this particular example all of the single group comparisons were 
found to be not significant. 
 

Compared to All Others Confidence Interval 
Formulation A −1.45 < ψ8 < +13.39 
Formulation B −13.16 < ψ8 < +1.62 
Formulation C −4.25 < ψ8 < +10.85 
Formulation D −11.19 < ψ8 < +4.19 

 
With such results, the next logical step is to compare the two larger results with the 
two smallest. In this case the complex comparison would appear as follows: 
 

0 = 
2

 + 
 - 

2
 + BDCA μμμμ

 

 
and also could be written as follows: 
 

0 = ) (
2
1  ) (

2
1  ) (

2
1 + ) (

2
1+ BDCA μμμμ −−  

 
The +1/2s and −1/2s before each population mean become the ak in the equation for 
calculating the variance term: 
 

n
a

MS = )ˆVar(
k

2
k

Ei ⋅ψ  

 
Notice that in both this and the previous example, the ⏐ak⏐ equals 2. 
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 The calculations for the confidence interval are as follows: 
 

B and D nsFormulatio versus C and A nsFormulatio = 11ψ  
 

6.95 = 112.6) + 1/2(110.9  117.7) + 1/2(119.7 = ˆ 11 −ψ  
 

5.15 = 
18

)(-.5+
20

)(-.5+
19

)(+.5+
20

)(+.598.86 = )ˆvar(
2222

11











ψ  

 
6.51  6.95 = 5)(8.22)(5.1  6.95 = 11 ±±ψ  

 
13.46+ <  < 0.44 7ψ+  

 
Here we find a significant difference if we compare the two formulations with the 
highest sample means to those with the smallest sample means. 
 If a significant pair-wise comparison is found, then more complex comparisons 
do not need to be computed unless the researcher wishes to analyze specific 
combinations. Once again it is assumed that the original analysis of variance was 
found to be significant, and the null hypothesis that all the means are equal was 
rejected. In all the tests performed in this section the Type I error (α) remained 
constant with the original error rate used to test the analysis of variance for k levels of 
the independent variable. While the Scheffé test can evaluate more complex 
comparisons it does so at the expense of statistical power. Even though the Scheffé 
test is lower in power it can be used when one wishes to do all or a large number of 
comparisons.  
 
Unbalanced Designs 
 

Many multiple comparison procedures assume that there are equal sample sizes 
in the groups being compared. Since multiple comparison tests are robust and can 
contend with minor violations in this assumption, tests specifically designed for 
unequal sample sizes (unbalanced) are rare. The Tukey-Kramer test has been 
discussed previously and represents a modified Tukey HSD test for unbalanced 
designs. It assumes that there is homogeneity comparing the various sample 
variances. For unbalanced designs with equal variances, it is recommended to use the 
Tukey-Kramer test if all pair-wise comparisons of the sample means are tested. This 
test is not an exact test, but it is conservative for unbalanced one-way ANOVAs and 
the experimentwise error rate will not exceed alpha. It is less conservative when the 
designs are only slightly unbalanced, but more conservative when there are large 
differences in samples sizes. Also, the Scheffé and Student-Neuman-Kuels tests can 
be adjusted for unbalanced designs. Other procedures specifically designed to handle 
unequal sample sizes include the Miller-Winer test, Hochberg GT2 test, and 
Gabriel test. 
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Lack of Homogeneity 
 

Ideally, the one-way ANOVA would be performed only when the assumption of 
homogeneity of variances is met. However, because it is a robust statistic it can be 
employed when there is a deviation from this assumption. When the design involves 
unequal variances, there are several lesser used post hoc procedures including Games-
Howell, Dunnett’s C, Dunnett’s T3, and Tamhane’s T2 tests, which have been 
mentioned previously. None of these is an exact test, but the T2, T3 and C are 
conservative procedures and the experimentwise error rate will not exceedα. For 
larger samples that are approximately equal in size (balanced), the T2 is more 
conservative than T3. Whereas, the T3 is more conservative than C for large samples, 
while C is more conservative for smaller.  

The Games-Howell test (GH test) is designed for both unequal variances and 
unequal sample sizes. It is a pair-wise procedure based on the q-distribution. The 
Games-Howell test may be too liberal when sample sizes are small and is therefore 
recommended for sample sizes greater than five. The Games-Howell is an extension 
of the Tukey-Kramer test, more powerful (narrower confidence intervals) than C, T2 
or T3, and is recommended over these tests. It is most liberal (experimentwise error 
rate is likely to exceed alpha) when the sample variances are approximately equal.  

Both the Dunnett’s T3 and Dunnett’s C are similar post hoc procedures for use 
when the assumption of homogeneity of variance is not met or questionable. The T3 
and C should be used for pair-wise comparisons. The Tamhane’s T2 is a pair-wise 
procedure based on the Student t-distribution. It uses Sidák test to define the alpha 
level. Tamhane’s T2 is a more conservative post hoc comparison for data with 
unequal variances and is appropriate when variances are unequal and/or when the 
sample sizes are different. Toothaker’s textbook covers most of the post hoc 
procedures discussed in these last two sections (Toothaker, 1991). 
 
Other Post Hoc Tests 
 

The Hsu’s MCB (multiple comparison with the best) test creates confidence 
intervals for the difference between the mean for each level of the independent 
variable and the best of the remaining level means (Hsu, 1981). In other words each 
sample mean is compared to the “best” of the other means. Best is a default or the 
largest mean for the remaining levels. The test calculates q-values associated with 
each sample. Hsu’s MCB is an exact test for a one-way analysis of variance with 
levels that have equal sample sizes (balanced). With unbalanced group sizes the 
experimentwise error rate will be smaller than stated and results will be slightly more 
conservative confidence intervals. Results are comparable to Tukey LDS and 
Dunnett’s tests when confidence intervals are larger. For comparing all pair-wise 
comparisons, the Tukey confidence intervals will be wider and the hypothesis tests 
less powerful for the experimentwise error rate.  

The Bonferroni-Holm test is a step-down test that does not require any 
assumptions regarding the population distribution. It can be applied to any pair-wise 
comparison and is a conservative test (the experimentwise error rate does not exceed 
alpha). The Sidák-Holm procedure is similar to the Bonferroni-Holm method except 
the differences are not compared to alpha, but to the Sidák adjusted alpha. The Sidák-
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Holm test is slightly less conservative than Bonferroni-Holm test. 
The Duncan test, also referred to as the Duncan new multiple range test, is a 

multiple range test based on the q-statistic. It is a stepwise test for ordered means. The 
test is not recommended for unbalanced cases (Duncan, 1955).  
 

Using Minitab® for Multiple Comparisons 
 
 Minitab offers four applications for determining the location(s) of differences if 
there is a significant one-way ANOVA. It is recommended to perform the ANOVA 
first using the analysis described in Chapter 10 without the Comparisons… activated: 
 

Stat  ANOVA   One-way…  
Stat  ANOVA   One-way (Unstacked)…  

 
If the result is a p-value greater than 0.05, there is no reason to apply post hoc 
procedures. However, if there is a significant difference, then the options are 
available: 1) Tukey’s HSD; 2) Fisher’s LSD; 3) Dunnett’s; and 4) Hsu’s MCB tests. 
To access these options, click on the Comparisons… (Figure 10.9) and the choices 
will be listed (Figure 11.2). In the box to the right of each test the Type I error is 
indicates (and can be changed) as percent (5 = α = 0.05). One or all of the options can 
be chosen. For Dunnett’s test one of the levels of the independent variable must be 
identified as the control. For Hsu’s test either the smallest or largest mean must be 
 
 

Figure 11.2 Multiple comparison options with Minitab. 



Multiple Comparison Tests 263

 
Figure 11.3 Results for a Tukey HSD with Minitab. 

 
 
chosen as “best”. Whichever test is chosen, the results will be a presented as 
confidence intervals that are interpreted similar to previous intervals; if zero falls 
within the interval the difference is not significant. Figure 11.3 presents the output for 
the data for the original four formulations used as examples throughout this chapter. 
Using the Tukey HSD test, note there are significant differences between 
Formulations A and B and B and C because zero falls outside the confidence interval. 
 If we wanted to consider Formulation A as the control and use Dunnett’s test to 
compare the other three formulations to the control, the Comparisons… choice 
appears in Figure 11.4 and the outcome is reported in Figure 11.5. In this example 
Formulations B and D are significantly different because zero difference is outside the 
95% confidence interval. 
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Example Problems (Answers are provided in Appendix D) 
 
Based on the information presented, identify where the significant differences exist 
using the various post hoc procedures for the following problems. 
 
1. A prospective study was conducted on 105 patient randomly assigned to one of 

three HMG-CoA reductase inhibitors for lowering cholesterol levels. After 12 
months 94 of the patients were still being followed. Table 11.13 represents the 
change in total cholesterol reported for the patients (different between 
pretreatment level and most recent cholesterol level). There was a significant 
ANOVA (p < 0.05) comparing the three agents and rejection of the null 
hypothesis that μA = μB = μC. The ANOVA table shows that the F-statistic 
exceeded the critical F-value of 3.111: 

 
Source DF SS MS F 
Between  2 3900.30 1950.15 4.27 
Within 91 41604.48 457.19  
Total 93 45505   
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Table 11.13 Change in Total Cholesterol Levels (mg/dl) for Patients Treated 
with Three Different HMG-CoA Reductase Inhibitors 

 Drug A Drug B Drug C 
 1 −3 −20 −3 −54 −33 
 −42 −14 16 −35 −7 −24 
 −7 2 3 9 −30 2 
 −33 −23 −32 −37 −48 −36 
 −2 −45 10 10 9 −14 
 8 6 −33 13 12 −23 
 15 −36 −24 0 −39 −18 
 7 20 −29 −37 −39 1 
 −16 21 −35 3 −32 −26 
 20 33 −21 −45 −48 −46 
 −21 −23 −22 −12 −55 −35 
 8 −21 34 −4 −68 −5 
 −38 −19 −9 14 7 −12 
 −3 −39 13 15 −10 −3 
 7 11 −9 7 13 −10 
 1    12 −8 
     −39  

Mean = −7.26 −8.67 −21.39 
Standard Deviation = 21.03 20.90 22.13 

n = 31 30 33 
 
 

Use the most appropriate multiple comparison test(s), to identify significant 
difference(s) among these different agents, given the following scenarios. 

 
a. Scenario 1: The researcher decided before the study to compare the newest 

agent (Drug C) to each of the other drugs (currently on the hospital 
formulary) if there was a significant ANOVA. 

b. Scenario 2: The researcher decided before the study to consider Drug C and 
the “control” agent and compare each of the other drugs to this product. 

c. Scenario 3: After identifying a significant ANOVA the researcher decided to 
compare the three agents “after the fact” to determine where the difference(s) 
exist. 

 
2. Problem 3 in Chapter 10 compares the viscosity of a raw material delivered to 

three different sites.  
 
 Hypotheses:     H0:  μA = μB = μC 
       H1: H0 is false 
 
 Decision rule: With α = 0.05, reject H0 if F > F2,12(0.95) ≈ 3.70. 
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Data: Batch A Batch B Batch C 

Mean = 
S.D. = 

n = 

10.28 
0.037 

5 

10.24 
0.033 

5 

10.21 
0.026 

5 
 
 Results: 
 

6.3 = 
0.0010
0.0063 = 

MS
MS = F

W

B  

 
 Decision: With F > 3.70, reject H0, conclude that μA = μB = μC is not true. 
 
 Use the appropriate post hoc test(s) for results with equal sample sizes. 
 
3. Consider the results presented in Figure 11.4. Five different dissolution 

apparatuses (testers) are evaluated to determine if there is significant difference 
in their results based on testing of a single product at 30 minutes.  Where were 
the significant difference(s) among the various dissolution apparatuses in this 
study? 

 
4. Problem 6 in Chapter 10, which evaluated various benzodiazepines and responses 

to a computerized simulated driving test, resulted in the rejection of the null 
hypothesis  μA = μB = μC = μPlacebo.  Where were the significant differences? 

 
5. Using Problem 6 in Chapter 10 once again, consider the same results, but use the 

placebo results as a control.  How do the three benzodiazepines compare to the 
control group? 
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12 
 
Factorial Designs: An Introduction 
 
 
 
 As presented in Chapter 10, the simple one-way analysis of variance is used to 
test the effect of one independent discrete variable. When using factorial designs it is 
possible to control for multiple independent variables and determine their effect on a 
single dependent continuous variable. 
 Through random sampling and an appropriate definition of the population, in an 
ideal world, the researcher should be able to control all variables not of interest to the 
particular research design. For example in a laboratory, the researcher should be able 
to control the temperature of the experiment, the quality of the ingredients used (the 
same batch, the same bottle), the accuracy of the measurements, and numerous other 
factors that might produce bias in the statistical analyses performed. However, in 
many research situations, several different factors must be considered at the same 
time as well as the relationship of these variables to each other. Therefore, the study 
must be designed to consider two or more independent variables at the same time and 
their influence on the outcome of the dependent variable. 
 
Factorial Designs 
 
 The ANOVA model discussed in Chapter 10 is referred to as a “simple” or “one-
way” analysis of variance because only a single independent variable or factor is 
being assessed. The term factor is synonymous with the terms independent variable, 
treatment variable, predictor variable, or experimental variable. Throughout this 
chapter the terms factor and independent variable will be used interchangeably.  
 Instead of repeating our experiment for each independent variable or factor, we 
can design a more efficient experiment that evaluates the effects of two or more 
factors at the same time. These types of designs are referred to as factorial designs 
because each level of one factor is combined with each level of the other factor, or 
independent variable. The primary advantage of a factorial design is that it allows us 
to evaluate the effects of more than one independent variable, separately and in 
combination with each other. As will be seen, these factorial designs can be used to 
increase the control we have over our experiment by reducing the within-group 
variance. The factorial designs also offer economic advantages by reducing the total 
number of subjects or observations, which would be needed if the two main effects 
were evaluated separately. 
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 To illustrate this situation, consider the following example. Back in the 1990s a 
school of pharmacy was working on developing a new method of delivering its 
recently developed Pharm.D. curriculum to B.S. pharmacists desiring to obtain this 
degree, but unable to take a one- or two-year sabbatical to return to school. Therefore, 
the school worked with different delivery systems to provide distance learning for the 
didactic portion of the course work. The primary investigator developed a satisfaction 
index on a linear scale for the pharmacist to evaluate the convenience, flexibility, and 
usefulness of the course materials, as well as the user friendliness of the course work. 
It was assumed that the better the response (maximum score of 10), the more likely 
that pharmacists would begin the course work and continue to the end of the didactic 
portion of the program. A pilot study was conducted on a random sample of 
pharmacists. Two different delivery methods were considered: written monographs 
(M1) and computer-based training using CD-ROMs (M2). However, early in the 
development of course work there were concerns that institutional (primarily hospital) 
and ambulatory (mostly retail) pharmacists might possess different learning styles and 
might react differently with respect to their evaluation of the course materials. 
Therefore, the pilot study was designed to evaluate two independent variables, the 
delivery system used, and the pharmacist’s practice setting, either institutional (S1) or 
ambulatory (S2). This can be illustrated in the simplest possible experimental design, 
a two-by-two (2 × 2) factorial design: 
 

Methods 
M1 A B 

M2 C D 

  S1 S2 

  Settings 
 
where A, B, C, and D represent the mean results for the continuous dependent 
variable (satisfaction index), and rows and columns represent the main factors tested. 
For example, A represents the responses for pharmacists practicing in institutional 
settings who receive the written monongraphs; whereas D represents ambulatory 
pharmacists exposed to computer-based training.  
 In this design the principal investigator (PI) was interested in evaluating the main 
effects of both the factors used and the interaction of these two factors. In this case 
the PI was dealing with three different hypotheses: 
 
      H01: μM1 = μM2   (Main effect of the delivery method) 
  H02: μS1 = μS2   (Main effect of the practice setting) 
  H03: (μM1,S1 − μM1,S2 ) = (μM2,S1 − μM2,S2 ) 
         (Interaction between method and setting) 
 
The first hypotheses (H01) evaluates the main factor for the two methods used for 
distance learning (M1, M2). Are they approximately the same or are they statistically 
different? The second hypothesis (H02) assesses the influence of the pharmacists’ 
practice setting (S1, S2) and what influence settings might have on evaluations of the 
course materials. These first two hypotheses are called tests of main effects and are 
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similar to separate tests using a one-way analysis of variance. The third hypothesis 
(H03) evaluates the possibility of relationships between the row and column variables. 
As discussed below, two independent variables are considered to interact if 
differences in an outcome for specific levels of one factor are different at two or more 
levels of the second factor. 
 Whenever we evaluate the effect of two or more independent variables on a 
dependent variable, we must be cautious of a possible interaction between these 
independent variables. The interaction effect measures the joint effects of two or 
more factors on the dependent variable. If the factors are independent of each other, 
or have no relationship, there will be no interaction. We are interested in detecting 
interactions because the overall tests of main effects, without considering interactions, 
may cause us to make statements about our data that are incorrect or misleading. The 
validity of most multifactorial designs is contingent on an assumption of no 
interaction effects among the independent variables. One might argue that a more 
appropriate procedure is to test for any interaction first and if no interaction is 
detected (e.g., the test is not significant), then perform separate tests for the main 
effects. However, if interaction exists, it is meaningless to test the main effects or to 
try to interpret the main effects. The approach used in this book is to evaluate the 
main effect and interactions in concert as a more efficient and time-saving method. 
Granted, if the interaction is found to be significant, the results of the evaluation of 
main effects are without value, because the factors are not independent of each other. 
  To illustrate the various outcomes, consider the possible outcomes in Figure 12.1 
for our experiment with the factors of delivery system and practice setting. Here 
results are plotted for one main factor (setting) on the x-axis and the second main 
factor (delivery system) on the y-axis. In Outcome I the results are the same for all 
four observations; therefore the investigator would fail to reject any of the three 
hypotheses and conclude that there was no significant effect for either of the main 
effects and there was no interaction between the two factors. For Outcome II, there is 
a significant difference between the two delivery methods used (M1 > M2) and the 
investigator could reject H01, but would fail to reject the other two hypotheses. The 
opposite results are seen in Outcome III, where the investigator would find there is a 
significant difference between the two practice settings (S2 > S1) and reject H02, but 
would fail to reject the other two hypotheses. Outcome IV represents a rejection of 
both H01 and H02 where M1 > M2 and S2 > S1, but there is no significant interaction 
and H03 cannot be rejected.  
 Outcomes V and VI illustrate two possible interactions. In Outcome V there are 
significant differences in the main effects and a significant interaction between the 
two main factors. We can see that the two lines cross and there is a significant 
interaction between methods and settings. In this example, it appears that institutional 
pharmacists prefer monographs and ambulatory pharmacists favor the computer-
based training. Because of the interaction, it becomes meaningless to evaluate the 
results of the main effects, because if there was a significant difference between 
methods of delivery, it may be influenced by the practice setting of the pharmacists. 
In Outcome VI there is no difference in M1 based on the practice setting, but there is a 
difference for M2. Is this significant? Is there an interaction between the two main 
effects (factors)? A two-way analysis of variance can determine, with a certain degree 
of confidence, which hypotheses should be rejected as false. 
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Outcome I  Outcome II  

M1 6 6  M1 8 8  

M2 6 6  M2 4 4  

 S1 S2   S1 S2  

Outcome III  Outcome IV  

M1 3 9  M1 2 5  

M2 3 9  M2 6 9  

 S1 S2   S1 S2  

Outcome V  Outcome VI  

M1 8 3  M1 8 8  

M2 3 8  M2 8 4  

 S1 S2   S1 S2  

Figure 12.1 Examples of possible outcomes with a 2 × 2 factorial design. 
 
 
Two-Way Analysis of Variance 
 
 In the one-way ANOVA, we were only concerned with one major treatment 
effect or factor: 
 
    H0: μ1 = μ2 = μ3 = ... μk 
    H1: H0 is false 
 
However, in a two-way ANOVA, we are interested in the major effects of two 
variables and their potential interaction.  
 The number of factors and levels within each factor determine the dimensions of 
a factorial design. For example, if Factor A consists of three levels and Factor B only 
two, it would be presented as a 3 × 2 (read three-by-two) factorial design. Areas 
within the factorial design, where dependent variable outcomes are reported, are 
called cells. In the case of a 4 × 5 factorial design, there are 20 cells (4 × 5 = 20). In 
factorial designs there must be more than one observation per cell. If there were only 
one observation per cell, there would be no variance within the cells and therefore a 
required sum-of-squares error term would not be available. Each of the two major 
factors is a discrete independent variable and the significance of each factor is 
measured based on a single continuous dependent variable. The design for a two-way 
analysis of variance is presented in Figure 12.2. The column factor is represented by 

AC BD
A B

C D

AC

BD

A

BC

D

AC
B

D

A

B

D

C
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  Factor A 

  1 2 3 ... j 

 1    ...  
Factor B 2    ...  

 3    ...  

 ... ... ... ... ... ... 

 k    ...  
 

Figure 12.2 Layout for a two-way analysis of variance. 
 
 
j-levels and the row factor by k-levels for each discrete independent variable. As seen 
in the previous illustration three hypotheses are being tested simultaneously: two 
testing for the main effects and one for the interaction: 
 
 H01: μA1 = μA2 = μA3 = ... μAJ   (Main effect of Factor A) 
 H02: μB1 = μB2 = μB3 = ... μBK   (Main effect of Factor B) 
 H03: (μA1,B1 − μA1,B2 ) = (μA2,B1 − μA2,B2 ) = etc.  (Interaction of A and B) 
 
At the same time, there are three mutually exclusive and exhaustive alternative 
hypotheses to complement each of the null hypotheses: 
 
        H11: H01 is false 
        H12: H02 is false 
        H13: H03 is false 
 
With the one-way analysis of variance, the degrees of freedom for the critical F-value 
were associated with the number of levels of the independent variable (k − 1) and the 
total number of observations (N − k). Because the two-way analysis of variance deals 
with two independent variables, we may have different critical F-values (Fc) 
associated with each null hypotheses tested and these are directly associated with the 
number of rows and columns presented in the design matrix. The symbols used are: j 
for the number of levels of the column variable; k for the number of levels of the row 
variable; Nk is the total number of observations; and n is the number of observations 
per cell in the case of equal cell sizes. 
 There are three separate decision rules, one for each of the two main variables 
and one for the interaction between the two independent variables. Each hypothesis 
may be tested with a different F-value, but each should be tested at the same α. 
 

Reject H0 if F > Fν1ν2(1 − α) 
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Where the denominator (ν2) degrees of freedom is always j⋅k⋅(n − 1) and numerator 
(ν1) will vary depending upon which null hypothesis is being tested, then: 
 
  H01: ν1 = j − 1 
  H02: ν1 = k − 1 
  H03: ν1 = (j − 1)(k − 1) 
 
 For equal cell sizes (the numbers of observations in each cell of the matrix are 
equal), the formulas are similar to the computational formulas for the one-way 
ANOVA computational formulas. For intermediate value I, each observation (xi) is 
squared, and then summed. 
 

x    = I 2
i

I

=1i

J

=1j

K

=1k
                                              Eq. 12.1 

 
In the case of equal cell sizes the number observations in each cell for i = 1 to I for be 
equal to n then Eq. 12.1 could be written as follows: 
 

x    = I 2
i

n

=1i

J

=1j

K

=1k
  

 
However, in a later section of this chapter, equations will be presented for unequal 
cell sizes and the “i” summation notation will be used for continuity. 
 In intermediate value II the total sum of all observations is squared and divided 
by the total number of observations in the data set. 
 

N

x   

 = II
i

I

1=i

J

1=j

K

1=k

2














                                        Eq. 12.2 

 
To compute the intermediate value IV, the sum of values for each cell of the matrix is 
squared and then all these values are summed and finally divided by the number of 
observations in each cell: 
 

n

x   

 = IV
i

I

1=i

2J

1=j

K

1=k 












                                         Eq. 12.3 

 
There are two intermediate III values, one for the main effect of Factor A (columns) 
and one for the main effect of Factor B (rows). In the former case the sum of all 
values for each column is totaled and squared. These squared values are then summed 
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and divided by the product of the number columns multiplied by the number of 
observations per cell: 
 

n k

x    

 = III
i

I

1=i

K

1=k

2J

1=j
C ⋅














                                        Eq. 12.4 

 
A similar procedure is used for the intermediate III rows, where the sum of all values 
for each row is totaled and squared. These squared values are then summed and 
divided by the product of the number of rows multiplied by the number of 
observations per cell: 
 

n j

x    

 = III

i
I

1=i

J

1=j

2
K

1=k
R ⋅














                                        Eq. 12.5 

 
The SStotal and SSerror are calculated in a similar way to the one-way ANOVA. Note 
that the former error term SSW is now referred to as SSE or SSerror. 
 

IV  I = SS = SS EError −                                         Eq. 12.6 
 

II  I = SS = SS TTotal −                                           Eq. 12.7 
 
In the two-way ANOVA, SSrows, SScolumns and SSinteractions are calculated from the sum 
of squares formulas IIIR and IIIC. 
 

II  III = SS = SS RR(Rows) −                                        Eq. 12.8 
 

II  III = SS = SS CCColumns −                                       Eq. 12.9 
 

II + III  III  IV = SS = SS CRRCnInteractio −−                         Eq. 12.10 
 
The key difference with this design is that the between-group variance is further 
divided into the different sources of variation (row variable, column variable, and 
interaction). A certain amount of variation can be attributed to the row variable and 
some to the column variable. The remaining left over or residual variation is 
attributable to the “interaction” between these two factors. 
 The sum-of-squares information is inserted into an ANOVA table (Figure 12.3) 
where there are three levels for the between mean variability, the main effect of the 
rows variable, the main effect of the columns variable, and the effect of their 
interactions. The first column indicates the source of the variance. The second column 
is the degrees of freedom associated with each source. Note that the total number of 
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Source 

Degrees 
of Freedom 

Sum of 
Squares 

Mean  
Squares (MS) 

 
F 

Between:     

    Rows k − 1 SSR 
SSR 
k − 1 

MSR 
MSE 

    Columns j − 1 SSC 
SSC 

j − 1 
MSC 
MSE 

    Interaction (k − 1)(j − 1) SSRC 
SSRC 

(k − 1)(j − 1) 
MSRC 
MSE 

Within:     

    Error k⋅j⋅(n − 1) SSE 
SSE 
k⋅j⋅(n − 1) 

 

Total N − 1 SST   

Figure 12.3 Computations for the ANOVA table for a two-way design. 
 
 
degrees of freedom is one less than the total number of observations, again to correct 
for bias (N − 1). The third column is the sum of squares calculated by Eqs. 12.6 
through 12.10. The fourth column contains the mean-square terms that are calculated 
by dividing the sum of squares by the corresponding degrees of freedom for each row. 
Finally, the F-values are calculated by dividing each of the mean square between 
values by the mean-square error. Figure 12.4 represents other symbols that can be 
used to represent an analysis of variance table. Computer programs, such as Excel or 
Minitab, present results of factorial design calculations in formats similar to those in 
Tables 12.1 and 12.2. 
 The within or error line in the ANOVA table represents the error factor or 
residual variance, which cannot be accounted for by the variability among the row 
means, column means, or cell means. As will be discussed later, the mean-square 
error serves as the error term in the fixed effects ANOVA. As seen in Figure 12.3, the 
denominator of each ratio in the last column is the variance estimate based on the 
pooled within-groups sum of squared deviations. Once again this within groups 
variance (MSE) is a measure of random error or chance differences among the 
variables. 
 If one or more of the F values calculated in the ANOVA table exceed their 
parallel critical Fc value defined in the decision rule, the hypothesis or hypotheses will 
be rejected in favor of the alternative hypothesis. It could be possible for all three null 
hypotheses to be rejected, meaning that both column and row variables were 
significantly different and that there was a significant interaction between the two 
variables. If a significant outcome is not identified for the interaction portion of the 
ANOVA table then the outcome of the F-tests for the two main effects can be 
interpreted the same way as the F-ratio in the one-way ANOVA. This measure of 
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Source df SS MS F 

Between:     
     Rows k − 1 SSR MSR FR 
     Columns j − 1 SSC MSC FC 
     Interaction (k − 1)(j − 1) SSRC MSRC FRC 

Within:     
     Error k⋅j⋅(n − 1) SSE MSE  

Total N − 1 SST   

Figure 12.4 ANOVA table for a two-way design. 
 
 
interaction is based upon the variability of the cell means. Therefore, when significant 
interaction occurs, caution must be used in interpreting the significance of the main 
effects. As mentioned previously, the validity of most factorial designs assume that 
there is no significant interaction between the independent variables. When 
interpreting the outcome of the two-way ANOVA, especially if there is a significant 
interaction, a plotting of the means (similar to Figure 12.1) can be extremely helpful 
to visualize the outcomes and identify the interaction. 
 As an example of a two-way ANOVA we will use a previous example associated 
with a two-sample t-test, where the investigator compared two formulations of the 
same drug and was interested in determining the maximum concentration (Table 9.2). 
However, in this case the study involved a two-period crossover study and the 
researcher wanted to make certain that the order in which the subjects received the 
formulation did not influence the Cmax for the formulation received during the second 
period. The three hypotheses under test were: 
 
  H01: μFormula A = μFormula B 
  H02: μOrder 1 = μOrder 2 
  H03: (μFormula A,First − μFormula B,First) = (μFormula A,Second − μFormula B,Second) 
 
and the decision rules were: 1) with α = 0.05 and n = 12, reject H01 if F > F1,44(0.95) ≈ 
4.06; 2) with α = 0.05 and n = 12, reject H02 if F > F1,44(0.95) ≈ 4.06; and 3) with α = 
0.05 and n = 12, reject H03 if F > F1,44(0.95) ≈ 4.06. In the case of a 2 × 2 design all 
the critical values will be the same because there are identical numerator degrees of 
freedom (ν1 = 1). 
 The data observed by the investigator is presented in Table 12.1. Also included 
are: 1) the sum of observations for each cell (2 × 2 design); 2) the sum for each 
column (formulations A and B); 3) the sum for each row (order in which formulations 
were received); and 4) the total sum of all the observations. The initial computations 
of the intermediate values are:  
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Table 12.1 Sample Data for a Two-way Crossover Clinical Trial (Cmax) 

  
Formulation A 

 
Formulation B 

J     I    
       

j=1 i=1 

K     J     I   
           

k=1 j=1 i=1 

Formula A 
Received 
First 

125 
128 
131 
119 

130 
121 
129 
133 

135 
123 
120 
125 

149 
132 
142 
136 

151 
141 
130 
138 

130 
129 
122 
140 

  

 I 
 

i=1 

 
=     1,519 

 
1,640 

 
3,159 

 

Formula B 
Received 
First 

126 
126 
117 
120 

140 
121 
126 
136 

135 
133 
127 
122 

130 
141 
133 
129 

128 
145 
136 
150 

127 
132 
138 
148 

  

  I 
 = 
i=1 

 
=     1,529 

 
1,637 

 
3,166 

 

K    I 
     

k=1 i=1 

 
=         3,048 

 
3,277 

  
6,325 

 
 

836,917 = )(148 ... + )(130 + )(125 = x    = I 2222
i

I

1=i

J

1=j

K

1=k
  

 

833,451.54 = 
24

)(3,166 + )(3,159 = 
n j

x    

 = III
22i

I

1=i

J

1=j

2
K

1=k
R ⋅














 

 

834,543.04 = 
24

)(3,277 + )(3,048 = 
n k

x    

 = III
22i

I

1=i

K

1=k

2J

1=j
C ⋅














 

 

834,547.58 = 
12

)(1,637...+)(1,519 = 
n

x   

 = IV
22i

I

1=i

2J

1=j

K

1=k 
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The sum of squares values required for the ANOVA table are: 
 

1.02 = 833,450.52  833,451.54 = II  III = SS RR −−  
 

25.092,1 = 833,450.52  40.43,5483 = II  III = SS CC −−  
 

II + III  III  IV = SS CRRC −−  
 

3.52 = 833,450.52 + 834,543.04  833,451.54  834,547.58 = SSRC −−  
 

2,369.42 = 834,547.58  836,917 = IV  I = SSE −−  
 

3,466.48 = 833,450.52  836,917 = II  I = SST −−  
 
The resultant ANOVA table is as follows: 
 

Source df SS MS F 
Between     
  Rows (order) 1 1.02 1.02 0.02 
  Column (formula) 1 1,092.52 1,092.52 20.29* 
  Interaction 
 

1 3.52 3.52 0.07 

Within (error): 44 2,369.42 53.85  
Total 47 3,466.48   

 
In this example, with α = 0.05, the decision is to reject H02 (* in the table) and 
conclude that there is a significant difference between the two formulations. Note that 
this is a valid decision since there is not a significant interaction between the two 
factors. Also, there is no significant difference based on the order in which the drugs 
were administered. If the data is visually represented similar to the examples in Figure 
12.1, it is possible to see the significance in formulation, the closeness and 
insignificance of the order in which the drugs were administered, and the lack of any 
interaction (Figure 12.5). 
 A second example involving more levels of the independent variable is 
represented by a pharmaceutical manufacturer wishing to evaluate two automated 
systems for dissolution testing. Four separate batches of a particular agent were tested 
using each of the two automated systems and a technician-operated traditional 
dissolution system. Presented in Table 12.2 are the results of the experiment. Is there 
a significant difference between the batches or procedure used, or is there a 
significant interaction between the two factors?   
 Once again three hypotheses are being tested simultaneously (H01 for differences 
in the method used, H02 for differences in the batches tested, and H03 for possible 
interaction between the two factors): 
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Means in Each Cell 
 
 

 

 126.6 136.7  

 127.4 136.4  

     

Figure 12.5 Visual representation of clinical trial data. 
 
 

 
 
  

Table 12.2 Comparison of Methods of Dissolution Testing 

  Dissolution Results at 10 Minutes (%) n = 6 

 
Batch 

 
Statistic 

Traditional 
Method 

Automated 
System I 

Automated 
System II 

           
x 

 
A 

x = 
x2 = 
Mean = 
SD = 

391 
25,627 
65.17 
5.41 

378 
23,968 
63.00 
5.55 

310 
16,189 
51.67 
5.72 

1079 

 
B 

x = 
x2 = 
Mean = 
SD = 

369 
22,831 
61.50 
5.24 

360 
21,734 
60.00 
5.18 

358 
21,510 
59.67 
5.46 

1087 

 
C 

x = 
x2 = 
Mean = 
SD = 

406 
27,612 
67.67 
5.27 

362 
21,982 
60.33 
5.32 

330 
18,284 
55.00 
5.18 

1098 

 
D 

x = 
x2 = 
Mean = 
SD = 

401 
26,945 
66.83 
5.38 

383 
24,579 
63.83 
5.11 

345 
19,993 
57.50 
5.09 

1129 

 x = 1567 1483 1343 4393 
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  H01: μTraditional = μAutomated I = μAutomated II 
  H02: μBatch A = μBatch B = μBatch C = μBatch D 
  H03: (μTraditional,Batch A − μTraditional,Batch B) ... =  
     (μAutomated II,Batch C − μAutomated II,Batch D) 
 
and the decision rules are, with α = 0.05 and n = 6: 1) reject H01 if F > F2,60(0.95) = 
3.15; 2) reject H02 if F > F3,60(0.95) = 2.76; and 3) reject H03 if F > F6,60(0.95) = 2.25. 
Here the critical F-values are different because the matric is larger than a 2 × 2 
design. The computations are: 
 

x    = I 2
i

I

=1i

J

=1j

K

=1k
  

 
271,245 = )(44 ... + )(65 + )(62 + )(57 = I 2222  

 

N

x   

 = II
i

I

1=i

J

1=j

K

1=k

2














 

 

39268,034.01 = 
72

)(4393
 = II

2
 

 

n j

x    

 = III

i
I

1=i

J

1=j

2
K

1=k
R ⋅














 

 

4.16671268,1 = 
18

)(1129 ... +)(1087 + )(1079
 = III

2 2

R  

 

n k

x    

 = III
i

I

1=i

K

1=k

2J

1=j
C ⋅














 

 

50269,101.12 = 
24

)(1343 + )(1483 + )(1567 = III
222

C  
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n

x   

 = IV
i

I

1=i

2J

1=j

K

1=k 












 

 

766269,514.1 = 
6

)(310 ... + )(345 + )(378 + )(391
 = IV

2222
 

 
80.1528 = 39268,034.01  67268,114.16 = II  III = SS RR −−  

 
1067.1111 = 39268,034.01  50269,101.12 = II III = SS CC −−  

 
II+IIIIIIIV = SS CRRC −−  

 
0139.034,2681250.101,2691667.114,2681667.514,269SS RC +−−=  

 
8889.332SSRC =  

 
.83339173 = 67269,514.16  271,245 = IV  I = SS E −−  

 
3210.9861 = 39268,034.01  271,245 = II  I = SST −−  

 
The results of the statistical analysis are presented in an ANOVA table: 
 

Source df SS MS F 
Between     
  Rows (batch) 3 80.1528 26.72 0.92 
  Column (method) 2 1067.1111 533.56 18.40* 
  Interaction 
 

6 332.8889  55.48 1.91 

Within (error): 60 1739.8333 28.99  
Total 71 3219.9861   

  
There was no significant interaction between the two factors; therefore, our decision 
is to reject the null hypothesis H02 (* in the table) for the main effect of methods used 
and assume that all three methods of dissolution testing are not all equal. There was 
no significant difference based on the batches tested. 
 
Computational Formula with Unequal Cell Size 
 
 Every attempt should be made to have an equal number of observations in each 
cell for two main reasons: 1) to have a more robust statistic and 2) most computer 
software program require equal cell sizes. Unfortunately, sometimes data are lost 
despite the best intentions of the researcher. When data are available that do not 
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contain equal cell sizes, the exact same procedure is used except that slightly 
modified formulas are substituted for Eqs. 12.3 through 12.5. For intermediate value 
IV, each cell is summed, that value is squared and divided by the number of 
observations within the cell, and these values for all individual cells are summed:  
 

n

x 
   = IV

i

i
I

1=i

2

J

1=j

K

1=k














                                       Eq. 12.11 

 
For the intermediate step involving the rows factor, all values within a row are 
summed, squared, and then divided by the number of observations within that row 
(NR). Finally, all the calculated squared sums for each row are added together:  
 

N

x   

  = III
R

i
I

1=i

J

1=j

2

K

1=k
R














                                     Eq. 12.12 

 
The intermediate step for the column is calculated in a similar manner as the IIIR 
except the values in each column and the total number of observations per column 
(NC) are used: 
 

N

x   
  = III

C

i
I

1=i

K

1=k

2

J

1=j
C














                                     Eq. 12.13 

 
These modified intermediate steps, along with values I and II are then used to 
calculate the sum of squares value using the same formulas (Eqs. 12.6 through 12.10) 
used for data with equal cell sizes. 
 As an example of this application, consider the previous clinical trials example. 
However in this case, due to dropouts in the study, there were three fewer subjects on 
the second leg of the clinical trial (Table 12.3). In this case the decision rules remain 
the same, except the denominator degrees of freedom decreases (N − k). With α = 
0.05 and n = 12: 1) reject H01 if F > F1,41(0.95) ≈ 4.08; 2) reject H02 if F > F1,41(0.95) ≈ 
4.08; and 3) reject H03 if F > F1,41(0.95) ≈ 4.08. 
 The initial computational steps are: 

 

x    = I 2
i

I

=1i

J

=1j

K

=1k
  

 
785,392 = )(148 + )(150 ... + )(135 + )(130 + )(125 = I 22222  
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Table 12.3 Sample Data of a Clinical Trial with Unequal Cells (Cmax) 

 Formulation A Formulation B   

Formula A 
Received 
First 

125 
128 
131 
119 

130 
121 
129 
133 

135 
123 
120 
125 

149 
132 
142 
... 

151 
141 
130 
138 

... 
129 
122 
140 

  

  =    1,519          1,374 2,893  

Formula B 
Received 
First 

126 
126 
117 
120 

140 
121 
126 
136 

135 
133 
... 
122 

130 
141 
133 
129 

128 
145 
136 
150 

127 
132 
138 
148 

  

  =    1,402        1,637 3,039  

 =               2,921        3,011  5,932 
 
 

N

x   

 = II
i

I

1=i

J

1=j

K

1=k

2














 

  

781,969.42 = 
45

)(5,932
 = II

2
 

 

N

x   

  = III
R

i
I

1=i

J

1=j

2

K

1=k
R














  

 

781,973.89 = 
23

)(3,039
 + 

22
)(2,893

 = III
22

R  

 

N

x   
  = III

C

i
I

1=i

K

1=k

2

J

1=j
C














  

 

783,063.41 = 
22

)(3,011 + 
23

)(2,921 = III
22

C  
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n

x   

 = IV
i

I

1=i

2J

1=j

K

1=k 












 

 

783,073.03 = 
12

)(1,637
 + 

11
)(1,402

 + 
10

)(1.374
 + 

12
)(1,519

 = IV
2222

 

 
Calculation of the sum of squares: 
 

4.47 = 781,969.42  781,973.89  = SS R −  
 

1,093.99 = 781,969.42  783,063.41  = SS C −  
 

5.15 = 781,969.42 + 783,063.41  781,973.89  783,073.03  = SS RC −−  
 

2,318.97 = 783,073.03  785,392  = SS E −  
 

3,422.58=781,969.42  785,392  = SS T −  
 
The ANOVA table from the sum of squares data and appropriate degrees of freedom 
appears as follows: 

 
Source df SS MS F 
Between     
   Rows (order) 1  4.47 4.47   0.08   
   Column (formula) 1 1,093.99 1,093.99  19.34* 
   Interaction 1 5.15 5.15   0.09   
Within (error): 41 2,318.97 56.56  
Total 44 3,422.58   

 
There is no significant interaction and the results, with α = 0.05, is to reject H02 (* in 
the table) and conclude that there is a significant difference between the two 
formulations, but there is no significant difference based on the order that the drugs 
were administered. These results are identical to the ones found when all of the cell 
sizes were equal. 
 
Post Hoc Procedures 
 
 Similar to the one-way ANOVA, if there are significant findings for the tests of 
main effect in the two-way analysis and no significant interaction effect, post hoc 
procedures must be used to determine where those differences occur. If there are no 
significant interactions, then the post hoc procedures described in Chapter 11 can be 
performed on significant main effect factors. For example, consider the results of the 
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analysis of the three methods for dissolution testing presented above. The findings for 
the method provide the only significant difference (Fcolumns = 18.49). Since there were 
no effects from the batch factor or a significant interaction, the data can be combined 
for each method tested. 

 
 Dissolution Results at 10 Minutes (%) n = 6 

 
 

Traditional 
Method 

Automated 
System I 

Automated 
System II 

x = 
x2 = 
Mean = 
SD = 

1567 
103,015 
65.29 
5.52 

1483 
92,263 
61.79 
5.21 

1343 
75,976 
55.96 
5.99 

 
One-way analysis of this data would produce an F = 17.11 with an MSE = 31.165. 
Using Scheffé’s procedure, the following results were observed: 

 
Pairing Confidence Interval Results 

TX  − IX  −0.54 < μT − μI < +7.54  

TX  − IIX  +5.28 < μT − μII < +13.37 Significant 

IX  − IIX  +5.28 < μI − μII < +9.87 Significant 

 
Thus, based on the post hoc analysis there was no significant difference between the 
traditional dissolution testing method and the first automated process. However, both 
of these methods were significantly different from the second automated process. 
 When there is a significant interaction, post hoc analyses are required for each 
independent variable separately to determine significant differences between or 
among the levels of each variable. In other words we must perform a one-way 
ANOVA on each level of the main effect variable(s), which are found to be 
significant with a two-way ANOVA. For illustrative purposes assume the data 
previously shown in Table 12.2 was instead found to have the data in Table 12.4. A 
resultant ANOVA table shows there is also a significant interaction between the batch 
and method used. 

 
Source df SS MS F 
  Column (method) 2 1067.1111 533.56 18.49* 
  Interaction 6 391.2223  65.20  2.26* 

 
The method for evaluating this data is to divide the total variances for both the 
significant main effect and the interaction. This is accomplished by creating a sum of 
squares comparison (SScomparison) for each level of the significant main effect (*s in the 
table). For illustrative purposes we will assume that the column factor is significant: 
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Table 12.4 Comparison of Methods of Dissolution Testing with New Data 

  Dissolution Results at 10 Minutes (%) n = 6 

Batch Statistic Traditional System I System II x 
A x = 

Mean = 
391 
65.17 

378 
63.00 

345 
57.50 

1114 

B x = 
Mean = 

369 
61.50 

360 
60.00 

358 
59.67 

1087 

C x = 
Mean = 

406 
67.67 

362 
60.33 

330 
55.00 

1098 

D x = 
Mean = 

401 
66.83 

383 
63.83 

310 
51.67 

1094 

x =  1567 1483 1343 4393 

 
 

SS + SS = SS RCCcomparison                                 Eq. 12.14 
 

Estimating this SScomparison for each row involves the following equation: 
 

nj

x 
  

n

x  

 = SS
i

K

1=k

2

i
I

1=i

2J

1=j
comparison ⋅













−













                            Eq. 12.15 

 
where the first part of the equation involves summing each squared cell x and  
the second portion is the square for the sum for the row divided by the number of 
levels multiplied by the number of observations per cell. For example with the first 
row in Table 12.2: 
 

187.45 = 
3(6)

)(1114
  

6
)(345+)(378+)(391

 = 1 Row for SS
2222

comparison −  

 
The results for the second row would be:  
 

11.45 = 
3(6)

)(1087
  

6
)(358+)(360+)(369

 = 2 Row for SS
2222

comparison −  

 
The information from these comparisons is placed in an ANOVA table along with the 
error measurement (SSE) from the original two-way ANOVA table. The results from 
Table 12.5 are presented below (* indicating significant outcomes): 
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Table 12.5 Common Z0-values 

% Confidence Z0 
90 3.29 
95 3.92 
99 5.15 

99.5 5.62 
99.9 6.60 

 
 
 

Source df SS MS F 
Row 1 2 187.45 93.73 3.24* 
Row 2 2 11.45 5.73 0.20   
Row 3 2 485.33 242.67 8.41* 
Row 4 2 774.11  387.06  13.41* 
Error 60 1730.83 28.85  

 
As in previous tests, the sum of squares term is divided by the appropriate degrees of 
freedom and each of the row mean squares is divided by the MSE. Each F-value 
would be compared to a critical F(j-1),(J⋅K⋅(n-1)) F(1 − α). In this case the critical value is 
F2,60 = 3.15, and all but the second row showed significant differences. Note that the 
sum of SS terms fulfills Eq. 12.15: 
 

391.22 + 1067.11 = 774.11 + 485.33 + 11.45 + 187.45  
 
 This same process can be modified if a significant main effect is identified for the 
column independent variable. 
 
Repeated Measures Design  
 

A repeated measures design is an experimental design in which a dependent 
variable is measured for each subject at two or more points in time or under different 
conditions. The design is to control for the variability among subjects, where each 
subject will serve as his/her own control. When only one independent factor is used in 
the design it is called a single-factor repeated measure. This design is exactly the 
same as a randomized complete block design (Chapter 10) where the subjects make 
up the blocking variable and the k points in time or different conditions make up the 
factor associated with the repeated measures. The same calculations and 
interpretations presented in the randomized complete block design are used for the 
repeated measures design. As mentioned previously, Excel defines this test as 
“ANOVA: Two-Factor Without Replication” in the data analysis options. 
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Repeatability and Reproducibility  
  
 A special application of a two-way analysis of variance is to estimate the 
repeatability and reproducibility of intra- and interlaboratory studies on test data. The 
simplest study design is to send samples to each of several different laboratories. Each 
laboratory follows specific instructions for measuring specific traits of the samples 
with at least two repeated measures. The repeatability, the with-run or within-
laboratory precision, is an assessment of the variability of replicate runs for the same 
sample preparation within a short period of time. It can also be the evaluation of data 
obtained by one person while repeatedly measuring the same item or sample. A 
synonymous term for repeatability is inherent precision. In contrast the 
reproducibility of a method, the between-laboratory or between-run precision, 
involves replicated runs at different times, at different locations or by different 
operators. Both measures are associated with random error in the system.  
 Sometime these measurements are referred to as gauge or gage repeatability 
and reproducibility (GR&R). Historically this comes from engineering and the use 
of a gauge to measure thicknesses or widths of manufactured items to insure product 
consistency. 

To complicate the situation, International Conference on Harmonization 
guidelines (ICH, 1995) define repeatability as the precision under the same operating 
conditions over a short time interval (intra-assay precision) and reproducibility is the 
precision only between laboratory sites (collaborative studies that are usually applied 
to standardizing a method). ICH included a third term, intermediate precision, as an 
assessment of within laboratory variability due to different days, different analysts, or 
different equipment. Thus, intermediate precision and reproducibility are calculated 
the same way, but defined differently depending on what is being assessed. For 
example, if we have three different technicians in the same laboratory it is 
intermediate precision; if the three technicians work at three different laboratories 
(example below) it is reproducibility among the laboratories. 
  The two-way ANOVA is one accurate method for quantifying repeatability and 
reproducibility. In addition, the analysis of variance method can quantify the 
interaction between repeatability and reproducibility (the variability of the interaction 
between the analyst/laboratory and the samples). The two-way fixed effects model 
with replications is calculated in the traditional manner using the analyst/laboratory as 
the column variable and the samples tested as the row variable. Each sample is tested 
multiple times by the same observer and these results appear within a given cell 
(replicate measurements). All samples should be tested an equal number of times by 
each analyst or laboratory, thus creating equal cell sizes. Repeatability and 
reproducibility are calculated using values that are found in the two-way ANOVA 
table (Figure 12.4) where the columns are the analyst (or laboratory) variable and the 
rows variable represents the samples run by each analyst (or laboratory). 

Calculations are based on the degree of certainty the investigator requires. These 
calculations are dependent on a reliability coefficient (Z0) that is based in the normal 
distribution and includes the range of area under the standardized curve. Thus, if one 
wants to be 95% confident, Z0 = 3.92 (1.96 times 2 or a range from −1.96 to +1.96). 
Listed in Table 12.5 are various commonly used Z0-values. In the case of repeatability 
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and reproducibility, 99% confidence is usually desired and will be used in the 
following example (Z0 = 5.15). 

When performing a two-way ANOVA there are four sources of variability and 
since sample data is the best estimate of population variances (σ2), we will use our 
sample measures of variance (S2): 

 
       Sources of variability  Variance Component 
       Analyst (or laboratory)   2

jS  

       Sample    2
kS  

       Analyst/Sample interaction  2
jkS  

       Error (repeatability)   2
errorS  

 
The total variability in the data is: 
 

Total0 SZiationvarTotal ⋅=  
 
The STotal is calculated by taking into consideration the variability attributed to the 
samples (k) as well as the repeatability and reproducibility: 
 

2
ityreproducil

2
ityrepeatibil

2
kTotal SSSS ++=  

   
The specific calculation for repeatability is as follows: 
 

E0 MSZypeatabilitRe ⋅=                              Eq. 12.16 
 
The MSE is the error term taken from the two-way ANOVA table. Similar values are 
extracted from the ANOVA table for reproducibility: 
 

nk
MSMS

ZityproducibilRe RCC
0 ⋅

−
⋅=                     Eq. 12.17 

 
where k is the number of samples evaluated by each analyst (or laboratory) and n is 
the number of repeated trials on each sample. The interaction between variability for 
the samples and analysts/laboratories is: 
 

n
MSMS

ZnInteractio ERC
0

−
⋅=                        Eq. 12.18 

 
Note that it is possible to have such small interaction (small MSRC) that the equation 
may attempt to take the square root of a negative number. Since this is impossible to 
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Table 12.6 Sample Data for Measures of Repeatability and Reproducibility 

 Laboratory A Laboratory B Laboratory C 
Sample Run 1 Run 2 Run 1 Run 2 Run 1 Run 2 

1 100.4 100.6 100.6 101.0 101.2 100.5 
2 102.8 102.4 102.3 102.6 102.4 102.2 
3 104.8 105.1 104.5 104.9 104.4 104.7 
4 102.6 103.0 102.8 102.4 102.9 103.1 
5 103.1 101.3 102.9 102.7 102.5 102.7 
6 103.8 103.4 104.2 103.9 104.5 104.1 
7 101.4 101.6 101.6 102.0 102.3 102.7 
8 100.8 100.4 101.4 100.9 101.8 101.5 
9 101.6 101.3 101.2 101.0 101.6 101.2 

10 105.1 104.9 105.2 104.9 104.3 104.6 

  Two-way ANOVA for data 
    Source df SS MS F p 
     Laboratory (column) 2 0.577 0.289 2.554 0.094 
     Sample (row) 9 115.741 12.860 113.806 <0.0005 
     Interaction 18 3.599 0.200 1.770 0.081 
     Error 30 3.390 0.113   
     Total 59 123.307    
 
 
calculate (square roots of negatives are imaginary numbers), the interactive effect in 
this case equals zero. The measurement systems repeatability and reproducibility (R 
& R) is the propagation of the variability for repeatability, reproducibility and the 
interaction: 
 

222 nInteractioityproducibilReypeatabilitReR&R ++=        Eq. 12.19 
 
The samples will have some variability and this is evaluated by: 
 

nj
MSMS

ZV RCR
0P ⋅

−
⋅=                                  Eq. 12.20 

 
where j is the number of analysts/laboratories. The total system variation is the 
propagation of the sample variability and the repeatability/reproducibility variability: 
 

2
P

2
T VR&RV +=                                Eq. 12.21 

 
As an example, consider three different laboratories, analyzing ten different samples 
and each laboratory performs two assays on each sample (it is assumed that the same 
analyst performs the tests on the same equipment for each laboratory to remove 
possible additional variability). The data for this assessment appears in Table 12.6 
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along with the results of the two-way ANOVA calculations. With 99% confidence in 
our results (Z0 = 5.15), the various calculations are as follows: 
 

731.1113.015.5ypeatabilitRe ==  
 

343.0
)2(10
200.0289.015.5ityproducibilRe =−=  

 

074.1
2

113.0200.015.5nInteractio =−=  

 

066.2)074.1()343.0()731.1(R&R 222 =++=  
 

481.7
)2)(3(
200.0860.1215.5VP =−=  

 

761.7)481.7()066.2(V 22
T =+=  

 
How can the above results be interpreted? As noted previously, each type of random 
variability contributes a certain proportion to the total variability of the system. 
Therefore, the calculation of the percent each contributes to the total variability is: 
 

100
V

SourceonContributi%
2

T
×








=                          Eq. 12.22 

 
For this particular example the contributions of the repeatability, reproducibility, and 
samples are: 
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Potential guidelines for interpreting the results are as follows: 1) the percent 
contributed by the repeatability should be 5% or less (if greater than 5%, the 
measurement system may not be adequate for its intended application); 2) the percent 
contribution for the R&R term should be less than 30% (if greater than 30% effort 
should be made to reduce the variability before further analyses are performed). In 
this particular example, both the repeatability and R&R were acceptable. 
 
Latin Square Designs 
 

As discussed in Chapter 10, the one-way ANOVA (referred to as a completely 
randomized block design) allows the researcher to minimize experimental error by 
creating relatively homogeneous subgroups by blocking the data. Similarly, the two-
way ANOVA described earlier in this chapter is also a completely randomized block 
design. We could think of the various samples or observations for a single subject as a 
“block.” It is assumed that the only variability within the blocks is due to difference in 
the levels of the independent variable. Also in Chapter 10 we discussed the randomized 
block design where treatments are repeated once per block in only one direction; we 
expanded the paired t-test to more than two levels and each subject or unit served as its 
own control. 

An extension of the randomized block design to include two extraneous factors in 
the same study is called a Latin square design. In the Latin square design one 
possible source of extraneous variation is assigned to the columns of the two-way 
matrix and the second source of extraneous variation is assigned to the rows. Like the 
randomized block design the outcome is measured once and only once in each row 
and each column. Therefore, the number of columns, rows, and treatments are all 
equal. This design is sometime referred to as Youden square plan. The purpose of the 
design is to control the variation in the experiment. Because of its design, the Latin 
square is more powerful than either the randomized block design or completely 
randomized block design. 

This design was originally used in agricultural experiments, where fields were 
divided into units or plots to account for variations in soil quality and other 
environmental factors. Treatments are assigned at random within the rows and columns 
(each treatment once per row and once per column). Number of rows and columns must 
be the same and it is assumed that there is no interaction between the row and column 
variables. An example of four treatments administered in four rows (I-IV) and four 
columns (1-4) as illustrated below. 

 
  Column Factor 
  1 2 3 4 
 I A B C D 
Row II C D A B 
Factor III D C B A 
 IV B A D C 

 
In this example 1, 2, 3, and 4 represent different patients and I, II, III, and IV represent 
the order in which the four patients will receive the treatments. For example patient 1 will 
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receive A first, C second, D third, and B fourth. Whereas, patient 4 will receive D first, B 
second, A third, and C last. In the Latin square design there are t treatments and t2 
experimental units (R × C). In the above example, t = 4 with 16 experimental units. 
Examples of other possible Latin square designs would include the following permu-
tations: 
 

3 × 3 4 × 4 5 × 5 
ABC 
BCA 
CAB 

ABCD 
BADC 
CDBA 
DCAB 

ABCDE 
BAECD 
CDAEB 
DEBAC 
ECDBA 

 
In all cases, each treatment appears only once in each column and once in each row. An 
advantage of the Latin square design is that it allows the researcher to control for two 
sources of variation by blocking the variables. One disadvantage is that the number of 
levels of each blocking variable must equal the number of treatment levels (requiring t2 
number of experimental units). Another disadvantage is that the researcher must assume 
there is no interaction between the treatment and blocking variables. Also, the smallest 
possible Latin square is a 3 × 3 design (Mason, 1989, p. 149). 

In the Latin square design the hypothesis being tested concerns equality among the 
levels of the discrete independent variable and in this experimental design we have a 
three-factor ANOVA, with one fixed and two random factors. In this design there are no 
replicate measures. Similar to the two-way ANOVA, the Latin square design tests 
three null hypotheses simultaneously. There is no significant difference among the 
level of the treatment and no difference for the two extraneous factors in the design: 
 
    H01: μC1 = μC2 … = μCj  (extraneous factor in the column) 
  H02: μR1 = μR2 … = μRk  (extraneous factor in the row) 
  H03: μT1 = μT2 … = μTn  (treatment variable) 
 
In this design we are primarily concerned with the significance of the third hypothesis 
(treatment effect) and at the same time that the extraneous variable is not significantly 
different. The critical value for rejecting each of the null hypotheses is the same since 
j = k = t. In this case the numerator degrees of freedom would be the t and the 
denominator (or error) degrees of freedom is (t − 1)(t − 2). Thus for Latin square the 
critical value would be: 

 
with α = 0.05, reject H0 if F > Ft,(t-1)(t-2)(1 − α) 

 
For example, in the case of a 4 × 4 Latin square design shown above the denominator 
degrees of freedom is (4 − 1)(3 − 1) = 6. With a decided 95% level of confidence, the 
critical value would be F4,6(0.95) = 4.5337 (from Table B7). The difficulty of fewer 
errors is that the degrees of freedom can be corrected by using replicates or repeated 
measures. Listed in Table 12.7 are critical values for various Latin square designs.  
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Table 12.7 Critical Values for Latin Square Designs 

Design υ1,υ2 (1 − α) = 0.95 (1 − α) = 0.99 

3 × 3 3,2 19.1642 99.1640 
4 × 4 4,6 4.5337 9.1484 
5 × 5 5,12 3.1059 5.0644 
6 × 6 6,20 2.5990 3.8714 
7 × 7 7,30 2.3343 3.3045 
8 × 8 8,42 2.1681 2.9681 
9 × 9 9,56 2.0519 2.7420 
10 × 10 10,72 1.9649 2.5775 

This table was created using Microsoft® Excel 2010 function 
command F.INV(alpha,df1,df2). 

 
 
 The Latin square design involves a t × t matrix design with an equal number of rows 
and columns and t is the number of treatments. Each cell will contain only one 
observation and the formulas used are similar to those already used in the two-way 
ANOVA computational formulas. Intermediates I and II are similar, except for the 
fact that there is only one observation per cell (even though it is a t × t design we will 
continue to use the previous j and k notations to refer to column and row functions, 
respectively) .  
  

x  = I 2
i

J

1=j

K

1=k
                                              Eq. 12.23 
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i

J

1=j

K
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2

⋅














                                          Eq. 12.24 

 
where k·j is the total number of cells within the Latin square design. For intermediate 
value I each value is squared and summed. For intermediate II the values are all 
summed and then squared before dividing by N. 
 The two intermediates associated with the variability due to the rows and columns 
are calculated by squaring the sum of each column and summing these results (for IIIC) 
or squaring the sum of each row and summing these results (for IIIR). Each of these sums 
is divided by the number of columns or rows.  
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k

x  

 = III

i
J

1=j

2
K

1=k
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                                        Eq. 12.26 

 
Where j and k are the number of columns and rows, these are always the same in a Latin 
square design. The last measure takes into account the variability of the treatment effects. 
In this case the sum for all the results for each individual level of treatment is calculated 
regardless of the column or row location.  
 

( ) ( ) ( ) ( )
T
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 = III

2
T

2
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2
2

2
1

T
 +++

                Eq. 12.27 

 
where T is the number of levels of the treatment or independent variable. Again, in a 
Latin square design,  j = k = T. The sum of squares terms are calculated similar to 
those for the two-way ANOVA: 

 
III = SS = SS TTotal −                                      Eq. 12.28 

 
II  III = SS =SS RRRows −                                   Eq. 12.29 

 
II  III = SS = SS CCColumns −                                  Eq. 12.30 

 
IIIII =  SS TTreatment −                                     Eq. 12.31 

 
II2IIIIIIIIII =  SS TCRError +−−−                         Eq. 12.32 

 
The sum of squares information is inserted into an ANOVA table (Figure 12.6) where 
the effect of the treatment is evaluated in contrast to the other variables. Results from 
the ANOVA table are compared to the critical value defined above. 
 
 
 

Source df SS MS F 
Between:     
   Rows k − 1 SSR MSR FR 
   Columns j − 1 SSC MSC FC 
   Treatment t − 1 SST MST FT 
Within:     
   Error (j − 1)(k − 2) SSE MSE  
Total N − 1 SST   

Figure 12.6 ANOVA table for a Latin square design. 
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 As an example, assume we are conducting a small study on the responses of 
pharmacy students to a series of case studies and we are considering two possible 
sources of extraneous variation: 1) the individual students and 2) the order in which 
the case studies are presented. Based on several questions the students’ responses 
could range from 0 to 100 points. In this example the hypotheses are: 
 
    H01: μC1 = μC2 … = μCj  (no difference based on the student) 
  H02: μR1 = μR2 … = μRk  (no difference based on the order of case) 
  H03: μT1 = μT2 … = μTn  (no significant difference in case studies) 
 
Here we are primarily concerned with the significance of the case studies themselves 
(treatment effect) and want to determine if the extraneous factors (students or order) 
have any effect. The five case studies (A, B, C, D, and E) are presented in the 
following Latin square design: 
 

  Student 
  1 2 3 4 5 
 1st B E A C D 
 2nd D A E B C 

Order 3rd E B C D A 
 4th A C D E B 
 5th C D B A E 

 
For a five-treatment model Latin square design, the denominator degrees of freedom are 
(5 − 1)(5 − 2) = 12, 95% confidence, the critical value would be F5,12(0.95) = 3.106 (from 
Table B7). In this example the first student would receive case study B first, followed 
by D, E, A, and conclude with case study C. The results are as follows (with the 
column and row sums included): 
 

  Student  
  1 2 3 4 5  
 1st 88 80 80 84 86 418 
 2nd 81 81 82 91 86 421 

Order 3rd 86 85 82 77 77 407 
 4th 80 81 83 84 87 415 
 5th 87 84 83 78 78 410 
  422 411 410 414 414 2071 

 

 
The results for the individual case studies are as follows: 
 

Case Study: A B C D E 
Σx: 396 434 420 411 410 

Mean: 79.2 86.8 84 82.2 82 
 
The calculations for the Latin square design are as follows: 
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36.31764.561,171879,171III = SST =−=−  

 
16.2664.561,17140.579,171II  III = SS RR =−=−  

 
76.1764.561,17180.587,171II  III = SS CC =−=−  

 
96.15664.561,17160.718,171IIIII =  SS TTreatment =−=−  

 
II2IIIIIIIIII =  SS TCRError +−−−  

 
)64.561,171(260.718,17180.587,17140.579,171879,171 =  SS Error +−−−  

 
48.116 =  SSError  
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Table 12.8  Number of Runs Associated with Various Latin Square Designs 

Design Factors Runs (experimental units) 
3 × 3 Latin Square 3 9 
4 × 4 Latin Square 3 16 
5 × 5 Latin Square 3 25 
6 × 6 Latin Square 3 36 
   
3 × 3 Graeco-Latin Square 4 9 
4 × 4 Graeco-Latin Square 4 16 
5 × 5 Graeco-Latin Square 4 25 
6 × 6 Graeco-Latin Square 4 36 
   
4 × 4 Hyper-Graeco-Latin Square 5 16 
5 × 5 Hyper-Graeco-Latin Square 5 25 
6 × 6 Hyper-Graeco-Latin Square 5 36 

 
 

 
Source df SS MS F 
Between:     
   Rows 4 26.16 6.54 0.67 
   Columns 4 17.76 4.44 0.46  
   Treatment 4 156.96 39.24   4.44* 
Within:     
   Error 12 116.48 9.71  
Total 24 317.36   

 
Neither of the two nuisance variables (student or order) was significant, but the case 
studies (treatment) were significant (*). Thus, one should be concerned that the 
responses to the cases studies vary, but the order in which they are administered or the 
students reacting to the case studies did not have an impact.  
 
Other Designs 
 
 The Graeco-Latin square design is an extension of the Latin square design and 
allows for the identification and isolation of three extraneous sources of variation. 
Greek letters are superimposed on the Latin letters in such a way that each Greek 
letter occurs once in each column, once in each row, and once with each Latin letter. 
Another way to think of these designs, is that we are concerned with main factor outcome 
(or treatment factor) and several nuisance independent or predictor factors. For the 
previous Latin square design there were two nuisance (predictor) factors. For Graeco-
Latin square designs there are three nuisance factors and for hyper-Graeco-Latin 
square designs there are four nuisance predictor factors. The predictor or nuisance 
variables are the blocking variables. The advantage with the Graeco-Latin design is a 
reduction in the number of experimental units, as illustrated in Table 12.8. Notice that 
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with the Graeco-Latin square design you are testing four factors concurrently and 
with the hyper-Graeco-Latin square design there are five variables tested 
concurrently. 
 In many cases a complete randomized block design will require a large number 
of treatments that may not be economically or practically feasible. The balanced 
incomplete block design includes only a part of the treatments in a block. There will 
be missing pieces of information but the design must be balanced by the fact that each 
level of each factor has the same number of observations. Because some of the 
information is missing at other levels for each factor, the method involves incomplete 
blocks. 
 Other types of designs include fractional factorial designs, split plot designs, 
and orthogonal array designs. Each of these types of designs requires stringent 
assumptions about the absence of interaction effects. We will not discuss formulas 
and calculations involved in these multifactor designs because they are tedious and 
best run on a computer. Details can be found in advanced texts (Kirk, 1968; Mason, 
1989). 
 
Fixed, Random, and Mixed Effect Models 
 
 As seen with the previous examples of the two-way analysis of variance, the 
levels of the independent variable were purposefully set by the investigator as part of 
the research design. Such a design is termed a fixed effects model because the levels 
of the independent variables have been fixed by the researcher. The result of a fixed 
effect model cannot be generalized to values of the independent variables beyond 
those selected for the study. Any factor can be considered fixed if the researcher uses 
the same levels of the independent variable on replications of a study. The fixed 
effects design is normally used for cost considerations and because studies usually 
involve only a specific number of levels for the independent variables of interest. 
 If the levels under investigation are chosen at random from a population then the 
model used would be called a random effects model and results can be generalized 
to the population from which the samples were selected. Usually, the researcher will 
randomly select the number of levels that represent that independent variable. It is 
assumed that the selected levels represent all possible levels of that variable.  
 Lastly, there can be mixed effects models that contain both fixed effect 
variable(s) and random effects variable(s). An illustration of a mixed random effects 
model is a general linear regression model where the effects of multiple predictor 
variables, both continuous and discrete, are evaluated on a single outcome. As will be 
discussed in Chapter 14 the ANOVA can be used to evaluate an interaction effect, but 
regression models cannot evaluate interactions.  
 The computational formulas for all three models are identical except for the 
numerator used to calculate the F-value in the ANOVA table. In certain situations the 
mean square interaction is substituted for the traditional mean squares error (MSE) 
term. The fixed effect model would be calculated as presented in Figure 12.4. Using 
the symbols presented in Figure 12.4 the following modifications are required. For the 
random effects model modifications, where both the row and column variables are 
random, both the row and column F-statistics are modified as follows:  
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MS
MS = F

RC

R
R                                              Eq. 12.33 

 

MS
MS = F

RC

C
C                                              Eq. 12.34 

 
With the mixed effect, either the row or column variable could be fixed. If the 
columns are fixed and the rows are random, then equation Eq. 12.34 would be used 
for the column statistic and the traditional F-statistic would be calculated for the row. 
 

MS
MS = F

E

R
R                                              Eq. 12.35 

 
Similarly, with the mixed effect model where the row variable is fixed and the 
column variable is random, Eq. 12.33 would be used for the row effect and the 
traditional F-statistic would be used for the column: 
 

MS
MS = F

E

C
C                                            Eq. 12.36 

 
 
Beyond a Two-Way Factorial Design 
 

There are numerous other ANOVA designs, but they all employ the same logic 
as the one-way and two-way ANOVAs. One can increase the number of independent 
variables to create more complex N-way ANOVA designs. As we have seen the two-
way ANOVA we can evaluate both the main and interaction effects. However, the 
two-way ANOVA is less sensitive than one-way ANOVA to moderate violations of 
the assumption of homogeneity and one needs approximately equal variances. 

 Figure 12.7 represents a three-dimensional schematic comparing three 
independent variables (a three-way ANOVA). The three independent variables (A, B, 
and C) are represented by a dimension of the drawing. The shaded cube represents the 
combined effect of the third level of Factor A (columns), the first level of Factor B 
(rows), and the second level of Factor C (plains). 
 The advantage of these multifactor designs is the increased efficiency for 
comparing different levels of several independent variables or factors at one time 
instead of conducting several separate single-factor experiments. However, as the 
number of independent variables increases the number of possible outcomes increases 
and designs get extremely complicated to interpret, especially the interactions 
between two or possibly more variables. For example, with a two-way ANOVA there 
are two tests of the main effect and one interaction to interpret. With the three-way 
ANOVA these are increased to three tests of the main effect, three two-way 
interactions, and one three-way interaction. With the three-way ANOVA we would 
have various numerator and denominator degrees of freedom and resultant F-statistics 
(Figure 12.8). Similar to the two-way ANOVA, the denominator degrees of freedom 
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Figure 12.7 Example of a three-way ANOVA. 

 

Source of Variation ν1 ν2 F-statistic 

Column factor (A) j − 1 j ⋅ k ⋅ m ⋅ (n − 1) MSC/MSE 
Row factor (B) k − 1 j ⋅ k ⋅ m ⋅ (n − 1) MSR/MSE 
Plain factor (C) m − 1 j ⋅ k ⋅ m ⋅ (n − 1) MSP/MSE 
Interaction (AB) (j − 1)(k − 1) j ⋅ k ⋅ m ⋅ (n − 1) MSRC/MSE 
Interaction (AC) (j − 1)(m − 1) j ⋅ k ⋅ m ⋅ (n − 1) MSCP/MSE 
Interaction (CB) (k − 1)(m − 1) j ⋅ k ⋅ m ⋅ (n − 1) MSRP/MSE 
Interaction (ABC) (j − 1)(k − 1)(m − 1) j ⋅ k ⋅ m ⋅ (n − 1) MSRCP/MSE 

Figure 12.8 Degrees of freedom and F-statistics for a three-way ANOVA. 

 
remain constant. Random and mixed effect models can also be used in the three-way 
ANOVA design.  

This same reasoning can be expanded to a four-way ANOVA where the 
complexity of the outcomes includes four tests of main effects, six two-way 
interactions, four three-way interactions, and one four-way interaction (Table 12.9). 
N-way ANOVAs are also referred to as MANOVA or multiple analysis of variance. 
MANOVAs are intended for large research studies where there are a number of 
different variables assessed. Multiple one-way ANOVAs can result in a compounding 
of the error rate when the same data is used repeatedly (Chapter 10). MANOVAs can 
detect mean differences for a number of different groups and their potential 
interactions where the Type I error rate remains constant.  

Another type of related statistical procedure is the analysis of covariance or 
ANCOVA. This procedure is useful for detecting mean differences among three or 
more groups when the researcher wishes to hold one variable constant. For example, 
evaluating the patients’ knowledge of their particular disease state, controlling the 
level of education (e.g., less than high school education to graduate degrees). 
ANCOVA is useful in pharmacoeconomic studies where variables such as age, 
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Table 12.9 Possible Significant Outcomes in Factorial Designs 

 Main Effects Interactions 

One Factor A   

Two Factors A 
B 

A × B  

Three Factors A 
B 
C 

A × B 
A × C 
B × C 

A × B × C 

Four Factors A 
B 
C 
D 

A × B 
A × C 
A × D 
B × C 
B × D 
C × D 

A × B × C 
B × C × D 
A × C × D 

 
A × B × C × D 

Five Factors A 
B 
C 
D 
E 

A × B 
A × C 
A × D 
A × E 
B × C 
B × D 
B × E 
C × D 
C × E 
D × E 

A × B × C 
A × C × D 
A × D × E 
B × C × D 
B × D × E 
C × D × E 

 
A × B × C × D 
A × B × C × E 
B × C × D × E 

 
A × B × C × D × E 

 
 

gender, educational background, or income could bias the study results. The measures 
are typical covariates (Chapter 13) and could also include a measure of people’s 
aptitude, prior experience, or pretest scores.  
  In addition to MANOVAs and ANCOVAs there is MANCOVA (multivariate 
analysis of covariance), which is, combination of ANCOVA and MANOVA 
designs. The MANCOVA is used when the researcher wishes to detect mean 
differences among a number of different levels of the independent variable, while 
holding one or more other variables constant. The MANCOVA is useful for when a 
variety of levels is evaluated on a number of different measures. 
 Finally, there are fractional factorial designs or incomplete block designs. 
These are experimental designs in which only some of the treatment blocks are 
included in the statistical analysis. Because of this increased complexity, factorial 
designs involving more than three factors pose difficulties in the interpretation of the 
interaction effects. Therefore, most factorial designs are usually limited to three 
factors. Factorial designs are well beyond the scope of this book. Excellent references 
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Figure 12.9 Options for a two-way ANOVA with Excel. 

 
 
for any of the methods described in this last section of the chapter would be Petersen 
(1985) and Box et al. (1978). 

 
Using Excel® or Minitab® for Two-Way ANOVAs 
 
 The two-way ANOVA is available as one of the Excel data analysis tools:  

 
Data  Data Analysis  Anova: Two-Factor With Replication 

 
The layout for data is to place each level of one independent variable in a column and 
arrange by rows to match the second independent variable. For example, using the 
data in Table 12.1, there are two levels for the j-independent variable. Data for each 
variable would be in columns B and C (Column A is reserved for the labels for the 
levels of the k-independent variable). For the k-independent variable in Table 12.1 
there are also only two levels for the second independent variable and twelve 
observations per level; in this case the first row is for the labels for the j-independent 
variable, the next 12 rows (2-13) would represent the first k-level and the following 
12 rows (14-25) the second k-level. As seen in Figure 12.9, the required information 
is the located in the data (“Input Range:”), but unlike previous Excel programs, it 
includes not only the data, but the labels included in Column A and Row 1 ($A1$1 
through $C$25). Additional information needed for Figure 12.9: 1) how many 
observations per cell (“Rows per sample:”); 2) the amount of acceptable Type I error 
(“Alpha:”); and 3) identify where the outcomes should be reported, either starting at a 
cell on the current page (per this example, $E$2) or on a new worksheet (by default). 
Using the data in our previous example (Table 12.1), partial results appear in Figure 
12.10. On rows prior to the ANOVA table that appears in Figure 12.10 there would be 
a summary of the descriptive statistics (counts, sums, means and variance), which are 
not shown here. The F-statistic and the associated p-value appear for each of the main 
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Figure 12.10 Outcome report for a two-way ANOVA with Excel. 

 

 
Figure 12.11 Options for the two-way ANOVA with Minitab. 

 
  
effects and the interaction between the two is reported in the ANOVA table.  
 Minitab offers the two-way ANOVA under “Stat” on the title bar:  
 

Stat  ANOVA  Two-way… 
 

Similar to the one-way ANOVA, each column represents a variable and each row an 
observation. Columns are chosen for Minitab based on whether they are independent 
or dependent variables. Figure 12.11 illustrates the decisions required for a two-way 
ANOVA for the data from Table 12.1. The dependent variable is labeled 
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Figure 12.12 Outcome report for the two-way ANOVA with Minitab. 

 

 
Figure 12.13 Box plot for the two-way ANOVA with Minitab. 

 
 
“Response:”, one independent variable is the “Row Factor:” and the second 
independent variable the “Column Factor:”. These are selected by double clicking on 
the variables in the box on the left. The confidence level can be changed from the 
default 1 − α of 95% if desired. The Graphs… option includes individual value plots 
or box plots for each level of the independent variable. The results of the analysis are 
presented in Figure 12.12 and a box-and-whisker plot is presented in Figure 12.13. 
The ANOVA table is presented with F-statistic and associated p-value on the right 
side for each independent variable and the interaction. 
 It is possible to assess the repeatability and reproducibility for sample data using 
the “gage” application with Minitab: 
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Figure 12.14 Choices for repeatability and reproducibility with Minitab. 

 
 

Stat  Quality Tools  Gage Study  Gage R&R study (crossed) 
 
Other choices are available under “Gage Study”, but the design used in this chapter 
involves the “crossed” option. To identify fields to perform the test, engineering 
labels are used (Figure 12.14) where “Part numbers:” is the sample independent 
variable (rows) and “Operators:” is the independent variable measuring the 
reproducibility (columns – locations, operators, equipment, etc.). The “Measurement 
data:” is the dependent variable of interest. Figure 12.14 includes the information in 
Table 12.6. The results of the analysis are presented in Figure 12.15 and we will focus 
on the top portion dealing with the percent each factor contributes to the variability in 
the model. Here some of the terminology is slightly different from that presented in 
the chapter. The percents contributed for “Repeatability” and “Total” are consistent 
terms, but the “Reproducibility laboratory” (here laboratory was the variable selected 
for “Operator”) is our reproducibility measure and “Part-to-Part” is the sample 
variability.  
 
References 
 
Box, G.E., Hunter, W.G. and Hunter, J.S. (1978). Statistics for Experimenters, John 
Wiley and Sons, New York. 
 
“ICH Topic Q2A Validation of Analytical Methods: Definitions and Terminology,” 
International Conference on Harmonization, London, England, 1995. 
 
Kirk, R.E. (1968). Experimental Design: Procedures for the Behavioral Sciences, 
Brooks/Cole Publishing, Belmont, CA. 
 
Mason, R.L., Gunst, R.F., and Hess, J.L (1989). Statistical Design and Analysis of 
Experiments, John Wiley and Sons, New York. 



Chapter 12 308

 
Figure 12.15 Outcome report for GR&R with Minitab. 
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Example Problems (Answers are provided in Appendix D) 
 
1. A preformulation department is experimenting with different fillers and various 

speeds on a tableting machine (Table 12.10). Are there any significant 
differences in hardness based on the following samples? 
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Table 12.10  Results of an Experiment Involving Tablet Hardness 

 Hardness (kP) 
 Speed of Tableting Machine (1000 units/hour) 

Filler 80 100 120 180 
 7 8 6  7 5  7 6 7 
Lactose 5 7 8  8 8  9 8 9 
 8 9 6  7 7  7 7 7 
 7 7 8 10 9 10 8 9 
         
 7 7 8 9 5 7 7 6 
Microcrystalline 7 9 6 7 8 8 6 6 
Cellulose 5 7 8 7 5 7 8 7 
 8 9 6 7 8 8 9 9 
         
 7 5 4 6 6 7 4 6 
Dicalcium 5 7 6 7 4 5 9 7 
Phosphate 7 7 5 6 7 7 5 6 
 5 8 7 8 5 6 7 6 

 
 
2. An investigator compares three different indexes for measuring the quality of life 

of patients with a specific disease state. She randomly selects four hospitals and 
identifies twelve individuals with approximately the same state of disease. These 
patients are randomly assigned to each of the indexes and evaluated (note one 
patient’s information was lost due to incomplete information). The results are 
presented in Table 12.11. Are there any differences based on indexes or hospital 
used? 

 

Table 12.11 Results of a Study on Patients’ Quality of Life 

 Quality of Life Index (Scores 0-100) 

 Index 1 Index 2 Index 3 
Hospital A 67 73 85 91 94 95 
 61 69 81 87 99 92 
       
Hospital B 81 83 83 ... 86 85 
 85 80 81 84 89 80 
       
Hospital C 82 77 79 74 81 85 
 80 86 80 84 82 77 
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Table 12.12 Comparison of Sample Results in Various Laboratories 

 Laboratory 

 1 2 3 4 5 6 7 
 80.22 80.49 80.23 80.93 80.20 80.80 80.00 
Sample 1 80.80 80.19 80.58 79.14 80.14 80.35 80.87 
 80.38 80.35 80.44 80.46 80.79 80.65 80.99 
 80.99 80.12 79.21 80.38 80.45 80.55 80.35 
 75.94 76.24 76.72 77.99 76.84 76.52 75.95 
Sample 2 75.85 75.22 76.34 76.45 76.10 76.69 76.15 
 75.74 76.49 76.08 75.85 76.82 76.8 76.45 
 76.45 76.36 76.71 76.21 76.03 75.77 75.87 
 74.83 75.00 75.77 76.32 76.17 75.30 75.28 
Sample 3 74.98 75.81 75.09 75.96 75.88 75.38 75.79 
 75.40 74.21 75.54 75.17 77.36 75.14 75.45 
 75.06 74.39 75.33 75.08 75.06 74.39 75.65 

 
 
3. In a multicenter study, individuals at seven laboratories trained to perform 

specific analyses using identical equipment from an instrument manufacturer. 
Following training, three samples were sent to each laboratory and four assays 
were performed on each sample (Table 12.12). Were good repeatability and 
reproducibility found in the results from the seven laboratories? 
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13 
 
Correlation 
 
 
 
 Both correlation and regression analysis are concerned with continuous variables. 
Correlation does not require an independent (or predictor) variable, which as we will 
see in the next chapter, is a requirement for the regression model. With correlation, 
two or more variables may be compared to determine if there is a relationship and to 
measure the strength of that relationship. Correlation describes the degree to which 
two or more variables show interrelationships within a given population. The 
correlation may be either positive or negative. Correlation results do not explain why 
the relation occurs, only that such a relationship exists. Unlike linear regression 
(Chapter 14), covariance and correlation do not define a line, but indicate how close 
the data is to falling on a straight line.  If all the data points are aligned in a straight 
diagonal, the correlation coefficient would equal a +1.0 or –1.0. 
 
Graphic Representation of Two Continuous Variables 
 
 Graphs offer an excellent way of showing relationships between continuous 
variables on interval or ratio scales. The easiest way to visualize this relationship 
graphically is by using a bivariate scatter plot. Correlation usually involves only 
dependent or response variables. If one or more variables are under the researcher’s 
control (for example, varying concentrations of a solution or specific speeds for a 
particular instrument) then the linear regression model would be more appropriate. 
Traditionally, with either correlation or regression, if an independent variable exists it 
is plotted on the horizontal x-axis of the graph or the abscissa. The second or 
dependent variable is plotted on the vertical y-axis or the ordinate (Figure 13.1). In 
the correlation model, both variables are evaluated with equal import, vary at random 
(both referred to as dependent variables), are assumed to be from a normally 
distributed population, and may be assigned to either axis. 
 The first role of correlation is to determine the strength of the relationship 
between the two variables represented on the x-axis and the y-axis. The measure of 
this magnitude is called the correlation coefficient (discussed in the next section). The 
data required to compute this coefficient are two continuous measurements (x,y) 
obtained on the same entity (a person, object, or data point) referred to as the unit of 
association. As will be seen, the correlation coefficient (r) is a well-defined 
mathematical index that measures the strength of relationships. This index measures 
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A – Positive Correlation 

 
 
 
 
 
 
   
B – Negative Correlation 
 

 
 
 
 
 
 
 
C – No Correlation 

 
 
 
 
 
 
   
D – Ellipse of Data Points  

Figure 13.1 Examples of graphic representations of correlation data. 
 
both the magnitude and the direction of the relationships. 
 

+1.0 
 0.0 
−1.0 

  perfect positive correlation 
  no correlation 
  perfect negative correlation 

 
If there is a perfect relationship (a correlation coefficient of +1.00 or −1.00), a straight 
line can be drawn through all of the data points. The greater the change in Y for a 
constant change in X, the steeper the slope of the line. In a less than perfect 
relationship between two variables, the closer the data points are located on a straight 
line, the stronger the relationship and greater the correlation coefficient. In contrast, a 
zero correlation would indicate absolutely no linear relationship between the two 
variables.  
 Graph A in Figure 13.1 represents a positive correlation where data points with 
larger x-values tend to have corresponding large y-values. As seen later, an example 
of a positive correlation concerns the heights and weights of individuals. As the 
heights of people increase their weights also tend to increase. Graph B is a negative 

Y

X

Y

X

Y

X

Y

X
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correlation, where Y appears to decrease as values for X increase (approaching a 
perfect negative correlation of −1.00). An example of a negative or inverse 
correlation might be speed versus accuracy. The faster an individual completes a 
given task, the lower the accuracy; the slower the person’s speed, the greater the 
accuracy of the task. Graph C in Figure 13.1 shows a scattering of points with no 
correlation or discernible pattern. 
 More visual information can be presented by drawing a circle or an ellipse to 
surround the points in the scatter plot (D in Figure 13.1). If the points fall within a 
circle there is no correlation. If the points fall within an ellipse, the flatter the ellipse 
the stronger the correlation until the ellipse produces a straight line or a perfect 
correlation. The orientation of the ellipse indicates the direction of the correlation. An 
orientation from the lower left to the upper right is positive and from the upper left to 
the lower right is a negative correlation. Dashed lines can be drawn on the x- and y-
axes to represent the centers of each distribution. These lines divide the scatter plot 
into quadrants. In an absolute 0.00 correlation, each quadrant would have an equal 
number of data points. As the correlation increases (in the positive or negative 
direction) the data points will increasingly be found in only two diagonal quadrants. 
An additional assumption involved with the correlation coefficient is that the two 
continuous variables possess a joint normal distribution. In other words, for any 
given value on the x-axis variable, the y-variable is sampled from a population that is 
normally distributed around some central point. If the populations, from which the 
samples are selected are not normal, inferential procedures are invalid (Daniel, 2005). 
In such cases the strength of the relationship can be calculated using an alternative 
nonparameteric procedure such as Spearman rank correlation (Chapter 21) or a 
transformation procedure can be used to create an approximate normal distribution 
(Chapter 6). 
 
Covariance 
 
 The simplest approach to discussing correlation is to focus first on only two 
continuous variables. The correlational relationship can be thought of as an 
association that exists between the values representing two random variables. In this 
relationship we, as the investigators, have no control over the observed values for 
either variable. 

Covariance is a measure of the strength of association between two continuous 
variables.  It measures the linear relationship between two random variables. The term 
“linear dependence” is sometime used to refer to covariance which can serve as a 
measure of dependence between two variables.  It provides the goodness of fit for the 
best possible linear function between two variables.  Covariance is calculated as 
follows for population data: 

 

N

)y)(x(
)Y,Xcov( yixi −−

=
μμ

                           Eq. 13.1 

 
For sample data it will be slightly larger by dividing by n − 1. When there is a strong 
comparison, large positive deviations for x-values will match with large positive 
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deviations for y-values. At the same time large negatives will match with large 
negatives. A positive covariance indicates that values above the mean for one variable 
are associated with above the mean values for a second variable and below the mean 
values are similarly associated.  Conversely, a negative covariance indicates that 
above the mean values of one variable are associated with below the mean values of 
the second variable. If two variables are completely unrelated to each other the 
covariance is zero. Values can range from negative infinity to positive infinity. 

It is difficult to compare the covariance between the x- and y-variables if they 
differ in magnitude (e.g., comparing patient weights in kilograms to heights in 
centimeters); therefore some type of standardization is required and this will be 
discussed below. This is accomplished by creating standardized values (subtracting 
the mean from each value and dividing by the standard deviation). This will result in a 
mean of 0 and standard deviation of 1. Covariances are useful when applied in the 
analysis of covariance (ANCOVA) for comparing two or more linear regression lines. 
The ANCOVA is used to compare two or more linear regression lines. 
 There are several different methods for calculating measures of correlation; the 
most widely used is the Pearson product-moment correlation coefficient (r). 
 
Pearson Product-Moment Correlation Coefficient 
 
 The correlation coefficient assumes that the continuous variables are randomly 
selected from normally distributed populations. This coefficient is the average of the 
products for each x- and y-variable result measured as units in standardized normal 
distribution. Therefore the correlation coefficient is the sum of the products divided 
by n − 1, or  
 

1n
zz = r

yx
xy −


                                              Eq. 13.2 

 
where zx and zy are standard scores for the variables at each data point and n is the 
sample size or the number of data points (each point representing an x- and y-value). 
Ideally, we would know the population mean (μ) and standard deviation (σ) for each 
variable. This can be a very laborious process and involves computing the mean of 
each distribution, and then determining the deviation from the mean for each value in 
terms of a standard score. 
 

σ

μ

σ
μ

y

yi
y

x

xi
x

  y
 = z      and      

  x = z
−−

                           Eq. 13.3 

 
Unfortunately, we usually do not know these parameters for the population; therefore, 
we must approximate the means and standard deviations using sample information.  
 A slightly more convenient formula for calculating the association of two 
variables is the Pearson r or the Pearson product-moment correlation. This 
coefficient is the product of the moments (xi − μ) for the two-variable observation. 
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Table 13.1 Data Layout for Computation of the Pearson Product-Moment 
Correlation Coefficient − Definitional Formula 

x  y  x − xX  Y − yX  (x − xX )(y − yX ) (x − xX )2 (y − yX )2 

x1 y1 ... ... ... ... ... 
x2 y2 ...  ... ... ... ... 
x3 y3 ...  ... ... ... ... 
... ... ... ... ... ... ... 
xn yn ... ... ... ... ... 
    (x− xX )(y− yX ) (x− xX )2 (y− yX )2 

 
 

The moment deviation (xi − X ) is the difference between the individual observations 
and the sample mean for that variable. The covariance is standardized by placing the 
value in the numerator and dividing it by the deviations associated with each variable. 
The formula for this correlation coefficient is as follows: 
 

)X (y )X (x

)X )(y X  (x = r
2

y
2

x

yx

−−

−−                                      Eq. 13.4 

 
These calculations involve a determination of how values deviate from their 
respective sample means: how each x-value deviates from the mean for the x-variable 
( xX ) and how each y-value varies from the mean for the y-variable ( yX ). The 
convenience comes from not having to compute the individual z-values for each data 
point. Normally a table is set up for the terms required in the equation (Table 13.1). 
 Using this method, the researcher must first calculate the sample mean for both 
the x- and y-variable. As seen in Table 13.1, values for the observed data are 
represented in the first two columns, where x is the value for each measurement 
associated with the x-axis and y is the corresponding measure on the y-axis for that 
same data point. The third and fourth columns reflect the deviations of the x- and y-
scores about their respective sample means. The fifth column is the product of these 
deviations, the sum of which becomes the numerator in the Pearson product-moment 
equation. The last two columns are the deviations squared for both the x- and y-
variables and are used in the denominator. 

 As an example, consider the data collected on six volunteer subjects during a 
Phase I clinical trial (Table 13.2). For whatever reason, the investigator is interested 
in determining if there is a correlation between the subjects’ weights and heights. 
First, both the volunteers’ mean weights and mean heights are calculated: 
 

85.18 = 
6

511.1 = 
n
x = X x
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Table 13.2 Clinical Trial Data for Six Volunteers 

Subject Weight (kg) Height (m) 
1 96.0 1.88 
2 77.7 1.80 
3 100.9 1.85 
4 79.0 1.77 
5 73.0 1.73 
6 84.5 1.83 

 = 511.1 10.86 
 

Table 13.3 Sample Data for Pearson’s r Calculation − Definitional Formula  

x  y  X− xX  Y− yX  (x− xX )(y− yX ) (x− xX )2 (y− yX )2 

96.0 1.88 10.52 0.07   0.7574 117.07 0.0049 
77.7 1.80 −7.48 −0.01   0.0748   55.96 0.0001 

100.9 1.85 15.72 0.04   0.6288 247.12 0.0016 
79.0 1.77 −6.18 −0.04   0.2472   38.19 0.0016 
73.0 1.73 −12.18 −0.08   0.9744 148.35 0.0064 
84.5 1.83 −0.68 0.02 −0.0136     0.46 0.0004 

   = 2.6690 607.15 0.0150 

 
 

1.81 = 
6

10.86 = 
n

y = X y


 

  
Table 13.3 shows the required information for: 1) the deviations from the 
respective sample means; 2) the squares of those deviations; and 3) the products of 
the deviations. Finally, the last three columns are summed and entered into the 
equation: 
 

)X (y )X  (x

)X )(y X (x
 = r

2
y

2
x

yx

−−

−−
 

 

.8840+ = 
3.0178
2.6690 = 

.015)(607.15)(0
2.6690 = r  

 
The resulting r-value is the product-moment correlation coefficient, or simply the 
correlation coefficient. It shows a positive relationship and can be noted as a strong 
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Table 13.4 Data Layout for Computation of the Pearson Product- 
Moment Correlation Coefficient − Computational Formula 

x y x2 y2 xy 
x1 y1 x1

2 y1
2 x1y1 

x2 y2 x2
2 y2

2 x2y2 
x3 y3 x3

2 y3
2 x3y3 

... ... ... ... ... 
xn yn Xn

2 yn
2 xnyn 

x y x2 y2 xy 
 
 
relationship considering a perfect correlation is +1.00. 
 A second formula is available that further simplifies the mathematical process 
and is easier to compute, especially for hand-held calculators or computers. This 
computational formula is: 
 

)y(  y n )x(  x n

yx xy  n = r
2222 −−

−
                        Eq. 13.5 

 
Once again a table is developed based on the sample data (Table 13.4). In this case 
there are only five columns and the calculations of the sample means ( xX , yX ) are 
not required. Similar to Table 13.3, the first two columns in Table 13.4 represent the 
observed data, paired for both the x and y measurement scales. The third and fourth 
columns represent the individual x- and y-values squared and the last column is the 
product of x and y for each data point. Using this method to compute the correlation 
coefficient for the previous example of height and weight would produce the results 
seen in Table 13.5. The calculation of the correlation coefficient would be: 
 

)y(  y n )x( x n

yx xy  n = r
2222 −−

−
 

 

)(10.86  6(19.6716) )(511.1  )6(44144.35

.86)(511.1)(10  6(927.76) = r
22 −−

−
 

 

.8840+ = 
18.107
16.014 = 

.3)(60.356)(0
5550.546  5566.56 = r −  

 
The results from using either formula (Eq. 13.4 or 13.5) produce the identical answers 
since algebraically these formulas are equivalent. 
  
 



Chapter 13 318

Table 13.5 Sample Data for Pearson’s r Calculation − Computational Formula  

x y x2 y2 xy 
96.0 1.88 9216.00 3.5344 180.480 
77.7 1.80 6037.29 3.2400 139.860 
100.9 1.85 10180.81 3.4225 186.665 
79.0 1.77 6241.00 3.1329 139.830 
73.0 1.73 5329.00 2.9929 126.290 
84.5 1.83 7140.25 3.3489 154.635 
511.1 10.86 44144.35 19.6716 927.760 

 
 
 Correlations can be measured on variables that have completely different scales 
with completely different units of measure (e.g., a correlation between weight in 
kilograms and height in meters). Thus, the value of the correlation coefficient is 
completely independent of the values for the means and standard deviations of the 
two variables being compared. Thus, even though the correlation coefficient is a 
parametric procedure, we do not need be concerned about the homogeneity of 
variance because each axis may involve a different measurement scale. However, it is 
critical that the underlying population distributions are assumed to be normally 
distributed. 
 
Correlation Line 
 
 The correlation coefficient is an index that can be used to describe the linear 
relationship between two continuous variables and deals with paired relationships 
(each data point represents a value on the x-axis as well as a value on the y-axis). As 
will be seen in the next chapter, the best line to be fitted between the points on the 
bivariate scatter plot is very important for the linear regression model where 
prediction is required for y at any given value on the x-axis. However, it is also 
possible, and sometimes desirable to approximate a line that best fits between the data 
point in our correlation model. Note that the correlation coefficient does not require a 
line, nor do the calculations for this coefficient actually define a line. This is in 
contrast to defining the line of best fit that is required for regression models. As will 
be discussed in greater detail in Chapter 14, a straight line between our data points 
can be defined as follows: 
 

bx + a =y                                                 Eq. 13.6 
 
where y is a value on the vertical axis, x is a corresponding value on the horizontal 
axis, a indicates the point where the line crosses the vertical axis, and b represents the 
amount by which the line rises for each unit increase in x (the slope of the line). We 
can define the line that fits best between our data points using the following formulas 
and data from Table 13.3 for our computational method of determining the correlation 
coefficient. 
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)x(  xn
y)x)(( xy n = b

22 −

−                                       Eq. 13.7 

 

n
xb y  = a −                                               Eq. 13.8 

 
Such lines are illustrated in Figure 13.1. The correlation coefficient provides an 
indication of how close the data points are to this line. As mentioned previously, if we 
produce a correlation coefficient equal to +1.00 or –1.00, then all the data points will 
fall directly on the straight line. Any value other than a perfect correlation, positive or 
negative, indicates some deviation from the line. The closer the correlation coefficient 
is to zero, the greater the deviation from this line. 
 In our previous example of weight and height for our six subjects, the correlation 
line that fits based between these points is calculated as follows: 
 

0.0044
3642.89
16.014

)(511.1  35)(6)(44144.
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−  

 
The data and resultant line with the slope of +0.044 and y-intercept of 1.43 are 
presented in Figure 13.2. As can be seen data are relatively close to the straight line, 
indicative of the high correlation value of r = +0.884. 
 
Statistical Significance of a Correlation Coefficient 
 
 A positive or negative correlation between two variables shows that a 
relationship exists. Whether one considers it as a strong or weak correlation, 
important or unimportant, is a matter of interpretation. For example in the behavioral 
sciences a correlation of 0.80 would be considered a high correlation. However, 
individuals in the pharmaceutical industry doing a process validation may require a 
correlation >0.999. 
 Verbal descriptions of correlations are inconsistent. The simplest might be: less 
than 0.25 is a “doubtful” correlation; 0.26 to 0.50 represents a “fair” correlation; 0.51 
to 0.75 is a “good” correlation, and greater than 0.75 can be considered a “superior” 
correlation (Kelly et al., 1992). Another rough guide (Guilford, 1956) is as follows:  
 

<0.20  
0.20 - 0.40  
0.40 - 0.70  
0.70 - 0.90  

>0.90  

Slight; almost negligible relationship 
Low correlation; definite but small relationship 
Moderate correlation; substantial relationship 
High correlation; marked relationship 
Very high correlation; very dependable relationship 
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Figure 13.2 Correlation line representing data in Table 13.4. 
 
 
Similar levels, but slightly different terminology can be seen with yet another guide 
(Roundtree, 1981): 
 

<0.20 
0.20 - 0.40 
0.40 - 0.70 
0.70 - 0.90 

>0.90 

Very weak, negligible 
Weak, low 
Moderate 
Strong, high, marked 
Very strong, very high 

 
The sign (+ or −) would indicate a positive or negative correlation. In the previous 
example of weight versus height the result of +0.884 would represent a “high,” 
“strong,” or “marked” positive correlation. 

The values for correlation coefficients do not represent equal distances along a 
linear scale. For example, a correlation of 0.50 is not twice as large as r = 0.25. 
Instead, the coefficient is always relative to the conditions under which it was 
calculated. The larger the r, either in the positive or negative direction, the greater the 
association between the two measures.  
  In addition to identifying the strength and direction of a correlation coefficient, 
there are statistical methods for testing the significance of a given correlation. Two 
will be discussed here: 1) use of a Pearson product-moment table and 2) the 
conversion to a Student t-statistic. In both cases, the symbol ryx or ρ (rho) can be used 
to represent the correlation for the populations from which the samples were 
randomly selected. The hypotheses being tested are: 
 

H0: ryx = 0  
H1: ryx ≠ 0 

or H0: ρ = 0 
H1: ρ ≠ 0 
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The null hypothesis indicates that a correlation does not exist between the two 
continuous variables; the population correlation coefficient is zero, whereas the 
alternative hypothesis states that a significant relationship exists between variables x 
and y. Pearson’s correlation coefficient, symbolized by the letter r, represents the 
sample value for the relationship; whereas ρ or ryx represents true population 
correlation.  
 Using Table B14 in Appendix B, it is possible to identify a critical r-value and if 
the correlation coefficient exceeds the critical value, H0 is rejected. The first column 
in the table represents the degrees of freedom and the remaining columns are the 
critical values at various allowable levels of Type I error (α). For correlation 
problems the number of degrees of freedom is the number of data points minus two (n 
− 2). The reason for n – 2 is that there is one fewer degree of freedom because the 
mean of the y-axis is an estimate of the true population mean, µy. The decision rule is 
to reject H0 (no correlation) if the calculated r-value is greater than rn-2(α) 
 

with α = 0.05, reject H0 if r > rn-2(0.05) 
 
In the previous example comparing weights and heights of volunteers in a clinical 
trial, the decision rule would be with α = 0.05, reject H0 if r > r4(0.05) = 0.8114. The 
result of the calculations produces a correlation coefficient of 0.884, which is greater 
than the critical r-value of 0.8114; therefore, we would reject H0 and conclude that 
there is a significant correlation with 95% confidence. One might question how well 
we can trust a correlation coefficient from a sample size of only six to predict the 
relationship in the population from which the sample is drawn. Two factors will 
influence this decision: 1) the strength of the correlation (the r-value itself); and 2) the 
sample size. Looking at the table of critical values for the correlation coefficient 
(Table B14, Appendix B) it is possible to find significance for a relatively small r-
value, if the result comes from a large sample. 
 The second method for calculating the level of significance for the sample r-
value is to enter the results into a special formula for a t-test and compare the results 
to a critical value from a Student t-distribution (Table B5, Appendix B). This 
converted t-value, from an r-value, is compared to the critical t-value with n − 2 
degrees of freedom. The null hypothesis is that there is no correlation and the decision 
rule is 
 

with α = 0.05,reject H0 if t > +tn-2(1 − α/2) or t < −tn-2(1 − α/2) 
 
The statistical formula is: 
 

r1

2nr = t
2−

−                                         Eq. 13.9 

 
The correlation coefficient (r) incorporates the concept of how scores vary within a 
given distribution. These potential deviations are considered as a standard error of the 
correlation coefficient and represent the standard deviation for the theoretical 
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Table 13.6 Comparison of Critical r-Values and t-Values 

Table of 
Critical  
Values 

 
Statistical 
Results 

 
 

α = 0.05 

 
 

α = 0.01 
  C.V. Result C.V. Result 

Table B11 r = 0.884 0.8114 Significant 0.9172 NS 

Table B3 t = 3.78 2.776 Significant 4.604 NS 
 
 
distribution of correlation coefficients for samples from the population with a given 
size. The closer the correlation coefficient to a perfect result (+1.00 or –1.00), the 
smaller the standard error (the denominator in Eq. 13.9). Approximately 95% of all 
possible correlation coefficients will be within two standard deviations of the 
population ρ. Therefore, we can use information from Chapter 9 to create a t-statistic 
to calculate significance of the correlation coefficient. 
 Using our previous example (weight versus height) to illustrate the correlation t-
conversion, the decision rule is with α = 0.05, reject H0 if t > t4(0.975) = 2.776. The 
computations are: 
 

93.7 = 
0.467
1.768 = 

)(.8841

26 .884 = t
2−

−  

 
In this case the decision, with t > 2.776, is to reject H0 and conclude that there is a 
significant correlation between the volunteers’ weights and heights. Based on the t-
conversion, a significant result would indicate that the results could not have occurred 
by chance alone from a population with a true zero correlation. Note in Table 13.6 
that both methods produce identical outcomes. 
 The r-value can be considered a ratio of the actual amount of deviation divided 
by the total possible deviation, whereas the square of the r-value is the amount of 
actual deviation that the two distributions have in common. The interpretation of the 
correlation between two variables is concerned with the degree to which they covary. 
In other words, how much of the variation in one of the continuous variables can be 
attributed to variation in the other. This square of the correlation coefficient, r2, 
indicates the proportion of variance in one of the variables accounted for by the 
variance of the second variable. The r2 term is sometimes referred to as the “common 
variance.” In the case of r2 = 0.49 (for r = 0.7), 49% of the variance in scores for one 
variable is associated with the variance in scores for the second variable. The r2 term 
will be discussed in greater detail in the following chapter. 
 
Correlation and Causality 
 
 As a correlation approaches +1.0 or −1.0 there is a tendency for numbers to 
concentrate closer to a straight line. However, one should not assume that just 
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A 
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C  
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Figure 13.3 Graphs of four sets of data with identical correlations (r = 
0.816). Recreated from:   Anscombe, F.J. (1973). “Graphs in statistical 
analysis,” American Statistician 27:17-27. 

 
because correlations come closer to a perfect correlation they form a straight line. The 
correlation coefficient says nothing about the percentage of the relationship, only its 
relative strength. It represents a convenient ratio, not an actual measurement scale. It 
serves primarily as a data reduction technique and as a descriptive method. Figure 
13.3 illustrates this point where four different data sets can produce the same “high” 
correlation (r = 0.816). As discussed in the next chapter, if lines were drawn that best 
fit between the points in each data set, they would be identical with a slope of 0.5 and 
a y-intercept of 3.0. This figure also shows the advantage of plotting the data on graph 
paper, or creating a computer-generated visual, to actually observe the distribution of 
the data points. 
 The correlation coefficient does not suggest nor prove the reason for this 
relationship; only that it exists, whether the two variables vary together either 
positively or negatively, and the degree of this relationship. It does not indicate 
anything about the causality of this relationship. Did the x-variable cause the result in 
y? Did y affect variable x? Could a third variable have affected both x and y? There 
could be many reasons for this relationship. 
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 With correlation the relationship identified between two dependent variables is 
purely descriptive and no conclusions about causality can be made. By contrast, with 
experimental or regression studies in the next chapter, where the predictor or 
independent variable is controlled by the researcher, there is a better likelihood that 
interpretations about causality can be stated. However, with correlation, this 
relationship may be due to external variables not controlled for by the experiment. 
These are called confounding variables and represent other unidentified variables 
that are entwined or confused with the variables being tested. Two factors must be 
established before the researcher can say that x, assumed to be the independent 
variable, caused the result in y. First, x must have preceded y in time. Second, the 
research design was such that it controlled for other factors that might cause or 
influence y. 

 Even a significant result from a correlation coefficient does not necessarily 
represent simply a cause-and-effect relationship between the two variables. In the 
previous example, does the height of the person directly contribute to his or her 
weight? Does the weight of the person influence the person’s height? The former 
assumption may be true, but probably not the latter. In this particular case, both 
variables were influenced by a third factor. The patients volunteering to take part in 
the study were screened using an inclusion criterion that they must fall within 10% of 
the ideal height and weight standards established by the Metropolitan Life Insurance 
Company. Thus, if we approximate ideal weight and height standards, taller 
volunteers will tend to weigh more and shorter volunteers will weigh less because of 
the ratio established between these variables based on the standardized tables used by 
Metropolitan Life.  
 In some cases causality may not be as important as the strength of the 
relationship. For example if the researchers were comparing two methods (e.g., 
analytical assays, cognitive scales, physiological measures), the individual is not 
interested in whether one method produced a higher mean value than the other, rather 
he or she is interested in whether there is a significant correlation between the two 
methods. 
 Various types of relationships can exist between two continuous variables and 
still produce a correlation coefficient. Many are illustrated in Figures 13.1 and 13.3. A 
monotonic relationship is illustrated by Figures 13.1-A, -B, and -D where the 
relationship is ever-increasing or ever-decreasing. The monotonic relationship could 
be linear (best represented by a straight line) or nonlinear or curvilinear 
relationships where a curved line best fits the data points. In contrast, Figure 13.3-C 
is an example of a nonmonotonic relationship. In this case the relationship is not 
ever-increasing or ever-decreasing, the points begin as a positive correlation but 
change near 10 on the x-axis and become a negative correlation. This figure 
represents a nonmonotonic, concave downward relationship. One last type is a 
cyclical relationship where waves are formed as the correlation continues to change 
from a positive to a negative to a positive relationship.  
 
In Vivo and In Vitro Correlation 
 
 One example of the use of the correlation coefficient is to establish a relationship 
between an in vitro measure for a pharmaceutical product and an in vivo response in 
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living systems. This relationship is referred to as an in vivo–in vitro correlation, or 
an IV/IV correlation.  
 In 1977, the Food and Drug Administration issued regulations on bioequivalency 
and bioavailability, and included a list of drugs described as having “known or 
potential bioequivalency or bioavailability problems” (Fed. Reg., 1977). In these 
regulations, it was pointed out that bioequivalence requirement for the majority of 
products could be the form of an in vitro test in which the product is compared to a 
reference standard. This point will be discussed in greater detail in Chapter 22. 
Preferably, these in vitro tests should be correlated with human in vivo data. In most 
cases the in vitro tests are dissolution tests. 
 Dissolution is a measure of the percent of drug entering a dissolved state over 
varying periods of time. Tests of dissolution are used to determine if drug products 
are in compliance with compendia standards in the United States Pharmacopeia 
(USP) or new drug application (NDA). Dissolution testing can be performed on a 
variety of dosage forms including immediate release and extended release solids, 
transdermal patches, and topical preparations. For immediate release solid dosage 
forms, one of the most commonly used comparisons for IV/IV correlation is between 
an in vivo parameter (e.g., AUC) and the mean in vitro dissolution time (Skelly and 
Shiu, 1993). If we can establish a strong relationship between this internal response 
and an equivalent external laboratory measurement we may be able to avoid the risks 
inherent with human clinical trials. In addition in vivo studies can be very expensive 
and equivalent laboratory results offer a considerable economic advantage.  
 In an ideal world we would see a correlation of +1.00 relationship between the 
two parameters. This represents a comparison between single point measures of 
outcome and rate (Figure 13.4). Using this model it is possible to perform in vitro 
laboratory exercises and predict the responses of in vivo systems. Unfortunately we 
do not live in an ideal world and both of these continuous variables will contain some 
error or variability resulting in an r less than 1.00. The larger the r-value, the more 
meaningful its predictive ability. As will be discussed in the next chapter, the strength 
of a correlation is commonly characterized by r2, the square of the correlation 
coefficient. The r2 is useful because it indicates the proportion of the variance 
explained by the line that best fits between the data points in the linear relationship. 
 In some cases in vitro dissolution testing can substitute for bioequivalency 
testing. This is particularly true for extended-release dosage forms. To use dissolution 
data as a substitute for bioequivalency testing, one is required to have a very strong 
correlation. In other words, the IV/IV correlation must be highly predictive of in vivo 
performance. In these cases, in vitro dissolution information may be meaningful for 
predicting an in vivo response. However, there is no complete assurance that in vitro 
dissolution equals in vivo dissolution. One needs to be confident for a given product 
tested that this IV/IV equality exists and that in vivo dissolution leads to absorption 
and absorption results in an in vivo response. The processes and potential problems 
associated with IV/IV correlation are beyond the scope of the book and readers 
interested in more information are referred to a series of papers in the book edited by 
Blume and Midha (1995) or the article by Amidon et. al. (1995). 
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Figure 13.4 Hypothetical example of a perfect IV/IV correlation. 
 
 
Other Types of Bivariate Correlations 
 

Illustrated to this point in the chapter are correlations involving two continuous 
variables (interval or ratio scales). There are other special types of measures of 
relationships that handle various combinations of variables measured on nominal, 
ordinal, or interval/ratio scales. These are often described as measures of association 
and are presented in Chapter 17. Correlations involving ordinal scales for both the x- 
and y-axis are best evaluated with Spearman’s rho, a nonparametric procedure 
(Chapter 21). 

If at all possible, it is recommended to avoid grouping continuous data into 
categories that form dichotomous or nominal scale results. This attenuating of the data 
can lead to an underestimation of the measured effect. Tests for handling this type of 
edited data are discussed in Chapter 17 as measures of association and the 
terminology associated with such attenuated data sets is as follows. The biserial 
correlation coefficient is a special type of bivariate correlation coefficient for comparing 
a continuous normally distributed variable with a dichotomous variable that has an 
underlying normal distribution (e.g., a continuous variable that has been collapsed to 
create groups representing “above” and “below” the median result). Comparing two 
continuous variables that have both been dichotomized would involve a tettachoric 
correlation coefficient. This is in contrast to a point biserial correlation coefficient 
which involves the correlation between a continuous normally distributed variable with a 
truly dichotomous variable. 
 
Pair-Wise Correlations Involving More Than Two Variables 
 
 When there are more than just two continuous variables affecting each data point, 
it is possible to calculate pair-wise correlations. For example if we are evaluating 
three continuous variables (X, Y, and Z) on the same subjects, we can calculate the 
correlations (rxy, rxz, and ryz). The simplest way to evaluate the relationship between 
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Table 13.7 Example of an Intercorrelation Matrix 

Variables X Y Z 

X rxx rxy rxz 

Y rxy ryy ryz 

Z rxz ryz rzz 

 
 

Table 13.8 Abbreviated Intercorrelation Matrix 

Variables Y Z 

X rxy rxz 

Y ... ryz 
 
 
these variables is to create a table referred to as an intercorrelation matrix. Also 
called a correlation matrix it arranges the correlation coefficients in a systematic and 
orderly fashion represented by a square with an equal number of rows and columns 
(Table 13.7). The diagonal coefficients have a perfect relationship (r = 1.00) between 
each variable correlated with itself. The number of cells above or below the diagonal 
can be calculated using either of the following determinants: 
 

2
1)k(k = C −                                                Eq. 13.10 

 

 
)!2(k!2

k! = 
2

k
 = C

−






                                        Eq. 13.11 

 
where k equals the number of variables and Eq. 13.11 is simply the combination 
formula (discussed in Chapter 2) for paired comparisons. The cells in the lower 
portion of the correlation matrix are a mirror image of the cells above the diagonal. 
We could simplify the matrix by discarding the diagonal cells and either the lower or 
upper portion of the cells and express the matrix as seen in Table 13.8.  
 To illustrate the use of an intercorrelation matrix, consider the data presented in 
Table 13.9. In this table more information is presented for the volunteer included in 
the earlier clinical trial. These additional data include: entry laboratory values for 
blood urea nitrogen (BUN) and serum sodium; and study pharmacokinetic results as 
represented by the area under the curve (AUC). 
 Using the data presented in Table 13.9, the intercorrelation matrix is shown in 
Table 13.10 and the actual pair-wise correlations in Table 13.11. Based on the 
correlation coefficients presented on this matrix and the descriptive terminology 
discussed earlier, the results of the multiple correlation would be: 1) a high correlation 
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Table 13.9 Leveled Variables from Six Subjects in a Clinical Trial 

 Entry Lab Values Results 

Weight (kg) Height (m) BUN (mg/dl) Sodium (mmol/l) AUC (ng/ml) 
96 1.88 22 144 806 

77.7 1.80 11 141 794 
100.9 1.85 17 139 815 
79.0 1.77 14 143 775 
73.0 1.73 15 137 782 
84.5 1.83 21 140 786 

 

Table 13.10 Layout of Correlation Matrix for Table 13.9 

Variables Weight Height BUN Na AUC 

Weight(A) 1.00 rab rac rad rae 

Height (B) rab 1.00 rbc rbd rbe 

BUN (C) rac rbc 1.00 rcd rce 

Na (D) rad rbd rcd 1.00 rde 

AUC (E) rae rbe rce rde 1.00 

 

Table 13.11 Correlation Matrix for Table 13.9 

Variables Height BUN Na AUC 

Weight(A) .884 .598 .268 .873 
Height(B)  .665 .495 .781 
BUN (C)   .226 .334 

Na (D)    .051 

 
 
between weight and height, weight and AUC, and height and AUC; 2) a moderate 
correlation between weight and BUN, height and BUN, and height and sodium; 3) a 
low correlation between weight and sodium, BUN and sodium, and BUN and AUC; 
and 4) an almost negligible relationship between sodium and AUC. 
 This matrix can be extended to include the intercorrelations for any number of 
continuous variables. Using the correlation matrix it is possible to identify those 
variables that correlate most highly with each other. Unfortunately, just by inspection 
of the matrix it is not possible to determine any joint effects of two or more variables 
on another variable. As discussed later, most computer programs will generate such a 
correlation matrix and include an associated p-value for each correlation coefficient 
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Table 13.12 Correlation Matrix with Accompanying  p-Values  

Variables Height BUN Na AUC 
Weight(A) .884 

0.019 
.598 
0.210 

.268 
0.608 

.873 
0.023 

Height(B)  .665 
0.149 

.495 
0.318 

.781 
0.067 

BUN (C)   .226 
0.667 

.334 
0.517 

Na (D)    .051 
0.923 

 
 
(Table 13.12). In this case, statistical significant (p < 0.05) positive relationships exist 
between weight and height (p = 0.019) and weight and AUC (p = 0.023). 
 
Multiple Correlations 
 
 Many times when there are multiple concurrent correlations in an experiment, we 
may be interested in one key variable that has special importance and we are 
interested in determining how other variables influence this factor. This variable is 
labeled as our criterion variable. Other variables assist in the evaluation of this 
variable. These additional variables are referred to as predictor variables because 
they may have some common variance with the criterion variable; thus information 
about these latter variables can be used to predict information about our criterion 
variable. The terms criterion variable and predictor variable may be used 
interchangeably with dependent and independent variables, respectively. 
 In the next chapter we will discuss regression, where the researchers are able to 
control at least one variable in controlled experimental studies and the criterion or 
dependent variable becomes synonymous with the experimental variable or 
response variable. In these experimental studies we will reserve the expression 
independent variable to variables independent of each other. 
 In multiple correlation we use techniques that allow us to evaluate how much of 
the variation in our criterion variable is associated with variances in a set of predictor 
variables. This procedure involves weighing the values associated with our respective 
predictor variables. The procedures are complex and tedious to compute. However, 
through the use of computer programs it is possible to derive these weights (usually 
the higher weights are associated with predictor variables with the higher common 
variance with our criterion variable). 
 In a multiple correlation we once again compute a line that fits best between our 
data points and compute the variability around that line. The formula for a straight 
line (y = a + bx) can be expanded to the following for multiple predictor variables. 
 

ikiki22i11oi ex...xxy +++++= ββββ                   Eq. 13.12 
 
In this equation the ei is a common variance associated with the y-variable and βo is 
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the point where a plane created by the other variables will intercept the y-axis. The 
remaining β’s in Eq. 13.12 are weights that are applied to each of the predictor 
variables, which result in composite scores that correlate most highly with the scores 
of our criterion variable. These are referred to as beta coefficients or beta weights. 
These weights are a function of the correlation between the specific predictor 
variables and the criterion variables, as well as the correlations that exist among all 
the predictor variables. 
 The result of the mathematical manipulation, which is beyond the scope of this 
book, is a multiple correlation coefficient (R). It is the correlation resulting from the 
weighted predictor scores. Multiple correlations are closely related to multiple 
regression models. An excellent source for additional information on multiple 
correlation is Kachigan (1991, pp. 147-153). Others sources would include Zar (2010, 
pp. 438-440) and Daniel (2005, pp. 508-512). 
 
Partial Correlations 
 
 An alternative method for the evaluation of multiple correlations is to calculate a 
partial correlation coefficient that shows the correlation between two continuous 
variables, while removing the effects of any other continuous variables. The simplest 
type of partial correlation coefficient is to extract the common effects of one variable 
from the relationship between two other variables of interest: 
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                                     Eq. 13.13 

 
where ryx,z is the correlation between variables x and y, eliminating the effect of 
variable z. This formula can be slightly modified to evaluate the correlations for the 
other two combinations (XZ and YZ). In this formula all three paired correlations must 
be calculated first and then placed into Equation 13.13. 
 As an example of a partial correlation for three continuous variables, assume that 
only the first two columns and fifth column from Table 13.12 were of interest to the 
principal investigator involved in the clinical trial and that the researcher is interested 
in the correlation between the AUC and the weight, removing the effect that height 
might have on the results. The partial correlation coefficient would be as follows: 
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Therefore, we see a moderate correlation between AUC and weight when we control 
the influence of height. In other words, what we have accomplished is to determine 
the relationship (r = +0.63) between our two key variables (AUC and weight) while 
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holding a third variable (height) constant. Is this a significant relationship? We can 
test the relationship by modifying the t-statistic that was used to compare only two 
dependent variables. 
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In this case, k represents the number of variables being evaluated that might influence 
the outcome against the y-variable. In our example, k equals 2 for variables x and z. 
The decision rule is to reject the null hypotheses of no correlation if t is greater than 
the critical t-value of the n − k − 1 degrees of freedom. In t-conversion to evaluate the 
significance of r = 0.63 the critical value would be t3(0.975) = 2.78 and the 
calculations would be as follows: 
 

1.394
0.779
1.086
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The researcher would fail to reject the null hypothesis and conclude that there is no 
significant correlation between the AUC and weight excluding the influence of 
height.  
 The partial correlation can be expanded to control for more than one additional 
continuous variable.  
 
Nonlinear Correlations 
 
 For nonlinear correlations the best measure of a relationship is the correlation 
ratio. This eta-statistic (η) can be used when data tend to be curvilinear in their 
relationships. Based on visual inspection of the data, the sample outcomes are divided 
into categories, at least 7, but no more than 14. These categories represent clusters of 
data with observable breaking points in the data. If there are fewer than seven 
categories the eta-statistic may not be sensitive to the curvilinear relationship. The 
statistic is based on a comparison of the differences, on the y-axis, between observed 
data points and their category mean, as well as a comparison with the total mean for 
all of the observations: 
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where yi represents the data point, cY  is the mean for the category, and tY  is the 
mean for all of the y-observations. 
 If there is a nonlinear relationship, the traditional correlation coefficient tends to 
underestimate the strength of this type of relationship. For example consider 
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Figure 13.5 Graphic of a curvilinear relationship. 

 
 
the relationship presented in Figure 13.5 where the data appears to curve. Calculation 
of the traditional correlation coefficient (Eq. 13.15) produces a correlation coefficient 
of r = 0.883. In this case the total mean for all the observations on the y-axis is tY  = 
20.25. Calculation of the η is based on the data in Table 13.13.  
  

.99810 = 0.9962 = 
4140.50
15.6167  1 = +−η  

 
Note that η is larger than r.  
 
Assessing Independence and Randomness 
 
 Since this chapter introduced us to correlation and measures of the strength of 
relationships, two previously discussed topics will be revisited (independence and 
randomness) along with statistical procedures to evaluate these two critical 
assumptions associated with most inferential statistics. 
 As mentioned previously, the researcher should be concerned with obtaining an 
appropriate sample (preferably a random sample) and be comfortable that 
observations are independent of each other. Assessing independence can be visually 
determined by graphing how each observation differs from the mean. These 
differences are sometimes referred to as residuals. The residuals are plotted on the y-
axis of a scatter plot against the x-axis, which represents the order in which the 
sample was collected or recorded. If there is independence, a pattern should not 
appear on the scatter plot. A more formal method for testing independence is to 
calculate the Durbin-Watson coefficient, which uses Studentized residuals: 
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Table 13.13 Sample Data Comparing Time and Percent Response 

x (time) y (%) Y c ( −Y c) (y −Y c)2 (y −Y t) (y −Y t)2 

2 
2 

2.5 
3 
3 

9 
10 

8 
9 

11 

9.40 −0.40 
0.60 

−1.40 
−0.40 

1.60 

0.16 
0.36 
1.96 
0.16 
2.56 

−11.25 
−10.25 
−12.25 
−11.25 

-9.25 

126.5625 
105.0625 
150.0625 
126.5625 
85.5625 

4 
4.5 

5 

10 
9 

10 

9.67 0.33 
−0.67 

0.33 

0.1089 
0.4489 
0.1089 

−10.25 
−11.25 
−10.25 

105.0625 
126.5625 
105.0625 

7 
7 

10 
12 

11.00 −1.00 
1.00 

1.00 
1.00 

−10.25 
−8.25 

105.0625 
68.0625 

9 
9 

9.5 
10 

13 
14 
14 
13 

13.50 −0.50 
0.50 
0.50 

−0.50 

0.25 
0.25 
0.25 
0.25 

−7.25 
−6.25 
−6.25 
−7.25 

52.5625 
39.0625 
39.0625 
52.5625 

11 
11.5 

12 

20 
19 
21 

20.00 0.00 
−1.00 

1.00 

0.00 
1.00 
1.00 

−0.25 
−1.25 

0.75 

0.0625 
1.5625 
0.5625 

13 
14 
14 

32 
30 
31 

31.00 1.00 
−1.00 

0.00 

1.00 
1.00 
0.00 

11.75 
9.75 

10.75 

138.0625 
95.0625 

115.5625 

15 
15 

15.5 
16 

44 
46 
45 
46 

45.25 −1.25 
0.75 

−0.25 
0.75 

1.5625 
0.5625 
0.0625 
0.5625 

23.75 
25.75 
24.75 
25.75 

564.0625 
663.0625 
612.5625 
663.0625 

   = 0 15.6167 0 4140.5000 
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d                          Eq. 13.16 

 
where yX  is the mean on the y-axis, yi represents each data point and yi-t is the y-
value for the previous sequential value on the x-axis (serial correlation). This test is 
often used for time series correlations where the x-axis is time. For serial correlation a 
d = 0 would represent a perfect positive correlation, d = 2 no correlation, and d = 4 a 
perfect negative correlation. For testing independence, if the Durbin-Watson 
coefficient is between 1.5 and 2.5, independence can be assumed. 

The second key consideration for inferential tests is randomness in the data. A 
runs test can be used for assessing randomness. A “run” is a series of similar 
responses. For example, 25 true and false questions give the following ordered 
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results: 
 

TTFTTFTTTFFFFFTFFTTTFFFFF 
 
This represents ten runs, TT, F, TT, F, TTT, FFFFF, T, FF, TTT, and FFFFF. The 
following symbols will be used: u = number of runs, n1 = number with the first 
outcome (T in this case), and n2 = number with the second outcome (F). Tables are 
available for small samples. For larger samples (n1 or n2 larger than 30) and as 
approximation for smaller samples, the following equations can be used. As the 
underlying distribution approaches normality, the mean is: 
 

1
N

nn2 21
u +=μ                                          Eq. 13.17 

 
The standard deviation would be: 
 

)1N(N
)Nnn2(nn2

2
2121

u
−

−=σ                                   Eq. 13.18 

 
The deviation from expect results would be evaluated using a z-statistic: 
 

u

u 5.0u
Z

σ
μ −−

=                                         Eq. 13.19 

 
If the result is less than Zα/2 = 1.96, the sample can be assumed to be random. In our 
previous example the approximation would be: 
 

n1 = 11, n2 = 14, N = 25 u = 10 
 

32.131
25

)14)(11(2
u =+=μ  

 
[ ] 41.2

)24(25
25)14)(11(2)14)(11(2

2u =
−

=σ  

 

17.1
41.2

5.032.1310
Z =

−−
=  

 
The runs test is a nonparametric procedure (Chapter 21) and thus assumes no specific 
distribution. In order to do a runs test the variable must have dichotomous results and 
categories should represent mutually exclusive and exhaustive outcomes. For ordinal 
or continuous data, the results must be dichotomized above or below the median. 
 An alternative to the runs test is autocorrelation, which also tests for non-
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randomness in data. It is primarily used for time series tests. It is a correlation 
coefficient that involves evaluating y-values for their corresponding x-values arranged 
sequentially by time. The lag k autocorrelation is calculated using the following 
formula: 
 




−

−−
= +

2
yi

ykiyi
k

)Xy(

)Xy)(Xy(
r                            Eq. 13.20 

 
where yX  is the mean on the y-axis, yi represents each data point and yi+k is the y-
value for the next sequential value on the x-axis. Additional information about the use 
of autocorrelation can be found in Box and Jenkins (1976). 
 
Using Excel® or Minitab® for the Correlation 
 
 Excel 2010 has both function (ƒx) options and data analysis procedures for 
calculating single correlation coefficient or covariance, as well as the ability to create 
a correlation matrix. The function option for the covariance is COVARIANCE.S and 
for correlation coefficient it is CORREL. In both cases, Excel will request the range 
where the “array” is located for x-values and y-values (Array1 and Array2). The 
output is the simply covariance or correlation coefficient in the cell where the 
function option was initiated. One potential problem with Excel is that it also includes 
COVARIANCE.P for population data. Usually the population information is not 
known and one should use the “.S” options. 
 Both covariance and correlation are part of the Excel data analysis tools:  

 
Data  Data Analysis  Covariance 
Data  Data Analysis  Correlation 

 
Either test will request the input range, whether the data is arranged by columns or 
 rows and the location for printing the results (a new worksheet is the default setting – 
Figure 13.6). Single outcomes will be reported as a matrix table with each level as a 
row or column, with the one cell for the x-value and y-value showing the exact same 
results as the function option (similar to Table 13.8). More complex matrices for the 
correlation coefficients can be created when comparing multiple continuous variables 
by simply increasing the input range to accommodate all the dependent variables. 
Results for an evaluation for Table 13.9 are is presented in Figure 13.7 (each 
dependent variable is labeled because the “Labels in First Row” box was checked in 
Figure 13.6). Note that Excel does not provide the associated p-value for each 
correlation in the matrix. 
 It is recommended not to use the “Covariance” option under data analysis since it 
creates a single output or metric using the population calculation and results will be 
slightly lower (closer to zero) than for the sample calculation. 
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Figure 13.6 Options for covariance or correlation with Excel. 

 

 
Figure 13.7 Outcome matric for correlation with Excel for Table 13.9. 

 
 
 Minitab offers both covariance and correlation options under “Basic Statistics” 
on the title bar:  
 

Stat  Basic Statistics  Covariance 
Stat  Basic Statistics  Correlation 

 
As with Excel, simple two variable or multiple variable matrices can be created. The 
advantage with Minitab is that the associated p-values are also displayed. Figure 13.8 
illustrates the options panel for a correlation coefficient for the data from Table 13.2. 
The dependent variables on the left are selected by double clicking each column that 
then appears in the box to the left. Displaying the p-value is a default setting that can 
be turned off. The covariance looks similar except there are no associated p-values as 
an option. Figure 13.9 displays the output for both the covariance and correlation 
matrix for the data in Table 13.7 for just the laboratory values and AUC results. Note 
that the covariance is based on the sample statistic and not the population calculation. 
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Figure 13.8 Options for correlation with Minitab. 

 

 
Figure 13.9  Outcome metric for covariance and correlation with Minitab 

for portions of Table 13.9. 
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Table 13.14 Data Comparing Two Methods 

Method A Method B 
55 90 
66 117 
46 94 
77 124 
57 105 
59 115 
70 125 
57 97 
52 97 
36 78 
44 84 
55 112 
53 102 
67 112 
72 130 

 
Example Problems (Answers are provided in Appendix D) 
 
1. Two different scales are used to measure patient anxiety levels upon admission to 

a hospital. Method A is an established test instrument, while Method B (which 
has been developed by the researchers) is a quicker and easier instrument to 
administer. Is there a correlation between the two measures presented in Table 
13.14? 

 
2. Two drugs (A and B) are commonly used together to stabilize patients after 

strokes and the dosing for each is individualized. Listed in Table 13.15 are the 
dosages administered to eight patients randomly selected from admission records 
at a specific hospital over a 6-month period. Did the dosage of either drug result 
in a stronger correlation with shortened length of stay (LOS) in the institution? 

 

Table 13.15 Data Comparing Two Drugs and Length of Stay 

 
Patient 

 
LOS (days) 

Drug A 
(mg/kg) 

Drug B 
(mcg/kg) 

1 3 2.8 275 
2 2 4.0 225 
3 4 1.5 250 
4 3 3.0 225 
5 2 3.7 300 
6 4 2.0 225 
7 4 2.4 275 
8 3 3.5 275 
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Table 13.16 Data Comparing Two Methods 

Method GS Method ALT 
90.1 89.8 
85.2 85.1 
79.7 80.2 
74.3 75.0 
60.2 61.0 
35.5 34.8 
24.9 24.8 
19.6 21.1 

 
3. It is believed that two assay methods will produce identical results for analyzing 

a specific drug. Various dilutions are assayed using both the currently accepted 
method (GS) and the proposed alternative (ALT). Based on the results listed in 
Table 13.16, does a high correlation exist? 

 
4. A random sample of twelve students graduating from a school of pharmacy was 

administered an examination to determine retention of information received 
during classes. The test contained four sections covering pharmacy law, 
pharmaceutical calculations (math), pharmacology (p’cology) and medicinal 
chemistry (medchem). Listed in Table 13.17 are the results of the tests. Create a 
correlation matrix to compare the results and relationships between the various 
sections and total test score. Which of the two sections most strongly correlated 
together? Which section has the greatest correlation with the total test score? 

 

Table 13.17 Data for Problem 4 

Student Law Math P’cology Medchem Total 
001 23 18 22 20 83 
002 22 20 21 18 81 
003 25 21 25 17 88 
004 20 19 18 20 77 
005 24 23 24 14 85 
006 23 22 22 20 87 
007 24 20 24 15 83 
008 20 17 15 22 74 
009 22 19 21 23 85 
010 24 21 23 19 87 
011 23 20 21 19 83 
012 21 21 20 21 83 
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14 
 
Regression Analysis 
 
 
 
 Unlike the correlation coefficient, regression analysis requires at least one 
independent variable. Where correlation describes pair-wise relationships between 
continuous variables, linear regression is a statistical method to evaluate how one or 
more independent (predictor) variables influence outcomes for one continuous 
dependent (response) variable. In linear regression a line is computed that best fits 
between the data points. If a linear relationship is established, the magnitude of the 
effect of the independent variable can be used to predict the corresponding magnitude 
of the effect on the dependent variable. For example a person’s weight can be used to 
predict body surface area. The strength of the relationship between the two variables 
can be determined by calculating the amount of the total variability that can be 
accounted for by the regression line.  
 Both linear regression and correlation are similar, in that both describe the 
strength of the relationship between two or more continuous variables. However, with 
linear regression, also termed regression analysis, a relationship is established 
between the two variables and a response for the dependent variable can be estimated 
based on a given value for the independent variable. For correlation, two dependent 
variables can be compared to determine if a relationship exists between them. 
Similarly, correlation is concerned with the strength of the relationship between two 
continuous variables. In regression analysis, or experimental associations, 
researchers control the values of at least one of the variables and assign objects at 
random to different levels of these variables. Where correlation simply describes the 
strength and direction of the relationship, regression analysis provides a method for 
describing the nature of the relationship between two or more continuous variables. 
 The correlation coefficient can be very useful in exploratory research where the 
investigator is interested in the relationship between two or more continuous 
variables. One of the disadvantages of the correlation coefficient is that it is not very 
useful for predicting the value of y from a value of x, or vice versa. As seen in the 
previous chapter, the correlation coefficient (r) estimates the extent of the linear 
relationship between x and y. However, there may be a close correlation between the 
two variables that are based on a relationship other than a straight line (for example, 
Figure 13.3). The formulas for correlation and regression are closely related with 
similar calculations based upon the same sums and sums of squares. Therefore, if an 
independent variable is involved, calculating both is useful because the correlation 
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coefficient can support the interpretation associated with regression. This chapter will 
focus primarily on simple regression, where there is only one independent or 
predictor variable. The adjective linear is used to denote that the relationship between 
the two variables can be described by a straight line. 
 There are several assumptions associated with the linear regression model. First, 
values on the x-axis, which represent the independent variable are “fixed.” These 
nonrandom variables are predetermined by the researcher so that responses on the y-
axis are measured at only predetermined points on the x-axis. Because the researcher 
controls the x-axis it is assumed that these measures are without error. Second, for 
each value on the x-axis there is a subpopulation of values for the corresponding 
dependent variable on the y-axis. As will be discussed later, for any inferential 
statistics or tests of hypotheses, it is assumed that these subpopulations are normally 
distributed. For data that may not be normally distributed, for example, AUC or Cmax 
measures in bioavailability studies, log transformations may be required to convert 
such positively skewed data to a more normally distributed subpopulation. Coupled 
with the assumption of normality is homogeneity of variance, in that it is assumed 
that the variances for all the subpopulations are approximately equal. Third, it is 
assumed that these subpopulations have a linear relationship and that a straight line 
can be drawn between them. The formula for this line is: 

 
xx/y βαμ +=                                          Eq. 14.1 

 
where μy/x is the mean for any given subpopulation for an x-value for the predictor 
independent variable. The terms α and β represent the true population y-intercept and 
slope for the regression line, respectively. Unfortunately, we do not know these 
population parameters and must estimate these by creating a line, which is our best 
estimate based on the sample data. 
 
The Regression Line 
 
 As seen above, linear regression is involved with the characteristics of a straight 
line or linear function. This line can be estimated from sample data. Similar to 
correlation, a scatter plot offers an excellent method for visualizing the relationship 
between the continuous variables. In the simple regression design there are only two 
variables (x and y). The x-axis, or abscissa, represents the independent variable and 
the y-axis, the ordinate, is the dependent outcome. The scatter plot presented in 
Figure 14.1 shows a typical representation of these variables with y on the vertical 
axis and x on the horizontal axis. In this case x is a specific amount of drug (mcg) 
administered to mice, with y representing some measurable physiological response. 
The physiological response is obviously not controllable by the researcher and 
represents the dependent variable. However, prescribed (hopefully exact) doses of the 
drug are administered and represent the independent, researcher controlled variable 
on the x-axis. 
 The first step in a linear regression analysis is to draw a straight line that best fits 
between the data points. The slope of the line and its intercept of the y-axis are then 
used for the regression calculation. As introduced in the previous chapter, the general 
equation (Eq. 13.6) for a straight line is: 
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Figure 14.1 Simple examples of data points for two continuous variables. 

 
 

bx + a =y  
 
In this formula, y is a value on the vertical axis, x is a corresponding value on the 
horizontal axis, a is the point where the line crosses the vertical axis, and b represents 
the amount by which the line rises on the y-axis for each unit increase on the x-axis 
(the slope of the line). A second method for defining these values is that a is the value 
on the y-axis where x = 0 and b is the change in the y-value (the response value) for 
every unit increase in the x-value (the predictor variable).  
 Unfortunately, our estimate of the straight line is based on sample data and 
therefore subject to random error. Therefore, we need to modify our definition of the 
regression line to the following, where e is an error term associated with our 
sampling. 

 
exy ++= βα                                        Eq. 14.2 

 
Once again, it is assumed that the e’s associated with each subpopulation are normally 
distributed with all variances approximately equal.  
 Our best estimate of the true population regression line would be the straight line 
that we can draw through our sample data. However, if asked to draw this line using a 
straight edge, it is unlikely that any two people, using visual inspection, would draw 
exactly the same line to fit best among these points. Thus, a variety of slopes and 
intercepts could be approximated. There are in fact an infinite number of possible 
lines, y = a + bx, which could be drawn between our data points. How can we select 
the “best” line from all the possible lines that can pass through these data points? 
 The least-squares line is the line that best describes the linear relationship 
between the independent and dependent variables. The data points are usually 
scattered on either side of this straight line that fits best between the points on a 
scatter diagram. Also called the regression line, it represents a line from which the 
smallest sum of squared differences is observed between the observed (x,yi) 
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coordinates and the line (x,yc) coordinates along the y axis (sum of the squared 
vertical deviations). In other words, this “best fit” line shows where the sum of 
squares of the distances from the points in the scatter diagram to the regression line in 
the vertical direction of the y-variable is smallest. The calculation of the line that best 
fits between the sample data is presented below. The slope of this line (Eq. 13.7) is: 
 

)x(  xn
y)x)(( xy n = b 22 −

−  

 
Data to solve this equation can be generated in a table similar to the one used for the 
correlation coefficient (Table 13.4). The sample slope (b) is our best estimate of the 
true regression coefficient (β) for the population, but as will be discussed later, it is 
only an estimate.  
 The greater the change in y, for a constant change in x, the steeper the slope of 
the line. With the calculated slope of the line that best fits the observed points in the 
scatter diagram, it is possible to calculate an “anchor point” on the y-axis (the y-
intercept) using Eq.13.7 (that point where the x-value is zero): 
 

n
xb y  = a −  

 
An alternative approach to the scatter diagram is to display the information in a 
table. The regression line can be calculated for the data points in Figure 14.1 by 
arranging the data in tabular format as presented in Table 14.1. Similar to the 
manipulation of data for the correlation coefficient, each x-value and y-value is 
squared, and the product is calculated for the x- and y-value at each data point. These 
five columns are then summed to produce x, y, x2, y2, and xy. Note that y2 is 
not required for determining the regression line, but will be used later in additional 
calculations required for the linear regression model. Using the results in Table 14.1, 
the computations for the slope and y-intercept would be as follows: 
 

Table 14.1 Data Manipulation of Regression Line for Figure 14.1 

 x y x2  y2    xy 
 5 1.2 25 1.44  6.00 
 10 1.9 100 3.61 19.00 
 15 3.1 225 9.61 46.50 
 n = 8 20 3.6 400 12.96 72.00 
 25 5.3 625 28.09 132.50 
 30 5.8 900 33.64 174.00 
 35 7.4 1225 54.76 259.00 
 40 7.7 1600 59.29 308.00 
 = 180 36.0 5100 203.40      1017.00       
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Figure 14.2 Regression line for two continuous variables. 

 
 

10.197  = 
32400 - 40800
6480 - 8136 = 

)(180 - 8(5100)
(180)(36) - 8(1017) = b 2 +  

 

250.067 = 
8

7835.4 - 36 = 
8

(180)10.197 - 36 = a  

 
Based on these data, the regression line is presented in Figure 14.2, where the slope is 
in a positive direction +0.197 (as values of x increase, values of y will also increase) 
and the intercept is slightly above zero (0.067). 
 A quick check of the position of the regression line on the scatter diagram would 
be to calculate the means for both variables ( xX , yX ) and see if the line passes 

through this point. This can be checked by placing the slope, y-intercept, and xX  in 
the straight line equation and then determining if yX  equals the y-value for the mean 
on that axis. In this example, the mean for the abscissa is: 
 

22.5 = 
8

180 = 
n
x = X x


 

 
The mean for the ordinate is: 
 

 4.5 = 
8

36 = 
n

y = X y


 

 
and the y-value for the mean of x is the same as the mean of y: 
 

5.4024.5 = (22.5)10.197 + 250.067 = bx + a =y ≈  
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 If there is a linear relationship (a statistical procedure will be presented later to 
prove that a straight line can fit the data), then it is possible to determine any point on 
the y-axis for a given point on the x-axis using the formula for a line (Eq. 13.6). 
Mechanically we could draw a vertical line up from any point on the x-axis; where it 
intercepts our regression line we draw a horizontal line to the y-axis and read the 
value at that point. Mathematically we can accomplish the same result using the 
formula for a straight line. For example, based on the regression line calculated 
above, if x = 32 mcg of the drug is administered, the corresponding physiological 
response for the y-value would be: 
 

446.37 = 726.30 + 250.067 = )(32)1(0.197 + 250.067 = bx + a =y  
 
If instead the x-value is 8 mcg, the expected y-value physiological response would be: 
 

11.644 = 81.576 + 250.067 = )(8)1(0.197 + 250.067 = bx + a =y  
 
Note that both of these results are approximations. As will be discussed later, if we 
can establish a straight line relationship between the x- and y-variables, the slope of 
the line of best fit will itself vary due to random error. Our estimate of the population 
slope (β) will be based on our best guess, b, plus or minus an amount of uncertainty. 
This will in fact create a confidence interval around any point on our regression line 
and provide a range of possible y-values. However, for the present time the use of the 
straight line equation provides us with a quick estimate of the corresponding y-value 
for any given x-value. Conversely, for any given value on the y-axis it is possible to 
estimate a corresponding x-value using an algebraic modification of the previous 
formula for a straight line: 
 

b
ayx −

=                                                  Eq. 14.3 

 
If one wishes to determine the corresponding x-value for a physiological response of 
5.0, the calculation for the approximate dose of drug would be: 
 

mcg25mcg0266.25
1971.0

06725.00.5
b

ayx ≈=−=
−

=  

 
A method for calculating whether a relationship between two variables is in fact 
linear will be discussed subsequently. Many of the relationships that are encountered 
in research are linear, and those that are not can often be made linear with appropriate 
data transformation techniques. For example, if a scatter diagram shows that a 
nonlinear pattern may exist, it is possible to produce a linear pattern by doing a 
transformation on one of the variables. 
 
Coefficient of Determination 
 
 As the spread of the scatter dots along the vertical axis (y-axis) decreases, the 
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Figure 14.3 Variability of data points around the mean of the 

y-variable and the regression line. 
 
 
precision of the estimated μy increases. A perfect (100%) estimate is possible only 
when all the dots (data points) lie on the straight regression line. The coefficient of 
determination offers one method to evaluate if the linear regression equation 
adequately describes the type of relationship. It compares the scatter of data points 
about the regression line with the scatter about the mean for the sample values of the 
dependent y-variable. Figure 14.3 shows a scattering of points about both the mean of 
the y-distribution ( yX ) and the regression line itself for part of the data presented in 
Figure 14.2. As discussed in Chapter 6, in normally distributed data we expect to see 
data vary around the mean, in this case yX . Also, it is possible to measure the 
deviation of each point (yi) from the mean on the y-axis (labeled “C” in Figure 14.3). 
If there were no linear relationship between the x- and y-variables, we would expect a 
random distribution of points around the mean on the y-axis. However, if the data is 
truly represented by the straight regression line, then a certain amount of this total 
variation can be explained by the deviation from the mean to the line (B). The point 
on the straight line is labeled yc. However, most data points will not fall exactly on the 
regression line and this deviation (A) must be caused by other source(s) (random 
error). 

 The coefficient of determination is calculated using the sum of the squared 
deviations that takes into consideration these deviations (A, B, and C). In this case the 
total deviation equals the explained deviations (defined by the line) plus the 
unexplained deviations: 
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Table 14.2 Residuals for Data Points from the Regression Line 

X y yc Residual 
5 1.2 1.0525 −0.1475 

10 1.9 2.0375 +0.1375 
15 3.1 3.0225 −0.0775 
20 3.6 4.0075 +0.4075 
25 5.3 4.9925 −0.3075 
30 5.8 5.9925 +0.1775 
35 7.4 6.9625 −0.4327 
40 7.7 7.9475 +0.2475 
   = 0 

 
 
where the total deviation is the vertical difference between the observed data points 
and the mean for the y-axis (yi − yX ). The explained deviation is the vertical 
difference between the points on the regression line and the mean for the y-axis (yc −

yX ). The unexplained deviation is the vertical difference between the observed data 
points and their corresponding points on the regression line (yc − yi). These vertical 
distances between the data points and the regression line are called residuals. The 
residuals for this example are presented in Table 14.2. With the line of best fit 
between the data points, the sum of the residuals should equal zero, an equal amount 
of deviation above and below the line. Thus, the best fit line is the line that results in 
the smallest value for the sum of the squared deviations, Σ(yc − yi)2. This term is 
referred to as the residual sum of squares or error sum of squares. 
 The computations presented in Eq. 14.4 can be long and cumbersome; involving 
the calculation of the mean of the y-values ( yX ), the y-value on the regression line 
(yc) for each level of the independent x-value, various differences between those 
values, and then summation of the various differences. A more manageable set of 
formulas uses the sums computed in Table 14.1 to calculate the sum of squares due to 
linear regression: 
 

lainedexpUnExplainedTotal SSSSSS +=                            Eq. 14.5 
 
These will produce the same results as the more time-consuming formula in Eq. 14.4. 
The sum of the total variation between the mean ( yX ) and each observed data point 
(yi) would be the total sum of squares (SStotal) and can be more simply calculated 
using the tabular data in Table 14.1: 
 

n
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  y = )yy(SS
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22
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=
                          Eq. 14.6 

 
The variability explained by the regression line of the deviations between the mean 
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( yX ) and the line (yc) taking into consideration the slope of the line is the explained 
sum of squares (SSexplained): 
 











 
−⋅−= 

= n
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22
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cE                   Eq. 14.7 

 
The remaining, unexplained deviation between the regression line (yc) and the data 
points (yi) is the unexplained sum of squares (SSunexplained). This residual measure can 
be computed by subtracting the explained variability from the total dispersion: 
 

SS  SS = SS explainedtotaldunexplaine −                                Eq. 14.8 
 
Calculation for these sums of squares for the previous example (Table 14.1) would 
be: 
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10.6 = 940.7  41.4 = SS  SS = SS explainedtotaldunexplaine −−  

 
The sum of squares due to linear regression (sum of squares regression) is 
synonymous with the explained sum of squares and measures the total variability of 
the observed values that are associated with the linear relationship. The coefficient of 
determination (r2) is the proportion of variability accounted for by the sum of 
squares due to linear regression. 
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In our previous example the coefficient of determination would be: 
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The coefficient of determination measures the exactness of fit of the regression 
equation to the observed values for y. In other words, the coefficient of determination 
identifies how much variation in the dependent variable can be explained by 
variations in the independent variable. The rest of the variability (1 − r2) is explained 
by other factors, most likely unidentifiable, random error unknown to the researcher 
(coefficient of nondetermination). In our example the computed r2 is 0.9853; this 
indicates that approximately 98.5% of the total variation on the y-axis is explained by 
the linear regression model. As the r2 becomes large, the regression equation accounts 
for a greater proportion of the total variability in the observed values. The coefficient 
of nondetermination (1 − 0.9853) represents a random error of approximately 1.15% 
in this example. 
 Similar to the correlation coefficient, the coefficient of determination is a 
measure of how closely the observations fall on a straight line. In fact, the square root 
of the coefficient of determination is the correlation coefficient: 
 

2rr =                                                Eq. 14.10 
 
In this example the correlation coefficient is the square root of 0.9853 or 0.993. As 
proof of this relationship the correlation coefficient is calculated using Eq. 13.4 and 
the data in Table 14.1: 
 

3.990 = 
957.7166

1656 = 
)(36  8(203.4) )(180  8(5100)

(180)(36)  8(1017) = r
22 −−

−
 

 
This linear correlation (correlation coefficient) can be strongly influenced by a few 
extreme values. One rule of thumb is to first plot the data points on graph paper and 
examine the points visually before reporting the linear correlation. An opposite 
approach would be to consider the correlation coefficient as a measure of the extent of 
linear correlation. If all the data points fall exactly on a straight line, the two variables 
would be considered to be perfectly correlated (r = +1.00 or −1.00). Remember that 
the correlation coefficient measures the strength of the relationship between two 
continuous variables and is not associated with the drawing of a straight line. 
 Sometimes termed the common variance, r2 represents that proportion of 
variance in the response (dependent) variable that is accounted for by variance in the 
predictor (independent) variable. As the coefficient of determination approaches 1.0 
we are able to account for more of the variation in the dependent variable with values 
predicted from the regression equation. Obviously, the amount of error associated 
with the prediction of the response variable from the predictor variable will decrease 
as the degree of correlation between the two variables increases. Therefore, the r2 is a 
useful measure when predicting value for one variable from a second variable. 

Some computer software packages (including Excel and Minitab) list an 
adjusted r2 along with the normal coefficient of determination when providing output 
for linear regression. The r2 calculated previously is an estimate of the population 
coefficient of determination, R2. Expressed as a percentage, the r2 can be modified 
from Eq. 14.9 to be expressed as follows: 
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%100
SS

SS
 = r

total

explained2 ×                                    Eq. 14.11 

 
or it can be rewritten in terms of the unexplained sum of squares: 
 

%100
SS

SS
1 = r

total

dunexplaine2 ×−                                  Eq. 14.12 

 
Both equations will give the same results. The adjusted coefficient of determination 
provides an approximate unbiased estimate of the population R2. The formula is as 
follows: 
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where p is the number of variables involved in the evaluation (in simple linear 
regression p = 2). As will be seen in for multiple regression models, as the number of 
independent (predictor) variables increases, the p value will increase. For our 
previous example with the data from Table 14.1, the r2 was 98.5%. The adjusted R2 is: 
 

983.0
9143.5
1016.01
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61.0

1 = R.Adj 2 =−=

−
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This adjusted r2 could also be multiplied and expressed as a percent. 
 
ANOVA Table 
 
 Once we have established that there is a strong positive or negative relationship 
between the two continuous variables, we can establish the type of relationship 
(linear, curvilinear, etc.). This final decision on the acceptability of the linear 
regression model is based on an objective ANOVA test where a statistical test will 
determine whether the data is best represented by a straight line: 
 
  H0: X and Y are not linearly related 
  H1: X and Y are linearly related 
 
In this case the ANOVA statistic is: 
 

Residual  SquareMean
Regression Linear  SquareMean = F                       Eq. 14.14 
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Source of Variation df SS MS F 
Linear Regression 1 Explained SSExplained/1   MSExplained/ 

  MSUnexplained Residual n − 2 Unexplained SSUnexplained/n − 2 
Total n − 1 Total   

Figure 14.4  ANOVA table for linear regression. 
 
 
where the amount of variability explained by the regression line is placed in the 
numerator and the unexplained residual (or error) variability is the denominator. 
Obviously as the amount of explained variability increases the F-value will increase 
and it becomes more likely that the result will be a rejection of the null hypothesis in 
favor of the alternative that a straight line relationship exists. The decision rule is 
 

with α = 0.05, reject H0 if F > F1,n-2(1 − α) 
 
The numerator degrees of freedom is one for the regression line, since the regression 
line is an estimate of two parameters (α and β) and degrees of freedom are the 
number of parameters minus one (df = 2 − 1). The denominator degrees of freedom is 
n − 2, where n equals the number of data points. The first page for Table B7 in 
Appendix B contains the critical values for one as the numerator degrees of freedom 
and a larger finite set of denominator degrees of freedom. Similar to the one-way 
ANOVA, the computed F is compared with the critical F-value in Table B7, and if it 
is greater than the critical value, the null hypothesis that no linear relationship exists 
between x and y is rejected. The ANOVA table is calculated as presented in Figure 
14.4. 
 As an example of linear regression, assume that 12 healthy male volunteers 
received a single dose of various strengths of an experimental anticoagulant. As the 
primary investigators, we wish to determine if there is a significant relationship 
between the dosage and corresponding prothrombin times. In this case the 
independent variable is the dosage of the drug administered to the volunteers and the 
dependent variable, their responses are measured by their prothrombin times. Results 
 

Table 14.3 Prothrombin Times for Volunteers Receiving Various Doses of 
an Anticoagulant 

 
Subject 

Dose 
(mg) 

Prothrombin 
Time (seconds) 

 
Subject 

Dose 
(mg) 

Prothrombin 
Time (seconds) 

1 200 20 7 220 19 
2 180 18 8 175 17 
3 225 20 9 215 20 
4 205 19 10 185 19 
5 190 19 11 210 19 
6 195 18 12 230 20 
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Table 14.4 Summations of Data Required for Linear Regression 

 
Subject 

Dose 
(mg) 

Time 
(seconds) 

 
x2 

 
y2 

 
xy 

8 175 17 30625 289 2975 
2 180 18 32400 324 3240 

10 185 19 34225 361 3515 
5 190 19 36100 361 3610 
6 195 18 38025 324 3510 
1 200 20 40000 400 4000 
4 205 19 42025 361 3895 

11 210 19 44100 361 3990 
9 215 20 46225 400 4300 
7 220 19 48400 361 4180 
3 225 20 50625 400 4500 

12 230 20 52900 400 4600 
 = 2430 228 495650  4342  46315  

 
 
of the study are presented in Table 14.3. The hypotheses in this case are: 
 
  H0: Dose (x) and prothrombin time (y) are not linearly related 
  H1: Dose and prothrombin time are linearly related 
 
and the decision rule with α = 0.05, is to reject H0 if F > F1,10(0.95), which is 4.96 
(Table B7, Appendix B). The tabular arrangement of the data needed to calculate an 
ANOVA table is presented in Table 14.4. The slope and y-intercept for the regression 
line would be: 
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In this case there would a gradual positive slope to the line (as the dosage increases, 
the prothrombin time increases) and the predicted y-intercept would be 10.78 seconds. 
The total variability around the mean prothrombin time is: 
 

0.10
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)228(4342
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  y = SS

22
2
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−  

 
of which the regression line explains a certain amount of variation: 
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However, an additional amount of variation remains unexplained: 
 

1894.1 = 1185.8  10.0 = SS  SS = SS ETU −−  
 
For this particular example the coefficient of determination is: 
 

810.58 = 
10
88115. = 

SS
SS = r

total

explained2  

 
meaning that only approximately 59% of the total variability is explained by the 
straight line that we drew among the data points. The adjusted R2 would be 
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and the ANOVA table would be: 
 

Source SS df MS F 
Linear Regression 5.8811   1 5.8811 14.278 
Residual 4.1189 10 0.4119  
Total 10.00   11   

 
The resultant F-value is greater than the critical value of 4.96; therefore we would 
reject H0 and conclude that a linear relationship exists between the dosage of the new 
anticoagulant and the volunteers’ prothrombin times. 
 Once the type of relationship is established, it is possible to predict values for the 
dependent variable (prothrombin time) based on the corresponding value for the 
independent variable (dose). Obviously, the accuracy of any prediction, based on a 
regression line, depends on the strength of the relationship between the two variables 
(the higher coefficient of determination the better our predictive abilities). Use of the 
regression analysis enables the researcher to determine the nature (e.g., linear) and 
strength of the relationship, and allows for predictions to be made. 
 It is important to realize that the linear regression line, which fits best between 
our data points, cannot be extrapolated beyond the largest or smallest point for our 
observations (to predict yc values for xi values outside the observed range of xi). For 
example, in our previous example we identified a linear relationship between the dose 
of the experimental anticoagulant and volunteer prothrombin times. This linear 
relationship is illustrated by the solid line in Figure 14.5. What we do not know is 
what will happen beyond 230 mg, the highest dose. Could a linear relationship 
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Figure 14.5 Example of the problems associated with extrapolation. 
 
 
continue (A), might there be an acceleration in the anticoagulant effect (B), a leveling 
of response (C) or an actual decrease in prothromin time with increased doses (D)? 
Correspondingly, we do not know what the relationship is for responses at dosages 
less than 175 mg of the experimental anticoagulant. If more data were available 
beyond the last data point, it might be found that the regression line would level out 
or decrease sharply. Therefore, the regression line and the regression equation apply 
only within the range of the x-values actually observed in the sample data.  
 
Confidence Intervals and Hypothesis Testing for the Population Slope (β) 
 

With linear regression we are dealing with sample data and the only way to 
accurately determine the population parameters of slope (β) and intercept (α) would 
be to collect all the data for the entire population. Since in most cases this would be 
impossible, we have to estimate these parameters using our sample data and our best 
estimates, the sample slope (b) and sample intercept (a). 
 The correlation coefficient (r) and slope of the line (b) are descriptive statistics 
that define different aspects of the relationship between two continuous variables. 
When either r or b equals zero, there is no linear correlation and variables x and y can 
be considered independent of each other, and no mutual interdependence exists. An 
alternative test to our previously discussed ANOVA test for linearity is a null 
hypothesis that no linear relationship exists between the two variables. This is based 
on the population slope (β) of the regression line. In general, a positive ß indicates 
that y increases as x increases, and represents a direct linear relationship between the 
two variables. Conversely, a negative β indicates that values of y tend to increase as 
values of x decrease, and an inverse linear relationship between x and y exists. 
 The hypothesis under test assumes that there is no slope; therefore, a relationship 
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between the variables does not exist: 
 

H0: β = 0 
H1: β ≠ 0 

 
In this case we can either: 1) calculate a t-value and compare it to a critical value or 2) 
compute a confidence interval for all possible slopes for the population (β) to 
determine if β = 0 is a possible outcome. The calculation of the t-value is similar to a 
paired t-test with an observed difference in the numerator and an error term in the 
denominator: 
 

S
  b

 = t
b

0β−
                                                Eq. 14.15 

 
Based on the null hypothesis, β0 is an expected outcome of zero or no slope and Sb is 
an error term that is defined below.  
 Calculation of the error term involves variability about the regression line. The 
variation in the individual yi values about the regression line can be estimated by 
measuring their variation from the regression line for the sample data. The standard 
deviation for these observed yi values is termed the standard error of the estimate 
(Sy/x) and is calculated as follows: 
 

MS = 
2n

) y  y( 
 = S residual

2
ci

y/x −
−

                        Eq. 14.16 

 
where the numerator is SSunexplained and the denominator represents the degrees of 
freedom associated with the unexplained error. Thus, the standard error of estimate 
equals the square root of the mean square residual from the ANOVA table. If there is 
no relationship between the two continuous variables, the slope of the regression 
equation should be zero. The value Sy/x is also referred to as the residual standard 
deviation. In this case the residual standard deviation would be 
 

642.04119.0MSS residualx/y ===  
 
The standard error of the estimate could be used as a measure of precision for the 
regression line to predict a dependent variable (yi) for a given independent value (xi):  
 

x/ySbxay ±+=                                      Eq. 14.17 
 
The magnitude of Sy/x is proportional to the magnitude of the y-variable and a poor 
method for comparing different regressions. To standardize this error term, it has been 
recommended that the standard error of the estimate be divided by the mean of the  y-
axis (Dapson, 1980, p. 545). This creates a relative standard deviation for the 
regression line: 
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%100
X

S
RSD

y

x/y
regression ×=                              Eq. 14.18 

 
For this particular example, the mean on the y-axis is 19 (Σy/n = 228/12). Therefore, 
the RSD for the regression line would be: 
 

%38.3%100
19
4119.0RSDregression =×=  

  
To test the null hypothesis H0: β = 0, we need to calculate a standard error of the 
sample slope (b), which is our estimate of population slope (β): 
 

) X  x( 

S = S
2

i

y/x
b

−
                                       Eq. 14.19 

 
where the sum of the deviations on the x-axis is: 
 

n
)x(  x = )X  x(

2
22

i
−−                                Eq. 14.20 

 
from data collected in tables such as Table 14.4 and the mean square residual from the 
ANOVA table. The formula can be simplified to:  
 

n
)x(  x

MS = S 2
2

residual
b

−
                                         Eq. 14.21 

 
The decision rule is to reject H0 (no slope) if t in Eq. 14.15 is greater than tn-2(1 − α/2) 
or less than –tn-2(1 − α/2) as previously used for a two-tailed test. With regression, we 
are dealing with sample data that provides the information for the calculation for an 
intercept (a) and slope (b), which are estimates of the true population α and β. 
Because they are samples, they are subject to random error similar to previously 
discussed sample statistics. The number of degrees of freedom is n − 2. The number 
two subtracted from the sample size represents the two approximations in our data: 1) 
the sample slope as an estimate of β and 2) the sample y-axis intercept as an estimate 
for α. 
 As noted, a second parallel approach would be to calculate a confidence interval 
for the possible slopes for the population: 
 

S  /2)(1t  b = b2-n ⋅−± αβ                                Eq. 14.22 
 
In this case the sample slope (b) is the best estimate of the population slope (β) 
defined in Eq. 14.1: 
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xx/y βαμ +=  
 

By creating a confidence interval we can estimate, with 95% confidence, the true 
population slope (β). As with previous confidence intervals, if zero falls within the 
confidence interval the result of no slope is a possible outcome; therefore, one fails to 
reject the null hypothesis and must assume there is no slope in the true population and 
thus no relationship between the two continuous variables. 
 Using our example of the 12 healthy male volunteers who received a single dose 
of various strengths of an experimental anticoagulant (Tables 14.3 and 14.4), one 
could determine a significant relationship between the dosage and the corresponding 
prothrombin time exist by determining a slope to the regression line for the 
population based on sample data. Once again, the null hypothesis states that there is 
no slope in the population: 
 
     H0:   β = 0 
     H1:   β ≠ 0 
 
The decision rule is, with α = 0.05, reject H0 if t > t10(1 − α/2) which equals 2.228 
(Table B5, Appendix B). The calculation of Sb is: 
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and the calculation of the t-statistics is: 
 

4973. = 
070.01

0  0.0406 = 
S

0  b = t
b

−−  

 
The decision in this case is, with t > 2.228, to reject H0 and conclude that there is a 
slope and thus a relationship exists between dosage and prothrombin times. Note that 
the results are identical to those seen in the ANOVA test. In fact, the square of the t-
statistic equals our previous F-value (3.792 ≈ 14.27, with rounding errors). 
 A possibly more valuable piece of information is obtained by calculating the 95% 
confidence interval that estimates the true population slope (Eq. 14.22): 
 

S  /2)(1t  b = b2-n ⋅−± αβ  
 
For our example the estimate on β would be: 
 

380.02  060.04 = )07(0.01282.2  060.04 = ±±β  
 

440.06 <  < 1680.0 β  
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Figure 14.6 Range of possible population slopes (β). 

 
 
Since zero does not fall within the confidence interval, β = 0 is not a possible 
outcome; therefore H0 is rejected once again and the researcher concludes that a 
relationship exists between the two variables. It is possible to predict, with 95% 
confidence, that the true population slope is somewhere between +0.0168 and 
+0.0644. Figure 14.6 illustrates that even though our sample data provides us with an 
estimate of the slope (b = +0.04), the true slope for the population could range from 
+0.0168 to +0.0644 around the mean on the x-axis. 
 

202.5 = 
12

2430 = 
n
x = X 

 

 
If the null hypothesis is rejected in favor of the alternate hypothesis that 
β ≠ 0, then higher values of x would correspond with higher predicted values of y. In 
this case, there would be a positive correlation. 
 As mentioned previously, the population slope (β) is sometimes referred to as the 
population regression coefficient. An alternative formula for calculating the slope is: 
 

S
S  r = b

x

y⋅                                                Eq. 14.23 

 
where r is our correlation coefficient and the standard deviations for each variable are 
represented by standard deviations for each axis (Sx and Sy). In the above example of 
prothrombin times, the standard deviation of the x-variable (dosage) is 18.0278, the 
standard deviation for the y-variable (prothrobin time) is 0.9535 and the correlation 
coefficient is 0.7676 (square root of r2 = 0.5893). 
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This result is identical to our previous calculation for the slope of the line. 
 By testing the significance associated with the slope of the regression line we can 
be certain that the observed linear equation did not represent simply a chance 
departure from a horizontal line when there was no relationship between the two 
continuous variables. However, using a t-test to determine the significance of the 
relationship, we make additional assumptions that the y-values at different levels of x 
have equal variances and that their distributions are normal in shape. 
 
Confidence Intervals and Hypothesis Testing for the Population Intercept (α) 
 
 Because the intercept (a) represents only a sample, it is possible to estimate the 
population intercept and test if it is significantly different form zero. The calculations 
involve the residual standard deviation (Sy/x) and follow similar procedures to those 
discussed in the previous section. The standard error for the intercept is calculated 
as follows: 
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This value can be used to calculate either a t-statistic confidence interval: 
 

aS
at =                                              Eq. 14.25 

 
a2n S)2/1(ta ⋅−±= − αα                               Eq. 14.26 

 
In the previous example the Sy/x was 0.642 and therefore the standard error for the 
intercept would be 
 

181.255.11642.0
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The calculation for the t-statistic and the hypothesis H0: α = 0 would be: 
 

942.4
181.2
779.10

S
at

a

===  

 
The result would be a significant difference (p < 0.001) and rejection of the 
hypothesis that α = 0. The confidence interval would be: 
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859.4779.10)181.2(228.2779.10 ±=±=α  
 

648.15920.5 << α  
 
With 95% confidence the true value for the prothrombin time at x = 0 is somewhere 
between 5.92 and 15.64 seconds. 
 
Confidence Intervals for the Regression Line 
 
 The difference between the observed value and predicted value on our regression 
line (yi − yX ) is our best estimate of the variation of the y population around the true 
regression line. The variance term Sy/.x

2, or the mean square residual, is an estimate of 
the variance of the Y  population about the true population regression line. The 
standard deviation about regression is a third synonym for Sy/x and is more 
meaningful than the variance term and signifies the standard deviation of y at a given 
x-value. 
 As discussed previously, for a given value on the x-axis it is possible to estimate 
a corresponding y-value using y = a + bx. Also, because we assume data is normally 
distributed on the y-axis for any point on the x-axis, a confidence interval for the 
expected y-value can be computed using a modification of the formula for the 
hypothesis test of the slope. 
 

n
)x(

  x

)X  x(
 + 

n
1  MS  /2)(1t  y =y 2

2

2
i

residual2-nc 
−

−
⋅⋅−± α              Eq. 14.27 

 
where the MSresidual is the mean square residual from the ANOVA table in the original 
regression analysis. Assuming that each point on the regression line (yc) gives the best 
representation (mean) of the distribution of scores, it is possible to estimate the mean 
of y for any point on the x-axis. 
 In calculating the 95% confidence interval around the regression line, it is 
assumed that data are approximately normally distributed in the vertical direction 
along the y-axis (this may require transformation of the data before any of the 
previous calculations). If we have a large sample size, we would expect that 
approximately 95% of our prediction errors fall within ± 1.96 Sy/x. The errors in 
predicting y for a given value of x are due to several factors. Obviously, there is 
random variation of y about the true regression line that is expressed as Sy/x. In 
addition there is an error in estimating the y-axis intercept of the true regression line 
(α) and an error in estimating the slope of the true regression line (β). Because of the 
error due to estimating the slope of the line, the error in the estimate of the slope will 
become more pronounced for values of the independent variable (xi) as those values 
deviate more from the center (the mean x-value, X ). This produces a bowing of the 
confidence bands as seen in Figure 14.7. The point at which the deviation is least, or 
where the confidence interval is the smallest, is at the mean for the observed x-values. 
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Figure 14.7 Graphic illustration of 95% confidence intervals.  

 
 
This would seem logical since we expect less error as one moves to the middle of the 
distribution for x-values and we expect a larger error as one approaches the extreme 
areas of the data. 
 Once again, we will use the previous anticoagulant example to illustrate the 
determination of confidence intervals. With 95% confidence, what is the  
expected mean prothrombin time at a dosage of 210 mg of the anticoagulant? Based 
on the previous data in Table 14.4 we know the following: x = 2,430 and n = 12. 
The mean for the independent variable is: 
 

202.5 = 
12

2430 = 
n
x = X 

 

 
Based on previous calculations the slope (b) is 0.04 and the y-intercept (a) is 10.9. 
Lastly, from the analysis of variance table, the mean square residual (Sx/y

2) is 0.4107. 
Using this data the first step is to calculate the yc value for each point on the 
regression line for values of the independent variable (xi). The yc would be the best 
estimate of the center for the interval. For example, the expected value on the 
regression line at 210 mg would be: 
 

19.3 = 0.04(210) + 10.9 = bx + a = y ic  
 
The calculation of the confidence interval around the regression line at 210 mg of 
drug would be: 
 

12
)(2430

 - 495650

)202.5 - (210
 + 

12
1070.41282.2  19.3 = y 2

2

±   
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Table 14.5 95% Confidence Intervals at Selected Dosages  

Dose 
(mg) 

Time 
(seconds) 

 
yc 

Lower 
Limit 

Upper 
Limit 

 
Range 

175 17 17.9 17.10 18.70 1.60 
180 18 18.1 17.40 18.80 1.40 
190 19 18.5 17.98 19.02 1.04 
200 20 18.9 18.47 19.33 0.86 
210 19 19.3 18.85 19.75 0.90 
220 19 19.7 19.10 20.30 1.20 

230 20 20.1 19.31 20.89 1.58 

 
 

449.03.19
3575
56.25 + 30.083)09(0.64282.2  19.3 = y ±=±  

 
749.19y851.18 <<  

 
Thus, based on sample data and the regression line that fits best between the data 
points, the researcher could conclude with 95% confidence that the true population 
mean for a dosage of 210 mg would be between 18.85 and 19.75 seconds. Results 
from the calculation of the confidence intervals at the various levels of drug used are 
presented in Table 14.5 and graphically represented in Figure 14.7. 
 
Inverse Prediction 
 
 As seen in the previous section, the original prediction of y for any given x using 
the straight line equation is: 
 

bxay +=  
 

This offers a quick estimate, but a more exact estimate is the confidence interval (Eq. 
14.27) at any point on the independent variable, the x-axis. Similarly, Eq. 14.3 is only 
a quick estimate of a possible value of the x-axis for any given value of the dependent 
(y-axis) variable. Following the same logic as the previous calculations (Eq. 14.27), a 
95% confidence interval can be created on the x-axis around the value xi determined 
by Eq. 14.3. 
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where the intermediate K is based on the slope, the critical t-value and standard 
deviation about the line Sb: 
 

2
b

22 StbK −=                                        Eq. 14.29 
 
For example, assume we want to predict a dosage that would be required to produce a 
prothrombin time of 20. In this case the y-value was 195, y was 19 (228/12) and the 
slope was calculated to be 0.04. The t-value remains the same for a 95% confidence 
interval (2.228) and the Sb was previously calculated. The best estimate of x, with 
95% confidence, would be: 
 

mg13.227
0406.0

7785.1020
b

ayx =−=
−

=  

 
The 95% confidence interval around that best estimate would be: 
 

00108.0)0107.0()228.2()0406.0(K 222 =−=  
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4163.507226.26400145.09980.13237226.264x ±=±=  

 
14.315x31.214 <<  

 
Thus, with 95% confidence, the true dosage to obtain a prothrombin time of 20 is 
somewhere between 214.31 and 315.14 mg of drug. This computation is sometimes 
referred to as inverse prediction. Note in the previously worked out example that the 
confidence interval is asymmetric around the estimated x-value. The inverse 
prediction interval is symmetrical only at the mean for sample data on the y-axis. The 
interval becomes more asymmetrical as y-values become more distant from the mean. 
 
Multiple Data at Various Points on the Independent Variable 
 
 What if the data represents multiple measures (e.g., duplicate or triplicate assays) 
at the same points for the independent variable? Obviously, more data at each point 
on the x-axis will provide a better estimate of the true population values and should 
create a smaller confidence interval for both the estimate of β and the intervals around 
the line of least squares. For illustrative purposes, consider Table 14.1 where the 
results were single data points for each level of the independent variable. Instead, let 
us assume that each result is instead the mean of a duplicate assay (Scenario A) or 
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triplicate measure (Scenario B). The calculations would be the same as those 
originally used for the data in Table 14.1, but now the number of data points will 
increase from 16 or 24 for duplicate and triplicate measures. There would be a slight 
modification of Eqs. 14.6 and 14.7 where there are j-points on the x-axis, but now 
there are also i-possible points at each of these j-points. 
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The calculation would be basically the same, using ∑x, ∑y, etc., but the degrees of 
freedom for the residual error and total error would be adjusted for the new larger 
sample size. Results of the three outcomes are presented in Table 14.6. Due to the 
larger sample size and more information about the population, there are smaller 
ranges for the slopes and decreased widths in the confidence bands. 
 
Lack-of-Fit Test 
 
 When there is more than one observation at different levels of the independent 
variable it is possible to evaluate how well the data fit a straight line. The test actually 
evaluates whether there is a lack-of-fit on the regression line. 
 
    H0:  There is no lack of linear fit 
    H1:  There is lack of linear fit 
 
In the ideal situation each point on the independent (predictor) variable would have an 
equal number of observations, but the lack-of-fit analysis can be performed even if 
there is only one point with multiple observations. At the same time, this is one of the 
limitations of the lack-of-fit test, in that more than one observation is required for at 
least one level of the independent variable. With multiple observations at different 
levels of the independent variable, there two types of errors: 1) pure error and 2) error 
due to a lack of fit. The sum of squares due to error (unexplained variability) is a 
combination of a sum of squares due to “pure” error and a sum of squares due to lack 
of fit. 
 

LOFPEU SSSSSS +=  
 
The “pure” error is the sum of squared of the differences between each data point and 
their corresponding average for all values at specific points on the independent 
variable. This is the variation of each data point around the mean of each given point 
on the x-axis. 
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Table 14.6 Results with Duplicate and Triplicate Measures  

 Original Data Scenario A Scenario B 

n 8 16 24 

Slope 0.197 0.197 0.197 

Intercept 0.064 0.064 0.064 

Coefficient of 
Determination 

0.986 0.986 0.986 

F (p) 414.00  
(9.2 × 10-7) 

850.90  
(6.1 × 10-14) 

1392.43  
(2.2 × 10-21) 

β 0.1548<<0.2395 0.1711<<0.2232 0.1770<<0.2173 

β range 0.085 0.052 0.040 

CI at 5 0.554<<1.545 4.228<<4.772 7.454<<8.445 

Range at 5 0.991 0.544 0.991 

CI at 22.5 0.747<<1.353 4.334<<4.666 7.647<<8.253 

Range at 2.5 0.606 0.326 0.606 

CI at 40 0.804<<1.296 4.372<<4.628 7.704<<8.196 

Range at 40 0.492 0.256 0.492 
 
 

 )yy(SS
J

1j

I

1i

2
jijPE 

= =
−=                            Eq.  14.32 

 
If the SSU = SSPE + SSLF, the determination of the sum of squares for the lack-of-fit 
would be 
 

PEULOF SSSSSS −=                              Eq. 14.33 
 
The ANOVA table is expanded to evaluate the lack of fit in the data (Figure 14.8). 
The degrees of freedom for the lack-of-fit error is expressed as J − 2 (the number of 
levels of the independent variable minus two) and pure error is N − 2 − (J − 2) or N − 
J (the total number of observations minus the number of levels of the independent 
variable).  The number of degrees of freedom for the pure error and the lack−of−fit 
will sum up to the residual (unexplained) degrees of freedom. The mean squares are 
calculated as in the past by dividing the sum of squares by their respective degrees of 
freedom 
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Source of Variation df SS MS F 
Linear Regression 1 Explained SSExplained/1   MSExplained/ 

  MSUnexplained Residual N − 2 Unexplained SSUnexplained/n − 2 
   Lack of Fit J − 2 LOF SSLOF/ MSLOF/MSPE 
   Pure Error N − J PE SSPE/  
Total N − 1 Total   

Figure 14.8  ANOVA table for linear regression. 
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=                                       Eq. 14.35 

 
To determine if there is a significant lack of fit from the linear model, the mean 
square for the lack−of−fit is divided by the mean square for the pure error 
 

PE

LOF
MS

MS
F =                                           Eq. 14.36 

 
The critical F-value is determined with J− 2 numerator degrees of freedom and N − J 
denominator degrees of freedom and predetermined Type I error. If the resultant F-
statistic exceeds the critical value or the associated p-value less than the Type I error, 
then the null hypothesis of no lack of linear fit is rejected. 
 As an example, assume the study in Table 14.1 was repeated with triplicate 
measures and by changing the mean for each point on the independent variable. The 
results are seen in Table 14.7. The same calculations are used to determine the initial 
ANOVA table: 
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Table 14.7 Repeat of Study in Table 14.1 with Triplicate Measures 

     x            y         x2          y2        xy 
 5 1.22 25 1.49 6.10 
 5 1.24 25 1.54 6.20 
 5 1.14 25 1.30 5.70 
 10 1.98 100 3.92 19.80 
 10 1.87 100 3.50 18.70 
 10 1.85 100 3.42 18.50 
 15 3.13 225 9.80 46.95 
 15 3.10 225 9.61 46.50 
 15 3.07 225 9.42 46.05 
 N = 24 20 3.63 400 13.18 72.60 
  J = 8 20 3.59 400 12.89 71.80 
 20 3.58 400 12.82 71.60 
 25 5.36 625 28.73 134.00 
 25 5.28 625 27.88 132.00 
 25 5.26 625 27.67 131.50 
 30 5.88 900 34.57 176.40 
 30 5.73 900 32.83 171.90 
 30 5.79 900 33.52 173.70 
 35 7.50 1225 56.25 262.50 
 35 7.38 1225 54.46 258.30 
 35 7.32 1225 53.58 256.20 
 40 7.62 1600 58.06 304.80 
 40 7.73 1600 59.75 309.20 
 40 7.75 1600 60.06 310.00 
 = 540 108.00 15300 610.26 3051.00 

 
 
The sum of squares for the pure error would be 
 

06.0 = )7.775.7(...)2.124.1()2.122.1( = )yy( = SS 2222
ijPE −+−+−−

 
 
The sum of squares for the lack of fit would be 

 
77.106.084.1SSSSSS PEULOF =−=−=  

 
An analysis of the data using Minitab shows identical results (Figure 14.9). The F-
statistic for the lack of fit would be: 
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1606.0
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PE
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Figure 14.9  Minitab results for the data in Table 14.7. 

 
 
Even though the coefficient of determination (r2) indicates that the line accounts for 
98.5% of the variability on the y-axis, the resultant p-value is much less than the 
acceptable Type I error of 0.05. The null hypothesis would be rejected in favor of the 
alternative that there is a lack of fit with the line best fit.  
 Lack of fit considers both the linear variation of the data as well as the variability 
(or precision of the data) at each point on the x-axis. Tighter numbers (greater 
precision) can result in a failure to meet the criteria for fit. Figure 14.10 shows the 
comparison between the data in Table 10.7 (on the left) and more dispersed data on 
the right. The tighter data fails the lack-of-fit test, but the less precise information 
successfully fits the linear model. 
 
Assessing Parallelism of the Slopes of Two Samples  
 

At times the researcher may wish to compare the linear regression lines from two 
different samples to determine if there are any statistical differences between the two 
slopes or distance between the lines (e.g., y-intercepts are different). When comparing 
the slopes for two samples to determine if the slopes for their respective populations 
are the same, the hypotheses tested are as follows: 
 

H0:  β1 = β2 
H1:  β1 ≠ β2 

 
If the null hypothesis is rejected, the two population slopes are different. The best 
estimate for the population slopes would be the sample slopes, b1 and b2. The 
evaluation of parallelism is handled similarly to the ratio method for dealing with a 
two-sample t-test (Chapter 9); where the numerator is the best guess of the difference 
(b1 − b2) and the denominator contains an error term (as will be seen in Eq. 14.31). 
The first step is to create a weighted average deviation term, analogous to the pooled 
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Tight dispersion - Coefficient of determination = 0.985 
Lack of fit test - Possible curvature in dependent variable  (p-value = 0.029 ) 

Wide dispersion - Coefficient of determination = 0.975 
Lack of fit test - No evidence of lack−of−fit (p ≥ 0.1). 

Figure 14.10  Lack-of-fit with different dispersions. 
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variance in the two-sample t-test (Eq. 9.3). In this case we create what is called a 
pooled residual mean square, a term that represents the addition of the two sum-of-
squares residuals (SSR) for each slope (this involves calculating an ANOVA table for 
each regression line) divided by their representative degrees of freedom (n − 2 for 
each line): 
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=                              Eq. 14.37 

 
This pooled residual mean square then becomes part of the denominator in the 
calculation of the t-statistic. Notice the similarities between this equation and the two-
sample t-test (Eq. 9.6): 
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Assessment of significance is determined by comparing the calculated t-value with 
the critical value off a t-table (Table B5 in Appendix B) for 1 − α/2 level of 
significance and the appropriate degrees of freedom (n1  +  n2  –  4). 

A confidence interval can be used also to assess parallelism, by creating the 
interval and determining if zero falls within the interval. Once again, this interval is 
analogous to the interval created for the two-sample t-test (Eq. 9.4): 
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If the null hypothesis is rejected (t > tcritical or t < −tcritical) we can assume that the two 
lines do not have the same slopes and are not parallel to each other.  
 As an example, assume the following data have been collected at a pharmacy 
department in a large hospital for two different suspensions of a carbonic anhydrase 
inhibitor. Table 14.8 lists the results for the two formulations (Suspension B involving 
a sugar-free vehicle). Results of the various calculations are presented in Table 14.9. 
The null hypothesis would be that both suspensions degrade at the same rate, 
illustrated by the fact that the slopes of the two regression lines are equal: 
 

H0: βA = βB 
H1: βA ≠ βB 
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Table 14.8 Stability Data for Suspensions 

 % Labeled Amount 

Time (months) Suspension A Suspension B 
0 99.2 99.50 
1 98.7 98.80 
2 96.9 97.10 

2.5 - 96.50 
3 96.1 95.90 

3.5 - 95.40 
4 95.5 95.10 

 
 

Table 14.9 Summary Results for Suspensions 

 Suspension A Suspension B 
n 5 7 

Σx 10 16 
Σy 486.4 678.3 
Σx2 30 48.50 
Σy2 47327.40 65744.33 
Σxy 962.8 1536.25 
b −1.000 −1.186 
a 99.28 99.61 

SST 10.408 17.060 
SSE 10.0 16.785 
SSR 0.408 0.275 

F (p) 73.5 (p = 0.003) 305.3 (p < 0.001) 
 
 
Additional information needed to evaluate the results of the study is presented in 
Table 14.10. The calculation to assess parallelism (using the t-ratio approach) would 
be as follows: 
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Table 14.10 Additional Summary Results for Suspensions 

 Suspension A Suspension B 
n 5 7 
df 3 5 
Σx 10 16 
Σx2 30 48.50 
b −1.000 −1.186 

SSR 0.408 0.275 
 
 
The decision rule would be, with α = 0.05, reject H0 if t > t8(0.975) or t < t8(0.975), 
which is 2.306 from Table B5 for n1 + n2 − 4 degrees of freedom. With 1.488 < 2.306, 
we fail to reject the null hypothesis and cannot identify a significant difference 
between the slopes for the two carbonic anhydrase inhibitor suspensions. Creation of 
a confidence interval confirms that the difference of 
 

H0:  β1 − β2 = 0 
 
is a possible outcome that falls within the interval: 
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288.0186.0)125.0)(306.2()186.0(21 ±+=±+=− ββ  

 
474.0102.0 21 <−<− ββ  

 
Because zero falls within the interval we fail to find a significant difference between 
the two slopes. 

As seen in Figure 14.11, the two slopes are not identical, but relatively close, 
especially considering the results are based on only a total of 12 data points. 
Unfortunately, if we fail to reject the null hypothesis we do not prove that the two 
lines are parallel to each other; we simply fail to identify a difference. Problems with 
this approach to assessing parallelism have been discussed by Hauck (Hauck, 2005).  
 
Curvilinear and Non-Linear Regression 

 
Simple linear regression (SLR) has been discussed in the previous sections of this 
chapter. It assesses the relationship between data and a straight line that fits between 
these points. Such information can be assessed visually, using an ANOVA table or 
the strength of the coefficient of determination (r2). Other graphic assessments of 
linearity including the plotting of the residuals or the if the residuals follow a normal 
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Figure 14.11 Graphic illustration of two similar slopes. 
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Figure 14.12  Plot of residuals for data in Table 14.1 
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Figure 14.13  Plot of residuals for data in Table 14.3. 
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Figure 14.14  Examples of curvilinear distributions. 

 
 
distribution. If a linear relationship exists we would expect the residuals to be 
randomly distributed between positive and negative values. For example, a plot of the 
residuals for data in Table 14.1 is presented in Figure 14.12. However, in a similar 
plot of the data in Table 14.3, even though statistically a linear relationship (p < 
0.004), the residuals appear to be less random (Figure 14.13). Residual plots can be 
helpful 
in identifying possible nonlinear relationships. Often in research there are curvilinear 
relationships instead of simple linear relationships. Fortunately, many such relation-
ships can be expressed and evaluated as linear relationships. 

The goal of a curvilinear regression is to describe the shape of the relationship 
between two continuous variables. Is the best fit linear or could it be something else? 
Curvilinear regression is sometime called trend analysis. For curvilinear regression 
we use models to fit a curve instead of a straight line through our sample data points. 
Also referred to as polynomial regression, various polynomial equations are used to 
fit the curve. The most common are quadratic or cubic models, as illustrated in Figure 
14.14: quadratic (one bend or parabolic curve in the line) and cubic (two bends in the 
line). The linear equation for a polynomial equation is referred to as the first degree, 
the quadratic is of the second degree, and the cubic is of the third degree. More 
complex and rarely used trends (higher order trends) would include quartic (three 
bends) and quantic (four bends) trends. Sometimes a visual inspection of a scatter plot 
for sample data can reveal a degree of curvilinearity. These nonlinear relationships 
can also be applied to a correlation model where the independent variable is sampled 
at random and not specifically spaced or timed like regression. 
 With polynomial regression, polynomial equations are employed for the 
calculation of possible relationships. Curvilinear regression uses a linear model to fit 
a curved line to data points. It involves a hierarchical format by adding powered 
vectors to the analysis (e.g., quadratic where x is squared, cubic where x is raised to 
the third power). Modifying the equation for simple linear regression (Eq. 14.2) these 
are: 
 

exyLinear 1 ++= βα  

exxyQuadratic 2
1211 +++= ββα                      Eq. 14.40 
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Table 14.11  Responses for Dietary Supplement Based on Days Treated 

Days %  Response Days %  Response Days % Response 

1 11 6 36 11 87 
1 12 6 41 11 89 
2 16 7 53 12 89 
2 19 7 59 12 93 
3 28 8 67 13 93 
3 24 8 63 13 96 
4 27 9 75 14 95 
4 33 9 83 14 98 
5 31 10 81   
5 42 10 84   

 
 

 
 

    

exxxyCubic 3
13

2
1211 ++++= βββα              Eq. 14.41 

 
The introduction of the power terms is to account for the bends into the regression 
line. With simple linear regression, the regression line is straight (first order 
polynomial equation) and the formula is identical to Eq. 14.2. With the addition of the 
quadratic term, there is a single bend and the addition of x2 (second order) and with 
the cubic term the addition of x3 (third order). In all three cases the data represents a 
single independent variable and its effects on a single dependent variable. All of the 
assumptions for simple linear regression apply to the polynomial modifications. 
 Computer software can assist in determining if a curvilinear relationship is a 
better model than a simple linear relationship. To illustrate this, consider the data 
presented in Table 14.11. If we evaluate this data using a simple linear regression 
model we will find a significant result (F = 691.28, p < 0.001 and r2 = 0.964 ). So, if 
we draw the straight line through this data we will find that the line accounts for 
96.4% of the total variation of the y-axis. However, visually we are concerned that 
our data may be curvilinear, so we will let Minitab assess the possibility of a 
quadratic or cubic trend in the data.  The results are as follows: 
 

Relationship Residual Standard Deviation Coefficient of Determination 
Linear 5.891 0.964 
Quadratic 5.631 0.968 
Cubic 4.171 0.983 

 
In this example the regression line for this analysis is a curved line described by a 
third order polynomial equation. It is the best model with the smallest standard 
deviation for the residuals and the largest coefficient of determination. This is visually 
represented in Figure 14.15, where a cubic line is drawn to fit best between the data 
points in Table 14.11. 
 In contrast to curvilinear regression, nonlinear regression fits arbitrary nonlinear 
function associated with the dependent variable. One example of a nonlinear model 
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Figure 14.15  Cubic trend observed in data from Table 14.11. 
 
 
might be something like y = b(1 − e-bx). Nonlinear regression is beyond the scope of 
this book and additional material about the subject can be found in other references 
(Borowiak, 1989; Bates and Watts, 2006).  
 
Multiple Regression Models 
 
 Multiple regression is a logical extension of the concepts illustrated for simple 
linear regression, where we were dealing with a single independent variable and were 
concerned with identifying the line which best fits between our data points (Eq. 14.2): 
 

ex+ a =y +β    
 
Rather than using values for only one predictor or independent variable, (to estimate 
values on a dependent or criterion variable), with multiple regression we can control 
for several independent variables at the same time or look at the response by a 
dependent variable to these several predictor variables. By using many predictor 
variables (sometime referred to as exploratory variables), we will hopefully reduce 
our error of prediction even further, by accounting for more of the variance and at the 
same time we should be able to increase our predictive abilities. Multiple regression is 
designed to help the researcher learn more about the relationships among several 
predictor variables and a resultant dependent variable. 

 Any regression analysis allows us to make predictions, and could be referred to 
as prediction analysis. In the simple linear regression model, we can predict a value 
on the criterion variable, given its corresponding value on a predictor variable. With 
multiple regression we are interested in predicting a value for the criterion variable 
given a value for each of several corresponding predictor variables. The primary 
objectives for a multiple regression analysis are to: 1) determine whether a 
relationship exists between two continuous variables; 2) describe the nature of the 
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relationship, if one exists; and 3) assess the relative importance of each of the various 
predictor variables and their contribution to the criterion variable. 
 Although in most cases never confirmed, it is assumed that the relationship 
between variables is linear. Fortunately, multiple regression procedures are minimally 
affected by minor deviations from this assumption. However, if a curvilinear 
relationship is evident, one should consider transforming the data to make the 
situation more linear. Another assumption with multiple regression is that the 
residuals are normally distributed, but like other tests, these models are quite robust 
with regard to violations of this assumption. Some software packages offer the option 
of preparing a histogram of the residuals and visual inspection can identify severe 
deviations from a normal distribution. Also, similar to correlation, even with 
statistically significant results between certain predictor variables, and the dependent 
variable it does not prove causality. 
 Multiple linear regression is a powerful multivariate statistical technique for 
controlling any number of confounding variables: 
 

jjj222211j ex...xxx+ a = y +++++ ββββ                 Eq. 14.42 
 
where yj is the value of the dependent variable, α represents the point where the plane 
cuts the y-axis, and j is the number of independent variables. The values of β1, β2 ... βk 
in the equation are referred to by several synonyms including beta coefficients, beta 
weights, and regression coefficients.   
 The beta coefficients indicate the relative importance of the various independent 
predictor variables and are based on their standardized z-scores. The prediction 
equation can be written as: 
 

z... + z + z + z = z kk332211y ββββ                          Eq. 14.43 
 
These beta weights are estimates of their corresponding coefficients for the 
population equation in standardized z-score form. They are also referred to as partial 
regression coefficients, because these regression coefficients are related to the partial 
correlation coefficients, which were discussed in Chapter 13. 
 As seen in the previous chapter, the multiple correlation coefficient (R) indicates 
the correlation for a weighted sum of the predictor variables and the criterion variable. 
The squared multiple correlation coefficient (R2) will indicate the proportion of the 
variance for the dependent criterion variable, which is accounted for by combining 
the various predictor variables. In multiple regression the R2 (also referred to as the 
multiple R2) is analogous to the correlation coefficient also called the coefficient of 
multiple determination. 
 Unlike simple regression analysis, which was represented by a single line, 
multiple regression represents “planes in multidimensional space, a concept 
admittedly difficult to conceive and virtually impossible to portray graphically” 
(Kachigan, 1991). Two independent variables will create a “plane” in a three- 
dimensional space to best fit the data points. More than two independent variables 
will create what is called a “hyperplane” to account for the variability. Instead of 
thinking of a least-squares line to fit our data, we must think of a least-squares 



Linear Regression 379

solution based on weighted values for each of the various predictor variables. Using 
computer software it is possible to calculate the appropriate beta weights to create the 
least-squares solution, with those having the greatest correlation represented by the 
largest weightings. Computer programs utilize the ordinary least squares method to 
derive an equation by minimizing the sum of the squared residuals. 
 The calculations for multiple linear regression analysis are extensive, complex, 
and fall beyond the scope of this book. Excellent references for additional information 
on this topic include Zar (2010), Snedecor and Cochran (1989), and the Sage 
University series (Berry and Feldman, 1985; Achen, 1982; Schroeder, 1986). However, 
the following example will be helpful for interpreting computer reports and evaluating 
the relative importance of each predictor (independent) variable. 
 Table 14.12 contains data for 30 volunteers involved in a study of three different 
sleep aids. The first column is the result after 60 days of therapy as indicated by the 
change in Epworth sleep scores (the larger the negative result, the better the sleep score 
and lessening of the sleep problems). The next three columns are the predictor variables: 
the drug received, as well as each volunteer’s age and gender. Note that the drug and 
gender are both numerical because software packages (including Excel and Minitab) 
require that the predictor variables have numeric values in order to perform the 
calculations. The coding of gender or other categorical data as numeric values instead 
of labels is referred to as dummy coding. In this example one represents male 
volunteers. This information is manipulated by computer software and the results from a 
Minitab analysis are reported in Figure 14.16. 
 
 
 

Table 14.12  Change in Epworth Sleep Scores and Selected Predictor Variables 

Change Drug Age Gender1 Change Drug Age Gender1 
−5 1 40 1 +1 2 74 2 
−3 1 53 1 −6 3 52 2 
0 2 42 2 −4 3 65 1 

−1 2 62 2 −4 1 45 1 
−5 3 34 2 −3 1 55 1 
−7 3 67 2 −2 2 28 1 
−4 1 71 2 0 2 42 2 
+1 1 69 2 −5 3 58 2 
0 2 57 1 −7 3 29 1 

−2 2 38 1 0 1 63 1 
−4 3 48 1 −3 1 33 1 
−6 3 32 1 +1 2 51 1 
−1 1 25 2 −4 2 38 2 
0 1 36 1 −6 3 47 1 

+2 2 62 1 −3 3 76 2 

11 = male; 2 = female 
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Figure 14.16 Results of a multiple regression analysis on sleep scores with Minitab. 

 
 
 The computer will generate an equation that describes the statistical relationship 
between the multiple predictor variables and for predicting new observations. The 
results indicate the direction, size, and statistical significance of the relationship 
between each independent variable and the response by the dependent variable. The 
sign of each coefficient indicates the direction of the relationship. In this case note the 
top of Figure 14.16 that reports the regression equation which factors in all the beta 
coefficients in Eq.14.35 to create the plane that fits best through the 30 data points 
considering all three predictor variables: 
 

)Age)(0406.0()Gender)(13.0()Drug)(65.1(+ 54.1 =)Change( y j ++−−  
 
This equation could be termed a linear combination and indicates the beta 
coefficient associated with each predictor variable. The lower portion of Figure 14.16 
is the ANOVA table indicating a significant regression analysis (p = 0.019). Note that 
there are three degrees of freedom associated with the regression term, instead of one 
with simple linear regression. With multiple regression each independent variable 
parameter must be estimated and therefore counts as a loss of one degree of freedom 
for each estimate. An important portion of the printout in Figure 14.16 is the middle 
section that indicates the importance of each independent variable on the change in 
the sleep scores, where the beta coefficients appear in the second column of the table. 
Similar to slope in a simple linear relationship, each coefficient represents the change 
in the response for each unit of change in the particular independent variable if the 
other predictors are held constant. In this case for each year increase in age, there was 
only about a 0.04 change in the sleep score. The t-value and corresponding p-value 
represent a test of the null hypothesis that the beta coefficient is equal to zero while 
holding other predictors in the model constant. In this case the drug was most 
important (t = −3.17, p = 0.004) and this is reflected by the largest beta coefficient in 
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the regression equation. Age (t = 1.35, p = 0.189) and gender (t = 0.15, p = 0.886) 
were not significant contributing predictor variables to the overall response. In 
multiple regression the R2 is the proportion of variation-dependent variable which can 
be accounted for by fitting the independent variables into a particular model. The 
greater the amount of variation that can be accounted for by the R2 in the regression 
model the closer the data points will fit the regression plane. In Figure 14.16, even 
though the results were statistically significant the resultant regression equation could 
only account for 31.4% of the total variability on the y-axis. 

 
Stepwise Regression 
 
 Another type of multiple regression model is called stepwise regression. In this 
situation there is a set of rules for deriving a multiple regression equation by adding 
or subtracting one independent variable at a time from the regression equation. When 
there is a set of independent variables it is not necessary to utilize every single one in 
the determination of a multiple R2. The objective of stepwise regression is to identify 
a useful subset of predictors which contribute the most to the regression analysis. 

With some computer software variable selection is automatic, removing all 
independent variables that have p-values greater than a designated Type I error rate. 
The standard stepwise procedure both adds and removes predictors as needed for each 
step. The results of this type of process automatically select the most significant 
models with the larger R2 and adjusted R2, and smaller standard errors. 

Other models allow the researcher to add or subtract variables. In the forward 
stepping or forward selection model, the predictor variable with the highest 
correlation is entered first, followed by other variables (one at a time, in order of 
increasing correlations) that result in an increase the multiple R2 until all statistically 
significant variables have been added to the equation. Forward stepping starts with no 
predictors in the model and then adds the most significant variable for each step. The 
opposite approach would be to begin with all the independent variables, then 
individual independent variables are subtracted according to a specified criterion 
(usually the lowest correlations first). They are eliminated if they do not contribute 
significantly or on some predetermined criterion. This latter approach is referred to as 
backward stepping or backward elimination. Both methods are designed for 
selecting the best set of variables and eliminating those that do not contribute. 
Backward stepping starts with all predictors in the model and then removes the least 
significant variable for each step. 

The three stepwise processes stop when all variables not already included in the 
model have p-values that are greater than the specified Type I error rate. 

However, there are potential problems.  If two independent variables are highly 
correlated, only one may end up being in the model even though both may be equally 
important. The result may not always identify the model with the highest R2 value. 
Computer programs that have automated procedures may not factor in special 
information about the predictor variables, resulting in a model that may not be the 
best fit. 
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Figure 14.17 Options for regression with Excel. 

 
 
Using Excel® or Minitab® for Regression Analysis 
 
 The regression analysis is available as part of the Excel data analysis tools:  

 
Data  Data Analysis  Regression 

 
Similar to the previous tests, each variable (independent or predictor variable and 
dependent or criterion variable) is represented by a different column. As seen in 
Figure 14.17 (for data in Table 14.3), for simple linear regression one needs to 
identify the column for the dependent variable (“Input Y Range:”) and the 
independent variable (“Input X Range:”). A confidence level can be changed from the 
default value of 95% and the location for output (“Output range:”) needs to be 
indicated, either starting at a cell on the current page (per this example, $D$2) or on a 
new worksheet (by default). There are several numeric summaries and visual graphics 
available under “Residuals” and “Normal Probability”. The primary outcome of 
interest is the ANOVA table along with related information (Figure 14.18). The 
ANOVA table is presented in the center of Figure 14.18 and shows identical numbers 
(less some rounding errors) to those reported in the text for the data comparing 
prothrombin time and various doses of a drug. The coefficient of determination (r2) 
appears in the top table, noted as “R Square” and the adjusted R2 is also listed. The 
“Multiple R” represents the correlation coefficient (r) and the “Standard Error” term 
represents the residual standard deviation. The box immediately below the ANOVA 
table provides information about the slope and intercept. In the column “Coefficients”  
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Figure 14.18 Outcome report for regression with Excel. 

 
 
is the sample “intercept” (a) and is the slope (b), labeled as “X Variable 1”. If we 
chose “Labels” and included information in the first row (discussed below as part of 
multiple regression) on Figure 14.16, the “X Variable 1” descriptor would have to be 
replaced with “Dose”. The “Standard Error”, “t Stat”, “P-value” and two 95% interval 
values in the columns represent calculations performed previously for the data in 
Table 14.3.  The lower and upper 95% represent the 95% confidence limits around the 
estimates and evaluate the null hypothesis that β = 0. The last table of data represents 
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Figure 14.19 Graphics produced for regression with Excel. 
 
 
the y-values on the regression line “Predicted Y” and the residual between the sample 
data point and the line, noted as “Residuals”. The “Standardized Residuals” are listed 
in the last column, defined as 
 

residualsallfordeviationdardtanS
sidualRe

residualdardizedtanS =      Eq.14.37 
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Figure 14.20 Options for multiple regression with Excel. 

 
 
Figure 14.19 shows the graphic output available if the options are selected under 
“Residuals” and “Normal Probability” in Figure 14.17. Of primary interest would be 
the residuals plot to a random above and below the line distribution of data points. 
The software does not crop the data, starting with zero on the left margin of each plot. 
 For multiple regression with Excel, the same entry through data analysis is used: 
  

Data  Data Analysis  Regression 
 
However, in this case: 1) all the columns for independent variable are selected for the 
“Input X Range:”; 2) the first row should include the name of the variable and be 
included in the range;  and 3) the “Label” option is selected.  Figure 14.20 represents 
the data selection option of the study in Table 14.12. Here “Labels” are included so 
the resultant table will identify the appropriate coefficients for each variable. Note 
also that dummy variables are used for the independent variables of drug and gender. 
The results of the analysis are presented in Figure 14.21 and are identical to the 
results seen with Minitab in Figure 14.16. Note with “Labels” activated the lower 
table is easier to read. The one omission with Excel is the presentation of the actual 
linear combination that appears with Minitab. However this can be determined by 
selecting the beta coefficient for each variable from the lower table. 
 Minitab offers the regression options under “Stat” on the title bar.  For simple 
linear regression and multiple regression the choices are found at:  
 

Stat  Regression  Regression… 
 
As with previous tests each column represents a variable and each row an 
observation. Figure 14.22 illustrates the decisions required for a simple linear 
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Figure 14.21 Outcomes for multiple regression with Excel. 

 
 
regression calculation for the data from Table 14.3. The dependent variable is labeled 
“Response” and the independent variable(s) as “Predictors”. These are selected by 
double clicking on the variables in the box on the left. The confidence level can be 
changed from the default 1 − α of 95% if desired under Options… selections. The 
results of the analysis are presented in Figure 14.23. The lower portion is the 
traditional ANOVA table with the F-statistic and associated p-value on the right side. 
The second line from the top defines the intercept and slope (y = a + bx); in this case 
“Time = 10.8 + 0.0406 Dose.” The “Predictor” section in the middle provides similar 
information for the intercept “constant” and the slope (in this case “Dose” to the 
Excel printout with the coefficients (a and b), SE coefficients (how labeled before), 
and t-values and associated p-values for the intercept and slope. The following line 
includes S which is the residual standard deviation, the coefficient of determination 
(R-Sq) and the adjusted r2 as “R-Sq(adj)”. The lack-of fit test is available under the 
Options… choices. 
 For multiple regression, the process is the same, except more variables are added 
to the “Predictors:” area of the regression options (Figure 14.24). The Graphic… and 
Options… offer a variety of different output information. The simplest default results 
has already been displayed (Figure 14.16) and discussed previously. There is also a 
stepwise option for adding and subtracting independent variables: 
 

Stat  Regression  Stepwise… 
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Figure 14.22 Options for simple linear regression with Minitab. 

 
 

 
Figure 14.23 Outcomes for simple linear regression with Minitab. 
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Figure 14.24 Options for multiple regression with Minitab. 

 
Figure 14.25 Options for stepwise regression using Minitab. 
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Like multiple regression, all the independent variables need to be selected and added 
to the “Predictors:” portion of the initial screen (Figure 14.24) which look similar to 
Figure 14.22. The Methods… option allows one to allow Minitab to do an automatic 
selection or either and forward stepping or backward stepping option. As seen in 
Figure 14.25, one can choose to use either Type I error (α) or F-values in selecting the 
predictor variables of interest. The Stepwise option will perform a standard stepwise 
procedure. For this example we have selected the “Forward selecting:” model and for 
illustrative purposes, set the α as large as 0.25 (the default value). The results are 
displayed in Figure 14.26. The first step selected only the “Drug” predictor variable 
with a resultant R2 value of 25.73 and standard error of 2.30. In a second step the 
“Age” predictor variable is added (since p-value was less than 0.25) and the R2 
increases (31.30) and standard error slightly decreases (2.25). Gender was not 
considered in the stepwise regression model.  

 Many graphic choices are available through the Graphs… option including plots 
of residuals and standardized residuals. Curvilinear determinations can be made using  
 

Stat  Regression  Fitted line plot… 
 
 

 
Figure 14.26  Outcomes for a stepwise regression using Minitab. 
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Figure 14.27 Quadratic distribution with confidence bands for data in  

Table 14.12 using Minitab. 
 
 
Options include linear, quadratic and cubic, and confidence intervals can be created 
around the line of best fit. The “Options” alternative allows one to add confidence 
bands to the line of best fit and adjust the confidence limits (1 − α). For example, 
using the linear fit, the significance for the data in Table 14.12 for sleep score versus 
drug is significant (F = 9.70, p = 0.004), but the quadratic fit displayed in Figure 
14.27 is even better (F = 23.18, p < 0.001). Additional information about regression 
options and plotting appears in Lesik (2010). 
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Example Problems (Answers are provided in Appendix D) 
 
1. Samples of a drug product are stored in their original containers under normal 

conditions and sampled periodically to analyze the content of the medication.  
 

Time (months) Assay (mg) 
6 995 

12 984 
18 973 
24 960 
36 952 
48 948 

 
Does a linear relationship exist between the two variables? If such a relation 
exists, what are the slope, y-intercept, and 95% confidence interval? 

 
2. Acme Chemical is testing various concentrations of a test solution and the effect 

the concentration has on the optical density of each concentration.  
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Concentration (%) Optical Density 
1 0.24 
2 0.66 
4 1.15 
8 2.34 
 

 Is there a significant linear relationship between the concentration and optical 
density? If there is a relationship, create a plot representing this relationship and 
95% confidence intervals. 

 
3. Acme Chemical reassesses the previous results by comparing the data against a 

reference standard solution at the same concentrations and found the results in 
the following table. Were the slopes of the test solution and reference standard 
parallel? 

 Optical Density 

Concentration (%) Test Standard 
1 0.24 0.22 
2 0.66 0.74 
4 1.15 1.41 
8 2.34 2.76 

 
4. During the formulation of a new product, various percent of a polymeric coating 

are added and the resultant release of the therapeutic agent is evaluated below. Is 
there a strong linear relationship between the percent and release rate and does 
the data fit that line? 

 

Percent Coating Rate of Release (mg/hr) 
5 3.70 3.28 3.56 

10 3.00 2.91 3.17 
15 2.74 2.61 2.53 
20 2.34 2.47 2.21 
30 1.41 1.60 1.76 
40 0.56 0.91 0.69 

 
5. Various dilutions are made of a homogeneous mixture and results analyzed. Is 

there a linear relationship between the dilution factor and the analytical outcome? 
 

Dilution Factor Analytical Results 
2 2.187 
4 2.167 
8 2.149 

16 2.097 
32 1.987 
64 1.763 

128 1.578 
256 1.132 
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15 
 
z-Tests of Proportions 
 
 
 
 As an introduction to this new set of z-tests, consider the following two 
problems. First, we are presented with a coin and we wish to determine if the coin is 
“fair” (an equal likelihood of tossing a head or a tail). To test the assumption of 
fairness, we toss the coin 20 times and find that we have 13 heads and only 7 tails. Is 
the coin unfair, loaded in such a way that heads occur more often, or could the 
outcome be the result of chance error? In a second situation, 50 patients are randomly 
divided into two groups each receiving a different treatment. In one group 75% show 
improvement and in the second group only 52% improve. Do the results prove that 
the first therapy results in a significantly greater therapeutic response, or is this 
difference due to chance alone? 
 The z-tests of proportions can address each of these examples, when comparisons 
are made between proportions or percentages for one or two levels of a discrete 
independent variable.  
 
z-Test of Proportions – One-Sample Case 
 
 The z-tests of proportions involve a dependent variable that has only two discrete 
possible outcomes (i.e., pass or fail, live or die). These outcomes should be mutually 
exclusive and exhaustive. Similar to the statistics used for t- and F-tests, this z-
statistic involves the following ratio: 
 

sproportiontheofdifferencetheoferrordardtans
sproportion betweendifference

 =z      Eq. 15.1 

 
The simplest example would be the tossing of a fair coin. We would expect the 
proportion of heads to be equal to the proportion of tails. Therefore, we would expect 
a head to occur 50% of the time, or have a proportion of 0.50. Our null hypothesis is 
that we are presented with a fair coin: 
 
     H0:  Pheads = 0.50 
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The only alternative is that the likelihood of tossing a head is something other than 
50%.  
 
     H1:  Pheads ≠ 0.50 
 
If we toss the coin 100 times and this results in 50 heads and 50 tails, the numerator 
of the above ratio (Eq. 15.1) would be zero, resulting in z = 0. As the discrepancy 
between what we observe and what we expect (50% heads) increases, the resultant z-
value will increase until it eventually becomes large enough to be significant. 
Significance is determined using the critical z-values for a normalized distribution, 
previously discussed in Chapter 6. For example, from Table B2 in Appendix B, +1.96 
or −1.96 are the critical values in the case of a 95% level of confidence. For a 99% 
level of confidence the critical z-values would be +2.58 or –2.58. 
 In the one-sample case the proportions found for a single sample are compared to 
a theoretical population to determine if the sample is selected from that same 
population. 
 
     H0:  p̂  = P0 
     H1:  p̂  ≠ P0 
 
The test statistic is as follows: 

 

n
)P(1P

P  p̂ =z 
00

0
−

−
                                           Eq. 15.2 

 
where P0 is the expected proportion for the outcome, 1 − P0 is the complement 
proportion for the “not” outcome, p̂  is the observed proportion of outcomes in the 
sample, and n is the number of observations (sample size). The decision rule is 
 

with α = ___, reject H0 if z > z(1-α/2) or z < −z(1-α/2) 
 
where z(1-α/2) = 1.96 for α = 0.05 or 2.58 for α = 0.01. Like the t-test, this is a two-
tailed test and modifications can be made in the decision rule to test directional 
hypotheses with a one-tailed test. 
 The one-sample case can be used to test the previous question about fairness of a 
particular coin. If a coin is tossed 20 times and 13 heads are the result, is it a fair 
coin? As seen earlier the hypotheses are: 
 
     H0: Pheads = 0.50 
     H1: Pheads ≠ 0.50 
 
In this case the p̂  is 13/20 or 0.65, P0 equals 0.50 and n is 20. The calculation would 
be as follows: 
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Figure 15.1 Effects of sample size on z-test results. 
  

 
 

1.36 = 
0.11
0.15 = 

20
0)(0.50)(0.5

0.50  0.65 =z −  

 
Because the calculated z-value is less than the critical value of 1.96, we fail to reject 
the hypothesis, and we assume that the coin is fair and the difference between the 
observed 0.65 and expected 0.50 was due to random variability. What if we had more 
data and the results were still the same? The z-test is an excellent example of the 
importance of sample size. Figure 15.1 shows the same proportional differences with 
an increasing number of observations. Note that if these results appeared with more 
than 47 or 48 tosses the results would be significant at 95% confidence and the null 
hypothesis would be rejected. If the same proportional difference exists with over 75 
tosses H0 can be rejected with 99% confidence. 
 Similar to one-sample t-tests, confidence intervals can also be created for the z-
test of proportions (best estimate plus and minus a reliability coefficient time - a 
standard error term): 
 

n
)P(1P Z  p̂ = P 00

/2)-(10
−± α                                   Eq. 15.3 

 
The interval indicates the range of possible results with 95% confidence. For the 
above example, the hypotheses would continue to be: 
 
     H0:  p̂  = 0.50 
     H1:  p̂  ≠ 0.50 
 
and the interval would be: 
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20
0)(0.50)(0.5 1.96  0.65 = P0 ±  

 
0.22  0.65 = P0 ±  

 
0.87 < P < 0.43 0  

 
Therefore, based on a sample of only 20 tosses, with 95% confidence, the probability 
of tossing a head is somewhere between 0.43 and 0.87. The observed outcome of 0.65 
is a possible outcome; therefore H0 cannot be rejected. 
 
z-Test of Proportions – Two-Sample Case 
 
 In the two-sample case, proportions from two levels of a discrete independent 
variable are compared and the hypothesis under test is that the two proportions for the 
population are equal. 
 
     H0:  P1 = P2  
     H1: P1 ≠ P2 
 
If the two populations (P1 and P2) are equal, then the best estimation of that 
population proportion would be the weighted average of the two sample proportions: 
 

n + n
p̂n + p̂n = p̂

21

2211
0                                            Eq. 15.4 

 
This estimate of the population proportion is then used in the denominator of the z-
ratio (Eq. 15.1) and the numerator is the difference between the two sample 
proportions:  
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21
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−
                                  Eq. 15.5 

 
In these two equations, p̂ 1, p̂ 2 are sample proportions and n1, n2 are the sample sizes. 
The decision rule for a two-tailed z-test would be 
 

with α = 0.05, reject H0, if z > z(1-α/2) = 1.96 or z < −1.96 
 

To illustrate this test assume the following fictitious clinical trial. To possibly 
improve the survival rate for protozoal infections in AIDS patients, individuals with 
newly diagnosed infections were randomly assigned to treatment with either 
zidovudine alone or a combination of zidovudine and trimethoprim. Based on the 
following results, did either therapy show a significantly better survival rate?  



z-Test of Proportions 397

 Zidovudine alone, 23 out of 94 patients survived, p̂ Z = 0.245  
 Zidovudine with trimethoprim, 42 out of 98 patients survived, p̂ Z&T = 0.429 
 
Is there a significant difference between 0.245 and 0.429 based on fewer than 200 
patients? The best estimate of the population proportion, if there is no difference 
between the two samples, is determined using weighted averages for the two sample 
proportions: 
 

39.30 = 
98 + 94

)429.098( + )245.094( = p̂0  

 
The null hypothesis would be that there was not a significant difference between the 
two groups of patients based on the proportions of patients surviving. 

 
H0: PZ = PZ&T 
H1: PZ ≠ PZ&T 

 
If the z-statistic is greater than +1.96 or less than −1.96, the researcher should reject 
the null hypothesis and conclude that there is a significant difference between the two 
groups. The computations would be: 
 

98
)61.60(39.30 + 

94
)61.60(39.30

429.0  245.0 =z −  

 

71.2 = 
8.060
84.10 = 

00467.0
84.10 =z −−−  

 
With z = −2.71 (which is to the extreme of the critical value of −1.96) the decision 
would be to reject H0 and conclude that there was a significant difference in the 
results for the two treatments. In this case the patients receiving both zidovudine and 
trimethoprim have a significantly better survival rate. 
 The formula can be slightly modified to create a confidence interval 
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−+−±−− α              Eq. 15.6 

 
The results would be interpreted similar for the two-sample t-test; if zero is within the 
confidence interval, there is no significant difference between the two proportions. 
 
Power and Sample Size for Two-Sample z-Test of Proportions 
 
 To calculate the power for a two-sample z-test of proportions we use the sum of 



Chapter 15 398

two probabilities associated with z-values: 
 

[ ] [ ]21 ZzpZzppower ≥+≤=                            Eq. 15.7 
 
where: 
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with the SE representing the standard error in the denominator of the original z-ratio: 
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These are modified from Zar’s equations (2010) to be consistent with the symbols 
used previously in this chapter. With a desired α of 0.05, the Z1-α/2 would be 1.96 (for 
99% confidence the value would be 2.58). Using the previous example of the two 
HIV therapeutic approaches the power based on 192 patients would be:  
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Using the area under the curve in Table B2, the probability of z < +0.75 is 1) 0.50 for 
the area below the mean; and 2) the probability of z at +0.75, which equals 0.2743, 
(sum = 0.7743). Similarly the probability of being >+4.75 is outside the table values, 
thus p < 0.0001. The combined probability for the power equation is: 
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7743.00000.07743.0power ≈+=  

 
In designing a study, sample sizes for each level of the discrete independent variable 
should be equal. The appropriate sample size per group for a given power (1 − β) can 
be estimated using the following formulas: 
 

( ) ( )[ ]
2

2
2211002/1 q̂p̂q̂p̂Z)p̂1(p̂2Z

n
δ

βα +⋅+−⋅
= −          Eq. 15.11 

 
where 0p̂  is the average of the two sample probabilities 
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and δ is the desired proportional difference we would like to be able to identify. Using 
the previous example, the estimated sample size to identify a 20% difference (δ = 
0.20) with 80% power and a Type I error rate of 0.05, where Z1-α/2 is 1.96 and Zβ  = 
0.84, would be: 
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Using these formulas for power and sample size it is possible to create different 
scenarios (Table 15.1). Notice that the results are similar to what would be expected 
based on the discussion in Chapter 8. As the differences increase the power increases. 
As the sample size increases the power increases. 
 
z-Tests for Proportions – Yates’ Correction for Continuity 
 
 In performing a z-test of proportions, the calculated z-value is based upon 
discrete or discontinuous data, but as discussed in Chapter 6 the normal standardized 
z-distribution is based on a continuous distribution. Therefore, the calculated z-values 
are only an approximation of the theoretical z-distribution. Therefore, Frank Yates 
(1934) argued that a more conservative approach was needed to estimate the z-
statistic, which is more appropriate with the standardized normal distribution. In the 
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Table 15.1 Various Power and Sample Size Determinations* 

For a Power of 80%  For a Difference of 20% 
δ n  n 1 − β 

0.05 1,390  30 0.323 
0.10 348  50 0.495 
0.15 155  96 0.774 
0.18 108  100 0.791 
0.20 87  150 0.925 

* Using the previous data comparing the two HIV therapies. 
 
 
two-sample case, the Yates’ correction for continuity is: 
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Because of the smaller numerator, this will result in a slightly smaller calculated z-
value, and a more conservative estimate. Obviously, as the sample sizes become 
smaller and we know less about the true population, there will be a decrease in the 
calculated z-value and an even more conservative answer. 
 Using this correction for continuity, we can recalculate the previous AIDS 
treatment example, where we were able to reject the null hypothesis and assumed that 
there was a better survival rate with the combination therapy. However, with Yates’ 
correction: 
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56.2 = 
8.060

74.10 = 
00467.0

0.010 84.10 =z −  

 
We again reject H0 and with 95% confidence assume that there is a significant 
difference between the two therapeutic approaches. However, what we want is to be 
99% confident in our decision (|z| > 2.576). In this case we would reject the null 
hypothesis with the first z-score, but fail to reject it with the Yates’ correction. 
 Similarly, Yates’ correction can be applied to the one-sample case (i.e., the 
previous example of tossing a fair coin): 
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Table 15.2 Comparison of Survival and Various Treatment Strategies  

 Zidovudine 
alone 

Zidovudine/ 
Trimethoprim 

Zidovudine/ 
Drug A 

Zidovudine/ 
Drug B 

 

Lived 24 38 24 6  

Died 70 60 86 51  
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Obviously the larger the amount of information (n), the smaller the correction factor. 
Recalculation of our previous example gives: 
 

0.91 = 
0.11
0.10 = 

20
0)(0.50)(0.5
20
1  | 0.50 - 0.65 |

 =z 
−

 

 
We still fail to reject H0, but the calculated z-value is much smaller (0.91 compared to 
1.36). 
 
Proportion Testing for More Than Two Levels of a Discrete Independent 
Variable 
 
 What if there are more than two levels of the discrete independent variable? 
Could the z-test of proportions be expanded beyond only two levels of the discrete 
independent variable? In these cases, it is best to establish a contingency table based 
on the frequency associated with each outcome. For example, assume in the previous 
zidovudine/trimethoprim study that there were actually four levels of treatment. The 
frequencies could be presented as a contingency table (Table 15.2). In this case a 
more appropriate test would be a chi square test of independence, where the 
interrelationship is measured between the survival rate and type of drug therapy 
received to determine if the two variables are independent of each other. This test will 
be discussed in the next chapter. 
 
Using Minitab® for z-Tests for Proportions 
 
 Minitab offers applications for the one-sample and two-sample z-tests of 
proportions. These are accessed by choosing “Stat” on the title bar, then “Basic 
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Statistics” and the appropriate z-test:  
 

 

 
Figure 15.2 Options for a one-sample z-test of proportions with Minitab. 

 
 

Stat  Basic Statistics  1-proportion… one-sample CI 
Stat  Basic Statistics  2-proportions… two-sample t-test 

 
As with previous examples, each column represents a variable and each row an 
observation. For the z-tests the data can be either nominal names or numbers; Minitab 
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will handle either as discrete data. Columns are chosen from the left box and placed in 
the right box for evaluation (top portion of Figure 15.2). Options… allows one to 
change the confidence interval from the default value of 95% or create a one-tailed 
interval. The result for the previous example of coin tossing is presented in the upper 
half of Figure 15.3. Minitab picks one of the two levels for evaluation and in this case 
chose “tails” but still created a confidence interval which included 0.50. In addition 
Minitab allows you to enter the frequency counts in the lower section “Summarized 
data” as illustrated in the lower portion of Figure 15.2. Here the “Number of trials:” 
would be the total number of possible events (e.g., 20 coin tosses) and the “Number 
of events:” is the number of outcomes of interest (e.g., 13 heads). The results appear 
in the lower half of Figure 15.3. 
 Minitab offers similar features for the two-sample z-test of proportions. As seen 
in Figure 15.4 information can be taken from specific columns on the left side or can 
be evaluated based on “Summary data.” The results for the zidovudine and 
trimethoprim example are presented in Figure 15.5, with the “Summary data” 
approach in the second results. Also, as indicated in the middle of the decision options 
in Figure 15.4, data can be stacked in individual columns. Again, the Options… 
feature allows you to change the confidence interval from the default value of 95% or 
create a one-tailed interval. 
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Figure 5.3 Outcome report for a one-sample z-test of proportions with Minitab. 

 
 
 



Chapter 15 404

 

 

 
Figure 15.4 Options for a two-sample z-test of proportions with Minitab. 
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Figure 5.5 Outcome report for a two-sample z-test of proportions with Minitab. 

 
 
Suggested Supplemental Readings 
 
Bolton, S. and Bon, C. (2004). Pharmaceutical Statistics: Practical and Clinical 
Applications,  Fourth edition, Marcel Dekker, Inc., New York, pp. 131-134. 
 
Glantz, S.A. (1987). Primer of Biostatistics, McGraw-Hill, New York, pp. 111-119. 
 
Example Problems (Answers are provided in Appendix D) 
 
1. During production runs, historically a specific dosage form is expected to have a 

defect rate of 1.5%. During one specific run, a sample of 100 tablets was found to 
have a defect rate of 5%. Does this differ significantly from what would normally 
be expected? 

 
2. During initial Phase I and II studies, the incidence of nausea and vomiting of a 

new cancer chemotherapeutic agent was 36% for 190 patients, while 75 control 
patients receiving conventional therapy experienced nausea and vomiting at a 
rate of 55%.  

 
a. Is there a significant difference between the incidence of nausea and 

vomiting between these two drug therapies? 
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 b. Did the new agent produce a significantly lower incidence of nausea and 
vomiting? 

 
3. During the development of a final dosage form, the frequency of defects was 

analyzed to determine the effect of the speed of the tablet press. Samples were 
collected at 80,000 (lower) and 120,000 (higher) units per hour. Initially 500 
tablets were to be collected at each speed; unfortunately due to an accident only 
460 tablets were retrieved at the higher speed. Based on the following results 
were there any significant differences between the two tablet press speeds? 

 
Speed n # of Defects 
Low 500 11 
High 460 17 

 
4. During preapproval clinical trials with a specific agent, it was found that the 

incidence of blood dyscrasia was 2.5%. In a later Phase IV study involving 28 
patients, two developed blood dyscrasia. Is this outcome possible or is there 
something unique about the population from which the sample was taken for this 
last clinical trial? 
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Chi Square Tests 
 
 
 
 The chi square tests are used when only discrete variables are involved. In the 
goodness-of-fit test there is one discrete variable. For the test of independence, two 
discrete variables are compared: one is usually independent (e.g., experimental versus 
control group) and the other variable is dependent upon the first (e.g., met goal versus 
did not meet goal). The chi square test, sometimes referred to as Pearson’s chi 
square, evaluates the importance of the difference between what is expected (under 
given conditions) and what is actually observed. When criteria are not met for the chi 
square test of independence, the Fisher’s exact test may be used. Pairing of 
dichotomous outcomes is possible using the McNemar test and the effects of a third 
possible confounding variable can be addressed using the Mantel-Haenszel test.  
 
Chi Square Statistic 
 
 The chi square (χ2) can best be thought of as a discrepancy statistic. It analyzes 
the difference between observed values and those values that one would normally 
expect to occur. It is calculated by determining the difference between the frequencies 
actually observed in a sample data set and the expected frequencies based on 
probability. Some textbooks classify χ2 as a nonparametric procedure because it is not 
concerned with distributions about a central point and does not require assumptions of 
homogeneity or normality. 
 In the previous chapter, the z-tests of proportion evaluated the results of a coin 
toss. This one-sample case was a measure of discrepancy, with the numerator 
representing the difference between the observed frequency (p) and the expected 
population results for a fair coin (PO) (Eq. 15.2). With the z-tests in Chapter 15, we 
were concerned with proportions, or percentages, and these were used with the 
appropriate formulas. With the chi square statistics, the frequencies are evaluated. The 
calculation involves squaring the differences between the observed and expected 
frequencies divided by the expected frequency. These results are summed for each 
cell in a contingency table or for each level of the discrete variable. 

 

f
)f  f(

 = 
E

2
EO2 −

χ                                           Eq. 16.1 



Chapter 16 408

 
Figure 16.1 Various chi square distributions. 

 
 
This formula can be slightly rewritten as follows: 
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Obviously, if all of the observed and expected values are equal for each level of the 
discrete variable the numerator is zero and the χ2-statistic will be zero. Similar to the 
z-test, as the differences between the observed and expected frequencies increase, the 
numerator will increase and the resultant χ2-value will increase. Because the 
numerator is squared, the resultant value must be equal to or greater than zero. 
Therefore at a certain point in the continuum from zero to positive infinity, the 
calculated χ2-value will be large enough to indicate that the difference cannot be due 
to chance alone. Like the z-, t-, and F-tests, critical values for the chi square 
distribution are presented in tabular form (Table B15, Appendix B). Like the t- and F-
distributions, there is not one single χ2 distribution, but a set of distributions. The 
characteristics of each distribution are dependent on the number of degrees of 
freedom (Figure 16.1). As the number of degrees of freedom increases, the skew in 
the distribution decreases and the curve approaches a normal distribution. The first 
column on the left side of Table B15 indicates the number of degrees of freedom 
(determination of which will be discussed later) and the remaining columns are the 
critical chi square values at different acceptable levels of a Type I error (α). 
 The decision rule is written similarly to previous tests. For example, assume we 
are dealing with four degrees of freedom and wish to have a 95% level of confidence. 
The decision rule would be: with α = 0.05, reject H0 if χ2 > χ2

4(0.05) = 9.448. If the 

df = 3

df = 5 df = 8
df = 12
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calculated statistic derived from the formula (Eq. 16.2) is larger than the critical 
(9.448), the null hypothesis (the observed and expected values are the same) is 
rejected. 
 
Chi Square Goodness-of-Fit for One Discrete Dependent Variable 
 
 As seen in the previous chapter, the z-tests of proportions were limited to only 
one or two levels of a discrete dependent variable. If the frequency counts are used 
(instead of proportions), the chi square test can be used and expanded to more than 
two levels. For example, assume a guidance counselor want to determine if the entry 
class of Pharm.D. students differs from previous classes based on where they obtained 
their pre-pharmacy course work. Traditionally incoming pharmacy students have 
represented approximately 60% from the parent campus, 25% from other in-state 
schools in the same university system, 5% from in-state non-system schools and 10% 
from out-of-state institutions. This year’s entrance class is distributed as follows:   
 

 Actual Students 
Parent institution 85 
In-state system school 35 
In-state non-system school 5 
Out-of-state school 25 

Total  150 
 
If the distribution was the same as previous years, based on 150 entry students, the 
expected number of students should be: 
 

 Expected Students 
Parent institution 90      (150 × 0.60) 
In-state system school 37.5   (150 × 0.25) 
In-state non-system school 7.5   (150 × 0.05) 
Out-of-state school 15      (150 × 0.10) 

Total  150             
 
The null hypothesis would be that the incoming Pharm.D. students are distributed the 
same as previous classes based on the type on institution where they received their 
pre-pharmacy training. In selecting the appropriate critical χ2-value, the number of 
degrees of freedom is one less than the number of levels of the discrete variable (k). 
Once again the k – 1 degrees of freedom is selected to correct for bias. In this 
example, since there are four types of institutions being tested, the number of degrees 
of freedom is three. The decision rule, assuming 95% confidence is: with α = 0.05, 
reject H0 if χ2 > χ2

3(0.05) = 7.8147. The value 7.8147 is found in Table B15 at the 
intercept of the third row (degrees of freedom equal to three) and the second column 
of critical values (α = 0.05). If there were no differences between the observed 
institutions and the expected enrollment, we would expect to see similar proportions. 
The χ2-statistic would be calculated as follows: 
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 Observed Expected   O – E (O – E)2/E 
Parent institution 85 90 −5.0 0.278 
In-state system school 35 37.5 −2.5 0.167 
In-state non-system school 5 7.5 −2.5 0.833 
Out-of-state school 25 15 +10.0 6.667 
   χ2 = 7.945 

 
Based on the results of the chi square test, with the calculated χ2 greater than 7.8147; 
we reject the null hypothesis and conclude that there is a significant difference 
between the characteristics of the new students compare to what is traditionally 
expected in an entry class based on institution where they received their previous 
education. 
 Unfortunately the chi square test does not indicate where the significant 
difference(s) exist between of the observed and expected results. The simplest way to 
estimate the major difference(s) is to observe which level(s) of the discrete variable 
contribute the most to a significant chi square statistic. This would be represented by 
the largest (O-E)2/E. In this example it would be Out-of-State Schools which 
contributed 83.9% (6.667/7.945) of the total deviation from expected. Alternatively, 
one could perform two additional chi square tests to determine if the Out-of-State 
School proportion is significantly different previous experience by: 1) performing a 
second chi square test without the data for Out-of-State Schools; and 2) performing a 
third chi square on Out-of-State Schools to determine if it differs significantly form 
the average of the other three school sources. 
 The second chi square would be tested against a critical chi square value with 
two degrees of freedom (k - 1) which is 5.9915 (Table B15). The calculation would be 
as follows: 
 

 Observed Expected   O – E (O – E)2/E 
Parent institution 85 90 −5.0 0.278 
In-state system school 35 37.5 −2.5 0.167 
In-state non-system school 5 7.5 −2.5 0.833 
   χ2 = 1.278 

 
The calculated χ2 is less than 5.9915 and we fail to reject the null hypothesis that the 
proportions for these three types of institutions are the same as in previous years. 
Therefore, our best guess is that the proportions of students from the three remaining 
instructions are distributed similarly to previous years and only the out-of-state 
institutions are disproportionately represented. 
 The third chi square would be tested against a critical chi square value with one 
degree of freedom comparing out-of state schools to the composite for the three other 
types of institutions. In this case the critical value for one degree of freedom is 3.8415 
(Table B15). The calculation would be as follows: 
 

 Observed Expected   O – E (O – E)2/E 
In-state school 125 135 −10.0 0.741 
Out-of-state school 25 15 +10.0 6.667 
   χ2 = 7.408 



Chi Square Tests 411

Here calculated χ2 is greater than the critical value of 3.8415, so we would reject the 
null hypothesis and conclude that there is a significantly greater proportion of out-of-
state school students in the entering Pharm.D. class. 
 
Chi Square for One Discrete Dependent Variable and Equal Expectations 
 
 If different batches of a particular product are compared, where production was 
similar, we could expect to see an equal result for some measure of the final product 
regardless of the batch tested. For example, assume that we wish to compare four lots 
of a particular drug for some minor undesirable trait (e.g., a blemish on the tablet 
coating). We randomly sample 1000 tablets from each batch and examine the tablets 
for that trait. The results of the experiment are as follows: 

 
 Number of Tablets with Blemishes 
Batch A 12 
Batch B 15 
Batch C 10 
Batch D 9 

 
A simple hypothesis to evaluate this data could be as follows: 
 
  H0: The samples are selected from the same population 
  H1: The samples are from different populations 
 
Our best estimate of expected frequency is the average of the sample frequencies: 
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                           Eq. 16.3 

In this particular case: 
 

11.5 = 
4

9 + 10 + 15 + 12 = f E  

 
Therefore the χ2-statistic would be calculated as follows: 
 

 Observed Expected   O – E (O – E)2/E 
Batch A 12 11.5 +0.5 0.02 
Batch B 15 11.5 +3.5 1.07 
Batch C 10 11.5 –1.5 0.20 
Batch D 9 11.5 –2.5 0.54 
   χ2 = 1.83 

 
Based on the results of the chi square test, with the calculated χ2 less than 7.8147, we 
fail to reject the null hypothesis. Therefore, our best guess is that they are from the 
same population; in other words, there is no difference among the four batches. 
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 For a second example, refer to Table B1 in Appendix B in the back of this book. 
If numbers in this table are truly random we would expect an equal number of 0s, 1s, 
2s, … and 9s. With 35 rows and 50 columns, there are 1,750 integers in the table; 
therefore we would expect 175 of each number (1,750/10). However, what we 
observe is some variation from these expected values:  
 

Integer 0 1 2 3 4 5 6 7 8 9 
Count 173 200 174 165 168 173 166 177 191 163 

 
Are these differences significant or could we expect this variability by chance alone, 
since we are dealing with only 1,750 observations and not an infinite number of data 
points? To test the statistic, the critical value for chi square with nine degrees of 
freedom is 16.919 and the calculations are as follows: 
 

 Observed Expected   O – E (O – E)2 
0 173 175 −2 4 
1 200 175 +25 625 
2 174 175 −1 1 
3 165 175 −10 100 
4 168 175 −7 49 
5 173 175 −2 4 
6 166 175 −9 81 
7 177 175 +2 4 
8 191 175 +16 256 
9 163 175 −12 144 
   Σ = 1.268 

 
With the chi square well less than the critical value of 16.919, we cannot reject the 
hypothesis that there is an equal distribution of numbers in the random numbers table.  
 
Chi Square Goodness-of-Fit Test for Distributions 
 
 All chi square tests can be thought of as goodness-of-fit procedures because they 
compare what is observed to what is expected in the hypothesized distribution. 
However, the term goodness-of-fit is reserved for comparisons of a sample 
distributions to determine if the observed set of data is distributed as expected by a 
preconceived distribution (the previous example could be considered as goodness-of-
fit test for a uniform or rectangular distribution). It is assumed that the sample 
distribution is representative of the population from which it is sampled. Sample 
observations are placed into mutually exclusive and exhaustive categories, and the 
frequencies of each category are noted and compared to expected frequencies in the 
hypothetical distribution. The following are examples of the use of this method for 
both normal and binomial distributions. 
 Goodness-of-Fit for a Normal Distribution. The chi square goodness-of-fit test, 
can be used to determine if a sample is selected from a population that is normally 
distributed. The underlying assumption is that the sample distribution, because of  
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Table 16.1 Determination of Expected Values 

Interval Range 
Expected Values below the Largest 

Value in Each Class Interval 
Expect Values 
within Range 

705.5 to 716.5 1.74 1.74 
716.5 to 727.5 7.57 5.83 
727.5 to 738.5 23.01 15.44 
738.5 to 749.5 52.59 29.58 
759.5 to 760.5 84.20 31.61 
760.5 to 771.5 109.36 25.16 
771.5 to 782.5 120.51 11.15 
782.5 to 793.5 125.00 4.49 

  = 125 
 
 
random sampling, is reflective of the population from which it is sampled. Therefore, 
if the sample has characteristics similar to what is expected for a normal distribution, 
one cannot reject the hypothesis that the population is normally distributed. 
 
   H0: Population is normally distributed 
   H1: H0 is false 
 
Since many statistical procedures assume that sample data are drawn from normally 
distributed populations it is useful to have a method to evaluate this assumption. The 
chi square test provides an excellent method, but should be restricted to sample sets 
with 50 or more observations. For example, using Sturges’ rule, the distribution 
presented in Table 16.1 is created from the data presented and discussed in Chapter 4. 
If this sample distribution is the best estimation of the population from which it was 
sampled, is the population in question normally distributed? Obviously, the greater 
the discrepancy between what is expected and what is actually observed, the less 
likely the difference is attributed to chance alone and the greater the likelihood that 
the sample is not from a normally distributed population. The test statistic would be 
Eq. 15.2: 
 











 −


E
) E  (O = 

2
2χ  

 
Degrees of freedom are based on the number of categories or class intervals and a 
number of estimated values. In order to calculate areas within a normal distribution, 
and by extension the frequencies, one needs to know both the population mean and 
population standard deviation (Eq. 6.3): 
 

σ
μ  x =z −
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Calculation of z-values provides probabilities associated with the dividing points 
(boundaries) for our class intervals. The sample mean and standard deviation are the 
best available estimates of the population: 
 

X   ≈  μ    
S  ≈  σ 

 
Therefore our best estimate of z-values would be an approximation based on our 
sample measurements: 
 

S
X  x =z −                                                   Eq. 16.4 

 
These estimates will affect the degrees of freedom associated with the critical value in 
Table B15. Because we are estimating two population parameters, each is subtracted 
from the number of levels of the dependent discrete variable. One additional degree is 
subtracted to control for bias. Thus, the degrees of freedom equal the number of levels 
minus three (k − 3); one for the estimate of the population mean; one for the estimate 
of the population standard deviation and one for bias. In the above example, degrees 
of freedom equal eight levels minus three, or five degrees of freedom. The decision 
rule is  
 

with α = 0.05, reject H0 if χ2 > χ2
5(0.05) = 11.070 

 
 Based on the discussion in Chapter 6, we can use the information presented about 
areas under the curve of a normal distribution to estimate the expected frequencies in 
each interval of this sample distribution, if the population is normally distributed. For 
example, with a sample of 125 observations, if normally distributed, how many 
observations would be expected below 716.5 mg? The first step is to determine the z-
value on a normal distribution representing 716.5 mg. 
 

2.20 = 
16.5
36.4 = 

16.5
752.9716.5 = 

S
Xx = Z −−−−  

 
where 752.9 was the sample mean for the 125 data points and 16.5 was the sample 
standard deviation. Looking at the standardized normal distribution (Table B2, 
Appendix B) the area under the curve between the mean (0) and z = –2.20 is 0.4861. 
The proportion, or area under the curve, falling below the z-value is calculated by 
subtracting the area between the center and z-value from 0.5000, which represents all 
the area below the mean. 
 

0139.04861.05000.0)20.2(p =−=<  
 
The expected number of observations is the total number of observations multiplied 
by the proportion of the curve falling below z = –2.20: 
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74.1)0139.0(125)5.716(E ==<  
 

Using this same method, it is possible to estimate the number of observations 
expected to be below 727.5 in a normal distribution (the greatest value in the second 
class interval). 
 

41.5 = 
16.5
25.4 = 

16.5
752.9727.5 = 

S
Xx = Z −−−−  

 
p(<–1.54) = 0.5000 – 0.4394 = 0.0606 

 
E(<727.5) = 125(0.0606) = 7.57 

 
Continuing this procedure it is possible to calculate all areas below given points in the 
proposed normal distribution (Table 16.1, second column). By default, if all the 
observations are represented under the area of the curve, then the expected number of 
observations below the upper value of the highest interval must include all of the 
observations (in this case 125). 
 Unfortunately, we are interested in not only the areas below given points on the 
distribution, but also areas between the boundaries of the class intervals. Therefore, 
the number of observations expected between 716.5 and 727.5 is the difference 
between the areas below each point: 
 

Expected (Range 716.5 to 727.5) = E(<727.5) – E(<716.5)  
Expected (Range 716.5 to 727.5) = 7.57 – 1.74 = 5.83 

 
Expected (Range 727.5 to 738.5) = E(<738.5) – E(<727.5)  

Expected (Range 727.5 to738.5) = 23.01 – 7.57 = 15.44 
  
Using this same procedure it is possible to determine the expected results for the 
remaining categories and create a table (Table 16.1, third column). The expected 
 
 

Table 16.2 Comparison of Observed and Expected Data 

Interval Observed Expected (O – E) (O – E)2/E 
705.5 to 716.5 2   1.74   0.26 0.039 
716.5 to 727.5 6   5.83   0.17 0.005 
727.5 to 738.5 18 15.44   2.56 0.424 
738.5 to749.5 22 29.58 –7.58 1.942 
759.5 to760.5 35 31.61   3.39 0.364 
760.5 to771.5 28 25.16   2.84 0.321 
771.5 to782.5 10 11.15 –1.15 0.119 
782.5 to 793.5 4   4.49 –0.49 0.053 
  χ2  =    = 3.267 
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amounts reflect a normal distribution. The chi square statistic is then computed 
comparing what is expected if the population distribution is normal to what was 
actually observed in the sample distribution. The greater the difference, the more 
likely one is to reject the hypothesis that the population represented by  the sample  is 
normally distributed. The chi square is a calculation using the data presented in Table 
16.2. The decision is, with χ2 < 11.070, to not reject H0 and conclude that we are 
unable to reject the hypothesis that the population is normally distributed. This 
process is laborious, but useful when evaluating data where it is important to 
determine if the population is normally distributed. Similar to previous tests, we 
cannot prove the null hypothesis and we simply cannot reject the possibility that the 
population from which our data were selected might be normally distributed. 
 Goodness-of-Fit for a Binomial Distribution. To illustrate the use of the chi 
square goodness-of-fit test for a binomial distribution, assume that four coins are 
tossed at the same time. This procedure is repeated 100 times. Based on the following 
results, are these “fair” coins? 
 
    0 heads  15 times 
    1 head  30 times 
    2 heads  32 times 
    3 heads  17 times 
    4 heads   6 times 
 
From the discussion of probability in Chapter 2, using factorials, combinations, and 
the binomial equation (Eq. 2.12), it is possible to produce the theoretical binomial 
distribution given the coins are fair, p(head) = 0.50. For example, the probability of 
tossing only one head is: 

 

qp 
x

n
 = p(x) x-nx








  

 

.250 = ).50().50( 
1

4
 = p(1) 31








  

 
 

Table 16.3 Expected Outcomes from Tossing Four Coins 

Outcome p(x) Frequency for 100 Times 
0 heads 0.0625   6.25 
1 head 0.2500 25.00 
2 heads 0.3750 37.50 
3 heads  0.2500 25.00 
4 heads 0.0625   6.25 
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Table 16.4 Data for Comparing Observed and Expected Results 
for Four Tossed Coins 

 Observed Expected (O-E) (O-E)2/E 
0 heads 15     6.25   8.75 12.25 
1 head 30   25.00   5.00   1.00 
2 heads 32   37.50 –5.50   0.81 
3 heads 17   25.00 –8.00   2.56 
4 heads 6     6.25 –0.25   0.01 
   χ2 = 16.63 

 
 
A table can be produced for the probability of all possible outcomes. If the four coins 
are fair these would produce the expected outcomes displayed in Table 16.3. The 
comparison is made for the discrepancy between what was actually observed with 100 
coin tosses and what was expected to occur if the p(head) was in fact 0.50. Is the 
discrepancy just due to change error or large enough to be significant? The 
hypotheses would be: 
 
  H0: Population is a binomial distribution with p = 0.50 
  H1: H0 is false 
 
The test statistic remains the same (Eq. 16.2): 
 











 −


E
) E  (O = 

2
2χ  

 
The decision rule is: with α = 0.05, reject H0 if χ2 > χ2

3(0.05) = 7.8147. Here the 
degrees of freedom are based upon the number of discrete intervals minus two (k - 2); 
one degree of freedom is subtracted because we are estimating the population 
proportions (p) and one is subtracted to prevent bias. The data required for computing 
the χ2-statistic is presented in Table 16.4. Based on 100 coin tosses, the decision is 
with χ2 > 7.8147, reject H0, conclude that the sample does not come from a binomial 
distribution with p(head) = 0.50. The coins are not fair. 
 
Chi Square Test of Independence 
 
 The most common use of the chi square test is to determine if two discrete 
variables are independent of each other. With this test we are concerned with 
conditional probability: what the probability is for some level of variable A given a 
certain level of variable B (Eq. 2.6) 
 

p(B)
B)p(A = B)|p(A = B given p(A) ∩  
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If the two discrete variables are independent of each other, then the probability of 
each level should be the same regardless of which level of the B characteristic it 
contains. 
 

   Levels of the First Variable  
   A1 A2 A3 ... AK  
  B1    ...   
 Levels of the B2    ...   
 Second Variable ... ... ... ... ...   
  BK    ...   
 

Figure 16.2 Design of the contingency table, chi square test of independence. 

 
)A(p)BA(p...)BA(p)BA(p 1k12111 ===                 Eq. 16.5 

 
A contingency table is created where frequency of occurrences is listed for the 
various levels of each variable. This contingency table is used to determine whether 
two discrete variables are contingent or dependent on each other. The table has a 
finite number of mutually exclusive and exhaustive categories in the rows and 
columns (Figure 16.2). Such a design is a “K × J” contingency with K rows, J 
columns, and K × J cells. This bivariate table can be used to predict if two variables 
are independent of each other or if an association exists. The hypothesis under test 
implies that there is no relationship (complete independence) between the two 
variables and that each is independent of the other. 
 
  H0: P(B1A1) = P(B1A2) = P(B1A3) ... = P(B1AK) = P(B1) 
   P(B2A1) = P(B2A2) = P(B2A3) ... = P(B2AK) = P(B2) 
      ... 
   P(BKA1) = P(BKA2) = P(BKA3) ... = P(BKAK) = P(BK) 
 
  H1: H0 is false 
 
The chi square test of independence tests the hypothesis that two variables are related 
only by chance. A simpler terminology for the two previous hypotheses is: 
 
   H0:   Factor B is independent of Factor A 
   H1:   Factor B is not independent of Factor A 
 
Thus, in the null hypothesis, the probability of B1 (or B2 ... or BM) remains the same 
regardless of the level of the second variable, A. If we fail to reject H0, the two 
variables have no systematic association and could also be referred to as unrelated, 
uncorrelated, or orthogonal variables. Once again the test statistic (Eq. 16.2) is: 
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Much like the goodness-of-fit model, if there is complete independence the difference 
between the observed and expected outcomes will be zero. As the difference in the 
numerator increases the calculated χ2-value will increase and eventually exceed a 
critical value; past that point the difference cannot be attributed to chance or random 
variability. To determine the critical value, the degrees of freedom are based on the 
number of rows minus one (K – 1) times the number of columns minus one (J – 1). 
This is based on a contingency table such as the following: 
 

 A1 A2 A3 A4  
B1     100 
B2     200 
B3     100 
 100 100 100 100 400 

 
If we know the information for any six cells [(J – 1)(K – 1)] the remaining cells 
within the table would become automatically known and having no freedom to vary. 
With the following information for six cells (example bolded) the remaining cells 
could be easily determined and these last six cells have no freedom to change once 
the first six are identified. 
 

 A1 A2 A3 A4  
B1 26 18 10 46 100 
B2 43 56 68 33 200 
B3 31 26 22 21 100 
 100 100 100 100 400 

 
The decision rule is:  
 

with α = 0.05, reject H0 if χ2 is greater than χ2
(J-1)(K-1)(α). 

 
In the case of four columns and three rows, the critical chi square value with α = 0.05 
from Table B15 is: 
 

χ2
(3)(2)(α) = χ2

6(α) = 12.592 
 

The expected value for any cell is calculated by multiplying its respective row sum by 
its respective column sum and dividing by the total number or the grand sum. 
 

Total
RC = E


⋅                                                Eq. 16.6 
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To illustrate this, the calculations for the expected values for a three by two 
contingency table would be: 
 

(C1 × R1)/T (C2 × R1)/T (C3 × R1)/T  = R1 

(C1 × R2)/T (C2 × R2)/T (C3 × R2)/T  = R2 

 = C1  = C2  = C3  = T 
 
For example, in a pharmacology study mice of various age groups are administered a 
chemical proposed to induce sleep. After 30 minutes the animals are assessed to 
determine if they are asleep or awake (based on some predetermined criteria). The 
purpose of the study is to determine if the particular agent is more likely to induce 
sleep in different age groups. The study results are as follows: 
 

 Asleep (C1) Awake (C2) 
3 months (R1) 7 13 
10 months (R2) 9 11 
26 months (R3) 15 5 
 

Simply stated, the hypothesis under test is that age does not influence sleep induction 
by the proposed agent being tested. 
 
  H0: P(C1|R1) = P(C1|R2) = P(C1|R3) = P(C1) 
   P(C2|R1) = P(C2|R2) = P(C2|R3) = P(C2) 
  H1: H0 is false 
 
Or simply stated: 
 
  H0: Sleep is independent of the age of the mice 
  H1: H0 is false, a relationship exists 
 
The decision rule is, with α = 0.05, reject H0 if χ2 > χ2

2(0.05) = 5.99. A comparison of 
the observed and expected values are as follows: 
 

 Observed   Expected 
 C1 C2   C1 C2 
R1 7 13 20  10.3 9.7 
R2 9 11 20  10.3 9.7 
R3 15 5 20  10.3 9.7 
 31 29 60    

 
Calculation of the chi square statistic is: 
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Table 16.5 Original Data for Example Comparing Age Groups 
and Incidence of Side Effects 

 Age in Years  

Side Effects <18 18−45 46−65 >65  
None 80 473 231 112 896 
Mild 9 68 43 27 147 
Moderate 2 24 8 8 42 
Severe 1 5 3 6 15 
Total 92 570 285 153 1100 

 
 

6.94 = 
9.7

)9.7(5 ... +
10.3

)10.3(9+
9.7

)9.7(13+
10.3

)10.3(7 = 
2222

2 −−−−χ  

 
The decision based on a sample of 60 mice is that with χ2 > 5.99, reject H0 and 
conclude that age does influence the induction of sleep by this particular chemical. It 
appears that the agent has the greatest effect on the older animals. 
 For the chi square test of independence there are two general rules: 1) there must 
be at least one observation in every cell, no empty cells and 2) the expected value for 
each cell must be equal to or greater than five. The chi square formula is theoretically 
valid only when the expected values are sufficiently large. If these criteria are not 
met, adjacent rows or columns should be combined so that cells with extremely small 
values or empty cells are combined to form cells large enough to meet the criteria. To 
illustrate this consider the following example of a multicenter study where patients 
were administered an experimental aminoglycoside for Gram negative infections. The 
incidences of side effects are reported in Table 16.5. Is there a significant difference 
in the incidence of side effects based upon the ages of the patients involved in the 
study? 
 Unfortunately, an examination of the expected values indicates that four cells fall 
below the required criteria of an expected value of at least five (Table 16.6). One 
  
 

Table 16.6 Original Expected Values for Age Groups and 
Incidence of Side Effects 

 Age in Years  

Side Effects <18 18−45 46−65 >65  
None 74.94 464.29 232.15 124.62 896 
Mild 12.30 76.17 38.08 20.45 147 
Moderate 3.51 21.77 10.88 5.84 42 
Severe 1.25 7.77 3.89 2.09 15 
Total 92 570 285 153 1100 
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Table 16.7 Expected Values Resulting from Collapsing Side Effects 

 Age in Years  

Side Effects <18 18−45 46−65 >65  
None 74.94 464.29 232.15 124.62 896 
Mild 12.30 76.17 38.08 20.45 147 
Moderate/Severe 4.76 29.54 14.77 7.93 57 
Total 92 570 285 153 1100 

 

Table 16.8 Expected Values Resulting from Collapsing Both Age 
Groups and Side Effects 

 Age in Years  

Side Effects 18−45 46−65 >65  
None 539.23 232.15 124.62 896 
Mild 88.47 38.08 20.45 147 
Moderate/Severe 34.30 14.77 7.93 57 
Total 662 285 153 1100 

 

Table 16.9 Observed Outcomes with Collapsing Both Age Groups 
and Side Effects 

 Age in Years  

Side Effects <46 46−65 >65  
None 553 231 112 896 
Mild 77 43 27 147 
Moderate/Severe 32 11 14 57 
Total 662 285 153 1100 

 
 
method for correcting this problem would be to combine the last two rows (moderate 
and severe side effects) and create a 3 × 4 contingency table (Table 16.7). This 
combination of adjacent cells is more logical than combining the severe side effects 
with either the mild side effects or the absence of side effects. However, one cell still 
has an expected value less than five. The next logical combination would be the first 
two columns (ages <18 and 18−45 years old) as presented in Table 16.8. This 3 × 3 
design meets all of the criteria for performing a chi square analysis. Adjusting the 
initial observed data to the new 3 −3 design is presented in Table 16.9. It should be 
noted that the number of data points is the same as those in the original 4 × 4 design 
and we have not sacrificed any of our information by collapsing the cells. The new 
hypotheses would be: 
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  H0: P(S1A1) = P(S1A2) = P(S1A3) = P(S1) 
   P(S2A1) = P(S2A2) = P(S2A3) = P(S2) 
   P(S3A1) = P(S3A2) = P(S3A3) = P(S3) 
  H1: H0 is false 
 
or: 
 
  H0: Severity of side effects is independent of age group 
  H1: H0 is false, a relationship exists 
 
and the decision rule would be: with α = 0.05, reject H0 if χ2 > χ4

2 (0.05) = 9.4877. 
Note the decrease from the original nine degrees of freedom (4 – 1 rows times 4 – 1 
columns) to the new four degrees of freedom. The calculation for the chi square 
statistic would be: 
 

7.93
)7.93(14 ...+ 

232.15
)232.15(231 + 

539.23
)539.23(553 = 

222
2 −−−χ  

 
11.62 = 2χ  
 

The decision is, with χ2 > 9.4877, reject H0, conclude that there is a significant 
difference in side effects based on age. 
 If the chi square data for the test of independence is reduced to the smallest 
possible design, a 2 × 2 contingency table, and the expected values are still too small 
to meet the requirements (no empty cells and every expected value ≥5 per cell), then 
the Fisher’s exact test should be considered (below). 

The chi square test of independence provides little information about the strength 
or type of relationship between the two variables. Ways of assessing such associations 
are discussed in Chapter 17.  
 
Chi Square Test for Trend for Ordinal Classifications 
 

In the previous example of the incidence of side effects in the multicenter study 
of an experimental aminoglycoside, assume the study involved two different dosage 
forms of the same medication, tablets and a suspension. The types of side effects 
reported, based on the dosage form are as follows:   

 
 None Mild Moderate Severe  
Tablet 463 68 15 5 551 
Suspension 433 79 27 10 549 
 896 147 42 15 1100 

 
If this data were to be evaluated using the chi square test of independence, with three 
degrees of freedom (C − 1 times R − 1), it would not be significant (χ2 = 6.919; with 
the critical value = 9.3484). However, there does appear to be a trend with the 
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suspension tending to cause more of the moderate and severe side effects. The 
severity of side effects is in an ordinal arrangement; therefore, it is possible to modify 
the data and test for a trend using a Student t-test. 
 To test for a trend, arbitrary values can be assigned to each of the ordinal levels. 
In this example assume a simple linear assignment of values of 0 for none, 1 for mild, 
2 for moderate, and 3 for severe side effects. A table can be created to calculate the 
mean and standard deviation for the weighted scores for the tablet (T) and the 
suspension (S) dosage forms: 
 

 Tablet Suspension 
Weight (w) fxT wfxT w2fxT fxS wfxS w2fxS 

0 463 0 0 433 0 0 
1 68 68 68 79 79 79 
2 15 30 60 42 84 168 
3 5 15 45 15 45 135 

Σ = 551 113 173 569 208 382 
 
From the sums listed above Eqs. 5.2, 5.4 and 9.3 can be used to calculate the sample 
means and sample variances for the two dosage forms as well as a pooled variance: 
 

 Tablet  Suspension 
Mean = 0.205  0.365 

Variance = 0.272  0.539 
Pooled Variance =  0.408  

 
To determine if there is a trend in the data, a two-sample t-test (Eq. 9.6) can be used 
to evaluate significance. In this case the critical t-value (α = 0.05) is with 1098 
degrees of freedom (551+569−2) is 1.96.  The calculation would be: 
 

205.4

549
408.0

551
408.0

365.0205.0
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which is significant (even at a level of p < 0.001). Therefore, one could assume a 
significant trend with the suspension causing a significantly greater proportion of the 
more severe side effects. 
 One of the concerns with this test is the arbitrary selection of the weighted values 
and two investigators might assign different weights to the different levels of the 
discrete variables.  In this example different ordinal weights do not substantially 
change the results: 
 

Various Weights t-statistic 
0, 1, 2, 3 (original example) −4.205 
0, 1, 3, 5 −4.301 
−1, 1, 5, 7 −4.371 
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 a b a + b  

 c d c + d  
 a + c b + d n  
     

Figure 16.3 Format for defining the contents of a 2 × 2 contingency table. 
 
 
 
Yates’ Correction for a Two-by-Two Contingency Table 
 
 A 2 row by 2 column (two-by-two or written 2 × 2) contingency table also could 
be set up by designating the four cells as a, b, c, and d (Figure 16.3). This particular 
format will be used for several tests in this and the following three chapters. Using 
these letters, another way to calculate χ2 for a 2 × 2 design (which would produce the 
identical same results as Equation 15.2), is: 
 

d)+b)(c+d)(a+c)(b+(a
)bcn(ad = 
2

2 −χ                                Eq. 16.7 

 
As an example, consider the following data. A new design in shipping containers for 
ampules is compared to the existing one to determine if the number of broken units 
can be reduced. One hundred shipping containers of each design are subjected to 
identical rigorous abuse and failures are defined as broken ampules in excess of 1%. 
The results of the study are presented in Table 16.10. Notice the exact percent of 
breakage is ignored in favor of a success/failure criterion. Do the data suggest the new 
design is an improvement over the one currently used? In this case the expected 
values would be: 
 

92.5 92.5 
7.5 7.5 

 
and the definitional calculation for the chi square statistic (Eq. 16.2) would be: 
 

E
)E(O

 = 
2

2 −
χ  

 
 

Table 16.10 Data Comparing Two Container Designs 

 
Results 

New 
Container 

Old 
Container 

 
Total 

Success 97 88 185 
Failure 3 12 15 
Totals 100 100 200 
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5.84 = 
7.5

)7.5(12
 + 

7.5
7.5)(3 + 

92.5
)92.5(88

 + 
92.5

)92.5(97
 = 

222
2 −−−−

χ  

 
Using the alternate formula (Eq. 16.7), the same results are obtained: 
 

d)+c)(b+d)(a+b)(c+(a
)bcn(ad = 
2

2 −χ  

 

84.5
000,750,27
000,000,162

(185)(15)(100)(100)
)3(88)200(97(12) = 
2

2 ==−χ  

 
In this particular example the hypotheses would be: 
 
   H0: Success or failure is independent of container style 
   H1: H0 is false 
 
or more accurately: 
 
   H0: P(S1C1) = P(S1C2) = P(S1) 
    P(S2C1) = P(S2C2) = P(S2) 
   H1: H0 is false 
 
and the decision rule is: with α = 0.05, reject H0 if χ2 > χ1

2 (0.05) = 3.8415. 
Therefore, based on either formula, since χ2 > 3.8415, we would reject H0 and 
conclude that the rate of damage is not independent of the type of container used. 
 Similar to the discussion of the z-test for proportions, the calculated chi square 
value is based upon discrete, discontinuous data, but the chi square critical value is 
based on a continuous distribution (Figure 16.1). Therefore, the calculated chi square 
value is only an approximation of the theoretical chi square distribution and these 
approximations are good for larger numbers of degrees of freedom, but not as 
accurate for only one degree. Also, since there is a decrease to the smallest possible 
degrees of freedom, the distribution no longer resembles a normal distribution (Figure 
16.4). Therefore, we must once again use a correction to produce a more conservative 
estimate. Using the symbols in Figure 16.3, Yates’ modification of Eq. 16.7 produces 
a smaller numerator and a more conservative estimate for the chi square statistic. 
 

d)+b)(c+d)(a+c)(b+(a
).5n0  |bcadn(|

 = 
2

2
corrected

−−
χ                            Eq. 16.8 

 
 Recalculating the chi square statistic for data from the above example using 
Yates’ correction for continuity, the results are: 
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Figure 16.4 Chi square distributions for fewer than four degrees of freedom. 

 
 

(185)(15)(100)(100)
].5)(200)0(   | (3)(88)  (97)(12) | 200[

 = 
2

2
corrected

−−
χ  

 

4.61 = 
27750000

128000000 = 2
correctedχ  

 
Yates’ correction provides a more conservative, harder to reject, chi square value. If 
the above example were computed without Yates’ correction the resulting χ2 would 
have equaled 5.84. In this particular case either finding would have resulted in the 
rejection of H0. 
 
Likelihood-Ratio Chi Square Test 
 

The likelihood-ratio chi square test compares the ratios between the observed and 
expected frequencies. It is computed using the log value for each ratio in each cell of 
the contingency table: 
 

 













⋅⋅=

E
OlnO2G 2                                  Eq. 16.9 

 
When there is independence between the row and column variables the likelihood 
ratio is represented by a chi square distribution with (R − 1)(C − 1) degrees of 
freedom. This provides a measure of how good the results fit the alternative 
hypothesis. In the previous example (ampule breakage and packaging) the results 
would be as follows: 
 

O/E  Ln O/E  O⋅Ln O/E 
0.4000 1.6000  −0.9163 +0.4700  −2.7489 +5.6400 
1.0486 0.9513  +0.0475 −0.0499  +4.6075 −4.3912 

df = 1

df = 2
df = 3
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The sum of the last four cells is 3.1074.  Therefore the likelihood ratio is 
 

215.6)1074.3(2G 2 ==  
 
This result is well in excess of the critical value of 3.84 and therefore a significant 
ratio showing a significant association between the row and column variables.  
Similar to the Yates’ correction for the chi square statistic, the likelihood ratio will 
give a more conservative result, making rejection of the null hypothesis more 
difficult. 
 
Comparison of Chi Square to the z-Test of Proportions 
 

In the case of a 2 × 2 contingency table, one could either perform a chi square 
test of independence or a two-sample z-test of proportions on the same information 
and the results would be identical. For example, consider our previous example of the 
shipping containers and broken ampules. The exact p-value for a χ2 = 5.84 is 0.0157 
(determined using the Excel® function CHIDIST). One could also present this same 
data in the format seen in Table 16.10. The proportion of failures, 0.03 (3/100) for the 
new design and 0.12 (12/100) for the old design is presented in the table. Using Eq. 
15.5 to determine if there is a significant difference between the two proportions, the 
resulting z-value would 2.416, which represents a p-value of 0.0157 (determined 
using the Excel function [1-NORMSDIST(z)]*2). Similarly, using Yates’ correction 
for either of the tests (Eq. 15.11 or Eq. 16.8) produces the same results, both p-values 
equal to 0.032. Thus, either test can be performed for data appearing in a 2 × 2 
contingency table.  
 
Fisher’s Exact Test 
 
 If data for a chi square test of independence is reduced to a 2 × 2 contingency 
table and the expected values are still too small to meet the requirements (at least five 
per cell) or have a zero in one or more of the four cells, the Fisher’s exact test can be 
employed (Fisher, 1936). The term “exact” is used because the result of the 
calculations produces the exact probabilities of obtaining the observed results if the 
two variables are independent. This test is sometimes referred to as Fisher’s four-
fold test because of the four cells of frequency data. The test used the previously 
described the a-b-c-d four-cell format (Figure 16.3). The formula involves the 
factorials for the cells and margins: 
 

d!c!b!a!n!
d)!+(bc)!+(ad)!+(cb)!+(a = p                              Eq. 16.10 

 
An alternative formula, using possible combinations (Chapter 2), produces the exact 
same results: 
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p                                     Eq. 16.11 

 
The first formula is identical to the nonparametric median test that will be discussed 
in Chapter 21. However, in this test, cells are based on the evaluation of two 
independent variables and not on estimating a midpoint based on the sample data.  
 Multiple tests are performed to determine the probability of not only the research 
data, but also the probabilities for each possible combination to the extreme of the 
observed data. These probabilities are summed to determine the exact probability of 
the outcome observed given complete independence. For example, assume the 
following data is collected: 
 

3 7 10 
7 3 10 

10 10 20 
 
The p-value is calculated for this one particular outcome; however, p-values are also 
calculated for the possible outcomes that are even more extreme with the same fixed 
margins: 
 

2 8    1 9    0 10 

8 2    9 1    10 0 
 
Then the probabilities of all four possibilities are summed and the result is a one-
tailed Fisher’s exact test using extremes in one direction. The decision rule 
compares this exact probability to a pcritical (for example, 0.05). If it is smaller than the 
pcritical, reject H0 and conclude that the rows and columns are not independent. 
 To illustrate the use of this test, assume the following example. Twelve 
laboratory rats are randomly assigned to two equal-sized groups. One group serves as 
a control, while the experimental group is administered a proposed carcinogenic 
agent. The rats are observed for the development of tumors. The following results are 
observed: 
 

 Tumor No Tumor  

Experimental 4 2 6 

Control 1 5 6 

 5 7 12 
 

Is the likelihood of developing a tumor the same for both groups? The hypotheses are: 
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  H0: The group and appearance of a tumor are independent 
  H1: The two variables are not independent 
 
The decision rule is, with α = 0.05, reject H0 if p < 0.05. The computation for the 
probability of four tumors in the experimental group is: 
 

d!c!b!a!n!
d)!+(bc)!+(ad)!+(cb)!+(a = p  

 

0.1136 = 
5! 2! 1! 4! 12!

7! 5! 6! 6! = p  

 
There is only one more extreme result with fixed margins and that would be five 
tumors in the experimental group: 
 

 Tumor No Tumor  

Experimental 5 1 6 

Control 0 6 6 

 5 7 12 
 

0.0076 = 
6! 1! 0! 5! 12!

7! 5! 6! 6! = p  

 
The probability of four or more experimental mice developing a tumor: 
 
     p(5)  =  0.0076 
     p(4)  =  0.1136 
            0.1212 
 
Therefore the decision, with p > 0.05, is that H0 cannot be rejected. It is assumed that 
the two variables are independent and that the incidence of tumor production is 
independent of the agent’s administration. 
 To perform a two-tailed Fisher’s exact test extremes in the opposite direction 
are considered when the probabilities of their outcomes are less than or equal to the 
probability associated with the observed results. For this example the extreme results 
in the opposite direction, with fixed margins would be: 
 

0 6    1 5    2 4 

5 1    4 2    3 3 
 
The result for these three possible outcomes to the other extreme would be: 
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0.0076 = 
!1 !6 !5 !0 12!

7! 5! 6! 6! =)0( p  

 

11360. = 
!2 !5 !4 !1 12!

7! 5! 6! 6! =)1( p  

 

37880. = 
!3 !4 !3 !2 12!

7! 5! 6! 6! =)2( p  

 
However, the p(2) exceeds the original observed outcome of p = 0.1136, so it would 
not be included in the calculations. Therefore the result for a two-tailed Fisher’s exact 
test would be:  
 
     p(5)  =  0.0076 
     p(4)  =  0.1136 
     p(0)  =  0.0076 
     p(1)  =  0.1136 
            0.2424 
 
McNemar’s Test 
   
 The McNemar test can be used to evaluate the relationship or independence of 
paired discrete variables. The test involves dichotomous measurements (e.g., pass/fail, 
yes/no, present/absent) that are paired. The paired responses are constructed into a 
four-fold, or 2 × 2 contingency table and outcomes are tallied into the appropriate 
cell. Measurements can be paired on the same individuals or samples over two 
different time periods (similar to our previous use of the paired t-test in Chapter 9) 
and the layout for the contingency table is presented in Figure 16.5. Alternatively 
subjects can be paired based on some predetermined and defined characteristic 
(replacing first measurement and second measurement with the two characteristics in 
Figure 16.5. 
 For example, if it were based on a yes/no response over two time periods, those 
individuals responding “yes” at both time periods would be counted in the upper left 
corner (cell a) and those answering “no” on both occasions are counted in the lower 
right corner (cell d). Mixed answers, indicating changes in responses, would be 
counted in the other two diagonal cells (b and c). If there was absolutely no change 
over the two time periods, we would expect that 100% of the results would appear in 
cells a and d. Those falling in cells c and b represent changes between the two 
measurement periods and are of primary interest to the researcher.  

 For the McNemar’s test the statistic is as follows: 
 

c+b
)c(b = 
2

2
McNemar

−χ                                      Eq. 16.12 
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   First Measurement  
   Outcome 1 Outcome 2  

 Second 
Measurement 

  Outcome 1 a b  

   Outcome 2 c d  
      

Figure 16.5 Design for a McNemar test for paired data. 
 
 
As with the previous Yates’ correction of continuity, a similar correction can be made 
to produce a more conservative approximation for the McNemar test: 
 

c+b
)1  |c  b(|

 = 
2

2
correctedMcNemar

−−
χ                                  Eq. 16.13 

 
In either case, the null hypothesis would be that there is no significant change 
between the two times or characteristics. Because we are dealing with a 2 × 2 
contingency table, the number of degrees of freedom is one (rows – 1 × columns – 1). 
Thus we will compare our calculated statistic to a critical χ2 with one degree of 
freedom or 3.8415 (Appendix B, Table B15). If the χ2

McNemar exceeds 3.8415 we 
reject H0 and assume a significant change between the two measurements (similar to 
our previous H0: μ ≠ 0 in the paired t-test).  
 As an example, assume that 100 patients are randomly selected based on visits to 
a local clinic and assessed for specific behavior that is classified as a risk factor for 
colon cancer. The risk factor is classified as either present or absent. During the 
course of their visit and with a follow-up clinic newsletter, they are educated about 
the incidence and associated risks for a variety of cancers. Six months after the initial 
assessment patients are evaluated with respect to the presence or absence of the same 
risk factor. The following table represents the results of the study: 
 

  Risk Factor 
Before Instruction 

 

  Present Absent  

Risk Factor 
After Instruction 

  Present 40 5 45 

  Absent 20 35 55 

  60 40 100 
 
The null hypothesis would be that the instructional efforts had no effect. 
 
  H0: Instruction did not influence presence of the risk factor 
  H1: H0 is false 
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The decision rule would be to reject H0, of independence, if χ2
McNemar greater than 

χ2
1(1 – α) = 3.8415. The calculations would be: 

 

9.0 = 
25

225 = 
20+5

)20(5 = 
c+b
)c(b = 

22
2
McNemar

−−χ  

 
Yates’ correction of continuity would produce a more conservative estimation: 
 

7.84 = 
25

196 = 
20+5

)1  |205(|
 = 

c+b
)1  |c  b(|

 = 
22

2
correctedMcNemar

−−−−
χ  

 
Either method would result in the rejection of the H0 and the decision that the 
instruction provided the patients resulted in a change in risk taking behavior. 
 Another way to think of McNemar’s procedure is as a test of proportions, based 
on samples that are related or correlated in some way. The McNemar’s test does not 
require the computation of the standard error for the correlation coefficient. The 
computation, using the previous notations for a 2 × 2 contingency table is: 
 

d + a
d  a =z −                                                Eq. 16.14 

 
where in large samples χ2 = z2. 
 
Cochran's Q Test 
 
 Cochran’s Q test can be thought of as a complement to the randomized complete 
block design, discussed in Chapter 10, when dealing with discrete data. It is an 
extension of the McNemar’s test to three or more levels of the independent variable. 
Similar to the randomized complete block design, subjects or observations are 
assigned to blocks to reduce variability within each level of the independent variable. 
The design is used to create homogeneous blocks. Subjects within each block are 
more homogeneous than subjects within the different blocks. As seen in Table 16.11, 
the blocking effect is represented by the row and each block contains results for each 
level of the independent variable. There is only one observation per cell and this is 
reported as a pass (coded as 1) or fail (coded as 0) result. Each of the columns is 
summed (C) and the sum is squared (C2). Also, each block is summed (R) and the 
sum squared (R2). Lastly, both the R and R2 are summed producing R and R2. The 
formula for Cochran’s Q is: 
 

RR)k(
])R(  )C[(k 1)(k = Q 2

22

−
−−                              Eq. 16.15 

 
where k is the number of levels of the discrete independent variable. The resultant Q-
value is compared to the chi square critical value with k – 1 degrees of freedom. If the 
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Table 16.11 General Structure of a Randomized Block Design 

 Levels of the Independent Variable   

 C1 C2  Ck R R2 
Block b1  x11 x12 ... x1k x1k x1k

2 
Block b2 x21 x22 ... x2k x2k x2k

2 
Block b3 x31 x32 ... x3k x3k x3k

2 
... ... ... ... ... ... ... 
Block bj xj1 xj2 ... xjk xjk xjk

2 
C xj1 xj2  xjk   

C2 xj1
2 xj2

2 ... xjk
2   

    R = xk  

    R2 =  xk
2 

 
 
Q-value exceeds the critical value there is a significant difference among the various 
levels of the independent variable. 
 As an example, a pharmaceutical company is trying to decide among four 
different types of gas chromatographs produced by four different manufacturers. To 
evaluate the performances of these types of equipment, ten laboratory technicians are 
asked to run samples and evaluate the use of each piece of equipment. They are 
instructed to respond as either acceptable (coded 1) or unacceptable (coded 0) for the 
analysis performed by the equipment. The results of their evaluations appear in Table 
16.12. Is there a significant relationship between the pieces of equipment and 
technicians’ evaluations? The hypotheses being tested are: 

 

Table 16.12 Evaluations for Various Types of Equipment 

 Manufacturer 
Technician A B C D 

1 0 1 0 1 
2 0 0 0 1 
3 1 0 0 1 
4 0 1 0 1 
5 0 0 1 0 
6 0 0 1 1 
7 0 0 0 1 
8 0 1 1 1 
9 0 0 0 1 

10 1 0 0 1 
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Table 16.13 Example of Cochran’s Q Test 

 Manufacturer   

Technician A B C D R R2 
1 0 1 0 1 2 4 
2 0 0 0 1 1 1 
3 1 0 0 1 2 4 
4 0 1 0 1 2 4 
5 0 0 1 0 1 1 
6 0 0 1 1 2 4 
7 0 0 0 1 1 1 
8 0 1 1 1 3 9 
9 0 0 0 1 1 1 

10 1 0 0 1 2 4 
C = 2 3 3 9   

C2 = 4 9 9 81   

    R = 17  
                    C2 =  103  R2 =  33 

 
   
  H0:  Technician evaluations are independent of the equipment tested 
  H1:  H0 is false  
 
The decision rule is, with 95% confidence or α equal less than 0.05, reject H0 if Q is 
greater than χ2

(k-1)(1 – α), which is 7.8147 (k – 1 = 3). The sum of columns and rows 
are presented in Table 16.13 and the calculation of Cochran’s Q is as follows: 
 

RR)k(
])R(  )C[(k 1)(k = Q 2

22

−
−−  

 

10.54 = 
35

369 = 
33(4)(17)

])(17  [(4)(103) (3)
 = Q

2

−
−

 

 
With Q greater than the critical value of 7.8147, the decision is to reject the 
hypothesis of independence and assume that the type of equipment tested did 
influence the technicians’ responses. Based on the C’s presented in Tables 16.12 and 
16.13, manufacturer D’s product appears to be preferred. 
 
Mantel-Haenszel Test 
 
 The Mantel-Haenszel test sometimes referred to as the Cochran-Mantel-
Haenszel test or Mantel-Haenszel-Cochran test, can be thought of as a three-
dimensional chi square test, where a 2 × 2 contingency table is associated with main 
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factors in the row and column dimensions. However a third, possibly confounding 
variable, is added as a depth dimension in our design. This third extraneous factor 
may have k-levels and the resultant design would be 2 × 2 × k levels of three discrete 
variables. In other words, we are comparing k different 2 × 2 contingency tables. 
Using the a,b,c,d labels as in the previous 2 × 2 designs, the Mantel-Haenszel 
compares each ai (a1 through ak) with its corresponding expected value. The ai is the 
observed value for any one level of the possible confounding variable. The statistic is: 
 

)n1)(n(
)d+(b)c+(a)d+(c)b+(a

n
cb  da

 = 

2
ii

iiii

i

iiii
2

2
MH

−









 −


χ                     Eq. 16.16 

 
This can be modified to create a numerator that compares the observed and expected 
values for one cell of the 2 × 2 matrix and sums this comparison for each level of the 
confounding variable. 
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−

χ                     Eq. 16.17 

 
The null hypothesis reflects independence between the row and column variables, 
correcting for the third extraneous factor. The calculated χ2

MH is compared to the 
critical value χ2

1(1 – α). If that value exceeds the critical value, the row and column 
factors are not independent and there is a significant relationship between the two 
factors. 
 For example, consider a study of smoking and the presence or absence of chronic 
lung disease. Assume that we are concerned that the subjects’ environments might 
confound the finding. We decide to also evaluate the data based on home setting (e.g., 
urban, suburb, rural). The results of the data collection are presented in Table 16.14.  
 Equation 16.16 can be simplified by modifying certain parts of the equation. For 
example the ei (the expected value) for each confounding level of ai is: 
 

n
)c+a)(b+a(

 = e
i

iiii
i                                        Eq. 16.18 

 
This is equivalent to stating that the sum of the margin for the row multiplied by the 
margin for the column divided by the total number of observations associated with the 
ith level is the expected value. This is the same way we calculated the expected value 
in the contingency table for a chi square test of independence. For example, for the 
suburban level the ei is: 
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Table 16.14 Evaluation of Setting as a Possible Confounding Factor 

 
Site 

Chronic  
Lung Disease 

 
Smoker 

 
Nonsmoker 

 
Totals 

Urban Yes 45   7   52 
 No 16 80   96 
  61 87 148 
     
Suburban Yes 29   10   39 
 No 19 182 201 
  48 192 240 
     
Rural Yes 27   18   45 
 No 16   51   67 
  43   69 112 

 
 

7.8 = 
240

(39)(48) = e2  

 
This will be compared to the observed result (a2 = 29) to create part of the numerator 
for Eq. 16.18. In a similar manner, a vi can be calculated for the denominator at each 
level of the confounding variable: 
 

1)n(n
)d+b)(c+a)(d+c)(b+a( = v

i
2
i

iiiiiiii
i −

                          Eq. 16.19 

 
The vi for the rural level is: 
 

36.4 = 
1)(112)112(

(69))34((45)(67) = v 23
−

 

 
These intermediate results can be expressed in a table format: 
 

 Urban Suburban Rural 
ai 45 29 27 
ei 21.43 7.80 17.28 
vi 8.23 5.25 6.43 

 
and entered into the following equation: 
 

v
])ea([ = 

i

2
ii2

MH 
−χ                                         Eq. 16.20 
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The results are  
 

13149. = 
119.9
)(54.49 = 

)36.4 + 5.25 + (8.23
]17.28)(27+7.80)(29+21.43)[(45 = 

22
2
MH

−−−χ  

 
With the χ2

MH greater than χ2
i(1 – α) we reject the null hypothesis of no association 

between the two main factors controlling for the potentially confounding 
environmental factor. If the value would have been less than the critical χ2 value we 
would have failed to reject the null hypothesis and assumed that the confounding 
variable affected the initial χ2 results for the 2 × 2 contingency table. 
 A correction for continuity can also be made with the Mantel-Haenszel 
procedure: 

 

v
]0.5  )ea([ = 

i

2
ii2

correctedMH 
−−χ                                     Eq. 16.21 

 
In the previous example this correction would produce the expected, more 
conservative result: 
 

0146.4 = 
119.9

)0.5  (54.49 = 
2

2
correctedMH

−χ  

 
In this case, either the Mantel-Haenszel test or the corrected version would produce a 
statistically significant result and rejection of the null hypothesis. 
 
Using Excel® or Minitab® for Chi Square Applications 
 

Similar to t-distributions and F-distributions, Excel 2010 has several functions 
for calculating probabilities of critical values. Instead of referring to Table B15 to 
determine critical values for the test statistic it can be determined using the function 
CHISQ.INV.RT. For older versions of Excel this command was CHIINV. Either 
function will prompt for the probability (alpha as a decimal) and the degrees of 
freedom. Caution should be noted here. Excel 2010 has the command CHISQ.INV 
and this command will identify the location for a certain probability on the LEFT end 
of the curve. Other Excel functions allow one to determine the p-value for a 
calculated chi square statistic: CHISQ.DIST.RT (for Excel 2010) or CHIDIST (for 
older versions). Either function will prompt for the calculated chi square value and 
degrees of freedom. The result will be the p-value for the given chi square results. 
Once again caution is needed because CHISQ.DIST in Excel 2010 will do the 
calculation for the LEFT side of the distribution.  

Excel does not provide a useful approach for handling chi square tests. There is a 
function application, CHISQ.TEST (Excel 2010) or CHITEST (older versions), that 
requires you enter your frequencies in cells similar to the method of the contingency 
table. However, it also requires another parallel contingency table with the expected 
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Figure 16.6 Chi square from worksheet layout with Minitab. 

 
 
values (these would need to be calculated prior to using the software). Then the range 
of the observed data is identified for Excel as the “Actual_Range” and the expected 
results under independence identified as the “Expected_range”. The resulting output 
is only the p-value (Pearson) and the chi square statistic is not reported. 

Minitab offers better applications in the “Tables” option under “Stat” in the title 
bar: 
 

Stat  Tables  Chi-Square Test (Table in Worksheet) 
Stat  Tables  Cross Tabulation and Chi-Square 

Stat  Tables  Chi-Square Goodness-of-Fit Test (one variable) 
 

If data has already been summarized in a contingency table, the easiest approach 
is to enter the frequency counts directly into the Minitab worksheet, labeling each 
level for the columns. The “Chi-Square Test (Table in Worksheet)” option will 
request the columns which represent the data (Figure 16.6). These columns are 
selected from the left box by double clicking each one. An example output is 
presented in Figure 16.7 (from the previous example for Table 16.9). In addition to 
listing the chi square statistic and associated p-value at the bottom, the output will 
automatically list the expected values (second line) and the amount each cell 
contributes to the chi square statistic on the third line ( the observed minus expected 
squared divided by expected value for each cell). 

If data is arranged in columns as individual variables, the “Cross Tabulation and 
Chi-Square” option is the appropriate choice. Column and row variables are selected 
by clicking on choices in the left box (Figure 16.8). If the Chi-Square… option is 
selected, the smaller box in Figure 16.8 appears and “Chi-Square analysis” should be 
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Figure 16.7 Output for chi square from worksheet layout with Minitab. 

 

 
Figure 16.8 Chi square from column data with Minitab. 
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Figure 16.9 Output for chi square from column data with Minitab. 

 
selected. Multiple options are available in both boxes for what should appear in the 
output. Figure 16.9 represents the simplest report with just the frequency counts, chi 
square statistic, and p-value. Note that the likelihood ratio is provided for the 2 × 2 
contingency table. Minitab does not provide an option to make the Yates’ correction 
for a 2 × 2 chi square. However, there is warning message if cells have expected 
values less than five.  

Additional tests described in this chapter are available under Other Stats… in 
Figure 16.8 including the Fisher’s exact test and the Mantel-Haenszel test. The latter 
is labeled Mantel-Haenszel-Cochran and the confounding variable is selected for the 
“For layers:” variable in Figure 16.8. The results are reported with the correction for 
continuity formula (Eq. 16.21). Fisher’s exact test uses the two-tailed approach. 

 

 
Figure 16.10 Chi square goodness-of-fit with Minitab for column data. 
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Figure 16.11 Output for chi square goodness-of-fit with Minitab. 

 
 

 Minitab also provides for a goodness-of-fit for one discrete independent variable. 
Data may be arranged by variables in columns or presented in tabular form on the 
worksheet. If data is presented in a single column of a worksheet, the first step is to 
create a column with the expected outcomes as proportions. These must be arranged 
alphabetically or with sequential numbers. For example, using the previous data for 
the students admitted into the Pharm.D. program the alphabetical order would be: 
Row 1 In-State, p = 0.25; Out-of-State, p = 0.10; Parent, p = 0.60; and System, p = 
0.25). Then for the “Chi-Square Goodness-of-fit Test”, the option would be the 
“Categorical data;” and enter the column with the appropriate data. The expected 
outcomes would be identified as the “Specific proportions” (Figure 16.10). The 
results of the tests are presented in Figure 16.11. Data can also be arranged as a table 
on a Minitab worksheet, with one column representing the levels of the independent 
variable, one column with the expected proportion for each level, and a third column 
with the actual observed results. Once the “Chi-Square Goodness-of-fit Tests” option 
is selected, Minitab will request the columns for “Observed counts:” (what was 
observed) and the “Categorical names (optional):” (the column with names for the 
levels of the dependent variable). Also requested is the “Specific proportions” 
(column with expected proportions) or “equal proportions” if each level of the 
dependent variable is expected to be equal (a uniform distribution). These options 
appear in Figure 16.12. The results will be identical to those presented in Figure 
16.11, except the results would be in the same order as listed on the Minitab 
worksheet (in this example, “Parent” first and “Out-of-State” last).  
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Figure 16.12 Chi square goodness-of-fit with Minitab from worksheet table. 
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Example Problems (Answers are provided in Appendix D) 
 
1. A medication known to cause severe irritation to stomach mucosa is tested with a 

series of special tablet coatings to prevent release until after the tablet has passed 
through the stomach. Three variations of the coating formula are tested on 150 
fasted volunteers, randomly assigned to each group. The presence or absence of 
irritation, through endoscopic examination, is noted for each subject.  

 
 GI Irritation 
 Present(P1) Absent(P2) 
Formula A 10 40 
Formula B 8 42 
Formula C 7 43 

 
 Was there a significant difference in the likelihood of irritation based on the 

coating formulas? 
 
2. A pharmacist is evaluating the amount of time needed for nurse surveyors to 

observe drug delivery in 70 long-term care facilities. The median time required 
by the surveyors is 2.5 hours. The researcher wishes to know if the type of 
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delivery system (unit dose versus traditional) influences the amount of survey 
time required.  

 
 Unit Dose Traditional Total 

2.5 hours or less 26 10 36 
More than 2.5 hours 14 20 34 
Total 40 30 70 

 
3.  Immediately after training on a new analytical method, technicians were asked 

their preference between the new method and a previously used, “old” method. 
Six months later, after the technicians had experience with the new method, they 
were resurveyed with respect to their preference. The results of the two surveys 
are presented below. Did experience with the new method significantly change 
their preferences? 

 
Preferred Method before Experience 

  New Old  
Preferred Method 
After Experience 

  New 12 8 20 
  Old 3 7 10 

  15 15 30 

 
4. In preparing to market an approved tablet in a new package design, the 

manufacturer tests two different blister packs to determine the rates of failure 
(separation of the adhesive seal) when stored at various temperatures and 
humidities. One thousand tablets in each of two conditions were stored for three 
months and the number of failures were observed: 

 
 40° 

50% relative humidity 
60° 

50% relative humidity 

Blister pack A 2 5 

Blister pack B 6 6 
 
 Is there a significant relationship between the storage conditions and the 

frequency of failures based on the blister pack used? 
 
5. A manufacturer is experimenting with a new 50-mm diameter screw-type 

container using various amounts of torque for closure. The tightness of the 
containers is tested based on moisture permeability. From the data reported 
below, is there any significant difference in moisture level based on the torque 
used to tighten the cap? 
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 Torque (inch-pounds)  

Moisture 21 24 27 30  

< 2000 26 31 36 45 138 

≥ 2000 24 19 14 5 62 

Total 50 50 50 50 200 
 
6. Twenty volunteers were randomly assigned to a randomized three-way cross-

over clinical trial involving the same topical medication presented in three 
different formulations (A, B, and C). During each phase of the study volunteers 
were assessed for the presence or absence of erythema (redness) at the site of 
application. Was there any significant difference among the formulations for the 
incidence of erythema? 

 
 Formulation   Formulation 
Volunteer A B C  Volunteer A B C 

001 0 1 0  011 0 0 1 
002 1 0 1  012 0 0 0 
003 0 0 0  013 1 0 1 
004 0 0 0  014 0 0 0 
005 0 1 1  015 0 0 0 
006 0 0 0  016 0 0 0 
007 0 0 0  017 1 1 0 
008 0 0 0  018 0 0 0 
009 0 0 0  019 1 0 1 
010 1 1 0  020 1 1 1 

(code: 1 = erythema) 
 
7. In one of the example problems in Chapter 15, an instrument manufacturer ran a 

series of disintegration tests to compare the pass/fail rate of a new piece of 
equipment at two extreme temperatures. The manufacturer decided to also 
evaluate the influence of paddle speed as a possible confounding factor. The test 
was designed to collect results at two speeds, defined as fast and slow. The 
results were as follows: 

 
  Test Results  

Speed of Paddle Temperature Pass Fail Totals 
Fast 39°C 48 2 50 

 35°C 47 3 50 
  95 5 100  

Slow 39°C 48 2 50 
 35°C 45 5 50 
  93 7 100 
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 Without Yates’ correction for continuity there is a significant relationship 
between the temperature and proportion of test failures (χ2 = 4.35). Could the 
paddle speed be a confounding factor in the design? 
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17 
 
Measures of Association 
 
 
 

 To this point, most of this book has dealt with tests of differences (e.g., t-
tests, F-tests, z-tests of proportions). Other tests have dealt with relationships (e.g., 
chi-square test of independence, correlation). This chapter focuses on other types of 
relationships with tests that can measure the degree of association between different 
types of variables. As will be seen the term “measures of association” refers to a wide 
variety of procedures used to evaluate the strengths of various types of relationships. 
One type of measure of association has already been discussed in Chapter 13 where 
the correlation coefficient measured the association or strength of the relationship 
between two or more variables where those variables involve interval or ratio data. 
This chapter is a complement to the previous one and will focus primarily on 
measures of association for nominal and ordinal types of data scales (Chapter 1 
defined these types of scales).  
 
Introduction 

 
These measures of association require that at least one of the variables is 

presented in a nominal or ordinal scale and can be applied only to data from a 
contingency table reporting frequencies (or counts). Basically, there is a significant 
relationship, if the magnitude of the observed relationship is significantly different 
than what one would expect due to chance produced from random sampling. If there 
is no association, the two variables are independent and there is an absence of any 
predictable relationship between the variables tested. Data will be presented in 
contingency tables similar to those used for the chi square test of independence 
(Chapter 16). Chi square itself is not a measure of association, but a test of the null 
hypothesis that two nominal or ordinal variables are unrelated. 

The strengths of the various measures of association are evaluated by their 
coefficients of association. Most coefficients of association vary from 0 (indicating 
no relationship) to +1.0 (a perfect positive relationship) or −1.0 (a perfect negative 
relationship). This is similar to the type of association for continuous data seen with 
the correlation coefficient (Chapter 13). As discussed in the following sections, there 
are various types of “perfect relationships” and “null relationships.” When these 
specific coefficients of associate are discussed, their definitions of perfect and no 
relationships will be cited and this is an important criterion for choosing among the 
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available tests. Most coefficients of association define “perfect relationship” as 
monotonicity (discussed below) and consider the null relationship as statistical 
independence.  

There are four types of “perfect linear” relationships when dealing with nominal 
and ordinal data (and their respective measures of association) and these are based on 
monotonicity. These types of perfect linear relationships are defined as those where 
there is: 1) strict monotonicity; 2) ordered monotonicity; 3) predictive monotonicity; 
and 4) weak monotonicity. These terms are defined below. If there is perfect strict 
monotonicity all other three monotonic states will also be perfect. If either the ordered 
monotonicity or predictive monotonicity is perfect, there will be perfect weak 
monotonicity. However, it is impossible to have perfect ordered monotonicity and 
perfect predictive monotonicity at the same time unless there is perfect strict 
monotonicity. None of the definitions for monotonicity is appropriate for a curvilinear 
relationship which is beyond the scope of this book.  

Monotonicity is based on the possible pairs of cells within a contingency table. 
Seen below is a 3 × 4 (three-by-four) contingency table with the cells labeled a to l.  
 

  Factor X 
  1 2 3 4 
 1 a b c d 

Factor Y 2 e f g h 
 3 i j k l 

 
Data for the X-factor (the X variable) contain four levels and the Y-factor (Y variable) 
contains three levels of a nominal or ordinal variable. Based on possible various 
combinations (discussed in Chapter 2, Eq. 2.12) there should be 66 different pairs of 
cells in this contingency table (twelve cells taken two at a time). 
 

66
!1012
!101112

!10!2
!12

2
12

=
××
××

==







 

 
These pairs can be identified by combining cells across rows, down columns, or 
across diagonals to identify all 66 possible pairs. The symbol X0 represents the pairs 
moving down the columns (X-factor). For the first column they would be ae, ai and 
ei. Which can be written ae + ai + ei or a(e + i) +ei. Expanding this for all columns 
there are: 
 

X0 = ae + ai + bf + bj + cg + ck + dh + dl + ei + fj + gk + hl 
 
pairs and this formula can be simplified and written as follows: 
 

X0 = a(e + i) + b(f + j) + c(g + k) + d(h + l) + ei + fj + gk + hl 
 
Using this same nomenclature Y0 represents the pairs moving across each row (Y-
factor): 
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Y0 = a(b+c+d) + e(f+g+h) + i(j+k+l) + b(c+d) + f(g+h) +j(k+l) + 
 cd + gh + kl 

 
Thus, the columns account for 12 pairs and the rows for 18 pairs. These are also 
referred to as “ties by row” or “ties by column.” The remaining 36 possible pairs (66 
− 30) can be identified moving diagonally through the table. Concordant pairs (P) 
are those moving diagonally from upper left to lower right (this is based on the 
assumption that for ordinal data, values will nominally increase moving from left to 
right in the columns and from top to bottom on the rows): 
 

P = a(f + g + h + j + k + l) + b(g + h + k + l) +  
c(h + l) + e(j + k + l) + f(k + l) + gl 

 
Concordant pairs represent an additional 18 pairs. The discordant pairs must account 
for the remaining 18 pairs. Discordant pairs (Q) are those moving from upper right 
to lower left: 
 

Q = d(e + f + g + I + j + k) + c(e + f + I + j) + 
 b(e + i) + h( i + j + k) + g(I + j) + fi 

 
A parallel terminology is to refer to the concordant pairs as the pairing of values 
along the “diagonal” (e.g., cells af, ak, al) and the term “off-diagonal” (e.g., cells dg, 
di, dj) for discordant pairs. Thus, as summarized in Table 17.1, all possible results 
presented in the previous contingency table are as follows: 
 

Pairs by row (Y0)    18 
Pairs by column (X0)  12 
Concordant pairs (P)  18 
Discordant pairs (Q)  18 
Total possible pairs  66 

 
The use of concordant and discordant pairs will be needed for many of the tests of 
association discussed in this chapter. 
 The simplest matrix for a contingency table would be the 2 × 2 design (read two 
by two) used in dichotomous tests of association, Figure 16.3. We have already seen 
the use of all possible pairs in the second formula (Eq. 16.5) presented for calculating 
the 2 × 2 chi square test of independence. 
 

d)+b)(c+d)(a+c)(b+(a
)bcn(ad = 
2

2 −χ  

 
Note that the numerator contains the only possible concordant and discordant pairs 
and the denominator is the product of the pairs by row and pairs by column:  
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Table 17.1 Summary of all Possible Pairs for a 4 x 3 Table 

Type of Pair Symbol Possible Pairs Numbers of pairs 

Concordant P a(f+g+h+j+k+l) 
+ b(g+h+k+l) 

+ c(h+l) 
+ e(j+k+l) 
+ f(k+l) 

+ gl 

18 

Discordant Q d(e+f+g+i+j+k) 
+ c(e+f+i+j) 

+ b(e+i) 
+ h(i+j+k) 

+ g(i+j) 
+ fi 

18 

Pairs by Columns X0 a(e+i) 
+ b(f+j) 
+ c(g+k) 
+ d(h+l) 

+ ei 
+ fj 
+ gk 
+ hl 

12 

Pairs by Rows Y0 a(b+c+d) 
+ e(f+g+h) 
+ i(j+k+l) 
+ b(c+d) 
+ f(g+h) 
+j(k+l) 

+ cd 
+ gh 
+ kl 

18 

 
 
 

00

2
2

YX
)QP(n

d)+b)(c+d)(a+c)(b+(a
)bcn(ad

 = −
=

−
χ                     Eq. 17.1 

 
In this case the diagonal pairing is cells a and d, and the off-diagonal is cells b and c. 
Unfortunately, this same logic cannot be expanded for tables larger than a 2 × 2 
scenario.  
 Recall that the chi square test of independence (Chapter 16) indicates whether a 
significant relationship exists (rejection of the null hypothesis of independence). 
Failure to reject the null hypothesis resulted in the failure to reject the assumption of 
statistical independence between the row and column variables. The tests in this 
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chapter will provide a measure of the strength of the relationship between the 
variables, expressed as the coefficient of association. Consider the following perfect 
linear relationship. 
 

  Factor X 
  A B C 
 A 25 0 0 

Factor Y B 0 25 0 
 C 0 0 25 

 
In this example, there is a perfect positive strict monotonicity (by definition the Q, 
X0 and Y0 equal 0); a perfect ordered monotonicity (defined as both Q and Y0 equal 
0); a perfect predictive monotonicity (defined as both Q and X0 equal 0); and a 
perfect weak monotonicity (defined as Q equals 0). If this data were evaluated for a 
chi square test of independence there would be a statistically significant relationship 
(χ2 = 150, p < 0.0001). As seen later, measures of association (such as Cramer’s V for 
nominal data or gamma for ordinal data) would both produce a coefficient of 
association equal to 1.0. Thus, the following measures of association can be thought 
of as determinations of how close (or far) the relationships are to a perfect linear 
relationship.  
 In addition, some of the tests discussed in this chapter are symmetric, meaning 
that not only can values be predicted for Y-factor from X-factor, but values for the X-
factor can be predicted from Y-factor. In contrast asymmetric tests cannot be used to 
predict the X-factor from the Y-factor. Thus, care must be taken in the selection of the 
row and column variables. For consistency, if an independent variable exists, it will 
always be used as the columns variable. 

A second reason for the use of measures of association is that the chi square test 
of independence is very sensitive to the sample size. When a sample size is too small, 
the chi square value may represent an overestimate. However, if the sample size is too 
large, the chi square values could be an underestimate. The use of tests such as the 
phi, contingency coefficient, Cramer’s V or gamma, in general overcome this 
problem.  

 
Dichotomous Associations 
 
 As discussed in Chapter 2, a dichotomous variable is a discrete, nominal variable 
with only two possible levels (e.g., control or experimental, live or die). Therefore, 
coefficients of association used for these tests employ 2 × 2 contingency tables. 
Measures of association for larger contingency tables will be presented under nominal 
and ordinal associations. Another term used to generically label measures of association 
involving two dichotomous variables is a four-fold point correlation coefficient. 

A chi square test of independence with one degree of freedom (discussed in 
Chapter 16) is an example of a dichotomous test of association and employs the 
traditional 2 × 2 matrix (Figure 16.3). As mentioned previously, if there is an 
independent variable it will be presented as the column factor. 

For descriptive statistics involving dichotomous data the reporting of percent 
difference is the most common and simplest method to use. The percent difference 



Chapter 17 452

(%d) is computed by subtracting the difference (measured in percent) between the 
columns in either row. Using the previous layout, %d would equal a − b or b − a, and 
c − d or d − c. Consider the following example: 

 
 

Example 1:   

Hospitalization 
Required 

Initial Outpatient Therapy  
Treatment A Treatment B %d 

Yes 20 (50%) 10 (25%) −25% (b − a) 
No 20 (50%) 30 (75%) +25% (d − c) 

 
In this case there was a 25% difference in the incidence of hospitalization depending 
upon which treatment was selected. With Treatment B there appeared to be 25% 
fewer hospital admissions. In this type of association %d would define the “perfect 
association” as strictly monotonic and the “null relation” is a statistical independence 
between the two treatments.  

Note that in a 2 × 2 table the %d’s are asymmetric. If numbers were changed the 
%d would still be the same. Adjusting the data: 
  

Example 2:   

Hospitalization 
Required 

Initial Outpatient Therapy  
Treatment A Treatment B %d 

Yes 18 (45%) 14 (35%) −10% (b − a) 
No 22 (55%) 26 (65%) +10% (d − c) 

 
As noted, if the independent variable is always represented by the column 
percentages, the sum for each column will be 100%. If independent and dependent 
variables were reversed, the columns would not add up to 100% (80% and 120% in 
Example 2).  

In additional, the percent difference allows one to state whether the independent 
variable makes a difference in predicting values for the dependent variable. In 
Example 1, if %d equals 25%, then knowing the independent variable (e.g., which 
treatment) makes a 25% difference in predicting the outcome for the dependent 
variable (e.g., hospitalization). 

As seen in Chapter 16, evaluation of the significance for a 2 × 2 contingency 
table could be evaluated using either Pearson’s or Yates’ chi square, both using the 
traditional a−b−c−d−matrix presented earlier. Three measures of association can be 
used to evaluate this data: 1) the phi-coefficient; 2) Yule’s Q test; and 3) Yule’s Y 
test.  

The phi-statistic (φ) is a chi square-based measure of association for 2 × 2 tables 
involving nominal or ordinal dichotomous data. Phi eliminates the impact of sample 
size by dividing chi square by n (the sample size) and taking the square root of the 
results:  
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n

2χφ =                                           Eq. 17.2 

 
The chi square used in the calculation should be the Pearson’s chi square (Eq. 16.5), 
not the Yates’ correction for continuity formula (Eq. 16.6). The phi-value measures 
the strength of the relationship based on the number of cases in the discordant pair 
minus the number of cases in the concordant pair, adjusted for by the sample size. An 
equivalent formula is: 
 

d)+c)(b+d)(a+b)(c+(a

(a)(d)  (b)(c)
 = 

−
φ                         Eq. 17.3 

 
Phi represents the mean percent difference between the column variable and row 
variable where either can be considered to cause the other. Thus, the φ-statistic is 
symmetrical and it does not matter if the column is an independent or dependent 
variable. The φ-statistic defines perfect association as a perfect predictive 
monotonicity and the null hypothesis is a statistical independence. This test is 
sometime referred to as a four−fold point correlation.  
 For the previous example (Example 2) for hospitalization following treatment 
with Treatments A and B, the chi square value would be: 
 

83.0
)48)(32)(40)(40(

))22)(14()26)(18((80
d)+b)(c+d)(a+c)(b+(a

)bcn(ad = 
22

2 =−=−χ  

 
The phi-value would be: 
 

102.0
80
83.0

n

2
=== χφ  

 
The alternative formula produces the same results: 
 

1202.0
)48)(32)(40)(40(

)26)(18()22)(14(

d)+c)(b+d)(a+b)(c+(a

(a)(d)  (b)(c)
 = =

−
=

−
φ  

 
The results make sense, since the coefficient of association (in this case φ) should 
show a weak relationship since the chi square value was not significant (critical value 
for rejecting the null hypothesis of independence is 3.84). If there was a significant 
chi square, resulting in the rejection of the null hypothesis of independent, we would 
expect a stronger measure of association. For example, if the chi square (for the same 
sample size) were 9.00 the resulting phi statistic would be much closer to 1.0: 
 



Chapter 17 454

335.0
80
00.9

n

2
=== χφ  

  
The resultant ϕ can be viewed as a symmetric percent difference (%d), measuring 

the percent of results seen on the diagonal. In the 2 × 2 table, the ϕ-value is identical 
to a correlation coefficient for the same data. It is possible to dichotomize continuous 
data (e.g., above and below the median value for the row variable and column 
variable). This type of comparison is referred to as a tetrachoric correlation. Phi is 
also referred to as the Pearson’s coefficient of mean square contingency. 
Unfortunately this same name is sometimes also applied to the Pearson’s contingency 
coefficient, which is a modification of the phi-statistic. For tables larger than a 2 × 2 
design the maximum value for phi depends on the size of the table and can exceed 
1.0. Thus, even though phi can handle larger tables, it is not practical to use for such 
situations. Other tests discussed in the next sessions are appropriate for a larger table 
involving nominal or ordinal data. 

The Yule’s Q is another symmetric measure of association based on the 
difference between the concordant (P = ad) and discordant (Q = bc) data pairings. 
Yule’s Q is recommended for situations where at least one variable is ordinal and is 
calculated as follows: 
 

QP
QP

)bcad(
)bcad(Q

+
−

=
+
−

=                                  Eq. 17.4 

 
This represents the difference (P − Q) as a percentage of all nontied (column or row) 
pairs (P + Q). Once again using the example cited above for hospitalizations 
(Example 2), the Yule’s Q would be: 
 

206.0
776
160

)22)(14()26)(18(
)22)(14()26)(18(Q ==

+
−

=  

 
Thus, the surplus of consistent data pairs over inconsistent pairs is 20.6% of all the 
non-tied data pairs. In this case, consistent implies consistent with the null hypothesis 
of independence between treatment choices and hospitalization. The Q-value 
approaches 1.0 under perfect weak monotonicity. Interpretation of the results can be 
difficult and arbitrary with measures of association and there are various ways to 
verbally describe the magnitude of the association. One rule of thumb (Knoke and 
Bohrnstedt, 1991) goes as follows: 
 
 0 – 0.249  virtually no relationship 

0.25 – 0.49 weak relationship 
 0.50 – 0.75 moderate relationship 

0.75 - 1.00 strong relationship 
 

This same terminology could serve for other measures of association presented in this 
chapter. As will be seen later, the gamma statistic is used as a measure of association 
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involving tables larger than 2 × 2. The resultant Q-value is equal to gamma for a 2 × 2 
table. However, the Q-value will often be higher than gamma for the dichotomized 
data since the process of dichotomization will tend to mask small differences that in 
turn lead to inconsistent pairs in gamma. Therefore it is not recommended to take 
ordinal or nominal data and force it into a dichotomous situation. It is better to 
evaluate the data in its original larger format (larger than a 2 × 2 configuration). Also, 
Yule’s Q should not be used if there is a zero in any of the cells. 

The Yule’s Y test is a modification of the Yule’s Q. It is also called Yule’s 
coefficient of colligation, and uses the geometric mean of diagonal and off-diagonal 
pairs rather than the number of pairs seen in the Q-statistic.  

 

QP

QP

)bcad(
)bcad(Y

+

−
=

+
−

=                            Eq. 17.5 

 
Yule’s Y is rarely used, because there is no easily expressible interpretation. Yule’s Y 
tends to estimate associations more conservatively than Yule’s Q. Unfortunately, this 
measure of association has little substantive or theoretical meaning.  

Also associated with the results with a dichotomous independent variable are 
odds ratios and relative risk ratios. These two measures will be discussed separately 
and in greater detail in the next chapter. 
 
Nominal Associations 
 

This portion of the chapter will consider tests of association where the nominal 
data exceed the 2 × 2 contingency table. These nominal coefficients of association 
may be computed for ordinal or higher levels of data, but tests designed specifically 
for higher types of scales have more power and are preferred to these tests. The tests 
presented in this section include: 1) Pearson’s C; 2) Cramer’s V; 3) Tschuprow’s T; 
4) the lambda statistic; and 5) the uncertainty coefficient. These procedures adjust the 
chi square statistic to remove the effect of sample size. Unfortunately they are not 
easily interpretable, but provide an index regarding the strength of the association 
between nominal variables. 

As seen in Chapter 1, a nominal variable consists of a set of unique categories in 
no specific order (e.g., males−females, treatments A−B−C−D). Tests in this section 
measure the strength of association between variables; however, they cannot indicate 
a direction or describe the nature of relationship. Each measure of association for 
nominal data attempts to modify the chi square statistic to reduce the influence of 
sample size and degrees of freedom (dimensions of the table). These tests also restrict 
the range of possible outcome to values between 0 and 1 (with zero indicating no 
association linking the two variables).  

Pearson’s C or the contingency coefficient is a modification of the phi-statistic 
for contingency tables that are larger than two rows by two columns. The formula is 
as follows: 
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N
C

2

2

+
=

χ
χ                                          Eq. 17.6 

 
The C-statistic will approach a maximum of 1.0 only for large tables (e.g., 5 × 5 or 
larger contingency tables). Unfortunately, the C-statistic is influenced by the size and 
shape of the contingency table. In larger non-square tables, the C-value will never 
reach 1.0 and for smaller tables the C-value will underestimate the level of 
association. To correct for this underestimation there is Sakoda’s adjusted Pearson’s 
C (C*). Regardless of the size of the table the C* will vary between 0 and 1. C* is 
calculated using the following modification of Pearson’s C: 
 

k
1k

C*C
−

=                                          Eq. 17.7 

 
where k equals the number of rows or columns (whichever is smaller). 
 As an example, let us expand on the previous problem to four different treatment 
levels. Notice that the treatments represent nominal categories with no particular 
order. As with the ϕ-statistic, both C and C* are symmetrical and either variable (row 
or column) can be the independent variable. Once again, for consistency, the 
independent variable is presented as the column factor. 
 

 Initial Outpatient Therapy  
Hospitalization Required Rx A Rx B Rx C Rx D  

Yes 22 14 10 14 60 
No 18 26 30 26 100 

 40 40 40 40 160 
 
The chi square value (Eq. 16.2) for this example would be 8.11. With three degrees of 
freedom (critical value = 7.815, p < 0.05) the result for the chi square would be 
statistically significant and we would reject the null hypothesis of independence 
between the two variables. But how strong is the relationship between the therapy and 
hospitalization? The resultant C and C* values are: 
 

220.0
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11.8
N

C
2

2
==

+
=

χ
χ  

 

311.0
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220.0

2
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220.0

k
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−

=
−

=  
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Neither C nor C* is easily interpreted. It is possible to view C as a nominal 
approximation of the correlation coefficient (r). Both C and C* define a perfect 
relationship as a perfect weak monotonic, and view the null hypothesis as statistical 
independence. For smaller tables, it is more likely that C (but not C*) will be less than 
1.0 regardless of monotonicity. Therefore, Pearson’s C is recommended for tables 
smaller than a 5 × 5 design.  

An alternative for tables equal to or larger than a 5 × 5 design, is Tshuprow’s T, 
which is another chi square-based measure of association. It approaches 1.0 in square 
contingency tables (equal number of rows and columns) where the row marginal 
values are identical to column marginal values. The greater the deviation from a 
square table or the more unequal the marginal values, the more T will be less than 1.0. 
Tshuprow’s T is the square root of chi square value divided by sample size n times 
the square root of the number of degrees of freedom (rows minus one times columns 
minus one): 
 

)1c)(1r(n
T

2

−−
= χ                                   Eq. 17.8 

 
Since the T-value is less than 1.0 for non-square tables, it is recommended for square 
tables. For 2 × 2 tables, T equals the phi-statistics, since the square root of (r − 1)(c − 
1) is one. 
 

φχχ ===
N1*1N

T
22

 

 
T-statistic defines a perfect linear relationship for weak monotonicity and defines a 
null relationship as statistical independence. As with previous tests, Tshuprow’s T is 
symmetrical. Using the previous example (χ2 = 8.11) Tshuprow’s T-value would be: 
 

171.0
13.277

11.8
)1)(3(160

11.8T ===  

 
Of all the tests for nominal associations, Cramer’s V is the most popular. Also a chi 
square-based measure, it has the best 0-to-1 association when row marginal values 
equal column marginal values (regardless of table size). Cramer’s V test is used when 
one or both of the variables are nominally scaled. The formula is: 
 

Nm
V

2χ=                                              Eq. 17.9 

 
where N is the total sample size and m is either (r − 1) or (c − 1), whichever is 
smaller. Cramer’s V can be considered as a test of association between two variables 
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measuring the percentage of their maximum possible variation. Squaring the V-value 
is the mean square canonical correlation between the variables. If either the rows or 
columns contain only two levels, Cramer’s V equals the phi-statistic. 
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The V-statistic defines a perfect linear relationship as one that has either predictive or 
ordered monotonicity and the null relationship is defined as statistical independence. 
As with previous tests, Cramer’s V is symmetrical and either variable can be the 
independent (column) variable. 

Using the previous example (χ2 = 8.11) Cramer’s V is: 
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Note that each measure of association gave a slightly different value (T = 0.171 < C = 
0.220 < V = 0.225 < C* = 0.311).  

Another type of measure of association deals with the proportionate reduction 
of error (PRE). PRE measures are generally used only when both an independent and 
dependent variable are present. For nominal data a PRE measure of association is 
lambda; for ordinal data PRE measurements include gamma and Somers’ d. Lambda 
is discussed below and gamma and Somers’ d will be discussed in the next section. 
Values for all three tests range between 0 and 1. They can be interpreted as follows: if 
for example, we have a PRE value equal to 0.47; by knowing the values represented 
by the independent variable, we are able to reduce our errors of predicting values for 
the dependent variable by 47%. In other words, we reduced our amount of error by 
47%. PRE reflects the percentage reduction in errors in predicting the dependent 
variable given knowledge about the independent variable. With PRE measurements 
you are trying to assess whether knowing the distribution of the dependent variable in 
relationship to the categories for the independent variable will enable you to reduce 
the amount of error in predicting the distribution of the dependent variable.  

The lambda test, also referred to as the Goodman and Kruskal lambda, is the 
first PRE measurement to be discussed. Lambda (λ) can be used for either nominal or 
ordinal data (two nominal variables, one nominal and one ordinal variable, or two 
ordinal variables). This probabilistic measurement is defined as the probability that an 
observation is in a category other than the most common category (the modal 
category). In other words, with no knowledge of the independent variable, the 
researcher could guess that each observation of the dependent variable will have the 
same value as the most frequent level. Therefore, the marginal value for this modal 
category is the number of correct guesses by chance alone. This creates the 
denominator of the lambda equation.  

 



Measures of Association 459

d

di
fN

ff
−

−
= λ                                          Eq. 17.10 

 
where N is the total sample size, fd is marginal total of the modal category for the 
dependent variable, and fi is largest frequency for each level of the i categories of the 
independent variable. For the example we have used in this section (hospitalization 
for four different therapies), the N = 160, fd = 100, and the fi’s are 22, 26, 30, and 26 
for treatments A, B, C, and D, respectively. The lambda is: 
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In this example, knowing the drug therapy reduces errors in guessing the 
hospitalizations by 6.7%. The denominator represents the errors made not knowing 
which is subtracting the modal category of the dependent variable (fd) from the total 
number of observations. In other words, if the researcher did not know the 
distribution of the drug therapies used, then she would guess at the likelihood of 
hospitalization, and she would be right 100 (fd) times and wrong 60 (N − fd) times.  

Lambda can be used when both variables are dependent variables. Lambda 
ranges between 0 and 1. A value of 0 means the independent variable offers no value 
in predicting the dependent variable. However, it does not necessarily imply statistical 
independence. Lambda reflects the reduction in error when the value for one of the 
variables is used to predict values of the other variable. With a 1.0, the independent 
variable perfectly predicts the categories of the dependent variable. For example, a 
lambda value of 0.65 indicates that the independent variable predicts 65% of the 
variation of the dependent variable. 

The final measure of association for nominal data is the uncertainty coefficient 
(UC), which is also referred to as Theil’s U. The UC represents a percent reduction in 
error that accounts for the variance in the dependent variable. This variance is defined 
in terms of the logarithm of the ratios, thus the UC is sometimes referred to as the 
entropy coefficient. Both lambda and UC are PRE measures of nominal association, 
but UC is different because the formula takes into account the entire distribution 
rather than just the modal distribution. Therefore, it is often preferred over lambda. 
The UC can vary from 0 to 1. The formula for UC(R|C), is the uncertainty coefficient 
for predicting the dependent variable (row) based on independent variable (column):  
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   Eq. 17.11 

 
where rj is the margin total for each row, cj is the margin totals for each column, and 
nij is the frequency within each cell. This test also could be used for ordinal data. 
When the U is 0, the independent variable is of no value in predicting the dependent 



Chapter 17 460

variable. The uncertainty coefficient is an asymmetric measure and requires that the 
independent variable be placed in the columns. The “uncertainty coefficient” also has 
a proportionate reduction in error but the formula accounts for the entire distribution 
not just the mode (which is used for lambda). Therefore the uncertainty coefficient is 
preferred over the lambda-statistic.  

As seen, the adjusted contingency coefficient (C*) and Cramer’s V will vary 
between 0 and 1.0 regardless of sample size. However, the phi-, C-, and T-statistics 
do not. All measures that define a perfect linear relationship as strict monotonicity, 
require that the distribution of the marginal values be equal for the coefficient to reach 
1.0. Also, note that measures of association do not assume randomly sampled data.  
 
Ordinal Associations 
 

Looking at higher types of measurement scales, this section focuses on ordinal 
data and presents four different tests for measuring the association between two 
variables (gamma, Kendall’s tau-b, Kendall’s tau-c, and Somers’d). With ordinal 
measurements there are two or more categories and there is some inherent order 
among them (e.g., a five-point Likert scale ranging from strong disagreement to 
strong agreement with a statement). For PRE measurements, lambda can be used for 
both nominal and ordinal data (two nominal variables, one nominal and one ordinal 
variable, or two ordinal variables), but gamma, the Kendall taus and Somers’ d are 
recommended only for two ordinal variables.  

The Goodman and Kruskal’s gamma, also simply referred to as gamma, is a 
symmetric measure based on the difference between concordant pairs (P) and 
discordant pairs (Q). The results can range from −1 to +1. As discussed previously 
concordant pairs are all possible pairs going diagonally from the upper left to lower 
right and discordant pairs are diagonal pairs from the upper right to lower left. 
Gamma is 0 in the case of independence and is +1 if all the observations are 
concentrated in the upper left to lower right diagonal of the contingency table. 
Gamma is calculated as follows: 
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The sampling distribution for gamma is approximating normal for large samples and 
it is possible to compute its standard error and significance. Gamma can be thought of 
as the surplus of concordant pairs over discordant pairs. It is a percentage of all pairs 
ignoring ties (by row pairs and by column pairs). The gamma defines a perfect 
association as weak monotonicity. With statistical independence, gamma will be 0. 
However, gamma can also be 0 whenever the concordant pairs minus discordant pairs 
are 0. The strength of the association would commonly be verbally described; for 
example, a gamma of +0.65 would indicate a moderate, positive association between 
the two variables.  

For 2 × 2 contingency tables, gamma will equals Yule’s Q-statistic. If ordinal or 
higher data is dichotomized into two levels, Q will usually be lower than gamma for 
the original nondichotomized data. This is because the act of dichotomizing results in 
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the loss of information since levels of one variable are being combined. Obviously, 
gamma cannot be computed when there is only one row or one column. However, it 
can be computed even when cell(s) frequencies are small or zero.  

There are two Kendall tau tests: Kendall’s tau-b and Kendall’s tau-c. Kendall’s 
tau-b and tau-c should be used when both variables are on ordinal scales. The range 
of possible outcomes varies from −1 to +1. The tests differ in the manner in which the 
concordant pairs minus discordant pairs are normalized. As a measure of association 
the Kendall’s tau-b is often used for 2 × 2 contingency tables, but also may be used 
for larger matrices associated with ordinal data. Where gamma was concerned with 
the concordant and discordant pairs, Kendall’s measures of association are based on 
the comparison of all possible pairs for both variables for all possible pairs of cases. It 
evaluates the excess of concordant over discordant pairs in the numerator and uses a 
term in the denominator that measures the geometric mean between the number of 
row pairs and column pairs. These terms were defined at the beginning of this 
chapter. The formula for Kendall’s tau-b is: 
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Kendall’s tau-b will reach either +1.0 or −1.0 for square tables only (equal number of 
rows and columns). However, tau-b is 0 under statistical independence for both 
square and non-square tables. It is recommended to use tau-c for tables that are not 
square.  

Kendall’s tau-c (also referred to as Stuart’s tau-c or Kendall-Stuart tau-c) is a 
modification of the tau-b for large tables and specifically for nonsquare contingency 
tables (the number of rows and columns are not equal). Tau-c is an excess of 
concordant pairs over discordant pairs, times an adjustment factor for the size of the 
contingency table: 
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where n is the total sample size and m is the number of row or columns, whichever is 
smaller. Tau-c is a symmetrical test and can vary from −1 (for negative relationships) 
to +1. Neither tau-b nor tau-c is easy to interpret; they are simply indices of the 
strength of the association (somewhere between −1 and +1).  

The Somers’ d is a modified gamma statistic that penalizes for tied pairs on 
independent variable only, for hypotheses that are directional, where x causes or 
predicts y; and to penalize for pairs tied on y only, in hypotheses in which y causes of 
predicts x. Somers’ d is used with ordinal data. The formula for the hypothesis that 
the column variable (y) causes or can predict the row variable (x) is: 
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Table 17.2 Evaluation Results from Pharmacist Survey 

 Years of Practice 

Education 10 or less 11 – 20 21− 30 31 or more 
5 “strongly agree” 2 3 2 1 
4 “agree” 2 3 3 2 
3 “uncertain” 8 6 7 4 
2 “disagree” 12 4 8 18 
1 “strongly disagree” 8 25 17 15 
 32 41 37 40 

 
 
If the hypothesis is that the row variable (x) causes or predicts the column variable 
(y), the formula is:  
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Somers’ d is an asymmetric statistic, but by averaging dxy and dyx it can be made 
symmetrical. The symmetric d-value will be 1.0 only when both variables have strict 
monotonicity. Somers’ d result can be similar to the findings for other measures of 
association. For example, for 2 × 2 table, Somers’ d will be equivalent to percent 
difference. For square tables, tau-b is the geometric mean between dxy and dyx. An 
asymmetric Somers’ d will be less than or equal to gamma or tau-c for the same table.  
 To illustrate these ordinal measures of association, the following are data 
associated with two ordinal sets of data. In a study, pharmacists are asked their 
agreement with a statement using the Likert Scale. At the same time, the years of 
pharmacy practice for the respondents are divided into four ordinal categories. The 
results are listed in Table 17.2. What is the strength of the association between these 
two variables? The first task would be to calculate the impacts of the concordant (P) 
and discordant pairs (Q): 
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The Goodman and Kruskal’s gamma would be: 
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In this example, by knowing the pharmacists’ years of practice, we can reduce the 
error in predicting the rank (not value) of the Likert scale response by 8.5%. The 
gamma value tells us that we can reduce our predictive error by 8.5% when we use 
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the independent variable to predict the dependent response. Since the χ2 statistic was 
not significant (failure to reject the null hypothesis, p = 0.06) it is not surprising that 
the measure of association is so small. 

Even though the contingency table is not square, we will still calculate both 
Kendall’s taus. For tau-b we need also to calculate the pairs for ties on the columns 
and ties on the rows. Continuing with the same example, there are 40 pairs for the 
columns and 30 pairs for the rows: 
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Calculated earlier there were 60 pairs each for the concordant and discordant pairs. 
Note that the total number of pairs is 190 (60 concordant, 60 discordant, 40 ties for 
columns and 30 ties for rows) which is the combination of 20 cells taken two at a 
time.  
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The tau-b value is: 
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Because the table is not square, the more appropriate statistic would be tau-c. In this 
example the N is 150 and m equals 4 (the smaller value for the number of columns or 
rows). The tau-c is: 
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Continuing with this same example, Somers’ d for the ability to predict an evaluation 
response (y) based on years of practice experience (x) would be: 
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Conversely, if we were to use the evaluation response (y) as a predictor of the years of 
practice (x), the Somers’ d would be: 
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All three tests produce similar, although not identical, results. 
With Goodman and Kruskal’s gamma tau-b, tab-c, and Somers’d it is assumed 

that the data are on ordinal scales. It is possible to used interval data for these tests; 
however some information is lost use the ordinal process and a better assessment has 
already been discussed in Chapter 13 (e.g., Pearson’s correlation). Once again with 
these tests of association, one does not need to assume that the data is randomly 
sampled. 
 
Nominal-by-Interval Associations 
 

In Chapter 10 we saw that the analysis of variance typically focuses on 
significance differences, not associations or relationships among variables. However, 
with large sample sizes, levels of the discrete independent variable may be found to 
be significantly different on a dependent variable, but the differences may be small. In 
these cases researchers may wish to use a statistic to report the strength of association 
effects.  

Eta (E), or the correlation ratio, is a coefficient for nonlinear association. As 
seen in Chapters 13 and 14, for linear relationships the more appropriate test is the 
correlation coefficient (r) or linear regression. For a linear relationship eta will equal 
r, but for nonlinear relationships eta will be larger. Therefore, the difference between 
eta and r can be used as a measure of the extent to which the relationship between 
two variables is nonlinear.  

When discussing a nominal or ordinal independent variable and interval 
(continuous) dependent variable, the first test that should come to mind is a one-way 
analysis of variance (Chapter 10). Eta measures the strength of the relationship 
between these two variables based on sums of squares presented in the ANOVA table. 
Therefore, the ANOVA must be computed first, before the eta-statistic can be 
determined.  

  

T
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SSE =                                          Eq. 17.17 

 
where SSB and SST are taken directly from the one-way ANOVA table. Eta may be a 
useful coefficient outside the context of an analysis of variance. Although the 
numerator and denominator in Eq. 17.17 have meanings as in the F-statistics for the 
analysis of variance, they also measure the extent to which the x and y variables are 
linearly or nonlinearly related. The numerator will approach the value in the 
denominator as eta will approach 1.0.  

The coefficient of nonlinear correlation (E2) is the percent of total variance in 
the dependent variable that is accounted for by the variance between levels of the 
independent variable(s). This is calculated by dividing the between-groups sum of 
squares by the total sum of squares.  
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For linear relationships, eta is equal to the Pearson correlation coefficient. Also, just 
as r2 can be described as the percent of in the dependent variance that can be 
accounted for by the linear relationship, E2 is the percent of variance explained 
linearly or nonlinearly by the independent variable. Thus, E2 is analogous to r2 in 
linear regression (Eq. 14.9). Eta defines “perfect relationship” as curvilinear and uses 
statistical independence as the null hypothesis. Also, by defining the perfect 
association as curvilinear, eta is not sensitive to the order of the categories in the 
ordinal or nominal variable.  

Similar to the ANOVA, one variable must be on the interval or ratio scale 
(usually but not always the dependent variable). Eta can be computed with either 
variable considered the dependent variable. The second variable must be categorical 
(nominal or ordinal). The frequencies of each level of the nominal or ordinal variable 
should be large enough to give stability to the sample means for each category.  

A second measure of association, where there is nominal data (independent 
variable) and interval/ratio data (dependent variable), is omega-squared (ω2); 
sometimes referred to as the coefficient of determination. This is the proportion of 
variance in the dependent variable that is accounted for by the independent variable. It 
is interpreted similarly to r2 in Chapter 14 (also called the coefficient of 
determination) in the linear regression model:  

 

WT

WB2
MSSS

MS)1k(SS
+

−−=ω                               Eq. 17.19 

 
where SSB, SST, MSW, and k are taken from the ANOVA table. Omega-square usually 
varies from 0 to 1, but may have negative values when the F-ratio is less than 1. 
Omega-square is a common measure for the magnitude of the effect for an 
independent variable. An ω2 is considered large when the value is over 0.15, a 
medium effect if between 0.06 and 0.15, and a small effect if less than 0.06 (based on 
a conversion by Cohen, 1988). Omega-square is not used for random effects models. 
Also, due to large variability, ω2 is not used for two-way or higher repeated measures 
designs.  
 To illustrate the use of these tests, consider the data in Table 17.3 for patients 
randomly assigned to receive different doses for a specific analgesic and the patients’ 
responses to a 100-point scale for pain relief (100 = complete pain relief, 0 = no 
change in pain).  The analysis of variance table for this data would be: 
 

Source DF SS MS F 
Between    3 2242 747.3 6.70 
Within 28 3122 111.5  
Total 31 5364   

  
There is a significant difference in the patients’ responses (p < 0.001); is there a curve 
linear relationship? The eta and omega square would be as follows: 
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Table 17.3 Patient Responses to Different Amounts of Analgesic 

 5 mg 10 mg 12.5 mg 15 mg 
 9 19 29 49 
 0 15 39 29 
 35 26 37 35 
 21 22 23 19 
 19 36 55 40 
 10 47 39 33 
 24 36 45 19 
 16 26 51 39 

Mean = 16.75 28.38 39.75 32.88 
SD = 10.66 10.57 10.63 10.37 
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If a Pearson’s correlation coefficient were run on the same data, r would equal 0.556. 
Thus, in this example, eta is 0.647, which compares with a Pearson’s r correlation of 
0.556 for the grouped data. Squaring each value, we find that a linear relationship 
(reflected in r2) accounts for about 30.9% of the variance, whereas the nonlinear 
relationship (reflected in ω2) accounts for 41.9% of the variance.  
 
Reliability Measurements 
 

The last part of the chapter will be of interest to pharmacy educators and those 
involved with cognitive testing and/or survey research, primarily, the researcher 
concerned that results from such instruments are stable and have a certain degree of 
consistency when administered to different groups of individuals. Reliability is the 
extent to which the measurements from the entire survey instrument and those from 
each item within the instrument yield the same results when administered at different 
times, in different locations, or to different populations. Reliability coefficients, which 
can be calculated, are special types of correlation coefficients. For example, consider 
a test instrument used to collect information about study participans (e.g., survey 
questionnaire). The observed results or scores can be divided into the true score and 
the error score (the total score = true score + error score). The error score, or deviation 
from the true score, can be due to either systematic error (bias) or random error. The 
larger the error component associated with the scores, the lesser the reliability of the 
instrument. As described in the following paragraphs, there are several types of 
reliability, each measuring a different dimension of reliability.  
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The assumptions associated with tests for reliability are the same as those 
required for the correlation coefficient; the tests involve interval/ratio scales, and the 
data are derived from a normally distributed population. It is also desirable that the 
test instrument have validity (measures what it is intended to measure). Reliability 
and validity are related, but not the same. An instrument can be reliable but not valid, 
but it cannot be valid without being reliable. In other words, reliability is essential, 
but not enough to prove validity. Reliability can refer to test stability, internal 
consistency, or equivalency. 

Test stability means that the same results will be obtained over repeated 
administration of the instrument. Stability is assessed by the process of test-retest 
reliability or parallel forms reliability. The test-retest reliability involves the 
administration of the same test to the same subjects at two or more different points in 
time. The appropriate length of the interval will vary based on the specific instrument 
and the stability of the information being evaluated. The scores for each subject are 
compared using a correlation coefficient (Chapter 13). In general, an r ≥ 0.70 is 
acceptable. Parallel forms reliability is where two or more equivalent series of items 
or test questions are used. These parallel sets of questions are administered to the 
same people and the scores are compared using a correlation coefficient. The 
disadvantage with the parallel forms approach is that administration of two tests is 
required. However, the method offers an advantage for the researcher who feels that 
repeated administration of the same instrument (e.g., test-retest reliability) may result 
in “test-wiseness” on the part of the individuals taking the tests (they will perform 
better the second time simply because of repeated exposure to similar questions). 

The homogeneity of the items is a measure of the internal consistency 
reliability of the test instrument. Such measures determine the extent to which the 
items in the instrument are measuring the desired skill or knowledge. In other words, 
is the instrument consistently measuring the same skill or knowledge? The advantage 
is that only one administration of the instrument is required. Sometime referred to as 
split-form reliability, these measures of internal consistency include: 1) item-total 
correlations; 2) split-half reliability; 3) Kuder-Richardson coefficients; and 4) 
Cronbach’s alpha. These tests will be illustrated below. The closer these various 
correlations are to 1.0, the greater the reliability and certainty that the two forms are 
equivalent.  
The simplest measure of internal consistency is an item-total correlation, where each 
item in the instrument is correlated to the total score. If used as a pretest to develop an 
instrument; those items with low correlations should be deleted from the final 
instrument. This type of correlation is only important if the researcher wants 
homogeneity of items. The split-half method for measuring internal consistency 
involves dividing the instrument into two halves (usually odd items versus even 
items, or first half versus second half). The scores for each split-half are calculated 
and differences between each half-test for each individual subject are computed. 
Specific methods for evaluating this type of reliability are the Spearman-Brown 
conversion of the correlation coefficient and Rulon’s split-half method. The 
Spearman-Brown formula is applied to the correlation coefficient comparing each 
half: where rxy is the Pearson correlation coefficient. With Rulon’s split-half method, 
the variance of the differences is compared to the variance for the total scores: 
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Table 17.4 Original Data for Measures of Internal Consistency 
(scores for the even-numbered and odd-numbered questions) 

Student Odd Even d 
1 44 46 +2 
2 35 36 +1 
3 47 50 +3 
4 43 39 −4 
5 33 39 +6 
6 25 32 +7 
7 39 40 +1 
8 44 40 −4 
9 17 23 +6 

10 47 46 −1 
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where Sd

2 is the variance for the difference between each split half and S2 is the total 
variance to the test instrument. Obviously, if each half produces the exact same 
results the Sd

2 will be 0 and ρ = 1. Both Spearman-Brown and Rulon’s method will 
give similar results. 
 To illustrate these two tests, consider the data presented in Table 17.4, which 
evaluates student responses to the odd and even questions on a final examination. The 
correlation comparing the two sets of questions is very positive (r = 0.933). The mean 
and standard deviation for the entire test for these ten students are 76.5 and 17.42, 
respectively. Using the approach for calculating the variance for the paired t-test (Eq. 
9.10), the variance for the differences between the odd and even questions is 15.57. 
The calculations for the two methods of internal consistency are: 
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The most commonly used measures of internal consistency involving dichotomous 
results (yes/no, true/false), are two methods developed by G.F. Kuder and M.W. 
Richardson at the University of Chicago in the late 1930s: the Kuder-Richardson 20 
(KR20) and Kuder-Richardson 21 (KR21). The KR20 and KR21 are calculated as 
follows: 
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where k is the number of test items (e.g., questions), p is the proportion of correct 
responses per question for each individual, X is the mean score for all persons tested, 
and S2 is the total variance to the test instrument. The higher the KR value, the 
stronger the relationship between the individual items in the instrument. The KR21 is 
similar to the KR20, but easier to compute; unfortunately the KR20 is considered a 
more accurate measure. The KR21 is a rough approximation because it involves the 
mean for all subjects rather than the proportion of successes and failures for each 
individual. The KR21 is always less than the KR20 unless the items are all equal in 
difficulty, in which case the KR20 will equal KR21. Both methods are based on the 
consistency of responses to all the items in a single instrument. 
 Examples of the use of KR20 and KR21 are presented below using the data in 
Table 17.5. The table presents the results for 20 students completing a ten-item test 
and each item is scored as a correct or incorrect response. Listed in the lower section 
of the table are the p (proportion of correct answers), q (proportion of incorrect 
answers), and their product (pq). The sum of these products (Σpq) is 1.57. The mean 
for the test scores is 7.25, with a variance of 5.88. Thus, the calculations for both 
Kuder-Richardson measures of reliability are: 
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The reason for this high reliability becomes visually obvious if the students are 
ranked in order of the scores and the questions are ranked in order of their difficulty 
(Table 17.6). Note the clustering of correct answers (1) in the upper left and incorrect 
answers (0) in the lower left. For this example, the more difficult the question, the 
more likely that the poorer students will respond with incorrect answers.  
       Another commonly used measure of reliability is Cronbach’s alpha. It measures 
how consistently individuals respond to the items within an instrument and can be 
used for nondichotomous responses (e.g., Likert scales). Cronbach’s alpha, also 
called the reliability coefficient, measures the extent to which responses to items, 
obtained at the same time, correlate with each other. It is a measure of the level of 
mean intercorrelation weighted by the variances and can be thought of as the average 
of all possible split-half estimates. In addition to estimating the reliability of the items 
for the average correlation, the Cronbach’s alpha also takes into account the number 
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Table 17.5 Original Data for Example Problem for KR-20 and KR-21 

 Instrument Items*  
Student A B C D E F G H I J Score 

1 1 1 1 1 1 1 1 1 1 0 9 
2 1 1 1 1 0 0 1 1 1 0 7 
3 1 1 0 0 0 0 1 1 0 0 4 
4 0 1 1 1 1 1 1 1 1 1 9 
5 1 1 1 1 1 0 1 1 1 1 9 
6 1 1 1 1 1 1 1 1 1 1 10 
7 1 0 0 0 0 0 1 0 1 0 3 
8 1 1 1 1 1 0 1 1 1 1 9 
9 1 1 1 1 1 0 1 0 0 1 7 

10 1 1 1 1 1 1 1 1 1 1 10 
11 1 1 0 1 0 0 1 1 0 0 5 
12 1 0 0 0 0 0 1 1 0 0 3 
13 1 1 1 1 1 1 1 1 1 1 10 
14 0 1 1 1 1 1 1 1 1 1 9 
15 1 1 1 1 0 0 1 1 1 0 7 
16 1 1 0 1 0 0 1 1 0 0 5 
17 1 1 0 1 1 0 1 1 1 0 7 
18 1 1 1 1 1 0 1 1 1 1 9 
19 1 1 1 1 1 0 1 1 1 1 9 
20 1 0 0 1 0 0 1 1 0 0 4 

Σ = 18 17 13 17 12 6 20 18 14 10  
            

p = .90 .85 .65 .85 .60 .30 1.0 .90 .70 .50  
q = .10 .15 .35 .15 .40 .70 0 .10 .30 .50  

pq = .09 .13 .23 .13 .24 .21 0 .09 .21 .25  
S2 = .09 .13 .24 .13 .25 .22 .00 .09 .22 .26  

* Code: 1 = correct answer; 0 = incorrect answer. 
 
 
of questions in the instrument. The general theory is that the larger the number of 
questions, the more reliable the instrument. Cronbach’s alpha makes no assumptions 
about what one would obtain at a different point in time (e.g., test-retest reliability). 
The Cronbach’s alpha formula is: 
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where k is the total number of questions or items in the instrument, Si

2 is the variance 
for each individual item and S2 is the variance for the total score. Thus, the more 
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Table 17.6 Sorted Data for Example Problem for KR-20 and KR-21 

 Instrument Items*  
Student G A H D B I C E J F Score 

10 1 1 1 1 1 1 1 1 1 1 10 
6 1 1 1 1 1 1 1 1 1 1 10 

13 1 1 1 1 1 1 1 1 1 1 10 
4 1 0 1 1 1 1 1 1 1 1 9 

19 1 1 1 1 1 1 1 1 1 0 9 
8 1 1 1 1 1 1 1 1 1 0 9 
5 1 1 1 1 1 1 1 1 1 0 9 

14 1 0 1 1 1 1 1 1 1 1 9 
18 1 1 1 1 1 1 1 1 1 0 9 
1 1 1 1 1 1 1 1 1 0 1 9 
9 1 1 0 1 1 0 1 1 1 0 7 

15 1 1 1 1 1 1 1 0 0 0 7 
17 1 1 1 1 1 1 0 1 0 0 7 
2 1 1 1 1 1 1 1 0 0 0 7 

11 1 1 1 1 1 0 0 0 0 0 5 
16 1 1 1 1 1 0 0 0 0 0 5 
3 1 1 1 0 1 0 0 0 0 0 4 

20 1 1 1 1 0 0 0 0 0 0 4 
12 1 1 1 0 0 0 0 0 0 0 3 
7 1 1 0 0 0 1 0 0 0 0 3 

Σ = 20 18 18 17 17 14 13 12 10 6  

* Code: 1 – correct answer; 0 – incorrect answer. 
 
 
consistent within-subject responses (individual variances), the greater the variability 
between subjects (total variance), the larger the Cronbach’s alpha. Also, alpha will be 
higher if there is homogeneity of variances among questions. The generally accepted 
cut-off for Cronbach’s alpha is 0.70 or greater for an item to be considered in the 
instrument (Nunnally and Bernstein, 1994). To illustrate Cronbach’s alpha, we can 
use the same data from the KR20 and KR21 example. Note that the last row in Table 
17.5 is the variance for each test item, the sum of which is 1.655 (ΣSi

2) and as noted 
previously the variance for the test scores in 5.88. For this example the Cronbach’s 
alpha is: 
 

799.0)719.0)(111.1(
88.5
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110

10 ==





 −







−
=αρ  

  
Test equivalence is the last measure of reliability for a test or survey instrument. 

It is the consistency of the agreement among various observers, or data collectors, 
using the same measurement or among alternative forms of the instrument. One 
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measure is the parallel forms approach previously discussed. The second is interrater 
reliability, which requires the administration of the same instrument to the same 
people by two or more raters (interviewers or observers) to establish the extent of 
consensus between the various raters. For nominal or ordinal data, this consensus is 
measured as the number of agreements divided by total number of observations. 
Consensus for interval or ratio scales is measured using the correlation coefficient 
between the scores for pairs of raters. Because the reliability coefficient makes no 
assumptions about mean scores for the individual raters, a t-test of the significance of 
r (Eq. 13.8) can be used to determine if interrater means are significantly different. 
Thus, for data involving interval or ratio, a Pearson’s correlation coefficient can be 
employed. Intraclass correlation (ICC) can be used to measure interrater reliability. 
Even though the correlation coefficient can be used to measure the test-retest 
reliability, the ICC is recommended when sample size is small (<15) or when there 
are more than two tests being evaluated. It is the ratio of between-groups variance to 
total variance. The ICC process is described by Shrout and Fleiss (1979) and Ebel 
(1951).  

For nominal or ordinal data one would use a different measure of agreement 
between two raters, Cohen’s kappa. The two variables that contain the ratings must 
have the same range of values (creating a matrix with an even number of rows and 
columns). The kappa statistic normalizes the difference between the observed 
proportions of cases where both raters agree with the expected proportions by chance 
alone. This is accomplished by dividing it by the maximum difference possible for the 
marginal totals. The t-value is the ratio of the value of kappa to its asymptotic 
standard error when the null hypothesis (e.g., kappa = 0) is true. Obviously, if there 
are an equal number of categories for both raters, the contingency table will always be 
square. Consider the example of raters classifying an outcome into one of three 
possible categories (either nominal or ordinal). If the raters were in perfect agreement 
all results would fall on the diagonal. 
 

  Rater One  
  A B C  
 A 30 0 0 30 
Rater Two B 0 25 0 25 
 C 0 0 15 15 
  30 25 15 70 

 
Realistically there would probably be some differences between the observer 
responses: 
 

  Rater One  
  A B C  
 A 20 5 5 30 
Rater Two B 6 16 3 25 
 C 4 4 7 15 
  30 25 15 70 
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Using the method described in Chapter 16 for the chi square test of independence, it is 
possible to calculate the expected values for each cell if the two raters’ responses are 
independent of each other. 
 

  Rater One  
  A B C  
 A 12.9 10.7 6.4 30 
Rater Two B 10.7 8.9 5.4 25 
 C 6.4 5.4 3.2 15 
  30 25 15 70 

 
The chi square for this particular set of data is 22.01, which would result in the 
rejection of the null hypothesis of independence between the two raters. The follow-
up questions might ask how strong is the relationship between these two observers? Is 
there reliability between the two individuals raters? 

Since the diagonal values indicate the strength of the agreement we use the 
diagonal values (or concordant items) in calculating Cohen’s kappa. In this example, 
the observed data for the concordant items (f0) sum up to 43 (20 + 16 + 7) and the 
sum of the concordant items by chance alone (fC) or for the expected results under 
independence is 25 (12.9 + 8.9 + 3.2). The excess in observed results compared to the 
number of chance occurrences as 43 – 25 = 18. Similarly, the expected number of 
nonconcordant numbers is N minus the expected concordant items (fC), which is 70 − 
25 = 45. Cohen’s kappa is simply the ratio of the two differences: 

 

C
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ff
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−=κ                                          Eq. 17.25 

 
Note that the actual frequency counts, not proportions, are used for the Cohen’s 
kappa. For this example the results would be: 
 

40.0
45
18

2570
2545 ==

−
−=κ  

 
In other words, 40% of the results are concordant or the judges are in agreement 
44.4% of the time. If there were perfect agreement between the two observers (first 
table), the results would be: 
  

0.1
45
45

2570
2570 ==

−
−=κ  

 
Thus, similar to other “coefficients of association” the measure of association is the 
proximity of the kappa to a perfect association of 1.0.  Kappa values greater than 0.80 
are considered very good, 0.61–0.80 are good, 0.41–0.60 are moderate, 0.21–0.40 are 
fair and <0.21 are poor (Altman, 1991). 
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Table 17.7 Summary of Measures of Association by Type of Scale 

 
 

Dependent 
Variable 

 
Second or 

Independent 
Variable 

 
 

2 × 2 
Table 

 
Table Larger than 2 × 2 

 
Square Not Square 

Nominal Nominal Phi Pearson C  (≤ 4 × 4) 
Pearson C* 
Tshuprow’s  (> 4 × 4) 
 

Cramer’s V 
Theil’s U 
Lambda* 

Ordinal Yule’s Q 
 

Cramer’s V 
Lambda* 

Cramer’s V 
Lambda* 

 
Ordinal Nominal Yule’s Q Tau-c 

Lambda* 
Tau-c 
Lambda* 

 
Ordinal Tau-b Tau-b 

Somers’ d 
gamma 

Tau-c 
gamma 
Lambda* 
Somers’ d 
 

Interval or 
ratio 

Nominal or 
ordinal 

Eta 
Eta2  
 

Interval or 
 ratio 

Correlation coefficient 
 
 

* No independent variable. 
 
 
Summary 
 

Measures of association are used to estimate both the strength (strong, moderate, 
or weak) and the direction (positive/negative) of the relationship. The selection of the 
appropriate test is based on the type of data, hypothesis being tested and the 
properties of the various measures (nominal, ordinal, or index/ratio). Various 
textbooks provide rules interpreting for strength of the coefficient of association. 
Table 17.7 presents a summary of the tests presented above and the types of variables 
for which each is most appropriate. 
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Example Problems (Answers are provided in Appendix D) 
 
1. Using the following information: a) calculate the various measures of association 

for a 2 × 2 design; and b) indicate which results are best, given the types of 
variables involved. 

 
Assume an equal number of males and females are treated with the same 
medication for a specific illness and the outcome is either success or failure. Is 
there a relationship between patient gender and therapeutic outcome? 
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 Females Males  
Success 45 30 75 
Failure 5 20 25 
 50 50 100 

 
2. Using the following information: a) calculate the various measures of association 

for a 3 × 3 design; and b) indicate which results are best, given the types of 
variables involved. 

 
 Patients are randomly divided into three groups and treated with one of three 

medications for high cholesterol. After six months of therapy they are assessed to 
determine if they met their desired cholesterol goal, did not meet goal, or were 
changed to a different treatment regimen. Is there a relationship between 
treatment and therapeutic outcome? 

 
 Treatment A Treatment B Treatment C  

At goal  56 46 35 137 
Not at goal 30 18 18 66 

Discontinued 13 20 37 70 
 99 84 90 273 

  
3. Using the following information: a) calculate the various measures of association 

for a 3 × 5 design; and b) indicate which results are best, given the types of 
variables involved. 

 
A survey of pharmacists in different practice settings asks their level of 
agreement with a series of questions. Listed below are their responses to one 
question. Is there an association between practice setting and response to the 
question? 
 

 Practice Setting  

Evaluation Retail Hospital Long-Term Care  
5 “strongly agree” 10 2 4 16 
4 “agree” 12 2 6 20 
3 “uncertain” 24 12 14 50 
2 “disagree” 36 20 28 84 
1 “strongly disagree” 18 64 48 130 
 100 100 100 300 
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18 
 
Odds Ratios and Relative Risk Ratios 
 
 
 
 The previous three chapters have dealt with discrete results and this chapter will 
continue our discussion of such outcomes. The last two chapters have focused on 
descriptive statistics presented in contingency tables and inferentially evaluated using 
a variety of tests, both looking for statistical independence and measures of 
association. This chapter will focus on ratio measures, which have become 
increasingly more common in the literature over the last few decades, including odds 
ratios and relative risk ratios. The chapter will conclude with similar procedures 
looking at Mantel-Haenszel relative risk ratios and logistic regression. 
 
Probability, Odds, and Risk 
 
 Commonly used methods for evaluating the importance of observed dichotomous 
outcomes (e.g., success/failure, live/die) are odds ratios and relative risk ratios. As 
discussed in Chapter 2, probability is the chance that something will occur (e.g., 
tossing a fair coin once, the probability of a head is 0.50). In contrast, odds for a 
given outcome is the ratio of the probability of a specific outcome occurring divided 
by the probability of that same outcome not occurring (e.g., tossing a fair, the odds of 
a head occurring is 1 = 0.5/0.5 or even odds of 1). Risk is more closely associated 
with probability, in that risk is the number of a negative (or positive) outcomes 
divided by the total number of possible outcomes (e.g., a coin is tossed 100 times and 
a tail occurs 60 times, the risk of a tail is 0.60 = 60/100). It is important to understand 
which of these outcomes to report under given situations and conditions. 
 Odds and relative risks are most commonly used as ratios when comparing two 
levels of an independent variable (e.g., treatment group versus control group). Both 
the odds ratio and the relative risk compare the likelihood of an event between two 
groups. The odds ratio compares the relative odds of two different events occurring. 
The relative risk compares the probability of two different events occurring. The 
relative risk is closer to what most individuals think of when they think of the relative 
likelihood of two events. As discussed in the following sections, ratios are created 
between the two groups. Both the odds ratio estimator and relative risk estimator 
employ a 2 × 2 contingency table (similar to the layouts seen in the previous two 
chapters, Figure 16.3), usually with the ratio between the two outcomes in each 
column. Some research designs, for example the case-control design, prevent 
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computing a relative risk because the design involves the selection of research 
subjects based on outcome measurements rather than exposure. However, with 
retrospective case control studies it is possible to calculate and interpret an odds ratio.  
 
Odds Ratio 
 
 An odds ratio is used when retrospective data are being analyzed and involves 
unpaired samples. Because the data are gathered after the fact, meaningful 
calculations between the proportions is not possible, as will be described later when 
discussing relative risk. The best summary for such data is to calculate the odds ratio, 
which is an approximate risk.  
 Calculation of odds and odds ratio involves a binary dependent variable with two 
possible outcomes (e.g., success or failure, positive or negative results). For example, 
assume that an event has a 75% chance of occurring (success) and a 25% chance of 
not occurring (failure). The probabilities of success and failure are p = 0.75 and q = 1 
− p = 0.25, respectively. Thus the odds of observing or not observing the specific 
event are calculated as follows: 
  

q
p)success(odds =                                     Eq. 18.1 

 

p
q)failure(odds =                                     Eq. 18.2 

 
With this particular example the odds of success or failure are: 
 

00.3
25.0
75.0)success(odds ==  

 

33.0
75.0
25.0)failure(odds ==  

 
As noted in the chapter introduction, odds and probability are not the same. In this 
example the probability of a success is 0.75, but the of odds of success are 3 to 1 and 
the odds of failure are 0.33 to 1. This makes sense; if we randomly select one sample 
from all possible outcomes there is a three times greater chance of selecting a success 
than a failure. 

In the search for causes of specific diseases, epidemiologists are interested in the 
risks of certain behaviors or characteristics on the causes of these diseases. Outcomes 
(e.g., yes or no for a specific disease, disability, or death) are compared against 
potential risk factors (e.g., predisposing characteristics, exposure to disease or 
pollutants, risk-taking behavior). The design of such comparisons is presented below: 
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  Exposure  
  Yes (+) No (−)  

Outcome Yes (+) a b a + b 
 No (−) c d c + d 
  a + c b + d n 

 
Using this design, a cross-sectional study can be undertaken where an overall sample 
of the population is collected regardless of the outcomes or factors involved. For 
example, a cross-section of individuals living in the Midwest is compared for the 
incidence of chronic lung disease and compared to smoking histories. The previous 2 
× 2 model can be employed, when two levels of a predictor (independent) variable are 
compared with two possible outcomes. Results of the hypothetical study of chronic 
lung disease are found in Table 18.1. 

The odds of developing an outcome (e.g., disease present) in the group exposed 
to the risk factor are referred to as the experimental event odds (EEO). The odds of 
developing chronic lung disease for smokers would be the odds of the outcome of 
interest being present (chronic lung disease) in those with the risk factor present 
(smokers): 
 

c
aEEO =                                            Eq. 18.3 

 
The odds of developing the outcome in the unexposed (control) group are the control 
event odds (CEO). In this case, the odds of developing chronic lung disease without 
the risk factor (smoking) present would be: 
 

d
bCEO =                                           Eq. 18.4 

 
The odds ratio for developing the outcome in the experimental group is the 
experimental event odds divided by the control event odds, or the ratio of the odds for 
the risk factor present divided by the odds where the risk factor is absent: 
 
 

Table 18.1 Example of Odds Ratio Data 

  Risk Factor  
  Smoker Nonsmoker  
Chronic Lung 

Disease 
Present 84 133 217 
Absent 68 215 283 

  152 348 500 
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db
ca

CEO
EEOOR ==                                      Eq. 18.5 

 
The results would indicate the number of times the experimental group is more likely 
to develop the disease. For the data presented in Table 18.1 the odds of developing 
chronic lung disease for smokers is as follows: 
 

235.1
68
84

c
a)present(odds ===  

 
The odds of developing chronic lung disease for a nonsmoker is: 
 

619.0
215
133

d
b)absent(odds ===  

 
The odds ratio (OR) for developing chronic lung disease, comparing smokers to 
nonsmokers is: 
 

995.1
619.0
235.1

dc
ba

OR ===  

 
Thus, based on the results of this retrospective study, the odds of developing chronic 
lung disease for smokers is approximately two times greater than nonsmokers.  
 When analyzing a case-control retrospective clinical trial, there are no differences 
between the proportion of outcomes of interest or their relative risks. Thus, the best 
way to summarize the data is to report the odds ratio. When the event rate is small, 
odds ratios are very similar to relative risks. 
 Confidence intervals can be created to determine if a calculated odds ratio is 
significant or not. With previous tests we were concerned with zero appearing within 
the interval (zero difference between the observed results). But with ratios we will be 
concerned about the location of the value one rather than zero. Consider two 
outcomes that have the exact same odds of occurring, a/b = 0.50 and c/d = 0.50; the 
odds ratio would be one: 
 

0.1
50.0
50.0

dc
ba

OR ===  

 
Thus, one would indicate absolutely no difference. So with ratio-type tests we create a 
confidence interval and if one is within the interval there is no statistically significant 
difference in the two levels of our independent variable. If one cannot fall within the 
interval there is a significant difference. If the population odds ratio (θ) has an 
outcome of one, there is no significant relationship between the independent variable 
and the outcome.  
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H0: θ  = 1 
H1: θ  ≠ 1 

 
An outcome with an odds ratio less than one indicates that the factor was effective in 
reducing the odds of a negative outcome. When the odds ratio is greater than one, 
there is an increase in the likelihood of the negative outcome occurring. To test the 
null hypothesis, it is possible to create a confidence interval, similar to previous 
intervals, using the best estimate (based on the sample) plus or minus a reliability 
coefficient times an error term. To calculate the standard error term, data is converted 
to the natural logarithm, because the distribution of the natural logarithm of θ (ln θ) 
converts data to more of a normal distribution for smaller sample sizes than the 
original distribution of θ. After finding the confidence interval for ln θ, data can be 
transformed back to a confidence interval for θ. The estimated error term for the 
sample based on ln θ is: 
 

d
1

c
1

b
1

a
1ˆ )ORln( +++=σ                                 Eq. 18.6 

 
Using this log-odds ratio is more convenient than trying to work with the odds ratio 
itself. The confidence interval for ln θ is: 
 

)ˆ(Zlnln )ORln(2/1)OR( σθ α−±=                              Eq. 18.7 
 
Each ln θ is converted back to θ by 
 

θθ lne=                                            Eq. 18.8 
 
where e is the base of the natural logarithm and equals 2.718. Using the previous 
example we can test the significance of chronic lung disease with the associated risk 
factor of smoking: 
 

197.0
215

1
68
1

133
1

84
1ˆ )ORln( =+++=σ  

 
The ln of 1.995 is 0.691 for our best estimate: 
 

)197.0(96.1691.0ln ±=θ  
 

077.1ln305.0 << θ  
 

936.2eand357.1e 077.1305.0 ==  
 

936.2357.1 << θ  
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Thus, since one is not within the interval, there is a significant difference in the odds 
ratio, with smokers 1.36 to 2.94 times more likely than nonsmokers to develop 
chronic lung disease. 

Alternatively, it is possible to establish a ratio between the ln OR and error term, 
then refer to a table for the normal standardized distribution (Appendix B, Table B2) 
to determine the p-value associated with the z-value from the ratio.  
 

)ORlog(

ORln

d
1

c
1

b
1

a
1

)cb(
)ad(ln

z
σ

=
+++

=                            Eq. 18.9 

 
In the previous example this would result in the following: 
 

51.3
197.0
691.0z ==  

 
The z-value of 3.51 is not listed on Table B2, but can be calculated using Excel 
command fx=(1−NORMSDIST(x))*2. In this case p = 0.00045.  
 The odds ratio also can be useful in the interpretation of the results of logistic 
regression analysis, which will be discussed later in this chapter. Odds ratio can also 
be used in making covariate adjustments. It is relatively easy to adjust an odds ratio 
for potentially confounding variables. Such adjustments are more difficult with 
relative risk ratios.  
 
Relative Risk 
 
 A second type of ratio is the risk ratio or relative risk ratio (RR). For 
prospective studies, the RR involves sampling subjects with and without the risk 
factor (or experimental condition) and to evaluate the development of a certain 
condition or outcome over a period of time. Where the term “odds” was associated 
with the ratio of the number of success in an outcome with an event to the number of 
failures, the term “risk” is the ratio of people experience negative outcomes compared 
to the total number within the group. With respect to proportions, odds equal np/nq or 
p/q, whereas risk is np/np + nq or p/p + q, which equals p. Where odds was 
calculated as the number of positive outcomes divided by the number of negative 
outcomes, risk is the number of negative outcomes divided by the total number of 
outcomes. 

One could think of an odds ratio as a measure of the odds of suffering some fate 
or outcome. Whereas, the risk ratio gives you the percentage difference in outcomes 
between two groups or conditions. These two ratios (OR and RR) can be compared; 
however, the risk ratio is easier to interpret. One can think of an odds ratio as an 
approximate relative risk. However, an odds ratio is used more commonly because an 
odds ratio is more closely related to logistic regression and linked to other procedures. 
Also, relative risk requires that the contingency table have a specific orientation 
(factors in the columns and outcomes in the rows), an odds ratio offers more 
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flexibility because the results will be the same even if the table is rotated by 90 
degrees. 

Using the same 2 × 2 matrix seen with odds ratios, the experimental event rate 
(EER) is the risk associated with developing a specific outcome for the group exposed 
to the risk factor: 

 

c+a
a = EER                                               Eq. 18.10 

 
and the control event rate (CER) is the risk associated with the outcome for the 
unexposed control group: 
 

d+b
b = CER                                              Eq. 18.11 

 
The relative risk (RR) is the experimental event rate divided by the control event rate: 
 

)db(b
)ca(a

 =
CER
EER Risk Relative

+
+

=                              Eq. 18.12 

 
Algebraically this can be simplified to: 
 

bc + ab
ad + ab = Risk Relative                                      Eq. 18.13 

 
The relative risk predicts the likelihood of a given outcome associated with the 
experimental factor (e.g., there is a 1.5 greater probability of cancer in individuals 
exposed to a given risk factor). Relative risk can be any value greater than or equal to 
zero. If the RR = 1 there is no association between the factor and the outcome 
(independence). An RR greater than one indicates a positive association or an 
increased risk that the outcome will occur with exposure to that factor. If RR is less 
than one there is a negative association, or protection against the outcome. The 
relative risk is our best estimate of the strength of the factor-outcome association. 

The complement of the risk ratio is the relative risk reduction (RRR). 
 

RR1RRR −=                                          Eq. 18.14 
 
It can also be defined as the risk rate in the treatment group minus the risk rate in the 
control group, divided by the risk rate in the control group.  
 









+









+
−








+
=

db
b

db
b

ca
a

RRR                                  Eq. 18.15 
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Table 18.2 Example of Relative Risk 

  Risk Factor  
  Mask No Mask  
Respiratory 
Function 

Negative 6 12 18 
Positive 19 13 32 

  25 25 50 
 
 
Relative risk means that the treatment group has a certain percentage of the risk 
compared to the control group. Relative risk reduction indicates that treatment 
reduces risk by a certain proportion compared to the control group. 
 In a prospective study, volunteers are assigned to two groups and the relative risk 
is the ratio of the proportion of cases having a positive outcome in the two groups. 
For example, workers in a chemical production facility are divided into two groups: 
one group working unprotected in the existing conditions and the other group required 
to wear protective masks. After a period of time, workers in such a follow-up or 
longitudinal study would be evaluated on respiratory function tests. After two years 
the respiratory function tests are compared to baseline (values at the beginning of the 
study). The results are either positive (no change or an improvement in test results) or 
negative (a decrease in scores on the respiratory function tests). These results are seen 
in Table 18.2. The relative risk for developing poorer (negative) respiratory function 
results for those wearing a mask compared to those without the mask would be 
calculated as follows: 
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or: 
 

5.0 = 
)19)(12( + )12)(6(
)13)(6( + )12)(6( = 

bc + ab
ad + ab = RR  

 
As indicated earlier, a relative risk of less than one indicates that the intervention (in 
this example wearing a protective mask) was effective in reducing the risk of the 
outcome (decreased respiratory function). But how does one evaluate the significance 
of the relative risk ratio? Two methods are available, either a confidence interval or 
chi square test of independence. The hypotheses associated with determining the 
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relative risk is: 
 
   H0: RRPopulation = 1  
   H1: RRPopulation ≠ 1 
  
Similar to previous tests, a confidence interval is constructed and if 1 is within the 
interval, the researcher cannot reject the null hypothesis. However, if 1 is not within 
the interval, the null hypothesis can be rejected and one can conclude that the relative 
risk is significant. The interval is constructed as follows: 
 











= ± RRZ

SamplePopulation eRRRR                           Eq. 18.16 

where: e = 2.718  and 
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For the previous example involving protective masks, the 95% confidence interval is 
calculated as follows: 
 

80.0)41.0)(96.1(
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80.0
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80.0
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80.0 )7183.2(5.0RR)7183.2(5.0 +− <<  
 

11.1RR22.0 Population <<  
 

Since the value one is within the confidence interval it can be concluded that working 
with or without the protective masks does not appear to significantly influence 
respiratory function. 
 A second way to test for significance is to perform a chi square analysis for our 2 
× 2 table, with one degree of freedom, using the same hypotheses associated with 
risk: 
 

H0:  RRPopulation = 1 
H1:  RRPopulation ≠ 1 

 
The null hypothesis is independence between the factor and the outcome. As they 
become closely related, the RR will increase and there is a greater likelihood that the 
difference is not due to chance alone and H0 is rejected. For this test we will employ 
the Yates’ correction for continuity equation. In this example (Eq. 14.5): 
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Table 18.3 Modified results for Previous Example 

  Risk Factor  
  Mask No Mask  
Respiratory 
Function 

Negative 6 14 18 
Positive 19 11 32 

   25 25 50 
 
 

d)+c)(b+d)(a+b)(c+(a
)n5.bcadn(

 = 
2

2 −−
χ  

 

17.2 = 
)25)(25)(32)(18(

])50)(5.0()19)(12()13)(6(50[
 = 

2
2 −−

χ  

 
With a chi square less than χ2

1 = 3.84, we fail to reject H0 and assume that there is not 
a significant association between wearing a mask (as a risk factor) and decreased 
pulmonary function test results (the outcome).  
 To prove that the statistical results are the same, let us slightly modify the results, 
so the results are just barely significant at 95% confidence. Consider the alternative 
results presented in Table 18.3, where the RR is 0.571. In this scenario the relative 
risk ratio confidence would be significant, because the value of one is not within the 
possible confidence interval (with 95% confidence): 
 

934.0RR197.0 Population <<  
 
The chi square test of independence would be significant because the calculated value 
is greater than the critical value of 3.84: 
 

25.4 = 
)25)(25)(32)(18(

])50)(5.0()19)(14()11)(6(50[
 = 

2
2 −−

χ  

 
In this particular case the Yates’ correction for continuity was used since it gives a 
better approximation of the confidence interval calculated with the relative risk (Table 
18.4). 
 As we have seen, in the case of a simple clinical trial comparing a treatment 
group to a control group, the relative risk ratio is the probability of an event in the 
experimental group divided by the probability of the event in the control group. 
Subtracting the relative risk for the experimental group from the relative risk for the 
control group produced the absolute risk reduction (ARR).  

 
EERCERARR −=                                     Eq. 18.18 
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Table 18.4 Comparison of Chi Square Results with Relative Risk 

 
Matrix (a,b,c,d) 

 
Relative Risk CI 

Yates’  
Chi Square 

Pearson 
Chi Square 

12,6,13,19 0.89 < RR < 4.48 2.17 3.13 
13,6,12,19 0.98 < RR < 4.79 3.06   4.16* 
14,6,11,19 1.07 < RR < 5.09* 4.08* 5.33* 

12,6,13,19 0.89 < RR < 4.48 2.17 3.13 
12,5,13,20 0.99 < RR < 5.81 3.21 4.37* 
12,4,13,21 1.12 < RR < 8.05* 4.50* 5.88* 

* Significant with p < 0.05. 
 
 
If the ARR is zero, the treatment is neither beneficial nor harmful. If the ARR is 
positive the intervention has had an advantageous effect on the outcome. Often the 
ARR is stated as the inverse of the decimal. This is termed the “number needed to 
treat” (NNT) and represents the number needed to prevent one adverse event. 

 

ARR
1NNT =                                          Eq. 18.19 

 

 
In our previous example of chemical workers, the absolute risk reduction is: 

 
24.024.048.0ARR =−=  

 
And the number needed to treat is: 

 

52.4
24.0
1NNT ≈==  

 
For every five chemical workers using protective face masks, prevention of one case 
of decreased respiratory function is possible. 
 
Graphic Displays for Odds Ratios and Relative Risk Ratios 
 
 Often graphics are used to illustrated results from either odds ratios or relative 
risk ratios. These are used when evaluating multiple predictor variables or when 
comparing multiple studies, for example, in a meta analysis. The estimate of the OR 
or RR is denoted by a circle (sometimes a square or diamond) and horizontal lines to 
each side of the circle represent the confidence interval for the population θ or 
RRPopulation (Figure 18.1). In this illustration, Factors A, B, and D are not significant 
because one is a possible outcome (within the confidence intervals), Factor C is the 
only significant predictor variable and represents the results seen earlier in the chapter 
with the OR for smoking and developing chronic lung disease. 
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Figure 18.1 Example of graphic illustration for odds ratios. 
 
 
 
Mantel-Haenszel Estimate of Relative Risk 
 
 In Chapter 16 we discussed the Mantel-Haenszel test for evaluating a potential 
confounding third variable for a 2 × 2 chi square test of independence. This procedure 
can be modified for dealing with odds and risk ratios. The Mantel-Haenszel relative 
risk ratio, sometimes referred to as the Mantel-Haenszel common odds ratio, is a 
method for calculating risk while controlling for a third potentially confounding 
variable. It removes the confounding that can result from a possible second 
independent variable and estimates the RR without the effect of a third variable. It 
involves stratification of our original data into levels for the third variable. The 
Mantel-Haenszel relative risk (RRMH) is calculated as follows: 
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                                        Eq. 18.20 

 
where ai, bi, ... Ni represent results at each individual strata or level. The test statistic 
produces an overall risk ratio controlling for the third variable. For example, consider 
gender as a possible confounding variable for a study comparing the incidence of 
Type II diabetes in overweight volunteers versus normal weight volunteers. After ten 
years of following initially healthy volunteers, the results presented in Table 18.5 
were observed. For this example the relative risk of developing Type II diabetes in 
overweight and normal weight volunteers, controlling for gender is: 
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Table 18.5 Relative Risk of Diabetes between Two Weight 
Categories and Controlling for Gender 

 
Gender 

Developed 
Diabetes 

Over- 
Weight 

Normal 
Weight 

 
Totals 

Male Yes 4 14 18 
 No 46 36 82 
  50 50 100 
     

Female Yes 22 2 24 
 No 28 48 76 

  50 50 100 
 
 
The results are interpreted similar to the RR discussed in the previous section. 
Without controlling for gender, the RR would have equaled 1.625 and is not 
statistically significant with a 95% confidence interval of 0.940 to 2.838. It is possible 
to test the null hypothesis that there is no association between the exposed and 
unexposed groups using the following formula. 
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The resulting statistic is compared to the critical χ2 with one degree of freedom 
(3.8415). If the calculated statistic is greater than 3.8415 the null hypothesis is 
rejected and there is a significant association between the exposure and resultant 
outcome. For the example presented above, the Mantel-Haenszel relative risk may 
have been closer to one, but the chi square results indicate that there is a significant 
difference when gender is considered as a confounding variable.  
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Logistic Regression  
 

Logistic regression is the appropriate regression model to use when the 
dependent variable is a dichotomous outcome (e.g., live or die, pass or fail a criteria). 
This binary logistic regression can be thought of as a regression analysis where the 
dependent variable response is a so-called dummy variable (coded zero or one). The 
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dummy variable is used in mathematical manipulation and results in means and 
standard deviations that are meaningless in terms of quantifiable measures. In the 
traditional least squares model in regression and the formula for linearity (Eq. 14.2) 
was: 
 

ex+ a =y +β     
 
where y is the dependent variable, x is the independent variable, a is the coefficient 
for the constant, β is the coefficient on the independent variable(s), and e is the 
random error term. This might be extended to logistic regression by making y the 
dummy dependent variable (one if the outcome occurs, zero if it does not), However 
there are several problems with this model, including: e is not normally distributed 
when there is a dichotomous outcome; homogeneity of variance does not exist among 
different levels of the independent variable; and the predictive probability associated 
with the independent variable(s) can be greater than one or less than zero. Use of the 
log-odds model solves these problems. 
 Logistic regression analysis allows us to examine the relationship between a 
dependent discrete variable with two possible outcomes, and one or more independent 
(predictor) variables. In logistic regression the independent variable(s) may be 
continuous or discrete. Also, unlike regression analysis, it may not be possible to 
order the levels of the independent variable. This method is especially useful in 
epidemiological studies involving a binary dependent variable, where we wish to 
determine the relationship between outcomes and exposure variables (e.g., age, 
smoking history, obesity, presence or absence of given pathologies). Such binary 
outcomes include the presence or absence of a disease state or survival given a 
particular disease state. The use of odds and odds ratios for the evaluation of 
outcomes is one of the major advantages of logistic regression analysis.  
 Logistic regression can involve a single independent variable or several different 
predictor variables. To begin with a simple analogy to a simple regression model, 
with only one independent variable and one dichotomous dependent variable, 
consider the following example. Assume 156 patients undergo endoscopy 
examinations, and based on predefined criteria, are classified into two groups based 
on the presence or absence of gastric ulcer(s). For this specific dichotomous outcome 
the majority of patients (105) are found to have gastric ulcers present and the 
remaining 51 are diagnosed as ulcer free. Researchers are concerned that smoking 
may be associated with the presence of gastric ulcers, through the swallowing of 
chemicals found in smoking products. These same individuals are further classified as 
either smokers or nonsmokers. The results of the endoscopic examinations, based on 
the two variables, are presented in Table 18.6. The odds ratio (Eq. 18.5) for having a 
gastric ulcer given that a person is a smoker is: 
 

623.1
28/45
23/60

db
ca

OR ===  

 
Thus, the odds are 1.6 times greater for a smoker to exhibit a gastric ulcer (EEO = 
2.609) than a nonsmoker (CEO = 1.607). The 95% confidence interval for the 
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Table 18.6 Outcomes from Endoscopic Examinations 

 Risk Factor  
Gastric Ulcer(s) Smokers  Nonsmokers   

Present   60 45   105 
Absent   23 28   51 

 83 73 156  
 
 
population, based on these results (Eq. 18.7) would be 0.828 to 3.183 (not significant 
because the value one falls within the interval). The outcomes seen in Table 18.6 
represent a 2 × 2 contingency table are similar to ones previously discussed in 
Chapters 16 and 17 and for which we already have several tests to analyze the data 
(e.g., chi square and measures of association). Where the chi square tested the 
relationship between the two discrete variables, the odds ratio focuses on the 
likelihood that the act of smoking can be used as a predictor of an outcome of gastric 
ulcers. Unfortunately odds ratios are only concerned with 2 × 2 contingency tables 
and only one dependent, or predictor, variable. Logistic regression can be used when 
there are two or more levels of the independent variable.  
 If regression analysis were used on scores of one for success and zero for failure 
using a fitted process, the resultant value would be interpreted as the predicted 
probability of a successful outcome. However, as indicated above, with dichotomous 
results the outcomes or predicted probabilities could exceed one or fall below zero (as 
discussed in Chapter 2, 0 ≤ p(E) ≤1). In logistic regression, the equations involve the 
natural logarithm (ln) of the probabilities associated with the possible outcomes. 
These logarithms associated with the probabilities are referred to as the log odds or 
logit.  
 

2i

1ilnitlog
π
π=                                        Eq. 18.22 

 
where πi1 is the probability of the first possible outcome of the dichotomous outcome 
(presence) and πi2 is the probability of the second outcome (absence) at ith lead level 
of the predictor variable (smoking). These odds are based on the probabilities of being 
in any given cell of the matrix based on the total number of observations. The 
probability (π11) of the presence of a gastric ulcer and being a heavy smoker is 60/156 
= 0.385 and the second possible outcome for heavy smokers (π12 – absence of ulcer) 
is 23/156 = 0.147. The result would be the following probabilities, where the sum of 
all possible outcomes is one (p=1.00): 
 

 Risk Factor 
Gastric Ulcer(s) Smoker Nonsmoker 

Present 0.385 0.288 
Absent 0.147 0.179 
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Therefore, for smokers the logit would be:  
  

96.0)62.2ln(
147.0
385.0ln)S(itlog ===  

 
and for nonsmokers: 
 

48.0)61.1ln(
179.0
288.0ln)S(itlog ===  

 
By using the logit transformation the transformed proportion values can range from 
minus infinity and plus infinity (logit(1) = +∞, logit(0.5) = 0, and logit(0) = −∞). In 
this particular example, the larger the logit value the greater the likelihood that the 
action (smoking) will serve as a predictor of the outcome (gastric ulcer).  
 

 Risk Factor 
Gastric Ulcer(s) Smoker Nonsmoker 

Present 60 45 
Absent 23 28 

Logit 0.96 0.48 
 
A second way to express the logit model is a modification of Eq. 18.22: 
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+==                                 Eq. 18.23 

 
where μ is a constant and αi is the effect at the ith level. In our previous example of 
smoker versus nonsmokers the effect could be defined as the difference between the 
two logits: 
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The difference of two logarithms is the logarithm of the ratio: 
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In this case α is also the natural logarithm of the odds ratio: 
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Table 18.7 Outcomes from Endoscopic Examinations with 
Three Levels of Smokers 

 Gastric Ulcer(s)  

 Present Absent  
Heavy smokers 19 7 26 
Light smokers 41 16 57 

Nonsmokers 45 28 73 
 105 51 156 

 
 
In this example the odds ratio is: 
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The advantage of using the logistic regression analysis is we can expand the number 
of our levels of the independent variable to more than just two. Using the above 
example, assume that the researcher instead classified the smokers as light and heavy 
smokers and found the results in Table 18.7. Logits can be calculated for each of the 
levels seen in Table 18.7. For example the logit for heavy smokers would be:  
  

997.0)711.2ln(
045.0
122.0ln

156/7
156/19ln)HS(itlog ====  

 
In this particular example, the larger the logit value the greater likelihood that the 
action (smoking) will serve as a predictor of the outcome (gastric ulcer). Listed below 
are the logit numbers for all three levels of smokers: 
 

 Gastric Ulcer(s)  
 Present Absent Logit 
Heavy smokers 19 7 0.997 
Light smokers 41 16 0.937 

Nonsmokers 45 28 0.476 
 
An advantage with logistic regression is that it does not require the assumption of 
normality or homogeneity of variance. 
 What if the researchers are interested in a possible third confounding variable, 
such as stress, alcohol intake or socioeconomic class? Multiple logistic regression 
offers procedures and interpretations similar to those found with multiple linear 
regression, except the transformed scale is based on the probability of success of a 
particular outcome. Also, many of the procedures used for multiple linear regression 
can be adapted for logistic regression analysis. In Chapter 14 the plane for multiple 
regression was defined as follows (Eq. 14.30): 
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jjj222211j ex...xxx+ a = y +++++ ββββ  
 
and the regression model could measure the effects of one or more predictor variables 
(xi) on a single dependent continuous outcome (yi). Logistic regression analysis 
allows us to examine the relationship between a dependent discrete variable with two 
possible outcomes, and one or more independent variables (continuous or discrete). 
The logit model can be described by either of the two following equivalent formulas: 
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where ln is the natural logarithm and exp is the natural exponential function (2.718). 
Thus, logistic regression can be thought of as a nonlinear transformation of the linear 
regression model. The “logistic” distribution will be s-shaped similar to the 
cumulative frequency polygon (Figure 4.13) and similar to other probability outcomes 
(0 ≤ p ≤ 1). This probability can be calculated modifying Eq. 18.27: 
 

)xa(exp1
1p

β+−+
=                                Eq. 18.28 

 
The functional form defined in the previous equation is the logistic function, thus the 
term logistic model.  

The coefficient β is approximated by the coefficient from our sample data b. Note 
in linear regression the b-values represent slope coefficients and indicate the rate of 
change in y as x changes. However, in logistic regression the b-values represent the 
rate of change in the log odds as x changes. The formula in Eq. 18.28 can be 
expanded for multiple independent variables: 

 

)]kxk...2x21x1a([exp1
1p βββ ++++−+

=                        Eq. 18.29 

 
where a is the intercept or constant coefficient and b1 through bk are the regression 
coefficients. In this case the chi square test (instead of the ANOVA) will determine 
the significance of the predicted outcome. Other variables that can be dichotomized 
(such as gender, race, age groupings) can use this coding system. Using this zero or 
one coding system it is possible to use odds and odds ratios for the evaluation of 
outcomes and this is one of the major advantages of logistic regression.  
 The maximum likelihood estimation (MLE) is a statistical method for 
determining the slope coefficients (b) and is a nonlinear least squares determination 
for nonlinear equations. Its determination is well beyond the scope of this book and 
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Table 18.8 Example of a Computer Output for Logistic Regression 

Variable Coefficient Standard Error Chi Square Probability 
Intercept +0.601 0.955 6.443 0.011 
Factor A (β1) +0.835 0.125 10.486 0.001 
Factor B (β2) −0.284 0.103 2.667 0.102 
Factor C (β3) −1.567 0.870 36.244 <0.0001 
Factor D (βk) +0.307 0.942 3.128 0.077 

 
 
involves computer iterations. Results of computer manipulation are presented in 
output tables similar to Table 18.8. The b-values (approximations of the βs) are in the 
“Coefficient” column and their associated error terms in the “Standard Error” column. 
The “intercept,” sometimes referred to as the constant, is the point where the plane 
crosses the y-axis for the dependent variable. In Table 18.8, a chi square and its 
associated p-value are calculated for each of the specific independent variables 
(factors). The chi square indicates the significant association of the factor to the 
prediction of the binary outcome. Some computer software will also generate the odds 
ratio and 95% confidence interval for each factor. Using Eq. 18.27, it is possible to 
estimate the odds ratio by using the sample logistic coefficient: 
 

)bxaexp(OR +=                                    Eq. 18.30 
 
and calculate the odds ratio by raising the exp to the power of the logistic coefficient: 
 

bexpOR =                                          Eq. 18.31 
 
In the previous example in Table 18.8, the individual OR can be calculated for each 
of the four factors. For example, Factor C would have an odds ratio of  
 

209.0expOR 567.1
C == −  

 
For illustrative purposes, let us assume that Table 18.8 represents risk factors 
associated with patients seen in the emergency room and admitted to the hospital. Let 
us assume that a patient is seen in the ER and has Factors A, C, and D, but not Factor 
B in the table. What is the probability of admission for this patient? In this case our 
estimate of the constant (a) would be the intercept of 0.601. Using the Eq. 18.30, the 
estimated prediction of admission would be: 
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In this example the patient would have a probability of 0.456 of being admitted based 
on the factors presented. As will be seen in Chapter 19, this regression model can be 
used as part of evidence-based medicine.  
 If the dependent variable has more than two possible outcomes it is termed a 
multinominal logistic regression and when the multiple levels can be presented in a 
rank order it becomes an ordinal logistical regression. Application usually requires 
significant computer manipulation of the data to calculate the regression coefficients 
and goes beyond the scope of this book. A more extensive introduction to the topic of 
multiple logistic regression can be found in Forthofer and Lee (1995), Agresti (2002), 
or Kleinbaum et. al. (1982). 
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Example Problems (Answers are provided in Appendix D) 
 
1. In a retrospective study of 170 randomly selected patients, the researcher is 

interested in determining if several factors (family history of hyperlipidemia, 
presence of hypertension, presence of diabetes, and smoking) might significantly 
influence the odds of meeting the cholesterol level goals set for them by their 
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physicians based on institutional standards. The evaluation for patients with and 
without hypertension was as follows: 

 
  Hypertension  
  Yes No  

Met goal Yes 60 24 84 
 No 57 29 86 
  117 53 170 

 
2. A total of 750 women were followed for a period of ten years following radical 

mastectomy. A comparison of their survival rates versus whether there was axial 
node involvement at the time of the surgery is presented below: 

 
  Nodal Involvement  
  Yes No  
Outcome in 
10 years 

Dead 299 107 406 
Alive 126 218 344 

  425 325 750 
  
 a. Based on this one study, what is the relative risk of death within ten years 

following a mastectomy and positive nodes? Is the relationship between 
survival and node involvement statistically significant? 

 
 b. The researchers are concerned about the presence of estrogen receptors 

because this factor (estrogen-positive or estrogen-negative patients) may 
have confounded the results of the study. Based on the following outcomes, 
what is the relative risk of death within ten years and does estrogen receptor 
status appear to confound the results? 

  
Estrogen 
Receptors 

 
Outcome 

 
Node (+) 

 
Node (−) 

 
Totals 

Positive Dead 179 26 205 
 Alive 100 148 248 
  279 174 453 

Negative Dead 120 81 201 
 Alive 26 70 96 
  146 151 297 

 
3. Modifying Problem 5 in Chapter 16, assume that containers that contained a 

moisture level <2000 are defined as successes. Using logistic regression, identify 
which amount of torque applied to the container closures would have the greatest 
likelihood of success?  
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Torque 
(inch-pounds): 

Success 
(<2000) 

Failure 
(≥2000) 

 

21  26 24 50 
 24  31 19 50 
27  36 14 50 
30  45 5 50 

 138 62 200 
 
 4. During a cholera outbreak in a war-devastated country, records for one hospital 

were examined for the survival of children contracting the disease. These records 
also reported the children’s nutritional status. Was there a significant difference 
in the survival rate based on nutritional status? 
 

 Nutritional Status 
 Poor (N1) Good (N2) 

Survived (S1) 72 79 
Died (S2) 87 32 
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19 
 
Evidence-Based Practice: An Introduction 
 
 
 
 The chapter will introduce the topic of evidence-based practice, which involves 
estimating the probability of a specific outcome. This determination involves 
historical data and information about the “goodness” of diagnostic tests or procedures. 
Having this information the clinician can estimate the probabilities of certain 
outcomes based on positive or negative diagnostic test results.  

Determining whether a patient is likely to have a specific disease or condition 
usually begins with an a priori probability for an occurrence. This is often the 
prevalence (or pretest probability) of the disease in a specific population. Most 
diagnostic tests are not perfect, but the results of the test(s) will be used to increase or 
decrease our estimate of the likelihood (posttest probability) of the disease. This 
process is sometime referred to as the refining probability. The most important 
reason pharmacists and other health professionals order a test is to help refine 
probability and make a decision about the best approach to treating the patient. This 
refining probability is the process of modifying our estimate of the probability that a 
disease or condition is present through the results observed on some diagnostic test(s). 
As will be developed in this chapter, probabilities are critical in predicting the 
likelihood for a particular disease in a given patient. This prediction will be based on 
the prevalence of the disease and the likelihood ratio associated or a modification of 
conditional probability resulting from a diagnostic test, which is affected by the test’s 
sensitivity and specificity. 
 
Sensitivity and Specificity 
 
 Conditional probability was important when we discussed the chi square test of 
independence. Based on Eq. 2.6 the probability of some level of variable A given a 
certain level of variable B was defined as 
 

p(B)
B)p(A = B)|p(A = B given p(A) ∩  

 
and if the two discrete variables are independent of each other, then the probability of 
each level of A should be the same regardless of which B characteristic it contains. 
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  The Real World 

  Positive Negative 

Test Results 
 

Positive Sensitivity False Positive 

Negative False Negative Specificity 
    

Figure 19.1 Contingency table for determining sensitivity and specificity. 

 
P(A1B1) = P(A1B2) = P(A1B3) ... = P(A1BK) = P(A1) 

 
These points will be revisited in this chapter where more complex tests involving 
frequency data are discussed. 
 If we develop a specific test or procedure to identify a certain characteristic or 
attribute (e.g., presence or absence of a disease), it is important that such a test 
produces the correct results. Sensitivity is defined as the probability that the test we 
use to identify a specific outcome will identify that outcome when it is truly present. 
If we are evaluating a diagnostic test for a specific disease, it will produce a true 
positive result if the patient actually has the disease. In the case of chemical analysis, 
a method will detect a specific compound if that material is present. In contrast, 
specificity is the probability that the test or method will produce a negative result 
when the given outcome is not present. Once again, using the example of a diagnostic 
test, the test will present a true negative result when the patient does not have the 
specific condition that the test is designed to detect. We can depict these results in 
Figure 19.1. This is similar to the figure seen in Chapter 8 for hypothesis testing 
where potential errors exist in the lower left and upper right quadrants. In a “perfect” 
world we would expect sensitivity and specificity to both have a probability of 1.00 
(with all the outcomes in the upper left and lower right quadrants). Unfortunately in 
the real world sensitivity and specificity will usually have probabilities less than 1.00. 
Just like hypotheses testing, errors can occur. Continuing with our example of a 
diagnostic test, if administered to a “healthy” person it is possible that a positive 
result might occur. This would be called a false positive result. If the test were 
administered to a patient known to have the disease, but it fails to detect the 
condition, the results would be deemed a false negative. Obviously, we want our test 
to have high sensitivity and specificity; resulting in a low probability of either false 
positive or false negative results. 
 Before a diagnostic or analytical test is used in practice, it is important to 
evaluate these rates of error (false positives and false negatives) that are possible with 
the test. In the case of an analytical procedure, mixtures can be produced with and 
without the material that we wish to detect and then test to determine whether or not 
the material is identified by the test.  
 Using a medical diagnostic test we will illustrate this process. Assume we have 
developed a simple procedure for identifying individuals with HIV antibodies. 
Obviously we want our test to have a high probability of producing positive results if 
the person has the HIV infection (sensitivity). However, we want to avoid producing 
extreme anxiety, insurance complications, or even the potential for suicide, from a 
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  Study Volunteers  
 
 
Results of 
Diagnostic 
Procedure 

 HIV(+)(D) HIV(−)( D )  

Positive (T) 97 40 137 

Negative (T ) 3 360 363 

  100 400 500 

Figure 19.2 Results of testing with a new HIV diagnostic. 

 
false positive result (1.0 − p (specificity)). Therefore we pretest on a random sample 
of patients who have the presence or absence of HIV antibodies based on the current 
gold standards for this diagnostic procedure. Assume we start with 500 volunteers 
with 100 determined to be HIV-positive and the remaining 400 as HIV-negative 
based on currently available procedures. We administer our diagnostic procedure and 
find the results presented in Figure 19.2. 
 Similar to the symbols used in Chapter 2, let us identify the true diagnostic status 
of the patient with the letter D (disease) for the volunteers who are HIV(+) and D  
(no disease) for volunteers who are HIV(−). We will use the letter T to indicate the 
results from our new diagnostic procedure: T for a positive test result and T  for a 
negative test result. 
 Suppose we randomly sample one of the 100 HIV(+) volunteers. What is the 
probability that the person will have a positive diagnostic result from our test? Using 
conditional probability (Eq. 2.6) and the outcomes expressed as proportions (Figure 
19.3) we calculate the results to be: 
 

70.90 = 
0.200

94.10 = 
p(D)

D)  p(T = D)|p(T ∩  

 
This meets our definition of sensitivity, the probability that a person will give a 
positive test if he or she has the disease. Thus, the sensitivity for a diagnostic test is 
97%. In a similar manner, if we sample one patient from our 400 HIV(−) patients, 
What is the probability that our test results will be negative? 
 
 

  Study Volunteers  
 
 
Results of 
Diagnostic 
Procedure 

 HIV(+)(D) HIV(−)( D )  

Positive (T) 0.194 0.080 0.274 

Negative (T ) 0.006 0.720 0.726 

  0.200 0.800 1.000 

Figure 19.3  Results for Figure 19.2 expressed as proportions. 
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00.90 = 
0.800

720.0 = 
)Dp(

)D  Tp( = )D|Tp( ∩
 

 
In this example the result is 90% and meets our definition of specificity as the 
probability that a person will give a negative test result if he or she does not have the 
disease. Identical results can be obtained if we work vertically within our table by 
dividing the frequency within each cell by the sum of the respective column. 
 

70.90 = 
100

79 =y Sensitivit  

 

00.90 = 
400
360 =y Specificit  

 
Conditional probabilities can be used to calculate the probability of a false negative 
rate (probability of a negative result given the presence of the disease): 
 

030.0 = 
200.0
006.0 = 

p(D)
D)  Tp( = D)|Tp(negativeFalse ∩

=  

 
or a false positive rate (probability of a positive result given no disease): 

 

100.0 = 
800.0
080.0 = 

)Dp(
)D  p(T = )D|p(TpositiveFalse ∩

=  

 
Because they are complementary, the same results can be obtained by subtracting the 
results for sensitivity and specificity from the total for all possible outcomes (1.00):  

 
030.0 = 970.0  000.1 = ity)p(sensitiv  1 = negative False −−  

 
100.0 = 00.90  000.1 = ity)p(specific  1 = positive False −−  

 
Two-by-Two Contingency Table 
 

As seen previously, the sensitivity is the ability of a test (diagnostic or analytical) 
to detect a condition for which it is testing. For example, with a diagnostic test, if 
sensitive, it will give a positive result for a patient who actually has the given disease 
or condition. Using our previous layout for a 2 × 2 chi square design (Figure 16.3), it 
is possible to label a similar table for outcomes from a diagnostic test (Figure 19.4). 
In this model we would hope most of the test results fall in either the a or d cells of 
the table. Similar to conditional probability, the upper left cell (a) represents the 
frequency of true positives (TP). The lower right cell (d) represents the frequency 
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      Real World 

  Present Absent  

Test Results 
Present a b a + b 

Absent c d c + d 

  a + c b + d  n 

Figure 19.4 Modification of a 2 × 2 contingency table 
for sensitivity and specificity. 

 
 
of true negatives (TN). Both are desirable outcomes; unfortunately some patients 
may test as false positives (PF, cell b) or false negatives (FN, cell c). Ideally, there 
would be a low false positive rate and low false negative rate, meaning a low 
incidence of incorrect results. As an alternative to the calculations for conditional 
probability, the frequency counts from the contingency table can be used to calculate 
the sensitivity and specificity of a test using the following formula: 

 

c+a
a = 

FN+TP
TP =y sensitivit                                 Eq. 19.1 

 

b+d
d = 

FP+TN
TN =y specificit                                 Eq. 19.2 

 
In addition the probability of a false positive or false negative result can also be 
calculated directly from a 2 × 2 contingency table: 
 

d+b
b

TNFP
FP= results) positive p(false =
+

                     Eq. 19.3 

 

a+c
c

TPFN
FN = results) negative p(false =

+
                      Eq. 19.4 

 
Notice in Figure 19.4, for sensitivity and specificity, we are dealing once again with 
information vertically in our 2 × 2 contingency table. Using the previous example we get 
the exact same results employing this method: 
 

970.0
3+97

97 =y Sensitivit =  

 

900.0
360+40

360 =y Specificit =  
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100.0
36040

40 = results) positive p(false =
+

 

 

030.0
3+97

3 = results) negative p(false =  

 
For this example, the probability that the diagnostic test will indicate the presence of 
disease, when the disease is actually present (sensitivity or a true positive rate) is 
0.970 or 97%. The probability that the diagnostic test will indicate an absence of the 
disease when the disease is actually absent (specificity or a true negative rate) is 0.900 
or 90%.  
 The sensitivity and specificity of diagnostic procedures or commercially 
available tests are often available through medical literature or the manufacturer’s 
product information. Both methods give identical results. Conditional probabilities 
can be thought of as definitional formulas and the contingency table approach as 
computational formulas.  
 
Defining Evidence-Based Practice 
 

Also referred to as evidence-based medicine, evidence-based decision making 
or evidence-based analysis is the process of using the best evidence in the literature to 
provide the best care for an individual patient.. With evidence-based practice, instead 
of making predictions about a population, we use statistics to apply population 
information to decisions about individual patients. What the practitioner is attempting 
to do is update his or her information about a specific patient based on previous 
knowledge plus diagnostic test information.  
 Using sensitivity and specificity alone, one cannot determine the value of a 
diagnostic test for a specific patient. It also requires the practitioner’s index of 
suspicion (or the pretest probability) that the patient might have the disease. Used 
together, these facts can provide an estimate of the probability of disease (or absence 
of disease) for a specific patient. The pretest (or a priori) probability is the probability 
that a patient has the disease before undergoing a test. The best estimate of this 
probability is the prevalence of the disease or condition in that specific population. 
To estimate prevalence we need an understanding of the historical probability of a 
particular condition.  

The pretest probability can be estimated by either professional experience or 
published scientific studies. The latter is probably more reliable, but the value of the 
former cannot be overlooked. Published studies in the medical and pharmacy 
literature are invaluable in therapeutic decision making. One of the commonly used 
hierarchical structures for information in evidence-based practice is the “4S” model. 
This is usually represented as a pyramid or triangle with four subdivisions. The first, 
at the widest base portion of the triangle is “studies,” followed by “syntheses,” 
“synopses,” and at the top of the pyramid “systems” (Brian, 2001). The “studies” 
level represents original studies and clinical trials. These studies are primary literature 
sources and, in ascending order of importance, include: 1) case studies; 2) cases 
series; 3) retrospective and prospective cohort studies; 4) clinical trials; 5) 
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Table 19.1 Information Sources for Decision Making with Evidence-Based Practice 

Level Resource URL 

Systems UptoDate  http://www.uptodate.com 
 Physicians’ Information and     

Education Resource (PIER) 
http://pier.acponline.org/ 
      info/index.htm 

 FIRSTConsult  http://www.firstconsult.com/ 

Synopses Database of Abstracts of 
Reviews of Effectiveness 
(DARE) 

http://www.york.ac.uk/ 
      inst/crd/index.htm 

 Bondolier 
 

http://www.medicine.ox.ac.uk/  
      bondolier 

 ACP Journal Club http://www.acpjc.org/ 

Syntheses Cochrane DSR (Database of 
Systematic Reviews) 

http://www.libraries.iub.edu/index.php
?pageId=400&resourceId=1307912 

 Ovid Medline http://www.ovid.com 

Studies PubMed/ 
MEDLINE 

http://www.ncbi.nlm.nih.gov/ 
     PubMed/ 

 CINAHL http://www.cinahl.com/index.html 
 OTSeeker http://www.otseeker.com/ 
 PEDro http://www.pedro.fhs.usyd.edu.au/ 

     index.html 
 WebMD http://webmd.com 

 
 

randomized clinical trials; and 6) blinded randomized clinical trials. The “syntheses” 
level involves systematic reviews or meta analyses of relevant studies. The 
“synopses” level includes resources that evaluate and discuss the implications of 
selected studies or reviews. They are usually brief abstracts reviewing important study 
findings. Finally, the highest level in this hierarchy is the “systems” level; this is pre-
evaluated evidence-based practice information with clinical advice on relevance of 
the information. With the Internet and electronic retrieval sources for these types of 
information, searching for information has become much easier for the practitioner. 
Some currently electronic resources and their URLs are listed in Table 19.1.  
 Using the information that can be obtained from the references sources listed in 
the previous paragraph, coupled with the tests described below, can result in a posttest 
probability. This posterior probability is the probability that a patient has the disease, 
given the results of the diagnostic procedure.  
 The threshold model can be used to estimate the probability of a patient having a 
disease and the value of treatment. The model is based on a continuous probability 
line from 0 to 1 (Figure 19.5). The testing threshold is that point on this continuum 
where no difference exists between the value of not treating the patient and 
performing a diagnostic test. The treatment threshold is that point on the continuum 
where no difference exists between the value of performing the test and treating the 
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0 Probability of Disease or Event 1.0

Testing
Threshold

Treatment
Threshold

 
Figure 19.5 The threshold model. 

 
patient without doing the diagnostic test. This model was originally proposed by 
Pauker and Kassirer (1980). This model can be used to assist practitioners in making 
decisions based on the risks and benefits associated with ordering tests and 
therapeutic interventions. The questions that must be answered are: 1) what is the 
probability that a given patient has the disease; and 2) where on this continuum does 
the probability lie? The diagnostic test results may have varying effects on our 
estimate of the probability of disease. Clinicians will make choices on whether to treat 
or not treat a disease by considering if the results have crossed a treatment threshold. 

As seen in the previous section, in order to calculate the sensitivity and 
specificity for a test, the information in the columns requires that we already know 
who had the disease or condition. However, in day-to-day clinical decision making 
what we really are interested in is what a positive or negative test result will mean to 
an individual patient being tested and the probability (given a positive or negative test 
result) that he or she will have the disease or condition. Using the test sensitivity and 
specificity, along with the estimated prevalence of the disease or condition, the 
calculation of a refined probability of a specific outcome can be accomplished by 
different methods: 1) Bayes’ theorem; 2) a 2 × 2 contingency table and application of 
the likelihood ratio; or 3) a decision tree. This chapter will focus first the two 
approaches; the decision tree approach is discussed in Shlipak (1998). 

 
Frequentist versus Bayesian Approaches to Probability 
 

As discussed in previous chapters, probability theory is the body of knowledge 
that enables us to make determinations about uncertain events. The populist or 
frequentist approach was presented in Chapter 2 where the probability p of an 
uncertain event A, written p(A), is defined by the frequency of that event based on 
previous observations. As seen in Chapter 2, using a fair deck of cards, the probability 
of drawing a queen at random is 0.077 (four queens out of 52 cards). In health care, 
based on prior knowledge of a disease state, one could estimate the probability that an 
individual will develop that disease. This is based on the prevalence of the particular 
disease. 

This frequentist approach to the probability of an uncertain event is helpful, if we 
have accurate information about past instances of that event or disease. However, 
what if no historical database exists? In these situations we need to consider an 
alternative approach. Using our previous example of a new HIV diagnostic test, since 
there is no previous experience with this kit, we cannot use the frequentist approach 
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to define our degree of confidence in correct test results for this uncertain event. 
As seen in the beginning of this chapter, conditional probability was defined with 

respect to joint probability (Eq. 2.6): 
 

p(B)
B)p(A = B)|p(A = B given p(A) ∩  

 
Conditional probability p(A|B) can also be calculated without reference to the joint 
probability p(A∩B). Rearranging the previous formula we can calculate p(A∩B):  

 
)B(p)BA(p)BA(p ⋅=∩                              Eq. 19.5 

 
because of  symmetry we can also create: 
 

)A(p)AB(p)BA(p ⋅=∩                              Eq. 19.6 
 
Substituting for p(A∩B) we remove the need for the information about this intercept 
term and create what is called Bayes’ rule or Bayes’ theorem: 
 

p(B)
)A(p)Ap(B

 = )Bp(A
⋅

                                 Eq. 19.7 

 
Bayes’ rule (British clergyman, Thomas Bayes, 1702-1761) provides a mechanism for 
updating our estimate of the probability of A based on evidence provided by B. Our 
final estimate p(AB) is calculated by multiplying our prior estimate p(A) and the 
likelihood p(BA) that B will occur if A is true. In many situations computing p(A|B) 
is difficult to do directly. However, we might have direct information about p(B|A). 
One of the strengths of Bayes’ rule is that it enables us to compute p(A|B) in terms of 
p(B|A). Bayes’ theorem has become the basis for Bayesian statistics. It involves the 
evaluation of data using a utility function (which is probability-based) and then 
maximizing the expected utility.  

With the frequentist approach, statistical methods attempt to provide information 
about outcomes or effects through the use of easily computed p-values. However, as 
seen in previous chapters there are problems surrounding the use of p–values, 
including statistical versus clinical significance, one–tailed versus two–tailed tests, 
and difficulty in interpreting confidence intervals and null hypotheses associated with 
Type I and II errors. In contrast, the Bayesian approach can provide probabilities that 
are often of greater interest to clinicians, for example, the probability that treatment X 
is similar to treatment Y or the probability that treatment Y is at least 10% better than 
treatment X. These methods may be simpler to use and understand in monitoring 
ongoing trials. However, at the same time, Bayesian methods are controversial in that 
they require assumptions about prior probabilities and sometimes the calculations are 
more complex, even though the concepts are simpler. Good sources of information 
about Bayesian statistics include Lee (1997) and Press (1989). These are listed in the 
suggested readings at the end of this chapter.  
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Predictive Values 
 
 Using the previous example of our HIV diagnostic test, let us apply Bayes’ 
theorem. Based on the initial trial results with our diagnostic test, which had a 
sensitivity of 97% and specificity of 90%, what is the probability that a single 
individual who has the HIV antibody in the general population will test positive with 
the new diagnostic? This would be the question of interest in evidence-based practice. 
Assuming only our sample of 500 volunteers the answer would be: 
 

708.0 = 
274.0
194.0 = 

p(T)
T)  p(D = T)|p(D ∩  

 
 Sensitivity and specificity are evaluators for the test procedure. However, we are 
more interested in the ability to detect a disease or condition based on the test results; 
specifically, the probability of disease given a positive test result (called the 
predicted value positive, PVP) and the probability of no disease given a negative test 
result (termed the predicted value negative, PVN). In other words, we are interested 
in the general population and want to know the probability that a person having the 
HIV antibody will give a positive result on our test. In order to accomplish this we 
can expand upon Bayes’ theorem.  
 

p(B)
)A(p)Ap(B

 = )Bp(A
⋅

 

 
As discussed in Chapter 2, an event can be expressed as the sum of probabilities of 
the intersection of the event with all possible outcomes of a second event: 
 

 ∩= )AB(p)B(p i  
 
With conditional probabilities the relationship can be expressed as 
 

= )A(p)AB(p)B(p ii  
 
Substituting our symbols for disease the result is:  
 

)D(p)DT(p)D(p)DT(p)T(p +=  

 
The result is used in the denominator of Bayes’ theorem to produce what is termed 
the predicted value positive: 
 

)D)p(D|p(T + D)p(D)|p(T
D)p(D)|p(T = T)|p(D = PVP                     Eq. 19.8 
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It is possible also to determine the probability of not having HIV antibodies given a 
negative diagnostic result or a PVN: 
 

D)p(D)|Tp( + )D)p(D|Tp(
)D)p(D|Tp( = )T|Dp( = PVN                    Eq. 19.9 

 
These predictive values will help redefine probability in the patient’s specific 
population and will provide information on the likelihood a disease is present or 
absent in a specific patient. If a disease or condition is either extremely rare, or 
conversely, very common, then only an extremely definitive test is likely to change 
the posttest probabilities. However, midrange probabilities (between 0.20 and 0.80) 
can change greatly on the basis of even a reasonably definitive test. 
 If we apply these equations to the results for our 500 volunteers we should expect 
to calculate the same result as seen in the first conditional probability in this section. 
Using the proportions in Figure 19.3, based on other gold standard tests, we know the 
prevalence of the disease specific to only our volunteers is: 
 

800.0)D(pand200.0)D(p ==  
 
Using conditional probabilities we were able to calculate the probabilities for true 
positives (sensitivity) and true negatives (specificity) 
 

900.0)DT(pand970.0)DT(p ==  
 
and calculate the probabilities of false positive and false negative results: 
 

100.0)DT(pand030.0)DT(p ==  
 
Applying this information the PVP and PVN for our sample can be calculated: 
 

)D)p(D|p(T + D)p(D)|p(T
D)p(D)|p(T = T)|p(D = PVP  

 

708.0 = 
.80)0)(10.0( + .20)0)(7.90(

.20)0)(7.90( = PVP  

 

D)p(D)|Tp( + )D)p(D|Tp(
)D)p(D|Tp( = )T|Dp( = PVN  

 

9920. = 
)20.0)(03.0( + )80.0)(90.0(

)80.00)(9.0( = PVN  
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Similar to the previous equations using for a 2 × 2 contingency table (Figure 19.4), 
the equations for PVP and PVN can be simplified. The PVP is the proportion of 
patients with a positive test result who actually have the disease or condition: 
 

ba
a

FPTP
TP = PVP

+
=

+
                                   Eq. 19.10 

 
The PVN is the percent of patients with a negative result who do not truly have the 
condition or disease: 
 

dc
d

TNFN
TN = PVN

+
=

+
                                  Eq. 19.11 

 
Notice in these two equations we are dealing with horizontal information presented in 
the 2 × 2 contingency table. Using the information in Figure 19.2 we find the same 
results using either set of formulas: 
 

708.0
137
97

ba
a = PVP ==
+

 

 

992.0
363
360

dc
d = PVN ==
+

 

 
If we define the proportion of patients with the disease (in this case 100 out of 500 
volunteers) as a prevalence, we can further rewrite Eqs. 19.8 and 19.9 to be stated as 
follows: 
 

)]prevalence1)(yspecificit1[()]prevalence)(ysensitivit[(
)prevalence)(ysensitivit(PVP

−−+
=  

Eq. 19.12 
 

)]prevalence)(ysensitivit1[()]prevalence1)(yspecificit[(
)prevalance1)(yspecificit(PVN

−+−
−

=
 

Eq. 19.13 
 
Without going through the entire derivation of these two formulas, we will prove the 
equations using the data from Figure 19.4. With our knowledge of the associated 
sensitivity and specificity from these volunteers, we can calculate PVP and PVN 
where prevalence is 0.20 (100 out of 500 volunteers): 
 

)]prevalence1)(yspecificit1[()]prevalence)(ysensitivit[(
)prevalence)(ysensitivit(PVP

−−+
=  
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708.0
)20.01)(90.01()20.0)(97.0(

)20.0)(97.0(= PVP =
−−+

 

 

)]prevalence)(ysensitivit1[()]prevalence1)(yspecificit[(
)prevalance1)(yspecificit(PVN

−+−
−

=
 

 

992.0
)20.0)(03.0()80.0)(90.0(

)80.0()90.0( = PVN =
+

 

 
Using Eqs. 19.12 and 19.13 we have simplified our equation to requiring only three 
pieces of information: sensitivity and specificity of the diagnostic test and the 
prevalence of the disease or condition. In the previous case our prevalence was based 
on our knowledge of only 500 volunteer in the study. To extend these equations for 
the general population or a subpopulation we will use an estimate of the prevalence of 
a given disease. Prevalence is the probability of persons in a defined population 
having a specific disease or characteristic of interest. For illustrative purposes, let us 
assume that a review of the literature revealed that the prevalence of HIV antibodies 
(D) in the general U.S. population is 5%. We would replace the previous )D(p  and 

)D(p  with the information for the U.S. population and recalculate the PVP to be: 
 

)]prevalence1)(yspecificit1[()]prevalence)(ysensitivit[(
)prevalence)(ysensitivit(PVP

−−+
=  

 

338.0 = 
)950.0)(100.0( + )0.050)(70.90(

)0.050)(70.90( = PVP  

 
Thus, based on initial trials with our diagnostic test, there is only a 33.8% chance that 
an individual with HIV antibodies will be identified using our test. The negative 
predictive value is: 

 

)]prevalence)(ysensitivit1[()]prevalence1)(yspecificit[(
)prevalance1)(yspecificit(PVN

−+−
−

=
 

 

998.0
)05.0)(03.0()95.0)(90.0(

)95.0()90.0( = PVN =
+

 

 
However, based on these same initial measures of sensitivity and specificity, there is a 
99.8% chance that a patient with a negative test result actually does not have the 
disease. Therefore, selectivity and sensitivity of a procedure can be applied to a 
known prevalence to predict the ability to detect specific outcomes. 
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Figure 19.6 Redefining probability using the likelihood ratio. 

 
 
disease. Therefore, selectivity and sensitivity of a procedure can be applied to a 
known prevalence to predict the ability to detect specific outcomes.  
 Notice in the previous examples we were dealing with dichotomous results (pass 
or fail, present or absent). Such dichotomies will be used for the following tests that 
are expansions of the chi square test of independence. 
 
Likelihood Ratios 
 

An alternative, equivalent process for redefining pretest probability and create 
new posttest probability involves the likelihood ratio(s). Using this method we 
combine the likelihood ratio with information about the prevalence of the disease or 
condition to determine the posttest probability of disease. This is illustrated in Figure 
19.6. Unfortunately, the direct relationship needs one final modification, namely, 
incorporating odds into the calculations. 
 As mentioned earlier, pretest probability or prior probability is a term used to 
describe the probability of an event occurring based on previous experience with that 
event. It is the probability of a given disease prior to performing any diagnostic 
procedure. Clinically this might be referred to as the practitioner’s index of 
suspicion. For example, based on national data, the probability of a certain disease 
occurring in otherwise healthy individuals is 0.020. This prior probability is used with 
a likelihood ratio to calculate a posttest probability or posterior probability. This 
posttest result is the probability that a specific patient has the disease, given the result 
of the diagnostic procedure for that patient is positive. Calculating the likelihood ratio 
is based on the sensitivity and specificity of the diagnostic procedure used to 
determine the latter probability. 

If an individual gives a positive test result, how many times more likely is this 
individual to actually have the disease present? As discussed previously, to evaluate 
the success or failure of a diagnostic procedure, the sensitivity is defined as the 
proportion of individuals with a given disease that are correctly identified as positive 
by the diagnostic test. The specificity is that proportion of individuals without disease, 
that is correctly identified as negative, by the diagnostic test. A diagnostic test may be 
very useful in one specific population, but could possibly be worthless for screening 
in a different population. This is determined by the likelihood ratio, which is 
dependent on both the sensitivity and specificity of the test: 
 

Posttest
Odds

Pretest
Odds

Posttest
Probability

Pretest
Probability

Likelihood
Ratio
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ySpecificit1
ySensitivitLR

−
=+                                  Eq. 19.14 

 
The resultant value for the likelihood ratio can range from zero to infinity. The LR+ is 
the likelihood of a particular test result in someone with disease divided by the 
likelihood of the same test results in someone without the disease. If a calculated 
likelihood ratio is 8.0, then the individual with a positive test result is eight times 
more likely to have the disease than someone with a negative test result. This is 
sometimes referred to as the likelihood ratio for a positive result and symbolized as 
LR+.  
 It is also possible to calculate the likelihood ratio for a negative result: 
 

ySpecificit
ySensitivit1LR −

=−                                   Eq. 19.15 

 
Similar to the description above, the LR− is the likelihood of a negative test result in 
someone with disease divided by the likelihood of the same test results in someone 
without the disease. In this case an LR− of 8.0 would indicated that an individual 
patient with a negative test result is eight times more likely to not have the disease 
than another patient with a positive test result. 

These two likelihood ratios do not require a 2 × 2 contingency table and are easy 
to calculate if information in the literature provides only sensitivity and specificity for 
a diagnostic test or procedure. But looking at Eqs. 19.14 and 19.15 we can see where 
they can be derived from such a table: 
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Using data from our previous example of the HIV diagnostic test, with a sensitivity of 
0.970 and specificity of 0.900, the two likelihood ratios would be: 
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Table 19.2 Impact of Likelihood Ratios of the Posttest Probability 

Likelihood Ratio Posttest Probability 
0 No disease 

0.1 Lower incidence 
1 No change 

10 Higher incidence 
∞ Disease is certain 

Modified from: Go, A.S. (1998). “Refining Probability: An Introduction to the Use 
of Diagnostic Tests” (1998). Evidence-Based Medicine: A Framework for Clinical 
Practice, Friedland, D.J., ed., Appleton and Lange, Stamford, CT, p. 24. 
 
 
or taking the results directly from Figure 19.2: 
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In this case, if a patient has a positive test result, he or she is 9.7 time more likely to 
have the disease than a patient with a negative result. How does one interpret the 
likelihood ratio with respect to the value of a diagnostic test? In general, the greater 
the LR+, the better the test at diagnosing the disease or condition. Likelihood ratios 
equal to or greater than 10 are considered to be useful. In contrast, the smaller the 
negative LR−, the better the test at excluding the disease or condition. Negative 
likelihood ratios equal to or less than 0.1 are considered useful.  

An advantage to using likelihood ratios is they can be derived from knowing only 
the test sensitivities and test specificities. The likelihood ratio can be used as a quick 
estimate of the posttest probability and the amount of certainty of the disease being 
present (Table 19.2). Another advantage, as will be seen later: if independent tests are 
involved they can be multiplied together to calculate a single estimate of a specific 
patient outcome.  

The likelihood ratio combines information about test sensitivity and specificity 
and provides an indication of how much the odds of the presence of a disease or 
condition change based on a positive or a negative diagnostic result. However, in 
order to apply the likelihood ratio, one needs to know the pretest odds (also a ratio). 
With this information in hand, one can multiply the pretest odds by the likelihood 
ratio to calculate the posttest odds. 
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Table 19.3 Comparison of Probabilities to Odds 

Probability Odds 
0.01 1 to 99 
0.05 1 to 19 
0.10 1 to 9 
0.20 1 to 4 
0.25 1 to 3 
0.33 1 to 2 
0.50 1 to 1 
0.66 2 to 1 
0.75 3 to 1 
0.80 4 to 1 
0.90 9 to 1 
0.95 19 to 1 
0.99 99 to 1 

 
 
As discussed in Chapter 18, odds is the number of times a given outcome occurs, 
divided by the number of times that specific event does not occur, which differs from 
probability (the number of outcomes divided by the total number of events). The use 
of odds is another way of calculating the likelihood or probability of an event that is 
fairly easy to understand and can be useful in applying the likelihood ratio. Equation 
18.1 could be modified to express odds as follows: 
 

p1
podds
−

=                                         Eq. 19.18 

 
By manipulating  this equation, a probability can be calculated for any odds: 

 

1odds
oddsyprobabilit

+
=                                Eq. 19.19 

 
Some examples of the conversion from probability to odds are presented in Table 
19.3.  
 With respect to the pretest odds involving the likelihood ratio, such a value is 
calculated by dividing the probability of the condition (prevalence, based on the 
literature), by the complementary probability of not having the condition: 
 

)D(p
)D(poddsetestPr −

+
=                                   Eq. 19.20 

 
Thinking of these likelihood ratios in terms of odds ratios (Chapter 18), the LR+ 
represents how much the odds of having a disease increases in the presence of 
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positive test results. The LR− indicates how much the odds of the disease decrease 
when the test result is negative. 

Consider the administration of a diagnostic test; if the researcher has specific 
information about anticipated odds of an outcome before the test, it can be multiplied 
by the likelihood ratio to create the posttest odds for that outcome: 
 

)LR)(odds(odds prepost
+=                             Eq. 19.21 

 
As seen in the equation, the magnitude of the likelihood ratio will have a direct effect 
on the magnitude of the posttest probability. These posttest odds represent the chance 
that a specific patient with a positive test result actually has a disease. Thus, if the 
researcher can combine the likelihood ratio with information about the prevalence of 
a specific disease, characteristics of the patient population, and information about the 
particular patient (represented as the pretest odds), it is possible to predict the odds of 
the disease being present. This forms the basis of evidence-based practice. 
 The calculation of the posttest probability is presented in Figure 19.6. The steps 
required to calculate the redefined probability are: 
 

1. Estimate the pretest probability (prevalence). 
2. Convert the pretest probability to pretest odds (Eq. 19.20). 
3. Multiply the likelihood ratio by the pretest odds to create the posttest odds 

(Eq. 19.21). 
4. Convert the posttest odds to a posttest probability (Eq. 19.19). 

 
Using this process we can calculate the probability of a patient having HIV if he or 
she tests positive to our new diagnostic test. As defined in a previous section the 
prevalence of HIV infections is 5% or a pretest probability of 0.050. The pretest odds 
would be: 
 

0526.0
950.0
050.0

p1
podds pre ==
−

=  

 
Multiplying the pretest odds by the likelihood ratio calculated in the previous section, 
the posttest odds would be: 
 

5102.0)70.9)(0526.0()LR)(odds(odds prepost === +  
 
Finally, the conversion of the posttest odds to a posttest probability would be: 
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Therefore, a positive diagnostic result for our new test would mean the patient has a 
34% chance of truly being infected. The result is identical to the value we calculated 
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for the PVP using Bayes’ theorem. Thus, either approach would give us the same 
answer.  
 The post probability for not having the disease, given a negative test result can be 
calculated in a similar manner, substituting the 1 − prevalence for the pretest 
probability. However, in this case the LR− is used as the likelihood ratio and becomes 
the denominator in the equation.  
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Using our HIV example once again: 
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In this case the posttest probability is equal to the PVN using Bayes’ rule. The terms 
predicted value positive and posttest probability or posterior probability of having the 
disease are synonymous. Similarly, the predicted value negative and posttest 
probability of not having the disease or condition are also synonymous. 

A third approach to determining posttest probability would be through the use of 
a visual graphic. Go (1998) provides a simple visual method for calculating posttest 
probability using a nomogram. It represents a simplification of Fagan’s earlier 
nomogram in the New England Journal of Medicine (1975). On three vertical axes are 
pretest probability, likelihood ratio, and posttest probability. Using a ruler (or similar 
straightedge) to line up the pretest probability and the likelihood ratio, this 
straightedge crosses the third line at a value for the posttest probability (labeled as 
percentages). 

As mentioned previously, starting with the pretest odds, it is possible to combine 
the results from multiple tests to produce final posttest odds. This process can be used 
if there are multiple diagnostic criteria, since one of the useful properties of likelihood 
ratios is that they may be used in sequence. Therefore, determination of the posttest 
probability can involve combining likelihood ratios, but only if the diagnostic tests 
are independent and not influenced by the outcomes of the other tests (Figure 19.7). 
Thus, we can keep modifying the posttest probability on the basis of a series of test 
results. 
 

)LR)...(LR)(LR)(odds(odds k21prepost
+++=                   Eq. 19.23 
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Figure 19.7 Redefining probability for multiple independent tests. 

 
 
One additional advantage of the likelihood ratio is that it can be used for continuous 
or ordinal data and measure the magnitude of these results.  
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Example Problems (Answers are provided in Appendix D) 
 
1. Returning to the first example in the problem set for Chapter 2, we employed 150 

healthy female volunteers to take part in a multicenter study of a new urine 
testing kit to determine pregnancy. One-half of the volunteers were pregnant, in 
their first trimester. Based on test results with our new agent we found the 
following: 

 
  Study Volunteers  
  Pregnant Not Pregnant  
Test Results 
for Pregnancy 

Positive 73 5 78 
Negative 2 70 72 

  75 75 150 
 
 What are the specificity and selectivity levels of our test? 
 
2. One test for occult blood in the feces has a sensitivity of 52% and a specificity of 

91% for colorectal cancer. At the same time the estimated incidence of colorectal 
cancer in the U.S. for 40-59 year-old males is 0.87%. What is the probability of 
colorectal cancer in a 52 year-old male with a positive result with this occult 
blood test? Use both Bayesian and non-Bayesian approaches. 

 
3. Assume that we suspect 15% of the patients with a given risk factor will develop 

a particular disease. From the literature (or online databases) we see that the test 
has a sensitivity of 0.75 and specificity of 0.80. If a specific patient with the 
given risk factor tests positive, what is the probability that she will develop the 
given disease? Alternatively, if the same patient has a negative response to the 
test, what is the probability that she will not develop the disease? 
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20 
 
Survival Statistics 
 
 
 

In certain clinical studies, the researcher may wish to evaluate the progress of 
patients over a certain time period and observe their responses to therapeutic 
intervention(s). Patients are monitored from the time they enter the study until some 
well-defined event. This event is often death, but may include other outcomes such as 
time to hospitalization, organ failure or rejection, or the next seizure. They could also 
be positive outcomes such as time to recovery, to discharge from the hospital, return 
to normal renal function, or cessation of symptoms.  

At first glance it would seem possible to compare two or more survival rates 
using previously discussed statistics such as the t-test or analysis of variance to 
compare the mean survival times. Unfortunately these methods may not work for two 
reasons. First, up to this point in the book, all the statistical procedures have involved 
“complete” observations. There were measurable outcomes for all the people or items 
associated with the data. With survival data we may not know the ultimate outcome 
for all the potential measures because the study may end before all subjects reach the 
well-defined event. The second reason is that the survival times usually do not follow 
a normal distribution and are positively skewed. Therefore they could be considered 
nonparametric tests (which will be covered in greater detail in the next chapter. 
Nonparametric alternatives to the t-test and ANOVA (such as the Mann-Whitney or 
Kruskal-Wallis tests) could be used if all the people in the study reach the well-
defined endpoint. Unfortunately, in many cases, study result will be evaluated before 
all the patients have died or reached the outcome of interest. Therefore, a new set of 
statistical tests is needed to evaluate data that measure the amount of time elapsing 
between the two events. These types of evaluations are referred to as survival 
statistics.  

Survival statistics, or survival analysis, is part of a larger group of tests referred 
to generically as “time-to-event” models. For production or industrial data, the end 
date might be defined as “time-to-failure” for a particular application. The examples 
used in this chapter will focus on clinical events and primarily “time-to-death” 
analysis. However, time-to-failure data could be handled with similar methods.  

Although these tests can be used to assess any well-defined event, by convention 
these are all referred to as survival statistics. Often survival data involves the creation 
of a graphic representation of the outcomes from the study, referred to as survival 
curves. This chapter will consider the two most commonly used methods for 
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evaluating survival curves: 1) actuarial (life) tables and 2) the product limit method 
(illustrated by the Kaplan-Meier procedure). The tests are similar and can be used not 
only to create survival curves, but estimated confidence limits about the curves and 
median survival times. 

Once survival curves are established, different conditions (e.g., treatment versus 
active control) can be compared using statistical tests. The log-rank and Cochran-
Mantel-Haenszel test statistics will be presented for this type of comparison.  
 
Censored Survival Data 
 

The amount of time that elapses between the point at which the subject enters the 
study and experiences the well-defined terminal event is the survival time. The 
collection of these survival times is referred to as the survival data and these data 
will be used to create survival curves and make decisions about the relative 
importance of the sample information and possible predictor variable(s). For survival 
data the outcomes are binary discrete results (e.g., survival or death, hospitalized or 
not hospitalized, pass or fail criteria) and usually measured as an estimate of time 
with specific types of therapeutic interventions or under different conditions. 
However, as mentioned in the introduction, in most cases not all the patients will 
begin the study at exactly the same point in time and some patients may not have 
reached the terminal event before the study is concluded. This is one of the primary 
reasons why we need special methods to analyze survival data.  

Using the definition above, the survival time cannot be calculated for patients 
who have not reached the terminal event by the closing date of the study. Also, for 
longer studies some patients may have been lost on follow-up and their health status 
may be unknown. These incomplete observations are called censored data, or 
censored survival times, and are divided into two types: 1) those alive at the end of 
the study (if death is the endpoint), these are labeled as “withdrawn alive”; and 2) 
those patients whose status could not be assessed, labeled as “lost-to-follow-up” (this 
may be due to actual loss or noncompliance). For example, Figure 20.1 illustrates the 
data for the survival time of eight patients in a clinical trial. The x-axis represents the 
dates when patients entered the trial and left the trial. Note that patients A, B, and D 
provide complete survival information. Unfortunately, patient C was lost-to-follow-up 
during the second year he was enrolled. Also, patients E and F, whose entry times are 
not simultaneous and were still in the study when data analysis was performed are 
said to be progressively censored. We know that they survived up to a certain time 
but we do not have any useful information about what happened after the time of data 
analysis. Patients C, E, and F represent censored data; their inclusion in the data 
analysis would artificially lower the average survival time because there is incomplete 
survival information. Even with censored data it is possible to analyze the survival 
times of these patients. Survival analysis is not restricted to only those who reach the 
definitive event, but incorporates data from all the patients enrolled in the study.  

Patients who die from causes other than the disease being studied (e.g., sudden 
coronary or automobile accident) might be handled as either censored data or deaths. 
Both approaches have merit, and the investigator should determine how such data will 
be handled prior to starting the study.  
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Figure 20.1 Illustration of various survival times. 

 
 
Life Table Analysis 
 

Life table analysis, also referred to as actuarial analysis, is a type of survival 
analysis involving time lines that are divided into equally spaced intervals and 
numbers of outcomes are observed for each interval. For example, intervals may be 
every 60 days, presented in 6-month intervals or as 1-year time periods. To illustrate 
the use of the various survival analyses, consider the fictional clinical trial where we 
followed 30 patients diagnosed with Stage IV melanoma over a 5-year period. 
Beginning on October 1, 2000, as the newly diagnosed patients (meeting very specific 
inclusion and exclusion criteria) entered the study, they were randomly assigned to 
the current gold standard for treatment (control) or the gold standard plus a new RAF 
kinase inhibitor (experimental). The study was terminated on September 30, 2005 and 
data was analyzed for the 5-year period (Table 20.1). Five patients represent censored 
data (patients 2, 19, 27, 29, and 30). For this and the following section we will ignore 
whether the patients were in the control or experimental group and first evaluate the 
congregate data. 

The actuarial method is simpler to calculate than the product limit method 
discussed in the next section and at one time was the predominant method used in 
survival analysis. In some of the older literature it is referred to as the Cutler-Ederer 
method (Cutler and Ederer, 1958). The actual time intervals chosen for the analysis 
are arbitrary, but should be selected so there are a reasonable number to evaluate and 
should not include a large number of censored observations in any one interval. Also, 
the interval widths should be equidistant. Since our example data includes 5 years, we 
will evaluate survivals using 6-month intervals in our actuarial table. First, the data 
for all 30 patients are rank ordered by length of survival (Table 20.2). Note at 
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Table 20.1 Survival Data for Patients Enrolled in Study with Stage IV Melanoma 

Patient 
Entered 
Study Ended Study 

Survival 
(months) Result* Group 

1 10/2/2000 5/28/2003 31.8 DOD Control 
2 10/7/2000 12/1/2001 13.8 LTF Control 
3 10/14/2000 12/12/2002 25.9 DOD Experimental 
4 11/15/2000 1/3/2004 37.6 DOD Control 
5 11/19/2000 9/19/2004 46.0 DOD Experimental 
6 12/12/2000 9/1/2002 20.6 DOD Control 
7 1/13/2001 4/26/2004 39.4 DOD Experimental 
8 2/1/2001 1/29/2004 35.9 DOD Experimental 
9 3/15/2001 9/23/2003 30.3 DOD Control 

10 3/21/2001 10/14/2004 42.8 DOD Experimental 
11 6/23/2001 7/16/2004 36.8 DOD Experimental 
12 7/14/2001 2/18/2003 19.2 DOD Experimental 
13 9/11/2001 6/2/2005 44.7 DOD Experimental 
14 11/11/2001 4/20/2002 5.3 DOD Control 
15 12/1/2001 10/17/2002 10.5 DOD Control 
16 3/4/2002 8/15/2004 29.4 DOD Control 
17 3/21/2002 4/15/2005 36.8 DOD Control 
18 4/30/2002 9/15/2005 40.5 DOD Experimental 
19 6/11/2002 9/30/2005 39.7 WA Experimental 
20 8/14/2002 10/23/2002 2.3 DOD Control 
21 9/21/2002 3/4/2005 29.4 DOD Control 
22 12/6/2002 7/2/2003 6.8 DOD Control 
23 3/14/2003 9/15/2005 30.1 DOD Experimental 
24 3/18/2003 8/2/2005 28.5 DOD Experimental 
25 5/11/2003 4/17/2005 23.2 DOD Control 
26 5/28/2003 7/26/2004 14.0 DOD Experimental 
27 7/13/2003 9/30/2005 26.6 WA Control 
28 7/15/2003 10/16/2004 15.1 DOD Experimental 
29 8/1/2003 9/30/2005 26.0 WA Control 
30 8/23/2003 9/30/2005 25.3 WA Experimental 

* Study results: DOD = dead of disease; WA = withdrawn alive; LTF = lost-to-follow-up. 
 

 
this point the actual enrollment dates become irrelevant and only the length of time to 
the event is considered for analysis. Next a table is created indicating the results for 
each interval in the study (Table 20.3). In this table ni is the number of patients in the 
study at the beginning of the interval, di is the number of patients who reached the 
event during the interval (in this example death was the terminal event) and wi is the 
number of patients who were “withdrawn” from the study during the interval (either 
through lost to follow-up or alive at the point of data analysis). The fifth column, ni′, 
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Table 20.2 Congregate Results for Survival Example 

Subject 
Time 

(months) Censored Subject 
Time 

(months) Censored 

20 2.3 N 16 29.4 N 
14 5.3 N 21 29.4 N 
22 6.8 N 23 30.1 N 
15 10.5 N 9 30.3 N 
2 13.8 Y 1 31.8 N 

26 14.0 N 8 35.9 N 
28 15.1 N 11 36.8 N 
12 19.2 N 17 36.8 N 
6 20.6 N 4 37.6 N 

25 23.2 N 7 39.4 N 
30 25.3 Y 19 39.7 Y 
3 25.9 N 18 40.5 N 

29 26.0 Y 10 42.8 N 
27 26.6 Y 13 44.7 N 
24 28.5 N 5 46.0 N 

 

Table 20.3 Life Table for Congregate Results for Melanoma Patients 

Months ni di wi ni' qi pi iŜ  SE ( iŜ ) 

0.0 - 6.0 30 2 0 30 0.0667 0.9333 0.9333 0.0455 
6.1 - 12.0 28 2 0 28 0.0714 0.9286 0.8667 0.0621 

12.1 - 18.0 26 2 1 25.5 0.0784 0.9216 0.7987 0.0735 
18.1 - 24.0 23 3 0 23 0.1304 0.8696 0.6945 0.0850 
24.1 - 30.0 20 4 3 18.5 0.2162 0.7838 0.5443 0.0941 
30.1 - 36.0 13 4 0 13 0.3077 0.6923 0.3769 0.0954 
36.1 - 42.0 9 5 1 8.5 0.5882 0.4118 0.1552 0.0748 

>42.0 3 3 0 3 1.0000 0.0000 … … 

 
 

represents the number of observations correcting for the number of withdrawals 
during the interval: 
 

2
w

n'n i
ii −=                                         Eq. 20.1 

 
Using the information in the first five columns of Table 20.3 the proportion 
terminating in any ith interval is calculated using the following formula: 
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d

q
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i
i =                                              Eq. 20.2 
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and the proportion surviving would be the complement of those terminating the study 
during any given interval: 

ii q1p −=                                           Eq. 20.3 
 
These results are expressed in the sixth and seventh columns of Table 20.3. The 
actuarial method evaluates the number of patients at the beginning of the interval but 
not at the end. It assumes that patients are randomly removed from the study 
throughout any one interval; therefore, withdrawal is measured halfway through the 
time represented by the interval. Patients ending the study are given credit for 
surviving half of the interval. Therefore, in the error term, the denominator (Eq. 20.2) 
is reduced by half of the number of patients who withdrew during the period. If the ith 
interval is conditional on a previous event (ith − 1), the probability of their joint 
occurrence is determined by multiplying the probabilities of the two conditional 
events. Thus, the cumulative probability of surviving interval i along with all the 
previous intervals is calculated by multiplying ith pi, and all previous pis: 
 

12i1iii p...pppŜ ⋅⋅⋅⋅= −−                                 Eq. 20.4 
 
which can be also written as: 
 

)p(Ŝ ii Π=                                         Eq. 20.5 
 

 
where Π is the symbol for product, similar to Σ for sum. The eighth column 
represents the cumulative proportions of survival ( iŜ ) for our sample data, which is 
the called the sample survival function, which is our best estimate of the population 
survival function (Si). The survival function, (synonyms are survivor function or 
survivorship function) is our best estimate of the probability of surviving past a given 
time point: 
 

)tT(pS ii >=                                          Eq. 20.6 
 

where T is the time of death and ti is the time under consideration. In other words, the 
survival function is the probability that the death or other well-defined event will 
occur later than some specific time interval. 
 An important point is that the event of interest can only happen once for each 
patient or object (in the case of time-to-failure studies). If an event can occur multiple 
times, then the recurring event model (or repeated event model) can be employed 
and results are often relevant to system reliability. These measurements involve a 
reliability function and fall beyond the scope of this book. 

 
Survival Curve 
 

Usually results are presented as a survival curve, rather than as a table (e.g., 
Table 20.3). The survival function (Si) is the parameter for the population(s) we are 
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Figure 20.2 Hypothetical survival curve.  

 
 

studying. Figure 20.2 illustrates a hypothetical survival function where at time zero (ti 
= 0) 100% of the patients are alive (pi = 1.00). The proportion of patients surviving 
will gradually decrease over time and at some endpoint none of the patients will be 
alive (pi = 0). In survival analysis we estimate this curve based on sample data. The 
curve for the sample data is created plotting the cumulative proportions of survival on 
the y-axis and time on the x-axis (Figure 20.3). Instead of a smooth curve represented 
by population data, the curve for sample data is a series of steps downward at the end 
of each interval using our best estimate the sample survival functions ( iŜ ). Once 
again, we begin a ti = 0 with pi = 1.00 (all patients are alive or have not yet reached 
some other well-defined event), and the results from our example are illustrated in 
Figure 20.3. The beginning of the y-axis, time zero, does not refer to a particular 
month or year, it is the time at which each subject was entered into the study.  

A common measure of survival is the median survival time, which is the point 
in time where 50% of the patients reach the well-defined endpoint in the study. Using 
the sample survival curve, it is relatively simple to determine the median survival 
time visually by drawing a horizontal line at the 0.50 point on the y-axis. Where it 
meets the survival curve, moving vertically to the x-axis defines the median survival 
time. This is illustrated in our hypothetical model (Figure 20.2). In our example 
problem the horizontal line in Figure 20.3 meets the curve at 36 months, which is the 
median survival time for the congregate data. If the p = 0.50 line intercepts at a 
horizontal line, the average of the two extremes of that horizontal line is defined as 
the median survival time. It is possible to have no median survival if the survival 
curve fails to reach 0.50 by the end of the study. 
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Figure 20.3 Actuarial life table curve with median line. 

 
 

Often these curves include dotted or dashed lines on either side of the survival 
curve that represent confidence bands. Normally these confidence intervals will 
become wider as time progresses, illustrating a decreased confidence in the estimate 
due to decreasing sample sizes. Applying the survival function defined above and 
data presented in Table 20.3, it is possible to calculate an estimated standard error 
term for each interval: 

 

=
)p('n

q
Ŝ)Ŝ(SE

ii

i
ii                                  Eq. 20.7 

 
For example the standard error for the 30.1- and 36.0-month interval would be: 
 

)6923.0(13
3077.0...

)9286.0(28
0714.0

)9333.0(30
0667.03769.0)Ŝ(SE i ++=  

 
0954.0)2532.0(3769.0)Ŝ(SE i ==  

 
The results for all the intervals are presented in the last column of Table 20.3. This 
formula assumes a reasonably large sample size and only a relatively small number of 
censored observations. It is assumed that the proportion of survival at any interval is 
approximately normally distributed. Using this error term from Eq. 20.7 and a desired 
level of confidence represented by the z1-α/2 reliability coefficient (e.g., 1.96 for 95% 
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confidence) it is possible to define the confidence bands: 
 

)Ŝ(SEzŜS i2/1ii ⋅±= −α                                Eq. 20.8 
 

Continuing with the same example, the 95% confidence interval for an interval of 
30.1 to 36.0 months would be: 

 
1870.03769.0)0954.0(96.13769.0Si ±=±=  

 
5639.0S1899.0 i <<  

 
With 95% confidence the true pi for surviving 30.1 to 36.0 months, based on our 
sample on only 30 patients is somewhere between a probability of 0.1899 to 0.5639. 
The resulting confidence interval is very large because of the small sample size for 
patients still living after 36 months of therapy. Because the pi-value cannot be greater 
than 1.0 or less than zero, some intervals may need to be truncated. For example, for 
the first interval (up to 6.0 months) the upper confidence bond would be greater than 
1.0. 
 

0893.09333.0)0455.0(96.19333.0Si ±=±=  
 

0226.1S8440.0 i <<  
 
 Therefore, the ceiling for the probability would be truncated to 1.000.  

 
000.1S8440.0 i <<  

 
Based on the study results, patients would have a 0.8440 or greater probability of 
surviving at least 6 months. The results for all the confidence intervals are listed in 
Table 20.4. These are graphically represented in Figure 20.4.  
 

Table 20.4 Confidence Intervals for Life Table for Melanoma Patients 

Months Lower Band iŜ  Upper Band Band Width 

0.0 to 6.0 0.8440 0.9333 1.0000 … 
6.1 to 12.0 0.7451 0.8667 0.9883 0.2433 

12.1 to 18.0 0.6547 0.7987 0.9427 0.2881 
18.1 to 24.0 0.5279 0.6945 0.8611 0.3333 
24.1 to 30.0 0.3598 0.5443 0.7288 0.3690 
30.1 to 36.0 0.1899 0.3769 0.5639 0.3740 
36.1 to 42.0 0.0087 0.1552 0.3017 0.2931 

>42.0 … … … … 
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Figure 20.4 Actuarial curve with 95% confidence bands. 

 
 

The 95% confidence bands can be used to estimate the median survival time by 
locating where the 0.50 line crosses the two vertical bands around the survival curve. 
For our example in Figure 20.4, the 95% confidence intervals for the median would 
be 24 and 48 months.  

For the various survival statistics (actuarial or product-limit methods) it is 
possible to calculate an estimated population median, mean, standard error term and 
confidence interval for all the data in the study. But these calculations are difficult to 
do by hand and there are a variety of approaches, some involving log transformation 
of the data. The most commonly used approach has been proposed by Brookmeyer 
and Crowley (1982). 

There are two major assumptions for using the actuarial time. First, that an 
individual withdrawal during a specific interval, on the average, occurs at the 
midpoint of the interval. This is a problem with the censored patients in that we do 
not know their actual length of survival either within the interval or after that interval. 
The advantage of using the Kaplan-Meier method (discussed in the following section) 
is that it overcomes the problem of an averaged midpoint. The second assumption is 
that even though the survival in a specific interval (i) depends on survival in all 
previous periods, the probability of survival at one specific interval is independent of 
the probability of survival at any of the other periods.  
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Kaplan-Meier Procedure 
 

As will be discussed below, this procedure involves successive multiplications of 
individual estimated probabilities (the survival functions iŜ ) and for this reason the 
Kaplan-Meier procedure is sometimes referred to as the product-limit method of 
estimating survival probabilities. Similar to the actuarial table curve, the Kaplan-
Meier survival curve plots the proportion of survival as a function of time. However, 
unlike the previous method, with the product limit method each death is a downward 
step in the curve, rather than considering the number of deaths within a specific time 
interval. Each time one patient dies, there is a subsequent decrease in the pi and iŜ .  

Because the Kaplan-Meier procedure is based on the ranking of all the individual 
survival times, it may be mathematically tedious to apply to large data sets (greater 
than 100 patients). However, with the aid of computer programs it would be the 
preferred method for determining survival curves and subsequent statistics. Because 
withdrawals or censored patients are ignored, the procedure involves fewer 
calculations than the actuarial method. These calculations involve determining the 
proportions of patients in a sample who survive for various lengths of time (pis). 
However, at times when a patient is censored (withdrawn), the survival curve does 
not step down since no one has died. Step- downs in the curve only occur only with a 
death and the survival curve changes precisely at the time points when patients die. 
With the Kaplan-Meier method, censored observations have not been excluded from 
the analysis. They are used to determine the number of patients at risk for each time 
of relapse. If censored withdrawals were excluded from the survival analysis, the 
estimate of the survival probabilities (pi) for the remaining observations would be 
different. 

The first step in the Kaplan-Meier procedure is to list the times-to-event in rank 
order. For our previous example problem on melanoma patients, data has already 
been ranked and previously presented in Table 20.2. A new table is created to 
calculate various probabilities, similar to the actuarial table. In this table (Table 20.5) 
the first column shows the times-to-event in rank order. The second column is the 
number of patients in the remaining previous period (ni-1) who are beginning the new 
period (for the first period this would be the number of patients entering the study). 
The third column is the number of patients censored during the interval (wi) and the 
fourth represents the number of patients at risk (ni), which is the number of patients 
beginning the period less the number censored.  
 

i1ii w'nn −= −                                         Eq. 20.9 
 
Note again, that the interval ends only with a death or other well-defined endpoint. 
The fifth column shows patients-who-died-events during the period (usually one, 
unless more died at the exact same duration of time in the study). The sixth column is 
the number of patients remaining at the end of the period: 
 

iii dn'n −=                                        Eq. 20.10 
 



Chapter 20 532

Table 20.5 Determination of Cumulative Survival for Kaplan-Meier Example 

Event 
(Months) ni-1′ wi ni di ni' pi iŜ  

2.3 30 0 30 1 29 0.9667 0.9667 
5.3 29 0 29 1 28 0.9655 0.9333 
6.8 28 0 28 1 27 0.9643 0.9000 

10.5 27 0 27 1 26 0.9630 0.8667 
14.0 26 1 25 1 24 0.9600 0.8320 
15.1 24 0 24 1 23 0.9583 0.7973 
19.2 23 0 23 1 22 0.9565 0.7627 
20.6 22 0 22 1 21 0.9545 0.7280 
23.2 21 0 21 1 20 0.9524 0.6933 
25.9 20 1 19 1 18 0.9474 0.6568 
28.5 18 2 16 1 15 0.9375 0.6158 
29.4 15 0 15 2 13 0.8667 0.5337 
30.1 13 0 13 1 12 0.9231 0.4926 
30.3 12 0 12 1 11 0.9167 0.4516 
31.8 11 0 11 1 10 0.9091 0.4105 
35.9 10 0 10 1 9 0.9000 0.3695 
36.8 9 0 9 2 7 0.7778 0.2874 
37.6 7 0 7 1 6 0.8571 0.2463 
39.4 6 0 6 1 5 0.8333 0.2053 
40.5 5 1 4 1 3 0.7500 0.1539 
42.8 3 0 3 1 2 0.6667 0.1026 
44.7 2 0 2 1 1 0.5000 0.0513 
46.0 1 0 1 1 0 0.0000 … 

 
 
Once again, di is the number of patients who reached the endpoint during the interval 
and are no longer in the study. The seventh column is the probability of survival at the 
end of the period with the number of patients at risk divided by the number surviving 
at the end of the period: 
 
 

i

i
i n

'n
p =                                          Eq. 20.11 

 
The eighth column is the cumulative survival determined each time a patient dies (Eq. 
20.4 or Eq. 20.5). Note the ni′ used in the Kaplan-Meier method automatically 
accounts for censored patients by reducing the numerator. The survival curve is then 
created similar to the actuarial curve, plotting the cumulative probability on the y-axis 
and the time on the x-axis. Data from Table 20.5 is presented in Figure 20.5. Note that 
unlike the actuarial curve, the widths of the periods will vary and are dependent on 
the survival times of the individual patients in the study. Also, note that in both curves 
presented in Figures 20.3 and 20.5, the curve does not reach the value pi = 0. Some 
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Figure 20.5 Kaplan-Meier curve for patients with melanoma. 

 
 
textbooks and computer software packages may present a vertical line at the end of 
the survival curve extending to zero at the point of the last observation. This approach 
would be appropriate if there were no censored data. However, when there is 
censored data there are still individuals or objects that have not reached the well-
defined endpoint; therefore, a better representation of the data to end with is a 
horizontal line at the smallest value greater than zero. 

The standard error calculation for the cumulative survival estimate iŜ  is similar 
to the error term for the actuarial: 
 

 −
=

)dn(n
d

Ŝ)Ŝ(SE
iii

i
ii                              Eq. 20.12 

 
Calculations for the standard error terms for the various periods for our example 

problem on Stage IV melanoma patients are presented in Table 20.6. Similar to the 
actuarial life table, to extrapolate from our sample information to a population, a 
survival curve is more informative when it includes confidence intervals. The 
standard error term in the last column of Table 20.6 can be used in Eq. 20.8 to 
determine the bands for these intervals, the result of which are presented in Table 
20.7. Once again, like the actuarial method, calculations may create bands that exceed 
1.00 or are less than zero. The bands may need to be adjusted to 1.00 or zero to reflect 
the possible limits of statistical probability. If there are censored patients, the right 
side of a survival curve represents fewer patients than the left side, and the confidence 
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Table 20.6 Determination of Standard Errors for Kaplan-Meier Example 

Event 
(Months) ni di 

 
di/ni(ni-di) 

 
di/ni(ni-di) 

 

iŜ  

 

SE( iŜ ) 

2.3 30 1 0.0011 0.0011 0.9667 0.0328 
5.3 29 1 0.0012 0.0024 0.9333 0.0455 
6.8 28 1 0.0013 0.0037 0.9000 0.0548 

10.5 27 1 0.0014 0.0051 0.8667 0.0621 
14.0 25 1 0.0017 0.0068 0.8320 0.0686 
15.1 24 1 0.0018 0.0086 0.7973 0.0740 
19.2 23 1 0.0020 0.0106 0.7627 0.0785 
20.6 22 1 0.0022 0.0127 0.7280 0.0822 
23.2 21 1 0.0024 0.0151 0.6933 0.0853 
25.9 19 1 0.0029 0.0181 0.6568 0.0883 
28.5 16 1 0.0042 0.0222 0.6158 0.0918 
29.4 15 2 0.0103 0.0325 0.5337 0.0962 
30.1 13 1 0.0064 0.0389 0.4926 0.0971 
30.3 12 1 0.0076 0.0465 0.4516 0.0973 
31.8 11 1 0.0091 0.0556 0.4105 0.0968 
35.9 10 1 0.0111 0.0667 0.3695 0.0954 
36.8 9 2 0.0317 0.0984 0.2874 0.0901 
37.6 7 1 0.0238 0.1222 0.2463 0.0861 
39.4 6 1 0.0333 0.1556 0.2053 0.0810 
40.5 4 1 0.0833 0.2389 0.1539 0.0752 
42.8 3 1 0.1667 0.4056 0.1026 0.0654 
44.7 2 1 0.5000 0.9056 0.0513 0.0488 
46.0 1 1 0.0011 0.0011 … … 

 
 
interval will become wider as time progresses and eventually collapse at zero 
survival. The confidence bands for our example problem using the Kalpan-Meier 
procedure are presented in Table 20.7.  

The median survival time can be determined by locating the time at which the 
cumulative survival proportion is equal to 0.50. Like the actuarial table curve, this can 
be visually estimated on a time plot by identifying the corresponding value on the x-
axis for 0.50 on the y-axis. If this point occurs at a vertical line on the plot, the 
extreme values at the ends of the vertical line are averaged. 
 
Visual Comparison of Two Survival Curves 
 

In most research situations, the investigator will be interested in comparing the 
survival curves for two or more groups of patients (e.g., a control versus experimental 
group). Visually comparing the two curves is the simplest method. In our original 
example of Stage IV melanoma, the patients received two therapies: 1) the gold 
standard (control) and 2) the gold standard plus new RAF kinase inhibitor 
(experimental). To compare these two therapies, a Kaplan-Meier table for each 
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Table 20.7 Confidence Bands for Kaplan-Meier Table for Melanoma Patients 

Months Lower Band iŜ  Upper Band 

2.3 0.9024 0.9667 1.0000 
5.3 0.8441 0.9333 1.0000 
6.8 0.7926 0.9000 1.0000 

10.5 0.7450 0.8667 0.9883 
14.0 0.6976 0.8320 0.9664 
15.1 0.6524 0.7973 0.9423 
19.2 0.6089 0.7627 0.9164 
20.6 0.5669 0.7280 0.8891 
23.2 0.5262 0.6933 0.8605 
25.9 0.4839 0.6568 0.8298 
28.5 0.4359 0.6158 0.7957 
29.4 0.3452 0.5337 0.7222 
30.1 0.3022 0.4926 0.6830 
30.3 0.2608 0.4516 0.6424 
31.8 0.2209 0.4105 0.6002 
35.9 0.1825 0.3695 0.5564 
36.8 0.1107 0.2874 0.4641 
37.6 0.0775 0.2463 0.4151 
39.4 0.0466 0.2053 0.3639 
40.5 0.0065 0.1539 0.3014 
42.8 0.0000 0.1026 0.2307 
44.7 0.0000 0.0513 0.1470 
46.0 … … … 

 
 

therapy is prepared (Table 20.8) and plotted (Figure 20.6). 
Visually we can see a difference between the two curves, with the experimental 

appearing to represent a better survival curve. If a line were drawn at pi = 0.50, it 
would indicate that the median survival for the experimental groups was 36.8 months; 
whereas, the median for the control group was only 29.4 months. Thus, one quick 
comparison is to evaluate the median survival times. One then must question whether 
these differences are due simply to chance or whether the difference between the two 
groups is statistically significant. To answer this question we will need to employ 
hypothesis testing. In this example, the null hypotheses would be that there is no 
difference between the two survival functions: 

 
H0:  Si (control) = Si (experimental) 
H1:  Si (control) ≠ Si (experimental) 

 
In testing the hypotheses we are interested in three pieces of information about each 
patient: 1) which treatment they received (experimental or control); 2) the length of 
time the patient was enrolled in the study; and 3) if the experience is the defined event 
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Table 20.8 Cumulative Survival for Experimental and Control Groups 

Event 
(Months) ni-1′ wi ni di ni' pi iŜ  SE( iŜ ) 

Results for the Experimental Group: 

0-14.0 15 0 15 1 14 0.9333 0.9333 0.0644 
14.1-15.1 14 0 14 1 13 0.9286 0.8667 0.0642 
15.2-19.2 13 0 13 1 12 0.9231 0.8000 0.0641 
19.3-25.9 12 1 11 1 10 0.9091 0.7273 0.0693 
26.0-28.5 10 0 10 1 9 0.9000 0.6545 0.0690 
28.6-30.1 9 0 9 1 8 0.8889 0.5818 0.0686 
30.2-35.9 8 0 8 1 7 0.8750 0.5091 0.0680 
36.0-36.8 7 0 7 1 6 0.8571 0.4364 0.0673 
37.9-39.4 6 0 6 1 5 0.8333 0.3636 0.0664 
39.5-40.5 5 1 4 1 3 0.7500 0.2727 0.0787 
40.6-42.8 3 0 3 1 2 0.6667 0.1818 0.0742 
42.9-44.7 2 0 2 1 1 0.5000 0.0909 0.0643 
44.8-46.0 1 0 1 1 0 0.0000 … … 

Results for the Control Group: 

0-2.3 15 0 15 1 14 0.9333 0.9333 0.0644 
2.4-5.3 14 0 14 1 13 0.9286 0.8667 0.0878 
5.4-6.8 13 0 13 1 12 0.9231 0.8000 0.1033 

6.9-10.5 12 0 12 1 11 0.9167 0.7333 0.1142 
10.6-20.6 11 1 10 1 9 0.9000 0.6600 0.1241 
20.7-23.2 9 0 9 1 8 0.8889 0.5867 0.1302 
23.3-29.4 8 2 6 2 4 0.6667 0.3911 0.1424 
29.5-30.3 4 0 4 1 3 0.7500 0.2933 0.1363 
30.4-31.8 3 0 3 1 2 0.6667 0.1956 0.1210 
31.9-36.8 2 0 2 1 1 0.5000 0.0978 0.0919 
36.9-37.6 1 0 1 1 0 0.0000 … … 

 
 
of interest (in this case death) or had been censored from the study (either lost to 
follow-up or alive at the end of the study). 
 
Tests to Compare Two Levels of an Independent Variable 
 

One possible method for testing the hypotheses for comparing two survival 
curves is called the log-rank test. The log-rank test provides an objective comparison 
of the two survival curves to determine if they are statistically significantly different. 
We test the null hypothesis that there is no difference in survival experience between 
the two populations. The alternative hypothesis is that the difference between the two 
populations is significant and not due to chance variation.  
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Figure 20.6 Kaplan-Meier curve for experimental and control groups. 

 
 

H0:  Survival (level 1) = Survival (level 2) 
H1:  Survival (level 1) ≠ Survival (level 2) 

 
Unfortunately, as seen in previous chapters, synonyms or multiple names for the same 
test are commonplace in statistics. This is true also with survival statistics and the log-
rank test has been given numerous names in literature, including the Mantel log-rank 
test, the Cox-Mantel test, the Mantel-Cox test, Cox-Mantel log-rank test, the 
Cochran-Mantel-Haenszel test, or the CMH test. Technically the log-rank test and 
CMH-type tests are different but produce equivalent results. One is interpretable 
based on the chi square distribution and one by the standardized normal distribution. 
Both methods will produce approximately the same p-value. In this section we will 
test the null hypothesis using both methods. CMH test will be discussed first because 
we are already familiar with this test. 
 In order to compare two survival curves it is assumed that: 1) patients are 
randomly assigned to the different groups; 2) the times are independent measures; 3) 
there are consistent criteria throughout the time of the study; 4) the baseline survival 
rate is not changing over time (inclusion and exclusion criteria remain constant); and 
5) on the average, survival of censored patients would be the same as patients 
reaching the endpoint of the study. At each time interval (actuarial or product-limit 
method) there is a comparison of the number of observed deaths for each group with 
the expected number of deaths if the null hypothesis was true. 

In Chapter 16 we used the Mantel-Haenszel test to evaluate a possible third 
confounding variable for a chi square test of independence. To avoid confusion we 
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      Results at ti  

  Group 1 Group 2  

Number of deaths ai bi ai + bi 

Number of patients still alive ci di ci + di 

 “At risk” at the beginning ai + ci bi + di  ni 
     

Figure 20.7  Contingency table for each stratum for the CMH test. 
 
 

will discuss the calculations for the CMH test and refer to it as such. However, the 
calculations are identical to the Mantel-Haenszel test. The calculations of the 
Cochran-Mantel-Haenszel test are cumbersome and use the same equations as the 
Mantel-Haenszel test (Eq. 16.16 to Eq. 16.19). For readability, we will renumber the 
equations and include them in this paragraph. First, the survival times until death for 
both groups are combined (omitting censored times) and each time constitutes a 
stratum of our matrix. Each stratum represents time ti and we construct a 2 × 2 
contingency table for each point in time (Figure 20.7). In each table the first row 
contains the number of observed deaths and the second row contains the number of 
patients still living. The columns represent the results for the two groups. The CMH 
formula is: 

 

)n1)(n(
)d+(b)c+(a)d+(c)b+(a

n
cb - da

 = 

2
ii

iiii

i

iiii
2

2
CMH

−












χ                      Eq. 20.13 

 
To simplify this equation, for each stratum compute the expected frequency for the 
upper left-hand cell (deaths in Group 1): 
 

n
)c+a)(b+a(

 = e
i

iiii
i                                       Eq. 20.14 

 
Then for each stratum the vi intermediate is computed: 
 

1)n(n

)d+b)(c+a)(d+c)(b+a(
 = v

i
2
i

iiiiiiii
i

−
                         Eq. 20.15 

 
Finally, the Cochran-Mantel-Haenszel statistic is calculated by summing the results 
for each interval and creating a chi square statistic: 
 

 



Survival Statistics 539

 Interval ending 
2.3 months 

  Interval ending 
14.0 months 

 

 Exper. Control   Exper. Control  
Deaths 0 1 1  1 0 1 
Remaining 15 14 29  14 10 24 
At risk 15 15 30  15 10 25 
        

Figure 20.8 Example of two strata for example CMH test. 

 

v
])ea([

 = 
i

2
ii2

CMH 
−

χ                                      Eq. 20.16 

 
The results are compared to the chi square critical value (Table B15) with one degree 
of freedom (χ2=3.84). If the calculated Cochran-Mantel-Haenszel statistic exceeds 
3.84 there is a significant difference between the two curves. If 3.84 or less, one fails 
to identify a difference.  

The test could be used for comparing two curves using either the actuarial or 
product-limit methods. For our previous example of patients with Stage IV 
melanoma, we will use the Kaplan-Meier results. Each of the possible 23 intervals 
identified in the combined curves (Table 20.8 and Figure 20.6) are evaluated to 
determine their respective ei and vi values. For example, at the end of the first time 
period there would still be 29 patients alive, 15 in the experiment and 14 in the 
control group. These results appear on the left side of Figure 20.8. By the end of the 
fifth interval, 24 patients are still alive, 10 in the control group and 14 in the 
experimental group. The results for all 23 intervals are presented in Table 20.9. As 
mentioned, censored data is not included in the calculations, with the exception of the 
appropriate reduction in the ni values (as seen by the drops in the total number of 
patients at risk in intervals 5, 10, 11, and 19). Using the sums for Table 20.9, the 
Cochran-Mantel-Haenszel statistic is: 
 

( ) 393.7
323.7
677.5

v
])ea([

 = 
2

i

2
ii2

CMH =−=


−
χ  

 
Since the results are greater than 3.84, we reject the null hypothesis and show that the 
two curves are statistically different. The exact p-value is 0.0065 and can be determined 
using Excel (CHIDIST with Excel 2003; CHISQ.DIST.RT with Excel 2010). 

Initial preparation for the log-rank test is similar to the CMH test. The first step is 
to calculate the expected value (ei) for cell ai in a 2 × 2 contingency table for each 
point on the Kaplan-Meier or actuarial curve (Eq. 20.14). These have already been 
calculated for our example problem and presented in the eighth column of Table 20.9. 
Next the sum of the differences between the observed and expected results is  
calculated for ai: 
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 −= )ea(U iiL                                      Eq. 20.17 
Table 20.9 Determination of Strata and CMH Test for Example Data 

Event 
(Months) ai bi ci di ni ei ai − ei vi ei(bi) 

2.3 0 1 15 14 30 0.500 0.500 0.250 0.500 
5.3 0 1 15 13 29 0.517 0.483 0.250 0.483 
6.8 0 1 15 12 28 0.536 0.464 0.249 0.464 

10.5 0 1 15 11 27 0.556 0.444 0.247 0.444 
14.0 1 0 14 10 25 0.600 −0.600 0.240 0.400 
15.1 1 0 13 10 24 0.583 −0.583 0.243 0.417 
19.2 1 0 12 10 23 0.565 −0.565 0.246 0.435 
20.6 0 1 12 9 22 0.545 0.455 0.248 0.455 
23.2 0 1 12 8 21 0.571 0.429 0.245 0.429 
25.9 1 0 10 8 19 0.579 −0.579 0.244 0.421 
28.5 1 0 9 6 16 0.625 −0.625 0.234 0.375 
29.4 0 2 9 4 15 1.200 0.800 0.446 0.800 
30.1 1 0 8 4 13 0.692 −0.692 0.213 0.308 
30.3 0 1 8 3 12 0.667 0.333 0.222 0.333 
31.8 0 1 8 2 11 0.727 0.273 0.198 0.273 
35.9 1 0 7 2 10 0.800 −0.800 0.160 0.200 
36.8 1 1 6 1 9 1.556 −0.556 0.302 0.444 
37.6 0 1 6 0 7 0.857 0.143 0.122 0.143 
39.4 1 0 5 0 6 1.000 −1.000 0.000 0.000 
40.5 1 0 3 0 4 1.000 −1.000 0.000 0.000 
42.8 1 0 2 0 3 1.000 −1.000 0.000 0.000 
44.7 1 0 1 0 2 1.000 −1.000 0.000 0.000 
46.0 1 0 0 0 1 1.000 −1.000 0.000 0.000 
Sums 13 12    17.677 −5.677 4.359 7.323 

 
 
For our example problem this has already been reported by the summation reported at 
the bottom of the eighth column in Table 20.9. If the UL is relatively small there is 
probably no difference between the two levels of the independent variable. If the UL is 
large the null hypothesis will be rejected and the groups being compared will be 
deemed statistically different. But how large should the UL be to determine 
significance? To answer this question we need some measure of data variability. This 
is provided by calculating an error term. This measurement is determined using the 
following equation and assumes that the sampling distribution is approximately 
normal: 
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With an estimate of the differences between the observed and expected values and a 
measure of variability, we can calculate a ratio between the two measures: 
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z =                                            Eq. 20.19 

 
The resultant value can be interpreted using the standardized normal distribution. As 
discussed in Chapter 16, since the data is based on a discrete sampling distribution 
and evaluating the results is based on a continuous distribution, we may wish to be 
more conservative in our decision making process. Once again we use a Yates’ 
correction to make this adjustment: 
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With adjustment in the numerator of the equation, the zYates will always be smaller and 
more difficult to reject the null hypothesis. 
 Using this approach, let us once again look at the sample problem of the Stage IV 
melanoma. From Table 20.9 we know that 
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and the ratio is 
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A z-value of -2.719 represents p = 0.0065 [calculated using Excel code (1 −  
NORMSDIST(ABS(−2.719)))*2 or NORM.S.DIST with Excel 2010]. This p-value 
is exactly the same as the p-value from our earlier calculation of the CMH tests. 
 If we wish to apply Yates’ correction the result would be 
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The p-value associated with this z-value is 0.0125. Thus, with the CMH test, the log 
rank test, and Yates’ correction on the log rank test we would reject the hypothesis 
and conclude there is a significant difference. The addition of the RAF kinase 
inhibitor to the regimen produced a significantly longer survival time. 

Both the log rank and CMH tests involve a series of 2 × 2 contingency tables. 
From this information an odds ratio for survival could be calculated for each 
contingency table during the times studied. It is recommended that the CMH test 
statistic be used only when the odds ratios are similar across the various 2 × 2 tables 
or intervals for the survival distributions (Frothofer, p. 341). Recall the odds ratio 
equals experimental event odds divided by the control event odds (Chapter 18). If the 
plots of the two survival curves cross one another, then the odds ratios will not be 
similar across all the tables. The estimate of a pooled odds ratio can be used for 
descriptive purposes:  
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For the example we have been using throughout this chapter and presented in Table 
20.10, the odds ratio would be: 
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If one is interested in comparing more than two survival curves, multiple pair-wise 
comparisons can be performed. Also, since survival data does not follow any 
particular probability distribution it is appropriate to consider this test a 
nonparametric procedure (see Chapter 21).  
 
Hazard Ratios 
 

Another way to assess survival is to evaluate the hazard risk to the patients in a 
study. The hazard function is an estimate of the probability that a subject who has 
survived to the beginning of a specific study interval (actuarial or product-limit 
methods) will experience the definable event during that particular period. It is 
calculated as the negative natural log of the survival function: 
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Table 20.10 Determination of Strata and Log-Rank Test for Example Data 

Interval ai bi ci di ni (ai ⋅ di)/ni (bi ⋅ ci)/ni 

0-2.3 1 0 14 15 30 0.5000 0.0000 
2.4-5.3 1 0 13 15 29 0.5172 0.0000 
5.4-6.8 1 0 12 15 28 0.5357 0.0000 
6.9-10.5 1 0 11 15 27 0.5556 0.0000 
10.6-14.0 0 1 10 14 25 0.0000 0.4000 
14.1-15.1 0 1 10 13 24 0.0000 0.4167 
15.2-19.2 0 1 10 12 23 0.0000 0.4348 
19.3-20.6 1 0 9 12 22 0.5455 0.0000 
20.7-23.2 1 0 8 12 21 0.5714 0.0000 
23.3-25.9 0 1 8 10 19 0.0000 0.4211 
25.6-28.5 0 1 6 9 16 0.0000 0.3750 
29.2-29.4 2 0 4 9 15 1.2000 0.0000 
29.5-30.1 0 1 4 8 13 0.0000 0.3077 
30.2-30.3 1 0 3 8 12 0.6667 0.0000 
30.4-31.8 1 0 2 8 11 0.7273 0.0000 
31.9-35.9 0 1 2 7 10 0.0000 0.2000 
36.3-36.8 1 1 1 6 9 0.6667 0.1111 
36.9-37.6 1 0 0 6 7 0.8571 0.0000 
37.7-39.4 0 1 0 5 6 0.0000 0.0000 
39.5-40.5 0 1 0 3 4 0.0000 0.0000 
40.6-42.8 0 1 0 2 3 0.0000 0.0000 
42.9-44.7 0 1 0 1 2 0.0000 0.0000 
44.8-46.0 0 1 0 0 1 0.0000 0.0000 

Σ = 7.3431 2.6663 
 
 
The hazard function is also referred to as the hazard rate, the instantaneous failure 
rate, the force of mortality, or the life-table mortality rate. In the case where death 
is the endpoint, the hazard rate is the proportion of patients dying in an interval per 
unit of time. The hazard function must be greater than zero and can be any positive 
value. An error term and confidence intervals can be calculated using the following 
equations: 
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The hazard functions and error terms for all the intervals in our Kaplan-Meier 
example are presented in Table 20.11. 
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Table 20.11 Determination of Hazard Function from Table 20.6 

Event 
(Months) ni di 

 

iŜ  

 

SE( iŜ ) 

 
hi 

 
SE(hi) 

2.3 30 1 0.9667 0.0328 0.0339 0.0339 
5.3 29 1 0.9333 0.0455 0.0690 0.0488 
6.8 28 1 0.9000 0.0548 0.1054 0.0609 

10.5 27 1 0.8667 0.0621 0.1431 0.0716 
14.0 25 1 0.8320 0.0686 0.1839 0.0824 
15.1 24 1 0.7973 0.0740 0.2265 0.0928 
19.2 23 1 0.7627 0.0785 0.2709 0.1029 
20.6 22 1 0.7280 0.0822 0.3175 0.1129 
23.2 21 1 0.6933 0.0853 0.3662 0.1230 
25.9 19 1 0.6568 0.0883 0.4203 0.1344 
28.5 16 1 0.6158 0.0918 0.4849 0.1491 
29.4 15 2 0.5337 0.0962 0.6280 0.1802 
30.1 13 1 0.4926 0.0971 0.7080 0.1972 
30.3 12 1 0.4516 0.0973 0.7950 0.2155 
31.8 11 1 0.4105 0.0968 0.8903 0.2357 
35.9 10 1 0.3695 0.0954 0.9957 0.2582 
36.8 9 2 0.2874 0.0901 1.2470 0.3137 
37.6 7 1 0.2463 0.0861 1.4011 0.3496 
39.4 6 1 0.2053 0.0810 1.5835 0.3944 
40.5 4 1 0.1539 0.0752 1.8711 0.4888 
42.8 3 1 0.1026 0.0654 2.2766 0.6368 
44.7 2 1 0.0513 0.0488 2.9698 0.9516 
46.0 1 1 … … … … 

 
 

One can think of a hazard ratio the same as relative risk. If the ratio is 0.25, then 
the relative risk of an event in one group is one-quarter the risk of that event in the 
second group. The cumulative hazard function is the difference between the 
observed death rate and the expected rate of death, for all time periods, if there was no 
significant difference between the two treatment groups.  
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These two values have already been reported or calculated for the first treatment level 
(ai and ei ) in order to determine the Cochran-Mantel-Haenszel chi square test. Using 
the same method it is possible to calculate the expected values for the second 
treatment level (bi): 
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Using our example data in Table 20.9, we have already reported the observed 
outcomes for both the experimental and control groups (the second and third columns, 
respectively). In the previous section we calculated the expected outcome for the 
experimental group (ei in column seven). Using Eq. 20.26 the expected values are 
reported in the tenth column. The sums are reported for the observed and expected 
results at the bottom of Table 20.9. The hazard function for the experimental group is: 
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and for the controlled group is: 
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The larger the hazard rate, the lower the chance of survival. Thus, it appears that 
chance of survival in the experimental group is greater than that of the control group. 
This is visually supported in Figure 20.6.  

The hazard ratio is the relative risk of reaching the defined endpoint at any 
given time interval. The hazard ratio is a useful descriptive statistic when used in the 
context of the log-rank statistic, for comparing two groups. Another way to think of 
hazard, with respect to the survival curves created in the previous sections, is that 
hazard represents the slopes of the survival curves. It measures how rapidly subjects 
are dying or reaching some other endpoint. In the comparison of two survival curves, 
the hazard ratio compares two treatment levels. The results are interpreted similar to 
the relative risk or the odds ratio described in the previous chapter. A hazard ratio of 
1.0 indicates that the two groups compared are identical. If the hazard ratio is 6.0, the 
group in the numerator has a six times greater risk compared to the group in the 
denominator. To compare two groups the hazard ratio can be estimated by  
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For illustration, using our example of treatment alternatives for Stage IV melanoma, 
the hazard ratio of control group to the experimental groups would be: 
 

220.2
735.0
639.1ratioHazard ==  

 
Based on our study of 30 patients, the risk of dying is more than twice as great for the 
control group compared to the experimental groups receiving the additional RAF 
kinase inhibitor. One limitation with the hazard ratio is that it is assumed that the risk 
of death or other endpoint is constant throughout the period of time studied. If it is 
assumed that there are proportional hazard results (the ratio of hazard functions in 
deaths per time) are the same at each time point; in this case the log-rank test is more 
powerful.  The CMS method is nearly identical to the log-rank method. 
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Multiple Regression with Survival Data: Proportional Hazards Regression  
 

Up to this point we have looked at survival analysis with only one independent 
variable, in our example, two treatment levels. However, we may wish to control for 
additional characteristics, or covariates, for patients volunteering for a study (e.g., 
age, gender, ethnicity). One of the most commonly used methods is the Cox 
regression model, or Cox proportional hazard regression model (also referred to as 
Cox’s proportion hazards model, Cox PHM) which accounts for the effects of 
predictor variables (continuous or discrete) on the dependent variable, which can 
include censored time-until-event data. The method is named after D.R. Cox who first 
proposed applying regression methodology to survival studies and it involves a 
proportional hazard regression model (Daniel). This model is a multivariate analysis 
used to identify a combination of variables that best predicts the outcomes in the 
group of patients. It may also independently test the effects of individual variables. It 
is a hazards model commonly used for survival analyses. The detailed description of 
this regression goes beyond the scope of this book, but excellent discussions of this 
method can be found in Kleinbaum (1996, pp. 86-112) or Klein and Moeschnerger 
(2003, pp. 243-287). A brief overview is presented below. 

As discussed in the previous section, the hazard function [h(ti)] describes the 
conditional probability that an event will occur, given survival up to that point in 
time. Similar to the multiple linear regression model discussed in Chapter 14, the 
model to measure k covariates can be described as:  
 

)x....xxexp()t(h)t(h kk2211i0i βββ +++=                Eq. 20.28 
 
where βi represents the beta coefficients (or weights) for each xi covariate. Modifying 
the equation, the results can be interpreted as hazard ratios. 
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These regression coefficients represent the amount of change in the hazard resulting 
from the risk factors. This rearranged equation indicates that the exponential 
coefficient is the ratio of the conditional probabilities or the hazard ratio. It serves as 
an estimate of the odds ratio from the coefficient, similar to logistic regression from 
Chapter 18. 

Using this method is it possible to compare survival in two or more levels of an 
independent variable adjusting for multiple covariables. Unfortunately the 
calculations for these tests are so cumbersome that they require computer programs to 
determine the best fit and calculate proportional hazards for each of the risk factors, 
or covariate) as hazard ratios. Most will also calculate 95% confidence intervals 
around each estimated proportional hazard. These are interpreted similarly to the 
ratios discussed in Chapter 19, the location of the value 1 with respect to the interval. 
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Wilcoxon Test 
 

As mentioned earlier, the traditional comparison of two independent groups (e.g., 
t-test) is not appropriate, since survival times are usually not normally distributed and 
tend to be positively skewed. Also, censored data cannot be used if all the patients 
would need to reach the endpoint before the data can be analyzed. However, there are 
additional procedures for testing the null hypothesis that two survival curves are 
identical. One of the most common is the Wilcoxon test which appears in Minitab 
reports. It is reported with multiple names and minor modifications (including the 
Breslow test, Gehan test, Gehan’s generalized Wilcoxon test and the Gehan-
Breslow-Wilcoxon test). All are generalized Wilcoxon tests or generalized Kruskal-
Wallis tests. These tests involve early weighting of the results which could be 
misleading when a large proportion of individuals in the study are censored at early 
time points in the study. The log-rank test gives equal weight to all time points, 
whereas Wilcoxon weights the early failures or deaths more heavily. Therefore, the 
preferred test results would be the CMH or log-rank test and results for the Wilcoxon 
results should be reported only if there is a strong reason to believe that the hazard 
results are not consistent at each time point. 
 
Other Tests and Measures of Survival 
 

Other tests to compare different levels of the independent variable include the 
Tarone-Ware test, which like the Wilcoxon test, involves weighted differences 
between actual and expected numbers of deaths at the observed time intervals. The 
Peto log-rank test or Peto’s Generalized Wilcoxon test give more weight to the 
initial interval of the study where there are the largest numbers of patients at risk. If 
the rate of deaths is similar over time, the Peto log-rank test and the log-rank test will 
produce similar results. In situations where there are more than two levels of the 
independent variable either the Gehan’s generalized Wilcoxon test, Peto and Peto’s 
generalized Wilcoxon test or the log-rank test are recommended. If there are only two 
levels to the independent variable, the log-rank test will give results equivalent to 
Gehan’s Generalized Wilcoxon test. If there is no censored data, all the patients die 
and there are no withdrawals, there are nonparametric alternatives such as the Mann-
Whitney U test for two levels of an independent variable or the Kruskal-Wallis test 
for more than three levels. These tests will be discussed in the next chapter. 
Information about these tests can be found in the following references: Breslow test 
(Breslow; Gehan; Lee and Wang, pp. 107-109; Glantz, pp. 396, 397); Tarone-Ware 
test (Tarone and Ware; Miller, pp. 104-118); and Peto (Lee and Wang, 116, 117; 
Kleinbaum, pp. 65, 66).  

Based on visual examination of survival curves, it is possible to estimate the time 
of survival percentiles. Most commonly these would be the 25th and 75th percent-
iles, in addition to the previously identified 50th percentile (median survival time).  

Mortality rates (e.g., three- or five-year survival rates) are popular ways to deal 
with survival data. These are commonly used in oncology, but unfortunately the 
mortality rate cannot be used for all patients until the end of the specific length of 
time. 

Another measure of survival is person-years of observation. Sometime used in 
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epidemiology it is the number of deaths per each 100 person-years of observations. It 
may be useful in comparing the results during one specific period of time compared to 
another period or compared to the results of another investigation. However, a 
problem with this measurement is that no statistical methods exist for comparing 
different intervals. A second problem is that the person-year of observation measure 
assumes that the risk of the definable event is constant through the study.  
 
Manufacturing Related Survival Measurements 
 

As mentioned earlier, survival statistics may also be applied to the stability or 
endurance of a manufactured product. Several terms may be reported when using 
computer software for survival data that may apply more appropriately to product 
reliability measures. For example, the sample mean-time-to-failure (MTTF) is 
commonly associated with the Kaplan-Meier method, whereas the median-time-to-
failure is associated with actuarial calculations. The MTTF is the expected average 
time until the first failure of a piece of equipment or product. It is a statistical value 
and based on the mean for results expected for a large number of units. The standard 
error and confidence interval may be reported in computer printouts evaluating 
survival statistics. When there is censored data the mean of the data does not provide 
the best measure of the center because not all the failure times are known. The MTTF 
is an estimate of the theoretical center of the distribution that takes into account 
censored observations. Various algorithms are used to calculate the mean, median and 
confidence interval for Kaplan-Meier procedures, depending on the software used 
(Barker). These different approaches can result in differing reported values. 

Other related terms include MTBF (mean-time-between-failures) and MTTR 
(mean-time-to-repair). Both terms are used in reference to a repairable item, whereas 
MTTF is used for non-repairable products. However, MTBF may be used for both 
repairable and non-repairable items. MTBF is a measure of reliability and used to 
estimate the amount of failures per million hours of use for a product. It refers to the 
life span of a product. Another way to report the MTBF is failure-in-time (FIT) which 
reports the expected failures per one billion hours of operation for a product. 

 
Survival Statistics using Minitab® 
 
 Calculations for survival statistics using either the actuarial or Kaplan-Meier 
procedures are available under the “Stat” option: 
 

Stat  Reliability/Survival  Distribution Analysis (Right Censoring)  
Nonparametric Distribution Analysis 

 
Two major option panels appear in Figure 20.9. The top one allows the selection of 
the dependent variable (Variables:) and if comparing multiple levels of an 
independent variable this can be selected under “By Variable:”. If there were no 
independent variable the lower “By Variable:” should be blank. If the Estimate… 
option is selected the lower panel in Figure 20.9 will appear. Kaplan-Meier or 
actuarial survival statistics can be selected. If “Actuarial” is selected there must be a 
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Figure 20.9   Option panels for survival statistics with Minitab. 

 
maximum time period elected and “by” equal time periods. In the example the 
actuarial choices are made for the data in Table 20.1. Two additional option panels 
are also important and illustrated in Figure 20.10. The first appears when Censor… is 
selected on the top panel in Figure 20.9. If there is a column that indicates whether or 
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Figure 20.10   Additional option panels for survival statistics with Minitab. 

 
 
not some of the data is censored, it is selected and entered into the space “Use 
censoring columns:”. The appropriate numeric value (such as 0 or 1) is entered into 
“Censoring value:” indicates those rows with censored data. The lower panel in 
Figure 20.10 results from selecting the Graphs… option in the top panel in Figure 
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Figure 20.11   Partial numeric output for actuarial survival statistics with Minitab. 

 
 
20.9 and offers a variety of graphic options. The results for the selections in Figures 
20.9 and Figure 20.10 are presented in Figure 20.11. Notice the results are similar to 
those reported in Table 20.3, where the “survival probability” is the label for iŜ  and 

the “standard error” is the label for SE( iŜ ). The graphic representation is presented in 
Figure 20.12 and looks similar to Figure 20.4. One minor limitation of Minitab is that 
you cannot change the weights or style for the individual plots (e.g., center line versus 
confidence bands). If possible the middle line would be heavier and the two outside 
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Figure 20.12   Graphic output for actuarial survival statistics with Minitab. 

 

Table 20.12 Data to Illustrate Kaplan-Meier Using Minitab 

Time until Hospital Admission 
Treatment A Treatment B Treatment C 

Days Censored Days Censored Days Censored 
6 0 3 0 12 0 
9 0 12 0 18 0 

14 0 15 0 30 0 
27 1 21 0 41 0 
35 0 25 0 57 0 
50 0 32 0 74 0 
81 0 39 1 83 1 
85 0 51 0 90 1 
90 1 60 0 90 1 
90 1 75 0 90 1 

 
 
lines would be dotted to match those in Figure 20.4. If there are multiple levels of the 
independent variable (indicated “By variable:”), Minitab compares the survival curves 
and reports both log-rank and Wilcoxon results, converts them to chi square values 
and reports the p-values.  
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Figure 20.13   Partial output for Kaplan-Meier statistics with Minitab. 

 

Figure 20.14   Summary output for Kaplan-Meier statistics with Minitab. 
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Figure 20.15   Graphic output for Kaplan-Meier statistics with Minitab. 

 
 
 To illustrate the use of the Kaplan-Meier statistic with Minitab a new set of data 
will be used (Table 20.12) comparing three factious treatments on the time required 
until hospitalization for a certain condition. To calculate the Kaplan-Meier statistic 
the option would be chosen in the lower panel in Figure 20.9. Output in Figure 20.13 
represents the results for the first level of treatment and similar results would be 
presented for the other two treatments following the information in this figure. For 
each level of independent variable are reported there is a summary table with statistics 
and significance for log-rank and Wilcoxon tests (Figure 20.14). In this case there 
was a finding of no significant difference among the three treatments. The Minitab 
graphing option is presented in Figure 20.15. 
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Example Problems (Answers are provided in Appendix D) 
 
1. A container manufacturer has developed a new safety closure system for 

prescription vials. The company tests these closures by asking 30 volunteers to 
open and close a vial 200 times or until there is a physical failure in the closure 
system. Each volunteer is asked to repeat this process with three vials. Failure is 
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Table 20.13 Number of Closure Openings until Failure 

36 150 174 186 195 200* 
65 154 175 187 195 200* 
81 154 178 187 196 200* 
97 156 179 189 197 200* 

107 157 180 190 198 200* 
115 159 180 190 198 200* 
121 159 181 190 198 200* 
128 162 182 191 200 200* 
132 162 182 191 200* 200* 
134 163 182 192 200* 200* 
136 165 184 193 200* 200* 
139 166 185 193 200* 200* 
142 169 185 194 200* 200* 
146 172 185 194 200* 200* 
148 172 186 194 200* 200* 

* Censored data. 

clearly defined in the study protocol and the number of repetitions assumes that a 
maximum requirement for such a vial would be 120 (four openings per day for a 
30-day supply of medication). The results are presented in Table 20.13. Using 
both the actuarial and Kaplan-Meier methods for estimating survival, calculate 
the survival function (with confidence intervals) and median number of closures 
before failure. 

 
2. Infection is a common problem associated with a specific surgical procedure. The 

P&T Committee, based on a review of the literature, wanted to evaluate new 
Antibiotic B compared to the current Antibiotic A that they were using to prevent 
infection following this procedure. Forty patients were randomly divided into two 
treatment groups, receiving either Antibiotic A or Antibiotic B. They were 
followed to determine the number of hours (following survey) before they were 
discharged, infection free, from the hospital. The results are presented below (* 
indicates censored data): 

 
Antibiotic A: 42, 57, 63, 98, 104* 105, 132, 132, 

132, 133, 133, 133, 139, 140, 161, 
180, 180, 195, 195, 233* 

 
Antibiotic B: 43, 65, 88, 88, 90, 92, 106, 108, 

112, 116, 116*, 120, 127, 130, 133, 
135, 144*, 146, 165, 203 

 
Was there a significant difference between the time-to-event (discharge) based on 
the type of antibiotic received? 
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3. Patients are randomly assigned to two different treatments for Stage III prostate 
cancer. The first is the current gold standard therapy, the second in a combination 
of products believed to produce better results.  Was there a significant difference 
in the survival rates between the two treatment approaches based on the 
following results? 

 
Survival Rates (Patients) 

Gold Standard Experimental Treatment 

Weeks Censored Weeks Censored Weeks Censored 
2 Y 15 N 3 Y 
2 N 15 Y 3 Y 
2 Y 15 N 4 Y 
2 N 15 N 5 Y 
4 N 15 Y 7 Y 
4 N 15 N 9 Y 
5 Y 15 N 10 N 
5 Y 16 Y 11 Y 
6 N 17 Y 13 Y 
6 N 18 N 14 Y 
6 Y 19 N 14 Y 
7 Y 19 Y 16 Y 
8 N 20 N 18 N 
8 N 20 N 18 Y 
9 Y 21 N 19 Y 

10 N 22 Y 20 Y 
10 Y 23 N 21 N 
10 N 23 N 21 N 
11 Y 23 N 21 Y 
11 N 24 N 22 Y 
11 N 24 Y 23 N 
11 Y 25 N 23 Y 
12 Y 25 Y 23 Y 
12 N 25 N 24 Y 
13 N 27 N 24 N 
13 Y 28 N 25 Y 
14 Y 29 N 27 Y 
14 Y 30 N 29 N 
14 Y 30 N 30 N 
15 N 32 N 32 N 
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21 
 
Nonparametric Tests 
 
 
 
 Nonparametric statistical tests can be useful when dealing with small sample 
sizes or when the requirement of a normally distributed population cannot be met or 
assumed. These tests are simple to calculate, but are traditionally less powerful and 
the researcher needs to evaluate the risk of a Type II error. Often referred to as 
distribution-free statistics, nonparametric statistical tests do not make any 
assumptions about the population distribution. One does not need to meet the 
requirements of normality or homogeneity of variance associated with the parametric 
procedures (z-test, t-tests, F-tests, correlation and regression). Chi square tests are 
often cited as distribution-free and have been covered in a previous chapter.  
 These distribution-free tests have been slow to gain favor in the pharmaceutical 
community, but are currently being seen with greater frequency in the literature, often 
in parallel with their parametric counterparts. This is seen in the following example of 
a 1989 clinical trial protocol: 
 
  If the variables to be analyzed are normally distributed and 

homogeneous with respect to variance, a parametric analysis of 
variance that models the cross-over design will be applied. If these 
criteria are not fulfilled, suitable nonparametric tests will be used. 

 
Nonparametric tests are relatively simple to calculate. Their speed and convenience 
offers a distinct advantage over the parametric alternatives discussed in the previous 
chapters. Therefore, as investigators we can use these procedures as a quick method 
for evaluating data. 
 
Use of Nonparametric Tests 
 
 Nonparametric tests usually involve ranking or categorizing the data and by 
doing so we decrease the accuracy of our information (changing from the raw data to 
a relative ranking). We may obscure the true differences and make it difficult to 
identify differences that are significant. In other words, nonparametric tests require 
differences to be larger if they are to be found significant. We increase the risk that 
we will accept a false null hypothesis (Type II error). It may be to the researcher’s 
advantage to tolerate minor doubts about normality and homogeneity associated with 



Chapter 21 560

a given parametric test, rather than to risk the greater error possible with a 
nonparametric procedure.  

A robust statistic refers to test-based populations with assumed normality 
distributions and similar variances even when the underlying population may not be 
normal. Some of the parametric tests discussed previously (notably the t-tests) are 
known to be robust against the assumption of normality, especially if there are large 
sample sizes. However, other authors (e.g., Conover, 1999) would argue that 
nonparametric tests are preferable and even more powerful than parametric tests if the 
assumptions (normality and homogeneity) are false. Thus, results showing extremely 
different variances should be tested using the appropriate nonparametric procedure. 

When dealing with ordinal dependent variable results, the nonparametric tests 
become the tests of choice. As discussed in Chapter 1, units on an ordinal scale may 
not be equidistant and violate assumptions required for parametric procedures. For 
example, consider the following commonly used scale for investigators to assess the 
cognitive functioning of Alzheimer’s patients: 

 
 
 

 
 
 
 
 
 
 
 
 
Is the difference between mild and moderate to severe impairment twice the 
difference between mild and moderate impairment? The answer is probably not. 
Therefore the conversion from the initial ordinal scale to the relative positioning of a 
rank order scale would be the more appropriate statistical test.  

Nonparametric tests are particularly useful when there are potential outliers (to be 
discussed in Chapter 23). Because of the ranking involved, an extremely large or 
small observation will receive the rank of 1 or N. For example, assume the following 
numbers: 2, 3, 3, 4, 4, 5, 6, 7, and 15. In this case 15 would seem different from the 
other eight observations. However, when ranking the data the value 15 would be 
converted to rank 9 and its difference from the other observations would be 
minimized. What if the last value was 150 or even 15,000? The same rank of 9 would 
be assigned. Thus, nonparametric statistics are generally not affected by a single 
outlier. 
 This chapter will explore some of the most commonly used nonparametric tests 
that can be used in place of the previously discussed methods (i.e., t-tests, F-tests, 
correlation). In many nonparametric statistics, the median is used instead of the mean 
as a measure of central tendency. Nonparametric tests for creating confidence 
intervals around the median or comparing sample data to a hypothesized population 
include the: 1) one-sample sign test and 2) the Wilcoxon signed-ranks test. To analyze 
differences between two discrete levels of the independent variable, tests include the: 

Cognitive Performance Scale Description  
Score Assessment 

0 Intact 
1 Borderline Intact 
2 Mild Impairment 
3 Moderate Impairment 
4 Moderate to Severe Impairment 
5 Severe Impairment 
6 Very Severe Impairment 
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1) Mann-Whitney U and 2) median tests. For comparing how paired groups of data 
relate to each other, appropriate tests include: 1) Wilcoxon’s matched-pairs test and 2) 
sign test. The analyses of variance models can be evaluated using: 1) the 
Kruskal-Wallis test or 2) Friedman two-way analysis of variance. Lastly, for 
correlation problems, the Spearman rho test may be substituted. These nonparametric 
procedures are extremely valuable and in many cases more appropriate when testing 
small sample sizes.  
 
Ranking of Information 
 
 Most nonparametric tests require that the data be ranked on an ordinal scale. 
Ranking involves assigning the value 1 to the smallest observation, 2 to the second 
smallest, and continuing this process until N is assigned to the largest observation. For 
example: 
 

Data Rank  

12 1  
18 5  
16 3 N = 5 
15 2  
17 4  

 
In the case of ties, the average of the rank values is assigned to each tied observation. 
 

Data Rank  

12 1  
18 9  
16 6  
15 4  
17 7.5 N = 10 
14 2  
15 4  
15 4  
17 7.5  
20 10  

 
 
In this example there were three 15s (ranks 3, 4, and 5) with an average rank of 4 
shared by the three observations. There are two 17s (ranks 7 and 8) with these 
observations sharing the average rank of 7.5. 
 When comparing sets of data from different groups or different treatment levels 
(levels of the independent variable), ranking involves all of the observations 
regardless of the discrete level in which the observation occurs: 
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Group A (n = 5) Group B (n = 7) Group C (n = 8)  Total (N = 20) 
Data Rank Data Rank Data Rank  
12 3 11 2 15 8.5  
18 17.5 13 4.5 15 8.5  
16 12 19 19.5 17 15  
15 8.5 17 15 19 19.5  
17 15 16 12 18 17.5  
  15 8.5 16 12  
  14 6 13 4.5  
    10 1  
 = 56.0  = 67.5  = 86.5     = 210 

 
Accuracy of the ranking process may be checked in two ways. First, the last rank 
assigned should be equal to the total N (in this example the largest rank was a tie 
between two observations (ranks 19 and 20), the average of which was 19.5. The 
second way to check the accuracy of the ranking procedure is the fact that the sum of 
all the summed ranks should equal N(N + 1)/2, where N equals the total number of 
observations:  
 

2
1)+N(N = R = Ranks  Summedof Sum i                      Eq. 21.1 

 
For the above example this check for accuracy in the ranking would be: 
 

2
1)+N(N = 

2
20(21) = 210 = 86.5 + 67.5 + 56.0  

 
Estimating Median Based on Walsh Averages 

In Chapter 4 the median was defined as the center value for odd numbers of 
samples or the average of the middle two values for an even number of observations. 
Another way to estimate the median to account for the distribution of the data is an 
estimated median using what are called the Walsh averages. This involves averaging 
every possible pair of observations and the median for all those averages is reported 
as the estimated median. If data is symmetrical, the simple median and the estimate 
based on Walsh averages will be the same. But if the data is skewed, the estimated 
median will be weighted in the direction of that skew. For example, consider the six 
data points in Table 21.1, which appear to be skewed in the positive direction. The 
median for just the six data points would be 6.5 (the average of the two center points, 
(5 + 8)/2). All possible pair-wise averages are presented in the matrix in Table 21.1. 
In this case there are 21 pair-wise averages and the middle value (11th average in 
rank order) would be 7 which is the estimated median using Walsh averages. Thus the 
estimated median is slightly larger due to the skew in the data. Some computations 
and computer software packages use Walsh averages as the method for estimating the 
median. 
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Table 21.1  Example of Walsh Averages 

 n1 
n2 1 2 5 8 12 18 
1 1 1.5 3 4.5 6.5 9.5 
2  2 3.5 5 7 10 
5   5 6.5 8.5 11.5 
8    8 10 13 

12     12 15 
18      18 

 
 
One-Sample Sign Test 
 

The one-sample sign test is a nonparametric procedure that can be used to 
estimate the population median based on sample data, create a confidence interval 
around the median and compare sample results with a predetermined hypothesized 
population median. It is called the sign test because data are converted to plus (+) and 
minus (−) signs depending on where they are larger or smaller than the hypothesized 
median. It is one of the oldest nonparametric procedures, reported as early as 1710 by 
British physician John Arbuthnott (Hollander and Wolfe). This test can be used as an 
alternative to the one-sample t-test (Chapter 9) and makes no assumptions about 
population symmetry (normal distribution). Observation must be on at least an ordinal 
scale and cannot be used for nominal data. 

Based on sample data, the null hypothesis is that the population median from 
which the sample was selected is equal to some hypothesized median. The alternative 
hypothesis is that they are not equal: 
 

H0: median (Mi) = hypothesized median (M0) 
H1: median (Mi) ≠ hypothesized median (M0) 

 
This is an example of a two-tailed test based on using the binomial distribution to 
determine the probability of very small number of positive or negative signs. Samples 
are compared to the hypothesized median by subtracting that value from each sample 
value and recording the sign.  
 

xi – M0 
 
Observations greater than M0 receive (+)s and those less than M0 are assigned (−) 
signs. Once assigned their appropriate signs the number of (+) and (−) signs are 
counted. Those observations that are equal to the hypothesized median have no sign 
and are removed from consideration, with the number of observations (n) reduced 
accordingly. In the two-tailed test, the smallest number of signs (− or +) is used. If a 
 



Chapter 21 564

Table 21.2 Sample Data for Percent Label Claim 

Sample (xi) xi-M0 Sign 
96.7 -3.3 - 
99.3 -0.7 - 
100 0 - 
98.2 -1.8 - 
95.6 -4.4 - 

102.3 +2.3 + 
99.6 -0.4 - 
94.7 -5.3 - 
92.5 -7.5 - 
92.3 -7.7 - 
94.5 -5.5 - 
97.8 -2.2 - 

 
 
sufficiently small number of results exist (either (+)s or (−)s) the null hypothesis is  
rejected. In this case the probability such an occurrence would need to be less than 
α/2. 

If the researcher is interested in determining if the sample median is greater or 
less than the anticipated population, one-tailed hypotheses can be created: 
 

H0:  Mi ≥ M0  
H1:  Mi < M0 

 
H0:  Mi ≤ M0 
H1:  Mi > M0 

 
If performing the one-tailed test there would need to be a sufficiently small number of 
(+)s to reject H0: Mi ≤ M0, or a sufficiently small number of (−)s to reject Mi ≥ M0. In 
either case the probability would need to be less than α. 

To illustrated the use of the one-sample sign test, consider the data presented in 
Table 21.2 which represents a sample taken from a batch of a product compared to the 
hypothesized median of 100% of the label claim. Here there are an even number of 
observations (12), so the observed median is the average of the center two numbers 
(Mi = 97.25 = (96.7 + 97.8)/2). In this case there are 10 (−) signs, 1 (+) signs and one 
response with no sign (equal to the hypothesized median). This last data point would 
be removed from the calculations since it equals the hypothesized median and n 
reduced to 11. What is the probability associated with such an occurrence by chance 
alone? To determine the answer, the binomial equation (Eq. 2.12) is used to determine 
the probability of 1 (+) sign out of 11 results. 
 

).50().50(
1

11
 = )1p( = qp 

x

n
 = p(x) 101x-nx
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005370. = )0009766.0)(50.0()11( = ).50().50(
!10!1

!11 = )1p( 101  

 
However, we also need to add the probability of more extreme outcomes, which in 
this example would be no positive numbers (p = 0):  
 

000480. = )000488.0)(1()1( = ).50().50(
!11!0

!11 = )0p( 110  

 
The sum of the two results would be the probability of one or less positive signs: 
 

00585.0000480. 00537.0 = )1p( =+≤  
 
Since this is a two-tailed test, to determine whether or not there is a difference to the 
positive or negative direction, the result would be multiplied by two, giving a 
probability of the results occurring by chance alone at p = 0.0117, which is less than α 
= 0.05. Therefore, we would reject the null hypothesis and conclude the sample 
represented data that did not have the same median as same the hypothesized median 
of 100%. If it was originally planned as a one-tailed test to determine if the sample 
was less than the hypothesized median, the null hypothesis also would have been 
rejected because the p-value would have been only 0.0059. 

To save calculating all the various combinations, Table B16 in Appendix B 
provides the results for binomial equations for smaller sample sizes with p = 0.50. In 
this example, the p-values would be read from the table for columns x = 0, 1 in the 
row where n = 11. 
 
   n = 11, x = 0   0.0005  
   n = 11, x = 1   0.0054  
       0.0059 
 
For larger sample sizes (usually 30 or more) an approximation can be made by 
calculating a z-value and referring to Table B2 in Appendix B to determine the 
associated p-value.  
 

n5.0
n5.0)5.0x(z −±

=                                      Eq. 21.2 

 
The 0.5 is added because this is an approximation of a normal distribution based on 
discrete results and serves as a continuity correction. In the numerator +0.5 is used if 
x is less than n/2 and −0.5 would be used if x is greater than n/2. In this example the 
approximation would be: 
 

41.2
66.1
4

115.0
)11(5.0)5.01(z −=−=

−+
=  
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Table 21.3  Probabilities Associated with Extreme Values in Table 21.1 

 
Rank 

 
Probability 

Cumulative 
Probability 

 
Corresponding Sorted Data 

1 0.0005 0.0002 92.3% 
2 0.0054 0.0031 92.5% 
3 0.0269 0.0192 94.5% 
4 0.0806 0.0998 94.7% 
5 0.1611  95.6% 
6 0.2256  96.7% 
7 0.2256  97.8% 
8 0.1611  98.2% 
9 0.0806 0.0998 99.3% 

10 0.0269 0.0192 99.6% 
11 0.0054 0.0031 100% 
12 0.0005 0.0002 102.3% 

 
 
The z-value of 2.41 in Table B2 is associated with a p = 0.4920 from 0 to −2.41. To 
fall to the extreme of z = −2.41, the probability would be 0.500 − 0.4920 = 0.0080, 
which for smaller sample sizes is not a very good approximation of the binomial 
equation (0.0059). 

Confidence intervals can be created around the median. Because these are 
distribution free statistics and lack the assumption of normality for parametric tests, it 
may not be possible to calculate the exact 95% confidence interval. Standard errors 
cannot be calculated for distribution-free statistics, but instead estimated locations 
within the ranked sample data are determined. These confidence intervals may not be 
symmetrical around the median. For the lower limit of the 95% confidence interval 
the rank is calculated as follows: 
 

2
n96.1

2
nranklower −=                                    Eq. 21.3 

 
For the upper limit, the calculation is: 
 

2
n96.1

2
n1rankupper ++=                                 Eq. 21.4 

 
These formulas can be modified for 90% or 99% confidence intervals by substituting 
1.64 or 2.58 for 1.96, respectively. Using the example previous example we can 
create Table 21.3 with the observations in rank order and their cumulative probability 
noted in the second column. Using all 12 data points the ranks approximating a 95% 
confidence interval would be 
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361.239.36
2

1296.1
2

12ranklower ≈=−=−=  

 

1039.1039.361
2

1296.1
2

121rankupper ≈=++=++=  

 
Thus, the approximate 95% confidence interval would be between ranks 3 and 10, or 
94.5 and 99.6. This is not exactly a 95% confidence interval because the probability 
of being at these points or to their extreme would be 0.0392 (0.0192 + 0.0192) or a 
96.1% confidence interval. The hypothesized population median of 100% does not 
fall within the interval of 94.5 to 99.6%; therefore the null hypothesis is rejected.  
 
Wilcoxon Signed-Ranks Test 
 

The second nonparametric procedure that can be used to estimate if data from a 
sample is significantly different from a hypothesized median and for creating a 
confidence interval is the Wilcoxon signed-ranks test. Frank Wilcoxon was a chemist 
with American Cyanamid and Lederle Laboratories and developed several 
nonparametric procedures during the 1940s (Salsburg, p. 161). Whereas the sign tests 
dealt with only the sign (plus or minus compared to the hypothesized median), 
Wilcoxon evaluated the magnitude of the differences from that median. The null 
hypotheses are identical to those used for the sign test, where the median for sample 
data is compared to a hypothesized median. 
 

H0: median (Mi) = hypothesized median (M0) 
H1: median (Mi) ≠ hypothesized median (M0) 

 
In this case it is a two-tailed test, but one-tailed tests can also be performed to 
determine if the sample median is greater than (H1:  Mi < M0) or less than (Mi > M0) 
the anticipated population. As with the sign test, this Wilcoxon test can serve as an 
alternative to the one-sample z-test (Chapter 7) or the one-sample t-test (Chapter 9). 
 The magnitude of the difference for each sample from the hypothesized median 
is determined and then ranked from the smallest to the largest difference. Table 21.4 
presents the data previously used for the sign test. Zero differences are eliminated 
from the calculations and the number of observations (n) reduced to correct for the 
removed data. In this case the single observed result of 100 is eliminated, n is reduced 
to 11 and the smallest absolute difference (99.6%) is 0.4 which received the first rank. 
The second smallest difference (99.3%) is ranked number 2. This process continues as 
previously described until the largest difference (−7.5 for 92.5%) which received the 
last rank of 11. If there were tied differences, regardless of the sign, they would share 
the same rank. Once the ranking is completed for a two-tailed test, those ranks 
associated with the least frequent sign (in this case the plus sign) are moved to the last 
column in Table 21.4. The ranks in the last column are summed and labeled T which 
will be used for determining whether or not to reject the null hypothesis. To 
determine the significance for smaller data sets (30 or less), the significance of the T- 
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Table 21.4 Sample Data Differences in Rank Order 

 
Observed 

 
Hypothesized 

 
d 

 
Rank d 

Rank associated with 
least frequent sign 

96.7 100 −3.3 6  
99.3 100 −0.7 2  
100 100 0   
98.2 100 −1.8 3  
95.6 100 −4.4 7  

102.3 100 +2.3 5 5 
99.6 100 −0.4 1  
94.7 100 −5.3 8  
92.5 100 −7.5 11  
92.3 100 −7.7 10  
94.5 100 −5.5 9  
97.8 100 −2.2 4  

   T =  =      5 
 
 
value can be determined from Table B17 in Appendix B. In this case the probability 
of a T = 5 where n = 11 would be 0.01 or less (α/2). This result is similar to those for 
the sign test. 

For one-tailed tests, the ranks carried over to the last column (illustrated in Table 
21.4) would depend on the direction of the tail of interest. If the alternative hypothesis 
is Mi < M0) then the ranks associated with the positive signs are summed. If the 
alternative hypothesis is Mi > M0 then the ranks associated with the negative signs are 
summed to create the T statistic. Using Table B17, the values for the α column would 
be used instead of the α/2 column. 
 For larger sample sizes an approximation of the probability of rejecting the null 
hypothesis can be calculating the following two equations. If the sample median 
equals the hypothesized median, the expected total for the ranks is E(Total) = n(n + 
1)/2. If H0 is true then the total for each sign rank (+ or −) should be equal to half the 
total ranks (Eq. 21.1). Thus: 
 

4
1)+n(n = E(T)       or          

2
1  

2
1)+n(n = E(T) ⋅                      Eq. 21.5 

 
Similar to previous statistics, a comparison is made looking at the difference between 
what is observed (T) and what is expected with the null hypothesis. 
 

24
1)+1)(2n+n(n

E(T) - T =z                                                Eq. 21.6 

 
As with previous equations, if the observed and expected values are identical the 
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numerator would be zero and the z-value would be zero. As the difference increases 
the z-value increases until it reaches a point of statistical significance with a given 
Type I error rate. In this procedure the decision rule is with a predetermined α, to 
reject H0 if z is greater than z(α/2) from the normal standardized distribution (Table 
B2, Appendix B). For the example presented in Table 21.4 (even though it is small 
sample and we could use Table B17) it can be approximated and the decision rule 
would be, with α = 0.05, reject H0 if z > 1.96 and the computations would be as 
follows: 
 

33 = 
4

)12)(11( = E(T)  

 

49.2 = 
5.126

28 = 

24
1)+)11)(2(12(11

33  5 =z −−−  

 
The decision is with z < 1.96, we cannot reject H0 and we are unable to find a 
significant difference between median for the sample and the hypothesized median. 
Using table B2 the probability of a z = −2.49 would be 0.0064 (0.5000 − 0.4936). 
This approximation is similar to the results using Table B17.  
 If there are numerous ties in the rankings, an adjustment in the denominator can 
be made in the formula to account for these ties: 
 

48
tt

24
1)+1)(2n+n(n

E(T) - T =z 
3 −

−

                              Eq. 21.7 

 
In the previous example, there were no ties so such an adjustment would not be 
required. 
 If the population distribution is assumed to be symmetrical a confidence interval 
can be created around the median. For smaller sample sizes a triangular matrix can be 
created with Walsh averages. This method is described by Daniel (1978, pp. 40-44). 
For larger samples a confidence interval is approximated by modifying Eq. 21.6: 
 

[ ]
24

)1n2)(1n(nz)T(ETInterval 2/
++

±−= α                Eq. 21.8 

 
In the previous example the estimated 95% confidence interval would be: 
 

04.2233
24

)23)(12(1196.133Interval ±=±=  

04.55T96.10 +<<+  
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Similar to interpreting the t-test, since zero does not fall within the interval, it is 
impossible for 100% to fall within the interval; therefore, like the sign test the null 
hypothesis is rejected with 95% confidence. 
 Some computer software (including Minitab) will estimate the confidence 
interval in the original units of measure. The Wilcoxon signed rank test is slightly less 
powerful than the one-sample t-test when the population is normally distributed. Also 
with a normal distributed population, the confidence interval for the Wilcoxon test 
will be slightly wider. For distributions that are not normally distributed, Wilcoxon 
will be more powerful and produce narrower confidence intervals than the one-
sample t-test. Comparing these two nonparametric procedures to their parametric 
counterpart, the one-sample t-test; using Minitab we see similar, but slightly different 
results: 
 

Test Center Lower Limit Upper Limit 
One-sample t-test 96.96 94.97 98.94 
One-sample sign test 97.25 94.55 99.52 
Wilcoxon signed-ranks test 97.03 95.05 98.95 

 
Note that the Wilcoxon test uses the Walsh averages to estimate the median which 
gives a slightly smaller center point than the sign test, reflecting a negative skew to 
the sample data. 
 
Mann-Whitney Test 
 
 The Mann-Whitney test has numerous synonyms, including the Mann-Whitney 
U, two-sample Wilcoxon rank sum test and the Wilcoxon-Mann-Whitney (WMW) 
test. It is a procedure for the situation where the independent variable has two discrete 
levels and there is a continuous dependent variable (similar to the two-sample t-test 
described in Chapter 9). Data are ranked and a formula is applied. Note that the 
hypotheses below are not concerned with the means of the populations. The 
parameter of normality is not considered, where the t-test evaluated the null 
hypothesis the μ1 = μ2. The hypotheses for this nonparametric procedure are: 
 
   H0:   Samples are from the same population 
   H1:   Samples are drawn from different populations 
 
There are two assumptions for performing the Mann-Whitney test: 1) the populations 
from which the samples are taken have the same shape; 2) observations are 
independent of each other. If the populations are normally distributed this test is 
slightly less powerful than the two-sample t-test and the confidence interval will be 
wider. 
 For this test the data are ranked and the sum for these ranks for one of the levels 
of the dependent variables will be used in the calculations. 
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Data 
Level 1 

 
Rank 

 Data 
Level 2 

 
Rank 

d11 R11  d21 R21 
d12 R12  d22 R22 
d13 R13  d23 R23 
... ...  ... ... 
d1j R1j  d2j R2j 

 ΣR1j = W    
 
We will label the sum associated with the first level W to be consistent with Minitab 
output. If the sum of the ranks for level 2 were selected we would get the exact same 
results for the z-value defined below, only the sign would be the opposite (e.g., minus 
instead of plus). The statistical values are calculated using the following two formulas 
where W is associated with n1 (the number of observations associated with the sum 
W).  
 

W  
2

1)+n(n + nn = U 11
21 −                               Eq. 21.9 

 
Here n2 is the number of observations in the level of independent variable not 
summed. If the null hypothesis is true we would expect the two rank sums for each 
level to be about equal. The larger the difference between the two scores the greater 
the likelihood that there is a significant difference. If both levels were exactly the 
same we would expect the following for the expected U: 
 

2
nn

)U(E 21=                                    Eq. 21.10 

 
We evaluate the difference between the U-value and E(U) using the following 
formula to convert the results to a z-value: 
 

12
1)] + n( + n[  nn

2
nn - U

 =z 
2121

21

⋅
                                  Eq. 21.11 

 
The calculated z-value is then compared to values in the normalized standard 
distribution (Table B2, Appendix B). If the calculated z-value is to the extreme of the 
critical z-value (positive or negative) then H0 is rejected. In the case of 95% 
confidence, the critical z-values would be either −1.96 or +1.96. The numerator of the 
equation is similar to the z-test of proportions; we are comparing an observed U-value 
to an expected value that is the average of the ranks (n1n2/2).  
 As an example of the Mann-Whitney U test, a pharmacology experiment was 
conducted to determine the effect of atropine on the release of acetylcholine (ACh) 
from rat neostriata brain slices. The measure of ACh release through stimulation was 
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Table 21.5 Sample Data for the Mann-Whitney U Test 

 
Control 

 
Rank 

 Received 
Atropine 

 
Rank 

0.7974 3  1.7695 13 
0.8762 4  1.6022 12 
0.6067 1  1.0632 7 
1.1268 9  2.7831 14 
0.7184 2  1.0475 6 
1.0422 5  1.4411 11 
1.3590 10  1.0990 8 

 = 34   = 71 

 
 
measured twice. Half of the sample received atropine before the second measurement. 
The ratios (stimulation 2 divided by stimulation 1) are presented in the first and third 
columns of Table 21.5. Is there a difference in the ratios between the control group 
and those administered the atropine? The hypotheses are: 
 
   H0: Samples are from the same population  
    (i.e., no difference in response) 
   H1: Samples are drawn from different populations 
     (i.e., difference in response) 
 
The decision rule is, with α = 0.05, reject H0, if z > critical z(0.975) = 1.96. The 
rankings of the data are presented in the second and fourth columns of Table 21.5. A 
quick computational check for accuracy of the ranking shows that the ranking was 
done correctly:  
 

71 + 34 = 105 = 
2

14(15) = 
2

1)+N(N  

 
The calculation of the Mann-Whitney test statistics would be: 
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Note that reversing Level 1 and Level 2 would produce identical results. In the above 
case the W is 71 and n1 is 7: 
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6 = 71  
2

(7)(8) + (7)(7) = U −  

 

2.36 = 
7.83

24.5  6 = 

12
8)] + [7  (7)(7)

2
(7)(7) - 6

 =z −−
⋅

 

 
The decision, either way, would be with z > zcritical = 1.96, reject H0 and conclude that 
the samples are drawn from different populations and the response of the rat’s 
neostriata release of ACh is affected by atropine. Using Table B2 in Appendix B, for 
a z-value of 2.36, the probability of being greater than a z-value of 2.36 would be 
0.0091 (0.5000 − 0.4909). Being a two-tailed test the p-value would be 0.0182 
(0.0091 × 2). 
 A confidence interval can be created but it is somewhat labor intense where the a 
point estimate is created for the difference between the two medians and an interval 
close to 95% confidence is created. Computer programs can create such intervals and 
will not be discussed at this time, but the interpretation is similar to the two-sample t-
test. If zero falls within the interval there is no significant difference between the 
populations. If the confidence interval does not include zero then the null hypothesis 
is rejected. 
 
Two-Sample Median Test 
 
 The two-sample median test is an alternative to the Mann-Whitney test when the 
independent variable has only two discrete levels. This test utilizes the median for all 
of the data points observed. The hypotheses are the same as the Mann-Whitney test. 
 
   H0: Samples are from the same population 
   H1: Samples are drawn from different populations 
 
 The first step is to create a 2 × 2 table using the grand median for all of the 
observations in both levels of the independent variable. As discussed previously, one 
valuable property of the median is that it is not affected by a single outlier (extreme 
value).  

 
 Group 1 Group 2  

Above the median a b 
   n = total observations 

Below the median c d 
 

The calculated p-value is determined using a formula that incorporates a numerator of 
all the margin values (a + b, c + d, a + c and b + d) and a denominator involving 
each cell:  
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d! c! b! a! n!
d)!+(b c)!+(a d)!+(c b)!+(a = p                              Eq. 21.12 

 
The decision rule is to reject H0, if the calculated p-value is less than the critical p(α) 
in a normal standardized distribution, for example, α = 0.05. Note that this formula is 
exactly the same as the Fisher exact test presented in Chapter 16. The difference 
between the two tests is that the median is created based on an ordinal or higher 
scaled data and the results are based solely on the observed results and not any more 
extreme scenarios as seen with the Fisher exact test. 
 As an example of the median test, the same data used for the Mann-Whitney test 
will be considered. In this case the grand median is between data points 1.0632 and 
1.0990 (ranks 7 and 8 for all the data). The data for each level of the independent 
variable is classified as above or below the median and the results are presented in the 
following table: 
 

 Control Atropine  

Above the median 2 5 
   N = 14 

Below the median 5 2 
 
In this example, all of the margin values (e.g., a+b) are seven and the computation of 
the probability of the occurrence is: 
 

2! 5! 5! 2! 14!
5)!+(2 2)!+(5 5)!+(2 5)!+(2 = p  

 

0.128 = 
105.02
10 6.45

 = p
15

14

×
×

 

 
With the calculated p = 0.128, there is a probability of this occurring 12.8% of the 
time by chance alone. We cannot reject H0. The researcher cannot find a significant 
difference and must assume that the results are from the same population and there is 
no treatment effect. 
 Note that when using the Mann-Whitney test H0 at the 0.05 level of significance, 
H0 was rejected, but could not be rejected with the median test. If the same data is run 
using a t-test, the results are identical to the Mann-Whitney test: 
 

Significance Level 0.1 0.05 0.01 
Mann-Whitney test Reject H0 Reject H0 Accept H0 
Two-sample median test Reject H0 Accept H0 Accept H0 
t-test Reject H0 Reject H0 Accept H0 

 
It appears that the median test is a slightly more conservative test than either the 
Mann-Whitney or t-tests, and more likely to result in a Type II error. This is due in 
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part to the small amount of information available from the median test results that are 
dichotomized into above and below the median, and only two outcomes are possible. 
 
Wilcoxon Matched-Pairs Test 
 
 The Wilcoxon matched-pairs test offers a parallel to the matched-pair t-test 
discussed in Chapter 9. To accomplish this test, a traditional pre- and posttest (before-
after) table is constructed and the differences are calculated similar to the 
matched-pair t-test. For example: 
 

Subject Before After d 
1 67 71 +4 
2 70 73 +3 
3 85 81 −4 
4 80 82 +2 
5 72 75 +3 
6 78 76 −2 

 
The absolute differences (regardless of sign, positive or negative) are then ranked 
from smallest to largest.  
 

Subject Before After d Rank d 
1 67 71 +4 5.5 
2 70 73 +3 3.5 
3 85 81 −4 5.5 
4 80 82 +2 1.5 
5 72 75 +3 3.5 
6 78 76 −2 1.5 

 
Notice that the fourth and sixth subjects have identical differences (even though the 
signs are different): therefore, they share the average rank of 1.5 (ranks 1 and 2). 
Thus, the ranking process measures the magnitude of the difference regardless of the 
direction (positive or negative). A T-value is calculated for the sum of the ranks 
associated with the least frequent sign (+ or −). 
 

 
Sub. 

 
Before 

 
After 

 
d 

 
Rank d 

Rank Associated with 
Least Frequent Sign 

1 67 71 +4 5.5  
2 70 73 +3 3.5  
3 85 81 −4 5.5 5.5 
4 80 82 +2 1.5  
5 72 75 +3 3.5  
6 78 76 −2 1.5 1.5 
    T =  =      7.0 
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Table 21.6 Example of Data for a Wilcoxon Matched-Pairs Test 

 
Before 

 
After 

 
d 

 
Rank d 

Rank Associated with 
Least Frequent Sign 

81 86 +5 6.5  
81 93 +12 8  
78 74 −4 4.5 4.5 
80 80 0 -  
74 76 +2 3  
78 83 +5 6.5  
90 91 +1 1.5  
95 95 0 -  
68 72 +4 4.5  
75 74 −1 1.5 1.5 

n = 8      = 0  T =  = 6               
 
 
Note in the above example that the third and sixth subjects were the only two with 
negative differences (the least frequent sign); therefore, their associated ranks were 
the only ones carried over to the last column and summed to produce the T-value. If 
all the signs are positive or negative then the T-value would be zero and no ranks 
would be associated with the least frequent sign and T = 0.  
 Like the Wilcoxon signed-rank test, a unique aspect of this test is that a certain 
amount of data may be ignored. If a difference is zero, there is no measurable 
difference in either the positive or negative direction; therefore, a sign cannot be 
assigned. Thus, data associated with no differences are eliminated and the number of 
pairs (n) is reduced appropriately. To illustrate this point, note the example in Table 
21.6. In this case n is reduced from 10 pairs to n = 8 pairs, because two of the results 
have zero differences. Also note that the least frequent sign was a negative, thus the 
T-value is calculated by summing only those rank scores with negative differences. 
The hypotheses for the Wilcoxon matched-pairs test are not concerned with mean 
differences, as seen with the t-test (where the null hypothesis was μd = 0) and stated 
as follows: 
 
  H0: No difference between pre- and post-measurements 
  H1: Difference between pre- and post-measurements 
 
The same calculations use for the Wilcoxon Signed-rank test (Eqs. 21.5 and 21.6) are 
used for this pair-wise comparison test.  The expected T-value or E(T) is the 
anticipated result if there was no difference between the pre- and post-measurements.  
 

4
1)+n(n = E(T)       or          

2
1  

2
1)+n(n = E(T) ⋅  

 
The test statistic once again involves a numerator that compares the difference 
between an expected value and an observed result, in this case the T-value: 
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24
1)+1)(2n+n(n

E(T) - T =z  

 
As with previous equations, if the observed and expected values are identical the 
numerator would be zero and the z-value would be zero. As the difference increases 
the z-value increases until it reaches a point of statistical significance with a given 
Type I error rate. In this procedure the decision rule is with a predetermined α, to 
reject H0 if z is greater than z(α/2) from the normal standardized distribution (Table 
B2, Appendix B). For the example presented in Table 21.6 the decision rule would be, 
with α = 0.05, reject H0 if z > 1.96 and the computations would be as follows: 
 

18 = 
4

(8)(9) = E(T)  

 

1.68- = 
51

-12 = 

24
1)+8(9)(2(8)

18 - 6 =z  

 
The decision is with z < 1.96, we cannot reject H0 and we are unable to find a 
significant difference between pre- and post-measurements. Note that if we used the 
ranks associated “most frequent sign”, in this case the negative signs, we would get 
the same z-value, only positive (+1.68). Using Table B2 in Appendix B, the p-value to 
the extreme of 1.68 would be 0.093 (2 × 0.5000 − 0.4535). 
 
Sign Test for Paired Data 
 
 The sign test is a second method for determining significant differences between 
paired observations and like the previous one-sample sign test is based on the 
binomial distribution. It is among the simplest of all nonparametric procedures. 
Similar to the Wilcoxon test, differences are considered and any pairs with zero 
differences are dropped, and the n of the sample is reduced. A table for the pairs is 
constructed and only the sign (+ or −) is considered. Using the same example 
presented for the Wilcoxon test we find signs listed in Table 21.7. If there are no 
significant differences between the before and after measurements we would expect 
half the numbers to be positive (+) and half to be negative (−). Thus p(+) = 0.50 and 
p(−) = 0.50. If there was no significant difference between the before-and-after 
measurements, the null hypotheses would be that the proportion of positive and 
negative signs would be equal. 
 
 H0: No difference between measurement  or H0: p(+) = 0.50 
 H1: Difference between measurements exists  H1: p(+) ≠ 0.50 
 
The more the proportion of (+)s or (−)s differ from 0.50, the more likely that there is a 
 



Chapter 21 578

Table 21.7 Sample Data for a Sign Test 

Before After d Sign 
81 86 +5 + 
81 93 +12 + 
79 74 −4 −
80 80 0 0 
74 76 +2 + 
78 83 +5 + 
90 91 +1 + 
95 95 0 0 
68 72 +4 + 
75 74 −1 − 

 
 
significant difference and that the difference is not due to random error alone.  
 For sample sizes less than 10 the binomial distribution can be used and Eq. 2.12 
would be used to define the probabilities associated with the distribution.  
 

q p 
x

n
 = p(x) x-nx









 

 
Dropping the two zero differences the final number of paired observations is eight. 
What is the probability of six or more positive values out of eight differences, given 
that the probability of a positive value equals 0.50? Probabilities can be calculated 
using the binomial equation as below or taken from Table B16 in Appendix B. 
 

0.1092 = ).500().500(
6

8
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Adding the three probabilities together 
 

0.1444 =  = positives) 5p(>   
 
Thus, there is almost a 15% chance that there will be six or more positive differences 
out of the eight pairs by chance alone. Thus, we cannot reject H0. 
 For 10 or more pairs of observations, we can employ Yates’ correction for 
continuity for the one-sample z-test for proportions (modified from Eq. 15.2): 
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                                          Eq. 21.13 

 
where p is the number of positive outcomes divided by the total number of pairs. In 
this particular case p = 6/8 = 0.75: 
 

0.71 = 
.03130

.1250  .250 = 

8
.50)0.50)(0(

8
1  | .500 .750 |

 =z −−−
 

 
In a normal standardized distribution table (Table B2, Appendix B) the area below the 
point where z = 0.71 is 0.7611 (0.5000 + 0.2611). Thus, the probability of being 
above z = 0.71 is 0.2389 and therefore not significant. 
 
Kruskal-Wallis Test 
 
 Much as the F-test is an extension of the t-test, Kruskal-Wallis is an equivalent 
nonparametric extension or generalization of the Mann-Whitney test for more than 
two levels of an independent discrete variable. This test is an alternative to the one-
way ANOVA (Chapter 10) and looks for differences among population medians. It is 
particularly useful when the dependent variable is on an ordinal scale or when the 
assumption of homogeneity of variance is violated. The null hypothesis is actually 
stating that all of the population medians are equal (H0: η1 = η2 = η3 … = ηk). The 
alternative hypothesis is that a difference exists somewhere among the population 
medians (not all η's are equal) or more simply stated 
 
   H0: Samples are from the same population 
   H1: Samples are drawn from different populations 
 
Like the Mann-Whitney test, data are ranked and rank sums calculated, then a new 
statistical formula is applied to the summed ranks. 
 

Level 1 Rank Level 2 Rank ... Level k Rank 
d11 R11 d21 R21 ... dk1 Rk1 
d12 R12 d22 R22 ... dk2 Rk2 
... ... ... ... ... ... ... 
d1j R1j d2j R2j ... dkj Rkj 

 R1j  R2j   Rkj 
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Table 21.8 Data for a Kruskal-Wallis Example 

Instrument A  Instrument B  Instrument C 
Assay Rank  Assay Rank  Assay Rank 
12.12 8  12.47 14  12.20 10 
13.03 18  13.95 21  11.23 1 
11.97 7  12.75 16  11.28 2 
11.53 3  12.21 11  12.89 17 
11.82 6  13.32 19  12.46 13 
11.75 5  13.60 20  12.56 15 
12.25 12     11.69 4 
12.16 9       
 = 68   101   62 

 
 
For the Kruskal-Wallis test the formula for the test statistic is: 
 

1)+(N 3  
n

)R(
 

1)+N(N
12 = H

j

2
ij −













 
                  Eq. 21.14 

 
The middle section of the equation involves the squaring of the individual sum of 
ranks for each of the k levels of the independent variable, dividing those by their 
respective number of observations and then summing these k results. The decision 
rule in this test is to compare the calculated Kruskal-Wallis H-statistic with a χ2-
critical value from Table B15 in Appendix B. The decision rule is:  
 

with α = 0.05, reject H0, if H > χ2
k-1 (0.95). 

 
The degrees of freedom is based on the number of levels of the discrete independent 
variable minus one for bias (K − 1). 

 For an example of the Kruskal-Wallis test, assume that three instruments located 
in different laboratories were compared to determine if all three instruments could be 
used for the same assay (Table 21.8). Is there a significant difference based on the 
results (mg/tablet) based on the sample results presented in Table 21.8? The 
hypotheses are: 
 
   H0: Samples are from the same population (ηA = ηB = ηC) 
   H1: Samples are drawn from different populations 
 
With three discrete levels in our independent variable, the number of degrees of 
freedom is two and χ2

2 equals 5.99. The calculations are as follows: 
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7.52 = 66  549.1) + 1700.2 + 50.026(578. = H −  

 
The decision in this case, with H > 5.99, is to reject H0 and conclude that there is a 
significant difference among the three pieces of equipment and they are not equal in 
their assay results. The p-value could be determined using Excel function 
(CHISQ.DIST.RT). In this case a probability of a chi square statistic of 7.52 with 
two degrees of freedom would be 0.023, well less than the acceptable Type I error of 
0.05. 
 Some statisticians (e.g., Zar, p. 215) recommend a correction for ties (sharing of 
the same ranks) in the data, especially when there are a large number of such ties. 
This correction factor is: 
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For example, assume there were four sets of pair ties, and three sets of triplicate ties 
are: 
 

[ ] [ ]3)3(32)2(4 33 −+−  
 
N equals the total number of observations. In this particular example, the correction 
would be as follows:  
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.98960 = .01040  1 = 
9240
96  1 = C −−  

 
The corrected H statistic (H') is: 
 

C
H = H ′                                                  Eq. 21.16 
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since the denominator will be less than 1, this correction will give a slightly higher 
value than the original H statistic. The decision rule is to reject H0, if H' is greater 
than χ2

K-1(1 − α), which is the chi square value from Table B15. In the example above 
there were no ties, but assume in another example the H-value was 5.00 for three 
levels of the independent variable and the above scenario of four sets of pair and three 
sets of triplicate ties actually occurred. In this case the H' would be: 
 

05.5 = 
.98960

00.5 = H ′  

 
In most cases the adjustment is negligible. Unlike Yates corrections, which produce a 
more conservative test statistic, this correction for ties produced a larger number more 
likely to find a significant difference. Thus, the correction for ties leads to a less 
conservative result than would be expected with the original H-statistic.  
 
 Post Hoc Comparisons Using Kruskal-Wallis 
 

The Kruskal-Wallis post hoc comparison is a parallel to the Tukey test (Chapter 
11) and uses the q-statistic for pair-wise differences between ranked sums. In this test, 
the numerator is the difference between the two sums of ranks (ΣRij) and the 
denominator represents is a new standard error term based on the sample size and 
number of levels in the independent variable. For equal numbers of observations per 
k-levels of the independent variable, the formula is as follows: 
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=                                   Eq. 21.17 

 
Since only pair-wise comparisons can be performed, RA is the sum of the ranks for the 
first level and RB is the sum of the ranks for the second level of the independent 
variable being compared. If the cell sizes are not equal the formula is adjusted as 
follows: 
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It can be further modified to correct for ties 
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where: 
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i

3
i )tt(T                                     Eq. 21.20 

 
To illustrate this test, consider the significant results identified with the previous 
Kruskal-Wallis test evaluating the results produced by three analytical instruments, 
where the sums of ranks and n’s were as follows: 
 

Instrument ΣR n 
A 68 8 
B 101 6 
C 62 7 
 N = 21 

 
Since the sample sizes differ per instrument and there were no tied ranks, Eq. 21.18 
will be used for the three possible pair-wise comparisons. Comparing Instrument A 
and B, the result for this post hoc procedure is: 
 

85.9
351.3
33
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The interpretation of significance uses the same procedure discussed for the q-statistic 
in Chapter 11. If q > qα,k,N-k of q < −qα,k,N-k from Table B10 (Appendix B), reject the 
hypothesis of no difference between the two levels being compared. The results of all 
three pair-wise comparisons are presented in Table 21.9. 
 
Mood’s Median Test 
 

A second nonparametric alternative to the one-way analysis of variance would be 
Mood’s median test, sometimes referred to as the sign scores test or simply the 
median test. It is similar to the Kruskal-Wallis test where the null hypothesis is that 
 
 

Table 21.9 Results of Kruskal-Wallis Post Hoc Comparisons 

Pairing q-statistic Critical Value Results 

AR  − BR  −9.85 3.61 Significant 

AR  − CR  1.87 3.61  

BR  − CR  11.30 3.61 Significant 
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population median are the same for each level of the independent variable (H0: η1 = η2 
= η3 … = ηk). The Mood’s test is less powerful than the Kruskal-Wallis and will 
usually produce narrower confidence intervals. However it is more robust against 
outliers (Chapter 23).  

Similar to the two-sample sign test, a contingency table is created with each level 
of the independent variable representing a column and the two rows (one for the 
number of results equal to or less than the grand median for all the samples and the 
second for the number of results greater than the grand median (H, Greek capital 
letter for eta, η).  

 
 Level 1 Level 2 Level 3 … Level k Total (R) 
Scores ≤ H n11 n12 n13 … n1k R1 
Scores > H n21 n22 n23 … n2k R2 
Total  n1 n2 n3 .. nk N 

 
Using the margins (Ri’s and ni’s) expected values under independence are calculated 
the same way as discussed in Chapter 16, Eq. 16.6). For example, the expected value 
for the upper left corner of the contingency table would be: 
 

N
)n)(R()n(E 11

11 =  

 
Using the observed data, above and below the grand median, and the expected values 
under the assumption all levels of the independent variable, it is possible to evaluate 
using the chi square statistic (Eq. 16.2) and evaluated for K − 1 degrees of freedom: 
 

E
)E(O

 =  
2

2 −
χ  

 
For example, consider data once again in Table 21.8 comparing the three instruments. 
Using all 21 data points the grand median is 12.21 (H) and the contingency table 
would be: 
 

 Inst. A Inst. B Inst. C Total  
Scores ≤ H 6 1 4 11 
Scores > H 2 5 3 10 
Total  8 6 7 21 

 
The expected values would be: 
 

 Inst. A Inst. B Inst. C Total  
Scores ≤ H 4.19 3.14 3.67 11 
Scores > H 3.81 2.86 3.33 10 
Total  8 6 7 21 
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The chi square statistic is calculated as: 
 

77.4 = 
33.3

)33.33(
 ... +

14.3
)14.31(

+
19.4

)19.46(
 = 

222
2 −−−

χ  

 
Unfortunately the results are not the same as those with the Kruskal-Wallis test. With 
the Mood’s median test we would fail to reject the null hypothesis because our test 
statistic did not exceed the critical value of 5.99. The corresponding p-value would be 
much greater at 0.092 (using Excel as above). The difference could be due to the 
small sample size and the fact that the calculation violates the chi square requirement 
that all expected values equal or exceed five. 
 
Friedman Two-Way Analysis of Variance 
 
 The Friedman procedure can be employed for data meeting the design for a 
randomized block design (Chapter 10), but that fail to conform to the criteria for 
parametric procedures. Somewhat of a misnomer, unlike the two-way ANOVA 
discussed in Chapter 12, this test requires only one observation per treatment-block 
combination. This randomized block design can be considered a nonparametric 
extension of the Wilcoxon matched-pairs test to more than two treatment levels or 
times. The null hypothesis is that the treatment has no effect.  
 
   H0:  No difference in the treatment levels 
   H1: A difference exists in the treatment levels 
 
The summed ranks are used in the following test statistic: 
 

1)+3n(k )R( 
1)+nk(k

12 = 2
j

2
r −χ                         Eq. 21.21 

 
where k represents the number of levels of the independent variable (treatments) and 
n is the total number of rows (blocks). Critical values for small sample sizes (e.g., 
fewer than five blocks or rows) are available (Daniel, 2005). Larger sample sizes can 
be approximated from the standard chi square table for k − 1 degrees of freedom. If 
the calculated χr

2 is greater than the critical χ2 value (Table B15, Appendix B), H0 is 
rejected. 
 First, the treatment effect for the blocking variables is calculated by ranking each 
level of the column variable per row. For example if the column variable consisted of 
four levels, each row for the blocking variable would be ranked and assigned values 
1, 2, 3, and 4 per row. Ties would be averages, similar to previous tests. The data is 
ranked separately for each row. Then the ranks associated with each column are 
summed (Rj) and applied to Eq. 21.21.  
 To illustrate this process, assume we are attempting to determine if there is any 
significant difference among the three formulas. To reduce intersubject variability we 
administer all three formulations to the same subjects (in a randomized order). The 
results are presented in Table 21.10. The hypothesis would be as follows: 
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Table 21.10 Results of Three Formulations Administered 
at Random to Twelve Volunteers 

Subject Formula A Formula B Formula C 

1 125 149 126 
2 128 132 126 
3 131 142 117 
4 119 136 119 
5 130 151 140 
6 121 141 121 
7 129 130 126 
8 133 138 136 
9 135 130 135 

10 123 129 127 
11 120 122 122 
12 125 140 141 

 
 
  H0:  No difference exists among the three formulations 
  H1: A difference exists among the three formulations 
 
In this case the decision rule is to reject H0 if the calculated χr

2 is greater than 
χ2

2(0.95), which equals 5.99 (note that n equals 12, which is large enough to use the 
critical value from the chi square table). The degrees of freedom for the chi square 
value based on k − 1 treatment levels. The ranking of the data is presented in Table 
21.11 where the responses for each subject (block) are ranked independently of all 
other subjects. Finally the ranks are summed for each of the treatment levels 
(columns) and presented at the bottom of Table 21.11. The computation of the χr

2 is:  
 

)4)(123( ] )22()5.32(+)5.17[( 
)4)(3(12

12 = 2222
r −+χ  

 
81.9 = 144  )5.1846(0.0833)( = 2

r −χ  
 
Therefore, with the calculated χr

2 greater than 5.99 we would reject H0 and assume 
that there is a significant difference among formulations A, B, and C. Using the Excel 
function CHISQ.DIST.RT it is possible to determine the probability of a chi square 
statistic of 9.81 with two degrees of freedom as 0.007, well less than the acceptable 
Type I error of 0.05. 
 
Spearman Rank-Order Correlation 
 

A rank correlation coefficient is a special type of bivariate correlation coefficient 
for relating two ordinal scaled variables. The Spearman rank-order correlation (also 
referred to as Spearman rho) is an example of a rank correlation coefficient. Similar to 
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Table 21.11 Example of the Freidman ANOVA for Data in Table 21.10 

 Formula A Formula B Formula C 

Subject Data Rank Data Rank Data Rank 
1 125 1 149 3 126 2 
2 128 2 132 3 126 1 
3 131 2 142 3 117 1 
4 119 1.5 136 3 119 1.5 
5 130 1 151 3 140 2 
6 121 1.5 141 3 121 1.5 
7 129 2 130 3 126 1 
8 133 1 138 3 136 2 
9 135 2.5 130 1 135 2.5 

10 123 1 129 3 127 2 
11 120 1 122 2.5 122 2.5 
12 125 1 140 2 141 3 
 =  17.5  32.5  22 

 
 

other nonparametric tests, this procedure ranks the observations, but each variable (x 
and y) is ranked individually and then the difference between the two ranks becomes 
part of the test statistic. As seen in the following example, a table (similar to Table 
21.12) is created and the sum of the differences squared is inserted into the following 
formula: 
 

nn

)d6(  1 = 
3

2

−


−ρ                                             Eq. 21.22 

 
Unlike the correlation coefficient, which is concerned with the means for both the x 
and y variables, here the investigator is interested in the correlation between the 
rankings. 
 To illustrate this process the previous data regarding volunteer heights and 
weights (Table 15.2) will once again be used. The results of the ranking process for 
each continuous variable are presented in Table 21.12. The computation for the 
Spearman rho is: 
 

.8860 = 
210
24  1 = 

6-6

6(4)  1 
n-n

)d6(  1= 
33

2
−−=


−ρ  

 
A perfect positive or a perfect negative correlation will both produce a d2 = 0; 
therefore, the result will always be a positive number. Thus, this procedure does not 
indicate the direction of the relationship. However, because the Spearman rho is used 
for small data sets, information can be quickly plotted on graph paper and the 
resulting scatter plot will indicate if the correlation is positive or negative. If the two 
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Table 21.12 Sample Data for Spearman Correlation 

 Observed Ranked   

Subject Wgt. Hgt. Wgt. Hgt. D D2 

1 96.0 1.88 5 6 −1 1 
2 77.7 1.80 2 3 −1 1 
3 100.9 1.85 6 5  1 1 
4 79.0 1.77 3 2  1 1 
5 73.0 1.73 1 1  0 0 
6 84.5 1.83 4 4  0 0 

    d2 = 4 

 
 
continuous variables are normally distributed, the Pearson’s correlation coefficient is 
more powerful than the test for Spearman’s rank correlation. Spearman’s statistic is 
useful when one of the variables is not normally distributed, if ordinal scales are 
involved, or if the sample sizes are very small. 
 
Kendall’s Coefficient of Concordance 
 

Kendall’s coefficient of concordance is another nonparametric procedure for 
comparing two or more ordinal variables. Data is ranked for each variable and the 
strength of the agreement between variables is assessed based on a chi square 
distribution. The test statistic is:  
 

12
)nn(M

n
)R(

R
W

32

2
i2

i

−

−
=
 

                                    Eq. 21.23 

 
where M in the number of ranked variables and n is the number of observations for 
each variable. This coefficient can also be used to evaluation the agreement among 
two or more evaluators or raters (see interrated reliability in Chapter 17). Kendall’s 
tau tests (Chapter 17) could also be used for rank-order correlations. However, it is 
felt that the Spearman correlation is a better procedure (Zar, p .398) and for a larger n, 
Spearman is easier to calculate. More information about these latter tests can be found 
in Bradley (1968). 
 
Theil’s Incomplete Method  
 
 As discussed in Chapter 14, linear regression models assume that the dependent 
variable is normally distributed. If the y-variable is not normally distributed, several 
nonparametric approaches can be used to fit a straight line through the set of data 
points. Possibly the simplest method is Theil’s “incomplete” method. 
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 As with most nonparametric procedures, the first step is to rank the points in 
ascending order for the values of x. If the number of points is odd, the middle point 
(the median) is deleted, thus creating an even number of data points that is required 
for the test. Data points are then paired based on their order (the smallest with the 
smallest above the median, the second smallest with second smallest above the 
median) until the last pairing represents the largest x-value below the median with the 
overall largest x-value. 
 For any pair of points, where xj > xi, the slope, bij, of a straight line joining the 
two points can be calculated as follows: 
 

)xx(

)yy(
 = b

ij

ij
ij −

−
                                            Eq. 21.24 

 
These paired slope estimates are ranked in ascending order and the median value 
becomes the estimated slope of the straight line that best fits all the data points. This 
estimated value of b is inserted into the straight line equation (y = a + bx) for each 
data point and each corresponding intercept is calculated (a = y − bx) for each line. 
These intercepts are then arranged in ascending order and the median value is used as 
the best estimate of the intercept. 
 As an example, consider the following. During an early Phase I clinical trial of a 
new therapeutic agent the following AUCs (areas under the curve) were observed at 
different dosages of the formulation. The data is already rank ordered by the x-
variable. 
 

 
Dosage (mg) 

AUC 
(hr⋅μg/ml) 

  100  1.07 
  300  5.82 
  600 15.85 
  900 25.18 
1200 33.12 

 
Because there are an odd number of measurements (n = 5) the median value is 
removed from the database: 
 

Point Dosage AUC  
1   100  1.07 
2   300  5.82 
   600 15.85 
3   900 25.18 
4 1200 33.12 

 
The slopes of the two lines are then calculated by the pairings of points 1 and 3, and 2 
and 4. These slopes are: 
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0301.0 = 
800

11.24 = 
100  900

07.1  18.25=b 31 −
−  

 

0303.0 = 
090
3.27 = 

3001200
2.85  .1233=b 42 −

−  

 
The median slope (b) is the average of the two slopes (0.0302). This measure is then 
placed in the formula for a straight line and the intercept is calculated for all three 
pairings. 
 

bx-y = a  
 

95.1 = )100)(302.00(  07.1 = a1 −−  
 

42.3 = )300)(0302.0(  2.85 = a2 −−  
 

00.2 = )900)(0302.0(  81.25 = a3 −−  
 

12.3 = )1200)(0302.0(  12.33 = a4 −−  
 

The new intercept is the median for these four calculations, which is the average of 
the third and fourth ranked values: 
 

65.2 = 
2

)12.3( + )00.2( = (a) intercept Median −
−−  

 
These results are slightly different from the slope (0.0299) and intercept (−2.33) if 
calculated using a traditional linear regression model. 
 Theil’s method offers three advantages over traditional regression analysis: 1) it 
does not assume that errors are solely in the y-direction; 2) it does not assume that the 
populations for either the x- or y-variables are normally distributed; and 3) it is not 
affected by extreme values (outliers). With respect to the last point, in the traditional 
least-squares calculation, an outlier might carry more weight than the other points and 
this is avoided with Theil’s incomplete method. 
 
Kolmogorov-Smirnov Goodness-of-Fit Test  
 

The Kolmogorov-Smirnov test (K-S test) is a nonparametric alternative to the chi 
square goodness-of-fit test (Chapter 16) when smaller sample sizes are involved. The 
test is named for two Russian mathematicians Andrei Nikolaevich Kolmogorov and 
N.V. Smirnov (Salsburg, pp. 163-164). These individuals created two similar tests 
during the 1930s. Smirnov’s work focused on the two-sample case to determine if the 
distributions for two samples were taken from the same population. This is sometimes 
referred to as the Kolmogorov-Smirnov two-sample test. A.N. Kolmogorov’s work 
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addressed the one-sample case and the determination if the sample data was 
distributed according to the expectations of the population distribution.  

The test is referred to as the Kolmogorov-Smirnov one-sample test or 
Kolmogorov goodness-of-fit test.  This one-sample K-S test can be used to decide if 
the distribution of sample data comes from a population with a specific distribution 
(i.e., normal or skewed distribution). Two cumulative distribution functions are 
compared to determine if there is a significant difference between them. Distribution 
functions are compared for given values of x on both distributions. The first is the 
distribution of interest where the probability of a random value being equal to or less 
than x is defined as F0(x). Sample data are collected and this second observed or 
empirical distribution function, S(x), is the best estimate of the distribution F(x) 
from which the sample was taken. The magnitude of the difference between these two 
functions is used to determine where H0 should be rejected. The hypotheses for these 
would be: 
 
 H0: F(x) = F0(x) for all values of x 

(the data follow a specified distribution) 
 H1: F(x) ≠ F0(x) for at least one value of x 

(the data do not follow the specified distribution) 
 
The sample distribution function S(x), being the best estimate of F(x), is used to 
determine the cumulative probability function for any given value of x: 
 

n
xnsobservatiosampleofnumber

)x(S
≤

=                  Eq. 21.25 

 
Similarly, the probabilities F0(x) are calculated for the same points (x) of the proposed 
distribution to which the sample is being compared. For a two-sided test, the test 
statistic is: 
 

)x(F)x(SsupD 0−=                                Eq. 21.26 
 
Where sup is the supremum value or that point where the absolute difference is 
greatest. If the two distributions are presented graphically, D is the greatest vertical 
difference between S(x) and F0(x). The D-value is compared to the critical values 
presented in Table B18 in Appendix B. If D exceeds the critical value based on the 
number of sample observations, there is a significant difference between the two 
distributions and H0 is rejected. 
 As an example, ten samples are taken from the batch or a particular 
pharmaceutical product and assayed. The results, reported as percent label claim, are 
101, 93, 97, 100, 109,102, 100, 99, 91, and 105 percent. Based on historical data it is 
assumed that a batch of this product is normally distributed with a mean of 100% 
label claim and a standard deviation of 6%. Does the sample come from our expected 
population (have distribution characteristics of a batch of this drug)? If both the 
population batch and sample are expected to be normally distributed we can use Eq. 
6.3 to estimate the z-value for any percent label claim and use Table B2 in Appendix 
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Table 21.13 Comparison of Sample Data to Expected Population Distribution 

  F0(x) S(x)  
% LC z-value p ≤ %LC P ≤ %LC |S(x) − F0(x)| 

90 −1.667 0.048   
91 −1.500 0.067 0.100 0.033 
92 −1.333 0.091   
93 −1.167 0.122 0.200 0.078 
94 −1.000 0.159   
95 −0.833 0.202   
96 −0.667 0.252   
97 −0.500 0.309 0.300 0.009 
98 −0.333 0.369   
99 −0.167 0.434 0.400 0.034 

100 0.000 0.500 0.600 0.100 
101 0.167 0.566 0.700 0.134 
102 0.333 0.631 0.800 0.169 
103 0.500 0.691   
104 0.667 0.748   
105 0.833 0.798 0.900 0.102 
106 1.000 0.841   
107 1.167 0.878   
108 1.333 0.909   
109 1.500 0.933 1.000 0.067 
110 1.667 0.952   

 
 
B to determine the proportion of the results that should be below or equal to that point 
on the curve. The S(x) is calculated using Eq. 21.25 for the results of the ten samples. 
These results are presented in Table 21.13. In this example the largest difference (the 
supremum) is: 
 

169.0631.0800.0supD =−=  
 
Using Table B18, D is less than the critical value of 0.409; therefore, we fail to reject 
the null hypothesis and assume our sample data comes from the same distribution we 
would expect for our batch of drug. This result can be graphically represented as seen 
in Figure 21.1. 

The previous example assumed a normal distribution. One advantage of the K-S 
test is that it does not depend on the underlying cumulative distribution function being 
tested. The chi square goodness-of-fit test depends on an adequate sample size for the 
approximations to be valid and the K-S test does not. Often the K-S test is preferred 
to the chi square for interval data and may be more powerful. However, despite these 
advantages, the test has limitations: 1) it applies to continuous distributions only, 
including ordinal scales; 2) it appears to be more sensitive near the center of the 
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Figure 21.1 Illustration of a comparison between sample and 

predicted population distributions. 

 
distribution and not at the tails; and 4) the entire distribution must be specified. The 
last limitation is the most serious and if the location, scale, and shape of the 
distribution are estimated based on the data, the critical region of the K-S test may no 
longer be valid. Due to this and less sensitivity at the tails of the distribution, some 
statisticians prefer using the Anderson-Darling test, which is discussed below. 

As mentioned, the Kolmogorov-Smirnov two-sample test is available to test if 
two sample sets or two levels of a discrete independent variable come from the same 
distribution (same population). This test is based on the previously mentioned work of 
Smirnov. In this test we have two independent samples from ordinal or higher scales 
and we compare two empirical distributions, F1(x) and F2(x) and the hypotheses are: 
 

H0: F1(x) = F2(x) for all values of x  
  H1: F1(x) ≠ F2(x) for at least one value of x 
 
The best estimates for the population distributions are the sample results, S1(x) and 
S2(x). Calculated similarly to the one-sample case, each S(x) is based on the number 
of observations at a given point and the probability of being equal to or less than that 
value. 

As an example, consider the Mann-Whitney test example previously presented 
comparing a control group to animals receiving atropine and the amount of ACH 
released (Table 21.5). In this particular example there are seven observations in each 
level for a total of 14 results. The data are presented in Table 21.14 where the 
fractions of results being equal to or below each given point are expressed for each 
level of the independent variable and the differences between these fractions are 
presented in the last column. Once again, the supremum (or largest difference) is 
identified and compared to the critical values on Table B19. 
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Table 21.14 Comparison of Two Levels of an Independent Variable Using the 
Kolmogorov-Smirnov Test 

Control Experimental p ≤ F1(x) P ≤ F2(x) |F1(x) − F2(x)| 

0.6067  1/7 0 1/7 
0.7184  2/7 0 2/7 
0.7974  3/7 0 3/7 
0.8762  4/7 0 4/7 
1.0422  5/7 0 5/7 

 1.0475 5/7 1/7 4/7 
 1.0632 5/7 2/7 3/7 
 1.0990 5/7 3/7 2/7 

1.1268  6/7 3/7 3/7 
1.3590  7/7 3/7 4/7 

 1.4411 7/7 4/7 3/7 
 1.6022 7/7 5/7 2/7 
 1.7695 7/7 6/7 1/7 
 2.7831 7/7 7/7 0 

 
 

)x(F)x(FsupD 21 −=                                  Eq. 21.27 
 
In this case the D is 5/7 and equals the critical value of 5/7 on Table B19. Since D 
does not exceed the critical value, we would fail to reject the null hypotheses and, 
unlike the Mann-Whitney results, assume the two distributions are the same. 
 
Anderson-Darling Test  
 

The Anderson-Darling test is a modification of the Kolmogorov-Smirnov test to 
determine if sample data came from a population with a specific distribution. Where 
Kolmogorov-Smirnov is distribution-free, the Anderson-Darling test makes use of the 
specific distribution in calculating critical values and is a more sensitive test. The 
Anderson-Darling test can be used as an alternative to the either the chi square or 
Kolmogorov-Smirnov goodness-of-fit tests. The critical values for the Anderson-
Darling test are dependent on the specific distribution that is being tested (e.g., 
normal, lognormal, or logistic distributions). The statistic for the Anderson-Darling is: 
 

[ ] −+
− −+−−−= )P1ln()Pln()1i2(nnA i1ni

12
n                Eq. 21.28 

 
where, in the case of a normal distribution, Pi is the probability that the standard 
normal distribution is less than (xi − X /s). Even though it is possible to calculate the 
Anderson-Darling statistic, it is more convenient to use computer software designed 
to do the calculation. To interpret the results, the larger the An

2, the less likely the data 
comes from a normally distributed population. 
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Runs Tests 
 

A runs test can be used to evaluate the randomness of sample data. As indicated 
in Chapter 8 random sampling is a requirement for all inferential statistics. If a sample 
fails the runs test, it indicates that there are unusual, non-random periods in the order 
with which the sample was collected. It is used in studies where measurements are 
made according to some well defined sequence (either in time or space). A run is 
defined as a sequence of identical events that is preceded and followed by an event of 
a different type, or by nothing at all (in a sequence of events this latter condition 
would apply to the first and last event). There are two different types of runs: 1) for 
continuous data a run refers to the values in a consecutively increasing or decreasing 
order; or 2) in the case of dichotomous results a run refers to consecutive data points 
with the same value. In the former case the test addresses whether the average value 
of the measurement is different at different points in the sequence and a run is defined 
dichotomously as a series of increasing values or decreasing values. The number of 
increasing values or decreasing values is defined as the length of the run. If the data 
set is random, the probability that the (n + 1)th value is larger or smaller than the nth 
value will follow a binomial distribution.  

As an example of a dichotomous outcome and to illustrate defining a run as the 
number of consecutive identical results, we could record the results for a series of 
coin tosses. A run would be consecutive heads or consecutive tails. Assume the result 
of 20 tosses is as follows: 

 
HHTTTHTHHHHTTHTTTHTH 

 
In this case, the first run is two heads, followed by a second run of three tails, 
followed by a run of one head, etc. Using spacing we can see that our 20 tosses 
represent 11 runs: 
 

HH   TTT   H   T   HHHH   TT   H   TTT   H  T   H 
 
The statistical test will be a determination if the outcome of 11 runs is acceptable for a 
random set of data or if 11 runs are too few or too many runs for a random process. 
For a second example, assume ten volunteers in a clinical trial are assigned to either a 
control or experimental group. We would hope that the assignment is at random; 
however, if there are only two runs based on the sequence within which the 
volunteers were enrolled (CCCCC and EEEEE) one must question the randomization 
process since the number of runs is so small. Similarly randomization would be 
questionable if there were 10 runs (C E C E C E C E C E). Both scenarios appear to 
involve systematic assignment patterns, not random assignment. 

Such runs tests could be used in quality control procedures (Chapter 7) where the 
sequential results are recorded as above or below the target value or in regression 
analysis (Chapter 14) where the residuals about the regression line would be expected 
to be above or below the line-of-best fit at random. In the latter case too few or too 
many runs might indicate that the relationship is not linear. 
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 A one-sample runs test is illustrated by the previous coin-tossing experiment 
i.e., where we are considering whether a sequence of events is the result of a random 
process. In this case the hypotheses are: 
 

H0: The pattern of occurrence is determined by a random process 
H1: The pattern of occurrences is not random  

 
To test the null hypothesis, observations are recorded for two mutually exclusive 
outcomes; N is the total sample size, n1 is the number of observations for the first 
type, and n2 is the number of observations for the second type. The test statistic is r, 
the total number of runs. Using our previous example of coin tosses the results would 
be: N = 20, n1 = 10 (heads), n2 = 10 (tails) and r = 11. There are several formulas for 
runs test in the literature; we will use the simple approach of referring to a table of 
critical values for the number of runs, based on the sample size. This table developed 
by Swed and Eisenbar at the University of Wisconsin is presented as Table B20 in 
Appendix B. Using this table, if the number of runs exceeds the number in the fourth 
column in each section or is less than the number in the third column in each section, 
the H0 is rejected. Note that this is a two-tailed test and that modifications can be 
made to test for one-tailed tests (Daniel, 1978, pp. 54,55). 

When either n1 or n2 exceeds 20 observations the following formula can be used 
for large samples: 
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The distribution approximates the standard normal distribution in Table B2 in 
Appendix B, and interpretation can be made by rejecting the H0 if the absolute z-value 
exceeds the critical value of z1-α/2. 

For the one-sample runs test for continuous data for ordinal or higher order 
data, a run is a set of consecutive observations that are all either less than or greater 
than a specified value (e.g., mean, median).  It involves no assumptions regarding the 
population distribution parameters. The runs test can be used to determine whether or 
not the data order as it was collected is random and therefore requires no assumptions 
about order. This test can be used to determine if the order of responses above or 
below a specified value, is random. For example, consider 30 sequential results on a 
five-point Likert scale, the mean of which is 3.87.  Each time there is a switch 
between above or below scores there is a new run, in this case 12 runs.  
 

(55) (3) (54) (23) (44455) (2233) (4554) (2) (4) (33) (55545) (3) 
 
Minitab and other computer programs will generate the expected number of runs 
under complete randomness and determine if the difference between the observed and 
expected number of runs is significant. 
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The Wald-Wolfowitz runs test is a nonparametric procedure to test that two 
samples come from the same population (similar to the Mann-Whitney U test) with 
the same distribution. The test evaluates the number of runs to determine if the 
samples come from identical populations: 
 

H0: The two samples come from identically distributed populations 
H1: The two samples are not from identically distributed populations  

 
If there are too few runs (runs in this case being consecutive observations from the 
same level) it suggests that the two samples come from different populations. It is 
assumed that the samples are independent and the dependent variable is measured on 
a continuous scale. 

Once again the test statistic is r for the number of runs presented in both levels of 
the independent variable. The observations from the two samples (or levels of an 
independent variable) are ranked from smallest to largest regardless of level. 
However, it is important to keep track which level the sample represents. For this 
particular test we will use A to denote the first level and B for the second. As an 
example, let us use the data already used for the Mann-Whitney test and presented in 
Table 21.5. In this table the ranking has already been performed, but here we will 
count the runs associated with the control (A) and atropine (B) groups:  
 

0.6067 0.7184 0.7974 0.8762 1.0422 1.0475 1.0632 
A A A A A B B 
       

1.0990 1.1268 1.3590 1.4411 1.6022 1.7695 2.7831 
B A A B B B B 

 
In this case the r = 4 runs (AAAAA BBB AA BBBB) and n1 = 7 and n2 = 7. Using Table 
B20 in Appendix B, it would require fewer than 4 or more than 12 runs to reject the null 
hypothesis that the two samples came from identical populations. Once again the values 
in Table B20 represent a two-tailed test. 
 Unfortunately, runs tests have very little power (Conover, 1999) and in both one-
sample and two-sample cases can be replaced by more powerful nonparametric 
procedures, the K-S goodness-of-fit and Mann-Whitney test. 
 
Range Tests 
 
 Although not really considered nonparametric tests, there are several quick and 
useful tests that can be performed using the range(s) for experimental data. In 
previous chapters, the standard deviation has been used as the most common measure 
of dispersion. For these procedures the whole range (w) of the sample is used (the 
difference between the largest and smallest observation). They are not considered 
nonparametric, because the sample means are involved in the calculations; therefore, 
the populations from which the samples are taken are assumed to be normally 
distributed. 
 The first test is a simple range test, which can be used instead of a one-sample t-
test. In this case the results of a sample are evaluated to determine if it comes from a 
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given population. 
 

H0:  X   = μ0 
H1:  X   ≠ μ0 

 
As with previous tests, a ratio is established with the numerator representing the 
difference between the observed (sample mean, X ) and the expected (hypothesized 
population mean, μ0). The denominator represents a measure of dispersion (the range, 
w). 
 

w
|  X|

 = T 0
I

μ−
                                            Eq. 21.30 

 
The calculated TI is then compared to a critical value presented in Table B21 in 
Appendix B. If the calculated TI is greater than the critical table value, HO is rejected 
and a significant difference is assumed to exist between the sample and hypothesized 
population. As an example, assume that a dissolution test for a specific drug, under 
specific conditions (media, equipment, and paddle speed) is expected to be 75% at ten 
minutes. During one test the following values were observed: 73, 69, 73, 73, 67, and 
76%. With the resultant sample mean of 71.8 and range of 9 (76 − 67). Do these 
results vary significantly from the expected dissolution result (μ0) of 75%? 
 

0.356 = 
9

3.2 = 
9

|75  71.8| = T I
−  

 
The calculated TI of 0.356 does not exceed the critical TI-value of 0.399, therefore the 
null hypothesis cannot be rejected. 
 Similar to the one-sample t-test, a confidence interval can also be constructed 
using the same information and the critical value from Table B21, Appendix B.  
 

(w)T  X = ncv,0 ±μ                                          Eq. 21.31 
 
This interval is equivalent to that previously described as Eq. 7.4: 
 

Error
Standard

    
tCoefficien
yReliabilit

    
mean Sample

Estimated
  =  

mean
Population

×±  

 
Using the same dissolution sample data, we can create a confidence interval for the 
population from which our six tablets were sampled at 10 minutes: 
 

3.59  71.8 = 0.399(9) 71.8 = 0 ±±μ  
 

%75.39<<%68.21 0μ  
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The expected population value of 75% falls within the interval and produces the same 
result: failure to reject the null hypothesis. 
 A second range test, the Lord’s range test, can be used as a parallel to the two-
sample t-test. Here two sample means are compared to determine if they are equal: 
 

H0:  μA = μB 
H1:  μA ≠ μB 

 
Similar to the two-sample t-test a ratio is established with the difference between the 
means in the numerator and the degree of dispersion controlled in the denominator. In 
this case we substitute w1 and w2 for S1 and S2: 
 

2
)w + w(
|X  X|

 = L
21

21 −
                                            Eq. 21.32 

 
Here the calculated L-value is compared to the critical TI-value in Table B21 in 
Appendix B. If the resultant value is greater than the critical value the null hypothesis 
is rejected. In this case it is also assumed that the dispersions are similar for the two 
samples. 
 To illustrate this, consider Problem 4 at the end of Chapter 9. Samples are taken 
from a specific batch of drug and randomly divided into two groups of tablets. One 
group is assayed by the manufacturer’s own quality control laboratories. The second 
group of tablets is sent to a contract laboratory for identical analysis. Is there a 
significant difference between the results generated by the two labs? The means for 
manufacturer’s lab and contact lab were 99.83 and 98.95, respectively. The range of 
observations for the manufacturer’s data is 2.4 (101.1 − 98.7) and the contract lab 
range is 3.6 (101.1 − 97.5). Note first that the dispersions are fairly similar: 2.4 versus 
3.6 and the sample sizes are equal nm = n cl. The critical value from Table B21 for n = 
6 at α = 0.05 is 0.399. The calculation of Lord’s range test is as follows: 
 

2930. = 
3

0.88 = 
2/3.6) + (2.4

|98.95  99.83| = L −  

 
The resultant 0.293 does not exceed the critical value of 0.399; therefore, we fail to 
reject HO of equality and assume that the results are similar for both laboratories. 
These are the same results found in the answer to this problem at the end of Chapter 
9. 
 Another quick test using the ratio of ranges is associated with a test for the 
homogeneity of variance. This can be used to replace the Fmax or Cochran C test, 
discussed in Chapter 10, for comparisons of the spreads of two sets of data. For the 
range test FR is computed using the following formula: 
 

w
w  or  

w
w = F

1

2

2

1
R                                          Equ. 21.33 
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whichever ratio is greater than 1 is compared to the critical value in Table B21, 
Appendix B. The sample size should be equal for both samples and if the computer 
FR-value is greater than the critical table value then the hypothesis of equal 
dispersions is rejected. Using the previous example of the contract laboratory, we can 
test to see if ranges 2.4 and 3.6 represent similar dispersions. 
 

1.5 = 
2.4
3.6 = 

w
w = F

1

2
R  

 
With n = 6 associated with both the numerator and denominator ranges, the critical 
value from Table B21 is 2.8 for a two-tailed test. Because the FR is less than 2.8 we 
fail to reject the hypothesis of equal dispersion. 
 The last use of a range test is involved with outlier tests. This is discussed under 
the Dixon Q test in Chapter 23. 
 
Nonparametric Tests using Minitab® 
 
 Several nonparametric tests are available with Minitab and are initiated from the 
Stats command on the initial menu bar. The first two options are for the one-sample 
sign tests and one-sample Wilcoxon rank test which compare sample data to a 
hypothetical population median and can create confidence intervals when there is 
only one level for an independent variable. The one-sample sign test involves the 
following: 
 

Stat  Nonparametrics  1-Sample Sign… 
 

Options in the menu (Figure 21.2) allow you to create a confidence interval with 
corresponding point estimates (choose “Confidence interval” and set the level, with 
the default at 95%) or perform the one-sample sign test of the median (choose “Test 
median”, set the hypothesized median in the box to the right and choose one-tailed or 
two-tailed test in the dropdown box below the hypothesized median). Results for the 
data presented in Table 21.2 appear in Figure 21.3. The first results are for the sign 
test of the median (two-tailed). The second results represent the 95% confidence 
interval. For the first sign tests results, the reported median and confidence interval 
are based on all twelve data points. As noted in Figure 21.3, the output provides three 
CIs. What we are interested in is the center values, the NLI output (non-linear 
interpolation). In this example, the median is 97.3 with boundaries of the confidence 
interval at 97.6 and 99.8. The hypothesized median of 100% does not fall within these 
limits; therefore, we find the opposite results and would reject the null hypothesis 
with Type I error of 0.05.  

The one-sample Wilcoxon test can be initiated using the following: 
 

Stat  Nonparametrics  1-Sample Wilcoxon… 
 

 



Nonparametric Tests 601

 
Figure 21.2  Options for one-sample sign test with Minitab. 

 
 

 
Figure 21.3  Output for one-sample sign test with Minitab. 
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Figure 21.4  Options for one-sample Wilcoxon test with Minitab. 

 
 

 
Figure 21.5  Output for one-sample Wilcoxon test with Minitab. 

 
 
The options menu (Figure 21.4) is identical to the one-sample sign test and the output 
looks similar (Figure 21.5).The input options allow you to create a confidence interval 
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Figure 21.6  Output for Wilcoxon matched-pairs test with Minitab. 

 
with corresponding point estimates by choosing the “Confidence interval” or perform 
the one-sample Wilxocon test by choosing the “Test median” and setting the 
hypothesized median in the box to the right and using the dropdown menu to choose a 
one-tailed or two-tailed test. The reported median is based on Walsh averages and the 
confidence intervals report data points closest to the requested levels. 
 The one-sample Wilcoxon test can also be used for paired data to calculate the 
Wilcoxon matched-pairs test. This involves some minor numerical manipulation 
using Calc  Calculator; where the “Store results in variable:” will become the 
difference column. This is created in the “Expression:” box by simply subtracting one 
column variable from another. Using Table 21.6 as an example, the “Expression:” for 
column “Delta” is “after – before”. The one-sample Wilcoxon test is then performed 
on the newly created difference column (Delta). An example of the results is 
presented in Figure 21.6 where the hypothesized median was zero difference, the 
Wilcoxon statistic is the sum of the positive signs and is an estimated p-value is 
reported. 
 For dealing with data on two levels of the independent variable there is the 
Mann-Whitney test: 
 

Stat  Nonparametrics  Mann-Whitney… 
 
Unlike previous tests, where each column is a variable, the options menu (Figure 
21.7) requires data to be arranged in two columns. Each column represents one level 
of the independent variable (“First Sample” and “Second Sample”) and the samples 
do not need to be the same lengths (or sizes). This is similar to data arrangement with 
Excel for the two-sample t-test. The default level of confidence is 95%, but can be 
changed and the dropdown menu allows for one-tailed or two-tailed testing. Minitab 
will calculate a confidence interval that is closest to the requested level of confidence. 
In the example output reported for data from Table 21.5 (Figure 21.8) the sample 
sizes and medians for both levels of the independent variable. Minitab reports a point 
estimate eta and a confidence interval. Sometimes symbol for the median is the Greek 
letter eta (η), and the ETA term is used in Minitab reports. The point estimate and 
confidence interval are calculated by a program algorithm. The point estimate is near 
the difference between the two medians (−0.5600). As discussed previously, if zero 
falls within the interval there is no significant difference between the populations. If 
the confidence interval does not include zero then the null hypothesis is rejected. The 
W is the sum for the ranks for the first median reported and the p-value is close to the 



Chapter 21 604

 

 
Figure 21.7  Option menu for Mann-Whitney in Minitab. 

 

 
Figure 21.8  Output report for Mann-Whitney in Minitab. 

 
one calculated previously (0.0182). If there are ties in the rankings, Minitab will make 
a correction similar to the one illustrated for the Wilcoxon test and report the adjusted 
p-value below the unadjusted results. 
  For the parallel to the one-way ANOVA, Minitab has available the Kruskal-
Wallis test: 
 

Stat  Nonparametrics  Kruskal-Wallis… 
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Figure 21.9  Option menu for Kruskal-Wallis in Minitab. 

 

 
Figure 21.10  Output report for Kruskal-Wallis in Minitab. 

 
The input requires only the “Response:” which is the dependent variable and the 
“Factor:” identified as the independent variable (Figure 21.9). The output for Table 
21.8 is presented in Figure 21.10, for each level of the independent variable and 
reports the median, the average rank and an associated z-value. Most important is the 
reporting of the Kruskal-Wallis H-statistic and associated p-value at the bottom. If 
there were tied rankings, the output report would include one additional line at the 
end with adjustments in H-statistic and p-value with the notation “(adjusted for ties)”. 
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Figure 21.11  Option menu for Mood’s median test in Minitab. 

 

 
Figure 21.12  Output report for Mood’s median test in Minitab. 

 
 Mood’s median test is another procedure for evaluating continuous data when 
there are two or more levels to the independent variable. 
 

Stat  Nonparametrics  Mood’s Median Test… 
 
As seen in Figure 21.11, the input is similar to the Kruskal-Wallis, requiring only the 
location of the dependent variable (Response:) The output for Table 21.9 is presented 
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Figure 21.13  Option menu for the Friedman test in Minitab. 

 
in Figure 21.12 for each level of the independent variable; it reports the median, 
number of observations less than or equal to the median, the number of observations 
greater than the median, the interquartile range (Q3-Q1) and a graphic of the 95% 
confidence interval around the median. The upper portion of the output provides the 
chi square statistic and associated p-value.  

The Friedman test can be used as a nonparametric alternative to the complete 
randomized block design. 

 
Stat  Nonparametrics  Friedman… 

 
In the options menu the dependent variable is entered in the “Response:” variable, the 
independent variable as “Treatment:” and the blocking variable as “Blocks:” (Figure 
21.13). The top of the report (Figure 21.14) gives both the Friedman statistics listed as 
S and the p-value. It also offers a correction factor for ties in the ranking lower in the 
report at the estimated medians and sum of ranks for each level of the independent 
variable. 
 For determining the correlation between ordinal sets of data, Minitab has a 
Spearman’s rho option available: 
 

Stat  Tables  Cross tabulation and Chi Square  
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Figure 21.14  Output report for the Friedman test in Minitab. 

 

 
Figure 21.15  Option menus for Spearman’s rho in Minitab. 

 
Here one of the choices under the Other Stats… option is “Correlation coefficients for 
ordinal categories” (Figure 21.15). One dependent variable is moved to the “For 
rows:” variable and one to the “For columns:” variable. With “Correlation coefficient 
for ordinal categories” activated, the data in Table 21.12 would appear in the Minitab 
output in Figure 21.16 with the Spearman’s rho result the same as that calculated by 
hand. 
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Figure 21.16  Output report for Spearman’s rho in Minitab. 

 
 
 The last nonparametric test to be discussed for Minitab is the runs test: 

 
Stat  Nonparametrics  Runs Test… 

 
The options menu for this test (Figure 21.17) requests the column for the variable 
being tested for randomness. The default is above and below the mean, but any value 
could be entered as an alternative. The output is displayed in Figure 21.18 in which 
case the above and below the mean (labeled as K) was selected. The example was 
presented earlier with 30 observations creating 12 runs based on a mean of 3.87. In 
this program a run is consistent numbers above or below the mean (K=3.87). Based 
on a sample size of 30 the expected number of runs would be 14.93. The probability 
of observing 12 runs by chance alone is the p-value 0.239. Therefore we would fail to 
reject the null hypothesis of randomness.  
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Figure 21.17  Option menus for runs test in Minitab. 

 

Figure 21.18  Output report for runs test in Minitab. 
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Example Problems  (Answers are provided in Appendix D) 
 
Use the appropriate nonparametric test to answer all of the following questions. 
 
1. Two groups of physical therapy patients were subjected to two different 

treatment regimens. At the end of the study period, patients were evaluated on 
specific criteria to measure percent of desired range of motion. Do the results 
listed below indicate a significant difference between the two therapies at the 
95% confidence level?  (Repeat of Problem 1, Chapter 9.) 

 
Group 1 Group 2 

78 88 87 75 84 81 
87 91 65 88 71 86 
75 82 80 93 91 89 

   86 79  
 
2. Following training on content uniformity testing, comparisons were made 

between the analytical results of the newly trained chemist with those of a senior 
chemist. Samples of four different drugs (compressed tablets) were selected from 
different batches and assayed by both individuals. The results are presented in 
Table 21.15. (Repeat of Problem 6, Chapter 9.) 

 
3. The absorption of ultraviolet light is compared among three samples. Are there 

any significant differences among Samples A, B, and C (Table 21.16)? 
 
4. Two scales are used to measure certain analytical outcome. Method A is an 

established test instrument, while Method B (which has been developed by the 
researchers) is quicker and easier to complete. Using Spearman’s rho, is there a 
correlation between the two measures (Table 21.17)? 
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Table 21.15 Results of Content Uniformity Testing 

Sample 
Drug, Batch 

New 
Chemist 

Senior 
Chemist 

A,42 99.8 99.9 
A,43 99.6 99.8 
A,44 101.5 100.7 
B,96 99.5 100.1 
B,97 99.2 98.9 

C,112 100.8 101.0 
C,113 98.7 97.9 
D,21 100.1 99.9 
D,22 99.0 99.3 
D,23 99.1 99.2 

 
 

Table 21.16  Results from Ultraviolet Absorption 

Sample A Sample B Sample C 
7.256 7.227 7.287 
7.237 7.240 7.288 
7.229 7.257 7.271 
7.245 7.241 7.269 
7.223 7.267 7.282 

 
 

Table 21.17 Results Analytical Outcomes for Two Methods 
Sample Method A Method B 

1 66 67 
2 77 75 
3 57 57 
4 59 59 
5 70 69 
6 57 59 
7 55 56 
8 53 51 
9 67 68 

10 72 74 

 
 
5. Six healthy male volunteers are randomly assigned to receive a single dose of an 

experimental anticoagulant at various dosages. Using Theil’s incomplete method, 
define the line that best fits these six data points.  
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Subject 

Dose 
(mg) 

Prothrombin 
Time (seconds) 

1 200 20 
2 180 18 
3 190 19 
4 220 21 
5 210 19 
6 230 20 

 
6. Thirty volunteers for a clinical trial are to be randomly divided into two groups of 

15 subjects each. Using a random number table the assignments are presented 
below. Using the runs test, was the process successful? 

 
 
 
 
 
 
 
 
 
 
 
7. Repeat Problem 2, Chapter 9 (effectiveness of a bronchodilator) using an 

appropriate nonparametric alternative.  
 
8. Repeat Problem 4, Chapter 9 (comparison of results between two laboratories) 

using an appropriate nonparametric alternative. 
 
9. Repeat Problem 3, Chapter 10 (comparison of results from four different 

laboratories) using an appropriate nonparametric alternative. 
 
10. Repeat Problem 3, Chapter 13 (comparison of two analytical methods) using the 

appropriate nonparametric alternative. 

Experimental Group Control Group 

02 15 23 01 10 20 
05 16 24 03 11 21 
06 18 25 04 13 28 
09 19 26 07 14 29 
12 22 27 08 17 30 

Numbers assigned in order of enrollment, 01 to the 
first volunteer and 30 to the last volunteer. 
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22 
 
Statistical Tests for Equivalence  
 
 
 
 Up to this point, most of the statistical tests we have discussed are concerned 
with null hypotheses stating equality (e.g., H0: μ1 = μ2). These tests were designed to 
identify significant differences and by rejecting the null hypothesis, prove inequality. 
As discussed in Chapter 8, when finding a result that is not statistically significant we 
do not accept the null hypothesis; we simply fail to reject it. The analogy was 
presented of jurisprudence where the jury will render a verdict of “not guilty,” but 
never “innocent” if they failed to prove the accused guilty beyond a reasonable doubt. 
Similarly, if our data fails to show that a statistically significant difference exists, we 
do not prove equivalency. But what if we do want to show equality or at least 
similarity with a certain degree of confidence? 
 To address this topic several tests will be presented that are commonly used for 
bioequivalence testing in pharmacy along with an approach in clinical trials referred 
to as noninferiority studies. In the former case, if we produce a new generic product, 
is it the same as the originator’s product? Are we producing the same product from 
batch to batch, or are there significant variations between batches of our drug 
product? In the latter case, the FDA and other agencies are asking manufacturers to 
prove that their new therapeutic agents are at least as good as existing agents and not 
inferior. The tests presented in this chapter will help answer these questions. 
 
Bioequivalence Testing 
 
 In order for an oral or injectable product to be effective it must reach the site of 
action in a concentration large enough to exert its effect. Bioavailability indicates the 
rate and/or amount of active drug ingredient that is absorbed from the product and 
available at the site of action. Remington: The Science and Practice of Pharmacy 
(Malinowski, p. 995) defines bioequivalence as an indication “that a drug in two or more 
similar dosage forms reaches the general circulation at the same relative rate and the 
same relative extent.” Thus, two drug products are bioequivalent if their bioavailabilities 
are the same and may be used interchangeably for the same therapeutic effect. In 
contrast to previous tests that attempted to prove differences, the objective of most 
bioequivalence statistics is to prove that two dosage forms are the same or at least close 
enough to be considered similar, beyond a reasonable doubt. 
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 The measures of bioavailability are based upon measures of the concentration of 
the drug in the blood and we must assume that there is a direct relationship between the 
concentration of drug we detect in the blood and the concentration of the drug at the site 
of action. The criterion  involve the evaluation of the peak plasma concentration (Cmax), 
the time to reach the peak concentration (Tmax), and/or the area under plasma 
concentration-time curve (AUC). The AUC measures the extent of absorption and the 
amount of drug that is absorbed by the body, and is the parameter most commonly 
evaluated in bioequivalence studies. Many excellent text books deal with the issues 
associated with measuring pharmacokinetic parameters: the extent of bioavailability 
and bioequivalence (Welling and Tse, 1995; Evans, Schentag, and Jusko, 1992; 
Winter, 2010). The purpose of this discussion is to focus solely on the statistical 
manipulation of bioequivalence data. 
 There are three situations requiring bioequivalence testing: a) when a proposed 
marketed dosage form differs significantly from that used in the major clinical trials 
for the product; b) when there are major changes in the manufacturing process for a 
marketed product; and c) when a new generic product is compared to the innovator’s 
marketed product (Benet and Goyan, 1995). Regulatory agencies allow the 
assumption of safety and effectiveness if the pharmaceutical manufacturers can 
demonstrate bioequivalence with their product formulations. 
 
Experimental Designs for Bioequivalence Studies 
 
 Before volunteers are recruited and the actual clinical trial is conducted, an 
insightful and organized study is developed by the principal investigator. As 
discussed in Chapter 1, the first two steps in the statistical process are to identify the 
questions to be answered and the hypotheses to be tested (defined in the study 
objectives). Then the appropriate research design is selected (to be discussed below) 
and the appropriate statistical tests are selected. For in vivo bioavailability studies, the 
FDA requires that the research design identifies the scientific questions to be 
answered, the drugs(s) and dosage form(s) to be tested, the analytical methods used to 
assess the outcomes of treatment, and benefit and risk considerations involving 
human testing (21 Code of Federal Regulations, 320.25(b)). 
 Study protocols should not only include the objectives of the study, the patient 
inclusion and exclusion criteria, the study design, dosing schedules, and physiological 
measures, but also a statistics section describing the sample size, power 
determinations, and the specific analyses that will be performed. These protocols are 
then reviewed by an institutional review board to evaluate the benefit and risk 
considerations for the volunteers. Two types of study designs are generally used for 
comparing the bioavailability parameters for drugs. Each of these designs employs 
statistics or modifications of statistics presented in previous chapters.  
 The first design is a parallel group design, which is illustrated in Figure 22.1. In 
this design, volunteers are assigned to one of two similar groups and each group 
receives only one treatment (either the test drug or the reference standard). In order to 
establish similar groups, volunteers are randomly assigned to one of the two groups 
using a random numbers table as discussed in Chapter 2. For example, assume that 30 
healthy volunteers (15 per group) are required to compare two formulations of a 
particular product. Using a random numbers table, the volunteers (numbered 01 to 30) 
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Group 1 Group 2

Volunteers

Random Assignment

Reference Drug Test Drug

Figure 22.1 Parallel design involving two groups. 

 
Table 22.1 Results of a Random Sample of 30 Volunteers for 
a Clinical Trial 

Group 1  Group 2 

02 15 23  01 10 20 
05 16 24  03 11 21 
06 18 25  04 13 28 
09 19 26  07 14 29 
12 22 27  08 17 30 

 
 
are assigned to one of the two groups (Table 22.1). Because of random assignment to 
the two treatment levels (groups), it is assumed that each set of volunteers is identical 
to the other (e.g., same average weight, average lean body mass, average 
physiological parameters). Therefore, any differences in the bioavailability measures 
are attributable to the drug formulation received. Results from this parallel design can 
be simply evaluated using a two sample t-test (Chapter 9). Also, if more than two 
formulations are involved, the volunteers can be randomly assigned to k treatment 
levels and the one-way analysis of variance can be employed (Chapter 10).  

 In the parallel group design each volunteer receives only one of the formulations 
of a drug. This design can be extremely useful for Phase II and Phase III clinical 
trials. It is easy to conduct and exposes volunteers to risk only once, but cannot 
control for intersubject variability. The design is appropriate when there is an 
anticipated small intersubject variability in response to the drug. To minimize patient 
risk, the parallel group design can be used for studies involving drugs with long 
elimination half-lives and potential toxicity. Also, the design can be employed with ill 
patients or long periods to determine therapeutic response. However, the parallel 
group design is not appropriate for most bioavailability or bioequivalence studies. 
With intersubject variability unaccounted for, this design provides a less precise 
method for determining bioavailability differences. 
 To overcome some of the disadvantages of the parallel design, a second more 
rigorous approach is the crossover study design. In this design, volunteers are once 
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Volunteers

Random Assignment

Group 1 Group 2
Reference Drug Test Drug

Reference DrugTest Drug

Washout Period

Time

Period 1

Period 2

Figure 22.2 Two-period crossover design for two groups. 

 
again randomly assigned to two groups, but each group receives all the treatments in 
the study. In the case of the two formulations described above, each volunteer would 
receive both treatments. The order in which the volunteers receive the formulations 
would depend on the group to which they were assigned (Figure 22.2). Using the 
same volunteers from our example in Table 22.1, if we employ a crossover study 
design, those subjects randomly assigned to Group 1 (volunteers 02, 05, 06, etc.) will 
first receive the reference drug (R). After an appropriate “washout” period, the same 
volunteers will receive the test drug (T). For those volunteers assigned to Group 2 the 
order of the drugs will be reversed, with the test drug first, followed by the reference 
standard. In this simple two-period crossover study design (referred to as a standard 2 
× 2 crossover design). The subjects in Group 1 receive an RT sequence and those in 
Group 2 a TR sequence. Note that every volunteer will receive both the test and 
reference drug. 
 The washout mentioned above is a predetermined period of time between the two 
treatment periods. It is intended to prevent any carryover of effects from the first 
treatment to the second treatment period. In this type of design, the washout period 
should be long enough for the first treatment to wear off. This washout period could 
be based on the half-life of the drug being evaluated. After five half-lives the drug can 
be considered removed from the body, with approximately 96.9% of the drug 
eliminated. Obviously, if the washout period is not sufficiently long there is a 
carryover effect and the second bioavailability measures will not be independent of 
the first measurements and would violate statistical criteria. Using well designed 
studies it is assumed that the washout period is sufficiently long to prevent any 
carryover effects. 
 In clinical trials, individual volunteers can contribute a large amount of 
variability to pharmacokinetic measures. Thus the crossover design provides a 
method for removing intersubject variability by having individuals serve as their own 
controls. The FDA recommend the crossover design when evaluating 
pharmacokinetic parameters (21 Code of Federal Regulations 320.26(b) and 
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320.27(b)). In addition to having volunteers serving as their own controls and 
reducing intersubject variability, these study designs also require fewer subjects to 
provide the same statistical power because the same volunteers are assessed for each 
treatment level. 
 Results from the crossover design presented in Figure 22.2 could be evaluated 
using either the paired t-test (Chapter 9), a complete randomized block design 
(Chapter 10), or Latin square design (Chapter 12). If more than two formulations are 
involved the volunteers can be randomly assigned to k treatment levels and the 
complete randomized block or Latin square design can be used. 

A third possible research design is a balanced incomplete block design. This 
method overcomes several disadvantages associated with the complete randomized 
block design used in crossover studies. When there are more than two treatment 
levels, the complete crossover design may not be practical since such a design would 
involve an extended period of time, with several washout periods and an increased 
likelihood of volunteers withdrawing from the study. Also, such designs involve a 
larger number of blood draws, which increases the risk to the volunteers. An 
incomplete block design is similar to a complete block design, except not all 
formulations are administered to each block. The design is incomplete if the number 
of treatments for each block is less than the total number of treatments being 
evaluated in the study. Each block, or volunteer, is randomly assigned to a treatment 
sequence and the design is “balanced” if the resulting number of subjects receiving 
each treatment is equal. A complete discussion of this design is presented by Kirk 
(1968). 

Selection of the most appropriate study design (parallel, crossover, or balanced 
incomplete block design) depends on several factors. These include: 1) the objectives 
of the study; 2) the number of treatment levels being compared; 3) characteristics of 
the drug being evaluated; 4) availability of volunteers and anticipated withdrawals; 5) 
inter- and intrasubject variability; 6) duration of the study; and 7) financial resources 
(Chow and Liu, 2000). 
 
Two-Sample t-Test Example 
 
 When pharmaceutical manufacturers and regulatory agencies began studying the 
bioequivalence of drug products, the general approach was to use a simple two-
sample t-test or analysis of variance to evaluate plasma concentration-time curves 
(e.g., Cmax, Tmax, AUC). Since these traditional statistical tests were designed to 
demonstrate differences rather than similarities, they were incorrectly used to 
interpret the early bioequivalence studies. In the 1970s researchers began to note that 
traditional hypothesis tests were not appropriate for evaluating bioequivalence 
(Metzler, 1974).  
 Most of the statistical procedures involved with bioequivalence testing require 
that the data approximate a normality distribution. However, most of the 
bioavailability measures (AUC, tmax, and Cmax) have a tendency to be positively 
skewed. Therefore, a transformation of the data may be required before analysis. The 
log transformation (Chapter 6) on AUC is usually performed to adjust for  the skew to 
the distribution. This log-transformed data is then analyzed using the procedures 
discussed below.   
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Table 22.2 Data from Two Randomly Assigned Groups (AUC in ng⋅hr/ml) 

Acme Chemical 
(New Product) 

Innovator 
(Reference Standard) 

61.3 91.2 80.9 70.8 
71.4 80.1 91.4 87.1 
48.3 54.4 59.8 99.7 
76.8 68.7 70.5 62.6 
60.4 84.9 75.7 85.0 

Mean = 69.75 Mean = 78.35 
S = 13.76 S = 12.79 

 
 
 To illustrate the problems that exist when using some of our previous statistical 
tests, consider the example of a clinical trial comparing Acme Chemical’s new 
generic antihypertensive agent to the innovator’s original product. This would portray 
the third situation cited previously by Benet. We designed a very simple study to 
compare the two formulations of the same chemical entity, by administering them to 
two groups of randomly assigned volunteers. Only ten volunteers were assigned to 
each group. Our primary pharmacokinetic parameter of interest is the AUC 
(ng⋅hr/ml). The results of our in vivo tests are presented in Table 22.2. 
 If we use our traditional two-sample t-test as discussed in Chapter 9, the 
hypotheses would be: 
 

H0: μ1 = μ2 
H1: μ1 ≠ μ2 

 
The decision rule, based on α of 0.05 is to reject H0 if t > t18(0.025) = +2.104 or 
t < −t18(0.025) = −2.104. The statistical analysis using Eq. 9.3 and Eq. 9.6 would be as 
follows: 
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The result is that we fail to reject H0 because the t-value is not to the extreme of the 
critical value of −2.104. Therefore, with 95% confidence, we failed to prove a 
difference between the two formulations. However, at the same time we did not prove 
that the formulations were equal; we only failed to find a difference. 
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 Since in most cases the sample sizes are the same, we can make the following 
substitution for the denominator in Eq. 9.6. However, if we do run into unequal 
sample sizes (n1 ≠ n2) we can substitute the left side of equation for the standard error 
portion in any of the formulas discussed in this chapter. 
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 A potential problem exists with the Type II error in our statistical analysis. As 
discussed in Chapter 8, β is the error of failing to reject H0 (equality) when there is a true 
difference between the formulations we are testing. As shown in Figure 8.5, with smaller 
sample sizes there is a greater likelihood of creating a Type II error. If an unethical 
entrepreneur wished to prove his product was equal to an innovator’s drug, the easiest 
way to accomplish this would be to use very small sample sizes, apply traditional 
statistical methods, fail to reject H0, and conclude that the two products were equivalent. 
To avoid such deceptions, the FDA developed guidelines to ensure adequate power in 
bioequivalence tests (e.g., the 80/20 rule discussed below). 
 
Power in Bioequivalence Tests 
 
 For most bioequivalence studies, the sample size is usually 18 to 24 healthy 
normal volunteers. To detect a clinically important difference (20%), a power 
calculation is often performed prior to the study to determine the number of subjects 
needed to have the desired power (80%). For example, the following is a typical 
statement associated with a proposed protocol: “A sample size of 28 healthy males 
will be enrolled in this study to ensure study completion by at least 24 patients. Based 
on (a previous study cited) a sample size of 20 patients can provide at least 80% 
probability to show that the 90% confidence interval of the mean AUC value for the 
clinical lot of (test drug name) is within ±20% of the reference mean AUC value.” 
Note that the investigators increased the sample size to ensure that there would be 
sufficient power once the data was collected. Also, more than the required number of 
subjects are recruited in anticipation of possible replacements for dropouts. 
 In the previous example we were unable to reject the null hypothesis that μ1 = μ2 
based on 10 volunteers for each product. However, we might ask ourselves, if there 
was a difference between the two formulations, was our sample size large enough to 
detect a difference? In other words, was our statistical test powerful enough to detect 
a desired difference? Let us assume that we want to be able to detect a 10% difference 
from our reference standard (78.35 × 0.10 = 7.84 = δ). Using a formula extracted 
from Zar (2010), the power determination formula would be:  
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where tα/2 is the critical t-value for α = 0.05, n is our sample size per level of our 
discrete independent variable, and the resultant tβ is the t-value associated with our 
Type II error. To determine the power we will need to find the complement (1 − β) of 
Type II error. Using our data we find the following: 
 

96.1  
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)46.176( 2

84.7  t  −≥β  

 

64.096.132.196.1  
89.5
84.7  t  −=−=−≥β  

 
If we used a full table of critical t-values instead of the abbreviated version presented 
in Table B3 in Appendix B (for example, Geigy Scientific Tables, 7th ed., Ciba-Geigy 
Corp., Ardsley, NY, 1974, pp. 32-35) or used an Excel function [TDIST(tβ,df,1tailed) 
in Excel 97-2003 or T.DIST.RT(tβ,df) in Excel 2010], we would find the table 
probability associated with t-values with 18 degrees of freedom at p = 0.25 for t = 
−0.6884 and p = 0.30 for t = −0.5338. Through interpolation, a calculated t-value of 
−0.64 has a probability of 0.27. Using Excel software the p-value would be 0.2651, or 
approximately 0.27. This represents the Type II error. The complement, 0.73 (1 − 
0.27), is the power associated with rejecting H0 (bioequivalence) when in truth H0 is 
false. 
 Let us further assume that we want to have at least 80% power to be able to 
detect a 10% difference between our two sets of tablets. We can modify the above 
formula to identify the appropriate sample size: 
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If we look at the first column of Table B3 in Appendix B, the values listed for the 
various degrees of freedom represent our t-value for a one-tailed test with β = 0.20. In 
this case we would interpolate the t-value to be 0.862 for 18 degrees of freedom. The 
t(1 − α/2) for 18 degrees of freedom is 2.10. Applied to our example: 
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In this case, the sample size we should have used to ensure a power of at least 80%, to 
detect a difference as small as 10%, would have been a minimum of 50 volunteers per 
group.  
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Rules for Bioequivalence 
 
 To control the quality of bioequivalence studies the FDA has considered three 
possible standards: 1) the 75/75 rule; 2) the 80/20 rule; and 3) the ± 20 rule. The 
75/75 rule for bioequivalence requires that bioavailability measures for the test 
product be within 25% of those for the reference product (greater than 75% and less 
than 125%) in at least 75% of the subjects involved in the clinical trials (Federal 
Register, 1978). This rule was easy to apply and compared the relative bioavailability 
by individual subject, removing intersubject variability. The rule was very sensitive 
when the size of the sample was relatively small, but was not valuable as a scientifically 
based decision rule. This 1977 rule was criticized for its poor statistical nature, was 
never finalized, and was finally abandoned in 1980. 

 A more acceptable FDA criterion has focused on preventing too much Type II 
error and requires that manufacturer performs a retrospective assessment of the power 
associated with their bioequivalence studies. In any study, there must be at least an 
80% power to detect a 20% difference. In other words, this 80/20 rule states that if 
the null hypothesis cannot be rejected at the 95% confidence level (1 − α), the sample 
size must be sufficiently large to have a power of at least 80% to detect a 20% 
difference to be detected between the test product and reference standard. (Federal 
Register, 1977). This 20% difference appears to have been an arbitrary selection to 
represent the minimum difference that can be regarded as clinically significant. Once 
again using the previous example, based on a pooled variance of 173.46, a desired 
difference of 20% (in this case 15.67 ng⋅hr/ml, 78.35 × 0.20 = δ), a Type I error rate 
of 0.05, and a Type II error rate of 0.20, the required sample size would be at least 12 
volunteers per group. 
 

37.12)77.8)(41.1()10.2862.0(
)67.15(

)46.173(2n 2
2

≥≥+≥  

 
This seems like a dramatic drop in the number of subjects required (at least 50 for a 
10% difference and only 13 for a 20% difference), but it demonstrates how important 
it is to define the difference the researcher considers to be important (Table 22.3). 
 In this case, even though we have enough power to detect a significant difference 
we still have failed to prove that the null hypothesis is true. Alternative tests are 
needed to work with the data presented. Similar to the approach used in Chapter 9 
presenting the t-test, we will first use a confidence interval approach and then a 
hypothesis testing format to prove that even if there are differences between the new 
product and the reference standard, that difference falls within acceptable limits. 
 The last measure of bioequivalence, the ±20 rule, concerns the average 
bioavailability and states that the test product must be within 20% of the reference 
drug (between 80% and 120%). The ±20 rule appears to be most acceptable to the 
FDA. As will be seen in the following sections the ±20 rule can be tested by use of 
either a confidence interval or two one-tailed t-tests. These two methods are briefly 
introduced for comparisons for one test product to a reference standard. For a more 
in-depth discussion of these tests and more complex bioequivalence tests, readers are 
referred to the excellent text by Chow and Liu (2000).  
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Table 22.3 Sample Size Required to Detect Various Differences with 80% 
Power Where the Reference Standard Mean is 78.35 (Table 21.2) 

Difference (%) Minimum Sample Size 
5 180 

10 45 
15 20 
20 12 
25 8 
30 5 

 
 
Creating Confidence Intervals 
 
 Considering the earlier example of the comparison of our new generic product to 
the innovator’s product, we could write our hypotheses as follows, where the 
innovator’s drug is referred to as the reference standard: 

 
H0: μT = μR 
H1: μT ≠ μR 

 
Here μT represents our new or “test” product and μR the “reference” or innovator’s 
product. An alternative method for writing these hypotheses was seen in Chapter 9 
when we discussed confidence intervals: 
 

H0: μT − μR = 0 
H1: μT − μR ≠ 0 

 
But, as discussed, we cannot prove true equality (δ = 0). Rather we will establish an 
acceptable range and if a confidence interval falls within those limits we can conclude 
that any difference is not therapeutically significant. Using this method for testing 
bioequivalence we create a confidence interval for the population difference, μT − μR, 

based on our sample results, X T − X R. The FDA has used a 90% confidence interval 
(α = 0.10). If the 90% confidence interval falls completely between 0.80 and 1.20, the 
two products are considered bioequivalence (an absolute difference less than 20%). With 
respect to a comparison of a test product to a reference standard, we want the test product 
to fall between 0.80 and 1.20: 

 

20.180.0 RT <−< μμ  

 
As noted earlier in this chapter, pharmacokinetic parameters, such as Cmax and AUC 
often involve log transformations before the data is analyzed to ensure a normal 
distribution. The general formula for such a confidence interval would be: 
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This is almost identical to Eq. 9.4 for the two-sample t-test. Because of formulas 
discussed later in this chapter, we will simplify the formula to replacing the sample 
difference with d and our standard error term with SE: 
 

X  X = d RT −                                                 Eq. 22.5 
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If one thinks of this problem as an ANOVA with ν1 =1 in Chapter 10, the MSW (mean 
square within) from the ANOVA table can be substituted for the Sp

2 term. Also, note 
that we are performing two one-tailed tests with 5% error loaded on each tail (1 − α). 
Also, if the sample sizes are not equal the standard error portion of the equation can 
be rewritten as: 
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Using Eqs. 22.4 through 22.7 we can create a confidence interval based on the same 
units of measure as the original data (e.g., AUC in ng⋅hr/ml). A better approach would 
be to calculate confidence intervals about the observed relative bioavailability 
between the test product and the reference standard; converting the information into 
percentages of the reference standard. With the FDA’s recommendation of at least 
80% bioavailability in order to claim bioequivalence, the ratios of the two products 
are more often statistically evaluated than the differences between the AUCs. 
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This ratio of bioavailabilities between 80 and 120% is an acceptable standard by the FDA 
and pharmaceutical regulatory agencies in most countries. The last step is to create a 
ratio between the change and the reference standard so outcomes can be expressed as 
percent of the reference standard: 
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100%  
X
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R ×                           Eq. 22.9 

 
Finally the resultant confidence interval is expressed as: 
 

LimitUpper <  < LimitLower
R

T
μ
μ

                        Eq. 22.10 

     
What we create is a confidence interval within which we can state with 95% 
confidence where the true population ratio falls based on our sample. 
 Applying these formulas to our previous example (Table 22.2) for Acme 
Chemical’s generic and the innovator’s product, we find the following results: 
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Thus, in this case, with 95% confidence, the true population ratio is between: 
 

%17.102%88.75
R

T <<
μ
μ

 

 
This fails to meet the FDA requirement of falling within the 80% to 120% range. 
Therefore, we would conclude that the two products are not equivalent. 
 
Comparison Using Two One-Sided t-Tests 
 
 The last method involves hypothesis testing to determine if we can satisfy the 
requirements for bioequivalence. As discussed previously, the absolute difference 
between the two products should be less than 20% of the reference standard:  
 

RRT %20 μμμ <−  

 
This method, proposed by Hauck and Anderson (1984), overcomes some of the 
negative aspects of the previous approaches by using two one-sided t-tests to evaluate 
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bioequivalence. In this case we deal with two null hypotheses, which indicate 
outcomes outside of the acceptable differences for bioequivalence: 
 
    H01:  μT − μR ≤ −20% 
    H02:  μT − μR ≥ +20% 
 
The two alternate hypotheses represent outcomes that fall within the extremes: 
 
    H11:  μT − μR > −20% 
     H12:  μT − μR < +20% 
 
Obviously, both of the null hypothesis must be rejected in order to prove: 
 

%120%80 RT <−< μμ  

 
The equations for these two one-tailed tests (TOST) involve two thetas that define the 
“equivalence interval” where θ1 < θ2. In other words, θ2 is always the upper equivalence 
limit and θ1 the lower limit. In the case of equivalency less than 20%, each theta 
represents a 20% difference in the units from which the data was collected: θ2 = +20% 
value and θ1 = −20% value. Schuirmann’s (1987) formulas for calculating the two one-
sided t-tests are: 
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These equations test H01 and H02, respectively. As with past tests of hypotheses, we 
establish a decision rule based on the sample size and a 95% confidence in our 
decision. Our decision rule is with α = 0.05, reject H01 or H02 if t > tdf(1 − α). Each 
hypothesis is tested with a Type I error of 0.05 (α). Traditionally we have tested the 
hypothesis with a total α = 0.05; in the procedure we actually use 1 − 2α rather than 1 − 
α (Westlake, 1988). This corresponds to the 90% confidence intervals discussed in 
the previous section. 
 In this case theta represents our desired detectable difference (δ) and, as discussed 
previously, the MSE or MSW for only two levels of the discrete independent variable (ν1 = 
1) is the same as Sp

2. Therefore, the equations can be rewritten as follows: 
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Using our previous example (Table 22.2) and once again assuming we wish to be able 
to detect a 20% difference for an innovator’s product: 
 

67.15 = .200 35.78 = ×δ  
 
Therefore, δ1 = −15.67; δ2 = +15.67, Sp

2 = 173.46 and our critical value through 
interpolation for t18(1 − α) is 1.73. The decision rule, with α = 0.05, is to reject H01 or 
H02 if either or both t-values exceed 1.73. 
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In this case we were able to reject H02 and prove that the difference was less than 120% 
(μTest − μReference < +20%), but failed to reject H01. We were not able to prove that μTest 
− μReference was greater than 80%. Therefore, similar to our confidence interval in the 
previous section, we are unable to show bioequivalence between Acme’s generic and 
the innovator’s reference standard. 
 
Clinical Equivalence  
 

Superiority and noninferiority studies are similar to equivalence studies. Based 
on the researcher’s objectives clinical trials used to compare a new product to an 
already approved agent could be designed to: 1) test the equivalence of the two 
products (previously discussed); 2) establish the superiority of the new product; or 3) 
show noninferiority of the new product compared to the already approved agent. This 
section will focus primarily on the last type of assessment. 
 
Superiority Studies 
 
 For completeness, a superiority trial is designed to evaluate the response to an 
investigational agent and determine if it is superior to that of a comparative product. 
Superiority studies are the most effective way to establish efficacy, either by showing: 
1) superiority to a placebo (placebo-controlled trial); 2) superiority to an active 
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control; or 3) a dose-response relationship. Thus, the comparator could be either an 
active or placebo control. However, using a placebo control raises serious ethical 
questions, especially if there is an alternative effective therapy available: “In cases 
where an available treatment is known to prevent serious harm, such as death or 
irreversible morbidity in the study population, it is generally inappropriate to use a 
placebo control” (ICH, 1999). In most cases superiority studies could be handled as 
one-tailed two-sample t-tests (Chapter 9) with the hypotheses: 
 

H0:   μT ≤ μC 
H1:   μT > μC 

 
where μT is the response to the new (test) product and μC is the active control (or 
comparator agent). If there is sufficient data to reject the null hypothesis with a 
certain degree of confidence (e.g., 1 − α = 0.95), then the new agent is proven to be 
superior to the comparator. The hypotheses also can be written as a one-tailed 
confidence interval: 
 

H0:   μT − μC ≤ 0 
H1:   μT − μC > 0 

 
If a confidence interval is created using Eq. 9.4 and if all the results are positive (zero 
does not fall within the confidence interval), we can reject the null hypothesis and 
with 95% confidence conclude that the test product is superior to the control. This is 
illustrated in Figure 22.3 as confidence interval A. 
 
 

 
Figure 22.3 Illustrations of various confidence intervals. 
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Noninferiority Studies 
 

Noninferiority is a relatively new term, dating back to the late 1970s. For a while 
in the 1990s the terms equivalence and noninferiority were sometimes used 
interchangeably and both referred to an equivalency test (Wang, 2003). As discussed 
in the first part of this chapter an equivalence trial (or bioequivalence test) is 
intended to show that the difference in the amount of response to two or more 
treatments is clinically unimportant. This difference (previously defined as the 
difference between sample means, Eqs. 22.9 and 22.10) represent equivalence if the 
results fall between the established upper and lower limits : 

 
    H01:  μT − μC ≤ −δ 
    H02:  μT − μC ≥ +δ 
 
    H11:  μT − μC > −δ 
    H12:  μT − μC < +δ 

 
If both null hypotheses are rejected then the following would be proven using this 
approach: 
 

−δ  < μT − μC < +δ 
 
It is virtually impossible to prove that the results from two treatments are exactly 
equivalent (δ = 0). Therefore, as seen in the previous hypotheses, the goal was to 
show that the results differ by no more than a certain amount (e.g., δ  < 10%). This 
acceptable difference is termed the equivalence margin. For equivalence testing, if 
the results from the two treatments differ by more than the equivalence margin in 
either direction, then the assumption of equivalence cannot be proven. The deltas can 
be thought of as the boundaries for an equivalence margin or as clinically acceptable 
differences. So equivalency trials are designed to show that two treatments do not 
differ by more than some predetermined equivalency margin (illustrated as 
confidence interval C in Figure 22.3). Note with confidence interval B in this same 
figure, both the lower and upper limits of the confidence interval extend beyond the 
boundaries of the equivalence margin. Another name for the area between the two 
boundaries is the zone of indifference. For equivalence testing the statistical analysis 
of the difference is based on the two-sided confidence interval. However, as seen 
previously, operationally this testing involves two simultaneous one-sided tests to test 
two null hypotheses that the treatment difference is outside an acceptable limit. In 
most cases, each hypothesis is tested with a 5% Type I error rate, with a resulting 
90% confidence interval. Failure to reject either of the null hypotheses would be 
visually represented by one of the ends of the interval extending beyond its respective 
boundary.  

In contrast to equivalence testing, a noninferiority trial is concerned only with 
the lower limits of the equivalency margin. A simple way to think of noninferiority 
trials is to view them as one-sided equivalency tests. 
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    H01:  μT − μC ≤ −δ 
    H11:  μT − μC > −δ 

 
With a noninferiority trial the primary goal is to prove the alternative hypothesis 

that the investigational agent is not clinically inferior to the comparative agent. These 
studies are intended to show that the effect of a new treatment is not worse than that 
of an active control by more than a specified margin. A confidence interval approach 
can be used to test the outcome for a noninferiority trial. Similar to the previous 
bioequivalence studies, a single one-sided 95% confidence interval is created and if 
the estimated population differences between the two agents (test drug and 
comparator) fall entirely within the positive side of the noninferiority margin (> − δ) 
the null hypothesis is rejected. Any improvement (a positive δ) meets the criteria of 
noninferiority. In Figure 22.3, confidence interval D would represent an unsuccessful 
test, whereas E would be a successful test of noninferiority. In many cases the 
established evidence of effectiveness for an experimental treatment through 
noninferiority studies will be a regulatory requirement for drug approval. So an 
important question is how large is the margin to be clinically insignificant?  

Choosing the δ value is crucial. One possible approach to determine the 
equivalence margin is to base it on a clinical determination of what is considered a 
minimally important effect (Snapinn, 2000). According to the ICH, “this margin is the 
largest difference that can be judged as being clinically acceptable and should be 
smaller than differences observed in superiority trials of the active comparator” (ICH, 
1998). The choice of δ will be based on the purpose for conducting the clinical trial 
and should be clearly stated in the protocol. The selection of δ should provide, at the 
minimum, assurance that difference (μT − μC) has a clinical effect greater than zero. 
Also, the choice of the margin should be independent of any power considerations. 
The sample sizes for these types of studies are very sensitive to the assumed effect of 
the new drug relative to the control. For a discussion of power and sample size see 
Chan (2002). The ICH provides some guidance (E-9 and E-10) on the design and 
analysis of such trials, but does not set specific limits for δ. These require decisions 
by the primary investigator based on sound clinical judgments. The decision on δ 
should always be made on both realistic clinical judgments and sound statistical 
grounds. The decision is made on a study-by-study basis and no rule of thumb applies 
to all clinical situations. 
 A potential problem is the choice of active comparator in these noninferiority 
studies. As mentioned previously the use of a placebo control raises ethical concerns. 
Thus, an active control is usually used. However, the assumption is made that the 
active control is effective. For that reason the comparator should be chosen with care. 
If the comparator is not effective, proving noninferiority will not result in the 
conclusion that the new treatment drug is effective. The ability to distinguish between 
an active and placebo control is assay sensitivity. If the assay sensitivity cannot be 
assumed, a noninferiority study cannot demonstrate the effectiveness of a new agent, 
because assay sensitivity is not measured in a noninferiority trial. Assay sensitivity is 
dependent on the size of the effect one is interested in detecting. Either a 
noninferiority or equivalence trial may have assay sensitivity for an effect of 20% but 
not an effect of 10%. Therefore, it is essential to know the effect of the control drug. 
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Assay sensitivity can be accomplished by using concurrent placebo control or through 
historical evidence. Therefore, sensitivity must be assumed based on historical 
experience with the comparator agent and requires evidence external to the study. The 
ICH guidelines list several factors that can reduce assay sensitivity, including: poor 
patient compliance; poor diagnostic criteria; concomitant medications; excessive 
variability in the measurements; and a biased end-point assessment (ICH 1999). For 
that reason, some studies involve three arms: new test drug, active control, and 
placebo control. Such a study would be optimal because it: 1) assesses assay 
sensitivity; 2) measures the effect of the new drug; and 3) compares the effects of the 
two active treatments (Temple and Ellenberg, 2000). A discussion of the evaluation of 
these three-way studies is presented by Pigeot et al. (2003). 

As an example, consider the following fictitious clinical trial. One hundred and 
twenty newly diagnosed hyperlipidemic patients are randomly assigned to one of two 
legs in a clinical trial; the first group receives StatinA which is on the hospital 
formulary (the comparator agent). The second group receives a newly marketed agent 
(StatinB), which reportedly has a better safety profile. Patients are followed for six 
months. At the end of the study period the changes in total cholesterol levels are 
recorded for each group. The two possible scenarios and their summary statistics are 
presented in Table 22.4. As seen in the table, the average decrease in total cholesterol 
for the comparator product was −40 mg/dl. Prior to the study it was determined that 
the noninferiority for the new product would be based on a less than 10% difference 
compared to the comparator product. Since a negative result is desired, we would not 
want to see a positive result or increase in total cholesterol. Thus, the upper bounds of 
equivalency margin would be a change equal to +4 mg/dl.  

 
    H0:  μStatinB − μStatinA ≥ +4 mg/dl 
    H1:  μStatinB − μStatinA < +4 mg/dl 
 
To evaluate the null hypothesis we will use a one-tailed, two-sample confidence 
interval created by a Student t-test with α = 0.05 (modified from Eq. 9.4).  

 
 

 

Table 22.4 Two Potential Results Involving a Noninferiority Trial 

 StatinA  (C) StatinB (T) Difference (T − C) 

Scenario A    

dX = −40.0 −41.1 1.1 mg/dl lower 

dS = 15.4 20.3  
n = 60 60  

Scenario B    

dX = −40.0 −39.8 0.2 mg/dl higher 

dS = 15.4 7.7  
n = 60 60  
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Figure 22.4 Confidence intervals created by data in Table 22.4. 
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In scenario A, even though the new StatinB performs slightly better than StatinA, it 
fails the test for noninferiority (where Sp

2 = 324.63) because the upper limit is greater 
than +4. 
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However, in scenario B, StatinB on the average did not perform quite as well as the 
comparator StatinA, but it does pass the test for noninferiority (where Sp

2 = 148.23) 
because the upper limit is less than +4: 
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As seen in Figure 22.4 the primary contributing cause for these different results is the 
width of the interval caused by the much greater variance in the StatinB in scenario A. 
This greater variance results in an overall wider interval and failure to have an 
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Change in Total Cholesterol (T-C)

Inferiority
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Chapter 22 634

interval less than +4 mg/dl. Displayed in Figure 22.4 are the 90% confidence intervals 
for both scenarios. 

There are a number of other statistical tests involving rate ratios that can be used 
for the evaluation of differences between treatments (e.g., odds ratio, relative risk, 
hazard ratio). In these cases the same principles apply, except the assessment of “no 
difference” is represented by the value one, not zero. For example, using hazard ratio 
(Chapter 19), if the new treatment is evaluated to be noninferior compared to an 
active control, the object of the trial is to demonstrate the effectiveness of this new 
treatment by demonstrating noninferiority. In this case the hypotheses are: 

 
H0:  HR(T/C) ≥ 1 + δ 
H1:  HR(T/C) < 1 + δ 

 
where δ  > 0 is the noninferiority margin. The null hypothesis is rejected if τ0(δ) is 
less than −1.96 or −2.58 for 95% or 99% confidence, respectively. If the log of the 
hazard ratio is used the hypotheses would be: 
 

H0:   log HR(T/C)  ≥ 1 + δ 
H1:   log HR(T/C) < 1 + δ 

 
and the null hypotheses rejected if log HR(T/C) + 1.96SE[log hr(T/C)] < δ. Both these 
hypotheses are tested at the one-sided 2.5% significance level. In both cases, if H0 is 
rejected, it is possible to conclude that the new treatment is noninferior and no worse 
than the active control within this fixed margin δ.  
 
Dissolution Testing 
 
 Dissolution tests provide an in vitro method to determine if products produced by 
various manufacturers or various batches from the same manufacturer are in compliance 
with compendia or regulatory requirements. For example, the United States 
Pharmacopeia (2011) states that aspirin tablets (C9H8O4) must have “not less than 
90% and not more than 110% of labeled amount of C9H8O4.” In addition, the 
tolerance level for dissolution testing is that “not less than 80% of the labeled amount 
of C9H8O4 is dissolved in 30 minutes.”  
 Dissolution profiles can be used to compare multiple batches, different 
manufacturers, or different production sites to determine if the products are similar 
with respect to percent of drug dissolved over given periods of time. The assumption 
made is that the rate of dissolution and availability will correlate to absorption in the 
gut and eventually similar effects at the site of action. This assumption can be 
significantly enhanced if manufacturers can establish an in vivo-in vitro correlation 
between their dissolution measures and bioavailability outcomes (FDA, 1997, p. 7). 
 Using aspirin tablets as an example, consider the two sets of profiles seen in 
Figure 22.5. All batches meet the dissolution criteria of 80% in 30 minutes, but the 
profiles vary. Are they the same or different enough to consider the batches as not 
equivalent? 
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SUPAC-IR Guidance 
 
 To answer the question of equivalency in dissolution profiles the FDA has 
proposed a guidance for manufacturers issued as “Scale-Up and Post-Approval 
Changes for Immediate Release Solid Oral Dosage Forms” (SUPAC-IR). This 
guidance is designed to provide recommendations for manufacturers submitting new 
drug applications, abbreviated new drug applications and abbreviated antibiotic 
applications to change the process, equipment or production sites following approval 
of their previous drug submissions (Federal Register, 1995). Previous evaluations 
involved single-point dissolution tests (e.g., the previous aspirin monograph). The 
SUPAC-IR guidance can assist manufacturers with changes associated with: 1) scale-
up procedures; 2) site changes in the manufacturing facilities; 3) equipment or process 
changes; and 4) changes in components or composition of the finished dosage form. 
 Under SUPAC-IR there are two factors that can be calculated: 1) a difference 
factor (f1), and 2) a similarity factor (f2). The published formulas are as follows: 
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where n is the number of time points in the dissolution profile, Rt is the percent 
dissolved for the reference standard at each time period, Tt is percent dissolved for the 
test product at the same time period, and log is the logarithm base 10. We will slightly 
rewrite these formulas to remove the negative fractional root terminology: 
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The guidance for equivalency is that the f1-value should be close to 0 (generally 
values less than 15) and the f2-value should be close to 100, with values greater than 
50 ensuring equivalency. If the two dissolution profiles are exactly the same (one 
laying exactly over the second) the f2 value will be 100. As the f2-value gets smaller 
there is a greater difference between the two profiles. An f2 of 50 represents a 10% 
difference, thus the SUPAC-IR guidance requires a calculated f2-value between 50 
and 100 for equivalency. As an example, consider the data presented in Table 22.5 
and Figure 22.5, which show the results of dissolution tests performed on two batches 
of the same drug, one produced with the original equipment used for the product 
NDA application, and the second with newer equipment. Are the following two 
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Figure 22.5 Examples of dissolution profiles. 

 
 
profiles the same (less than a 10% difference) based on the f1 and f2 formulas 
proposed under SUPAC-IR? 
 Several criteria must be met in order to apply the f1 and f2 calculations (FDA, 
1997): 1) test and reference batches should be tested under exactly the same 
conditions, including the same time points; 2) only one time point should be 
considered after 85% dissolution for both batches; and 3) the “percent coefficient of 
variation” (what we have called the relative standard deviation in Chapter 5) at the 
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Table 22.5 Example of Data from Dissolution Tests on Two Drug Batches 

Time (minutes): 15 30 45 60 
 Batch Produced Using Original Equipment 
 63.9 85.9 85.4 93.6 
 42.9 75.8 74.5 87.4 
 58.1 77.3 83.2 86.4 
 62.4 79.3 76.2 79.2 
 52.5 74.5 90.3 94.5 
 59.1 65.1 87.5 86.1 

Mean: 56.48 76.32 82.85 87.87 
SD: 7.74 6.79 6.29 5.61 

RSD: 13.71 8.91 7.59 6.38 
 Batch Produced Using Newer Equipment 
 78.5 85.6 88.4 92.9 
 67.2 72.1 80.2 86.8 
 56.5 80.4 83.1 85.4 
 78.9 85.2 89.8 91.4 
 72.3 84.1 85.4 94.1 
 84.9 72.1 79.0 85.9 

Mean: 73.05 79.92 84.32 89.42 
SD: 10.13 6.33 4.35 3.83 

RSD: 13.87 7.91 5.16 4.28 

 
 
earlier time points should be no more than 20% and at other time points should be no 
more than 10%. The rationale for these criteria is discussed by Shah and colleagues 
(1998).  
 The data presented in Table 22.5 fulfills all three criteria. Therefore, both the f1 
and f2 statistics can be used to evaluate the equivalency of these two types of 
production equipment. To calculate certain values required by the statistics, we can 
create an intermediate table: 
 

Time Rt Tt  Rt − Tt (Rt − Tt)2 
15   56.48   73.05 16.57 274.56 
30   76.32   79.92  3.60   12.96 
45   82.85   84.32  1.47     2.16 
60   87.87   89.42  1.55     2.40 
= 303.52  326.71 23.19 292.08 

 
Using these numbers produces the following results: 
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In this example, f1 is less than 15 and f2 is greater than 50; therefore, we would 
conclude that the two dissolution profiles are not significantly different. 
  
Equivalent Precision 
 
 One last assessment of equivalence is associated with measures of precision. This 
comes from an informational general chapter in the United States Pharmacopeia. The 
author was fortunate to chair the expert committee that prepared <1010> Analytical 
Data – Interpretation and Treatment. One section of this chapter provided guidance 
for assessing if two methods produced equivalent precision by assessing the variances 
of both methods. The procedure involves calculating a 90% confidence interval based 
on an F-ratio for comparing the precision of the two methods. The hypotheses involve 
comparison of a new analytical method to an existing standard:   
 

H0:  σnew = σstandard 
H1: σnew ≠ σstandard 

 
The confidence interval is based on the ratio of the variances to create upper and 
lower limits. 
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                      Eq. 22.20 

 
If the upper limit of the confidence interval for the ratios is less than four, the two 
methods can be considered equivalent.  
 The best estimate of the population variance ratios is the sample variance ratio. 
These ratios are calculated by using F-values from Table B7 in Appendix B. The 
lower limit is the sample variance ratio divided by the F-value fromTable B7 with n1 - 
1 and n2 - 2 as the numerator and denominator degrees of freedom at 1-α = 0.95 at the 
right side of the distribution. The upper limit involves a similar determination, but 
uses the F-value where α = 0.05 at the left side of the distribution. This can be 
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calculated by taking the reciprocal of the F-value with the degrees of freedom 
reversed from the right side 
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These F-values can also be determined using Excel (FINV in Excel 97-2003 or F.INV 
in Excel 2010, probability = 0.05). Thus, the two limits are calculated as follows: 
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As an example of this test for equivalent precision, assays using the current 

method of analysis produced a standard deviation of 0.79. A proposed new method 
analyzing a similar sample from the same batch of product produced a standard 
deviation of 0.84. These results are based on 12 samples using the new method and 
six samples with the current standard method. Do these two tests have similar 
precision? In tabular format the results are:  
 

Method SD Variance n Degrees of Freedom 
New 0.84 0.706 12 11 
Standard 0.79 0.624 6 5 

 
The F-values would be F0.95,11,5 = 4.704 and F0.05,5,11 = 0.213. The ratio for the two 
sample variances would be 1.131 (0.706/0.624). The results would be as follows: 
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In this example the upper limit exceeds four and therefore the precision of the two 
methods is not equivalent. If the sample sizes were larger and the same variances 
observed, the difference might not be significant. For example, if there were 18 
results for the new method and 12 results for the standard procedure, the lower limit 
and upper limit F-values would be 2.685 and 0.372, respectively. The resulting 
confidence interval would be: 
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Thus, as seen with other statistics, sample size can influence the results of the 
evaluation. The larger the sample size, generally the smaller the interval. 
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Example Problems  (Answers are provided in Appendix D) 
 
1. In a clinical trial, data comparing Gigantic Drugs’ new generic product was 

compared with the innovator’s branded antipsychotic; both products contain the 
exact same chemical entity. One subject did not complete the study. The results 
were as follows: 

 

 Innovator Generic 
Mean = 289.7 271.6 

Standard Deviation = 18.1 20.4 
n = 24 23 
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 Use the confidence interval approach and the two one-tailed t-tests to check for 
bioequivalence, assuming there should be less than a 10% difference between the 
two products. 

 
2. Production of a certain product in two different countries (A and B) were 

compared to the manufacturer’s original production site (standard). Dissolution 
data is presented in Table 22.6 and Figure 22.6. Visually it appears that site B has 
a profile closer to the reference standard, but do both of the foreign facilities meet 
the SUPAC-IR guidelines for similarity?  

 
 

Table 22.6  Dissolution Data (percent) 

Time (minutes) Country A Country B Standard 
15 57.3 54.1 49.8 
30 66.4 67.7 70.8 
45 71.9 75.4 80.9 
60 76.4 81.4 86.7 
75 80.4 85.6 90.9 
90 84.6 88.8 93.6 

 
 

 
Figure 22.6 Dissolution profiles for two foreign countries. 
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23 
 
Outlier Tests 
 
 
 
 An outlier is an extreme data point that is significantly different from the 
remaining values in a set of observations. Based on information, either investigational 
or statistical, an outlier value may be removed from the data set before performing an 
inferential test. However, removal of an outlier is discouraged unless the data point 
can be clearly demonstrated to be erroneous. Rodda (1990) provided an excellent 
description of outliers when he portrayed them as “… much like weeds; they are very 
difficult to define and are only called outliers because they are inconsistent with the 
environment in which they are observed.” Outliers can dramatically affect the 
outcome of a statistical analysis. This is especially true if the sample size is small. 
However, we need to use care in our decision-making process to ensure that we 
remove the weed and not a budding piece of data. 
 
Regulatory Considerations 
 
 Outliers are often referred to as aberrant results and have been the source of 
regulatory discussions and guidances. Prior to the introduction of USP Chapter 
<1010> in 2005, there were no compendia guidances on the treatment of outliers, 
except with respect to biological assays presented in USP <111>. This lack of 
guidance or “silence” on the part of USP, was noted in the 1993 case of United States 
versus Barr Laboratories, Inc. (812 F. Supp. 458, 1993). Judge Wolin’s ruling in the 
Barr case pointed out the need for compendia guidance in this area of outliers, as well 
as other analytical measures. USP <1010> attempts to address many of these issues 
(USP, 2011). This USP chapter lists a litany of other synonyms for outlying results, 
including “anomalous, contaminated, discordant, spurious, suspicious or wild 
observations; and flyers, rogues, and mavericks.” 
 In 1998 the FDA focused attention on a similar problem, out-of-specification 
(OOS) test results, and issued a draft guidance (FDA, 1998). In addition to outlier 
tests, the guidance attempts to address retesting, resampling, and averaging of test 
results. This guidance was updated in 2006, but it ignored <1010> and no changes 
were made in the outlier section (FDA, 2006). 
 Similar to other laboratory results, potential outliers must be documented and 
interpreted. Both USP <1010> and the FDA guidance propose a two-phase approach 
to identifying and dealing with outliers. When an outlier is suspected, the first phase 
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is a thorough and systematic laboratory investigation to determine if there is a 
possible assignable cause for the aberrant result. Potential assignable causes include 
“human error, instrumentation error, calculation error, and product or component 
deficiency” (USP, 2011). If one can identify an assignable cause in the first phase, 
then the outlier can be removed and retesting of the same sample (n − 1) or the 
addition of a new sample from the same population is permissible. However, if no 
assignable cause can be identified, then the second phase is to evaluate the potential 
aberrant value using statistical outlier tests as part of the overall outlier investigation. 
When used correctly, the outlier tests described below are valuable statistical tools; 
however, any judgment about the acceptability of data in which outliers are observed 
requires careful interpretation. 
 The term “outlier labeling” refers to an informal recognition of a potential 
aberrant value (often performed visually using graphing procedures discussed in 
Chapter 4). Use of statistical procedures to determine if any value is truly aberrant is 
termed “outlier identification.” Determining the most appropriate outlier test will 
depend on the assumed population distribution and the sample size. 

If, as the result of either thorough investigation or outlier test, a value is removed 
as an outlier, the step is termed an “outlier rejection.” Both the FDA and USP note 
that using an outlier test cannot be the sole means for outlier rejection. Even though 
the outlier tests can be useful as part of the determination of the aberrant nature of a 
data point, the outlier test can never replace the value of a thorough laboratory 
investigation. All data, especially outliers, should be kept for future reference. 
Outliers are not used to calculate the final reportable values, but should be footnoted 
in tables or reports. 
 The author has a simple rule for dealing with potential outliers. Perform the 
intended statistical analysis both with and without the potential outlier(s), which can 
be easily accomplished with computer software. If the results of the analysis are the 
same (rejecting or failing to reject the null hypothesis), the question of whether a 
value is an outlier becomes a moot issue. 
 
Outliers on a Single Continuum 
 
 With both descriptive and inferential statistics it is common to report the center 
and distribution for the sample data. An uncharacteristic observation could be either a 
valid data point that falls to one of the extreme tailing ends of our continuum or due 
to some error in data collection. In the latter case, the point would be considered an 
outlier. Many detectable and undetectable effects could cause such an extreme 
measurement, including: 1) a temporary equipment malfunction; 2) a technician or 
observer misreading the result; 3) an error in data entry; 4) a calculation error; 5) 
contamination; or 6) a very large or small measurement within the extremes of the 
distribution. With respect to the last point, an outlier does not necessarily imply that 
an error has occurred with the experiment, only that an extreme value has occurred. 
Vigilance is important with any data manipulation and an inspection of data for 
recording or transcribing errors is always warranted before the statistical analysis. 
 Another consideration is that a potential outlier could be a legitimate observation 
in a strongly skewed distribution and represent a value at the extreme end of the 
longer tail. Transforming data may be first required to create a normally distributed 



Outlier Tests 647

sample before performing some of the outlier tests. Even an extremely high value in a 
strong positively skewed distribution may be a true value and not necessarily an 
outlier. As discussed in Chapter 6, common transformations include using the 
logarithms or square roots of the individual data points. Alternatively, for 
nonnormally distributed populations, there are robust measures for central tendency 
and spread (the median and median absolute deviation) and exploratory data analysis 
(EDA) methods. Use of a nonparametric procedure or other robust technique, is 
termed “outlier accommodation” and usually involves rank ordering the data that 
minimized the influence of outliers. Various transformations or ranking of the data 
can be used to minimize the effect of an outlier. This was pointed out in Chapter 21, 
when nonparametric statistics were described as being influenced less by outliers than 
are traditional parametric tests, whose calculations are affected by measures of 
dispersion (variance and standard deviation). In addition, outliers could represent data 
points accidentally sampled from a population that is different from the intended 
population. Also, care should be taken that computer programs do not handle missing 
data as real values (in most cases assigning a value of zero). 

 Extreme values can greatly influence the most common measures of central 
tendency; they can distort the mean and greatly inflate the variance. This is especially 
true with small sample sizes. In contrast, the median and quartile measures are 
relatively insulated from the effects of outliers. For example consider the following 
assay results (in percentages): 
 

97, 98, 98, 95, 88, 99 
 
Whether or not it is determined that 88% is a true outlier, it has an important effect on 
the mean and spread (range and variance) of the sample and can be termed an 
influential observation, which will be discussed later in this chapter. Table 23.1 
shows the impact this one observation can have on various measures of central 
tendency. As seen in the table, this extreme value pulls the mean in the direction of 
that value, increases the standard deviation by a factor greater than two, and the range 
is increased almost threefold. However, the median is relatively unaffected. This 
would also be true even if the lowest value was 78 or even 68%. As mentioned, 
nonparametric tests rely on ranking of observations; in many cases they use the 
median as the center of the distribution, and are less affected by outliers. In fact, using 
the various statistical tests listed below, the value 88% would not be rejected as an 
outlier. It would be considered only an influential observation. 
  
 

Table 23.1 Impact of a Potential Outlier on Measures of Central Tendency 

 88% Included 88% Not Included 
  Mean 95.8 97.4 
  Standard Deviation 4.1 1.5 
  Range 11 4 
  Median 97.5 98 
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Table 23.2 Impact of a Potential Outlier on Measures of Central 
Tendency with Two Sample Sizes 

 Case 1  
 

Case 2 
 86% 

Not Included 
86% 

Included 
n 5 6 12 
Mean 97.4 95.5 96.5 
S.D. 1.5 4.8 3.5 
Range 4 11 11 
Median 98 97.5 98 

 
 
A second example of assay results is presented below. In this case the more extreme 
value (86%) would be defined as an outlier, with 95% confidence using the 
test procedures discussed below. In this particular sample there are only six tablets: 
  

97, 98, 98, 95, 86, 99 
 
For illustrative purposes, assume in this second case that these results were part of a 
larger sample of twelve tablets.  
 

97, 98, 98, 95, 86, 99 
98, 98, 97, 99, 98, 95 

 
Without the outlier, both the first case and second case have approximately the same 
mean and standard deviation. Notice in Table 23.2 that the greater sample size 
“softens” the effect of the outlier. In the second case, 86% would not be identified as 
an outlier using the tests described in this chapter. If possible, additional 
measurements should be made when a suspect outlier occurs, particularly if the 
sample size is very small.  
 To test for outliers we need at least three observations. Naturally the more 
information we have (the larger the sample size), the more obvious an outlier will 
become, either visually or statistically. For a sample size as small as three 
observations, there would need to be a wide discrepancy for one data point to be 
deemed an outlier. If an outlier is identified, it is important to try and identify a 
possible cause for this extreme value (e.g., miscalculation, data entry error, 
contamination). The identification of an outlier can lead to future corrective action in 
the process or research being conducted, but it can also serve as a potential source of 
new information about the population.  
 A simple technique to “soften” the influence of possible outliers is called 
winsorizing (Dixon and Masey, 1969). Using this process the two most extreme 
observations (the largest value and the smallest value) are changed to the value of 
their next closest neighbor (x1→ x2; xn→ xn-1). For example, consider the following 
rank ordered set of observations, where 11 might be an outlier:  
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11,21,24,25,26,26,27,28,29,31 
 
Our suspected outlier would be replaced with the second lowest number. Also we 
would replace the largest value with the second largest value: 
 

21,21,24,25,26,26,27,28,29,29 
 
For the first set of data the mean and standard deviation are 24.8 ± 5.6 and for the 
winsorized data they are 25.6 ± 2.9. For this set of data the potential outlier has little 
impact (+3% change) on our sample mean, but dramatically changes in the standard 
deviation (48% decrease). Although not a statistical test for outliers, winsorizing 
might provide a quick measure of the impact of extreme values on the measures of 
central tendency for our sample. 
 
Plotting and the Number of Standard Deviations from the Center 
 
 By using various plotting methods to display the data, outliers may become 
readily visible. For example, box-and-whisker plots are specifically designed to 
identify possible outliers (Figure 23.1). As discussed in Chapter 4, each of the 
“whiskers” or t-bars extends from the box three semi-interquartile ranges (SIQR) 
above and below the median (the SIQR being the distance between the upper or lower 
quartile and the median, Eq. 4.1). Observations that fall above or below the whiskers 
may be identified as potential outliers. Potential outliers can also be observed using 
other graphic techniques including stem-and-leaf plots, histograms, line charts, or 
point plots. In addition, scatter plots can be useful in identifying potential outliers 
involving two or more continuous variables. An example of the box-and-whisker 
plots will be presented later when discussing residuals under the bivariate outliers 
section. 
 
 

 
 

Figure 23.1 Box-and-whisker plot. 

 
 

+3 SIQR

o       Outlier

Median

75 percentile

25 percentile

-3 SIQR



Chapter 23 650

The “Huge” Rule  
 
 One method for detecting an aberrant value is to compare the potential outlier to 
the sample mean and standard deviation with the potential outlier removed from the 
calculations. This general rule of thumb is to consider the data point as an outlier if 
that point is located more than four standard deviations from the mean as calculated 
without the suspected outlier (Marascuilo, 1971). The rationale for this rule is that it is 
extremely unlikely (p < 0.00005) to find values more than four standard deviations 
from the expected center of a normal distribution. The distance, in standard 
deviations, is measured between the mean and the potential outlier: 
 

S
| X  x | = M i −

                                            Eq. 23.1 

 
where X  and S are calculated from the sample data, ignoring the outlier value (xi). If 
M is greater than four, then the data point is considered to be an outlier. 
 To illustrate this rule of thumb test, consider the following observations: 
 
  99.3, 99.7, 98.6, 99.0, 99.1, 99.3, 99.5, 98.0, 
  98.9, 99.4, 99.0, 99.4, 99.2, 98.8, 99.2 
 
Using this set of 15 observations, is data point 98.0 an outlier? For the huge rule, the 
mean and standard deviation are calculated without 98.0 and the number of standard 
deviations is calculated between this mean and 98.0. These sample results are X = 
99.17 and S = 0.29 without 98.0. Note that if the potential outlier is included the 
results would be X  = 99.09 and S = 0.41. The standard deviation increases by almost 
50%. If not an outlier, 98.0 can certainly be considered an influential data point. The 
calculation of the number of standard deviations from the mean for our potential 
outlier is: 
 

4.03 = 
0.29
1.17 = 

0.29
| 98.0  99.17 | = 

S
| X  x | = M i −−

 

 
Since the data point 98.0 is more than 4.00 below the mean it is disregarded as an 
outlier. Several other procedures are available to statistically determine if 
observations are outliers or simply extremes of the population from which the sample 
is selected. The most commonly used statistics to detect univariate outliers (involving 
one discrete independent variable) are the Grubbs’ test and the Dixon Q test and these 
will be discussed below. Also discussed in this chapter will be Hampel’s rule. Other 
possible tests include: 1) Youden’s test for outliers (Taylor, 1987); 2) Cochran’s test 
for extreme values of variance (Taylor, 1987); and 3) studentized deleted residuals 
(Mason, 1989). 
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Grubbs’ Test for Outlying Observations  
 
 Grubbs’ procedure involves ranking the observations from smallest to largest (x1 
< x2 < x3 < ... xn) and calculating the mean and standard deviation for all of the 
observations in the data set (Grubbs, 1969). This test is also referred to as extreme 
studentized deviate test or ESD test. One of the following two formulas is used, 
depending upon whether x1 (the smallest value) or xn (the largest value), is suspected 
of being a possible outlier. 

 

S
X  x = T     or     

S
x  X = T n1 −−                                  Eq. 23.2 

 
These formulas are occasionally referred to as the T procedure or T method. This 
resultant T is compared to a critical value on Table B23 (Appendix B), based on the 
sample size (n) for a given allowable error (α). The error level for interpreting the 
result of the Grubbs’ test is the same as our previous discussion of hypothesis testing. 
Once again α will represent the researcher-controlled error rate. Assuming we want to 
be 95% confident in our decision and use the 5% level (right column in Table B23), 
we may incorrectly reject an outlier 1 in 20 times. If T is greater than the critical 
value, the data point can be rejected as an outlier. Using the previous example, the 
information is first ranked in ascending order (Table 23.3). The mean and standard 
deviations are then calculated with the proposed outlier included. As noted above, the 
results are: X = 99.09 and S = 0.41. Using Grubbs’ test we first identify the critical 
value on Table B21; in this case it is 2.409 for n = 15 and α = 0.05. The calculation of 
 
 

Table 23.3 Sample Rank Ordered Data for Outlier Tests 

  Value 
x1  98.0 
x2  98.6 
x3  98.8 
...  98.9 

  99.0 
  99.0 
  99.1 
  99.2 
  99.2 
  99.3 
  99.3 

...  99.4 
xn-2  99.4 
xn-1  99.5 

xn  99.7 
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the Grubbs’ test is 
 

2.66 = 
0.41
1.09 = 

0.41
98.0  99.09 = 

S
x  X

 = T 1 −−
 

 
Since our calculated value of 2.66 exceeds the critical value of 2.409, once again 98.0 
is rejected as an outlier. 
 
Dixon Q Test  
 
 A third method to determine if a suspected value is an outlier is to measure the 
difference between that data point with the next closest value and compare that 
difference to the total range of observations (Dixon, 1953). Various ratios of this type 
(absolute ratios without regard to sign) make up the Dixon test for outlying 
observations, also referred to as the Dixon Q test. Both the Grubbs’ test and Dixon Q 
test assume that the population from which the sample is taken is normally 
distributed. The advantage of this test is that it is not required to estimate the standard 
deviation. First the observations are rank ordered similar to the Grubbs’ test (Table 
23.3): 
 

x1 < x2 < x3 < ... xn-2 < xn-1 < xn 
 
Formulas for the Dixon test use ratios of ranges and subranges within the data. The 
ratios are listed in Table 23.4 where the choice of ratio is dependent on the sample 
size and whether x1 or xn is suspected to be an outlier. If the smallest observation is 
suspected of being an outlier, use the ratios are presented on the upper half of Table 
23.4. However, if the largest value is evaluated as the outlier, use the ratios in the 
lower half of Table 23.4. The resultant ratio is compared to the critical values in Table 
B24 (Appendix B). If the calculated ratio is greater than the value in the table, the 
data point can be rejected as an outlier. Using the Dixon test for the data presented in 
Table 23.3, the critical value from Table B24 is τ = 0.525, based on n = 15 and α = 
0.05. The calculated Dixon ratio would be: 
 

0.57 = 
1.4
0.8 = 

98.0  99.4
98.0  98.8 = 

)x  x(
)x  x(

12-n

13
−
−

−
−  

 
Because this calculated value of 0.57 exceeds the critical value of 0.525, we once 
again reject 98.0 as an outlier.  
 The Grubbs’ and Dixon’s tests may not always agree regarding the rejection of 
the possible outlier, especially when the test statistic results are very close to the 
allowable error (e.g., 5% level). The simplicity of Dixon’s test is of most benefit 
when small samples are involved and only one observation is suspected as an outlier. 
Grubbs’ test requires more calculations (e.g., determining the sample mean and 
standard deviation), but is considered to be the more powerful of the two tests. Also, 
Grubbs’ test can be used when there is more than one suspected outlier (Mason, p. 
512). As with any statistical test that measures the same type of outcomes, the 
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Table 23.4 Ratios for Dixon’s Test for Outliers 

Sample Size Ratio        If x1 is suspected 
 

3 ≤ n ≤ 7 
 

τ10           
x  x
x  x

1n

12

−
−                     Eq. 23.3 

 
8 ≤  n ≤ 10 

 
τ11           

x  x
x  x

11-n

12

−
−                     Eq. 23.4 

 
11 ≤ n ≤ 13 

 
τ21           

x  x
x  x

11-n

13

−
−                     Eq. 23.5 

 
14 ≤ n  ≤ 25 

 
τ22            

x  x
x  x

12-n

13

−
−                   Eq. 23.6 

   
Sample Size Ratio         If xn is suspected 

 
3 ≤ n  ≤ 7 

 
τ10           

x  x
x  x

1n

1-nn

−
−                  Eq. 23.7 

 
8 ≤ n ≤ 10 

 
τ11           

x  x
x  x

2n

1-nn

−
−                  Eq. 23.8 

 
11 ≤ n ≤  13 

 
τ21           

x  x
x  x

2n

2-nn

−
−                   Eq. 23.9 

 

14  ≤ n ≤ 25 

 

τ22 
          

x  x
x  x

3n

2-nn

−
−                 Eq. 23.10 

 
 
researcher should select the outlier test he or she is most comfortable with before 
looking at the data.  
 As mentioned previously, both Grubbs’ and Dixon’s tests assume that the 
population from which the sample was taken is normally distributed. In the case of 
the Grubbs’ test with more than one outlier, the most extreme measurement will tend 
to be masked by the presence of other possible outliers. Masking occurs when two or 
more outliers have similar values. In a data set, if the two smallest (or largest) values 
are almost equal, an outlier test for the more extreme of the two values may not be 
statistically significant. This is especially true for sample sizes less than ten, where 
the numerator of the ratio for the Dixon Q test is the difference between the two most 
extreme values. Only a test for both of these two smallest observations will be 
statistically significant. Plotting the data can sometimes avoid the masking problem. 
Swamping is another problem and is seen when several good data points, that may be 
close to the suspected outlier, disguise its effect. Using graphing techniques, it is possible 
to identify a cluster of data points and these might influence tests for outliers. 
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Hampel’s Rule  
 

The underlying assumption with both the Grubbs’ and Dixon’s tests is that the 
sample being evaluated comes from population with a normal distribution. Hampel’s 
rule for testing outliers is based on the median and can be used for samples from 
populations with any type of distribution and is not restricted to only normally 
distributed populations. 

The first step in determining an outlier using Hampel’s rule is to calculate an 
MAD value (which is the median for the absolute deviations from the median times a 
constant). To calculate the MAD the median is subtracted from each data point and 
expressed in absolute terms (called the absolute deviations).  

 
MdxAD ii −=                                               Eq. 23.11 

 
For example, using our previous data set, the ADi for 98.0 is: 
 

2.12.12.990.98ADi =−=−=  
 
These absolute derivations are presented in the second column of Table 23.5. The 
next step is to multiply the median for the absolute deviations by a constant 1.4831 to 
produce the MADi.  
 

483.1)AD(MedianMAD ii ⋅=                                 Eq. 23.12 
 
The third step is to normalize the MADi data. However instead of subtracting each 
value from the mean and dividing the results by the standard deviation (similar to 
Grubbs’ calculations), each value is subtracted from the median and divided by the 
MADi. 
 

i

i
i MAD

x  Md
NAD

−
=                                           Eq. 23.13 

 
These results are presented in the third column of Table 23.5. In the case of an 
assumed underlying normal distribution, if the most extreme value is greater than 3.5 
it can be rejected as an outlier (more than 3.5 standard deviations based on the 
normalized median). In this example, 98.0 is once again removed as an outlier. 
Hampel provides other constants and critical values for nonnormal situations 
(Hampel, 1985).  
 
 
 
                                                 
1 The constant 1.483 is the reciprocal of the range of values for a normal standardized 
distribution between the first and third quartiles. The area between −0.674 and +0.674 
is 0.500 (1.483 = 1/0.674). 
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Table 23.5 Example Using Hampel’s Rule 
  

Data 
Absolute 

Deviations (ADi) 
Absolute Normalized 
Deviations (NADi) 

 99.7 0.5 1.686 
 99.5 0.3 1.011 
 99.4 0.2 0.674 
 99.4 0.2 0.674 
 99.3 0.1 0.337 
 99.3 0.1 0.337 
 99.2 0 0.000 
 99.2 0 0.000 
 99.1 0.1 0.337 
 99.0 0.2 0.674 
 99.0 0.2 0.674 
 98.9 0.3 1.011 
 98.8 0.4 1.349 
 98.6 0.6 2.023 
 98.0 1.2 4.046 
Median = 99.2 0.2  
MAD =  0.2966  

 
 
Multiple Outliers 
 

Once an initial extreme outlier value has been determined and removed from the 
data, the researcher can determine if there is a possible second outlier using the same 
procedures with n − 1 data points. Using our data from the previous example (now 
with only 14 data points) is 98.6 a possible outlier? In this case the mean and standard 
deviation for the data would be: 
 

 With 98.6 Without 98.6 
Mean 99.17 99.22 
SD 0.29 0.25 
n 14 14 

 
Using the “huge” rule, the value 98.6 is less than four standard deviations below the 
mean and not an outlier: 
 

14.2 = 
0.29
1.17 = 

250.
| 698.  2299. | = 

S
| X  x | = M i −−

 

 
Using the Grubbs’ test we fail to reject 98.6 as an outlier because it does not exceed 
the critical value of 2.371. 
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Table 23.6 Example Using Hampel’s Rule without 98.0 

  
Data 

Absolute 
Deviations (ADi) 

Absolute Normalized 
Deviations (NADi) 

 99.7 0.5 1.686 
 99.5 0.3 1.011 
 99.4 0.2 0.674 
 99.4 0.2 0.674 
 99.3 0.1 0.337 
 99.3 0.1 0.337 
 99.2 0 0.000 
 99.2 0 0.000 
 99.1 0.1 0.337 
 99.0 0.2 0.674 
 99.0 0.2 0.674 
 98.9 0.3 1.011 
 98.8 0.4 1.349 
 98.6 0.6 2.023 
Median = 99.2 0.2  
MAD =  0.2966  

 
 

97.1 = 
290.
57.0 = 

290.
698.  1799. = 

S
x  X

 = T 1 −−
 

 
Dixon’s test shows similar results, with the calculated ratio not exceeding the critical 
value of 0.546. 
 

3750. = 
8.0
30. = 

698.  99.4
698.  998. = 

)x  x(
)x  x(

12-n

13
−
−

−
−  

 
Finally, the same results are found with Hampel’s rule as seen in Table 23.6 where 
the absolute normalized deviation for 98.6 is less than 3.5. Note the values in Tables 
23.5 and 23.6 are similar because the median value is the same in both cases. 
 One should use some common sense when dealing with potential multiple 
outliers. If two or more potential outliers are in opposite directions, maybe this 
represents only poor precision or large variance in the data. If two or more potential 
outliers are in the same direction, maybe there is a subpopulation that requires further 
investigation. Indiscriminant use of outlier tests and rejection of data points may 
result in the loss of valuable information about the population(s) being studied. 
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Table 23.7 Data and Residuals Presented in Figure 23.2 

xi concentration yi units yc r 

2.0 87.1 89.980 −2.840 
2.5 95.2 93.165 +2.035 
3.0 98.3 96.350 +1.950 
3.5 96.7 99.535 −2.835 
4.0 100.4 102.720 −2.320 
4.5 112.9 105.905 +6.985 
5.0 110.7 109.090 +1.610 
5.5 108.5 112.275 −3.735 
6.0 114.7 115.460 −0.760 

   = 0.000 

 
 
Bivariate Outliers in Correlation and Regression Analysis 
 
 In the case of correlation or regression, where each data point represents values 
on different axes, an outlier is a point clearly outside the range of the other data points 
on the respective axis. Outliers may greatly affect the results of the correlation or 
regression models. Outliers in regression analysis are data points that fall outside the 
linear pattern of the regression line. At the same time, many statistical tests for 
identifying multivariate outliers are prone to problems of masking, swamping, or both; 
and no single method is adequate for all given situations. For our discussion we will 
focus only on the simplest situations where we are analyzing just two continuous 
variables. Obviously problems will compound as additional variables enter into the 
analysis. 
 In linear regression-type models, outliers generally do not occur in the independent 
variable, because the levels for that variable are selected by the researcher and can 
usually be controlled. Potential problems then exist only with the dependent or response 
variable. In contrast, with a correlation model both variables can vary greatly and outliers 
may occur in either variable. As mentioned previously, variables are sometime referred 
to as the predictor variable and the response variable depending on the focus of our 
investigation. For example, as the dose of a medication changes (predictor variable), 
what type of response do we see in the physiological measure in laboratory animals 
(response variable)? 

 Let us first look at the regression model where we can control the independent 
variable and are interested in possible outliers in the dependent (response) variable. 
Outlier detecting techniques are based on an evaluation of the residuals. The residual is 
the difference between the observed outcome (yi) and the predicted outcome (yc) based 
on the least square line that best fits the data (r = yi – yc). In Chapter 14, when evaluating 
if a linear relationship existed between our independent and dependent variable, we used 
residuals to explain the error with respect to the deviations about the regression line (Eqs. 
14.4 and 14.5): 
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Table 23.8 Regression Analysis for Figure 23.2 

Source SS df MS F 

Linear Regression 608.65  1 608.65 43.79 
Residual 97.29 7 13.90  
Total 705.94 8   

 
 

)y  y( + )X  y( = )X  y( 2
ci

2
yc

2
yi −−−  

 
SS + SS = SS dunexplaineexplainedtotal  

 
An outlier in linear regression is a data point that lies a great distance from the regression 
line. It can be defined as an observation with an extremely large residual. 
 To illustrate a potential outlier, consider the following example, where during 
one step in the synthesis of a biological product there is a brief fermentation period. 
The concentration (in percent) of one component is evaluated to determine if changes 
will influence the yield in units produced. The results of the experiment are presented 
in Table 23.7. If we perform a regression analysis (Table 23.8), as described in 
Chapter 14, we would reject the null hypothesis and conclude that there is a straight 
line relationship between our two variables. Therefore, we can draw a straight line 
through our data and graphically present it (Figure 23.2). Is the data point at the 4.5% 
concentration an outlier or simply an extreme measurement?  
 Graphing techniques involving residuals can be useful in identifying potential 
outliers in one variable. For example if the box-and-whisker plot method were applied 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23.2 Data and best-fit line for yield versus various concentrations. 
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Figure 23.3 Box-and-whisker plot of residuals. 
 
 

Figure 23.4 Scatter diagram showing residuals. 
 
 
(Figure 23.3) to the residuals in Table 23.7 we would see that the residual of +6.985 for 
4.5% seems to be an outlier. Note that the second largest residual (3.735) does not fall 
outside the lower whisker and would not be considered an outlier using the visual 
method. 
 A second method would be to create a residuals plot, which is a scatter plot of 
the residuals against their corresponding outcomes (dependent variable), where the 
independent variable is on the x-axis and the residuals plotted on the y-axis. The 
residuals seen in Table 23.7 are used and plotted in Figure 23.4. Once again the 
residual +6.985 visually appears to be an outlier. Similar to univariate outliers, the 
plotting of residuals can help with subjective decisions about the possibility that a 
data point is an outlier.  
 Residual plots, like the one seen in Figure 23.4 should be a random scattering of 
points and there should be no systematic pattern. There should be approximately as many 
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positive points as negative ones. Note in Table 23.7 that the sum of the residuals equals 
zero. Outliers are identified as points far above or below the center line. Instead of 
plotting the residuals (Figure 23.4), we can plot the studentized residuals that are 
calculated: 
 

E

ci

MS
yy

t
−

=                                               Eq. 23.14 

 
where MSE is the MSresidual taken from the ANOVA table used to test for linearity. These 
studentized values are scaled by the estimate of the standard error so their values follow a 
Student t-distribution (Tables B5 and B6 in Appendix B). Use of the studentized 
residuals makes systematic trends and potential outliers more obvious. Figure 23.5 shows 
the studentized residual plot of the same data seen in Figure 23.4. Note that the 
studentized value at 4.5% concentration does not exceed the critical t-value of t8(0.975) = 
2.306; therefore, we cannot statistically reject this value as an outlier. One rule of thumb 
is to consider any point on an outlier if its standardized residual value is greater than 
3.3. This would correspond to an α = 0.001. 
 There are more objective statistical procedures available to evaluate such extreme 
points based on the residuals. One process known as studentized deleted residuals is 
a popular method for identifying outliers when there are multiple  
continuous variables. It involves deleting the outlying observation and refitting the 
regression model with the remaining n − 1 observations. By refitting the model, it is 
possible to predict if the observation was deleted as an outlier if the residual was 
large. It requires calculations involving the standard error estimated for each deleted 
residual and are best handled through computer manipulation of the data. A detailed 
explanation of the studentized deleted residual method is found in Mason (1989, pp. 
518-521). 
 
 

 
 

Figure 23.5 Scatter diagram studentized residuals. 

 

0 1 2 3 4 5 6 7 8
Concentration

0

1

2

3

-1

-2

-3

St
ud

en
tiz

ed
 R

es
id

ua
ls

C.V. = 2.364

C.V. = -2.364



Outlier Tests 661

 For correlation problems, an outlier (represented by a pair of observations that are 
clearly out of the range of the other pairs) can have a marked effect on the correlation 
coefficient and often lead to misleading results. Such a paired data point may be 
extremely large or small compared to the bulk of the other sample data. This does not 
mean that there should not be a data point that is greatly different from the other data 
points on one axis as long as there is an equal difference on the second axis, which is 
consistent with the remainder of the data. For example, look at the two dispersions in 
Figure 23.6. It appears that the single lone data point (A) on the left scatter diagram is 
consistent with the remainder of the distribution (as x increases, y also appears to 
increase). In contrast, point (B) on the right scatter diagram is going in the opposite 
direction from the other sample points.  
 The problem occurs when one data point distorts the correlation coefficient or 
significantly changes the line of best-fit through the data points. One check for a 
potential outlier is to remove the single observation and recalculate the correlation 
coefficient and determine its influence on the outcome of the sample. For example 
consider the data in Figure 23.7, where the data point at the extreme left side might be 
an outlier. Without this one point there is virtually no correlation (r = .07) and a best- 
fit line drawn between these points has slight positive slope (b = +0.426). However, if 
this point is added into our calculations, there is a “low” negative correlation (r = 
−0.34) and our best-fit line changes to a negative slope (b = −0.686). One method for 
deciding to classify a data point as an outlier might be to collect more data to 
determine if the number is a true outlier or just an extreme value of a trend that was 
not noted in the original data. 
 Two additional problems may be seen with bivariate outliers. The first is swamping, 
which was previously described as several good data points that may be close to the 
suspected outlier and mask its effect. Using graphing techniques, it is possible to identify 
a cluster of data points and these might influence tests for outliers. The second involves 
influential observations, which are data points that have a pronounced influence on the 
position of the regression line. If removed, the remaining data can be refitted and the 
position of the regression line may shift by a significant amount. An outlier and an 
influential observation are not necessarily the same. Studentized deleted residuals may be 
helpful in identifying influential observations.  
 
 
 
 

 
 

 

Figure 23.6 Examples of two correlation distributions. 

 

A

B
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Figure 23.7 Possible outlier with a correlation example. 
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Example Problems  (Answers are provided in Appendix D) 
 
1. Is the data point 12.9 an outlier from the following set of observations? 
 
    12.3, 12.0, 12.9, 12.5, 12.4 
 
2. The analytical laboratory at Acme Chemical assayed a solution that was assumed 

to be homogeneous, but found the following assay results (in percent). Is 94.673 
a possible outlier? 

 
   89.470, 94.673, 89.578, 89.096, 88.975, 89.204 
   87.765, 91.993, 89.954, 90.738, 90.122, 89.711 
 
3. An experiment was designed to evaluate different theoretical concentrations of a 

particular agent. Based on HPLC analysis, the following recoveries were observed. 
Is the observation at 50% a possible outlier? 

 
Theoretical % % Recovered Theoretical % % Recovered 

30 30.4 80 81.6 
40 39.7 90 89.3 
50 42.0 100 100.1 
60 59.1 110 109.7 
70 70.8 120 119.4 
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Table 23.9  Data Produced by Two Different Groups 

Group 1 Group 2 
0.85 3.15 
3.10 3.28 
3.25 3.31 
3.36 3.41 
3.58 3.58 
3.41 3.66 
3.66 3.73 
3.69 3.74 
3.74 3.77 
3.79 3.80 
3.93 4.10 
4.20 4.25 
4.41 4.36 
4.51 4.48 
5.00 4.80 

 
 
4. Data presented in Table 23.9 is collected for comparing two groups of data. The 

researcher is interested in whether or not there is a difference between the two 
groups. At the same time she is concerned about the value 0.85 in Group 1. Is this 
value a statistical outlier? If so, does removing it change the results of the 
comparison of the two groups? 
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24 
 
Statistical Errors in the Literature  
 
 
 
 In the preface to this book, we discussed the need for a better understanding of 
statistics in order to avoid research mistakes and to be better able to identify possible 
errors in published documents. It only seems fitting to conclude this book by 
reviewing the prevalence of these mathematical misadventures and identifying some 
of the most common types of statistical errors.  
 The purpose of this chapter is to point out errors that can occur, not to criticize 
individual authors. It is doubtful that any of the errors described below were the 
results of intentional manipulation of findings or overt attempts to mislead the reader. 
More than likely, they are errors committed due to a misunderstanding or 
misinterpretation of the statistics involved with the evaluating the findings. Therefore, 
examples will be presented without reference to the specific author(s), articles, or 
journals of publication. However, the reader should appreciate that these are all  
genuine errors that have appeared in refereed journals of medicine or pharmacy.  
 
Errors and the Peer Review Process 
 
 By the end of the 20th century, the use of statistical analysis in published works 
had increased greatly, due in no small part to the ease, accessibility, and power of 
modern desktop and laptop computers. This also led to an increase in the complexity 
of the procedures performed and reported in the literature. As noted by Altman (1991) 
there was an increasing trend to use statistics in the medical literature, which were 
usually not taught to medical students during their education and may not have been 
taught in postgraduate programs. He found a dramatic decrease between 1978 and 
1990 in the percentage of papers that contained no statistics or only descriptive 
statistics (Table 24.1). The number of simple inferential statistics (e.g., t-test, chi 
square) remained the same, but more complex statistics increased greatly during that 
time period. There is no reason not to believe that this trend has continued, especially 
due to easier access to statistical software. Earlier work by Felson and colleagues 
(1984), showed an even more dramatic increase in the use of statistics in Arthritis and 
Rheumatism, between the years 1967−1968 and 1982 (Table 24.2). 

 As pointed out by Glantz (1980), few researchers have had formal training in 
biostatistics and “assume that when an article appears in a journal, the reviewers and 
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Table 24.1 Changes in the Use of Statistics in the Literature 

 1978 1990 

No statistics or descriptive only  27% 11% 
t-tests 44% 39% 
Chi square  27% 30% 
Linear regression 8% 18% 
Analysis of variance 8% 14% 
Multiple regression 5% 6% 
Nonparametric tests 11% 25% 

From: Altman, D.G. (1991). “Statistics in medical journals: 
developments in the 1980s,” Statistics in Medicine 10:1899. 

 

Table 24.2 Changes in the Use of Common Statistics  

 1967-1968 1982 

t-tests 17% 50% 
Chi square  19% 22% 
Linear regression 1% 18% 

From: Felson, D.T. et al. (1994). “Misuse of statistical methods in 
arthritis and rheumatism,” Arthritis and Rheumatism 27:1020. 

 
 
editors have scrutinized every aspect of the manuscript, including the statistical 
methods.” As he noted this assumption was usually not correct. Have things changed 
that much in the past 30 years? Are today’s researchers any more knowledgeable of 
statistics, even though they now have the power of very sophisticated software 
packages in their desktop computers? Most journals do not employ a statistician or 
involve a statistician in their review process. McGuigan (1995) noted that only a 
small portion of the articles he reviewed (24% to 30%) employed a statistician as 
coauthors or acknowledged their help in papers. In fact, in the peer review process, 
colleagues reviewing articles submitted to journals probably have about the same 
statistical expertise as the authors submitting the manuscript. 
 During a 50-year period between 1961 and 2011 there were several articles 
presented in the medical literature that report the incidence and types of errors seen in 
publications (Table 24.3). In these papers statisticians review either all the articles 
published during a given time period (usually one year) in a specific periodical or a 
random sample of articles from a publication over a longer period. These errors are 
related to mistakes in the medical literature, because this is an area where most of the 
research has been conducted. However, it is doubtful that the incidence of these errors 
is any less frequent in the pharmacy literature. 
 A problem to consider with the results presented in Table 24.3 was that most of 
these evaluations used different methods of assessing mistakes and there were no   
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Table 24.3 Prevalence of Statistical Errors in the Literature (percent of articles with 
at least one statistical error) 

Percent Journal(s) Reference 

57 Canadian Medical Association Journal 
and Canadian Journal of Public Health, 
1960 

Badgley, 1961 

60 Arthritis and Rheumatism, 1967-1968 Felson, 1984 
42 British Medical Journal, 1976 Gore, 1976 
44 Circulation, 1977 Glantz, 1980 
45 British Journal of Psychiatry, 1977-1978 White, 1979 
66 Arthritis and Rheumatism, 1982 Felson, 1984 
65 British Journal of Anaesthesia, 1990 Goodman and Hughes, 1992 
74 American Journal of Tropical Medicine 

and Hygiene, 1988 
Cruess, 1989 

54 Clinical Orthopaedics and Related 
Research, Spine, Journal of Pediatric 
Orthopaedics, Journal of Orthopaedic 
Research, Journal of Bone and Joint 
Surgery and Orthopedics, 1970-1990 

Vrbos, 1993 

75 Transfusion, 1992-1993 Kanter and Taylor, 1994 
40 British Journal of Psychiatry, 1993 McGuigan, 1995 
54 Infection and Immunology, 2002 Olsen, 2003 
82 Human Reproduction and Fertility and 

Sterility, 2001 
Vail and Gardener, 2003 

79 Korean Journal of Pain, 2004-2008 Yim, et al., 2010 
52 

 
 
 

The International Journal of Oral and 
Maxillofacial Implants, The Journal of the 
American Dental Association, and 12 other 
dental journals, 1995-2009 

Kim, et al., 2011 

 
 
standardized criteria for defining statistical errors. Therefore, the same error may be 
defined differently or the researchers may have been focusing their attentions on 
different parameters for establishing such errors. As errors are discussed, citations 
will be made to the articles presented in Table 24.3 and the proportion of such errors 
identified by the various authors in their research of the medical literature. 
 
Problems with Experimental Design 
 
 Many of the problems reported in the literature relate to the design of the studies. 
Ultimately such experimental design problems will show flawed statistical results. 
For example, many studies have inadequate or no control groups as part of the design. 
These types of incidences were reported to be as high as 41% (McGuigan, 1995) and 
58% (Glantz, 1980). Outcomes from various medical interventions are extremely 
difficult to evaluate without a control set of subjects to determine if the outcome 
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would occur without the intervention. 
 As discussed in Chapter 3, there are two requirements for any statistical 
procedure: 1) samples are selected or volunteers assigned by some probabilistic 
process and 2) each measurement is independent of all others (except in certain repeat 
measurement designs). Unfortunately McGuigan (1995) and Cruess (1989) found 
errors related to randomization in 43% and 12%, respectively, of the articles they 
evaluated. Also there was a disregard for statistical independence in 10% of the 
articles reviewed by Gore and colleagues (1977) and 5% of those reviewed by Kanter 
and Taylor (1994).  
 In one research project it was found that 5% of studies failed to state a null 
hypotheses (McGuigan, 1995) and in a second study, questionable conclusions were 
drawn from the results in 47.5% of the articles evaluated (Vrbos, 1993). Excellent 
books exist on research design studies, especially by Friedman and colleagues (2010), 
that are more effective in evaluating the desired outcomes.  
 Another problem commonly seen in the methodology sections of papers, is a 
failure to state and/or reference statistics used in the article. Failure to cite the specific 
statistics used were found in 41.5% of the articles reviewed by McGuigan (1995) and 
13% of those by Kanter and Taylor (1994). In addition, studies of the medical 
literature found that many times conclusions were stated without any indication which 
statistical tests were performed (49% for Kanter and Taylor, 1994; and 35.7% for 
Vrbos, 1993). Failure to document the statistical method used or using an incorrect 
method has been noted as one of the more common errors in the literature (Murphy, 
2004).   
 Another common problem is a failure of authors to cite references for lesser 
known statistical procedures employed in their data analysis. Commonly used 
procedures (t-tests, ANOVA, correlation, linear regression, and even some of the 
popular nonparametric tests) need not be referenced. But lesser used procedures 
should be referenced so readers can understand the inferential statistic(s) involved. 
Nothing is more frustrating than to have a colleague or student ask about A-B-C 
statistical procedure, then: 1) to search Medline or PubMed for references to that test 
and find 10 to 15 articles mentioning the A-B-C test in the online abstract; 2) to 
retrieve all the articles from the library; and 3) to find that not one of the authors cited 
a source for the A-B-C test in the methodology sections. More than likely the A-B-C 
test was part of a printout involved with a sophisticated software package and 
referenced somewhere in that software’s reference manual. Even referencing the 
software would help readers seeking more information about a specific test. 
 
Standard Deviations versus Standard Error of the Mean 
 
 When reporting continuous data, it is important to describe the centers of the 
distribution and provide information about the dispersion of observations around the 
center(s). Unfortunately, studies by Gore and colleagues (1977) and White (1979) 
reported inadequate description of basic data, including centers and dispersions in 
16.1% and 12.9% of the articles they reviewed, respectively.  
 As discussed in Chapter 5, the standard deviation (S) measures dispersion of the 
sample and provides an estimate of the dispersion of the population from which the 
sample was taken. In contrast the standard error of the mean (SEM), or standard error   
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Table 24.4 Examples of Failure to Identify S or SEM (n = 45) 

 
 
  
Parameter 

 
Mean 

Baseline 
Value 

Mean 
Value at 
4-8 years 

(mean = 5.3 years) 

Total cholesterol (nmol/L) 7.17 ± 0.83 7.01 ± 0.92 
HDL cholesterol (nmol/L) 1.17 ± 0.41 1.39 ± 0.36* 
Triglycerides (nmol/L) 1.38 ± 0.63 1.35 ± 0.61 
*Statistically significant increase (p < 0.05). 
HDL = high-density lipoprotein. 
 
 
(SE), is a measure of how all possible sample means might vary around the 
population mean. As seen in the following equation (Eq. 7.3), the SEM will always be 
smaller than S. 

 

n
SSEM =  

 
Because SEM is smaller, investigators will often report that value because it gives the 
perception of greater precision. 
 Often authors fail to state the measurement to the right of the ± symbol (7.1% 
from White’s research, 1979; 13% for Felson et al., 1984; and 24% for Kanter and 
Taylor, 1994). Is it the S or the SE, or even relative standard deviation (RSD)? If a 
parameter is not stated, the reader cannot adequately interpret the results. Even if the 
authors state in the methodology what is represented by the value to the right of the ± 
symbol, tables should still be self-explanatory, so readers can evaluate the results. For 
example, in an article evaluating serum lipid levels after long-term therapy with a 
calcium channel blocking agent, the author made the following statement: “After a 
mean treatment period of 5.3 years, total cholesterol and triglyceride levels were not 
significantly different from baseline, whereas the mean high-density lipoprotein 
cholesterol value increased significantly from 1.17 ± 0.41 nmol/L at the initiation of 
treatment to 1.39 ± 0.36 nmol/l at 5.3 years (p < 0.05).” The findings were presented 
in a table and an abbreviated version of this table is presented in Table 24.4. 
Unfortunately, nowhere in the article did the author state whether the values to the 
right of the ± symbol in the table or the text represent the standard deviation or the 
standard error of the mean. Only after recalculating the statistics is it possible to 
determine that the values reflect the standard deviation. Looking solely at the HDL 
cholesterol data in Table 24.4, if the measure of dispersion was the standard 
deviation, a two-sample t-test produces a t-value of 2.705, p < 0.003. In contrast, if 
the figure to the right of the ± symbol was the SEM, the two-sample t-test result 
would be t = 0.40, p > 0.35. Thus, data in the original table represents the mean ± 
standard deviation. However, the only way to determine this is to actually recalculate 
the statistical outcome. Murphy lists “not identifying or properly labeling the type of 



Chapter 24 670

 

Table 24.5 Examples of Skewed Data Evaluated Using ANOVA  

Original information cited in article (mean ± SE): 
 
Nasal EDN (ng/ml) 

Drug A 
(n = 16) 

Drug B 
(n = 14) 

Placebo 
(n = 15) 

Treatment day 1 
Treatment day 15 

245 ± 66 
78 ± 34* 

147 ± 49 
557 ± 200 

275 ± 133 
400 ± 159 

Data modified to reflect dispersion of the sample (mean ± SD) 
Treatment day 1 
Treatment day 1 

245 ± 264 
78 ± 136* 

147 ± 183 
557 ± 748 

275 ± 515 
400 ± 615 

* p < 0.05 versus Drug B or placebo based on change from day 1 to day 15. 
 
 
variance estimate” as one of the more common errors in the medical literature (2004). 
 Another potential problem is using the standard deviation for nonnormal data. As 
discussed in Chapter 6, the standard deviation reflects certain mathematical 
characteristics associated with normally distributed data. The median and quartiles are 
more appropriate measures for skewed distributions. However, McGuigan (1995) 
reported that 39 of the 164 papers he reviewed (24%) used the mean and standard 
deviation for describing skewed or ordinal data. This occurred with less frequency 
(19%) in the work by Kanter and Taylor (1994). An example of skewed data can be 
seen in a recent article comparing two drugs and their effects on the amount of 
eosinophil-derived neurotoxin (EDN). Part of the results is presented in the upper half 
of Table 24.5 and the authors report that they “compared between treatment groups 
using t-tests.” Also, “values of p < 0.05 were considered statistically significant.” 
Note that the outcomes are reported as mean ± standard error. Converting the 
dispersion to standard deviations (S = SEM·√n) we find the results presented in the 
lower portion of Table 24.5. Note in all cases that the standard deviation is larger than 
the mean, indicating data that is positively skewed. A nonparametric procedure or log 
transformation of the original data would have been the preferred method for 
analyzing the data.  
 Another problem with data dispersion is the evaluation of ordinal data by 
calculating a mean and standard deviation (Kim, 2011; Shott, 2011). This was 
identified in 25% of articles reviewed by Avram and colleagues (1985). An example 
of the use of parametric procedures to evaluate ordinal data is presented in a 
publication from the 1980s, where women who received a lumpectomy or 
mastectomy for breast cancer were asked to rate their feelings of femininity. The 
authors used a simple three-level ordinal scale (0 = no change, 1 = a little less 
feminine, and 2 = moderately less feminine). Unfortunately, the authors took the 
responses, calculated means and standard deviations for women with lumpectomies 
versus those with mastectomies, and evaluated the data using a two-sample t-test (“t = 
4.35, p < 0.01” after 14 months). The more appropriate assessment would have been a 
chi square test of independence with frequencies of responses in each of the following 
cells: 
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No Change 

A Little 
Less Feminine 

Moderately 
Less Feminine 

Lumpectomy    
Mastectomy    

 
 
Problems with Hypothesis Testing 
 
 We know from our previous discussions in Chapter 8 that the Type I error rate 
can be expressed as either α or p (a priori or post hoc, respectively) and provides the 
researcher with a certain degree of confidence (1 − α) in statistics. Unfortunately in 
Vrbos’ (1993) review of the literature there was confusion over the level of 
significance or meaning of p in 46% of the articles surveyed.  
 A second problem, which appears less frequently, is assuming the null hypothesis 
is true simply because the researcher fails to reject the null hypothesis. As discussed 
in Chapter 8, the null hypothesis is never proven; we only fail to reject it. 
 A third problem is the correct identification or proper use of one-tailed or two-
tailed statistical procedures (Rigby, 1998). In some cases the reader is not informed 
which type of test is performed or the incorrect test may be used based on the 
hypotheses tested. 
 A fourth problem related to hypothesis testing is the failure to perform a prestudy 
power calculation or the failure to have an adequate sample size. This was observed 
in 50% of the articles reviewed by McGuigan (1995). For example, in a study 
comparing two routes of administration of a hematopoietic growth factor the authors 
reported the data in Table 24.6. Note the small sample size, n = 4. If there was a 
significant difference (e.g., 20%) at the <100 U/Kg/wk dosage, how many subjects 
would be required to detect such a difference? The authors used an ANOVA to 
evaluate the results. Since there are only two levels of the independent variable, we 
can use the formula presented in Chapter 8 (Eq. 8.2) as a quick estimate of the 
number of subjects required to detect a 20% difference with 80% power. Performing 
the calculations found that the required number of subjects would be 188 per delivery 
system. This large number is due primarily to the large variance in the sample data. In 
the study of published articles Vail and Gardener found that 54% of studies they 
reviewed “gave no statistical consideration of sample size” (2003). 
 The following is an example of a 1998 clinical trial protocol where the 
researchers clearly attempted to control the Type II error rate. “A sample size of 28 
healthy males will be enrolled in this study to ensure study completion by at least 24 
 
 

Table 24.6 Comparison of Mean Posologies at the End (Day 120) of Study 

 
Dosage 

 
Time 

IV Group  
(n = 4) 

SC Group 
 (n = 4) 

Statistical 
Difference 

>150 U/Kg/wk Day 120 255 ± 131 138 ± 105 P < 0.01 
<100 U/Kg/wk Day 120 69 ± 45 58 ± 43 ns 
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Table 24.7 Volunteer Demographics 

 Group A Group B 

Age (yr) 67.4 ± 5.8 61.4 ± 8.6 * 

* p = 0.0539   
 
 
patients. Based on (a previous study) a sample size of 24 patients can provide at least 
80% probability to show that the 90% confidence interval of the mean AUC value for 
the clinical lot of Drug B is within ±20% of the reference (commercial lot) mean 
AUC value.” 
 Readers should be cautious of papers that report unnecessarily small and overly 
exact probabilities. For example, in a 1988 publication the authors were reporting the 
difference in parasitic infection rates in children in a developing country and the 
change in the frequencies of infections before and after their particular intervention. 
The change reported “for prevalence in 1984 versus 1985, χ2 = 624, df = 1, p < 10-

11).” In other words, the Type I error rate was less than 0.00000000001! This paper 
clearly overstates the obvious. A second example, illustrating probabilities that are 
too exact, comes from a 1993 article presenting volunteer demographics (Table 24.7). 
Good luck finding a statistical table that provides a column for p = 0.0539! Also, note 
that the authors failed to indicate what the values were to the right of the ± symbol. In 
both cases, it appears that the authors were simply reporting results directly from the 
computer printout, without any attempt to apply a reasonable explanation to their 
results. This type of presentation of statistical results should warn the reader to read 
the article with extreme caution to ensure that the appropriate analysis was performed 
and correct interpretation stated. According to Rigby, in reporting extreme p-values 
“this degree of exactness is very difficult to conceptualize and it could be argued that 
this kind of precision has limited scientific value” (1988, p. 124).  

 There are situations where computer programs may truncate the p-value. For 
example, many times Minitab will report the results as p = 0.000. In these cases the 
reportable p-value is p < 0.001 because the researcher has no knowledge of values 
past the third zero. 
 
Problems with Parametric Statistics 
 
 As discussed in Chapter 9, the two additional underlying requirements for 
performing a parametric statistic (t-tests, F-tests, correlation, and regression) are that 
the data: 1) come from populations that are normally distributed and 2) that sample 
variances (which are reflective of the population variances) be approximately equal 
(homogeneity of variance). The use of statistical tests that require an underlying 
normal distribution where data are not normally distributed is a commonly identified 
error in the literature (Olsen, 2003; Murphy, 2004). 
 One common error is to perform a parametric test on data that is obviously 
skewed. The incidence of such mistakes ranges from 8% (Kanter and Taylor, 1994) 
and 17.7% (Gore, 1977), to as large as 54% (McGuigan, 1995). Note in the data cited 
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Table 24.8 Comparison of Eight Subjects Following a 
Single Oral Dose of a Drug at 10 and 22 Hours 

 Cmax ng/ml-1 
Subject 10.00 h 22.00 h 

1 59.5 18.6 
2 75.2 7.5 
3 33.6 18.9 
4 37.6 33.9 
5 27.8 20.8 
6 28.4 14.9 
7 76.8 29.7 
8 37.5 15.0 
Mean (SD) 47.1 (20.4) 19.9 (8.4)* 

* p < 0.05 compared to 10.00 h (analysis of variance). 
 
 
 in Table 24.5 that the standard deviations are greater than the means that would 
indicate that the data is positively skewed.  

 One method for correcting this problem is to transform the data so the resultant 
distribution is approximately normal (Chapter 6), for example, the log transformation 
of data from a positively skewed distribution. This is illustrated in the statistical 
analysis section of a paper by Cohn and colleagues (1993), where they evaluate 
cardiac function: “Because values were extremely skewed to the right, the Holter 
monitor results were transformed using the logarithmic transformation….” An 
alternative approach would be to perform one of the nonparametric procedures. 
 A second type of error related to parametric and nonparametric procedures is 
confusing paired vs. unpaired data and performing an inappropriate statistical test 
(e.g., an ANOVA instead of a randomized block design or a paired t-test for unpaired 
data). Paired data obviously has advantages in clinical trials where each person serves 
as his or her own control and it provides a more rigorous test, because we are 
evaluating changes within individual subjects. Kanter and Taylor (1994) noted that in 
15% of the articles they studied, the wrong t-test (paired/unpaired) was used and 
McGuigan (1995) found that in 26% of the papers he studied the type of t-test 
(paired/unpaired) was not mentioned. For example, a comparison of the pharmaco-
kinetic results between two time periods is presented in Table 24.8. As indicated in 
the table and the methodology section of the original paper, “the statistical analysis 
employed analysis of variance.” As seen in Table 24.8 this clearly represents paired 
data (each subject serves as his own control, measured at two separate time periods). 
The authors obviously established a decision rule and rejected the results for any p < 
0.05. Recalculating the statistics we find the results to be even more significant than 
reported in the article: F = 12.09, df = 1,14, p < 0.0037. Obviously a two-sample t-test 
would produce the identical results: t = 3.48, df = 14, p < 0.0037. However, a more 
rigorous paired t-test shows that there is more Type I error when such a design is 
employed: paired-t = 3.41, df = 7, p < 0.0113. Unfortunately, in this particular  
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Table 24.9 Effects  of Three Different Mouth Guards on Air Flow (n = 17)  

 FEV1 (liters) PEF (l/min) 

No mouth guard 3.46 (0.70) 508.65 (70.25) 
Mouth guard 1 3.17 (0.16)† 472.88 (68.44) † 
Mouth guard 2 2.97 (0.19) † 432.31 (78.99) † 
Mouth guard 3 3.04 (0.86) † 428.38 (65.02) † 

* Values represent means (s.d.) 
† Values are significantly different (p < 0.05; ANOVA) from the values 
recorded with no mouth guard. 

 
example the author failed to observe the requirement of homogeneity of variance in 
order to perform an ANOVA. Note that S2

10h = 416.16 and S2
22h = 70.60 are not close 

to establishing homogeneity. Thus, the most appropriate statistic would have been a 
paired t-test looking at the difference for each subject or a nonparametric Wilcoxon 
matched-pairs test; the results of such a procedure would be Z = 2.52, p < 0.02. 

 Another common error, discussed in Chapter 11, is the use of multiple t-tests to 
address a significant ANOVA where H0: μ1 = μ2 = μ3 ... = μk is false. The 
compounding of the error using multiple t-tests was defined as experimentwise error 
rate (Eq. 11.2): 
 

C
ew )1(1a α−−=  

 
To correct this problem, multiple comparison procedures were presented in Chapter 
11. The incidence of this type of error has been fairly consistent around one of every 
four articles reviewed (27% for Glantz, 1980; 24% for Altman, 1991; and 22% for 
Kanter and Taylor, 1994). More recently it has been noted as a continuing problem by 
Murphy (2004) and Shott (2011). An example of the misinterpretation of data due to 
experimentwise error is illustrated in an article evaluating different athletic mouth 
guards and their effects on air flow in young adults (ages 20 − 36). The authors’ 
findings are presented in Table 24.9. They concluded, based on this table, “that each 
of the three athletic mouth guards used in this study significantly reduced air flow (p 
< 0.05) .... Similarly, peak expiratory flow rates were significantly reduced by the 
different mouth guards (p < 0.05).” The authors clearly state in their table that the 
measure of dispersion is the standard deviation. Therefore, it is a relatively easy 
process to re-evaluate their data using the ANOVA formulas presented in Chapter 10 
and the multiple comparison procedures in Chapter 11. This re-evaluation finds that 
there was in fact a significant difference with respect to the mouth guards tested and 
the outcome measures for only the PEF. The calculated F-value was 4.85 where the 
critical F-value for 95% confidence is 2.53. In fact the outcome was significant at p < 
0.005. Assume the original hypothesis of equality was tested (α  = 0.05) the Scheffé 
post hoc pairwise comparisons with the same error rate find that there were only two 
significant differences: no mouth guard > mouth guard 2 and no mouth guard > 
mouth guard 3. Unlike the authors’ findings, there was no significant difference  
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Table 24.10 Original Table Reporting Susceptibility Scores and  Annual 
Frequency of BSE  

 Perceived Susceptibility Scores 
 High 

(15 to 19) 
Moderate 
(9 to 14) 

Low 
(9) 

 
Total 

More than monthly 9 1 0 10 
Monthly 31 5 0 36 
6-11 times 11 3 0 14 
1-15 times 19 3 0 22 
Less than yearly 5 1 0 6 
Never 13 10 1 24 
Total  88 23 1 112 

 
 
between the PEF for mouth guard 1 and no mouth guard. How could the authors have 
found a significant difference for all three mouth guards? If one calculates three 
separate two-sample t-tests comparing each mouth guard to no mouth guard, there is 
still no significant difference (t = 1.05). It appears that after finding a significant 
ANOVA, the authors simply assumed that all the mouth guards provided significantly 
less air flow. Without a statement in the methodology section on how significant 
ANOVAs were evaluated, the question must remain unanswered. 
 
Errors with the Chi Square Test of Independence 
 
 As discussed in Chapter 16 the chi square test of independence is used to 
evaluate the independence or relationship (lack of independence) between two 
discrete variables. Overall problems with chi square analysis were identified in 15% 
of the articles reviewed by McGuigan (1995). 
 Two criteria are required in order to perform this test: 1) there cannot be any 
empty cells (a cell within the matrix where the observed frequency equals zero); and 
2) the expected value for each cell must be equal to or greater than five. A common 
mistake in the literature is to proceed with the statistical analysis even though one or 
both of these criteria are violated. An excellent example of this type of error appears 
in an article evaluating the practice of breast self-examination (BSE) in relationship to 
“susceptibility” scores (risk factors) for developing breast cancer. The authors 
concluded the following: “Forty-one (36%) participants with high susceptibility 
scores practiced BSE monthly or more frequently (Table 24.10). However, chi square 
analysis showed no statistically significant difference in the level of perceived 
susceptibility of students and the frequency of BSE, χ2(10) = 13.1925, p = 0.2131, α 
= 0.05”. Note that 24% (5/21) of the cells are empty. If we calculated the expected 
values for each cell under complete independence we would determine that 67% of 
the cells fail to meet the criteria of expected values greater or equal to five. Clearly 
the use of the chi square test of independence was inappropriate for this contingency 
table. If we modify the data by collapsing the adjacent rows or columns in a logical 
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Table 24.11 Data Modified from Table 24.10 to Meet Criteria for the Chi 
Square Test of Independence 

 High 
(15 to 19) 

Low and Moderate 
(less than 15) 

 
Total 

12 or more times per year  40 6 46 
1 to 11 times per year 30 6 36 
Less than yearly or never 18 11 30 
Total  88 23 112 

 
 
order, we can create a matrix which fulfills the criteria required (Table 24.11). 
However, in doing this, we arrive at a decision exactly opposite that of the authors 
(χ2(2) = 7.24, p < 0.05). With α = 0.05 there is a significant relationship between risk 
factors and the volunteers practice of BSE. Also, note in the original table that the 
frequency of the BSE variable did not represent mutually exclusive and exhaustive 
categories. It is assumed that this was a typographical error and the mid-range values 
should have been 1 to 5 times and 6 to 11 times, but it was presented in the article that 
the two categories overlapped. 
 If the sample size is too small or data fails to meet the required criteria, a Fisher’s 
exact test should be utilized. The percent of articles with this type of error is 
approximately 5% (5% by Kanter and Taylor, 1994; and 6% by Felson, 1984). For 
example, Cruess (1989) discussed an article reporting a significant relationship 
between reactivity with parasite isolates based on primary or multiple attacks of 
malaria in subjects studied and presented the following results: 
 

 Reactivity  
 Positive Negative  
Primary Attack 1 2 3 
Multiple Attacks 5 0 5 
 6 2 8 

 
The authors used a chi square test and reported a significant relationship (p = 0.03). 
However, if the more appropriate Fisher’s exact test is performed (since there is one 
empty cell and all expected values are less than five), the result is no significant 
relationship exists (p = 0.107). An example of the appropriate use of Fisher’s exact 
test is described in the methodology section of an article in Gastroenterology: “The 
responses to interferon were compared between the cirrhotic and noncirrhotic patients 
at various times of treatment and follow up, using χ2 method or Fisher’s exact test 
when appropriate” (Jouet, 1994). 
  Another type of problem with the chi square test of independence is the 
correction for continuity when there is only one degree of freedom. This type of error 
was identified with a frequency of occurring between 2.8% (McGuigan, 1995) and 
4.8% (Gore, 1977). The following is a simple clarification in the methodology section 
by Parsch et al. (1997), which assists the reader in understanding the statistics 



Statistical Errors in the Literature 677

involved in the manuscript: “Categorical demographic data and differences in clinical 
outcome were analyzed by χ2 with Yates correction factor … Statistical significance 
was established at a p-value of less than 0.05.”  
 
Summary 
 
 The purpose of this chapter has been to identify the most frequent statistical 
errors seen in the literature to better identify these mistakes in your own readings and 
assist you in avoiding them as you prepare written reports or publishable manuscripts.  
 One should always use caution when reading published articles in the literature. 
Make sure that the drug design and statistical tests are clearly described in the 
methodology section of the article. Altman (1991), George (1985), and McGuigan 
(1995) have indicated methods for improving the peer review process. These include 
requiring authors to indicate who performed the statistical analysis on submissions. 
Journals should clearly state minimum requirements for submission, even provide a 
standardized format regarding the nature of the research, the research design and the 
statistical analyses used in preparing the manuscript. Lastly, papers should be more 
extensively reviewed by statisticians and possibly include a statistician among the 
reviewers for papers submitted for publication. An incorrect or inappropriate 
statistical analysis can lead to the wrong conclusions and all false credibility (White, 
1979). 
 Additional information on the types of statistical errors can be found in the 
classic publication by Huff (1954) or a more recent publication by Spirer et al. (1998), 
which are listed in the suggested supplemental readings. For specific information on 
designing and evaluation of clinical trails, the reader is referred to the book by 
Friedman and colleagues (1998), also listed in the suggested readings. 
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Appendix A 
 
Flow Charts for Selection  
of Appropriate Inferential Tests 
 
 
 
 On the following pages are a series of panels that give direction on selecting the 
most appropriate inferential statistical test to use, based on the types of variables 
involved in the outcomes measurement. 
 For any given hypothesis being tested, the researcher must first identify the 
independent variable(s) and/or dependent variable(s). This begins the process seen in 
Panel A.  Next the researcher must consider if the data presented by the respective 
variables involves discrete or continuous data (D/C?). Lastly, at various points in the 
decision making process the researcher must determine if the sample data comes from 
populations that are normally distributed and, if more than one level of a discrete 
independent variable, does there appear to be homogeneity of variance (ND/H?). 
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Panel A 
 
 

  

 

Discrete 

Continuous 

More than two 

One or two 

Yes 

No 

No 

Discrete 

Continuous Yes 

Continuous 

Discrete 
Is there an 

Independent 
Variable? 

Primary 
Variables 

D/C? 

Go to 
Panel C 

Independent 
Variable 

D/C? 
Go to 

Panel D 

Data Reported as 
 Percent or Proportions 
of a Given Outcome*  

Number of Levels within 
the Discrete Independent 

Variable? 

Z-test of Proportions 

Chi Square 
Test of Independence 

Dependent 
Variable 

D/C? 
Go to 

Panel B 

Go to 
Panel C Codes:  

D/C − Discrete or Continuous  
           variable 
ND/H – Normal distribution and   
              homogeneity of variance 

* For example, the survival rate for Group A was 50% and 36% for Group C. 



Flow Charts for Statistical Tests 683

Panel B 
 

  

Two 

 
Discrete Independent Variable 
Continuous Dependent Variable 

Number of Discrete 
Independent Variables? ND/H?

Two 

No

Yes

Friedman Two-way 
Analysis of Variance 

Two-way ANOVA 
(Analysis of Variance) 

One 

One
One Sample t-test 
(confidence interval) 

Three or 
more 

Number of Levels within the 
Independent Variable? 

Paired 
data? 

No

Yes
One-way ANOVA 

No
ND/H? Kruskal-Wallis 

Two 

Randomized Complete Block 
Design 

Yes

Yes Yes
Paired t-test 

No

ND/H?

Wilcoxon’s Signed Rank Test 
Sign Test 

No 

Yes 

No 

Population 
Variance 
Known? 

Z-test

Paired 
data? 

Mann-Whitney U Test 
Median Test 

No

Yes

ND/H?

Two-sample t-test 
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Panel C 
 

   

No 

2 × 2 Matrix

Larger than a 
  2 × 2 Matrix 

2 × 2 Matrix

Yes 

Yes

No 

Yes

Discrete Independent Variable 
Discrete Dependent Variable 

Third  
Discrete 

Variable? 
Mantel-Haenszel Chi Square

Paired 
data? 

Size of 
Contingency Table 

No empty cells and all 
expected values >5 No

Larger than a 2 × 2 Matrix

Size of 
Contingency Table 

McNemar Test 

Cochran’s Q Test 

Fisher Exact Test

Yates’ Chi Square

Chi Square  
Test of Independence 

Discrete Variables 
without One 

Independent Variable 
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Panel D 
 

  
Continuous Independent Variable 
Continuous Dependent Variable 

Two or More Continuous 
Variables without an  
Independent Variable 

Preselected 

Spearman Rho 
No

Yes

ND

Two

More than two

Number of 
Continuous 
Variables? 

Correlation 

Partial 
Correlation 

More than one
Multiple Regression 

One 

Regression Analysis 

Number of Continuous 
Independent Variables? 

Free
Preselected levels 

or free format? 
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Appendix B 
Statistical Tables 
 
 
 
Table B1   Random Numbers Table 
Table B2   Normal Standardized Distribution 
Table B3 K-Values for Calculating Tolerance Limits (Two-Tailed) 
Table B4 K-Values for Calculating Tolerance Limits (One-Tailed) 
Table B5   Student t-Distribution (1 − α/2) 
Table B6   Comparison of One-tailed versus Two-Tailed t-Distributions 
Table B7   Analysis of Variance F-Distribution 
Table B8   Upper Percentage Points of the Fmax Statistic 
Table B9   Upper Percentage Points of the Cochran C Test for Homogeneity of 

Variance 
Table B10 Percentage Points of the Studentized Range (q) 
Table B11   Percentage Points of the Dunn Multiple Comparisons 
Table B12 Critical Values of q for the Two-Tailed Dunnett’s Test 
Table B13 Critical Values of q for the One-Tailed Dunnett’s Test 
Table B14 Values of r (Correlation Coefficient) at Different Levels of Significance 
Table B15  Chi Square Distribution 
Table B16 Binomial Distributions where p = 0.50 
Table B17 Critical Values of the Wilcoxon T Distribution 
Table B18 Critical Values for Kolmogorov Goodness-of-Fit Test (α = 0.05) 
Table B19 Critical Values for Smirnov Test Statistic (α = 0.05) 
Table B20 Critical Values for the Runs Test (α = 0.05) 
Table B21 Critical Values for TI Range Test (α = 0.05) 
Table B22 Critical Values for the FR Test for Dispersion 
Table B23  Critical Values for Grubbs’ Test (One-Sided Test for T) 
Table B24 Values for Use in Dixon Test for Outlier (α) 
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Table B1  Random Numbers Table 

42505 29928 18850 17263 70236 35432 61247 38337 87214 68897 
32654 33712 97303 74982 30341 17824 38448 96101 58318 84892 
09241 92732 66397 91735 20477 88736 14252 65579 71724 41661 
60481 36875 52880 38061 76675 97108 70738 13808 86470 81613 
00548 99401 29620 77382 62582 90279 51053 55882 23689 42138 

          
14935 30864 23867 91238 43732 41176 27818 99720 82276 58577 
01517 25915 86821 20550 13767 19657 39114 88111 62768 42600 
85448 28625 27677 13522 00733 23616 45170 78646 77552 01582 
11004 06949 40228 95804 06583 10471 83884 27164 50516 89635 
38507 11952 75182 03552 58010 94680 28292 65340 34292 05896 

          
99452 62431 36306 44997 71725 01887 74115 88038 98193 80710 
87961 20548 03520 81159 62323 95340 10516 91057 64979 15326 
91695 49105 11072 41328 45844 15199 52172 24889 99580 65735 
90335 66089 33914 13927 17168 96354 35817 55119 77894 86274 
74775 37096 60407 78405 04361 55394 09344 45095 88789 73620 

          
65141 71286 54481 68757 28095 62329 66628 01479 47433 76801 
30755 11466 35367 84313 19280 37714 06161 48322 23077 63845 
40192 33948 28043 88427 73014 40780 16652 20279 09418 60695 
94528 98786 62495 60668 41998 39213 17701 91582 91659 03018 
21917 16043 24943 93160 97513 76195 08674 74415 81408 66525 

          
36632 18689 89137 46685 11119 75330 03907 73296 43519 66437 
90668 57765 80858 07179 35167 49098 57371 51101 08015 41710 
71063 60441 53750 08240 85269 01440 04898 57359 55221 64656 
21036 16589 79605 10277 52852 40111 77130 38429 31212 41578 
88085 84496 81220 51929 00903 39425 61281 02201 03726 95044 

          
27162 31340 60963 14372 21057 19015 14858 26932 85648 43430 
12046 49063 03168 64138 55123 29232 59462 29850 79201 18349 
33052 11252 53477 65078 09199 58814 07790 36148 18962 85602 
84187 61668 03267 75095 13486 05438 01962 13994 16834 60262 
67887 50033 32275 68259 05930 74797 66309 66181 37093 31528 

          
70457 55716 87554 47943 42819 98810 02729 94043 54642 37974 
86336 64926 01880 41598 64455 88602 81755 74262 74591 58802 
94323 92053 79740 92794 69032 62871 07447 14192 16290 11747 
13869 60770 04022 91154 72841 17275 52936 76317 89963 73241 
94585 85528 41527 05795 59929 25458 38851 87484 18897 61470 
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Table B2  Normal Standardized Distribution  

(Area under the curve between 0 and z) 
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359 
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753 
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141 
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517 
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879 
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224 
0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549 
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852 
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133 
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389 
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621 
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830 
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015 
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177 
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319 
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441 
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545 
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633 
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706 
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767 
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817 
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857 
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890 
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916 
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936 
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952 
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964 
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974 
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981 
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986 
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990 
3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993 
3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995 
3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997 
3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998 
3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 
3.6 .4998 .4998 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 

This table was created with Microsoft® Excel 2010 using function command 
NORM.S.DIST(value)-0.5. 
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Table B3  K-Values for Calculating Tolerance Limits (Two-Tailed) 

 90% Confidence 95% Confidence 99% Confidence 

n 95% 99% 99.9% 95% 99% 99.9% 95% 99% 99.9% 

2 18.22 23.42 29.36 36.52 46.94 58.84 182.7 234.9 294.4 
3 6.823 8.819 11.10 9.789 12.64 15.92 22.13 28.58 35.98 
4 4.913 6.372 8.046 6.341 8.221 10.38 11.12 14.41 18.18 
5 4.142 5.387 6.816 5.077 6.598 8.345 7.870 10.22 12.92 
6 3.723 4.850 6.146 4.422 5.758 7.294 6.373 8.292 10.50 
7 3.456 4.508 5.720 4.020 5.241 6.647 5.520 7.191 9.114 
8 3.270 4.271 5.423 3.746 4.889 6.206 4.968 6.479 8.220 
9 3.132 4.094 5.203 3.546 4.633 5.885 4.581 5.980 7.593 
10 3.026 3.958 5.033 3.393 4.437 5.640 4.292 5.610 7.127 
12 2.871 3.759 4.785 3.175 4.156 5.287 3.896 5.096 6.481 
15 2.720 3.565 4.541 2.965 3.885 4.949 3.529 4.621 5.883 
18 2.620 3.436 4.380 2.828 3.709 4.727 3.297 4.321 5.505 
20 2.570 3.372 4.299 2.760 3.621 4.616 3.184 4.175 5.321 
25 2.479 3.254 4.151 2.638 3.462 4.416 2.984 3.915 4.993 
30 2.417 3.173 4.050 2.555 3.355 4.281 2.851 3.742 4.775 
35 2.371 3.114 3.975 2.495 3.276 4.182 2.756 3.618 4.618 
40 2.336 3.069 3.918 2.448 3.216 4.105 2.684 3.524 4.499 
50 2.285 3.003 3.834 2.382 3.129 3.995 2.580 3.390 4.328 
60 2.250 2.956 3.775 2.335 3.068 3.918 2.509 3.297 4.210 
80 2.203 2.895 3.697 2.274 2.988 3.816 2.416 3.175 4.055 

100 2.172 2.855 3.646 2.234 2.936 3.750 2.357 3.098 3.956 
120 2.151 2.826 3.610 2.206 2.899 3.703 2.315 3.043 3.887 
150 2.128 2.796 3.572 2.176 2.859 3.652 2.271 2.985 3.812 
200 2.102 2.763 3.529 2.143 2.816 3.598 2.223 2.921 3.732 
300 2.073 2.725 3.481 2.106 2.767 3.535 2.169 2.850 3.641 
400 2.057 2.703 3.453 2.084 2.739 3.499 2.138 2.810 3.589 
500 2.046 2.689 3.435 2.070 2.721 3.476 2.117 2.783 3.555 
1000 2.019 2.654 3.390 2.036 2.676 3.418 2.068 2.718 3.473 

∞ 1.960 2.576 3.291 1.960 2.576 3.291 1.960 2.576 3.291 

Modified from: Odeh, R.E. and Owen, D.B. (1980). Tables for Normal Tolerance Limits, 
Sampling Plans, and Screening, Marcel Dekker, Inc., New York, pp. 90-93 and 98-105. 
Reproduced with permission of the publisher.   
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Table B4  K-Values for Calculating Tolerance Limits (One-Tailed) 

 90% Confidence 95% Confidence 99% Confidence 

n 95% 99% 99.9% 95% 99% 99.9% 95% 99% 99.9% 

2 13.09 18.50 24.58 26.26 37.09 49.28 131.4 185.6 246.6 
3 5.311 7.340 9.651 7.656 10.55 13.86 17.37 23.90 31.35 
4 3.957 5.438 7.129 5.144 7.042 9.214 9.083 12.39 16.18 
5 3.400 4.666 6.111 4.203 5.741 7.502 6.578 8.939 11.65 
6 3.092 4.243 5.556 3.708 5.062 6.612 5.406 7.335 9.550 
7 2.894 3.972 5.202 3.399 4.642 6.063 4.728 6.412 8.346 
8 2.754 3.783 4.955 3.187 4.354 5.688 4.285 5.812 7.564 
9 2.650 3.641 4.771 3.031 4.143 5.413 3.972 5.389 7.014 
10 2.568 3.532 4.629 2.911 3.981 5.203 3.738 5.074 6.605 
12 2.448 3.371 4.420 2.736 3.747 4.900 3.410 4.633 6.035 
15 2.329 3.212 4.215 2.566 3.520 4.607 3.102 4.222 5.504 
18 2.249 3.105 4.078 2.453 3.370 4.415 2.905 3.960 5.167 
20 2.208 3.052 4.009 2.396 3.295 4.318 2.808 3.832 5.001 
25 2.132 2.952 3.882 2.292 3.158 4.142 2.633 3.601 4.706 
30 2.080 2.884 3.794 2.220 3.064 4.022 2.515 3.447 4.508 
35 2.041 2.833 3.729 2.167 2.995 3.934 2.430 3.334 4.364 
40 2.010 2.793 3.679 2.125 2.941 3.865 2.364 3.249 4.255 
50 1.965 2.735 3.605 2.065 2.862 3.766 2.269 3.125 4.097 
60 1.933 2.694 3.552 2.022 2.807 3.695 2.202 3.038 3.987 
80 1.890 2.638 3.482 1.964 2.733 3.601 2.114 2.924 3.842 

100 1.861 2.601 3.435 1.927 2.684 3.539 2.056 2.850 3.748 
120 1.841 2.574 3.402 1.899 2.649 3.495 2.015 2.797 3.682 
150 1.818 2.546 3.366 1.870 2.611 3.448 1.971 2.740 3.610 
200 1.793 2.514 3.326 1.837 2.570 3.395 1.923 2.679 3.532 
300 1.765 2.477 3.280 1.800 2.522 3.335 1.868 2.608 3.443 
400 1.748 2.456 3.253 1.778 2.494 3.300 1.836 2.567 3.392 
500 1.736 2.442 3.235 1.763 2.475 3.277 1.814 2.540 3.358 
1000 1.697 2.392 3.172 1.727 2.430 3.220 1.740 2.446 3.240 

∞ 1.645 2.326 3.090 1.645 2.326 3.090 1.645 2.326 3.090 

Modified from: Odeh, R.E. and Owen, D.B. (1980). Tables for Normal Tolerance Limits, 
Sampling Plans, and Screening, Marcel Dekker, Inc., New York, pp. 22-25 and 98-107. 
Reproduced with permission of the publisher.   
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Table B5  Student t-Distribution (1 − α/2) 

d.f. t.80 t.90 t.95 t.975 t.99 t.995 t.9975 t.9995 

1 0.7265 3.0777 6.3137 12.706 31.821 63.656 127.32 636.58 
2 0.6172 1.8856 2.9200 4.3027 6.9645 9.9250 14.089 31.600 
3 0.5844 1.6377 2.3534 3.1824 4.5407 5.8408 7.4532 12.924 
4 0.5686 1.5332 2.1318 2.7765 3.7469 4.6041 5.5975 8.6101 
5 0.5594 1.4759 2.0150 2.5706 3.3649 4.0321 4.7733 6.8685 
6 0.5534 1.4398 1.9432 2.4469 3.1427 3.7074 4.3168 5.9587 
7 0.5491 1.4149 1.8946 2.3646 2.9979 3.4995 4.0294 5.4081 
8 0.5459 1.3968 1.8595 2.3060 2.8965 3.3554 3.8325 5.0414 
9 0.5435 1.3830 1.8331 2.2622 2.8214 3.2498 3.6896 4.7809 
10 0.5415 1.3722 1.8125 2.2281 2.7638 3.1693 3.5814 4.5868 
11 0.5399 1.3634 1.7959 2.2010 2.7181 3.1058 3.4966 4.4369 
12 0.5386 1.3562 1.7823 2.1788 2.6810 3.0545 3.4284 4.3178 
13 0.5375 1.3502 1.7709 2.1604 2.6503 3.0123 3.3725 4.2209 
14 0.5366 1.3450 1.7613 2.1448 2.6245 2.9768 3.3257 4.1403 
15 0.5357 1.3406 1.7531 2.1315 2.6025 2.9467 3.2860 4.0728 
16 0.5350 1.3368 1.7459 2.1199 2.5835 2.9208 3.2520 4.0149 
17 0.5344 1.3334 1.7396 2.1098 2.5669 2.8982 3.2224 3.9651 
18 0.5338 1.3304 1.7341 2.1009 2.5524 2.8784 3.1966 3.9217 
19 0.5333 1.3277 1.7291 2.0930 2.5395 2.8609 3.1737 3.8833 
20 0.5329 1.3253 1.7247 2.0860 2.5280 2.8453 3.1534 3.8496 
21 0.5325 1.3232 1.7207 2.0796 2.5176 2.8314 3.1352 3.8193 
22 0.5321 1.3212 1.7171 2.0739 2.5083 2.8188 3.1188 3.7922 
23 0.5317 1.3195 1.7139 2.0687 2.4999 2.8073 3.1040 3.7676 
24 0.5314 1.3178 1.7109 2.0639 2.4922 2.7970 3.0905 3.7454 
25 0.5312 1.3163 1.7081 2.0595 2.4851 2.7874 3.0782 3.7251 
30 0.5300 1.3104 1.6973 2.0423 2.4573 2.7500 3.0298 3.6460 
40 0.5286 1.3031 1.6839 2.0211 2.4233 2.7045 2.9712 3.5510 
50 0.5278 1.2987 1.6759 2.0086 2.4033 2.6778 2.9370 3.4960 
60 0.5272 1.2958 1.6706 2.0003 2.3901 2.6603 2.9146 3.4602 
80 0.5265 1.2922 1.6641 1.9901 2.3739 2.6387 2.8870 3.4164 

100 0.5261 1.2901 1.6602 1.9840 2.3642 2.6259 2.8707 3.3905 
120 0.5258 1.2886 1.6576 1.9799 2.3578 2.6174 2.8599 3.3734 
160 0.5254 1.2869 1.6544 1.9749 2.3499 2.6069 2.8465 3.3523 
200 0.5252 1.2858 1.6525 1.9719 2.3451 2.6006 2.8385 3.3398 
∞ 0.5244 1.2816 1.6450 1.9602 2.3267 2.5763 2.8076 3.2915 

This table was created with Microsoft® Excel 2010, function command T.INV.2T (alpha,df). 
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Table B6  Comparison of  One-Tailed versus Two-Tailed t-Distributions 

 95% Confidence 99% Confidence 

df Two-Tailed  
(α/2) 

One-Tailed 
(α) 

Two-Tailed  
(α/2) 

One-Tailed 
(α) 

1 12.706 6.314 63.657 31.821 
2 4.302 2.920 9.924 6.985 
3 3.182 2.353 5.840 4.541 
4 2.776 2.131 4.604 3.747 
5 2.570 2.015 4.032 3.365 
6 2.446 1.943 3.707 3.143 
7 2.364 1.894 3.499 2.998 
8 2.306 1.859 3.355 2.896 
9 2.262 1.833 3.249 2.821 
10 2.228 1.812 3.169 2.764 
11 2.201 1.795 3.105 2.718 
12 2.178 1.782 3.054 2.681 
13 2.160 1.770 3.012 2.650 
14 2.144 1.761 2.976 2.624 
15 2.131 1.753 2.946 2.602 
20 2.086 1.724 2.845 2.528 
25 2.059 1.708 2.787 2.485 
30 2.042 1.697 2.750 2.457 
40 2.021 1.683 2.704 2.423 
50 2.008 1.675 2.677 2.403 
60 2.000 1.670 2.660 2.390 
80 1.990 1.664 2.638 2.374 

100 1.984 1.660 2.626 2.364 
120 1.979 1.657 2.617 2.358 
160 1.974 1.654 2.607 2.350 
200 1.971 1.652 2.600 2.345 
  ∞ 1.960 1.645 2.576 2.326 

This table was created with Microsoft® Excel 2010, function command T.INV(alpha,df) 
for one-tailed values and T.INV.2T (alpha,df) for two-tailed values. 
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Table B7  Analysis of Variance F-Distribution 

ν1 ν2 F.80 F.90 F.95 F.975 F.99 F.999 F.9999 

 1 9.4722 39.864 161.45 647.79 4052.2 4 x 105 4 x 107 
 2 3.5556 8.5263 18.513 38.506 98.502 998.38 1 x 104 
 3 2.6822 5.5383 10.128 17.443 34.116 167.06 784.17 
 4 2.3507 4.5448 7.7086 12.218 21.198 74.127 241.68 
 5 2.1782 4.0604 6.6079 10.007 16.258 47.177 124.80 
 6 2.0729 3.7760 5.9874 8.8131 13.745 35.507 82.422 
 7 2.0020 3.5894 5.5915 8.0727 12.246 29.246 62.166 
 8 1.9511 3.4579 5.3176 7.5709 11.259 25.415 50.699 
 9 1.9128 3.3603 5.1174 7.2093 10.562 22.857 43.481 
 10 1.8829 3.2850 4.9646 6.9367 10.044 21.038 38.592 
 11 1.8589 3.2252 4.8443 6.7241 9.6461 19.687 35.041 
 12 1.8393 3.1766 4.7472 6.5538 9.3303 18.645 32.422 
 13 1.8230 3.1362 4.6672 6.4143 9.0738 17.815 30.384 

1 14 1.8091 3.1022 4.6001 6.2979 8.8617 17.142 28.755 
 15 1.7972 3.0732 4.5431 6.1995 8.6832 16.587 27.445 
 16 1.7869 3.0481 4.4940 6.1151 8.5309 16.120 26.368 
 17 1.7779 3.0262 4.4513 6.0420 8.3998 15.722 25.437 
 18 1.7699 3.0070 4.4139 5.9781 8.2855 15.380 24.651 
 19 1.7629 2.9899 4.3808 5.9216 8.1850 15.081 23.982 
 20 1.7565 2.9747 4.3513 5.8715 8.0960 14.819 23.399 
 22 1.7457 2.9486 4.3009 5.7863 7.9453 14.381 22.439 
 24 1.7367 2.9271 4.2597 5.7166 7.8229 14.028 21.653 
 26 1.7292 2.9091 4.2252 5.6586 7.7213 13.739 21.042 
 30 1.7172 2.8807 4.1709 5.5675 7.5624 13.293 20.096 
 35 1.7062 2.8547 4.1213 5.4848 7.4191 12.897 19.267 
 40 1.6980 2.8353 4.0847 5.4239 7.3142 12.609 18.670 
 45 1.6917 2.8205 4.0566 5.3773 7.2339 12.393 18.219 
 50 1.6867 2.8087 4.0343 5.3403 7.1706 12.222 17.884 
 60 1.6792 2.7911 4.0012 5.2856 7.0771 11.973 17.375 
 90 1.6668 2.7621 3.9469 5.1962 6.9251 11.573 16.589 
 120 1.6606 2.7478 3.9201 5.1523 6.8509 11.380 16.204 
 240 1.6515 2.7266 3.8805 5.0875 6.7416 11.099 15.658 
 ∞ 1.6423 2.7053 3.8415 5.0239 6.6349 10.828 15.134 

continued 
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Table B7   Analysis of Variance F-Distribution (continued) 

ν1 ν2 F.80 F.90 F.95 F.975 F.99 F.999 F.9999 

 2 4.000 9.000 19.00 39.00 99.00 998.8 1 x 104 
 3 2.886 5.462 9.552 16.04 30.82 148.5 694.8 
 4 2.472 4.325 6.944 10.65 18.00 61.25 197.9 
 5 2.259 3.780 5.786 8.434 13.27 37.12 97.09 
 6 2.130 3.463 5.143 7.260 10.92 27.00 61.58 
 8 1.981 3.113 4.459 6.059 8.649 18.49 35.97 

2 10 1.899 2.924 4.103 5.456 7.559 14.90 26.54 
 12 1.846 2.807 3.885 5.096 6.927 12.97 21.86 
 15 1.795 2.695 3.682 4.765 6.359 11.34 18.10 
 20 1.746 2.589 3.493 4.461 5.849 9.953 15.12 
 24 1.722 2.538 3.403 4.319 5.614 9.340 13.85 
 30 1.699 2.489 3.316 4.182 5.390 8.773 12.72 
 40 1.676 2.440 3.232 4.051 5.178 8.251 11.70 
 60 1.653 2.393 3.150 3.925 4.977 7.768 10.78 
 120 1.631 2.347 3.072 3.805 4.787 7.321 9.954 
 ∞ 1.609 2.303 2.996 3.689 4.605 6.908 9.211 

 2 4.1563 9.1618 19.164 39.166 99.164 999.31 1 x 104 
 3 2.9359 5.3908 9.2766 15.439 29.457 141.10 659.38 
 4 2.4847 4.1909 6.5914 9.9792 16.694 56.170 181.14 
 5 2.2530 3.6195 5.4094 7.7636 12.060 33.200 86.380 
 6 2.1126 3.2888 4.7571 6.5988 9.7796 23.705 53.667 
 8 1.9513 2.9238 4.0662 5.4160 7.5910 15.829 30.443 

3 10 1.8614 2.7277 3.7083 4.8256 6.5523 12.553 22.032 
 12 1.8042 2.6055 3.4903 4.4742 5.9525 10.805 17.899 
 15 1.7490 2.4898 3.2874 4.1528 5.4170 9.3351 14.639 
 20 1.6958 2.3801 3.0984 3.8587 4.9382 8.0981 12.049 
 24 1.6699 2.3274 3.0088 3.7211 4.7181 7.5543 10.965 
 30 1.6445 2.2761 2.9223 3.5893 4.5097 7.0545 9.9972 
 40 1.6195 2.2261 2.8387 3.4633 4.3126 6.5947 9.1277 
 60 1.5950 2.1774 2.7581 3.3425 4.1259 6.1714 8.3528 
 120 1.5709 2.1300 2.6802 3.2269 3.9491 5.7812 7.6579 
 ∞ 1.5472 2.0838 2.6049 3.1162 3.7816 5.4220 7.0359 

Continued 
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Table B7   Analysis of Variance F-Distribution (continued) 

ν1 ν2 F.80 F.90 F.95 F.975 F.99 F.999 F.9999 

 2 4.2361 9.2434 19.247 39.248 99.251 999.31 1 x 104 
 3 2.9555 5.3427 9.1172 15.101 28.710 137.08 640.75 
 4 2.4826 4.1072 6.3882 9.6045 15.977 53.435 171.83 
 5 2.2397 3.5202 5.1922 7.3879 11.392 31.083 80.559 
 6 2.0924 3.1808 4.5337 6.2271 9.1484 21.922 49.418 
 8 1.9230 2.8064 3.8379 5.0526 7.0061 14.392 27.474 

4 10 1.8286 2.6053 3.4780 4.4683 5.9944 11.283 19.631 
 12 1.7684 2.4801 3.2592 4.1212 5.4119 9.6334 15.789 
 15 1.7103 2.3614 3.0556 3.8043 4.8932 8.2528 12.777 
 20 1.6543 2.2489 2.8661 3.5147 4.4307 7.0959 10.419 
 24 1.6269 2.1949 2.7763 3.3794 4.2185 6.5893 9.4224 
 30 1.6001 2.1422 2.6896 3.2499 4.0179 6.1245 8.5420 
 40 1.5737 2.0909 2.6060 3.1261 3.8283 5.6980 7.7598 
 60 1.5478 2.0410 2.5252 3.0077 3.6491 5.3069 7.0577 
 120 1.5222 1.9923 2.4472 2.8943 3.4795 4.9472 6.4356 
 ∞ 1.4972 1.9449 2.3719 2.7858 3.3192 4.6166 5.8790 

 2 4.2844 9.2926 19.296 39.298 99.302 999.31 1 x 104 
 3 2.9652 5.3091 9.0134 14.885 28.237 134.58 627.71 
 4 2.4780 4.0506 6.2561 9.3645 15.522 51.718 166.24 
 5 2.2275 3.4530 5.0503 7.1464 10.967 29.751 76.834 
 6 2.0755 3.1075 4.3874 5.9875 8.7459 20.802 46.741 
 8 1.9005 2.7264 3.6875 4.8173 6.6318 13.484 25.640 

5 10 1.8027 2.5216 3.3258 4.2361 5.6364 10.481 18.132 
 12 1.7403 2.3940 3.1059 3.8911 5.0644 8.8921 14.465 
 15 1.6801 2.2730 2.9013 3.5764 4.5556 7.5670 11.627 
 20 1.6218 2.1582 2.7109 3.2891 4.1027 6.4606 9.3860 
 24 1.5933 2.1030 2.6207 3.1548 3.8951 5.9767 8.4547 
 30 1.5654 2.0492 2.5336 3.0265 3.6990 5.5338 7.6325 
 40 1.5379 1.9968 2.4495 2.9037 3.5138 5.1282 6.8976 
 60 1.5108 1.9457 2.3683 2.7863 3.3389 4.7567 6.2464 
 120 1.4841 1.8959 2.2899 2.6740 3.1735 4.4156 5.6662 
 ∞ 1.4579 1.8473 2.2141 2.5665 3.0172 4.1030 5.1477 

continued 
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Table B7   Analysis of Variance F-Distribution (continued) 

ν1 ν2 F.80 F.90 F.95 F.975 F.99 F.999 F.9999 

 2 4.3168 9.3255 19.329 39.331 99.331 999.31 1 x 104 
 3 2.9707 5.2847 8.9407 14.735 27.911 132.83 620.26 
 4 2.4733 4.0097 6.1631 9.1973 15.207 50.524 162.05 
 5 2.2174 3.4045 4.9503 6.9777 10.672 28.835 74.506 
 6 2.0619 3.0546 4.2839 5.8197 8.4660 20.031 44.936 
 8 1.8826 2.6683 3.5806 4.6517 6.3707 12.858 24.360 

6 10 1.7823 2.4606 3.2172 4.0721 5.3858 9.9262 17.084 
 12 1.7182 2.3310 2.9961 3.7283 4.8205 8.3783 13.562 
 15 1.6561 2.2081 2.7905 3.4147 4.3183 7.0913 10.819 
 20 1.5960 2.0913 2.5990 3.1283 3.8714 6.0186 8.6802 
 24 1.5667 2.0351 2.5082 2.9946 3.6667 5.5506 7.7926 
 30 1.5378 1.9803 2.4205 2.8667 3.4735 5.1223 6.9995 
 40 1.5093 1.9269 2.3359 2.7444 3.2910 4.7307 6.3010 
 60 1.4813 1.8747 2.2541 2.6274 3.1187 4.3719 5.6825 
 120 1.4536 1.8238 2.1750 2.5154 2.9559 4.0436 5.1332 
 ∞ 1.4263 1.7741 2.0986 2.4082 2.8020 3.7430 4.6421 

 2 4.3401 9.3491 19.353 39.356 99.357 999.31 1 x 104 
 3 2.9741 5.2662 8.8867 14.624 27.671 131.61 614.67 
 4 2.4691 3.9790 6.0942 9.0741 14.976 49.651 159.26 
 5 2.2090 3.3679 4.8759 6.8530 10.456 28.165 72.643 
 6 2.0508 3.0145 4.2067 5.6955 8.2600 19.463 43.539 
 8 1.8682 2.6241 3.5005 4.5285 6.1776 12.398 23.429 

7 10 1.7658 2.4140 3.1355 3.9498 5.2001 9.5170 16.327 
 12 1.7003 2.2828 2.9134 3.6065 4.6395 8.0008 12.893 
 15 1.6368 2.1582 2.7066 3.2934 4.1416 6.7412 10.230 
 20 1.5752 2.0397 2.5140 3.0074 3.6987 5.6921 8.1563 
 24 1.5451 1.9826 2.4226 2.8738 3.4959 5.2351 7.2978 
 30 1.5154 1.9269 2.3343 2.7460 3.3045 4.8171 6.5374 
 40 1.4861 1.8725 2.2490 2.6238 3.1238 4.4356 5.8644 
 60 1.4572 1.8194 2.1665 2.5068 2.9530 4.0864 5.2678 
 120 1.4287 1.7675 2.0868 2.3948 2.7918 3.7669 4.7385 
 ∞ 1.4005 1.7167 2.0096 2.2875 2.6393 3.4745 4.2673 

continued 
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Table B7   Analysis of Variance F-Distribution (continued) 

ν1 ν2 F.80 F.90 F.95 F.975 F.99 F.999 F.9999 

 5 2.2021 3.3393 4.8183 6.7572 10.289 27.649 71.246 
 10 1.7523 2.3771 3.0717 3.8549 5.0567 9.2041 15.745 
 15 1.6209 2.1185 2.6408 3.1987 4.0044 6.4706 9.7789 
 20 1.5580 1.9985 2.4471 2.9128 3.5644 5.4401 7.7562 

8 30 1.4968 1.8841 2.2662 2.6513 3.1726 4.5816 6.1809 
 40 1.4668 1.8289 2.1802 2.5289 2.9930 4.2071 5.5261 
 60 1.4371 1.7748 2.0970 2.4117 2.8233 3.8649 4.9477 
 120 1.4078 1.7220 2.0164 2.2994 2.6629 3.5518 4.4329 
 ∞ 1.3788 1.6702 1.9384 2.1918 2.5113 3.2655 3.9781 

 5 2.1963 3.3163 4.7725 6.6810 10.158 27.241 70.082 
 10 1.7411 2.3473 3.0204 3.7790 4.9424 8.9558 15.280 
 15 1.6076 2.0862 2.5876 3.1227 3.8948 6.2560 9.4224 
 20 1.5436 1.9649 2.3928 2.8365 3.4567 5.2391 7.4397 

9 30 1.4812 1.8490 2.2107 2.5746 3.0665 4.3929 5.8972 
 40 1.4505 1.7929 2.1240 2.4519 2.8876 4.0243 5.2569 
 60 1.4201 1.7380 2.0401 2.3344 2.7185 3.6873 4.6912 
 120 1.3901 1.6842 1.9588 2.2217 2.5586 3.3792 4.1910 
 ∞ 1.3602 1.6315 1.8799 2.1136 2.4073 3.0975 3.7471 

 5 2.1914 3.2974 4.7351 6.6192 10.051 26.914 69.267 
 10 1.7316 2.3226 2.9782 3.7168 4.8491 8.7539 14.901 
 15 1.5964 2.0593 2.5437 3.0602 3.8049 6.0809 9.1313 
 20 1.5313 1.9367 2.3479 2.7737 3.3682 5.0754 7.1814 

10 30 1.4678 1.8195 2.1646 2.5112 2.9791 4.2387 5.6643 
 40 1.4365 1.7627 2.0773 2.3882 2.8005 3.8744 5.0350 
 60 1.4055 1.7070 1.9926 2.2702 2.6318 3.5416 4.4820 
 120 1.3748 1.6524 1.9105 2.1570 2.4721 3.2371 3.9909 
 ∞ 1.3442 1.5987 1.8307 2.0483 2.3209 2.9588 3.5561 

continued 
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Table B7   Analysis of Variance F-Distribution (continued) 

ν1 ν2 F.80 F.90 F.95 F.975 F.99 F.999 F.9999 

 5 2.1835 3.2682 4.6777 6.5245 9.8883 26.419 67.987 
 10 1.7164 2.2841 2.9130 3.6210 4.7058 8.4456 14.334 
 15 1.5782 2.0171 2.4753 2.9633 3.6662 5.8121 8.6875 
 20 1.5115 1.8924 2.2776 2.6758 3.2311 4.8231 6.7812 

12 30 1.4461 1.7727 2.0921 2.4120 2.8431 4.0006 5.3078 
 40 1.4137 1.7146 2.0035 2.2882 2.6648 3.6425 4.6966 
 60 1.3816 1.6574 1.9174 2.1692 2.4961 3.3153 4.1582 
 120 1.3496 1.6012 1.8337 2.0548 2.3363 3.0161 3.6816 
 ∞ 1.3177 1.5458 1.7522 1.9447 2.1847 2.7425 3.2614 

 5 2.1751 3.2380 4.6188 6.4277 9.7223 25.910 66.590 
 10 1.7000 2.2435 2.8450 3.5217 4.5582 8.1291 13.752 
 15 1.5584 1.9722 2.4034 2.8621 3.5222 5.5352 8.2291 
 20 1.4897 1.8449 2.2033 2.5731 3.0880 4.5616 6.3737 

15 30 1.4220 1.7223 2.0148 2.3072 2.7002 3.7528 4.9386 
 40 1.3883 1.6624 1.9245 2.1819 2.5216 3.4004 4.3456 
 60 1.3547 1.6034 1.8364 2.0613 2.3523 3.0782 3.8217 
 120 1.3211 1.5450 1.7505 1.9450 2.1915 2.7833 3.3597 
 ∞ 1.2874 1.4871 1.6664 1.8326 2.0385 2.5132 2.9504 

 5 2.1660 3.2067 4.5581 6.3285 9.5527 25.393 65.193 
 10 1.6823 2.2007 2.7740 3.4185 4.4054 7.8035 13.155 
 15 1.5367 1.9243 2.3275 2.7559 3.3719 5.2487 7.7562 
 20 1.4656 1.7938 2.1242 2.4645 2.9377 4.2901 5.9517 

20 30 1.3949 1.6673 1.9317 2.1952 2.5487 3.4927 4.5547 
 40 1.3596 1.6052 1.8389 2.0677 2.3689 3.1450 3.9763 
 60 1.3241 1.5435 1.7480 1.9445 2.1978 2.8265 3.4688 
 120 1.2882 1.4821 1.6587 1.8249 2.0346 2.5344 3.0177 
 ∞ 1.2519 1.4206 1.5705 1.7085 1.8783 2.2658 2.6193 

This table was created using Microsoft® Excel 2010, function command F.INV.RT 
(alpha,df1,df2). 
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Table B8  Upper Percentage Points of the Fmax Statistic  
  
 

n − 1 

 
 

α 

K = number of variances 

2 3 4 5 6 7 8 9 10 11 12 

4 .05 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.4 44.6 48.0 51.4 
 .01 23.2 37 49 59 69 79 89 97 106 113 120 

5 .05 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9 
 .01 14.9 22 28 33 38 42 46 50 54 57 60 

6 .05 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7 
 .01 11.1 15.5 19.1 22 25 27 30 32 34 36 37 

7 .05 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8 
 .01 8.89 12.1 14.5 16.5 18.4 20 22 23 24 26 27 

8 .05 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7 
 .01 7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21 

9 .05 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7 
 .01 6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6 

10 .05 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34 
 .01 5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9 

12 .05 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48 
 .01 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6 

15 .05 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93 
 .05 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0 

20 .05 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59 
 .01 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9 

30 .05 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39 
 .01 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2 

60 .05 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36 
 .01 1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7 

∞ .05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 .01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Modified from: Pearson, E.S. and Hartley, H.O. (1970). Biometrika Tables for Statisticians, 
Vol. 1 (Table 31), Biometrika Trustees at the University Press, Cambridge, London.  
Reproduced with permission of the Biometrika Trustees. 
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Table B9  Upper Percentage Points of the Cochran C Test for Homogeneity of 
Variance  

 
n-1 

 
α 

k = levels of independent variable 

2 3 4 5 6 7 8 9 10 

1 .05 .999 .967 .907 .841 .781 .727 .680 .639 .602 
 .01 .999 .993 .968 .928 .883 .838 .795 .754 .718 

2 .05 .975 .871 .768 .684 .616 .561 .516 .478 .445 
 .01 .995 .942 .864 .789 .722 .664 .615 .573 .536 

3 .05 .939 .798 .684 .598 .532 .480 .438 .403 .373 
 .01 .979 .883 .781 .696 .626 .569 .521 .481 .447 

4 .05 .906 .746 .629 .544 .480 .431 .391 .358 .331 
 .01 .959 .834 .721 .633 .564 .508 .463 .425 .393 

5 .05 .877 .707 .590 .507 .445 .397 .360 .329 .303 
 .01 .937 .793 .676 .588 .520 .466 .423 .387 .357 

6 .05 .853 .677 .560 .478 .418 .373 .336 .307 .282 
 .01 .917 .761 .641 .553 .487 .435 .393 .359 .331 

7 .05 .833 .653 .537 .456 .398 .354 .319 .290 .267 
 .01 .899 .734 .613 .526 .461 .411 .370 .338 .311 

8 .05 .816 .633 .518 .439 .382 .338 .304 .277 .254 
 .01 .882 .711 .590 .504 .440 .391 .352 .321 .295 

9 .05 .801 .617 .502 .424 .368 .326 .293 .266 .244 
 .05 .867 .691 .570 .485 .423 .375 .337 .307 .281 

16 .05 .734 .547 .437 .364 .314 .276 .246 .223 .203 
 .01 .795 .606 .488 .409 .353 .311 .278 .251 .230 

36 .05 .660 .475 .372 .307 .261 .228 .202 .182 .166 
 .01 .707 .515 .406 .335 .286 .249 .221 .199 .181 

144 .05 .581 .403 .309 .251 .212 .183 .162 .145 .131 
 .01 .606 .423 .325 .264 .223 .193 .170 .152 .138 

Modified from: Eisenhart, C., Hastay, M.W., and Wallis W.A., eds. (1947). Techniques of 
Statistical Analysis (Tables 15.1 and 15.2), McGraw-Hill Book Company, New York.  
Reproduced with permission of the publisher. 
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Table B10   Percentage Point of the Studentized Range (q) 

 
df 

 
α 

k  (or p) 

2 3 4 5 6 7 8 9  10 

10 .05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 
 .01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 

12 .05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 
 .01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 

14 .05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 
 .01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 

16 .05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 
 .01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 

18 .05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 
 .01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 

20 .05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 
 .01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 

24 .05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 
 .01 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 

30 .05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 
 .01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 

40 .05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 
 .01 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 

60 .05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 
 .01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 

120 .05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 
 .01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 

∞ .05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 

 .01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 

Modified from: Pearson, E.S. and Hartley, H.O. (1970). Biometrika Tables for Statisticians, 
Vol. 1 (Table 29), Biometrika Trustees at the University Press, Cambridge, London.  
Reproduced with permission of the Biometrika Trustees. 
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Table B11  Percentage Points of the Dunn Multiple Comparisons  

Number of 
Comparisons 

(C) 

 

α 

(N − K) degrees of freedom 

10 15 20 24 30 40  60 120 ∞ 

2 .05 2.64 2.49 2.42 2.39 2.36 3.33 2.30 2.27 2.24 
 .01 3.58 3.29 3.16 3.09 3.03 2.97 2.92 2.86 2.81 

3 .05 2.87 2.69 2.61 2.58 2.54 2.50 2.47 2.43 2.39 
 .01 3.83 3.48 3.33 3.26 3.19 3.12 3.06 2.99 2.94 

4 .05 3.04 2.84 2.75 2.70 2.66 2.62 2.58 2.54 2.50 
 .01 4.01 3.62 3.46 3.38 3.30 3.23 3.16 3.09 3.02 

5 .05 3.17 2.95 2.85 2.80 2.75 2.71 2.66 2.62 2.58 
 .01 4.15 3.74 3.55 3.47 3.39 3.31 3.24 3.16 3.09 

6 .05 3.28 3.04 2.93 2.88 2.83 2.78 2.73 2.68 2.64 
 .01 4.27 3.82 3.63 3.54 3.46 3.38 3.30 3.22 3.15 

7 .05 3.37 3.11 3.00 2.94 2.89 2.84 2.79 2.74 2.69 
 .01 4.37 3.90 3.70 3.61 3.52 3.43 3.34 3.27 3.19 

8 .05 3.45 3.18 3.06 3.00 2.94 2.89 2.84 2.79 2.74 
 .01 4.45 3.97 3.76 3.66 3.57 3.48 3.39 3.31 3.23 

9 .05 3.52 3.24 3.11 3.05 2.99 2.93 2.88 2.83 2.77 
 .01 4.53 4.02 3.80 3.70 3.61 3.51 3.42 3.34 3.26 

10 .05 3.58 3.29 3.16 3.09 3.03 2.97 2.92 2.86 2.81 
 .01 4.59 4.07 3.85 3.74 3.65 3.55 3.46 3.37 3.29 

15 .05 3.83 3.48 3.33 3.26 3.19 3.12 3.06 2.99 2.94 
 .01 4.86 4.29 4.03 3.91 3.80 3.70 3.59 3.50 3.40 

20 .05 4.01 3.62 3.46 3.38 3.30 3.23 3.16 3.09 3.02 
 .01 5.06 4.42 4.15 4.04 3.90 3.79 3.69 3.58 3.48 

30 .05 4.27 3.82 3.63 3.54 3.46 3.38 3.30 3.22 3.15 
 .01 5.33 4.61 4.33 4.2 4.13 3.93 3.81 3.69 3.59 

Modified from:  Dunn, O.J. (1961). “Multiple Comparisons among Means,” Journal of the 
American Statistical Association, 56:62-64.  Reproduced with permission of the American 
Statistical Association. 
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Table B12  Critical Values of q for the Two-Tailed Dunnett’s Test 

N − k 
df 

 Number of means with the range from the control inclusive (p) 

α 2 3 4 5 6 7 8 9 10 

10 .05 2.23 2.57 2.81 2.97 3.11 3.21 3.31 3.39 3.46 
 .01 3.17 3.53 3.78 3.95 4.01 4.21 4.31 4.40 4.47 

12 .05 2.18 2.50 2.72 2.88 3.00 3.10 3.18 3.25 3.32 
 .01 3.05 3.39 3.61 3.76 3.89 3.99 4.08 4.15 4.22 

14 .05 2.14 2.46 2.67 2.81 2.93 3.02 3.10 3.17 3.23 
 .01 2.98 3.29 3.49 3.64 3.75 3.84 3.92 3.99 4.05 

16 .05 2.12 2.42 2.63 2.77 2.88 2.96 3.04 3.10 3.16 
 .01 2.92 3.22 3.41 3.55 3.65 3.74 3.82 3.88 3.93 

18 .05 2.10 2.40 2.59 2.73 2.84 2.92 2.99 3.05 3.11 
 .01 2.88 3.17 3.35 3.48 3.58 3.67 3.74 3.80 3.85 

20 .05 2.09 2.38 2.57 2.70 2.81 2.89 2.96 3.02 3.07 
 .01 2.85 3.13 3.31 3.43 3.53 3.61 3.67 3.73 3.78 

24 .05 2.06 2.35 2.53 2.66 2.76 2.84 2.91 2.96 3.01 
 .01 2.80 3.07 3.24 3.36 3.45 3.52 3.58 3.64 3.69 

30 .05 2.04 2.32 2.50 2.62 2.72 2.79 2.86 2.91 2.96 
 .01 2.75 3.01 3.17 3.28 3.37 3.44 3.50 3.55 3.59 

40 .05 2.02 2.29 2.47 2.58 2.67 2.75 2.81 2.86 2.90 
 .01 2.70 2.95 3.10 3.21 3.29 3.36 3.41 3.46 3.50 

60 .05 2.00 2.27 2.43 2.55 2.63 2.70 2.76 2.81 2.85 
 .01 2.66 2.90 3.04 3.14 3.22 3.28 3.33 3.38 3.42 

120 .05 1.98 2.24 2.40 2.51 2.59 2.66 2.71 2.76 2.80 
 .01 2.62 2.84 2.98 3.08 3.15 3.21 3.25 3.30 3.33 

∞ .05 1.96 2.21 2.37 2.47 2.55 2.62 2.67 2.71 2.75 

 .01 2.58 2.79 2.92 3.01 3.08 3.14 3.18 3.22 3.25 

Modified from: Dunnett, C.W. (1955) “A multiple comparison procedure for comparing 
several treatments with a control,” Journal of the American Statistical Association, 50:1119-
1120. Reprinted with permission from The Journal of the American Statistical Association. 
Copyright 1955 by the American Statistical Association. All rights reserved. 
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Table B13  Critical Values of q for the One-Tailed Dunnett’s Test 

N − k 
df 

 Number of means with the range from the control inclusive (p) 

α 2 3 4 5 6 7 8 9 10 

10 .05 1.81 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81 
 .01 2.76 3.11 3.31 3.45 3.56 3.64 3.71 3.78 3.83 

12 .05 1.78 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74 
 .01 2.68 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67 

14 .05 1.76 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69 
 .01 2.62 2.94 3.11 3.23 3.32 3.40 3.46 3.51 3.56 

16 .05 1.75 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65 
 .01 2.58 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48 

18 .05 1.73 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62 
 .01 2.55 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42 

20 .05 1.72 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60 
 .01 2.53 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38 

24 .05 1.71 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57 
 .01 2.49 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31 

30 .05 1.70 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54 
 .01 2.46 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.24 

40 .05 1.68 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51 
 .01 2.42 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18 

60 .05 1.67 1.95 2.10 2.21 2.28 2.35 2.39 2.44 2.48 
 .01 2.39 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12 

120 .05 1.66 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45 
 .01 2.36 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06 

∞ .05 1.64 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42 

 .01 2.33 2.56 2.68 2.77 2.84 2.89 2.93 2.97 3.00 

Modified from: Dunnett, C.W. (1955) “A multiple comparison procedure for comparing 
several treatments with a control,” Journal of the American Statistical Association, 50:1117-
1118. Reprinted with permission from The Journal of the American Statistical Association. 
Copyright 1955 by the American Statistical Association. All rights reserved. 
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Table B14  Values of  r at Different Levels of Significance 

 d.f. .01 .05 .01 .001 

1 .988 .997 .999 1.00 
2 .900 .950 .990 .999 
3 .805 .878 .959 .991 
4 .730 .811 .917 .974 
5 .669 .755 .875 .951 
6 .622 .707 .834 .925 
7 .582 .666 .798 .898 
8 .549 .632 .765 .872 
9 .521 .602 .735 .847 

10 .497 .576 .708 .823 
11 .476 .553 .684 .801 
12 .458 .532 .661 .780 
13 .441 .514 .641 .760 
14 .426 .497 .623 .742 
15 .412 .482 .606 .725 
16 .400 .468 .590 .708 
17 .389 .456 .575 .693 
18 .378 .444 .561 .679 
19 .369 .433 .549 .665 
20 .360 .423 .537 .652 
25 .323 .381 .487 .597 
30 .296 .349 .449 .554 
35 .275 .325 .418 .519 
40 .257 .304 .393 .490 
50 .231 .273 .354 .443 
60 .211 .250 .325 .408 
80 .183 .217 .283 .357 
100 .164 .195 .254 .321 
150 .134 .159 .208 .264 
200 .116 .138 .181 .230 

Modified from: Pearson, E.S. and Hartley, H.O. (1970). Biometrika Tables for Statisticians, 
Vol. 1 (Table 13), Biometrika Trustees at the University Press, Cambridge, London.  
Reproduced with permission of the Biometrika Trustees. 
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Table B15  Chi Square Distribution 

d.f. α = 0.10 0.05 0.025 0.01 0.005 0.001 0.0001 

1 2.7055 3.8415 5.0239 6.6349 7.8794 10.827 15.134 
2 4.6052 5.9915 7.3778 9.2104 10.597 13.815 18.425 
3 6.2514 7.8147 9.3484 11.345 12.838 16.266 21.104 
4 7.7794 9.4877 11.143 13.277 14.860 18.466 23.506 
5 9.2363 11.070 12.832 15.086 16.750 20.515 25.751 
6 10.645 12.592 14.449 16.812 18.548 22.457 27.853 
7 12.017 14.067 16.013 18.475 20.278 24.321 29.881 
8 13.362 15.507 17.535 20.090 21.955 26.124 31.827 
9 14.684 16.919 19.023 21.666 23.589 27.877 33.725 

10 15.987 18.307 20.483 23.209 25.188 29.588 35.557 
11 17.275 19.675 21.920 24.725 26.757 31.264 37.365 
12 18.549 21.026 23.337 26.217 28.300 32.909 39.131 
13 19.812 22.362 24.736 27.688 29.819 34.527 40.873 
14 21.064 23.685 26.119 29.141 31.319 36.124 42.575 
15 22.307 24.996 27.488 30.578 32.801 37.698 44.260 
16 23.542 26.296 28.845 32.000 34.267 39.252 45.926 
17 24.769 27.587 30.191 33.409 35.718 40.791 47.559 
18 25.989 28.869 31.526 34.805 37.156 42.312 49.185 
19 27.204 30.144 32.852 36.191 38.582 43.819 50.787 
20 28.412 31.410 34.170 37.566 39.997 45.314 52.383 
21 29.615 32.671 35.479 38.932 41.401 46.796 53.960 
22 30.813 33.924 36.781 40.289 42.796 48.268 55.524 
23 32.007 35.172 38.076 41.638 44.181 49.728 57.067 
24 33.196 36.415 39.364 42.980 45.558 51.179 58.607 
25 34.382 37.652 40.646 44.314 46.928 52.619 60.136 

This table was created with Microsoft® Excel 2010, function command CHI.INV.RT 
(alpha,df). 
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Table B16  Binomial Distributions where p = 0.50 

 
 qp 

x

n
 = p(x) x-nx









 

x 
n 0 1 2 3 4 5 6 

1 0.5000 0.5000 … … … … … 
2 0.2500 0.5000 0.2500 … … … … 
3 0.1250 0.3750 0.3750 0.1250 … … … 
4 0.0625 0.2500 0.3750 0.2500 0.0625 … … 
5 0.0313 0.1563 0.3125 0.3125 0.1563 0.0313 … 
6 0.0156 0.0938 0.2344 0.3125 0.2344 0.0938 0.0156 
7 0.0078 0.0547 0.1641 0.2734 0.2734 0.1641 0.0547 
8 0.0039 0.0313 0.1094 0.2188 0.2734 0.2188 0.1094 
9 0.0020 0.0176 0.0703 0.1641 0.2461 0.2461 0.1641 

10 0.0010 0.0098 0.0439 0.1172 0.2051 0.2461 0.2051 
11 0.0005 0.0054 0.0269 0.0806 0.1611 0.2256 0.2256 
12 0.0002 0.0029 0.0161 0.0537 0.1208 0.1934 0.2256 
13 0.0001 0.0016 0.0095 0.0349 0.0873 0.1571 0.2095 
14 0.0001 0.0009 0.0056 0.0222 0.0611 0.1222 0.1833 
15 <0.0001 0.0005 0.0032 0.0139 0.0417 0.0916 0.1527 
16 <0.0001 0.0002 0.0018 0.0085 0.0278 0.0667 0.1222 
17 <0.0001 0.0001 0.0010 0.0052 0.0182 0.0472 0.0944 
18 <0.0001 0.0001 0.0006 0.0031 0.0117 0.0327 0.0708 
19 <0.0001 <0.0001 0.0003 0.0018 0.0074 0.0222 0.0518 
20 <0.0001 <0.0001 0.0002 0.0011 0.0046 0.0148 0.0370 

n 6 7 8 9 10 11 12 

6 0.0156 … … … … … … 
7 0.0547 0.0078 … … … … … 
8 0.1094 0.0313 0.0039 … … … … 
9 0.1641 0.0703 0.0176 0.0020 … … … 

10 0.2051 0.1172 0.0439 0.0098 0.0010 … … 
11 0.2256 0.1611 0.0806 0.0269 0.0054 0.0005 … 
12 0.2256 0.1934 0.1208 0.0537 0.0161 0.0029 0.0002 
13 0.2095 0.2095 0.1571 0.0873 0.0349 0.0095 0.0016 
14 0.1833 0.2095 0.1833 0.1222 0.0611 0.0222 0.0056 
15 0.1527 0.1964 0.1964 0.1527 0.0916 0.0417 0.0139 
16 0.1222 0.1746 0.1964 0.1746 0.1222 0.0667 0.0278 
17 0.0944 0.1484 0.1855 0.1855 0.1484 0.0944 0.0472 
18 0.0708 0.1214 0.1669 0.1855 0.1669 0.1214 0.0708 
19 0.0518 0.0961 0.1442 0.1762 0.1762 0.1442 0.0961 
20 0.0370 0.0739 0.1201 0.1602 0.1762 0.1602 0.1201 

This table was created with Microsoft® Excel 2010 using the formula: 
(FACT(n)/(FACT(x)*FACT(n-x))*(0.5^x)*(0.5^n-x) 
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Table B17  Critical Values of the Wilcoxon T Distribution 
 x 

n 
α = 
α/2 = 

0.10 
0.05 

0.05 
0.025 

0.02 
0.01 

0.01 
0.005 

0.05 
0.0025 

5  0     
6  2 0    
7  3 2 0   
8  5 3 1 0  
9  8 5 3 1 0 

10  10 8 5 3 1 

11  13 10 7 5 3 
12  17 13 9 7 5 
13  21 17 12 9 7 
14  25 21 15 12 9 
15  30 25 19 15 12 

16  35 29 23 19 15 
17  41 34 27 23 19 
18  47 40 32 27 23 
19  53 46 37 32 27 
20  60 52 43 37 32 

21  67 58 49 42 37 
22  75 65 55 48 42 
23  83 73 62 54 48 
24  91 81 69 61 54 
25  100 89 76 68 60 

26  110 98 84 75 67 
27  119 107 92 83 74 
28  130 116 101 91 82 
29  140 126 110 100 90 
30  151 137 120 109 98 

Modified from:  McCornack, R.J. (1965) “Extended tables of the Wilcoxon matched pair 
signed rank statistic,” Journal of the American Statistical Association, 60:864-871. 
Reprinted with permission from The Journal of the American Statistical Association. 
Copyright 1965 by the American Statistical Association. All rights reserved. 
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Table B18  Critical Values for Kolmogorov Goodness-of-Fit Test (α = 0.05) 

 n One-Tailed Test Two-Tailed Test  

1 0.950 0.975 
2 0.776 0.842 
3 0.636 0.708 
4 0.565 0.624 
5 0.509 0.563 
6 0.468 0.519 
7 0.436 0.483 
8 0.410 0.454 
9 0.387 0.430 
10 0.369 0.409 
11 0.352 0.391 
12 0.338 0.375 
13 0.325 0.361 
14 0.314 0.349 
15 0.304 0.338 
16 0.295 0.327 
17 0.286 0.318 
18 0.279 0.309 
19 0.271 0.301 
20 0.265 0.294 
25 0.238 0.264 
30 0.218 0.242 
35 0.202 0.224 
40 0.189 0.210 

Approximation 
for >40 

1.22/√n 1.36/√n 

Modified from: Miller L.H. (1956). “Table of percentage points of Kolmogorov statistics,” 
Journal of the American Statistical Association 51:111-121. Reprinted with permission from 
The Journal of the American Statistical Association. Copyright 1956 by the American 
Statistical Association. All rights reserved. 
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Table B19  Critical Values for Smirnov Test Statistic (α = 0.05) 

 n One-Tailed Test Two-Tailed Test  

3 2/3 … 
4 3/4 3/4 
5 3/5 4/5 
6 4/6 4/6 
7 4/7 5/7 
8 4/8 5/8 
9 5/9 5/9 
10 5/10 6/10 
11 5/11 6/11 
12 5/12 6/12 
13 6/13 6/13 
14 6/14 7/14 
15 6/15 7/15 
16 6/16 7/16 
17 7/17 7/17 
18 7/18 8/18 
19 7/19 8/19 
20 7/20 8/20 
25 8/25 9/25 
30 9/30 10/30 
35 10/35 11/35 
40 10/40 12/40 

Approximation 
for >40 

1.73/√n 1.92/√n 

Modified from: Birnbaum, Z.W. and Hall, R.A. (1960). “Small-sample distribution for multiple 
sample statistics of the Smirnov type,” Annals of Mathematical Statistics 31:710-720.  
Permission to reprint was granted by the Institute of Mathematical Statistics. 
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Table B20  Critical Values for the Runs Test (α = 0.05) 
Reject H0 if r is < Lower or > Upper Limits 

n1 n2 Lower Upper n1 n2 Lower Upper 

6 
 
 

 
 

7 
 
 
 
 
 
 
8 
 
 
 
 
 
9 
 
 
 
 
 
 

10 
 
 
 
 
 

 
11 

 
 
 
 

 

6 
7-8 
9-12 
13-18 
19-20 

7 
8 
9 

10-12 
13-14 

15 
16-20 

8 
9 

10-11 
12-15 

16 
17-20 

9 
10 

11-12 
13 
14 
15 

18-20 
10 
11 
12 

13-15 
16-18 

19 
20 
11 
12 
13 

14-15 
 

4 
4 
5 
6 
7 
4 
5 
5 
6 
6 
7 
7 
5 
6 
6 
7 
7 
8 
6 
6 
7 
7 
8 
8 
9 
7 
7 
8 
8 
9 
9 
10 
8 
8 
8 
9 
 

10 
11 
12 
13 
13 
12 
12 
13 
13 
14 
14 
15 
13 
13 
14 
15 
16 
16 
14 
15 
15 
16 
16 
17 
17 
15 
16 
16 
17 
18 
19 
19 
16 
17 
18 
18 
 

11 
 
 

12 
 
 
 
 
 

13 
 
 
 
 

14 
 
 
 
 

15 
 
 
 
 

16 
 
 
 

17 
 
 

18 
 
 

19 
20 

16 
17-18 
19-20 

12 
13 
14 
15 

16-18 
19-20 

13 
14 

15-16 
17-18 
19-20 

14 
15-16 
17-18 

19 
20 
15 
16 
17 

18-19 
20 
16 
17 
18 

19-20 
17 
18 

19-20 
18 
19 
20 

19-20 
20 

9 
10 
10 
8 
9 
9 
9 
10 
11 
9 
10 
10 
11 
11 
10 
10 
11 
12 
12 
11 
11 
12 
12 
13 
12 
12 
12 
13 
12 
13 
13 
13 
14 
14 
14 
15 

19 
19 
20 
18 
18 
19 
20 
20 
21 
19 
19 
20 
21 
22 
20 
21 
22 
22 
23 
21 
22 
22 
23 
24 
22 
23 
24 
24 
24 
24 
25 
25 
25 
26 
26 
27 

Where n1 is the small number of observations and n2 is the larger 

Modified from:  Swed, F.S. and Eisenbar C. (1943). “Tables for testing randomness of grouping in 
a sequence of alternatives,” Annals of Mathematical Statistics 14:84-86. Permission to reprint 
was granted by the Institute of Mathematical Statistics. 
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Table B21  Critical Values for TI Range Test (α = 0.05) 

 One-Tailed Test Two-Tailed Test 

n α = 0.05 α = 0.01 α = 0.05 α = 0.01 

2 3.157 15.910 6.353 31.828 
3 0.885 2.111 1.304 3.008 
4 0.529 1.023 0.717 1.316 
5 0.388 0.685 0.507 0.843 
6 0.312 0.523 0.399 0.628 
7 0.263 0.429 0.333 0.507 
8 0.230 0.366 0.288 0.429 
9 0.205 0.322 0.255 0.374 
10 0.186 0.288 0.230 0.333 
11 0.170 0.262 0.210 0.302 
12 0.158 0.241 0.194 0.277 
13 0.147 0.224 0.181 0.256 
14 0.138 0.209 0.170 0.239 
15 0.131 0.197 0.160 0.224 
16 0.124 0.186 0.151 0.212 
17 0.118 0.177 0.144 0.201 
18 0.113 0.168 0.137 0.191 
19 0.108 0.161 0.131 0.182 
20 0.104 0.154 0.126 0.175 

Modified from: Lord, E. (1947). “The use of range in place of standard deviation in the t-
test,”  Biometrika 34:66.  Reproduced with permission of the Biometrika Trustees. 
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Table B22  Critical Values for the FR Test for Dispersion 
w1 = 2 3 4 5 6 7 8 9 10 

w2 

2 12.66 19.23 25.64 27.78 29.41 31.25 32.26 33.33 35.71 
3 3.23 4.35 5.00 5.56 6.25 6.67 7.14 7.14 7.69 
4 2.00 2.70 3.13 3.45 3.70 3.85 4.00 4.17 4.35 
5 1.61 2.04 2.38 2.50 2.78 2.86 3.03 3.13 3.23 
6 1.35 1.75 2.00 2.17 2.33 2.44 2.50 2.63 2.70 
7 1.25 1.56 1.75 1.92 2.04 2.13 2.22 2.27 2.33 
8 1.16 1.43 1.61 1.75 1.85 1.96 2.00 2.08 2.13 
9 1.10 1.33 1.49 1.64 1.72 1.82 1.89 1.92 1.96 

10 1.05 1.25 1.43 1.43 1.64 1.70 1.75 1.82 1.85 

Modified from: Link, R.F. (1950). “The sampling distribution of the ratio of two ranges from 
independent samples,” Annals of Mathematical Statistics 21:112-116. (These represent 1/R-
values in original table to account for ratios >1.) Permission to reprint was granted by the 
Institute of Mathematical Statistics. 
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Table B23   Critical Values for  Grubbs’ Test (One-Sided Test for T) 

 α 

n 0.1% 0.5% 1% 5% 

3 1.155 1.155 1.155 1.153 
4 1.499 1.496 1.492 1.463 
5 1.780 1.764 1.749 1.672 
6 2.011 1.973 1.944 1.822 
7 2.201 2.139 2.097 1.938 
8 2.358 2.274 2.221 2.032 
9 2.492 2.387 2.323 2.110 

10 2.606 2.482 2.410 2.176 
11 2.705 2.564 2.485 2.234 
12 2.791 2.636 2.550 2.285 
13 2.867 2.699 2.607 2.331 
14 2.935 2.755 2.659 2.371 
15 2.997 2.806 2.705 2.409 
16 3.052 2.852 2.747 2.443 
17 3.103 2.894 2.785 2.475 
18 3.149 2.932 2.821 2.504 
19 3.191 2.968 2.854 2.532 
20 3.230 3.001 2.884 2.557 
21 3.266 3.031 2.912 2.580 
22 3.300 3.060 2.939 2.603 
23 3.332 3.087 2.963 2.624 
24 3.362 3.112 2.987 2.644 
25 3.389 3.135 3.009 2.663 
30 3.507 3.236 3.103 2.745 
35 3.599 3.316 3.178 2.811 
40 3.673 3.381 3.240 2.866 
45 3.736 3.435 3.292 2.914 
50 3.789 3.483 3.336 2.956 

Modified from: Grubbs, F.E. and Beck, G. (1972).  “Extension of sample size and 
percentage points for significance tests of outlying observations,” Technometrics, 14:847-
54.  Reproduced with permission of the American Statistical Association. 
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Table B24  Values for Use in Dixon Test for Outlier (α) 

Statistic n 0.5% 1% 5% 

 3 .994 .988 .941 
 4 .926 .889 .765 

τ10 5 .821 .780 .642 
 6 .740 .698 .560 
 7 .680 .637 .507 
     
 8 .725 .683 .554 

τ11 9 .677 .635 .512 
 10 .639 .597 .477 
     
 11 .713 .679 .576 

τ21 12 .675 .642 .546 
 13 .649 .615 .521 
     
 14 .674 .641 .546 
 15 .647 .616 .525 
 16 .624 .595 .507 

τ22 17 .605 .577 .490 
 18 .589 .561 .475 
 19 .575 .547 .462 
 20 .562 .535 .450 
 21 .551 .524 .440 
 22 .541 .514 .430 
 23 .532 .505 .421 
 24 .524 .497 .413 
 25 .516 .489 .406 

From:  Dixon, W.J. and Massey, F.J. (1983). Introduction to Statistical Analysis (Table 
A-8e), McGraw-Hill Book Company, New York. Reproduced with permission of the 
publisher. 
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Appendix C 
 
Summary of Commands for  
Excel® and Minitab® 
 
 
 
ANOVA, complete randomized block design (Chapter 10) 

Excel:  Data  Data Analysis  Anova: Two-Factor Without Replicates 
 
ANOVA, one-way design (Chapter 10) 
 Excel: Data  Data Analysis  Anova: Single Factor 
 Minitab: Stat  ANOVA  One-way 

Stat  ANOVA  One-way (Unstacked) 
 
ANOVA, two-way design (Chapter 12) 
 Excel: Data  Data Analysis  Anova: Two-Factor With Replication 
 Minitab:  Stat  ANOVA  Two-way 
 
Bar chart  (Chapter 4) 

Excel: Insert  Chart  Column (vertical)    
  Insert  Chart  Bar (horizontal) 
Minitab: Graph  Bar Chart 

 
Binomial distribution - probability (Chapter 2) 
 Excel Function: BINOM.DIST or BINOMDIST 
 
Box-and-whisker plot  (Chapter 4) 
 Minitab: Graph  Boxplot 
 
Chi square distribution, critical values (Chapter 16) 

Excel ƒx: CHISQ.INV.RT (CHIINV in versions before 2010)   
   CHISQ.INV (left−tail of the distribution)    
 
Chi square distribution, p-values (Chapter 16) 

Excel ƒx: CHISQ.DIST.RT (CHIDIST in versions before 2010)   
   CHISQ.DIST (left−tail of the distribution)    
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Chi square tests (Chapter 16) 
Excel ƒx: CHISQ.TEST  (CHITEST in versions before 2010)      
Minitab: Stat  Tables  Chi-Square Test (Table in Worksheet) 

Stat  Tables  Cross Tabulation and Chi-Square 
Stat  Tables  Chi-Square Goodness-of-Fit Test (one variable) 

 
Coefficient of variation – See Descriptive statistics 
 
Combinations (Chapter 2) 
 Excel ƒx: COMBIN 
 
Confidence intervals 
 Z-distribution – See Z-test, one sample 
 t-distribution – See t-test, one sample 
 Test of proportions – See Z-test of proportions, one sample 
 
Correlation (Chapter 13) 

Excel ƒx: CORREL 
Excel: Data  Data Analysis  Correlation 
Minitab: Stat  Basic Statistics  Correlation 
 

Covariance (Chapter 13) 
Excel ƒx: COVARIANCE.S    
Excel: Data  Data Analysis  Covariance 
Minitab: Stat  Basic Statistics  Covariance 
 

Critical values  
 Chi square distribution – See chi square, critical values 
 F-distribution – See t-distribution, critical values 
 t-distribution – See t-distribution, critical values 
 Z-distribution – See Z-distribution, critical values 
 
Descriptive statistics  (Chapter 5) 

Excel ƒx: See Table C.1 
Excel: Data  Data Analysis  Descriptive Statistics    
   Summary Statistics    
Minitab: Stat  Basic Statistics  Display Descriptive Statistics 

 
Dot chart  (Chapter 4) 
 Minitab: Graph  Dotplot 
 
Factorials (Chapter 2) 
 Excel ƒx: FACT 
 
F-distribution, critical values (Chapter 10) 

Excel ƒx: F.INV.RT (FINV in versions before 2010)   
   F.INV (left−tail of the distribution)    
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Table C.1  Excel Function Commands for Descriptive Statistics 

Statistics Excel Function 
Mode MODE 
Median MEDIAN 
Mean AVERAGE 
Smallest Data Point MIN 
Largest Data Point MAX 
Range =MAX-MIN 
Variance (sample) VAR 
Variance (population) VAR.P 
Standard Deviation (sample) STDEV 
Standard Deviation (population) STDEV.P 
Coefficient of Variation =STDEV/AVERAGE 

 
F-distribution, p-values (Chapter 10) 

Excel ƒx: F.DIST.RT (FDIST in versions before 2010)   
   F.DIST (left−tail of the distribution)    

 
Friedman test (Chapter 21) 

Minitab: Stat  Nonparametrics  Friedman 
 
Histogram (Chapter 4) 
 Minitab: Graph  Histogram 
 
Homogeneity of variance (Chapter 10) - Bartlett’s and Levene’s tests 
 Minitab:  Stat  ANOVA  Test for equal variances 
 
Kruskal-Wallis test (Chapter 21) 

Minitab: Stat  Nonparametrics  Kruskal-Wallis 
 
Kurtosis  (Chapter 6) 

Excel ƒx: KURT    
Minitab: Stat  Basic Statistics  Display Description Statistics 
 

Mann-Whitney test (Chapter 21) 
Minitab: Stat  Nonparametrics  Mann-Whitney 

 
Mean – See Descriptive statistics 
 
Median – See Descriptive statistics 
 
Mode – See Descriptive statistics 
 
Mood’s median test (Chapter 21) 

Minitab: Stat  Nonparametrics  Mood’s Median Test 
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Normality tests (Chapter 6) 
   Anderson-Darling, Kolmogorov-Smirnov and Ryan-Joiner  
 Minitab: Stat  Basic Statistics  Normality Test 
 
Permutations (Chapter 2) 
 Excel ƒx: PERMUT 
 
Pie chart  (Chapter 4) 
 Excel:     Insert  Chart  Pie 
 Minitab: Graph  Pie Chart 
 
Poisson distribution - probability (Chapter 2) 
 Excel ƒx: POISSON or POISSON.DIST 
 
Post hoc procedures (Chapter 11) 

Tukey’s HSD,  Fisher’s LSD,  Dunnette’s and Hsu’s MCB tests 
 Minitab: Stat  ANOVA   One-way  Comparisons…  

Stat  ANOVA   One-way (Unstacked)  Comparisons… 
 
Probability – binomial distribution (Chapter 2) 
 Excel ƒx: BINOM.DIST or BINOMDIST 
 
Probability – Poisson distribution (Chapter 2) 
 Excel ƒx: POISSON or POISSON.DIST 
 
p-Values  
 Chi square distribution – See chi square, p-values 
 F-distribution – See t-distribution, p-values 
 t-distribution – See t-distribution, p-values 
 Z-distribution – See Z-distribution, p-values 
 
Quality control (Chapter 7) 
 Minitab: Stat  Control Charts  Variables Charts for Subgroups  

Stat  Control Charts  Variables Charts for Individuals  
Stat  Quality Tools  Capacity Sixpack  Normal 

 
Random sampling (Chapter 3) 
 Excel ƒx: RAND  and RANDBETWEEN 
 Minitab: Calc  Random Data   Sample from Columns 
 
Range – See Descriptive statistics 
 
Regression (Chapter 14) 

Excel: Data  Data Analysis  Regression 
Minitab: Stat  Regression  Regression 

Stat  Regression  Stepwise 
Stat  Regression  Fitted line plot 
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Repeatability and Reproducibility (Chapter 12) 
 Minitab: Stat  Quality Tools  Gage Study  Gage R&R study (crossed) 
 
Runs test (Chapter 21) 

Minitab: Stat  Nonparametrics  Runs Test 
 
Scatter plot (Chapter 4) 
 Excel Insert  Chart > Scatter 
 Minitab: Graph Scatterplot 
 
Sign test, one-sample (Chapter 21) 

Minitab: Stat  Nonparametrics  1-Sample Sign 
 
Skew (Chapter 6) 

Excel ƒx: SKEW    
Minitab: Stat  Basic Statistics  Display Description Statistics 

 
Spearman rho test (Chapter 21) 

Minitab: Stat  Tables  Cross tabulation and Chi Square  Other Stats… 
 
Standard deviation – See descriptive statistics 
 
Stem-and-leaf plot (Chapter 4) 
 Minitab: Graph  Stem-and-Leaf 
 
Survival statistics (Chapter 20) 
 Minitab:  Stat  Reliability/Survival   
     Distribution Analysis (Right Censoring)   
     Nonparametric Distribution Analysis 
 
t-distribution, critical values (Chapter 9) 

Excel ƒx: T.INV.2T (two-tailed distribution); TINV (in versions before 2010)   
   T.INV (one-tailed distribution)    
 
t-distribution, p-values (Chapter 9) 

Excel ƒx: T.DIST.2T (two-tailed distribution);  
   TDIST (in versions before 2010)   

   T.DIST.RT (one-tailed distribution)    
 

Time series plot (Chapter 4) 
 Minitab: Graph  Time Series Plot 
 
Tolerance Limits (Chapter 7) 
 Minitab: Stat  Quality Tools  Tolerance Interval  
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t-test, one-sample (Chapter 9) 
 Excel ƒx: CONFIDENCE.T – creates portion of the equation that includes 

the reliability coefficient and error only 
 Minitab: Stat  Basic Statistics  1-sample t… one sample CI 
 
t-test, paired data (Chapter 9) 
 Excel: Data  Data Analysis  t-test: Paired Two Sample for Means 
 Minitab: Stat  Stat  Basic Statistics  Paired t… one sample CI 

t-test, two-sample (Chapter 9) 
 Excel: Data  Data Analysis   
   t-test: Two-Sample Assuming Unequal Variance 
   Data  Data Analysis   
    t-test: Two-Sample Assuming Equal Variances 
 Minitab: Stat  Basic Statistics  2-sample t… two-sample t-test 
 
Variance – See Descriptive statistics 
 
Wilcoxon test, one-sample (Chapter 21) 

Minitab: Stat  Nonparametrics  1-Sample Wilcoxon 
 
Z-distribution, critical values (Chapter 7) 

Excel ƒx: NORM.S.INV (NORMSINV in versions before 2010)    
   NORM.INV (NORMINV in versions before 2010) 
 
Z-distribution, p-values (Chapter 7) 

Excel ƒx: NORM.S.DIST (NORMSDIST in versions before 2010)  
   NORM.DIST (NORMDIST is versions before 2010) 
 
Z-test of proportions, one-sample (Chapter 15) 

Minitab: Stat  Basic Statistics  1-proportion 
 
Z-test of proportions, two-sample (Chapter 15) 

Minitab: Stat  Basic Statistics  2-proportions 
 

Z-test, one sample (Chapter 7) 
 Excel ƒx: CONFIDENCE.NORM (CONFIDENCE in versions before 

2010) creates portion of the equation that includes the 
reliability coefficient and error only 

Minitab: Stat  Basic Statistics  1-sample Z  
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Appendix D 
 
Answers to Example Problems 
 
 
Chapter 1 – Introduction 
 
1. Discrete variables: experimental versus controls (placebo); dosage form − 

table/capsule/other; test drug versus reference standard; fed versus fasted state 
(before/after meals); manufacturer (generic versus brand); male versus female 
subjects; “normal” versus geriatric population 

 Continuous variables: bioavailability measurements (Cmax, Tmax, AUC); 
prolactin levels (ng/l); age (in years); smoking history (cigarettes per day) 

 
2. Discrete variables: dissolution − pass or fail criteria; friability − pass or fail 

criteria; impurities − present or absent; change in manufacturing process − old or 
new process; immediate release or sustained release; formulation A, B, or C 

 Continuous variables: amount of active ingredient (content uniformity); 
disintegration rate; hardness; size − thickness/diameter; tablet weight 

 
3. a. Independent variable: Two manufacturers (Innovator, Acme); Discrete 
  Dependent variable: Pharmacokinetic measure (Cmax); Continuous 
 b. Independent variable: Nutritional status (poor versus good); Discrete 
  Dependent variable: Survival (lived versus died); Discrete 
 c. Independent variable: Laboratory (manufacturer, contract lab); Discrete 
  Dependent variable: Assay results (% labeled amount); Continuous 
 d. Independent variable: Temperature (39°C versus 35°C); Discrete 
  Dependent variable: Disintegration results (pass versus fail); Discrete 
 e. Independent variable: Physician (A versus B versus C); Discrete 
  Dependent variable: Length of stay in hospital (days); Continuous 
 f. Independent variable: Batch of raw material (batch A, B or C); Discrete 
  Dependent variable: Viscosity; Continuous 
 g. Independent variable: Method A (gold standard); Continuous 
  Dependent variable: Method B; Continuous 
 
Chapter 2 − Probability 
 
1. 150 healthy female volunteers in a multicenter study for a new pregnancy test. 

The probability of randomly selecting one volunteer: 
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 a. Who is pregnant 

0.500 = 
150
75 = 

N
m(PG) = p(PG)  

 b. Who has acidic urine 

0.413 = 
150
62 = 

N
)m(pH = )p(pH ↓

↓  

 c. Who has nonacidic urine 
0.587 = 0.413 - 1 = )p(pH  1 = )p(pH ↓−↑  

 d. Who is both pregnant and has acidic urine  

0.240 = 
150
36 = 

N
)pH m(PG  = )pH p(PG ↓∩

↓∩  

e. Who is either pregnant or has acidic urine 
)pH p(PG   )p(pH + p(PG) = )pH p(PG ↓∩−↓↓∪  

0.673 = 0.240  0.413 + 0.500 = )pH p(PG −↓∪  
 f. Who is pregnant among women with acidic urine 

0.581 = 
0.413
0.24 = 

)p(pH
)pH p(PG  = )pH |p(PG

↓
↓∩

↓  

 g. Who has nonacidic urine among women who are pregnant 

0.520 = 
0.500

0.260
 = 

p(PG)

)pH p(PG 
 = PG) |p(pH

↑∩
↑  

 
2. The ways of assigning three laboratory technicians to five pieces of equipment: 

10 = 
1)1)(22(3
12345 = 

3!2!
5!= 

3

5
 = 

x)!-(nx!
n! = 

x

n
⋅⋅⋅
⋅⋅⋅⋅
















  

 
3. The possible ways to sample five out of ten tablets: 

 

 
4. The outcomes for eight patients where the survival rate is 0.60: 
 a. That all eight patients will survive: 

  0.017 = )(1)(1)(0.0168 = )(0.40)(0.60
0

8
 = p(8) 08








  

 b. That half will die: 

  0.232 = 6)(0.0256)(70)(0.129 = )(0.40)(0.60
4

8
 = p(4) 44









 

 
5. Two hundred containers of an old and new design were subjected to identical 

rigorous abuse. The probability of randomly selecting a container: 
 a. Of the new design: 

252 = 
)1)(5!234(5

5!678910 = 
5!5!
10! = 

5

10
 = 

x)!-(nx!
n! = 

x

n
⋅⋅⋅⋅

⋅⋅⋅⋅⋅
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0.500 = 
200
100 = 

N
m(New) = p(New)  

 b. That is a “failure”: 

0.075 = 
200
15 = 

N
m(F) = p(F)  

 c. That is a “success”: 
0.925 = 0.075 - 1 = p(F) - 1 = p(S)  

d. That is both an old container design and a “failure”: 

0.060 = 
200
12 = 

N
F)  m(Old = F)  p(Old ∩

∩  

e. That is either an old design or a “failure”: 
F)  p(Old - p(F) + p(Old) = F)  p(Old ∩∪  

0.515 = 0.060 - 0.075 + 0.500 = F)  p(Old ∪  
f. That the container is a “failure” if selected from only the new containers: 

0.030 = 
0.500
0.015 = 

p(New)
New)  p(F = New) |p(F ∩  

g. That the container is a “success” if selected from only the old containers: 

0.880 = 
0.500
0.440 = 

p(Old)
Old)  p(S = Old) |p(S ∩  

 
6. An in-service director for Galaxy Drugs prepared a program for new employees. 

She had eight topics to cover, and they could be covered in any order. 
 a. How many different programs is it possible for her to prepare? 

40,320 = 8!  
b. At the last minute she finds that she has time for only six topics. How many 

different programs is it possible for her to present if all are equally 
important? 

  If order is important, a permutation: 

20,160 = 
2!
8! = 

6)!-(8
8!  

  If order is not important, combination: 

28 = 
2! 6!

8! = 
6

8







  

 
7.  Calculate the following: 

   a. 15 = 
2

30 = 
4!  1  2
4!  5 6 = 

4! 2!
6! = 

2

6
××
××








  

   b. 126 = 
5!  1  2  3  4
5!  6  7  8  9 = 

4! 5!
9! = 

5

9
××××
××××
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 c. 4060 = 
27!  1  2  3

27! 28  29  30 = 
27! 3!

30! = 
3

30
×××

×××







  

 
Chapter 3 − Sampling 
 
1. Sample results will vary based on the five random samples. 
 
2. The averages should be different.  The reason will be covered in Chapter 7. 
 

3. 760,118,2 = 
!45  1  2  345

!454674  84  94  05
 = 

!45 !5
0!5 = 

5

05
×××××

×××××









 
 
Chapter 4 – Presentation Modes 
 
1. Incidence of reported adverse drug effects: 
 a. Tabular results 

Severity of Adverse Effects 
Severity n %  Cum. %  

None   810   73.0   73.0 
Mild   215   19.4   92.4 

Moderate     72     6.5   98.9 
Severe     12     1.1 100.0 

 1109 100.0  
 

b. Bar graph   c. Pie Chart 

 

 
2. Distribution of assay results: 
 

a. Box-and-whisker plot    
 

 

None Mild Moderate Severe
Severity of Adverse Effects

0

200

400

600

800

1000

87

102

98
100

108

92
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 b. Stemplot 
 

Frequency Stem  Leaves 
 0 8   
 1   7 
 2 9  23 
 16  Q 5667778888999999 
 28 10 MQ 0000000000111111112222233344 
 3   557 
50    

 
c. Histogram 

 

0 

25 

86.5 90.5 96.5 99.5 102.5 105.5 108.593.5

Fr
eq

ue
nc

y 

Label Claim Percentage  
 

3. Particle size determination: 
 
 a. Tabular results 
 

Percent of Particles Retained on Various Sieve Screens 
Mesh Size (μM) % Retained Cum. % Retained 

425 50.1   50.1   
180 27.2   77.3   
150 10.4   87.7   
90 6.0   93.7   
75 5.1   98.8   

pan (<75) 1.2   100.0   
 100.0    

 
b. Pie chart   c. Bar chart 

 
 

425 180 150 90 75 <75
Mesh Size

0

10

20

30

40

50

60
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Table D.1 Examination Results Ranked in Descending Order 
98 87 84 77 
96 86 83 77 
95 86 82 76 
92 85 80 75 
90 85 80 72 
90 85 79 70 
88 84 78 69 
87 84 78 60 

 
4. Scatter plot displaying relationship between two variables 

 
 
Chapter Five – Central Tendency 
 
1. Final examination results for a pharmacokinetics course (Table D.1): 
 a. Range: Highest to lowest grade = 98 − 60 = 38% 
 b. Median:  Value between 16th and 17th observation = 84% 

c. Sample mean 

%82.4 = 
32

80+85 ...+98+79+85 = 
n

x = X 
 

d. Sample variance 

67.16 = 
31

)82.4-(80 ...+)82.4-(79+)82.4-(85
 = S

222
2  

 e. Sample standard deviation 

% 8.19 = 67.16 = S = S 2
 

 
2. Noradrenaline levels obtained during a clinical trial. 

x = 37.4 93.60 = x2 

 Mean:   nmol/L 2.49 = 
15

37.4 = 
n
x = X 

 

 

45 50 55 60 65 70 75
Drug (mcg)

50

70
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110

130
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R
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e
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 Variance: 0.025 = 
(15)(14)

)(37.4  15(93.6)
 = 

1)n(n
)X()Xn(

 = S
222

2 −
−
−

 

 Standard deviation: L/nmol0.158 = 0.025 = S = S 2  
 

3. Prolactin levels obtained during a clinical trial. 
x = 81.3 679.83 = x2 

 Mean:   ng/L 8.13 = 
10

81.3 = 
n
x = X 

 

 Variance:    
1n

)Xx(
 = S

2
i2
−
−

 

2.096 = 
9

)8.13(9.4 +... )8.13(8.6 + )8.13(9.4
  = S

222
2 −−−

 

  Standard deviation: L/ng1.45 = 2.096 = S = S 2  
 
4. Randall-Selitto paw pressure test and the following results (in grams) were 

observed. 
x = 3,810 x2 = 972,800 n = 15 

 Sample mean:  grams 254 = 
15

3810 = 
n
x = X 

 

 Sample variance:   

361.4 = 
15(14)

)(3,810)800,97215(
 = 

1)n(n
)X()Xn(

 = S
222

2 −
−
−

 

 Sample standard deviation: grams 19.0 = 361.4 = S = S 2  
  Median = eighth response in rank order = 250 grams 
 
5. Measures of central tendency for Table 4.1 
 Excel: 
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 Minitab: 

 
 

6. Measures of central tendency for the Cmax results in the six healthy male 
volunteers are as follows: 

 Excel: 

 
 Minitab: 

 
 
7. IgA analysis at a Midwestern CRO (sample data).  
 Mode = 141  (n = 2) 
 Median = 141+144/2 = 142.5 mcg/ml 

 Sample mean: ml/mcg1.142
8

141...135150
n

x
X =++==   

 Range = 162-117 = 45 mcg/ml 

 Variance:     98.166
7

)1.142141...()1.142150(
1n

)Xx(
S

222
i2 =−+−=
−
−

=   
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 Standard deviation: ml/mcg9.1298.166SS 2 ===  

 Coefficient of variation:    0909.0
1.142

9.12
X
S.V..C ===  

 Relative standard deviation:  %09.9100x0909.0100x.V.CRSD ===  
 
8. First-time-in-humans clinical trial of a new agent  (Σx = 17.66; Σx2 = 26.389) 

  Median:     42.1
2

44.140.1Median =+=  

 Mean:          47.1 = 
12

66.17 = 
n
x = X 

 

 Variance:      036.0 =  
)11(12

)66.17(-)389.26(12
 = 

1)-n(n
)X(-)Xn(

 = S
222

2 
 

 Standard deviation:     190.0 = 036.0 = S = S 2  
 Example of an Excel output 

 
 
 
Chapter 6 – The Normal Distribution and Data Transformation 
 
1. Clinical trials data with possible skewed data (Table 6.4): 
  Median = 1.51 hours 

  Arithmetic mean:      hours66.1
15

91.0...81.141.1X =++=  

  Geometric mean:       54.191.0...x81.1x41.1X 15
G ==  

 It can be assumed that the distribution is positively skewed, because the 
arithmetic mean is larger than the median (pulled to the right) and the geometric 
mean is much closer to the median. 

 
2. Clinical trials data with possible skewed data, values for alternative 

transformations appear in Table 6.4: 
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a. Mean based on the square-root transformation 

 37.2 = 
15

96.18 = 
n
x

 = X i
dtransforme

′
 

hours62.5)37.2()X(X 22
dtransforme ===  

 Note, since there were no zeros in the responses Eq. 6.10 was used in the 
transformation. If Eq. 6.11 were used the result would be 6.92. The 
lognormal transformation would be preferable because the transformed mean 
is closest to the median. 

b. Mean based on the reciprocal transformation 

31.1 = 
15

44.10 = 
n
x = X i

dtransforme
′

 

hours766.0
31.1
1

X
1X

dtransforme
===  

 Since there were no zeros in the responses Eq. 6.12 was used in the 
transformation. If Eq. 6.13 were used the result would be 0.34. The 
lognormal transformation would be preferable because the transformed mean 
is closest to the median. Notice that the reciprocal transformation creates the 
greatest change in the mean (intended for the extremely positive skewed 
data) and the square root the last change in the mean (intended to lesser 
positively skewed distributions).  

 
3. The geometric mean is closer to the median than the arithmetic mean. 

 
 
Chapter 7 – Confidence Intervals and Tolerance Limits 
 
1. Results of different samples will vary based on the random numbers selected 

from the table. Results can vary from the smallest possible mean outcome of 72.3 
to the largest possible mean of 79.0. Assume that our results for Sample C were 
tablets 05, 16, and 27. The mean assay result would be: 

mg 75 = 
3

73 + 74 + 78 = X  

 a. The 95% confidence interval would be: 

n
 x Z  x  =  /2)-(1

σμ α±  

2.27  75 = 
3

2.01 x 1.96  75 = ±±μ  

mg 77.27 <  < 72.73 μ  
 b. Using the above sample the 90% and 99% confidence intervals for the 

population mean would be: 
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Figure D.1 Warning and action line for question 3. 

3
2.01  1.64  75 =    :CI 90% ×±μ  

                                         mg 76.90 <  < 73.10 μ  

3
2.01  2.57  75 =    :CI 99% ×±μ  

                                       mg 77.98 <  < 72.02 μ  
 As expected the interval becomes much wider (includes more possible 

results) when we wish to be 99% certain and becomes smaller as we accept a 
greater amount of error. 

 c. Since the true population mean (μ) is 75.47 mg, this represents the most 
frequent outcome, but very few samples will produce 75.47. Instead we 
would see a clustering of means around that center point for the population. 

 
2. With μ = 75.47, σ = 2.01, and N = 30:  
 a. There are a possible 4060 different samples of n = 3: 

4060 = 
27! 3!

30! = 
x)!-(nx!

n! = 
x

n








 

b. The grand mean for all 4060 possible sample means is 75.47 mg:  
mg47.75X == μμ  

 c. The standard deviation for all 4060 possible sample means is 1.16 mg: 

mg16.1
3
01.2

nX === σσ  

3. Creation of a quality control chart with the target μ = 5 cc, σ = 0.2 cc, and n = 10: 
 Warning lines (Figure D.1) 

13.05
10

)2.0(25
n

2   = 0w ±=±=± σμμ   ;  87.4and13.5w =μ  

 

Time

Target Value

Upper Action Line

Lower Action Line

Lower Warning Line

Upper Warning Line

5.00 cc

5.13 cc

5.19 cc

4.87 cc

4.81 cc
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Figure D.2 Action and range action lines using range formulas. 

19.05
10

)2.0(35 ±=±=±
n

3   = 0a
σμμ  

81.419.5 anda =μ  
 Action lines using range formulas (Figure D.2): 

19.0  5 = )6.00.31(  5 = RA  X = AL ±±±  
81.4 = L A         19.5 = LA LU  

 Range action lines: 
07.1)6.0(78.1RDlineactionUpper U ===  

13.0)6.0(22.0RDlineactionLower L ===  
 
4. Measures of central tendency associated with volumes of the ampules are: 

  Mean ( X ) =   2.000 ml 
  Standard deviation (S) =  0.014 ml  
The K-value from Table B3 for 99% confidence (γ ) for 99% of the batch (p) is 
4.161. The tolerance limits based on n = 20 are: 

4.7

4.8

4.9

5

5.1

5.2

5.3
Means (cc)

5.19

4.81

Time

0

0.2

0.4

0.6

0.8

1

1.2
Ranges (cc)

1.07

0.13

Time



Answers to Example Problems 735

ml942.1)014.0)(161.4(000.2KSXLTL =−=−=  
ml058.2)014.0)(161.4(000.2KSXUTL =+=+=  

Thus, with 99% confidence we would expect 99% of all ampules to have 
between 1.942 and 2.058 ml of volume. 

 
5. Calculation of capacity indices: 

11.1
)06.0(6
80.020.1

S6
LSLUSLĈ p =−=−=  

00.1
2

80.020.1
2

LSLUSLm =+=+=  

25.0
20.0
05.0

2
80..020.1
95.000.1

2
LSLUSL
Xm

k ==
−
−

=
−

−
=  

83.0)75.0(11.1)25.01(11.1)k̂1(ĈĈ ppk ==−=−=  

85.0
)00.195.0()06.0(6

80.020.1

)TX(S6

LSLUSLĈ
2222

pm =
−+

−=
−+

−=  

The process is capable by the Cp index, but not by the Cpk and Cpm indices 
because sample mean is off center from the target.  

%7.74%100x
11.1
83.0

C
C

p

pk ===δ  

If the sample mean can be shifted back to the center there will be an almost 75% 
increase in the process capability. 
The 95% confidence interval for the Cpk is: 

)1n(2
Ĉ

n9
1zĈC

2
pk

2/1pkpk −
+±= −α  

13.083.0
)99(2
)83.0(

)100(9
196.183.0C

2

pk ±=+±=  

96.0C70.0 pk <<
 

 
6. Creation of a 95% confidence interval where X  = 48.3, σ = 3.5 and n = 20: 

n
 x Z  x  =  /2)-(1

σμ α±  

53.13.48
20
5.3  96.1  3.48  =  ±=⋅±μ  

83.4977.44 << μ  
Based on a sample of only 20 tablets, there is 95% certainty that the true 
population mean (strength) is between 44.77 and 49.83 mg. The goal of 50 mg 
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does not fall within this confidence interval; therefore, it is assumed that Batch 
#1234 is subpotent. 
 

Chapter 8 – Hypothesis Testing 
 
1. The null hypothesis and alternative hypothesis must create mutually exclusive 

and exhaustive statements. 
a. H0:   μA = μB 
 H1:  μA ≠ μB 

 b. H0:  μH ≥ μL 
  H1:  μH < μL 
 c. H0:  μ1 = μ2 = μ3 = μ4 = μ5 = μ6 
  H1:  H0 is false 

(As will be discussed in Chapter 10, traditional tests do not allow us to 
immediately identify which population means are different, only that at least 
two of the six means are significantly different. Further testing is required to 
determine the exact source of the difference(s).) 

 d. H0:  μA ≤ μB 
  H1:  μA > μB 
 e. H0:  μ = 125 
  H1:  μ ≠ 125 
 f. H0:  Populations C, D, E, F, and G are the same 
  H1:  Populations C, D, E, F, and G are not the same 
  (Similar to c above, we do not identify the specific difference(s).) 
 g. H0:  Both samples come from the same population 
 H1:  Both samples do not come from the same population 
 
2. In the first part of the question: α (Type I error) = 0.05; confidence level (1 − α) 

= 0.95; power (1 − β) = 85%; therefore, β (Type II error) = 0.15. If the power 
happens to be only 72% or 0.72, then the other outcomes in our test of null 
hypotheses are: β (Type II error) = 1 − 0.72 = 0.28; α (Type I error) = 0.05; 
confidence level (1 − α) = 0.95. Note that α and 1 − α did not change because the 
researcher would have set these parameters prior to the statistical test. 

 
3. This is an example of a propagation of error involving division. The appropriate 

approach involves combining the relative standard deviations. Where the average 
density is: 

ml/g16.2
9.4
6.10X D ==  

 Calculation of RSDs: 

%66.5%100
6.10
6.0RSDWeight =⋅=  

%12.6%100
9.4
3.0RSDVolume =⋅=  

  



Answers to Example Problems 737

Calculation of measure of dispersion: 

%34.8)12.6()66.5(RSD 22
Total =+=  

18.0
100

)16.2)(34.8(S D ==  

Result for the density:  2.16 ± 0.18 g/ml 
 
4. We will assume the variability in example is additive (sample + reference 

variability). The six unknowns have a standard deviation of 2.42%. The reference 
standard has a standard deviation of 2%. Therefore propagating the error for the 
total amount of uncertainty would be:  

2
K

2
3

2
2

2
1Total S...SSSS +++=  

%14.386.9)00.2()42.2(S 22
Total ==+=  

 
Chapter 9 – t-Tests 
 
1. Comparison of two groups of physical therapy patients. 
 Independent variable:  group 1 versus group 2 (discrete) 
 Dependent variable:  percent range of motion (continuous) 
 Statistical test:  two-sample t-test 

 Group 1 Group 2 
Mean = 
S.D. = 

n = 

81.44 
8.08 

9 

83.91 
6.80 

   11 

 Hypotheses:  H0: μ1 = μ2 
    H1: μ1 ≠ μ2 

 Decision rule: With α = .05, reject H0 if t > t18(0.025) or t < −t18(0.025). 
  With α = .05, reject H0 if t > 2.12 or t < −2.12. 

54.70 = 
211+9

)10(6.80 + )8(8.08 = 
2n+n

S1)n(+S1)n(
 = S

22

21

2
22

2
112

p −−
−−

 

0.74 = 
3.32
2.47 = 

11
54.7+

9
54.7

83.91  81.44 = 

n
S

 + 
n
S

X  X = t

2

2
p

1

2
p

21 −−−−
 

 Decision: With t > −2.12 we cannot reject H0 and conclude that there is no 
significant difference between the two types of treatment regimens. 

 
2. Clinical trial to evaluate the effectiveness of a new bronchodilator. 
 Independent variable: two time periods (patient serves as own control) 
 Dependent variable: forced expiratory volume (continuous)  
 Test statistic: paired t-test – Table D.2 
 Mean difference and standard deviation difference: 
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Table D.2 Effectiveness of a New Bronchodilator 
Subject 
number 

FEV1 before 
administration 

Three hours after 
administration 

 
 d 

 
   d2 

1 3.0 3.1 +0.1 0.01 
2 3.6 3.9 +0.3 0.09 
3 3.5 3.7 +0.2 0.04 
4 3.8 3.8 0 0 
5 3.3 3.2 −0.1 0.01 
6 3.9 3.8 −0.1 0.01 
7 3.1 3.4 +0.3 0.09 
8 3.2 3.3 +0.1 0.01 
9 3.5 3.6 +0.1 0.01 

10 3.4 3.4 0 0 
11 3.5 3.7 +0.2 0.04 
12 3.6 3.5 −0.1 0.01 

   = +1.0 0.32 
  

0.083 = 
12

+1.0 = 
n
d = X d


 

0.022 = 
12(11)

)(1.0  12(0.32)
 = 

1)n(n
)d()dn(

 = S
222

2
d

−
−
−

 

0.148 = 0.022 = S = S 2
dd  

 
a. What is t(1-α/2) for α = 0.05? t11(0.975) = 2.201 
b. Construct a 95% confidence interval for the difference between population 

means. 

n
S/2)(1t  X = d

1-ndd αμ −±  

0.094  0.083+ = 
12

0.148 2.201  0.083+ = d ±±μ  

nt significanot     0.177+ <  < 0.011 dμ−  
c. Use a t-test to compare the two groups. 

 

n
S
X = t

d

d  

94.1

12
0.148
0.083  = t =  

  Decision: With t < 2.20, we fail to reject H0 and fail to show a significant 
difference between the two time periods. 
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3. Calculation of measures of central tendency and 95% confidence interval. 
 Independent variable: 5 time periods (discrete) 
 Dependent variable: percent active ingredient (continuous) 
 Test statistic:  one-sample t-test 

 Time (minutes) 

Sample 10 20 30 45 60 
1 60.3 95.7 97.6 98.6 98.7 
2 53.9 95.6 97.5 98.6 98.7 
3 70.4 95.1 96.8 97.9 98.0 
4 61.7 95.3 97.2 98.0 98.2 
5 64.4 92.8 95.0 95.8 96.0 
6 59.3 96.3 98.3 99.1 99.2 

   
 Example of the first (10-minute) time period: 
  Sample mean 

% 61.67 = 
6

59.3 + 64.4 + 61.7 + 70.4 + 53.9 + 60.3 = 
n
x = X 

 

Sample variance/standard deviation 

305.30
5

)67.613.59(...)67.613.60(
1n

)Xx(
S

222
i2 =

−+−
−
−

=   

% 5.505 = 30.305 = S = S 2  
Relative standard deviation 

0.089267 = 
61.67
5.505 = 

X
S = C.V.  

8.927% = 100 x 0.08927 = 100 x C.V. = RSD  
 95% Confidence interval: X  = 61.67, S = 5.505, n = 6 

n
S x t  X = /2-1 αμ ±  

5.78  61.67 = 
6

5.5052.57  61.67 = ±⋅±μ  

C.I. 95%    67.45 <  < 55.89 μ  
 Results for all five time periods (Table D.3): 
 
4. Comparison of results from a contract laboratory and manufacturer’s quality 

control laboratory. 
 Independent variable:  manufacturer versus contract laboratory (discrete) 
 Dependent variable:  assay results (continuous) 
 Statistical test: two-sample t-test  
  a. What is t(1-α/2) for α = 0.05? Critical t = t10(.975) = 2.228 

b. Construct a 95% confidence interval for the difference between population 
means.   
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Table D.3  Dissolution Data Results 

 Time (minutes) 

Sample 10 20 30 45 60 
1 60.3 95.7 97.6 98.6 98.7 
2 53.9 95.6 97.5 98.6 98.7 
3 70.4 95.1 96.8 97.9 98.0 
4 61.7 95.3 97.2 98.0 98.2 
5 64.4 92.8 95.0 95.8 96.0 
6 59.3 96.3 98.3 99.1 99.2 
Mean 61.67 95.13 97.07 98.00 98.13 
SD 5.505 1.214 1.127 1.164 1.127 
RSD 8.927 1.276 1.161 1.188 1.148 

95% confidence interval    

Upper limit 67.45 96.40 98.25 99.22 99.31 
Lower limit 55.89 93.86 95.89 96.78 96.95 

 

 
Figure D.3  Minitab output from Problem 4, Chapter 9. 

 
Zero falls within the confidence interval; therefore assume there is a 
significant difference between the results from the two laboratories.  

 c. Use a t-test to compare the two groups.   
  Decision Rule: α = 0.05, reject H0 if t > 2.228 or t < −2.228. 
 Results:  Figure D.3 
  Decision: With t < 2.228, fail to reject H0, fail to show a significant 

difference between the results from the two laboratories. 
 
5. First-time-in-humans clinical trial. 
 Independent variable:  volunteer assignment 
 Dependent variable:  Cmax (continuous) 
 Test statistic:   one-sample t-test 
 Results: X  = 718.5     S2 = 114.6     S = 10.7     n = 20 
 Calculation: 
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Figure D.4 Minitab output from Problem 6, Chapter 9. 

n
S t  X = /2)-(1 αμ ±  

5.00  718.5 = 
20

10.7 2.09  718.5 = ±±μ  

ng/ml 723.5 <  < 713.5 C max
μ  

 Conclusion, with 95% confidence, the true population Cmax is between 713.5 and 
723.5 ng/ml. 

 
6. Comparisons between the analytical results of the newly trained chemist and 

senior chemist. 
 Independent variable: two time periods (each sample serves as own control) 
 Dependent variable: assay results (continuous) 
 Test statistic:  paired t-test – Table 9.5  
 Hypotheses:  H0: μh = μc 
    H1: μh ≠ μc 
 Decision rule: With α = 0.05, reject H0 if t > 2.26 or t < −2.26. 
 Results: Figure D.4 
 Decision: With t > −2.26, fail to reject H0, fail to show a significant difference 

assay results for the two scientists. 
 
7. Evaluating cognitive knowledge between hospital and community pharmacists. 
 Independent variable:  hospital versus community (discrete) 
 Dependent variable:  knowledge score (continuous) 
 Statistical test:  two-sample t-test 
 

 Hospital Pharmacists Community Pharmacists 
Mean Score  82.1 79.9
Variance 151.29 210.25
Respondents 129 142 

 Hypotheses: H0:  μh = μc 
   H1:  μh ≠ μc 
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 Test statistic: 

n
S

+
n
S

X-X = t

c

2
P

h

2
P

ch  

 Decision rule: With α = 0.05, reject H0 if t > t169(0.025) or < −t169(0.025).  
With α = 0.05, reject H0 if t > 1.96 or t < −1.96. 

 Computation: 

34061.94 = 
269

9162262.6 = 
2-142+129

)141(210.25+)128(151.29
 = S

22
2
p  

0.098 = 
22.45

2.2 = 

142
34061.94+

129
34061.94

79.9 - 82.1 = t  

 Decision: With t < 1.96 and > −1.96, do not reject H0, conclude that a 
significant difference between the populations of pharmacists could 
not be found. 

 
8. Evaluating cost effectiveness of a new treatment for peritoneal adhesiolysis. 
 Independent variable:   treatment received (each pair serves as its own control) 
 Dependent variable: costs (continuous) 
 Test statistic:  paired t-test (one-tailed) – Table 9.6  
 Hypotheses:  H0:  μd ≠ 0 
    H1:  μd > 0 
 Decision Rule: With α = 0.05, reject H0 if t > t11(0.05) = 1.795. 
 Results: Figure D.5 
 Decision: With t > 1.795, reject H0, conclude that the new treatment is more 

cost effective than the conventional one. 
 
9. Evaluation of average length of stay for kidney transplant patients in a particular 

hospital. 
 Independent variable:   hospital 
 Dependent variable:   length of stay (continuous) 
 Test statistic:    one-sample t-test (one-tailed) 
 Hypotheses:  H0: μA ≠ 21.6 
    H1: μA < 21.6 
 Decision rule:  With α = 0.05, reject H0 if t < −t50(0.95) = -1.675.  
 Computations: 

93.2
16.1

4.3

51
3.8

6.212.18

n
S
 - X

 = t 0 −=−=−=
μ
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Figure D.5  Minitab output from Problem 8, Chapter 9. 

 Decision: With t < −1.675, reject H0 and assume that the lengths of stay for 
kidney transplant patients at Hospital A is significantly less than the 
other facilities.   

 Creating a confidence interval (5% error to estimate the upper limits of the 
interval): 

n
S  /2)(1t + X = -1nlimit upper ⋅−αμ  

1.95 + 18.2 = 
51

8.3  (1.675) + 18.2 = Uμ  

 20.15 < Uμ  
 Decision: The mean for all the hospitals, 21.6 days, does not fall within the 

upper limits of the confidence interval; therefore, Hospital A is 
significantly different and its patients appear to have shorter length 
of stays. 

 
Chapter 10 – One-Way ANOVA 
 
1. Collaborative trial with assays from four laboratories (Table 10.6). 
 Independent variable:  laboratories (discrete, 4 levels) 
 Dependent variable:  assay results (continuous) 
 Statistical test:  ANOVA (example of the computational formula) 
 Hypotheses:     H0:  μA = μB = μC = μD 
       H1: H0 is false 
 Decision rule:  With α = 0.05, reject H0 if F > F3,36(0.95) ≈ 2.87. 
  Calculations: 

4398,207.0 = )2(100.1 ... + )2(99.8 + )2(100x = I  = 2
jk

n

1=i

K

1=k
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 5398,202.02 = 
40

)(3991 = 
N

x
 = II

2

K

jk
n

1=i

K

1=k

2














 

2398,203.46 = 
10

)(1000 ... + 
10

)(999.0 = 
n

x
 = III

22

K

jk
n

1=i

2

K

1=k














  

1.437  5398,202.02  2398,203.46  II III  SSB =−=−=  
3.578  2398,203.46  398,207.04  III  I  SSW =−=−=  

5.015  5398,202.02  398,207.04  II  I  SST =−=−=  
 ANOVA Table 

Source DF SS MS F 
Between  3 1.437 0.479 4.84 
Within 36 3.578 0.099  
Total 39 5.015   

 Decision: With F > 2.87, reject H0, conclude that μA = μB = μC = μD is not 
true. 

 
2. Evaluation of homogeneity of variance (Table 10.6) 
 Hartley’s F-max test:  Critical value from Table B8 (k = 4, n − 1 = 9) = 6.31 

67.3 
048.0
176.0 

)22.0(
)42.0(  

S

S
 F 2

2

2
smallest

2
largest

max ====  

  Decision:  Fail to reject H0: σ1
2 = σ2

2 = σ3
2 = σ4

2; assume homogeneity. 
 Cochran’s C test:  Critical value from Table B9 (k = 4, n − 1 = 9) = 0.502 

437.0 = 
403.0
176.0  

)34.0()22.0(+)42.0(+)25.0(
)42.0(  

S

S
  C 2222

2

2
k

2
largest =

+
=


=  

  Decision:  Fail to reject H0: σ1
2 = σ2

2 = σ3
2 = σ4

2; assume homogeneity. 
 
3. Comparison of a raw material at three different production sites (Table 10.7) 
 Independent variable:  production site (discrete, 3 levels) 
 Dependent variable:  oil viscosity (continuous) 
 Statistical test:  ANOVA (example of the computational formula) 
 Hypotheses:     H0:  μA = μB = μC  
       H1: H0 is false 
 Decision rule:  With α = 0.05, reject H0 if F > F2,12(0.95) ≈ 3.70. 
 Calculations: 

1574.1182 = )2(10.22 ... + )2(10.33 + )2(10.23x = I  = 2
jk

n

1=i

K

1=k
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1574.0930 = 
15

)(153.66 = 
N

x
 = II

2

k

jk
n

1=i

K

1=k

2














 

1574.1056 = 
5

)(51.06 + 
5

)(51.19 + 
5

)(51.41 = 
n

x
 = III

222

K

jk
n

1=i

2

K

1=k














  

   SSB = III − II = 1574.1056 − 1574.0930 = 0.0126 
    SSW = I − III = 1574.1182 − 1574.1056 = 0.0126 
   SST = I − II = 1574.1182 − 1574.0930 = 0.0252 
 ANOVA table: 

Source DF SS MS F 
Between 2 0.0126 0.0063 6.30 
Within 12 0.0126 0.0010  
Total 14 0.0252   

 Decision: With F > 2.83, reject H0, conclude that μA = μB = μC is not true. 
 
4. Evaluation of two formulations compared to the reference standard (Table D.4). 
 Independent variable:  formulations (discrete, 3 levels) 
     subjects (blocks) 
 Dependent variable:  plasma elimination half-life (continuous) 
 Statistical design:  randomized block design 
 Hypotheses:  H0: μA = μB = μRS  
    H1: H0 is false 
 Decision rule: With α = 0.05, reject H0 if F > F2,11 ≈ 3.98 
 Calculations: 

x   = I 2
kj

J

j=1

K

=1k
  

1567969 = )...(219 + )(203 + )(212 + )(206 = I 2222  

KJ

x  
 = II

kj
J

j=1

K

=1k

2














 

1566252.25 = 
36

)(7509 = II
2

 

K

x   
 = III

kj
J

j=1

2
K

=1k
R














 

1567729 = 
3

)...(655 + )(647 + )(621 = III
222

R  
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Table D.4 Plasma Elimination Half-Life (in minutes)  

Blocks 
(Subjects) 

 
Form. A 

 
Form. B 

Reference 
Standard 

 


 
Mean 

001 206 207 208 621 207.0 
002 212 218 217 647 215.7 
003 203 199 204 606 202.0 
004 211 210 213 634 211.3 
005 205 209 209 623 207.7 
006 209 205 209 623 207.7 
007 217 213 225 655 218.3 
008 197 203 196 596 198.7 
009 208 207 212 627 209.0 
010 199 195 202 596 198.7 
011 208 208 210 626 208.7 
012 214 222 219 655 218.3 
    2489    2496    2524       7509  

Mean   207.4    208.0    210.3    
 

J

x   
 = III

kj
K

=1k

2J

j=1
C











 

71566309.41 = 
12

)(2524 + )(2496 + )(2489 = III
222

C  

IIISSSS TTotal −==  
   SSTotal  =  1567969 − 1566252.25 = 1716.75 

IIIIISSSS RBBlocks −==  
   SSBlocks  = 1567729 − 1566252.25 = 1476.75 

IIIIISSSS CRxTreatment −==  
   SSTreatment  = 1566309.417 − 1566252.25 = 57.167 

RxBTsidualReError SSSSSSSSSS −−==  
   SSResidual  = 1716.75 − 1476.75 − 57.167 = 182.833 
 ANOVA Table 

Source df      SS      MS F 
Treatment 2 57.167  28.58 3.44 
Blocks 11 1476.75  134.25  
Residual 22 182.833 8.31  
Total 35 1716.75     

 Decision:  With F < 3.98, fail to reject H0 and conclude that there is no 
significant difference among the three products. 

 
5. Evaluation of length of stay for patients of three physicians. 
 Independent variable:  physicians (discrete, 3 levels) 
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Figure D.6 Excel output for Problem 5, Chapter 10. 

 Dependent variable:  lengths of patient stays (continuous) 
 Statistical test:  one-way ANOVA  
 Hypothesis:  H0: μphysician A = μphysician B = μphysician C  
    H1: H0 is false 
 Decision rule:    With α = 0.05, reject H0 if F > F2,21(0.95) ≈ 3.48. 
 Results: Table 10.9 and Figure D.6 
 Decision:   With F < 3.48, do not reject H0, conclude that there is no difference 

among the three physicians.  
 
6. Use of benzodiazepines and responses to a computerized simulated driving test.  
 Independent variable:  drugs or placebo (discrete, 4 levels) 
 Dependent variable:  driving score (continuous) 
 Statistical test:  one-way ANOVA  
 Hypotheses:  H0:  μA = μB = μC = μPlacebo  
    H1: H0 is false 
 Decision rule:     With α = 0.05, reject H0 if F > F3,44(0.95) ≈ 3.85. 
 Results: Table 10.10 and Figure D.7 
 Decision: With F > 2.85, reject H0, conclude that μA = μB = μC = μPlacebo is not 

true. 
 
7. Evaluation of replicate assays. 
 Independent variable:  replicates, first versus second (discrete, 2 levels) 
     batches (blocks) 
 Dependent variable:  percent recovered (continuous) 
 Statistical test:  complete randomized block design 
 Hypotheses:  H0: μ1 = μ2 
    H1: μ1 ≠ μ2 

 Decision rule: With α = 0.05, reject H0 if F > F1,5 = 6.61 
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Figure D.7 Minitab output for Problem 6, Chapter 10. 
 

 Treatment (% recovered)   
Blocks Replicate 1 Replicate 2  Mean 

Batch A 93.502 92.319 185.821 92.911 
Batch C 91.177 92.230 183.407 91.704 
Batch D 87.304 87.496 174.800 87.400 
Batch D2 81.275 80.564 161.839 80.920 
Batch G 79.865 79.259 159.124 79.562 
Batch G2 81.722 80.931 162.653 81.327 

 514.845 512.799 1027.644  

Mean 85.808 85.467   
 
 Calculations: 

88347.4815 = )...(80.931 + )(92.319 + )(93.502 = I 222  

88004.3492 = 
12

)(1027.644
 = II

2
 

88345.4597 = 
2

)3...(162.65 + )(183.407 + )(185.821 = III
222

R  

88004.6980 = 
6

)(512.799 + )(514.845
 = III

22

C  

SSTotal  =  88347.4815− 88004.3492 = 343.1323 
SSBlocks  = 88345.4597− 88004.3492 = 341.1105 
SSTreatment  = 88004.6980− 88004.3492 = 0.3488 

SSResidual  = 343.1323− 341.1105 − 0.3488 = 1.673 
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 ANOVA Table: 
Source df SS MS F 
Treatment 1 0.3488 0.3488 1.0424 
Blocks 5 341.1105 68.2221  
Residual 5 1.6730 0.3346  
Total 11 343.1323   

 Decision:  With F < 6.61, fail to reject H0, conclude that there is no significant 
difference between the first and second replicates. 

 
Chapter 11 – Multiple Comparisons 
 
Possible examples for multiple comparison tests 
1. Several different possible multiple comparisons. 

a. Scenario 1: Prior to the ANOVA the researcher decided on only two possible 
pairwise comparisons. There are three possible tests, multiple t-tests with 
adjusted α or Dunn’s test. 
(1) Multiple t-tests with adjusted α::  Keeping α constant at 0.05 and doing 
two separate t-test the α = 0.05/2 = 0.025 and a reliability coefficient = 2.297 
for t0.9875,62 for A versus C and 2.298 for t0.9875,61 for B versus C (using 
Microsoft® Excel, TINV(0.025,df)). 

n
s + 

n
s/2)-(1t  )XX( = 

C

2
p

A

2
p

2-n2+n1CACA αμμ ±−−  

2  n + n
S1)n( + S1)n(

 = S
CA

2
CC

2
AA2

p −
−−

 

765.466
62

)13.22()32( + )03.21()30( = S
22

2
p =  

33
765.466 + 

31
765.466298.2  )13.14( = CA ±− μμ  

548.26 712.1 CA +<−<+ μμ  

33
575.464 + 

30
575.464298.2  )72.12( = CB ±− μμ  

215.25 225.0 CB +<−<+ μμ  
Results: Since zero was not within the interval in both cases, Drug C showed a 
significantly larger decrease in total cholesterol than either Drug A or Drug B. 

 (2) Dunn Test: The Dunn reliability coefficient for is t′D.05;3;91 ≈ 2.45 (Table 
B11). Computation for AX  − BX : 

)
n
1+

n
1(  MS Dt  )XX( = 

BA
EK-NC;/2;BABA ⋅′±−− αμμ  

)
30
1+

31
1(  19.457 45.2  )41.1( = BA ⋅±− μμ  
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416.13  )41.1( = BA ±− μμ  
826.14 -006.12 BA +<<− μμ  

  Results: 
Pairing Confidence Interval Results 

AX  − BX  −12.006 < μA − μB < +14.826  

AX  − CX  +1.027 < μA − μC < +27.233 Significant 

BX  − CX  −0.495 < μB − μC < +25.935  
 

b. Scenario 2: Prior to the ANOVA the researcher has decided on a control 
group and wishes to compare each alternative therapy to the control group. 
Only one possibility, the Dunnett test exists. In this case the means of the 
sample are ranked from smallest to largest: 

 

CX  BX  AX  
−21.39 −8.67 −7.26 

 
  Thus, the p and subsequent q-value for A versus C is 3 and 1.99, 

respectively, and for B versus C are 2 and 2.26 (Table B12). 

( ) 







+±−=− −

AC
EkN,p,ACAC n

1
n
1MSqXX αμμ  

( ) 





 +±=−

31
1

33
119.45799.113.14AC μμ  

773.24487.3 AC +<−<+ μμ  

( ) 





 +±=−

30
1

33
119.45726.272.12BC μμ  

910.24530.0 BC +<−<+ μμ  
Results: In both cases zero did not fall within the interval. Thus, when Drug C is 
designated the control a priori, both pairwise comparisons were significant and 
Drug C showed a significantly larger decrease in total cholesterol than either 
Drug A or Drug B.  

 
c. Scenario 3: Post hoc comparison is required. With unequal cell sizes and 

equal variances the possible tests are Tukey-Kramer, SNK, and Scheffé tests. 
(1) Tukey-Kramer test: With slightly different sample sizes the Tukey-
Kramer test would be used over the Tukey test. In this case the q-value for 
the reliability coefficient would be the same for all three pairwise 
comparisons, q.05,3,91 = 3.38 (Table B10).  

 Computation for AX  − BX : 









+±−=− −

BA

E
kN,k,BABA n

1
n
1

2
MS

)q()XX( αμμ  
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 +±=−

30
1

31
1

2
19.457)38.3()41.1(BA μμ  

)088.13()41.1(BA ±=− μμ  
498.14 678.11 BA +<−<− μμ  

  Results: 
Pairing Confidence Interval Results 
AX  − BX  −11.678 < μA − μB < +14.498  

AX  − CX  +1.348 < μA − μC < +26.912 Significant 

BX  − CX  −0.171 < μB − μC < +25.611  

 (2) Student Newman-Keul: For unbalanced designs the Student Newman-
Keul equation is exactly the same as the Tukey-Kramer and would give the 
exact same results, except that the q-statistic calculated as: 










−

n
1+

n
1 

2
MS

X  X
 = q

21

E

21  

would be compared to the critical value of 3.38. In these cases for: 
tsignificannot364.0qBA =− μμ  

tsignifican736.3qCA =− μμ  
tsignificannot335.3qCB =− μμ  

Results: The only significant difference was that Drug C showed a significantly 
larger decrease in total cholesterol than either Drug A. 

 (3) Scheffé procedure: For all three possible pairwise comparisons, the 
Scheffe value (S2) would equal (k−1)(Fk-1,N-k(1-α)) = (2)(3.111) = 6.222. The 
error term is slightly different based on the pairing. 
 Computation for AX  − BX : 

988.29 = 
30

)(-1
+

31
)(+1

19.457 = )ˆvar(
22

AB











ψ  

)ˆ( Var  S  ˆ  AB
2

ABAB ψψψ ⋅±=  

)988.29)(222.6(  41.1  AB ±=ψ  
659.13  41.1  AB ±=ψ  

069.15 249.12 AB +<<− ψ  
  Results: 

Pairing Confidence Interval Results 

AX  − BX  −12.249 < μA − μB < +15.069  

AX − CX  +0.790 < μA − μC < +27.470 Significant 

BX  − CX  −0.734 < μB − μC < +26.174  
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2. Three post hoc tests, discussed in this chapter, would be appropriate for results 
with equal sample sizes: 1) Tukey HSD; 2) Fisher LSD; and 3) Scheffe tests. 
Data comparing the site of raw materials and viscosity. 

  Sample Differences:  AX  − BX  = +0.04 
     AX  − CX  = +0.07 MSW = MSE = 0.001 

     BX  − CX  = +0.03 
 (1) Tukey HSD test:  For the Tukey HSD test the reliability coefficient is q.05;3;12 

= 3.77 (Table B10). 
  Computation for AX  − BX : 

n
MS)q()XX( E

kN,k,BABA −±−=− αμμ  

5
001.0)77.3()04.0(BA ±+=− μμ  

053.004.0 = BA ±+− μμ  
093.0 013.0 BA +<−<− μμ  

  Results: 
Pairing Confidence Interval Results 
AX  − BX  −0.013 < μA − μB < +0.093  

AX  − CX  +0.017 < μA − μC < +0.123 Significant 

BX  − CX  −0.023 < μB − μC < +0.083  

 (2) Fisher LSD test: For the Fisher LSD test the reliability coefficient is t0.025;12 = 
2.1788 (Table B5). 

  Computation for AX  − CX : 

( )
C

E

A

E
kN,2/1CACA n

MS
n

MStXX +±−=− −−αμμ  

( )
5
001.0

5
001.0)1788.2(07.0CA +±+=− μμ  

440.0  (0.07) = cA ±− μμ  
140.1+ <  < 26+0.0 CA μμ − \ 

  Results: 
Pairing Confidence Interval Results 
AX  − BX  −0.004 < μA − μB < +0.084  

AX  − CX  +0.026 < μA − μC < +0.114 Significant 

BX  − CX  −0.014 < μB − μC < +0.074  

 (3) Scheffé procedure: Scheffé value is: 
7.40 = 2(3.70) = ))(1F( 1)(K = S = )value (Scheffe K--1,NK

22 α−−  
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Figure D.8 Minitab for Tukey HSD output for Problem 4, Chapter 11. 

  Computation for BX  − CX : 

0.0004 = 
5

)(-1
+

5
)(+1

0.001 = )ˆvar(
22

3











ψ  

0.054  0.03 = 004)(7.40)(0.0  0.03+ = 3 ±±ψ  
0.084+ <  < 0.024 3ψ−  

  Results: 
Pairing Confidence Interval Results 
AX  − BX  −0.014 < μA − μB < +0.094  

AX  − CX  +0.016 < μA − μC < +0.124 Significant 

BX  − CX  −0.024 < μB − μC < +0.084  

 
4. Use of benzodiazepines and responses to a computerized simulated driving test.  
 Independent variable:  drug or placebo (discrete, 4 levels) 
 Dependent variable:  driving score (continuous) 
 ANOVA findings:  Reject H0:  μA = μB = μC = μPlacebo  
 Results: Tukey HSD - Figure D.8 
   Fisher LSD – Figure D.9 
 Decision: Volunteers on Benzo(B) performed significantly worse on the 

driving scores than either Benzo(C) or placebo with both post hoc 
tests.  
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Figure D.9 Minitab for Fisher LSD output for Problem 4, Chapter 11. 

 
5. Comparison of benzodiazepines with placebo considered the control substance 

with the computerized simulated driving test.  
 Independent variable:  drug or placebo (discrete, 4 levels), but placebo as the 

control 
 Dependent variable:  driving score (continuous) 
 ANOVA findings:  Reject H0:  μA = μB = μC = μPlacebo  
 Results: Dunnett’s test - Figure D.10 
 Decision: Only Benzo(B) was significantly different from the placebo control.  
 

Figure D.10 Minitab for Dunnett’s output for Problems 5, Chapter 11. 
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Chapter 12 – Factorial Designs: An Introduction 
 
1. Experiment with different fillers and various speeds on a tableting machine. 
 Hypotheses: H01: μSpeed 1 = μSpeed 2 = μSpeed 3 = μSpeed 4 
   H02: μFiller 1 = μFiller 2 = μFiller 3 
   H03: No interaction between speed and filler 

Hardness (kP)  

 Speed of Tableting Machine   
Filler 80 100 120 180  
Lactose  = 56 60 62 61  = 239 
Microcrystalline 
Cellulose  = 

 
59 

 
58 

 
56 

 
58 

 
 = 231 

Dicalcium 
Phosphate  = 

 
51 

 
49 

 
47 

 
50 

 
 = 197 

= 166 167 165 169  =667 
 Decision rules: With α = 0.05 and n = 8: reject H01 if F > F3,84(0.95) ≈ 2.72; 

reject H02 if F > F2,84(0.95) ≈ 3.11; and reject H03 if F > 
F6,84(0.95) ≈ 2.21. 

 Calculations:  

x    = I 2
i

I

=1i

J

=1j

K

=1k
  

4809 = )(6 + )(6 + ... )(8 + )(5 + )(7 = I 22222  

N

x   

 = II
i

I

1=i

J

1=j

K

1=k

2














 

4634.26 = 
96

)(667
 = II

2
 

n j

x    

 = III

i
I

1=i

J

1=j

2
K

1=k
R ⋅














 

344.6546 = 
32

492911 = 
)8)(4(

 )197( + )231( + )239(
 = III

222

R  

n k

x    

 = III
i

I

1=i

K

1=k

2J

1=j
C ⋅
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4634.625 = 
24

111231 = 
)8)(3(

)(169 + )(165 + )(167 + )(166
 = III

2222

C  

n

x   

 = IV
i

I

1=i

2J

1=j

K

1=k 












 

4669.625 = 
8

37357 = 
8

2))(50 + )(47 + ... )(60 + )(56
 = IV

(222
 

31.084 = 4,634.26  4,665.344 = II  III = SS RR −−  
0.365 = 4,634.26  4,634.625 = II  III = SS CC −−  

 II+IIICIII RIV = SSRC −−  
916.3625.634,4344.665,4625.669,4SS RC =−−=  

375.139 = 625.694,6  4,809 = IV  I = SSE −−  
74.174=26.634,4  809,4III = SST −=−  

 ANOVA Table: 
Source df SS MS F 
Between     
  Rows (filler) 2 31.084 15.542 9.368 
  Column (speed) 3 0.365 0.122 0.074   
  Interaction 6 3.916 0.653 0.394   
Within (error): 84   139.375 1.659  
Total 95  174.740   

 Decision:  With α = 0.05, reject H01 and conclude that there is a significant 
difference between the three fillers used in the experiment, but there is 
no significant difference based on the speed of the tableting machine 
and no significant interaction between these two factors. 

 
2. Experiment with quality of life indexes and various hospitals. 
 Hypotheses: H01: μIndex 1 = μIndex 2 = μIndex 3 
   H02: μHospital A = μHospital B = μHospital C 
   H03: No interaction between index and hospital 
 Decision rules: With α = 0.05: reject H01 if F > F2,26(0.95) ≈ 3.39; reject H02 if 

F > F2,26(0.95) ≈ 3.39; and reject H03 if F > F4,26(0.95) ≈ 3.00. 
 

 Index 1 Index 2 Index 3  
Hospital A     = 270 344 380  = 994 
Hospital B     = 329 248 340  = 917 
Hospital C     = 325 317 325  = 967 
                  = 924 909 1045  = 2878 

 Calculations:   

x    = I 2
i

I

=1i

J

=1j

K

=1k
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238,646 = )(77 + )(82 + ... )(61 + )(73 + )(67 = I 22222  

83.653,236
35

)878,2(
N

x   

 = II
2i

I

1=i

J

1=j

K

1=k

2

==













 

N

x   

  = III
R

i
I

1=i

J

1=j

2

K

1=k
R














  

236,704.87 = 
12

)(967
 + 

11
)(917

 + 
12

)(994
 = III

222

R  

N

x   
  = III

C

i
I

1=i

K

1=k

2

J

1=j
C














  

237,266.54 = 
12

)(1045 + 
11

)(909 + 
12

)(924 = III
222

C  

N

x 
   = IV

i

i
I

1=i

2

J

1=j

K

1=k














  

238,305.33 = 
4

)(325
 ... + 

4
)(380

 + 
4

)(344
 + 

4
)(270

 = IV
2222

 

51.04 = 236,653.83  236,704.87 = II  III = SS RR −−  
612.71 = 236,653.83  237,266.54 = II  III = SS CC −−  

IIIIIIIIIVSS CRRC +−−=  
75.98783.653,23654.266,23787.704,23633.305,238SS RC =+−−=  

340.67 = 238,305.33  238,646 = IV  I = SS E −−  
1992.17=236,653.83  238,646 = II  I = SST −−  

 ANOVA Table: 
Source df SS MS F p 
Between      
  Rows (hospital) 2 51.04 25.52    1.95 0.153 
  Column (index)  2 612.71 306.36 23.39 <0.0005 
  Interaction 4 987.75 246.94 18.85 <0.0005 
Within (error): 26   340.67 13.10   
Total 34  1992.17    

 Decision: With α = 0.05, reject H02 and conclude that there is a significant 
difference between the indexes used in this study. Reject H03, 
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conclude that a significant interaction exists between the two main 
factors, but there is no significant difference based on the hospital. 

 
3. Repeatability and reproducibility among seven laboratories. 
 H01: μL1 = μL2 = μL3 = μL4 = μL5 = μL6 = μL7     (Main effect of laboratories) 
 H02: μS1 = μS2 = μS3   (Main effect of samples) 
 H03: (μL1,S1  − μL1,S2 ) = (μL2,S1  − μL2,S2 ) = etc.    (Interaction) 
 

 Results: Two-way ANOVA – Figure D.11 
 Application to repeatability and reproducibility where with 99% confidence, Z0 = 

5.15. 
63.226.015.5ypeatabilitRe ==  

36.0
)4(3
36.042.015.5ityproducibilRe =−=  

81.0
4

26.036.015.5nInteractio =−=  

88.2)81.0()36.0()63.2(R&R 222 =++=  

72.13
)4)(7(
36.000.19915.5VP =−=  

02.14)72.13()88.2(V 22
T =+=  

%52.3100x
02.14
63.2ityrepeatibil%

2

=





=  

%07.0100x
02.14

36.0ilityreproducib%
2

=





=  

%23.4100x
02.14
88.2R&R%

2

=





=  

%77.95100x
02.14
72.13Sample%

2

=





=  

 Result:  Good repeatability (<5%) and good reproducibility (<30%). 
 
Chapter 13 – Correlation 
 
1. Comparison of two different scales to measure patient anxiety levels. 
 Variables: continuous (two measurement scales) 

a. Pearson product-moment 
  Method A - variable x - mean = 57.7 
  Method B - variable y - mean = 105.5  

Calculations (based on summary data in Table D.5): 
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Figure D.11 Minitab two-way ANOVA output for Problem 3, Chapter 12. 

 
Table D.5 Data for Problem 1, Definitional Formula 

x y  x− X  y−Y  (x− X )(y−Y ) (x− X )2 (y−Y )2 
55 90 −2.7 −15.5 41.85 7.29 240.25 
66 117 8.3  11.5 95.45 68.89 132.25 
46 94 −11.7 −11.5 134.55 136.89 132.25 
77 124 19.3 18.5 357.05 372.49 342.25 
57 105 −0.7 −0.5 0.35 0.49 0.25 
59 115 1.3 9.5 12.35 1.69 90.25 
70 125 12.3 19.5 239.85 151.29 380.25 
57 97 −0.7 −8.5 5.95 0.49 72.25 
52 97 −5.7 −8.5 48.45 32.49 72.25 
36 78 −21.7 −27.5 596.75 470.89 756.25 
44 84 −13.7 −21.5 294.55 187.69 462.25 
55 112 −2.7 6.5 -17.55 7.29 42.25 
53 102 −4.7 −3.5 16.45 22.09 12.25 
67 112 9.3 6.5 60.45 86.49 42.25 
72 130 14.3 24.5 350.35 204.49 600.25 

    2236.85 1750.95 3377.75 

 

92.0
)75.3377)(95.1750(

85.2236

)Y (y )X  (x

)Y)(y X  (x = r
22

==
−−

−−  

b. Computational formula (based on summary data in Table D.6): 
 Calculations: 

)(1582  15(170226) )(866  15(51748)

)(866)(1582  15(93571) = r
22 −−

−
 

.920 = 
36478.08

33553 = 
25.09)(162.06)(2

1370012  1403565 = r −  
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Table D.6 Data for Problem 1, Computational Formula 

 x y x2 y2 xy 
 55 90 3025 8100 4950 
 66 117 4356 13689 7722 
 46 94 2116 8836 4324 
 77 124 5929 15376 9548 
 57 105 3249 11025 5985 
 59 115 3481 13225 6785 
 70 125 4900 15625 8750 
 57 97 3249 9409 5529 
 52 97 2704 9409 5044 
 36 78 1296 6084 2808 
 44 84 1936 7056 3696 
 55 112 3025 12544 6160 
 53 102 2809 10404 5406 
 67 112 4489 12544 7504 
 72 130 5184 16900 9360 
 = 866   1582    51748 170226 93571 

 
c. Conversion to t-statistic: 

 Hypothesis: H0: rxy = 0 
   H1: rxy ≠ 0 
 Decision rule: With α = 0.05, reject H0 if t > t13(0.975) = 2.16. 

Calculations: 

8.51 = 
0.39
3.32=

)(.921

215 .92

r1

2nr = t
22 −

−=
−

−  

 Decision: With t > 2.16, reject H0 and conclude there is a significant 
relationship between Method A and Method B. 

 
2. Comparison of two drugs and length of stay at a specific hospital. 
 Variables: continuous (two measurement scales) 
 Calculation of the three paired correlations produced the following inter-

correlation matrix: 
 

Variables LOS Drug A Drug B 
LOS ... −0.923 −0.184 
Drug A ... ... +0.195 
Drug B ... ... ... 

  The partial correlation for length of stay versus Drug A is: 

.9200  = 
)).1950()(1).1840((1

.195)0.184)(+0(  .9230 = 
)r  )(1r  (1

)r)(r(  r = r
222

ab
2
lb

ablbla
bla, +

−−−

−−−

−−

−  

 The partial correlation for length of stay versus Drug B is: 
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.0110  = 
)).1950()(1).9230((1

.195)0.923)(+0(  .1840 = 
)r  )(1r  (1

)r)(r(  r = r
222

ab
2
la

ablalb
alb, −

−−−

−−−

−−

−  

 Evaluation of the partial correlation for length of stay versus Drug A: 
  Decision rule is with α = 0.05, reject H0 if ⏐t⏐ > t5(0.975) = 2.57. 

2
b.la

b.la
b.la

)r(1

1knr
t

−

−−
=  

5.24
0.392
2.057

0.92)(1

1280.92)(t
2

yx.z −=−=
−−

−−−
=  

 Decision:  There is a strong correlation, statistically significant with 95% 
confidence, between the length of stay and administration of Drug 
A, but Drug B has very little influence on the length of stay. 

 
3. Comparison of two analytical procedures on different concentrations of a drug. 
 Variables: continuous (two measurement scales) 
 Calculations (based on summary data in Table D.7): 

)y(  y n )x(  x n

yx xy  n = r
2222 −−

−
 

)(471.8  8)8(33,355.3 )(469.5  9)8(33,138.0

1.8)(469.5)(47  2)8(33,244.6 = r
22 −−

−
 

.99970+ = 
44,459.58
44,446.86 = 

10.35)(211.36)(2
221,510.1  265,956.96 = r −  

 Conclusion: A very strong correlation exists between methods GS and ALT. 
 
4. Comparison of multiple test results: 
 Variables: continuous (five measurement scales) 
 Example of correlation coefficient for scores on law and pharmaceutical 

calculations sections (Table D.8). 
 

Table D.7 Data for Problem 3, Computational Formula 
Method GS 

x 
Method ALT 

y 
 

x2 
 

y2 
 

xy 
90.1 89.8 8,118.01 8,064.04 8,090.98 
85.2 85.1 7,259.04 7,242.01 7,250.52 
79.7 80.2 6,352.09 6,432.04 6,391.94 
74.3 75.0 5,520.49 5,625.00 5,572.50 
60.2 61.0 3,624.04 3,721.00 3,672.20 
35.5 34.8 1,260.25 1,211.04 1,235.40 
24.9 24.8 620.01 615.04 617.52 
19.6 21.1 384.16 445.21 413.56 

469.5   471.8   33,138.09 33,355.38 33,244.62 
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Table D.8 Data for Problem 4, Computational Formula 

Law (x) Calculations (y) x2 y2 xy 
23 18 529 324 414 
22 20 484 400 440 
25 21 625 441 525 
20 19 400 361 380 
24 23 576 529 552 
23 22 529 484 506 
24 20 576 400 480 
20 17 400 289 340 
22 19 484 361 418 
24 21 576 441 504 
23 20 529 400 460 
21 21 441 441 441 

271   241   6149   4871   5460   
 
 Calculations: 

)y(  y n )x(  x n

yx xy  n = r
2222 −−

−
 

582.0
8.358

209

)(241  12(4871) )(271  12(6149)

(271)(241)  12(5460) = r
22

+==
−−

−
 

 Conclusion: A moderate correlation between law and calculation scores. 
 Correlation Matrix: Figure D.12 
 Results: Strongest correlation between two sections is +0.943 between law and 

pharmacology.  
 

 
Figure D.12 Minitab correlation matrix for Problem 3, Chapter 13. 
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Chapter 14 – Linear Regression 
 
1. Comparison of content of a medication at different time periods. 
 Variables: continuous independent variable (time in months) 
   continuous dependent variable (amount of drug in milligrams) 
 Hypothesis: H0:   Time (x) and assay results (y) are not linearly related 
   H1:   Time and assay results are linearly related 
 Decision Rule:  With α = 0.05, reject H0 if F > F1,4(0.95) = 7.71 
   x = time (months)  y = assay (mg) 
 

 x y x2 y2 xy 
  6 995 36 990025 5970 
  12 984 144 968256 11808 
 18 973 324 946729 17514 
 n = 6  24 960 576 921600 23040 
  36 952 1296 906304 34272 
  48 948 2304 898704 45504 

 = 144 5812 4680 5631618 138108 

 Calculations: 
  Slope and intercept: 

1.13 = 
)(1446(4680)

)(144)(58126(138108) = 
)x(  xn

y)x)(( xy n = b
222

−
−

−

−

−  

995.78 = 
6
1.13)(144)(5812 = 

n
xb y  = a −−−

 

  Coefficient of determination: 

1562.93 = 
6

)(144  4680 )(1.13 = 
n

)x(  x  b = SS
2

2
2

22
explained












−











 −  

1727.33 = 
6

)(5812  5631618 = 
n

)y(  y = SS
22

2
total −−  

164.40 = 1562.93  1727.33 = SS  SS = SS explainedtotaldunexplaine −−  

0.905 = 
1727.33
1562.93 = 

SS
SS = r

total

explained2  

  ANOVA Table: 
 

Source SS df MS F 
Linear Regression 1562.93 1 1562.93 38.03 
Residual 164.40 4 41.10  
Total 1727.33 5   

  Decision:  With F > 7.71, reject H0 and conclude that a linear relationship 
exists between the storage time and the assayed amount of drug. 

 Slope of the population: 
  Hypotheses: H0: β  = 0 
    H1: β  ≠ 0 
  Decision Rule: With α = 0.05, reject H0 if t > t4(1 − α/2) = 2.776 
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  Calculations: 

n
)x(

  x

MS = S 2
2

residual
b


−

 

0.183 = 

6
)(144

  4680

41.10 = S 2b

−

 

6.17 = 
0.183

0 - 1.13 = 
S

0  b = t
b

−−−  

  Decision: With t < −2.776, reject H0, conclude that there is a slope and 
thus a relationship between time and assay results. 

 95% C.I. for the slope: 
S  /2)(1t  b = b1-n ⋅−± αβ  

0.51  1.13 = )183.02.776(  1.13 = ±−±−β  
0.62 <  < 1.64 −− β  

Decision: Since zero does not fall within the confidence interval, reject 
H0 and conclude that a relationship exists. With 95% 
confidence the slope of the line (β) is between −1.64 and −0.62. 

  Confidence interval around the regression line: 
  Example at 48 months, where X  = 24 

n
)x(  x

)X  x( + 
n
1  MS  /2)(1t  y = y 2

2

2
i

residual2-nc −

−⋅⋅−± α  

6
)(144

  4680

)24  (48
 + 

6
1241.102.776 941.54 = y

2

2

−

−
±  

14.20  941.54 = y ±  

74.955y34.927 <<  
  Results (Figure D.13): 
 

95% Confidence Intervals 
Time 

(months) 
Sample 

(mg) 
 

yc 
Lower 
Limit 

Upper 
Limit 

 
Range 

6 995 989.00 977.40 1000.60 23.20 
12 984 982.22 972.84 991.60 18.76 
18 973 975.44 967.69 983.19 15.50 
24 960 968.66 961.54 975.78 14.24 
36 952 955.10 945.72 964.48 18.75 
48 948 941.54 927.34 955.74 28.40 
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Figure D.13 Minitab confidence bands for results Problem 1, Chapter 14.  

 
2. Comparison of various concentrations to effect on the optical density. 
 Variables: continuous independent variable (concentration) 
   continuous dependent variable (optical density) 
 Hypotheses:  H0: Concentration and density are not linearly related 
  H1: Concentration and density are linearly related 
 Decision Rule:  With α = 0.05, reject H0 if F > F1,2(1 − α) = 18.5 
 

 Concentration 
x 

Density 
y 

 
x2 

 
 y2 

 
xy 

 1 0.24 1  0.058 0.24 
 2 0.66 4 0.436 1.32 
n = 4 4 1.15 16 1.323 4.60 
  8 2.34 64 5.476 18.72 
 = 15   4.39 85  7.293 24.88 

 Calculations: 
 Slope and y-intercept: 

0.293 = 
)(15  4(85)

(15)(4.39)  4(24.88) = b
2−

−  

0.00125- = 
4

0.293(15)  4.39 = a −
 

 Coefficient of determination: 

2.47498 = 
4

)(4.39
  7.293 =

n
)y(

  y = SS
22

2
total −


−  

2.46816 = 
4

)(15  85  )(.293 =
n

)x(  x  b = SS
2

2
2

22
explained












−











 −⋅  
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0.00682 = 2.46816  2.47498 =SS  SS = SS explainedtotaldunexplaine −−  

.9970 = 
2.47498
2.46816 = 

SS
SS

 = r
total

explained2  

  ANOVA table: 
Source of Variation SS df MS F 
Linear Regression 2.46816 1 2.46816 723.80 
Residual 0.00682 2 0.00341  
Total 2.47498 3   

  Decision: With F > 18.5, reject H0 and conclude that a linear relationship 
exists between the concentration and amount of optical density. 

 Slope of the population: 
  Hypotheses: H0: β = 0 
    H1: β ≠ 0 
  Decision Rule: With α = 0.05, reject H0 if t > t2(1 − α/2) = 4.302 
  Calculations: 

n
)x(

  x

MS = S 2
2

residual
b


−

 

09100. = 

4
)5(1

  85

00341.0 = S 2b

−

 

88.26 = 
01090.

0  293.0 = 
S

0  b = t
b

−−  

 Decision: With t > 4.302, reject H0, conclude that there is a slope and thus a 
relationship between concentration and density. 

 95% C.I. for the slope: 
S  /2)(1t  b = b1-n ⋅−± αβ  

0470.  293.0 = )0109(0.302.4  23.0 = ±±β  
340.0 <  < 246.0 β  

Decision: Since zero does not fall within the confidence interval, reject 
H0 and conclude that a relationship exists. With 95% 
confidence the slope of the line (β) is between +0.246 and 
+0.340. 

 Confidence interval around the regression line: 
  Example at 4% concentration, where X  = 3.75 

n
)x(  x

)X  x( + 
n
1  MS  /2)(1t  y = y 2

2

2
i

residual2-nc −

−⋅⋅−± α  
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Figure D.14 Minitab confidence bands for results of Problem 2, Chapter 14. 

 

4
)15(

  85

)75.3  4(
 + 

4
100341.0302.4 17.1 = y

2

2

−

−
±  

13.0  17.1 = y ±  

30.1y04.1 <<  
  Results (Figure D.14): 

95% Confidence Intervals 
 

Concentration 
 
Density 

 
yc 

Lower 
Limit 

Upper 
Limit 

 
Range 

1 0.24 0.29 0.11 0.47 0.36 
2 0.66 0.58 0.43 0.73 0.30 
4 1.15 1.17 1.04 1.30 0.26 
8 2.34 2.34 2.11 2.57 0.46 

 
3. Comparison of various concentrations to effect on the optical density for two 

solutions (test versus reference standard) and evaluating if the two results 
produce parallel lines. 

 Variables: continuous independent variables (concentrations for the test 
solution and the reference standard ) 

   continuous dependent variable (optical density ) 
Hypotheses:   H0: βT  = βS 

H1: βT  ≠ βS 
 Decision Rule:  With α = 0.05, reject H0 if t > t4+4-4(1 − α/2) = 2.777 
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Much of the information needed about the test solution was calculated in 
Problem 2 and will be presented below. Information needed for the reference 
standard solution is as follows: 

 

 Concentration 
x 

Density 
 y 

 
x2 

 
y2 

 
xy 

 1 0.22 1 0.0484 0.22 
 2 0.74 4 0.5476 1.48 
n = 4 4 1.41 16 1.9881 5.64 
  8 2.76 64 7.6176 22.08 
 = 15 5.13 85 10.2017 29.42 

 Calculations: 
 Slope and y-intercept: 

3540. = 
)(15  4(85)

)13.5(15)(  )42.294( = b
2−

−  

4500.0- = 
4

(15)3540.  13.5 = a −
 

 Coefficient of determination: 

62248.3 = 
4

)13.5(  2017.10 =
n

)y(  y = SS
22

2
total −−  

60284.3 = 
4

)(15
  85  )354.0( =

n
)x(

  x  b = SS
2

2
2

22
explained












−











 
−⋅  

19640.0 = 60284.3  62248.3 =SS  SS = SS explainedtotaldunexplaine −−  
  ANOVA table: 

Source of Variation SS df MS F 
Linear Regression 3.60284 1 3.60284 366.89 
Residual 0.01964 2 0.00982  
Total 3.62248 3   

 Information required for a comparison of parallelism: 
 Test Standard 

n 4 4 
df 2 2 
Σx 15 15 
Σx2 85 85 
b 0.293 0.354 

SSR 0.00682 0.01964 

00662.0
444
01964.000682.0)S( p

2
y/x =

−+
+=  
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84.2
0215.0

061.0

4
)15(85

00662.0

4
)15(85

00662.0
354.0293.0t

22

−=−=

−

+

−

−=  

  Decision: With t < −2.777, reject H0, conclude that the data have slopes 
that are not parallel.  

  95% C.I. for the difference between the two slopes: 

4
)15(85

00662.0

4
)15(85

00662.0)777.2()0354.293.0(
2221

−

+

−

±−=− ββ  

)0597.0()061.0(21 ±−=− ββ  
0013.01207.0 21 −<−<− ββ  

Decision: Since zero does not fall within the confidence interval, reject 
H0 and conclude that two lines are not parallel. With 95% 
confidence the difference between the two slopes is between 
−0.121 and −0.001. 

 
4. Comparison of percent of coating with rate of release 
 Variables: continuous independent variable (percent) 
   continuous dependent variable (rate of release) 
 Hypothesis: H0:   Percent (x) and rate of release (y) are not linearly related 
   H1:   Percent and rate of release are linearly related 
  and H0:  There is no lack of linear fit 
   H1:  There is lack of linear fit 
 

 
Figure D.15 Minitab results from analysis Problem 4, Chapter 14. 
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 Results:   Figure D.15 
 Decision: The line drawn between the data points (y = 3.85 + 0.08); not 

shown in Figure D.15) represents 97.7% of the variability on the y-
axis. There is a significant linear relationship between the percent of 
coating and rate of release (p < 0.001) and it was not possible to 
reject the null hypothesis of lack of fit. 

 
5. As seen in the Minitab printout (Figure D.16), the slope is −0.004 and the 

intercept is 2.15.  There is a significant linear relationship, F = 240.96, p < 0.001. 
The line represents 97.6% of all the variation on the y-axis. Figure D.17 presents 
the graphic representation of the data with 95% confidence bands. Note at the 
bottom of Figure D.16 the results were also calculated for quadratic and cubic 
relationships and the linear results were the best representations for the sample 
data. 

 
Chapter 15 – z-Tests of Proportions 
 
1. Production was run with an expected defect rate of 1.5%, but a rate of 5% for 100 

tablets was found. 
 Hypotheses: H0: p̂  = 0.015 
   H1: p̂  ≠ 0.015 
 Decision rule: With α = 0.05, reject H0, if z > z(1-α/2) = 1.96 or z < −1.96. 
 Data:  P0 = 0.015; p̂  = 0.05; n = 100. 
  

 
Figure D.16 Minitab output for Problem 5, Chapter 14. 
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Figure D.17 Minitab confidence bands for results of Problem 5, Chapter 14. 

 
Calculations: 

 92.2
012.0
035.0

100
)985.0)(015.0(

015.005.0

n
)P(1P

P  p̂ =z 
00

0 ==−=
−

−  

 Decision:  With z > 1.96, reject H0 and conclude that there is a significant 
difference between the sample and the expected proportion of 
defects. 

 Alternative confidence interval approach: 

n
)P(1P Z  p̂ = P 00

/2)-(10
−± α  

024.005.0
100

985)(0.015)(0. 1.96  50.0 = P0 ±=±  

40.07+ < P < 6+0.02 0  
 Decision:  The outcome 0.015 does not fall within the interval, therefore reject 

H0. 
2. Incidence of nausea and vomiting between two therapies. 
 a. Two-tailed, not predicting direction: 
  Hypotheses: H0: PN = PT 
    H0: PN ≠ PT  
  Decision rule: With α = 0.05, reject H0, if z > z(1-α/2) = 1.96 or  
    z < −1.96. 
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  Calculations: 

0.413 = 
75 + 190

.55)0(75)( + .36)0(190)( = 
n + n

p̂ n + N̂ n = p̂
TN

TTNF
0  

0.587 = .4130  1.00 = p̂ - 1 0 −  

2.83 = 
0.067

0.19 = 

75
587)(0.413)(0. + 

190
587)(0.413)(0.

0.55  0.36 =z −−−  

  Decision: With z < −1.96 reject H0, and conclude there is a significant 
difference between the incidence of nausea and vomiting 
between the new drug and traditional therapy. 

 
 b. One-tailed, predicting lower incidence with a new agent: 
  Hypotheses: H0: PN ≥ PT 
    H0: PN < PT  
  Decision rule: With α = 0.05, reject H0, if z < z(1-α) = −1.64. 
  Decision: The computed z-value was –2.83. With z < −1.64 reject 

H0, and conclude that the newer agent causes a significant 
decrease in the incidence of nausea and vomiting 
compared to traditional therapy. 

 
3. Defects at two different speeds for a tablet press. 

Speed n # of Defects 
Low 500 11 
High 460 17 

  p̂ L = 11/500 = 0.022     p̂ H = 17/460 = 0.037 
 Hypotheses: H0: PL = PH           H1: PL ≠ PH 
 Decision rule:  With α = 0.05, reject H0, if z > z(1-α/2) = 1.96 or z < −1.96. 
 Calculations: 

0.029 = 
460 + 500

7)(460)(0.03 + 2)(500)(0.02 = 
n + n

p̂ n + p̂ n = p̂
HL

HHLL
0  

0.971 = .0290  1.00 = p̂ - 1 0 −  

 

 
Figure D.18 Minitab Z-test results for Problem 2, Chapter 15. 
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n
)p̂(1p̂

 + 
n

)p̂(1p̂
p̂  p̂

 =z 

H

00

L

00

HL
−−

−
 

1.36 = 
0.011
0.015 = 

460
1)0.029(0.97 + 

500
1)0.029(0.97

0.037  0.022 =z −−−  

 Decision: With the z > −1.96, fail to reject H0, conclude that there is no 
significant difference in the defect rate based on the tablet press 
speed.  

 Yates’ correction for continuity: 

n
)p̂(1p̂

 + 
n

)p̂(1p̂

)
n
1 + 

n
1( 

2
1  | p̂  p̂ |

 =z 

2

00

1

00

21
21

−−

−−
 

18.1
011.0
013.0

011.0
002.0015.0

460
.971)0.029(0 + 

500
.971)0.029(0

)
460

1 + 
500

1(
2
1  | .0370  .0220|

 =z ==−=
−−

 

 Decision:   With the z < 1.96, fail to reject H0. 
 Results: Figure D.18, Minitab does not use Yates’ correction. 
 
4. Incidence of a blood dyscrasia in a Phase IV clinical trial. 
 Hypotheses: H0: p̂  = 0.025 
   H1: p̂  ≠ 0.025 

 Decision rule: With α = 0.05, reject H0, if z > z(1-α/2) = 1.96 or z < −1.96. 
 Data:  P0 = 0.025; p̂  = 2/28 = 0.071; n = 28 
 Calculations: 

1.59 = 
0.029
0.046 = 

28
975)(0.025)(0.

0.025  0.071 

n
)p1(p

pp̂
z 

00

0 −
−

−
=  

 Decision:  With z < 1.96, fail to reject H0 and not conclude that the sample 
results are different from what was found with the original clinical 
trials. 

 Alternative confidence interval approach: 

n
)P(1P Z  p̂ = P 00

/2)-(10
−

± α  

057.0071.0
28

975)(0.025)(0. 1.96  0.071 = P0 ±=±  

0.128+ < P < +0.014 0  
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 Decision: The outcome 0.025 falls within the interval; therefore H0 cannot be 
rejected. 

 
Chapter 16 – Chi Square Tests 
 
1. Severe irritation to stomach mucosa compared with special tablet coatings.   

 GI Irritation 
 Present (P1) Absent (P2) 
Formula A 10 40 
Formula B 8 42 
Formula C 7 43   

 Hypotheses: H0: P(P1FA) = P(P1FB) = P(P1FC) = P(P1) 
         P(P2FA) = P(P2FB) = P(P2FC) = P(P2) 
   H1: H0 is false 
 Decision rule: With α = 0.05, reject H0 if χ2 > χ2

2 (0.05) = 5.99 
 

Observed   Expected  
10 40 50  8.33 41.67 50 
8 42 50  8.33 41.67 50 
7 43 50  8.33 41.67 50 

25 125 150  25 125 150 
 Calculations: 

E
)E(O

 = 
2

2 −
χ  

0.66 = 
41.67

)41.67(43
 ... + 

41.67
)41.67(40

 + 
8.33

)8.33(10
 = 

222
2 −−−

χ  

 Decision: With χ2 < 5.99, cannot reject H0. 
 
2. Above and below the median time needed for nurse surveyors to observe drug 

deliveries. 
 Hypotheses: H0:  P(2.5 or less|UD) = P(2.5 or less|Trad) = P(2.5 or less) 
          P(>2.5|UD) = P(>2.5|Trad) = P(>2.5) 
          (time required is not influenced by the delivery system) 
   H1:  H0 is false 
 Decision rule:  With α = 0.05, reject H0 if χ2 > χ1

2 (0.05) = 3.84 
 Test statistic: (because of only one degree of freedom, use Yates’ correction) 
 

d)+b)(c+d)(a+b)(b+(a
).5n0 |bcadn(|

 = 
2

2
corrected

−−
χ  

 Data: 
 Unit Dose Traditional Total 
2.5 hours or less 26 10 36 
More than 2.5 hours 14 20 34 
Total 40 30 70 
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Figure D.19 Minitab outcome for Problem 2, Chapter 16. 

 Calculations: 

)34)(36)(30)(40(
).5(70)0  | (14)(10)  (26)(20) | 70( = 
2

2
corrected

−−χ  

67.5
1468800
8331750

1468800
)70(345

 = 
1468800

)35  | 140520 | 70(
 = 

22
2
corrected ==

−−
χ  

 Decision: With χ2 > 3.84, reject H0 and conclude that the time required to do 
the nursing home surveys is dependent on the type of delivery 
system used in the facility. 

 Results: Figure D.19, Minitab does not make Yates’ correction. 
 
3. Paired comparison between technicians’ evaluations at two times: McNemar’s 

test. 
 Hypotheses: H0:   Experience did not influence opinion of equipment 
   H1:   H0 is false 
 Decision rule:  With α = 0.05, reject H0, if χ2

McNemar > χ2
1(1 – α) = 3.84. 

 Calculations: 
  Preferred Method 

 Before Experience 
 

  New Old  
Preferred Method 
After Experience 

  New 12 8 20 
  Old 3 7 10 

  15 15 30 

27.2
11
25

38
)38(

c+b
)c(b = 

22
2
McNemar ==

+
−=−χ  
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 Correction of continuity: 

45.1
11
16

38
)138(

c+b
)1 - cb(

 = 
22

2
McNemar ==

+
−−

=
−

χ  

 Decision:  Fail to reject H0 and conclude there was no significant change in 
method preference over the six-month period. 

 
4.  Comparisons of two blister packs stored under different conditions. 
 Independent variable:   Storage conditions (discrete) 
 Dependent variable:  Type of blister pack (discrete) 
 Test statistic:   One-tailed Fisher exact test (multiple cell with expected value <5) 
 

 40 degrees 
50% relative humidity 

60 degrees 
50% relative humidity 

 

Blister pack A 2 5 7 
Blister pack B 6 6 12 
 8 11 19 

 Hypothesis: H0:   Blister pack and storage conditions are independent 
   H1:   The two variables are not independent 
 Decision rule:  With α = 0.05, reject H0 if p(>2) > 0.05. 
 Calculations: 

a. p(2) of two failures with blister pack A 

256.0
!6!6!5!2!19
!11!8!12!7

d!c!b!a!n!
!)d+(bc)!+(ad)!+(cb)!+(a = p ==  

b. p(1) of one failure with blister pack A 

0.073 = 
5! 7! 6! 1! 19!

11! 8! 12! 7! = p  

c. p(0) of no failures with blister pack A 

0.006 = 
4! 8! 7! 0! 19!

11! 8! 12! 7! = p  

 Decision: The probability of two or fewer failures with blister pack A under 
independent conditions is 0.335 (0.256 + 0.073 + 0.006); therefore 
we cannot reject H0 and assume that the frequency of failures by 
blister pack is independent of the storage conditions. 

 
5. Experiment with different amounts of torque and resulting moisture content in a 

pharmaceutical product.  
 Torque (inch-pounds)  
Moisture 21 24 27 30  
     <2000 26 31 36 45 138 
     ≥2000 24 19 14 5 62 
           Total 50 50 50 50 200 

 Hypotheses: 
   H0:  P(M1T1) = P(M1T2) = P(M1T3) = P(M1T4) =P(M1) 
          P(M2T1) = P(M2T2) = P(M2T3) = P(M2T4) =P(M2) 
   H1:  H0 is false 
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  (The null hypothesis states that the moisture observed is inde-
pendent of the torque placed upon the lid.) 

 Decision rule: With α = 0.05, reject H0 if χ2 > χ3
2 (0.05) = 7.81 

 Expected values: 
 Torque (inch-pounds)  
Moisture 21 24 27 30  
     <2000 34.5 34.5 34.5 34.5 138 
      ≥2000 15.5 15.5 15.5 15.5 62 
          Total 50 50 50 50 200 

 Computation: 

15.5
)15.5(5

 ...+ 
34.5

)34.5(31
 + 

34.5
)34.5(26

 = 
222

2 −−−
χ  

18.43 = 2χ  
 Decision: With χ2 > 7.81 reject H0 and conclude that there is a significant 

difference in moisture level based on the amount of torque applied 
during closure. 

 
6. Comparison of three topical formulations: Cochran’s Q. 
 Hypotheses: H0:  Development of erythema is independent of  formulation used 
   H1:   H0 is false  
 Decision rule:   With α = 0.05, reject H0 if Q > χ2

2(1 – α) = 5.99. 
 Data:   Table D.9 
 Computations: 

25.0
16
4

35)17)(3(
])17()97)(3)[(2(

RR)k(
])R(  )C[(k 1)(k

 = Q
2

2

22
==

−
−

=
−

−−
 

 Decision: With Q < 5.99, fail to reject H0 and conclude that erythema is 
independent of the formulation. 

  
7.  Comparison of pass/fail rate with a piece of disintegration equipment at different 

temperatures, controlling for paddle speed: Mantel-Haenszel chi square. 
 Hypotheses:     H0:    Temperature and failure rate are independent  
    (controlling for paddle speed) 
       H1:   H0 is false 
 Decision rule:   With α = 0.05, reject H0 if χ2

MH > χ2
1(1 – α) = 3.84. 

 Data:  Disintegration test 
  Test Results  

Speed of Paddle Temperature Pass Fail Totals 
Fast 39°C 48 2 50 

 35°C 47 3 50 
  95 5 100 
     

Slow 39°C 48 2 50 
 35°C 45 5 50 
  93 7 100 
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Table D.9 Data for Chapter 16, Problem 6 
 Formulation (1 = erythema)   
Volunteer A B C R R2 

001 0 1 0 1 1 
002 1 0 1 2 4 
003 0 0 0 0 0 
004 0 0 0 0 0 
005 0 1 1 2 4 
006 0 0 0 0 0 
007 0 0 0 0 0 
008 0 0 0 0 0 
009 0 0 0 0 0 
010 1 1 0 2 4 
011 0 0 1 1 1 
012 0 0 0 0 0 
013 1 0 1 2 4 
014 0 0 0 0 0 
015 0 0 0 0 0 
016 0 0 0 0 0 
017 1 1 0 2 4 
018 0 0 0 0 0 
019 1 0 1 2 4 
020 1 1 1 3 9 
C = 6 5 6   
C2 = 36 25 36   

   R = 17  
C2 =  97 R2 =  35 

 
  Intermediate steps for fast speed: 

47.5 = 
100

(50)(95) = 
n

)c+a)(b+a(
 = e

1

1111
1  

199.1
)99(100

)5)(95)(50)(50(
1)n(n

)d+b)(c+a)(d+c)(b+a(
 = v 2

1
2
1

11111111
1 ==

−
 

 

 Fast Slow 
ai 48 48 
ei 47.5 46.5 
vi 1.2 1.6 

 Mantel-Haenszel chi square: 

1.43 = 
1.6 + 1.2

]46.5)(48 + 47.5)[(48 = 
v

])ea([ = 
2

i

2
ii2

MH
−−


−χ  

 Decision: Fail to reject H0 and conclude that the temperature and failure rates 
are independent. 
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Chapter 17 – Measures of Association 
 
1. Measures of association between patient gender and outcome. 

 

 Males Females  
Success 45 30 75 
Failure 5 20 25 
 50 50 100 

 

Several tests can be run on dichotomous data, including the phi statistic, Yule’s 
Q, Yule’s Y, and tau-b: 

Preliminary information: χ2 = 12.00 
P = 900 (45 × 20) 

   Q = 150 (5 × 30) 
   X0 = 825 (45 × 5 + 30 × 20) 
   Y0 = 1450 (45 × 30 + 5 × 20) 
Phi statistic: 

346.0
100
12

n

2
=== χφ  

Yule’s Q: 

714.0
150900
150900

QP
QPQ =

+
−=

+
−

=  

Yule’s Y:  

420.0
150900
150900

QP

QP
Y =

+
−=

+

−
=  

Tau-b : 

)YQP)(XQP(
QP

OO
b

++++
−

=τ  

346.0
)1450150900)(825150900(

150900
b =

++++
−=τ  

The most appropriate would be the phi statistic since both variables are nominal 
(see Table 17.6). However, if one considers success/failure an ordinal variable 
with success being better than failure, then Yule’s Q could be used. 

 
2. Measures of association comparing three therapies and three possible outcomes.  
 

 Treatment A Treatment B Treatment C  
At goal  56 46 35 137 

Not at goal 30 18 18 66 
Discontinued 13 20 37 70 

 99 84 90 273 
 

Various tests could be run on this contingency table, including Pearson C, C*, 
Tshuprow’s T, Cramer’s V, lamdba, tau-c, tau-b, Somer’s d, and gamma. 
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Preliminary information: χ2 = 20.44 X0 = 7497 
P = 10114 Y0 = 9031 

   Q = 5641 
Pearson C: 

264.0
27344.20

44.20
N

C
2

2
=

+
=

+
=

χ
χ  

Pearson C*: 

323.0

3
13

264.0

k
1k

C*C =
−

=
−

=  

Tshuprow’s T: 

193.0
)2)(2(273

44.20
)1c)(1r(n

T
2

==
−−

= χ  

Cramer’s V:  

193.0
)2)(273(

44.20
Nm

V
2

=== χ
 

Note in a square table that T = V. 
Lamdba: 

( ) 015.0
137273

137374656
fN

ff

d

di =
−

−++=
−

−
= λ  

Tau-c: 












−
−=

)1m(n
m2)QP(

2cτ  

180.0
)2()273(

)3(2)564110114(
2c =











⋅
−=τ  

Tau-b: 

)YQP)(XQP(
QP

OO
b

++++
−

=τ  

186.0
)9031564110114)(7497564110114(

564110114
b =

++++
−=τ  

Somer’s d: 

180.0
9031564110114

564110114
)YQP(

)QP(d
0

yx =
++

−=
++

−
=  

Gamma: 

284.0
564110114
564110114

QP
QP

=
+
−=

+
−

=Γ  
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Pearson C or C* would seem appropriate since both variables are nominal and 
the table is square and smaller than a 5 × 5 configuration. 

  
3. Association between practice setting and response on a Likert scale.  
 

 Practice Setting  
 
Evaluation 

 
Retail 

 
Hospital 

Long-Term 
Care 

 

5 “strongly agree” 10 2 4 16 
4 “agree” 12 2 6 20 
3 “uncertain” 24 12 14 50 
2 “disagree” 36 20 28 84 
1 “strongly disagree” 18 64 48 130 
 100 100 100 300 

 

 Several tests can be run on dichotomous data, including the phi statistic, tau-c, 
lambda, eta, omega.   

Preliminary information: χ2 = 48.8; P = 14288; Q = 7368  
ANOVA Table: 

Source df SS MS F 
Between  2 54.43 27.21 23.13 
Within 297 349.36 1.18  
Total 299 403.79   

  Tau-c: 












−
−=

)1m(n
m2)QP(

2cτ  

231.0
)2(300

)3(2)736814288(
2c =










−=τ  

Lamdba: 

106.0
130300

130)486436(
fN

ff

d

di =
−

−++
=

−
−

= λ  

Eta: 

367.0
79.403
43.54

SS
SS

E
T

B ===  

 Omega:  

129.0
18.179.403

)18.1)(2(43.54
MSSS

MS)1k(SS

WT

WB2 =
+

−
=

+
−−

=ω  

 Tau-c:  Use if the researcher considers setting as an independent variable; if 
not, then use lambda. However, if the Likert scale is considered an interval 
scale, eta or omega could be used. 

 
 
 



Appendix D 782

Chapter 18 – Odds Ratios and Relative Risk Ratios 
 
1. Results of an odds ratio evaluation. 
 

  Hypertension  
  Yes (+) No (−)  

Met goal Yes (+) 60 24 84 
 No (−) 57 29 86 
  117 53 170 

 

The odds of meeting goal with hypertension: 
053.15760ca ==  

 The odds of meeting goal without hypertension: 
828.02924db ==  

The odds ratio for the factor of hypertension is: 

272.1
828.0
053.1

d/b
c/aOR ===  

Thus, a patient with hypertension is 1.272 times more likely to meet the 
established goal than one without hypertension. Is this statistically significant? 

d
1

c
1

b
1

a
1Zlnln 2/1)OR( +++±= −αθ  

29
1

24
1

57
1

60
196.1)272.1ln(ln +++±=θ  

651.0241.0ln ±=θ  
892.0ln410.00 +<<− θ  

439.2eand664.0e 892.0410.0 == +−  

439.2OR664.0 Population <<  

Since one is within the interval, we fail to reject the null hypothesis that OR = 1; 
therefore, even though hypertensive patients are 1.27 times more likely to meet 
their goal, this is not significantly better than nonhypertensive counterparts.  

 
2. Survival ten years following radical mastectomy. 
 a. Relative risk of death with positive node involvement: 
 

  Nodal Involvement  
  Yes (+) No (−)  
Outcome in 
10 years 

Dead (+) 299 107 406 
Alive (−) 126 218 344 

  425 325 750 
 

362.1 = 
(107)(126) + (299)(107)
(299)(218) + (299)(107) = 

bc + ab
ad + ab = RR  
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db
1

b
1

ca
1

a
1ZZ 2/1RR +

−+
+

−= −α  

264.0
325

1
107

1
425

1
299

196.1Z RR =−+−=  











= ± RRZ

SamplePopulation eRRRR  

( )264.0
Population e136.2RR ±=  

781.2RR640.1 Population <<  
Decision:   The risk of death is 2.136 times greater in patients with positive 
node involvement and this difference is significant since the calculated 
confidence interval for the population does not include the value one. 

  Chi square test of significance: 
  Hypotheses: H0:   RR = 1  
    H1:   RR ≠ 1 
   Decision rule:   With α = 0.05, reject H0, if χ2 > χ2

1(1 − α) = 3.84. 
  Computations: 

d)+c)(b+d)(a+b)(c+(a
)n5.0bc-adn(

 = 
2

2 −
χ  

41.102 = 
)325)(425)(344)(406(

])750)(5.0()107)(126(-)218)(299(50[7
 = 

2
2 −

χ  

   Decision: With χ2 > 3.84, reject H0 and conclude there is a 
significant relationship between survival and presence or 
absence of positive nodes. 

 
 b. Relative risk of death with positive node involvement controlling for 

estrogen receptors: 

N
)b+a(c

N
)d+c(a

 = RR

i

iii
i

iii

MH



 

762.1 = 
062.85
3136.78 = 

297
81)+26(120 + 

453
26)+100(179

297
70)+120(26 + 

453
148)+179(100

 = RRMH  

  Significance of nodal involvement and death as outcomes controlling for 
the possible confounding factor of estrogen receptors. 

  Hypotheses: H0: Nodal involvement and survival are independent  
(controlling for estrogen receptors) 

  H1: H0 is false  
  Decision rule: With α = 0.05, reject H0 if χ2

MH > χ2
1(1 − α) = 3.84. 
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 Calculations: 

)1N(N

)db)(ca)(dc()b+a(
N

)d+c(aa
 = 

i
2

i

iiiiiiii

2

i

iii
i

2
MH

−
+++











−

χ  

33.613
906.42

33.26315

296)297(
15114696201

452)453(
174279248205

297
96120

453
248179)120179(

 = 

22

2

2
MH ==












⋅

⋅⋅⋅+










⋅

⋅⋅⋅







 ⋅+⋅−+

χ  

   Decision: Reject H0 and conclude that survival and nodal involvement 
are related, controlling for estrogen receptors. 

 
3. Logistic regression on four levels of torque: 
 

Torque 
(inch-pounds): 

Success 
(<2000) 

Failure 
(≥2000) 

 

21  26 24 50 
 24  31 19 50 
27  36 14 50 
30  45 5 50 

 138 62 200   

 Probabilities associated with each outcome: 
 

Torque 
(inch-pounds): 

Success 
(<2000) 

Failure 
(≥2000) 

 

21  0.130 0.120  
 24  0.155 0.095  
27  0.180 0.070  
30  0.225 0.025  

 

 Calculation of the logit for the 21 inch-pounds of pressure would be: 

2i

1ilnitlog
π
π

=  

080.0)083.1ln(
120.0
130.0ln)21(itlog ===  

 The logit for 30 inch-pounds would be: 

197.2)000.9ln(
025.0
225.0ln)30(itlog ===  

 The results for all the logit calculations would be: 
 
 
 
 



Answers to Example Problems 785

Torque 
(inch-pounds): 

Success 
(<2000) 

Failure 
(≥2000) 

 
    Logit 

21  26 24 0.080 
 24  31 19 0.490 
27  36 14 0.944 
30  45 5 2.197 

 

Based on the data available, it appears that there is an increasing likelihood of 
success as the torque increases during the sealing process. 

 
4. Comparison of survival rated based on nutritional status during a cholera 

outbreak. This is retrospective data; therefore an odds ratio and confidence 
interval can be calculated.  

Odds of surviving with good nutrition:     a/c = 79/32 = 2.469 
  Odds of surviving with poor nutrition: b/d = 72/87 = 0.828 
  Odds ratio for nutritional status: 

982.2
828.0
469.2

d/b
c/aOR ===  

Thus, children with a good nutritional status were almost three times more likely 
to survive. The 95% confidence interval for the odds ratio is: 

093.1)982.2ln(Ln )OR( ==  

263.0
87
1

32
1

72
1

79
1ˆ )ORln( =+++=σ  

)263.0)(96.1(093.1)ˆ(Zlnln )ORln(2/1)OR( ±=±= − σθ α  
186.2ln578.0 << θ  

θθ lne=  
900.8782.1 <<θ  

The odds ratio is significant since one does not fall within the interval and the 
odds of surviving with good nutrition is between 1.78 and 8.90 times greater than 
with poor nutrition. 

 
Chapter 19 - Evidence-Based Practice: An Introduction 
 
1. Sensitivity, specificity, and probability of a false negative result for a trial urine 

pregnancy test. 
 

  Study Volunteers  
  Pregnant Not Pregnant  
Test Results 
for Pregnancy 

Positive 73 5 78 
Negative 2 70 72 

  75 75 150 
 

.9730 = 
75
73 = 

c+a
a =y Sensitivit  
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.933 = 
75
70 = 

d+b
d =y Specificit  

 
2. Probability of colorectal cancer in a 52-year-old male having a positive result on 

a fecal occult blood test. 
a. Bayesian approach 

Based on the information provided we know the prevalence (preprobability) 
and the probability of not having the disease:  

9913.0)D(pand0087.0)D(p ==  
Additional information is available about true positives (sensitivity) and true 
negatives (specificity) 

52.0)DT(pySensitivit ==  

91.0)DT(pySpecificit ==  
The probabilities of false positive and false negative results: 

09.0)DT(pand48.0)DT(p ==  
 The post probability of the disease given a positive test results is: 

)D)p(D|p(T + D)p(D)|p(T
D)p(D)|p(T = T)|p(D = PVP  

0483.0
093741.0
004524.0

)9913.0)(09.0()0087.0)(52.0(
)0087.0()52.0( = PVP ==

+
 

The post probability of not having the disease given a negative test result is: 

D)p(D)|Tp( + )D)p(D|Tp(
)D)p(D|Tp( = )T|Dp( = PVN  

9954.0
906259.0
902083.0

)0087.0)(48.0()9913.0)(91.0(
)9913.0)(91.0( =  PVN ==

+
 

 
b. Frequentist approach 

0087.0)D(pprevalence ==  

7778.5
09.0
52.0

ySpecificit1
ySensitivit

LR ==
−

=+  

00878.0
9913.0
0087.0

p1
podds pre ==
−

=  

0507.0)7778.5)(00878.0()LR)(odds(odds prepost === +  

0483.0
0507.1
0507.0

1odds
odds

yprobabilitposttest
post

post ==
+

=  

5275.0
91.0
48.0

ySpecificit
ySensitivit1

LR ==
−

=−  
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8425.113
0087.0
9913.0

p1
p)(odds pre ==
−

=−  

0047.216
5275.0

8425.113
LR

)(odds
)(odds pre
post ==

−
=− −  

9954.0
0047.217
0047.216

1)(odds
)(odds

)(yprobabilitposttest
post

post ==
+−

−
=−  

 
3. Based on the information provided we know the following: 
 p( D ) = prevalence = 0.15 ; the complement p( D ) = 0.85 
 p( DT ) = sensitivity = 0.75; the complement p( DT ) = 0.25 

 p( DT ) = specificity = 0.80; the complement p( DT ) = 0.20 
Using Bayes’ theorem the probability of developing the disease given a positive 
test or the predictive value positive is: 

)]prevalence1)(yspecificit1[()]prevalence)(ysensitivit[(
)prevalence)(ysensitivit(

PVP
−−+

=  

3982.0 
2825.0
1125.0= 

)85.0)(20.0( + )15.0)(75.0(
)15.0)(75.0( = PVP =  

Alternatively, the probability of not developing the disease given a negative test, 
or the predictive value negative, is: 

)]prevalence)(ysensitivit1[()]prevalence1)(yspecificit[(
)prevalance1)(yspecificit(PVN

−+−
−=

 

9477.0
7175.0
6800.0

)15.0)(25.0()85.0)(80.0(
)85.0()80.0( = PVN ==

+
 

Using the pretest probability of having the disease (0.15) and the LR+ the posttest 
probability would be: 

75.3
20.0
75.0

ySpecificit1
ySensitivitLR ==

−
=+  

1765.0
85.0
15.0

p1
podds pre ==
−

=  

6619.0)75.3)(01765.0()LR)(odds(odds prepost === +  

3982.0
6619.1
6619.0

1odds
odds

yprobabilitposttest
post

post ==
+

=  

Using the pretest probability of not having the disease (0.85) and the LR− the 
posttest probability would be: 

3125.0
80.0
25.0

ySpecificit
ySensitivit1LR ==−=−  
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6667.5
15.0
85.0

p1
p)(odds pre ==
−

=−  

1334.18
3125.0
6667.5

LR

)(odds
)(odds pre
post ==

−
=−

−
 

9477.0
1334.19
1334.18

1)(odds
)(odds

)(yprobabilitposttest
post

post ==
+−

−
=−  

 
Chapter 20 – Survival Statistics 
 
1. Listed in Table D.10 and Table D.11 are the results from calculating the survival 

function and confidence interval using both the actuarial and Kaplan-Meier 
methods. Below are presented the actual calculations for test results 150 times to 
failure. 

 Actuarial method: 

83
2
083

2
w

n'n i
ii =−=−=  

108.0
83
9

'n
d

q
i

i
i ===  

892.0108.01q1p ii =−=−=  

822.0)892.0...989.0000.1()p(Ŝ ii =⋅⋅⋅== Π  

=
)p('n

q
Ŝ)Ŝ(SE

ii

i
ii  

040.0
)892.0(83

108.0...
)989.0(90

011.0
)000.1(90

0822.0)Ŝ(SE i =+++=  

 
 

Table D.10 Actuarial Method for Determining iŜ  for Container Failures 

 
Max. 
Times 

       Confidence Limits 

ni di wi qi pi si SE (si) 
Lower Upper 

25 90 0 0 0.000 1.000 1.000 0.000 1.000 1.000 
50 90 1 0 0.011 0.989 0.989 0.011 0.967 1.000 
75 89 1 0 0.011 0.989 0.978 0.016 0.947 1.000 

100 88 2 0 0.023 0.977 0.956 0.022 0.913 0.998 
125 86 3 0 0.035 0.965 0.922 0.028 0.867 0.978 
150 83 9 0 0.108 0.892 0.822 0.040 0.744 0.900 
175 74 16 0 0.216 0.784 0.644 0.051 0.546 0.743 
200 58 36 22 0.766 0.234 0.151 0.042 0.070 0.232 
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)040.0(96.1822.0)Ŝ(SEzŜS i2/1ii ±=⋅±= −α  

900.0S744.0 i <<  
 Kaplan-Meier: 

75075w'nn i1ii =−=−= −  
74175dn'n iii =−=−=  

987.0
75
74

n
'n

p
i

i
i ===  

822.0)987.0...989.0989.0()p(Ŝ ii =⋅⋅⋅== Π  

 −
=

)dn(n
d

Ŝ)Ŝ(SE
iii

i
ii  

040.0
)175(75

1...
)189(89

1
)190(90

1)Ŝ(SE i =
−

++
−

+
−

=  

)040.0(96.1822.0)Ŝ(SEzŜS i2/1ii ±=⋅±= −α  

900.0S744.0 i <<  
 The median survival function would be the point on the curve where it crosses 

0.5. Looking at Tables D.10 and D.11, the first times point below 0.5 would be: 
  Actuarial method median survival = 200 times 
  Kaplan-Meier median survival = 186 times  
 Figure D.10 presents a graphic representation of the survival curve for the 

actuarial method. Kaplan-Meier method would product a similar curve, but with 
48 intervals instead of just eight from the actuarial method. 

 
2. Comparison on time-to-event comparing two antibiotics. 
 Hypotheses: H0: Time-to-event (antibiotic A) = Time-to-event (antibiotic B) 
   H1: Time-to-event (antibiotic A) ≠ Time-to-event (antibiotic B)  
 Decision rule:With α = 0.05, reject H0, if z > z(1-α/2) = 1.96 or z < −1.96 or if 

χ2
CMH > χ1

2 = 3.84. 
 Calculations (log-rank test): 
  Table D.12 contains the calculations for each UL and LUS : 

555.3)ea(U iiL −=−=  


−

+−+++
=

)1n(n

)]ba(n)[ba)(db)(ca(
S

i
2
i

iiiiiiiii
LU  

811.2904.7S LU ==  

265.1
811.2
555.3

S
U

z
LU

L −=−==  

Decision: With z greater than −1.96, fail to reject the null hypothesis and 
assume there is no difference in the time to discharge between antibiotics A 
and B.  
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Table D.11 Kaplan-Meier Method for Determining iŜ  for Container Failures 

 
Max. 
Time 

        Confidence 
Limits 

ni-1′ wi ni di ni' pi si SE (si) Lower Upper 

36 90 0 90 1 89 0.989 0.989 0.011 0.967 1.000 
65 89 0 89 1 88 0.989 0.978 0.016 0.947 1.000 
81 88 0 88 1 87 0.989 0.967 0.019 0.930 1.000 
97 87 0 87 1 86 0.989 0.956 0.022 0.913 0.998 

107 86 0 86 1 85 0.988 0.944 0.024 0.897 0.992 
115 85 0 85 1 84 0.988 0.933 0.026 0.882 0.985 
121 84 0 84 1 83 0.988 0.922 0.028 0.867 0.978 
128 83 0 83 1 82 0.988 0.911 0.030 0.852 0.970 
132 82 0 82 1 81 0.988 0.900 0.032 0.838 0.962 
134 81 0 81 1 80 0.988 0.889 0.033 0.824 0.954 
136 80 0 80 1 79 0.988 0.878 0.035 0.810 0.945 
139 79 0 79 1 78 0.987 0.867 0.036 0.796 0.937 
142 78 0 78 1 77 0.987 0.856 0.037 0.783 0.928 
146 77 0 77 1 76 0.987 0.844 0.038 0.770 0.919 
148 76 0 76 1 75 0.987 0.833 0.039 0.756 0.910 
150 75 0 75 1 74 0.987 0.822 0.040 0.744 0.900 
154 74 0 74 2 72 0.973 0.800 0.042 0.717 0.883 
156 72 0 72 1 71 0.986 0.789 0.043 0.705 0.873 
157 71 0 71 1 70 0.985 0.778 0.044 0.692 0.864 
159 70 0 70 2 68 0.971 0.756 0.045 0.667 0.844 
162 68 0 68 2 66 0.971 0.733 0.047 0.642 0.825 
163 66 0 66 1 65 0.985 0.722 0.047 0.628 0.815 
165 65 0 65 1 64 0.985 0.711 0.048 0.618 0.805 
166 64 0 64 1 63 0.984 0.700 0.048 0.605 0.795 
169 63 0 63 1 62 0.984 0.689 0.049 0.593 0.785 
172 62 0 62 2 60 0.968 0.667 0.050 0.569 0.764 
174 60 0 60 1 59 0.983 0.656 0.050 0.557 0.754 
175 59 0 59 1 58 0.983 0.644 0.051 0.546 0.743 
178 58 0 58 1 57 0.983 0.633 0.051 0.534 0.733 
179 57 0 57 1 56 0.983 0.622 0.051 0.522 0.722 
180 56 0 56 2 54 0.964 0.600 0.052 0.499 0.701 
181 54 0 54 1 53 0.982 0.589 0.052 0.487 0.691 
182 53 0 53 3 50 0.943 0.556 0.052 0.453 0.658 
184 50 0 50 1 49 0.980 0.544 0.053 0.442 0.647 
185 49 0 49 3 46 0.939 0.511 0.053 0.408 0.614 
186 46 0 46 2 44 0.957 0.489 0.053 0.386 0.592 
187 44 0 44 2 42 0.955 0.467 0.053 0.364 0.570 

     continued    
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Table D.11 Kaplan-Meier Method for Determining iŜ  for Container Failures 
 (continued) 

 
Max. 
Time 

        Confidence 
Limits 

ni-1′ wi ni di ni' pi si SE (si) Lower Upper 
189 42 0 42 1 41 0.976 0.456 0.053 0.353 0.558 
190 41 0 41 3 38 0.927 0.422 0.052 0.321 0.524 
191 38 0 38 2 36 0.947 0.400 0.052 0.299 0.501 
192 36 0 36 1 35 0.972 0.389 0.051 0.288 0.490 
193 35 0 35 2 33 0.943 0.367 0.051 0.267 0.466 
194 33 0 33 3 30 0.909 0.333 0.050 0.236 0.431 
195 30 0 30 2 28 0.933 0.311 0.049 0.216 0.407 
196 28 0 28 1 27 0.964 0.300 0.048 0.205 0.395 
197 27 0 27 1 26 0.963 0.289 0.048 0.195 0.383 
198 26 0 26 3 23 0.885 0.256 0.046 0.165 0.346 
200 23 22 1 1 0 0.000 0.000 … … … 

   

 
Figure D.20 Actuarial curve with 95% confidence bands for example problem. 

 
 Calculations (Cochran-Mantel-Haenszel test): 
  Table D.12 contains the calculations for each ei and vi: 
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1)n(n

)d+b)(c+a)(d+c)(b+a(
 = v

i
2
i

iiiiiiii
i −

 

 = 935.7vi  
 The calculation of the Cochran-Mantel-Haenszel chi square is as follows: 

v
])ea([ = 

i

2
ii2

CMH 
−χ  

593.1
935.7

)555.3( = 
2

2
CMH =−χ  

Decision: With χ2
CMH less than 3.84, fail to reject the null hypothesis and 

assume there is no difference in the time to discharge between antibiotics A 
and B. 

 
3. Study of two treatment approaches for stage III prostate cancer.  
 Test: Kaplan-Meier 
 Results: Figure D.21 and Figure D.22 
 Decision: There is a statistically significant difference (Figure D.21) and a 

visual difference (Figure D.22) between the two treatments with the experimental 
treatment providing better results. 

 
Chapter 21 - Nonparametrics 
 
1. Comparison of two physical therapy regimens. 
 Independent variable: two physical therapy regimens (discrete) 
 Dependent variable: percent range of motion (ranked to ordinal scale) 
 Statistical test: Mann-Whitney U test and median test 

a. Mann-Whitney U 
  Hypotheses: H0: Samples are from the same population 
    H1: Samples are drawn from different populations 
  Decision rule: With α = 0.05, reject H0, if z > critical z(0.975) = 1.96 
  Data: Table D.13 
  Calculations: 

R 
2

1)+n(n + nn = U ij
11

21 −  

57.5 = 86.5  
2

(9)(10) + (9)(11) = U −  

12
1)] + n( + n[  nn

2
nn - U

 = Z
2121

21

⋅
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Table D.12 Comparison of Two Antibiotics and Time-to-Event (Discharge) 

Event 
(Hours) ai bi ci di ni ei ai − ei vi 

SLU 
Int* 

42 1 0 19 20 40 0.500 −0.500 0.250 0.250 
43 0 1 19 19 39 0.487   0.513 0.250 0.250 
57 1 0 18 19 38 0.500 −0.500 0.250 0.250 
63 1 0 17 19 37 0.486 −0.486 0.250 0.250 
65 0 1 17 18 36 0.472   0.528 0.249 0.249 
88 0 2 17 16 35 0.971   1.029 0.485 0.485 
90 0 1 17 15 33 0.515   0.485 0.250 0.250 
92 0 1 17 14 32 0.531   0.469 0.249 0.249 
98 1 0 16 14 31 0.548 −0.548 0.248 0.248 
105 1 0 14 14 29 0.517 −0.517 0.250 0.250 
106 0 1 14 13 28 0.500   0.500 0.250 0.250 
108 0 1 14 12 27 0.519   0.481 0.250 0.250 
112 0 1 14 11 26 0.538   0.462 0.249 0.249 
116 0 1 14 9 24 0.583   0.417 0.243 0.243 
120 0 1 14 8 23 0.609   0.391 0.238 0.238 
127 0 1 13 8 22 0.591   0.409 0.242 0.242 
130 0 1 13 7 21 0.619   0.381 0.236 0.236 
132 3 0 10 7 20 1.950 −1.950 0.611 0.611 
133 3 1 7 6 17 2.353 −1.353 0.787 0.787 
135 0 1 7 5 13 0.538   0.462 0.249 0.249 
139 1 0 7 4 12 0.667 −0.667 0.222 0.222 
140 1 0 6 4 11 0.636 −0.636 0.231 0.231 
146 0 1 6 2 9 0.667   0.333 0.222 0.222 
161 1 0 6 2 8 0.875 −0.875 0.250 0.219 
165 0 1 5 1 7 0.714   0.286 0.204 0.204 
180 2 0 3 1 6 1.667 −1.667 0.222 0.222 
195 2 0 1 1 4 1.500 −1.500 0.250 0.250 
203 0 1 1 0 2 0.500   0.500 0.250 0.250 

    Σ = 21.555 −3.555 7.935 7.904 

* SLU intermediate = [(ai + ci)(bi + di)(ai + bi)(ni − (ai + bi)]/[ni
2(ni − 1)]. 

 
 

0.61 = 
13.16

49.5  57.5 = 

12
12)] + [9  (9)(11)

2
(9)(11)  57.5

 = Z −
⋅

−
 

Decision: With z < 1.96, fail to reject H0 and fail to show a significant 
difference between the two types of physical therapy. 
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Figure D.20  Survival comparisons for Problem 3, Chapter 20. 
 

 
Figure D.21  Survival curves for Problem 3, Chapter 20.

 
 
 b. Median test 
  Median for all the values in both groups: 

85
2

8684Median =+=  

 Group 1 Group 2 

Above the median 4 6 

Below the median 5 5 
 

d! c! b! a! n!
d)!+(b c)!+(a d)!+(c b)!+(a = p  
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Table D.13 Data and Ranking Associated with Comparison of 
Two Groups of Physical Therapy Patients 

Group 1 Ranks Group 2 Ranks 
78 
87 
75 
88 
91 
82 
87 
65 
80 

5 
13.5 
3.5 

15.5 
18.5 

9 
13.5 

1 
7 

75 
88 
93 
86 
84 
71 
91 
79 
81 
86 
89 

3.5 
15.5 
20 

11.5 
10 
2 

18.5 
6 
8 

11.5 
17 

R = 86.5 R = 123.5 
 
 

  315.0
12597
3969

!5 !5 !6 !4 !20
!11 !9 !10 !10 = p ==  

 Decision:  With p > 0.05, fail to reject H0 and fail to show a significant difference 
between the two types of physical therapy. 

 
2. Comparison of the analytical results of a newly trained and senior chemist. 
 Independent variable: two time periods (each sample serves as own control) 
 Dependent variable: assay results (ranked to ordinal scale) 
 
 

Table D.14 Data and Ranking Associated with Comparison of Two 
Chemists for the Wilcoxon Matched-Pairs Test 

 
Sample 
Batch 

 
New 

Chemist 

 
Senior 

Chemist 

 
 
d 

 
 

Rank d 

Rank Associated 
with Least 

Frequent Sign 

A,42 99.8 99.9   0.1 1.5  
A,43 99.6 99.8   0.2 4  
A,44 101.5 100.7 −0.8 9.5 9.5 
B,96 99.5 100.1   0.6 8  
B,97 99.2 98.9 −0.3 6.5 6.5 

C,112 100.8 101.0   0.2 4  
C,113 98.7 97.9 −0.8 9.5 9.5 
D,21 100.1 99.9 −0.2 4 4 
D,22 99.0 99.3   0.3 6.5  
D,23 99.1 99.2   0.1 1.5  

     T =  = 29.5 
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 Test statistic: Wilcoxon matched-pairs test, sign test, or Friedman two-
way analysis of variance 

 Hypotheses: H0: No difference between the two chemists 
   H1: Difference exists between the two chemists 
 

a. Wilcoxon matched-pairs test 
  Decision rule: With α = 0.05, reject H0 if z > 1.96. 
  Data:  Table D.14 
  Calculations: 

5.27
4

)11)(10(
4

1)+n(n = E(T) ==  

24
1)+1)(2n+n(n

E(T)  T = Z −  

0.20 = 
96.25

2 = 

24
10(11)(21)

27.5  29.5 = Z −  

  Decision: Using the Wilcoxon matched-pairs test, the result is z < 1.96. 
Thus we fail to reject H0 and fail to show a significant 
difference in the assay results for the two scientists. 

 
 b. Sign test 
   H0: p(+) = 0.50 
   H1: p(+) ≠ 0.50 
  Using the data presented in Table D21.2, number of negative results = 6 
 
 

Table D.15 Data and Ranking Associated with Comparison of Two Chemists 
for the Friedman Two-Way Analysis of Variance 
 New Chemist Senior Chemist 
Sample, Batch Data Rank Data Rank 

A,42 99.8 1 99.9 2 
A,43 99.6 1 99.8 2 
A,44 101.5 2 100.7 1 
B,96 99.5 1 100.1 2 
B,97 99.2 2 98.9 1 

C,112 100.8 1 101.0 2 
C,113 98.7 2 97.9 1 
D,21 100.1 2 99.9 1 
D,22 99.0 1 99.3 2 
D,23 99.1 1 99.2 2 

 =  14  16 
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Total number of events = 10 

q p 
x

n
 = p(x) x-nx








  

2050. = ).500().500(
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000980. = ).500().500(
10

10
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3770. =  = positives) 6(p ≥  
  Fail to reject H0 because p > 0.05. 
 
 c. Friedman two-way analysis of variance, data (Table D.15) 
  Decision rule: With α = 0.05, reject χr

2 > χ1
2 = 3.84. 

  Calculations: 

1)+3n(k  )R( 
1)+nk(k

12 = 2
j

2
r −χ  

)3)(103(  ])16(+)14[( 
)3)(2(10

12 = 222
r −χ  

40.0 = 90  )452)(2(0.0 = 2
r −χ  

  Decision: Using the Friedman two-way analysis of variance, the result is 
a χ1

2 < 3.84. Thus we fail to reject H0 and fail to show a 
significant difference in the assay results for the two scientists. 

 
 
 

Table D.16  Absorption of Ultraviolet Light 

Sample A Rank A Sample B Rank B Sample C Rank C 
7.256 8 7.227 2 7.287 15 
7.237 4 7.240 5 7.288 14 
7.229 3 7.257 9 7.271 12 
7.245 7 7.241 6 7.269 11 
7.223 1 7.267 10 7.282 13 

Sums = 23  32  65 
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3. Comparison of ultraviolet data for three different samples. 
 Independent variable:  samples (discrete, 3 levels) 
 Dependent variable:  ultraviolet data (based on continuous scale) 
 Statistical test:  Kruskal-Wallis 
 Hypothesis:  
  H0: All three samples are from the same population  
  H1: All three samples are not from the same population 
 Decision rule: With α = 0.05, reject H0 if H > χ2

2(0.95) = 5.99. 
 Data: Table D.16 
 Calculations: 

1)+(N 3  
n

)R(
 

1)+N(N
12 = H

j

2
ij −













 
  

)16( 3  
5

)65(
 + 

5
)32(

 + 
5

)23(
 

)16(15
51 = H

222
−












 

225.24 = 48  )0.845+ 8.204 +8.105( 06250. = H −  
 Decision: With H > 5.99, reject H0 and conclude that there is a significant 

difference among the three samples and that they are not from the 
same population.  

 Post hoc comparison for location(s) of significant difference(s): 
  Comparison of Samples A and B: 

12
)1nk)(nk(n

RR
q BA

+

−
=  

 
 

Table D.17 Data and Ranking Associated with Comparison of Two 
Methods Using the Spearman Rho Test 

 Method A Method B   
Sample x Rank y Rank d d2 

1 66 6 67 6 0 0 
2 77 10 75 10 0 0 
3 57 3.5 57 3 −0.5 0.25 
4 59 5 59 4.5 −0.5 0.25 
5 70 8 69 8 0 0 
6 57 3.5 59 4.5 +1 1.00 
7 55 2 56 2 0 0 
8 53 1 51 1 0 0 
9 67 7 68 7 0 0 

10 72 9 74 9 0 0 
       = 1.50 
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0.1
10
10

12
]1)35)[(35(5

3323q −=−=
+⋅⋅

−=  

Results for all three Kruskal-Wallis post hoc comparisons: 
Pairing q-statistic Critical Value Results 

AR  − BR  −1.0 3.73  

AR  − CR  −4.1 3.73 Significant 

BR  − CR  −3.1 3.73  
 Decision: The only significant difference was between Samples A and C.  

 
4. Comparison of results from two analytical methods. 
 Independent variable: Continuous (Method A) 
 Dependent variable: Continuous (Method B) 
 Statistical test: Spearman rho correlation 
 Data: Table D.17 
 Computation: 

nn

)d6(  1 = 
3

2

−


−ρ  

945.0 = 
990
54  1 = 

0101

)96(  1 = 
3

−
−

−ρ  

Decision: There is a very strong correlation between the two analytical methods. 
Plotting the data would show that the correlation is positive. 

 
5.  Comparison of various doses of an anticoagulant and prothrombin times. 
 Independent variable: dosages (continuous) 
 Dependent variable: prothrombin times (continuous) 
 Statistical test: Theil’s incomplete method 
 

 
Subject 

Dose 
(mg) 

Prothrombin 
Time (seconds) 

2(1) 180 18 
3(2) 190 19 
1(3) 200 20 
5(4) 210 19 
4(5) 220 21 
6(6) 230 20 

 

 Calculate the median slope: 

)xx(

)yy(
 = b

ij

ij
ij −

−
 

033.0 = 
30
1 = 

180210
1819=b 41 −

−
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067.0 = 
30
2 = 

190220
1921=b 52 −

−
 

0 = 
30
0 = 

200230
2020=b36 −

−
 

033.0 = bMedian  
 Calculation of the median intercept: 

bxy = a −  
06.12 = )180)(033.0(  18 = a1 −  
73.12 = )190)(033.0(  19 = a2 −  
40.13 = )200)(033.0(  20 = a3 −  
07.12 = )210)(033.0(  19 = a4 −  
47.13 = )220)(033.0(  21 = a5 −  
41.12 = )230)(033.0(  20 = a6 −  

57.12 = 
2

)73.12( + )41.12( = (a) intercept Median  

 Line of best fit: 
x033.057.12bxa =y +=+  

 
6. Runs test to determine if random sampling of volunteers was successful (Table 

21.12). The volunteers will be recoded as E (experimental) and C (control) base 
on the sequence in which they volunteered for the study. 

 

CECCEECCECCECCEECEECCEEEEEECCC 
 

Hypotheses:  H0:  The pattern of occurrence is determined by a  
 random process 

H1: The pattern of occurrences is not random  
Decision rule: Table B18, with n1 = 15 and n2 = 15, reject H0 if r is < 11 or > 21. 
Spacing the sequence in runs, there are 15 runs. 

 

C E CC EE CC E CC E CC EE C EE CC EEEEEE CCC 
Therefore, we fail to reject H0 and assume that the randomization process was 
successful 
 
 

 
Figure D.23  Minitab outcome for repeat of Problem 2, Chapter 9. 
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7. Clinical trial to evaluate the effectiveness of a new bronchodilator. 
 Independent variable: two time periods (patient serves as own control) 
 Dependent variable: forced expiratory volume (continuous)  
 Test:    Wilcoxon signed rank test on the difference for each person (delta) 
 Results: Figure D.23 
 Decision: Similar results as the paired t-test, fail to reject H0. With the paired 

t-test p = 0.108. 
 
8. Comparison of results from a contract laboratory and manufacturer’s quality 

control laboratory. 
 Independent variable:  manufacturer versus contract laboratory (discrete) 
 Dependent variable:  assay results (continuous) 
 Statistical test: Mann-Whitney test  
 Results: Figure D.24 
 Decision: Similar results tovhe two-sample t-test, fail to reject H0. With the 

two-sample t-test p = 0.237. 
 
9. Comparison of a raw material at three different production sites. 
 Independent variable:  production site (discrete, 3 levels) 
 Dependent variable:  oil viscosity (continuous) 
 Statistical test:  Kruskal-Wallis Test 
 Results: Figure D.25 
 Decision: Similar results to the one-way ANOVA, reject H0 and conclude 

there is a difference in the viscosity from the different facilities. 
With the one-way ANOVA p = 0.013. 

 
10. Comparison of two analytical procedures on different concentrations of a drug. 
 Variables: continuous (two measurement scales) 
 Statistical test:  Spearman rho test 
 Results: Figure D.26 
 Decision: Similar results to the correlation coefficient, a very strong 

correlation between methods GS and ALT..  
 

 
Figure D.24  Minitab outcome for repeat of Problem 4, Chapter 9. 
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Figure D.25  Minitab outcome for repeat of Problem 3, Chapter 10. 

 

Figure D.26  Minitab outcome for repeat of Problem 3, Chapter 13. 
   
 
Chapter 22 – Statistical Tests for Equivalence 
 
1. Clinical trial data comparing a new generic product to an innovator’s branded 

drug. Is there less than a 10% difference between the products? 
 

 Innovator Generic 
Mean = 289.7 271.6 

Standard Deviation = 18.1 20.4 
n = 24 23   

  10% difference = 28.97 (δ = 289.7 × 0.10) 
  Difference observed = 18.1 (289.7 − 271.6) 
  Pooled variance: 

9.370
22324

)4.20(22)1.18(23
2  n + n

S1)n( + S1)n(
 = S

22

21

2
22

2
112

p =
−+

+
=

−
−−

 

  Standard error portion of the equations: 

62.5
23

9.370
24

9.370
n
S

+
n
S

2

2
P

1

2
P =+=  
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a. Confidence interval  

100%  
X

X +  SE) (d
 = Limit Lower

R

R ×
−

 

%3.104100%  
7.289

7.289 + )62.5  1.18( = Limit Lower =×
−

 

100%  
X

X +  SE)+ (d
 = Limit Upper

R

R ×  

%2.108100%  
7.289

7.289+ )62.5 1.18( = Limit Lower =×
+

 

 The limits of our estimated interval are: 

LimitUpper <  < LimitLower
R

T
μ
μ

 

%2.108 <  < %3.104
R

T
μ
μ

 

Therefore, we are 95% confident that we have equivalence because the 
difference is well within our criteria of ±10% and the true population ratio is 
somewhere between 104.3 and 108.2%. 

 
b. Two one-tailed t-tests 

Hypotheses: H01: μT − μR ≤ 10% 
    H11: μT − μR >10% 
    H02: μT − μR ≥ 10% 
    H12: μT − μR <10% 
  Decision rule: With α = 0.05, reject H01 or H02 if t > t45(.95) ≈ 1.679 

38.8
62.5

)97.28(1.18

 
n
S2

  )XX(
 = t

2
p

1RT
1 =

−−
=

−− δ  

93.1
62.5

1.1897.28

  
n
S2

)XX( 
 = t

2
p

RT2
2 =−=

−−δ  

  Decision: Reject H01 and H02, and conclude that the difference between the 
two populations is less than 10%. 

 
2. To compare Country A and the “standard” original facility, the first step is to 

calculate the difference term in the denominator: 
453.95 = 84.6)(93.6 + ... )57.3(49.8 = )T-R( 22

tt −−  
 The calculation of the remainder of the f2 formula is as follows: 
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×
−

⋅  100  
)T  R(

n
1 + 1

1 ogl 50 = f
2

tt

2  



















×⋅  100  
(453.95)

6
1 + 1

1 ogl  50 = f 2  

52.9 = (1.058)  50 = (11.421) ogl  50 = f 2 ⋅⋅  
 Decision: With f2 > 50 conclude that the two dissolution profiles are the same and 

that there is no significant difference between the product produced in Country A 
and product from the manufacturer’s original production site. 

 To compare Country B and the “standard” original facility, the same process is 
used: 

56.137 = )8.88(93.6 + ... )1.45(49.8 = )TR( 22
tt −−−  



















×⋅  100  
)56.731(

6
1 + 1

1 ogl  50 = f 2  

55.65 = )311(1.  50 = )44.420( ogl  50 = f 2 ⋅⋅  
 Decision: With f2 > 50 conclude that the two dissolution profiles are the same and 

that there is no significant difference between the product produced in Country A 
and product from the manufacturer’s original production site.  

  Note that Country B produced a higher f2 and that confirms the visual 
assessment that the dissolution profile for Country B was closer to that of the 
original product. 

 
 
Chapter 23 – Outlier Tests 
 
1. Outlier tests to evaluate 12.9: 
 a. Rank order of data: 12.0, 12.3, 12.4, 12.5, 12.9 
 b. Mean and standard deviation: 
   Without 12.9:  X  = 12.3  S = 0.22 
   With 12.9 included: X  = 12.42 S = 0.33 
 c. Rule for huge error 

2.73 = 
0.22
0.6 = 

0.22
| 12.9  12.3 | = 

S
| X  x | = M i −−

 

  Decision with 2.73 < 4.00, do not reject 12.9 as an outlier. 
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 d. Grubbs’ test − critical value with n = 5 and α = 0.05 is 1.672. 

1.45 = 
0.33
0.48 = 

0.33
12.42  12.9 = 

S
X  X = T n −−

 

  Decision with 1.45 < 1.672, do not reject 12.9 as an outlier. 
 e. Dixon test − with n = 5 and α = 0.05, critical τ = 0.642. 

0.44 = 
0.9
0.4 = 

12.0  12.9
12.5  12.9 = 

)x  x(
)x  x(

1n

1-nn
−
−

−
−  

  Decision with 0.44 < 0.642, do not reject 12.9 as an outlier.  
 f. Hampel’s rule 
  The results for the calculations appear in Table D.18. The median for the 

five values is 12.4. For 12.9 the ADi is: 
5.04.129.12MdxAD ii =−=−=  

    The median ADi is 0.1 and the MAD is 0.1(1.483) = 0.1483. For 12.9 the 
NADi is: 

37.3
1483.0

9.124.12
MAD

x  Md
NAD

i

i
i =

−
=

−
=  

  With the NADi less than 3.5, do not reject 12.9 as an outlier. 
 
2. Outlier tests to determine if 94.673% is an outlier. 
 a. Rank order of data: 
   87.765, 88.975, 89.096, 89.204, 89.470, 89.578 
   89.711, 89.954, 90.122, 91.738, 91.993, 94.673  
 b. Mean/standard deviation:  
   Without 94.673:  X = 89.69 S = 1.07 
   With 94.673 included: X  = 90.11 S = 1.77 
 c. Rule for huge error 

66.4 = 
071.
834.9 = 

071.
| 94.673  6989. | = 

S
| X  x | = M i −−

 

 Decision with 4.66 < 4.00, reject 94.673 as an outlier. 
 

Table D.18 Hampel’s Rule Applied to First Example Problem 
  

Data 
Absolute 

Deviations (ADi) 
Absolute Normalized 
Deviations (NADi) 

 12.0 0.4 2.697 
 12.3 0.1 0.674 
 12.4 0.0 0.000 
 12.5 0.1 −0.674 
 12.9 0.5 −3.372 
 12.0 0.4 2.697 
Median = 12.4 0.1  
MAD =  0.1483  
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 d. Grubbs’ test − critical value with n = 12 and α = 0.05 is 2.27. 

58.2 = 
77.1
5634. = 

77.1
190.1  94.673 = 

S
X  x = T n −−

 

  Decision with 2.58 < 2.27, reject 94.673 as an outlier. 
 e. Dixon test − with n = 12 and α = 0.05, critical τ = 0.546. 

7050. = 
5775.
.9353 = 

096.89  94.673
738.09  94.673 = 

)x  x(
)x  x(

2n

2-nn
−
−

−
−  

  Decision with 0.705 < 0.546, reject 94.673 as an outlier. 
 f. Hampel’s rule 
 The results for the calculations appear in Table D.19. The median for the 

twelve values is 89.645%. For 94.673 the ADi is: 
028.5645.89673.94MdxAD ii =−=−=  

 The median ADi is 0.513 and the MAD is 0.513(1.483) = 0.761. For 94.673 the 
NADi is: 

610.6
761.0

673.94645.89
MAD

x  Md
NAD

i

i
i =

−
=

−
=  

  With the NADi greater than 3.5, reject 94.673 as an outlier. 
 
3. Evaluation of HPLC analysis to determine if 50% is a possible outlier. Listed below 

are the results of the typical regression analysis table and the calculated slope and y-
intercept for all the data, and the data excluding the potential outlier. 

 
 

Table D.19 Hampel’s Rule Applied to Second Example Problem 
  

Data 
Absolute 

Deviations (ADi) 
Absolute Normalized 
Deviations (NADi) 

 89.470 0.175 0.229 
 94.673 5.028 6.610 
 89.578 0.067 0.087 
 89.096 0.549 0.721 
 88.975 0.670 0.880 
 89.204 0.441 0.579 
 87.765 1.880 2.470 
 91.993 2.348 3.087 
 89.954 0.309 0.407 
 90.738 1.093 1.437 
 90.122 0.477 0.628 
 89.711 0.066 0.087 
Median = 89.645 0.513  

MAD =  0.761  
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Outcomes: 

With the potential 
outlier included 

With the potential 
outlier excluded 

n = 10 9 
x = 750 700 
y = 742.1 700.1 
x2 = 64,500 62,000 
y2 = 63,713.21 61,949.21 
xy = 64,072 61,972 

   
b = +1.02 +0.99 
a = −2.29 +0.79 

 

As can be seen, the proposed outlier does affect the slope and intercept point, but 
is this effect significant and should the 50% response be considered an outlier?   
Figure D.27 shows a scatter plot for the HPLC data and the line of best fit. The 
results of the linear regression analysis would be as follows: 

 

Source SS df MS F 
Linear Regression 8583.30 1 8583.30 1170.98 
Residual 58.67 8 7.33  
Total 8641.97 9     

 The values on the line of best fit can be calculated using the formula yc=a+bx. 
These values and the residuals associated with the difference between the data (y) 
and yc are presented in Table D.20. If the residuals are ranked from the lowest to 
the highest we find the following: 

 

x yi r  x yi r 
50 42.0 −6.71  100 100.1 +0.39 
120 119.4 −0.71  40 39.7 +1.19 
110 109.7 −0.21  70 70.8 +1.69 
90 89.3 −0.21  30 30.4 +2.09 
60 59.1 +0.19  80 81.6 +2.29 

 

A box-and-whisker plot can be created with the median of +0.29 (average of fifth 
and sixth ranks), 25th percentile of −0.21 (third rank) and 75th percentile of 
+1.69 (eighth rank). In this case the whiskers would extend to −2.56 and +3.14. 
Clearly the value of −6.71 would be an outlier because it is located beyond the 
lower whisker. A studentized residuals plot can be created for each HPLC 
outcome. For example the value at 100% would be: 

144.0
33.7

71.991.100
MS

yy
t

E

ci =−=
−

=  

Each of the studentized residuals are plotted and the critical t-value is tn-1(1 − α/2), 
which is t9(0.975) or 2.26. 
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Figure D.27 Scatter plot of HPLC outcomes. 

 
Table D.20 Residuals Presented in Figure D.27 

x yi yc r 
30 30.4 28.31 +2.09 
40 39.7 38.51 +1.19 
50 42.0 48.71 −6.71 
60 59.1 58.91 +0.19 
70 70.8 69.11 +1.69 
80 81.6 79.31 +2.29 
90 89.3 89.51 −0.21 
100 100.1 99.71 +0.39 
110 109.7 109.91 −0.21 
120 119.4 120.11 −0.71 

    = 0.000 
 
 

4. Using a box plot (Figure D.28) the value 0.85 appears to be an outlier. Using the 
tests for outliers, this assumption is proven, with Group 1 having a mean and 
standard deviation of 3.632 + 0.926 (n = 15) with potential outlier and 3.831 + 
0.533 (n = 14) without the potential outlier. 

 a. Rule for huge error 

62.5 = 
53.0
98.2 = 

53.0
| 85.0  83.3 | = 

S
| X  x | = M i −−

 

 Decision with 5.62 < 4.00, reject 0.85 as an outlier. 
 b. Grubbs’ test − critical value with n = 15 and α = 0.05 is 2.409. 
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  Decision with 2.98 < 2.409, reject 0.85 as an outlier. 

 
Figure D.28  Dot diagram of data in Problem 4, Chapter 23. 

 
 c. Dixon test − with n = 15 and α = 0.05, critical τ = 0.525. 

6740. = 
56.3
40.2 = 

85.041.4
85.025.3 = 

)x  x(
)x  x(

12n

13
−
−

−
−

−
 

  Decision with 0.674 < 0.525, reject 0.85 as an outlier. 
 However, with the relative large sample size of 30 points total, the result of a 

two-sample t-test, with or without the outlier would be the same: a failure to 
reject the null hypotheses (µ1=μ2) where the critical t-value is 2.04 with α = 0.05. 
The mean and standard deviation for Group 2 is 3.828 ± 0.479. 

 With the outlier: 

543.0
28
217.15

21515
)479.0(14)926.0(14
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 Without the outlier: 
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21514
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 In this case it would make no difference if the outlier was removed or not. 
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