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Preface

These proceedings contain the papers that were presented at the 4th International
Conference on Algorithms for Computational Biology (AlCoB 2017), held in Aveiro,
Portugal, during June 5–6, 2017.

The scope of AlCoB includes topics of either theoretical or applied interest, namely:

– Exact sequence analysis
– Approximate sequence analysis
– Pairwise sequence alignment
– Multiple sequence alignment
– Sequence assembly
– Genome rearrangement
– Regulatory motif finding
– Phylogeny reconstruction
– Phylogeny comparison
– Structure prediction
– Compressive genomics
– Proteomics: molecular pathways, interaction networks
– Transcriptomics: splicing variants, isoform inference and quantification, differential

analysis
– Next-generation sequencing: population genomics, metagenomics, metatranscriptomics
– Microbiome analysis
– Systems biology

AlCoB 2017 received 24 submissions. Most papers were reviewed by three Program
Committee members. There were also a few external reviewers consulted. After a
thorough and vivid discussion phase, the committee decided to accept ten papers
(which represents an acceptance rate of about 42%). The conference program included
three invited talks and some poster presentations of work in progress.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions successfully and to handle the preparation
of these proceedings in time.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the external reviewers for their cooperation, and Springer for
its very professional publishing work.

March 2017 Daniel Figueiredo
Carlos Martín-Vide

Diogo Pratas
Miguel A. Vega-Rodríguez
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Biomedical Applications of Prototype Based
Classifiers and Relevance Learning

Michael Biehl(B)

Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

m.biehl@rug.nl

Abstract. In this contribution, prototype-based systems and relevance
learning are presented and discussed in the context of biomedical data
analysis. Learning Vector Quantization and Matrix Relevance Learn-
ing serve as the main examples. After introducing basic concepts and
related approaches, example applications of Generalized Matrix Rel-
evance Learning are reviewed, including the classification of adrenal
tumors based on steroid metabolomics data, the analysis of cytokine
expression in the context of Rheumatoid Arthritis, and the prediction of
recurrence risk in renal tumors based on gene expression.

Keywords: Prototype-based classification · Learning Vector Quantiza-
tion · Relevance learning · Biomedical data analysis

1 Introduction

The development of novel technologies for biomedical research and clinical prac-
tice have led to an impressive increase of the amount and complexity of elec-
tronically available data. Large amounts of potentially high-dimensional data
are available from different imaging platforms, genomics, proteomics and other
omics techniques, or longitudinal studies of large patient cohorts. At the same
time there is a clear trend towards personalized medicine in complex diseases
such as cancer or heart disorders.

As a consequence, an ever-increasing need for powerful automated data analy-
sis is observed. Machine Learning can provide efficient tools for tasks including
problems of unsupervised learning, e.g. in the context of clustering, and super-
vised learning for classification and diagnosis, regression, risk assessment or out-
come prediction.

In biomedical and more general life science applications, it is particularly
important that algorithms provide white box solutions. For instance, the criteria
which determine the outcome of a particular diagnosis system or recommenda-
tion scheme, should be transparent to the user. On the one hand, this increases
the acceptance of automated systems among practitioners. In basic research, on
the other hand, interpretable systems may provide novel insights into the nature
of the problem at hand.
c© Springer International Publishing AG 2017
D. Figueiredo et al. (Eds.): AlCoB 2017, LNBI 10252, pp. 3–23, 2017.
DOI: 10.1007/978-3-319-58163-7 1



4 M. Biehl

Prototype-based classifiers constitute a powerful family of tools for super-
vised data analysis. These systems are parameterized in terms of class-specific
representatives in the original feature space and, therefore, facilitate direct inter-
pretation of the classifiers. In addition, prototype-based systems can be further
enhanced by the data-driven optimization of adaptive distance measures. The
framework of relevance learning increases the flexibility of the approaches sig-
nificantly and can provide important insights into the role of the considered
features.

In Sect. 2, the basic concepts of prototype based classification is introduced
with emphasis on the framework of Learning Vector Quantization (LVQ). The
use of standard and unconventional distances is briefly discussed before relevance
learning is introduced in Sect. 2.5. Emphasis is on the so-called Generalized Rel-
evance Matrix LVQ (GMLVQ). Section 3 presents the application of GMLVQ in
several relevant biomedical problems, before a brief summary is given in Sect. 4.

2 Distance-based Classification and Prototypes

Here, a brief review of distance based systems is provided. First, the concepts
of Nearest Prototype Classifiers and Learning Vector Quantization (LVQ) are
presented in Sects. 2.1 and 2.2. The presentation focusses on their relation to
the classical Nearest Neighbor classifier. In Sect. 2.3 examples of non-standard
distance measures are briefly discussed. Eventually, adaptive dissimilarities in
the framework of relevance learning are introduced in Sect. 2.4.

2.1 Nearest Prototype Classifiers

Similarity based schemes constitute an important and successful framework for
the supervised training of classifiers in machine learning [10,14,31,55]. The basic
idea of comparing observations with a set of reference data is at the core of the
classical Nearest-Neighbor (NN) or, more generally, k-Nearest-Neighbor (kNN)
scheme [14,31,55,66]. This very popular approach is easy to implement and
serves as an important baseline for the evaluation of alternative algorithms.

A given set of P feature vectors and associated class labels

ID = {xμ, yμ = y(xμ)}P
μ=1 where xμ ∈ IRN and yμ ∈ {1, 2, . . . C} (1)

is stored as a reference set. An arbitrary feature vector or query x ∈ IRN is then
classified according to its similarity to the reference samples: The vector x is
assigned to the class of its Nearest Neighbor in ID. Very frequently, the (squared)
Euclidean distance with d(x,xμ) = (x − xμ)2 is employed for the compari-
son. The more general kNN classifier determines the majority class membership
among the k closest samples. Figure 1(a) illustrates the concept in terms of the
NN-classifier.

While kNN classification is very intuitive and does not require an explicit
training phase, an essential drawback is obvious: For large data sets ID, stor-
age needs are significant and, moreover, computing and sorting all distances

www.ebook3000.com
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Biomedical Applications of Prototype Based Classifiers 5

Fig. 1. Illustration of Nearest-Neighbor classification (panel a) and Nearest-Prototype
classification in LVQ (panel b). The same two-dimensional data set with three differ-
ent classes (marked by squares, diamonds and pentagrams) is shown in both panels.
Piecewise linear decision boundaries, based on Euclidean distance are shown for the
NN classifier in (a), while panel (b) corresponds to an NPC with prototypes marked
by large symbols.

d(x,xμ) becomes costly, even if sophisticated bookkeeping and sorting strate-
gies are employed. Most importantly, NN or kNN classifiers tend to realize very
complex decision boundaries which may be subject to over-fitting effects, because
all reference samples are taken into account explicitly, cf. Fig. 1(a).

These particular difficulties of kNN schemes motivated the idea to replace the
complete set of exemplars ID by a few representatives already in [30]. Learning
Vector Quantization (LVQ) as a principled approach to the identification of suit-
able prototypes wk ∈ IRN (k = 1, 2, . . . K) was suggested by Kohonen [35,37].
The prototypes carry fixed labels yk = y(wk) indicating which class they repre-
sent. Obviously, the LVQ system should comprise at least one prototype per class.

Originally, LVQ was motivated as an approximate realization of a Bayes
classifier with the prototypes serving as a robust, simplified representation of
class-conditional densities [35,37,67]. Ideally, prototypes constitute typical rep-
resentatives of the classes, see [26] for a detailed discussion of this property.
Recent reviews of prototype based systems in general and LVQ in particular can
be found in [11,41,53,67].

A Nearest Prototype Classifier (NPC) assigns any feature vector x to the
class y∗ = y(w∗) of the closest prototype w∗(x), or w∗ for short, which satisfies

d(w∗,x) ≤ d(wj ,x) for j = 1, 2, . . . K. (2)

Assuming that meaningful prototype positions have been determined from a
given data set ID, an NPC scheme based on Euclidean distance also implements
piece-wise linear class boundaries. However, since usually K � P , these are
much smoother than in an NN or kNN scheme and the resulting classifier is less
specific to the training data. Moreover, the NPC requires only the computation
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and ranking of K distances d(wj ,x). Figure 1(b) illustrates the NPC scheme as
parameterized by a few prototypes and employing Euclidean distance for the
same data set as shown in panel (a).

In binary problems with classes A and B, a bias can be introduced by mod-
ifying the NPC scheme: A data point x is assigned to class A if

d(wA,x) ≤ d(wB ,x) + Θ (3)

and to class B, else. Here, wA and wB denote the closest prototypes carrying
label A or B, respectively. The threshold Θ can be varied from large negative
to large positive values, yielding true positive rate (sensitivity) and false pos-
itive rate (1-specificity) as functions of Θ. Hence, the full Receiver Operator
Characteristics (ROC) can be determined [22].

2.2 Learning Vector Quantizaton

A variety of schemes have been suggested for the iterative identification of LVQ
prototypes from a given dataset. Kohonen’s basic LVQ1 algorithm [35] already
comprises the essential ingredients of most modifications which were suggested
later. It is conceptually very similar to unsupervised competitive learning [14]
but takes class membership information into account, explicitly.

Upon presentation of a single feature vector xμ with class label yμ = y(xμ),
the currently closest prototype, i.e. the so-called winner w∗ = w∗(xμ) is identi-
fied according to condition (2). The Winner-Takes-All (WTA) update of LVQ1
leaves all other prototypes unchanged:

w∗ ← w∗ + ηw Ψ(y∗, yμ) (xμ − w∗) with Ψ(y, ỹ) =
{

+1 if y = ỹ
−1 else. (4)

Hence, the winning prototype is moved even closer to xμ if both carry the same
class label: y∗ = yμ ⇒ Ψ = +1. If the prototype is meant to represent a different
class, it is moved further away (Ψ = −1) from the feature vector. The learning
rate ηw controls the step size of the prototype updates.

All examples in ID are presented repeatedly, for instance in random sequential
order. A possible initialization is to set prototypes identical to randomly selected
feature vectors from their class or close to the class-conditional means.

Several modifications of the basic scheme have been considered in the lit-
erature, aiming at better generalization ability or convergence properties, see
[7,36,53] for examples and further references.

LVQ1 and many other modifications cannot be formulated as the optimiza-
tion of a suitable objective function in a straightforward way [59]. However,
several cost function based LVQ schemes have been proposed in the litera-
ture [58,59,67]. A popular example is the so–called Generalized Learning Vector
Quantization (GLVQ) as introduced by Sato and Yamada [59]. The suggested
cost function is given as a sum over all examples in ID:

E =
P∑

μ=1

Φ(eμ) with eμ =
d(wJ ,xμ) − d(wK ,xμ)
d(wJ ,xμ) + d(wK ,xμ)

. (5)

www.ebook3000.com
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Biomedical Applications of Prototype Based Classifiers 7

For a given xμ, wJ represents the closest correct prototype carrying the correct
label y(wJ) = yμ and wK is the closest incorrect prototype with y(wK) �= yμ,
respectively. A monotonically increasing function Φ(eμ) specifies the contribu-
tion of a given example in dependence of the respective distances d(wJ ,xμ)
and d(wK ,xμ). Frequent choices are the identity Φ(eμ) = eμ and the sigmoidal
Φ(eμ) = 1/[1+exp(−γ eμ)] where γ > 0 controls the steepness [59]. Note that eμ

in Eq. (5) satisfies −1 ≤ eμ ≤ 1. The misclassification of a particular sample is
indicated by eμ > 0, while negative eμ correspond to correctly classified training
data. As a consequence, the cost function can be interpreted as to approximate
the number of misclassified samples for large γ, i.e. for steep Φ.

Since E is differentiable with respect to the prototype components, gradient
based methods can be used to minimize the objective function for a given data set
in the training phase. The popular stochastic gradient descent (SGD) is based on
the repeated, random sequential presentation of single examples [14,17,31,56].

The SGD updates of the correct and incorrect winner for a given example
{x, y(x)} read

wJ ← wJ − ηw
∂

∂wJ
Φ(e) = wJ − ηw Φ′(e)

2dK

(dJ + dK)2
∂dJ

∂wJ
,

wK ← wK − ηw
∂

∂wK
Φ(e) = wK + ηw Φ′(e)

2dJ

(dJ + dK)2
∂dK

∂wK
,

(6)

where the abbreviation dL = d(wL,x) is used. For the squared Euclidean dis-
tance we have ∂dL/ ∂wL = −2(x−wL). Hence, the displacement of the correct
winner is along +(x − wJ) and the update of the incorrect winner is along
−(x − wK), very similar to the attraction and repulsion in LVQ1. However, in
GLVQ, both winners are updated simultaneously.

Theoretical studies of stochastic gradient descent suggest the use of time-
dependent learning rates ηw following suitable schedules in order to achieve con-
vergent behavior of the training process, see [17,56]. for mathematical conditions
and example schedules. Alternatively, automated procedures can be employed
which adapt the learning rate in the course of training, see for instance [34,65].
Methods for adaptive step size control have also been devised for batch gradient
versions of GLVQ, employing the full gradient in each step, see e.g. [40,54].

Alternative cost functions have been considered for the training of LVQ sys-
tems, see, for instance, [57,58] for a likelihood based approach. Other objective
functions focus on the generative aspect of LVQ [26], or aim at the optimization
of the classifier’s ROC [68].

2.3 Alternative Distances

Although very popular, the use of the standard Euclidean distance is frequently
not further justified. It can even lead to inferior performance compared with
problem specific dissimilarity measures which might, for instance, take domain
knowledge into account.
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A large variety of meaningful measures can be considered to quantify the
dissimilarity of N -dim. vectors. Here, we mention only briefly a few important
alternatives to Euclidean metrics. A more detailed discussion and further exam-
ples can be found in [9,11,29], see also references therein.

The family of Minkowski distances of the form

dp(x,y) =
(∑N

j=1 |xj − yj |p
)1/p

for x,y ∈ IRN (7)

provides an important set of alternatives [39]. They fulfill metric properties (for
p ≥ 1) and Euclidean distance is recovered with p = 2. Employing Minkowski
distances with p �= 2 has proven advantageous in several practical applications,
see for instance [4,25,69].

A different class of more general measures is based on the observation that
the Euclidean distance can be written as

d2(x,y) = [(x · x) − 2x · y + (y · y)]1/2
. (8)

Replacing inner products of the form a·b =
∑

j ajbj by a suitable kernel function
κ(a,b), one obtains so-called kernelized distances [63,64]. In analogy to the
kernel-trick used in the Support Vector Machine [64], kernelized distances can
be used to implicitly transform non-separable complex data to simpler problems
in a higher-dimensional space, see [60] for a discussion in the context of GLVQ.

A very popular dissimilarity measure that takes statistical properties of the
data into account explicitly, was suggested very early by Mahalanobis [42]. The
point-wise version

dM (x,y) =
[
(x − y)�C−1 (x − y)

]1/2
(9)

employs the (empirical) covariance matrix C of the data set for the comparison
of two particular feature vectors. The Mahalonobis distance is widely used in
the context of the unsupervised and supervised analysis of given data sets, see
[55] for a more detailed discussion.

As a last example we mention statistical divergences which can be used when
observations are described in terms of densities or histograms. For instance, text
can be characterized by word counts while color histograms are often used to
summarize properties of images. In such cases, the comparison of sample data
amounts to evaluating the dissimilarity of histograms. A variety of statistical
divergences is suitable for this task [20]. The non-symmetric Kullback-Leibler
divergence [55] constitutes a well-known measure for the comparison of densi-
ties. An example of a symmetric dissimilarity is the so-called Cauchy-Schwarz
divergence [20]:

dCS(x,y) = 1/2 log [(x · x)(y · y)] − log [x · y] . (10)

It can be interpreted as a special case of more general γ-divergences, see [20,50].
In LVQ, meaningful dissimilarities do not have to satisfy metric proper-

ties, necessarily. Unlike the kNN approach, LVQ classification does not rely on
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Biomedical Applications of Prototype Based Classifiers 9

the pair-wise comparison of data points. A non-symmetric measure d(w,x) �=
d(x,w) can be employed for the comparison of prototypes and data points as
long as one version is used consistently in the winner identification, update steps,
and the actual classification after training [50].

In cost function based GLVQ, cf. Eq. (5), it is straightforward to replace
the squared Euclidean by more general, suitable differentiable measures d(w,x).
Similarly, LVQ1-like updates can be devised by replacing the term (w − x) in
Eq. (4) by 1/2 ∂d(w,x)/∂w. Obviously, the winner identification has to make
use of the same distance measure in order to be consistent with the update.

It is also possible to extend gradient-based LVQ to non-differentiable dis-
tance measures like the Manhattan distance with p = 1 in Eq. (7), if differen-
tiable approximations are available [39]. Furthermore, the concepts of LVQ can
be transferred to more general settings, where data sets do not comprise real-
valued feature vectors in an N -dimensional Euclidean space [41]. Methods for
classification problems where only pair-wise dissimilarity information is avail-
able, can be found in [27,52], for instance.

2.4 Adaptive Distances and Relevance Learning

The choice of a suitable distance measures constitutes a key step in the design
of a prototype-based classifier. It usually requires domain knowledge and insight
into the problem at hand. In this context, Relevance Learning constitutes a very
elegant and powerful conceptual extension of distance based classification. The
idea is to fix only the basic form of the dissimilarity a priori and optimize its
parameters in the training phase.

2.5 Generalized Matrix Relevance Learning

As an important example of this strategy we consider here the replacement of
standard Euclidean distance by the more general quadratic form

dΛ(x,w) = (x − w)�
Λ (x − w) =

N∑
i,j=1

(xi − wi)Λij (xj − wj). (11)

While the measure is formally reminiscent of the Mahalonobis distance defined
in Eq. (9), it is important to note that Λ cannot be directly computed from the
data. On the contrary, its elements are considered adaptive parameters in the
training process as outlined below.

Note that Euclidean distance is recovered by setting Λ proportional to the
N -dim. identity matrix. A restriction to diagonal matrices Λ corresponds to
the original formulation of relevance LVQ, which was introduced as RLVQ or
GRLVQ in [16] and [28] respectively. There, each feature is weighted by a single
adaptive factor in the distance measure.

Measures of the form (11) have been employed in various classification
schemes [15,32,70,71]. Here we focus on the so-called Generalized Matrix Rele-
vance LVQ (GMLVQ), which was introduced and extended in [18,61,62]. Appli-
cations from the biomedical and other domains are discussed in Sect. 3.
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As a minimal requirement, dΛ(x,w) ≥ 0 should hold true for all x,w ∈ IRN .
This can be guaranteed by assuming a re-parameterization of the form

Λ = Ω�Ω, i.e. dΛ(x,w) = [Ω (x − w)]2 (12)

with the auxiliary matrix Ω ∈ IRM×N . It also implies the symmetries Λij = Λji

and dΛ(x,w) = dΛ(w,x). Frequently, a normalization
∑

ii Λii =
∑

ij Ω2
ij = 1 is

imposed in order to avoid numerical problems.
According to Eq. (12), dΛ corresponds to conventional Euclidean distance

after a linear transformation of all data and prototypes. The transformation
matrix can be (M × N)-dimensional, in general, where M < N corresponds to
a low-dimensional intrinsic representation of the original feature vectors. Note
that, even for M = N , the matrix Λ can become singular and dΛ is only a
pseudo-metric in IRN : for instance, dΛ(x,y) = 0 is possible for x �= y.

In the training process, all elements of the matrix Ω are considered adaptive
quantities. From Eq. (12) we obtain the derivatives

∂dΛ(w,x)
∂w

= Ω�Ω (w − x),
∂dΛ(w,x)

∂Ω
= Ω (w − x)(w − x)� (13)

which can be used to construct heuristic updates along the lines of LVQ1 [8,11,41].
From the GLVQ cost function, cf. Eq. (5), one obtains the matrix update

Ω ← Ω − ηΩ Φ′(e)
(

2dK
Λ

(dJ
Λ + dK

Λ )2
∂ dΛ(wJ ,x)

∂Ω
− 2dJ

Λ

(dJ + dK
Λ )2

∂ dΛ(wK ,x)
∂Ω

)

(14)
which can be followed by a normalization step achieving

∑
ij Ω2 = 1. Prototypes

are updated as given in Eq. (6) with the gradient terms replaced according to
Eq. (13). The matrix learning rate is frequently chosen smaller than that of
the prototype updates: ηΩ < ηw, details can be found in [18,61]. The matrix
Ω ∈ IRM×N can be initialized by, for instance, drawing independent random
elements or by setting it proportional to the N -dim. identity matrix for M = N .

In the measure (11), the diagonal elements of Λ quantify the weight of sin-
gle features in the distance. The inspection of the relevance matrix can provide
valuable insights into the structure of the data set after training, examples are
discussed in Sect. 3. Off-diagonal elements correspond to the contribution of
pairs of features to dΛ and their adaptation enables the system to cope with
correlations and dependencies between the features. Note that this heuristic
interpretation of Λ is only justified if all features are of the same order of magni-
tude, strictly speaking. In any given data set, this can be achieved by applying
a z-score transformation, yielding zero mean and unit variance features. Alter-
natively, potentially different magnitudes of the features could be taken into
account after training by rescaling the elements of Λ accordingly.

2.6 Related Schemes and Variants of GMLVQ

Adaptive distance measures of the form (11) have been considered in several
realizations of distance based classifiers. For example, Weinberger et al. optimize
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a quadratic form in the context of nearest neighbor classification [70,71]. An
explicit construction of a relevance matrix from a given data set is suggested
and discussed in [15], while the gradient based optimization of an alternative
cost function is presented in [32].

Localized versions of the distance (11) have been considered in [18,61,71].
In GMLVQ, it is possible to assign an individual relevance matrix Λj to each
wj or to devise class-wise matrices. Details and the corresponding modified
update rules can be found in [18,61]. While this can enhance the classification
performance significantly in complex problems, we restrict the discussion to the
simplest case of one global measure of the form (11).

The GMLVQ algorithm displays an intrinsic tendency to yield singular rel-
evance matrices which are dominated by a few eigenvectors corresponding to
the leading eigenvalues. This effect has been observed empirically in real world
applications and benchmark data sets, see [41,61] for examples. Moreover, a
mathematical investigation of stationarity conditions explains this typical prop-
erty of GMLVQ systems [8]. Very often, the effect allows for an interpretable
visualization of the labeled data set in terms of projections onto two or three
leading eigenvectors [5,41,61].

An explicit rank control can be achieved by using a rectangular (M × N)
matrix Ω in the re-parameterization (12), together with the incorporation of a
penalty term for rank(Λ) < M in the cost function [18,62]. For M = 2 or 3, the
approach can also be used for the discriminative visualization of labelled data
sets [5].

An important alternative to the intrinsic dimension reduction provided
by GMLVQ is the identification of a suitable linear projection in a pre-
processing step. This can be advantageous, in particular for nominally very high-
dimensional data as encountered in e.g. bioinformatics, or in situations where
the number of training samples P is smaller than the dimension of the feature
space. Assuming that a given projection of the form

y = Ψ x, v = Ψ w with Ψ ∈ IRM×N (15)

maps N -dim. feature vectors and prototypes to their M -dim. representations we
can re-write the distance measure of the form (11) as

(x − w)�
Λ (x−w) = (x − w)�

Ψ� Λ̃ Ψ (x−w) = (y − v)�
Λ̃ (y−v). (16)

Hence, training and classification can be formulated in the M -dimensional space,
employing prototypes vj ∈ IRM and an M × M relevance matrix Λ̃. Moreover,
the relation Λ = Ψ�Λ̃ Ψ facilitates its interpretation in the original feature space.

This versatile framework allows to combine GMLVQ with, for instance, Prin-
cipal Component Analysis (PCA) [55] or other linear projection techniques. Fur-
thermore, it can be applied to the classification of functional data, where the
components of the feature vectors represent an ordered sequence of values rather
than a collection of more or less independent quantities. This is the case in, for
instance, time series data or spectra obtained from organic samples, see [43] for
examples and further references. The coefficients of a, for instance, polynomial
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approximation of observed data are typically obtained by a linear transforma-
tion of the form (15), where the rows of Ψ represent the basis functions. Hence,
training can be performed in the lower-dimensional coefficient space, while the
resulting classifier is still interpretable in terms of the original features [43].

3 Biomedical Applications of GMLVQ

In the following, selected bio-medical applications of the GMLVQ approach are
highlighted. The example problems illustrate the flexibility of the approach and
range from the direct analysis of relatively low-dim. data in steroid metabolomics
(Sect. 3.1), the combination of relevance learning with dimension reduction for
cytokine data (Sect. 3.2), and the application of GMLVQ to selected gene expres-
sion data in the context of tumor recurrence prediction (Sect. 3.3). A brief discus-
sion with emphasis on the interpretability of the relevance matrix. Eventutally,
further applications of GMLVQ for biomedical and life science data are briefly
mentioned in Sect. 3.4.

3.1 Steroid Metabolomics in Endocrinology

A variety of disorders can affect the human endocrine system. For instance,
tumors of the adrenal glands are relatively frequent and often found inciden-
tally [3,21]. The adrenals produce a number of steroid hormones which regulate
important body functions. The differential diagnosis of malignant Adrenocortical
Carcinoma (ACC) vs. benign Adenoma (ACA) based on non-invasive methods
constitutes a highly relevant diagnostic challenge [21]. In [3], Arlt et al. explore
the possibility to detect malignancy on the basis of the patient’s steroid excretion
pattern obtained from 24 h urine samples by means of gas chromatography/mass
spectrometry (GC/MS).

The analysis of data comprising the excretion of 32 steroids and steroid
metabolites was presented in [3,13]: A data set representing a study population
of 102 ACA and 45 ACC samples was analysed by means of training a GMLVQ
system with one prototype per class and a single, global relevance matrix Λ ∈
IR32×32. In a pre-processing step, excretion values were log-transformed and in
every individual training process a z-score transformation was applied.

In order to estimate the classification performance with respect to novel data
representing patients with unknown diagnosis, random splits of the data set were
considered: about 90% of the samples were used for training, while 10% served as
a validation set. Results were obtained on average over 1000 randomized splits,
yielding, for instance the threshold-averaged ROC [22], see Eq. (3).

A comparison of three scenarios provides evidence for the beneficial effect
of relevance learning: When applying Euclidean GLVQ, the classifier achieves
an ROC with an area under the curve of AUC ≈ 0.87, see Fig. 2(a). The con-
sideration of an adaptive diagonal relevance matrix, corresponding to GRLVQ
[28], yields an improved performance with AUC ≈ 0.93. The GMLVQ approach,
cf. Sect. 2.5, with a fully adaptive relevance matrix achieves an AUC of about
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Fig. 2. Detection of malignancy in adrenocortical tumors, see Sect. 3.1. Panel (a):
Test set ROC as obtained in the randomized validation procedure by applying GLVQ
with Euclidean distance (dash-dotted line), GRLVQ with diagonal Λ (dashed) and
GMLVQ with a full relevance matrix (solid). Panel (b): Visualization of the data
set based on the GMLVQ analysis in terms of the projection of steroid profiles on
the leading eigenvectors of Λ. Circles correspond to patients with benign ACA while
triangles mark malignant ACC. Prototypes are marked by larger symbols. In addition,
healthy controls (not used in the analysis) are displayed as crosses.

0.97. In the latter case, a working point with equal sensitivity and specificity of
0.90 can be selected by proper choice of the threshold Θ in Eq. (3). As reported
in [3], the GMLVQ system outperformed alternative classifiers of comparable
complexity.

The resulting relevance matrix Λ turned out to be dominated by the lead-
ing eigenvector corresponding to its largest eigenvalue; subsequent eigenvalues
are found to be significantly smaller. As discussed above, this property can be
exploited for the discriminative visualization of the data set and prototypes, see
Fig. 2(b). The figure displays, in addition, a set of feature vectors representing
healthy controls, which were not explicitly considered in the training process.
Reassuringly, control samples cluster close to the ACA prototype and appear
clearly separated from the malignant ACC.

By inspecting the relevance matrix of the trained system, further insight into
the problem and data set can be achieved. Figure 3(a) displays the diagonal ele-
ments of Λ on average over 1000 randomized training runs. Subsets of markers
can be identified, which are consistently rated as particularly important for the
classification. For instance, markers 5, 6 and 19 appear significantly more rele-
vant than all others, see [3] for a detailed discussion from the endocrinological
perspective. There, the authors suggest a panel of nine leading steroids, which
could serve as a reduced marker set in a practical realization of the diagnosis
tool. Figure 3(b) displays the fraction of training runs in which a single marker
is rated among the nine most relevant ones, providing further support for the
selection of the subset [3]. Repeating the GMLVQ training for selected subsets of
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Fig. 3. Relevance of steroid markers in adrenal tumor classification, see Sect. 3.1 for
details. Panel (a): Diagonal elements Λii of the GMLVQ relevance matrix on average
over the 1000 randomized training runs. Panel (b): Percentage of training runs in
which a particular steroid appeared among the 9 most relevant markers.

leading markers yielded slightly inferior performance compared to the full panel
of 32 markers, with AUC ≈ 0.96 for nine steroids, and AUC ≈ 0.94 with 3
leading markers only, see [3] for details of the analysis.

The analysis of steroid metabolomics data by means of GMLVQ and related
techniques is currently explored in the context of various disorders, see [24,38,44]
for recent examples. In the context of adrenocortical tumors, the validation
of the diagnostic approach in prospective studies and the development of effi-
cient methods for the detection of post-operative recurrence are in the center of
interest [19].

3.2 Cytokine Markers in Inflammatory Diseases

Rheumatoid Arthritis (RA) constitutes an important example of chronic inflam-
matory disease. It is the most common form of autoimmune arthritis with symp-
toms ranging from stiffness and swelling of joints to, in the long term, bone
erosion and joint deformity.

Fig. 4. GMLVQ analysis of Rheumatoid Arthritis data, see Sect. 3.2 for details. Dis-
crimination of patients with early RA (class B) vs. resolving cases (class C). Panel
(a) shows the ROC (AUC ≈ 0.763) as obtained in the Leave-One-Out (from each
class) validation. Panel (b) displays the diagonal elements of the back-transformed
relevance matrix Λ ∈ IR117×117 on average over the validation runs.
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Cytokines play an important role in the regulation of inflammatory processes.
Yeo et al. [72] investigated the role of 117 cytokines in early stages of RA. Their
mRNA expression was determined by means of PCR techniques for four different
patient groups: Uninflamed healthy controls (group A, 9 samples), patients with
joint inflammations that resolved within 18 months after symptom onset (group
B, 9 samples), early RA patients developing Rheumatoid Arthritis in this period
of time (group C, 17 samples), and patients with an established diagnosis of RA
(group D, 12 samples).

Note that the total number of samples is small compared to the dimension
N = 117 of the feature vectors x comprising log-transformed RNA expression
values. Hence, standard PCA was applied to identify a suitable low-dimensional
representation of the data. The analysis revealed that 95% of the variation in
the data set was explained by the 21 leading principal components already.
Attributing the remaining 5% mainly to noise, all cytokine expressions data
were represented in terms of M = 21-dim. feature vectors corresponding to the
y ∈ IRM in Eq. (15).

GMLVQ was applied to two classification subproblems: The first addressed
the discrimination of healthy controls (class A) and established RA patients
(class D). While this problem does not constitute a diagnostic challenge at all, it
served as a consistency check and revealed first insights into the role of cytokine
markers. In the second setting, the much more difficult problem of discriminating
early stage RA (class C) from resolving cases (class B) was considered.

The performances of the respective classifier systems were evaluated in a
validation procedure by leaving out one sample from each class for testing and
training on the remaining data. Results were reported on average over all possible
test set configurations. Reassuringly, the validation set ROC obtained for the
classification of A vs. D displayed almost error free performance with AUC ≈
0.996. The expected greater difficulty of discriminating patient groups C and D
was reflected in a lower AUC of approximately 0.763, see Fig. 4(a).

It is important to note that it was not the main aim of the investigation
to propose a practical diagnosis tool for the early detection of Rheumatoid
Arthritis. As much as an early diagnosis would be desirable, the limited size
of the study population would not provide enough supporting evidence for such
a suggestion. However, the GMLVQ analysis revealed important and surprising
insights into the role of cytokines. Computing the back-transformed relevance
matrix Λ ∈ IR117×117 with respect to the original cytokine expression features
along the lines of Eq. (16), makes possible an evaluation of their significance
in the respective classification problem. Figure 4(b) displays the cytokine rel-
evances as obtained in the discrimination of classes B and C. Two cytokines,
CXCL4 and CXCL7, were identified as clearly dominating in terms of their dis-
criminative power. A discussion of further relevant cytokines also with respect
to the differences between the two classification problems can be found in [72].

The main result of the machine learning analysis triggered additional inves-
tigations by means of a direct inspection of synovial tissue samples. Careful
studies employing staining techniques confirmed that CXCL4 and CXCL7 play



16 M. Biehl

Fig. 5. Recurrence risk prediction in ccRCC, see Sect. 3.3 for details. Panel (a): Num-
ber of recurrences registered in the 469 patients vs. time in days. The vertical line marks
a threshold of 24 months, before which 109 patients developed a recurrence. Panel (b):
Diagonal entries of the relevance matrix with respect to the discrimination of low risk
vs. high risk patients from the expression of the 80 selected genes.

an important role in the early stages of RA [72]. Significantly increased expres-
sion of CXCL4 and CXCL7 was confirmed in early RA patients compared
with those with resolving arthritis or with clearly established disease. The
study showed that the two cytokines co-localize, in particular, with extravas-
cular macrophages in early stage Rheumatoid Arthritis. Implications for future
research into the onset and progression of RA are also discussed in [72].

3.3 Recurrence Risk Prediction in Clear Cell Renal Cell Carcinoma

Mukherjee et al. [47] investigated the use of mRNA-Seq expression data to evalu-
ate recurrence risk in clear cell Renal Cell Carcinoma (ccRCC). The correspond-
ing data set is publicly available from The Cancer Genome Atlas (TCGA) repos-
itory [51] and is also hosted at the Broad Institute (http://gdac.broadinstitute.
org). It comprises mRNA-Seq data (raw and RPKM normalized) for 20532 genes,
accompanied by clinical data for survival and recurrences for 469 tumor samples.
Preprocessing steps, including normalization, log-transformation, and median
centering, are described in [47].

By means of an outlier analysis [1], a drastically reduced panel of 80 genes
was identified for further use, see also [47] for a description of the method in this
particular example. The panel consists of four different groups, each comprising
20 selected genes: In group (I), high expression can be correlated with low risk,
i.e. late or no recurrence. In group (II), however, low expression is associated
with low risk. Group (III) contains genes where high expression is correlated
with a high risk for early recurrence, while in group (IV) low expression of the
genes is an indication of high risk.

In [47], a risk index is presented, which is based on a voting scheme with
respect to the 80 selected genes. Here, the focus is on the further analysis of the
corresponding expression values using GMLVQ, also discussed in [47].
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Fig. 6. Recurrence risk prediction in ccRCC, see Sect. 3.3 for details. Panel (a): ROC
for the classification of low-risk (no or late recurrence) vs. high risk (early recurrence) as
obtained in the Leave-One-Out validation of the GMLVQ classifier trained on the subset
of 216 patients, cf. Sect. 3.3. The circle marks the performance of the Nearest Prototype
Classifier. Panel (b): Kaplan-Meier plot [33] showing recurrence free survival rates
in the high-risk (lower curve) and low-risk (upper curve) group as classified by the
GMLVQ system applied to all 469 samples. Time is given in days.

In order to define a meaningful classification problem, two extreme groups of
patients were considered: group A with poor prognosis/high risk, comprises 109
patients with recurrence within the first 24 months after the initial diagnosis.
Group B corresponds to 107 patients with favorable prognosis/low risk, who did
not develop tumor recurrence within 60 months after diagnosis. The frequency
of recurrence times observed over five years in the complete set of 469 patients
is shown in Fig. 5(a), the vertical line marks the threshold of two years after
diagnosis.

A GMLVQ system with one 80-dim. prototype per class (A, B) and a global
relevance matrix Λ ∈ IR80×80 was trained on the subset of the 216 clear-cut cases
in groups A and B. Leave-One-Out validation yielded the averaged ROC shown
in Fig. 6(a) with AUC ≈ 0.812.

The diagonal elements of the averaged relevance matrix are displayed in
Fig. 5(b). The results show that genes in the groups (I) and (IV) seem to be
particularly discriminative and suggest that a further reduction of the gene panel
should be well possible [47].

In order to further evaluate the GMLVQ classifier, it was employed to assign
all 469 samples in the data set to the groups of high risk or low risk patients,
respectively. In case of the 216 cases with early recurrence (≤24 months) or no
recurrence within 60 months, the Leave-One-Out prediction was used. For the
remaining 253 patients, the GMLVQ classifier obtained from the 216 reference
samples was used.

In Fig. 6 the resulting Kaplan-Meier plot [33] is shown. It displays the recur-
rence free survival rate of the low risk (upper) and high risk (lower) groups
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according to GMLVQ classification, corresponding to a pronounced discrimina-
tion of the groups with log-rank p-value 1.2 × 10−8.

In summary, the work presented in [47] shows that gene expression data
makes possible an efficient risk assessment with respect to tumor recurrence.
Further analysis, taking into account healthy cell samples as well, shows that
the panel of genes is not only prognostic but also diagnostic [47].

3.4 Further Bio-medical and Life Science Applications

Apart from the studies discussed in the previous sections, variants of LVQ have
been employed successfully in a variety of biomedical and life science applica-
tions. In the following, a few more examples are briefly mentioned and references
are provided for the interested reader.

An LVQ1-like classifier was employed for the identification of exonic vs.
intronic regions in the genome of C. Elegans based on features derived from
sequence data [4]. In this application, the use of the Manhattan distance in
combination with heuristic relevance learning proved advantageous.

Simple LVQ1 with Euclidean distance measure was employed successfully in
the inter-species prediction of protein phosphorylation in the sbv IMPROVER
challenge [12]. There, the goal was to predict the effect of chemical stimuli on
human lung cells, given information about the reaction of rodent cells under the
same conditions.

The detection and discrimination of viral crop plant diseases, based on color
and shape features derived from photographic images was studied in [50]. The
authors applied divergence-based LVQ, cf. Sect. 2.3, for the comparison of fea-
ture histograms derived from Cassava plant leaf images. A comparison with
alternative approaches, including GMLVQ is presented in [49].

The analysis of flow-cytometry data was considered in [6] in the context of the
DREAM6/FlowCAP2 challenge [2]. For each subject, 31 markers were provided,
including measures of cell size and intracellular granularity as well as 29 expression
values of surface proteins for thousands of individual cells. Hand-crafted features
were determined in terms of statistical moments over the entire cell population,
yielding a 186-dim. representation for each patient. GMLVQ applied in this fea-
ture space yielded error-free prediction of AML in the test set [2,6].

The detection and discrimination of different Parkinsonian syndromes was
addressed in [45,46]. Three-dimensional brain images obtained by fluorodeoxyglu-
cose positron emission tomography (FDG-PET) comprise several hundreds of
thousands voxels per subject, providing information about the local glucose
metabolism. An appropriate dimension reduction by Scaled Subprofile Model with
Principal Component Analysis (SSM/PCA), yields a data set dependent, low-
dimensional representation in terms of subject scores, see [45,46] for further ref-
erences. In comparison with Decision Trees and Support Vector Machines, the
GMLVQ classifier displayed competitive or superior performance [46].
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4 Concluding Remarks

This contribution merely serves as a starting point for studies into the applica-
tion of prototype and distance based classification in the biomedical domain. It
provides by no means a complete overview and focusses on the example frame-
work of Generalized Matrix Relevance Learning Vector Quantization, which has
been applied to a variety of life science datasets. The specific application exam-
ples were selected in order to demonstrate the flexibility of the approach and
illustrate its interpretability.

A number of open questions and challenges deserve attention in future
research – to name only a few examples: A better understanding of feature
relevances should be obtained, for instance, by exploiting the approaches pre-
sented in [23]. Combined distance measures can be designed for the treatment
of different sources of information in an integrative manner [48]. The analysis of
functional data plays a role of increasing importance in the biomedical domain,
see e.g. [43]. In general, the development of efficient methods for the analysis
of biomedical data, which are at the same time powerful and transparent, con-
stitutes a major challenge of great importance. Prototype based classifiers will
continue to play a central role in this context.
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Abstract. Analysis of genetic variation using graph structures is an
emerging paradigm of genomics. However, defining genetic sites on
sequence graphs remains an open problem. Paten’s invention of the ultra-
bubble and snarl, special subgraphs of sequence graphs which can iden-
tified with efficient algorithms, represents important first step to segre-
gating graphs into genetic sites. We extend the theory of ultrabubbles to
a special subclass where every detail of the ultrabubble can be described
in a series and parallel arrangement of genetic sites. We furthermore
introduce the concept of bundle structures, which allows us to recognize
the graph motifs created by additional combinations of variation in the
graph, including but not limited to runs of abutting single nucleotide
variants. We demonstrate linear-time identification of bundles in a bidi-
rected graph. These two advances build on initial work on ultrabubbles
in bidirected graphs, and define a more granular concept of genetic site.

Keywords: Sequence graphs · Genetic variants

1 Background

The concept of the genetic site underpins both classical genetics and modern
genomics. From a biological perspective, a site is a position at which mutations
have occurred in different samples’ histories, leading to genetic variation. From
an engineering perspective, a site is a subgraph with left and right endpoints
where traversals by paths correspond to alleles. This is useful for indexing and
querying variants in paths and for describing variants in a consistent and granular
manner.

Against a linear reference, it is trivial to define sites, provided that we disallow
variants spanning overlapping positions. This is clearly demonstrated by VCF
structure [4]. VCF sites, consisting of any number of possible alleles, are identified
by their endpoints with respect to the linear reference.

If we wish to analyze a set of variants containing structural variation, highly
divergent sequences or nonlinear references structures, then a linear reference
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with only non-overlapping variants is no longer a sufficient model. Datasets with
one or more of these properties are becoming more common [1,10], and sequence
graphs [7] have been developed as a method of representing them. However,
defining sites on graphs is considerably more difficult than on linear reference
structures and the creation of methods to fully decompose sequence graphs into
sites remains an unsolved problem.

2 The Challenges of Defining Sites on Graphs

On a graph-based reference, the linear reference definition of a site as a position
along the reference and a set of alleles fails to work for several reasons:

1. Sequences which are at the same location in linear position may not have com-
parable contexts. This is a consequence of having variants which cannot be
represented as edits to the linear reference but rather as edits to another vari-
ant. We illustrate this with an example from 1000 Genomes polymorphism
data, visualized using Sequence Tube Maps [2] (Fig. 1).

2. Elements of sequence may not be linearly ordered. Parallel structure of the
graph (3.) is one sort of non-linearity. Graphs also allow repetitive, inverted
or transposed elements of sequence. These all prevent linear ordering (Fig. 2).

3. The positions spanned by different elements of variation may partially over-
lap. Therefore, multiple mutually exclusive segments of sequence in a region
of the graph cannot be considered to be alternates to each other at a well-
defined position without having to include extraneous sequence that is shared
between some but not all of the “alleles.”

We can expect that the density of these graph structures will increase with
increasing population sizes included in datasets (Fig. 3).

Our aim will be to recognize and fully decompose subgraphs resembling
Example 1 into a notion of site, and isolate these from elements of the graph
resembling Examples 2 and 3.

Fig. 1. The context of the single nucleotide variant shown does not exist in all variants
spanning its linear position

Fig. 2. A cycle and an inversion in a graph
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Fig. 3. Overlapping deletions, from 1000 Genomes polymorphism data

3 Mathematical Background

3.1 Directed and Bidirected Sequence Graphs

The graphs used to represent genetic information consist of labelled nodes and
edges. Nodes are labelled with sequence fragments. Edges form paths whose
labels spell out allowed sequences. Two types of graph are used (Fig. 4).

Fig. 4. (A) A directed acyclic graph (B) A cyclic directed graph (C) Graph B rep-
resented as a bidirected graph. This cycle is proper. (D) Graph C represented as a
biedged graph

The more simple type is the directed graph. A directed graph (or “digraph”)
G consists of a set V of nodes and a set E of directed edges. A directed edge is
an ordered tuple (x, y), consisting of a head x ∈ V and tail y ∈ V . A directed
path is a sequence of nodes joined by edges, followed head to tail. G is a directed
acyclic graph (DAG) if it admits no directed path which revisits any node.

A bidirected graph G [6] consists of a set V of vertices and a set E of edges.
Each vertex v ∈ V consists of a pair of node-sides {vleft, vright} and each edge is
an unordered tuple of node-sides. Bidirected graphs have the advantage of being
able to represent inversion events.

We write N for the set of node-sides in the bidirected graph G. The opposite
n̂ of a node-side n is the other node-side at the same vertex as n.

A sequence p = x1, x2, . . . , xk of node-sides is a path if ∀xi,

1. if xi−1 �= x̂i, then xi+1 = x̂i

2. if xi−2 = ˆxi−1, then {xi−1, xi} ∈ E
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3. any contiguous subsequence of p consisting of a node-side x alternating with
its opposite x̂ must either be even-numbered in length or must be a prefix or
suffix of p

Informally, this means that in a path, consecutive pairs forming edges alternate
with pairs of opposite node-sides or, equivalently, that paths visit both node-
sides of the vertices they pass through. They can however begin or on an isolated
node-side.

A bidirected graph G is cyclic if it admits a path visiting a node-side twice.
Therefore the self-incident hairpin motif (below, right) is considered a cycle. A
bidirected graph G is properly cyclic if it admits a path which visits a pair {n, n̂}
twice in the same order (Fig. 5).

Fig. 5. (Left) A properly cyclic graph. (Right) The self-incident hairpin motif of a
cyclic but not properly cyclic graph

Some publications refer to biedged graphs. These are {black, grey}-edge-
colored undirected graphs, where every node is paired with precisely one other
by sharing a grey edge and paths in the graph must alternate between traversing
black and grey edges. Paten elaborates on this construction in [9] and shows that
it is equivalent to a bidirected graph. We will restrict our language to that of
bidirected graphs, recognizing that these are equivalent to biedged graphs.

Acyclic bidirected graphs are structurally equivalent to directed graphs in
that

Lemma 1. If G is a bidirected acyclic graph, there exists an isomorphic directed
acyclic graph D(G).

Proof. See [9].

3.2 Bubbles, Superbubbles, Ultrabubbles and Snarls

The first use of local graph structure to identify variation was the detection
of bubbles [13] in order to detect and remove sequencing errors from assembly
graphs. Their bubble is the graph motif consisting of two paths which share a
source and a sink but are disjoint between.

The general concept of bubbles was extended by Onodera et al., who defined
superbubbles in directed graphs [8]. Brankovic demonstrates an O(|V | + |E|)
algorithm to identify them [3], building off work of Sung [11].

We restate the Onodera definition, modified slightly as to be subgraph-centric
rather than boundary-centric: A subgraph S ⊆ G of a directed graph is a super-
bubble with boundaries (s, t) if
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1. (reachability) t is reachable from s by a directed path in S
2. (matching) the set of vertices reachable from s without passing through t is

equal to the set of vertices from which t is reachable without passing through
s, and both are equal to S

3. (acyclicity) S is acyclic
4. (minimality) there exists no t′ ∈ S such that boundaries (s, t′) fulfil 1, 2 and

3. There exists no s′ ∈ S such that (s′, t) fulfil 1, 2 and 3.

To motivate our definition of a superbubble equivalent on bidirected graphs,
we prove some consequences of the matching property.

Proposition 2. Let S ⊆ G be a subgraph of a directed graph. If S possesses the
matching property relative to a pair (s, t), then it possesses the following three
properties:

1. (2-node separability) Deletion of all incoming edges of s and all outgoing edges
of t disconnects S from the remainder of the graph.

2. (tiplessness) There exist no node n ∈ S\{s, t} such that n has either only
incoming or outgoing edges.

3. S is weakly connected.

Proof. (matching ⇒ separability) Suppose ∃x /∈ S, y ∈ S\{s, t} such that there
exists either an edge x → y or an edge y → x. Suppose wlog that ∃ an edge
x → y. By matching, there exists a path y → · · · → t without passing through s.
We can then construct the path x → y → · · · → t which does not pass through s.
But by matching this implies that x ∈ S, which leads to a contradiction.

The converse need not be true on directed graphs1. We define two structures
on bidirected graphs. The first is the ultrabubble, which given Proposition 2,
can be thought of as an analogue to a superbubble. The second, the snarl, is
a more general object which preserves the property of 2-node separability from
the larger graph without having strong guarantees on its internal structure. The
following definitions are due to Paten [9]:

A connected subgraph S ⊆ G of a bidirected graph G is a snarl (S, s, t) with
boundaries (s, t), if

1. s �= t̂
2. (2-node separability) every path between a pair of node-sides in x ∈ S, y ∈

G\S contains either s → ŝ or t → t̂ as a subpath.
3. (minimality) there exists no t′ ∈ S such that boundaries (s, t′) fulfil 1 and 2.

There exists no s′ ∈ S such that (s′, t) fulfil 1 and 2

The class of ultrabubbles is the subclass of snarls (S, s, t) furthermore fulfilling

4. S is acyclic
5. S contains no tips — vertices having one node-side involved in no edges

Three examples of ultrabubbles are shown below (Fig. 6).
1 It is on bidirected graphs.
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Fig. 6. Three ultrabubbles, boundaries colored blue, pink and green. These illustrate
the non-overlapping property (Color figure online)

The following is important property of snarls.

Proposition 3 (Non-overlapping property). If two distinct snarls share a
vertex (node-side pair) then either they share a boundary node or one snarl is
included in the other’s interior.

Proof. Let S be a snarl with boundaries s, t. Let T be another snarl, with bound-
aries u, v. Suppose that u ∈ S\{s, t} but v /∈ S, and s /∈ T .

Consider the set S ∩ T . It is nonempty since it contains u. Let x ∈ S ∩ T .
Let y /∈ S ∩ T . Suppose that there exists a path p = x ↔ · · · ↔ y which neither
passes through u nor t.

Since y /∈ S∩T , either y /∈ S or y /∈ T . Wlog, assume y /∈ T . Then due to the
separability of T , since the path p does not pass through u, it must pass through v
before leaving T to visit y. But v /∈ S so p must also pass through s before leaving
S to visit v since it does not pass through t. But it must pass through v before
leaving T to visit s, which leads to an impossible sequence of events. Therefore
any path x ↔ · · · ↔ y for x ∈ S ∩ T, y /∈ S ∩ T must pass through either u or t.
This contradicts the minimality of both S and T .

This non-overlapping property is also a nesting property. Observe that, due
to Proposition 3, the relation U ≤ V on snarls U, V defined such that U ≤ V if
U is entirely contained in V has the property that if U ≤ V and U ≤ W , then
either V ≤ W or W ≤ V . Therefore the partial order on the snarls of G defined
by the relation ≤ will always be equivalent to a tree diagram. A bottom level
snarl is one which forms a leaf node of this tree.

Fig. 7. The nesting tree diagram of the ultrabubbles from the previous figure. U1 and
U3 are bottom-level

The equivalent of Proposition 3 for superbubbles was stated without proof
by Onodera in [8]. Our proof also constitutes a proof of the statement for super-
bubbles, due to the following proposition, proven by Paten in [9]:
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Proposition 4. Every superbubble in a directed graph corresponds to an ultra-
bubble in the equivalent (see Lemma 1) bidirected graph.

Identifying all superbubbles in a directed graph or all snarls in a bidirected
graph introduces a method of compartmentalizing a graph into partitions whose
contents are all in some sense at the same position in the graph, and for which the
possible internal paths are independent of what path they continue on beyond
their boundaries. We will use this concept to define sites for certain specialized
classes of graphs.

4 Graphs Which Are Decomposable into Nested Simple
Sites

We will extend the theory of ultrabubbles to a theory of nested sites where the
structure of certain graphs can be fully described in terms of combinations of
linear ordering and ultrabubble nesting relationships. This is important for

1. Identifying nested variation
2. Indexing traversals.

4.1 Traversals and Subpaths

An (s, t)-traversal of S is a path in S beginning with s and ending with t.
An (s, s)-traversal and a (t, t)-traversal are analogously defined. Presence of an
(s, s)- or (t, t)-traversal implies cyclicity. Two traversals of a snarl are disjoint if
they are disjoint on S\{s, t}.

Paten’s [9] snarls and ultrabubbles are 2-node separable subgraphs whose
paired boundary nodes isolate their traversals from the larger graph. We can
state this with more mathematical rigor:

Claim. Consider a snarl (S, s, t) in a bidirected graph G. The set of all paths in
G which contain a single (s, t)-traversal as contiguous a subpath is isomorphic
to the set-theoretic product P (s) × Trav(s, t) × P (t) consisting of the three sets

1. P (s) := {paths in G\S terminating in ŝ}
2. Trav(s, t) := {(s, t)-traversals of S}
3. P (t) := {paths in G\S beginning with t̂}
The isomorphism is the function mapping p1 ∈ P (s), p2 ∈ Trav(s, t), p3 ∈ P (t)
to their concatenation p1p2p3.

This property is important because it allows us to express the set of all
haplotypes traversing a given linear sequence of snarls in terms of combinations
of alleles for which we do not need to check if certain combinations are valid.
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4.2 Simple Bubbles and Nested Simple Bubbles

Definition 5. An ultrabubble (S, s, t) is a simple bubble if all (s, t)-traversals
are disjoint.

Simple bubbles are structurally equivalent to (multiallelic) sites consisting of
disjoint substitutions, insertions or deletions, with all alleles spanning the same
boundaries (Fig. 8).

Fig. 8. Three examples of simple bubbles from the 1000 Genomes graph

Proposition 7 below demonstrates that we can identify simple bubbles in
O(|V |) time given that we have found all snarl boundaries. Paten has shown [9]
that identification of snarl boundaries is achieved in O(|E| + |V |) time. To find
the ultrabubbles among these, note that checking for acyclicity is O(|E| + |V |)
on account of the unbranching nature of these snarls’ interiors.

Given a node-side n, write Nb(n) for the set of all neighbors of n. Note that
a ∈ Nb(b) ⇔ b ∈ Nb(a).

Lemma 6 (Nodes in an ultrabubble are orientable with respect to
the ultrabubble boundaries). Given an ultrabubble (S, s, t) and given n ∈
S\{s, t}, consider the set T of all (s, t)-traversals of S passing through n. Then
either

1. ∀p ∈ T , an element of Nb(n) precedes n in p
2. ∀p ∈ T , an element of Nb(n) follows n in p

In the former case we call n s-sided, otherwise we call it t-sided.

Proof. This is a corollary to Lemma 1.

Proposition 7 (Simple bubbles have unbranching interiors). Let (S, s, t)
be an ultrabubble. Then all traversals are disjoint iff every interior node-side has
precisely one neighbor.

Proof. (⇒) Suppose that all (s, t)-traversals of S are disjoint. Suppose ∃ a node-
side n ∈ S\{s, t} with multiple neighbors.

Since n is orientable with respect to (s, t), suppose, without loss of generality,
that it is s-sided. Then there exist distinct paths from s to n passing through
each of its neighbors. Continuing these with a path from nopp to t produces two
nondisjoint traversals of S.
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(⇐) Suppose that every interior node-side has precisely one neighbor. Suppose
that there exist two distinct nondisjoint traversals of S. For no node-side to
have multiple neighbors, they must coincide at every node-side, contradicting the
assumption that they are not the same traversal.

We seek to extend this simple property to more complex graph structures.
We will take advantage of the nesting of nondisjoint ultrabubbles proven in
Proposition 3 to define another structure in which nondisjoint traversals are
easily indexed.

Definition 8. An ultrabubble (S, s, t) ⊆ G is decomposable into nested simple
sites if either:

1. S is a simple bubble
2. if, for every ultrabubble S′ contained in the interior of S, you replace the

ultrabubble with a single edge s − t whenever S′ is decomposable into simple
sites, then S becomes a simple bubble

The following figure demonstrates decomposability into nested simple sites.

Proposition 9. If an ultrabubble (U, s, t) is decomposable into nested simple
sites, then the complete node sequence of any (s, t)-traversal can be determined
only by specifying the path it takes inside those nested ultrabubbles within which
the traversal does not visit any further nested ultrabubble.

Proof. Let p be a (s, t)-traversal of an ultrabubble U which is decomposable into
nested simple sites. Let V be a nested ultrabubble inside U . If p traverses, V ,
write p|V for the traversal p restricted to V (Fig. 9).

Suppose that t|V intersects no nested ultrabubbles within V . Then t|V is dis-
joint of all other traversals within V due to U begin decomposable into nested
simple sites. Therefore specifying any node of t|V uniquely identifies it.

Suppose that t|V intersects some set of ultrabubbles nested within V . Since
U is decomposable into nested simple sites, the nodes of t|V must be linear and
disjoint of all other paths if we replace all ultrabubbles nested in V with edges
joining their boundaries. Therefore specifying which ultrabubbles are crossed
uniquely determines the nodes included in t|V which lie outside of the nested
ultrabubbles in V .

Fig. 9. Left: A nesting of four ultrabubbles. Right: The tree structure to index
traversals of U implied by Proposition 9
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The statement of the proposition follows from the two arguments above by
induction.

Proposition 10. An ultrabubble is decomposable into nested simple sites iff
every node side is either the interior ultrabubble boundary or has precisely one
neighbor.

Proof. This can be established using Proposition 7.

This property allows O(|V | + |E|) evaluation of whether a graph is decom-
posable into nested simple sites, by arguments analogous to those for simple
bubbles.

4.3 A Partial Taxonomy of Graph Notifs Which Do Not Admit
Decomposition into Sites

In Sect. 4.3, we will show that we can decompose a graph into nested simple
sites as defined in the previous section if it lacks a certain forbidden motif. We
will begin with examples of three graph motifs, and the biological events which
might produce them.

We describe some graph features which prevent decomposition into nested
sites below, and the sets of mutations which might have produced them.

1. Two (or more) substitutions or deletions against a linear sequence which
overlap, but not completely (Fig. 10).

2. A substitution (or deletion) which spans elements of sequence on the interior
of two disjoint ultrabubbles. Addition of such an edge joining two ultrabubbles
which were decomposable into nested simple sites will consolidate the two
into a single ultrabubble which is not decomposable into nested simple sites
(Fig. 11).

3. Two SNVs or other simple elements of variation at adjacent positions. This
will be the focus of our Sect. 5.

Fig. 10. Overlapping substitutions (or deletions)

Fig. 11. An edge crossing bubble boundaries.
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4.4 The Relationship Between Nested Simple Sites and Series
Parallel Graphs

The structure of ultrabubbles decomposable into nested simple sites, and their
tree representation (see Fig. 7) might be familiar to the graph theorist familiar
with series-parallel digraphs. The fact that the digraphs equivalent to ultrabub-
bles form a subclass of the two-terminal series-parallel digraphs is interesting
due to the computational properties of the latter class of graphs.

Definition 11. A directed graph G is two-terminal series parallel (TTSP) with
source s and sink t if either

1. G is the two-element graph with a single directed edge s → t
2. There exist TTSP graphs G1, G2 with sources s1, s2 and sinks t1, t2 such that

G is formed from G1, G2 by identification of s1 with s2 as s and identification
of t1 with t2 as t (Parallel addition)

3. There exist TTSP graphs G1, G2 with sources s1, s2 and sinks t1, t2 such that
G is formed from G1, G2 by identification of t1 with s2 (Series addition)
(Fig. 12).

Fig. 12. Top: parallel addition. Bottom: series addition

Two terminal series parallel digraphs have a useful forbidden subgraph char-
acterization.

Proposition 12 (From [12]). A directed graph G is two terminal series parallel
if and only if it contains no subgraph homeomorphic to the graph W shown below
Proof: Refer to Valdes [12] and Duffin [5] (Fig. 13).

Fig. 13. The W motif

Proposition 13. If an ultrabubble (U, s, t) is decomposable into nested simple
sites, then the equivalent directed graph is TTSP with source s and sink t.

Proof. Suppose that the directed graph D(U) equivalent to U (which exists by
Lemma 1) contains a subgraph homeomorphic to W . Then there must be a node-
side u in U with two neighbours a1, a2 which are the beginnings of disjoint paths
p1, p2 ending on node-sides b1, b2 which are neighbours of a node-side v. By
Proposition 10, u and v must be ultrabubble boundaries. Since p1, p2 are disjoint,
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u and v must be opposing boundaries of the same ultrabubble. But the presence
of a subgraph homeomorphic to W also implies that there exists a pair q1, q2
of disjoint paths, one from a node x to û and the other from x to v, both not
passing through u or v̂. But this is not possible since it would contradict 2-node
separability of (u, v).

We highlight the middle “Z-arm” of the W -motif in our first two examples
of ultrabubbles which are not decomposable into nested simple sites.

Fig. 14. Portions of the ultrabubbles 1 and 2 of Sect. 4.2, showing the nodes which
project to the forbidden subgraph W

5 Abutting Variants

We wish to decompose the graph structure of sets of variants lying at adja-
cent positions such that there is no conserved sequence between them able to
form an ultrabubble boundary. We will define a graph motif called the balanced
recombination bundle which corresponds this graph structure, and can be rapidly
detected.

We observe examples abutting single nucleotide variants (SNVs) in the 1000
Genomes polymorphism data Fig. 15. It is a reasonable hypothesis that these
should become more common as the population sizes of sequencing datasets
increases, since, statistically, the distribution of variation across the genome
should grow less sparse as the population increases.

Fig. 15. Two examples of abutting SNVs in the 1000 Genomes graph

5.1 Bundles

Definition 14. An internal chain n1 → n2 → · · · → nk is a sequence of node-
sides such that ∀i, 2 ≤ i ≤ k, ni ∈ Nb(ni−1).

Definition 15. We say that a tuple (L,R) of sets of node-sides is a bundle if
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1. (Matching) ∀� ∈ L,Nb(�) ⊆ R and Nb(�) �= ∅; ∀r ∈ R,Nb(r) ⊆ L and
Nb(r) �= ∅

2. (Connectedness) ∀� ∈ L, r ∈ R, there exists an internal chain � → r1 → �1 →
· · · → rk → �k → r such that ∀i, 1 ≤ i ≤ k, ri ∈ R and �i ∈ L

Definition 16. We say that a tuple (L,R) of sets of node-sides is a balanced
recombination bundle (R-bundle for short) if

1. (Complete matching) ∀� ∈ L,Nb(�) = R and ∀r ∈ R,Nb(r) = L
2. (Acyclicity) L ∩ R = ∅

Lemma 17. A balanced recombination bundle is a bundle.

Proof. Complete matching ⇒ matching.
Complete matching ⇒ connectedness by the chain � → r for all � ∈ L, r ∈ R.

Definition 18. An unbalanced bundle is a bundle which is not a balanced recom-
bination bundle. An unbalanced bundle is acyclic if L ∩ R = ∅.

Definition 19. We say that two bundles (L1, R1), (L2, R2) are isomorphic if
either L1 = L2 and R1 = R2 or L1 = R2 and R1 = L2.

We will describe a O(|V | + |E|) algorithm to detect and categorize bundles
exhaustively for all node-sides in a bidirected graph. To establish the validity of
this algorithm, we need several preliminary results:

Lemma 20. Every q ∈ N is either a tip or an element of a bundle.

Proof. Suppose that q is not a tip. Define a function W that maps a tuple (L,R)
of nonempty sets of node-sides to a tuple W (L),W (R) where

W (R) := R ∪
⋃

�∈L

Nb(�)

W (L) := L ∪
⋃

r∈W (R)

Nb(r)

∀n ∈ N define

Wn((L,R)) := W ◦ · · · ◦ W ((L,R))︸ ︷︷ ︸
n times

W∞((L,R)) := W k((L,R)) for k such that

W k+i((L,R)) = W k((L,R))∀i ∈ N

W∞ exists since Wn is nondecreasing with respect to set inclusion and our graphs
are finite. Now define W (q) := W∞(({q}, Nb(q))), noting that Nb(q) �= ∅ since
{q} is not a tip. Let us write LW ∞ and RW ∞ for the respective elements of
W (q). We claim that W (q) is a bundle.
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Proof of matching: let � ∈ LW ∞ , r ∈ RW ∞ . By construction of W ,

Nb(�) ⊆ W (RW ∞) = RW ∞

Nb(r) ⊆ W (LW ∞) = LW ∞

Proof of connectedness: let � ∈ LW ∞ , r ∈ RW ∞ . We will show that for any
r ∈ RW ∞ , ∃ an internal chain q → r1 → �1 → · · · → rk → �k → r such that
∀i, 1 ≤ i ≤ k, ri ∈ RW ∞ and �i ∈ LW ∞ .

Suppose that r ∈ Nb(q), then we are done. Otherwise, since r ∈ RW ∞ ,
there exists some minimal n ∈ N such that r ∈ the R-set RWn of some
Wn(({q}, Nb(q))). It is straightforward to see that we can then construct an
internal chain q → r0 → �1 → r1 → . . . �n−1 → r such that ∀i, 1 ≤ i ≤ n−1, ri ∈
RW i , �i ∈ LW i . By an analogous argument, we can do the same for an internal
chain � → · · · → r′ for some r′ ∈ Nb(q). Concatenation of the first chain with
the reverse of the second gives our chain � → · · · → r, proving connectedness.

Proposition 21. If q ∈ L for a bundle (L,R), then (L,R) = W (q).

Proof. Suppose that W (q) �= (L,R). Then either L �= LW ∞ or R �= RW ∞ . First,
suppose the latter. Suppose that ∃r ∈ R such that r /∈ RW ∞ . Since (L,R) is a
bundle, we know that there is an internal chain q → r0 → �1 → r1 → · · · →
rk → �k → r with all ri ∈ R, �i ∈ L. But, using the same shorthand as before, it
is also evident that ri ∈ RW i , �i ∈ LW i ∀i, 1 ≤ i ≤ k. But since �k ∈ Nb(r), we
can deduce that r ∈ RWk+1 , which leads to a contradiction since r /∈ RW ∞ .

Suppose otherwise that ∃r ∈ RW ∞ such that r /∈ R. Consider an internal
chain c = q → r0 → �1 → r1 → · · · → rk → �k → r fulfilling the conditions
needed to prove connectedness of W (q). Note that q ∈ L and by matching r0 ∈
Nb(q). But r /∈ R, which leads to a contradiction since it means that there
must exist two consecutive members somewhere in the chain c which cannot be
neighbors.

We say that a node-side n is involved in a bundle (L,R) if n ∈ L or n ∈ R.

Corollary 22 (To Proposition 21). Every non-tip node-side is involved in
precisely one bundle.

5.2 An Algorithm for Bundle-Finding

The diagram in Fig. 16 demonstrates our algorithm for finding the balanced
recombination bundle containing a query node-side q if it is contained in one,
and discovering that it is not if it is not. The is written in pseudocode below,
with an illustration following.

In order to prove that this is a valid algorithm for detection of balanced
recombination bundles, we need the following lemma.

Lemma 23. Let (L,R) be a tuple of sets of node-sides. If ∃q ∈ L such that
∀a ∈ Nb(q),∀b ∈ Nb(a), Nb(b) ⊆ Nb(q) but Nb(q) ⊂ R, then (L,R) cannot be
connected (in the sense of Definition 15).
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Algorithm 1. Balanced recombination bundle finding
Data: Node-side q
Result: Bundle containing q if it is in a balanced recombination bundle, ∅ if q

is in an unbalanced bundle or is a tip
begin

if Nb(q) = ∅ then return ∅

A ←− Nb(q)
B ←− Nb(R[0])
if A ∩ B �= ∅ then return ∅

else
for a ∈ A\{R[0]} do

if Nb(a) �= B then return ∅

for b ∈ B\{q} do
if Nb(b) �= A then return ∅

return tuple (A,B)

Proof. Let B =
⋃

a∈Nb(q) Nb(a). We know that ∀b ∈ B,Nb(b) ⊆ Nb(q). Suppose
that (L,R) is connected. Choose r ∈ R\Nb(q). Then ∃ an internal chain c =
q → r1 → �1 → · · · → rk → �k → r with ri ∈ R, �i ∈ L∀i. Since q ∈ B,
Nb(b) ⊆ Nb(q)∀b ∈ B, and Nb(a) ⊆ B ∀a ∈ Nb(q), it is impossible that the
sequence of node-sides c is both a valid internal chain and ends with r. Therefore
(L,R) cannot be connected.

Proposition 24 (Validity of Algorithm1). This algorithm detects all bal-
anced recombination bundles, and rejects all unbalanced recombination bundles.

Proof. Suppose q is involved in a balanced recombination bundle (L,R). W.l.o.g.
suppose that q ∈ L. Due to the complete matching property, the set Nb(q) in the
algorithm is guaranteed to be equal to R. Due to the completeness property, the
set Nb(R[0]) in the algorithm is guaranteed to be equal to L. It is evident that
the algorithm directly verifies complete matching and acyclicity.

Suppose otherwise. Assuming we have eliminated all tips, which can be done
in O(|V |) time, Lemma 20 proves that q is involved in an unbalanced bundle B.
If B fails acyclicity but not complete matching, then checking that A ∩ B = ∅

will correctly detect that L ∩ R �= ∅.
Otherwise, suppose that B fails complete matching. Suppose first that

Nb(q) ⊂ R. We assert that ∃a ∈ Nb(q) such that ∃b ∈ Nb(a) such that
∃c ∈ Nb(b) such that c /∈ Nb(q). This event will be detected by the second loop
of the algorithm. This follows from the connectedness of B and Lemma 23.

Suppose otherwise that Nb(q) = R but ∃r ∈ R such that Nb(r) ⊂ L. Let
c ∈ L\Nb(r). By matching, ∃r′ ∈ R such that r′ ∈ Nb(c). Therefore Nb(r) and
Nb(r′) will be found to be unequal in the first loop of the algorithm.

Suppose otherwise that Nb(q) = R, Nb(r) = L∀r ∈ R, but ∃� ∈ L such that
Nb(�) ⊂ R. Then we will find in the second loop that Nb(�) �= Nb(q).
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Fig. 16. Illustration of Algorithm 1 returning a positive result

Proposition 25 (Speed of Algorithm 1). We can identify all balanced
recombination bundles, all unbalanced bundles and all tips in O(|E| + |V |) time
(Fig. 16).

Proof. We depend on a neighbor index giving us O(|Nb(n)|) iteration across
neighbors of a node-side n.

We begin by looping over all node-sides and identifying all tips, which is
achieved in O(|V |) time. We then loop again over all remaining node-sides. At
each node-side q, we run the function describe above, which, if q is involved in
a balanced recombination bundle, will return the bundle B = W (q). It is evident
that this function runs in O(|EB |) time, seeing as it loops over each edge of
B twice—once from each side—each time making an O(1) set inclusion query.
After B is built, all nodes are marked such that they are skipped when they are
encountered in the global loop. This gives overall O(|EB |+|VB |) exploration of B.

If q is involved in an unbalanced bundle B = W (q), this fact is detected by
the same function in O(|EB |) time. In this case, we can find all nodes of B by
performing a breadth-first search. Examination of the W -function will convince
the reader that a breadth-first search will find all node-sides of B in O(|EB | +
|VB |) time. We follow the same procedure of marking all these node-sides to be
skipped in the global loop.

This proves that, after eliminating tips in O(|V |) time, we can build the
set B of all non-isomorphic bundles B, and decide whether they are balanced
recombination bundles, in time proportional to

∑
B∈B

|EB | + |VB |. But Lemma
20 and Corollary 22 tell us that V = {v : v is a tip} ∪ ⋃

B∈B
VB, and that

all elements of this union of node-sides are disjoint. Furthermore, due to the
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matching property of bundles, E =
⋃

B∈B
EB, and all elements of this union of

edges are disjoint. Therefore, our method is O(|V | + |E|).

5.3 Bundles and Snarl Boundaries

Definition 26. Given a “boundary” node-side b = s or t of a snarl (S, s, t),
we call the tuple (b,Nb(b)) a snarl comb. A snarl comb is called proper if ∀n ∈
Nb(b), Nb(n) = {b} and b /∈ Nb(b).

It is easy to verify that a proper snarl comb is a balanced recombination
bundle. It is also easy to see that an improper snarl comb is, according to set
inclusion of tuples, a proper subset of a unique bundle.

Proposition 27 (Bundles do not cross snarl boundaries). Let (S, s, t) be
a snarl. Suppose that B = (L,R) is a bundle. Then either all node-sides involved
in B are members of S, or no node-side involved in B is a member of S.

Proof. Suppose that there exists a bundle B = (L,R) with node-sides both within
S and not within S. Let x, y be involved in B, with x ∈ S, y /∈ S. W.l.o.g.,
suppose x ∈ L, y ∈ R. This implies that there exists an internal chain p = x →
· · · → y. But then this implies that there exists a ∈ S, b /∈ S such that a ∈ Nb(b),
which would allow us to use the edge a → b to create a path violating the 2-node
separability of S.

5.4 Defining Sites Using Bundles

Definition 28. An ordered pair (B1, B2) of balanced recombination bundles is
compatible if either

1. ∀x ∈ R1, x̂ ∈ L2, and ∀y ∈ L2, ŷ ∈ R1

2. ∃ a bijection f : L1 −→ R2 such that ∀x ∈ R1, there exists a unique path p(x)
from x → · · · → f(x), and all paths p(x) are disjoint.

Definition 29. If two recombination bundles are compatible, we define the set
p(x) to be a bundled simple site P .

Claim. Consider a bundled simple site P in a graph G, lying between compatible
balanced recombination bundles B1, B2. The set of all paths in G which contain
paths p ∈ P as contiguous subpaths is isomorphic to the set-theoretic product
P (L1) × P × P (R2) consisting of the three sets

1. P (L1) := {paths in G\S terminating in x, for some x ∈ L1}
2. P
3. P (R2) := {paths in G\S beginning with y, for some y ∈ R2}
under the function mapping p1 ∈ P (L1), p ∈ P, p2 ∈ P (R2) to their
concatenation.
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We will call a balanced recombination bundle B = (L,R) trivial if both L
and R are singleton sets.

Definition 30. An ultrabubble (U, s, t) is a generalized simple bubble if

1. ({s}, Nb(s)) and (Nb(t), {t}) are balanced recombination bundles
2. The set of all non-trivial balanced recombination bundles admits a linear

ordering X → B1 → . . . Bk → Y such that X and Y are either of ({s}, Nb(s))
and (Nb(t), {t}), X is compatible with B1, every Bi is compatible with Bi+1,
and Bk is compatible with Y .

Definition 31. An ultrabubble U is decomposable into nested generalized sites
if either:

1. It is a generalized simple bubble
2. When each ultrabubble (V, u, v) nested in U which is a decomposable into

nested generalized sites is replaced with a single edge spanning u and v, then
U is a generalized simple bubble (Fig. 17).

Fig. 17. An ultrabubble decomposable into nested generalized sites; some sites marked

We sketch a linear-time method of building sites from a tree diagram of
nested ultrabubbles. We run Algorithms 2 and 3 starting at bottom-level nested
ultrabubbles. If ultrabubble has all nontrivial balanced recombination bundles
paired, then, when we evaluate the ultrabubble containing it, we represent it as
a single edge from its source to sink.

In Algorithm 3, which follows below, we refer to the individual sets of node-
sides forming the tuples (L,R) of a bundle as bundle-sides.

5.5 Bundles Containing Deletions

Our bundles—and therefore our sites—fail to detect the graph motifs formed by
deletions spanning otherwise well-behaved variants. We define a special, well-
behaved subclass of unbalanced bundle to address this (Fig. 18).

Definition 32. A deletion bundle-pair is a tuple (LA, RA, LB , RB) such that

1. ∀� ∈ LA,∀r ∈ RA, {�, r} ∈ E
2. ∀� ∈ LA,∀r ∈ RB , {�, r} ∈ E
3. ∀� ∈ LB ,∀r ∈ RB , {�, r} ∈ E
4. ∃ no other edge involving any node-side n ∈ LA, LB , RA or RB.
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Algorithm 2. Finding spans connecting bundles
Data: Ultrabubble U , and set B of balanced recombination bundles
Result: Set P of spans of unbranching sequence in U
begin

T ←− vector of all trivial bundles in B

NT ←− map (N → T) of node-sides to trivial bundles which contain them
for each trivial bundle t = ({tl}, {tr}) ∈ T do

if NT[t̂r] is found then
({ul}, {ur}) ←− NT[t̂r]
replace ({ul}, {ur}) in T with ({tl}, {ur})
flag ({tl}, {tr}) as having been right-extended

P ←− ∅

for t = ({tl}, {tr}) ∈ T do
if t not flagged as having been right-extended then P ←− P ∪ {t}

return P

Algorithm 3. Finding compatible bundles
Data: Ultrabubble U , set P of node-side tuples containing endpoints of

spanning segments, and set B of balanced recombination bundles
Result: Set C of all compatible pairs of bundle-sides
begin

NP ←− map (N → P) of node-sides of p ∈ P to elements of P

NB ←− map (N → B) of node-sides to bundles-sides of nontrivial R-bundles
C ←− ∅

for R-bundle side X ∈ B do
x ←− X[0]
R-bundle side Xopposite ←− ∅, Y ←− ∅

if x̂ found in NB then
Xopposite ←− NB[x̂]
Y ←− {x̂}

else if x̂ found in NP then
y ←− node-side of NP[x̂] which isn’t x̂
Xopposite ←− NB[ŷ]
Y ←− {ŷ}

if Xopposite �= ∅ and |Xopposite| = |X| then
for a ∈ X\x do

if x̂ found in NB then Y ←− Y ∪ {x̂}
else if x̂ found in NP then

y ←− node-side of NP[x̂] which isn’t x̂
Y ←− Y ∪ {ŷ}

if Y = Xopposite then
C ←− C ∪ {(X,Xopposite)}

return C
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Fig. 18. Two examples of deletion bundle-pairs

These structures occur when two balanced recombination bundles on either
side of some span of graph are bridged by deletions. It remains necessary to
check that there is graph structure joining the nodes of RA to LB for this to be
the case.

Algorithm 4 below will detect deletion bundle pairs from among the set of
unbalanced bundles in linear time.

Proposition 33. Given a set of acyclic unbalanced bundles, this algorithm finds
those among then which are deletion bundle pairs.

Proof. Suppose that q is involved in a deletion bundle pair (LA, RA, LB , RB).
W.l.o.g, either q ∈ LA or q ∈ LB.

Suppose first that q ∈ LB: In this case, Nb(q) = RB. We then know that
∀a ∈ RB, Nb(a) = LA∪LB. This will trigger the condition L2 = ∅. The elements
of a ∈ L1 will segregate into precisely two groups: one such that Nb(a) = RB—
the elements a ∈ LB, and another group such that Nb(a) = RA ∪ RB—the
elements a ∈ LA. If these conditions are fulfilled, we then build RA and RB. It
remains to verify that ∀b ∈ RA, Nb(b) = LA, and ∀b ∈ RB , Nb(b) = LA ∪ LB.

Suppose otherwise that q ∈ LA: In this case, Nb(q) = RA ∪ RB. This will
trigger the condition L2 �= ∅ since the elements b ∈ Nb(q) will segregate into
two groups: RA, where if b ∈ RA, Nb(b) = LA and RB, where if b ∈ RB, Nb(b) =
LA∪LB. If this condition is met, then it remains to check that ∀a ∈ LA, Nb(a) =
RA ∪ RB and ∀a ∈ LB , Nb(a) = RB.

Suppose otherwise that q is not involved in a deletion bundle pair. Suppose
that Algorithm 4 does not fail, returning ∅. There are two possibilities then for
the nature of the unbalanced bundle (L,R) for which q ∈ L.

First, suppose the condition L2 = ∅ was triggered. The ∃q ∈ L such that,
where L′ := {l ∈ L | l ∈ Nb(a) for some a ∈ Nb(q)}, Nb(�) ⊆ Nb(q) ∀� ∈ L′.
Then by Lemma 23, Nb(�) ≥ Nb(q)∀� ∈ L. Therefore it must be that Nb(q) = R.
Furthermore, to pass the search for RA, there must ∃RA such that if � ∈ L
and Nb(�) �= R, then Nb(�) = RA. Furthermore, to pass the conditions of the
subsequent two loops, it must be that ∀r ∈ R\RA, all Nb(r) are the same, and
∀r′ ∈ RA, all Nb(r′) are the same. Furthermore, to pass the last condition
checked, must be that Nb(r′) from the latter group ⊂ Nb(r). And since LA :=
{� ∈ L | Nb(�) = R} and LB := {� ∈ L | Nb(�) = RB} are such that LA ∩ LB =
∅, LA ∪ LB = L, these conditions all together ensure that (L,R) is a deletion
bundle pair.

Otherwise, Nb(q) segregates into two disjoint subsets RA := {r ∈
Nb(q) | Nb(r) = LA}, RB := {r ∈ Nb(q) | Nb(r) = LA ∪ LB for some
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Algorithm 4. Deletion bundle pair finding
Data: Node-side q known to be in an acyclic unbalanced bundle
Result: Deletion bundle-pair containing q if it is in a deletion bundle-pair, ∅

otherwise
begin

LA, RA, LB , RB ←− ∅

Rtemp ←− Nb(q)
L1 ←− Nb(Rtemp[0]), L2 ←− ∅

for a ∈ Rtemp\{Rtemp[0]} do
if Nb(a) �= L1 then

if L2 = ∅ then L2 ←− Nb(a)
else if Nb(a) �= L2 then return ∅

if L2 �= ∅ then
if L2 ⊂ L1 then LA ←− L2, and LB ←− L1\L2

else if L1 ⊂ L2 then LA ←− L1, and LB ←− L2\L1

else return ∅

Rtemp ←− Nb(LB [0])
for a ∈ LB\{LB [0]} do

if Nb(a) �= Rtemp then return ∅

Rtemp ←− Nb(LA[0])
for a ∈ LA\{LA[0]} do

if Nb(a) �= Rtemp then return ∅

if Nb(LB [0]) ⊂ Nb(LA[0]) then
RB ←− Nb(LB [0])
RA ←− Nb(LA[0])\Nb(LB [0])

else return ∅

else
RB ←− Nb(q)
for a ∈ L1\{q} do

if Nb(a) �= RB then
if RA = ∅ then

if RB �⊂ Nb(a) then return ∅

else RA ←− Nb(a)\RB

else if Nb(a) �= RA ∪ RB then return ∅

if RA = ∅ then return ∅

LA ←− Nb(RA[0])
for a ∈ RA\RA[0] do

if Nb(a) �= LA then return ∅

Ltemp ←− Nb(RB [0])
for a ∈ RB\RB [0] do

if Nb(a) �= Ltemp then return ∅

if LA ⊂ Ltemp then LB ←− Ltemp\LA

else return ∅

return tuple (LA, RA, LB , RB)
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LA, LB ⊂ L such that LA ∩ LB = ∅. To pass further conditions, it is neces-
sary that ∀� ∈ LB , Nb(�) = RB and ∀� ∈ LA, Nb(�) = RA ∪ RB. It remains to
show that LA ∪ LB = L and RA ∪ RB = R, these can be proven by application
of Lemma 23. Therefore in this case, it must also be that (L,R) is a deletion
bundle pair.

Proposition 34. This algorithm finds deletion bundles in O(|E| + |V |) time.

Proof. Note that a deletion bundle-pair is a special type of unbalanced bundle.
Therefore, if, given an unbalanced bundle B, we can check whether it is a deletion
bundle-pair in O(|EB | + |VB |) time, by the arguments of Proposition 21, we can
find all deletion bundle-pairs in O(|E| + |V |) time.

Inspection of the algorithm shows that, like the algorithm for identifying bal-
anced recombination bundles, it performs two O(1) set-inclusion queries per edge,
making it O(|EB |) overall.

6 Discussion

Graph formalism has the potential to revolutionize the discourse on genetic vari-
ations by creating a model and lexicon that more fully embraces the complexity
of sequence change. This is vital: the current linear genome model of a reference
sequence interval and alternates is insufficient. It fails to express nested variation
and can not properly describe information about the breakpoints that comprise
structural variations.

The introduction, in order, of bubbles, superbubbles, ultrabubbles and snarls
progressively generalizes the concept of a genetic site to accommodate more gen-
eral types of variation using progressively more general graph types. In this paper
we both review and build on these developments, showing how the recently intro-
duced ultrabubbles can be furthered sub-classified using concepts from circuit
theory. This expands the simple notion of proper nesting described in the original
ultrabubble paper. Furthermore, we describe how we can extend the theory of
ultrabubbles by generalizing ultrabubble boundaries to another sort of boundary
structure—the bundle—which allows us to describe regions where variants are
packed too closely to be segregated into separate ultrabubbles.

Our methods are powerful in decomposing dense collections of nested or
closely packed variation into meaningful genetic sites. We anticipate that these
structures will become increasingly common in the analysis of variation using
graph methods, as sequencing datasets containing variation from increasing num-
bers of individuals become available.
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Abstract. Graphs are the most suited data structure to summarize the
transcript isoforms produced by a gene. Such graphs may be modeled
by the notion of hypertext, that is a graph where nodes are texts rep-
resenting the exons of the gene and edges connect consecutive exons of
a transcript. Mapping reads obtained by deep transcriptome sequencing
to such graphs is crucial to compare reads with an annotation of tran-
script isoforms and to infer novel events due to alternative splicing at
the exonic level.

In this paper, we propose an algorithm based on Maximal Exact
Matches that efficiently solves the approximate pattern matching of
a pattern P to a hypertext H. We implement it into Splicing Graph
ALigner (SGAL), a tool that performs an accurate mapping of RNA-seq
reads against a graph that is a representation of annotated and poten-
tially new transcripts of a gene. Moreover, we performed an experimen-
tal analysis to compare SGAL to a state-of-art tool for spliced alignment
(STAR), and to identify novel putative alternative splicing events such as
exon skipping directly from mapping reads to the graph. Such analy-
sis shows that our tool is able to perform accurate mapping of reads to
exons, with good time and space performance.

The software is freely available at https://github.com/AlgoLab/galig.

Keywords: Approximate sequence analysis · Next-generation sequenc-
ing · Alternative splicing · Graph-based alignment

1 Introduction

Typical new sequencing technologies experiments produce millions, or even bil-
lions, of reads [8]. Although the amount of transcriptomic sequencing data is
smaller compared to the genomic one, the problem of aligning RNA-seq reads to
a reference genome is much more complicated than that of mapping DNA-seq
reads to the same reference, since RNA-seq reads reflect the biological process
of alternative splicing, by which introns are removed from the DNA. Thus,
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a RNA-seq read may span two or more coding regions (also called exons) that
are separated by hundreds or even thousands nucleotidic bases (introns) in the
genome. The spliced alignment may be complicated by the repetitive structure
of the genomic regions and by the short length of NGS reads. Spliced alignment
is usually the first step of procedures that analyze gene expression from RNA-
seq data [6,18] that try to reconcile the alignments to identify the presence of
novel splicing events w.r.t. a specific gene annotation or gene structure, given,
for example, as splicing graph [2,7].

When the annotation of the transcripts of the genes is available, the problem
of transcriptome read alignment can be modeled as an approximate (since errors
in the reads may occur) pattern matching to a hypertext or to a graph whose
nodes are texts, that is, matching a pattern to a path of the graph allowing errors.
The use of a hypertext allows to compute more accurate read alignments that,
in turn, can be used to retrieve information that otherwise cannot be directly
derived from the spliced alignments to a reference genome. Indeed, the hypertext
models the gene structure in a concise and precise way w.r.t. a plain representa-
tion of a reference genome, and performing pattern matching to the hypertext
can reveal details on how a read covers isoforms and splice junctions of a gene.
The pattern matching to a hypertext problem was originally studied by Manber
and Wu [12] who proposed a O(|V | + m|E| + occ lg lg m) time algorithm, where
V is the set of vertices of the hypertext, E is the set of edges, m the length of the
pattern, and occ the number of matches. In 2000, Amir [1] proposed a solution to
this problem by giving an algorithm with time complexity O(m(n lg m + |E|)),
where n is the total length of the hypertext. Since then, time complexity has
been improved to O(m(n + |E|)) by Navarro [13]. Thachuk [17] was the first to
propose the usage of a succinct data structure to compute exact pattern match-
ing in a hypertext, describing a very efficient algorithm with time complexity
O(

m lg |Σ| + γ2
)
, where γ is number of occurrences of the node texts as sub-

strings of the pattern and Σ is the alphabet size, but did not provide a solution
to the approximated version of the problem.

In this paper, we propose an efficient algorithm for the approximate pattern
matching to a hypertext problem and we implement it into a practical tool with
the specific aim of mapping RNA-seq reads to a splicing graph. Our algorithm
uses the same notion of Maximal Exact Matches (MEMs) of [14]. The algorithm
by Ohlebusch et al. efficiently computes, in linear time with the length of the
pattern and the number of MEMs, all the MEMs between a text and a pattern
using the FM-index of the former by a backward search procedure. Our algorithm
mainly consists of two steps: (i) the detection of MEMs between the pattern
and the hypertext and (ii) the construction of a graph connecting MEMs that
are consecutive both in the pattern and in the hypertext, allowing also errors.
Finally, all the paths representing the best approximate mappings between the
pattern and the hypertext are output.

There are some advantages in directly mapping reads to splicing graphs, even
when the annotation is not complete. Indeed, by augmenting the hypertext with
novel edges respecting the topological order of the nodes, it is possible to detect



Approximate RNA-seq Matching to a Hypertext 51

novel alternative splicing events, such as exon skipping, by directly testing the
existence of approximate matchings to the added edges.

For this purpose, we implemented our approach in a tool called Splicing Graph
ALigner (SGAL from now on), and we run an experimental analysis of it on RNA-
seq data obtained by the sequencing of the Toxoplasma organism [20]. The anno-
tation of this parasite is still incomplete and, thus, our tool has the potential to
play an important role in enriching it. To evaluate the performance of SGAL, we
also performed a quantitative analysis by measuring the time and space require-
ments of our implementation and compared it with one of the most used spliced
aligner (STAR [6]). The results shows that SGAL is competitive in dealing with real
RNA-seq data and offers a good scalability which is promising for future analysis
involving Third-Generation Technologies data.

2 Preliminaries

Given a string S over an alphabet Σ, then S[i] and S[i, j] denote the ith character
and the substring from the ith to the jth character of S, respectively.

A hypertext H is a directed graph (V,E) where each node v ∈ V is labeled by
a string Tv over the alphabet Σ. In this work, we will focus on acyclic hypertexts,
that is DAGs. A path π = 〈v1, v2, · · · , vn〉 of H represents the string produced
by the concatenation of the labels of its nodes.

We say that a string S fully-covers the path π if S consists of the string
T ′ ·Tv2 ·Tv3 , · · · , ·Tvn−1 ·T ′′ where T ′ is a suffix of Tv1 (or the entire Tv1) and T ′′

is a prefix of Tvn
(or the entire Tvn

). We say that a string P over Σ (pattern)
matches a path π, if there exists a string S that fully-covers π which differs from
P for a limited number of errors. Let σH = 〈v1, v2, · · · , v|V |〉 be a topological
sorting of the nodes of a hypertext H = (V,E) [4, Sect. 22.4]. Then, the Hypertext
Serialization of H w.r.t. σH is the string TH = φTv1φTv2φ · · · φTv|V |φ obtained
by concatenating the labels of the nodes taken in the same order as σH and
interposing between them a special character φ, lexicographically smaller than
any c ∈ Σ. In the following, given a position j on TH such that TH [j] �= φ,
we denote by map(j) the node vi of H such that j > i + Σi−1

k=1|Tvk
| and j <

i + Σi
k=1|Tvk

| + 1. Informally, map(j) is the node vi of H whose label Tvi
in TH

ACTA GGCCTAT TCGGATA GATCAAACC GGAAT ATCC TTGCAAATTG

TH = φACTA GGCCTAT φTCGGATAφ GATCAAACC φ GGAAT ATCCφTTGCAAATTGφ

P = GGCACTATGATCCAACCGGAT

Fig. 1. An example of a Hypertext H = (V,E) with its serialization TH is shown.
Moreover, the approximate alignment of a pattern P to TH is highlighted by shadowed
boxes.
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contains position j. Moreover, we denote by start(j) = i + Σi−1
k=1|Tvk

| + 1 and
end(j) = i+Σi

k=1|Tvk
| the start and the end position of the label Tvi

containing
index j inside TH , respectively. An example of hypertext serialization is shown
in Fig. 1.

Hypertexts are elegant and straightforward representations of collections of
texts. One of the most interesting problems concerning this data structure asks
for finding all the occurrences of a given string in the hypertext; such problem
is usually referred to as Approximate Pattern Matching in Hypertexts problem
(APMH), and can be formalized as follows. Given a hypertext H, a pattern
P , and a threshold ε, find all the paths of H to which a string S, having edit
distance from P smaller than ε, matches. An example is given in Fig. 1.

Given two strings T and P of length n and m respectively, a Maximal Exact
Match (MEM) between T and P is a triple (t, p, �) such that: (i) T [t, t+ �− 1] =
P [p, p + � − 1], (ii) p + � − 1 = m or t + � − 1 = n or T [t + �] �= P [p + �],
and (iii) p = 1 or t = 1 or T [t − 1] �= P [p − 1]. Informally, a MEM represents
a common substring of length � between T and P that cannot be extended in
either direction without introducing a mismatch. Computing MEMs between
two strings is a widely studied problem in the literature. In 2010, Ohlebusch
et al. [14] proposed a method to efficiently compute MEMs in time linear to the
length of the pattern and the number of the MEMs and in compressed space, by
using enhanced compressed suffix arrays.

3 Methods

In this section we propose an algorithm to solve the APMH. Given a hypertext
H, a pattern P , two integers L and K, an error threshold ε, and a value C ∈ [0, 1]
corresponding to the minimum coverage of P , our method can be summarized
into the following steps: (1) H is serialized into the text TH , (2) all the MEMs
having a minimum length L between P and TH are computed, (3) the MEMs
are processed in order to construct the paths linking MEMs having distance
up to K and covering more than C · |P | positions of P , and (4) all the matching
substrings having edit distance smaller than ε are extracted from those paths.
In the following, we consider n as the length of the serialized text TH and m as
the length of pattern P .

Since MEMs are computed between two strings, the graph H needs to be
serialized into a text, so as a first step our procedure computes a unique string
TH from the topological sorting [4, Sect. 22.4] of the vertices of H. The second
step computes the set M of MEMs between P and TH by using the procedure
backwardMEM proposed by Ohlebusch et al. [14], which employs enhanced com-
pressed suffix arrays. Notice that, other approaches to compute MEMs, such as
essaMEM by Vyverman et al. [19], are available in the literature and could be
used in this step. The third step processes the set M of MEMs. Before describ-
ing this step we must introduce the MEM-graph G = (M,EM ), where the edge
set EM gives all the K-consecutive pairs (m1,m2) of MEMs. More in detail, we
say that a pair of MEMs (m1,m2), where m1 = (t1, p1, �1) and m2 = (t2, p2, �2),
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Fig. 2. K-consecutivity: in (a) an example of Pattern-K-consecutivity of two MEMs m1

and m2. In (b) an example of Hypertext-K -consecutivity of two MEMs m1 and m2.

is K-consecutive if it is both Pattern-K-consecutive and Hypertext-K-consecutive.
Formally, (m1,m2) is Pattern-K-consecutive if: (i) p1 < p2, (ii) p1 + �1 < p2 + �2,
and (iii) either p2−p1−�1 ≤ K if p2 ≥ p1+�1 or p1+�1−p2 ≤ K if p2 < p1+�1.
Observe that the first condition requires that the begin of m1 is before the begin
of m2 on P , the second one requires that the end of m1 is before the end of m2

on P , and the third one allows a limited gap or a limited overlap between the
two MEMs (see Fig. 2(a)).

Moreover, we say that the pair of MEMs (m1,m2) is Hypertext-K-consecutive
in two cases based on the fact that m1 and m2 are in the same node of H or not.
In the former situation, that is, positions t1 and t2 are in the same label Tvi

of
the serialization text TH , we say that (m1,m2) is Hypertext-K-consecutive if: (i)
t1 < t2, (ii) t1 + �1 < t2 + �2, and (iii) either t2 − t1 − �1 ≤ K if t2 ≥ t1 + �1 or
t1 + �1 − t2 ≤ K if t2 < t1 + �1. Observe that these are the same conditions of
the Pattern-K-consecutivity (see Fig. 2(a)). In the latter case, that is, positions
t1 and t2 are in two different labels Tvi

and Tvj
of the serialization text TH , we

say that (m1,m2) is Hypertext-K-consecutive if: (i) there exists the edge (vi, vj)
in H, (ii) e − t1 − �1 + 1 ≤ K, and t2 − b ≤ K. The second condition requires
that m1 and m2 map to two substrings sufficiently close to the right end of the
label Tvi

and to the left end of the label Tvj
, respectively (see Fig. 2(b)). Notice

that, the value of K should be greater than that of L in order to be able to find
and possibly connect MEMs separated by more than K positions, in which no
other MEM having length at least L is found.

In order to test the K-consecutivity of two MEMs m1 and m2 on TH , we
need to efficiently compute vi = map(t1), vj = map(t2), b = start(t2), and
e = end(t1). Recall that, given a position t on TH , map(t) is the node of H whose
label contains position t, while start(t) and end(t) are the start and the end
position of the label inside TH , respectively. To this aim, we use a bit vector B
such that B[i] = 1 if and only if TH [i] = φ, otherwise B[i] = 0. In general, a
bit vector B is a binary vector of length n, that is, ∀i 1 ≤ i ≤ n,B[i] ∈ {0, 1},
supporting in O(1) time the following operations: (i) rankb(B, i), returning the
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number of bits b ∈ {0, 1} in the first i elements of B, and (ii) selectb(B, i),
returning the position of the ith bit b ∈ {0, 1} in B. Thus, the function map(t) is
computed as rank1(B, t), while the functions start(t) and end(t) are computed
as select1(rank1(B, t)) + 1 and select1(rank1(B, t) + 1) − 1, respectively.

Now we are able to describe the MEM-Graph G, which allows to retrieve
all the paths of H to which P matches. Given the MEM-Graph G, let PG =
〈m1 = (t1, p1, �1),m2 = (t2, p2, �2), · · · ,mn = (tn, pn, �n)〉 be a source-sink path
composed of n MEMs. Let us consider the set P = {map(t) | t ∈ {t1, t2, · · · , tn}}
which is a subset of the nodes of the hypertext H, and it is possible to
show that, after a topological sorting, P corresponds to a path of H. Let
P = {v1, v2, · · · , vq} be those nodes after topological sorting. Observe that n ≥ q
since two MEMs can refer to the same node. It is possible to prove that the MEMs
of the path PG follows this order and, moreover, m1 occurs in the label Tv1 of
v1 and mn occurs in the label Tvq

of vq. Let SPG = T ′Tv2 · · · Tvq−1T
′′, where T ′

is the suffix of the label Tv1 starting at position t1 and T ′′ is the prefix of Tvq

ending at position tn + �n, and let SP = P [p1, pn + �n − 1] be the substring of P
starting at p1 and ending at pn + �n − 1. If the strings SPG and SP have ε′ ≤ ε
errors, then SPG is a candidate matching string, which could correspond to the
entire pattern P or a substring of it, and P is candidate to be a path of H to
which P matches. More precisely, if SPG does not match the entire pattern, then
a prefix P ′ of length p1 − 1 and a suffix P ′′ of length |P | − pn − �n + 1 of P are
not part of the matching. This is due to the fact that there are no MEMs having
length at least L in those two regions. In this case, to have a candidate matching
string, the both errors between P ′ and the region on the hypertext before the
occurrence of MEM m1, and between P ′′ and the region on the hypertext after
the occurrence of MEM mn must be lower than ε − ε′, since ε′ errors are those
in the substring SPG of the pattern already matching.

In any case, we are interested in matches where the discarded prefixes and
suffixes are sufficiently short, that is, we want to guarantee a sufficiently high
coverage of the matching region over P . For this reason, the third step of our
algorithm computes from the set M of MEMs, the subgraph G′ = (M ′, EM ′) of
G (called reduced MEM-Graph), containing only the source-sink paths 〈m1 =
(t1, p1, �1), · · · ,mn = (tn, pn, �n)〉 having p1 ≤ (1−C) ·m+1 and pn+ ln ≥ C ·m
(recall that C ∈ [0, 1] is the minimum coverage of P ). The rationale is that, if
p1 > (1 − C) · m + 1, the length of the discarded prefix is likely to be too high,
since we expect to have too many errors in the prefix P [1, p1 − 1]. Analogously,
if pn + ln < C ·m, the length of the discarded suffix is likely to be too high, since
we expect to have too many errors in the suffix P [pn + ln,m]. For this reason, a
source node mf = (tf , pf , �f ) is added to G′ if and only if pf ≤ (1 − C) · m + 1
while each sink node me = (te, pe, �e) in G′ such that pe + �e ≥ C · m is labeled
as valid. Thus, the graph G′ is visited from valid sink nodes to source ones to
avoid visiting the paths of G′ which are likely to lead to a bad matching.

The reduced MEM-Graph G′ = (M ′, EM ′) is built by processing the set M
of MEMs between P and TH , by increasing values of their positions on the
pattern P . To improve the efficiency, M is stored in a vector LM of length
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m such that LM [p] is the list of MEMs starting at position p of P . Initially,
M ′ and EM ′ are set as empty. Then, the algorithm considers each position pi
on P and the list LM [pi] of MEMs starting at pi is retrieved. For each MEM
mi = (ti, pi, �i) in LM [pi], if mi is not in M ′ and pi > (1 − C) · m + 1, it is
skipped. Otherwise, mi is added to M ′ and the algorithm selects all the MEMs
in (LM [pi + �i − K], . . . , LM [pi + �i + K]) that are Pattern-K-consecutive and
Hypertext-K-consecutive with mi and saves them in a set Mj . After that, for
each mj = (tj , pj , �j) ∈ Mj , the algorithm adds the node mj to M ′ and the edge
(mi,mj) to EM ′ . Finally, if pj + lj ≥ C · m, mj is labeled as valid.

In the last step of the algorithm, G′ is visited using a Depth-First Search,
starting from each sink vertex labeled as valid, to retrieve all the paths corre-
sponding to candidate matchings strings and the ones that do not correspond to
the entire pattern are extended as described above.

4 Experimental Analysis

We developed a tool that implements the APMH algorithm we proposed in
Sect. 3 in order to perform the approximate mapping of RNA-seq data to splic-
ing graphs (hypertexts), and we assessed its performance on a real dataset. Such
tool, called SGAL, takes as input a GFF file containing the annotation of the tran-
scripts of a gene, a FASTA file containing the reference sequence, a FASTA file
containing a set of RNA-seq reads, and four parameters L, K, ε and C (see
Sect. 3), which are the minimum length of the considered MEMs, the parameter
of consecutivity between two MEMs in the MEM-graph, the error threshold, and
the minimum coverage, respectively. The tool computes the approximate align-
ments between the splicing graph and the RNA-seq reads, and outputs them in
SAM format [11]. More precisely, a preprocessing module of the tool implemented
in Phyton builds the splicing graph summarizing the annotated transcripts [7]
from the GFF file and FASTA file of the reference sequence, and it also performs
the transitive closure of the graph to represent all possible transcripts generated
from the same set of exons. The new graph is the hypertext H to which the
APMH algorithm is applied. The core part of SGAL implementing the algorithm
consists of two steps: (i) the first one computes the MEMs between the reads
and the serialization TH of the hypertext and (ii) the second one performs the
approximate pattern matching by processing the MEMs. As discussed in Sect. 3,
to compute the MEMs between a text and a set of patterns, we used an external
tool proposed by Ohlebusch et al. [14] and, therefore, we did not implement it.
Since the second step is critical and requires to achieve good performance, we
decided to implemented it in C++. Finally, a postprocessing module implemented
in Python produces the output alignments in SAM format, in which one of the
last fields is used to report the unannotated edges of the hypertext that are used
by each alignment.

We performed an experimental analysis with the main goal of testing the use
of SGAL to extract new splicing events from RNA-seq data w.r.t. a known anno-
tation. For this purpose, we decided to apply the tool to real data consisting of
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RNA-seq reads sequenced from the Toxoplasma gondii organism, whose annota-
tion contains 8637 single-transcript genes1. The chosen dataset is part of a study
which was designed to investigate the alternative splicing mechanism in this
parasite, done by over-expressing a splicing factor protein, and then performing
the high-throughput sequencing of the transcripts (RNA-seq) at different time
points [20]. We selected one of the 3 replicates at the time 0 of this experiment,
consisting of 15.4 million paired-end reads, having length 101bp (SRA acces-
sion id: SRR1407792). We selected genes covered by more than 5000 single-end
reads, by aligning the RNA-seq sequences to the reference genome using STAR [6],
a spliced aligner that can also run in an annotation-guided mode. To introduce
more flexibility in the alignment process to select the set of interesting genes,
we set a flanking region of 200bp in each considered gene, so that mappings
exceeding the beginning or the end of the gene are considered. A total number
of 938 genes resulted from this selection. Anyway, since this genomic portion
will not be taken into account by SGAL, to perform the comparison with STAR,
we run this latter tool giving as input the exact genomic region of each of the
938 selected genes, which resulted in a total of ∼10 million of alignments by
STAR (see Table 2). After that, SGAL has been applied to align each read P in
the dataset to the related hypertext H, producing the best approximate pattern
matchings to H having at most 7% of errors w.r.t. the length of the read P
(since all reads have length equal to 100, this means identifying all matchings
having edit distance smaller than 7).

Analyses were performed on a 64 bit Linux (Kernel 3.13.0) system equipped
with Four 8-core Intel R© Xeon 2.30 GHz processors and 256 GB of RAM.

Table 1. Time and memory requirements for different combinations of the input para-
meters L (7, 10, and 15) and K ({8, 12, 17}, {11, 15, 20}, and {16, 20, 25}, respectively).
Times are reported for both the computation of the MEMs and for the construction
of the alignments, while for the memory it is shown the peak, which occurs during the
alignment step.

L K MEM Time (s) Aln. Time (s) Aln. Memory (kB) Num. Alns

7 8 1978 5371 43420 8706310

7 12 1978 5818 43831 8715527

7 17 1978 8156 50847 8718278

10 11 1690 1697 31491 8705929

10 15 1690 1724 31529 8715824

10 20 1690 1789 31768 8721981

15 16 1666 1600 31259 8703126

15 20 1666 1595 31265 8709622

15 25 1666 1612 31273 8714694

1 Release 29 of ToxoDB annotation of TgondiiGT1.
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We tested different combinations of the input parameters L and K to assess
the time and space performance of our method on the aforementioned dataset of
RNA-seq from the Toxoplasma organism. More precisely, we set L equal to 7, 10,
and 15, and, for each of these values, we selected three values of K accordingly,
that is {8, 12, 17}, {11, 15, 20}, and {16, 20, 25}, respectively. We also set the
parameters ε and C equal to 0.07 and (100 − 2 · L)/100, respectively.

For each tested combination of L and K, Table 1 reports times for the compu-
tation of the MEMs and the alignment steps, memory peak of the overall pipeline
(which occurs in the alignment step), and the total number of alignments. As we
can observe from Table 1 and, as it was expected, executions with lower values
of L require higher time and memory, since an higher number of MEMs needs
to be compared to find the best alignments. Moreover, given a fixed value of L,
executions with higher values of K require higher time, since our algorithm tries
to link MEMs considering a wider window of size K. Although this expected
behavior is confirmed by almost all the runs, we note that the run with L = 15
and K = 20 does not abide by it. Nevertheless, this difference is marginal with
respect to the whole time and does not depend on the implementation itself.
Another conclusion that we can infer from Table 1 is that both L and K values
do not have a huge impact on the number of alignments. In fact the minimum
values have been obtained with L = 15, for which we observed that parameter K
did not affect nor time (where the difference between minimum and maximum
values is ∼15 s on a total of ∼1600 s) nor memory (where the values range from
31259 kB to 31273 kB), while the maximum time/memory consumption has been
registered with L = 7 and K = 17 (8156 s time with 50847 kB of memory). Any-
way, a good trade-off between time/memory and number of produced alignments
can be achieved with L = 10 and K = 20.

Table 2. Results obtained by SGAL and STAR on the SRR1407792 dataset. The first two
columns are parameters L and K used by SGAL, while the third and the fourth columns
report the number of reads aligned by SGAL and STAR, respectively. The fifth column
(“Common”) corresponds to the number of common alignments between the two tools.
The last five columns, namely “Clips”, “Intron”, “Mid-Intron”, “Small-match”, and
“Mismatch”, correspond to the alignments found by STAR and (as expected) not by
SGAL.

L K SGAL STAR Common Clips Intron Mid-Intron Small-match Mismatch

7 8 8872985 10040695 8709214 466325 546605 263604 2 54945

7 12 9023316 10040695 8720797 466277 546605 263495 2 43519

7 17 9324847 10040695 8726144 466266 546603 263318 2 38362

10 11 8810404 10040695 8705967 465721 546607 262274 927 59199

10 15 8872785 10040695 8716029 465700 546605 262136 864 49361

10 20 8950201 10040695 8722325 465 695 546605 262116 824 43130

15 16 8800848 10040695 8702965 465609 546676 262331 4089 59025

15 20 8836405 10040695 8709539 465598 546675 262311 3969 52603

15 25 8873383 10040695 8714715 465589 546675 262285 3894 47537
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Although there is no other tool available that performs the same operations
as SGAL, to evaluate its performance, we tried to compare the obtained results
and also time and memory requirements with that of STAR, which solves a sim-
ilar problem. For this reason a comparison with STAR in terms of accuracy of
the results is not possible, due to the fact that they work on different reference
sequences (genome in STAR versus transcripts in our method) and they also per-
form different operations (spliced alignment for STAR versus approximate pattern
matching against a splicing graph for our method). However, to get a fair com-
parison of the two tools, we run STAR by giving as input the genomic region of
each gene, the related annotation, and the related collections of reads that align
to that region, as input data. To perform the spliced alignments on the selected
genes STAR, with default parameters, required 7930 s with a peak of 262.5 MB of
memory.

We also compared the quality of the results obtained by SGAL and STAR on the
considered dataset. Notice that, since STAR aligns reads to a reference genome,
it produces splice alignments that may involve all the genomic regions, such as
exons as well as portions of introns, and it may use gaps even when aligning
only to the exome. Moreover, since the main goal of SGAL is to compare reads
with the annotation and understand how it is supported by the reads in terms of
splice junctions or exon skipping events, at the moment we have not implemented
specific criteria to map reads to the splicing graph. As a consequence of these
aspects, in order to perform a fair investigation, we filtered the alignments of
STAR, by considering only the primary ones, as well as the best one also for SGAL.

Table 2 reports the results obtained from the comparison between SGAL and
STAR. For the aforementioned reasons, SGAL is not able to retrieve all the align-
ments obtained by STAR. We partitioned the primary alignments of STAR that are
not found by SGAL: “Clips” (alignments having too long soft-clipping), “Intron”
(alignments fully contained in intronic regions), “Mid-Intron” (alignments par-
tially contained in intronic regions), “Small-Match” (alignments in exonic region
but with small anchor regions), and “Mismatch” (alignments in exonic region
having an high error rate). However, as it is possible to observe from the “Com-
mon” column, ∼99.99% of the SGAL alignments are found also by STAR. On the
other hand, we were able to explain all the alignments of STAR (∼13%) that was
not found by our tool, by assigning it to one of the previous categories.

As anticipated, from the output of SGAL, it is possible to detect the use of
unannotated edges of the hypertext, added by the transitive closure. Such infor-
mation can be extracted from the STAR output only through a rather complex
post-processing step. For this reason, to have an even more fair comparison,
we plan to extract potential novel splicing events from the STAR output. For
such analysis, simulated input data will be generated, so that the quality results
will be better assessed. Now, in our experimental analysis, since the considered
splicing graphs consist of single transcripts, the unannotated edges can represent
the skipping of one or more exons. More precisely, we considered only the read
alignments on new edges for which the involved read has no other alignments
that use only annotated edges.



Approximate RNA-seq Matching to a Hypertext 59

L=7 K=8 L=7 K=12 L=7 K=17

L=10 K=11 L=10 K=15 L=10 K=20

L=15 K=16 L=15 K=20 L15 K=25

0

2

4

6

0

2

4

6

0

2

4

6

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Num. Aligned Reads

E
rr

or

Count (0,1] (1,5] (5,10] (10,20] (20,50] (50,100] (200,500] (500,Inf]

Fig. 3. Distribution of the unannotated edges found by SGAL for different combinations
of L and K. Each plot reports the number of reads supporting the edge and the error
of its alignment.
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Fig. 4. Zoom of the plot in Fig. 3 with L = 10 and K = 20, limited to less than 1000
(left) and less than 300 (right) supporting reads.
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Figure 3 shows, for the tested combinations of L and K, the unannotated
edges found by SGAL, w.r.t. the number of reads supporting it and the corre-
sponding error of the alignments. From such plots, we can observe that for the
different combinations of L and K, the distribution is the same, for which the
majority of the unannotated edges has a number of supporting reads lower than
1000. More precisely, as shown in Fig. 4 for L = 10 and K = 20, although many
unannotated edge are supported by just one alignment, we found several of them
with a good support, from 20 to 100 alignments, and with low error rate.

5 Conclusions

In this paper we proposed a practical tool for solving the approximate pat-
tern matching to a hypertext and experimented it over hypertexts consisting
of enriched splicing graphs to which align RNA-seq reads. The use of the suc-
cinct data structure to build MEMs makes the tool quite fast. The experimental
analysis showed its efficiency both in terms of time/memory usage and also in
finding unannotated edges. The APMH problem is a formalization of the read
alignment problem to a graph which is becoming important in several genome
analyses. Indeed, the linear representations of reference genomes fail (unsurpris-
ingly) to capture the complexities of populations and, thus, graphs are becoming
a new paradigm for the representation of the reference for a population [5]. In
this direction, recent algorithmic approaches aim to represent genome infor-
mation by indexing with an FM-index, which has been successfully applied to
closely related problems [3], a graph representation of a multi-genome [16]. How-
ever the approximate pattern matching over such data structures is still under
investigation. Due to the promising results obtained in the experimental tests
we performed, we plan to extend SGAL to make it able to deal with the afore-
mentioned categories, i.e. clips, totally or partially intronic reads, small matches,
and mismatches. Such extension will be tested and (re)evaluated against STAR
to assess the improvements, but also against other newer state-of-art tools such
as TopHat2 [10] and HISAT [9]. Moreover, in addition to the analysis on simu-
lated data we anticipated before, since the performance results we obtained are
encouraging, we plan to run SGAL also on a human dataset, which will give us the
opportunity to assess its behavior in dealing with repetitive regions and more
complex scenarios. A future research direction is the use of our tool to align long
reads from technologies such as PacBio on which hybrid approaches using both
short and long reads have been shown to behave much better [15].

Acknowledgments. We thank the anonymous reviewers for their insightful com-
ments.
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Abstract. We present a fast algorithm for finding large common sub-
graphs, which can be exploited for detecting structural and functional
relationships between biological macromolecules. Many fast algorithms
exist for finding a single maximum common subgraph. We show with an
example that this gives limited information, motivating the less stud-
ied problem of finding many large common subgraphs covering different
areas. As the latter is also hard, we give heuristics that improve perfor-
mance by several orders of magnitude. As a case study, we validate our
findings experimentally on protein graphs with thousands of atoms.

Keywords: Proteins · Structure similarity · Isomorphisms · Graphs ·
Listing

1 Introduction

Graph-based methods provide a natural complement to sequence-based meth-
ods in bioinformatics and protein modeling. Graph algorithms can identify com-
pound similarity between small molecules, and structural relationships between
biological macromolecules that are not spotted by sequence analysis [2]. These
algorithms find motivation in the increasing amount of structured data arising
from X-ray crystallography and nuclear magnetic resonance. Many examples of
graphs fall under this scenario, such as chemical structure diagrams [4], 3D pat-
terns for proteins [17], amino acid side-chains [1], and compound similarity for
the prediction of gene transcript levels [25], to name a few.

Context for the Study. We are interested in common subgraphs between two
given input graphs G and H. Recalling that a subgraph S of G is a subset of its
nodes and connecting edges, S is said to be common with H if S is isomorphic
to a subgraph of H: S is maximal if no other common subgraph strictly contains
it, and maximum if it is the largest. The maximum common subgraph problem
asks for the maximum ones, or simply for their size: this problem is classically
c© Springer International Publishing AG 2017
D. Figueiredo et al. (Eds.): AlCoB 2017, LNBI 10252, pp. 62–74, 2017.
DOI: 10.1007/978-3-319-58163-7 4
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Fig. 1. Common structures in Liensinine derivatives. The two molecules share a
tetracenic moiety (large circles) and an N -methylbenzopiperidinic moiety (smaller dot-
ted circles). The maximum common structure is however a fairly common structure
in organic molecules; the structure in the dotted circle which is maximal (but not
maximum) is more likely to be interesting as it is more peculiar.

related to structural similarity. The maximal common subgraph (mcs) problem
requires finding all the mcs’s of G and H. The mcs problem can be constrained
to connected and induced subgraphs (mccis) [8,16,17]: the latter means that all
edges of G between nodes in the mcs are mapped to edges of H, and vice versa.

Maximum vs Maximal. Maximum common subgraphs are very often confused
with mcs’s, but they are different concepts: it is much faster in practice to find
the maximum common subgraph size than all mcs’s (e.g. [12]). As discussed
later, while there are many results for the former, not much algorithmic research
has been done in the past 20 years for mcs’s, and the seminal results in [16,17] are
still the state of the art. Note that a maximum common subgraph is not always
meaningful as a structural motif, as it does not necessarily contain all the relevant
or large common structures, as shown for the two molecules represented by the
graphs in Fig. 1. In general, there may be arbitrarily large common substructures
that give few information because of their frequent appearance in special type of
macromolecules or polymers. Furthermore, when spotting structural motifs, it is
not always possible to fix a priori the scoring system, and the maximum common
subgraphs are not necessarily the ones getting the best score: a postprocessing
can apply several scoring systems with a fast filtering and ranking of the mccis.
This is more efficient than repeating a branch-and-bound search for each score.

Problem of Interest. It is well known that finding similar structures leads to high-
lighting similar biochemical properties and functions [22]. To this aim, we focus
on large common connected induced subgraphs (laccis’s). Indeed, considering
induced and connected subgraphs reduces the search space and the number of
solutions, while preserving the most significant ones [8,16,17]. To quickly find
laccis’s, we consider a modified version of the mccis problem: given a spanning
tree T of G, we are interested in the common subgraphs between G and H for
which their subgraph in G is connected using edges of T . We call these subgraphs
T -mccis’s (see Fig. 2 for an example).

For a set of spanning trees T1, . . . , Tk, we consider a set of laccis’s such
that each laccis L contains a T -mccis S for some T ∈ T1, . . . , Tk. In general, L
satisfies S ⊆ L ⊆ M for a mccis M , where ⊆ denotes the containment relation
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Fig. 2. (a) Two graphs G and H, where edges of T are shown as thicker; (b) a T -
mccis that is also mccis; (c) a T -mccis; (d) not a T -mccis since it is a mccis but not
spanned by T ; (e) not a T -mccis since it is spanned by T but is not a common induced
subgraph.

among induced subgraphs. Hence the larger L is, the closer is to a mccis. Note
that L implicitly establishes an isomorphism between sets of matching nodes of
G and H. However, this isomorphism is not unique: for example, if L is a clique of
q nodes (i.e. all pairwise connected), it can be mapped through q! isomorphisms.

When the nodes of G and H are labeled, the notion of laccis naturally
extends by requiring, for instance, the nodes of the laccis to have match-
ing labels, or considering a generalized compatibility function between nodes
or edges.

Contributions. In this paper we provide an algorithm, called flash (fast laccis
searching heuristic), that takes two connected labeled graphs G and H as input,
along with some (random) spanning trees T1, . . . , Tk of G, and returns a set
of laccis’s, where each laccis is represented as a pair of subsets of nodes,
one from G and the other from H. For a spanning tree T ∈ T1, . . . , Tk, flash
explores a variation of the product graph P [19] obtained from G and H, so
that laccis are found as special cliques in P . flash does not materialize P , but
navigates it implicitly to improve memory usage and running time, and produces
T -mccis’s at a fixed rate by employing a refined variation of an output-sensitive
algorithm to find maximal cliques [11]. We remark that spanning trees have been
previously employed to prune the search for frequent subgraphs [14], although
such techniques do not extend to this problem.

flash applies the above approach to each tree, accumulating the found
T -mccis’s for T = T1, . . . , Tk. Then, it greatly reduces their number by a filter-
ing criterion to make sense of the massive output: for a user-defined percentage
σ (e.g. 70%), it selects a “covering” set of small size, such that each of the dis-
carded T -mccis’s has more than σ overlap with a retained one (priority is given
to selecting larger sized ones). This filter shows that flash quickly finds solu-
tions spanning different parts of G and H, whereas other approaches such as [17]
tend to spend lot of time on the same nodes: small local additions and deletions
of nodes produce a plethora of different subgraphs that significantly overlap.

Since flash could miss some maximal subgraphs (i.e. the ones not spanned
by Ti for any i, as in Fig. 2d), it exploits the fact that the number of T -mccis’s
after filtering is relatively small, and performs a postprocessing to combine them
with the purpose of enlarging the common subgraphs thus found (e.g. the sub-
graph in Fig. 2d is discovered if a non-spanned edge is spanned by another
choice of T ). The novelty of our approach is that the running time for a given
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spanning tree T is provably proportional to the number of reported T -mccis’s,
as confirmed by our experiments in Sect. 3. In other words, the more we pay in
running time, the more T -mccis’s we get. This is in contrast with the known
algorithms for maximal common subgraphs that could be adapted to discover
T -mccis’s. They have the drawback of running into a computational black-
hole, going through an explosive number of substructures even if there are few
T -mccis’s: for a T -mccis of k nodes, these algorithms have to potentially discard
2k included subgraphs, and branch and bound does not help much in this case.

As a result, flash finds more solutions than other approaches and improves
their performance by several orders of magnitude. When dealing with graphs
of non-trivial size (e.g., thousands of nodes) we argue that the state-of-the-art
approaches for maximal common subgraphs do not terminate within a conceiv-
able time, thus making a practical comparison hard to perform. In our experi-
ments, the size k of common subgraphs can easily be in the order of the hundreds
(see Sect. 3) and flash performs well in practice even though its theoretical
worst-case complexity is exponential.

Case Study with Proteins. The computational power of flash can bring benefits
when modeling macromolecules such as proteins as graphs. To create a stress
test for flash we adopted a fine-grained model, called all-atom, for representing
the proteins 1ald, 1fcb, and 1gox from the Protein Data Bank (pdb), where
the labeled nodes represent atoms within known secondary structures while the
labeled edges represent covalent bonds (both backbone and non-backbone) as
well as non-covalent interactions.

Current approaches benefit from a reduced computational load as they use
coarse-grained models. For example, the 3D patterns of secondary structure ele-
ments in proteins have been modeled as graphs by using α-helices and β-strands,
as nodes. These elements are approximately linear structures and they are repre-
sented as vectors in space, sometimes annotated with the length of their residues
and hydrophobicity. As for the edges, they represent relationships between nodes
expressed in terms of the angles and the distance between midpoints of the cor-
responding vectors [25]. In another representation, edges are calculated on the
basis of contacts between the atoms in the respective structures/nodes, and indi-
cate the spatial arrangements of the structures. In this way patterns can be also
found in proteins with weaker similarities [17]. We refer the reader to Table 1 in
[25] for a list of applications.

We think that exploring fine-grained models with flash, which was pre-
cluded with previous algorithms, can give finer details once data noise is filtered.
However the design and validation of a fine-grained model is outside the scope of
this paper, and deserves further independent study. Future investigations will be
devoted also to the definition of a scoring function to rank the solutions produced
by flash, and the application of our approach to problems where knowledge can
be extracted from structural similarity, such as protein annotation.

Related Work. Both the problems of finding maximal or maximum common
subgraphs has been studied for decades [5,9,25]. The corresponding decision
version is NP-complete as it solves subgraph isomorphism problem, even on

www.ebook3000.com

http://www.ebook3000.org


66 A. Conte et al.

some restricted graph classes such as outerplanar graphs. The problem is difficult
to approximate (MAX-SNP hard) even within a polynomial factor [15]. This
motivates the search for effective heuristics.

Due to the strong connection between graph isomorphism and common sub-
structures, the bioinformatics community has repeatedly expressed its interest
in this problem from a computational point of view [7,12,15,17,21,25]. Finding
the maximum common subgraph, as opposed to finding all maximal ones, allows
for very effective cuts to the search space (e.g. branch-and-bound). This makes
the computation much faster in practice, allowing researchers to process larger
graphs with the available resources. However, as previously noted, their cut rules
cannot be applied efficiently to laccis’s.

Looking at previous work for graphs, it can be roughly classified into two
categories: clique-based methods [17,23], non-clique-based backtracking meth-
ods [18,20,27].

Clique-based methods are widely employed and rely on the product graph P ,
transforming the common subgraphs of G and H into maximal cliques in P .
This reduction dates back to the 70s [19] and has been shown to be effective on
biological networks [12,17,23]. Algorithms such as the ones by Koch [16,17] are
the state of the art [28], having laid down the basic principles for clique-based
approaches; however, a tool able to efficiently enumerate laccis has not yet
emerged. We will compare experimentally flash to the algorithms in [16,17].
For finding the maximal cliques, the algorithms by Bron and Kerbosch [6] or
Carraghan and Pardalos [10] have been employed. We will use a refined variant
of [11]. Cao et al. [9] observe that materializing P can be memory-wise expensive,
and flash is able to avoid this issue.

Backtracking algorithms mostly build up on Ullman’s strategy [24] for sub-
graph isomorphism (e.g. [20]). They often use branch-and-bound heuristics based
on the specific requirements of the application at hand. The comparison in [12]
shows how direct implicit methods for the maximum common subgraph, such as
the one in [20], can outperform methods that exploit the product graph if the
input graphs are small or contain many different labels. However, they do not
apply efficiently to laccis’s.

2 Methods

We give the main ideas behind flash for two labeled undirected graphs G and
H, and a set {T1, . . . , Tk} of (random) spanning trees of G. Let T ∈ {T1, . . . , Tk}.

Implicit Product Graph. We employ a variant of the transformation adopted by
Koch [17] and borrowed from Levi [19], where we modify the color rule to take
into account the edges of the spanning tree T . Define a colored product graph
P = G · H, with P = (VP , EP ). The nodes in VP corresponds to ordered pairs
of compatible nodes from G and H (e.g., with the same label), the first from
G and the second from H, and the edges in EP are as follows (where x and
y denotes any two nodes in G and i and j any two nodes in H). There is a
black edge in EP between the nodes in VP corresponding to (x, i) and (y, j) if
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{x, y} ∈ T (tree edge) and {i, j} ∈ H. There is a white edge in EP between the
nodes in VP corresponding to (x, i) and (y, j) if either {x, y} ∈ G\T (non-tree
edge) and {i, j} ∈ E, or both x �= y and i �= j are not connected by an edge in
their graphs (resp. G and H). As in [17], there is a one-to-one correspondence
between maximal cliques in P and maximal isomorphisms between subgraphs of
G and H. The main difference is that in our case a maximal clique connected
by black edges corresponds to a maximal subgraph connected by edges of T ,
instead of generic edges of G.

We call this kind of black-connected maximal clique a bc-clique, and reduce
the problem of finding the T -mccis’s to that of finding the isomorphisms/bc-
cliques in the implicit P . We observe that the same T -mccis can give raise to
several maximal isomorphisms/bc-cliques (matching the two sets of nodes in
that T -mccis) that should be successively distilled to list it exactly once.

Building and navigating P is costly: P is a dense, massive graph with large
maximum degree even when G and H are relatively small, sparse and with
bounded degree. flash avoids storing P explicitly, and only stores G and H:
it checks compatibility between assignments in constant time and iterates on
neighbors in constant time per element by applying “on the fly” the rules used
for generating P . This saves both memory and time, as G and H are much
smaller and faster to access than P .

We now have to find the bc-cliques in P = (VP , EP ). Previous work on
explicit product graphs employs a modified version of the Bron-Kerbosch algo-
rithm [16] which does not perform pivoting, a pruning technique. The resulting
algorithm thus iterates on every possible subset of each common subgraph, and
its complexity and cost per solution are not clearly bounded. We do not reuse
the above algorithm and use a different approach for flash as shown next.

Good Ordering. We use the spanning tree T to provide a good ordering of the
nodes in V (P ). Let the nodes of G be numbered in such a way that, given a
node u of G, there is only one edge of T between u and its neighbors u′ with
u′ < u. This numbering can be computed by a pre-order visit of T , and induces
the lexicographical order ≺ on the pairs (x, i) that corresponds to the nodes in
V (P ). The good ordering of the nodes in VP is obtained by numbering them
consecutively in increasing lexicographical order ≺ of the corresponding pairs.

The T -based numbering of G’s nodes induces an ordering of P ’s nodes that
has the following property, whose proof is not given here for the sake of space.
Let P<v denote the subgraph of P induced by the nodes v′ < v, and P<v ∪ {v}
the one induced by v′ ≤ v, if C is a bc-clique in P<v ∪ {v}, then C\{v} is
connected with black edges in P<v.

This property ensures that every bc-clique can be found incrementally by
flash: when adding a new node v to the set of bc-cliques found up to that
point for the nodes of P<v, two or more of the latter bc-cliques cannot be united
because of the black edges incident to v, since the removal of v cannot disconnect
the bc-clique. Hence we can consider just one of them to be extended by v, rather
than any combinations of them. This speeds up significantly the computation.
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Output-Sensitive Search. We perform an output-sensitive search of the bc-cliques
by adapting to this problem a recent maximal clique enumeration algorithm [11].
The latter runs as fast as Bron-Kerbosch with pivoting, but it has the additional
feature of guaranteeing that the total running time only depends on the number
of returned bc-cliques’s times a polynomial, meaning that a long execution will
always yield many results. Furthermore, it allows us to define a parent-child
relationship between partial solutions: this produces a stateless, memory-efficient
search which avoids generating duplicate solutions. We adapted it to work on
the implicit product graph P using the good ordering as it grows partial results
by incrementally adding new nodes to them (see Sect. 4).

Filtering. It is important to distill all the T -mccis’s found for each T . Those
leading to the same laccis’s are clearly redundant, and those that are small
or mostly overlapping prevent us from making sense of a massive output. The
filter procedure scans the found T -mccis’s, giving priority to large ones and
excluding the ones smaller than a given minimum size τ , and incrementally add
them to a “cover” set if their overlap with every other isomorphism in the set
is smaller than σ. Namely we retain T -mccis if, for either its subgraphs of G or
H, the number of common nodes with any other T -mccis in the cover divided
by its size is smaller than σ.

Recombining. As observed in the introduction, the T -mccis found may be frag-
ments of larger (maximal) common subgraphs. To enlarge them, flash merges
and uses filter on the output of all trees, then runs a recombine procedure
which combines compatible T -mccis to generate larger laccis’s. Two T -mccis’s
are compatible if they can be (partially) merged and their induced subgraphs in
G and H are connected by one or more edges: recombine takes the largest part
of the second T -mccis that can be added to the first and creates a larger laccis
by merging them. This is repeated as long as new laccis’s are created. After
that, filter is applied again to remove redundant and partially overlapping iso-
morphisms, if any. We refer to the sequence of operations filter, recombine,
filter as process. The final output of flash identifies laccis’s composed of
parts of the T -mccis’s for T = T1, . . . , Tk.

3 Results

In this section, we describe our experimental results for flash. We considered
the aggregated raw result after its output-sensitive search, and the post-process
form after filtering and recombining the latter results by the method process
(see Sect. 2). Specifically, we fixed τ = 10 for the threshold on minimal size and
σ = 70% for the overlapping threshold of filter (recall that process indicates
the sequence filter, recombine, filter).

We chose to run flash with k random spanning trees for several values of
k and with a set of spanning trees which forms a cover of the graph G (in our
test case the number of spanning tree covering G was 5). We refer to the former
variant as k-flash, with k = 1, 3, 6, 12, and to the latter as c-flash. As for the
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Table 1. Experimental results

method raw post process

time (h) max h-ind count time (h) max h-ind count

par work par work

1ald vs 1fcb

1-flash 0:12 0:13 63 59 9 215 182 0:01 0:06 70 39 17 468

3-flash 0:12 0:25 62 62 22 165 459 0:31 0:45 179 43 29 082

6-flash 0:29 1:01 59 58 47 329 927 0:24 1:05 155 48 41 080

12-flash 0:30 2:28 70 69 107 383 973 15:41 17:27 229 53 55 231

c-flash 0:13 0:40 55 54 38 315 376 0:09 0:43 118 42 41 410

koch 12 12 63 63 1 297 231 <0:01 <0:01 63 24 170

1ald vs 1gox

6-flash 0:32 1:53 68 68 60 120 366 4:30 5:10 68 49 26 954

koch 12:00 12:00 64 64 4 775 963 <0:01 <0:01 64 6 6

1fcb vs 1gox

6-flash 2:08 8:18 153 151 144 658 776 0:13 1:08 153 47 26657

koch 12:00 12:00 82 82 4 412 419 <0:01 <0:01 82 25 158

HelixD-1ald vs 1ald

6-flash 2:01 9:00 171 170 58 925 057 0:07 0:25 171 38 6 561

koch 12:00 12:00 60 60 197 236 <0:01 <0:01 60 2 2

mod-HelixD-1ald vs 1ald

6-flash 0:10 0:18 162 160 6 876 538 0:02 0:03 162 35 7 592

koch 12:00 12:00 60 60 81 884 <0:01 <0:01 65 2 2

raw result, flash runs k threads, one for each spanning tree, which (are forced
to) terminate within a fixed time t, and then aggregates their results. We let
each thread run for at most t/k hours, so that the bound for the overall CPU
time is the same for all runs, with t = 12 h.

Following the discussion in the introduction, the baseline for the comparison of
flash is Koch’s algorithm [16], which produces laccis’s using mccis and is the
best algorithm known so far formccis [28]. For a fair comparison, we optimized its
implementation, denoted koch, so that it can use the implicit product graph P as
well, noting that this optimization greatly improves its performance [26]; the com-
putation is terminated after fixed time t = 12 h. Note that the recombine step
has no effect on koch, whose output is made of mccis’s that cannot be enlarged,
and thus its additional time is negligible.

The above framework has been implemented in C++ and is available at
github.com/veluca93/laccis. Our platform is a 24-core machine with Intel(R)
Xeon(R) CPU E5-2620 v3 at 2.40 GHz, with 128 GB of shared memory. The sys-
tem is Ubuntu 14.04.2 LTS, with Linux kernel 3.16.0-30.
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We give a quick tour on our experimental study. First, we explain how we
generated the data which has been used for the testbed of our experiments.
Next, we show the experimental measures we have considered and we discuss
how the choice of the spanning trees affects our analysis. We then analyze the
experimental outcome for pairs of proteins, running flash and koch. Finally,
we analyze the quality and consistency of the results returned with a protein
and one of its sub-parts as input; also, we argue that flash is robust when
perturbations of the input are introduced, e.g. node labels change.

Generating the Testbed Data. As mentioned in the introduction, we created a
stress test with an all-atom fine-grained model for generating graphs from pro-
teins from the pdb (www.rcsb.org). We thus exploited pdb data of 1ald, 1fcb
(chain A), and 1gox proteins (which belong to TIM barrel families) to generate
graphs where labeled nodes represent atoms within known secondary structures
(as reported in pdb) while edges represent covalent bonds (both backbone and
non-backbone) as well as non-covalent interactions.

We generated input graphs by means of pdb2graph [13]. First, pdb data is
processed to generate edges from covalent bonds. Non-covalent interactions are
estimated by extending the interaction distance up to 3.2 Å. Nodes are labeled
with the element symbol and a secondary structure identifier. We thus generated
3 graphs with 2763 (9488), 3841 (12923), and 2696 (9059) nodes (edges) for
1ald, 1fcb, and 1gox respectively. Furthermore, we also considered two variants
of a structure extracted from 1ald to test consistency and robustness of flash,
discussed later.

Experimental Measures. For each pair of graphs in Table 1, we report the real
execution time, that is the time (bounded by t/k hours for raw) of the threaded
execution par, and the total cpu time work (bounded by t = 12 h for raw).
Note that work of flash for raw is less than t in all the cases as almost
all the threads terminate earlier than the time limit t/k. We also report some
analysis of the results, before and after applying process, in columns raw and
post process respectively. For each result set, we show the size of the greatest
laccis in this set (i.e., max), the maximum h such that there are at least h
laccis’s of size h (i.e., h-ind), and the number of laccis’s found (i.e., count).

On the Choice of the Spanning Trees. Referring to the upper part of Table 1,
given the pair of graphs 1ald and 1fcb, we compare the results of our k-flash
for different values of k and of c-flash. It is worth observing (raw column) that
the number of T -mccis’s found increases with the number of spanning trees used,
recalling that c-flash uses 5 spanning trees, 6-flash and 12-flash produce a
higher number of T -mccis’s. After the post-processing, c-flash and 6-flash
produce a similar number of laccis’s, while 12-flash produces a larger number
of laccis’s but at the price of an higher post-processing time. For these reasons,
we decided to focus on 6-flash in the remaining experiments in this section.

Running the Experiments. For the following pairs of graphs, 1ald vs 1fcb, 1ald
vs 1gox, and 1fcb vs 1gox, we report the results for both koch and 6-flash.
We remark how our algorithm, though heuristic, finds in this given time slot
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more laccis’s than koch, whose result set is in theory complete. Moreover, it
seems that flash is able to find larger laccis’s than koch, as shown in the
post process columns, where laccis’s found by flash are greatly enlarged.
Furthermore, it is clear that koch focuses the search on a limited portion of the
graph, while flash is able to produce many more laccis’s that do not overlap
with each other (see count in post process). For instance, consider the 1ald vs
1gox comparison. Even though koch finds 4 775 963 laccis’s, after process we
are left with just 6, of size at most 64: this means that all the remaining laccis’s
found by koch overlap with these 6 by at least σ = 70%. This is not the case
with flash, which obtains 26 954 laccis’s after process. Even though our post
process time is greater, this is compensated by the quantity and quality of our
results, as well as the smaller running time of the algorithm.

Consistency and Robustness. To test the consistency and quality of the results,
we extracted a portion of the protein 1ald (from Pro158 to Asn180), including an
α-helix, and searched for it in the original protein. The corresponding subgraph
has 171 nodes and 584 edges. Clearly, an effective algorithm must find at least
a laccis which involves a large portion of the helix. Table 1 (HelixD-1ald vs
1ald) shows that our algorithm finds a laccis involving the whole helix (171
nodes), while this is not the case for koch in the time slot.

For the robustness, we introduced errors in the helix: we changed the labels
of the alpha carbon atoms of Arg172 and Asn166 to a dummy label. We refer
to this modified graph as mod-HelixD-1ald. A robust algorithm should not be
significantly influenced by the introduced noise, and should find results similar
to the ones obtained with HelixD-1ald. Table 1 (mod-HelixD-1ald vs 1ald)
shows that our algorithm still finds almost the whole helix, while koch, although
consistent with the previous result, finds just a small portion of the helix.

4 Implementation

In this section, we give more details about our algorithm to find bc-cliques in the
implicit product graph P . First of all, we observe that a bc-clique in P<v ∪ {v}
is either a bc-clique of P<v or contains v. Moreover, a bc-clique C containing v
is such that C\{v} is connected by black edges and so it is contained in a bc-
clique of P<v. Using the good ordering v = v1, . . . vp for the nodes of P , we can
incrementally add nodes of P starting from an empty graph, and computing the
new solutions using the previous ones. A simple implementation of this approach
requires storing and scanning the whole set of bc-cliques found so far, which can
be costly in practice. Note that we need the latter ones for two reasons: to avoid
duplication of bc-cliques and to retrieve bc-cliques to be extended by the current
node v = vi. We give an alternative way as follows.

Let Rv denote the set of bc-cliques in P<v ∪ {v}. Each bc-clique K ′ ∈ Rvi
,

for some i, is either a single node with no backward black edges or is generated
from another bc-clique K in Rvj

, with j < i. Given a bc-clique K in Rvj
, we

characterize which K ′ are generated from K. In particular, we identify for which
i > j, K will generate a clique in Rvj

. We observe that a bc-clique K generates
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Algorithm 1. Finding the bc-cliques in the implicit product graph P

Input: Two graphs G and H and a spanning tree T of G
Output: The bc-cliques in the implict product graph P = G · H for T
π ← lexicographic order of the nodes in VP (good ordering);
for vi having no black edges going to vj with j < i do visit({vi}) ;

Procedure visit(K)

if K is maximal then output K;
Let N be the nodes larger than max(K) connected to K by a black edge;
for vi ∈ N do

Let C be the nodes in K ∩ N(vi) that vi can reach using black edges;
if C ∪ {vi} is a real child of K then visit (C ∪ {vi}) ;

a new bc-clique in Rvi
\Rvi−1 if there is a black edge from vi to a node in K.

Thus it is easy to find all nodes vi that can be used to extend K using the black
edges: they are the nodes that are connected to K with black edges and succeed
the largest node in K in the good ordering. We call a bc-clique that is generated
from K by adding one such node vi a potential child of K: specifically, it is found
by recursively extending C ∪{vi}, where C is the set of nodes in K ∩N(vi) that
vi can reach using black edges. This allows us to generate the bc-cliques without
using the sets Rvi

explicitly.
We now focus on how to avoid generating the same bc-clique twice. Given

a bc-clique K ′, and letting vi be the largest node of K ′ in the good ordering,
we define the parent of K ′ as the bc-clique in P<vi

obtained from K ′\{vi} by
recursively adding the smallest node that can fully extend the current (non-
maximal) bc-clique. Note that the parent of a bc-clique K is unique and is a
bc-clique in Rvj

with j < i. We avoid generating duplicates as follows: when
trying to generate K ′ from K, we accept K ′ only if K is the parent of K ′;
otherwise, K ′ is discarded. As every bc-clique has exactly one parent, and can
only be generated in one way from any bc-clique (when adding vi), clearly it
is impossible to generate any clique more than once. Hence we call a potential
child K ′ of K a real child of K if it satisfies both conditions: K ′ is generated
by adding vi and cannot be extended with a node less then vi, and the parent
of K ′ is K. This technique to remove duplicates is similar to the reverse search
approach used in several enumeration algorithms, first introduced in [3].

Our algorithm is a refined variant of [11] that takes into account the distinc-
tion between black and white edges and recursively examines all the bc-cliques
as explained before. The roots of the recursion trees are given by all the nodes
that have no black backwards edges. (The pseudocode in shown in Algorithm 1.)
It is clear from what we said before that this algorithm generates exactly once
all the bc-cliques of P<vi

. When a (partial) bc-clique is generated, we check
whether it is maximal in P , and if this is the case we output it; this way our
algorithm outputs all bc-cliques of P in an output-sensitive fashion.



A Fast Algorithm for Large Common Connected Induced Subgraphs 73

Acknowledgments. Work partially supported by projects MIUR PRIN 2012C
4E3KT (all authors except LT, LV) and UNIPI PRA 2015 0058 (authors RG, LT).

References

1. Artymiuk, P., Poirrette, A., Grindley, H., Rice, D., Willett, P.: A graph-theoretic
approach to the identification of three-dimensional patterns of amino acid side-
chains in protein structures. J Mol. Biol. 243(2), 327–344 (1994)

2. Artymiuk, P., Spriggs, R., Willett, P.: Graph theoretic methods for the analysis of
structural relationships in biological macromolecules. J. AM. Soc. Inf. Sci. Technol.
56(5), 518–528 (2005)

3. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1),
21–46 (1996)

4. Bonchev, D.: Chemical Graph Theory: Introduction and Fundamentals. CRC
Press, Boca Raton (1991)

5. Brint, A., Willett, P.: Algorithms for the identification of three-dimensional maxi-
mal common substructures. J. Chem. Inf. Comput. Sci. 27(4), 152–158 (1987)

6. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457).
Commun. ACM 16(9), 575–576 (1973)
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Abstract. Selecting a connected subnetwork enriched in individually
important vertices is an approach commonly used in many areas of
bioinformatics, including analysis of gene expression data, mutations,
metabolomic profiles and others. It can be formulated as a recovery of
an active module from which an experimental signal is generated. Com-
monly, methods for solving this problem result in a single subnetwork
that is considered to be a good candidate. However, it is usually useful
to consider not one but multiple candidate modules at different signif-
icance threshold levels. Therefore, in this paper we suggest to consider
a problem of finding a vertex ranking instead of finding a single mod-
ule. We also propose two algorithms for solving this problem: one that
we consider to be optimal but computationally expensive for real-world
networks and one that works close to the optimal in practice and is also
able to work with big networks.

Keywords: Interaction networks · Active module · Vertex ranking ·
Dynamic programming · Integer linear programming · Connected
subgraphs

1 Introduction

Network analysis has many applications in bioinformatics. This includes analysis
of co-expression network for gene clustering [8], searching for reporter metabo-
lites for metabolic processes [10], or stratification of tumor samples based
on topological distance between somatic mutations in a gene interaction net-
works [5]. The overall idea is that by taking into account interactions between
entities (genes, metabolites, etc.) one can better interpret the corresponding raw
data (gene expression, metabolite concentrations, etc.).

One type of network analysis corresponds to the active module recovery prob-
lem. The goal of these methods is to find a connected subnetwork (module) that
is enriched in individually important vertices. Such module, for example, could
correspond to a signalling pathway for protein-protein interaction network [3] or
a metabolic pathway for metabolic networks [7].
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There are many implementations for active module recovery [1,3,6,11]. These
methods share a problem of non-monotonous dependence of the resulting module
on the arbitrary significance threshold value. This means that when a method
is rerun with a more relaxed threshold not only some vertices can appear, but
they can disappear too. This situation is confusing for the user and makes inter-
pretation of the results harder.

In this paper we consider a formulation of the active module problem in terms
of connectivity-monotonous vertex ranking. This allows to generated modules for
multiple thresholds that are consistent with each other. First, in Sect. 2.1 we for-
mally define the problem and give related definitions. Then, in Sects. 2.2 and 2.3
we propose two methods to solve the problem: a brute-force-based method and
semi-heuristic method based on solving a series of integer linear programming
(ILP) problems. We also define two baseline methods in Sect. 2.4. Finally in
Sect. 3 we compare the methods with each other and baseline methods on gen-
erated and real networks.

2 Methods

2.1 Formal Definitions

In this section we give a formal definition of the active module recovery problem
in its ranking variant. Here we consider only networks with a simple structure
of an undirected graph.

Let G = (V,E) be a connected undirected graph and w : V → [0, 1] to be
a weight function defined on its vertices. There is also an unknown connected
subgraph (active module) and corresponding set of vertices M . Weights w are
assumed to be random variables such that vertices from M are i.i.d. and fol-
low a “signal” distribution and vertices from V \ M are also i.i.d. but follow a
“noise” distribution. Here we consider weights to be corresponding to P-values
of a statistical test, where null hypothesis holds for vertices from V \ M and
corresponding weights follow uniform distribution U(0, 1). Following [3] vertices
from M are assumed to follow a beta-distribution B(α, 1) for some parameter α.

Definition 1. Let G = (V,E) be a graph. A vertex ranking of G is a permuta-
tion of its vertices V . For a ranking r = (r1, r2, . . . , r|V |) we consider vertices at
the beginning of r (e.g. r1, r2, . . .) to be more important and ranked higher than
vertices at the end (e.g. r|V |, r|V |−1, . . .).

Definition 2. Let us call a vertex ranking r of a connected graph G to be
connectivity-monotonous, if all subgraphs Gk induced by vertices from ranking
prefixes r1..k = (r1, . . . , rk) for k ∈ 1..|V | are connected.

For convenience we will consider a rank prefix r1..k as a set {r1, . . . , rk} rather
than a vector if the context requires it.

In this paper we will use AUC (Area Under the Curve) measure to define
which ranking r of graph G better recovers module M .
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Definition 3. AUC value of a vertex ranking r for graph G = (V,E) and module
M ⊂ V can be calculated using formula:

AUC(r|M) =
n∑

i=1

(
1 − |r1..i \ M |

|V \ M |
)

[ri ∈ M ]
|M | ,

where [ri ∈ M ] is equal to 1 if ri ∈ M and 0 otherwise.

To summarize we define the considered problem as follows.

Definition 4. Given a connected graph G, an unknown active module M and
vertices weights w that follow beta- and uniform distributions for vertices from
M and V \ M correspondingly, the ranking variant of the active module recov-
ery problem consists in finding a connectivity-monotonous ranking r with the
maximal value of AUC(r|M).

Later in this paper we consider the parameter α of the beta-distribution
B(α, 1) to be known. Similarly to [3] one can infer parameters of the beta-
uniform mixture from the vertex weights using maximum likelihood approach.

2.2 Optimal-on-Average Ranking

In this section we describe a method that finds ranking with the maximal
expected value of AUC. Correspondingly, we call it optimal-on-average method.

First, let consider a set D ⊂ 2V of all vertex sets that induce a connected
subgraph of G and a discrete probability P (M) defined for all M ∈ D. Together
this constitutes a probability space M.

Our task is to find a ranking r with the maximal expected value of AUC
score given a vector of vertex weights w:

E[AUC(r|M)] =
∑

M∈D

P (M |w) · AUC(r|M). (1)

A conditional probability of a module P (M |w) can be calculated using the
Bayes’ theorem:

P (M |w) =
P (w|M) · P (M)

P (w)

=
P (M)
P (w)

·
∏

v∈M

B(α, 1)(w(v)) ·
∏

v∈V \M

U(0, 1)(w(v)). (2)

Let us rewrite the formula 1:

E[AUC(r|M)] =
∑

M∈D

p(M |w)
n∑

i=1

(
1 − |r1..i \ M)|

|V \ M |
)

[ri ∈ M ]
|M |

=
n∑

i=1

∑

M∈D

(
1 − |r1..i \ M |

|V \ M |
)

· p(M |w) · [ri ∈ M ]
|M | . (3)
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This allows us to calculate E[AUC(r|M)] iteratively:

E[AUC(r1..k|M)] = E(AUC(r1..k−1|M))+
∑

M∈D|rk∈M

(
1 − |r1..k \ M |

|V \ M |
)

· p(M |w)
|M | . (4)

Formula (4) allows to calculate every r1..k prefix ranking only one time.
This can be used to find the best ranking as shown in the Algorithm1. There

we fill in an array that for every set of vertices D[i] from D contains a pair
of values dp[i].auc – expected AUC value of the best connectivity-monotonous
ranking of vertices D[i] and dp[i].ranking – the corresponding ranking. The
function getArea() calculates the second summand of formula (4).

Algorithm 1. Optimal-on-average ranking.
1 procedure OptimalRanking(V ,E):
2 D ← getConnectedSubgraphs(V, E) � elements of D ordered by size
3 dp[D] : (auc: Double, ranking: Vector)
4 for i = 1 to |D| do
5 M ← D[i]
6 forall v ∈ M do
7 if isNotConnected(M \ {v}) then
8 continue

9 j ← get index of M \ {v} in D
10 auc ← dp[j].auc + getArea(D, dp[j].ranking, v)
11 if auc > dp[i].auc then
12 v̄ ← (dp[j].ranking, v)
13 dp[i] ← (v̄, auc)

14 return dp[|D|].ranking

The time complexity of the Algorithm 1 is O(n2 · |D|2). One call to getArea()
requires O(n · |D|) time and it is multiplied by O(n · |D|) for the outer loops.

2.3 Semi-heuristic Ranking

In this section we describe another approach for the vertex ranking problem.
This approach is inspired by BioNet method [3] and consists in solving a series
of integer linear programming (ILP) problems using IBM ILOG CPLEX library.
Compared to the optimal-on-average approach from the previous section this
method allows finding a ranking for large graphs in a rather reasonable time.
As this method does not explicitly optimizes AUC score we call this method
semi-heuristic.
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First, similar to BioNet, let us find a subgraph of G that is most likely to
be the active module. The most likely subgraph has the best (log)-likelihood
score. The log-likelihood score of the module can be calculated as a sum of log-
likelihood scores of the individual vertices in the module, where individual score
for vertex v is calculated as:

score(v) = log L(α, 1|w(v)) = log(α · w(v)α−1).

Now, we can find a connected subgraph M with a maximal sum of vertex
scores. This corresponds to an instance of Maximum-Weight Connected Sub-
graph problem (MWCS). This problem is NP-hard but it can be reduced to an
ILP problem and solved by IBM ILOG CPLEX as, for example, in [4].

Using the found subgraph M we can define a crude partial ranking by saying
that vertices of M go before V \ M .

Next, we define a procedure to refine such partial ranking. This procedure
takes two sets of vertices: a set R that contains already ranked vertices and a set
C that contain set of candidate vertices to be ranked. Then we find a subset X
of C, so that R ∪X is a connected and vertices from X should be ranked higher
than C \ X.

Using this procedure we can recursively refine ranking up to the individual
vertex level. Initially we solve an instance where R is set to an empty set and
C contains all vertices. Then we do ranking for (R,X) and (R ∪ X,C \ X). We
stop recursion when the candidate set consists of only one vertex.

A parameter of this procedure is how to select set X. For this end, similarly
to the first step, we solve an MWCS instance, but with an additional constraint
that requires the solution to contain at least one vertex from R and at least one
but not all vertices from C. We set X as an intersection of the solution and the
set C. The corresponding instance is solved by a modified solver from [9], where
corresponding constraints were added into the ILP formulation.

Overall algorithm is shown as Algorithm2. The procedure findMaximum −
SG() solves MWCS with the described additional constraints and returns chosen
subset of vertices from C. If list size is more than one, we call refineRanking() to
get a ranking of this set. The algorithm returns a ranking r of vertices C.

2.4 Baseline Methods

As base line for the experiments we consider the following two methods.
The first method ranks vertices by their weights: the smaller the weight,

the higher is rank. This ranking is not connectivity-monotonous but is a good
starting point. We will call this method non-monotonous.

The second method consists in running BioNet algorithm for ten different
significance thresholds. As the BioNet modules (M1, M2, . . . , M10) can be non-
monotonous we use the following combining procedure. We assign the highest
rank to vertices from M1, the second highest to M2 M1, the third to M3 \ (M1 ∪
M2) and so on. The significance thresholds are selected to be distributed at equal
steps between maximum and minimum log-likelihood vertex scores.
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Algorithm 2. Semi-heuristic ranking refinement.
1 procedure RefineRanking( V , E, R, C):
2 r : Ranking
3 while C.size! = 0 do
4 list ← findMaximumSG(V, E, R, C)
5 if list.size > 1 then
6 list ← refineRanking(V, E, R, list)

7 r.addAll(list)
8 R.addAll(list)
9 C.removeAll(list)

10 return r

3 Experimental Results

We carried three series of experiments for different graph sizes. First, we con-
sidered small graphs of about 20 vertices where we were able to thoroughly
compare all the considered methods. Next, we analyzed medium-sized graphs of
100 vertices. For such sizes that are closer to the real-world ones we analyzed
all methods except optimal-on-average one, as it became computationally infea-
sible to run. Finally, we tested methods on a real-world graph of two thousand
vertices.

3.1 Small Graphs

In the first experiment we have generated 32 different graphs of size 18. Then an
active module of size 4 was chosen uniformly at random. Value of α was chosen
from U(0, 0.5) distribution. Vertex weights were generated from corresponding
beta- and uniform distributions.

The results of the first experiment are shown on Fig. 1. They show that the
optimal-on-average method in most cases works equal or better compared to
both BioNet-like and non-monotonous baseline methods (top panels). The semi-
heuristic method works similarly well compared to optimal (bottom-left panel)
and better than BioNet-like method.

The distribution of active modules can be non-uniform in the real-world
data, so we also carried out an experiment with such non-uniform distribution
(see Sect. 3.4 for details). Aside from the four methods considered before we ran
an optimal-on-average method parametrized by the real empirical distribution
of the modules.

The results of this experiment are shown on Fig. 2. The situation is similar to
the previous experiment with semi-heuristic method being close to optimal-on-
average method and better than baseline methods. However, the semi-heuristic
method works worse than optimal-on-average method parametrized by the real
modules distribution.
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3.2 Medium-Sized Graphs

Similarly to the previous section we have generated 32 different graphs of size
100. An active module were sampled to be the size of 5–25.

Fig. 1. Module AUC values for graphs of size 18. The following methods are present:
optimal-on-average, semi-heuristic, BioNet-like and non-monotonous. Each panel shows
comparison of two methods. One arrow correspond to one experiment with its ends
corresponding to AUC value of the first and the second methods in the pair. The color
depends on which method works better. True active modules were sampled from the
uniform distribution.

On these graph sizes running the optimal-on-average method becomes infea-
sible, so we excluded it from the analysis. A median time of running the semi-
heuristic method was 146 s.

The results of the experiment are shown on Fig. 3. Almost for all cases semi-
heuristic ranking have worked better than both BioNet-like and non-monotonous
baseline methods.

3.3 Large Real-World Graph

Finally, we analyzed performance of the proposed semi-heuristic method on the
large real-word graph. For this experiment we used a protein-protein interaction
graph from the example of BioNet package [2]. This graph has 2089 vertices and
7788 edges. An active module in this network was sample to be a size of 50–250.
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Fig. 2. Module AUC values for graphs of size 18 when true active modules were sam-
pled from a non-uniform distribution. The following methods are present: optimal-
on-average, optimal-on-average parametrized by the real distribution, semi-heuristic,
BioNet-like and non-monotonous.

Fig. 3. Module AUC values for graphs of size 100. Three methods are present: semi-
heuristic, BioNet-like and non-monotonous.

The results of the experiment are shown on Fig. 4. As for medium sizes semi-
heuristic method works better than both baseline methods. On the other hand,
the running time of the method increased significantly to about six hours.
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Fig. 4. Module AUC values for a real protein-protein interaction graph. Three methods
are present: semi-heuristic, BioNet-like and non-monotonous.

3.4 Generating Graphs for Experiments

To mimic real network graphs generated for the experiments were scale-free.
For the generation we used an existing implementation of the Barabasi-Albert
algorithm from an R-package igraph.

For subgraph sampling of the given size we used the following procedure. Let
G = (V,E) be a connected graph, k be a required size of an active module and M
is the set of vertices of the generated random active module. At the beginning
M is empty. First we add into M a random vertex from the graph. Next we
choose one of the adjacent vertex of M that does not already belong to M and
add it. This step is repeated until M is of size k.

4 Conclusion

The problem of active module recovery appears in many areas of bioinformatics.
Usually it is solved by an heuristic or exact algorithm that provides a module for
a selected significance threshold. However, in practice multiple threshold values
are tested and the results of these tests are not easily combined to be interpreted.
In this paper we considered a ranking variant of this problem, where vertices are
ranked before a particular threshold is selected. We also force a property of a
module for a more stringent threshold to be a subgraph of a module for a less
stringent one. We proposed two methods to solve this problem. The first method
uses dynamic programming to find a ranking that maximizes an expected value
of AUC score. We consider this method to be optimal, but it works only on
small graphs. The second method does not explicitly maximize the AUC score
but compares well to the optimal one and works better than the baseline methods
in practice. However, it is also able to rank graphs with up to thousands vertices
in a reasonable time.
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Abstract. This paper presents two computable functions, ω and ε, that
map networks into networks. If all cognition occurs as an active neural
network, then it is thought that ω models long-term memory consol-
idation and ε models memory recall. A derived, intermediate network
form, consisting of chordless cycles, could be the structural substrate of
long-term memory; just as the double helix is the necessary substrate for
genomic memory.

Keywords: Closure · Chordless cycles · Long-term memory · Consoli-
dation · Recall · Neural network

1 Introduction

There seems to be consensus that our sensations, ideas, and memories are really
just active networks of neurons in our brains [12,30]. And we have a good idea
where in the brain specific kinds of mental activity occur, e.g. [17,28] But, to
our knowledge, no one has any idea as to what kinds of networks correspond to
any specific sensation, concept or memory.

We know that neurons can stimulate other neurons by means of electric
(or chemical) charges proceding along an axon to one, or more, synapses [29].
That would suggest that a directed, asymmetric network is a reasonable model.
However, such an asymmetric network may best model neuronal behavior, but
not neuronal state. Many neurons are interconnected by dendrites. These are
thought to be bi-directional, thus implementing symmetric relationships that
may recognize a state necessary to activate a neuron.

Given this state of uncertainty, we have chosen to explore symmetric rela-
tionships, or graphs or networks, in this paper. Some of the mathematical results
we present may be true as well for asymmetric (directed) networks; some would
require minor rewording; and some will no longer be true at all.

Regardless of whether our neural networks are essentially symmetric or asym-
metric, it would appear that a mathematical treatment of networks, or graphs,
or relationships is a fruitful way to approach them. That we will do in this paper.

In Sect. 2, we clarify our interpretation of relationships and their visual rep-
resentation as graphs or networks. We also introduce the concept of “closure”.
In Sect. 3, we describe a computational process, ω, which reduces any network
c© Springer International Publishing AG 2017
D. Figueiredo et al. (Eds.): AlCoB 2017, LNBI 10252, pp. 85–99, 2017.
DOI: 10.1007/978-3-319-58163-7 6
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to its unique, irreducible “trace”. We will claim that this procedure appears to
model the process of long-term memory “consolidation”.

The ω process is a well-defined function over the space of all finite networks
in that for any network N , ω yields a unique irreducible trace T . Thus the
inverse set, ω−1, defines the abstract set of all networks that reduce to the
same specific irreducible trace. In Sect. 4, we present a computational process
which generates specific members within ω−1. We will argue that this can model
“memory reconstruction”.

In Sect. 5 we present additional evidence to support our claims to model
long-term memory consolidation and recall. Certain mathematical details are
developed in an appendix, Sect. A.

2 Sets, Relations, and Closure

Our computations are set based. The nature of the elements comprising the sets
play no part, and can be quite arbitrary. So unlike most computational systems
in which the variables will be int or float, our variables have type setid.
We program using a set manipulation package in C++ with operators such as
is contained in and union of. Sets themselves are represented as extensible
bit strings, so that the operators above are effectively of order O(1). There is
no theoretical upper bound of these sets, but we have not tested it with sets of
cardinality exceeding 50,000. A somewhat fuller description is given in [19]. All
the following set-based operators and procedures have been implemented, and
fully tested, using this system.

We use a standard set notation. A setS is comprised of elements {a, b, . . . , y, z}
of unspecified type. The curly braces { } indicate that these elements are regarded
as a “set”. Sets are denoted by upper case letters, e.g. X, Y ; elements are always
lower case, e.g. x, y. Sometimes we elide the commas, as in Y = {abc}.

If an element x is a member of the set X, we write x ∈ X. If a set X is
contained in another set Y , that is, x ∈ X implies x ∈ Y (here x is a variable
running over all elements of X), we write X ⊆ Y . If the containment is strict,
that is there exists y ∈ Y , y �∈ X, we write X ⊂ Y . By X ∪ Y and X ∩ Y we
mean the union and intersection (meet) of X and Y respectively.

One may have a “set of sets”, which we call a collection, and denote with
a caligraphic letter. Thus we may have X ∈ C.

2.1 Relationships

Let S be any set. A relation, η, on S is a function, which given any subset
Y = {y1, y2, . . . , yk} ⊆ S returns the related set Y.η = {z1, z2, . . . , zn} ⊆ S.
This is a bit unusual. It is more common to think of relations as links, or edges,
between elements, such as illustrated by the undirected graph, or network, of
Fig. 1, which we will use as a running example. η is sometimes regarded as a
set of “edges” in a graph theoretic approach. But we prefer to define relations
in terms of sets and functional operators. It provides an additional measure of
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Fig. 1. A very small relationship η, or network N , on 43 nodes, or elements

generality which can be of value. We emphasize this set-based definition by using
suffix notation, such as Y.η to mean the set of elements {z} that are related to
Y by η. We call Y.η the neighborhood of Y . In Fig. 1, {g}.η = {bcefghklm}
and {IM}.η = {FHIJLMNOPQ}.

If η has the property that

P1: Y.η =
⋃

y∈Y {y}.η (extensibility)

that is, Y.η is the union of all the subsets {y}.η for all y ∈ Y , we say that η is
extensible, or graphically representable, so that Fig. 1 is an accurate represen-
tation of η.

If the relationship is not extensible, then it constitutes a “hypergraph”
[3,7]. To more easily illustrate the concepts of this paper with graphs, we will
assume that η is extensible; but unless explicitly noted none of the mathematical
assertions require it. Moreover, we observe that for large, sparse relationships,
matrix representations and operations are quite impractical [34].

In addition to extensibility, P1, a relationship η may also have any of the
following 3 properties: that for all X,Y ⊆ S,

P2: Y ⊆ Y.η (expansive or reflexive)1

P3: X ⊆ Y implies X.η ⊆ Y.η (monotone)2

P4: X.η = Y implies Y.η = X (symmetric)3

The relation of Fig. 1 is symmetric; its graph is undirected. By a network,
N = (N, η), we mean a set N of nodes or elements, together with any relation-
ship η. For this paper, we require that η satisfies the functional properties P2, P3
and P4.

1 This is primarily for mathematical convenience.
2 Probably essential. If η is not monotone, we can prove very few mathematical results

of interest.
3 Unnecessary, relaxed in other papers such as [25,26].
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2.2 Closure

The mathematical concept of “closure” plays a key role in our approach. In a
discrete world, the interpretation of closed sets is somewhat different from the
more traditional concepts encountered in classical point-set topology. Our view
is that a closure operator, ϕ, is a set-valued function whose domains are also
sets. If Y denotes any set, Y.ϕ denotes its closure; that is the smallest closed
set containing Y . Thus, like η, ϕ is a well-defined function mapping subsets,
X,Y ⊆ N of a given network into other subsets of N . More formally, ϕ is a
closure operator that satisfies the following 3 closure axioms, C1: expansive
(Y ⊆ Y.ϕ), C2: monotone (X ⊆ Y implies X.ϕ ⊆ Y.ϕ), and C3: idempotent
(Y.ϕ.ϕ = Y.ϕ). Readily, any relationship operator, η, satisfying properties P2
and P3 is almost a closure operator. It has only to satisfy the idempotency
axiom. But normally, Y.η ⊂ Y.η.η since neighborhoods tend to grow.

An alternative definition of closure asserts that a collection C = {C1, . . . , Cn}
can be regarded as the closed sets of a superset S if and only if C4: the inter-
section Ci ∩ Ck of any these closed sets is itself closed (in C). It is not difficult
to prove that C4 implies C1, C2, and C3, and conversely.

We normally think of closure in terms of its operator definition. Because ϕ
is expansive, C1, the superset S must be closed; by C4, if any two closed sets
are disjoint, the empty set Ø must also be closed.

2.3 Neighborhood Closure

One important closure operator, ϕ, called neighborhood closure can be
defined with respect to network relationships. We let

Y.ϕ =
⋃

z∈Y.η
{{z}.η ⊆ Y.η} (1)

That is, if z ∈ Y.ϕ then z is not related to any elements that are not already
related to Y . Convince yourself that in Fig. 1, {c}.ϕ = {ac}, {g}.ϕ = {eghl} ⊂
{g}.η and {u}.ϕ = {uyD}. It is not hard to show that ϕ, so defined with respect
to η satisfies the closure axioms C1, C2 and C3 and that for all {y}, {y} ⊆
{y}.ϕ ⊆ {y}.η.

3 Irreducible Networks

If a singleton set {y} is not closed, say z ∈ {y}.ϕ, then {z}.ϕ ⊆ {y}.ϕ, so
z contributes little to understanding the structure of η in terms of closure. In
Fig. 1, {a}.ϕ = {a} ⊂ {ac} = {c}.ϕ. Removing a, and its connections, results in
minimal information loss with respect to η as a whole.

We say a network N = (N, η) is irreducible if every singleton set, {y}, is
closed. That is, if for all y ∈ N , {y}.ϕ = {y}. In Fig. 1, {f}.ϕ = {f}, but from
observations above, the entire network is not irreducible.
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If {y} is not closed, only elements z in {y}.η could possibly be in {y}.ϕ so
only those need be considered. If {z}.η ⊆ {y}.η so that {z}.ϕ ⊆ {y}.ϕ, we say
z is subsumed by y, or z belongs to y. We can remove z from N , together
with all its connections, and add z to {y}.β, the set of all nodes belonging
to {y} which we call its β-set. Since, y ∈ {y}.β, its cardinality, or β-count,
|{y}.β| ≥ 1, a value we will use in the next section. We use the pseudocode of
Fig. 2 to implement the process ω that reduces any network N to its irreducible
core, which is called its trace, T .4 This version of ω only records β-counts, not
entire β-sets.

Fig. 2. Reduction code, implementing ω

The irreducible trace, T , of Fig. 1 is shown in Fig. 3. The trace is the net-
work on 26 elements with bolder connections. β-counts ≥ 2 are shown in square
brackets, [ ]. β-sets are delineated with dashed lines. Observe that {g} has sub-
sumed e, h and l, so that |{g}.β| = |{eghl}| = 4 while {p} has subsumed o, so
|{p}.β| = |{op}| = 2. A total of 17 nodes were subsumed and eliminated.

The order in which individual nodes y are examined is arbitrary. Thus, one
can create networks that require n = |N | iterations of the outer loop. So this
process has a theoretical complexity of O(n2). However, in tests with rather
complex networks of several thousand nodes, the maximal number of iterations
has never exceeded 7. Its effective complexity appears to be quite reasonable.
Moreover, because of its local nature, the inner loop could be easily implemented
in parallel.

We keep speaking of the function ω. It can be shown (see Sect. A), that for any
network N , its irreducible trace, T , is unique (up to isomorphism). Therefore, the
pseudocode of Fig. 2 does indeed embody a well-defined computational function
which we denote by ω. Not only is ω a function, we can actually characterize its

4 In [24], this was called the “spine” of N .
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Fig. 3. The irreducible trace T of Fig. 1

output, T = N .ω. When η is symmetric, if y is a node in T = N .ω, then y will
be either: (a) an isolated node; (b) an element of a chordless cycle of length ≥ 4;
or (c) an element in a path between two chordless cycles of length ≥ 4 (again
see Sect. A).

A chordless cycle is most easily visualized as a necklace of pearls (or beads).
More formally, it is a sequence < y1, y2, . . . , yn, y1 > where yi±1 ∈ {yi}.η,
y1 ∈ {yn}.η and yi±k �∈ {yi}.η if k > 1. In Figs. 1 and 3 the sequence
< c, d, i,m, g, c > is a chordless cycle of length 5 and < b, c, d, i,m, p, k, f, b > is
one of length 8. Granovetter [13] called chordless cycles the “weak connections”
of a social network. He felt they were the key to understanding the network struc-
ture as a whole. Chordless cycle structures have been relatively unstudied, while
“chordal graphs” (with no chordless cycles) have an exhaustive literature [16].
Even when η is not symmetric, chordless cycles are basic to the characterization
of an irreducible trace [26].

This trace, T , of chordless cycles preserves a number of important properties
found in the original network, N . First, it preserves the shortest path structure
between retained nodes. Consequently, connectivity and the distances between
nodes (as usually defined) are preserved. Further, “network centers”, [2,8,9],
whether with respect to distance or “betweenness”, are preserved in the trace.

The physical nature of human long-term memory is not at all a settled matter.
We are fairly certain that the hippocampus of the brain is heavily involved
[11,28]; but just how is rather unclear. One school of thought posits that long-
term memories are recorded in some form of “memory trace” [4,32,36]. But,
because no trace of these supposed “memory traces” has ever been physically
detected (pun intended), others disbelieve this theory [5,18].

There is more consensus that some form of processing which distinguishes
long-term memory from short-term memory does occur. This process is com-
monly called consolidation [1,14,18]. We believe that ω is analogous to con-
solidation, and that chordless cycles, in some form, are analogous to the elusive
“memory trace”, whence our terminology.
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4 Computing Similar Networks

Since ω is a well-defined function mapping the space of all finite, symmetric net-
works into itself, one can consider N .ω−1, which is the collection of all networks
N i such that N i.ω = T = N .ω. Two such networks, N i and N k, that have the
same irreducible trace are said to be structurally similar. Readily, structural
similarity is an equivalence relation. Even though N k may be similar to N i,
they may have very different cardinalities. A network N k(Nk, ηk) is said to be
strongly similar to N i(Ni, ηi) if N k.ω = N i.ω and |Nk| = |Ni|.

Fig. 4. Pseudocode for ε which generates strongly similar networks.

The pseudocode above in Fig. 4 describes a computational process ε that,
given the trace T of a network N together with β-counts, randomly expands
it to a strongly similar network N ′ = N .ω.ε. The process choose random in
returns a random subset of its argument. Since {z}.η = S ⊆ {y}.η, the node z
will be subsumed by (or belong to) y if reduced again ensuring that N .ω.ε.ω =
N .ω. When a node {y} is expanded, its β-count is decremented, and if > 1,
part of the remainder may be added to the β-count of {z}. Consequently, by
creating just as many new nodes as had belonged to any node {y}, we ensure
that |N ′| = |N |. This kind of ε process has been called an “expansion grammar”
in [22]. The construction of ε, where {z}.η ⊆ {y}.η, assures us that T .ε.ω will
be T again. Consequently, for any network N ′ = T .ε, N ′ ∈ N .ω−1, so N ′ and
N are structurally similar.

Let N be the network of Fig. 1. The following Fig. 5 shows a network N ′ that
was randomly expanded by ε, given the irreducible trace T of Fig. 3.

The numbered nodes were appended to the trace and roughly correspond to
the 17 subsumed nodes. N ′ is strongly similar to the network N of Fig. 1 because
N ′.ω = T = N .ω.

Such a semi-random “retrieval” process may be inappropriate in computer
applications [26], but it seems to model biological recall rather well. It has been
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Fig. 5. A reconstructed network N ′ = T .ε that is strongly similar to N of Fig. 1

observed that the recall and reconstruction of our long-term memories is seldom
exact [14]. Our memories often are confused with respect to detail, even when
they are generally correct. Reconstruction of a network trace by ε has these very
properties.

Given that for all networks N , N .ω.ε.ω = N .ω = T , it also supports the
notion of “re-consolidation” which asserts than long-term memories are repeat-
edly recalled and re-written with no change, unless deliberately distorted in our
(semi)conscious mind [18,35].

5 Biological Memory

A computational model need not actually explain the behavior that it models.
For example, the path of a thrown projectile has an excellent parabolic model.
However, further study of this conic formulation contributes little to the under-
standing of either gravity or air resistence. By the same token, there need not
be closure operators or chordless cycles involved in the performance of human
memory, for the model to be valid. But, it would be a powerful verification of
this model if we could demonstrate the existence of chordless cycle structures in
a memory representation. We can’t. Neither, to our knowledge, does anyone else
know the structural format of our long-term memory.

Throughout this paper we have suggested parallels found in various memory
studies. But, do these computational processes, ω and ε, really model biological
memory? We just don’t know. In this section we offer a few more tantalizing
clues.

5.1 Role of Closure

We employed “closure” as the basic mathematical concept in the preceeding
development. But, are instances of closure actually found in biological organ-
isms? We offer two suggestive examples.
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First, The visual pathway consists of layers of cells, beginning with the rods
and cones of the retina passing stimuli toward the primary visual cortex. The
neurological structure of this visual pathway is reasonably well understood, c.f.
[12,29,33]. The individual functions of its layers are less well so.

Fig. 6. Excited cells in a cross section of the visual cortex.

Imagine that Fig. 6 depicts a cross section of the retinal region. Dark cells
denote visually excited cells. Although tightly packed, the actual neuronal struc-
ture is not as regular as this hexagonal grid; but this regularity plays no part in
the process.

Let α be an existential operator defined as Y.α = black (excited), if and only
if ∃z ∈ Y.η where z is black (excited). Let β be the existential operator defined
by Y.β = white (quiesent), if and only if ∃z ∈ Y.η such that z is white (quiesent).
Figure 7(a) illustrates the excited (small ×) neighbors of Fig. 6. Figure 7(b) illus-
trates Y.α.β in which all excited cells of Fig. 7(a) that have at least one quiesent
(white) neighbor become quiesent (white). The resulting central figure becomes
evident; it is a closed object, because the pair of operators (α.β) is a closure oper-
ator. The pair (α.β) is idempotent because iterating them, as in Y.(α.β).(α.β)
yields no new black (excited) cells.

Fig. 7. (a) Y.α, excited cells, (b) Y.α.β, remaining excited cells.
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This two step operation can occur at the neural firing rate. It is an effective
parallel process that was first proposed to eliminate salt and pepper noise in
computer imagery [31]. Readily, such a “blob detection” capability would have
evolutionary value. Does such a capacity exist? We don’t know for sure. But, it is
thought that the visual pathway is organized in a manner to facilitate precisely
this kind of two-step processing [33].

The second example is also “cognitive”. In the development of “Knowledge
Spaces” [6], Doignon and Falmagne call a coherent collection of facts or skills a
“knowledge state”. These are closed sets which are partially ordered by contain-
ment to form a lattice structure [21], which they call a “knowledge space”. There
is a considerable literature concerning closed knowledge “states” and knowl-
edge “spaces”.5 A somewhat similar approach to cognitive closure was presented
in [25].

5.2 Role of Chordless Cycles

Also central to our paper is the concept of “chordless cycles” which constitute the
structure of an irreducible trace. Chordless cycles abound in biological organisms
as protein polymers.

One example, found in every cell of our bodies, is a 154 node phenylalaninic-
glycine-repeat (nuclear pore protein), N , which is shown in Fig. 8.6 One can
easily see the chordless loops, with various linear tendrils attached to them.

Fig. 8. A 154 node protein polymer

5 Cord Hockemeyer, http://www.uni-graz.at/cord.hockemeyer/KST Bibliographie/
kst-bib.html, maintains a bibliography of over 400 related references.

6 This network, N , that we received from a lab at Johns Hopkins Univ. was only
identified as GrN2. We believe it is an natively unfolded phenylalanine-glycine (FG)-
repeat [15].

http://www.uni-graz.at/cord.hockemeyer/KST_Bibliographie/kst-bib.html
http://www.uni-graz.at/cord.hockemeyer/KST_Bibliographie/kst-bib.html
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When these are removed by ω, there are 107 remaining elements involved in
the chordless cycle structure. These are thought to regulate transport of other
proteins across the nuculear membrane [10,20,37].

Readily, organisms with any form of memory, e.g. “movement toward light
yields food”, have survival benefit. Nature appears to reuse successful structures.
If chordless cycles can successfully regulate one form of transport, it would not be
surprising if evolutionary pressure led to their use in other control mechanisms.

Moreover, modification of protein polymers by means of phosphorylation [38]
is thought to be involved in short-term memory [14]. For long-term memories,
chordless cycles within the dendritic connections between neurons seem more
likely.

But is there reason to suspect that memory has any “structural” properties
at all?

Perhaps the most important biological memory mechanism is our genetic
memory which records the nature of our species. It is known to have a double
helix structure which facilitates a near perfect recall. These coded sequences are
subsequently “expressed” during development by an expansion process which
might be similar to a non-random ε.

While the double helix facilitates a reliable read-only memory (ROM); chord-
less cycles appear facilitate the encoding of eposidic information in a dynamic
memory via a process such as ω.

Much of this section is speculation. But, both “closure” [25] and “chordless
cycles” [26] would appear to have biological significance. The assertions of this
paper have a solid mathematical base [27]. As such, ω and ε provide useful exam-
ples within a category of networks that can formally model dynamic biological
networks. If in addition, they actually model memory consolidation and recall
as we suspect, that would be an additional bonus.

A Appendix

Too much formal mathematics makes a paper hard to read. Yet, it is important
to be able to check some of the statements made in the body of the paper. In this
appendix we provide a few propositions to formally prove some of our assertions.

The order in which nodes, or more accurately the singleton subsets, of N
are encountered can alter which points are subsumed and subsequently deleted.
Nevertheless, we show below that the reduced trace T = N .ω will be unique,
up to isomorphism.

Proposition 1. Let T = N .ω and T ′ = N .ω′ be irreducible subsets of a finite
network N , then T ∼= T ′.

Proof. Let y0 ∈ T , y0 �∈ T ′. Then y0 can be subsumed by some point y1 in T ′

and y1 �∈ T else because y0.η ⊆ y1.η implies y0 ∈ {y1}.ϕ and T would not be
irreducible.

Similarly, since y1 ∈ T ′ and y1 �∈ T , there exists y2 ∈ T such that y1 is
subsumed by y2. So, y1.η ⊆ y2.η.
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Now we have two possible cases; either y2 = y0, or not.
Suppose y2 = y0 (which is often the case), then y0.η ⊆ y1.η and y1.η ⊆ y2.η

or y0.η = y1.η. Hence i(y0) = y1 is part of the desired isometry, i.
Now suppose y2 �= y0. There exists y3 �= y1 ∈ T ′ such that y2.η ⊆ y3.η,

and so forth. Since T is finite this construction must halt with some yn. The
points {y0, y1, y2, . . . yn} constitute a complete graph Yn with {yi}.η = Yn.η, for
i ∈ [0, n]. In any reduction all yi ∈ Yn reduce to a single point. All possibilities
lead to mutually isomorphic maps. ��

In addition to N .ω being unique, we may observe that the transformation ω is
functional because ω maps all subsets of N onto Nω . So we can have {z}.ω = Ø,
thus “deleting” z. Similarly, ε is functional because Ø.ε = {y} provides for the
inclusion of new elements. Both ω and ε are monotone, if we only modify its
definition to be X ⊆ Y implies X.ε ⊆ Y.ε, provided X �= Ø.

The following proposition characterizes the structure of irreducible traces.

Proposition 2. Let N be a finite symmetric network with T = N .ω being its
irreducible trace. If y ∈ T is not an isolated point then either

(1) there exists a chordless k-cycle C, k ≥ 4 such that y ∈ C, or
(2) there exist chordless k-cycles C1, C2 each of length ≥ 4 with x ∈ C1 z ∈ C2

and y lies on a path from x to z.

Proof.

(1) Let y ∈ NT . Since y is not isolated, we let y = y0 with y1 ∈ y0.η, so
(y0, y1) ∈ E. Since y1 is not subsumed by y0, ∃y2 ∈ y1.η, y2 �∈ y0.η, and since
y2 is not subsumed by y1, ∃y3 ∈ y2.η, y3 �∈ y1.η. Since y2 �∈ y0.η, y3 �= y0.
Suppose y3 ∈ y0.η, then < y0, y1, y2, y3, y0 > constitutes a k-cycle k ≥ 4,
and we are done. Suppose y3 �∈ y0.η. We repeat the same path extension.
y3.η �⊆ y2.η implies ∃y4 ∈ y3.η, y4 �∈ y2.η. If y4 ∈ y0.η or y4 ∈ y1.η, we have
the desired cycle. If not ∃ y5, . . . and so forth. Because N is finite, this path
extension must terminate with yk ∈ yi.η, where 0 ≤ i ≤ n − 3, n = |N |. Let
x = y0, z = yk.

(2) follows naturally. ��

Finally, we show that ω preserves the shortest paths between all elements of
the trace, T .

Proposition 3. Let σ(x, z) denote a shortest path between x and z in N . Then
for all y �= x, z,∈ σ(x, z), if y can be subsumed by y′, then there exists a shortest
path σ′(x, z) through y′.

Proof. We may assume without loss of generality that y is adjacent to z in
σ(x, z).

Let < x, . . . , xn, y, z > constitute σ(x, z). If y is subsumed by y′, then y.η =
{xn, y, z} ⊆ y′.η. So we have σ′(x, z) =< x. . . . , xn, y′, z > of equal length. (Also
proven in [23].) ��
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In other words, z can be removed from N with the certainty that if there was
a path from some node x to z through y, there will still exist a path of equal
length from x to z after y’s removal.

Fig. 9. A network diamond

Figure 9 visually illustrates the situation described in Proposition 3, which
we call a diamond. There may, or may not, be a connection between y and y′

as indicated by the dashed line. If there is, as assumed in Proposition 3, then
either y′ subsumes y or vice versa, depending on the order in which y and y′

are encountered by ω. This provides one example of the isomorphism described
in Proposition 1. If there is no connection between y and y′ then we have two
distinct paths between x and z of the same length.
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Abstract. The DFE characterizes the mutational “input” to evolution,
while natural selection largely determines how this input gets sorted into
an evolutionary “output”. The output cannot contain novel genetic mate-
rial that is not present in the input and, as such, understanding the DFE
and its dynamics is crucial to understanding evolution generally. Despite
this centrality to evolution, however, the DFE has remained elusive pri-
marily due to methodological difficulties. Here, we propose and assess
a novel framework for estimating the DFE which removes the biasing
effects of selection statistically. We propose a statistic for characteriz-
ing the difference between two inferred DFEs, taken from two different
populations or from the same population at different time points. This
allows us to study the evolution of the DFE and monitor for structural
changes in the DFE.

Keywords: Adaptive evolution · Fitness mutation · Population
genetics · Cumulant expansion · Empirical characteristic function

1 Introduction

Evolution requires genetic variation. Mendelian inheritance provides a mecha-
nism for the transmission and maintenance of genetic variation, but it does
not explain or characterize the origin of this variation. Ultimately, the origin of
genetic variation is mutation: mutation is what creates the different alleles whose
presence in a population can then be maintained through Mendelian inheritance,
providing fodder for subsequent adaptive evolution. Fitness mutations (muta-
tions that change fitness) have been called the “raw material” or “fuel” of evolu-
tion, because they provide the input to natural selection. Despite this essential
role in evolution, however, we know almost nothing about the general nature
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D. Figueiredo et al. (Eds.): AlCoB 2017, LNBI 10252, pp. 103–114, 2017.
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of such mutations, or even if they have a general nature. For example, what
fraction of such mutations increase fitness? What fraction decrease fitness? Do
these have large or small effects on fitness? Generally speaking, what is the dis-
tribution of their fitness effects (DFE)? Is there a canonical form for the DFE or
do the contingencies outweigh the generalities? How does the DFE change over
time, as a population adapts? Given their pivotal role in evolution, it indeed
seems surprising that such fundamental questions remain largely unanswered.

In sexual populations, the effects of many mutations can be masked through
dominance effects. As a result, a significant fraction of fitness mutations may not
be detectable in fitness assays of population samples. Furthermore, deleterious
mutations can be eliminated efficiently in sexual populations and their past
occurrence may thus be difficult to infer. These features of sexual populations
might further confound the already-difficult inverse problem of characterizing the
DFE, and such considerations would therefore suggest that attempts to infer the
DFE from population samples should start with asexual populations. With this
in mind, we here develop methods primarily for use with asexual populations,
although the basic framework we develop can be adapted to the case of sexual
populations (future work).

1.1 Previous Studies

The primary reasons for the deficiency in our knowledge of the DFE are method-
ological. Estimation of the DFE requires that two largely contradictory con-
ditions are simultaneously met, namely: (1) that a large sample of candidate
replications is surveyed (ideally, a population), and (2) that the strong biasing
effects of natural selection are somehow removed. Mutation accumulation assays,
for example, remove the biasing effects of selection by reducing the population to
the smallest possible effective size; in other words, they achieve (2) above by sac-
rificing (1). These assays are well-suited to estimating the deleterious mutation
rate and the mean deleterious effect of mutations but, because of the restricted
numbers of mutants surveyed, not much more information can be extracted.

Largely owing to these methodological difficulties, understanding the DFE
remains a key goal of evolutionary genetics [2]. Despite some recent progress
based on genome sequencing and experimental evolution approaches [1,4,5,7,8,
12,15,18], much remains to be understood. In particular, the notion that there
is a canonical form for the DFE is questionable: it seems intuitively reasonable,
for example, that the DFE will be strongly affected by the evolutionary history
of a population in its current environment [12].

1.2 Evolution and the DFE

The DFE’s Right Tail. A particular feature of the DFE that is of special rele-
vance to evolutionary biology is the right tail. The right tail contains information
about the general nature of adaptive mutations. For example, is the probability of
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acquiring adaptive mutations of large effect vanishingly small, e.g., does the prob-
ability of adaptive mutations fall off exponentially as fitness increases? Or is the
probability of large-effect adaptive mutations non-negligible, e.g., does the proba-
bility fall off as a power law? The answer to these questions will have implications
for the general nature of adaptations and evolutionary dynamics, and fundamental
questions in evolution such as those surrounding the evolution of sex.

The DFE and the Fitness Landscape. Indirectly, the DFE, its evolution,
and particularly its right tail also carry information about the general nature
of the underlying adaptive landscape, or at least the immediate neighborhood
therein. Adaptive landscapes define the genetic “terrain” that populations navi-
gate through the actions of mutation, recombination, selection and drift. Quali-
tative differences in the topography of adaptive landscapes can have implications
for the relative importance of these four evolutionary factors. A question that
has guided some of the work on the DFE to date is: does the DFE reflect an
underlying Fisherian adaptive topography [10,11]?

1.3 The Present Study

Fitness mutations observed in the present occurred some time in the past, and
inferring the DFE thus requires a dynamical model of fitness evolution. While the
history of such models is as old as population genetics itself, much recent progress
has been made, especially where asexual and facultatively sexual populations
are concerned, and the powerful tools of statistical physics have been applied to
evolutionary dynamics with some success [3,6,13,14,16,17,19].

The theoretical framework we develop here provides a way to characterize
the DFE based on fitness measurements of individuals drawn at random from
a population; it does this by statistically accounting for the biasing effects of
natural selection. In a forthcoming article, we apply the methods developed here
to real data from evolving E. coli populations. This study lays the theoretical
groundwork that, when combined with data from laboratory evolution experi-
ments (a forthcoming paper), will provide what we believe to be the first truly
in situ look at the DFE of spontaneously arising mutations, and how it changes
as populations adapt to novel environments.

Our methods provide a way to compute the moments of the DFE, and it
is known [9] that moments carry plenty of information about distribution tails.
Indeed, the simulation studies we describe here confirm this: using simulated
data, our methods give a very accurate reconstruction of the right tail of the
DFE. As mentioned in the previous subsection, this tail is of paramount relevance
to the general nature of evolution.

Characterizing the Evolution of the DFE. Structural changes in the DFE
and/or the appearance of non-stationarity in its evolution might provide early
warning signs of impending evolutionary “shifts”. Two examples of such shifts
might be: (1) metastatic transitions in cancer, and (2) zoonotic events such as
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avian flu’s evolutionary leap to infect a new animal host. We illustrate how our
methods can be applied to detect structural changes in the DFE.

2 Fitness Evolution

2.1 Evolution of the Distribution of Fitnesses

Let u(x, t) denote probability density in fitness x at time t (i.e.,
∫

x
u(x, t) = 1

for all t) for an evolving population. Under selection and mutation, u evolves as:

∂tu(x, t) = (x − x̄)u(x, t) + U

∫

γ

u(x − γ, t)g(γ, t) − Uu(x, t)

where U is genomic mutation rate, and g(γ, t) is probability density for fitness
changes incurred by mutation (i.e., the DFE).

2.2 Evolution of the Corresponding Characteristic Function

Let C(ϕ, t) denote the characteristic function for u(x, t), i.e., C(ϕ, t) =∫
eiϕxu(x, t)dx and let M(ϕ, t) denote the characteristic function for the DFE,

i.e., M(ϕ, t) =
∫

eiϕxg(x, t)dx. The transformed equation is:

∂tC(ϕ, t) = −i∂ϕC(ϕ, t) + i∂ϕC(0, t)C(ϕ, t) + UC(ϕ, t)(M(ϕ, t) − 1).

Over the time interval in question (assumed to be short on evolutionary time
scales), we will suppose the DFE is invariant such that M(ϕ, t) = M(ϕ). Let
Φ(ϕ, t) = ln C(ϕ, t); then we have:

∂tΦ(ϕ, t) = −i∂ϕΦ(ϕ, t) + i∂ϕΦ(0, t) + U(M(ϕ) − 1).

This equation is a variant of the transport equation and, when boundary condi-
tion Φ(0, t) = 0 is applied, it has solution:

Φ(ϕ, t) = Φ(ϕ− it, 0)−Φ(−it, 0)− iU

∫ ϕ

ϕ−it

(M(γ)− 1)dγ + iU

∫ 0

−it

(M(γ)− 1)dγ

which reduces to:

Φ(ϕ, t) = Φ(ϕ − it, 0) − Φ(−it, 0) − iU

∫ 0

−it

(M(ϕ + γ) − M(γ))dγ (1)

2.3 Dynamics of Mean Fitness

Mean fitness at time t, denoted x̄(t), is derived as follows:

x̄(t) = (−i)
∂

∂ϕ
[Φ(ϕ, t)]ϕ=0

Letting Φ0(ϕ) = Φ(ϕ, 0), this gives a general expression for mean fitness evolution
under selection and mutation:

x̄(t) = −iΦ′
0(−it) + U [M(−it) − 1] (2)

where the prime denotes derivative.
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2.4 Dynamics of Fitness Variance and Higher Cumulants

Fitness variance at time t, denoted σ2
x(t), is derived as follows:

σ2
x(t) = (−i)2

∂2

∂ϕ2
[Φ(ϕ, t)]ϕ=0

giving:
σ2

x(t) = −Φ′′
0(−it) − iU [M ′(−it) − M ′(0)] (3)

And generally, the jth cumulant at time t, denoted κj(t), is given by:

κj(t) = (−i)j ∂j

∂ϕj
[Φ(ϕ, t)]ϕ=0 (4)

2.5 Connection to Classical Theory

Without mutation, the equation for mean fitness evolution is:

x̄(t) = −iΦ′
0(−it)

which may be rewritten as:

x̄(t) = −i
∂

∂ϕ

[

iκ1ϕ − 1
2
κ2ϕ

2 − i
1
6
κ3ϕ

3 + ...

]

ϕ=−it

= −i
[
iκ1 + κ2it + O(t2) + ...

]

Noting that κ1 = x̄(0) and κ2 = σ2
x(0), and computing for some very small time

increment into the future, t = dt, we have:

x̄(dt) = x̄(0) + σ2
x(0)dt + O(dt2), or

x̄(dt) − x̄(0)
dt

= σ2
x(0) + O(dt)

And letting dt → 0 gives:
dx̄

dt
= σ2

x

which is the continuous-time formulation of Fisher’s fundamental theorem of
natural selection.

3 Parametric Estimation of the DFE

From the above developments, we derive two methods for parametric estimation
of the DFE, each with different merits and shortcomings. We will call these
methods the “integral” and “derivative” methods.
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3.1 Integral Method

We define the functions:

G(ϕ, t) = iU

∫ 0

−it

(M(ϕ + γ) − M(γ))dγ,

and
F (ϕ, t) = Φ(ϕ − it, 0) − Φ(−it, 0) − Φ(ϕ, t).

Then Eq. (1) may be rewritten as:

G(ϕ, t) = F (ϕ, t).

Now we define the parametric counterpart to G(ϕ, t):

G̃(ϕ, t) = iU

∫ 0

−it

(P (ϕ + γ) − P (γ))dγ,

where P (ϕ) is the CF of a known distribution chosen to represent the DFE
with parameter vector θ. It will often be the case that G̃(ϕ, t) has a closed-form
expression when P (ϕ) is analytic; these cases are convenient but strictly speaking
we are not limited to such cases. Next, we define the empirical counterpart to
F (ϕ, t):

F̃ (ϕ, t) = Φ̃(ϕ − it, 0) − Φ̃(−it, 0) − Φ̃(ϕ, t).

where
Φ̃(ϕ, t) = log

∑

j

eiϕXj(t),

the empirical log CF (or ELCF), computed by simply inserting empirically-
determined fitness measurements Xj(t) taken at time t.

We let τ denote the amount of time between two sampling time points. The
parameters of the DFE and the genomic mutation rate are then estimated by
finding the parameters θ̂ and Û that minimize the quantity:

(
G̃(ϕ, τ) − F̃ (ϕ, τ)

)2

.

Operationally, θ̂ and Û are determined by minimizing
∑

j(�G̃(ϕj , τ) −
�F̃ (ϕj , τ))2+

∑
j(�G̃(ϕj , τ)−�F̃ (ϕj , τ))2 for a finite (small) set of values ϕj , or

by minimizing
∫

ϕ
(�G̃(ϕ, τ)−�F̃ (ϕ, τ))2w(ϕ)+

∫
ϕ
(�G̃(ϕ, τ)−�F̃ (ϕ, τ))2w(ϕ),

where w(ϕ) is a weighting function that typically gives more weight to values of
ϕ near zero.

3.2 Derivative Method of DFE Estimation

The foregoing “integral” method of DFE estimation is optimal in the sense
that no information is lost. In practice, however, it can be a bit unwieldy and
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computationally slow if G̃(ϕ, τ) cannot be expressed in closed form. Furthermore,
we have found that the above method can sometimes be numerically unstable.
For this reason, at the risk of stating the obvious, we now present the method
obtained immediately from the foregoing method by simply taking its derivative.

Assuming that P (ϕ) is analytic, we have:

∂ϕG̃(ϕ, τ) = iU(P (ϕ) − P (ϕ − iτ)),

and:
∂ϕF̃ (ϕ, τ) = ∂ϕΦ̃(ϕ − iτ, 0) − ∂ϕΦ̃(ϕ, τ).

Here, parameters of the DFE and the genomic mutation rate are estimated
by finding the parameters θ̂ and Û that minimize the quantity:

(
∂ϕG̃(ϕ, τ) − ∂ϕF̃ (ϕ, τ)

)2

.

Again, θ̂ and Û are operationally determined by minimizing
∑

j(�∂ϕG̃(ϕj , τ)−
�∂ϕF̃ (ϕj , τ))2 +

∑
j(�∂ϕG̃(ϕj , τ) − �∂ϕF̃ (ϕj , τ))2 for a finite (small) set of val-

ues ϕj , or by minimizing
∫

ϕ
(�∂ϕG̃(ϕ, τ)−�∂ϕF̃ (ϕ, τ))2w(ϕ)+

∫
ϕ
(�∂ϕG̃(ϕ, τ)−

�∂ϕF̃ (ϕ, τ))2w(ϕ).
Multiplying both ∂ϕG̃(ϕ, τ) and ∂ϕF̃ (ϕ, τ) by i, the quantity to be minimized

may be written:

(
U [P (ϕ) − P (ϕ − iτ)] − i[∂ϕΦ̃(ϕ, τ) − ∂ϕΦ̃(ϕ − iτ, 0)]

)2

which has a curious symmetry.

4 Non-parametric Distance Measures for DFEs

The aim here is to develop a statistic that could be used as a measure of dis-
crepancy between two inferred DFEs, and as a tool for statistical inference of
such discrepancy.

4.1 Conjecture

The DFE is well-characterized by the function:

G(ϕ, t) = iU

∫ 0

−it

(M(ϕ + γ) − M(γ))dγ.

Thus, changes in the DFE may be detected as changes in G̃(ϕ), which may be
estimated from population samples of fitness as:

G̃(ϕ) =
[
Φ̃(ϕ − iτ, 0) − Φ̃(−iτ, 0) − Φ̃(ϕ, τ)

]
w(ϕ),
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where w(ϕ) is a weighting function. In what follows, we will generally use
gaussian weighting, w(ϕ) = Nhϕ(0, 1) = e−(hϕ)2/2/

√
2π, where 1/h determines

the bandwidth.
Time t = 0 may be understood as the time at which the first sample is taken

(beginning of a sampling interval) and t = τ may be understood as the time at
which the second sample is taken (end of the same sampling interval).

In light of the foregoing conjecture, our objective is now to define a measure
of distance between G1(ϕ) as inferred from one pair of sampling time points τ
generations apart and a different G2(ϕ) as inferred from a different pair of sam-
pling time points τ generations apart. (Note: Here we focus on DFEs inferred
from pairs of data points. In practice, however, G1 and G2 may both be aver-
ages over several pairs of data points.) This distance measure is taken to be an
indication of distance between the corresponding DFEs.

4.2 Mahalanobis-Based Distance Measures

Bootstrap Method. We define a set of points along the ϕ-axis, denoted ϕk,
k = 1, 2, ..., n. The first step is to generate a large set of ELCFs, Φ̃b(ϕ, 0) and
Φ̃b(ϕ, τ), by resampling the Xj(0) and Xj(τ), respectively, that were used to
compute G1(ϕ, τ). For each pair Φ̃b(ϕ, 0) and Φ̃b(ϕ, τ), we compute

G̃b(ϕ) =
[
Φ̃b(ϕ − iτ, 0) − Φ̃b(−iτ, 0) − Φ̃b(ϕ, τ)

]
w(ϕ)

from which we compute the vector:

gb = (�G̃b(ϕ1), ...,�G̃b(ϕn),�G̃b(ϕ1), ...,�G̃b(ϕn)). (5)

The covariances among the gb define the covariance matrix Ω1.

First, we define corresponding vectors g1 and g2 as defined by (5), but using all
the data (not bootstrapped) at time points 1 and 2. The bootstrapped distance
statistic is:

Db = (g2 − g1)T Ω−1
1 (g2 − g1) (6)

where the T superscript denotes transposition, and the −1 superscript denotes
inverse.

Analytical Method. Define:

Crr =
1
2
[�G1(ϕj − ϕk) + �G1(ϕj + ϕk)] − �G1(ϕj)�G1(ϕk) ∀j, k

Cri =
1
2
[�G1(ϕj − ϕk) + �G1(ϕj + ϕk)] − �G1(ϕj)�G1(ϕk) ∀j, k

Cii =
1
2
[�G1(ϕj − ϕk) − �G1(ϕj + ϕk)] − �G1(ϕj)�G1(ϕk) ∀j, k
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Then, the covariance matrix to be used is:

C1 =
(

Crr Cri

Cri Cii

)

The analytically-defined distance measure is thus defined as:

Da = (g2 − g1)T C−1
1 (g2 − g1)

4.3 Norm-Based Distance Measures

The practicality of the foregoing Mahalanobis-based distance is limited by our
observation that the covariance matrices can often have undefined inverses. As
such, we have experimented with the following alternative distance measures:

dA(G̃1, G̃2) =
∫

D

|G̃2(ϕ) − G̃1(ϕ)|dϕ (7)

dB(G̃1, G̃2) =
∫

D

[G̃2(ϕ) − G̃1(ϕ)]2dϕ (8)

dC(G̃1, G̃2) =
∫

D

[√
G̃2(ϕ) −

√
G̃1(ϕ)

]2

dϕ (9)

where D is some finite interval whose width is proportional to 1/h. In general,
we used G̃1 to generate the null by bootstrapping. We thus determined p-values
for the above distance measures as follows:

p1,2 = P[d(G̃1, G̃2) > d(G̃1, G̃
b
1)] (10)

5 Simulation Tests

5.1 Fitness Dynamics

Our first step was to test the accuracy of theoretical predictions for fit-
ness dynamics, given by Eq. (2). To this end, we performed fully stochastic,
individual-based, Wright-Fisher-with-Mutation (WFM) simulations and com-
pared the trajectory of mean fitness from those simulations with that predicted
by Eq. (2). In these simulations, fitnesses of newly-arising mutations were drawn
at random from a known DFE. The comparison is plotted in Fig. 1.
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5.2 Reconstructing the DFE and Estimating U

Fig. 1. Comparing theoretical predic-
tions of Eq. (2) with fully stochas-
tic, individual-based, WFM simula-
tions. Blue dots represent means of fit-
nesses and phenotypes in a simulation;
red curves represent theoretical predic-
tions based on a single sample of size
100 drawn at random from the simu-
lated population at generation 15 and
inserted into Eq. (2). Population size
for the simulations was 5000. Mutation
rate was U = 0.01; the DFE was a
two-sided exponential distribution with
mean 0.03 on both sides and weights
0.99 and 0.01 assigned to the delete-
rious and beneficial sides, respectively;
fitnesses in the initial population (at
t = 0) were drawn at random from a
normal distribution with mean one and
standard deviation 0.05. (Color figure
online)

We sought to assess the accuracy with
which our methods can: (1) reconstruct
the DFE, given sample sizes on par with
our experimental sample sizes, and (2)
estimate genomic mutation rate U . To
this end, we performed Wright-Fisher-
with-Mutation (WFM) simulations. In
these simulations, fitnesses of newly-
arising mutations were drawn at random
from a known DFE. We reconstructed the
DFE and estimated U using the methods
described above, based samples of 100 fit-
nesses drawn at random from the evolving
population every τ = 14 generations (to
mimic our experimental setup). We have
found that our parametric methods can
fairly accurately estimate U and recon-
struct the DFE, even when we purposely
choose the wrong parametric form.

5.3 Reconstructing DFE
Dynamics

We further sought to assess the sensitiv-
ity with which our methods can detect
changes in the DFE over time. Again, we
performed WFM simulations, but in these
simulations the known DFE changes over
time, either slowly or abruptly. One exam-
ple of these comparisons is illustrated in
Fig. 3 which plots a heat map of inferred
DFE pairwise distances. A fitness “ripple” was created in these simulations by
simply changing the shape of the DFE between generations 360 and 380. While
based on only a subsample (sample size 200) taken at the population level, the
source of this ripple was accurately detected by our methods. Figure 2 shows the
p-values calculated for a simulation in which the DFE remained constant until
generation 2000 at which point it underwent an abrupt qualitative change. The
p-values reflect the probability that the DFE is the same as it was at genera-
tion 1000; this probability becomes small after generation 2000, when the known
DFE changed.
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Fig. 2. p-values for non-parametric rejection of the null hypothesis that the inferred
DFE is not different from the DFE inferred at generation 1000, employing distance
measure (7). Distances were computed from sample sizes of 200 fitness drawn at ran-
dom from simulations of evolving populations of size 10, 000. In simulations, the DFE
undergoes an abrupt, qualitative change at generation 2000. This change is detected
from our methods by the falling p-values after generation 2000.

Fig. 3. A simulation test of our methods to detect changes in the DFE. (A) Heat map
of the distance statistic for pairs of inferred DFE’s, given by Eq. (6), based on samples
of 200 fitness drawn at random from the evolving population at τ = 20 generation
intervals. (B) Heat map of a similar statistic for pairs of observed fitness distributions.
(C) In the simulations, a “fitness ripple” was created by imposing a change in the
shape of the DFE from a normal to a Gumbel distribution between generations 360
and 380; while the shape of the distribution changed, the mean and the probability
mass above zero was kept constant.
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Abstract. The previously fastest algorithm for computing the rooted
triplet distance between two input galled trees (i.e., phylogenetic net-
works whose cycles are vertex-disjoint) runs in O(n2.687) time, where n
is the cardinality of the leaf label set. Here, we present an O(n logn)-time
solution. Our strategy is to transform the input so that the answer can
be obtained by applying an existing O(n logn)-time algorithm for the
simpler case of two phylogenetic trees a constant number of times.

Keywords: Phylogenetic network comparison · Galled tree · Rooted
triplet · Algorithm · Computational complexity

1 Introduction

Measuring the similarity between phylogenetic trees is essential for evaluating
the accuracy of methods for phylogenetic reconstruction [11]. The rooted triplet
distance [5] between two rooted phylogenetic trees having the same leaf label
sets is given by the number of phylogenetic trees of size three that are embedded
subtrees in either one of the input trees, but not the other. Since two phylogenetic
trees with a lot of branching structure in common will typically share many such
subtrees, the rooted triplet distance provides a natural measure of how dissimilar
the two trees are.

A naive algorithm can compute the rooted triplet distance between two input
rooted phylogenetic trees in O(n3) time, where n is the cardinality of the leaf
label set, by directly checking each of the

(
n
3

)
different cardinality-3 subsets of

the leaf label set. More involved algorithms have been developed [1,2,4,10], and
the asymptotically fastest one [2] solves the problem in O(n log n) time.
c© Springer International Publishing AG 2017
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Gambette and Huber [6] extended the rooted triplet distance from the phy-
logenetic tree setting to the phylogenetic network setting. In a phylogenetic
network [8,12], internal nodes are allowed to have more than one parent. Phylo-
genetic networks enable scientists to represent more complex evolutionary rela-
tionships than phylogenetic trees, e.g., involving horizontal gene transfer events,
or to visualize conflicting branching structure among a collection of two or more
phylogenetic trees. The special case of a phylogenetic network in which all under-
lying cycles are vertex-disjoint is called a galled tree [7,8,13]. Galled trees may
be sufficient in cases where a phylogenetic tree is not good enough but it is
known that only a few reticulation events have happened; see Fig. 9.22 in [8] for
a biological example. For a summary of other distances for comparing two galled
trees (the Robinson-Foulds distance, the tripartitions distance, the μ-distance,
the split nodal distance, etc.), see [3].

The fastest known algorithm for computing the rooted triplet distance
between two galled trees relies on triangle counting and runs in O(n2.687) time [9].
More precisely, its time complexity is O(n(3+ω)/2), where ω is the exponent in
the running time of the fastest existing method for matrix multiplication. Since
ω < 2 is impossible, the running time for computing the rooted triplet distance
between two galled trees using the algorithm from [9] will never be better than
O(n2.5). In this paper, we present an algorithm for the case of galled trees that
does not use triangle counting but instead transforms the input to an appro-
priately defined set of phylogenetic trees to which the O(n log n)-time algorithm
of [2] is applied a constant number of times. Basically, in any galled tree, remov-
ing one of the two edges leading to an indegree-2 vertex in every cycle yields a
tree which still contains most of the branching information, and we show how
to compensate for what is lost by doing so while avoiding double-counting. The
resulting time complexity of our new algorithm is O(n log n).

The paper is organized as follows. Section 2 defines the problem formally,
Sect. 3 presents the algorithm and its analysis, and Sect. 4 contains some con-
cluding remarks.

2 Problem Definitions

We recall the following definitions from [9].
A (rooted) phylogenetic tree is an unordered, rooted tree in which every inter-

nal node has at least two children and all leaves are distinctly labeled. A (rooted)
phylogenetic network is a directed acyclic graph with a single root vertex and a
set of distinctly labeled leaves, and no vertices having both indegree 1 and outde-
gree 1. A reticulation vertex in a phylogenetic network is any vertex of indegree
greater than 1. For any phylogenetic network N , define its underlying undirected
graph as the undirected graph obtained by replacing every directed edge in N by
an undirected edge. A cycle C in a phylogenetic network is any subgraph with
at least three edges whose corresponding subgraph in the underlying undirected
graph is isomorphic to a cycle, and the vertex of C that is an ancestor of all
vertices on C is called the root of C. A phylogenetic network is called a galled
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tree if all of its cycles are vertex-disjoint [7,8,13]. Note that every reticulation
vertex in a galled tree must have indegree 2. Every cycle C in a galled tree (also
called a gall) has exactly one root (also referred to as its split vertex ) and one
reticulation vertex, and C consists of two directed, internally disjoint paths from
its split vertex to its reticulation vertex.

A phylogenetic tree with exactly three leaves is called a rooted triplet. A
rooted triplet leaf-labeled by {a, b, c} with one internal node is called a fan
triplet and is denoted by a|b|c, while a rooted triplet leaf-labeled by {a, b, c}
with two internal nodes is called a resolved triplet ; in the latter case, there are
three possible topologies, denoted by ab|c, ac|b, and bc|a, corresponding to when
the lowest common ancestor of the two leaves labeled by a and b, or a and c, or b
and c, respectively, is a proper descendant of the root. Let a, b, c be three leaf
labels in a phylogenetic network N . The fan triplet a|b|c is consistent with N if
and only if N contains a vertex v and three directed paths from v to a, from v
to b, and from v to c that are vertex-disjoint except for in the common start
vertex v. Similarly, the resolved triplet ab|c is consistent with N if and only
if N contains two vertices v and w (v �= w) such that there are four directed
paths of non-zero length from v to a, from v to b, from w to v, and from w to c
that are vertex-disjoint except for in the vertices v and w. For any phylogenetic
network N , t(N) denotes the set of all rooted triplets (i.e., fan triplets as well
as resolved triplets) that are consistent with N .

Definition 1 (Adapted from [6]). Let N1, N2 be two phylogenetic networks on
the same leaf label set L. The rooted triplet distance between N1 and N2, denoted
by drt(N1, N2), is the number of fan triplets and resolved triplets with leaf labels
from L that are consistent with exactly one of N1 and N2.

(See also Sect. 3.2 in [9] for a discussion of the above definition.) Define
fcount(N1, N2) as the number of fan triplets consistent with both N1 and N2,
rcount(N1, N2) as the number of resolved triplets consistent with both N1 and
N2, and count(N1, N2) = fcount(N1, N2) + rcount(N1, N2). Note that for i ∈
{1, 2}, we have |t(Ni)| = count(Ni, Ni). Then one can compute drt(N1, N2) by
the formula drt(N1, N2) = count(N1, N1) + count(N2, N2) − 2 · count(N1, N2).
The following result was shown by Brodal et al. in [2]:

Theorem 2. [2] If T1, T2 are two phylogenetic trees on the same leaf label set L
then fcount(T1, T2) and rcount(T1, T2) (and hence, drt(T1, T2)) can be computed
in O(n log n) time, where n = |L|.

From now on, we assume that the input consists of two galled trees N1 and N2

over a leaf label set L and that the objective is to compute drt(N1, N2). We define
n = |L|. It is known that drt(N1, N2) can be computed in O(n2.687) time [9].
Below, we show how to do it faster by using Theorem 2, which yields our main
result:

Theorem 3. If N1, N2 are two galled trees on the same leaf label set L then
fcount(N1, N2) and rcount(N1, N2) (and hence, drt(N1, N2)) can be computed
in O(n log n) time, where n = |L|.
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3 The New Algorithm

Section 3.1 describes how to compute rcount(N1, N2) efficiently, while Sect. 3.2
is focused on fcount(N1, N2). (Both subsections rely on Theorem2.) In addition
to the definitions provided in Sect. 2, the following notation and terminology will
be needed.

Suppose that N is a galled tree. For each internal vertex in N , fix some
arbitrarily left-to-right ordering of its children. Then N↘ is the tree obtained by
removing the right parent edge of every reticulation vertex in N and contracting
every edge (if any) leading to a vertex with exactly one child. Similarly, N↙ is
the tree formed by removing the left parent edge of every reticulation vertex in N
and contracting all edges leading to degree-1 vertices. Let N↓ be the tree formed
by removing both the left and right parent edges of the reticulation vertex h
in each gall, inserting a new edge between the gall’s split vertex and h, and
contracting all edges leading to degree-1 vertices.

Let r(N) denote the root of N and let gall(N) be the set of all galls in N . For
each Q ∈ gall(N), let r(Q) be the root of Q and hQ the reticulation vertex of Q.
Let QL and QR be the left and right paths of Q, obtained by removing r(Q),
hQ, and all edges incident to r(Q) and hQ. A rooted triplet in t(N) with leaf
label set {x, y, z} is called ambiguous if N contains a gall Q such that:

1. x, y, z are in three different subtrees attached to Q or r(Q);
2. exactly one leaf is in the subtree attached to hQ; and
3. at least one leaf is in a subtree attached to QL or QR.

The ambiguous triplets are partitioned into type-A, type-B, and type-C triplets,
defined as follows (see Fig. 1 for an illustration):

Fig. 1. (a), (b) and (c) illustrate the definitions of type-A, type-B, and type-C triplets,
respectively.
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• {x, y, z} is a type-A triplet of N if there exists a gall Q in N such that two
leaves in {x, y, z} appear in two different subtrees attached to the same Qδ

(δ = L or R) while the remaining leaf appears in the subtree rooted at hQ.
Furthermore, if {x, y, z} is a type-A triplet of N and {x, y, z} are attached to
a gall Q in N with z appearing in the subtree rooted at hQ then {x, y, z} is
called a type-A triplet of N with reticulation leaf z.

• {x, y, z} is a type-B triplet of N if there exists a gall Q in N such that, among
the three leaves in {x, y, z}, one leaf is attached to r(Q) but is not in Q,
another leaf appears in a subtree attached to QL (or QR) and the last leaf
appears in the subtree rooted at hQ.

• {x, y, z} is a type-C triplet of N if there exists a gall Q in N such that, among
the three leaves in {x, y, z}, one leaf appears in a subtree attached to QL,
another leaf appears in a subtree attached to QR, and the last leaf appears
in the subtree rooted at hQ.

3.1 Counting Common Resolved Triplets in N1 and N2

The main idea of our algorithm for computing rcount(N1, N2) is to count the
common resolved triplets between N1 and each of the three trees N↙

2 , N↘
2 ,

and N↓
2 and then combine the results appropriately. However, there is one type

of triplet which we miss by doing so, depending on the position of its leaves
within the gall containing its lowest common ancestor. This case corresponds
to the type-A ambiguous triplets and we count these triplets separately with
an extra function rcountA (see Lemma 5 below). The problem of counting the
common resolved triplets between N1 and a tree is similarly reduced to three
instances of counting the common resolved triplets between two phylogenetic
trees (covered by Theorem 2) and adjusting the result by using rcountA.

We now present the details. Define rcountA(N1, N2) as the number of
resolved triplets xy|z in both N1 and N2 such that {x, y, z} is a type-A triplet
of N2 with reticulation leaf z. Similarly, define rcount∗A(N1, N2) as the num-
ber of resolved triplets xy|z in both N1 and N2 such that {x, y, z} is a type-A
triplet of both N1 and N2 with reticulation leaf z. Observe that in general,
rcountA(N1, N2) �= rcountA(N2, N1), but rcount∗A(N1, N2) = rcount∗A(N2, N1)
always holds.

The following lemmas express the relationships between rcount(N1, N2),
rcountA(N1, N2), and rcount∗A(N1, N2).

Lemma 4. Suppose that xy|z is a resolved triplet such that x, y, z are in the
leaf label set. Then rcount(xy|z,N2) = rcount(xy|z,N↙

2 )+ rcount(xy|z,N↘
2 )−

rcount(xy|z,N↓
2 ) + rcountA(xy|z,N2).

Proof. Any resolved triplet xy|z either appears or does not appear in t(N2).
Also, any ambiguous triplet is either of type-A, type-B, or type-C. Hence, we
have the following cases.
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– (1) xy|z �∈ t(N2).
– (2) xy|z ∈ t(N2):

• (2.1) xy|z ∈ t(N2) and {x, y, z} is not ambiguous.
• (2.2) xy|z ∈ t(N2) and {x, y, z} is a type-A triplet with reticulation leaf

z in N2.
• (2.3) xy|z ∈ t(N2) and {x, y, z} is a type-A triplet with reticulation leaf

x or y in N2.
• (2.4) xy|z ∈ t(N2) and {x, y, z} is a type-B or type-C triplet.

In case (1), xy|z �∈ t(N↙
2 ), t(N↘

2 ), t(N↓
2 ). Also, rcountA(xy|z,N2) = 0 since

it cannot be a type-A triplet. Hence, rcount(xy|z,N↙
2 ) + rcount(xy|z,N↘

2 ) −
rcount(xy|z,N↓

2 ) + rcountA(xy|z,N2) = 0.
In case (2.1), since xy|z ∈ t(N2) and {x, y, z} is not ambiguous, xy|z ∈

t(N↙
2 ), t(N↘

2 ), t(N↓
2 ). Also, rcountA(xy|z,N2) = 0. Hence, rcount(xy|z,N↙

2 ) +
rcount(xy|z,N↘

2 ) − rcount(xy|z,N↓
2 ) + rcountA(xy|z,N2) = 1.

In case (2.2), xy|z appears in either N↙
2 or N↘

2 , but not both, and in N↓
2 .

Because we have rcountA(xy|z,N2) = 1 by definition, rcount(xy|z,N↙
2 ) +

rcount(xy|z,N↘
2 ) − rcount(xy|z,N↓

2 ) + rcountA(xy|z,N2) = 1.
Finally, in cases (2.3) and (2.4), xy|z appears in either N↙

2 or N↘
2 , but not

both, and xy|z does not appear in N↓
2 . Also, rcountA(xy|z,N2) = 0 by definition.

Thus, rcount(xy|z,N↙
2 ) + rcount(xy|z,N↘

2 ) − rcount(xy|z,N↓
2 ) = 1. ��

Lemma 5. rcount(N1, N2) = rcount(N1, N
↙
2 ) + rcount(N1, N

↘
2 )−rcount(N1,

N↓
2 ) + rcountA(N1, N2).

Proof. Write rcount(N1, N2) =
∑

xy|z∈N1
rcount(xy|z,N2). For xy|z ∈ t(N1), by

Lemma 4, we have rcount(xy|z,N2) = rcount(xy|z,N↙
2 ) + rcount(xy|z,N↘

2 ) −
rcount(xy|z,N↓

2 ) + rcountA(xy|z,N2). ��

Lemma 6. rcountA(N1, N2) = rcountA(N↙
1 , N2) + rcountA(N↘

1 , N2) −
rcountA(N↓

1 , N2) + rcount∗A(N1, N2).

Proof. For xy|z ∈ t(N1), by an argument identical to the one in the proof of
Lemma 4, we have rcount(N1, xy|z) = rcount(N↙

1 , xy|z) + rcount(N↘
1 , xy|z) −

rcount(N↓
1 , xy|z) + rcount′A(N1, xy|z), where rcount′A(N1, xy|z) = 1 if {x, y, z}

is a type-A triplet of N1 with reticulation leaf z, and rcount′A(N1, xy|z) = 0
otherwise.

Let W = {xy|z : {x, y, z} is a type-A triplet of N2 with reticulation leaf z}.
Then rcountA(N1, N2) =

∑
xy|z∈W rcount(N1, xy|z) =

∑
xy|z∈W (rcount(N↙

1 ,

xy|z) + rcount(N↘
1 , xy|z) − rcount(N↓

1 , xy|z) + rcount′A(N1, xy|z)) =
rcountA(N↙

1 , N2)+rcountA(N↘
1 , N2)−rcountA(N↓

1 , N2)+rcount∗A(N1, N2) ��
Next, we discuss the computation of rcountA(T1, N2) and rcount∗A(N1, N2),

where N1 and N2 are galled trees and T1 is a phylogenetic tree. (The case of
rcountA(N1, T2) where N1 is a galled tree and T2 is a tree, needed in Lemma 5,
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Fig. 2. (a) shows a galled tree N , (b) shows NL, and (c) shows NLL.

is symmetric.) For δ ∈ {L,R}, denote by τδ the tree formed by attaching all
subtrees attached to Qδ to a common root. For any galled tree N , let NL be a
tree formed from N↘ by contracting all edges on QL for every gall Q (observe
that the edges (r(Q), r(τL)) and (r(τL), hQ) are in NL). Define NLL to be a tree
formed from N↓ by replacing all the trees attached to QL with τL, inserting a
new vertex mQ between r(Q) and hQ, and replacing the edge (r(Q), r(τL)) with
(mQ, r(τL)). See Fig. 2 for an example. NR and NRR are defined analogously.

Lemma 7. For δ ∈ {L,R}, the following two properties hold.

• All resolved triplets in N δ are in N δδ.
• All additional resolved triplets xy|z in N δδ, i.e., those not in N δ, are type-A

triplets of N with reticulation leaf z.

Proof. Consider any three leaves {x, y, z}. If zero, one, or all three of them belong
to τδ then N δ|{x, y, z} = N δδ|{x, y, z}, where N |W is the galled subtree of N
formed by retaining only leaves in W . Otherwise, when two of {x, y, z} belong
to τδ, let γ be the lowest common ancestor of x, y, z in N δδ. There are two cases:

1. If γ is a proper ancestor of mQ, then N δ|{x, y, z} = N δδ|{x, y, z} = xy|z.
2. Otherwise, γ = mQ and then N δ|{x, y, z} = x|y|z while N δδ|{x, y, z} = xy|z.

Hence, all resolved triplets in N δ are in N δδ.
Finally, xy|z is a type-A triplet of N with reticulation leaf z if and only if

γ = mQ. This shows that the second property also holds. ��
Lemma 8. rcountA(T1, N2) =

∑

δ∈{L,R}

(
rcount(T1, N

δδ
2 ) − rcount(T1, N

δ
2 )

)
.

Proof. By Lemma 7, all type-A triplets in N2 appear in N δδ
2 but not in N δ

2 for
some δ ∈ {L,R}. The lemma follows. ��
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Lemma 9. rcount∗A(N1, N2) =
∑

δ∈{L,R}

(
rcountA(N δδ

1 , N2) − rcountA(N δ
1 , N2)

)
.

Proof. (Similar to the proof of Lemma8.) By Lemma 7, all type-A triplets in N1

appear in N δδ
1 but not in N δ

1 for some δ ∈ {L,R}. ��
The algorithm in Fig. 3 computes rcount(N1, N2) using Lemmas 5, 6, 8, and 9.

Fig. 3. The algorithm for computing rcount(N1, N2).

Lemma 10. The algorithm rcount(N1, N2) in Fig. 3 makes a total of 37 calls
to rcount(T1, T2), where T1 and T2 are phylogenetic trees.

Proof. First, rcountA(T1, N2) is obtained by making 4 calls to rcount(T1, T2),
and rcount∗A(N1, N2) by 4 calls to rcountA(T1, T2). Next, rcountA(N1, N2) is
obtained by 3 calls to rcountA(T1, N2) and 1 call to rcount∗A(N1, N2). In total,
rcountA(N1, N2) uses 3 · 4 + 4 = 16 calls to rcount(T1, T2).

Similarly, rcount(N1, T2) is obtained by 3 calls to rcount(T1, T2) and 1 call
to rcountA(T2, N1). In total, rcount(N1, T2) can be computed by 3 · 1 + 4 = 7
calls to rcount(T1, T2).

Finally, rcount(N1, N2) is obtained by 3 calls to rcount(N1, T2) and 1 call
to rcountA(N1, N2). In total, rcount(N1, N2) uses 3 · 7 + 16 = 37 calls to
rcount(T1, T2). ��

By Theorem 2, rcount(T1, T2) can be computed in O(n log n) time for any
two trees T1, T2. Lemma 10 shows that the algorithm in Fig. 3 makes a constant
number of calls to rcount(T1, T2). Lastly, constructing each of the constant num-
ber of trees used as arguments to rcount(T1, T2) (N↙

1 , N↓
1 , etc.) takes O(n) time.

Thus, the total running time to obtain rcount(N1, N2) is O(n log n).
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3.2 Counting Common Fan Triplets in N1 and N2

To compute fcount(N1, N2), we modify the technique from the previous subsec-
tion. The main difference is that we count type-B and type-C triplets separately.
(Some proofs have been omitted from the conference version of the paper.)

Define fcountBC(N1, N2) as the number of triplets {x, y, z} such that x|y|z
is a fan triplet in N1 and {x, y, z} is a type-B or type-C triplet in N2. Also,
define fcount∗BC(N1, N2) as the number of type-B and type-C triplets {x, y, z}
that appear in both N1 and N2. Similar to what was done in Sect. 3.1 where
rcount(N1, N2) was expressed using rcountA(N1, N2) and rcount∗A(N1, N2), we
express fcount(N1, N2) using fcountBC(N1, N2) and fcount∗BC(N1, N2).

Lemma 11. Let x|y|z be a fan triplet. Then fcount(x|y|z,N2) = fcount(x|y|z,

N↙
2 ) + fcount(x|y|z,N↘

2 ) − fcount(x|y|z,N↓
2 ) + fcountBC(x|y|z,N2) = 0.

Lemma 12. fcount(N1, N2) = fcount(N1, N
↙
2 ) + fcount(N1, N

↘
2 ) − fcount

(N1, N
↓
2 ) + fcountBC(N1, N2).

Lemma 13. fcountBC(N1, N2) = fcountBC(N↙
1 , N2) + fcountBC(N↘

1 , N2) −
fcountBC(N1, N

↓
2 ) + fcount∗BC(N1, N2).

The rest of this subsection considers how to compute fcountBC(T1, N2) and
fcount∗BC(N1, N2) efficiently. A caterpillar is a binary phylogenetic tree in which
every internal node has at least one leaf child. Given a galled tree N , we define
NB as the tree formed by performing the following three steps on a copy of N :

• Replace every degree-k vertex which is not a split vertex in N by a length-k
caterpillar.

• For every gall Q, if the split vertex r(Q) is of degree k > 2, for all k−2 children
of r(Q) which are not on the gall, replace them by a length-(k−2) caterpillar
and attach it r(Q). Furthermore, creating a new vertex u and attach the roots
of QL and QR to u and attach u to r(Q).

• Remove the reticulation vertex hQ’s two parent edges and attach hQ and its
subtrees to r(Q).

Also, we define NC as a tree obtained by performing the following three steps
on a copy of N :

• Replace every degree-k vertex which is not a split vertex in N by a length-k
caterpillar.

• For every gall Q, if the split vertex r(Q) is of degree k > 2, for all k − 2
children of r(Q) which are not on the gall, replace them by a length-(k − 2)
caterpillar and attach it to a new vertex between r(Q) and its parent.

• Remove the reticulation vertex hQ’s two parent edges and attach hQ and its
subtrees to r(Q).

Figure 4 gives an example illustrating how to construct NB and NC from N .
The next lemma states how N , NB , and NC are related.
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Fig. 4. (a) is an example of a galled tree N , (b) is NB , and (c) is NC .

Lemma 14. (1) {x, y, z} is a type-B triplet in N if and only if x|y|z is a fan
triplet in NB; (2) {x, y, z} is a type-C triplet in N if and only if x|y|z is a fan
triplet in NC .

Proof. By construction, every vertex in NB and NC has 2 or 3 children. Any ver-
tex in NB and NC with 3 children corresponds to a split vertex of a gall in N .

For (1): (→) If {x, y, z} is a type-B triplet in N , there exists a gall Q in N
such that x, y, z are in three different subtrees attached to Q where one leaf (say,
x) is in a subtree attached to QL or QR, another leaf (say, y) is in a subtree
attached to r(Q) and the remaining leaf (say, z) is in a subtree attached to hQ.
Then, in NB , by construction, x|y|z is a fan triplet in NB .

(←) If x|y|z is a fan triplet in NB , let u be the lowest common ancestor
of x, y, z in NB . u is of degree-3 and it corresponds to a gall Q. This implies,
x, y, z are in a subtree attached to r(Q), a subtree attached to hQ and a subtree
attached to QL or QR. Hence, {x, y, z} is a type-B triplet in N .

For (2): (→) If {x, y, z} is a type-C triplet in N , there exists a gall Q in N
such that x, y, z are in three different subtrees attached to Q. Where one leaf
(say, x) is in a subtree attached to QL, another leaf (say, y) is in a subtree
attached to QR, and the remaining leaf (say, z) is in a subtree attached to hQ.
Then, in NC , by construction, x|y|z is a fan triplet in NB .

(←) If x|y|z is a fan triplet in NB , let u be the lowest common ancestor
of x, y, z in NB . u is of degree-3 and it corresponds to a gall Q. This implies,
x, y, z are in a subtree attached to QL, a subtree attached to QR and a subtree
attached to hQ. Hence, {x, y, z} is a type-C triplet in N . ��

We have the following two lemmas.

Lemma 15. fcountBC(T1, N2) = fcount(T1, N
B
2 ) + fcount(T1, N

C
2 ).

Lemma 16. fcount∗BC(N1, N2) = fcount(NB
1 , NB

2 ) + fcount(NC
1 , NC

2 ).

The algorithm in Fig. 5 computes fcount(N1, N2) by combining Lemmas 12,
13, 15, and 16.
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Fig. 5. The algorithm for computing fcount(N1, N2).

Lemma 17. The algorithm fcount(N1, N2) in Fig. 5 makes a total of 23 calls
to fcount(T1, T2), where T1 and T2 are phylogenetic trees.

Proof. Note that fcountBC(T1, N2) is computed by 2 calls to fcount(T1, T2), and
fcount∗BC(N1, N2) by 2 calls to fcountA(T1, T2). Moreover, fcountBC(N1, N2)
makes 3 calls to fcountBC(T1, N2) and 1 call to fcount∗BC(N1, N2). In total,
fcountBC(N1, N2) uses 3 · 2 + 2 = 8 calls to fcount(T1, T2).

In the same way, fcount(N1, T2) makes 3 calls to fcount(T1, T2) and 1 call
to fcountBC(T2, N1). In total, fcount(N1, T2) is obtained from 3 ·1+2 = 5 calls
to fcount(T1, T2).

Finally, fcount(N1, N2) is obtained from 3 calls to fcount(N1, T2) and 1 call
to rcountBC(N1, N2). In total, fcount(N1, N2) makes 3 · 5 + 8 = 23 calls to
fcount(T1, T2). ��

Since fcount(T1, T2) can be computed in O(n log n) time for any two trees
T1, T2 by Theorem 2, fcount(T1, T2) is called a constant number of times accord-
ing to Lemma 17, and constructing each of the constant number of trees used
as arguments to fcount(T1, T2) takes O(n) time, the algorithm in Fig. 5 runs in
O(n log n) time.

4 Concluding Remarks

The presented algorithm requires a subroutine for computing the rooted triplet
distance between two phylogenetic trees. If a faster algorithm for the case of trees
than the one referred to in Theorem2 is discovered (e.g., running in O(n log log n)
time), this would immediately imply a faster algorithm for the case of galled trees
as well. As an alternative, the algorithm in [10] was shown experimentally to be
faster for reasonably sized inputs; hence its usage may be preferred in a practical
setting.
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Possible future work is to implement the new algorithm and evaluate its per-
formance in practice. Although the number of calls to the subroutine for com-
puting the rooted triplet distance between trees is constant, the constant is quite
large (37 + 23 = 60). Is it possible to reduce this number? An implementation
of the new algorithm would benefit considerably by doing so.

An open problem is to determine whether the techniques used here can be
extended to compute the rooted triplet distance between more general phyloge-
netic networks than galled trees.

Acknowledgments. J.J. was partially funded by The Hakubi Project at Kyoto
University and KAKENHI grant number 26330014.
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Abstract. Phylogenetic tree reconciliation is widely used in the fields of
molecular evolution, cophylogenetics, parasitology, and biogeography for
studying the evolutionary histories of pairs of entities. Reconciliation is
often performed using maximum parsimony under the DTL (Duplication-
Transfer-Loss) event model. Since the number of maximum parsimony
reconciliations (MPRs) can be exponential in the sizes of the trees, an
important problem is that of finding a small number of representative
reconciliations. We give a polynomial time algorithm that can be used
to find the cluster representatives of the space of MPRs with respect
to a number of different clustering algorithms and specified number of
clusters.

Keywords: Tree reconciliation · Duplication-Transfer-Loss model ·
Clustering

1 Introduction

Phylogenetic tree reconciliation is an important technique for studying the evo-
lutionary histories of pairs of entities such as gene families and species, parasites
and their hosts, and species and their geographical habitats. The reconciliation
problem takes as input two trees and the associations between their leaves and
seeks to find a mapping between the trees that accounts for their topological
incongruence with respect to a given set of biological events. In the widely-
used DTL model the four event types are speciation, duplication, transfer, and
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loss [1–6,16]. We denote the two trees as the species tree (S) and the gene tree
(G), although these trees could be host and species trees or area cladograms
and species trees in the contexts of cophylogenetic and biogeographical studies,
respectively.

Reconciliation in the DTL model is typically performed using a maximum
parsimony formulation, where each event type has an assigned cost and the
objective is to find a reconciliation of minimum total cost, called a maximum
parsimony reconciliation or MPR. Efficient algorithms are known for finding
MPRs in the DTL model [1,15].

In general, the number of MPRs can grow exponentially with the sizes of the
species and gene trees [13]. Consequently, a number of efforts have been made
to summarize the vast space of MPRs. Nguyen et al. [10] showed that choosing
a single random MPR can lead to inaccurate inferences and gave an efficient
algorithm to compute a median MPR. Median MPRs were subsequently used to
summarize reconciliation space in [14]. Bansal et al. [2] showed how a sample of
MPRs can be selected uniformly at random. Ma et al. [9] examined the problem
of finding a set of k reconciliations that collectively cover the most frequently
occurring events in MPR space, for a given number k.

We study the problem of clustering the space of MPRs, both to represent the
space by a small number of cluster representatives and to gain insights into the
structure of the space. We first define the reconciliation count function that can
be used to implement a number of different clustering algorithms for MPR space.
We then show that the reconciliation count function can be computed exactly
in polynomial time (where the degree of the polynomial depends on the number
of clusters), in spite of the fact that the number of MPRs can be exponential in
the size of the given trees. Our results leverage the seminal work of Scornavacca
et al. [12] and Nguyen et al. [10].

We demonstrate the utility of the reconciliation count function by showing
how it can be used to implement two clustering algorithms for k-medoids and
k-centers. The k-medoids problem seeks to find a representative set of k MPRs,
called medoids, such that the sum of the distances between each MPR and its
nearest medoid is minimized. Similarly, k-centers seeks to identify a representa-
tive set of k MPRs, known as centers, such that the maximum distance between
each MPR and its nearest center is minimized. These are just two examples of
the many clustering algorithms that can be implemented using reconciliation
counts.

This work provides new tools for exploring the structure and diversity of
MPR space that may not be gleaned from a single median reconciliation or a
set of randomly sampled reconciliations. Thus, the results presented here are
potentially useful to practitioners who wish to better understand the space of
optimal reconciliations for specific data sets as well as for researchers seeking to
gain better insights into MPR space in general.

In summary, in this paper:

1. We define the reconciliation count function and give a polynomial-time
algorithm for computing it.
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2. We demonstrate the utility of the reconciliation count function by showing
how it can be used to solve the k-medoids and k-centers problems for MPR
space and to compute statistics on the clusterings.

3. In the Supplementary Materials, we give experimental results using the Tree
of Life data set [5], comparing the k-medoids and k-centers representatives
to randomly selected ones. (See www.cs.hmc.edu/∼hadas/supplement.pdf).

4. We provide an implementation of our algorithms. (See www.cs.hmc.edu/
∼hadas/clusters.zip).

2 Definitions

In this section we give definitions and notation used throughout this paper. In
the interest of brevity, we provide the minimum background required to develop
our results in the subsequent sections. For completeness, formal definitions are
given in the Supplementary Materials.

2.1 Maximum Parsimony Reconciliations

An instance of the DTL maximum parsimony reconciliation problem comprises a
gene tree G, a species tree S, a leaf mapping Le from the leaves of G to the leaves
of S (which need not be one-to-one nor onto), and positive costs for duplication,
transfer, and loss events. We assume that the trees are undated in the sense that
no information is given about the relative times of speciation events in either
the gene or species trees. A reconciliation is a mapping M of the vertices of G
into the vertices of S that is consistent with the leaf mapping Le and, for each
internal gene vertex g with children g′ and g′′, neither M(g′) nor M(g′′) are
ancestors of M(g) and at least one of M(g′) and M(g′′) is either equal to, or a
descendant of, M(g).

The mapping M induces speciation, duplication, transfer, and loss events.
While the formal definitions of these events are given in the Supplementary
Materials, the following suffices for our treatment: Let g be an internal vertex in
G with children g′ and g′′. Vertex g is a speciation vertex if M(g) is the most
recent common ancestor of M(g′) and M(g′′) and M(g′) and M(g′′) are neither
equal to one another nor ancestrally related. Vertex g is a duplication vertex if
M(g) is the most recent common ancestor of M(g′) and M(g′′) but M(g′) and
M(g′′) are either equal or ancestrally related. A duplication can be viewed as
a mapping of gene vertex g onto the edge from the parent of M(g) to M(g).
Vertex g is a transfer vertex if exactly one of M(g′) or M(g′′) is a descendant of
M(g) and the other is not in the subtree rooted at M(g). A loss event arises for
each internal vertex on the path in S from M(g) to M(g′), for each parent-child
pair (g, g′).1

1 This characterization slightly simplifies the way that losses are actually counted
and omits details about losses arising from transfer events. While this suffices for
presenting our work, full details are given in the Supplementary Materials.
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The objective of the DTL maximum parsimony reconciliation problem is to
find a reconciliation that minimizes the sum of the number of duplication, trans-
fer, and loss events weighted by their respective event costs. We henceforth refer
to maximum parsimony reconciliations as MPRs. A number of similar dynamic
programming algorithms have been given for finding MPRs in time O(|G||S|)
[1,16]. Figure 1(a) shows a species tree, gene tree, and a leaf mapping and (b)
and (c) show two different MPRs.

2.2 Reconciliation Graphs

Scornavacca et al. [12] developed a data structure called a reconciliation graph
for compactly representing the space of all MPRs for dated trees. Ma et al.
[9] adopted reconciliation graphs for undated trees. For the purposes of the
remainder of this paper, the following characterization suffices (with full details
in the Supplementary Materials):

The reconciliation graph for an instance of the DTL MPR problem (compris-
ing trees G, S, leaf mapping Le and given DTL event costs) is a directed acyclic
graph (DAG) that consists of mapping vertices and event vertices and directed
edges between these two vertex types. Specifically, the graph contains a mapping
vertex for each (g, s) pair such that M(g) = s for some MPR M and an event
vertex for each event in which M(g) = s, with a directed edge from mapping
vertex (g, s) to each such event vertex. (Note that a mapping vertex (g, s) may
have edges to multiple event vertices since, for example, g may be mapped to s
as a speciation event in one MPR and as a transfer event in a different MPR.)
Let g′ and g′′ denote the children of g. If some MPR, M, contains an event in
which M(g) = s, M(g′) = s′, M(g′′) = s′′ then that event vertex for (g, s) has
a directed edge to mapping vertices (g′, s′) and (g′′, s′′). Thus, each speciation,
duplication, and transfer event vertex has out-degree 2. Each loss event is rep-
resented by an event vertex with out-degree 1 corresponding to a loss induced
by a particular vertex in the species tree. Finally, each leaf association (g,Le(g))
has a corresponding event vertex which is a sink (vertex of out-degree 0) of
the reconciliation graph. The reconciliation graph can be constructed in time
O(|G||S|2) [9]. The right side of Fig. 1 shows the reconciliation graph for the
problem instance in Fig. 1(a) with DTL costs 1, 4, and 1 respectively.

This brings us to the two key results that we need in the remainder of this paper.
First, there is a bijection between MPRs and subgraphs of the reconciliation graph
called reconciliation trees. A reconciliation tree begins with a mapping vertex of
the form (g, s) where g is the root of the gene tree (but s is not necessarily the root
of the species tree since, as shown in Fig. 1(b), a reconciliation need not involve
the root of S). The mapping vertex (g, s) is followed by a directed edge to any
one neighbor in the reconciliation graph, which is an event vertex corresponding
to an event in which g is mapped to s. Next, both neighbors of that event vertex
are included; each is a mapping vertex corresponding to the mapping of a child
of g. From each such mapping vertex, we again choose any single event vertex
neighbor. This process (formalized in the Supplementary Materials) is repeated
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Fig. 1. Top: (a) An instance of the DTL reconciliation problem comprising species
tree (black), gene tree (gray), and leaf mapping. Duplication, transfer and loss costs
are 1, 4, and 1, respectively. (b) A reconciliation with one speciation and one trans-
fer. (c) A reconciliation with one speciation, one duplication, and three losses. Both
reconciliations are MPRs with total cost 4. Bottom: The reconciliation graph for the
DTL instance in (a). Vertices with solid boundaries are event vertices and those with
dashed boundaries are mapping vertices. Event vertices are designated with S (spe-
ciation event), D (duplication event), T (transfer event), L (loss event), and C (leaf
association). The reconciliation tree indicated by solid edges corresponds to the MPR
in (b) and the reconciliation tree indicated by dashed edges corresponds to the MPR
in (c), with bold edges representing the shared parts of the two reconciliations.
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until the sinks of the reconciliation graph are reached. It is not difficult to show
that this process yields a tree and the bijection between these reconciliations trees
and MPRs is proved in [9,12]. Henceforth, we use the terms reconciliation trees
and MPRs interchangeably as we do for the terms event vertices and events. The
right side of Fig. 1 shows the two reconciliation trees corresponding to the two
reconciliations in Fig. 1(b) and (c).

The second major result that we need is as follows: Given a score function, σ,
that maps vertices in the reconciliation graph to non-negative real numbers, we
can find a reconciliation tree (that is, a MPR) of maximum total score in polyno-
mial via a simple O(|G||S|2) time dynamic programming algorithm [9,10]. Note
that this maximization problem should not be confused with the problem of find-
ing aminimum cost reconciliation. The vertices in the reconciliation graph a priori
represent events and mappings in minimum cost reconciliations. The score σ(v)
can represent an arbitrary quantity that we wish to maximize over all minimum
cost reconciliations.

3 Clustering Reconciliation Space

In this section we define the reconciliation count function and then show how two
well-known clustering algorithms, one for medoids and one for centers, can be
implemented for MPR space using this function. In Sect. 4 we give the algorithm
for computing the reconciliation count function.

In general, our goal is to find a set of k cluster representatives for a given clus-
tering method. We use the notation T = {T1, . . . , Tk} to represent such a set of k
MPRs. Let R denote an MPR and let E(R) denote the set of events in R. For any
two MPRs R1, R2, let the distance between R1 and R2, d(R1, R2), be the size of
the symmetric set difference of the event sets [10]:2

d(R1, R2) = |E(R1)\E(R2)| + |E(R2)\E(R1)|

For convenience, we define the distance between a reconciliation and a set T =
{T1, . . . , Tk} of MPRs as a k-dimensional vector that contains the distance from
the reconciliation to each reconciliation in the set:

d(R, T ) = d(R, {T1, T2, ..., Tk}) = [d(R, T1), d(R, T2), ..., d(R, Tk)]

Definition 1 (Reconciliation Count Function). Let R denote the set of all
MPRs for a given DTL problem instance and let T = {T1, . . . , Tk} denote a set of k
MPRs inR. Let v denote an event vertex in the reconciliation graph. The reconcil-
iation count function CountT ,v : Nk → Nmaps d ∈ N

k to the number of reconcili-
ations R ∈ R that contain event vertex v and d(R, T ) = d. Let CountT (d) denote
the number of reconciliations R ∈ R with d(R, T ) = d, regardless of whether or
not they contain a particular event vertex.

In the next two sections we demonstrate the utility of the reconciliation count
function by showing how it can be used to solve the k-medoids and k-centers prob-
lems for MPR space.
2 Other distance functions are also possible.
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3.1 k-medoids

Let R denote the set of all MPRs for a given instance of the DTL reconciliation
problem. Let k be a positive integer. A set of k MPRs, T = {T1, T2, ...Tk} ⊆
R, induces a partition of R into clusters CT1 , CT2 , ..., CTk

such that CTi
denotes

the set of MPRs that are closer to Ti than to any other MPR in T , breaking ties
arbitrarily. The k-medoids problem seeks to find a set T of k MPRs that minimizes
the sum of the distances between each MPR in R and a closest MPR in T . More
formally, the objective is to find:

arg min
T ⊂R
|T |=k

∑

Ti∈T

∑

R∈CTi

d(R, Ti)

The elements of T are called medoids. Since the k-medoids problem is NP-
hard in general [7], heuristics are used to find good, but not necessarily optimal,
solutions. Park et al. [11] offer a simple and effective local search algorithm, with
T initially set to k arbitrarily chosen points (MPRs in our case). In each iteration,
the approximate medoid of each cluster is replaced with the MPR in that cluster
that minimizes the sum of distances within that cluster. In practice, the algorithm
iterates until some termination condition is reached (e.g., a maximum number of
iterations). The algorithm is given below.

Algorithm 1. k-medoids heuristic [11]
1: procedure k-medoids(R, k)
2: T ← k arbitrary MPRs in R
3: while some termination condition is not satisfied do
4: for Ti ∈ T do
5: Ti ← argminM∈R

∑
R∈CTi

d(R, M)

6: return T

Since the number of MPRs can be exponentially large, we cannot compute line
5 in polynomial time by evaluating

∑
R∈CTi

d(R,M) for each M .
To address this problem, we define the set of functions {gi : Nk → {0, 1}}, each

of which takes a vector of the distances from an MPR R ∈ R to each in Tj ∈ T
as an input and determines whether R is in CTi

. That is,

gi(d = [d1, d2, . . . , dk]) =

{
1 if i is the least index such that di ≤ dj for all 1 ≤ j ≤ k

0 otherwise

Now, we can rewrite line 5 in the algorithm as

arg min
M∈R

∑

R∈R

d(R,M) · gi(d(R, T )) (1)
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By definition, d(R,M) = |E(R)\E(M)| + |E(M)\E(R)|. Moreover:

|E(R)\E(M)| + |E(M)\E(R)| = |E(R) ∪ E(M)| − |E(R) ∩ E(M)|
= |E(R)| + |E(M)| − 2|E(R) ∩ E(M)|

Thus, we can rewrite (1) as:

arg min
M∈R

∑

R∈R

(
|E(R)| − 2|E(M) ∩ E(R)| + |E(M)|

)
· gi (d(R, T )) (2)

Since |E(R)| does not depend on M , the minimization problem in (2) is equiv-
alent to the following maximization problem:

arg max
M∈R

∑

R∈R

(
2|E(M) ∩ E(R)| − |E(M)|

)
· gi (d(R, T )) (3)

Next, we rewrite this as a summation over the events in M :

arg max
M∈R

∑

e∈E(M)

∑

R∈R

(
2 |{e} ∩ E(R)| − 1

)
· gi (d(R, T )) (4)

We then split the sum to yield:

arg max
M∈R

∑

e∈E(M)

(
∑

R∈R

2 |{e} ∩ E(R)| · gi (d(R, T )) −
∑

R∈R

gi (d(R, T ))

)
(5)

Define S(e) to be the set of all reconciliations containing event e. We rewrite
the first inner summation as a sum over S(e), since |{e}∩E(R)| is 1 for all R ∈ S(e)
and 0 for all R �∈ S(e):

arg max
M∈R

∑

e∈E(M)

⎛

⎝
∑

R∈S(e)

2 · gi (d(R, T )) −
∑

R∈R

gi (d(R, T ))

⎞

⎠ (6)

Define f(d,X) to be the set of reconciliations in X such that d(R, T ) = d.
Notice that we can partition S(e) as {f(d, S(e)) | d ∈ N

k} andR as {f(d,R) | d ∈
N

k}. Then we can rewrite our sum over these partitions as:

arg max
M∈R

∑

e∈E(M)

∑

d∈Nk

⎛

⎝
∑

R∈f(d,S(e))

2 · gi (d(R, T )) −
∑

R∈f(d,R)

gi (d(R, T ))

⎞

⎠ (7)

The inner terms can now be simplified, yielding:

arg max
M∈R

∑

e∈E(M)

∑

d∈Nk

⎛

⎝
∑

R∈f(d,S(e))

2 · gi(d) −
∑

R∈f(d,R)

gi(d)

⎞

⎠ (8)
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Now we define σ : V (G) → R as a function from the vertices of the reconcilia-
tion graph to the reals as follows:

σ(v) =

{∑
d∈Nk

(
2 · |f(d, S(v))| − |f(d,R)|) · gi(d) if v is an event vertex

0 if v is a mapping vertex

Notice that |f(d, S(v))| = CountT ,v(d) and |f(d,R)| = CountT (d) so we
have:

σ(v) =

{∑
d∈Nk

(
2 · CountT ,v(d) − CountT (d)

) · gi(d) if v is an event vertex

0 if v is a mapping vertex

This reduces to finding:
arg max

M∈R

∑

v∈V (M)

σ(v) (9)

As noted in the previous section, the problem of finding a reconciliation that
maximizes the score of its constituent event vertices can be solved in O(|G||S|2)
time by dynamic programming [9,10]. Thus, we have shown that the widely-used
k-medoids heuristic of Park et al. [11] can be applied to MPR space by computing
the reconciliation count function CountT ,v.

3.2 k-centers

The objective of the k-centers problem is to find a set T of k MPRs that minimizes
the covering radius, the maximum distance between any MPR and the nearest
element in T . More formally, letting MC denote the function that returns the
minimum component of a vector, we seek to find:

arg min
T ⊂R
|T |=k

max
R∈R

MC(d(R, T ))

While this problem is NP-complete [7], Gonzalez [8] proved that the follow-
ing algorithm finds solutions that are guaranteed to be within a factor of two of
optimal:

Algorithm 2. k-centers 2-approximation [8]
1: procedure k-centers(R, k)
2: T ← {arbitrary R in R}
3: for k − 1 iterations do
4: T ← argmaxR∈R MC(d(R, T ))

5: T ← T ∪ {T}
6: return T

Line 4 cannot be efficiently computed by simple iteration because there can
be exponentially many MPRs. Again, the reconciliation count function will be
applied to perform this step in polynomial time.

www.ebook3000.com

http://www.ebook3000.org


136 A. Ozdemir et al.

Given some number of current centers, line 4 of Algorithm2 seeks a reconcilia-
tion that maximizes the minimum distance from the rest. Given the reconciliation
counts to the current centers, we can find this distance by the following algorithm.

Algorithm 3. Farthest from centers
1: procedure FFC(T )
2: d∗ ← 0
3: for d ∈ N

k do
4: if CountT (d) > 0 then
5: if MC(d) > MC(d∗) then
6: d∗ ← d
7: return d∗

Although the loop in Algorithm3 iterates over all k-dimensional vectors over
the natural numbers, we will see later that only a polynomial number of vectors
need be considered.

Algorithm 3 gives us a distance vector, but not the desired reconciliation at
this distance. However, we can augment the algorithm for computing reconcili-
ation counts (given in the next section) to record one such reconciliation. That
is, we can extend the reconciliation counts algorithm with annotations such that
CountT ,v(d) = (n,R) if and only if there are n distinct reconciliations at distance
d from T which contain event v, and R is one such reconciliation. Therefore, a
polynomial time method for computing reconciliation counts allows us to find a
2-approximation to k-centers for MPRs.

4 Computing the Reconciliation Count Function

In this section, we give an algorithm for computing the reconciliation count func-
tion, CountT ,v : Nk → N. The algorithm uses three basic operations: sum, convo-
lution, and shift. Let f and g be functions from Z

k to N. The sum, h = f + g, is
defined by

h(n) = f(n) + g(n)

The convolution, h = f ∗ g is defined by

h(n) =
∑

m∈Zk

f(m)g(n − m)

The shift, h = f 	 m for some m ∈ Z
k is defined by

h(n) = f(n − m)

In addition, for a given d ∈ Z
k the function δd : Zk → N is defined by

δd(d) = 1 and δd(n) = 0 for n �= d
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Finally, for a vertex v in the reconciliation graph G and a MPR T , we define the
function D(v, T ) as follows:

D(v, T ) =

⎧
⎪⎨

⎪⎩

−1 if v ∈ E(T )
1 if v /∈ E(T ) and v ∈ E(G)
0 if v /∈ E(G)

For T = {T1, . . . , Tk}, we define D(v, T ) = [D(v, T1), · · · ,D(v, Tk)].
Note that while the convolution is defined using an infinite summation, in our

usage it will only take a polynomial number of non-zero values and will be shown
to be computable in polynomial time.

In Algorithm 4 we give three procedures: The main Count function for com-
puting CountT ,v which uses procedures SubCount and SuperCount. For clar-
ity, these procedures are described recursively, but the implementation (described
in the Supplementary Materials) applies dynamic programming to compute the
values bottom-up in polynomial time. The algorithm uses the sum, convolution,
shift and δd functions described above.

Algorithm 4. Reconciliation Count
1: procedure CountT (v)
2: return (SubCountT (v) ∗ SuperCountT (v)) 


[
|E(T1)|, . . . , |E(Tk)|

]

3:
4: procedure SubCountT (v)
5: if v is a leaf of G then
6: return δ[−1,−1,...,−1]

7: if v is a mapping vertex then
8: for each child ci of v do
9: fi ← SubCountT (ci)

10: return
∑

i fi

11: if v is an event vertex then
12: if v has one child c then
13: return SubCountT (c) 
 D(v, T )
14: else v has two children c1, c2
15: return (SubCountT (c1) ∗ SubCountT (c2)) 
 D(v, T )

16:
17: procedure SuperCountT (v)
18: if v is a root of G then
19: return δ[0,0,...,0]

20: if v is a mapping vertex then
21: for each parent pi of v do
22: fi ← SuperCountT (p) 
 D(p, T )
23: if v has a sibling s under pi then
24: fi ← fi ∗ SubCountT (s)

25: return
∑

i fi

26: if v is an event vertex then
27: p ← the parent of v
28: return SuperCountT (p)

Theorem 2. Given a reconciliation graph G for a DTL problem instance and a
set T of k MPRs, the procedure CountT (v) in Algorithm4 correctly computes the
reconciliation count function.
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Let n denote the larger of the size of the gene tree and the size of the species
tree in a DTL instance and let k be a fixed constant representing the size of the
representative set T .

Theorem 3. The worst-case time complexity of Algorithm4 is O(nk+3 log n).

Theorem 4. The worst-case time complexity for performing I iterations of the
k-medoids algorithm is O(Ink+3 log n).

Theorem 5. The worst-case time complexity of the k-centers algorithm is
O(nk+3 log n).

Proofs of these theorems as well as experimental results are available in Sup-
plementary Materials at www.cs.hmc.edu/∼hadas/supplement.pdf.

5 Conclusion

In this paper we have studied the problem of clustering the exponentially large
space of MPRs in order to find a small number of representative reconciliations
and to better understand the structure of MPR space. We have defined a recon-
ciliation count function, shown that it can be computed in polynomial time, and
demonstrated how this function can be used to implement some well-known clus-
tering algorithms. These results can be extended to other clustering algorithms
and to reconciliations whose cost is within some bound of MPR cost.

Finally, there are a number of promising directions for future research. First,
while the reconciliation count algorithm runs in polynomial time for any constant
k, the running time of O(nk+3 log n) becomes impractical for large values of k.
While our initial experimental results suggest that small values of k are likely
to be of greatest interest, it may be possible to compute the reconciliation count
function more efficiently. Second, the reconciliation count function described here
appears to have broad utility in implementing other clustering methods and algo-
rithms and in computing a variety of statistics on clusterings of MPR space. While
our experimental results demonstrate the viability of clustering, systematic empir-
ical studies are needed to better understand what clusterings can reveal about the
structure of MPR space.
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Abstract. Imposing constraints that influence multiple sequence align-
ment (MSA) algorithms can often produce more biologically meaningful
alignments. In this paper, a modularized program of constrained mul-
tiple sequence alignment (CMSA) called CSA-X is created that accepts
constraints in the form of regular expressions. It uses arbitrary under-
lying MSA programs to generate alignments, and is therefore modu-
lar. The accuracy of CSA-X with different underlying MSA algorithms
is compared, and also with another CMSA program called RE-MuSiC
that similarly uses regular expressions for constraints. A technique is
also developed to test the accuracies of CMSA algorithms with regu-
lar expression constraints using the BAliBASE 3.0 benchmark database.
For verification, ProbCons and T-Coffee are used as the underlying MSA
programs in CSA-X, and the accuracy of the alignments are measured
in terms of Q score and TC score. Based on the results presented herein,
CSA-X significantly outperforms RE-MuSiC. On average, CSA-X used
with constraints that were algorithmically created from the least con-
served regions of the correct alignments achieves results that are 17.65%
higher for Q score, and 23.7% higher for TC score compared to RE-
MuSiC. Further, CSA-X with ProbCons (CSA-PC) achieves a higher
score in over 97.9% of the cases for Q score, and over 96.4% of the cases
for TC score. It also shows that the use of regular expression constraints,
if chosen well, created from accurate knowledge regarding a lesser con-
served region can improve alignment accuracy. Statistical significance is
measured using the Wilcoxon rank-sum test and Wilcoxon signed-rank
test. An open source implementation of CSA-X is also provided.

Keyword: Multiple sequence alignment

1 Introduction

Multiple sequence alignment (MSA) is a fundamental tool towards many objec-
tives, such as phylogenetic studies, computational biology, prediction of func-
tional residues, and protein structure prediction [17]. A large number of MSA
programs have been developed, and Pais, FSM et al. [16] recently surveyed such
programs in terms of accuracy and computational time. Indeed, accuracy is
c© Springer International Publishing AG 2017
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particularly important for MSA algorithms, especially within modern computer
bioinformatics pipelines, where less accurate alignments cause negative down-
stream effects with amplification of errors [12]. Most of the state-of-the-art mul-
tiple sequence alignment programs such as ProbCons [7], T-Coffee [15], MAFFT
[11], and ClustalW [20] are fully automated, with a limited number of changeable
parameters.

But often, users have additional information that could affect the alignments
such as, active site residues, intramolecular disulphide bonds, enzyme activities,
and conserved motifs [19]. Hence, having a program that can use additional
information, either manually created, or automatically determined from addi-
tional annotations, can improve the accuracy of alignments. Constrained mul-
tiple sequence alignment (CMSA) [18] is an extension of the MSA problem [4]
that allows users to use knowledge regarding the sequences involved, in the form
of constraints, with a view to achieving more biologically meaningful alignments.
For example, Du and Lin [8] showed that ClustalW [20], does not align common
patterns and similar structures found in sequences consistently. Because of this
reason, Tsai et al. [19] proposed MuSiC, a web server that allowed constrained
alignment of sequences. But many biologically important motifs, such as those
listed as regular expressions in the PROSITE [10] database cannot be formu-
lated into constraints according to the convention followed by MuSiC [5]. To
solve this issue, Arslan [2], and Chung et al. [6] introduced alignment algorithms
that accept regular expression constraints, and enforce that segments that match
the regular expression must align. Then, Chung et al. proposed RE-MuSiC [5],
an extension to their previous work [6] to support multiple sequences and mul-
tiple constraints. In that work, they used sequence motifs found in PROSITE
as regular expression constraints to improve the quality of alignments. How-
ever, there are some limitations of RE-MuSiC, as it does not allow the use
of quantification operators such as Kleene star (*), Kleene plus (+) in regu-
lar expression constraints, and thus only a subset of regular expressions can be
used as input. Arslan [3] also proposed sequence alignment programs guided by
Context Free Grammars (CFG) only limited to pairwise sequence alignment.
Morgenstern et al. [14] developed DIALIGN, a web server, that can accept user
defined anchor points as constraints. It is common to use a benchmark database,
such as BALiBASE to evaluate MSA algorithms [9,11,15], however no such tech-
nique is available for CMSA with regular expression constraints, and therefore,
no such comparison is available for use with RE-MuSiC.

Here a new program, CSA-X is developed that also accepts arbitrary regular
expression constraints (including quantifiers), and creates a multiple sequence
alignment that forces sections to align that match the entire regular expression.
Furthermore, it is also possible to enforce with an extended regular expression
syntax that certain sections that match part of a regular expression must align.
CSA-X is a modularized program that uses an underlying MSA program, and
because of this reason, it is possible to replace the underlying MSA program
with another, perhaps improved or tailored program. In addition, this study
compares the performance of CSA-X, RE-MuSiC, and ‘X’, where ‘X’ is the
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underlying MSA program in the proposed tool, with respect to the BALiBASE
3.0 [21] benchmark database. This involves the creation of a new technique to
compare CMSA algorithms by creating regular expressions algorithmically using
the BALiBASE alignments. This assesses their accuracy in terms of Q score and
TC score [9], and measures statistical significance of the results. Furthermore,
it also shows that if constraints are chosen appropriately, such as from knowl-
edge regarding lesser conserved regions, CSA-X can give better results than the
underlying MSA algorithm.

2 Methods

An open source implementation of CSA-X has been made available [1], which
will be described. Arbitrary MSA implementation can be used with it. CSA-X
accepts constraints in the form of regular expressions using the PERL regular
expression syntax. However, the symbol # can be optionally placed in multiple
spots in the regular expression, and it has special meaning providing guidance
by which sequences are aligned. Next the constraints are defined.

Definition 1. Hash-augmented regular expressions are defined inductively:

– every PERL regular expression is a hash-augmented regular expression,
– if R and S are two hash-augmented regular expressions, then R#S is a hash-

augmented regular expression.

From this definition, it is implied that every hash-augmented regular expression
can be written in the following form, for some n ≥ 1: R1#R2# . . .#Rn, when
R1, . . . , Rn are regular expressions. Intuitively, the MSA generated will align the
parts of each sequence that match R1, R2, . . . , Rn, and enforce that the parts
that match each Ri, for 1 ≤ i ≤ n are aligned. Hence, the # symbols provide
additional control by giving information regarding the residues or nucleotides to
align. If the # symbols are not used, then CSA-X constructs the best alignment
of the entire parts matching the entire regular expression.

In the case of hash-augmented regular expressions, between every two #
symbols, it must be a syntactically correct regular expression. For example,
(AC#TT)C#A is not a valid CSA-X hash-augmented regular expression because
the left side of the first # symbol contains ‘(AC’ and right side contains ‘TT)C’
which are not regular expressions.

If a hash-augmented regular expression matches multiple sequences, then
each match must have the same number of hash symbols since # symbols cannot
(by definition) be placed inside any quantifier, such as * (which could match i
times within one sequence, but j times within another, where i �= j).

Consider, an input of N sequences to align S1, S2, S3, . . . , SN , N ≥ 2, and a
hash-augmented regular expression R = R1#R2#R3# . . .#Rm, where m ≥ 1.
The precise process that CSA-X uses to generate such an alignment can be
described using the following high-level steps:
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1. CSA-X attempts to match R to each sequence Si of the N input sequences,
for each i, 1 ≤ i ≤ N . If the regular expression matches exactly once in each
sequence Si, then CSA-X determines a list of positions (for each i, 1 ≤ i ≤ N)
l0i , l

1
i , l

2
i , . . . , l

m
i , where 0 ≤ l0i ≤ l1i ≤ l2i ≤ . . . ≤ lmi ≤ |Si|+1, whereby regular

expression Rj matches between positions lj−1
i and lji −1, for each j, 1 ≤ j ≤ m

(if lj−1
i = lji then Rj matches the empty string). If CSA-X does not find any

regular expression matches on the input sequences or it finds matches for a
strict subset of sequences in the dataset, then it returns the alignment of the
input dataset using the underlying MSA program without using the regular
expression.

2. CSA-X generates alignments for each of the matched sections of the sequences
using the underlying alignment algorithm. That is, it aligns the sub-
words S1(1, l01 − 1), . . . , SN (1, l0N − 1), then aligns subwords S1(l

j−1
1 , lj1 −

1), . . . , SN (lj−1
N , ljN − 1) for every j, 1 ≤ j ≤ m, and then aligns subwords

S1(lm+1
1 , |S1|), . . . , SN (lm+1

N , |SN |). Then it concatenates each of these align-
ments together in order. As the constraints in CSA-X are specified using
a hash-augmented regular expression, it generates alignments by decoding
information from the specified constraints.

3. If CSA-X finds multiple regular expression matches on a single sequence,
then it generates all possible combinations of the matched-segment datasets
by selecting each regular expression match of the sequence separately, and
determines the alignment that has the highest sum-of-pairs score.

Intuitively, the formalism of step 2 means that CSA-X identifies the seg-
ments that match the entire expression R for each sequence Si in step 1. In
addition, at the same time on each of the matched segments, it also identifies
the subsections that match the sub-patterns R1, R2, R3, . . . , Rm consecutively
in the hash-augmented regular expression. Then, CSA-X aligns each matching
sub-pattern separately (including the parts that match before the first matching
sub-pattern, and the parts that match after the final sub-pattern has ended),
using the underlying MSA program X to generate alignments, and then it merges
the generated alignments together to produce a complete alignment.

In step 3, suppose a hash-augmented regular expression R, matches the
sequence St at two spots. If the rest of the sequences match the hash-augmented
regular expression exactly at one spot, then CSA-X would create two alignments,
one where the matching occurs between the first matching part of St, and the
other one where the matching occurs with the second matching part of St. Then
the algorithm determines the alignment that has the highest sum-of-pairs score,
and returns the alignment with the highest score.

It should be noted that, multiple regular expressions R and S can be used as
input by joining them with quantifiers such as R.∗S, where “.” represents any
character match, and “∗” is Kleene star. Alignment can be further influenced
through # symbols, e.g. R#.∗#S.

Example 2. Conserved motifs for different protein sequences are listed in the
PROSITE database in the form of regular expressions, which can be used as
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constraints to improve the biological accuracy of the alignments in different
CMSA programs. For example, the TATA-binding protein plays a vital role in
the activation of eukaryotic genes. PROSITE (PDOC00303) lists the consensus
for the signature pattern of the TATA-binding protein as follows (using a slightly
different regular expression syntax).

Y-x-[PK]-x(2)-[IF]-x(2)-[LIVM](2)-x-[KRH]-x(3)-P-[RKQ]-x(3)-L-
[LIVM]-F-x-[STN]-G-[KR]-[LIVMA]-x(3)-G-[TAGL]-[KR]-x(7)-
[AGCS]-x(7)-[LIVMF].

For the alignment of different TATA box proteins, the above mentioned consen-
sus pattern can be used as a constraint. For instance, if one would like to align
TATA box proteins found in Homo sapiens (gb AAI09054.1), Rattus rattus (gb
AAH16476.1), and microorganism Halobacterium salinarum (emb CAA63691.1)
using CSA-X, then the format of this consensus pattern can be as follows:

Y.[PK]..[IF]..[LIVM]{2}.[KRH]...P[RKQ]...L[LIVM]F.[STN]G
[KR][LIVMA]...G[TAGL][KR].......[AGCS].......[LIVMF].

It is also possible to simplify this further using quantifiers, or to add hash symbols
to force sections of the regular expression to align; for instance to align sections of
the sequences that match Y.[PK]..[IF]..[LIVM]+.[KRH], then ...P[RKQ]...L
[LIVM]F.[STN]G[KR][LIVMA], then ...G[TAGL][KR].......[AGCS].......
[LIVMF] the hash augmented regular expression could be used. Omitting the #
symbols would not necessarily align the three parts separately on all sequences.

Y.[PK]..[IF]..[LIVM]+.[KRH]#...P[RKQ]...L[LIVM]F.[STN]G[KR]
[LIVMA]#...G[TAGL][KR].......[AGCS].......[LIVMF].

Figure 1 shows the partial alignment generated by CSA-X, where the region
identified by the regular expression is aligned in columns (highlighted). For this
alignment, ProbCons is used as the underlying alignment tool.

3 Method of Assessments

Since CSA-X is a modular tool, the underlying MSA program can be changed
to obtain different alignments, and in some sense, different customized tools.
The study conducted by Pais, FSM et al. [16] showed that ProbCons, T-Coffee,
Probalign, and MAFFT achieve higher accuracy than other MSA tools consid-
ered. Therefore, for this assessment, ProbCons and T-Coffee are used as the
underlying MSA algorithms in CSA-X (although other programs can be used
with CSA-X as well, these are the only two used for the purposes of assess-
ment). Whenever CSA-X uses ProbCons, it is referred to as CSA-PC, and for
T-Coffee, it is called CSA-TCOF. It is common for a benchmark database, such
as BALiBASE 3.0 to be used to assess alignments and algorithms. Each set of
sequences in such a database also has an alignment that is thought of as “cor-
rect” (based on additional knowledge such as protein structure). This database is

www.ebook3000.com

http://www.ebook3000.org


148 T.M.R. Islam and I. McQuillan

Fig. 1. CSA-X partial alignment of TATA box proteins. CSA-X partial alignment of
TATA box proteins, where the highlighted regions indicate the sections matched by
the regular expression constraint.

used here. However, RE-MuSiC generates erroneous alignments for a portion of
the datasets in the BAliBASE 3.0 benchmark database, where the length of the
sequences are not equal (sometimes the resulting alignments produced contain
wildcard characters). Hence, the working database for this study is defined as
being created from BAliBASE 3.0 including those datasets for which RE-MuSiC
produces non-erroneous alignments for the purposes of comparison. BAliBASE
3.0 is classified into several groups; namely RV11, RV12, RV20, RV30, RV40, and
RV50. In the working database for this study, there are 76 datasets from RV11,
84 datasets from RV12, 6 datasets from RV20, 6 datasets from RV30, 17 datasets
from RV40 and 11 datasets from RV50; in total 200 datasets from BAliBASE
3.0 out of a total of 386 datasets. Out of these 200 datasets, 98 datasets contain
short truncated sequences. To compare the performance of CSA-X with RE-
MuSiC and other programs, this working database is used in this study (we will
additionally consider the difference in results between programs when including
those datasets not in the working dataset).

As BALiBASE does not contain regular expression constraints, a new tech-
nique must be developed for comparison of CMSA algorithms. To identify the
effects of constraints on generated alignments, two sets of regular expression
constraints are created to use for assessment. Indeed, the correct alignments
from the BAliBASE 3.0 benchmark database are used to algorithmically create
accurate regular expressions. One set of regular expression constraints are cre-
ated from the “most conserved” region of the correct alignments. Another set
is constructed from the “least conserved” region of the correct alignments. All
of these constraints are automatically generated using a Perl script, which uses
reference alignment files from BAliBASE 3.0, and identifies the most conserved
regions and the least conserved regions for the alignments and generates the
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regular expression constraints. These same sets of constraints are used to com-
pare CSA-X and RE-MuSiC.

The idea behind this approach is to identify the effects of constraints on
multiple sequence alignment. Often, expert users possess information about the
sequences involved in the alignment process. They align the sequences using a
MSA program, and then often adjust the alignment based on knowledge not
reflected in the generated alignment. For the assessment, we do not obtain reg-
ular expression constraints from expert users, but rather, algorithmically create
regular expressions from the curated alignments. Although this approach could
create unrealistically good regular expressions, it is useful to use when comparing
multiple algorithms that take regular expressions as constraints and to represent
“accurate” knowledge being incorporated into regular expressions.

For this study, the regular expression constraints are generated to be of length
12 with a maximum of one gap per sequence, which is large enough to affect align-
ments, while avoiding many matches. To make a fair comparison between CSA-X
and RE-MuSiC, both are tested on the same sets separately for both (most and
least conserved) of regular expression constraints, and therefore, all regular expres-
sions tested do not have the quantifiers * or+as these do notworkwithRE-MuSiC.
Furthermore, a separate comparison is made between CSA-PC with these regular
expressions and ProbCons without using any regular expressions at all (and simi-
larlywithT-Coffee) to gauge thepotential improvements that using regular expres-
sions as constraints can provide. This depends on whether the regular expressions
are created from highly conserved or lesser conserved regions. Although this part of
the assessment is done using the correct alignments to construct the regular expres-
sions, it is only being used to see if regular expressions can possibly improve quality,
depending on the type of regular expression. A thorough test of common regular
expressions used by expert users together with a test to see if they improve align-
ment quality would be valuable. However, for comparing RE-MuSiC to CSA-X,
such regular expressions are equally favourable to both programs, and is therefore
a useful method of comparison.

3.1 Accuracy, Statistical Significance and Parameters

To measure the accuracy of considered programs in this study, two scores, Q
score (Quality Score) and TC score (Total Column Score) are computed. Edgar
[9] defined the Q score of an algorithm as a ratio between the number of correctly
aligned pairs to the number of residue pairs in the reference alignment. This is
the same as the sum-of-pairs score defined by Thompson et al. [22]. TC score is
the number of correctly aligned columns, divided by the number of columns in
the reference alignment (this is the same as the column score (CS) defined by
Thompson et al.).

To reduce the probability that the difference is merely by chance, researchers
working in the area of MSA frequently conduct statistical significance tests. In
this work, Wilcoxon signed-rank test [23] and Wilcoxon rank-sum test [23] are
used to measure statistical significance. If two samples are paired, Wilcoxon
signed-rank test is used, otherwise, Wilcoxon rank-sum test is used.
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Standalone ProbCons and T-Coffee are used with the default parameter set-
tings (performing a comparison by systematically varying all parameters with
every program is of interest but is left for future work). The same parameter
settings of ProbCons and T-Coffee are used in CSA-PC and CSA-TCOF respec-
tively. RE-MuSiC is run with the default gap extension and gap open penalty.
CSA-PC, CSA-TCOF, and RE-MuSiC are provided with the equivalent set of
regular expression constraints. As the format of specifying regular expression
constraints in CSA-X and RE-MuSiC is different, equivalent regular expression
constraint sets are used for these programs.

4 Results

For each of CSA-PC, CSA-TCOF, RE-MuSiC, T-Coffee, and ProbCons, average
(AVG) and standard deviation (SD) of Q score and TC score are presented in
Table 1. Among these programs CSA-PC, CSA-TCOF, and RE-MuSiC are pro-
vided with the regular expression constraints; however, T-Coffee and ProbCons
are used without any constraints (as they do not take any as input).

4.1 Comparison of CSA-X with RE-MuSiC

It is observed from Table 1 that for the 200 datasets in the working database,
that CSA-PC and CSA-TCOF both achieve higher accuracy compared to RE-
MuSiC, using both Q score and TC score. From Table 1 it can be calculated that

Table 1. Average and standard deviation of Q score and TC score for the working
database. MC (and LC respectively) represent the use of regular expression constraints
identified from the most conserved region (least conserved respectively), of the correct
alignments in the benchmark datasets (‘−’ represents a score that cannot be computed).
The entries that are bold represent the highest value for each type of score and regular
expression.

MC LC AVG (SD)

AVG (SD) AVG (SD)

Q CSA-PC 0.868 (0.118) 0.881 (0.116) −
CSA-TCOF 0.860 (0.131) 0.876 (0.124) −
RE-MuSiC 0.691 (0.197) 0.702 (0.220) −
ProbCons − − 0.854 (0.153)

T-Coffee − − 0.846 (0.166)

TC CSA-PC 0.713(0.222) 0.730 (0.244) −
CSA-TCOF 0.702 (0.231) 0.718 (0.244) −
RE-MuSiC 0.496 (0.256) 0.487 (0.299) −
ProbCons − − 0.693

T-Coffee − − 0.680
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on average for Q score, CSA-PC achieves approximately 0.179 and CSA-TCOF
achieves almost 0.174 higher score compared to RE-MuSiC when using con-
straints obtained from the least conserved (LC) region of the correct alignments
respectively. For the constraints obtained from the most conserved (MC) region
of the correct alignments, CSA-PC and CSA-TCOF achieve 0.176 and 0.168
higher score respectively. While for TC score, for the most conserved region reg-
ular expression constraints set, CSA-PC achieves 0.217 and CSA-TCOF achieves
0.206 higher results compared to RE-MuSiC, and the score rises by 0.217 and
0.206 respectively for CSA-PC and CSA-TCOF for the LC constraints set.

Out of 200 working datasets for Q score, CSA-PC and CSA-TCOF with
LC constraints perform higher for 195 and 194 datasets respectively compared
to RE-MuSiC. In addition, for TC score, CSA-PC and CSA-TCOF with LC
constraints set achieves higher score in total for 185 and 184 datasets. CSA-PC
and CSA-TCOF with MC constraints set achieves a higher score for Q score for
192 and 191 datasets respectively, and for TC score they achieve higher score
for 186 and 180 datasets respectively compared to RE-MuSiC. In addition, if
all the datasets in BAliBASE 3.0 are considered, instead of just the working
datasets, and we define CSA-X as performing better for instances where RE-
MuSiC is giving erroneous results, then CSA-PC (LC) gives a higher score for
381 datasets out of 386 datasets, and CSA-TCOF (LC) gives a higher score for
380 datasets out of 386 datasets.

4.2 Comparison of CSA-X with the Underlying MSA Program

From Table 1, CSA-PC and CSA-TCOF score higher overall than standalone
ProbCons and T-Coffee respectively run without any constraints. For MC con-
straints, CSA-PC and CSA-TCOF both show 0.014 higher Q score and more
than 0.02 higher TC score compared to ProbCons and T-Coffee. Further, using
LC constraints, CSA-PC and CSA-TCOF achieve 0.026 and 0.029 higher Q score
and 0.0378 and 0.0376 higher TC score respectively. According to Thompson
et al. [22] the BAliBASE sum-of-pairs score (similar to Q score) increases if
a program succeeds in aligning sequences relative to the reference alignment
dataset; this means that the higher the Q score is, the better the program is at
generating accurate alignments, while TC score tests how efficiently the program
is aligning all the sequences. This is a more stringent criteria of measurement as
a column score can become zero if a single sequence is misaligned [13]. Again, it
is worth mentioning that the comparison of CSA-X to its underlying tool does
not lend any evidence to the notion that CSA-X is better than its underlying
algorithm. It is only examining certain types of correct information that can
improve alignments. Furthermore, it is an important verification of the potential
of CSA-X.

4.3 Statistical Analysis

First, the Wilcoxon rank-sum test is performed between CSA-TCOF and RE-
MuSiC, and between CSA-PC and RE-MuSiC. As the outcome of CSA-TCOF
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does not depend upon RE-MuSiC, the Wilcoxon rank-sum test is chosen. Sec-
ond, each are compared to their underlying algorithm with both the most con-
served and least conserved regular expressions. Since the outcome of CSA-TCOF
and CSA-PC depends upon T-Coffee and ProbCons respectively, the Wilcoxon
signed-rank test is selected to test if there is significant difference between these
programs. Table 2 shows the results of these tests. For both the tests, the null
hypothesis is that there is no significant difference between the two samples. If
the test rejects the null hypothesis then it means that there is a significant differ-
ence between the two samples. For this test, a 5% significance level is used, which
means that if the p-value is less than 0.05 then the null hypothesis is rejected.
For the Wilcoxon rank-sum test, all the p-values are significantly less than 0.05.
Hence, the null hypothesis is rejected, and it is determined that the results of
CSA-PC and CSA-TCOF are significantly different compared to RE-MuSiC,
and the differences are not by chance. However, for the Wilcoxon signed-rank
test, the results are not significantly different for CSA-TCOF and T-Coffee if
CSA-TCOF uses the most conserved (MC) regular expression constraints set,
as with CSA-PC. This is because ProbCons and T-Coffee both are able to suc-
cessfully align the most conserved region without the explicit constraints. But
the situation changes if CSA-TCOF and CSA-PC uses the least conserved (LC)

Table 2. Wilcoxon rank-sum and Wilcoxon signed-rank test results.

Wilcoxon rank-sum test

Constraints Programs Scores P-value (Significant)

MC CSA-TCOF and RE-MuSiC Q <2.2e-16 (yes)

TC 2.89e-15 (yes)

CSA-PC and RE-MuSiC Q <2.2e-16 (yes)

TC <2.2e-16 (yes)

LC CSA-TCOF and RE-MuSiC Q <2.2e-16 (yes)

TC 6.66e-16 (yes)

CSA-PC and RE-MuSiC Q <2.2e-16 (yes)

TC <2.2e-16 (yes)

Wilcoxon signed-rank test

Constraints Programs Scores P-value (Significant)

MC CSA-TCOF and T-Coffee Q <0.6529 (no)

TC 0.1579 (no)

CSA-PC and ProbCons Q <0.0911 (no)

TC 0.0201 (yes)

LC CSA-TCOF and T-Coffee Q <8.18e-10 (yes)

TC 3.09e-08 (yes)

CSA-PC and ProbCons Q <2.50e-10 (yes)

TC <1.10e-08 (yes)
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regular expression constraints set, and it is observed that there is significant dif-
ference in the results of CSA-TCOF and CSA-PC with T-Coffee and ProbCons
respectively if they are supplied with LC constraints set.

Although, constraints chosen from the most or least conserved region are
not necessarily realistic in terms of regular expression constraints chosen by
either an expert user, or created from a database of additional information,
using constraints created from the correct alignment does have the advantage of
capturing some piece of information the user may know to be true, in a situation
where a standalone alignment program is not giving the desired results. And
indeed, constraints chosen from the most conserved region do not seem to help
significantly versus not using any constraint, however constraints chosen from
the least conserved region do help versus not using any constraints.

5 Conclusions

The constrained multiple sequence alignment program, CSA-X, allows the user
to specify regular expression constraints for the multiple sequence alignment,
and the resulting alignment enforces that specific sections matching the regular
expression gets aligned. This can improve the accuracy and biological significance
of the generated alignments, as functional and structural information regarding
the sequences can be expressed using regular expression syntax. However, a more
systematic study of regular expression constraints from expert users and other
sources is left as future work.

In this research work, based on the average accuracy scores from the bench-
marking analysis and the statistical significance testing, it is shown that CSA-X
framework with ProbCons and T-Coffee (known as CSA-PC and CSA-TCOF
respectively) generates more accurate alignments compared to RE-MuSiC—
the only other implemented CMSA algorithm that uses regular expression con-
straints. Furthermore, it is also shown that if good regular expression constraints
are chosen from the least conserved portion of the correct alignments, then the
results of CSA-X are significantly better than the underlying MSA program.
Finally, CSA-X is a modularized tool, and it allows the user to change the under-
lying multiple sequence alignment program if more efficient programs become
available, or a specialized program is required. An open source implementation
is also available [1].
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Abstract. We introduce an efficient algorithm for stochastic flux analy-
sis of chemical reaction networks (CRN) that improves our previously
published method for this task. The flux analysis algorithm extends Gille-
spie’s direct method, commonly used for stochastically simulating CRNs
with respect to mass action kinetics. The extension to the direct method
involves only book-keeping constructs, and does not require any labeling
of network species. We provide implementations, and illustrate on exam-
ples that our algorithm for stochastic flux analysis provides a means for
quantifying information flow in CRNs. We conclude our discussion with
a case study of the biochemical mechanism of gemcitabine, a prodrug
widely used for treating various carcinomas.

Keywords: Chemical reaction networks · Stochastic simulation · Flux

1 Introduction

Chemical reaction networks (CRNs) provide a convenient representation scheme
for a broad variety of models in biology and ecology. By resorting to mass action
kinetics, CRNs can be simulated deterministically or stochastically. Stochastic
simulations are commonly performed by using Gillespie’s direct method [5], or
its extensions that address a variety of concerns such as efficiency, e.g., [7],
computation of rare events, e.g., [11], or portability, e.g., [2].

While it is now common practice to use deterministic and stochastic simula-
tions interchangeably for a given CRN as well as hybrid simulations [16], these
methods provide their own merits in different settings. Deterministic simulations
root in a rich theory that makes available various analysis techniques, including
flux analysis [15], as well as efficient numerical methods that also ease practical
tasks such as model fitting by linear regression. However, differential equation
simulations provide only approximations of the changes in population sizes of
CRNs, as random fluctuations cannot be retrieved without introducing an addi-
tional machinery on top of deterministic methods. In this respect, because it
is practically implausible to directly obtain the solution of the chemical mas-
ter equation (CME) [6,13] for a not-extremely-small CRN, stochastic simulation
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algorithms come in handy for computing stochastic trajectories of CRNs. Nev-
ertheless, there are recent efforts that address ways for pushing the envelope by
using linear approximations of CME for stochastic analysis of CRNs [1].

In previous work [10], we have presented a method for stochastic flux analysis
of CRNs that is based on a consideration of stochastic simulations with CRNs as
non-interleaving computations of concurrent systems [8,14]. In this approach, a
simulation is considered as a reduction of a complex structure, that is, the CRN,
into a simpler structure, that is, the simulation trajectory. When a simulation
trajectory is read as a time series, the reaction instances are totally ordered,
because the time stamps of the reaction instances specify a sequential order
on them. However, when the reaction instances are considered from the point
of view of their causal dependencies with respect to their production and con-
sumption relationships with each other, the simulation trajectory takes a partial
order structure rather than a sequential total order structure. In order to retrieve
this otherwise lost information, the algorithm in [10] labels each species instance
with a unique identifier, thereby making it possible to trace each species instance
during the simulation. By tracing these identifiers, the method constructs a par-
tial order structure of species instances. This structure is then used to quantify
the causal interdependence of the reaction instances, and compressed to reveal
the flux graph after a number of graph transformations.

The method described above introduces a departure from the Gillespie’s
direct method, as this algorithm is not designed to trace individual species
instances, but rather monitor the network state as a vector of species types.
Although monitoring each species does not increase the complexity of the
Gillespie algorithm or hamper its correctness, it introduces an overhead due
to the individual representation of species. This overhead effects the simula-
tion efficiency, and extends the simulation time in comparison to the standard
Gillespie algorithm. In some cases with tens of thousands of individuals, it also
introduces a limiting factor for running simulations due to the memory required
to trace individuals.

In the following, we introduce an efficient algorithm for stochastic flux analy-
sis of CRNs in the form of a simple extension of Gillespie’s direct method. In
this algorithm, the fluxes of a CRN are computed during simulation by updat-
ing two arrays, the size of which are bounded by the number of reactions and
species-types of the CRN. Such a mechanism of book-keeping makes it possible
to monitor the network state during simulation in the form of a species-type
vector as in the direct method. Consequently, the algorithm computes the flux
graphs without being subject to an overhead due to monitoring of the species.

As in [10], the flux graph can be extracted for any time interval, in steady or
stationary state, and it provides a causality summary of the network resources,
resulting in a quantification of the information flow in the simulation. We illus-
trate our method on experiments with example networks. We conclude our dis-
cussion with a case study of the biochemical mechanism of gemcitabine, a pro-
drug widely used for treating various carcinomas. The flux graphs of this network
visualize how system dynamics is affected in different metabolic regimes.
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The modules, including a tool for computing flux paths, and the examples
below are available for download at our website.1

2 Stochastic Simulation and Flux Analysis

The stochastic flux analysis of chemical reaction networks [10] is a general
method on discrete event systems that can be represented as Markov chains.
Such systems include those that implement mass action kinetics, which are used
in systems biology for modeling a broad spectrum of phenomenon from those in
molecular biology to large ecosystems. We thus here focus on chemical reaction
networks (CRN) as they are studied in systems biology. Specifically, we use those
that are commonly simulated by the Gillespie algorithm [5], and can be approx-
imated by deterministic ordinary differential equation systems. The methods we
discuss below, however, can be generalized to systems that are represented as
discrete event systems. We first review CRNs, and stochastic flux analysis. We
refer to [10] for the technical definitions and examples that are not included here.

A CRN consists of a set of reactions and an initial state. A reaction

m1R1 + . . . + mlRl
ρ→ n1P1 + . . . + nrPr

describes the species R1, . . . , Rl that reaction consumes when it occurs, and the
species P1, . . . , Pr that it produces. The constants m1, . . . ,ml and n1, . . . , nr are
positive integers that denote the multiplicity of the reactants that are consumed
and the products that are produced, respectively, at every instance of such a
reaction. The reaction rate constant ρ is a positive real number, which deter-
mines how often a reaction occurs in a system, depending on the availability of
the reactants that the reaction consumes. According to the mass action kinetics,
the probability of a reaction’s firing at a particular state instead of another is
proportional with the multiplication of ρ and the number of possible combina-
tions of reactants at that state. In this respect, the initial state can be safely
considered as a special reaction with infinite rate, which consumes a dummy
species, e.g., Init, which is always present at the beginning of the simulation,
and is immediately consumed to produce the species that are present at time 0.

Gillespie algorithm [5] and its various extensions provide an exact method
for computing the reaction occurrences of CRNs. By using this algorithm, based
on continuous time Markov chains, it is possible to run stochastic simulations.
Such simulations can also be approximated by ordinary differential equations.
However, stochastic simulations can give rise to observations that are other-
wise impossible in a deterministic setting, as stochasticity provides a means for
observing random fluctuations in species numbers. As an example, consider the
CRN in Fig. 1, which is a Lotka-Volterra predator-prey system [12,18].

The algorithm for stochastic flux analysis builds on the Gillespie algorithm in
a way that permits the tracking of individual species as they become consumed
and produced throughout the simulation. By tracking these interactions, the

1 https://sites.google.com/site/ozankahramanogullari/software.
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Fig. 1. A CRN model of a Lotka-Volterra predator-prey system. X represents a preda-
tor species, and Y represents a prey species. Unlike ordinary differential equation sim-
ulations, stochastic simulations as this one can capture spontaneous extinctions.

algorithm generates a quantitative log of dependencies between instances of reac-
tions. The mechanism for this is realized by assigning a unique integer identifier
to each individual species. The algorithm uses this information to incrementally
construct an edge-colored graph structure by applying graph transformations.
In this graph, the nodes are reactions of the CRN, and the edges are pairs of
species and weights that quantify how many copies of which species flowed from
which reaction to which other reaction, as exemplified in Fig. 2.

Fig. 2. Besides the time series in Fig. 1, a simulation trajectory as the one on the left
is generated from the CRN during simulation as described in the text. A number of
graph transformations that are applied to this structure deliver the flux graph [10].

In [10], the construction of the flux graphs is realized in a number of steps.
As the first step, each species instance is assigned a unique integer identifier in
the initial state. Through out the simulation, each reaction instance randomly
consumes the species that match its reactants, and are randomly selected from
all the possibilities. The reaction instance then introduces its products to the
current state with fresh integer identifiers. Each simulation step is recorded with
respect to this information in the simulation log, as exemplified in Fig. 2 for the
CRN in Fig. 1. By using the unique identifiers of the species in this structure,
called reaction trajectory, the algorithm constructs a directed acyclic graph (dag)
structure, where the nodes are species instances and the edges are the reaction
instances that modify these edges.
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By further processing this graph, the algorithm in [10] delivers an edge-
labeled directed multi-graph that reveals the independence and causality infor-
mation of the transitions with respect to the flow of specific resources between
reactions. Since a reaction may produce several instances of species, this struc-
ture is in general a multi-graph. This dag, highlights the production-consumption
relationship between reaction instances of the simulation, and this way provides
a causality history of the simulation. Flux graphs, called flux configurations, are
then obtained by compressing these dags in order to quantify the flow of resources
between the reactions within given time intervals of the simulation. More specif-
ically, the weight of each edge specifies the number of times the species on that
edge flowed from the source to the target reaction of that edge.

In order to enable the recording of the simulation trajectory as described
above, the reactions act on individual instances of species, rather than types
of species as it is the case in the original Gillespie algorithm. Thus, a reac-
tion of the CRN becomes a scheme, similar to a term rewriting rule. Although
this modification does not introduce an increase in the complexity of the
Gillespie algorithm, neither does it hamper its correctness with respect to the
mass action kinetics, it introduces an overhead due to the individual represen-
tation of species. This overhead effects the simulation efficiency, and extends
the simulation time in comparison to the standard Gillespie algorithm. In some
cases with tens of thousands of individuals, it also introduces a limiting factor
for running simulations due to the memory required to trace individuals.

In the following, we introduce an alternative algorithm that directly con-
structs the flux graphs during simulation by a minimal extension of the Gillespie
algorithm, and this way avoids the overhead due to the labeling of the species.

3 Refining the Stochastic Flux Analysis Algorithm

Given a CRN, the Gillepsie algorithm [5], or the SSA, is a Monte Carlo simulation
procedure that faithfully selects the next reaction j and its time τ . Thus, given
a CRN, an initial state, and a tmax, by using this algorithm a time series s can
be obtained for a time interval 0 ≤ t ≤ tmax.

Let us consider a CRN with N species {S1, ..., SN}, which interact through
M reactions {R1, ..., RM}. We denote with X(t) = (X1(t), . . . , XN (t)) the sys-
tem state vector that represents the population of each Si, whereby the CRN
describes the time evolution of X(t). The occurrence of each reaction Rj is
then a discrete random event that changes the system state by vj = pj − rj =
(v1j , . . . , vNj). The ith element vij specifies the change in Xi by one Rj reaction
event, whereby pij specifies the products added to the state due to the right-
hand-side of Rj , and rij specifies the reactants removed from the state due to
the left-hand-side of Rj . Thus, given the system is in state x = (x1, . . . , xN ), the
system jumps to state x′ = x+vj = x+pj − rj as a consequence of a single Rj

reaction event. The time that the next event of reaction Rj occurs is governed by
function aj , the propensity function of reaction Rj , with a0(x) =

∑M
j=1 aj(x),

which are updated after each simulation step according to the new state x′.
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The refined algorithm, fSSA, for computing flux configurations of CRN sim-
ulations is a conservative extension of the SSA. The steps of the algorithm that
extend SSA are denoted with ‘(·)’ in Algorithm 1. The flux configuration is
computed by updating two matrices at every simulation step. The algorithm
initializes an (M + 1) × M × N matrix f by setting all its cells to 0 (line 4).
The matrix f delivers the simulation fluxes at the end of the simulation, as it is
updated at every simulation step. The size M + 1 at the first dimension of f is
due to M reactions and an additional reaction for the initial state; the size M at
the second dimension is due to M reactions; the size N at the third dimension
is due to N species. Then, each cell f�,j,i denotes the number of species Si that
flow from R� to Rj , and the matrix f is output together with the time series s.

Algorithm 1. fSSA
Input: A CRN with N species and M reactions, initial state x0, and tmax.
Output: A time series s and a flux matrix f .
1: t ← 0
2: x ← x0

3: s ← 〈x0〉
4: (·) y ← x0

5: (·) initialize f such that all the cells are 0.
6: (·) initialize m such that m0,i is set as in xi, and all others are 0.
7: evaluate all aj(x) and calculate a0(x)
8: while t ≤ tmax do
9: τ ← a sample of exponential random variable with mean 1/a0(x)

10: u ← a sample of unit uniform random variable
11: μ ← smallest integer satisfying Σμ

i=1ai(x) ≥ ua0(x)
12: t ← t + τ
13: x ← x + vμ

14: s ← s;x
15: update aj(x), and recalculate a0(x)
16: (·) for i = 1 to N do
17: (·) for k = 1 to ri,μ do
18: (·) w ← a sample of unit uniform random variable
19: (·) σ ← smallest integer satisfying Σσ

j=1mi,j ≥ wyi

20: (·) mi,σ ← mi,σ − 1
21: (·) yi ← yi − 1
22: (·) fσ,μ,i ← fσ,μ,i + 1
23: (·) done
24: (·) mi,μ ← mi,μ + pi,μ

25: (·) yi ← yi + pi,μ

26: (·) done
27: end while

The second matrix that the algorithm uses for book-keeping is an N×(M+1)
matrix m, which is initialized at the beginning of the simulation, and updated
at every simulation step (line 5). In m, there are M + 1 columns, because the
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first column denotes the initial state as a reaction. Thus, at time zero, the first
column of m is initialized as the vector x0 and all the other cells are set to 0.

The fSSA algorithm is conservative of SSA, as it does not modify the SSA
steps, and extends it with structures for logging the fluxes. The matrix m keeps
track of the source reactions of species as they are being produced and consumed
at every step. Each cell of the matrix displays a count of the species such that mij

is the number of species Si that had been produced by the reaction Rj , and had
not been consumed by another reaction up to that point in the simulation. Thus,
since each row carries the information on a certain species, each row sums up to
the number of that species at the current state x, that is,

∑M
j=0 mi,j = xi. This

information is used to sample the source of a species that can be produced by
different reactions, proportional to the contribution of each reaction in producing
that species (lines 15 to 22). The matrix f is updated accordingly (line 20). The
products are then directly updated in m for the next simulation step (line 23).

The construction of the flux graph in Algorithm 1 introduces only a constant
cost by introducing data structures that are accessed only for book-keeping, thus
it is not subject to the overhead in the algorithm [10]. This is because, Algorithm 1
avoids labeling of the individual species, and this way permits the reactions to be
applied on the multiplicities of instances instead of their actual occurrences.

4 Flux Paths

The FluxPath tool consists of two modules. The first module computes the flux
configuration and saves this in a file. The flux configuration can be computed
with the algorithm above or equivalently with the one in [10]. The former com-
putes the flux configuration during simulation, whereas the latter first computes
the simulation trajectory, which is saved to a separate file, and the flux config-
uration is then computed by processing this file. The second module takes the
flux configuration as input and enumerates the pathways of information flow for
various starting nodes and lengths of paths. The paths are computed by search-
ing for paths in the flux configuration, which is an edge-colored weighted graph.
The weight and the color, that is, the species, of each edge is kept as they are
in the flux configuration during the search, and displayed in the output paths.

For an example consider the network depicted in Fig. 3 and its time series.
The system implemented by this CRN is initiated in equilibrium. However, ran-
dom fluctuations shift the system in a direction that favors either S2 or S5. In the
simulation in Fig. 3, the dynamics results in large and small shifts at many occa-
sions, which are visualized as fluctuations. After the time point around 550, the
S2 production outweighs, which is observed as a rapid increase in S2 numbers.

By using our tool, we have analyzed the underlying dynamics with respect
to the fluxes from the time point 550 to the end of the simulation; the flux graph
is depicted in Fig. 4. In this graph, we observe that S4 and S6 fluxes between
r4 and r5 have approximately the same weight, whereas S5 has a larger flux
towards r4 in comparison to S4 and S6 fluxes. Conversely, the fluxes between r1
and r2 weigh towards r2. Moreover, a comparison of the S5 flux from r3 to r4
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Fig. 3. A CRN of two antagonist systems; S2 and S5 compete to break the equilibrium.

Fig. 4. The flux graph of the CRN in Fig. 3 for the time interval from 550 to 1000.
The thickness of the arrows are proportional with strength of the fluxes.

and the S2 flux from r6 to r1 support a dynamics towards r2. Finally, the higher
turnover around r6 in comparison to the turnover around r3 supports the high
r2 activity that explains the shift of resources towards r2, and the consequent
excess in S2 observed in the time-series.

We have computed the paths of the flux configuration by using the FluxPath
tool, available for download at our website. Among many other paths, the out-
put flux paths depicted in Fig. 5 quantify the information flow between the S2
producing reaction r2 and the S5 producing reaction r5 after the time point 550.

Fig. 5. The flux paths of the CRN in Fig. 3 between the S2 producing reaction r2 and
the S5 producing reaction r5 for the time interval from 550 to 1000. The thickness of
the arrows are proportional with the strength of the fluxes.
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5 A Case Study: Gemcitabine

Gemcitabine (dFdC) is a prodrug, which is commonly used in the treatment
of patients with non-small-cell lung cancer, pancreatic cancer, bladder cancer,
and breast cancer. It is currently one of the leading therapeutic treatments for
these diseases [3,4,17]. Gemcitabine exerts its clinical effect by depleting the
deoxyribonucleotide pools, the building blocks of the DNA, and incorporating its
triphosphate metabolite (dFdC-TP) into DNA, thereby inhibiting DNA synthe-
sis. The incorporation of gemcitabine into DNA takes place in competition with
the natural nucleotide dCTP, and this competition is an efficacy determining
factor, which can be affected by various environmental and genetic conditions.

In [9], we have a given CRN model of gemcitabine biomolecular action,
depicted in Fig. 6, which quantifies the the mechanisms of competition between
the cascades that incorporate dCTP and dFdC-TP into the DNA. The simula-
tions with this model identified certain mechanisms of crosstalk between these
two pathways that affect the competition for incorporation. In agreement with
the clinical studies dedicated to singling out mechanisms of resistance, our model
associated ribonucleotide reductase (RR) and deoxycytidine kinase (dCK) activ-
ities to the efficacy of gemcitabine. Beside other mechanisms, such as transport
across the plasma membrane, the inhibitory and enzymatic roles of these proteins
determine efficacy depending on the availability of other metabolites.

Fig. 6. The biochemical machinery of gemcitabine. Gemcitabine (dFdC and dFdU)
is transported into cells by nucleoside transporters. It is then phosphorylated to its
active diphosphate (dFdC-DP and dFdU-DP) and triphosphate (dFdC-TP and dFdU-
TP) metabolites. Gemcitabine exerts its effect mainly by two mechanisms: while the
diphosphate metabolite dFdC-DP plays an inhibitory role for the synthesis of natural
nucleoside triphosphate dCTP, the triphosphate metabolite dFdC-TP competes with
the dCTP for incorporation into nascent DNA chain, thereby inhibiting DNA synthesis
and blocking cells in the early DNA synthesis phase. Image adopted from [9].
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The efficiency of the inhibitions due to the association of dCTP with dCK
and the association of dFdC-DP with RR play a key role in adjusting the efficacy.
In this respect, simulations with our model have predicted a continuum of non-
efficacy to high-efficacy regimes, where the levels of dFdC-TP and dCTP are
coupled in a complementary manner. The complementary action, in which either
dCTP or dFdC-TP make it to the DNA, is determined by the efficiency of the
inhibitory associations of dCTP with dCK and dFdC-DP with RR. The extremes
of this continuum are represented on one end, at the high efficacy regime, by low
dCTP/dCK affinity and high dFdC-DP/RR affinity. On the other end, there is
the low efficacy regime, given by high dCTP/dCK affinity and low dFdC-DP/RR
affinity. Representative time series for these regimes are depicted in Figure 7.

Fig. 7. Representative time series plots and the flux pathways of the two regimes at
the two ends of the efficacy spectrum of gemcitabine molecular action. The dynamics
on the left is the high efficacy regime given by low dCTP/dCK affinity and high dFdC-
DP/RR affinity, whereas the one on the right is the low efficacy regime given by high
dCTP/dCK affinity and low dFdC-DP/RR affinity.

We have performed flux analysis by using our tool on simulations in these
regimes at either ends of the spectrum to quantify the effect of the inhibitory
mechanisms on information flow from outside the cell into the DNA. Flux graphs
of the dominant pathways for the two cases are depicted in Fig. 7.

In the low dCTP/dCK affinity and high dFdC-DP/RR affinity regime, the
increase in association of dFdC-DP and RR depletes the RR pools, and as a
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result of this, RR becomes unavailable to serve as an enzyme for the cascade that
incorporates dCTP into the DNA. Concomitantly, the decrease in association of
dCTP and dCK increases the availability of dCK to serve as enzyme in the
cascade that incorporates dFdC-TP into the DNA. This results in a dominant
pathway of flux depicted on the left-hand-side of Fig. 7.

At the other end of the spectrum, in the high dCTP/dCK affinity and
low dFdC-DP/RR affinity regime, the complementary mechanism depletes dCK
pools due to increased association of dCTP and dCK. This hampers the pathway
that would otherwise incorporate the dFdC-TP into the DNA. Moreover, as a
consequence of the reduction in the association of dFdC-DP and RR, more RR
becomes available to serve as enzyme in the pathway that incorporates dCTP
into the DNA. The resulting dynamics delivers the pathway of flux depicted on
the right-hand-side of Fig. 7.

6 Discussion

We have presented a method for flux analysis in stochastic simulations of chem-
ical reaction networks that refines our previously published method [10]. In con-
trast to the method in [10], the algorithm here does not require the tracking
of individual species, and monitors the network state during simulation in the
form of species-type vectors as in the direct method [5]. The flux graphs are
then computed by instantiating and updating two arrays, the size of which are
bounded by the number of reactions and species-types of the CRN. Because the
algorithm is not subject to an overhead due to the number of species, it can
be applied to any CRN that can be simulated with the direct method, includ-
ing those with arbitrarily small species numbers. As with time series plots of
stochastic simulations, simulations with greater number of events provide more
convergent observations, whereas smaller number of events highlight the stochas-
tic nature of the systems due to random fluctuations. In this respect, the method
for stochastic flux analysis provides a point of view for individual simulations
that is complementary to their time series considerations. The computation of
the flux graphs is not restricted to steady or stationary states, and it can be
performed on arbitrary time intervals as demonstrated in our examples.

Our module for computing flux paths introduces a filter that is alternative
to the global view of the flux graphs, as flux paths do not have any branching.
In this respect, various filters such as cut-off thresholds or filtering out certain
species in flux graphs can be considered for observations on different aspects of
the CRNs. Other topics of future work include implementation of an integrated
modeling suit that collects features above and others, as well as investigations
with a more theoretical nature, in particular, the influence of different aspects of
reaction networks such as the relative contribution of structure and non-linearity
to the dynamical behavior of the system, and statistical queries that can provide
insights to CRN dynamics.
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Abstract. In this paper, we propose and evaluate Fickett-MM, a par-
allel strategy that combines the algorithms Fickett and Myers-Miller,
splitting a pairwise sequence comparison into multiple comparisons of
subsequences and calculating an appropriate Fickett band to each sub-
sequence comparison (block). With this approach, we potentially reduce
the number of cells calculated in the dynamic programming matrix when
compared to Fickett, which uses a unique band to the whole compari-
son. Our adjustable multi-block strategy was integrated to the stage 4 of
CUDAlign, a state-of-the-art parallel tool for optimal biological sequence
comparison. Fickett-MM was used to compare real DNA sequences whose
sizes ranged from 10KBP (Thousands of Base Pairs) to 47MBP (Millions
of Base Pairs), reaching a speedup of 59.60× in the 10MBP× 10MBP
comparison when compared to CUDAlign stage 4.

Keywords: Parallel biological sequence comparison · Multiple
adjustable bands

1 Introduction

Pairwise biological sequence comparison is a widely used operation in Bioinfor-
matics. It produces as output a score, which represents the similarity between
the sequences, and an alignment [1]. The optimal global alignment with linear
gap can be obtained with the Needleman-Wunsh (NW) algorithm [9], which is
based on dynamic programming (DP) and has O(mn) time and space complex-
ity, where m and n are the lengths of the sequences. Smith-Waterman (SW) [14]
proposed a DP-based algorithm that computes optimal local alignments with
linear gap with the same time and space complexity.

Gotoh [3] modified the NW algorithm, calculating optimal alignments with
the affine gap model. Since gaps tend to occur together in nature, the affine
gap model is more appropriate for realistic scenarios. Hirschberg [4] proposed a
variant of the NW algorithm that retrieves optimal alignments in linear space
(O(m + n)) with linear gap. This variant was further modified by Myers-Miller
(MM) [8] in order to use the affine gap model. Fickett [2] proposed an algorithm
that retrieves the optimal global alignment by calculating only a k-band of the
c© Springer International Publishing AG 2017
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DP matrix near the main diagonal, where k is the number of diagonals computed,
executing thus in O(kn) time and space. If the alignment does not fall into the
k-band, the band is enlarged and the DP matrix is iteratively re-computed until
the alignment can be retrieved.

The use of the NW and SW algorithms and its variants to compare long DNA
sequences or a protein sequence to a huge genomic database can lead to very
high execution times and, for this reason, parallel solutions are usually employed.
In the literature, there are many proposals that execute NW or SW variants in
parallel architectures such as clusters [7,12], FPGAs (Field Programmable Gate
Arrays) [13,16], GPUs (Graphics Processing Units) [6,10] and Intel Xeon Phis
[5,15], among others. CUDAlign 4.0 [10] is a state-of-the-art tool which computes
optimal local alignments between long DNA sequences in linear space using 5
stages. Stage 1 executes phase 1 of the Gotoh algorithm (score calculation) with
affine-gap and stages 2 to 5 execute phase 2 (traceback), with an adapted version
of the MM algorithm.

In this paper, we propose and evaluate Fickett-MM, a parallel strategy which
combines MM with a variant of Fickett’s [2]. Unlike the original Fickett algo-
rithm, we divided the alignment problem into several parts and computed a
different k-band for each part of the problem, which is adjusted to its alignment
characteristics. Fickett-MM was implemented in C++/pthreads and integrated
to the stage 4 of CUDAlign. The results obtained with real DNA sequences
whose sizes varied from 10 KBP to 47 MBP show that our strategy is able to
achieve a speedup of up to 59.60× in stage 4 of CUDAlign, when compared to
the original implementation. In the longest comparison, the execution time of
CUDAlign stage 4 was reduced from 2 min and 54 s to 30 s.

The remainder of this paper is organized as follows. Section 2 presents algo-
rithms for optimal biological sequence alignment and the CUDAlign tool is pre-
sented in Sect. 3. The design of Fickett-MM is explained in Sect. 4. In Sect. 5,
experimental results are discussed and Sect. 6 concludes the paper.

2 Biological Sequence Comparison

2.1 Basic Algorithms - NW and SW

The Needleman-Wunsh (NW) [9] algorithm is based on DP and retrieves the
optimal global alignment in O(mn) space and time, executing in two phases: (a)
calculate the DP matrix and (b) retrieve the alignment (traceback).

The first phase receives sequences S0 and S1, with lengths n and m, and
computes the DP matrix H as follows. The first row and column are filled with
Hi,0 = i ∗ g and H0,j = j ∗ g, where g is the gap penalty and i and j represent
the sizes of the prefixes of the sequences. The remaining cells are calculated with
the recurrence relation expressed by Eq. (1) [9].

Hi,j = max

⎧
⎪⎨

⎪⎩

Hi−1,j−1 + p(i, j)
Hi,j−1 − g

Hi−1,j − g

(1)
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* T A G T C

* 0 −2 −4 −6 −8 −10

T −2 1 −1 −3 −5 −7

A −4 −1 2 0 −2 −4

G −6 −3 0 3 1 −1

C −8 −5 −2 1 2 2

T A G T C

T A G − C

(a)

* T A G T C

* 0 0 0 0 0 0

T 0 1 0 0 1 0

A 0 0 2 0 0 0

G 0 0 0 3 1 0

C 0 0 0 1 2 2

T A G

T A G

(b)

Fig. 1. DP matrices and alignments for S0 and S1 (mi = −1, ma = +1, g = −2).
(a) NW matrix; (b) SW matrix.

In this equation, if DNA or RNA sequences are compared, p(i, j) is the match
punctuation (ma), if S0[i] = S1[j], or the mismatch punctuation (mi), otherwise.
If amino acid sequences are compared, p(i, j) is given by a given 20× 20 sub-
stitution matrix [1]. Each cell Hi,j keeps an indication of which cell (Hi−1,j−1),
(Hi,j−1) or (Hi−1,j) was used to produce its value (arrows in Fig. 1). The optimal
score is in cell Hm,n. In order to produce the alignment, phase 2 (traceback) is
executed from the bottom right cell in the DP matrix, following the indications
until the top left cell is attained. Figure 1(a) illustrates the DP matrix calculated
by NW. The optimal score is 2 and the optimal global alignment, obtained in
the traceback phase, is shown below the DP matrix.

When the biologists are interested in calculating how similar the fragments
of the sequences are, local alignment is usually applied and the Smith-Waterman
(SW) algorithm is used. The SW uses DP, has the same complexity of NW and
executes in two phases. Nevertheless, NW and SW are distinct in three ways.
First, differently from NW, the elements of the first row and column of the SW
matrix are set to zero. Second, the SW recurrence relation is slightly different
from the NW recurrence relation since no negative values are allowed in SW
(Eq. (2)) [14]. Finally, the cell that contains the optimal local score is the cell
Hi,j which has the highest value in H. In the traceback phase, SW starts from
cell Hi,j , following the arrows until a cell whose value is zero is found. Figure 1(b)
illustrates the DP matrix calculated by SW. In this figure, the optimal score is
3 and the optimal local alignment is shown below the DP matrix.

Hi,j = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Hi−1,j−1 + p(i, j)
Hi,j−1 − g

Hi−1,j − g

0

(2)

2.2 NW and SW Variants

To produce more biologically relevant results, Gotoh [3] proposed an algo-
rithm that implements the affine-gap model, with two different gap penalties:
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one to initiate a sequence of gaps (Gfirst) and another to extend it (Gext).
Gotoh calculates three DP matrices: H, E and F , where H keeps track of
matches/mismatches and E and F keep track of gaps in each sequence (Eqs. 3,
4 and 5).

Hi,j = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0
Ei,j

Fi,j

Hi−1,j−1 − p(i, j)

(3)

Ei,j = max

{
Ei,j−1 − Gext

Hi,j−1 − Gfirst

(4)

Fi,j = max

{
Fi−1,j − Gext

Hi−1,j − Gfirst

(5)

When long sequences are compared, linear space algorithms should be used.
One of the first linear space algorithms for sequence comparison is the one pro-
posed by Hirschberg [4]. First, the DP matrix is calculated from the beginning
to the middle row (i∗), storing only the last row calculated. After that, the DP
matrix is calculated from the end to i∗, over the reverses of the sequences. At
this point, there are two middle rows, one calculated with the original sequences
and another one calculated with the reverses of the sequences. Hirschberg proved
that the position where the addition of the corresponding values in these two
middle rows is maximum belongs to the optimal alignment [4]. This point is
called crosspoint and it divides the problem into two smaller subproblems, which
are processed recursively, until trivial solutions are found. Myers-Miller (MM)
[8] adapted Hirschberg to the Gotoh algorithm by using two additional vectors.
The first and second recursions of the MM algorithm are shown in Fig. 2.

Fig. 2. Myers-Miller (MM) algorithm. The black circles represent the crosspoints.

Fickett [2] proposed an algorithm that can be executed quickly if the
sequences compared are very similar. In this case, the alignment between the
sequences is confined in a small region near the main diagonal of the DP matrix.
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Thus, Fickett only calculates and stores a small set of diagonals near the main
diagonal (k-band), with time and space complexity O(kn). The k-band is esti-
mated with a heuristic measurement of the similarity of the sequences. The
optimal score is contained in cell Hn,m and it is used to do the traceback over
the band. If the k-band was underestimated, the alignment cannot be retrieved
(Fig. 3a). In this case, the algorithm enlarges iteratively the k-band and the DP
matrix is calculated for the new k-band, until the whole alignment is obtained
(Fig. 3b).

Fig. 3. Fickett’s algorithm. The gray area represents the k-band.

Although algorithms MM and Fickett have been proposed to the global align-
ment problem, they can be easily adapted to the local alignment case as fol-
lows. First, the DP matrix is processed with SW, giving as output the highest
score. Second, the matrix is recalculated from the position where the optimal
score occurs over the reverses of the sequences until the position where the opti-
mal local alignment begins is found. With these two positions, the problem is
transformed into a global alignment problem and MM or Fickett can be readily
applied.

3 Design of CUDAlign 4.0

CUDAlign [10] is a tool that obtains the optimal local alignment between two
long DNA sequences in GPU, using adapted versions of the Gotoh and MM
algorithms (Sect. 2.2). CUDAlign executes in 5 stages, as shown in Fig. 4.

(a) Stage 1 (b) Stage 2 (c) Stage 3 (d) Stage 4 (e) Stage 5

Fig. 4. General overview of CUDAlign
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Stage 1 corresponds to the first phase of the Gotoh algorithm and executes
in GPU in linear space, giving as output the highest score and its position in the
matrix. Stage 1 uses mainly two optimizations. The optimization cells delegation
processes the Gotoh matrices in multiple blocks, in a parallelogram wavefront
shape, allowing maximum parallelism most of the time. The optimization block
pruning, shown in gray in Fig. 4(a), does not compute DP cells which certainly
do not contribute to the optimal alignment. In order to accelerate the further
stages, some rows of the DP matrices (special rows) are stored. Stages 2, 3, 4
and 5 implement phase 2 (traceback).

In stage 2, a variant of MM is used in GPU to retrieve the midpoints that
cross the special rows (crosspoints), which belong to the optimal alignment.
Unlike MM, the special rows contain information about the maximum score and
can be used to accelerate the computation. So, it is sufficient to find the position
in the special row where the addition is equal to the (already known) maximum
score. With this observation, Stage 2 starts from the position in the DP matrix in
which the optimal score occurs and processes over the reverses of the sequences,
calculating the area column by column (instead of row by row, as in the original
MM) and finding midpoints until the beginning of the optimal local alignment
is found. In stage 3, the beginning and end of the optimal local alignment are
received as input. Moreover, the special columns saved to disk in stage 2 are
used. Stage 3 starts from the beginning of the alignment and uses the special
columns to retrieve more crosspoints in GPU.

Stage 4 executes in CPU using a modified MM algorithm between each suc-
cessive pair of crosspoints (partition) found on stage 3, with multiple threads.
The goal of stage 4 is to increase the number of crosspoints until the distance
between any successive pair of crosspoints is smaller than a given limit (e.g.
16 × 16). Figure 4(d) shows the additional crosspoints obtained in stage 4.

Figure 5 presents four ways to process a partition in stage 4, where the gray
areas represent the regions that do not need to be processed after the crosspoint
is found. The conventional MM algorithm processes both halves of the partition
entirely (Fig. 5(a)). CUDAlign 2.0 introduced an optimization called Orthogonal
Execution, which processes the top half of the partition over rows and the bottom
half of the partition over columns (Fig. 5(b)). CUDAlign 4.0 extended this idea
processing both halves of the partition over columns, alternating columns from

(a) Conventional (b) Orthogonal (c) Optimized (d) Ficket-MM

Fig. 5. DP submatrix computed in stage 4. Area in gray are not processed.
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each half (Fig. 5(c)). The Ficket-MM algorithm proposed in this paper (Sect. 4)
reduces further the area processed (Fig. 5(d)).

Stage 5 aligns in CPU each partition found in stage 4 using NW. Then it con-
catenates all the results, giving as output the full optimal alignment (Fig. 4(e)).
Stage 6 is an optional stage used only for visualization of the alignment.

4 Design of Fickett-MM

The main goal of Fickett-MM is to reduce the area computed in the alignment
retrieval. In order to achieve this goal, we combine the well-known algorithms
Fickett and MM (Sect. 2.2), creating the notion of adjustable bands. We assume
that, as in MM, the computation is divided into blocks and the scores at the
top left and bottom right corners of a block are known. With this information,
we are able to define computation bands of different sizes, one for each block, in
which the optimal alignment is guaranteed to be found.

(a) Fickett’s band (b) Fickett-MM adjustable bands

Fig. 6. Bands in the Fickett algorithm and in the Fickett-MM algorithm

In Fig. 6, we illustrate the main difference between Fickett-MM and the orig-
inal Fickett algorithm. In Fig. 6(a), Fickett’s band (gray area) must encompass
the whole alignment (dashed line), which has a considerable number of gaps
in its beginning. For this reason, the size of the band is big, even though the
alignment does not have many gaps in its end. On the other hand, Fickett-MM
(Fig. 6(b)) defines three different bands (gray area), one for each block.

The efficiency of Fickett-MM is highly dependent on a good estimation of size
of the computation bands. The scores at the upper left corner (scorel) and at
the bottom-right corner (scorer) are known and a block is the rectangle defined
by these two points.

The size of the band for each block is computed with Eq. 6 and it depends on
four terms: PM , scored, DPM and ming, which are explained in the following
paragraphs.

band =
⌈
PM − scored

DPM

⌉

+ ming (6)

The perfect match term (PM) computes the maximum score of the block
in the best case, i.e., all the corresponding characters of the subsequences are
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Fig. 7. Elements used in the perfect match (PM) computation.

the same (perfect match). Since the lengths of the subsequences may not be the
same (Fig. 7), the length of the smaller subsequence is multiplied by the match
punctuation and subtracted by the difference on the lengths of the subsequences
multiplied by the gap penalty. In Eq. 7, ma is the punctuation for matches and
gap is the punctuation for gap extension.

PM = min(mb, nb) ∗ ma − (max(mb, nb) − min(mb, nb)) ∗ |gap| (7)

The difference between scores (scored) in Eq. 6 is simply the difference
between the score at the bottom right corner and the score at the upper left
corner: scored = scorer − scorel.

The deviation from the perfect match (DPM) term takes into account the
fact that each time a gap is introduced, we need at least another gap to return
to the perfect match case, and, since two gaps are introduced, one punctuation
for match (ma) will not be counted. Equation 8 presents this computation.

DPM = |2 ∗ gap| + ma (8)

Finally, the term ming calculates the difference between the sizes of the
subsequences (mb and nb) since it indicates the minimum number of gaps needed
for the band to contain the optimal alignment (Eq. 9).

ming = max(mb, nb) − min(mb, nb) (9)

The size of the band is computed by considering the worst case, i.e., gaps are
introduced instead of mismatches. In addition, since we do not know in which
sequence gaps will be introduced, we apply the same value of band for both sides
of the perfect match case. With this, we guarantee that the band encompasses
the optimal alignment even though in some cases it will be larger than necessary.
In order to illustrate the computation of the size of the band, consider the values
in Fig. 7 and assume that ma = +1, gap = −2. In this case, PM = 7, scored = 3,
DPM = 5 and ming = 1, giving 2 as the size of the band in each side of the
perfect match case (Eq. 6).

Algorithm 1 presents the pseudocode of Fickett-MM. It receives as input the
subsequences S′

0 and S′
1 as well as the scores in the upper left and bottom right
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Algorithm 1. Fickett-MM
Require: Subsequences S′

0 e S′
1, Scores scorel and scorer

Ensure: crosspoint
1: /*Calculates the size of the band*/
2: scored ← scorer − scorel
3: k ← calculate band(S′

0, S
′
1, scored)

4: seq1 length ← size(S′
0)

5: j ← 0
6: loop
7: /*Calculates the extremities of the columns inside the band*/
8: upper left ← Calculate FickettMM upper left(j, k)
9: lower left ← Calculate FickettMM lower left(j, k)
10: upper right ← Calculate FickettMM upper right(seq1 length − j, k)
11: lower right ← Calculate FickettMM lower right(seq1 length − j, k)
12: /*Calculates the recurrence equation inside the band*/
13: crosspoint1[j] ← Compute FickettMM(upper left, lower left, S′

0, S
′
1)

14: crosspoint2[j] ← Compute FickettMM(upper right, lower right, S′
0, S

′
1)

15: if j > seq1 length/2 then
16: crosspoint ← crosspoint1[j] + crosspoint2[seq1 length − j]
17: if check(crosspoint, scored) = TRUE then
18: return crosspoint
19: end if
20: crosspoint ← crosspoint2[j] + crosspoint1[seq1 length − j]
21: if check(crosspoint, scored) = TRUE then
22: return crosspoint
23: end if
24: end if
25: j + +
26: end loop

cells (scorel and scorer). The computation of the size of the band is done in
lines 2 and 3 and its value is stored in k. Then, a loop is executed from lines 6
to 26 for every column j as follows. In lines 8 to 11, the algorithm calculates the
extremeties of column j (forward direction) and column seq1 length−j (reverse
direction) up to the middle row. Then, the recurrence equation is calculated
for both columns j and seq1 length − j, as illustrated in Fig. 5(d). The values
of the cells in the middle row are stored in vectors crosspoint1 (line 13) and
crosspoint2 (line 14). When the middle column is attained (line 15), crosspoints
1 and 2 are added accordingly (lines 16 and 20) and the algorithm checks if the
results match scored (i.e. scorer − scorel). If one of these values match (lines 17
and 21), this crosspoint is returned (lines 20 and 24).

5 Experimental Results

Fickett-MM was implemented in C/C++/pthreads and integrated to the stage
4 of CUDAlign 4.0. In our tests, we used a desktop with a CPU Intel Core i7
3770 (4 hardware cores), 8 GB RAM, 1 TB disk and a GPU NVidia GTX 680
(1536 cores and 2 GB RAM).

The following parameters were used in the tests: ma (match) = +1, mi (mis-
match) = −3, Gfirst (First gap) = −5, Gext (Gap extension) = −2, number of
threads = 8 and final size of block = 24 × 24.

The experiments used real DNA sequences, retrieved from the NCBI
(National Center for Biotechnology Information) at www.ncbi.nlm.nih.gov.
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Table 1. Sequences used in the tests.

Comparison size Sequence S0 Sequence S1

Accession Name Accession Name

10K × 10K AF133821.1 HIV-1 isolate MB2059 AY352275.1 HIV-1 isolate SF33

57K × 57K AF494279.1 C. globosum NC 001715.1 A. macrogynus

162K × 172K NC 000898.1 H. herpesvirus 6B NC 007605.1 H. herpesvirus 4

543K × 536K NC 003064.2 A. fabrum C58 NC 000914.1 Rhizobium sp. NGR234

1M × 1M CP000051.1 C. trachomatis AE002160.2 C. muridarum

3M × 3M BA000035.2 C. efficiens BX927147.1 C. glutamicum

5M × 5M AE016879.1 B. anthracis str. Ames AE017225.1 B. anthracis str. Sterne

7M × 5M NC 005027.1 R. baltica SH AE016879.1 B. anthracis str. Ames

10M × 10M NC 017186.1 A. mediterranei S699 NC 014318.1 A. mediterranei U32

23M × 25M NT 033779.4 D. melanogaster chr. 2L NT 037436.3 D. melanogaster chr. 3L

47M × 32M NC 000021.7 H. sapiens chr. 21 BA000046.3 P. troglodytes chr. 22

Table 2. Execution time, speedup and characteristics of the alignment

Comparison Fickett-MM

(ms)

CUDAlign stage

4 (ms)

Speedup Local score Matches % Mismatches % Gaps %

10K × 10K 98.08 179.62 1.83× 5,091 89.12 9.64 1.24

57K × 57K 0.76 0.80 1.03× 80 92.50 5.00 2.50

162K × 172K 0.83 0.82 0.99× 18 100.00 0.00 0.00

543K × 536K 1.96 2.07 1.06× 48 88.04 11.96 0.00

1M × 1M 1, 403.09 2, 555.49 1.81× 88,535 79.76 17.12 3.12

3M × 3M 109.69 146.61 1.34× 4,226 83.05 10.46 6.49

5M × 5M 510.59 26, 892.05 52.67× 5,220,960 99.95 0.00 0.05

7M × 5M 3.49 4.84 1.39× 172 84.07 12.74 3.19

10M × 10M 898.65 53, 563.24 59.60× 10,235,188 99.99 0.01 0.00

23M × 25M 10.15 182.03 17.93× 9,063 99.88 0.05 0.07

47M × 32M 30, 425.82 174, 147.98 5.72× 27,206,434 94.38 1.54 4.08

Table 1 shows the accession number, the name and approximate size of each
sequence.

Table 2 shows the execution times and speedups comparing Fickett-MM with
CUDAlign stage 4 (optimized version). It can be seen in this table that, as
expected, the best speedups are obtained when the sequences have high similar-
ity, i.e., the local score is close to the size of the smallest sequence (Table 1). For
the 5M × 5M and 10M × 10M comparisons, Fickett-MM executed more than 50
times faster than CUDAlign stage 4.

The comparison 23M × 25M obtained a high speedup (17.93×) even though
the alignment is not so big. This suggests that, besides the similarity between
the sequences, the shape of the alignment has a high influence over the speedups,
as shown in the columns 5 to 8 in Table 2. It can be seen that alignments which
have a high percentage of matches (>99%) have impressive speedups, with the
exception of very small alignments (e.g. 162k× 172k comparison).
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Table 3. Number of blocks vs. size of the band

Comparison Band size (%) Number of blocks

0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100

10k× 10k 108 241 116 70 18 10 4 4 2 1 574

57k× 57k 0 2 1 0 0 0 0 0 0 0 3

162k× 172k 0 0 0 0 0 0 0 0 0 0 0

543k× 536k 0 1 2 0 0 0 0 0 0 0 3

1M× 1M 1056 3538 6469 9940 3615 2677 841 357 241 913 29647

3M× 3M 439 179 74 69 60 59 38 58 65 164 1205

5M× 5M 323193 119 28 25 17 8 8 9 9 52 323468

7M× 5M 0 5 14 4 4 2 1 1 0 0 33

10M× 10M 642225 76 6 7 3 6 1 0 3 0 642327

23M× 25M 507 3 1 0 0 0 0 0 0 0 511

47M× 32M 1788870 151556 25926 16259 6943 5670 4212 2724 2734 25079 2029973

A detailed analysis of the alignment’s shapes is presented in Table 3 and
Fig. 8, showing the number of blocks that were processed with a given band
size. The band sizes are given in percentage, calculated as the absolute size of
the band divided by the size of the subsequence. For instance, if the size of the
subsequence is 100 nucleotides and the size of the band is 12, the percentage is
12% and this block is counted in column “10–20%”.

It can be seen that the comparisons in which Fickett-MM achieved impres-
sive speedups (5M × 5M, 10M × 10M and 23M× 25M) only processed less than
10% of their blocks. The comparison 47M× 32M achieved a very good speedup
(5.72×) but not as impressive as the three comparisons previously cited because
of some blocks in which the size of the band is big. The 543K × 536K comparison

Fig. 8. Percentage of block computation for 6 comparisons
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is a very interesting case in which the alignment is so small (size = 18) that it
does not fill one entire block.

6 Conclusion

In this paper, we proposed and evaluated Fickett-MM, a strategy that
retrieves the optimal alignment between two biological sequences using multiple
adjustable Fickett bands in linear space. In order to compute the size of each
band, we proposed a formula that uses the best score computed so far in special
rows/columns, guaranteeing that the optimal alignment will be encompassed by
the band. The computation of the adjustable bands was integrated to CUDAlign
stage 4, a modified and parallel version of Myers-Miller, which retrieves optimal
alignments in linear space.

The results obtained with sequence comparisons whose sizes ranged from
10K × 10K to 47M × 32M show that Fickett-MM is able to attain impressive
speedups when the alignment is huge and the sequences are very similar. In the
10M × 10M comparison, the execution time was reduced from 53.5 s to 0.89 s.

As future work, we intend to port Fickett-MM to GPUs (CUDA and
OpenCL). Also, we intend to adapt Fickett-MM to retrieve global and semi-
global alignments, integrating it to the MASA tool [11].
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