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Preface

The chapters in this volume of the Springer Proceedings in Mathematics and
Statistics entitled “Actuarial Sciences and Quantitative Finance: ICASQF2016,
Cartagena, Colombia, June 2016” are from selected papers presented at the Second
International Congress on Actuarial Science and Quantitative Finance, which took
place in Cartagena from June 15 to 18, 2016. The conference was organized
jointly by the Universidad Nacional de Colombia, Universidad de Cartagena,
Universidad del Rosario, Universidad Externado de Colombia, Universidad de los
Andes, ENSIIE/Université Evry Val d’Essonne, and ADDACTIS Latina. It also
received support from Universidad Industrial de Santander, Ambassade de France en
Colombie, and ICETEX. The conference took place in the Claustro de San Agustin
and Casa Museo Arte y Cultura la Presentacion in the walled city of Cartagena.

This congress was the second edition of a series of events to be organized every
other year, with the objective of becoming a reference in actuarial science and
quantitative finance in Colombia, the Andean region (Peru, Colombia, Venezuela,
Ecuador, and Bolivia), and the Caribbean. The congress had participation from
researchers, students, and practitioners from different parts of the world. This
second edition helped enhance the relations between the academic and industrial
actuarial and financial communities in North America, Europe, and other regions of
the world.

The emphasis of the event was equally distributed between actuarial sciences and
quantitative finance and covered a variety of topics such as Statistical Techniques in
Finance and Actuarial Science, Portfolio Management, Derivative Valuation, Risk
Theory, Life and Pension Insurance Mathematics, Non-life Insurance Mathematics,
and Economics of Insurance.

The event consisted of plenary sessions with invited speakers in the areas of
actuarial science and quantitative finance, oral sessions of contributed talks on
these topics, as well as short courses taught by some of the invited speakers and
poster sessions. The list of invited speakers reflects the broad variety of topics:
Nicole El Karoui (Self-Exciting Process in Finance and Insurance for Credit
Risk and Longevity Risk Modeling in Heterogeneous Portfolios), Julien Guyon



vi Preface

(Path-Dependent Volatility), Christian Hipp (Stochastic Control for Insurance: New
Problems and Methods), Jean Jacod (Estimation of Volatility in Presence of High
Activity Jumps and Noise), Glenn Meyers (Aggressive Backtesting of Stochastic
Loss Reserve Models—Where It Leads Us), Michael Sherris (To Borrow or Insure?
Long-Term Care Costs and the Impact of Housing), Qihe Tang (Mitigating Extreme
Risks Through Securitization), and Fernando Zapatero (Riding the Bubble with
Convex Incentives). Topics for short courses included the following: The New
Post-crisis Landscape of Derivatives and Fixed Income Activity Under Regulatory
Constraints on Credit Risk, Liquidity Risk, and Counterparty Risk (Nicole El
Karoui); Stochastic Control for Insurers: What Can We Learn from Finance, and
What Are the Differences? (Christian Hipp); High-Frequency Statistics in Finance
(Jean Jacod); and Using Bayesian MCMC Models for Stochastic Loss Reserving
(Glenn Meyers).

Additionally, researchers and students presented oral contributions and posters.
There were 30 contributed oral presentations, 26 invited oral contributions, and ten
poster presentations. We received 85 contributions and 34 invited contributions. The
selection process was the result of careful deliberations, and 54 oral contributed
presentations of the 85 submissions and 20 posters were accepted. Authors came
from different corners of the world and countries of origin including Australia,
Brazil, Canada, Chile, Colombia, Egypt, France, Germany, Italy, Jamaica, Mexico,
Spain, Switzerland, the United Kindom, Uruguay, and the United States. The
number of contributions along with the total number of 279 registered participants
shows the steady growth of the congress and its consolidation as the main event of
the area in the Andean region and the Caribbean.

The congress put the emphasis on enhancing relations between industry and
academia providing a day to address problems arising from the financial and
insurance industries. As a matter of fact, topics and speakers themselves came from
these sectors. The congress provided practitioners a platform to present and discuss
with academics and students different approaches in addressing problems arising
from the industries in the region.

The current proceedings are based on invitations to selected oral contributions
and selected contributions presented by the invited speakers. All contributions were
subject to an additional review process. The spectrum of the eight papers published
here reflects the diverse nature of the presentations: there are five papers on actuarial
sciences and three papers on quantitative finance.

Special thanks go to the members of the organizing committee, which included
Javier Aparicio (Colombia, ADDACTIS Latina), Prof. Sergio Andrés Cabrales
(Colombia, Universidad de los Andes), Prof. Carlos Alberto Castro (Colombia,
Universidad del Rosario), Prof. Margaret Johanna Garzén (Colombia, Universidad
Nacional de Colombia, Bogotd), Prof. Sandra Gutiérrez (Colombia, Universidad
de Cartagena), Prof. Jaime A. Londofio (Colombia, Universidad Nacional de
Colombia, Bogotd), Prof. Sergio Pulido (France, ENSIE/Université Evry Val
d’Essonne), Prof. Javier Sandoval (Colombia, Universidad Externado de Colombia),
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and Prof. Arunachalam Viswanathan (Colombia, Universidad Nacional de Colom-
bia, Bogotd). Finally, we would like to thank all the conference participants who
made this event a great success.

Manizales, Colombia Jaime A. Londoiio
Montréal, QC, Canada José Garrido
Evry Cedex, France Monique Jeanblanc

May 2017
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Part I
Actuarial Sciences



Robust Paradigm Applied to Parameter
Reduction in Actuarial Triangle Models

Gary Venter

Abstract The recognition that models are approximations used to illuminate
features of more complex processes brings a challenge to standard statistical testing,
which assumes the data is generated from the model. Out-of-sample tests are
a response. In my view this is a fundamental change in statistics that renders
both classical and Bayesian approaches outmoded, and I am calling it the “robust
paradigm” to signify this change. In this context, models need to be robust to
samples that are never fully representative of the process. Actuarial models of
loss development and mortality triangles are often over-parameterized, and formal
parameter-reduction methods are applied to them here within the context of the
robust paradigm.

Keywords Loss reserving * Mortality * Bayesian shrinkage « MCMC

1 Introduction

Section 2 discusses model testing under the robust paradigm, including out-of-
sample tests and counting the effective number of parameters. Section 3 introduces
parameter-reduction methods including Bayesian versions. Section 4 reviews actu-
arial triangle modeling based on discrete parameters by row, column, etc., and
how parameter-reduction can be used for them. Section 5 gives a mortality model
example, while Sect. 6 illustrates examples in loss reserving. Section 7 concludes.

2 Model Testing Within the Robust Paradigm

Both Bayesian and classical statistics typically assume that the data being used to
estimate a model has been generated by the process that the model specifies. In
many, perhaps most, financial models this is not the case. The data is known to come
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4 G. Venter

from a more complex process and the model is a hopefully useful but simplified
representation of that process. Goodness-of-fit measures that assume that the data
has been generated from the sample are often not so reliable in this situation, and
out-of-sample tests of some sort or another are preferred. These can help address
how well the model might work on data that was generated from a different aspect of
the process. I have coined the term “robust paradigm” to refer to statistical methods
useful when the data does not come from the model.

Much statistics today is based on pragmatic approaches that keep the utility of
the model for its intended application in mind, and regularly deviate from both pure
Bayesian and pure classical paradigms. That in itself does not mean that they are
dealing with data that does not come from the models. In fact, even out-of-sample
testing may be done purely to address issues of sample bias in the parameters, even
assuming that the data did come from the model. But simplified models for complex
processes are common and pragmatic approaches are used to test them. This is what
is included in the robust paradigm.

When models are simplified descriptions of more complex processes, you can
never be confident that new data from the same process will be consistent with
the model. In fact with financial data, it is not unusual for new data to show
somewhat different patterns from those seen previously. However, if the model is
robust to a degree of data change, it may still work fairly well in this context. More
parsimonious models often hold up better when data is changing like that. Out-of-
sample testing methods are used to test for such robustness.

A typical ad hoc approach is the rotating %ths method: the data is divided, perhaps
randomly, into five subsets, and the model is fit to every group of four of these five.
Then the fits are tested on the omitted populations, for example by computing the
negative loglikelihood (NLL). Competing models can be compared on how well
they do on the omitted values.

A well-regarded out-of-sample test is leave one out, or “loo.” This fits the model
many times, leaving out one data point at a time. Then the fit is tested at each omitted
point to compare alternative models. The drawback is in doing so many fits for each
model.

In Bayesian estimation, particularly in Markov Chain Monte Carlo (MCMC),
there is a shortcut to loo. The estimation produces many sample parameter sets from
the posterior distribution of the parameters. By giving more weight to the parameter
sets that fit poorly at a given data observation, an approximation to the parameters
that would be obtained without that observation can be made. This idea is not new,
but such approximations have been unstable.

A recent advance, called Pareto smoothed importance sampling, appears to have
largely solved the instability problem. A package to do this, called 1oo, is available
with the Stan package for MCMC. It can be used with MCMC estimation not
done in Stan as well. It allows comparison of the NLL of the omitted points
across models. This modestly increases the estimation time, but is a substantial
improvement over multiple re-estimation. Having such a tool available makes loo
likely to become a standard out-of-sample fitting test.
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This is a direct method to test models for too many parameters. Over-fitted
models will not perform well out of sample. If the parameters do better out of
sample, they are worth it. Classical methods for adjusting for over-parameterization,
like penalized likelihood, are more artificial by comparison, and never have become
completely standardized. In classical nonlinear models, counting the effective
number of parameters is also a bit complex.

2.1 Counting Parameters

In nonlinear models it is not always apparent how many degrees of freedom are
being used up by the parameter estimation. One degree of freedom per parameter is
not always realistic, as the form of the model may constrict the ability of parameters
to pull the fitted values towards the actual values.

A method that seems to work well within this context is the generalized degrees
of freedom method of Ye (1998). Key to this is the derivative of a fitted point from
a model with respect to the actual point. That is the degree to which the fitted point
will change in response to a change in the actual point. Unfortunately this usually
has to be estimated numerically for each data point.

The generalized degrees of freedom of a model fit to a data set is then the sum
across all the data points of the derivatives of the fitted points with respect to the
actual points, done one at a time. In a linear model this is just the number of
parameters. It seems to be a reasonable representation of the degrees of freedom
used up by a model fit, and so can be used like the number of parameters is used in
linear models to adjust goodness-of-fit measures, like NLL. A method of counting
the effective number of parameters is also built into the 100 package.

3 Introduction to Parameter Reduction Methodology

Two currently popular parameter reduction methodologies are:

¢ Linear mixed models (LMM), or in the GLM environment GLMM
» Lasso—Least Absolute Shrinkage and Selection Operator

3.1 Linear Mixed Models

LMM starts by dividing the explanatory variables from a regression model into two
types: fixed effects and random effects. The parameters of the random effects are to
be shrunk towards zero, based perhaps on there being some question about whether
or not these parameters should be taken at face value. See for example Lindstrom
and Bates (1990) for a discussion in a more typical statistical context.
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Suppose you are doing a regression to estimate the contribution of various factors
to accident frequency of driver/vehicle combinations. You might make color of
car a random effect, thinking that probably most colors would not affect accident
frequency, but a few might, and even for those you would want the evidence to be
fairly strong. Then all the parameters for the car color random effects would be
shrunk towards or to zero, in line with this skepticism but with an openness to being
convinced.

This could be looked at as an analysis of the residuals. Suppose you have done the
regression without car color but suspect some colors might be important. You could
divide the residuals into groups by car color. Many of these groups of residuals
might average to zero, but a few could have positive or negative mean—some of
those by chance, however. In LMM you give color i parameter b; and specify that
b; is normal with mean zero and variance d;o2, where o2 is the regression variance
and d; is a variance parameter for color i. LMM packages like in SAS, Matlab, R,
etc. generally allow a wide choice of covariance matrices for these variances, but
we will mainly describe the base case, where all of them are independent.

The d;’s are also parameters to be estimated. A color with consistently high
residuals is believably a real effect, and it would be estimated with a fairly high
d; to allow b; to be away from zero. The b;’s are usually assumed to be independent
of the residuals. LMM simultaneously maximizes the probability of the b;’s, P(b),
and the conditional probability of the observations given b, P(y|b), by maximizing
the joint likelihood P(y, b) = P(y|b)P(b).

For a b; parameter to get further from zero, it has to improve the likelihood of the
data by more than it hurts the density of the b’s. This is more likely if the previous
residuals for that color are grouped more tightly around their mean, in the color
example. Then the parameter would help the fit for all those observations. That
clustering is not what is measured by d;, however. It instead determines how much
b; could differ from zero, and its estimate increases to accommodate a useful b;.

3.2 Lasso

Lasso is a regression approach that constrains the sum of the absolute values of the
parameters. It is related to ridge regression, which limits the sum of squares of the
parameters. In practice with a lot of variables included, Lasso actually shrinks a
fair number of the parameters to zero, eliminating them from the model, whereas
ridge regression ends up with many small parameters near zero. Lasso is preferred
by most modelers for this reason, and is also preferable to stepwise regression.

In its standard application, all the parameters except the constant term are shrunk,
although there is no reason some parameters could not be treated like fixed effects
and not shrunk. See Osbourne et al. (2000) for an introduction. Also Pereira et al.
(2016) gives examples more general than standard regression.

To make the competition among the independent variables fair, all of them are
standardized to have mean zero and variance one by subtracting a constant and
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dividing by a constant. The additive transform gets built into the constant term of
the regression, and the multiplicative one scales the parameter of that variable.

Then what is minimized is the NLL plus a selected factor times the sum of the
absolute values of the parameters. The selection of the factor can be subjective—
several are tried with the resulting models evaluated by expert judgment. Using loo
to see how well the models with different factors do on the omitted points is more
highly regarded, but in a classical setting requires a lot of re-estimation, depending
on the sample size.

3.3 Problem with LMM: All Those Variances

Counting parameters is an issue with classical Lasso and LMM. For both, fewer
degrees of freedom are used than the apparent number of parameters, due to the
constraints. For LMM there is a partial shortcut to counting parameters.

In a regression, the so-called hat matrix is an N x N matrix, where N is the sample
size, which can be calculated from the matrix of independent variables—the design
matrix. Multiplying the hat matrix on the right by the vector of observations gives
the vector of fitted values. The diagonal of the hat matrix thus gives the response of
a fitted value to its observation, and in fact is the derivative of the fitted value with
respect to the actual value.

The sum of the diagonal of the hat matrix is thus the generalized degrees
of freedom. This holds in LMM as well, but only conditional on the estimated
variances. Thus the degrees of freedom used up in estimating the variances do not
show up in the hat matrix.

Different LMM estimation platforms can give slightly different parameters—but
usually with fits of comparable quality. One triangle model we fit, similar to those
discussed below, nominally had 70 parameters, not including the variances. We fit it
with two methods. Using the diagonal of the hat matrix indicated that 17.3 degrees
of freedom were used by one fitting method, and 19.9 by the other. The second
one had a slightly lower NLL, and the penalized likelihoods, by any methods, were
comparable.

Since these parameter counts are conditional on the estimated variances d;, we
then did a grind-out generalized-degrees-of-freedom calculation by re-estimating
the model changing each observation slightly, one at a time. That got the variances
into the parameter counts. The same two methods as before yielded 45.1 and 50.7
degrees of freedom used, respectively. That means that 27.8 and 30.8 degrees of
freedom, respectively, were used up in estimating the variances.

In essence, the fitted values responded much more to changes in the actual values
than you would have thought from the hat matrix. The parameter reduction from the
apparent 70 original parameters was much less than it at-first appeared to be. For
the models we were fitting we concluded that base LMM with variances estimated
for each parameter was not as effective at parameter reduction as we had thought.
This lends more support to using Lasso, or perhaps LMM with fewer, perhaps just
a single, variance to estimate. That is, you could assume the d; are all the same.
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3.4 Bayesian Parameter Reduction

A way to shrink parameters towards zero in Bayesian models is to use shrinkage
priors. These are priors with mean zero and fairly low variances, so tend to prioritize
smaller values of the parameters. An example is the Laplace, or double exponential,
distribution, which is exponential in x for x > 0 and in —x for x < 0:

x>0:f(x)=e"/2b (1)
x<0:f(x)=e""/2b )
This has heavier tails and more weight near zero than the normal has. Even more
so is the horseshoe distribution, which is a normal with o> mixed by a Cauchy.

Typically shrinkage priors are used in MCMC estimation (Fig. 1). There is a lot
of flexibility available in the choice of the variances. They can all be the same,
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which is Lasso-like, or vary for different parameters. Some or all of the parameters
can have shrinkage priors. Thus the distinctions between LMM and Lasso are not
so meaningful in MCMC. There is a wide variety of approaches that can be used.

One fairly viable approach is to use the same variance in the shrinkage priors for
all the parameters, and then use loo to see approximately what this variance should
be to get the best out-of-sample performance.

3.5 Non-informative Priors

For parameters you do not want to shrink, if you have information or beliefs about a
reasonable range for the parameter, that can be coded into the prior distribution.
A convenient alternative is non-informative priors. For instance in Stan, for a
parameter that could be positive or negative, if a prior is not specified the prior
is assumed to be uniform on the real line.

This prior density is infinitesimal everywhere and in fact is just specified as being
proportional to 1. In Stan it is typical to omit constants of proportionality, even if
they are not real numbers. This prior, however, viewed as a prior belief, is patently
absurd. Most of the probability would lay outside of any finite interval, so it is like
saying the parameter probably has a very high absolute value, but we don’t know if
it is positive or negative.

Nonetheless using it as a prior tends to work out well. Posterior variances from
it are often quite similar to what classical statistics would give for estimation
variances. Thus the results seem familiar and reasonable. In essence, the prior ceases
to be an opinion about the parameter, and instead is chosen because it tends to work
out well. This is further evidence that we are no longer in the realm of either classical
or Bayesian statistics—it is a pragmatic focus more than a theoretical one.

Things get more awkward when a parameter has to be positive. Assuming
uniformity on the positive reals is problematic. While the uniform on the real line
has infinite pulls both up and down, on the positive reals the infinite side is only an
upward pull. There is thus a tendency for this prior to give a higher estimate than
classical statistics would give.

An alternative is to use a prior proportional to 1/x. This diverges at zero and
infinity, so pulls infinitely in both directions. It tends to produce estimates similar
to classical unbiased estimates. It is equivalent to giving the log of the parameter a
uniform distribution on the reals, which is the easiest way to set it up in Stan.

People who do not like non-informative priors sometimes use very diffuse proper
priors. One example can be written Gamma(0.001, 0.001). It has mean one and
standard deviation about 31%. It is, however, a quite strange prior. Even though the
mean is one, the median is in the vicinity of 1073%. The 99th percentile is about
0.025, while the 99.9th is 264 and the 99.99th is 1502. Thus it strongly favors very
low values, with occasional very high values showing up. It usually works out alright
in the end but can cause difficulty in the estimation along the way.
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4 Actuarial Triangle Models with Time Variables

Data for the evolution of insurance liabilities and for mortality can be arranged in
two-dimensional arrays, for example with rows for year of origin, and columns for
lag to extinction. Actually the time periods are not always years—they could be
quarters, months, or even days—but here we will call them years for simplicity. For
liabilities, year of origin is often the year the event happened, and lag is the time it
takes to close the case and make final payments. For mortality, year of origin is year
of birth and lag is the number of years lived. For mortality, the rows are sometimes
taken as the calendar years that the extinctions occur in, which is just a different
arrangement of the same data—the diagonals are rotated to become the rows, and
vice versa.

A common arrangement within the array has the data all above the SW—
NE diagonal, giving the term triangle, but various shapes are possible. Mortality
triangles for a population usually contain the ratio of deaths in the year to the number
alive at the start of the year. Liability triangle cells could contain incremental or
cumulative claims payments or claims-department estimates of eventual payments.
Here we will assume they are incremental paid losses and are positive or blank.

A popular class of models the log of each entry as the sum of a row effect and a
column effect—so there is a dummy variable and a parameter for each row and each
column. It is also not unusual to have a parameter for each calendar year, which is
the year of origin plus the lag (assuming beginning at lag zero). The calendar-year
effects are trends—perhaps inflation for liabilities and increased longevity over time
for mortality. It is fairly common in mortality modeling to allow for different ages
to feel the longevity improvement more strongly, so an additional parameter might
be added for each age as a multiplier to the trend to reflect how strongly that age
benefits from the trend.

In doing this modeling actuaries have found that trends in longevity sometimes
affect different ages differently, so a single pattern of age-responsiveness does not
always hold. To account for this, models now allow a few calendar-year trends, each
with its own impact by age. Some models also allow for interaction of age with
the year-of-birth cohort parameters, but this effect does not seem to be consistent
across cohorts and is less common in recent models. Even in the liability models
there could be changes in the lag effects over time, which could be modeled by
interactions of lag with year of origin or calendar year.

Letting p[n] be the year-of-origin parameter for year n, g[u] be the age parameter
for age u, r refer to a calendar year trend, and s be a set of age weights, the model
for the logged value in the n, u cell can be expressed as:

Yln.u] = pln] + qlu] + Y riln + ulsilu] + £ 3)

1

The sum is over the various trends. With a single trend and no age interaction with
trend, this would be a typical liability emergence model. There it is not unusual to
even leave off the trend entirely—for instance if the trend is constant it will project
onto the other two directions.
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4.1 Parameter Reduction

The model as stated so far is over-parameterized. One approach to parameter
reduction is to require that nearby years or lags have similar parameters. Life
insurance actuaries have tried using cubic splines for this. General insurance
actuaries have independently been using linear splines. That is, differences between
adjacent parameters (i.e., slopes) are constant for a while, with occasional changes
in slope. The slope changes are thus the second differences across the parameters.

As the second differences change only occasionally, they are good candidates
for parameter-reduction methods. That is the approach explored here. The slope
changes are the parameters modeled with specified priors, and these accumulate to
the slopes and those to levels, which are the p, g, r, s in the model equation. This can
apply to long or short trend periods so can be used for both the life and the general
insurance models.

The fitting was done with the Stan package, taking double exponential priors
for the slope changes. A single variance was specified for all these priors, which in
the end was determined by loo in the mortality example. Judgment was used for this
in the liability example, but that is not a finished model.

S Mortality Model Example

US mortality data before 1970 is considered of poor quality, so we use mortality
rates in years 1970-2013. Cohorts 1890-1989 were modeled for ages 15-89. A
model using Eq. (3) with two trends | and r, was selected (i takes on two values: 1
and 2). The first trend is for all the years and the second is zero except for the years
1985-1996, which had increased mortality at younger ages, primarily associated
with HIV, but also drug wars. The latter trend was strongest for ages 27-48, so
weights were estimated for those years. Here 7 is the year of birth and u is the age
at death, so n + u is the year of death.

The model was calibrated using the MCMC package Stan with the second
differences of the p, ¢, r, and s parameters given double exponential priors. Then
the parameters in (3) are cumulative sums of the second differences. A lot of the
second differences shrink towards zero due to this prior, so the parameters come out
looking like they fall on fairly smooth curves—which are actually linear splines.

It is possible to get fairly different parameter sets with quite similar fits, so a
fair number of constraints are needed for the sake of specificity. For symmetry, a
constant term was added to the model, and then a base mortality parameter ¢, a
trend parameter r, and a cohort parameter p were set to zero. The HIV trend was
forced to be upward (positive), and all the trend weights were forced to be in [0,1].

It is a bit awkward in Stan to force these parameters to be positive. They are
sums of the underlying slope parameters, which in turn are sums of slope changes.
Any of those could be negative, as slopes could go up or down. Simple constraints,
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like using the minimum of the parameter and zero, are problematic in Stan because
you then lose derivatives needed for the internal calculations. Squaring the value is
awkward as well, as then different paths for the slope changes can get to the same
level parameter, which makes it look like the slope changes did not converge. In the
end, however, this choice is easier to deal with and was taken. Modeling the logs of
the levels as piecewise linear is an alternative worth exploring.

The weights were made to stay in [0,1] by dividing them all by the highest of
them after squaring. This may make finding parameters more difficult as well, and
it seems to slow down the estimation considerably, but it looks like the best way to
get specificity.

Cohort levels are regarded as the year-of-birth effects left after everything else
is modeled, so were forced to have zero trend—just by making them the residuals
around any trend that did appear.

Another problem with cohorts is that the most recent ones are seen only at young
ages, which creates a possible offset with the trend change weights. In fact, giving
the most recent cohorts high mortality and simultaneously giving the youngest ages
high trend weights gave fairly good fits, but does not seem to be actually occurring.

In the end we forced all cohorts from 1973 to 1989 to have the same parameter—
which in fact was made zero to avoid overlap with the constant term. For similar
reasons, cohorts 1890—1894 all got the same parameter.

Stan simulates parameter sets from the posterior distribution of the parameters
in several parallel chains—typically four of them. One check of convergence is to
compare the means of each parameter across the chains, and the within and between
variances. With these constraints, even though estimation was slow, all the chains
had very comparable mean values for every level parameter. The slopes and slope
changes from different chains sometimes look like mirror images, however, even
though they have the same squares.

The parameters graphed here include all four chains as separate lines mainly to
show how well they have converged, as the four lines are all very close.

The main trend is fairly steady improvement, but with a slowdown in the 1990s
that is not fully accounted for by the HIV trend, and another slowdown in the last
3—4 years. The trend take-up factors by age range from 65% to 100%, and are lowest
in the early 30s and the late 80s (Fig. 2).

The HIV trend is highest in the mid-1990s just before treatments became
available (Fig. 3). The ages most affected are the 30s (Fig. 4).

The cohort parameters show a fair degree of variation over time (Fig. 5). Relative
to trend, etc. the most longevity is seen in those born in the 1940s and before 1910,
with a dip around 1970 as well. While thorough modeling of these patterns is a
future project, some clues are available in demographic, macroeconomic, and public
health events (Fig. 6).

Those born in 1900 were 70 by the start of this data. The portion of this group that
got that old seems to have been particularly hardy. In fact they displayed as much
chance to get from age 70 to 90 as those born decades later. The cohort parameters
would reflect only the ages in the dataset, so are not necessarily indicative of the
cohort mortality for earlier ages.
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Fig. 2 Time trend 1970-2013
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Fig. 3 Age weights to trend ages 15-89

The group born in the 1930s and early 1940s is called the silent generation,
or sometimes the fortunate few, and is a unique population. They have had by
far the highest real income and net worth of any American generation. This is
often attributed to demographics—it was a relatively small population and had little
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HIV Trend 1985 - 1996
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Fig. 4 HIV trend 1985-1996
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Fig. 5 Age weights to HIV trend ages 27-48
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Fig. 6 Cohort level parameters for years of birth 1890-1989

workplace competition from earlier generations. Wealth is linked to longevity and
if that were the entire story, this set of cohorts would have had the lowest mortality
rates.

However, this was also a generation of heavy smokers. The early boomers,
born in the late 1940s, probably smoked less, and had some of the demographic
advantages of the fortunate few. The early-boomer cohort may also have been a bit
less exposed to obesity than the next group.

Having a small or shrinking population five or so years older seems to be good
for career opportunities. Being from the mid-1940s group, I can say that many in
my cohort stepped into easily available leadership roles, and hung in there for 30—
40 years. The mid-50s cohorts were always back there one level lower—although
individual exceptions abound.

The cohorts around 1970 were part of a slowing of population growth that
probably also lead to ample career opportunities. Another determinant of career
wealth accumulation and so average mortality is the state of the economy upon
entering the workforce. That would be another factor to include in this study (Fig. 7).

Looking at the raw mortality rates by age (across) and cohort (down) shows how
the age pattern of mortality has been evolving. The width of that graph at an age
shows how much mortality improvement that age has experienced from 1970 to
2013.

One thing that stands out is the clumping of lines at the upper right. For most of
this period there was little change in the mortality rates at older ages. Then in the
last 10 or 11 years, mortality in this group started reducing considerably. This looks
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/-/ Log Mortality Rates by Age and Cohort

Fig. 7 Log mortality rates by age (increasing from left to right) and cohort (individual lines, most
recent generally lower)

like another candidate for a separate trend. Probably the way to do this is to have
a separate upward trend in mortality for ages 75+ before 2002, and then give this
group the overall trend after that.

Another new trend since 2000 or so is to find little or no improvement in mortality
rates for ages in the late 40s through early 60s. This shows up as a clumping of lines
at the bottom of the graph above the word “Log.” This actually is producing higher
mortality for some parts of the population, as has been reported widely in the press.
(Our data does not have subpopulation breakouts.) It is again a candidate for its own
trend. However, this is also the mid-to-late boomer cohort, which shows up having
higher mortality rates anyway, and was also impacted by HIV, so there could be a
combination of effects here. Nonetheless, the cohort effect is supposed to be after
all other trends have been accounted for, so it seems appropriate to put in a trend
here and see what it does to the cohorts.
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6 Reserve Modeling Example

Loss reserving has much smaller triangles than mortality does—usually—and
simpler models—only one trend and no trend weights by lag typically.

yln.ul = pln] + qlu] + rln + u] + €. ©)

We explore here a bit broader model, but will start off with the above. Below is a
worker’s compensation loss paid triangle for a New Jersey insurer from Taylor and
McGuire (2016). The cells are incremental payments.

g [ of 1 2 3 4 5 3 7 8 9
1988 1 41821 34729 20147 15965 11,285 5,924 4775 3,742 3,435 2,958
1989 2| 48167 39,495 24444 18178 10840 7,319 5,683 4,758 3,959
1990 3 52,058 | 47459 27,359 17,916 | 11,448 8846 5,869 5,391
1991/ 4 57,251 49510 27,06 20871 14304 10552 7,742
1992| 5| 59213 | 54,129 29566 22484 14114 10,000
1993 6 59475 52076 26836 22332 14,75
1994/ 7| 65607 | 4aa648 27,062 22655
1995 8 56748 39315 26,748
1996| o s2212| 40,030
1997 10| 43962 |

6.1 Exploratory Analysis

Looking at residuals from standard development factor analysis can provide infor-
mation about possible changes in trend and payout patterns. The first test is to
calculate the incremental/previous cumulative development factors for each cell,
then subtract the column averages from the cell values.

Looking at the results by diagonal can show calendar-year differences. Consis-
tently high or low differences of individual trend factors from column averages
along a given diagonal would suggest a possible cost difference for that diagonal
compared to the triangle as a whole. It is easier to see such patterns by rotating the
triangle so that the diagonals become rows. That was done below with some color
coding, and decimals expressed as percents.

1 2 3 4 5 6 7 8
1 2%
2 1% 1%
3 12% 7% 4%
4 6% 5% 3% 13%
5 12% -11% 6% -14%
6 7% 1 -11% 6%
7 -16% -8% 1 5% 2% 8%
8 -15% 6% 2% 13% -8% 2% ]
9 6% 7% 4% 4% 0.4% 12% 4% 0.2%
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It is apparent that the first four diagonals are all positive and the next four mostly
negative, with the last again positive. This is suggestive of a calendar-year trend
change. The first column seems to be on its own path, however, and may be a payout-
change indicator.

A look at payout patterns can be taken by developing each row to ultimate by
development factors, then taking the ratio of paid in column to ultimate paid in row
for each cell. This can be done for lag zero as well. This test can show changes
in payout pattern, but changes in the later columns would be included in averages
below that, obfuscating some of the impact.

0 1 2 3 4 5 6 i 8
1 29% 24% 14% 11% 8% 4% 3% 3% 2%
2 29% 24% 15% 11% 7% 4% 3% 3% 2%
3 28% 26% 15% 10% 6% 5% 3% 3%
4 28% 25% 13% 10% 7% 5% 4%
5 28% 26% 14% 11% 7% 5%
6 29% 25% 13% 11% 7%
7 32% 22% 13% 11%
8 31% 21% 15%
9 30% 23%

Starting with row 5, there is an increasing trend in payouts at lag O, offset by a
decreasing trend at lag 1. These might reverse slightly in row 9, but that could be
due to calendar-year trend.

6.2 Modeling

The model without interaction terms does not include any provision for payout
pattern changes. We start with that, however, to see what it says about calendar-
year trends, and to see if those could account for the apparent payout shift. Again
the double exponential distribution was used for the changes in slope, here with a
fairly high variance to make sure that shrinkage was not obscuring any real effects.
The development year and accident year parameters came out fairly smooth anyway
(Fig. 8).

The main effect seen in the calendar-year trend is a substantial downward jump in
1993. There are two inflation drivers in workers comp. Wage replacement is driven
by wage inflation, but is mostly fixed at the wages at time of injury, so shows up
in the accident-year, i.e., row, parameters. Medical payments are made at the cost
levels at time of payment, on the other hand, so are calendar-year effects (Fig. 9).

Many state laws specify that payments are to be made at the medical providers’
standard rates. At some point providers and medical insurers agreed that the
providers would increase their rates substantially but those insurers would get a
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discounted rate. That left comp insurers as the only ones paying those artificial
standard rates. At some point states started to realize this and basically get the comp
insurers inside the game—perhaps through medical fee schedules for comp or other
approaches. The comp insurers did not have the political clout to accomplish this,
but they pass costs on to employers, who often do. Still, however, some states have
higher medical payments for workers comp compared to other insurers (Fig. 10).

The downward jump in costs on the 1993 diagonal could well have come from
this kind of reform. By 1997 it appears to be eroding a bit, however.

In any case, this model does not resolve the payout pattern issue. Lag 0 and lag
1 residuals show an inverse relationship starting with row 5 (Fig. 11).
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Fig. 11 Lag 0 and Lag 1 residuals by accident year

6.3 Model Extensions

Probably the most typical actuarial response to changes in payout pattern is to
just use the data after the change. Meyers (2015) introduces modeling of changing
payout patterns. With y[n, u] = log of incremental claims for year n and lag u, one
of his models can be written as:

yln.u] = pln] + qlul" ™" + &4 Q)

If z = 1, the payout pattern is constant, but if it is a bit above or below 1, the
payout is speeding up or slowing down. This model does not include changes in
trend, however, nor parameter reduction. One possible way to incorporate all of
these effects is to add an interaction term between lag and accident year:

yln.u] = pln] + qlu] + winlx{u] + rin +u] + en. (©)
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The slope changes for u[n] and x[u] in the interaction term were modeled as
starting at the bottom and right, and built up going across the triangle right to left.
The linear combination g[u] + w[n]x[u] for the changing payout pattern is shown by
cell.

The zeros at the bottom left are for identifiability and are the largest numbers in
the triangle. A payout shift is seen from lag one, mostly to lag zero, but slightly to
lag two as well. With the payout change modeled, the calendar-year levels below
seem to be moving more uniformly. However, there is still a bigger change showing
up in 1993 (Fig. 12).

At this point this model with interaction is still exploratory, but it does suggest
such interactions may have a place in reserve triangle modeling (Fig. 13).

DY term after interaction | | | | | | |
-0.0846236| -0.2222793 -0.6875312 -0.8748535 -1.1997081 -1.594766 -1.7877335 -1.905103| -1.9601988 -2.0607415
-0.0547095| -0.2309704 -0.6827897 -0.8662319 -1.2002981 -1.5819962 -1.7773879 -1.8915242 -1.9601988
-0.0562694| -0.2305172 -0.6830369 -0.8666815 -1.2002674 -1.5826621 -1.7779274 -1.8922323
-0.0602586| -0.2293582 -0.6836692 -0.8678312 -1.2001887 -1.584365 -1.779307
-0.0616277 -0.2289604 -0.6838862  -0.8682258 -1.2001617 -1.5849495
-0.0420673| -0.2346434 -0.6807858  -0.8625882 -1.2005475
-0.0177594 -0.2417056 -0.6769329 -0.8555824
-0.0059299 -0.2451425  -0.6750579

0 -0.2468654

0
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Fig. 12 Calendar year levels in model with changing payout patterns
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Fig. 13 Calendar year trends (slopes) in model with changing payout patterns

7 Conclusion

I like the maxim: All statements that begin with “All” are aimed at dramatic effect.

Still the idea that models may be only approximations but nonetheless can be
useful is a key element of the shift towards pragmatism taking place in statistics. I
am calling this the Robust Paradigm because of the notion that models need to be
robust to effects that do not show up in the data at hand. This is broader than what
usually is called robust statistics.

Assuming that the data is generated by the model process produces statistical
tests that are mainly suggestive in this context. Out-of-sample testing is the
requirement now. The availability of fast loo allows this to be standardized to a
degree. Overfitting and so penalizing for too many parameters is no longer an issue
when model performance out of sample is the focus.

But this is not traditional Bayesian either. Prior and posterior distributions are not
statements of opinion. They are pieces of the story the model is telling us, and are as
real as any other mathematical objects, such as quantum fields in the standard model
of physics. And they are first and foremost pragmatic—helping to build a coherent
narrative that provides insight into a process.

Parameter reduction now has classical and Bayesian modes. In the end the
Bayesian approaches look more flexible and so more useful, particularly because
of efficient loo.

The actuarial model with time variables is over-parameterized and so is a
natural place for parameter reduction. This appears promising both for mortality
and loss development applications. The more complex versions with interactions
seem applicable to reserves, especially with payout pattern changes. Fairly extensive
constraints are needed to get the parameters to do what they are meant to, however.
There are a lot of possible overlaps and tradeoffs among parameters that need to be
recognized explicitly if the models are going to perform as intended.
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Unlocking Reserve Assumptions Using
Retrospective Analysis

Jeyaraj Vadiveloo, Gao Niu, Emiliano A. Valdez, and Guojun Gan

Abstract In this paper, we define a retrospective accumulated net asset random
variable and mathematically demonstrate that its expectation is the retrospective
reserve which in turn is equivalent to the prospective reserve. We further explore
various properties of this retrospective accumulated net asset random variable. In
particular, we find and demonstrate that this retrospective random variable can
be used as a tool for helping us extract historical information on the pattern and
significance of deviation of actual experience from that assumed for reserving
purposes. This information can subsequently guide us as to whether it becomes
necessary to adjust prospective reserves and the procedure to do so. The paper
concludes, as an illustration, with a model of a block of in force policies with actual
experience different from reserving assumptions and a suggested methodology on
how prospective reserves could be adjusted based on the realized retrospective
accumulated net asset random variable.

Keywords Life insurance reserves * Prospective loss * Retrospective accumu-
lated net asset * Emerging mortality experience * Unlocking assumptions

1 Introduction

Reserves for life insurance products are funds set aside to meet the insurer’s
future financial obligations and they appear as a liability item on the insurer’s
balance sheet. This item usually represents a very large proportion of the insurance
company’s total liability and it is the task of the appointed actuary, responsible for
the calculation of these reserves, to ensure that they are calculated according to
well-accepted actuarial principles, within the guidelines set by the purpose of its
calculation (e.g., statutory, tax), and that sufficient assets are available to back these
reserves. See Atkinson and Dallas (2000, Chap. 6, pp. 313-356).
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Under old accounting rules, reserve basis and assumptions have typically been
“locked-in” at policy issue so that they remain unchanged over time. However, it
has become increasingly recognized that this “locked-in” principle can no longer
be applicable under today’s dynamic conditions. For example, under the Financial
Accounting Standards (FAS) 97 and 120 for Generally Accepted Accounting
Principles (GAAP), reserves can now be re-evaluated using what has been referred
to as “dynamical unlocking” which allows for the replacement of original actuarial
assumptions with a more realistic set of assumptions that accurately reflects
historical experience when projecting for future years. See Financial Accounting
Standards Board (1987).

The “locked-in” principle has also been historically applicable for statutory
accounting, the basis that is used to value insurer’s reserves and obligations to meet
regulatory requirements for ensuring company solvency. Under old valuation stan-
dards, it has even been considered more deficient because the calculation of reserves
has been static and formula-based. However, the National Association of Insurance
Commissioners (NAIC), the organization responsible for formulating these uniform
standards, has introduced in 2009 a new Standard Valuation Law (SVL) called
Principle-Based Reserving (PBR). Under this PBR approach, insurance companies
are now permitted to compute reserves by examining a wide range of more realistic
future conditions, provided justified, and that the unlocking of reserve assumptions
are permitted, again provided justified. This new valuation approach reflects the
fact that insurance companies have been introducing more complex products to a
more sophisticated market and that economic conditions are constantly evolving.
See Manning (1990) and Mazyck (2013).

What these developments mean to the actuary is the need to continually evaluate
historical experience and make necessary adjustments to the assumptions and
reserves accordingly. The purpose of this article is to examine the use of a retrospec-
tive random variable to provide a guidance for unlocking reserve assumptions. For
purposes of this article, we ignore the effect of expenses on reserves and focus on
what has historically been called net level premiums reserves. Extension of concepts
introduced in this article to reflect expenses should be straightforward, and our intent
is to introduce first the concept so that it can be well explained more intuitively.

It is well known that net level premium reserves can be calculated prospectively
and retrospectively at any duration for a policy that is in force. All major actuarial
textbooks covering the mathematics of life contingencies demonstrate the equiva-
lence between these two approaches based on an expected basis. See, for example,
Bowers et al. (1986, Chap.7, pp. 213-214) and Dickson et al. (2013, Chap. 7,
pp- 220-225). To illustrate, consider a fully discrete n-year term insurance policy
issued to a life aged x with a death benefit of M and an annual level premium of P
determined according to the actuarial equivalence principle. At policy duration ¢, the
prospective loss random variable is defined to be the difference between the present
value of future benefits at time # (PVFB,) and the present value of future premiums
at time ¢t (PVFP,):

LF = PVFB, — PVFP,, (1)
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where for our policy, we have

PVFB, = M v+t [(K.,, < n—1) and PVFP, = Pi

min(Ky4,+1.n—1)|’

where K., refers to the curtate future lifetime of (x + ¢) and I(-) is an indicator
function. The expected value of this prospective loss random variable is the
prospective reserve defined by

E(L') = E(PVFB,) — E(PVFP,) = M A!

x4rn=1 P

ax+r:m )
and is referred to as the prospective net level premium reserve for this policy.
Implicit in this formula is the assumption that the policyholder (x) has reached to
survive ¢ years. A straightforward algebraic manipulation of Eq. (2) leads us to the
following equivalent expression of this reserve:

Retrospective Reserve = P -~ — M = (3)

r—x ~x
where [E. = v’ p,.Equation (3) is referred to as the retrospective net level premium
reserve which gives the difference between the actuarial accumulated value of
past premiums and the actuarial accumulated value of past benefits. Note that the
mathematical equivalence of the retrospective and prospective reserve assumes that
premiums at issue are determined based on the actuarial equivalence principle and
that reserving assumptions equal pricing assumptions.

However, only the prospective reserve is defined as the expected value of
a corresponding prospective loss random variable. Defining the corresponding
retrospective accumulated net asset random variable that leads us to Eq. (3) has
not appeared in the literature, and indeed, Dickson et al. (2013, Chap. 7, pp. 222—
223) and Gerber (1976) recognize the difficulty of defining such a random variable.
In this paper, we define a retrospective accumulated net asset random variable
whose expectation leads us to the retrospective reserve and is therefore equal to
the prospective reserve. We are also able to intuitively provide an interpretation to
this loss random variable. We further explore various properties of the retrospective
accumulated net asset random variable and how its realized value provides valuable
information on how prospective reserves may be established.

In this paper, we develop a formal definition of a retrospective accumulated net
asset random variable whose expected value is equal to the retrospective reserve,
which in turn equals the prospective reserve. However, while both the accumulated
net asset random variable and prospective loss random variable have equal expec-
tations, the probability distributions of both random variables are entirely different.
The paper will provide an intuitive explanation and additional insight as to what
the retrospective accumulated net asset random variable is measuring and how
its distribution differs from the prospective loss random variable over time. More
importantly, the paper additionally explores how the retrospective accumulated net
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asset random variable could provide information on a company’s historical claim
experience and how the prospective reserve at any duration ¢ should be adjusted
if actual experience over the past ¢ years differs from reserving assumptions. The
retrospective accumulated net asset random variable as defined in this paper can
help an insurance company in developing a claims tracking and monitoring process
and provide a systematic procedure of adjusting future reserves to reflect actual
experience. This procedure can then be implemented to meet valuation standards
according to Principle-Based Reserving.

This paper has been structured as follows. Section 2 develops the theoretical
foundation for defining the retrospective accumulated net asset random variable.
Here, we demonstrate how this definition differs from the more familiar prospective
loss random variable, though we also show that the two are always equal in
expectation. This equality in expectation hinges on the premium being determined
according to the actuarial equivalence principle. Section 3 extends the discussion of
the retrospective accumulated net asset random variable in the case where we have
a portfolio of insurance policies. This further gives us a natural interpretation of the
retrospective accumulated net asset random variable. Furthermore, in this section,
we show how one can derive the mean and variance of the retrospective accumulated
net asset random variable for a portfolio that may vary in the amounts of death
benefits and issue ages. This is important because we demonstrate how the standard
deviation of the retrospective may be used to unlock the assumption of mortality
so that prospective reserves may be adjusted accordingly. The adjustment in our
demonstration may be arbitrary, for the moment, but it allows us to systematically
make the adjustment. We conclude in Sect. 4.

2 Formulation

2.1 Defining the Retrospective Accumulated Net Asset Random
Variable

The retrospective accumulated net asset random variable is best understood with a
simple illustration. Extension to the case of other forms of insurance will be rather
straightforward and we will examine a few of these other cases.

Consider a fully discrete n-year term insurance policy issued to a life aged x with
a death benefit of M and an annual level premium of P determined according to
the actuarial equivalence principle. For those unfamiliar with the concept of fully
discrete, this refers to the death benefit being paid at the end of the year of death
and that level premiums are paid at the beginning of each year the policyholder is
alive. See Bowers et al. (1986, Chap. 7, pp. 215-221) and Gerber (1997, Chap. 6,
pp- 59-73).
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For a policyholder age x, denote his curtate future lifetime random variable by
K. For K, < t, the policyholder dies before reaching age x 4 ¢ and in this case, we
define the retrospective accumulated net asset random variable to be

LF = % [pama +i)' =M1 + i)’_K*'_l], )

where p, is the probability that policyholder (x) survives for ¢ years. The first term
P&m(l + 1) clearly refers to the accumulated value at time ¢ of all past premiums

paid before death while the second term B(1 + i)'~%~! refers to the accumulated
value of the death benefit, paid at the end of the year of death, at time .

In the case where K, > ¢, we define the retrospective accumulated net asset
random variable to be simply a constant equal to

P (14 iy
p= T0HD )
Px

We can express this retrospective accumulated net asset random variable more
succinctly as

k=L [P(l+i)’ (am I(Ko<t) — iy 1K, = r)) —M(14i) K -I(Kx<t)]

X

1 T o ~1—K—1
- [P(l ) e = ML+ ) (K, < t)] 6)

X

In the case where K, > n, the policyholder would have survived the term of the
policy and in which case, LF would still be Eq. (5).

It is therefore straightforward to interpret the retrospective accumulated net asset
random variable. In this case, it can be viewed as the share per survivor of the
accumulated net assets per$1 of insurance at duration z. A similar concept
of an expected share per survivor within the context of group benefits has been
considered in Ramsay (1993) and Arias Lopez and Garrido (2001). In contrast, the
prospective loss random variable can be viewed as the share per survivor of the
present value of net liabilities per $1 of insurance at duration z.
We will define the expectation of this retrospective accumulated net asset random
variable, E(LF), as the retrospective reserve.

Using formulas from mathematics of life contingencies, it is straightforward to
prove the equivalence between prospective and the retrospective reserve. Note that
we can express Eq. (6) as

R 1

- . _ Ki+1 |
= [Pam MUEH (K, < t)] %)
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so that we write

1
Ry _ .. _ Kot |
E(LF) = v {PE[amiH(Krﬂj)] ME [v I(K, < r)]}
- Pa MA
According to the actuarial equivalence principle, we have P&x:m = MA)lc:m' It

follows therefore that

1

R\ __ o 1 . 1
E(Lt ) - E (P ax:ﬂ —MA x7 P aﬂm + MA x:ﬁ\)
1 | . .
= f [M (A T AxT) P(ax:m — ax:ﬂ)]
r—x
= MAXLﬁ Pi  ——= E(LD).

Notice that although the expectations are equal at any duration ¢, the probability
distributions of the two random variables are not. Indeed at policy issue, that is, at
t = 0, it is easy to see that LR = 0 although

LF = Bv&t (K, < n) — Pém
and is not necessarily always equal to zero. However, by the equivalence principle,
it follows directly that E(L{) = 0. Because at policy issue there should be no net
assets accumulated, we easily see that LY = 0. Indeed, this alone shows that the two
random variables are different in distribution.

In contrast, we see that at policy maturity ¢ = n, the prospective loss is L” = 0
since there is no more future net liabilities. However, the retrospective accumulated
net asset random variable at policy maturity is

1
R _ 1 .
L” - Ex I:Pamin(K,rH,n)

n

— BRI (K, < n)]

which also is not necessarily equal to zero although it has zero expectation again
because of the equivalence principle.

2.2 Understanding Differences Between the Prospective Loss
and the Retrospective Accumulated Net Asset

To further understand the difference between these two random variables, consider
a fully discrete 25-year term insurance policy issued to age x = 40 and assume
mortality follows the Gompertz law with
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Hao+: = B - C40+l, fort >0,

where B = 0.0000429 and ¢ = 1.1070839. We examine the differences between
the prospective loss and retrospective accumulated net asset random variables at the
end of year 10. For illustration purpose, we assume that the annual effective interest
rate is 5% and the death benefit, payable at the end of the year of death, is $100,000.
First, note that the prospective random variable is based on the future lifetime
of the policyholder from duration ¢. This refers to the loss that is conditional on
survival of the policyholder at time ¢ and we are looking at the difference between
the present value of future benefits yet to be paid and future premiums yet to be
collected. In contrast, the retrospective accumulated net asset random variable is
based on the future lifetime of the policyholder from issue and this is because we
must look back at what happened to the difference in the accumulation of premiums
and benefits paid in the past prior to duration ¢. This explains why, as earlier stated,
the prospective loss random variable can be viewed as the share per survivor of
the present value of net liabilities per $1 of insurance at duration
¢t while the retrospective accumulated net asset random variable as the share per
survivor of the accumulated net assets per $1 of insurance at duration ¢.
We can further visualize this difference with the help of Fig. | where we compare
the realized prospective loss and retrospective accumulated net asset at duration ¢
given the policyholder dies at a point in time. For the prospective loss, because
the random variable is conditional on survival at time ¢, we consider death at each
year after reaching age x + ¢. For the retrospective accumulated net asset random
variable, we consider death at each year after issue age x but up to age x + ¢. Despite
this difference in the future lifetime random variables, we see that earlier deaths
for the prospective case generates larger positive net liabilities than later deaths

(a) (b)
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Fig. 1 Comparison of realized prospective loss and retrospective accumulated net asset at duration
10. (a) Prospective. (b) Retrospective
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and this pattern is quite apparent in our example. For the retrospective case, earlier
deaths generate fewer accumulated assets than later deaths. This can be intuitively
explained by the fact that for early deaths, collected premiums will be fewer and
that the death benefit is accumulated for a longer period from death to the duration
in consideration; in this case, the duration is 10 years.

It is also interesting to note that for the prospective case, the random variable
is constant after the term of the policy. This is because the prospective loss will
have simply consisted of the present value, at duration 10 years, of future premiums
collected up to the term of the policy since the death benefit portion will have always
been zero. In contrast for the retrospective case, the random variable is constant for
deaths after duration 10. This is because the retrospective accumulated net asset
will have simply consisted of the share of the survivors of the accumulated value, at
duration 10, of all premiums collected from issue till duration 10.

Finally, it is well worth examining the comparison between the shape of the
distributions between the prospective loss and retrospective accumulated net asset.
In Fig. 2, using the same set of assumptions to develop Fig. 1 and the Monte Carlo
simulation, we compare the histograms between these two loss random variables.
Observe the noticeably high proportion of a negative net liability in the prospective
case and the noticeably high proportion of a positive net asset accumulation in the
retrospective case. In the prospective case, this negative net liability is attributable to
those survivors by the end of the policy term and beyond. In the retrospective case,
this positive net asset accumulation is attributable to those survivors at duration 10
and beyond.

(a) (b)
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Fig. 2 Distribution of prospective loss and retrospective accumulated net asset at duration 10. (a)
Prospective. (b) Retrospective
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2.3 Numerical Illustration

To even further understand the retrospective accumulated net asset random variable,
we consider a numerical illustration. For this purpose, we consider a fully discrete
20-year term insurance policy issued to age x = 45 with a death benefit of
M = $1000. For mortality assumption, we consider a table widely used in the
industry for valuation purposes: the 2015 VBT Unismoke Age Nearest Birthday
(ANB) mortality table. With interest rate equal to i = 5%, we find that, using the
equivalence principle, the net annual premium P = 2.58 per $1000 of insurance.

Table 1 below shows the distribution of the retrospective accumulated net asset
random variable at time ¢t = 10 for the 11 possible realizations of the retrospective
accumulated net asset random variable, L’fo, for durations 1,2,...10, 11 and later.
According to this calculation, we find that

E[LY)] = 17.19 and SD[Lf)] = 145.42

per $1000 of insurance.

Table 2 shows the mean and standard deviation of both the retrospective and
prospective loss random variables per $1000 of insurance for the durations t =
1,2,...20. Since the prospective loss random variable is a well-known random
variable in the actuarial literature, we will assume the reader is familiar with its
distribution for the simple insurance example we have illustrated. This table also
demonstrates that for a given duration 7, we can see that the expectations of the
prospective loss and retrospective accumulated net asset are equal. However, the
standard deviations for the same duration are not necessarily the same. In general,
the standard deviation of the retrospective accumulated net asset random variable is
smaller than the standard deviation of the prospective loss random variable in the
early durations but it reverses in the later durations. Also, the standard deviation
of the retrospective accumulated net asset random variable steadily increases as

Table 1 Distribution of the
retrospective accumulated net
asset random variable per
$1000 at duration 10, where
x=45n=20,i = 5%, and
gender = male

Duration | Retrospective accumulated net asset
LR Probability
—1,569.77 | 0.0005
—1,490.75 | 0.0007
—1,415.49 | 0.0009
—1,343.82 | 0.0011
—1,275.56 | 0.0013
—1,210.55 | 0.0015
—1,148.63 | 0.0017
—1,089.66 | 0.0020
—1,033.51 |0.0022
—980.02 0.0025

10 34.62 0.9856

V| Y| o b W= o™
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Table 2 Mean and standard deviation of retrospective accumulated net asset and prospective loss
random variables per $1000, where x = 45, n = 20, i = 5%, and gender = male

Duration Retrospective accumulated net asset RV Prospective loss RV
t Mean Standard deviation Mean Standard deviation
1 2.24 21.68 2.24 138.35
2 4.37 34.96 4.37 142.91
3 6.39 47.71 6.39 147.07
4 8.31 60.38 8.31 150.90
5 10.16 73.05 10.16 154.51
6 11.91 86.09 11.91 157.81
7 13.51 99.79 13.51 160.69
8 14.94 114.21 14.94 163.08
9 16.18 129.36 16.18 164.95
10 17.19 145.42 17.19 166.14
11 17.92 162.43 17.92 166.53
12 18.30 180.59 18.30 165.85
13 18.26 200.01 18.26 163.81
14 17.76 220.68 17.76 160.18
15 16.71 242.77 16.71 154.42
16 14.95 266.51 14.95 145.65
17 12.45 291.92 12.45 132.81
18 9.18 318.95 9.18 114.15
19 5.06 347.68 5.06 85.00
20 0.00 378.27 0.00 0.00

duration increases, but this is not the case for the prospective loss random variable.
Such pattern is to be expected as we have also demonstrated in our comparison in
the previous section.

2.4 Extensions to Other Forms of Insurance

First, consider the case of a fully discrete whole life insurance policy. One can easily
show the extension is straightforward because one can simply think of this as a term
insurance with an infinite maturity. Premiums continue to be collected until death
and policy expires at the end of the year of death of the policyholder.

In this case, we can express the retrospective accumulated net asset random
variable in a similar fashion to Eq. (6). The only difference has to do with the value
of the net annual premium. Using the equivalence principle, this leads us to

Pa, = MA, ®)
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To demonstrate that the expectation of this retrospective accumulated net asset
random variable is equal to that of the prospective loss random variable, we follow
the same procedure as in the fully discrete term insurance.

I
B = o (Péq—MALy— P+ MA,)

~x

= MA,y; — Piyy, = E(L).

In the case of a fully continuous whole life insurance, one can also easily develop
the retrospective accumulated net asset random variable at duration ¢ by defining it
to be

|
k= — [P(l ) T = ML+ )T I < z)] )

X
where P denotes the annual premium rate and T is the future lifetime of (x). The
corresponding prospective loss random variable in this case is defined to be

Ly =Mv"+ —Pa_ (10)

Tyt
where T+, is the future lifetime of (x + 7).

Analogous to the development of the fully discrete, we have the retrospective
reserve, equal to the expectation of the retrospective accumulated net asset random
variable, for a fully continuous whole life as follows

— 1
ax:ﬂ oy i ’
E E

~x ~x

2|
=

E(L) =P

1)

and the prospective reserve, equal to the expected value of the prospective loss
random variable, is

E(L]) = MAc — Py (12)

According to the actuarial equivalence principle, we have Pa, = MA,. Following
similar proof as in the fully discrete case, it is straightforward to show the two
expectations are equal.

To close this section, it is interesting to consider the case of an n year pure
endowment policy where a benefit of 1 is payable at maturity if the policyholder,
age x, survives then. Here we assume that premiums are payable annually at the rate
of P and are determined according to the actuarial equivalence principle so that we
have
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In this case, we write the retrospective accumulated net asset random variable at
time ¢t < n as

-1
R _ — o
L, _P,P af\(1+l)’

X

for T, < t and

LR = (1 + 1),
tp/\
for T, > t.

As clearly interpreted in this paper, this random refers to the “the share per
survivor of the accumulated net assets per $1 of insurance at duration 7.
For those people who died before duration #, they would have paid total premiums
up to their time of death. For those who have survived to duration ¢, they would
have paid total premiums up to time ¢. In either case, no pure endowment benefit
has yet been paid since ¢t < n. Hence, the interpretation as stated. This same random
variable can be succinctly written as

R_p_~ —
LR = PlExam. (13)

3 Reserve Adjustment Based on the Retrospective
Accumulated Net Asset Random Variable for a Portfolio

Consider a portfolio of m independent policies all issued with possible varying
death benefit amounts and issue ages. Denote the benefit amount, typically called
face amount in practice, for the ith policy byM; and the aggregate retrospective
accumulated net asset variable at duration ¢ for this portfolio by Ldégt It is not
difficult to see that if LR is the retrospective accumulated net asset random variable
per dollar of death beneﬁt then the ith policy retrospective accumulated net asset
random variable can be expressed as M; x LK so that the aggregate retrospective

accumulated net asset random variable for the portfolio can be expressed as

LY., ZM x LK,

i=1

Dividing this by the total face amount of Z M;, we get the aggregate retrospective
i=1
accumulated net asset per dollar of insurance:
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LR m Mi m

agg,t
Lfgg.l,z R M, = § M. XLft = § Pi XLft,
Zl= ; Z

where

d fori=1,2...m.

Pi = <mn 5,
Zi:lMi

Assuming independent future lifetimes of all individual policyholders within the
portfolio, then aggregate mean per dollar of insurance is

E(Lffgg,l,t) = Zpi X E(Lfl) (14)

i=1

and aggregate variance per squared dollar of insurance is

Var(LE, | ) = Z p? x Var(LF). (15)

i=1

These results simply demonstrate that the mean and the standard deviation of
the retrospective accumulated net asset random variable per dollar of insurance
of any portfolio of policies that were issued in the same year, can be analytically
determined from the mean and standard deviation of the retrospective accumulated
net asset random variable per dollar of insurance of the individual policies. These
results have been heavily applied in the illustration of our portfolio development and
reserve adjustment in the subsequent subsections.

3.1 Interpretation of the Retrospective Accumulated Net Asset
Random Variable

The retrospective accumulated net asset random variable can be best interpreted by
modeling a portfolio of policies with the same issue age x. Assuming that the only
decrement is death, then at duration ¢, there are two values that could be generated
from the model:

(a) accumulated net assets (i.e. accumulated premiums less accumulated death
benefits) at x + ¢ based on the actual mortality experience of the portfolio in
the first ¢ durations, and

(b) expected number of policies remaining in force in duration ¢.
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Then the realized retrospective accumulated net asset random variable is the
ratio of (a) to (b) above, and it represents the share per survivor of the realized
net assets at duration ¢. The distribution of the retrospective accumulated net asset
random variable can be obtained by generating all possible realizations of this ratio
(a)/(b). It is apparent that this cannot be done analytically, but the distribution of the
retrospective accumulated net asset random variable can be obtained via simulation.

Table 3 shows the mean, standard deviation and various quantiles of interest
of the retrospective accumulated net asset random variable per $1000 of face
amount at various durations for a portfolio of 100 term insurance policies at each
duration, issued at age 45 for face amount $100,000. For this purpose, we generated
mortality patterns according to the 2015 VBT Unismoke Age Nearest Birthday
(ANB) mortality table. The quantiles we are showing in Table 4 are mean + 0.1*SD,
mean £ 0.2*SD, mean £ 0.5*SD, mean & SD and mean & 3*SD, where SD refers
to the standard deviation.

Figure 3 provides an interesting visualization of how the mean and standard
deviation of the retrospective accumulated net asset random variable emerge over
a period of duration 20. A few observations can be made here. First, for a term
insurance policy, the retrospective reserve starts small and follows a parabolic
pattern. At maturity, the retrospective reserve is equal to zero. Finally, it is
interesting to note that standard deviation increases with duration, thus the widening
of the confidence band. This increase with duration can be explained by the fact
that we become increasingly uncertain of the retrospective accumulated net asset
for later durations. In this article, we suggest to use such confidence bands to
make the necessary adjustment to prospective reserves. This increasing standard
deviation over time implies that as we accumulate enough experience over time,
enough information will become available to give us greater confidence of making
the necessary adjustment.

Table 4 shows the same results for the prospective loss random variable per $1000
of face amount by analyzing the future present value of net liabilities per policy at
duration ¢ based on 100 in force policies at duration ¢ that were issued ¢ years ago
with all policies at issue age 45.

In comparing Tables 3 and 4, we can make the following inferences:

* The retrospective accumulated net asset random variable always satisfies the
condition that

E(retrospective accumulated net asset random variable) =

E(prospective loss random variable)

* Since all policies have the same face amount, the retrospective (and prospective)
reserve per $1000 is equal to the reserve for a single $1000 face amount policy.
However, the standard deviation per $1000 equals the corresponding SD for a
single $1000 face amount policy divided by the square root of the number of
policies in the portfolio (i.e., 10 in this example). This conforms to our earlier
results on how the mean and standard deviation of the retrospective accumulated
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Fig. 3 Mean =+ one standard deviation of the retrospective accumulated net asset random variable

net asset random variable for a portfolio of policies may be conveniently
calculated.

¢ There are variations in the standard deviations of the retrospective accumulated
net asset and prospective loss random variables by duration.

e There are variations in the quantiles of the retrospective and prospective loss
random variables by duration.

This leads us to the next couple of questions. Based on how we have defined
the retrospective accumulated net asset random variable, what does it really mean
from an insurance company’s perspective? Furthermore, what can we learn from the
volatility of the retrospective accumulated net asset random variable in setting the
prospective reserves from an insurer’s perspective.

3.2 Implications of the Retrospective Accumulated Net Asset
Random Variable for Insurers

The retrospective reserve in the actuarial literature has been viewed as algebraically
equivalent to the prospective reserve in expectation and a convenient alternative to
determining policy reserves for certain product designs. By creating a retrospective
accumulated net asset random variable, we hope to help increase the importance
of the retrospective reserve as the mean of the distribution of the accumulated net
assets per $1000 of insurance. This is a useful random variable for insurers to
analyze in evaluating historical claims experience and determining how to set, or
reset, prospective reserves.
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Specifically, if the realized retrospective accumulated net asset random variable
lies outside some pre-established confidence band for the retrospective accumulated
net asset random variable, then the prospective reserve could be adjusted to reflect
the fact that actual historical experience is significantly different from reserving
assumptions. This could become the regulatory basis for adjusting future reserves
in accordance with Principles Based Reserving. This can also form the basis of a
claims tracking and monitoring process for an insurer.

In the illustration that follows, we consider a portfolio of term life insurance
policies. For purpose of setting up the mortality pattern, we consider the same
valuation table we have previously used: the 2015 VBT Unismoke Age Nearest
Birthday (ANB) mortality table.

In order for an insurance company to implement a process by which prospective
reserves are adjusted for an in force block of policies in a systematic manner
to reflect the realized retrospective accumulated net asset random variable, the
following steps have to be done:

1. The in force block has to be broken down into issue year groupings and by plan
of insurance.

2. For a given issue year and plan of insurance, the historical premiums and death
claims paid have to be accumulated to the valuation date to determine the realized
retrospective reserve per $1000 of face amount.

3. The realized retrospective reserve determined in Step (2) above will have to be
compared to the retrospective accumulated net asset random variable per $1000
of face amount confidence band at a pre-established level of confidence (e.g.,
mean £ SD). Note that both the mean and standard deviation of the confidence
band vary by policy duration and we can use the result to determine the portfolio
confidence band.

4. To recognize the fact that as duration from issue date to valuation date increases,
the retrospective accumulated net asset random variable is based on more
credible historical experience, the confidence bands could vary by duration. For
example, the later durations (i.e., earlier issues) could use a tighter confidence
band while earlier durations (i.e., later issues) could use a wider confidence band.

5. A possible (and certainly hypothetical) rule for adjusting the prospective reserves
for this issue year block and plan of insurance could be as follows:

» If the realized retrospective accumulated net asset random variable falls within
the pre-established confidence band around the mean, then no adjustment is
made to the prospective reserve.

o If the realized retrospective accumulated net asset random variable exceeds
the upper confidence band by $1 per $1000 of insurance, then the prospective
reserve for the issue year block can be reduced by $1 per $1000 of insurance.

o If the realized retrospective accumulated net asset random variable is below
the lower confidence band by $1 per $1000 of insurance, then the prospective
reserve for the issue year block should be increased by $1 per $1000 of
insurance.
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An area of further research that has not been explored in detail in this paper is
developing a more systematic process of determining the width of the confidence
interval (CI) by duration for the retrospective accumulated net asset random
variable. One possible approach is to make some type of a credibility adjustment
similar in concept to credibility concepts of adjusting expected claims based on past
claims experience. There is certainly additional research work needed in this area.
See, for example, a method used for variable annuity products in Longley-Cook
et al. (2001). However, here we offer some possible approaches:

1. An overall consistency requirement is that the later the policy duration, the tighter
the confidence interval has to be because of more credible historical experience.
2. Define the confidence interval width as 0.5*(upper CI £ lower CI) and either:

* keep the confidence width fixed for each duration which leads to tighter
confidence intervals as duration increases since the standard deviation of the
retrospective reserve increases by duration, or

* linearly reduce the confidence width to zero from duration 1 to the end of the
coverage period.

3. Any other reasonable method could be explored.

The following is an illustration of how the prospective reserves could be adjusted
for a hypothetical in force block of 20-year, fully discrete term insurance policies
issued over the past 10 years. For this hypothetical illustration, we assume the
following:

1. For each issue year, 100 policies are issued and they are randomly issued over
issue ages 35-55 and face amounts $100,000-$500,000.

2. Policy premiums are calculated based on the actuarial equivalence principle.

3. For durations 1-5 (i.e., more recent issues), actual historical mortality is assumed
to be 25% lower than reserving assumptions.

4. For durations 6-10 (i.e., earlier issues), actual historical mortality is assumed to
be 25% higher than reserving assumptions.

5. Prospective reserves are adjusted based on deviations of the realized retrospective
accumulated net asset random variable from the confidence interval of the
retrospective accumulated net asset random variable. The confidence interval is
based on 0.10*SD for policies in duration 10 at the valuation date, 0.20*SD for
policies in duration 9, etc. and 1*SD for policies in duration 1 at the valuation
date as illustrated in Table 5. Note that issue year 1 represents policies in duration
10, issue year 10 represents policies in duration 1, and so forth.

6. Assume the only decrement is mortality and that the prospective reserve is being
calculated at end of duration 10.

Table 6 shows how the prospective reserve per $1000 is adjusted by duration to
reflect actual mortality experience based on our pre-established confidence interval
methodology as illustrated in Table 5.
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Based on these tables, we make the following observations:

e The realized retrospective accumulated net asset random variable per $1000 of
insurance is simply the mean of the retrospective accumulated net asset random
variable and modifying the annual mortality based on the actual historical
mortality assumptions (3) and (4) above.

* The realized retrospective accumulated net asset random variable is then com-
pared to the theoretical mean and standard deviation of the retrospective accu-
mulated net asset random variable based on the original reserving assumptions
to determine the adjustment to the prospective reserves per $1000.

We can additionally make the following observations. First, since the standard
deviation of the retrospective accumulated net asset random variable varies by dura-
tion, the impact of actual mortality experience varying from reserving assumptions
has to be analyzed by issue year. Second, the overall realized prospective reserve is
$11.04 per $1000 of face amount. This represents the mean of the prospective loss
random variable using the actual mortality assumptions of 25% lower mortality for
more recent issues in durations 1-5 and 25% higher mortality for earlier issues in
durations 6-10. Third, the overall realized retrospective reserve is $9.66. Based on
our approach of varying confidence interval to adjusting the prospective reserves,
the overall adjusted prospective reserve per $1000 of insurance is $11.11, while the
overall expected prospective reserve is $10.80. This represents an overall increase
in prospective reserves of 30 cents for every $1000 of insurance. Finally, as shown
in Table 7, for the in force block in year 10 after annual sales of 100 policies per
year, there are approximately 993 remaining policies with an aggregate face amount
of $297,226,683. Then the adjusted prospective reserve results in an increase of
$93,471 in aggregate prospective reserves. This translates to a $22,808 higher
than the overall mean of the prospective loss random variable based on actual
mortality experience (i.e., realized prospective reserve). This implies a slight degree
of conservatism in our methodology for adjusting aggregate prospective reserves.

Table 7 Difference between the adjusted and expected prospective reserves

Remaining policies 993
Remaining policies face amount 297,226,683
Expected retrospective reserve 10.80
Expected prospective reserve 10.80
Adjusted prospective reserve 11.11
Realized prospective reserve 11.04
Expected aggregate prospective reserve 3,210,105
Adjusted aggregate prospective reserve 3,303,576
Realized aggregate prospective reserve 3,280,768

Per $1000 difference between expected and realized prospective reserves | —0.24
Per $1000 difference between adjusted and realized prospective reserves | 0.08
Aggregate difference between expected and realized prospective reserves | (70,662)
Aggregate difference between adjusted and realized prospective reserves | 22,808
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4 Concluding Remarks

The implications of this paper are important for a few reasons:

1. This paper expands the actuarial literature on unlocking reserve assumptions
based on the retrospective accumulated net asset random variable, a concept
that is similar to the prospective loss random variable that is used to calculate
reserves. Similar retrospective concept has appeared in Arias Lopez and Garrido
(2001) and Ramsay (1993).

2. The retrospective accumulated net asset random variable as defined in this
article has practical implications in developing a claims tracking and monitoring
process for a company and in adjusting prospective reserves in a systematic
manner that would satisfy Principle Based Reserving (PBR) standards. The PBR
approach is being gradually adopted by the National Association of Insurance
Commissioners (NAIC) for calculating more realistic reserves. See Mazyck
(2013).

3. The methodology recommended in this article is timely because PBR regulation
allows insurance companies to use their own experience to value life insurance
reserves. The approach suggested here can also be viewed as a methodical way
of tracking and monitoring insurance claims experience. See Vadiveloo et al.
(2014).

The paper has focused on the retrospective accumulated net asset random
variable for a term insurance product. Clearly, our findings can be extended to
other insurance products like endowment insurance, whole life insurance, disability
income, long term care, life annuities, and pension plan products. For disability
income and long-term care, the retrospective accumulated net asset random variable
provides historical information on how actual incidence and termination rates vary
from expected and whether they are significant enough to adjust the prospective
reserves for the business. For annuities and pension products, the retrospective
accumulated net asset random variable provides insights into the longevity risk
for these products and how prospective reserves may be adjusted to reflect actual
longevity experience that is significantly deviating from expected.

With this paper, future students of mathematics of life contingencies may learn
about the importance of a retrospective accumulated net asset random variable in
assisting insurance companies provide information on historical claims experience
and how prospective reserves may be adjusted to reflect this emerging actual experi-
ence. This may also help trigger their appreciation of the concept of the retrospective
reserve, rather than simply mathematically demonstrating the equivalence between
the retrospective and prospective reserves.
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Spatial Statistical Tools to Assess Mortality
Differences in Europe

Patricia Carracedo and Ana Deboén

Abstract In general, life expectancy has increased in the whole of Europe in recent
decades, especially in western European countries. However, this study detected
that the observed mortality is higher than expected in eastern European countries,
widening the gap between these countries and Western Europe. The main objective
of this paper is to study the space dependence of significant clusters through a spatial
panel data model. There are many studies that address the decrease of mortality
in Europe. None of them uses spatial methodology to detect significant clusters
between countries with similar mortality, implementing in turn a spatial model
which controls the space dependence of the European countries over time. Thus,
the objective of this study is to determine differentiated behavior areas and control
the spatial interaction between European countries over time applying a spatial
panel data model. The methodology takes into account the neighboring relationships
between the countries. The performance of the model was assessed using the
methods of goodness of fit, residual variance, and determination coefficient. This
statistical methodology was applied to 26 European countries over the period
1990-2009. The R free software environment for statistical computing was used
to perform the whole analysis.
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1 Introduction

Although, in recent decades, mortality has declined in all the countries in the Euro-
pean Union, considerable differences in the levels of mortality between countries
(Vaupel et al., 2011) are found, especially between eastern and western countries
(Meslé and Vallin, 2002). European countries have suffered a situation of divergence
between Eastern and Western Europe (Leon, 2011; Vaupel et al., 2011), especially
after the collapse of the Soviet system. The health division between the east and
west was firstly due to the clash between two areas during the twentieth century:
the economic and the political; and secondly to the collapse of the Soviet Union
(Vager6, 2010). Thus, the gap in Europe starts at least in the twentieth century.

Between 1970-1984 the mortality of the communist countries of Central and
Eastern Europe (CEE) such as The Czech Republic, Hungary, Poland and Slovakia
and the Baltic states: Estonia, Latvia and Lithuania suffered a slow growth. The anti-
alcohol campaign introduced by Michael Gorbachev over the period 1984—1987 in
Russia produced an increase in life expectancy. The impact was most pronounced
in the reduction of mortality due to injuries, poisoning, and some cardiovascular
disease among adult males (Bobadilla et al., 1997). In 1989—-1991 with the collapse
of the Berlin wall, CEE countries experienced a decline in mortality (Leon, 2011)
in response to politic-economic change. In contrast, Russia, as well as the poorest
republics of the former Soviet Union including The Baltic States suffered an
increase in mortality. At the end of 2008, the Russian Ministry of Health proposed
a set of ambitious targets to improve the health of the population (Leon, 2011).
The collapse of the system in 1989 trigged a health crisis. This primarily attacked
communist countries, preventing their progress while western European countries
began to progress due to new advances in health care, specifically in the treatment
of cardiovascular diseases (Meslé and Vallin, 2002).

Therefore, mortality has not only varied with time, but has also varied depending
on the country, since not all of them have the same health and economic conditions
(EUROSTAT, 2009). Europe is a continent with countries which have progressed
together but in a very different way, leading to the existence of great variability
between their mortality rates, particularly between eastern and western countries
(Meslé and Vallin, 2002). Figure 1 shows the quintiles of mortality in Europe in
1990, 2000, and 2009, quantified by means of the Standardized Mortality Ratio
(SMR). This ratio will be detailed in Sect.2.2.1. It shows that the SMR of eastern
countries is higher than western countries and is growing over time.

Spatial econometrics is a subfield of econometrics dealing with spatial interaction
effects among geographical units. In the last decade, the spatial econometrics
literature has focused on the specification and estimation of econometric relation-
ships based on panel data (Elhorst, 2014a). Panel data refers to data containing a
number of geographical units followed over time. Panel data have more information
than longitudinal and cross-sectional studies as they contain more variability, less
collinearity, more degrees of freedom, and more efficiency among the variables
(Baltagi, 2008). Spatial panel data models can be used to explain the behavior of
geographical units if they are related to each other.
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Fig. 1 Standardized
mortality ratio in Europe.
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Thus, this paper is motivated by the interest in the inequalities between the health
systems in different European countries (Spinakis et al., 2011). The main objective
of this paper is determine differentiated behavior zones and study the spatial
interaction between the European countries over time applying a spatial method-
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ology. This methodology takes into account neighboring relationships between the
countries. Firstly, significant clusters of European countries with similar mortality
were detected and secondly a spatial panel data model was applied to model the
space dependence in the geographical units over time. The performance of the
model was assessed using the well-known measure of goodness of fit named residual
variance (02) and determination coefficient (R?).

This paper is structured as follows: Sect. 2 starts by describing the database of
the selected countries. The section continues by detailing the spatial methodology
which was used to identify clusters of countries with similar mortality and ends with
an exposition of the spatial panel data implemented. In Sect. 3, the main results of
applying the spatial method from the previous section to the database are shown.
And finally, Sect. 4 presents the main conclusions obtained in this study.

2 Material and Methods

2.1 Data

This study deals with mortality data for European countries for the period between
1990 and 2009 and for an age range from 0 to 110+ considering a country as the
unit of analysis. Data were taken from the Human Mortality Database (2014) for a
total of 26 countries: Austria, Belarus, Belgium, The Czech Republic, Denmark,
Estonia, Finland, France, Germany, Hungary, Ireland, Italy, Latvia, Lithuania,
Luxembourg, The Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia,
Spain, Sweden, Switzerland, The United Kingdom, and Ukraine. These 26 countries
were considered as they have common information in the database for the maximum
time range 1990-2009 and for an age range from 0 to 110+.

With the aim of explaining the behavior of mortality depending on demographic
and economic variables (Cutler et al., 2006), information about five variables for
these 26 countries and 20 years were collected from The World Bank Database
(2015). These variables were: population growth, gross domestic product (GDP),
birth rate, activity rate, and road sector energy consumption.

e Population growth (annual %): The annual population growth rate for year ¢
is the exponential rate of growth of the midyear population from year ¢ — 1
to ¢, expressed as a percentage. Population is based on the fact definition of
population, which counts all residents regardless of legal status or citizenship.

* Gross domestic product (annual %): Annual percentage growth rate of GDP
at market prices based on constant local currency. Aggregates are based on
constant 2010 U.S. dollars. GDP is the sum of gross value added by all resident
producers in the economy plus any product taxes and minus any subsidies not
included in the value of the products. It is calculated without making deductions
for depreciation of fabricated assets or for depletion and degradation of natural
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resources. This variable contains missing data. The function knnlmputation of the
library DMwR (Torgo, 2010) was used to impute the missing data. This function
fills the missing values with a local weighted average.

e Crude Birth rate (per 1000 people): Crude birth rate indicates the number of
live births occurring during the year per 1000 population estimated at midyear.
Subtracting the crude death rate from the crude birth rate provides the rate of
natural increase, which is equal to the rate of population change in the absence
of migration.

* Activity rate (% of total population ages 15+): Labor force participation rate is
the proportion of the population aged 15 and older that is economically active:
all people who supply labor for the production of goods and services during a
specified period.

* Road sector energy consumption (% of total energy consumption): Road sector
energy consumption is the proportion of total energy used in the road sector
including petroleum products, natural gas, electricity, and combustible renewable
and waste.

In order to avoid collinearity in the covariates, the Variance Inflation Factor (VIF)
was taken into account. The covariates with values of VIF less than 2 were selected.
Lastly, these variables were: GDP, activity rate, road sector energy consumption,
and birth rate.

Statistical analysis was performed using the software R Core Team (2015)
together with some R-packages: demography (Hyndman et al., 2014), maptools
(Bivand and Lewin-Koh, 2014; Charpentier, 2014), spdep (Bivand, 2012; Charp-
entier, 2014), GeoXp (Laurent et al., 2012), rgdal (Bivand et al., 2016), Gmisc
(Gordon, 2016), RColorBrewer (Neuwirth, 2014), splm (Millo and Piras, 2012),
plm (Croissant et al., 2008), and DMwR (Torgo, 2010).

2.2 Clustering Spatial Methodology

Several statistics will be described in order to quantify the spatial relationship of
mortality and detect groups of European countries with similar mortality.

2.2.1 Standardized Mortality Ratio (SMR)

Quantifying mortality is important to outline the epidemiological, demographic, and
development levels of a country. Mortality is influenced by factors such as diseases
of a random nature or natural disasters, so mortality is variable over time, that is,
it does not remain uniform. Public health professionals are constantly faced with
comparing mortality between different geographical areas. There is no problem
comparing mortality rates if populations are distributed similarly with respect to
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other factors such as age, race, social class, etc. but this does not happen. When
comparing mortality rates between different geographical areas, these rates will be
influenced by the proportion of subjects in each age group in each geographic area.
To solve this problem, standardization methods were developed. Standardization
allows comparisons without the effects of differences in the size of the sub-groups of
the population. There are two methods of standardization: direct and indirect (Fleiss
et al., 2013). In this paper, to quantify mortality, the Standardized Mortality Ratio
(SMR) was used as it is the most widely used index to compare mortality between
different areas (Hinde, 1998). The indirect method produces the SMR. This ratio
was obtained for each of the 26 European countries during the period 1990-2009.
Standardized Mortality Ratio (SMR) is a well-known index which compares
observed deaths and expected deaths, both measured at the same moment in time.
The SMR is defined as the number of deaths that would be expected in a studied
population if the age specific mortality rates were those of the standard population.
Its calculation is expressed as
Oi, .
SMRi'ZZF forie{l,...,N} andte{l,..., T} (1)

it

where i is the country and ¢ is the year. O; , represents the number of observed deaths
for each country i in the year ¢, and E;, corresponds to the number of deaths in each
country i in the set of European countries in the year ¢ under the hypothesis that
all the countries have the same mortality as the set of European countries. A ratio
greater than 1 indicates that more mortality was observed than would have been
expected, in this case there are “excess deaths.” On the contrary, there are “deficit
deaths” if the SMR is less than 1, a situation that occurs when there is a lower
number of observed deaths than expected (Hinde, 1998).
If x is the age of death, O;, is obtained as

110+
Ois = Y Myjyx Pejy forx €{0,....110+}

x=0

where m, ;, represents the death rate and P, ;, the size of the studied population at
age x, country i and year t. The expected deaths can be obtained as

110+
E, = Z E.i, forxe{0,...,110+},
x=0
where E, ;; is,

Ex.i,t = My, * Px,i,ta

and m,, is the death rate at age x for the year ¢ in the set of European countries.
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forie{l,...,N}.

2.2.2 Global Moran Index

The Global Moran’s I is a summary measure that shows the intensity of the spatial
dependence of all the countries in the study (Moran, 1950a,b). Positive index values
indicate positive spatial autocorrelation in the European countries; when the SMR
of a countries increase or decrease, the SMR of its neighbors also increases or
decreases, respectively. In contrast, negative values of this index indicate negative
spatial autocorrelation in European countries; when the SMR of countries increases
or decreases, the SMR of its neighbors decreases or increases, respectively. Values
of the index close to zero indicate the absence of spatial autocorrelation between
these 26 European countries. The expression of the index is as follows:

GM, — NY, Zj Wi j(SMR;, — SMR,)(SMR; ; — SMR,)
r p—
Zi Z_] Wl.j Zi(SMRi.t - SMR[)2

forie{l,...,N},

je{l,...,N} andi # j

where N is the total number of European countries, SMR; is the average of the
SMR in all the countries at time ¢, a W;; is the spatial weights matrix where i
and j are two different countries in the set of N European countries considered.
In this study, two countries are considered neighbors when they share a border (first
order of neighborhood). Only, the first order in the neighborhood structure was used
(Anselin, 1995), given the importance of borders in Diehl (1992) which is a study
of international conflict. The first order of neighborhood takes into account only
the influence of neighbors and not the influence of the neighbors of the neighbors
(second order) or the influence of the neighbors of the neighbors of the neighbors
(the third order), and so on. With this, W;; can take the following values:

Wi =0, ifj ¢ V(@):

1
Wij= —. ifj € V(D). withn; = #V(0);

i
Wi;=0, i=1,.N.

where n; is the number of neighbors i and V (i) is the set of neighbors of a country i.
When W;; = 0 the countries i and j are not considered neighbors, while if W;; # 0
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the countries i and j are considered neighbors with a weight 1/x;. The total of each
row is 1 because the weights W;; are standardized. In the spatial weights matrix a
country cannot be its own neighbor then, W;; = 0.

Global Moran’s test for spatial autocorrelation was calculated using the R-
package spdep by Bivand (2012). The result of the contrast provides the following
output: the value of the observed Moran’s I, its expectation which means the
expected value of Moran’s I under the null hypothesis of no spatial autocorrelation,
its variance and the p-value of the Moran’s test. These results may be checked
against those of the Monte Carlo test. The Monte Carlo test uses random permu-
tations of SMR; , for the spatial weights matrix, to establish the rank of the observed
statistic in relation to the 999 simulated values. The result of the contrast provides
the following output: the value of the observed Moran’s I, the rank of the observed
Moran’s I, and the p-value of the Monte-Carlo test. Both tests are sensitive to the
form of the spatial weights matrix.

2.2.3 Local Moran Index

The Local Moran’s I is a Local Indicator of Spatial Association (LISA), which was
introduced by Anselin (1995). This ratio determines whether the spatial correlation
scheme detected in all countries of the study is also maintained locally. In the
notation which has become usual in this context, L denotes SMR values of a country
that are Lower (L) than its mean and H denotes SMR values of a country that are
Higher (H) than its mean. In the same way for the neighbors, L and H denote mean
SMR of neighbors that are Lower (L) or Higher (H) than its mean, respectively.
Thus, each observation could be placed in one of four categories, as summarized in
Table 1.
When the index is significant, two types of clusters are detected:

e A positive Local Moran’s I indicates Spatial Clusters of countries with high
values of SMR surrounded by neighbors also with high values of SMR, denoted
by HH or spatial clusters of countries with low SMR values surrounded by
neighbors also with low SMR values denoted by LL.

* A negative Local Moran’s I indicates Outlier Clusters of countries with low SMR
values surrounded by neighbors with high SMR values, denoted by LH or outlier
clusters of countries with high SMR values surrounded by neighbors with low
SMR values denoted by HL.

Table 1 Lisa Classiﬁcations Class | Country’SMR | Neighbors’SMR

for each country and its H b b

neighborhood ove average ove average
HL Above average | Below average
LH Below average | Above average

LL Below average | Below average
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The expression of the index is as follows:

(SMR;, — SMR))

LM;, =
! S2(SMR))

> Wi(SMR;, —SMR;) forie{l,... N},
i

je{l,...,N} andi # j

where S?(SMR,) is the variance of SMR, at time 7.

Spatial clusters, sometimes referred to as hot spots, may be identified as those
locations or sets of contiguous locations for which the Local Moran Index is
significant. Local Moran Index can be used as the basis for a test on the null
hypothesis of no local spatial association. This test gives an indication of the extent
of significant local spatial cluster of similar values around one country i (Anselin,
1995). The sum of all Local Moran Index for all countries is proportional to the
Global Moran Index. To carry out an adjustment to Local Moran Index’ p-values
based on the number of neighbors of each region the Bonferroni correction was
used in this paper. The Bonferroni method is a stricter criterion for the significance
level of Local Moran’s 1. This method stresses the p-values obtained for the local
Moran’s 1. These adjusted p-values are dependent on the number of neighbors of a
country i (Anselin, 1995).

2.3 Spatial Panel Data Models

Once you itemize techniques to study the spatial dependence of mortality data from
26 European countries during the period 1990-2009 in Sect. 2.2, the next step is
to implement a spatial panel data model to model the space dependence of these
countries during the considered period of time.

2.3.1 Panel Data

Panel data are spatial observations (regions, countries, families, households, etc.)
followed with time. Therefore, panel data are a combination of two dimensions:
space and time (Wooldridge, 2010).

Normally, panel data are distinguished from others by the spatial and temporal
extension of the data, the various types of panels are

* Micro Panels: Those panels with more cross observations than periods.

* Macro Panels: Those panels with less cross observations than periods.

* Random Field Panels: They are panels with a very wide temporal and transverse
dimension.
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Depending on the existence or absence of missing data, panel data can be of two
types

* Balanced or Complete Panels: If all the units studied are observed throughout
the study period.

* Imbalanced or Incomplete Panels: If there are missing data, the time period varies
between individuals.

Specifically, data from this study are a Micro Panel, since there are more space
observations (26 countries) than periods of time (20 years) and a Balanced Panel
because there aren’t missing data in any variable (the values of GDP were imputed).

2.3.2 Spatial Models for Panel Data: Spatial Lag Model with Fixed Effects

Currently, spatial econometrics is emphasizing the specification and estimation of
econometric relationships based on information panels containing data. This interest
can be explained by the increased availability of a large amount of data in which
the spatial units (municipalities, regions, states, countries, postal codes, etc.) are
followed over time. Panel data also allow for the specification of more complicated
behavioral hypotheses, including effects that cannot be addressed using pure cross-
sectional data. Panel data offer researchers extended modeling possibilities as
compared to the single equation cross-sectional setting, which was the primary focus
of the spatial econometrics literature for a long time (Elhorst, 2014a).

A panel data model is a regression model which uses the temporal and spatial
heterogeneity of the panel structure to estimate parameters of interest (Elhorst,
2014b). This model differs from cross-section regression or time series in that it
considers both the spatial and temporal dimension, which favors study, especially
in periods of great change. Panel data models offer advantages over cross-section
regression or time series. They control unobserved heterogeneity produced by both
spatial and temporal units which reduces the problems of multicollinearity between
the variables (Kennedy, 2003). The geographical units are observed over time
and this fact cannot be studied using purely cross-sectional or time series studies.
Panel data usually contain more degrees of freedom and more sample variability
than cross-sectional data as time series data, hence improving the efficiency of
econometric estimates (Hsiao et al., 2002). Some problems appear using panel data.
First of all design and data collection problems are more complicated than in the
case of cross-sectional data or time series (Arbia and Piras, 2005).

Elhorst (2014a) provides a review of the spatial panel data models most
commonly used in research

I Spatial Lag Model with Fixed Effects (SLMFE).
IT Spatial Error Model with Fixed Effects (SEMFE).
IIT Spatial Lag Model with Random Effects (SLMRE).
IV Spatial Error Model with Random Effects (SEMRE).
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The typology of our data leads us to implement a [I] Spatial Lag Model with
Fixed Effects. The reasons are:

» Fixed Effects: The fixed effects model is generally more appropriate than the
random effects model since spatial econometricians tend to work with space-time
data of adjacent spatial units located in unbroken study areas (Elhorst, 2014a). In
addition, it attempts to model the behavior of each country and time individually.
This model, known as two-ways, assumes that differences between countries and
time are constants (Asteriou and Hall, 2015). For this reason, spatial and temporal
dummy variables are incorporated, which model the unobserved characteristics
of cross-sectional units (not changing over time but affecting the dependent
variable, examples of these characteristics are religion, sex, education, etc.) and
the unobserved characteristics of temporal units (not changing with countries but
affecting the dependent variable, for example a great depression, world war, etc.).

» Spatial Lag: The value of the SMR in a country depends on the value of the SMR
in another adjacent country. This fact will be confirmed in the next Sect. 3.1.

Then the SLMFE is defined mathematically as

N
Y=o+ A Z Wiy + X + i + v + &t ()

J=1

where:
i represents the countries;
t represents the years;
yir represents a vector of dimension NT X 1 corresponding to observations of the
dependent variable for each country i and year ¢;
« is the mean intercept. This will be estimated with the condition that the sum of
the spatial and temporal effects is zero (Hsiao, 2014). In this way the spatial effect
represents the deviation of the spatial unit i from the mean « and the time effect
represents the deviation of the time unit ¢ from the mean «;
A is the spatial parameter associated with the dependent variable;
W;; spatial weights matrix where i and j represent whichever two of the N countries
of dimension N x N;
Xi; is a matrix of dimension NT' x K of observations on the independent variables;
B vector of dimension K x 1 of fixed but unknown parameters corresponding to
observations of the independent variables;
i is the spatial fixed effect (not spatially autocorrelated) which captures the
unobservable characteristics that change across countries but remain constant over
time;
v, is the temporal fixed effect (not temporally autocorrelated) which captures the
unobservable characteristics that change over time but remain constant across
countries;
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& s a vector of independent and identically distributed error terms (not spatially
autocorrelated) of dimension N7 x 1 which captures the unobservable characteristics
that change over time and across countries.

3 Results

In this section the results of applying the methodology exposed in Sect.2.2 and
Sect. 2.3 are considered. For the sake of brevity, only the maps corresponding to the
years 1990, 2000, and 2009 are shown here. Readers interested in maps for all the
years can request them from the authors.

3.1 Clustering Spatial Methodology

The results of measuring mortality in Europe in terms of the SMR, calculated
according to the expression (1) are shown in this section. To quickly compare the
mean and variance of the SMR of each European country studied between 1990
and 2009 Fig. 2 was prepared. It shows the variability of the SMR of each country
in the studied period. For example, Belarus and Ukraine (eastern countries) are
the countries with more variability in SMR, whereas Belgium and Spain (western
countries) are two of the countries with minor variability in the SMR.

In addition, the countries with mean SMR values higher and lower than 1 are
identified:

e Countries with values of SMR higher than 1: Belarus, Slovakia, Estonia,
Hungary, Latvia, Lithuania, Poland, The Czech Republic, and Ukraine. In this
case these countries suffer “excess deaths” in the studied population, because
the observed deaths in these countries are higher than the deaths that would be
expected if they behaved similarly to the set of European countries. These levels
of SMR above 1 were maintained during the period of study, and therefore, these
countries are not considered privileged.

e Countries with values of SMR lower than 1: Germany, Austria, Belgium,
Spain, Finland, France, The Netherlands, Italy, Luxembourg, Norway, Portugal,
The United Kingdom, Sweden, and Switzerland. In this case these countries
suffer “deficit deaths” in the studied population, because the observed deaths
in these countries are lower than the deaths that would be expected if they
behaved like the set of European countries. These levels of SMR lower than 1
were maintained during the period of study, and therefore, these countries are
considered privileged.



61

Spatial Statistical Tools to Assess Mortality Differences in Europe

J

2.0

1.8
1.6
1.4
1.2

1.0

0.8

aluenn
AN
pueuazimsg
uspemg
ureds
BIUBAOIS
BeAO|S
lebnuod
puejod
AemioN
spuepayieN
BinoquiaxnT
eluenuyyn
eIAe|

Arey

puejal|
Aebuny
Auewlen
aouel4
puejul4
eluo}s3
ylewlaqg
olgndey yoezy
wnibjag
sniejeg
elsny

Fig. 2 Box plot of the SMR for each country



62 P. Carracedo and A. Debén

¢ Countries with SMR values of around 1: Denmark, Ireland, and Slovenia. These
countries have similar deaths to what would be expected if they behaved as the set
of European countries between the years studied, and they have a status similar
to the general one.

It confirms that the observed mortality is higher than expected in the eastern
countries over time.

Figure 3 shows Moran scatter plots where the SMR value for a country is
plotted against the average SMR of its neighbors for years 1990, 2000, and 2009
respectively. All the graphs obtained for all years indicate that there is a positive
spatial correlation in the set of European countries. The countries that move away
from the central trend are marked: Portugal (PT), Estonia (EE), Belarus (BY),
Lithuania (LT), and Ukraine (UA).

In order to confirm the presence of spatial autocorrelation, the null hypothesis
Hy : GM, = 0 is tested. The p-value is obtained using asymptotic distribution or
by means of a Monte Carlo test (Bivand, 2012). The results of Moran and Monte
Carlo tests for the considered period are shown in Table 2 which includes the value
of the observed Moran’s I, its expectation and variance, the p-value of the Moran’s
test (M) and in the last column the p-value of the Monte Carlo test (MC). The p-
values obtained for all years are significant (p-values <0.05), indicating that there
is a spatial dependence in the observed mortality.

As stated in Sect. 2.2.3, significant values of the Local Moran Index show two
types of clusters: Spatial clusters and Outlier clusters. Maps in Fig. 4 show spatial
clusters of type HH (high SMR) and LL (low SMR) which means that the observed
mortality in the countries belonging to different clusters is similar enough to be able
to form these clusters. In addition, the cluster center is identified. The center cluster
is unique and represents the country located in the middle of the cluster. When
several center clusters appear inside a single cluster it means that there are several
clusters belonging to bordering countries which form a single macrocluster.

In Fig. 4 two significant clusters of different European countries are observed
until the year 2002, identifying the center and neighbors in these: a cluster of high
SMR consisting of Eastern European countries (Lithuania, Latvia, Estonia, Ukraine,
Belarus, Slovakia, Hungary, and Poland) and another cluster of low SMR consist-
ing of Western European countries (Spain, Italy, France, Switzerland, Germany,
Luxembourg, and Belgium), as the Local Moran’s I significant values indicate. Non-
significant values of the Local Moran Index therefore identify countries which do
not belong to any cluster (The Czech Republic, United Kingdom, Denmark, Finland,
Ireland, The Netherlands, Norway, Slovenia, Portugal, Sweden and Austria).

It is important to emphasize that the center of cluster LL (low SMR) is France.
This is unique and remains constant over the period 1990-2009. This cluster LL
disappears from 2002 because the variability of the mortality in western countries
has been increasing since 2002. On the contrary there are several clusters of type HH
(high SMR) which form a unique macrocluster HH. For this reason in the cluster
HH (high SMR) several center clusters are observed. These center clusters differ
over the same period, moving from west to east of Europe.
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Table 2 Values of the Global Moran’s I and associated p-values to SMR

Year I.Moran Expectation Variance p-value M p-value MC
1990 0.680 —0.040 0.03 0.000 0.001
1991 0.738 —0.040 0.03 0.000 0.001
1992 0.748 —0.040 0.03 0.000 0.001
1993 0.792 —0.040 0.03 0.000 0.001
1994 0.818 —0.040 0.03 0.000 0.001
1995 0.798 —0.040 0.03 0.000 0.001
1996 0.772 —0.040 0.03 0.000 0.001
1997 0.774 —0.040 0.03 0.000 0.001
1998 0.790 —0.040 0.03 0.000 0.001
1999 0.759 —0.040 0.03 0.000 0.001
2000 0.746 —0.040 0.03 0.000 0.001
2001 0.761 —0.040 0.03 0.000 0.001
2002 0.737 —0.040 0.03 0.000 0.001
2003 0.733 —0.040 0.03 0.000 0.001
2004 0.749 —0.040 0.03 0.000 0.001
2005 0.748 —0.040 0.03 0.000 0.001
2006 0.769 —0.040 0.03 0.000 0.001
2007 0.769 —0.040 0.03 0.000 0.001
2008 0.748 —0.040 0.03 0.000 0.001
2009 0.759 —0.040 0.03 0.000 0.001

It is striking that Austria belongs to the cluster HH (high SMR) consisting of
eastern countries in the years 1990 and 1991. This is because Austria in these years
had a common border with Slovakia and Hungary, countries belonging to the center
cluster.

3.2 Spatial Lag Model with Fixed Effects (SLMFE)

The splm R-package by Millo and Piras (2012) is used to estimate the SLMFE
model. In the splm function the formula of the model, the data, spatial weights
matrix and the type of model have to be specified. The dependent variable in
the model is the logarithm of SMR, because the SMR has a strong asymmetry.
The independent considered variables are: GDP, activity rate, road sector energy
consumption, and birth rate.

The results of the fitted SLMFE with the four covariates are shown in Table 3,
which include the parameters of the model, the estimated value of these parameters,
the standard error, and the p-values or significance associated with each of the
parameters.
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Fig. 4 Clusters map in
Europe. (a) 1990. (b) 2000.
(c) 2009
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Table 3 Output of SLMFE model with four covariates

Parameters Estimate Standard error t-value p-value

o 0.2810 0.0525 5.3527 0.0000***
A 0.3522 0.0392 8.9933 0.0000***
Beop 0.0042 0.0006 6.9958 0.0000***
Bactivity rate —0.0037 0.0009 —3.9394 0.0000***
Broad energy cons —0.0042 0.0008 —5.4381 0.0000***
Bbirth rate 0.0028 0.0024 1.1919 0.2333

***p-values <0.05 are significant

Table 4 Output of SLMFE model with three covariates

Parameters Estimate Standard error t-value p-value

o 0.2896 0.0523 5.5337 0.0000***
A 0.3465 0.0391 8.8624 0.0000***
Beor 0.0041 0.0006 6.9201 0.0000***
Bactivity rate —0.0033 0.0009 —3.7814 0.00027***
Broad energy cons —0.0041 0.0008 —5.3165 0.0000***

***p-values < 0.05 are significant

Only the variable birth rate is non-significant with a p-value>0.05, therefore it
was removed from the model (Table 3).

Table 4 shows the result of the fitted SLMFE with three significant covariates. In
this model all covariates are significant and had the expected sign. The positive
sign of variable GDP is noteworthy. This result is consistent with EUROSTAT
(2013) which shows that although health conditions are related to GDP, they are
not completely dependent on the production of wealth in a given economy. The
differences between countries can also be attributed to other factors as the quality of
healthcare services, if the organizations are private or public, environmental factors,
and cultural choices. These factors affect health outcomes (EUROSTAT, 2013).

The parameter « represents the average value of the fixed effects in the SLMFE
model. All covariates are significant which means that the variables GDP, activity
rate and road sector energy consumption are important to explain the logarithm of
SMR. Variations in these three covariates cause variations in the logarithm of the
SMR of a country and in turn in the value of the logarithm of the SMR in the
connected countries. Moreover, the estimate for the spatial parameter (1) is positive
(0.3465) and highly statistically significant (p-value=0 <0.05). This indicates that,
besides the contributions that the covariables realize to the logarithm of the SMR of
a country its value increases by 34.65% when on average the logarithm of the SMR
values corresponding to the environment also increases.

The results of the estimation of spatial fixed effects of SLMFE are shown in
Table 5, which include the spatial fixed parameters of the model, the estimated
value of these parameters u;, the standard error and the p-values or significance
associated with each of the parameters. The value of p; represents the deviation of
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Table 5 Estimation of spatial effects SLMFE model with three covariates

67

Country Estimate p; Standard error t-value p-value
Austria —0.1368 0.0534 —2.5632 0.0104*
Belgium —0.1182 0.0462 —2.5564 0.0106*
Belarus 0.2724 0.0529 5.1495 0.0000***
Switzerland —0.1821 0.0608 —2.9974 0.0027**
Czech Republic 0.1167 0.0532 2.1946 0.0282*
Germany —0.1025 0.0523 —1.9614 0.0498*
Denmark 0.0349 0.0592 0.5886 0.5561
Estonia 0.1350 0.0551 2.4527 0.0142*
Spain —0.1978 0.0496 —3.9840 0.0000***
Finland —0.0673 0.0545 —1.2360 0.2164
France —0.2256 0.0500 —4.5154 0.0000***
Hungary 0.2044 0.0451 4.5344 0.0000***
Ireland —0.0074 0.0541 —0.1371 0.8909
Italy —0.2123 0.0452 —4.6915 0.0000***
Lithuania 0.1161 0.0544 2.1342 0.0328*
Luxemburg 0.0224 0.0564 0.3972 0.6912
Latvia 0.2544 0.0545 4.6665 0.0000***
Netherlands —-0.1217 0.0550 —2.2123 0.0269*
Norway —0.1231 0.0575 —2.1433 0.0321*
Poland 0.0522 0.0511 1.0211 0.3072
Portugal 0.0381 0.0554 0.6889 0.4909
Sweden —0.1727 0.0563 —3.0659 0.0022**
Slovenia 0.0213 0.0528 0.4042 0.6860
Slovakia 0.1271 0.0541 2.3502 0.0188*
Ukraine 0.3612 0.0513 7.0437 0.0000***
Uk —0.0887 0.0557 —1.5932 0.1111

*p-values < 0.05, **p-values < 0.01, ***p-values < 0.001 are significant

country i from the intercept «. The estimations of spatial effects with a negative sign
belong to the western countries inside the cluster of low SMR. This means that in
these countries the unobserved characteristics affect the logarithm of the SMR in
a negative form, compared with the average of all countries. On the contrary, the
estimations of spatial effects with a positive sign belong to the eastern countries
inside the cluster of high SMR. This means that in these countries the unobserved
characteristics affect the logarithm of the SMR in a positive form, compared with
the average of all countries. Most countries with non-significant spatial effects do
not form a cluster in Fig. 4.

The results of the estimation of temporal fixed effects of SLMFE are shown in
Table 6, which include the temporal fixed parameters of the model, the estimated
value of these parameters v,, the standard error and the p-values or significance
associated with each of the parameters. Then the value of v, represents the deviation
of year ¢ from the intercept «.
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Table 6 Estimation of time

. Year | Estimate v, | Standard error | t-value p-value
effects SLMFE model with

three covariates 1990 | —0.0074 0.0532 —0.1392 | 0.8893
1991 | —0.0042 0.0528 —0.0800 |0.9363
1992 0.0030 0.0525 0.0565 | 0.9549
1993 0.0081 0.0519 0.1551 | 0.8767
1994 | —0.0010 0.0522 —0.0190 | 0.9849
1995 | —0.0081 0.0522 —0.1541 | 0.8775
1996 | —0.0134 0.0522 —0.2567 | 0.7974
1997 | —0.0153 0.0528 —0.2900 |0.7718
1998 | —0.0060 0.0527 —0.1135 | 0.9096
1999 | —0.0038 0.0526 —0.0720 | 0.9426
2000 | —0.0089 0.0532 —0.1673 | 0.8672
2001 0.0003 0.0526 0.0054 | 0.9957
2002 0.0033 0.0527 0.0618 | 0.9507
2003 | —0.0025 0.0529 —0.0464 | 0.9630
2004 | —0.0032 0.0534 —0.0591 | 0.9529
2005 | —0.0036 0.0535 —0.0676 | 0.9461
2006 0.0010 0.0541 0.0178 | 0.9858
2007 0.0042 0.0544 0.0770 | 0.9386
2008 0.0130 0.0535 0.2427 | 0.8083
2009 0.0446 0.0518 0.8615 | 0.3889

Table 7 Output of Lagrange multiplier test for both effects, spatial effects, and time effects

Lagrange multiplier test Chi square Degrees freedom p-value
Spatial effects 4168.5 1 0.0000***
Time effects 2.3718 1 0.1235
Spatial and Time effects 4170.9 2 0.0000***

***p-values <0.001 are significant

All the v, are not significant. Before excluding non-significant effects from
the model, the Lagrange Multiplier test by Breusch and Pagan (1980) in the R-
package plm (Croissant et al., 2008) was used. The aim of this test is to contrast
the incorporation of spatial effects or time effects or spatial and time effects in
the model. If the p-value is less than 0.05 the null hypothesis will be rejected
and therefore it is necessary to include the considered fixed effects in the model.
The results of the Lagrange Multiplier tests are showed in Table 7 which include
the value of the statistic used in the contrast, degrees freedom and the p-values
or significance associated with each of the tests. The Lagrange Multiplier tests
conclude that the spatial and time effects cannot be excluded from the model
because its p-value is the most significant.

In addition, these v, were represented graphically (Fig.5) and it can be seen
that time effects follow a growing trend except for the period 1994-1998. This
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unfavorable evolution picks up the collapse of the Soviet system. Russia had the
worst life expectancy in the year 1994, as well as Estonia, Latvia, and Lithuania.
From 1994 until 1998, life expectancy in the Baltic Republics and Russia became
more favorable. This was a sign of adjustment to the new circumstances (Vagero,
2010).

Finally, the measures of goodness of fit used to validate the model were the
residual variance (0%) and determination coefficient (R?). Both measures indicate
that the SLMFE is a good model because the value of o2 is very low (0.001)
compared with the total variance of the model (0.057) and the value of R? is very
high (0.97).

To check if the SLMFE model explains the spatial dependence of the 26
European countries detected by the Global and Local Moran Index, the residuals
of the SLMFE model were studied. Table 8 shows the result of applying the Moran
and Monte Carlo tests to the residuals of SLMFE model in the considered period.
The p-values obtained for all years are not significant (p-values >0.05), indicating
that the SLMFE model controls the spatial dependence.

The residuals of the SLMFE model in Fig. 6 indicate homoscedasticity because
their behavior is around 0.
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Table 8 Values of the Global Moran’s I and associated p-values to residuals of SLMFE model

Year I.Moran Expectation Variance p-value M p-value MC
1990 0.131 —0.040 0.025 0.137 0.123
1991 —0.077 —0.040 0.025 0.592 0.582
1992 0.053 —0.040 0.018 0.248 0.243
1993 0.115 —0.040 0.027 0.174 0.200
1994 —0.134 —0.040 0.017 0.767 0.791
1995 —0.057 —0.040 0.018 0.550 0.570
1996 —0.273 —0.040 0.027 0.921 0.928
1997 0.090 —0.040 0.026 0.208 0.198
1998 —0.167 —0.040 0.018 0.824 0.839
1999 0.045 —0.040 0.026 0.300 0.287
2000 —0.041 —0.040 0.023 0.503 0.498
2001 0.073 —0.040 0.027 0.245 0.235
2002 0.186 —0.040 0.027 0.084 0.088
2003 —0.095 —0.040 0.024 0.637 0.627
2004 —0.021 —0.040 0.025 0.453 0.455
2005 0.342 —0.040 0.025 0.008 0.008
2006 0.250 —0.040 0.024 0.031 0.047
2007 —0.111 —0.040 0.028 0.665 0.650
2008 0.045 —0.040 0.027 0.302 0.308
2009 —0.027 —0.040 0.022 0.465 0.466

4 Conclusions

Over a four-decade period, a health gap has opened up between European countries,
in particular between the east/west (Vagero, 2010). The gap is growing larger and
has not attracted as much attention as it deserves (Leon, 2011); therefore, a deep
study of the mentioned differences is necessary.

This paper quantifies and compares the mortality in Europe using the SMR. To
study spatial dependence in the 26 European countries during the period 1990-2009
the Moran Global Index was used and to detect significant clusters of countries with
similar mortality the Local Moran Index was used. These last two measures are used
in fields such as epidemiology, demography, and econometrics. In addition, once
spatial dependence was confirmed, a spatial panel data model was implemented to
control the space dependence in the European countries over time.

From the results as regards countries clustering described in Sect. 3.1, the main
conclusions regarding the quantification of mortality and detection of spatial clusters
between European countries are the following.

The SMR remains higher than 1 over time in eastern European countries, while
in the rest of Europe, the SMR is less than 1. These results are consistent with those
obtained in papers such as Vaupel et al. (2011) and Mackenbach et al. (2013), where
the countries of Eastern Europe have a very low life expectancy compared to the rest
of Europe.



Spatial Statistical Tools to Assess Mortality Differences in Europe 71

0.15

0.10
i

o i T T

0.05

A

!

0.00

-0.15 -0.10 -0.05
t

-0.20

°

T T T T T

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

Fig. 6 Box plot of the residuals of SLMFE model for each year

Moreover, Slovenia is the only country in Eastern Europe that has an observed
mortality higher than expected as a part of Europe. These results are confirmed
in papers such as Trnka et al. (1998) and Zwerling et al. (2011). Those authors
indicate that Slovenia was the only country in Eastern Europe, in which the
revaccination and tuberculin skin tests were not applied. In eastern countries the
prevalence of tuberculosis was very high so the mass primary vaccination and
general revaccination (1994—-1996) were very common.

There is a significant spatial correlation in the SMR of the 26 European countries
as the Global Moran Index indicates.

Locally, the Local Moran Index has detected two significant clusters of European
countries until the year 2002. A cluster of high SMR formed by Eastern European
countries (Lithuania, Latvia, Estonia, Ukraine, Belarus, Slovakia, Hungary, and
Poland) and another cluster of low SMR composed of western European countries
(Spain, Italy, France, Switzerland, Germany, Luxembourg, and Belgium). The
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countries with nonsignificant values of the local Moran Index do not belong to any
cluster (The Czech Republic, The United Kingdom, Denmark, Finland, Ireland, The
Netherlands, Norway, Slovenia, Portugal, Sweden, and Austria).

It is important to emphasize that the center (France) of cluster LL (low SMR) is
unique and constant during the period 1990-2001. This cluster disappears from the
year 2002 which indicates that the variability of the mortality in western countries
has been increasing from 2002. On the contrary in the cluster HH (high SMR)
several center clusters are observed because there are several clusters of type HH
(high SMR) which form a unique macrocluster HH. These center clusters differ
over the same period, moving from the west to east of Europe. In relation to the
work of other authors, it is necessary to emphasize that to our knowledge, a spatial
study to detect clusters of similar mortality in Europe, verifying in turn that the
above-mentioned clusters are significant has not been carried out. There are some
studies of mortality in Europe such as Meslé and Vallin (2002), Leon (2011), and
Bonneux et al. (2010), but none of them take into account neighboring relations
between countries to detect differences in mortality.

To model the detected space dependence in European countries, a Spatial Panel
Data model was implemented. In particular, according to the typology of our data,
a Spatial Lag Model with Fixed Effects (SLMFE). The dependent variable in the
model is the logarithm of the SMR and the independent variables are: GDP, activity
rate, and road sector energy consumption. The main conclusions of the implemented
model are detailed.

The estimate for the spatial parameter (1) is positive and highly statistically
significant. This indicates that the logarithm of the SMR of a country varies with the
logarithm of the SMR between its geographical neighbors. Specifically, the value of
logarithm of the SMR of a country will increase by 34.65% when the logarithm of
the SMR values corresponding to the environment also increases.

All covariates are significant which means that variations of three covariates
cause variations in the logarithm of the SMR of a country.

The countries that form the different clusters are confirmed in the estimates of the
spatial fixed effects of Spatial Lag Model. The estimations of spatial fixed effects
with a negative sign belong to the cluster of western countries (low SMR) while
estimations of spatial fixed effects with a positive sign belong to the cluster of
eastern countries (high SMR). Most countries with non-significant spatial effects
do not form a cluster.

As regards time effects, all of them are not significant. To study whether the
fixed effects should be excluded from the model the Lagrange Multiplier test was
applied. The test concluded that neither the spatial nor time effect can be excluded
from the model. In addition, time effects were represented graphically which follow
a growing trend except for the period 1994-1998. This unfavorable evolution picks
up the collapse of the Soviet system.

Finally, the SLMFE is a good model as the measures of goodness of fit indicate
(the value of residual variance is 0.001 and the value of the determination coefficient
is 0.97). The analysis of the residuals of the SLMFE model shows that the model
takes into account the spatial dependence over the period 1990-2009.
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There is literature showing that western European countries have a higher life
expectancy than the rest, such as Mackenbach et al. (2013), Véagero (2010), and
Meslé (2004). Many of these studies address the well-known life expectancy, but
none uses a spatial methodology to detect significant associations between countries
with similar mortality implementing in turn a spatial model which controls the
space dependence of these countries over time. These spatial panel data models,
some of which are still in their early development, are applied in fields as varied as
sociology, epidemiology, geology, criminology, etc. (Gersmehl, 2014), but have not
been implemented in the actuarial field.
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Stochastic Control for Insurance: Models,
Strategies, and Numerics

Christian Hipp

Abstract This survey on stochastic control for insurance is written for stimulation
research of the topic, addressing new problems (such as dividend values with
ruin constraint) and new methods (as the non-stationary approach) as well as
numerical issues (Euler type discretizations). In the context of discretizations,
viscosity arguments are important which are adapted here for the purpose of solving
insurance problems. Finally, open problems are listed.

Keywords Stochastic control ¢ Viscosity solutions ¢ Euler type discretizations ®
Multi objective problems

AMS classification: primary 91B30, 93E20; secondary 49120, 49L.25, 49M25

1 Prologue

This paper is based on a short course given at University of Cartagena, Columbia,
during the Second International Congress on Actuarial Science and Quantitative
Finance. Its issue is an introduction into stochastic control in insurance, with special
emphasis on new problems, new approaches and new methods, as well as on
numerical issues. We will consider control for minimizing ruin probability (which
results in reduction of solvency capital) as well as maximizing dividend payment
(which has impact on the company value). Combining these two objectives, we
consider maximization of dividend value under a ruin constraint. We will start with
a simple discrete example where the tools and methods for more complex models
are introduced. This example is just for illustration, it is too simple for applications
or for advanced mathematics. Such simple models have their merits in education
(see, e.g., De Finetti 1957). In this discrete example we consider
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. infinite time ruin probability,

. minimal ruin probability by control of reinsurance,

. minimal ruin probability by control of investment,

. company value, i.e. maximal dividend value by control of dividend payment,
. maximal company value by control of reinsurance,

. company value under ruin constraint, and

7. maximal company value under ruin constraint with control of reinsurance.

AN AW =

A Discrete Example We consider a discrete time and space risk process S(¢),t > 0,
which jumps from s to s 4+ 2 with probability p; = 0.55, to s — 1 with probability
p2 = 0.3, and to s — 3 with probability p; = 0.15. This can be regarded as a risk
process of an insurer who in each period receives a premium of size 2 and pays
claims of size 3 and 5, respectively. The infinite horizon ruin probability

¥ (s) = P{S(¢) < 0 for some 7 > 0|S(0) = s}

satisfies the dynamic equation
V() =piy(s+2) +pa(s—1) +psy(s —3).s =0, ey

with ¥ (s) = 1 for s < 0. Using the operator

Gf(s) = pif (s +2) + pof (s = 1) + paf(s = 3)
the above dynamic equation reads

V(s) =Gy(s).s 2 0.

The common computation of ¥ (s) is done via generating functions, the solution of

the characteristic equation and the adjustment to the boundary values ¥ (s) = 1,5 <
0 and v (00) = 0. The characteristic equation

2 =pi2 +pa +ps
has the five complex solutions z; which with coefficients C; form the solution

¥(s) = Ci1z1 + ... + Cszs having the appropriate boundary values. In our example,
in particular, ¥ (12) = 0.08828824.

i |z C;

11 0

2 1 0.835935 0.758246

3 | -1.503707 0

4 | —0.166114 4 0.435170i | —0.006270 + 0.020799i
5 | —0.166114 — 0.435170i | —0.006270 — 0.020799;
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For numerical computation and for the next problems it is useful to consider
instead a nonstationary approach. For ¢ > 0 define v (s, 7) as the probability of ruin
after time 7, given S(¢) = s. The functions s — (s, ) satisfy

Y(s,t—1) =Gy(s,1),s >0, 2)

with ¥ (s, 1) = 1 for s < 0. Starting with large 7 > 0 and initial function ¢ (s, T) =
0,s > 0, ¢(5,T) = 1,5 < 0 we calculate with (2) for the functions ¢ (s, t) all
terms down to t+ = 0, and ¢(s,0) is a good approximation for ¥ (s) : ¢(s,0) is
the probability for ruin before or at T which is close to ¥ (s) when T is large. For
T = 5000 we obtain for ¢(12, 0) all the digits for ¥ (12) shown above.

Assume that for each period we can buy reinsurance: for the price of 1 the
reinsurer pays 3 when a claim of size 5 occurs, and 1 when the claim has size 3.
So for each claim the first insurer has to pay 2; this type of risk sharing is called
excess of loss reinsurance. What is the optimal reinsurance strategy to minimize
the ruin probability, and what is the corresponding ruin probability v/ (s)? The
nonstationary approach—with a slightly changed dynamic equation—produces the
solution: replace (2) by

Y(s,t—1) = min[GY (s, 1), G (s.1)] 3)
Gif(s) = pif(s + 1) + paof (s — 1) + paf (s — D). 4)

The operator G shows the dynamics in the case without reinsurance, while the
operator in (4) corresponds to the dynamics with reinsurance. The numerical
procedure and the initial functions are the same as above. With dynamic reinsurance,
the ruin probability is reduced to ¥ (12) = 0.063095. The optimal reinsurance
strategy is: buy reinsurance whenever s > 2. With static reinsurance, i.e. reinsurance
for all s > 0, we obtain ¥ (12) = 0.073629.

Assume that for each period we can invest an amount of 1 which in this
period either doubles with probability w > 1/2, or is lost with probability
1 — w, where investment return is independent of insurance business. What is the
optimal investment strategy to minimize the ruin probability? The nonstationary
approach—again with a slightly changed dynamic equation—produces the solution:
replace (2) by

Y(s.t—1) = min[GV (s, 1), G (s, 1)] (5)
Gof (s) = wgf(s + 1) + (1 —w)Gf (s — 1) (6)

The operator G shows the dynamics in the case without investment, while the
operator in (6) corresponds to the dynamics with investment. The numerical
procedure and the initial functions are the same as above. With dynamic investment,
the ruin probability for w = 0.55 is reduced to ¥ (12) = 0.07611. The optimal
investment strategy is: invest whenever s ¢ {0,2}. With static investment, i.e.
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investment for all s > 0, we obtain 1}(12) = 0.0923987 which is larger than without
investment. Of course, one might extend the control to invest more than 1, which
can be solved with a larger set of operators.

For discount rate 0 < r < 1 and for a given dividend strategy d(z),t > 0, we
consider the expected discounted dividends

Vi) =E [Z r'd(n)|S(0) = s:| ,

n=0

where d(¢) is paid at time ¢ and depends on the history up to time ¢t — 1. The dividend
risk process is §%(s) = S(t) — d(0) — ... — d(t — 1); its ruin time is denoted by 7¢.
Dividend payments are forbidden at and after ruin. The company value is given by

V(s) = sup V4(s),s > 0,
d

its dynamic equation equals
V(s) = max{rGV(s),V(s—1) + 1}, @)

with V(s) = 0 for s < 0. As above, the generating function method can be applied
here, but this equation can also be solved with a nonstationary approach. For ¢t > 0
consider the time ¢ dividend functions

Vi(s, 1) =E [Z Fd(n)|S(1) = s] ,

and define V (s, 1) as the supremum of these dividend functions. The functions V (s, )
satisfy

V(s,t—1) = max{GV(s,1), V(s — 1, — 1) + 1}, (8)

with V(s,f) = 0, s < 0. Starting with large 7 > 0 and initial function V(s,7) = 0
we calculate with (8) the functions V(s,t) down to ¢t = 0, and V(s,0) is a good
approximation for V(s). For r = 0.98 we obtain V(12) = 17.933928.

For simultaneous control of dividend payments and reinsurance we simply
replace the expression GV(s,t) in (8) by max(GV(s,t),GV(s,t)). The dividend
value changes to V(12) = 18.104876. The optimal reinsurance strategy is: buy
reinsurance when s > 10.

Optimal dividend payment with a ruin constraint has the value function

V(s ) = sup[V9(s) : P{r? < o0} < a].
d
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To solve it we use the Lagrange multiplier method and maximize for a large constant
L the expression

W(s, L) = sup[V%(s) — LP{r¢ < oo}].
d

For the nonstationary approach we consider again the dividend payments after time
t, together with the ruin time r,d after time ¢ :

W(s, 1) = sup[V’(s, ) — LP{t? < 0o|S(t) = s}].
d

The dynamic equation for these functions reads
W(s, t—1) = max{GW(s, 1), W(s — 1,1 — 1) + '}, 9)

where W(s,t) = —L for s < 0. The initial function here is W(s, T) = —Ly (s). For
the computation of the corresponding ruin probability, we simultaneously compute
functions v (s, #) from

Y(s.t—1) =Gy (s.0), (10)

when the maximum in (9) is at GW(s, 1) (no dividend payment), and ¥ (s,t — 1) =
¥(s — 1,1 — 1) otherwise. The initial function is ¥ (s, T) = ¥ (s). For s = 12 we
have a ruin probability without dividend payment v (12) = 0.088288 and a dividend
value without constraint V(12) = 18.933928. We take L = 40 and obtain W(12) =
5.646781. The ruin probability with dividend payments equals ¥ (12) = 0.160923,
so the dividend value is W(12) 4+ Ly (12) = 12.083708.

For simultaneous control of dividend payments under a ruin constraint and
reinsurance we simply replace the expression GW(s, 1) in (9) by

max(GW (s, 1), GiW(s, 1)).

Also here, we obtain the corresponding ruin probability in a simultaneous com-
putation: we use the dynamic equations (10) when no dividends are paid and no
reinsurance is bought, or the relation

W(S,l‘— 1) = QIW(S»t)

when no dividends are paid and reinsurance is bought, or finally

Yis,t—1)=v¢(s—1,t—1)

when dividends are paid. For s = 12 and L = 13.754 we obtain a ruin probability
¥(12) = 0.160828 and a dividend value W(12,L) + Ly (12) = 17.635244.
Comparing this company value with the one without ruin constraint, one can see that
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a ruin constraint can be cheap when an appropriate reinsurance cover is available
(which, in our case, has a rather small loading: the premium is 1 while the expected
payments are 0.75).

Apparently, the nonstationary approach seems to be well suited for the compu-
tation of value functions and optimal strategies since it can easily be adapted to
various different problems. It is superior to the stationary method given in Hipp
(2003) which is based on a modified Hamilton-Jacobi-Bellman equation: it is much
faster. This is caused by the fact that in the stationary approach one has to compute
value functions for all 0 < @ < 1, while in the nonstationary approach one has only
one fixed o (specified by L).

The following figure shows the optimal strategies for control of dividends with
ruin constraint with and without reinsurance. They depend on the current surplus s
and time . In both cases the optimal dividend strategies are barrier strategies defined
by a barrier M(t); the optimal reinsurance strategy is also a barrier strategy: buy
reinsurance when s > N(7). The values of M(z) and N(r) are piecewise constant;
they are shown for + = 0,...200. The highest curve shows M(z) for the case
without reinsurance, while the two curves below show M(f) and N(¢) for the case
with reinsurance.
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Continuous Time Models and Their Generators For applications, continuous
time models are of major importance. The classical risk model for insurance is
the Lundberg model in which the claim arrivals are modeled as a homogeneous
Poisson process N(t),t > 0, with constant intensity A > 0, and the claim sizes
X,Xi,X,, ... are independent and identically distributed and independent of the
process N(t). The risk process is then given by
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St =s+ct—Xi —...—Xno»

where s is the initial surplus and ¢ the premium rate. We always assume a positive
loading, i.e. ¢ > AE[X]. S(¢) is a time homogeneous process with independent
increments. The above operator G in continuous time homogeneous Markov
processes is the infinitesimal generator

Gf(s) = lim E/(S(t) = [(5)IS(0) = s]/h. an
which for the Lundberg model equals

Gf(s) = AE[f(s — X) —f(s)] + ¢f'(s)

which is defined on the set of all bounded differentiable functions f(s).
A large scale approximation of stationary risk processes with independent
increments is the simple diffusion with dynamics

ds(t) = pdt + odW(r), t = 0, (12)
where W(?) is the standard Brownian motion. The generator equals

Gf(s) = uf'(s) + " (s)/2,

it is defined on the set of locally bounded functions with second derivative.

One possible way to include parameter uncertainty is the choice of mixture
models for S(z), such as the Cox process in which the intensity of the claims arrival
process is random and modeled as a time homogeneous finite Markov process.
Here, we have a finite number of possible non-negative and distinct intensities
Ai, i = 1,...,m, and A(¢) jumps between these intensities in a homogeneous
Markovian way. This is usually described via parameters b;;, i,j = 1,...,m,
satisfying b;; > 0, i # j, and

bii=— b

i

If the intensity is in state A;, then it stays there an exponential waiting time with
parameter —b;;, and then it jumps to A; with probability —b; ;/b; ;.

Mixture models are more complex than the above-mentioned models, they
sometimes lack the independence of increments and often also the Markov property.
When A(¢) is observable, then the state (S(¢), A(¢)) has the Markov property, and the
generator for thisats > 0, i = 1,...,mequals

m

Gf (s.1) = MEIf(s = X.0) = f(5. )] + cfils. D) + D bij(F(s.)) = f(s.D).  (13)

j=1
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When A(r) is not observable, then again one can enlarge the state vector to
obtain the Markov property: if F; is the filtration generated by S(¢), ¢+ > 0, then
(S(@),p1(2), ..., pu(t)) has the Markov property, where p;(t) is the conditional prob-
ability of A(f) = A;, given F(¢). The processes py(t) are piecewise deterministic,
they depend on ¢ and the history S,, u < t. Between claims they can be computed
using the following system of interacting differential equations:

1 1
P = Y PO — aprt) + pe() Y pi(DAy, i =1, L. (14)

J=1 J=1

This follows from the fact that from ¢ to 14 dt, given A(f) = A4, there is no transition
and no claim with probability 1—Adt+by xdt+o(dt), and forj # k, given A(r) = A;,
there is a transition from A; to A, and no claim with probability b;xdt + o(dt). So,
given N(t + dt) = N(2),

pk(l) (1 — Akdl + bk,kdl) + Zi7ék bj'kpj(l)dt

P{N(t 4 dt) = N(t)| F:}
_ pk(f) (1 — Akdl‘) + Zj bj,kp_j(t)dt
o 1-— ijj(l)kjdt

pi(t 4 dn) = + o(dn)

o(dt)

=pe(®) | 1= Aedr + D piOAsde | + Y biupi(0dt + o(dr).
Jj J

At a claim, the process pi(f) has a jump: given N(t + df) > N(¢) we have for
k=1,...,1

Api(t)

. 15
2 Pi(DA, 1

P = pr(tt) =
This follows from
PIN(t + h) > N(t), At + h) = M| Fi} = pr(t)Ach + o(h),

1
P{N(t+ h) > N(O|F} = > pi()Ah + o(h).

J=1

From this dynamics we obtain the following generator:

Gf(s.p) = Y PMElf(s — X.p™) —f(s.p)] + chils.p) + Y _fou(s.p)Pf (16)
k k

Here, f; and f,, are the partial derivatives with respect to s and py, respectively.
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Mixtures with constant but unknown parameters in a finite set {1y, ..., 4,,} can
be modeled as follows: let A be a random variable with p; = P{A = A;} known.
Assume that given A = A;, S(¢) is a classical Lundberg process with intensity A;.
With p;(7) the conditional probability of A = A;, given S(u), u < t, the vector
(8(2),p1(2), ..., pm(t)) has the Markov property. The dynamics of the p;(f) is the
same as in the above example, with b;;y = 0 for j,k = 1,...,m. The generator is
the same as in (16).

For mixture models as well as for dividend problems with ruin constraint, it is
convenient to consider also non-stationary generators. As illustration we mention
the example which is also considered in Sect. 5. It is a delayed compound Poisson
process where up to a random time 7 we have S(f) = s + ct, and for r > T, given
T the risk process s + S(¢) — S(T) is a compound Poisson process. The time 7 has
an exponential distribution. We want to minimize the ruin probability by control of
reinsurance. For this, write V(s, r) for the controlled ruin probability after time ¢,
given that no claim happened until ¢. Then V(s, f) has a dynamic equation of the
form

0 = infp(NAE[Vi(s — ga(X)) = V(s, D] + (c = h(@)Vi(s, 1) + Vi(s, 1),

where p(?) is the conditional probability of # < T, given no claim up to time ¢, and
Vi(s) is the minimal ruin probability for the case with constant positive intensity.
The quantity i(a) is the reinsurance price for risk sharing g,(X).

2 Ruin and Company Value

We shall restrict ourselves to three types of control problem: one in which we
minimize the infinite time of ruin, next the maximization of the company value, and
finally the maximization of a company value with a ruin constraint. We shall always
consider an infinite horizon view, since insurance uses diversification in time, and
some insurance products are long term.

For Lundberg models, the infinite time ruin probability is a classical bounded
solution of the dynamic equation ¥ (s) = Gy (s),s > 0, with a continuous first
derivative. It is the unique classical solution satisfying ¥ (s) = 1, s < 0, ¥(oc0) =
0, and ¥'(0) = —A(1 — V(0))/c. Analytic expressions for ¥ (s) can be given for
exponential or more general phase-type distributions (see Chap. IX of Albrecher and
Asmussen 2010).

The company value is itself the result of a control problem: what is the maximal
expected discounted sum of paid dividends? In mathematical terms:

Vo(s) = sup {E [ / - e dD(1)|S(0) = s:|} ,
D 0
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where D = D(t), t > 0 is the sum of dividends paid up to time ¢ with
some admissible dividend payment strategy. Already in the Lundberg model, this
question is hard, too hard for applications in insurance. The answer is simpler if we
restrict dividend payment to strategies which are barrier strategies. Optimal barrier
strategies can be derived from a classical solution v(s) of the dynamic equation

0 = Sv(s) + Gu(s), 17

with v(0) = v'(0) = 1, where G is the generator of the risk process and § is the
discount rate. Then

Vo(s) = v(s)/v'(M), s <M, Vo(s) = Vo(M) +s—M, s > M,
where the optimal barrier is given by
M = arg min v’ (s)

(see Schmidli 2007, Sect.2.4.2). This simplified answer is a sub-solution of the
above control problem. It is an optimal dividend strategy only for special claim size
distributions (see Loeffen 2008). Generally, optimal dividend strategies are band
strategies, i.e. there might exist M < M; < M, for which no dividends are paid as
long as M| < S(t) < M>, and for M < S(f) < M, alump sum M| — S(¢) is paid out
immediately. However, optimal barrier strategies are useful for applications since
for s < M the dividend values of the barrier strategy are the same as the dividend
value of the optimal band strategy.

For the company value, a discount rate is needed which can be a market interest
rate (which should be modeled with some stochastic process which is allowed to be
negative), or a value which shareholders and accountants agree upon. We will be
concerned only with positive constant discounting rates.

A company value with ruin constraint is an even more complex quantity since
it involves a control problem with two objective functions. Its computation is still
work in progress. We consider it here since it appealing to both, the policy holders
and the stock holders. The value is given by

V(s,a) = sup %E [/000 e 1dD(1)]S(0) = s:| yPs) < oc} ,

D

where 0 < o < 1 is the allowed ruin probability and ¥”(s) is the with dividend
ruin probability. Clearly, V(s, 1) = Vy(s), and if ¥ (s) is the without dividend ruin
probability, then V(s, ¥ (s)) = 0.

The meaning of a company value with ruin constraint might become clearer when
we meditate a little about special dividend strategies which have constrained ruin
probabilities. Let us do this in a diffusion model which does not have downward
jumps. Let s(«) be the solution of {(s) = «. The simplest strategy is: pay out
s — s(a) immediately, and stop dividends forever. This has a ruin probability o«
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and a dividend value s — s(«). A better strategy is constructed using the optimal
unconstrained dividend strategy based on the barrier M and leading to the dividend
value Vj(s). Choose s > 0 and o > ¥ (s); then s(«) < s, so you can put aside s(«)
(e.g., into your pocket), and then use the unconstrained dividend strategy with initial
surplus s—s(&). Atruin, i.e. when you reach zero, you stop paying dividends forever.
With your money from the pocket, you indeed stopped with s(c), and so your ruin
probability equals «. And your corresponding dividend value equals V(s —s(«)) >
s —s(a).

Money in the pocket is never optimal, and so there should exist improvements
of the dividend strategy with the same ruin probability. Our next strategy is based
on the improvement procedure introduced in Hipp (2016). We assume s < M and
a > Y(s). Do not pay dividends until you reach M. You will be ruined before
reaching M with probability A = (Y (s) — ¥ (M))/(1 — ¥ (M)) < ¥ (s) < a. Define
0 < y < « via equation

A+y(l—-A) =a.

When you reach M, you put aside the amount s(y) and pay out dividends with the
unconstrained strategy until you reach s(y). Then you again stop paying dividends
forever. The resulting ruin probability is ¢, and the dividend value will be V(M —
s(y)), discounted over the time 7 until you reach M. With our function Vj(s) above
we have E[e~™] = V;(s)/Vo(M), and so the dividend value of our strategy is

Vo(s)
Vo(M)

Vo(M — 5(y))

which is larger than V(s — s(«)). The reason for this is: in the first case we stop
dividend payment forever at s(«), also when we did not reach M yet, and this
reduces the dividend payments. In the second we wait until we reach M, and then
money goes to our pocket.

3 Hamilton-Jacobi-Bellman Equations

The use of these equations might seem a bit old-fashioned, but with the concept of
viscosity solutions it is still a standard approach. For a stationary Markov process
which should be controlled by actions a € A we consider the process with a constant
(in time) action a and the corresponding generator G of the resulting Markov
process. If we minimize ruin probability, the Hamilton-Jacobi-Bellman equation
reads

0 = inf GV (x), (18)
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where V(x) stands for the value function of the problem and x = (s,p) is the
(enlarged) vector of states, s > 0 being the surplus. If we maximize dividend
payments, it is given by the formula

0= —8V(s) +supGV(x), (19)

where § > 0 is the discount rate. But here the range of x is restricted to {(x, p) : x <
M(p)}, where for fixed p, M(p) is the smallest point x at which V(x,p) = 1. For
larger x the function is linear with slope 1:

V(x.p) = V(M(p).p) +x —M(p).

Notice that we neglect a possible second and third, etc. band.

In Lundberg models, Eq. (18) involves a first derivative and an expectation. Such
an equation needs two boundary values to identify a unique solution. For ruin
probabilities V(s) = 1 for s < 0, and so we can use the two conditions V(co) = 0
and V'(0) = A(1—V(0)/c. For dividend values we first use a solution with v(s) = 0
for s < 0 and v(0) = 1,v'(0) = A/c, and then we minimize v’(s) (see Chap. 6).

In simple diffusion models, Eq. (18) shows a first and a second derivative. For
this we again need two conditions, which are V(0) = 1, V(co) = 0 for the ruin
probability, and V(0) = 0, V/(M) = 1 for dividend values, where M is again the
minimizer for v’(s).

We shall frequently use a nonstationary approach, even for stationary problems.
In our introductory example, we have computed the infinite horizon ruin probability
with such an approach: we considered the ruin probability V (s, ¢) after time t when
starting in s at #. We used a large number 7" and used the initial guess V(s,T) = 1 if
s < 0,and V(s,T) = 0elsewhere. Using the dynamic equation for the nonstationary
case, we calculated backward in ¢ to the end 7 = 0, and V(s, 0) was an almost exact
value for the ruin probability in the stationary model.

For this we need the dynamic equation for a nonstationary setup in the case of a
stationary Markov model. This is most simple: if G is the generator of the model,
then the equation is

0=3GV(s,t) + Vi(s,1). (20)

In the dividend case, there is no extra term with § as in (19) since the discounting is
modeled in the time dependence.

For cases like the volcano problem in Chap. 5, we obtain a nonstationary dynamic
equation in which time dependent quantities enter.
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4 Investment Control

What is the optimal investment strategy for an insurer to minimize her ruin
probability? This is one of the oldest questions in the field of stochastic control in
insurance, it was solved for the simple diffusion case by Browne (1995) in 1995.
A simple framework for this problem is a Lundberg process for the risk and a
logarithmic Brownian motion for the capital market (a stock or an index) in which
the insurer can invest.

Our first example is of little use in insurance industry, but it might serve as an
introduction since it shows many features which are present in other cases. We
assume that the insurer does not earn interest and pay taxes, and that he can invest
an unrestricted amount, i.e. unlimited leverage and short-selling are allowed. We
assume in the following that the Lundberg process has parameters ¢ (premium rate),
A (claim frequency), X (generic claim size) with bounded density, and ¢ > AE[X]
(positive loading).

The price process of the asset has dynamics

dZ(t) = pZ(t)dt + o Z(1)dW(z), t > 0,

where W () is standard Brownian motion and p, o are positive.

Theorem 1 The minimal ruin probability V(s) is a classical solution to the dynamic
equation

0 = infAE[V(s — X) = V(9)] + (c + pAV'(s) + A0V (s)/2}, s > 0. (21)

The function V(s) has a continuous second derivative V"'(s) < 0 in s > 0, with
lim;_.o V"(s) = —oc. The optimal amount A(s) invested at state s is A(0) = 0 and
A*(s) = —uV'(s)/(0*V"(s)), s > 0.
Two different proofs are given in Hipp and Plum (2000, 2003).

There are only a few parameters and exponential claim sizes for which A(s) or
V(s) can be given in explicit form.

Example 2 Letu = 0 = A = 1 and ¢ = 3/2. The claim size has an exponential
distribution with mean a. Then

A(s) = v/2c/av'1 — e720s,

Here, A(s)/s — oo, and this is a typical behavior of the optimal investment
strategy. Since unlimited leverage is forbidden for insurers, leverage has to be
bounded or completely forbidden by constraints on the strategies. Such constraints
can be defined state dependent, allowing a range .A(s) for the choice of the amount
invested at surplus s. With these we can deal with the case of no restriction A(s) =
(—o00, 00), no leverage A(s) = (—o0, s], no short-selling A(s) = [0, 00), neither
leverage nor short-selling A(s) = [0, 1], and bounded leverage and bounded short-
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selling A(s) = [—as, bs]. The constraints change the control problem substantially;
so, e.g. for no leverage constraint there is no optimal investment strategy. An optimal
strategy would be to invest the amount —oo on the market (volatility hunger).
Furthermore, constraints can lead to non-smoothness of the value function.

Such cases are investigated in the papers Azcue and Muler (2010), Belkina
et al. (2014), Edalati (2013), Edalati and Hipp (2013), and Hipp (2015). While the
proofs and arguments in these papers are all different, it is good to have a universal
numerical method (see Sect. 8) which works in all these situations.

The corresponding dynamic equation for the value function reads

0= C_ir}‘f( ){AE[V(S —X) = V()] + (c + pA)V'(s) + A%6*V"(5)/2}, s > 0.

If A(s) = [a(s), b(s)] is an interval, then the minimization with respect to A is easy:
there are only three possible minima: at a(s), b(s) or at the unconstrained minimizer
A*(s).

The resulting optimal investment strategies vary according to the claim size
distribution. For the unconstrained case, we see that A*(s) is

1. bounded and converging to 1/R, the adjustment coefficient of the problem, in the
small claims case (Hipp and Schmidli, 2004),
2. unbounded increasing in the large claims case as Weibull, Lognormal, Pareto:
the larger risk, the higher the amount invested (Schmidli, 2005)
. asymptotically linear for Pareto claims.
4. very special when claims are constant (see Sect. 8).

W

Extensions to other models cause little technical problems. Interest rate earned
on surplus or paid for loans can be implemented (see Hipp and Plum 2003).
In the case of two (correlated) stocks, a very simple model would be the dynamics

dz;(t) = a;Z;(t)dt + biZ;(1)dW;(t), t > 0,i = 1,2,

where p is the correlation between Wy () and W, (¢). If we first choose the proportion
p and 1 — p in which we invest the amount A in stock 1 and stock 2, then we obtain
the usual dynamic equation with u and o> depending on p. Taking the minimum
over A the dynamic equation remains with the term

1 /,LZV/(S)Z
ZGZV”(S)Z’

and since V'(s), V"(s) are fixed, we have to maximize p?/0? which produces the
well-known optimum

a1b§ —ap
alb% + azb% — (a1 + az),o

p=
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which is constant. So we indeed have investment into just one index with price
process pZ; (1) + (1 — p)Zx(2).

In other market models for the stock price Z(¢), the return on investment will
depend on the current price Z(f) which must be included as state variable: for the
dynamics

dzZ(t) = (u — Z(t))*dt + Z()dW(t), t > 0

we will do no or only little investment when Z(¥) is close to .

Optimal investment can also be used to maximize the company value. This
leads to a similar dynamic equation in which changes for dividend payment are
necessary (see Azcue and Muler 2010). For simultaneous control of investment and
reinsurance, also with constraints, see Edalati (2013).

5 Reinsurance Control

Reinsurance is a most important tool for risk management in insurance. We restrict
ourselves on reinsurance of single claims, so we disregard stop loss reinsurance
which would ask for a time discrete model. In single claims reinsurance we have
a risk sharing between first insurer and reinsurer described by some function g(x)
satisfying 0 < g(x) < x which denotes the amount paid by the first insurer; the
amount of the reinsurer for a claim of size x is x — g(x). Let G be the set of all
risk sharings on the market, and assume that there is go € G with go(x) = x (no
reinsurance).

Optimal reinsurance will here be considered for minimizing the first insurer’s
ruin probability. For maximizing the company value, see Azcue and Muler (2005).

Optimal control for reinsurance is done on a market in which for a risk sharing
g(x) aprice is specified, and this price determines the optimal strategy. If reinsurance
is unaffordable on the market, then it will be optimal not to buy reinsurance. On the
other hand, if reinsurance is cheap, then it might be optimal to transfer the total risk
to the reinsurer and reach a position with zero ruin probability.

For this exposition of reinsurance control we take a Lundberg model for the risk
process.

Assume now that a price system A(g), g € G, is given which for each risk sharing
defines its reinsurance price, with i(gy) = 0. If at time ¢ the reinsurance contract
g:(x) is active, then the risk process of the first insurer is given by

N(r)

S(t)=s+ct— /(; h(g,)du — ZgT,(Xi),
1

where T, T», . . . are the time points at which claims occur. The generator for a fixed
risk sharing g € G is
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Gf(s) = AE[f (s — g(X)) — ()] + (c — h(g))f'(5). (22)

We are minimizing the infinite horizon ruin probability through dynamic reinsur-
ance, which leads us—as in the discrete case—to a dynamic equation for the control
problem, the well-known Hamilton-Jacobi-Bellman equation:

0= gg(f;{/\E[V(S —8(X)) = V()] + (c —h()V'()}, s = 0, (23)

with the boundary values V(co) = 0 and V(s) = 1, s < 0. Rearranging terms, we
obtain
AE[V(s) = V(s —g(X))]

V/(s) = sup (24)
g€G:h(g)<c ¢ = h(g)

From this equation we come to the recursion

/ AE[V,(s) — V(s — g(X))]
v _ , 25
ut1(5) geGS:;lg)q_ c—h(g) @

Vi == [ Vi 6)

which produces an increasing sequence of continuous function converging to a
solution of (23) when we start with V,(s) = ¥ (s), the infinite time ruin proba-
bility without reinsurance. This recursion is, however, not adequate for numerical
computations.

In order to obtain a nontrivial solution for our control problem, total reinsurance
go(x) = 0 should be expensive in the sense that 4(gy) > c¢. Otherwise total insurance
would be affordable and yield a ruin probability zero for the first insurer.

In this paper, we will restrict ourselves to reinsurance prices computed as a
loaded expectation:

h(g) = ApE[X — g(X)],

where ApE[X] > c.
Common reinsurance forms are

1. proportional reinsurance with g(x) = bx, 0 <b <1,
2. unlimited XL reinsurance with g(x) = (x —M)™,0 < M < oo, and
3. limited XL reinsurance with g(x) = min((x — M)*,L),0 <M, L < co.

XL is the usual shorthand for excess of loss. The numbers M and L are called priority
and limit, respectively.

Under the above pricing formula, static proportional reinsurance (which is
constant over time) does not decrease the first insurer’s ruin probability. However in
dynamic control, expensive proportional reinsurance can reduce ruin probability.
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The unlimited XL reinsurance is optimal for the static situation in the following
sense: if g(x) is an arbitrary risk sharing function and gy/(x) an unlimited XL risk
sharing with E[g(X)] = E[gy(X)], then the first insurer’s ruin probability with g is
smaller than the ruin probability with g. Unlimited XL reinsurance is illiquid and/or
expensive on reinsurance markets, more common are limited XL forms. Also these
have some optimality in the static situation: if g is an arbitrary risk sharing with
x — g(x) < L and, for some M, gy ; a limited XL reinsurance with E[g(X)] =
E[gy.1(X)], then the first insurer’s ruin probability with g, is smaller than the ruin
probability with g.

Optimal dynamic reinsurance strategies take often the position no reinsurance
when the surplus is small. For proportional reinsurance this was shown by Schmidli
(see Schmidli 2007, Lemma 2.14) under the assumption that the price function 4(b)
satisfies lim inf,—.o(c — h(b))/b > 0.

A similar results holds for unlimited XL reinsurance: If #(M) is continuous at
M = 0, then there exists My > 0 for which /(M) > ¢ for all 0 < M < M,. Choose
s < My. The supremum in (24) is taken over M > My > s. For s < M

E[V(s — min(X. M))] = P{X > s} + E[V(s — X) 1<y}

does not depend on M, so the supremum in (24) is attained at M = oo (no
reinsurance) For more details, see Hipp and Vogt (2003).

For limited XL reinsurance, for small surplus s we will see an optimal reinsurance
strategy with M and L as well as a price (M, L) close to but not at zero.

Example 3 We consider a delayed compound Poisson process which has an expo-
nential first waiting time 7 with mean 8 = 1 in which no claims occur, and after
time 7 the claims arrival is a Poisson process with constant intensity A = 1. Also
the claim sizes have an exponential distribution with a mean 1; the premium rate is
¢ = 2. What is the optimal dynamic unlimited XL reinsurance which minimizes the
ruin probability?

Volcanos show long waiting times between periods with frequent seismic waves.
One could model claims caused by these waves as above.

The standard approach for a solution would be to solve the corresponding
Hamilton-Jacobi-Bellman equation (16) for the value function V (s, p), where p()
is the conditional probability of A(f) = A, given S(u), u < t. But we cannot solve
the equation with V(s, 1) as boundary condition since the factor of V, (s, p) is zero
when p = 1. Since we know A(f) = A after the first claim, we only need the
optimal reinsurance strategy until the first claim. Given no claim up to time ¢, the
function p(¢) has derivative given in (14) which yields p(¢r) = t/(1 + ). We use a
nonstationary approach.

This seems to work well for ruin without reinsurance: let v (s) be the ruin proba-
bility for the uncontrolled Lundberg process with intensity A, ¥ (s) = exp(—s/2)/2.
From Ev (s — X)] = 2 (s) and ¥’ (s) = —(s)/2 we can see that the separation of
variables works: for V(s, 1) = f(f)¥(s) the dynamic equation

0 = p()E[Y (s — X) = V(5. )] + cVy(s.1) + Vi(s. 1)
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yields

P2 —f@®) —fO) +f (1) =0, 1 >0, f(c0) = 1,
with the solution

1+ 2t
1+1¢

=5

and the value f(0) = 1/2. So, V(s,1) = (1 + p(r))e™*/?/4. These exact values can
be reproduced numerically with 7 = 300, ds = 0.01 and dr = 0.001.
With reinsurance we consider the value function V (s, t) and its dynamic equation

0= SEP{P(t)E[Vl (s —gu(X) = V(s. D] + 2 = h(M))Vi(s.1) + Vi(s. D)},

where g)(X) = min(X, M) and h(M) = 2pE[X — gy (X)] is the reinsurance price for
priority M, and V/(s) is the value function for the problem with constant intensity
1. The optimal priority M(s, t) is derived from maximizing

POEVi(s — gu(X)] + (2 — h(M)) Vi(s. 7).

For large T we start with V(s, T) = V(s), and calculate backwards to t = 0 using
the recursion

V(s,t—dt) = V(s, 1) +dt{p()E[V (s, 1) —Vi(s—gu(X))]—(c—h(M))Vi(s, 1)  (27)

in which M = M(s,t) is the optimal priority. The parameter for reinsurance is
p = L.1. Of course, no reinsurance is optimal for all s > 0 when ¢t = 0. We see
six priority curves M(s,),0.2 < s < 2, for t = 0.05,0.025, 0.045, 0.095, 0.17, 300
(from the right) (Fig. 1). The curves do not intersect; for smaller r we transfer less
risk to the reinsurer. In particular, the interval without reinsurance decreases with 7
from [0, 1.47] to [0, 0.23].

For more general Markov switching models one could perhaps adopt the above
approach. Starting with a given initial probability vector at time 0, we can compute
the filter p(7) for the time without claim. Assume the vectors p(t) converge to p.
Since the control problem with initial distribution p can be solved easily, we can use
the corresponding value function Vj(s) as V(s, 00), so again we would start at some
large T instead of oo, and would compute backward to + = 0 with the appropriate
dynamic equation.
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Fig. 1 M(s, 1) for t = 0.005,0.025, 0.045,0.095, 0.17, 3005
6 Dividend Control

Management decisions in insurance, such as reinsurance or investment, have an
impact on the company value, and control of investment and reinsurance can be
done with the objective to maximize this value. Since the company value is itself
the result of a control problem, the maximizing by investment or reinsurance is
a control problem with two (or more) control variables, dividends and investment
and/or reinsurance. For simplification we restrict ourselves to dividend strategies
which are barrier strategies.

Azcue and Muler (in Azcue and Muler 2005, 2010) solve the problems for
reinsurance and investment. They mainly characterize the value function as a solu-
tion to the dynamic equation, without showing numerical results. For applications
in insurance it might be interesting to see whether reinsurance can increase the
company value. For reinsurance one has to pay reinsurance premia, and this will
reduce the value. But the reduction can be compensated by the reduction of the
ruin probability or by increasing the time to ruin for the company. The answer to
this question will depend on the relation between premium rate ¢ and reinsurance
premia, as well as on the discount rate § (a large § reduces the effect of a longer time
to ruin). We will present some numerical examples in Sect. 8.

For company values V(s) in a simple diffusion the initial value is V(0) = 0. For
Lundberg models V(0) is positive and known only in the trivial case when all surplus
and premia are paid out, i.e. V(0) = ¢/(A + ) (see Schmidli 2007, Sect. 2.4.2). The
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starting value in the general case—with control—can be found exactly as in the
case without control: first compute a solution of the dynamic equation v(s) with
v(0) = 1, and then define the barrier M as M = arg min v’(s), and finally

V(0) = v(s)/v'(M).

For the computation of company values with ruin constraint we suggest the
Lagrange multiplier method and a nonstationary approach. For the nonstationary
approach we consider dividend payments and ruin probabilities after time #:

VP(s,H) = E [ / ~ e~ dD(u)|S(r) = s}

—LP{SP(u) < 0 for some u > 1|S(r) = s},
V(s,1) = sup VP (s, 1),
D

V(s, 00) = =Ly (s).

Here, v/ (s) is the ruin probability without dividends, and S (u) the risk process with
dividends which, from time 7 until time u, add up to D(u). The last relation inspires
the following method for computation: start at a large number 7', take as initial value
the function V(s,T) = —Ly/(s), and then compute backward until r = 0 using the
non-stationary dynamic equations, modified for dividend payment.

The equations for the backward computation are

M(t) = min{s : V(s, 1) = exp(—9d1)},
V(s,t) = V(s,t +dt) —diGV(s,t + dt), s < M(1),
Vs, t) = V(M(1), 1) + (s — M(t)) exp(=61t), s > M(2).

For a generator involving V" (s, r) which is the case for the simple diffusion model
we add V(0, s) = —L. For other models we get V(0, t) from V(0, ¢ + dr).

The nonstationary approach deals with partial differential equations for which we
most often have to use different discretisations for time and state. The right choice
of discretisations is a major problem in the context of these dividend problems (see
Sect. 8).

In Sect.2 an improvement approach was mentioned for the optimal dividend
problem with ruin constraint. This was presented in Hipp (2016); however, the
method is not sufficiently convincing to be a standard for the numerical computation
of the value function in this problem. It might help to find reasonable sub-solutions;
it is a method for patient owners of fast computers.

Improvement Approach Assume we have a function V,(s,«) which is the
dividend value for initial surplus s of a strategy which has a ruin probability not
exceeding «. We fix B > s and wait without paying dividends until we reach B.
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We will reach B before ruin with the probability A = (1 — ¥ (s))/(1 — ¥ (B)),
where 1 (x) is the ruin probability without dividends with initial surplus x. At B (we
have no upward jumps) we start paying dividends with a strategy corresponding to
a ruin probability a(B) having dividend value V,(B, a(B)). The ruin probability of
this strategy is 1 — A 4+ Aa(B), and the dividend value is the number V,(B, a(B)),
discounted to zero. Let t be the waiting time to reach B, and v(s) be the unique
solution of the equation 0 = §v(s) + Gu(s) with v(0) = V’(0) = 1, where § is the
discount rate and G the generator of the underlying stationary Markov process:

0 = §v(s) + AE[v(s — X) — v(s)] + cv'(s) for the Lundberg process
0 = 8v(s) + uv'(s) + o2v”(s) for the simple diffusion model.

Then
Elexp(—87)] = v(s)/v(B). (28)
If we define a(B) from the equation
A+ (1—-A)a(B) = «,
then our dividend strategy has ruin probability « and dividend value

Va(s)v(s)/v(B).

For B — s we obtain the limit V,,(s, @), so a new value dividend function which is
an improvement over V, (s, @) can be defined:

Vati1(s, ) = sup V(s a(B))v(s)/v(B). (29)

In each iteration step, we have to compute the V-function for all s > 0 and ¥ (s) <
o« < 1. And it has to be done on a fine grid. This causes long computation times.
One can start with the function Vi (s, @) = s—s(«), where s(«) is defined through

V(s(@) = a.

The strategy for this value is: pay out the lump sum s—s(«) at time 0 and stop paying
dividends forever. One should also try other initial functions which are closer to the
true function, such as Vi(s,«) = Vo(s — s(«w)) in the simple diffusion model. For
the Lundberg model, one can similarly use the function Vj(s), the company value
without ruin constraint, but s(«) has to be replaced by a number s; («) defined via
the equation

E[y(s—V)] =a,
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where Y is the deficit at ruin in the without dividend process. For exponential claims,
we can replace Y by X (see Hipp 2016). Notice that s can be smaller than s («), for
which the initial value could be V;(s) = 0 or V| (s) = s — s(x).

7 Viscosity Solutions

In many control problems, the value function can be characterized as the unique
viscosity solution to the classical Hamilton-Jacobi-Bellman equation. What is
more important: it helps in the proof for convergence of numerical methods
(discretizations).

The concept of viscosity solutions—introduced in 1980—is well known today,
but still not well enough understood. It is not a subject in most lectures on stochastic
processes and control. There are various attempts to make the concept more popular:
the famous User’s guide of Crandall et al. (1992) as well as the books by Fleming
and Soner (2006) and Pham (2009). We aim at a better understanding for the concept
and properties of viscosity solutions, and its use for the proof of convergence for
Euler type discretization schemes of a Hamilton-Jacobi-Bellman equation. This
use is based on the fact that upper and lower limits of discretization schemes are
viscosity solutions.

In particular we try to provide

1. a better understanding of the Crandall-Ishii maximum principle

2. a proof for the comparison argument which uses V(0) and V’(0)

3. an understanding that the concept, being rather technical, is of major importance
for applications (numerics and understanding control problems).

For this, we think that a complete and detailed proof for the Crandall-Ishii
comparison argument should be included in this section, although for smooth
reading one would transfer the proof to an appendix.

Value functions are not always smooth, the viscosity concept is useful to deal
with these value functions. Here are two figures from optimization problems with
singular value functions; they come from the optimal investment problem with
constraint sets .A(s): the amount A(s) invested in stock must lie in .A(s) when we are
in state s. In both figures the blue line shows the proportion A(s)/s invested, while
the black is the first derivative of the value function V(s) (Figs. 2 and 3).

The dynamic equation for our control problem, valid for s > 0, is

0= sup {AE[V(s—U)—V(s)] + (c+A)V'(s) + A>V"(s)/2} .
AEA(s)

Because of the above examples there is no hope for the statement: the value function
is the unique smooth solution of the above dynamic equation. Instead one can try
to prove that the value function is a (unique smooth) viscosity solution of the above
HIJB. For this section we will always consider the optimal investment problem with
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Fig. 2 A(s) = {0}, 30
s<1,A(s) =[0,00),5s > 1
25

20

Fig. 3 A(s) = [0, 00), 30
s<1,A(s) ={0},s > 1

constraints; in particular, sub-solutions, super-solutions, and viscosity solutions are
always defined with respect to the above HJB.

Definition 4 A function V(s), s > 0, is a viscosity super-solution at s > 0 if for
V(x) > ¢(x) € C; having in s a local minimum for V(x) — ¢ (x)

sup {AE[V(s — U) — V(s)] + (c + A)¢'(s) + A’¢"(s)/2} < 0.
A€A(s)

V(s) is a viscosity sub-solution at s > 0 if for V(x) < ¢(x) € C, having in s a
local maximum for V(x) — ¢ (x)

sup {AE[V(s—U) — V(s)] + (c + A)¢'(s) + A’¢"(s)/2} > 0.
A€ A(s)

V(s) is a viscosity solution: if it is a super- and sub-solution at all s > 0.
An equivalent definition using sub- and superjets is

Definition 5 V(s) is a viscosity super-solution at s > 0 if for V(s + h) < V(s) +
ah + bh?/2 + o(h?*) we have
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sup {AE[V(s — U) — V(s)] + (c + A)a + A’b/2} < 0.
A€ A(s)

V(s) is a viscosity sub-solution at s > 0 if for V(s 4+ h) > v(s) + ah+ bh*/2 + o(h?*)

sup {AE[V(s — U) — V(s)] + (c + A)a + A’b/2} > 0.
A€A(s)

(a, b) are called 2nd order sub- and super-jet of V(x) at s.

The concept of viscosity solutions is important for numerical methods which are
based on Euler type discretisations of the dynamic equation. The discretized version
of the value function Va (s) is the numerical solution for step size A > 0 which, at
s = kA, is defined from

0= A A(gals) = Va()) + (c + AV, (5) + A*V(5)/2} .

with

k
ga(s) = ) _Va(tk=DMP{( — DA <X <iA}.

i=1
Vo) = (Vals + A) = Va(9)/A,
VA($) = (Va(s) = Vas — A)/A.

Its computation is possible via the recursion:

Lo AAVA(s) — ga(s) + APV (s — A)/2
als) = Inf) Ac+A) +A2)2

Then
V*(x) = limsup,—is . o—oVa(5)
is a viscosity sub-solution, while
Vi(x) = lim infs:kA—)x,A—w Val(s)
is a viscosity super-solution of the dynamic equation. The convergence is a strong
convergence concept: it implies uniform convergence on compact sets.
A convergence proof (see Chap.IX of Fleming and Soner 2006) can now be

very short: since a sub-solution can never be larger than a super-solution, we have
V*(x) < Vi(x). Since Vi (x) < V*(x), by definition, we have equality. For the above
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inequality between the sub- and the super-solution one uses the famous Crandell-
Ishii maximum principle which we discuss later. First we give a proof for the sub-
solution property for limsup V*(s) :

Proof Let ¢ (x) € C, for which V*(x) — ¢(x) has a strict local minimum at sy. With
¢ (s) being the restriction of ¢ (x) to the A-grid we define

sa = argming_;roVa(s) — da(s).

Then

Va(sa) —@a(sa) < Valsa £ A) — palsa £ A),

and so V) (sa) < @) (sa) and V{(sa) < ¢X(sa). We can find a sequence A, for
which sp, — s and Vj, (sa,) — V*(s). Recall that Va(s) is a solution to the
discretised dynamic equation

0= ASZI?) {A(gal(s) = Va(s) + (c + AV (s) + AVi(s)/2} .

Now let s = sp and A = A,, and n — oo. Then the first term in the brackets has
only limits < E[V*(s — U)] (by Fatou’s lemma), the second term in the brackets has
limit = —V*(s), the third term in the brackets has limits < (¢ + A)¢’(s), and the
last term in the brackets has limits < A%/2 ¢”(s). So

0< sup {AE[V*(s—U)—V*)]+ (c+A)¢ (s) + A%p"(s)/2} .
A€A(s)

which is the desired result for a sub-solution. O
The inequality sub-solution < super-solution is based on the famous maximum
principle.

Theorem 2 Assume that P{U > x} > 0 for all x > 0, and that the constraints
A(x) are intervals [a(x), b(x)] with Lipschitz functions a(x), b(x) satisfying b(x) >
0,x > 0. Let v(x), w(x) with v(0) < w(0) be locally Lipschitz, v(x) a sub-solution
and w(x) a super-solution of our dynamic equation. Assume that v(x) — w(x) has a
strict local maximum in (0, 00). Then v(x) < w(x) for all x > 0.

This statement is concerned with the values v(x), w(x) for x > 0. We define
v(x) = w(x) = 0 for x < 0 and note that P{U < 0} = 0. We shall first give a
simple proof for the case that the function v(x) and w(x) have continuous second
derivatives.

Proof Simple version: Assume that v(x), w(x) are twice differentiable on (0, c0)
having a global maximum x* for v(x) — w(x) in (0, K). For £ > 0 let

(x¢, y¢) = arg max v(x) —w(y) —§(x = 2.
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Then v'(x¢) = w'(ye) = 2&(xg — ye), and v”(xg) = w”(ye) = 2€. For § — oo we
have x; — x* and y; — x* and furthermore & (x; — ys)?> — 0. Define

Hi(A) = E[u(x — U) — v(xe)] + (¢ + A’ (xe) + A" (xe),
Hy(A) = E[w(ye — U) = w(e)] + (c + A (3e) + A% (ve).
Then

sup Hi(A) > 0. and sup H,(A) <0.
A€A(xg) AE€A(ye)

So there is A¢ € A(x;) and Bg € A(yg) with
Ag = Be| < Llxe — e
where L is the Lipschitz constant, giving

H\(Ag) —Hy(Bg) = 1(1) +1(2) +1(3) = 0,
I(1) = AE[v(xs — U) — w(ye — U)] — (v(xg) — w(¥e)).
1(2) = (c + Ag)v' (x) — (¢ + B(ye))w' (%)),
1(3) = Apv" (x) /2 — Bw" (ve) /2.

Now

12) = (AE —BS)ZS()CE —yg) < 2L(x5 —yg)z — 0, E — 00.
1(3) < 26(As — Be)? < 2L%E(xs — y¢)* — 0.

With £ () = v(xe +Ah) —w(ye + Bh) — £ (x¢ + Ah — y; — Bh)? we have f(h) < f(0)
and so f”(0) <0, i.e.

A" (xg) — B*w" (ye) = 26(A — B)”.
This yields
I(1) = AE (" = U) = w(x™ = U)] = (v(x") — w(x™))
<MP{U<x*}—-1) <0,

with M = v(x*) — w(x™), a contradiction. |
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Here is a proof without derivatives. It is clearly inspired by the proof given in the
User’s guide, with some modifications.

Proof First we restrict the argument x to a finite interval (0, K) containing a global

maximum x* with v(x*) —w(x*) =M > 0. Forn > 0 and 0 < x < K define

va(x) = sup v(x) —n*(x— %)% (30)
X€[0,K]

These functions are semiconvex (i.e., v,(x) + Sx* is convex for some § > 0).
Similarly, for n > 0 we define

wa(y) = inf w(@) +n’(y— )%,
YE[0.K]
which is semiconcave (w,(y) — Sy? concave for some S). We have
0 < v(x) — vy(x) < L*/n* and 0 < w,(y) — w(y) < L*/n’.

The functions v, (x), w,(y) are twice differentiable almost everywhere (according to
Alexandrov’s theorem, see Crandall et al. 1992, Theorem A.2, p. 56, with a 1.5 pp
proof).

Now let X,y be given at which we have second derivatives for v, (x), w,(y). Let
% be the maximizer in (30), i.e. satisfying v,(¥) = v(%) — n*(x — %)2, and denote
the similar point for w,(x) and y by y. For notational convenience we omitted the
dependence on n.

Then for small enough 4 we have v,(X + h) > v(X + h) — n*(x — %) and then

V(& + ) < vE) + ) (X) + B2 (X)/2 + o(h?).
Similarly,

W@+ 1) = wi) + () + W G)/2 + o(h?),
which implies the two inequalities

sup {AE[v(E — U) —v(@)] + (c + A)v,(x) + A™)(%)/2} > 0,
A€AR)

sup {AEWE — U) —w@)] + (c + AW, () + A2W)(5)/2} <0,
A€AQ)

Finally we apply Jensen’s Lemma for semiconvex functions (Lemma A.3 in
Crandall et al. 1992), which in our special situation reads

Lemma 7 Letr > Oand§ > 0be arbitrary. Then the set of (x*, y*) with || (x*, y*)—
(e, ye)|| < 8 for which
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Un(x) —wu(y) — E(x — y)> — prx — pay

is maximized at (x*, y*) for some p1, p> with p? + p3 < r has positive measure.
For & > 0 let

(X, yg) = argmax, yero g {0n(*) — wa(y) — E(x — y)*} + p1x — pay
with p{ + p3 small for which the second derivatives of v, and w, exist at x¢ and yg,
respectively. (x¢, ye¢) depends on &, p, n.
For some A € A(X¢)
I(A) = AE[v(&s — U) — v(&e)] + (c + A)v)(xe) + A%/ (x¢)/2 > 0.
For all B € A(3¢)
1(B) = AE[w(¥s — U) = v()] + (c + B)w, (¢) + B*w] () /2 < 0.

The difference I(A) — I(B) is non-negative for some A; € A(x;) and B; € A(J;)
satisfying

|Ag — Bg| < L|xg — el

We now let p — 0,n — 00,& — oo in this order! The difference consists of three
terms:

1(1) = E[v(x — U) — v(xg)] — E[w(ys — U) —w(yg)],
1(2) = (c + Ag)v,(x¢) — (c + Be)w), (v%).
1(3) = Bv)/ (x¢) /2 — Afw) (ve) /2

v (xg) = 26(xe — yg) + pi.
w,(ve) = 2E(xg — ye) + pa.

We have
[1(2)] < cllpl| + 2&[x — Pellxe — yel

converges to zero for p — 0,n — 00, § — oo.
The argument in the proof with second derivatives leads to

1(3)] < 28(A¢ — Bg)® < 2% (¢ — §¢)°

which converges to 0 for £ — oo.
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Finally, with x; — x* and y; — x*
I(1) > Ep(x™ = U) = w(x™ = U)] = (v(x™) —w(x")) <0
because of v(x) — w(x) < v(x*) —w(x*) = M and
Ev(x* = U) —wx* —U)] < MP{U < x™} < M.

This contradicts that the difference must be non-negative, so M > 0 cannot be true,
and thus our assertion v(x) < w(x),x > 0, holds. O
Usually, the maximum principle is applied for v(0) = w(0) and v(c0) = w(c0),
so the initial conditions are for values of the functions. This is appropriate for
diffusion models where we often have v(0) = w(0) = 0, v(c0) = w(oco) = 1.
In Lundberg models we have instead v(co) = w(oco) = 1 and a given value for
the derivative at zero:

v'(0) = —A(1 = v(0))/c, W' (0) = —A(1 —w(0))/c.

Fortunately, with the above maximum principle one can also handle this situation.

Lemma 8 Assume that P{U > x} > 0 for all x > 0, and that the constraints A(x)
are intervals [a(x), b(x)] with Lipschitz functions a(x), b(x) satisfying b(x) > 0,
x> 0.

Let v(x), w(x) be viscosity solutions of our dynamic equation having continuous
first derivatives with v(0) = w(0) and v'(0) = w/(0). Then v(x) = w(x) for all
x> 0.

Proof Assume that there exists xo > 0 such that v(x) = w(x),0 < x < xj and that
v(x) < w(x) for xyp < x < x9 + €. The case v(c0) > w(o0) is easy.

Assume v(00)(1 + )% < w(c0).

Choose x, > x close to xo such that v’ (x)(1 + y) > w'(x),0 < x < x,. Define

V(@) = wx),x < x5, and V(@) = v'@)(1 + y),x = 2.
Similarly,
W(x) = v(x),x <x3, and W (x) = w'(x)/(1 + y),x > x,.

with the properties

- V(0) = W(0),

. V(x), W(x) are Lipschitz,

. V(x) is a sub-solution and W(x) a super-solution,
. V(o) < W(0).

AW N =

Hence
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V(x) < W(x),x > 0, rm contradicting V(x;) = w(xz) > v(x2) = W(xp). O

For the above discretization schemes, one can prove equi-continuity of the
approximations V), (s),s = kA > 0 (see Hipp 2015) which implies that lim sup
and lim inf have continuous derivatives.

In all, we can prove that the discretization schemes converge to some function
W (x) having a continuous first derivative. For many optimization problems one can
also show that the value function V(x) is a viscosity solution of the corresponding
HJB equation. However, we need a continuous first derivative for W(x) to obtain
V(x) = W(x) from the above comparison argument. It is still open for which
optimization problem the value function V(x) has a continuous derivative. So,
regrettably, we do not know whether the limit of our discretizations is the value
function of the given control problem.

Cases in which the value function is known to have a continuous first and second
derivative are

* unrestricted case: A(x) = (—o0, 00) (see Hipp and Plum 2003),

* no short-selling and limited leverage: A(x) = [0, bx] (see Azcue and Muler
2010),

* bounded short-selling and bounded leverage: A(x) = [—ax, bx] (see Belkina et al.
2014)

8 Numerical Issues

Numerical computations for solutions of control problems are demanding, they
cannot be done on a simple spreadsheet. The results shown in this article are all
done with MatLab. This matrix oriented programming language is well suited for
the handling of large arrays; in particular, the commands £ind and cumsum (or
cumtrapz) are used frequently, and arrays with more that a million entries were
stored and handled easily.

Continuous time and state functions have to be discretized, and the same is done
with integrals and derivatives. The step size for the surplus will be denoted by ds
and for time by dr. If other state variables show up in the model (e.g., in mixture
models), we try to replace them by 7 in a nonstationary model. We will use Euler
type discretisations of the following kind: with s = k ds

Vi(s, 1) = (V(s + ds, 1) — V(s,1))/ds,

st(s» t) = (VS(S, t) - Vx(s - dS))/dS,
Vils, 1) = (V(s,t + dt) — V(s,1))/dt,
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k
E[V(s—X.0] =Y V(s —ids)P{(i — I)ds < X < ids}.

i=1

For the expectation, one could use higher order integration methods; however, we
here essentially need summation with weights which add up to 1.

In most control problems, the difference between maximizing survival probabil-
ity and maximizing company value is very small: Rearranging the dynamic equation
to solve for V'(s), we obtain in the reinsurance control problem

AV(s) — AE[V(s — 84(X))]

V'(s) = min @) for survival prob.
V/(s) = min 2T OVE = Af([‘;(s — 8D ¢ dividends.
c—h(a

Since the equations are homogeneous, one can use an arbitrary value for V(0) to see
the optimal strategy.

Reinsurance Example In our first example we consider optimal unlimited XL
reinsurance for a Lundberg model, first for maximizing the company value, and
second to minimize the ruin probability. The parameters are A = 1, ¢ = 2, § =
0.07, and the claims have an exponential distribution with mean 1. First we show
the derivative of the function v(s) solving the dynamic equation, and next you
see the optimal priority M(s) (middle). On the right you see the optimal M(s)
which minimizes ruin probability. We see that v(s) has one minimum which is at
M = 4.84. So the possible values of s are [0, M]. In both cases we have a region of
small s in which no reinsurance is optimal. Then we see a region with M(s) = s,
which means reinsurance for the next claim. Then M (s) is increasing almost linearly
for the dividend case, while for the ruin case M(s) is almost constant. In both
cases, reinsurance is paid for, and in the dividend case this starts at larger surplus.
Furthermore, M(s) is higher in the dividend case (which means less reinsurance)
(Figs. 4, 5, and 6).

In most optimization problems, the optimizers are found by complete search.
In problems with more than one control parameter one should check wether the
optimal parameters are continuous in s. Then one can speed up the search: restrict
the search for state s on a neighborhood of the value for s — ds.

The numerically demanding term is the expectation in the dynamic equation:
E[V,(s — gn(X))]. It has to be computed for many s and M’s, and for each
iteration n. In some cases this nonlocal term can be transformed to a local one
(e.g., for exponential or phase-type distributions,) but with MatLab one can produce
the values—following the MatLab-rule no loops—in one line. Once define the
matrix P of probabilities with step size ds, range 0, ds, 2ds, .., KS ds for s, and
f@O=P{(i—1)ds <X <ids},i=1,.,KSas
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Fig. 4 Derivative of 0.6 : .
HIB-solution v’ (s)
0.55 -

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15 +

0.1 . : ‘
0

Fig. 5 Optimal priority 3 - .
dividends

P@i.j)=f(),j=1,...,i—1,

KS
P(i,i) = ) f(),
=i
PGi,j)=0,j=i+1,...,KS.
IfA={1 <i<KS:h(ids) < c}, then the vector VI with entries

E[V(s—M)]|: M =ids, i €A,

25
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25¢

1.5+

0 1 L 1 1 L
0 0.5 1 1.5 2 2.5 3

Fig. 6 Optimal priority ruin

is generated by
VIi=PA1:(—-1)*xV(i—-1:=1:1));

and the dynamic equation for the value function V in the Lundberg model leads to
the formula

[V/(s).sb] = min(A * (V(i) = VI')/ (c — h(A)));

In special cases the set A can be replaced by a smaller set which speeds up
computation.

Investment Example Optimal investment for minimal ruin probability in the
Lundberg model has the following equation (where we set © = 02 = 1) :

0 =sup AE[V(s — X) — V(s)] + (c + A)V'(s) + A2V (5)/2,
A

which has maximizer A(s) = —V’(s)/V"(s). With U(s) = A>(s) we obtain the
equation

_ AE[V(s) — V(s = X)

= T2
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For U(s) we get in the case of exponential claims with parameter 0

U@G)=VUSA+1/2—0c—0/U(5)/2) + ¢

(see Hipp and Plum 2003, Remark 8). To obtain the optimal strategy, we can restrict
ourselves on U(s) and start with U(0) = 0. For the dividend objective we just have
to replace A by A 4 8. In the special case 6 = 1,¢ = A + 1/2 we can see that for
the dividend objective investment is higher than for the ruin probability objective:
for dividends we obtain

U'(s) =c—U(s)/2,
while for dividends it reads

U'(s) =c—U(5)/2+ 8/ U(5).

The above system of two coupled differential equations enables a simple, robust, and
efficient computation. The resulting strategies never use short selling, the amount
invested A(s) is not always increasing, and generally: the more risky the insurance
business is, the larger A(s) will be.

Optimal Investment with Constraints In the unconstrained case, optimal invest-
ment is completely different from the one in the unrestricted case. The following
figures are based on a Lundberg model with exponential claims for which the
unconstrained optimal strategy is increasing and concave and almost constant for
large surplus. In the case without leverage and shortselling in the next figure, we see
the proportion A(s)/s and the second derivative of the value function. For small s
we see A(s) = s, and the value function is not concave. An example with volatility
hunger is seen in the next figure: here we have the same model and the constraints
A(s) = [—4s, 5] (see Belkina et al. 2014). For very small s we have A(s) = s, then
in a larger interval A(s) = —4s, and then the strategy switches back to A(s) = s and
continues continuously. The jump from maximal long to a maximal short position
can be explained by the fact that a high volatility position can produce also high up
movements. The black curve is again the second derivative of the value function.

Constraints can generate singularities in the value function, even the first
derivative can have a jump. Such singularities are present also in uncontrolled ruin
probabilities, when the claim size distribution has atoms. An example with X = 1
is given in the third figure below, it shows A(s) in the unconstrained case (blue line)
and for A(s) = [0, s] (Figs.7, 8 and 9).

Optimal Dividends with Ruin Constraint The method for the computation of
company values with ruin constraint has been described before; we will here discuss
the numerical problems and results for the computation using Lagrange multipliers
and the nonstationary approach. Our backward calculation starts with V(s, T) =
—Lyr(s) which will produce good approximations if T is large enough such that
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Fig. 7 Constrained optimal 15
investment

Fig. 8 Example with
extreme jumps 10
5
0
0 2 4 6 8 10

Optimal investment A(s)

15 2 25 3 385 4 45 5
Initial capital s

Fig. 9 Optimal investment for X = 1
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dividend payments do not matter after time T since they are discounted by e~%"
at least. But the discretization df must be quite small to get convergence: in the
simple diffusion model, for ds = 0.02 we need a step size dt of at most 0.0004; for
ds = 0.02 and dr = 0.00041 we obtain results which are completely wrong: barrier
close to zero and value functions close to V(s) = s — L. The Lundberg model is less
sensitive: it works with ds = 0.02 and dr = 0.004.

The next two figures show the results for simple diffusion models. First, we show
the computed curves V (s, f) for 21 values of ¢, where the largest values belong to t =
0. The second is the curve of barriers M (¢) which has the expected form: increasing,
asymptotically linear, with a decrease close to T. The same form had been obtained
in the discrete case of Hipp (2003), the decrease is caused by the choice of V(s, T).
The parameters for the plots are ;4 = 0> = 1 and the discount rate § = 0.03.

The third figure shows an efficiency curve for company values and ruin proba-
bilities, which is the same as a plot for V(s, ), the maximal dividend value with
a ruin constraint of «. For this we computed V(s, L) with the corresponding ruin
probabilities, and plotted the results for a number of L's from 0 to 100. The plot
is given for a simple diffusion model with 0 = © = 1 and § = 0.07. The initial
surplus is 5. We could not produce reliable results for larger L since they produce
a = 1ora < ¥(5). Surprisingly, the dividend value stays near the unconstrained
value V((5) = 16.126 over a long range for « (Figs. 10, 11, and 12).

Results for the Lundberg model are given in the contribution (Hipp, 2016) in
these proceedings.

50 T T T T T T T T T

40+ .

30+

20

Fig. 10 V(s, 1) for 0 < s < 20 and various values of ¢
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9 Open Problems

Here is a collection of questions which—according to my knowledge—are open,
and in my opinion interesting enough to attract (young) mathematicians. They are of
course biased by my preferences, but they might still be of some use. They are given
in a numbered list, where the order is random (no ordering according to difficulty or
importance).

1. For the proof that the discretisations converge to the value function in the optimal
investment problem with constraints, one needs that the value function has a
continuous derivative. What is the class of problems for which the value function
has this property?

2. Optimal company values with ruin constraint are computed with the Lagrange
multiplier approach. Do we have a Lagrange gap here? Some positive results are
in Hernandez and Junca (2015, 2016).

3. Optimal investment is considered here in a market with constant parameters. How
do the solutions change if the market values change as in a finite Markov chain
with fixed or random transition rates? What changes if also negative interest is
possible?

4. What is the right model for simultaneous control of stop loss and excess of loss
reinsurance?

5. Can the nonstationary approach solve control problems also in more complex
Markov switching models?

6. Is the capital V(s, o) with ruin constraint a smooth function of s and «?

7. Existing results in models with capital injections solicit the question whether
classical reinsurance is still efficient. What is the right model for this question,
and what is the answer?

8. Does the approach described at the end of Chap. 5 work for a model in which the
state A is not absorbing?

9. Can the improvement approach in Chap. 6 be applied in the Lundberg model with
claim size not exponentially distributed?
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Stochastic Control for Insurance: New Problems
and Methods

Christian Hipp

Abstract Stochastic control for insurance is concerned with problems in insurance
models (jump processes) and for insurance applications (constraints from supervi-
sion and market). This leads to questions of the following type:

1. How to find numerically a viscosity solution to an integro differential equation;

2. Uniqueness of viscosity solutions when boundary conditions are values of
derivatives; and

3. How to solve control problems with the two objectives: dividends and ruin.

We shall present simple Euler schemes (similar to the ones in Fleming—Soner
(Controlled Markov Processes and Viscosity Solutions. Stochastic Modelling and
Applied Probability. Springer, New York, 2006), Chap. IX) which converge when
the value function has a continuous first derivative. This method works in many uni-
variate control problems also when value functions are without continuous second
(and first) derivative. Cases with non-smooth value function arise when constraints
are restrictive. Furthermore, we consider the infinite horizon problem: maximize
dividend payment and minimize ruin probability. This problem is described and
solved with a non-stationary approach in the classical Lundberg model.
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1 Introduction

Stochastic control in finance started more than 40 years ago with Robert Merton’s
papers Lifetime portfolio selection under uncertainty: the continuous-time case
(Merton 1969) and Optimum consumption and portfolio rules in a continuous-time
model (Merton 1971), paving the ground for the famous option pricing articles by
Robert Merton Theory of rational option pricing (Merton 1973) as well as Fischer
Black and Myron Scholes The pricing of options and corporate liabilities (Black
and Scholes 1973). By now, this is a well-established field with standard textbook
such as Fleming-Rishel Deterministic and Stochastic Optimal Control (Fleming
and Rishel 1975) and Fleming-Soner Controlled Markov Processes and Viscosity
Solutions (Fleming and Soner 2006), as well as Merton Continuous Finance
(Merton 1992). I would also mention Karatzas-Shreve Methods of Mathematical
Finance (Karatzas and Shreve 1998) and the work of Bert @ksendal (2005) and
Jerome Stein (2012), and this list is still far from being complete.

Surprisingly, the development of stochastic control in insurance took much
longer, although the idea was present already in 1967. Karl Borch (NHH Bergen,
Norway) wrote in his The theory of risk (Borch 1967, p. 451):

The theory of control processes seems to be tailor made for the problems which
actuaries have struggled to formulate for more than a century. It may be interesting
and useful to meditate a little how the theory would have developed if actuaries
and engineers had realized that they were studying the same problems and joined
forces over 50 years ago. A little reflection should teach us that a highly specialized
problem may, when given the proper mathematical formulation, be identical to a
series of other, seemingly unrelated problems.

As the beginning of stochastic control in insurance one might choose the year
1995 in which Sid Browne’s paper Optimal investment policies for a firm with
a random risk process: exponential utility and minimizing the probability of ruin
(Browne 1995) appeared. Since then, this field is very active, and its group of
researchers is still growing. A first monograph is Hanspeter Schmidli’s book
Stochastic Control in Insurance (Schmidli 2007) in which an extended list of
references contains also earlier work. New books were written recently by Pham
(2009) and Azcue and Muler (2014).

Stochastic control in insurance is concerned with control of investment, reinsur-
ance, exposure, and product design. An objective is often the ruin probability which
is a dynamic risk measure used in internal models. Minimizing ruin probability
results in the reduction of solvency capital, so optimal strategies have also an eco-
nomic impact. These strategies can be used in scenario generators for management
decisions.

Ruin probabilities are not satisfactory when they lead to the decision to stop
insurance business (which might happen in reinsurance control with interest on the
reserves, or in the control of exposure). Alternatively, one can maximize the value
of the company, which is the expected sum of discounted dividends. This objective
is more complex, since the company value is itself the result of a control problem:
one uses optimal dividend payment.
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Company values have the drawback of certain ruin: if an insurer pays dividends
to maximize the company value, then the with dividend ruin probability equals 1, no
matter how large the initial surplus is. As an alternative we investigate a company
value which has a constrained ruin probability. In this setup, only those dividend
payments are allowed which lead to a given with dividend ruin probability. This
quantity is even more complex since its computation involves a control problem
with two objectives, its solution is work in progress.

In this paper we first consider control of constraint investment (such as no
short-selling and/or no leverage) to minimize the ruin probability and present the
numerical methods for the value function and optimal strategy. Next, concepts and
numerical methods are presented for the computation of a company value which has
a constrained ruin probability.

2 Optimal Investment for Insurers

Investment of a fixed proportion of the surplus leads to a substantial increase in ruin
probability (see Kalashnikov and Norberg 2002). Optimal investment control with
unconstrained investment was first given in Hipp and Plum (2000, 2003) for the
classical Lundberg model. The risk process at time ¢ is given by

S(t)=s+ct—X,; —...—XN(,),

where s is the initial surplus, ¢ the premium intensity, and X, X;,X5,... are
independent identically distributed claim sizes which are independent of the claims
arrival process N(f) being modeled as a homogeneous Poisson process with claim
frequency A. The dynamics of the asset for investment is logarithmic Brownian
motion

dZ(t) = pZ(t)dt + o Z(t)dW(t),t > 0,

with a standard Wiener process independent of S(¢), ¢ > 0, and constants @, > 0.
The classical Hamilton-Jacobi-Bellman equation for the minimal ruin probability
V(s) reads

0 = inf{AE[V(s — X) = V(9)] + (¢ +AR)V'(s) + A%V (5)/2), s >0, (1)

where the infimum is taken over all real A representing the amount invested at
surplus s. The minimizer A(s) defines an optimal investment strategy given in
feedback form: invest the amount A(s) when surplus is s. When X has a continuous
density, Eq. (1) has classical bounded solutions, and the unique solution V(s) with
V(oo) = 0,V'(0) = A(V(0) — 1)/c is the minimal ruin probability. The optimizer
A(s) converges to zero for s — 0 at the rate /s which leads to A(s)/s — oo, and
this shows that the corresponding investment strategy has unlimited leverage.
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Since unlimited leverage strategies are not admissible for insurers, we have to
restrict the set of investment strategies for each surplus s : A € A(s). Possible
restrictions are A(s) = (—oo,s] for no leverage, A(s) = [0, 00) for no short-
selling, or A(s) = [0, s] for neither leverage nor short-selling. Such constraints
change the nature of the control problem: the constraint A(s) = (—o0, s] results
in a control problem having no solution; other constraints yield a Hamilton-Jacobi-
Bellman equation

0= sup {AE[V(s—X)—=V(s)] + (c+An)V'(s) + A%c>V"(5)/2}, s =0, (2)
A€A(s)

which does not have a solution with (continuous) second derivative.

For this situation one can use the concept of viscosity solutions described in
Fleming and Soner (2006). This concept is tailor made for risk processes which are
diffusions (in which ruin probabilities at zero are 1), or for dividend maximization.
For ruin probabilities in Lundberg models it has to be modified: instead of two fixed
values (V(0) = 1, V(oo) = 0) we have boundary conditions on V(oo) and V’(0).
But also for this situation, the Crandall-Ishii comparison argument is valid under the
additional hypothesis that the viscosity solutions to be compared have a continuous
first derivative (see Hipp 2015).

The numerical solution of Eq. (2) is done with Euler type discretisations. For a
step size A we define the function V (s) as the solution of the discretised equation,
with discretised derivatives

Vi(s) = (Va(s) = Vals — A))/A,
VA(s) = (Vals + A) = VA (5)/A,

and also the integral is discretised: for s = kA it is approximated by

k
Ga(s) = ) Vals —iM)P{(i— DA < X <iA}.

i=1

Example 1 Let A(s) = [—bs,as] with a = 1,b = 60. The other parameters are
¢ =135A1=1,u=0.3,0 =1, and the claim size has an Erlang(2) distribution
with density x — xe™,x > 0. Here, the supremum in (2) can be either the
unrestricted maximum A(s) = —uV’(s)/(c>V"(s)) or one of the two values —bs, as,
whichever produces the smaller value for V’(s). For a possible maximizer A in (2),
A € {—bs, as}, we have

A(Va(s) — Ga(s)) — 0.54%02V (s — A)
(c+Ap)A + 0.5A%02

Va(s) = : A3)
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Fig. 1 Optimal proportion A(s)/s invested

and for the unrestricted maximizer we obtain the following quadratic equation with
H(s) = A(Ga(s) = Va(s)) :

VA ($)2(c 4+ 0.5A) = Vi(s)(H(s) — cV'(s — A)) — H(s)V'(s — A). 4)

We see (Fig.1) that the optimal investment strategy jumps from the maximal
admissible long position s to the maximal short position —60s, and back. In contrast
to the Example 5.1 in Belkina et al. (2012) we have a positive safety loading
(¢ > AE[X]), and interest zero.

Using equicontinuity of V), (s) one can show—as in Chap.IX of Fleming and
Soner (2006)—that these discretisations converge (see Edalati and Hipp 2013 and
Hipp 2015; for the case of Example 1, see also Belkina et al. 2012).

Numerical experiments show that the Euler type discretisations seem to converge
also in cases in which the regularity conditions for the mentioned proofs are not
satisfied. In the following example the claim size distribution is purely discrete.

Example 2 We consider claims X of size 1, and A = 4 = 0 = 1, ¢ = 2. The above
recursions lead to the two optimal amounts invested A(s) for the unconstrained case
(A(s) = (—00,00), dashed line) and the case without leverage and short-selling
(A(s) = [0, s], solid line). Notice that A(1) = 0 in both cases (Fig. 2).

3 Dividend Payment with Ruin Constraint

For the risk process, we again use a classical Lundberg model. If D(¢) is the
accumulated dividend stream of some admissible dividend payment strategy, then
the dividend value for a discount rate § > 0 is
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Fig. 2 Optimal amount invested A(s) for0 < s <5

VP(s) =E [ / ” e 3dD(1)|S(0) = s:| .
0

Here we tacitly assume that no dividends are paid at or after ruin. The value of the
company (without ruin constraint) is

Vo(s) = sup VP (s),
D

where the supremum is taken over all admissible dividend payment strategies. For
many popular claim size distributions, the optimal dividend payment strategy is a
barrier strategy (see Loeffen 2008) with barrier M, say. The computation of Vj(s)
and M is based on the dynamic equation

0 = 6Vo(s) + GVo(s), 5)
where
Gf (s) = AE[f(s = X) = f(5)] + ¢f'(5)

is the infinitesimal generator of the Lundberg model. If v(s) is the solution to (5)
with v(0) = v/(0) = 1, then

M = argmin v’ (s)
and

Vo(s) = v(s)/v'(M), s <M, Vyo(s) = Vo(M) +s—M, s > M.
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The company value with ruin constraint is

V(s,a) = sup[VP(s) : vP(s) < a],
D

where P(s) is the ruin probability of the with dividend process S(f) for initial
surplus s. The corresponding problem with Lagrange multiplier L is

V(s,L) = sgp[vD(s) — Ly (s)].

These two concepts are not equivalent: we have
V(s,L) = sup{V(s,a) — Lo : 0 < o < 1},
but it might happen that we have o; < «; for which
V(s,L) = V(s,a1) — Lay = V(s,a3) — Lay,
and then for o) < o < o we cannot find any L for which
V(s,L) = V(s,a) — La.

This situation is called Lagrange gap.

We will compute V (s, L) and the corresponding with dividend ruin probability .
This way, we also obtain V (s, ), at least for such values of «. The computation is
based on a non-stationary approach: for time ¢ we consider dividends payment and
ruin after time ¢, where dividends are discounted to time O:

W(s,t) = sup [E [ / ” e dD(u)|S(r) = s:| — LP{inf S (u) < 0|S(r) = s}:| :
D t uzt

The functions W(s, ) satisfy the dynamic equation
0=W(s, 1)+ GW(s,1),s,t > 0. (6)

This is the dynamic equation (5) where the term for discounting is replaced by a
term for time dependence in a non-stationary model. Then W(s,co) = —Ly(s)
leads to the following approximation: for large T we let W(s, T) = —Ly (s), and
then we calculate backward the functions W(s, r) to use W(s, 0) as an approximation
for V(s, L). The following numerical example has exponential claims with mean 1,
premium rate ¢ = 2, discount rate § = 0.03 and claim frequency A = 1. The
calculation is based on the following recursion of discretisations:

Wa(s,t —dt) = Wa(s,t) + dtGWa(s, 1),
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where in GWx (s, f) we use difference ratios instead of derivatives, as in the Euler
type approach above. The time dependent barrier M(z) is defined as the first value s
at which

(Wa(s, t —dt) — Wa(s —ds,t — d)) /A < e,

and W (s, t — dt) is linear on [M(t), oo) with slope e,

The following figures are calculated with T = 100, ds = 0.01 and dt = 0.001.

The function M(r) should be increasing. It drops in Fig. 2 close to T, but this is a
typical artefact caused by the definition of W(s, T) (Fig. 4).

This shows that dividend values with a ruin constraint can be computed numeri-
cally. As a next step one should use this objective for the control of reinsurance and
(constrained) investment.

Our last figure shows the efficiency curve for dividend values and ruin probabili-
ties. It is computed with s = 5, T = 300, ds = 0.01, dr = 0.001 and 0 < L < 600.
The value without ruin constraint is Vy(s) = 12.669. One would conclude that there
is no Lagrange gap here (Fig. 5).
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4 Conclusions and Future Work

For stochastic control in insurance the classical Hamilton-Jacobi-Bellman equations
are still useful for infinite horizon problems; a finite horizon view is not appropriate
here since insurance uses diversification in time. Viscosity solutions of these
equations can be derived with simple Euler schemes, they converge under weak
assumptions. This solves problems in which the ruin probability is minimized
or the company value is maximized. An objective function connecting these two
opposite views is a company value with a ruin constraint. For the computation of this
quantity, a Lagrange approach and an appropriate discretisation are given leading to
dividend strategies with a barrier which increases with time. For this given barrier,
the corresponding ruin probability can be computed as well.

When the concept of a company value with ruin constraint is well understood
(concerning algorithms and proof of convergence), one could and should start
optimizing this objective by control of investment, reinsurance, and other control
variables in insurance. If the above non-stationary approach is used, the numerics
for non-linear partial differential equations will be of major importance.
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Bermudan Option Valuation Under
State-Dependent Models

Anastasia Borovykh, Andrea Pascucci, and Cornelis W. Oosterlee

Abstract We consider a defaultable asset whose risk-neutral pricing dynamics
are described by an exponential Lévy-type martingale. This class of models
allows for a local volatility, local default intensity and a locally dependent Lévy
measure. We present a pricing method for Bermudan options based on an analytical
approximation of the characteristic function combined with the COS method. Due
to a special form of the obtained characteristic function the price can be computed
using a fast Fourier transform-based algorithm resulting in a fast and accurate
calculation.

Keywords Bermudan option ¢ Local Lévy model ¢ Defaultable asset * Asymp-
totic expansion * Fourier-cosine expansion

1 Introduction

In order to price derivatives in finance one requires the specification of the
underlying asset dynamics. This is usually done by means of a stochastic differential
equation. In this work we consider the flexible dynamics of a state-dependent model,
in which we account for a local volatility function, a local jump measure such
that the jumps in the underlying arrive with a state-dependent intensity and a local
default intensity, so that the default time depends on the underlying state. One of the
problems when considering such a state-dependent model is the fact that there is no
explicit density function or characteristic function available. In order to still be able
to price derivatives, we derive the characteristic function by means of an advanced
Taylor expansion of the state-dependent coefficients, as first presented in Pagliarani
et al. (2013) for a simplified model and similar to the derivations in Borovykh
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et al. (2016) for the local Lévy model. This Taylor expansion allows one to rewrite
the fundamental solution of the related Cauchy problem in terms of solutions of
simplified Cauchy problems, which we then solve in the Fourier space to obtain
the approximated characteristic function. Once we have an explicit approximation
for the characteristic function we use a Fourier method known as the COS method,
first presented in Fang and Oosterlee (2009), for computing the continuation value
of a Bermudan option. Due to a specific form of the approximated characteristic
function the continuation value can be computed using a Fast Fourier Transform
(FFT), resulting in a fast and accurate option valuation.

2 General Framework

We consider a defaultable asset S whose risk-neutral dynamics are given by:
S, = Lygye™,
dX, = u(t, X,)dt + o (t, X,)dW, + A; dN,(t, X,—, dz)z,
dN,(t, X,—, dz) = dN(t, X,—, dz) — v(t, X,—., dz)dt,

t
{=inf{t>0: [ y(s, X,)ds > ¢},
0

where Nl(t, x,dz) is a compensated random measure with state-dependent Lévy
measure v(t, x,dz). The default time ¢ of S is defined in a canonical way as the
first arrival time of a doubly stochastic Poisson process with local intensity function
y(t,x) > 0, and ¢ ~ Exp(1) and is independent of X. Thus the model features:

 alocal volatility function o (¢, x);

* a local Lévy measure: jumps in X arrive with a state-dependent intensity
described by the local Lévy measure v(z,x,dz). The jump intensity and jump
distribution can thus change depending on the value of x. A state-dependent Lévy
measure is an important feature because it allows to incorporate stochastic jump-
intensity into the modeling framework;

* a local default intensity y(,x): the asset S can default with a state-dependent
default intensity.

We define the filtration of the market observer to be 4 = .#* v .#P, where #X
is the filtration generated by X and .Z#” := o({¢ < u},u < 1), fort > 0, is the
filtration of the default. We assume

/ elzlv(t, x,dz) < 00,
R
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and by imposing that the discounted asset price S, := ¢S, is a %-martingale, we
get the following restriction on the drift coefficient:

o2(t,x)

wt,x) =yt x)+r— 5

—/ v(t, x,dz)(e" — 1 —2).
R

3 The Characteristic Function

Is it well-known (see, for instance, Linetsky 2006, Sect.2.2) that the price V of a
European option with maturity 7" and payoff @(S7) is given by

T
Vi=1lype " [e*f' V‘S’X“)d%o(Xr)le] . 1<T,

where ¢(x) = @(¢*). Thus, in order to compute the price of an option, we must
evaluate functions of the form

u(t,x) = E [e_ FTy6X0ds o x)(X, = x] . )

Under standard assumptions, u can be expressed as the classical solution of the
following Cauchy problem

Lu(t,x) =0, te€[0,T[, x € R, 3)
u(T,x) = p(x), xeR,
where L is the integro-differential operator
Lu(t,x) = du(t,x) + rou(t,x) + y(t, x)(9,u(t, x) — u(t, x))
2
+ g (2t’ ») (0r — O )u(t, x) — / v(t,x,dz)(e" — 1 — 2)du(t, x)
R
+ / v(t,x,dz)(u(t,x + z) — u(t, x) — z0,u(t, x)). ()
R

Define I'(t,x; T, y) to be the fundamental solution of the Cauchy problem (3). The
function u in (2) can be represented as an integral with respect to " (¢, x; T, dy):

u(t.x) = /R o)L (1.x: T, d). )

Here we notice explicitly that I' (¢, x; T, dy) is not necessarily a standard probability
measure because its integral over R can be strictly less than one; nevertheless, with
a slight abuse of notation, we refer to its Fourier transform
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Ft.xT.§) = FT(t,xT,))(E) = / T (1, x;T, dy), £ eR,
R

as the characteristic function of log S. Following the method developed in Borovykh
et al. (2016) we use an adjoint expansion of the state-dependent coefficients

y(t,x), v(t, x,dz),

around some point x. The coefficients a(z, x), y(t,x) and v(t, x, dz) are assumed to
be continuously differentiable with respect to x up to order N € N. Introducing the
n-th order Taylor approximation of the operator L to be (4):

Li=Lo+ Y (6= D a(@e = 0) + (= D pde — (6= D'p
k=1

- / (¢ — D (@) (& — 1 =29, + / (=D e —1-20,),
R R
where
Lo =3, + 13 + ao(t) P — ) + 70()3s — yo(0) — / vot, d) (& — 1 — 2)d,
R

+ [ volt, dD) (@ — 1 — 2y,
R

and

_ Ra®)

¥y (%)
ap = =
Kl

v (X, dz)
k! ’

: vi(dz) = o

) Yk = k> 0.

Let us assume for a moment that L, has a fundamental solution G° (t,x;T,y) that is
defined as the solution of the Cauchy problem

LoG'(t,x;T,y) =0 t€[0,T[, xR,
GY(T,T,y) =,

In this case we define the nth-order approximation of I" as
n
e xT,y) = Z GMt,x;T,y),
k=0

where, for any k > 1 and (T,y), G*(-,~; T,y) is defined recursively through the
following Cauchy problem
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k
LoGM(t,x:T,y) = — Y (L — L) G*"(t,x;T,y) t€[0,T[, xR,
h=1

GX(T, x; T,y) =0, x €R.

Correspondingly, the nth-order approximation of I is defined to be

n

FO0xT.§) =Y F(G.xT.)) () =) GtxT.E)., EeR

k=0 k=0

Now, by transforming the simplified Cauchy problems into adjoint problems and
solving these in the Fourier space we find

GUt,x; T, £) = ef,TW(s,S)dS,

k
Gunrs) =- ol vt g (Z (L7 - L 0) ¢, -)) (&)ds,
t h=1
with
V(5. ) =iE(r + y0(5)) + ao(s) (—E> — iE) — /R vols. d2) (& — 1 — 2)iE
Ldz) (e — 1~ izf),
+ /R vo(s. d2) e iz£)

the characteristic exponent of the Lévy process with coefficients yy(s), ao(s) and
vo(s, dz), and

LV (s) = L8 (s) =an(s)h(h — 1)(y — )" 2
+ ap(s)(y — %" (2hdy + (y — X)(dyy + 0y) + h)
—(@h@y =" =)y =" (8, + 1)

+ /R vi(s,d2) (€ —1—2) (h(y ="' + (v — 0)"0,)
+ /R Uy (s, dz) ((y +z—X) e
—(-0"—z(hy-0"" = (—0"dy)).

From these results one can already see that the dependency on x comes in through

¢ and after taking derivatives the dependency on x will take the form (x — x)"e%*:
this fact will be crucial in our analysis. After some algebraic manipulations, see
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for details Borovykh et al. (2016), we find that the approximation of order n is a
function of the form

n

PO T,8) = ¢ ) (x— 0 gua(t, T, €), (©6)

k=0

where the coefficients g, x, with 0 < k < n, depend only on ¢, T and &, but not on
x. The approximation formula can thus always be split into a sum of products of
functions depending only on & and functions that are linear combinations of (x —
x)"e X m e Ny.

4 Bermudan Option Valuation

A Bermudan option is a financial contract in which the holder can exercise at a
predetermined finite set of exercise moments prior to maturity, and the holder of the
option receives a payoff when exercising. Consider a Bermudan option with a set
of M exercise moments {f{,...,ty}, with 0 < #; < t, < --- < tyy = T. When
the option is exercised at time #,, the holder receives the payoff @ (z,,S;,). For a
Bermudan put option with strike price K, we simply have ¢(f,x) = (K —¢e*)7.
By the dynamic programming approach, the option value can be expressed by a
backward recursion as

v(ty, x) = ]l{§>tM}‘p(tM» x)

and

C(t, x) =F |:€f’tm 7(V+Y(S'X‘Y))dsv(tm, Xtm)|Xt = X] s re [tm—l , tm[ %
V(tm—1,X) = Lizsg,_y max{@(ty—1,X), c(tm—1,%)}, me{2,...,M}.

In the above notation v(f,x) is the option value and c(z,x) is the so-called
continuation value. The option value is set to be v(t,x) = c(t,x) for ¢ €t,—1, tl,
and, if 1; > 0, also for ¢ € [0, #;].

Remark 4.1 Since the payoff of a call option grows exponentially with the log-stock
price, this may introduce significant cancellation errors for large domain sizes. For
this reason we price put options only using our approach and we employ the well-
known put-call parity to price calls via puts. This is a rather standard argument (see,
for instance, Zhang and Oosterlee 2012).
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4.1 An Algorithm for Pricing Bermudan Put Options

The COS method as proposed in Fang and Oosterlee (2009) is based on the insight
that the Fourier-cosine series coefficients of I'(¢,x; T, dy) (and therefore also of
option prices) are closely related to the characteristic function of the underlying
process. Remembering that the expected value c(z,x) in (7) can be rewritten in
integral form as in (5),

c(t,x) = e "= / V(tn, V)T (1, X5 1, dy), 1€ [tuet, tml,
R

we apply the COS formulas to find the approximation:

N—1

wA k
&t x) = e "m0 E 'Re (e—lknba r (z, Xt b—”)) Vi(tw), t € [tyet.tm]
—d
k=0
®)

2 b y—a
Vi(tyn) = m/ cos <knm) max{@(ty,y), c(tn,y)}dy,

with ¢(t,x) = (K — ).

To this end, we split the integral in the definition of Vi (z,,) into two parts using the
early-exercise point x;, which is the point where the continuation value is equal to
the payoff, i.e. ¢(ty, x),) = @(tm. x,); thus, we have

Vk(l‘m) = Fk(tm,x,’;) + Ck(tm,x;), m=M-1,M-2,...,1,

where
Fr(tp.x') = i/x:; @(tm,y) cos (knu)d
k\Im> m/ * b—a B may b—a )’7
2 (P -
Cr(tm, x),) := —/ c(tn,y) cos (knu) dy,
b—a [ b—a

and Vi (ty) = Fi(ty,log K).

Remark 4.2 Since we have a semi-analytic formula for ¢(%,,, x), we can easily find
the derivatives with respect to x and use Newton’s method to find the point x}, such
that c(t,,, x);,) = @(tm,x}). A good starting point for the Newton method is log K,
since x;, < log K.
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The coefficients Fy(t,, x),) can be computed analytically using x), < log K. On the
other hand, by inserting the approximation (8) for the continuation value into the
formula for Ci(z,. x,) have the following coefficients Cy form = M — 1, M —
2,...,1:

N—1
R 2e_r(tm+1 _tm) ’ b .. a A ]TL’
Ci(tm, xy) = o E Vj(tm+1)/ Re (e_””b—ﬂr (Im,)ﬁ 1 7 a))
Xk -

j=0
xX—a
cos (kJT ) dx.
b—a

Similar to the FFT-based algorithm in Fang and Oosterlee (2009) for an
exponential Lévy process with constant coefficients, the continuation value in case
of the state-dependent coefficients can also be calculated using the FFT. Using the
structure of the characteristic function (6) we write the continuation value in vector
form as:

(A:(l‘m,x;;) — Z e—r(tm+1—tm)Re (V(tm+l)%h(x:,, b)Ah) )
h=0

where V(t,41) is the vector [Vo(tmt1), .., Vv—1(twt1)]” and 2" (x%,b)A" is a
matrix-matrix product with .#”" being a matrix with elements

i=a (x — X)" cos (knz —

“)dx, kj=0,.. . .N—1
—da

2 b
My (65, b) = h—a / e

and A" is a diagonal matrix with elements

jTT
gn.h(tm,tm+1, J—) j=0,... . N—1.
b—a

It can be shown using standard trigonometric that the matrix .# can be rewritten as
a sum of a Hankel and Toeplitz matrix such that .# = .#y + ./t with elements

| -
Mjh(x;;, b) — /x‘; cos (ijn%) (x —X)"dx

| -
+ / sin (l]ﬂz a> (x —X)dx.

b—a ) —a

Using the split into sums of Hankel and Toeplitz matrices we can write the
continuation value in matrix form as:

n

é’(tm,x;;) = Zeﬂ(""‘*‘*”"}Re (Al + }yu"),

h=0
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where ./}, = {M["(x}. b)} L, is a Hankel matrix and .2} = (M} (x}. b))}l

is a Toeplitz matrix and u" = (!}, with u} = g, (tm, bt 1 ﬁ) Vi(tmt1)
and ug = %g,,,h (tms tm+1,0) Vo(t1)- It is well-known that a product of a Hankel
or Toeplitz matrix with a vector can be calculated using FFTs, see Borovykh
et al. (2016) for full details. Using the fact that an FFT can be computed with
computational complexity O(N log, N), we find that for a Bermudan option with

M exercise dates the overall computational complexity is O((M — 1)N log, N).

5 Numerical Experiments

In this section we apply the method developed in Sect.4 to compute the European
and Bermudan option values with various underlying stock dynamics. The computer
used in the experiments has an Intel Core i7 CPU with a 2.2 GHz processor. We use
the second-order approximation of the characteristic function.

For the COS method, unless otherwise mentioned, we use N = 200 and L = 10,
where L is the parameter used to define the truncation range [a, b] as follows:

[a,b] := |:c1 —Ly/co + Jfeq, e + LyJer + «/&i|,

where ¢, is the nth cumulant of log-price process log S calculated using the Oth-
order approximation of the characteristic function. We compare the approximated
values to a 95% confidence interval computed with a Longstaff-Schwartz method
with 10° simulations and 250 time steps per year. Furthermore, in the expansion we
always use x = Xj.

5.1 Tests Under CEV-Merton Dynamics

Consider a process under the CEV-Merton dynamics:

X, = (r —a(X) — A (em+52/2 - 1)) dt + 2a(X,)dW; + / AN, d2)z,
R

with

2,2(6~1)x
a9 = B
1 —(z—m)’
dz7) = A dz,
a0 =3 e (< )

V() = —ag(E? + i) + irf — i) (em+52/2 - 1) £+ A (emis—s%z/z _ 1) _
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Table 1 Prices for a European and a Bermudan put option (expiry 7 = 1 with 10 exercise
dates and expiry 7 = 2 with 20 exercise dates) in the CEV-Merton model for the 2nd-order
approximation of the characteristic function, and a Monte Carlo method

European Bermudan

T K MC 95% c.i. Value MC 95% c.i. Value

1 0.6 0.006136-0.006573 0.006579 0.006307-0.006729 0.006096
0.8 0.02526-0.02622 0.02581 0.02595-0.2689 0.02520
1 0.08225-0.08395 0.08250 0.08480-0.08640 0.08593
1.2 0.1965-0.1989 0.1977 0.2097-0.2115 0.2132
1.4 0.3560-0.3589 0.3574 0.3946-0.3957 0.3954
1.6 0.5341-0.5385 0.5364 0.5930-0.5941 0.5932

2 0.6 0.01444-0.01513 0.01529 0.01528-0.01594 0.01365
0.8 0.04522-0.04655 0.04613 0.04596-0.04719 0.04659
1 0.1046-0.1067 0.1077 0.1149-0.1170 0.1171
1.2 0.2054-0.2083 0.2065 0.2319-0.2345 0.2345
1.4 0.3351-0.3386 0.3382 0.3968-0.3987 0.3991
1.6 0.4904-0.4944 0.4919 0.5927-0.5938 0.5935

We use the following parameters Sy = 1, r = 5%, o9 = 20%, B = 0.5, A = 30%,
m = —10%, § = 40% and compute the European and Bermudan option values in
Table 1. The results are compared to a widely used method for valuing Bermudan
options, the Least-Squares Monte Carlo method (LSM), see Longstaff and Schwartz
(2001). The error in our approximation consists of the error of the COS method
and the error in the adjoint expansion of the characteristic function. In particular
for low strikes the method seems to be more sensitive to the approximation, as the
approximated value does not always fall into the LSM confidence interval.

In Fig.1 the convergence results of the COS method using the 2nd-order
approximation of the characteristic function for 7 = 1 and 10 exercise dates are
presented. We choose L = 10 and N = 2¢ and see that a very quick convergence is
obtained.

5.2 Tests Under a CEV-Like Lévy Process
with a State-Dependent Measure

In this section we consider a model similar to the one used in Jacquier and Lorig
(2013). The model is defined with local volatility and a state-dependent Lévy
measure as follows:

a) = 5B + b)),

v(x,dz) = e3vn(dz) + ean(x)vy(dz),
n(x) = e, ©)
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Fig. 1 Error convergence for pricing Bermudan put options, N = 2¢, L = 10, T = 1 and 10
exercise dates and strikes K = 0.8,1,1.2

We will consider Gaussian jumps, meaning that

VN (dZ) =

1 —(z—m)? J
23-[_52 exp T Z.

In Table 2 the results are presented for a model as defined in (9) with a state-
dependent jump measure, so v(x, dz) = n(x)vy(dz). In this case we have

V() = irk — ao(E> — i§) — Avo(¢" /2 — )i + Avg(emETE2 1),

where ay = %b%eﬁ’_‘ and vo(dz) = eP*vy(dz). The other parameters are chosen
as: by = 0.15, b0 = 0,8 = =2, A = 20%, § = 20%, m = —0.2, Sy = 1,
r=5%,e = 1,83 = 0, &4 = 1, the number of exercise dates is 10 and T = 1.
Again the method performs accurately, but for out-of- and at-the money strikes the
approximation tends to under- and over-estimate the LSM value.
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Table 2 Prices for a European and a Bermudan put option (10 exercise dates, expiry 7 = 1) in
the CEV-like model with state-dependent measure for the 2nd-order approximation characteristic
function, and a Monte Carlo method

European Bermudan

K MC 95% c.i. Value MC 95% c.i. Value
0.8 0.01025-0.01086 0.009385 0.01068-0.01125 0.01024
1 0.04625-0.04745 0.04817 0.05141-0.05253 0.05488
1.2 0.1563-0.1582 0.1564 0.1942-0.1952 0.1952
1.4 0.3313-0.3334 0.3314 0.3927-0.3934 0.3930
1.6 0.5207-0.5229 0.5218 0.5919-0.5926 0.5920
1.8 0.7103-0.7124 0.7122 0.7906-0.7913 0.7910
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Option-Implied Objective Measures of Market
Risk with Leverage

Matthias Leiss and Heinrich H. Nax

Abstract Leverage has been shown to be procyclical and indicative of financial
market risk. Here, we present a novel, inherently forward-looking way to estimate
market leverage ratios based on derivative prices, option hedging, and the ‘opera-
tional’ riskiness measure by Foster and Hart (J Polit Econ 117(5):785-814, 2009).
Furthermore, we report option-implied ‘optimal’ leverage levels inferred via the
(Kelly, IRE Trans. Inf. Theory 2(3):185-189, 1956) criterion. The resulting measure
of leverage exhibits strong procyclicality prior to the Global Financial Crisis of
2008. Finally, we find it to successfully predict large stock market downturns.

Keywords Objective risk * Foster-Hart * Leverage ¢ Risk-neutral densities

1 Introduction

With the benefit of hindsight, we clearly should have put even greater emphasis on the risks
of excessive leverage.
Hildebrand (2008)

The Global Financial Crisis of 2008 brought questions related to excessive leverage
back on the table of risk regulation. Previous risk regulation frameworks (e.g., Basel
I and II) posed capital requirements that were (at least partially) based on the relative
riskiness of various types of assets (Hildebrand, 2008). While such risk-based
capital measures signaled high stability of banks prior to the Global Financial Crisis,
simple leverage ratio assessments exposed the largely undercapitalized situation of
key financial actors which exacerbated the crisis. As a reaction to the crisis, the new
regulatory framework (Basel III) contains a simple, non-risk-based leverage ratio
requirement (Basel Committee on Banking Supervision, 2010).

Nevertheless, as Schularick and Taylor (2012) have noted, we have entered an age
of unprecedented financial risk due to leverage. In particular, the vast expansion of
credit and financial innovation, combined with implicit government insurance and
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the prospect of rescue operations, have resulted in massively increased leverage.
As a result, the financial system has become more vulnerable to endogenously
generated instabilities as manifested by recurring booms and busts (Von der Becke
and Sornette, 2014).

A key issue inherent to leverage is procyclicality, which means that leverage
ratios are only a partial remedy. In theory, standard portfolio rules would seem to
imply anticyclical leverage; high leverage when the risk premium is high. Empiri-
cally, however, procyclicality of leverage has been documented extensively (Adrian
and Shin, 2014). This empirical phenomenon has been explained through increased
collateral requirements during downturns creating leverage cycles (Geanakoplos,
2010): increased uncertainty and volatility of asset returns lead lenders to require
tighter margins, which, in turn, mechanically implies falling prices and consequently
large losses for the most leveraged investors. Importantly, both of these elements
feed back on each other, thus starting the leverage cycle. Any institution in the
financial system where investors hold long-term, illiquid assets that are financed
by short-term liabilities is particularly at risk of this, and falling leverage can
consequently lead to ‘runs’ on such institutions (Adrian and Shin, 2014). Perhaps
serving as the most famous example, the Global Financial Crisis of 2008 started as
a run on the sale and repurchase (repo) market (Gorton and Metrick, 2012).

Generally, due to procyclicality, leveraged financial markets exhibit fat tails of the
return distribution and clustered volatility (Thurner et al., 2012). This suggests the
use of leverage ratios as indicators for the likelihood of future financial crashes and
crises. Indeed, changes in dealer repos can be used to successfully forecast changes
in financial market risk as measured by the Chicago Board Options Exchange
Volatility Index (VIX) index (Adrian and Shin, 2010). Similarly, intermediary
leverage has been shown to be negatively aligned with the banks’ Value-at-Risk
(VaR) (Adrian and Shin, 2014).

Our present paper pursues a similar goal, namely to use leverage procyclicality to
predict market risk. Our contribution to the existing literature is the construction of
leverage ratios from derivative markets. Prior work had either focused on leverage
as the ratio of collateral values to the down payment (with data generally being
inaccessible, Geanakoplos 2010), or as the ratio of total assets to book equity
(Adrian and Shin, 2010, 2014). By contrast, our approach will be to construct
forward-looking estimates of leverage ratios based on prices of financial options.
Specifically, we will use risk-neutral probability distributions to evaluate the
estimated, forward-looking performance of hedged portfolios as quantified by the
recently proposed ‘operational’ riskiness measure of Foster and Hart (2009). In our
generalization of the measure, allowing leverage, the measure indicates the level of
leverage at which the estimated growth rate becomes negative. We note that this
is fundamentally different from previous theoretical work on optimal trading with
leverage. For example, the previous study by Grossman and Vila (1992) establishes
optimal dynamic trading rules subject to a leverage constraint that is given. Here,
our goal is to empirically determine such a constraint in the first place.

Our findings are twofold. First, leverage ratios as constructed from derivative
prices exhibit a pronounced and persistent peak prior to the Global Financial Crisis
of 2008, thus quantifying the procyclical leverage regime of the market. Second,
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leverage ratios are found to be indicative of extreme future market-downturns. These
findings complement our own investigation of option-implied operational market
risks (Leiss and Nax, 2015), particularly during the build-up of the Global Financial
Crisis of 2008, where our previous, leverage-free approach had only limited reach.

2 Operational Metrics of Disaster Risk

Well-known tail measures, like Value at Risk (VaR) and Expected Shortfall (ES),
have become industry standards for assessing extreme market risks (Embrechts
et al., 2005). By construction, they only characterize the risk of negative events
while ignoring the potential upside. On the other hand, measures of dispersion such
as volatility/variance or interquartile range account for up- and downturns, but are
largely blind to rare extreme events on both sides of the spectrum. For example, the
widely used Sharpe ratio (Sharpe, 1994) only accounts for the first two moments of
the underlying return distribution, thus implicitly (and falsely) assuming that higher
moments do not matter.

Two novel measures of riskiness (by Aumann and Serrano (2008) and Foster
and Hart (2009)) promise to balance both, sensitivity to extreme risks and potential
gains. Formally, these measures are defined for any gamble g in the set of gambles ¢
characterized by random variables with positive expectation and positive probability
of negative outcomes. For any gamble g € ¢, Foster and Hart (2009) uniquely
define their risk measure, FH, as the zero of!

E[log(1 + FH(g)g)] = 0, (1)

whereas Aumann and Serrano (2008) define their risk measure, AS, as the zero of

E[exp(—AS(g)g)] = 1. ()

One issue with expression (1), which will become extremely relevant for our
leverage analysis, is that, for some continuous gambles g € ¢, FH thus defined
may have no positive solution. In this case, Riedel and Hellmann (2015) extend the
definition consistently by setting FH to the maximum possible loss incurred by that
gamble. In particular, if g is a return distribution with maximum loss of 100%, FH
is bound by 1.

Importantly, definitions (1) and (2) involve forming the expectation over the
whole distribution of the gamble’s outcomes. Thus, FH and AS are able to capture all
moments of a gamble. This is formalized by Kadan and Liu (2014), who prove that
higher moments do not necessarily have a weaker effect on FH and AS. In practice,

I'The logarithmic growth rate had entered risk analysis already earlier. Examples involve the Kelly
(1956) criterion (which aims to maximize growth rate), or, very similar to Foster and Hart (2009),
Whitworth (1870, p. 217).
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Fig. 1 Foster-Hart FH(g) and Aumann-Serrano AS(g) measures of riskiness vs. the standard
deviation o of a normally distributed gamble g ~ .#7(0.01,?). The implied leverage ratios
coincide in the case of high risk (¢ >> 0.01). In the opposite case of vanishing risk (¢ — 0),
AS diverges indicating zero risk and suggests infinite leverage, while the no-bankruptcy property
of FH(g) leads to an upper bound of 1

one often finds higher moments to have a strong impact on the risk measures
(Kadan and Liu, 2014; Leiss and Nax, 2015; Anand et al., 2016). However, FH is
significantly more sensitive to left-tail events than AS. Be g, the composite gamble
of go € ¥ and an extreme loss —L < 0 with respective probabilities 1 — « and
a € (0,1) and FH(go) > 1/L. Itis easy to show that (Kadan and Liu, 2014)

lim FH(gy) = 1/L, 3)
whereas
lim AS(gy) = AS(go). “4)
a—0

A variation of this is illustrated in Fig. 1. The gamble g is normally distributed with
positive mean and standard deviation o, g ~ .4 (0.01, @?). In the high-risk scenario
of large variance, @ > 0.01, FH and AS coincide almost perfectly. However, in the
case of low risk, i.e. as ¢ — 0, AS diverges indicating asymptotically zero risk and
therefore infinite leverage, whereas FH is bounded by 1 to avoid bankruptcy with
one shot.

Besides the above-mentioned practical appeal of taking into account the whole
distribution of a gamble, both FH and AS also fill an important theoretical gap.
It is known that risk-averse investors who choose their investments by maximiz-
ing expected utility may rank investments by second-order stochastic dominance
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(SOSD) (Hadar and Russell, 1969; Hanoch and Levy, 1969; Rothschild and Stiglitz,
1970). However, some pairs of investments cannot be ranked on the basis of SOSD.
Kadan and Liu (2014) show that both FH and AS extend SOSD in a natural
way as they induce a complete ranking on ¢ that agrees with SOSD whenever
applicable. The induced rankings differ, because loosely speaking FH and AH order
independently of an investor’s utility and wealth, respectively.

The theoretical reason for FH to be bounded is the no-bankruptcy theorem by
Foster and Hart (2009). It states that when confronted with an infinite series of
gambles g, € ¢, the simple strategy of always investing a fraction of wealth smaller
than FH(g,) guarantees no-bankruptcy, i.e.

P[lim W, =0] =0, 5)
—>00

where W, denotes wealth at time ¢. This bound is independent of the investor’s risk
attitudes, which is the sense in which FH is ‘operational’ according to Foster and
Hart (2009). By contrast, following such a strategy leads to wealth divergence to
infinity (a.s.).

3 Extending Operational Riskiness Measures to Leveraged
Gambles

The hard bound of FH that is induced by the no-bankruptcy constraint poses a
challenge for dynamic risk management, as in some scenarios there is no more
variation in FH. Indeed, our empirical study of option-implied FH found FH to
be at the upper bound on 27% of the business days during the decade 2003-2013,
and on 45% of the business days during the 5 years leading up to the collapse of
Lehman Brothers in September 2008 (Leiss and Nax, 2015). One might wonder,
therefore, how much information is lost because of a lack of variation during those
days.

Instead of focusing on other risk indicators, we would like to explore a different
‘leverage route’ in this paper. Since the hard bound of one inherent to the original
FH measure is induced by the maximal loss, one could think of building a portfolio
that is hedged against extreme events: let r; be a gamble that describes the relative
return distribution of buying at asset S at time # = 0 and holding it until time t = 7.
Accounting for dividends paid during that period Y and discounting

_Sr+Y=5

5, (6)

Ts

If the asset defaults and no dividends are being paid, the investor incurs a maximum
loss of min(r;) = —100% such that FH(r;) < 1. A simple way of hedging this
portfolio is via a put option written on S with premium Py (at t = 0), strike price K,
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and maturity 7. The return of a portfolio that consists of one unit of the stock and a
put option is given by

maX(ST,K) + Y- So — PO

h = s 7
& So + Py @
with maximum loss of
. K —So— Py
= — > —100% 8
min(ry,) 5o+ Po b 3

for Y = 0 and K > 0 (provided the seller of the option does not default). In other
words, a gamble of the form (7) generally allows for FH(r;,) > 1, i.e. leverage.” Our
definition (7) generalizes FH to allow for leverage.

In later sections, we will compute and analyze our ‘leverage Foster-Hart” FH (r;,)
for hedged portfolios based on risk-neutral probability distributions estimated from
option prices. Thus, the forward-looking information contained in derivative prices
enter FH(ry) twice: in Py via the return (7), and in the computation of the
expectation via (1). Figure 2 illustrates this with an example showing the payoff
for investment strategy (7) for buying the S&P 500 with the corresponding put
option. Here, the values are fy = 2004-11-22, T = 2004-12-18, Sy = 1177.24
USD, K = 1190, Py = 21.50 USD. Note that the strike of the put is higher than
index price at time ¢t = 0. Option pricing according to Black and Scholes (1973)
suggests that the put option ask implies a volatility of only 11.9%. In this example,
one finds FH(r,) = 10.7, i.e. a leverage ratio of more than 10 (see Fig. 3).

Another sensible and closely related leverage ratio is the option-implied Kelly
(1956) criterion K: instead of setting the expected logarithmic growth rate to zero
as in (1), one asks for that multiple (or fraction) of wealth that maximizes it, thus
defining

ak(g) = argmax E [log(1 + ag)] . )

For gambles g € ¢, one has ok (g) < FH(g). Continuing the example from above,
we obtain a maximal growth rate at a leverage ratio of ag(r;,) = 5.1 (see Fig. 3).
The leverage ratio implied by derivative prices is not meant to be identical to other
definitions (Geanakoplos, 2010; Adrian and Shin, 2010, 2014), but should be seen
as complementary.

2Sircar and Papanicolaou (1998) document that dynamic option hedging strategies imply feedback
effects between the price of the asset and the price of the derivative, which results in increased
volatility.
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Fig. 3 Option-implied expected logarithmic growth rate of option-hedged portfolio example. The
right zero crossing equals the Foster-Hart riskiness FH(r,) = 10.7, the maximum growth rate the

Kelly criterion ag(r;) = 5.1

4 Data and Methods

In this section we discuss our data and the statistical methods employed in the

empirical analysis.
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4.1 Data

We obtain end-of-day bids, asks and open interest for standard European SPX
call and put options on the S&P 500 stock market index for the period January
Ist, 2003, to October 23rd, 2013, from Stricknet.> Throughout this decade the
average daily market volume of SPX options grew from 150 to 890K contracts
and the open interest from 3840 to 11,883 K, respectively. In this study, we focus on
monthly options, which are AM-settled and expire on the third Friday of a month.
In addition, we use daily values for the S&P 500, its dividend yield, interest rates of
3-Month Treasury bills as a proxy of the risk-free rate, the (Chicago Board Options
Exchange, 2009) Volatility Index (VIX) and the LIBOR from the Thomson Reuters
Datastream.

4.2 Risk-Neutral Densities

Our first step is to extract risk-neutral densities from the option data as a market
view on the probability distribution of the underlying gamble (which for our real-
world finance application is of course unknown). There is a large literature on
estimating risk-neutral probability distributions (Jackwerth, 2004). Here, we use
our own method from Leiss et al. (2015), Leiss and Nax (2015) who generalize
Figlewski (2010) for a modern, model-free method. We start with the fundamental
theorem of asset pricing that states that in a complete market, the current price of
an asset may be determined as the discounted expected value of the future payoff
under the unique risk-neutral measure (e.g., Delbaen and Schachermayer, 1994). In
particular, the price C, of a standard European call option at time t with exercise
price K and maturity T on a stock with price S is given as

o0
C/(K) = e 7T B2 [max(S; — K, 0)] = e 7T / (St — K)f,.(Sr)dSr,
K
(10)

where Q and f; are the risk-neutral measure and the corresponding risk-neutral
probability density, respectively. Since option prices C;, the risk-free rate, ry, and
time to maturity, 7 —t are observable, we can invert the pricing Eq. (10) to obtain an
estimate for the risk-neutral density f;. In practice, this involves numerical evaluation
of derivatives (Breeden and Litzenberger, 1978) and fitting in implied volatility
space (Shimko et al., 1993). Outside of the range of observable strike prices we
fit tails of the family of generalized extreme value distributions, which are well-
suited for the modeling extreme events (Embrechts et al., 1997). We refer the more
interested reader to Figlewski (2010); Leiss et al. (2015); Leiss and Nax (2015) for
details of the method.

3The data is available for purchase at http://www.stricknet.com/. More information on the SPX
option contract specifications can be found at http://www.cboe.com/SPX.
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4.3 Leverage Ratios

We will use the option-implied Foster-Hart riskiness of levered investments
FHQ(r,) with r;, defined in (7) to estimate the prevailing leverage ratio. We compute
FHQ(r,) for each business day and each put option available on that day. Be Py
the premium and K the exercise price with maximum FH®(r;,) on that business
day. We report leverage ratios FH? (rh(i’o, k)) and, as a comparison, also the Kelly
criterion aQ(rh(IA’O,IA()) as that quantity that numerically maximizes the option-
implied logarithmic growth rate. Finally, we compute the future return r;, (i’o, k)
with the realized value Sy of the underlying index at maturity.

4.4 Return Downturn Regression

We will assess the predictive power of risk measures with respect to extreme losses
in the form of logistic regressions. For this, we define a binary downturn variable
Arf that equals 1 in the case of an extreme event, and 0 otherwise:

1, ifrr <op,
A = Ut =P (11)
05 ifrt—)szs

where p is a quantile describing the 5%, 10%, or 20% worst return. We note that
r—7 1s the future realized return from time ¢ to the maturity of the option 7', and
corresponds to the capital gain of a non-levered 7, (6) or levered portfolio 7, (7). In
this sense our analysis allows inference about the predictive power of risk measures.
We will regress downturns on individual risk measures R

Arf = ap; + ar; R, + &, (12)
and on sets of risk measures %:

A =ag,+ Y ar.Ri + & (13)
REZ

Specifically, we will include the option-implied Foster-Hart riskiness FH®(r;,) and
5% Value at Risk of levered portfolios VaR%(r;).* Leiss and Nax (2015) performed
rigorous variable selection using the least absolute shrinkage and selection operator
and found three further risk measures to be indicative (Tibshirani, 1996): (1) option-
implied 5% expected shortfall of non-levered portfolios ES®(r,), (2) the Chicago
Board Options Exchange (2009) Volatility Index (VIX), and (3) the difference
between the 3-month LIBOR and 3-month T-Bill rates (TED), a measure of credit
risk. We will consider those indicators as well.

4Qur results are robust with respect to choosing a different VaR level.
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Over successive business days the downturns (11) focus on the same maturity
T, as option exercise dates are standardized. This may induce autocorrelation in
the dependent variable, which we correct for by using the heteroskedasticity and
autocorrelation consistent covariance matrix estimators by Newey and West (1987,
1994).

S Empirical Results

Having established the leveraged Foster-Hart riskiness and methods used, we now
study empirical applications. First, we discuss the time dynamics of the option-
implied leverage ratios around the Global Financial Crisis of 2008. Next, we analyze
the predictive power of various risk measures with respect to extreme losses of
levered and non-levered portfolios.

5.1 Option-Implied Leverage Around the Global Financial
Crisis

Geanakoplos (2010) reports dramatically increased leverage from 1999 to 2006. In
2006, a bank could borrow as much as 98.4% of the purchase price of a AAA-
rated mortgage-backed security, which corresponds to an average ratio of about 60
to 1. However, these numbers should not be directly compared to our findings, as
the leverage ratios are defined differently. We assess leverage in time periods before
and after the onset of the Global Financial Crisis, which Leiss et al. (2015) identified
as June 22, 2007. Table 1 summarizes the option-implied Foster-Hart riskiness for
non-levered FH(r,) and levered investments FH(r;). Prior to the Global Financial
Crisis of 2008 the non-levered FH(ry) on average recommends investments of about
78% of one’s wealth. During and after the crisis this value drops to about half its
previous level.

In terms of FH-recommended leverage, we find an average leverage ratio of 105
in the pre-crisis regime, albeit with a fairly large confidence interval of 40 (see
Fig.4). During and after the crash it shrinks drastically to about 3.4. Geanakoplos

Table 1 Average levels of option-implied Foster-Hart riskiness, levered Foster-Hart riskiness, and
Kelly criterion with 95% confidence intervals prior and after the onset of the Global Financial Crisis
identified as 22 June 2007

Pre-crisis Crisis and post-crisis
Non-levered Foster-Hart riskiness FHO(ry) 0.78 £ 0.03 0.40 £ 0.02
Levered Foster-Hart riskiness FHO(ry) 105 £ 40 34408

Levered Kelly criterion ag (rn) 41.00 £ 0.03 1.57 £0.02
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Fig. 4 Leverage according to option-implied Foster-Hart riskiness and Kelly criterion of leveraged
gambles. Leverage ratios rise to drastically high values during the boom in mortgage-backed
securities prior to 2008

(2010) explains the extraordinarily high leverage ratios during the pre-crisis years
by financial innovation, namely the extensive use and abuse of credit default
swaps (CDS). CDS are a vehicle for speculators to leverage their beliefs. Their
standardization for mortgages led to enormous CDS trading prior at the peak of
the housing bubble. Another reason for pronounced leverage before the crisis is the
existence of two mutually reinforcing leverage cycles in mortgage-backed securities
and housing (Geanakoplos, 2010). The option-implied Kelly criterion of hedged
portfolios ag (rp)recommends a leverage of 41 pre-crisis and 1.57 afterwards, with
respective small confidence intervals of 0.03 and 0.02.

5.2 Option-Implied Leveraged Foster-Hart Riskiness and
Downturns

We now assess the predictive power of various risk measures with respect to extreme
future losses. Leiss and Nax (2015) empirically demonstrated that both Foster-
Hart riskiness FH(r;) and the TED spread predict future downturns of non-hedged
portfolios. Here, we will be specifically interested in the situation when the non-
levered FH(r;) is stuck at the hard bound of 1 and therefore may only yield limited
information. Thus, we subset our data to the 740 business days in our time period
where FH(r;) = 1.

Table 2 summarizes regression results for the 5%, 10%, 20% worst losses.
We find that the option-implied Foster-Hart riskiness of levered portfolios helps
predicting future downturns for very extreme events (at the 5% quantile and below).
In the case of the 10% most negative performances, the option-implied value at risk
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Table 2 Regressions of option-hedged portfolio downturns on various risk measures over 740
observations

Regression of the worst 5% downturns on risk measures (37 events)
(Intercept) | —1.565™** | —4.483***| —3,975%**| —D 825%**| —6.454™**| —4.156™** —4.763™***
(0.273) (0.312) (0.342) (0.416) (0.735) (1.046) (1.123)

—FH®(ry)| 0.263%** 0.218%* | 0.138*
(0.073) (0.074) (0.064)
VaR®(ry,) 61.166™** 20.326
(8.661) (13.197)

ES(ry) 0.329%** 0.129 0.164
(0.081) (0.131) (0.156)
TED —0.183 —0.452 —0.405
(0.548) (0.525) (0.519)

VIX 0.194*** 1 0.119 0.098

(0.035) (0.073) (0.070)
Regression of the worst 10% downturns on risk measures (74 events)
(Intercept) | —1.014™** | —3,715%%** | —3,184™***| —2.238™** —5310™**| —2.668*** —3.661***
(0.276) (0.258) (0.335) (0.361) (0.635) (0.792) (0.860)

—FHR(r;,) 0.128 0.103 0.046

(0.066) (0.070) (0.034)
VaR®(ry,) 64.658*** 37.721%%*
(7.962) (11.266)

ESQ(ry) 0.351%** 0.201 0.272
(0.105) (0.138) (0.166)

TED 0.110 —0.225 0.024
(0.508) (0.440) (0.414)

VIX 0.178*** | 0.057 0.017

(0.034) (0.057) (0.061)
Regression of the worst 20% downturns on risk measures (148 events)
(Intercept) | —0.439™ | —2.328***| —2 287***| —1 831***| —4.889***| —2.605** | —2.948***
(0.214) (0.240) (0.292) (0.337) (0.738) (0.831) (0.823)

—FHQ(r;)| 0.048** 0.040* 0.030
(0.018) (0.018) (0.017)
VaR®(ry,) 49.538%4* 16.305

(8.005) (10.774)

ESQ(ry) 0.358%* 0.083 0.094
(0.113) (0.099) (0.105)

TED 0.778 0.084 0.229
(0.400) (0.424) (0.415)

VIX 0.207*** | 0.101 0.087

(0.044) | (0.054) | (0.053)

*p < 0.001, **p < 0.01, *p < 0.05

The dependent variable reflects if the realized ahead-return of an option-hedged portfolio belongs to the set of the worst
5% (top panel), 10% (middle), or 20% (bottom) downturns in that period. The risk measures involve the option-implied
Foster-Hart riskiness FH2(r,) and value at risk VaR?(r;) of the hedged portfolio, the option-implied expected shortfall
ESQ(ry) of the non-hedged portfolio, as well as the industry measures TED spread (credit risk) and the volatility index
VIX
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Table 3 Regressions of stock market downturns on various risk measures over 740 observations

Regression of the worst 5% index downturns on risk measures
(Intercept) | —2.369*** —3.460™** —3.999*** —3.820*** —6.666™"" —4.450™*" —4.492**
(0.296) (0.423) (0.410) (0.367) (0.752) (1.318) (1.429)

FHO(r,) | 0.022%* 0.016*** | 0.015%**
(0.008) (0.005) | (0.004)
VaR?(ry,) 26.867** 2.595
(10.186) (11.657)
ESQ(ry) 0.336%** 0.281* 0.282*
(0.079) (0.134) | (0.138)
TED 1.315%* 0.862 0.886
(0.500) (0.624) | (0.571)
VIX 0.204*** | 0.022 0.020

(0.038) | (0.102) | (0.101)

***p < 0.001, **p < 0.01, *p < 0.05

The dependent variable reflects if the realized ahead-return of the S&P 500 stock market index belongs to the set of
the worst 5% downturns in that period. The risk measures involve the option-implied Foster-Hart riskiness FH?(r;,)
and value at risk VaR®(r,) of the hedged portfolio, the option-implied expected shortfall ES?(r,) of the non-hedged
portfolio, as well as the industry measures TED spread (credit risk) and the volatility index VIX

of levered portfolios shows to be a significant predictor. Including even less extreme
events, we find that while individually risk measures remain predictively successful,
they lose significance in a joint regression.

Finally, we study if risk measures inferred from levered portfolios contain
information about the future performance of non-levered investments. Table 3
summarizes our findings. The Foster-Hart riskiness estimated for hedged returns
significantly explains future drops of simple returns both individually and in a joint
regression. The same is true for the expected shortfall of non-levered investments as
already documented in Leiss and Nax (2015).

6 Conclusion

In this paper we discussed a theoretical extension of the Foster-Hart measure of
riskiness to study leverage. Option hedging prevents the value of portfolios from
vanishing completely (provided the seller of the option does not default). In turn,
this “frees” the Foster-Hart riskiness measure to values larger than 1, i.e. allows for
leverage. Based on options data, we applied this new way of estimating prevailing
leverage ratios to the decade 2003-2013 around the Global Financial Crisis. We
found (1) a strong procyclicality of leverage during the bubble prior to the crash and
(2) predictive power of risk measures computed for levered portfolios with respect
to extreme losses.
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The Sustainable Black-Scholes Equations

Yannick Armenti, Stéphane Crépey, and Chao Zhou

Abstract In incomplete markets, a basic Black-Scholes perspective has to be
complemented by the valuation of market imperfections. Otherwise this results in
Black-Scholes Ponzi schemes, such as the ones at the core of the last global financial
crisis, where always more derivatives need to be issued for remunerating the capital
attracted by the already opened positions. In this paper we consider the sustainable
Black-Scholes equations that arise for a portfolio of options if one adds to their
trade additive Black-Scholes price, on top of a nonlinear funding cost, the cost of
remunerating at a hurdle rate the residual risk left by imperfect hedging. We assess
the impact of model uncertainty in this setup.

Keywords Market incompleteness ¢ Cost of capital (KVA) ¢ Cost of funding
(FVA) * Model risk ¢ Volatility uncertainty * Optimal martingale transport

1 Introduction

In incomplete markets, a basic Black-Scholes perspective has to be complemented
by the valuation of market imperfections. Otherwise this results in Black-Scholes
Ponzi schemes, such as the ones at the core of the last global financial crisis,
where always more derivatives need to be issued for remunerating the capital
attracted by the already opened positions. In this paper we consider the sustainable
Black-Scholes equations that arise for a portfolio of options if one adds to their
trade additive Black-Scholes price, on top of a nonlinear funding cost, the cost of
remunerating at a hurdle rate the residual risk left by imperfect hedging. We assess
the impact of model uncertainty in this setup.

Section 2 revisits the pricing of a book of options accounting for cost of capital
and cost of funding, which are material in incomplete markets. Section 3 specializes
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the pricing equations to a Markovian Black—Scholes setup. Section 4 assesses the
impact of model risk in a UVM (uncertain volatility model) setup. Section 5 refines
the model risk add-ons by accounting for calibrability constraints.

We consider a portfolio of options made of w; vanilla call options of maturity
T; and strike K; on a stock S, with 0 < T} < ... < T, = T. Note that, if a
corporate holds a bank payable, it typically has an appetite to close it, receive cash,
and restructure the hedge otherwise with a par contract (the bank would agree to
close the deal as a market maker, charging fees for the new trade). Because of this
natural selection, a bank is mostly in the receivables (i.e. “w; > 0”) in its derivative
business with corporates.

We write x* = max(=£x, 0).

2  Cost of Capital and Cost of Funding

2.1 Cost of Capital

In presence of hedging imperfections resulting in a nonvanishing loss (and profit)
process o of the bank, a conditional risk measure EC = EC,(¢) must be dynamically
computed and reserved by the bank as economic capital.

It is established in Albanese et al. (2016, Sect.5) that the capital valuation
adjustment (KVA) needed by the bank in order to remunerate its shareholders for
their capital at risk at some average hurdle rate & (e.g. 10%) at any point in time in
the future is:

T

KVA = KVA,(¢) = hE, / e~ rTWE=DEC (0)ds, )
t

where [, stands for the conditional expectation with respect to some probability

measure Q and model filtration.

In principle, the probability measure used in capital and cost of capital calcu-
lations should be the historical probability measure. But, in the present context of
optimization of a portfolio of derivatives, the historical probability measure is hard
to estimate in a relevant way, especially for long maturities. As a consequence, we
do all our price and risk computations under a risk-neutral measure Q calibrated
to the market (or a family of pricing measures, in the context of model uncertainty
later below), assuming no arbitrage.

2.2 Cost of Funding

"t
Let r, denote a risk-free OIS short-term interest rate and B, = e~ Jorsds be the
corresponding risk-neutral discount factor. We assume that the bank can invest at
the risk-free rate r but can only obtain unsecured funding at a shifted rate r + A > r.
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This entails funding costs over OIS and a related funding valuation adjustment
(FVA) for the bank. Given our focus on capital and funding in this paper, we ignore
counterparty risk for simplicity, so that A is interpreted as a pure funding liquidity
basis. In order to exclude arbitrages in the primary market of hedging instruments,
we assume that the vector gain process M of unit positions held in the hedging
assets is a risk-neutral martingale. The bank “marks to the model” its derivative
portfolio, assumed bought from the client at time 0, by means of an FVA-deducted
value process ®. The bank may also set up a (possibly imperfect) hedge (—7) in the
hedging assets, for some predictable row-vector process 1 of the same dimension
as M. We assume that the depreciation of ®, the funding expenditures and the loss
ndM on the hedge, minus the option payoffs as they mature, are instantaneously
realized into the loss(-and-profit) process o of the bank. In particular, at any time
t, the amount on the funding account of the bank is ®,. Moreover, we assume that
the economic capital can be used by the trader for her funding purposes provided
she pays to the shareholders the OIS rate on EC that they would make otherwise by
depositing it (assuming it all cash for simplicity).

Note that the value process ® of the trade already includes the FVA as a
deduction, but ignores the KVA, which is considered as a risk adjustment computed
in a second step (in other words, we assume that the trader’s account and the KVA
account are kept separate from each other). Rephrasing in mathematical terms the
above description, the loss equation of the trader is written, for ¢ € (0, T, as (starting
from o9 = y, the accrued loss of the portfolio):

th =— Za)i(STi — Ki)+8T,~(dt)

call payoffs
+ rEC;(0)dt
~———

Payment of internal lending of the EC funding source at OIS rate

+ (7 + 2)(©, — EC/(@)) " — 1(©, — EC/(0)) " )dr @)

portfolio funding costs/benefits

+ (—d®)) + N dM,;
~—— N—

depreciation of ® loss on the hedge

= —d0, = Y (St — K)*ér,(dn + (M(©, —ECA0) " + 10, )di + nid M..

Hence, a no-arbitrage condition that the loss process o of the bank should follow
a risk-neutral martingale (assuming integrability) and the terminal condition @7 =
0 lead to the following FVA-deducted risk-neutral valuation BSDE:

o =B Y5 pros - ko *] - 5[ [ BB~ EC @) ] e 0.7)
1<T; ! 3)
FVA,

oy
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(since we consider a portfolio of options with several maturities, we treat option
pay-offs as cash-flows at their maturity times rather than a terminal condition in the
equations, in particular @7 = 0).

The funding source provided by economic capital creates a feedback loop from
EC into FVA, which makes the FVA smaller.

Note that, in the usual case of a risk measure EC only affected by the time
fluctuations of g, the Egs. (3) and in turn (1) are independent of the accrued loss
v, which eventually does not affect ® nor the KVA.

If A = 0, then, whatever the hedge 71, ® reduces to ®°, which corresponds to the
usual trade additive (linear) no-arbitrage pricing formula for a portfolio of options,
with zero FVA, but with a KVA given by (1), depending on the hedge 7.

If A # 0, we introduce the following backward SDE:

T
o; ZE,[Zﬂt_lﬁTiwi(STi —IQ)*—[ ﬂ,‘lﬂsks(@):)*ds], te[0.7]. (@

t<T;

This is a monotone driver backward SDE, admitting as such a unique square
integrable solution ®* (see, e.g., Kruse and Popier (2016, Sect. 4)), provided A is
bounded from below and ®° is square integrable. If there exists a replicating hedge
n, i.e. n = n* such that the corresponding o is constant in (2), i.e. n;d.M, coincides
with the martingale part of ®*, then the resulting o, EC and KVA vanish (since we
assumed EC(0) = 0) and the ensuing FVA-deducted value process is given by ©*.

Example 2.1 (Single option positions) If n = 1 and w; = 1 (one long call position),
then, by application of the comparison theorem for BSDEs with a monotonic
generator (see Kruse and Popier (2016, Sect. 4)), we have ®* > 0, hence

O = E,[B; Br,(Sr, — k)], )

where B, = e~ 0+294 With respect to ©©, the value ®* corresponds to an
FVA rebate on the buying price by the bank (since we assumed a positive liquidity
basis 7).

If n = w; = —1 (one short call position), then we deduce likewise that ®* < 0,
hence ®* = O,

But, apart from the above special cases where A = 0 or n = n*, the BSDE (3)
for ® is nonstandard due to the term EC = EC,(p) in the FVA.

3 Markovian Black-Scholes Setup

In this section we assume a constant risk-free rate r and a Black-Scholes stock §
with volatility o and constant dividend yield g. The risk-neutral martingale M is
then taken as the gain process of a continuously rolled unit position on the stock S,



The Sustainable Black-Scholes Equations 159

assumed funded at the risk-free rate via a repo market, i.e. dM, = dS; — (r — q)S,dt.
We denote by A" = (r — q)S9s 4 3025207, the corresponding risk-neutral Black-
Scholes generator.

Doing our modeling exercise in the context of the Black-Scholes model, where
perfect replication, hence no KVA, is possible, may seem rather artificial. However,
doing all the computations in a stylized Black-Scholes setup with a single risk factor
S yields useful practical insights. In addition, this conveys the message that, in real-
life incomplete markets, a basic Black-Scholes perspective has to be complemented
by the valuation of market imperfections, otherwise this unavoidably results in
Black-Scholes Ponzi schemes, such as the ones that have been involved in the global
financial crisis, where always more derivatives are issued to remunerate the capital
required by the already opened positions (if priced and risk-managed in a basic
Black-Scholes way ignoring the cost of capital).

In the Black-Scholes setup and assuming a stylized Markovian specification

_ d{o) 6
ECi(0) =f dr ©)
(the stylized VaR which is proportional to the instantaneous volatility of the loss
process o modulo a suitable “quantile level” f) as well as A = A(¢, S;), n: = n(t, S;),
then the above FVA and KVA equations can be reduced to the “sustainable Black-
Scholes PDEs” (12), as follows (resulting in an FVA- and KVA-deducted price that
would be sustainable for the bank even in the limit case of a portfolio held on a
run-off basis, with no new trades ever entered in the future).

First, observe that given a tentative FVA-deducted price process of the form ©, =
u(t, S;) for some to-be-determined function u = u(z, S), we have, assuming (6):

dfe)

g USz|aS“(t’ S —n(t, S,)|. 0

Accordingly, let the function u be defined by u;(z, S) on each strip (T;—;, T;] X
(0, 00), where (u;)1<i<, 18 the unique sequence of viscosity solutions, which can
then be shown to be classical solutions, to the following PDE cascade, for i
decreasing from #n to 1 (closing the system by setting u,+; = 0 and T, = 0):

ui(Ti, S) = uH_l(Ti, S) + a)i(S — K,’)+ on (0, OO)
i + ALu; — (i — foS|dsu; — 1)) T — ruy = 0 on [Ti—y, Ty) x (0, 00).

(3)
Itd calculus shows that the process ® = (u(t,S;)), solves the Markovian,
monotonic driver (assuming A bounded from below) BSDE
u(t,S;) = Ez[Zﬁt_lﬂT,-wi(ST,- —K)7"
t<T;
)

_ [ ! B Boks (s, S,) — for S, dsuts. S,) = s, Ss)|)+ds], te0.7].
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which in view of (6)—(7) is precisely (3).
The ensuing FVA= ®© — ® and KVA processes are given as (cf. (3) and (1)):

FVA,(o) = E,[ /T e (u(s, S) —f\/@y_ds]
KVA, (o) = hE,[/Te_("”h)(s_’)f\/@ds],

where 4/ % is given by (7). We set n = (1—a)dgsu, where « in [0, 100%] is the mis-

hedge parameter (noting that, for « = 0, the BSDE (9) reduces to the replication
BSDE (4)), then the latter reduces to aGSt|8Su(t, S,)| and we have

(10)

T
FVA(0) = B[ / e (s ) — aforS,[osu(s. 5,)]) s

t

= U(Iv St) = Mbs(t$ St) - M(t, St)’ (11)

T
KVA(0) = hE,[ / e af S, |dsus, Ss)|ds] = w(t.5)),
t

where uy, is the trade additive Black-Scholes portfolio value and where the FVA and
KVA pricing functions v and w satisfy

v(T,S) =w(T,S) = 0on (0, 00)
3v + AP + Aups — v — af o S| Apy — stl)+ —rv=00n[0,7) x (0, 00)
dw + A%¥w + ahfoS| Ay — dsv| — (r + h)w = 0 on [0, T) x (0, 00),
(12)
in which A,y = Ogup.
These “sustainable Black-Scholes PDEs” (12) allow computing an FVA and
KVA deducted price

U—W = Upg—V — W

that would be sustainable for the bank even in the limit case of a portfolio held on a
run-off basis, with no new trades ever entered in the future.

4 With Volatility Uncertainty

An important and topical issue, referred to by the regulation as AVA (additional
valuation adjustment), is the magnifying impact of model risk on the different XVA
metrics.
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In this section, we assess model risk from the angle of Avellaneda et al. (1995)’s
uncertain volatility model (UVM). Namely, we only assume positive bounds ¢ and
o but we do not assume any specific dynamic on the stock volatility process o.
Therefore, there is a model uncertainty about it. That is, we only consider d M, :=
0:S:dW, = dS; — (r — q)S,dt, where o, € [0, 0] for every .

We call C the space of continuous paths on R, C the canonical process on the
space C, ' = (F;)o</<r the canonical filtration generated by C and Q the set of F
local martingale probability measures for C. We recall from Soner et al. (2012) that,
for any probability measure Q € O, the process C satisfies dC, = atl/ 2dW,@, for
some Q Brownian motion W@, where q; is the Lebesgue density of the aggregated
quadratic variation of C. In the following we restrict attention to the probability
measures Q such that at1 2 e [0, ] holds dt x Q almost surely, still denoting by Q
the (restricted) set of measures, and we model dM; = dS; — (r — q)S;dt as S,dC;.

Under each Q, similarly to (2), the loss equation of the trader is written, for
t € (0,T), as:

do? = —dOF = Y wi(Sr, — K 8r,(dn) + (M (6F ~EC2(0®) "
: 13)
+ r,@?)dt + ndM,

where EC? is some conditional risk measure under Q. The ensuing equation for the
Q FVA-deducted value ®2 appears as

T
OF =E2| > B Bron(sr —Kn* - / BT B0 —EC2(0®) as),
1<T; ! (14)

te|0,T].

Under each Q, the trader should value the derivative portfolio @? at time O (or

@9 at time 7). However, due to the model uncertainty, the trader values it ®y =
énfg G)é)Q (or at time ¢, ®, = ess iélf G)(t@), which is a robust non-arbitrage price in the
€ €

sense of Biagini et al. (2015).

At time ¢, EC(t@(Q@) may depend on the whole future of the process (09), s > t.
This makes (14) a so-called anticipated BSDE under Q (ABSDE in the sense of
Peng and Yang (2009)), with generator A,(@;Q—EC(,@ (Q@))+, where ®C corresponds
to the “Y-component” and (dgfy@—nSSdex) to the “Z-component” of the solution.
However, in the Markovian setting of Sect. 3, EC(,@(Q@) only depends on (99) at
time ¢, so that the ABSDE (14) reduces to a BSDE.

For taking model risk (i.e. the impact of several Q) into consideration, we need
the notion of second order BSDE. Wellposedness results regarding second order
anticipated BSDEs are not yet available in the literature. Hence, we only give
heuristic formulations in this regard. Namely, by analogy with the second order
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BSDEs theory introduced by Soner et al. (2012), we should have the following
representation, where F1 = (F;")o</<r the right limit of F, i.e. 7, = N, F; for
allt € [0,T) and Ff = Fr:

There exists a process o such that, for each Q € Q, o is a Q-local martingale and
it Q — a.s. holds that

do, = —d®©, — Y w(S1, — K;)* 8,(dr)
! (15)
+ (x,((a, —EC%()" + r,@,)dt + ndM, + dAZ,

where ECY is some conditional risk measure and the family {A%} of non-decreasing
processes satisfies the minimality condition

AY = essin® BY [AF|F] 0<r=T Q-as. vQeQ (16
Q' €Q(tQF+)

where O(1,Q, F) := {Q’ €0, @ =Qon ]-‘,*}.
The corresponding equation for the FVA-deducted value ® would appear as

®;, = essinf IE@’[ 18 wi(Sr — Kt
t QeQrQFy) ' ;,3, Br,wi(ST, )
| (17)

— /Tﬂt_lﬂsks((as — ECZQ/(Q))ers], te€0, 7], Q—a.s.

4.1 Equations in the Markovian Setting

By contrast, in the Markovian setting of Sect.3 with VaR-like specification of
Economic Capital, we can make rigorous statements. According to the second order
BSDE theory introduced in Soner et al. (2012), the PDE (8) becomes:

ui(T;, S) = uiy1(T;, S) + wi(S — Ki)* on (0, 00)

du; + inf [.Agsu,- — M(u; — foS|Osu; — r)|)+] —ru; = 0on [T_, T;) x (0, 00).
o€lo,0]
(18)

Let u be defined by u;(t, S) on each strip (T;—1, T;] x (0, 00). The FVA can be defined
as ®*=% — ® and the ensuing KVA process is given as (cf. (3) and (1)):

oo (T d
KVA,(0) = h  esssup JE;@[ f e—<’+”>(s—’>f,/ﬁds],Qa.s., (19)
QeQ(tQ.F4) t ds
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where % = a,l/zS,|85u(t, S — n(z, S,)|. In the case where n = (1 — o)dsu, we
obtain

KVA:(0) = w(t, S,
where

w(T,S) = 0 on (0, c0)
dw+ sup [A¥w + ahfoS|dsul] — (r + h)w = 0on [0, T) x (0, 00),
0€l0,0]
(20)
in which (cf. (18))

ui(T;, S) = uiy1(T;, S) + wi(S — K;)™ on (0, 00)
du; + inf [.Agsu,» — AMu; — oefaSlBsu,-|)+] —ru; = 0on [Ti_y, T;) x (0, 00).

0€lo,0]

5 Optimal Transportation Approach

Since vanilla call options are liquidly traded, their time O price components
EQ [ﬂTi (STi - Ki)+]

should not be seen as subject to model risk, but calibrated to the market. Hence, we
need to refine our preliminary UVM assessment of model risk in order to account for
these calibration constraints. For simplicity we consider a single call option (7', K)
and we set A = 0, focusing on KVA in this section. Hence, the system (18) reduces
to a single PDE with A = 0, with solution denoted by u.

(Tan and Touzi (2013)) consider the optimal transportation problem consisting
of minimizing a cost among all continuous semimartingales with given initial
and terminal distributions. They show an extension of the Kantorovich duality to
this context and suggest a finite-difference scheme combined with the gradient
projection algorithm to approximate the dual value. Their results can be applied
to our setup as follows.

Let o = &g, denote the Dirac measure on the initial value of Sy and let pr
denote the marginal distribution of St, inferred by calibration to the market prices
of all European call options with maturity 7 (assuming quotations available for all
strikes). Let

Qo) = {Q € Q: Qo Sy = po}, Qo. ur) = {Q € Qo) : Qo 57! = pur}.

From the Remark 2.3 in Tan and Touzi (2013), Q (i, (47) is not empty in our setting.



164 Y. Armenti et al.

The KVA with model uncertainty and terminal marginal constraint is defined as

follows:
! d(o)
KVAo(0) = h  sup EQ[ / PR GLLY —ds], @1)
QEQ(o.117) 0 ds

where o represents the portfolio loss in this setting, that is, the loss and profit of the
bank in a world with uncertain volatility subject to the law of S7. However, it is not
clear how to extrapolate the theory of Tan and Touzi (2013) to valuation at future
time points when only the unconditional law of Sy is known. Hence for the sake of
tractability we conservatively assume that o in (21) is the UVM one and we only
apply the constraint to the outer expectation in (21) (as opposed to the conditional
expectations that are hidden in p).
With this understanding of (21), given any measure v, we define

v@ = [ o

on the set Cj,(R?) of all bounded continuous functions ¢ on R?. We can readily
check that Assumptions 3.1-3.3 in Tan and Touzi (2013) are satisfied. Hence, by an
application of their main duality result, we can rewrite the KVA as

KVA(0) = ¢EiCI:(fRd){Mo(q>o) — T (), 22)

where the “pseudo-payoff function” ¢ corresponds to a Lagrangian for the con-
strained optimization problem (21) and where

’ d{o)
®o(x) = sup EQ[e_(’+h)T¢(ST)+ / e~ —ds]. 23)
QeQ(5y) 0 ds

Hence, the KVA in an optimal transportation (OT) setting can be represented as an
infimum of KVAs in modified UVM setting.

5.1 Equations in the Markovian Setting

In the Markovian setting of Sect. 3, we consider the probability measures Q on the
canonical space (€2, Fr), under which the canonical process C is a local martingale
on [t, T]. Define Q, as the collection of all such martingale probability measures Q
such that a)/? € [0,0] dQ x ds-a.e.on Q x[t, T]. Denote Q;, := {Q € Q, : Q[S; =
x,0 < s <1 =1}.Forany ¢ € C,(R?), let

! d{o)
d(t,x) = sup EQ [e_(r+h)(T_’)q§(ST) +f e—(r—i—h)(s—t)hf d_ds]’ 24)
P s

QeQ,x
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where % = a3/25t|85u(t, S —n(t, Sy

A=0.
Then, in the case where n = (1 —«)dsu, P is a viscosity solution to the dynamic
programming equation

, in which u is the solution to (18) with

D(T,S) = ¢(S) on (0, 00)
9,® + sup [A’;scb n ahfoS|8Su|] —(r4+h)®=00n[0,T) x (0,00).

o€lo,0]
(25)
In view of (22), in the present OT setup, KVA, is obtained as the minimum of

®(0, Sp) — e T /R & (x) pur (dx) (26)

over ¢ € Cy(RY). This minimization is achieved numerically by the Nelder-Mead
simplex algorithm.

As a sanity check, observe that, if pr is Black-Scholes 0 and ¢ = 0 = o,
then (26) is exactly the time 0 KVA of Sect. 3, independent of ¢.

6 Numerical Results

Figure 1 shows the results obtained by solving the related PDEs (and minimiz-
ing (26) in the OT setup) without model uncertainty as of Sect. 3 (left panel), with
UVM uncertainty as of Sect.4.1 (middle panel) and with OT uncertainty as of

30 30 30
-,
o LT 25 = Z\I//0~eg:’—eo 25
20 = o
. \\ 15 —FTR=0,- KVA, 20
-9 [ —9
— FVA, 10 — KA
15 — Ky 15 — o
o 5 FTR=6,-KVA,
— FTP=,-KVA,
10 0 — —— 10
-5
5 5
L -10
0 T 15 0
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 10
Mis-hedge rate o Mis-hedge rate o Mis-hedge rate o

Fig. 1 XVAs and FTP as a function of the mis-hedge parameter «. Left: Without model
uncertainty. Middle: With UVM uncertainty (& = 15%,0 = 60%). Right: With OT uncertainty
(o = 15%,0 = 60%, 0 = 30%)



166 Y. Armenti et al.

Sect. 5.1 (right panel), for a level of the mis-hedge parameter « increasing from
0 to 100%. We used the following parameters:

So =100, r=2%, q=0, o = 30%,
A =200bps, f=12, h=10%

and considered a single call option of maturity 7 = 5 years and strike K = 107.

The main observation from the left panel is that, unless the hedge is very good (of
the order of 25% of mis-hedge or less), the KVA dominates the FVA, and becomes
about ten times greater than the FVA in the absence of hedge (¢ = 1). This is logical
given that EC has only an indirect reduction effect on the FVA, whereas it directly
sizes the KVA.

Going to the middle panel, the FVA changes little, but both u and the KVA (unless
the hedge is almost perfect) are tremendously impacted by the uncertainty on the
volatility. Regarding the KVA this is in line with the fact that it is the cost of a risk
measure, which nonlinearly amplifies the impact of perturbations to its input data.

In reality the time O price of a vanilla option such as the one considered in
our numerics is given by the market, so there is no model risk on it, but only on
the KVA. This is what is reflected by the OT right panel. The model risk on the
KVA component however is essentially the same as in the UVM case, because it is
conservatively assessed by using the UVM u in (25), fault of a developed theory of
valuation at future time points under uncertain volatility subject to the unconditional
law of St.

XVA desks, KVA in particular, are the first consulted desks in all major trades
today. Our results in a toy model where all the quantities of interest can be
computed exactly (modulo the numerical error on the PDE solutions) emphasize
that, accounting for model risk, the relative importance of the KVA should become
even larger. Moreover one can easily imagine how to transpose these results to the
setup of Albanese et al. (2016) where each option payoff (Sz, — K;)* is replaced
by the CVA exposure of the bank to the default at time of its counterparty i, at
the (random) time 7;, with corresponding position of the bank w;S7, and margins
received by the bank w;K;. However in this case a relevant risk measure really needs
to be computed at a 1-year horizon (as opposed to instantaneous in (6)), in order to
leave time to credit events to develop. This points out to developments of a slightly
different nature, which would be interesting to develop.
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