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Preface 

This book is intended as a reference book for students, professionals and research 
workers who need to apply statistical analysis to a large variety of practical 
problems using ST A TISTICA, SPSS and MA TLAB. The book chapters provide a 
comprehensive coverage of the main statistical analysis topics (data description, 
statistical inference, classification and regression, factor analysis, survival data, 
directional statistics) that one faces in practical problems, discussing their solutions 
with the mentioned software packages. 

The only prerequisite to use the book is an undergraduate knowledge level of 
mathematics. While it is expected that most readers employing the book will have 
already some knowledge of elementary statistics, no previous course in probability 
or statistics is needed in order to study and use the book. The first two chapters 
introduce the basic needed notions on probability and statistics. In addition, the 
first two Appendices provide a short survey on Probability Theory and 
Distributions for the reader needing further clarification on the theoretical 
foundations of the statistical methods described. 

The book is partly based on tutorial notes and materials used in data analysis 
disciplines taught at the Faculty of Engineering, Porto University. One of these 
disciplines is attended by students of a Master's Degree course on information 
management. The students in this course have a variety of educational backgrounds 
and professional interests, which generated and brought about datasets and analysis 
objectives which are quite challenging concerning the methods to be applied and 
the interpretation of the results. The datasets used in the book examples and 
exercises were collected from these courses as well as from research. They are 
included in the book CD and cover a broad spectrum of areas: engineering, 
medicine, biology, psychology, economy, geology, and astronomy. 

Every chapter explains the relevant notions and methods concisely, and is 
illustrated with practical examples using real data, presented with the distinct 
intention of clarifying sensible practical issues. The solutions presented in the 
examples are obtained with one of the software packages ST A TISTICA, SPSS or 
MA TLAB; therefore, the reader has the opportunity to closely follow what is being 
done. The book is not intended as a substitute for the STATISTICA, SPSS and 
MATLAB user manuals. It does, however, provide the necessary guidance for 
applying the methods taught without having to delve into the manuals. This 
includes, for each topic explained in the book, a clear indication of which 
STATISTICA, SPSS or MATLAB tools to be applied. These indications appear in 
specific "Commands" frames together with a complementary description on how to 
use the tools, whenever necessary. In this way, a comparative perspective of the 
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capabilities of those software packages is also provided, which can be quite useful 
for practical purposes. 

STATISTICA, SPSS or MATLAB do not provide specific tools for some of the 
statistical topics described in the book. These range from such basic issues as the 
choice of the optimal number of histogram bins to more advanced topics such as 
directional statistics. The book CD provides these tools, including a set of 
MA TLAB functions for directional statistics. 

I am grateful to many people who helped me during the preparation of the book. 
Professor Luis Alexandre provided help in reviewing the book contents. Professor 
Willem van Meurs provided constructive comments on several topics. Professor 
Joaquim G6is contributed with many interesting discussions and suggestions, 
namely on the topic of data structure analysis. Dr. Carlos Felgueiras and Paulo 
Sousa gave valuable assistance in several software issues and in the development 
of some software tools included in the book CD. My gratitude also to Professor 
Pimenta Monteiro for his support in elucidating some software tricks during the 
preparation of the text files. A lot of people contributed with datasets. Their names 
are mentioned in Appendix E. I express my deepest thanks to all of them. Finally, I 
would also like to thank Alan Weed for his thorough revision of the texts and the 
clarification of many editing issues. 

J.P. Marques de Sa 
Porto,2003 
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1 Introduction 

1.1 Deterministic Data and Random Data 

Our daily experience teaches us that some data are generated in accordance to 
known and precise laws, while other data seem to occur in a purely haphazard way. 
Data generated in accordance to known and precise laws are called deterministic 
data. An example of such type of data is: the fall of a body subject to the Earth's 
gravity. When the body is released at a height h, we can calculate precisely where 
the body stands at each timet. The physical law, assuming that the fall takes place 
in an empty space, is expressed as: 

where h0 is the initial height and g is the Earth's gravity acceleration at the point 
where the body falls . 

Figure 1.1 shows the behaviour of h with t, assuming an initial height of 15 
meters. 

16 

h t h 
14 

12 0.00 15.00 

0.20 14.80 
10 

0.40 14.22 
8 

0.60 13.24 
6 0.80 11 .86 

4 1.00 10.10 

2 1.20 7.94 

0 1.40 5.40 

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.60 2.46 

Figure 1.1. Body in free-fall, with height in meters and time in seconds, assuming 
g = 9.8 m/s2. The h column is an example of deterministic data. 
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2 I Introduction 

In the case of the body fall there is a law that allows the exact computation of 
one of the variables h or t (for given h0 and g) as a function of the other one. 
Moreover, if we repeat the body-fall experiment under identical conditions, we 
consistently obtain the same results, within the precision of the measurements. 
These are the attributes of deterministic data: the same data will be obtained, 
within the precision of the measurements, under repeated experiments in well
defined conditions. 

Imagine now that we were dealing with Stock Exchange data, such as, for 
instance, the daily share value throughout one year of a given company. For such 
data there is no known law to describe how the share value evolves along the year. 
Furthermore, the possibility of experiment repetition with identical results does not 
apply here. We are, thus, in presence of what is called random data. 

Classical examples of random data are: 

- Thermal noise generated in electrical resistances, antennae, etc.; 
- Brownian motion of tiny particles in a fluid; 

Weather variables; 
Financial variables such as Stock Exchange share values; 
Gambling game outcomes (dice, cards, roulette, etc.); 
Conscript height at military inspection. 

In none of these examples can a precise mathematical law describe the data. 
Also, there is no possibility of obtaining the same data in repeated experiments, 
performed under similar conditions. This is mainly due to the fact that several 
unforeseeable or immeasurable causes play a role in the generation of such data. 
For instance, in the case of the Brownian motion, we find that, after a certain time, 
the trajectories followed by several particles that have departed from exactly the 
same point, are completely different among them. Moreover it is found that such 
differences largely exceed the precision of the measurements. 

When dealing with a random dataset, especially if it relates to the temporal 
evolution of some variable, it is often convenient to consider such dataset as one 
realization (or one instance) of a set (or ensemble) consisting of a possibly infinite 
number of realizations of a generating process. This is the so-called random 
process (or stochastic process, from the Greek "stochastikos"=able to aim at a 
target). Thus: 

- The wandering voltage signal one can measure in an open electrical resistance is 
an instance of a thermal noise process (with an infinite ensemble of possible 
continuous signals); 

- The trajectory of a tiny particle in a fluid is an instance of a Brownian process 
(with an infinite ensemble of possible continuous trajectories); 

- The succession of face values when tossing n times a die is an instance of a die 
tossing process (with a finite ensemble of possible discrete sequences). 



1.1 Deterministic Data and Random Data 3 

18 
h 
16 

14 

12 

10 

8 

6 

4 

2 

0 

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 

Figure 1.2. Three "body fall" experiments, under identical conditions as in Figure 
1, with measurement errors (random data components). The dotted line represents 
the theoretical curve (deterministic data component). The dots correspond to the 
measurements made. 

We might argue that if we knew all the causal variables of the "random data" we 
could probably find a deterministic description of the data. Furthermore, if we 
didn't know the mathematical law underlying a deterministic experiment, we might 
conclude that a random dataset were present. For example, imagine that we did not 
know the "body fall" law and attempted to describe it by running several 
experiments in the same conditions as before, performing the respective 
measurement of the height h for several values of the time t, obtaining the results 
shown in Figure 1.2. The measurements of each single experiment display a 
random variability due to measurement errors. These are always present in any 
dataset that we collect, and we can only hope that by averaging out such errors we 
get the "underlying law" of the data. This is a central idea in statistics: that certain 
quantities give the "big picture" of the data, averaging out random errors. As a 
matter of fact, statistics were first used as a means of summarising data, namely 
social and state data (the word "statistics" coming from the "science of state"). 

Scientists' attitude towards the "deterministic vs. random" dichotomy has 
undergone drastic historical changes, triggered by major scientific discoveries. 
Paramount of these changes in recent years has been the development of the 
quantum description of physical phenomena, which yields a granular-all
connectedness picture of the universe. The well-known "uncertainty principle" of 
Heisenberg, which states a limit to our capability of ever decreasing the 
measurement errors of experiment related variables (e.g. position and velocity), has 
also been paramount. 

Even now the "deterministic vs. random" dichotomy is subject to controversies 
and often statistical methods are applied to deterministic data. A good example of 
this is the so-called chaotic phenomena, which are described by a precise 
mathematical law. However, the sensitivity of the result (the dependent variable) 
on the causal (independent) variables is so large in these phenomena that the 
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precision of the result cannot be properly controlled by the precision of the causes. 
To illustrate this, let us consider the following formula used as a model of 
population growth in ecology studies, where p(n) E [0, I] is the fraction of a 
limiting number of population of a species at instant n, and k is a constant that 
depends on ecological conditions, such as the amount of food present: 

p(n +I)= kp(n)(l- p(n)), k > 0. 

Imagine we start (n = I) with a population percentage of 50% (p(l) = 0.5) and 
wish to know the percentage of population at the following two time instants, when 
k= 2.8: 

p(2) = 2.8 xp(l) (1 - p(1)) = 2.8 X 0.5 X 0.5 = 0.7. 
p(3) = 2.8 xp(2) (1- p(2)) = 2.8 X 0.7 X 0.3 = 0.588. 

Therefore, it seems that after an initial growth the population dwindles back 
towards its original value. As a matter of fact, the evolution of p(n) is a bit more 
complicated, showing some oscillation until stabilising at the value 0.642857. 
Things get even more complicated when k = 3. 71, as shown in Figure 1.3. A mere 
deviation in the value of k of only 10·6 has a drastic influence onp(n). For practical 
purposes, fork around the 3.71 value, we are unable to predict the value of the p(n) 
after some time, since it is so sensitive to very small changes of k. In other words, 
the deterministic p(n) process can be dealt with as a random process for some 
values of k. 

1.2 
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Figure 1.3. Two instances of the growth process with values of k differing only 
10·6 : k = 3.71 for the dotted line and k = 3.710001 for the solid line. 

As a matter of fact the random-like behaviour exhibited by some iterative series 
is well illustrated by the so-called "random number generator routine" used in 
many computer programs. One such routine iteratively generates x(n) as follows: 

x(n + 1) =a. mod(x(n), m). 
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Therefore, the next number in the "random number" sequence is obtained by 
computing a times the remainder of the division of the previous number by a 
suitable constant. In order to obtain a convenient "random-like" behaviour of this 
purely deterministic sequence, when using numbers represented with p binary 
digits, one must use m = 2 P and a = 2LP 12 j + 3 . The periodicity of the sequence is 
then 2p- l . Figure 1.4 illustrates one such sequence. 

1200 
x(n) 

1000 

800 
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200 

0 
0 10 20 30 40 50 60 70 80 90 100 

Figure 1.4. "Random number" sequence using p = 10 binary digits with m = 2P = 
1024, a =35 and initial value x(O) = 2P - 3 = I 021. 

1.2 Population, Sample and Statistics 

When studying a collection of data as a random dataset, the basic assumption being 
that no law explains any individual value of the dataset, we attempt to study the 
data by means of some global measures, known as statistics, such as frequencies 
(of data occurrence in specified intervals), means, standard deviations, etc. 

Clearly, these same measures can be applied to a deterministic dataset, but, after 
all, the mean height value in a set of height measurements of a falling body, among 
other things, is irrelevant. 

Statistics had its beginnings and key developments during the last century, 
especially the last seventy years. The need to compare datasets and to infer from a 
dataset the process that generated it, were and still are important issues addressed 
by statisticians, who have made a definite contribution to forwarding scientific 
knowledge in many disciplines (see e.g. Salsburg D, 2001). In an inferential study, 
from a dataset to the process that generated it, the statistician considers the dataset 
as a sample from a vast, possibly infinite collection of data, called population. 
Each individual item of a sample is a case. The sample itself is a list of values of 
one or more random variables. 

The population data is usually not available for study, since most often it is 
either infinite or finite but very costly to collect. The data sample, obtained from 
the population, should be randomly drawn, i.e., any individual in the population is 
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supposed to have an equal chance of being part of the sample. Only by studying 
randomly drawn samples can one expect to arrive at legitimate conclusions, about 
the whole population, from the data analyses. 

Let us now consider the following three examples of datasets: 

Example 1.1 

The following Table 1.1 lists the number of firms that were established in town X 
during the year 2000, in each of three branches of activity. 

D 

Table 1.1 

Branch of Activity Nr. ofFirms Frequencies 

Commerce 56 56/109 = 51.4% 

Industry 22 22/109 = 20.2% 

Services 31 311109 = 28.4% 

Total 109 109/109 = 100% 

Example 1.2 

The following Table 1.2 lists the classifications of a random sample of 50 students 
in the examination of a certain course, evaluated on a scale of 1 to 5. 

Table 1.2 

Classification 

2 

3 
4 

5 
Total 

Median• = 3 

Nr. of Occurrences 

3 

10 

12 

15 

10 

50 

•value below which 50% of the cases are included. 

Example 1.3 

Accumulated Frequencies 

3/50 = 6.0% 
13/50 = 26.0% 

25/50 = 50.0% 
40/50 = 80.0% 
50/50 = I 00.0% 

100.0% 

D 

The following Table 1.3 lists the measurements performed in a random sample of 
10 electrical resistances, of nominal value 100 n (ohm), produced by a machine. 

D 
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Table 1.3 

Case# Value (in Q) 
I 101.2 

2 100.3 

3 99.8 

4 99.8 

5 99.9 

6 100.1 

7 99.9 

8 100.3 

9 99.9 

10 100.1 

Mean (101.2+100.3+99.8+ ... )110 = 100.13 

In Example 1.1 the random variable is the "number of firms that were 
established in town X during the year 2000, in each of three branches of activity". 
Population and sample are the same. In such a case, besides the summarization of 
the data by means of the frequencies of occurrence, not much more can be done. It 
is clearly a situation of limited interest. In the other two examples, on the other 
hand, we are dealing with samples of a larger population (potentially infinite in the 
case of Example 1.3). It's these kinds of situations that really interest the 
statistician - those in which the whole population is characterised based on 
statistical values computed from samples, the so-called sample statistics, or just 
statistics for short. For instance, how much information is obtainable about the 
population mean in Example 1.3, knowing that the sample mean is 100.13 f.!? 

A statistic is a function, tm of then sample values, x;: 

For instance, the sample mean computed in Table 1.3 is one such function, 
expressed as: 

We usually intend to draw some conclusion about the population based on the 
statistics computed in the sample. For instance, we may want to infer about the 
population mean based on the sample mean. In order to achieve this goal the X; 

must be considered values of independent random variables having the same 
stochastic distribution as the population, i.e., they constitute what is called a 
random sample. We sometimes encounter in the literature the expression 
"representative sample of the population". This is an incorrect term, since it 
conveys the idea that the composition of the sample must somehow mimic the 
composition of the population. This is not true. What must be achieved, in order to 
obtain a random sample, is to simply select elements of the population at random. 
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This can be done, for instance, with the help of a random number generator. In 
practice this "simple" task might not be so simple after all (as when we conduct 
statistical studies in a human population). The sampling topic is discussed in 
several books, e.g. (Blom G, 1989) and (Anderson TW, Finn JD, 1996). Examples 
of statistical malpractice, namely by poor sampling, can be found in (Huff, 1954 ). 
The sampling issue is part of the planning phase of the statistical investigation. The 
reader can find a good description of this topic in (Montgomery DC, 1984) and 
(Blom G, 1989). 

In the case of temporal data sets a subtler point has to be addressed. Imagine 
that one is presented with a list (sequence) of voltage values originated by thermal 
noise in an electrical resistance. This sequence should be considered as an instance 
of a random process capable of producing an infinite number of such sequences. 
Statistics can then be computed either for the ensemble of instances or for the time 
sequence of the voltage values. For instance, we could compute a mean voltage 
value in two different ways: first, assuming one has available a sample of voltage 
value sequences randomly drawn from the ensemble, one could compute the mean 
voltage value at, say, t = 3 seconds; and, secondly, assuming one such sequence 
lasting 10 seconds is available, one could compute the mean voltage value for the 
duration of the sequence. In the first case, the sample mean is an estimate of an 
ensemble mean (at t = 3 s); in the second case, the sample mean is an estimate of a 
temporal mean. Fortunately, in a vast number of situations, corresponding to what 
are called ergodic random processes, one can derive ensemble statistics from 
temporal statistics, i.e., one can limit the statistical study to the study of only one 
time sequence. We will assume ergodicity when analysing time sequences (time 
series). This applies to the three examples of random processes previously 
mentioned (as a matter of fact, thermal noise, Brownian motion and dice tossing 
are ergodic processes). 

1.3 Random Variables 

A random dataset presents the values of random variables. These establish a 
mapping between an event domain and some conveniently chosen value domain 
( c 9{). A good understanding of what the random variables are and which 
mappings they represent is a preliminary essential condition in any statistical 
analysis. A rigorous definition can be found in Appendix A. Often, the value 
domain of a random variable has a direct correspondence to the outcome events of 
a random experiment, but this is not compulsory. Table 1.4 lists random variables 
corresponding to the examples of the previous section. 

Cursive type font is used to represent random variables, sometimes with an 
identifying subscript. The mappings between the event and the value domain 
corresponding to the above random variables are: 

-'f': {commerce, industry, services} ~ {1, 2, 3}. 
;rc;: {bad, mediocre, fair, good, excellent} ~ { 1, 2, 3, 4, 5} . 

.\R: [90 n, 110 n] ~ [90, 110]. 
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Table 1.4 

Dataset Variable Value Domain Type 

Firms in town X, year 2000 -V' {I, 2, 3} a Discrete, Nominal 

Classification of exams -KE {1,2,3,4,5} Discrete, Ordinal 

Electrical resistances (IOOQ) :{J? [90, 110] Continuous 

a 1 =Commerce, 2 =Industry, 3 =Services. 

One could also have, for instance: 

-V': {commerce, industry, services} ~ { -1, 0, 1}. 
-K£: {bad, mediocre, fair, good, excellent} ~ {0, 1, 2, 3, 4}. 
:{J?: [90 0, 110 0] ~ [-10, 10]. 

The value domains (or domains for short) of the variables -V' and -KE are discrete. 
These variables are discrete random variables. On the other hand, variable :{J? is a 
continuous random variable. 

The values of a nominal (or categorial) discrete variable are mere symbols (even 
if we use numbers) destined to distinguish different categories (or classes). The 
value domain is unique up to a biunivocal (one-to-one) transformation. For 
instance, the domain of -V' could be codified e.g. as {A, B, C} or {I, II, III}. 

Examples of nominal data are: 

- Class of Animal: bird, mammal, reptile, etc.; 
Automobile registration plates; 

- Taxpayer registration numbers. 

The only statistics that make sense to compute for nominal data are the ones that 
are invariable under a biunivocal transformation, namely: category counts; 
frequencies; mode. 

The domain of ordinal discrete variables, as suggested by the name, supports a 
total order relation ("larger than" or "smaller than"). It is unique up to a strict 
monotonic transformation (i.e., preserving the total order relation). That is why the 
domain of -K£ could be {0, 1, 2, 3, 4} or {0, 25, 50, 75, 100} as well. 

Examples of ordinal data are abundant, since the assignment of ranking scores 
to items is such a widespread practice. A few examples are: 

- Consumer preference ranks: "like", "accept", "dislike", "reject", etc.; 
Military ranks: private, corporal, sergeant, lieutenant, captain, etc.; 

- Certainty degrees: "unsure", "possible", "probable", "sure", etc. 
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Several stat1sttcs, whose only assumption is the existence of a total order 
relation, can be applied to ordinal data. One such statistic is the median, as shown 
in Example 1.2. 

Continuous variables have a real number interval (or a reunion of intervals) as 
domain, which is unique up to a linear transformation. One can further distinguish 
between ratio type variables, supporting linear transformations of they = ax type, 
and interval type variables supporting linear transformations of they= ax+ b type. 
The domain of ratio type variables has a fixed zero. This is the most frequent type 
of continuous variables encountered, as in Example 1.3 (a zero ohm resistance is a 
zero resistance in whatever measurement scale we choose to elect). The whole 
panoply of statistics is supported by continuous ratio type variables. The less 
common interval type variables do not have a fixed zero. An example of interval 
type data is the temperature data, which can be measured in degrees Celsius (.rc) or 
Fahrenheit (.v), satisfying the relation J\F = 1.8.rc + 32. There are only a few, less 
frequent statistics, requiring a fixed zero, not supported by this type of variables. 

Notice that, strictly speaking, there is no such thing as continuous data, since all 
data can only be measured with finite precision. If, for example, one is dealing 
with data representing people's height in meters, such "real-flavour" numbers as 
1.82 m may be used. Of course, if the highest measurement precision is the 
millimetre, one is in fact dealing with integer numbers such as 182 mm, i.e., the 
height data is, in fact, ordinal data. In practice, however, one often assumes that 
there is a continuous domain underlying the ordinal data. For instance, one often 
assumes that the height data can be measured with arbitrarily high precision. Even 
for such rank data as the examination scores of Example 1.2, one often computes 
an average score, obtaining a value in the continuous interval [0, 5], i.e., one is 
implicitly assuming that the examination scores can be measured with a higher 
precision. 

1.4 Probabilities and Distributions 

The process of statistically analysing a dataset involves operating with an 
appropriate measure expressing the randomness exhibited by the dataset. This 
measure is the probability measure. In this section, we will introduce a few topics 
of Probability Theory that are needed for the understanding of the following 
material. The reader familiar with Probability Theory can skip this section. A more 
detailed survey (but still a brief one) on Probability Theory can be found in 
Appendix A. 

1.4.1 Discrete Variables 

The beginnings of Probability Theory can be traced far back in time to studies on 
chance games. The work of the Swiss mathematician Jacob Bernoulli ( 1654-1705), 
Ars Conjectandi, represented a keystone in the development of a Theory of 
Probability, since for the first time, mathematical grounds were established and the 
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application of probability to statistics was presented. The notion of probability is 
originally associated with the notion of frequency of occurrence of one out of k 

events in a sequence of trials, in which each of the events can occur by pure 
chance. 

Let us assume a sample dataset, of size n, described by a discrete variable, ~ 
Assume further that the value x; of.:\. occurs n; times. We define: 

- Absolute frequency of x;: n; ; 

Relative frequency (or simply frequency): 

In a classic frequency interpretation of probability, it is considered a limit, for 

large n, of the relative frequency of an event: ~ = P(:z =X;)= lim n-->x f; E [o, 1]. 
In Appendix A, a more rigorous definition of probability is presented, as well as 
properties of the convergence of such a limit to the probability of the event (Law of 
Large Numbers), and the justification for computing P(:z = x;) as the "ratio of the 
number of favourable events over the number of possible events" when the event 
composition of the random experiment is known beforehand. For instance, the 
probability of obtaining two heads when tossing two coins is 1/. since only one out 
of the four possible events (head-head, head-tail, tail-head, tail-tail) is favourable. 
As exemplified in Appendix A, one often computes probabilities of events in this 
way, using enumerative and combinatorial techniques. 

The values of P; constitute the probability junction values of the random 
variable .:r, denoted P(:K). In the case the discrete random variable is an ordinal 
variable the accumulated sum of P; is called the distribution function, denoted FC\). 

Bar graphs are often used to display the values of probability and distribution 
functions of discrete variables. 

Let us again consider the classification data of Example 1.2, and assume that the 
frequencies of the classifications are correct estimates of the respective 
probabilities. We will then have the probability and distribution functions 
represented in Table 1.5 and Figure 1.5. Note that the probabilities add up to 1 
which is the largest value of the monotonic increasing function F(:K). 

Table 1.5. Probability and distribution functions for Example 1.2, assuming that 
the frequencies are correct estimates of the probabilities. 

X; Probability Function P(:z) Distribution Function F(:z) 

0.06 0.06 

2 0.20 0.26 

3 0.24 0.50 

4 0.30 0.80 

5 0.20 1.00 
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Figure 1.5. Probability and distribution functions for Example 1.2, assuming that 
the frequencies are correct estimates of the probabilities. 

Several discrete distributions are described in Appendix B. An important one, 
since it occurs frequently in statistical studies, is the binomial distribution. It 
describes the probability of occurrence of a "success" event k times, in n 
independent trials, performed in the same conditions. The complementary "failure" 
event occurs, therefore, n - k times. The probability of the "success" in a single 
trial is denoted p. The complementary probability of the failure is 1 - p, also 
denoted q. Details on this distribution can be found in Appendix B. The respective 
probability function is: 

P(~ = k)=(;)pk(l - p)n-k = (~)pkqn-k. 1.1 

1.4.2 Continuous Variables 

We now consider a dataset involving a continuous random variable. Since the 
variable can assume an infinite number of possible values, the probability 
associated to each particular value is zero. Only probabilities associated to intervals 
of the variable domain can be non-zero. For instance, the probability that a gunshot 
hits a particular point in a target is zero (the variable domain is here two
dimensional). However, the probability that it hits the "bullseye" area is non-zero. 

For a continuous variable one can assign infinitesimal probabilities tlp(x) to 
infinitesimal intervals & : 

tlp(x) = f(x)tlx, 1.2 

where .f(x) is the probability density function, computed at point x. 
For a finite interval [a, b] we determine the corresponding probability by adding 

up the infinitesimal contributions, i.e., using: 

P(a < x~b) = J:f(x)dx. 1.3 
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Therefore, the probability density function,j(x), must be such that: 

JD f(x)dx = 1, where Dis the domain of the random variable. 

Similarly to the discrete case, the distribution function is now defined as: 

F(u) = P(-K. ~ u) = [ f(x)dx. 1.4 

The reader may wish to consult Appendix A in order to learn more about 
continuous density and distribution functions. Appendix B presents several 
important continuous distributions, including the most popular, the Gauss (or 
normal) distribution, with density function defined as: 

(X-J1)2 
1 ---2-

n (x)=--e 2a 
J1 ,a ..{i; (J" 

1.5 

The definition uses two parameters, f.1 and a, corresponding to the mean and 
standard deviation, respectively. In Appendices A and B, the reader finds a 
description of the most important aspects of the normal distribution, including the 
reason of its broad applicability. 

1.5 Beyond a Reasonable Doubt. .. 

We often see movies where the jury of a Court has to reach a verdict as to whether 
the accused is found "guilty" or "not guilty". The verdict must be consensual and 
established beyond any reasonable doubt. And like the trial jury, the statistician has 
also to reach objectively based conclusions, "beyond any reasonable doubt" ... 

Consider, for instance, the dataset of Example 1.3 and the statement "the 100 n 
electrical resistances, manufactured by the machine, have a (true) mean value in 
the interval [95, 105]". If one could measure all the resistances manufactured by 
the machine during its whole lifetime, one could compute the population mean 
(true mean) and assign a True or False value to that statement, i.e., a conclusion 
with entire certainty would then be established. However, one usually has only 
available a sample of the population; therefore, the best one can produce is a 
conclusion of the type " ... have a mean value in the interval [95, 105] with 
probability 8"; i.e., one has to deal not with total certainty but with a degree of 
certainty: 

P(mean E[95, 105]) = 8 = l- a. 

We call 8 (or 1-a) the confidence level (a is the error or significance level) 
and will often present it in percentage (e.g. 8 = 95% ). We will learn how to 
establish confidence intervals based on sample statistics (sample mean in the above 
example) and on appropriate models and/or conditions that the datasets satisfy. 
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Let us now look in more detail what a confidence level really means. Imagine 
that in Example 1.2 we were dealing with a random sample extracted from a 
population of a very large number of students, attending the course and subject to 
an examination under the same conditions. Thus, only one random variable plays a 
role here: the student variability in the apprehension of knowledge. Consider, 
further, that we wanted to statistically assess the statement "the student 
performance is 3 or above". Denoting by p the probability of the event "the student 
performance is 3 or above" we derive from the dataset an estimate of p, as follows: 

p= 12+15+10 =0.74. 
50 

The question is how reliable this estimate is (known as point estimate). Since 
the random variable representing such an estimate, with random samples of 50 
students, takes value in a continuum of values, we know that the probability that 
the true mean is exactly that particular value (0.74) is zero. We then loose a bit of 
our innate and candid faith in exact numbers, relax our exigency, and move 
forward to thinking in terms of intervals around p (interval estimate). We now ask 
with which degree of certainty (confidence level) we can say that the true 
proportion p of students with "performance 3 or above" is between 0. 72 and 0. 76, 
i.e., with a deviation- or tolerance- of c= ±0.02 from that estimated proportion? 

In order to answer this question one needs to know the so-called sampling 
distribution of the following random variable: 

where the ~ are n independent random variables whose values are 1 in case of 
"success" (student performance~ 3 in this example) and 0 in case of"failure". 

When the np and n(l-p) quantities are "reasonably large" Pn has a distribution 
that can be well approximated by the normal distribution with mean equal top and 
standard deviation equal to ~ p(1- p) I n . This topic is discussed in detail in 
Appendices A and B, where what is meant by "reasonably large" is also mentioned. 
For the moment, it will suffice to say that using the normal distribution 
approximation (model), one computes confidence levels for several values of the 
tolerance, c, and sample size, n, as shown in Table 1.6 and displayed in Figure 1.6. 

Two important aspects are illustrated in Table 1.6 and Figure 1.6: first, the 
confidence level converges to 1 (absolute certainty) with increasing n; second, 
when we want to be more precise in our estimates by decreasing the tolerance, 
then, for fixed n, we have to lower the confidence levels, i.e., simultaneous and 
arbitrarily good precision and certainty are impossible (some trade-off is always 
necessary). In the "jury verdict", analogy it is the same as if one said the degree of 
certainty increases with the number of evidential facts (tending to absolute 
certainty if this number tends to infinite), and that if the jury wanted to increase the 
precision (details) of the verdict, it would then lose in degree of certainty. 
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Table 1.6. Confidence levels (b) for the interval estimation of a proportion, when 
p = 0.74, for two different values of the tolerance(&). 

n & = 0.02 s= O.oJ 

50 0.25 0.13 
100 0.35 0.18 
1000 0.85 0.53 
10000 "'1.00 0.98 
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Figure 1.6. Confidence levels for the interval estimation of a proportion, when 
p = 0.74, for three different values of the tolerance. 

There is also another important and subtler point concerning confidence levels. 
Consider the value of t5 = 0.25 for a&= ±0.02 tolerance in then = 50 sample size 
situation (Table 1.6). When we say that the proportion of students with 
performance ?: 3 lies somewhere in the interval p ± 0.02, with the confidence 
level 0.25, it really means that if we were able to infinitely repeat the experiment of 
randomly drawing n = 50 sized samples from the population, we would then find 
that 25% of the times (in 25% of the samples) the true proportion p lies in the 
interval Pk ± 0.02, where the Pk (k = I, 2, ... ) are the several sample estimates 
(from the ensemble of all possible samples). Of course, the "25%" figure looks too 
low to be reassuring. We would prefer a much higher degree of certainty; say 95% 
- a very popular value for the confidence level. We would then have the situation 
where 95% of the intervals p k ± 0.02 would "intersect" the true value p, as shown 
in Figure 1.7. 

Imagine then that we were dealing with random samples from a random 
experiment in which we knew beforehand that a "success" event had a p = 0.75 
probability of occurring. It could be, for instance, randomly drawing balls with 
replacement from an urn containing 3 black balls and I white "failure" ball. Using 
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the normal approximation of Pm one can compute the needed sample size in order 
to obtain the 95% confidence level, as n = 1800. We now have a sample of 1800 
drawings of a ball from the urn, with an estimated proportion p for the success 
event. Does this mean that when dealing with a large number of samples of size 
n = 1800 and with estimates Pk (k = 1, 2, ... ), 95% of the Pk will lie somewhere 
in the interval p ± 0.02? No. It means, as previously stated and illustrated in Figure 
1.7, that 95% of the intervals Pk ± 0.02 will contain p. As we are (usually) dealing 
with a single sample, we could be unfortunate and be dealing with an "atypical" 
sample, say as sample #3 in Figure 1. 7. Now, it is clear that 95% of the time p does 
not fall in the p3 ± 0.02 interval. The confidence level can then be interpreted as a 
risk (the risk incurred by "a reasonable doubt" in the jury verdict analogy). The 
higher the confidence level, the lower the risk we run in basing our conclusions on 
atypical samples. Assuming we increased the confidence level to 0.99, while 
maintaining the sample size, we would then get a larger tolerance, s= 0.025. We 
can figure this out by imagining in Figure 1. 7 that the intervals would grow wider 
so that now only 1 out of 100 intervals does not contain p. 

The main ideas of this discussion around the interval estimation of a proportion 
can be carried over to other statistical analysis situations as well. As a rule, one has 
to fix a confidence level for the conclusions of the study. This confidence level is 
intimately related to the sample size and precision (tolerance) one wishes in the 
conclusions, and has the meaning of a risk incurred by dealing with a sampling 
process that can always yield some atypical dataset, not warranting the 
conclusions. After losing our innate and candid faith in exact numbers we now lose 
a bit of our certainty about intervals ... 

#3 

1\ #1 
#2 I~ p,+ & #5 #6 

II 1\ 
p, ~ 

p ••• 
1\ 

p,-s 

Figure 1.7. Interval estimation of a proportion. For a 95% confidence level only 
roughly 5 out of 100 samples, such as sample #3, are atypical, in the sense that the 
respective p ± & interval does not contain p. 

The choice of an appropriate confidence level depends on the problem. The 95% 
value became a popular figure, and will be largely used throughout the book, 
because it usually achieves a "reasonable" tolerance in our conclusions (say, 
& < 0.05) for a not too large sample size (say, n > 200), and it works well in many 
applications. For some problem types, where a high risk can have serious 
consequences, one would then choose a higher confidence level, 99% for example. 
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Notice that arbitrarily small risks (arbitrarily small "reasonable doubt") are often 
impractical. As a matter of fact, a zero risk - no "doubt" at all - means, usually, 
either an infinitely large, useless, tolerance, or an infinitely large, prohibitive, 
sample. A compromise value achieving a useful tolerance with an affordable 
sample size has to be found. 

1.6 STATISTICA, SPSS and MATLAB 

There are many software products for statistical analysis, covering a broad 
spectrum of possibilities. At one end we find "closed" products where the user can 
only perform menu operations. At the other end we find "open" products allowing 
the user to program any arbitrarily complex statistical analysis operation. A 
popular example of such a product is MA TLAB from The Math Works, Inc., a 
mathematical software product. Performing statistical analysis with MA TLAB 
gives the user complete freedom to implement specific algorithms and perform 
complex custom-tailored operations. MA TLAB is also especially useful when the 
statistical operations are part of a larger project. For instance, when performing 
signal or image classification one first computes signal or image features using 
specific MATLAB toolboxes, followed by the application of statistical 
classification procedures. The penalty to be paid for this flexibility is that the user 
must learn the programming essentials in the MA TLAB language. 

SPSS from SPSS Inc. and ST A TISTICA from Stat Soft Inc are important and 
popularised software products of the menu-driven type. Both products require 
minimal time for familiarization and allow the user to easily perform the statistical 
analysis using a spreadsheet-based philosophy for operating with the data. Figure 
1.8 illustrates the STA TISTICA spreadsheet for the cork stopper dataset (see 
Appendix E) with column C filled in with numeric categorization codes and the 
other columns (ART to PRT) filled in with random data values. Concerning 
flexibility, both SPSS and STATISTICA provide command language and macro 
construction facilities. As a matter of fact STATISTICA is close to an "open" 
product type, since it provides advanced programming facilities such as the use of 
external code (DLLs) and application programming interfaces (API), as well as the 
possibility of developing specific routines in a Basic-like programming language. 

All the statistical methods explained in the book are illustrated with examples 
related to real-life problems. As analysis tool applied to each example we use one 
of the MATLAB, SPSS or STA TISTICA products and indicate how to use the 
other ones. We use the releases MATLAB 6.1 with the Statistics Toolbox, SPSS 
10.0 and STATISTICA 6.0 for the Windows operating system; there is, usually, no 
significant difference when using another release of these products, especially if it 
is a more advanced release, or running these products in other non-Windows based 
platforms. All book figures obtained with these software products are presented in 
greyscale, therefore sacrificing some of the original display quality. 

The menu bar of ST ATISTICA user interface is shown in Figure 1.9 (with the 
data file Me teo. sta in current operation). The contents of the menu options 
(besides the obvious Window and Help) are as follows: 
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File: 

Edit : 
View: 

Insert : 
Format: 
Statistics : 
Graphs : 
Tools: 
Data: 

Operations with data files(*. sta), scrollsheet files (*. scr), 
graphic files(*. stg), print operations. etc. 
Spreadsheet edition, screen catching. 
View configuration of spreadsheets, namely of headers, text 
labels and case names. 
Insertion and copy of variables and cases. 
Format specifications of spreadsheet cells, variables and cases. 
Statistical analysis tools and ST A TISTICA Visual Basic. 
Operations with graphs. 
Selection conditions, macros, user options, etc. 
Several operations with the data, namely sorting, recalculation 
and recoding of data. 

Besides the menu options there are, as is customary, alternative ways to perform 
a given operation using icons and key combinations (using underlined characters). 

125 
179 
240 
224 
265 

Figure 1.8. ST A TISTICA spreadsheet for the cork stoppers data. Each row 
corresponds to a sample case. C is a class label column. The other columns 
correspond to the random variable values. 

mlSTATISTICA - Meteo.sta _ _ ___ _ 

I[ Eie Edit ~lew Insert F~ ~atistics ~aphs Iools Qata ~ow tleiP 

Figure 1.9. Menu bar of ST A TISTICA user interface (the dataset currently being 
operated is Meteo . sta). 

file Edit View Data Transform Analyze Graphs Utilties Window Help 

Figure 1.10. Menu bar of SPSS user interface (the dataset currently being operated 
is Me teo. sav). 
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The menu bar of SPSS user interface is shown in Figure I. I 0 (with the data file 
Me teo. sav in current operation). The contents of the menu options (besides the 
obvious Window and Help), are as follows : 

File: 

Edit: 
View: 

Data: 

Transform: 

Analyze : 
Graphs: 
Utilities: 

Operations with data files (*. sav), syntax files (*. sps), 

output files ( * . spo ), print operations, etc. 
Spreadsheet edition. 
View configuration of spreadsheets, namely of value labels and 
gridlines. 
Insertion of variables and cases, and operations with the data, 
namely sorting and transposition. 
More operations with data, such as recoding and computation of 
new variables. 
Statistical analysis tools . 
Operations with graphs. 
Variable definition reports, running scripts, etc. 

Besides the menu options there are alternative ways to perform some operations 
using icons. 

The reader, no doubt, will notice some similarities between the user interface of 
SPSS and ST A TISTICA, namely the individual options to manage files, to edit the 
data spreadsheets, to manage graphs, to perform data operations and to apply 
statistical analysis procedures. 

MA TLAB has a command-driven approach. Commands, with appropriate 
arguments, are written following the MATLAB prompt, », in a MA TLAB 
Command Window, as shown in Figure I. I 1. In this case, after writing down the 
command help stats (ending with the "Return" or the "Enter" key), one 
obtains a list of all available Statistical MA TLAB commands. One could go on and 
write, for instance, help betaf it, getting help about the command betaf it . 

) '1A Tl AD ( ofiHildnd Wmdow '"'-< ••• 

? 

St~tistics Toolbox. 
uersion 2.2 (R11) 2-- Jul- 1998 

Hl'w Futures 
ReadRe - Uersion 2.2 synopsis of new functionality. 

Distributions. 
Para~ter estiaation. 

bet~fit - Beta para~ter estiaation. 
binofit - Bino•ial para~ter estiaation. 
expfit - Exponential para~ter estiaation. 

Figure 1.11. The command window of MA TLAB showing the help command on 
the statistical commands available. 
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Data in MATLAB is represented as matrices. For instance, the following 
command defines a 2x2 matrix x with the typed in values: 

» X=[1 2 
3 4] i 

Notice that we use courier type font for all computer filenames and software 
commands. When needed, we will clarify the correspondence between the 
mathematical and the computer symbols. For instance MATLAB matrix x would 
correspond to matrix X. 

In MATLAB column values are separated by space or comma and row values 
are separated by semicolon. Matrices can also be used to define other matrices. 
Thus, the previous matrix x could also be defined as: 

» X= [ 11 2 i 3 I 4] i 
» X= [ [ 1 2] i [ 3 4] ] i 

» X= [ [ 1 j 3] 1 [ 2 j 4) ) i 

One can confirm that the matrix has been defined as intended, by typing x after 
the prompt, and obtaining: 

X = 
1 2 
3 4 

The same result could be obtained by removing the semicolon terminating the 
previous command. In MATLAB a semicolon inhibits the production of screen 
output. Also MATLAB commands can either be used in a procedure-like manner, 
producing output (as "answers", denoted ans), or in a function-like manner 
producing a value assigned to a variable (considered to be a matrix). This is 
illustrated next, with the command that computes the mean of a sequence of values 
structured as a row vector: 

» X= [ 1 2 3 4 5 6] i 

» mean(x) 
ans = 

3.5000 
» y=mean(x) 
y 

3.5000 

At the end of each following chapter several exercises are proposed, involving 
computer experiments with the datasets. The datasets used in the examples and 
exercises, described in Appendix E, are supplied in the CD. Dataset names 
correspond to the respective EXCEL file names. Variable identifiers correspond to 
the column identifiers of the EXCEL files. 
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Presenting and summarising the data is certainly the introductory task in any 
statistical analysis problem and comprehends a set of topics and techniques, 
collectively known as descriptive statistics. 

2.1 Preliminaries 

2.1.1 Reading in the Data 

Data is usually gathered and arranged in tables. The spreadsheet approach followed 
by numerous software products is a convenient tabular approach to deal with the 
data. Consider the meteorological dataset Me teo (see Appendix E). It is provided 
as an EXCEL file (Met eo. xls ) with the cases (meteorological stations) along 
the rows and the random variables (weather variables) along the columns, as 
shown in Figure 2.1. This is a convenient way to store the data. Notice also the 
indispensable Description datasheet, where all the necessary information 
concerning the meaning of the data, the definitions of the variables and of the 
cases, as well as the source and possible authorship of the data should be supplied. 

181 143 36 39 37 
114 132 35 39 36 
101 125 36 40 38 
80 111 34 33 31 
36 102 37 36 35 
24 98 40 38 
39 96 37 

Figure 2.1. The meteorological dataset presented as an EXCEL file . 

J. P. Marques de Sá, Applied Statistics Using SPSS, STATISTICA and MATLAB
© Springer-Verlag Berlin Heidelberg 2003
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Carrying out this dataset into ST A TISTICA, SPSS or MA TLAB is an easy task. 
The basic thing is to select the data in the usual way (mouse dragging between two 
comers of the data table), copy the data (e.g., using the CTRL +C keys) and paste it 
(e .g., using the CTRL+V keys). One can also, of course, type in the data directly 
into the ST A TISTICA or SPSS spreadsheets or into the MA TLAB command 
window. 

With STATISTICA one must create a new data file (File, New) with the 
desired number of variables and cases, before pasting or typing in the data. There is 
also the possibility of using any previous template data file and adjusting the 
number of variables and cases (click the right button of the mouse over the variable 
column(s) or case row(s) or, alternatively, use Insert). One may proceed to 
define the variables, by assigning them a specific name and declaring their type. 
This can be done by double clicking the mouse left button over the respective 
column heading. The specification box shown in Figure 2.2 is then displayed. Note 
the possibility of specifYing a variable label (describing the variable meaning) or a 
formula (this last possibility will be used later). Missing data (MD) codes and text 
labels assigned to variable values can also be specified. Figure 2.3 shows the data 
spreadsheet corresponding to the Me teo. xls dataset. The similarity with Figure 
2.1 is evident. 

Vat1able 5 :; 

Name: TB2j 

MD code: 

NlM!lber 
Dale 
Time 
Scientftc 
Currency 
Percenl:age 
Fraction 
Custom 

• 10 • B 

Type: 

Long name (label or fOJIIUa ~'~til . FID:Iiom ]t 
Maximum Temp. in 1982 

Labels; use any text FormJias: use variable names or vl, v2, ... , vO is case II. 
EKar'JIPies· (a) • mean(vl:v3, «<l(v7). AGE) (b) • v1 +v2; cormwri (~el;) 

Figure 2.2. STA TISTICA variable specification box. Note the variable label at the 
bottom, describing the meaning of the variable T82. 
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Ill Ddtd: Sprt>dd .. twet2• (5v by 25c) ""\: 
~ - ----

1 3 4 
TOO T81 

36 39 
35 39 

101 36 40 
80 34 33 
36 37 36 
24 40 40 
39 37 37 

Figure 2.3. ST A TISTICA spreadsheet corresponding to the meteorological data. 

After building the data spreadsheet, it is advisable to save it using the Save As 
of the File menu. In this case we specify the filename Meteo, creating thus a 
Me teo. sta STATISTICA file that can be easily opened at another session with 
the Open option of File. Once the data filename is specified, it will appear in the 
title heading of the data spreadsheet and in this case, instead of "Data: 
Spreadsheet2*", "Data: Meteo. sta" will appear. The notation Sv by 
2 Sc indicates that the file is composed of 5 variables with 25 cases. 

Flo ~ - 01111 Tr... ,... ".... !Mill wniDw .. '~j 
~llil1•1 ~~.1!!1 B! l!::a.J ~-- Hillifii_RI ~l l . j 

Herne Type Width O.comelt Libel I Vlluet ... ~~ 
1 pmu Numeric B 0 ~ Mu Prec•p~at ion None None , 
2 raindays Numenc B 2 None None :~ 

--

Numeric B 2 !None None 

:~ 
3 100 
• 181 Numeric B 2 None None 
5 182 Numeric B 2 None None ... 

- 1- - -f- r .J: 7 
~AV•-~ II • I .,, .. - .. -

li'Ss ,--. ....... ' l. Ill 

Figure 2.4. Variable View spreadsheet of SPSS for the meteorological data. 
Notice the fields for filling in variable labels and missing data codes. 

When first starting SPSS, a file specification box may be displayed and the user 
asked whether a data file should be opened. One can cancel this file specification 
box and proceed to define a new data file (File, New), where the data can be 
pasted or typed in. The SPSS data spreadsheet starts with a comfortably large 
number of variables and cases. Further variables and cases may be added when 
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needed (use the Insert Variable or Insert Case options of the Data 
menu). One can then proceed to add specifications to the variables, either by 
double clicking with the mouse left button over the column heading or by clicking 
on the Variable View tab underneath (this is a toggle tab, toggling between the 
Variable View and the Data View). The Variable View and Data 
View spreadsheets for the meteorological data example are shown in Figure 2.4 
and 2.5, respectively. Note that the variable identifiers in SPSS use only lower case 
letters. 

-
0 Unt1tled - SPSS Data Ed1tor -

Fie Ec:Mt View Data Transform ANlyze Graphs l.lttles Window Help 

~llil[al ~ ~ ~ Yml ['g I ~~ BJmttll ~I I 
~ : pmalC _r a1 

pmax raindays t80 t81 t82 var • 
1 181 143.00 36.00 39.00 37.00 
2 114 132.00 35.00 39.00 36.00 
3 101 125.00 36.00 40.00 38.00 
4 80 111 .00 34.00 33.00 31 .00 
5 36 102.00 37.00 36.00 35.00 
6 24 98.00 40.00 40.00 38.00 
7 39 % .00 37.00 37.00 35.00 
8 31 1CS.OO 41 .00 41 .00 40.00 

J:-: ~,i.fl ~Date View J.. Varlllllle~ 11 4'1 I 
[SPSs Processor Is ready .a 

Figure 2.5. Data View spreadsheet ofSPSS for the meteorological data. 

The data can then be saved with Save As (File menu), specifying the data 
file name (Meteo . sav), which will appear in the title heading of the data 
spreadsheet. This file can then be comfortably opened in a following session with 
the Open option of the File menu. 

In MA TLAB, one can also directly paste data from an EXCEL file, in a matrix 
definition typed in the MATLAB command window. For the meteorological data 
one would have (the " ... " denotes part of the listing that is not shown): 

» meteo= [ 
181 143 36 39 3 7 
114 132 35 39 36 
101 125 36 40 38 

14 70 35 37 39 
l; 

% Pasting starts here 

% and ends here. 
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One would then proceed to save the meteo matrix with the save command. In 
order to have the saved data file (as well as other files) in a specific directory, it is 
advisable to change the directory with the cd command. For instance, imagine one 
wanted to save the data in a file with the filename Meteodata, residing in the 
c: \experiments directory. One would then specifY: 

» cd('c:\experiments'); 
» save Meteodata meteo; 

The MATLAB dir command would then list the presence ofthe MATLAB file 
Meteodata. mat in that directory. 

In a later session, the user can retrieve the matrix variable meteo by simply 
using the load command: 

» load Meteodata 

This will load the meteo matrix from the Meteodata. mat file, as can be 
confirmed by displaying its contents with: » meteo. 

2.1.2 Operating with the Data 

After having read in a dataset, one is often confronted with the need of defining 
new variables, according to a certain formula. Sometimes one also needs to 
manage the data in specific ways; for instance, sorting cases according to the 
values of one or more variables, or transposing the data, i.e., exchanging the roles 
of columns and rows. In this section, we will present only the fundamentals of such 
operations, illustrated for the meteorological dataset. 

Imagine that we wanted a new variable, PClass, that categorised the maximum 
rain precipitation (variable Pmax) into three categories: 

1. Pmax ~ 20 (low); 
2. 20 < Pmax ~ 80 (moderate); 
3. Pmax > 80 (high). 

Using STATISTICA we can add this new variable with the Add Variable 
option of the Insert menu. The variable specification window shown in Figure 
2.6 will then be displayed, where we would fill in, namely, the number of variables 
to be added, their names and formulas used to compute them. In this case, the 
formula is: 

1 + (v1>20)+(v1>80). 

In STA TISTICA, variables are symbolically denoted by v, followed by a 
number representing the position of the variable column in the spreadsheet. Since 
Pmax happens to be the first column, it is then denoted vl. The cases column is 
vO. It is also possible to use variable identifiers in formulas instead of v-notations. 
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In STATISTICA, SPSS and MATLAB a relational expression such as vl>20 will 
produce a value of I if true and of 0 if false. 

Add v.mabh·• ~ 

Name. 

U..Oin"M,.,.Iioldlolnsoft 
btl ... flrJI.-. 

Do<.«<IHHooc on • ot -· Fl 1·----... 
MD code 

Diapleyformat----------, 

Gene~8 

Date 
Tine 
Scierd"JC 
Ctnency 
Percentage 
Fraction 
Custom 

=1 +(v1 >20)+(v1 >80) 

l.QXl; ·l.QXJ 
liXXl; (liXXl) 
l .IXXl. (l .IXXl) 

Figure 2.6. Specification of a new (categorising) variable PC lass in ST A TISTICA . 

. ( ornput e V dtldblt• , ..... ~. 

ABS(I'UI"Iel(!)l) 
ANY{Iest.vu.value, .. ) 
ARSIN(rune>qX) 
ART AN (nu:ne.pr l 
COFNORM(zv8ue) 
COF.BERNOUW(Q.p) 

Figure 2. 7. Computing, in SPSS, the new variable PC lass in terms of the variable 
pmax. 
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The presence of the equal sign, preceding the expression, indicates that one 
wants to compute a formula and not merely assign a text label to a variable. One 
can also build arbitrarily complex formulas in ST A TISTICA, using a large number 
of predefined functions (see button Functions in Figure 2.6). 

Besides the insertion of new variables, one can also perform other operations 
such as sorting the entire spreadsheet based on column values, or transposing 
columns and cases, using the ST A TISTICA Data menu options. 

The addition of a new variable in SPSS is made by using the Insert 
Variable option, ofthe Data menu. In the case of the previous categorisation 
variable, one would then proceed to compute its values by using the Compute 
option of the Transform menu. The Compute Variable window shown in 
Figure 2.7 will then be displayed, where one would fill in the formula, similar to 
the previous one, but expressed in terms of the variable identifier, Pmax. Notice 
that a large number of functions are also available in SPSS for building arbitrarily 
complex formulas. 

Other data management operations such as sorting and transposing can also be 
performed using specific options of the SPSS Data menu. 

Let us now tum to MA TLAB. In order to operate with the matrix data, we need 
to first learn some basic ingredients. A matrix element is accessed by using its 
indices, separated by comma, between parentheses. For instance, for the previous 
me teo matrix, we can find out the value of the maximum precipitation (1st 

column) for the 3rd case, by typing: 

» meteo(3,1) 

ans = 
101 

If one wishes a list of the Pmax values from the 3rd to the 5'h cases, one would 
write: 

» meteo(3:5,1) 

ans = 
101 

80 
36 

Therefore, a range in cases (or columns) is obtained using the range values 
separated by a colon. The use of the colon alone, without any range values, means 
the complete range, i.e., the complete column (or row). Thus, in order to extract the 
Pmax column from the met eo matrix we need only specify: 

» pmax=meteo(:,1); 

We can now proceed to compute a new column vector, PClass: 

» pclass=1+(pmax>20)+(pmax>80); 

and join it to the met eo matrix, with: 
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» meteo=[meteo pclass] 

Transposition of a matrix in MA TLAB is straightforward, using the apostrophe 
as the transposition operation. For the me teo matrix one would write: 

» meteotransp=meteo'; 

Sorting the rows of a matrix, as a group and in ascending order, is performed 
with the sortrows command: 

» meteo=sortrows(meteo); 

After this initial familiarization with STATISTICA, SPSS and MATLAB, we 
will from now on include specific frames, headed by a "Commands" caption, 
where we present which commands (or functions) to use in order to perform the 
needed statistical operations. The MATLAB functions listed in "Commands" are, 
except otherwise stated, from the MATLAB Statistics Toolbox. We will also 
assume that the datasets used throughout the book are available as conveniently 
formatted data files(*. sta for STATISTICA, *. sav for SPSS and *.mat for 
MATLAB). 

2.2 Presenting the Data 

A general overview of the data in terms of frequencies with which a certain 
interval of values occurs, both in tabular and in graphical form, is usually advisable 
as a preliminary step before proceeding to the computation of specific statistics and 
performing statistical analysis. As a matter of fact, one usually obtains some 
insight on what to compute and what to do with the data by first looking to 
frequency tables and graphs. For instance, if from the inspection of such a table 
and/or graph one gets a clear idea that an asymmetrical distribution is present, one 
may possibly drop the intent of performing a normal distribution goodness-of-fit 
test. 

2.2.1 Counts and Bar Graphs 

Tables of counts and bar graphs are used to present discrete data. Denoting by .\.the 
discrete random variable associated to the data, the table of counts - tally sheet -
gives us: 

- The absolute frequencies (counts), nk; 
- The relative frequencies (or simply,frequencies) of occurrence fi = ni/n, 

for each discrete value (category), xk of the random variable .\. (n is the total 
number of cases). 
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Example 2.1 

Q: Consider the Meteo dataset (see Appendix E). We assume that this data has 
been already read in by STATISTICA, SPSS or MATLAB. Obtain a tally sheet 
showing the counts of maximum precipitation categories (discrete variable PC!ass). 
What is the category with higher frequency? 

A: The tally sheet can be obtained with the commands listed in Commands 2.1. 
Table 2.1 shows the results obtained with SPSS. The category with higher rate of 
occurrence is category 2 (64%). The Valid Percent column will differ from 
the Percent column, only in the case of missing data, with the Valid 
Percent removing the missing data from the computations. 

In Table 2.1 the counts are shown in the column headed by Frequency, and 
the frequencies, given in percentage, are in the column headed by Percent. 
These last ones are unbiased and consistent point estimates of the corresponding 
probability values Pk· For more details see A. I and the Appendix C. 

D 

Table 2.1. Frequency table for the discrete variable PC!ass, obtained with SPSS. 

Frequency Percent Valid Percent 
Cumulative 

Percent 

Valid 1.00 6 24.0 24.0 24.0 

2.00 16 64.0 64.0 88.0 

3.00 3 12.0 12.0 100.0 

Total 25 100.0 100.0 

Commands 2.1. STATISTICA, SPSS and MATLAB commands used to obtain 
frequency tables. The semicolon separates commands that must be used in 
sequence. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Basic Statistics and Tables; 
Descriptive Statistics; Frequency Tables 

Analyze; Descriptive Statistics; 
Frequencies 

table = tabulate(x) 

When using STATlSTICA or SPSS, one has to specify, in appropriate windows, 
the variables used in the statistical analysis. Figure 2.8 shows the windows used for 
that purpose in the present "Descriptive Statistics" case. 

With STA TISTICA, the variable specification window pops up when clicking 
the Variables tab in the Descriptive Statistics window. One can 
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select variables with the mouse or edit their identification numbers in a text box . 
For instance, editing "2-4", means that one wishes the analysis to be performed 
starting from variable v2 up to variable v4 . There is also a Select All 
variables button. The frequency table is outputted into a specific scroll-sheet that is 
part of a session workbook file, which constitutes a session logbook that can be 
saved ( * . s t w file) and opened at a later session. The entire scroll-sheet (or any 
part of the screen) can be copied to the clipboard (from where it can be pasted into 
a document in the normal way), using the Screen Catcher tool of the Edit 
menu. As an alternative, one can also copy the contents of the table alone in the 
normal way. 

With SPSS the variable specification window pops up immediately after 
choosing Frequencies in the menu Descriptive Statistics. Using a 
select button that toggles between select (GJ) and remove (W), one can specifY 
which variables to use in the analysis. The frequency table is outputted into the 
output sheet, which constitutes a session logbook, that can be saved(* . spa file) 
and opened at a later session. From the output sheet the frequency table can be 
copied into the clipboard in the usual way (e.g., using the CTRL+C keys) by first 
selecting it with the mouse (just click the mouse left button over the table) . 

.1J " 
ftf"QI/t"rlllf".. . 

1"""* I OK I 
}Rri..,. b..:. I ·Till 

!81 
!82 

I l S-Al I 
S*t-

If ~"' ! 

F t ~ l 
b a 

Figure 2.8. Variable specification windows for descriptive statistics: 
a) STATISTICA; b) SPSS. 

The MATLAB tabulate command computes a 3-column matrix, such that 
the first column contains the different values of the argument, the second column 
values are absolute frequencies (counts), and the third column are these frequencies 
in percentage. For the PCiass example we have: 

» t=tabulate(pclass) 
t 

1 
2 
3 

6 
16 

3 

24 
64 
12 

Text output of MATLAB can be copied and pasted in the usual way. • 
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tOO 2.00 ) .00 

PC LASS 

Figure 2.9. Bar graph, obtained with SPSS, representing the frequencies (in 
percentage values) ofPClass. 

With ST A TISTICA, SPSS and MA TLAB one can also obtain a graphic 
representation of a tally sheet, which constitutes an estimate of the probability 
function of the associated random variable ~' in the form of a bar graph (see 
Commands 2.2). Figure 2.9 shows the bar graph obtained with SPSS for Example 
2.1. The heights of the bars represent estimates of the discrete probabilities (see 
Appendix B for examples of bar graph representations of discrete probability 
functions). 

Commands 2.2. ST A TISTICA, SPSS and MA TLAB commands used to obtain 
bar graphs. The "I" sign separates alternative commands. 

STATISTICA Graphs; Histograms 

SPSS Graphs; Bar Charts 

MATLAB bar(f) 

With STATISTICA one can obtain a bar graph using the Hi stograms option of 
the Graphs menu. A 2D Histograms window pops up, where the user must 
specify the variable (or variables) to be represented graphically (using the 
Variables button), and, in this case, the Regular type for the bar graph. The 
user must also select the Codes option, and specify the codes for the variable 
categories (clicking in the respective button), as shown in Figure 2.1 0. In this case, 
the Normal fit box is left unchecked. Figure 2. 11 shows the bar graph obtained 
with ST A TISTICA for the PClass variable. 
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Figure 2.1 0. Specification of a bar chart for variable PC lass (Example 2.1) using 
ST ATISTICA. The category codes can be filled in directly or by clicking the All 
button. 
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Figure 2.11. Bar graph, obtained with STATISTICA, representing the frequencies 
(in percentage values) of variable PC lass (Example 2.1 ). 
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Figure 2.12. The STATISTICA All Options window that allows the user to 
completely customise the graphic output. This window has several sub-windows 
that can be opened with the left tabs. The sub-window corresponding to the axis 
units is shown. 

Any graph in STATISTICA is a resizable object that can be copied (and pasted) 
in the usual way. One can also completely customise the graph by clicking over it 
and modifying the required specifications in the All Opt ions window, shown 
in Figure 2.12. For instance, the bar graph of Figure 2.11 was obtained by: 
choosing the white background in the Graph Window sub-window; selecting 
black hatched fill in the Plot Bars sub-window; unchecking the Gr idlines 
button in the Axis Major Units sub-window (shown in Figure 2.12). 

With SPSS, after selecting the Simple option of Bar Charts one proceeds 
to choose the variable (or variables) to be represented graphically in the Define 
Simple Bar window by selecting it for the Category Axis, as shown in 
Figure 2.13. For the frequency bar graph one must check the% of cases option 
in this window. The graph output appears in the SPSS output sheet in the form of a 
resizable object, which can be copied (select it first with the mouse) and pasted in 
the usual way. By double clicking over this object, the SPSS Chart Editor 
pops up (see Figure 2.14), with many options for the user to tailor the graph to his 
personal preferences. 
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Figure 2.13. SPSS Define Simple Bar window, used for specifying bar 
charts. 

MATLAB has a routine for drawing histograms (to be described in the 
following section) that can also be used for obtaining bar graphs. The routine, 
hist (y, x), plots a bar graph of the y frequencies, using a vector x with the 
categories. For the PClass variable one would have to write down the following 
commands: 

» cat= [1 2 3); %vector with categories 
» hist(pclass,cat) 

If one has available the vector with the counts, it is then also possible to use the 
bar command. In the present case, after obtaining the previously mentioned t 
vector (Commands 2.1), one would proceed to obtain the bar graph corresponding 
to column 3 oft, with : 

» colormap ( [ . 5 . 5 . 5) ) ; 
» bar ( t ( : , 3) ) 

The colormap command determines which colour will be used for the bars. 
Its argument is a vector containing the composition rates (between 0 and I) of the 
red, green and blue colours. In the above example, as we are using equal 
composition of all the colours, the graph, therefore, appears grey in colour. 

Figures in MA TLAB are displayed in specific windows, as exemplified in 
Figure 2.15. The user can copy a resizable figure using the Copy Figure option 
ofthe Edit menu. 

• 
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Figure 2.14. The SPSS Chart Editor, with which the user can configure the 
graphic output (in the present case, Figure 2.9). For instance, by using Color 
from the Format menu, one can modify the bar colour. 
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Figure 2.15. MATLAB figure window, containing the bar graph of PClass. The 
graph itself can be copied to the clipboard using the Copy Figure option of the 
Edit menu. 

2.2.2 Frequencies and Histograms 

Consider now a continuous variable. Instead of a tally sheet/bar graph, representing 
an estimate of a discrete probability function, we now want a tabular and graphical 
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representation of an estimate of a probability density function. For this purpose, we 
establish a certain number of equal length intervals of the random variable and 
compute the frequency of occurrence in each of these intervals (also known as 
bins). In practice, one determines the lowest, x1, and highest, x1" sample values and 
divides the range, xh - x 1, into r equal length bins, hk, k = 1, 2, .. . ,r. The computed 
frequencies are now: 

fi = nk/n, where nk is the number of sample values (observations) in bin hk. 

The tabular form of the .fk is called a frequency table; the graphical form is 
known as a histogram. They are representations of estimates of the density 
function of the associated random variable. Usually the histogram range is chosen 
somewhat larger than xh - x 1, and adjusted so that convenient limits for the bins are 
obtained. 

Example 2.2 

Q: Consider the variable PRT of the Cork Stoppers' dataset (see Appendix E). 
This variable measures the total perimeter of cork defects, and can be considered a 
continuous (ratio type) variable. Determine the frequency table and the histogram 
of this variable, using 10 and 6 bins, respectively. 

A: The frequency table and histogram can be obtained with the commands listed in 
Commands 2.1 and Commands 2.3, respectively. 

Table 2.2 shows the frequency table of PRT using 10 bins. Figure 2.16 shows 
the histogram of PRT, using 6 bins. 

D 

Table 2.2. Frequency table of the cork stopper PRT variable, using 10 bins (table 
obtained with STATISTICA). 

Count Cumulative Percent Cumulative 
Count Percent 

20.22222<x<= 187.7778 3 3 2.00000 2.0000 
187 .7778<x<=355.3333 24 27 16.00000 18.0000 
355.3333<x<=522.8889 28 55 18.66667 36.6667 
522.8889<x<=690.4444 27 82 18.00000 54.6667 
690.4444<x<=858.0000 22 104 14.66667 69.3333 
858.0000<x<=1 025.556 15 119 10.00000 79.3333 
1025.556<x<=1193.111 11 130 7.33333 86.6667 
1193.111 <x<= 1360.667 11 141 7.33333 94.0000 
1360.667<x<=1528.222 8 149 5.33333 99.3333 
1528.222<x<= 1695.778 1 150 0.66667 100.0000 
Missing 0 150 0.00000 100.0000 
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Figure 2.16. Histogram of variable PRT (cork stopper dataset) obtained with 
ST A TISTICA using r = 6 bins. 

Let -KP be the random variable associ~ted to PRT. Then, the histogram of the 
frequency values represents an estimate, f v (x), of the density function f v (x). 

The number of bins to use in a histogram (or in a frequency table) depends on 
its goodness of fit to the true density function, in terms of variance and bias. In 
order to clarifY this issue, let us consider the histograms of PRT using r = 3 and 
r = 50 bins as shown in Figure 2.17. Notice that in the first case (r = 3) the 
histogram is too smooth, corresponding to a large bias of the expected value of 
f :cp (x) - f v (x), i.e., in average terms the histogram will give a point estimate of 

the density that can be quite far from the true value. In the second case (r = 50) the 
histogram is too rough; a polygonal curve fitting the histogram mid-point values 
may pass quite near the true density values, but these vary widely (large variance) 
around such a curve. 

Some formulas for selecting a "reasonable" number of bins have been divulged 
in the literature, namely: 

r = I + 3.3 log(n) (Sturges, 1926); 

r = I + 2.2 log(n) (Larson, 1975). 

2.1 

2.2 

The choice of an optimal value for r was studied by Scott (Scott DW, 1979), 
using as optimality criterion the minimization of the global mean square error: 

MSE == fo E[(f(x)- f(x)) 2 ]dx , 

where Dis the domain of the random variable. 
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Figure 2.17. Histogram of variable PRT, obtained with STATISTICA, using: 
a) r = 3 bins (large bias); b) r =50 bins (large variance). 

The minimization of MSE leads to a formula for the optimal choice of a bin 
width, h(n), which for the Gaussian density case is: 

h(n)= 3.49sn.113, 2.3 

where s is the sample standard deviation of the data. 
Although the h(n) formula was derived for the Gaussian density case, it was 

experimentally verified to work well for other densities too. With this h(n) one can 
compute the optimal number of bins using the data range: 

r = (x17 - x1)/ h(n). 2.4 

The Bins worksheet, of the EXCEL Tools. xls file (included in the book 
CD), allows the computation of the number of bins according to the three formulas 
2.1, 2.2 and 2.4. In the case of the PRT variable, we obtain the results of Table 2.3, 
legitim ising the use of 6 bins as in Figure 2.16. 

Table 2.3. Recommended number of bins for the PRT data (n = 150 cases, s = 361, 
range = 1508). 

Formula 

Sturges 
Larson 
Scott 

Number of Bins 

8 
6 
6 
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Commands 2.3. ST A TISTICA, SPSS and MATLAB commands used to obtain 
histograms. 

ST A TISTICA Graphs; Histograms 

SPSS 

MATLAB 

Graphs; Histogram 
Histogram 

hist(y,x) 

Interactive; 

The commands used to obtain histograms of continuous type data, are similar to 
the ones already described in Commands 2.2. 

With ST ATISTICA, one simply defines the bins in appropriate windows as 
previously mentioned. Besides setting the desired number of bins, there is instead 
also the possibility of defining the bin width (Step size) and the starting point 
ofthe bins. 

In order to obtain a histogram with SPSS, one can use the Histogram option 
of Graphs, or preferably, use the sequence of commands Graphs; 
Interactive; Histogram. One can then select the appropriate number of 
bins, or alternatively, set the bin width. It is also possible to choose the starting 
point of the bins. 

With MATLAB one obtains both the frequencies and the histogram with the 
his t command. Consider the following commands applied to the cork stopper 
data stored in the MATLAB cork matrix: 

» prt=cork ( : , 4) 
» [f,x]=hist(prt,6); 

In this case the hist command generates an f vector containing the 
frequencies counted in 6 bins and an x vector containing the bin locations. Listing 
the values off one gets: 

» f 
f 

27 45 32 19 18 9 

which are precisely the values shown in Figure 2.16. One can also use the his t 
command with specifications ofbins stored in a vector b, as hist (prt, b) . 

• 

2.2.3 Multivariate Tables, Scatter Plots and 3D Plots 

Multivariate tables display the frequencies of multivariate data. Figure 2.18 shows 
the format of a bivariate table displaying the counts niJ corresponding to the several 
combinations of categories of two random variables. Such a bivariate table is 
called a cross table or contingency table. 
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When dealing with continuous variables, one can also build cross tables using 
categories in accordance to the bins that would be assigned to a histogram 
representation of the two variables. 

nn nn . . . nlc 

n2t n22 . . . n2c 

. . . . . . . . . . . . 
Yr n,t n,2 . . . n,c 

Figure 2.18. An rxc contingency table with the observed absolute frequencies 
(counts nij). The row and column totals are r; and c1, respectively. 

Example 2.3 

Q: Consider the variables SEX and Q4 (41h enquiry question) of the Freshmen 
dataset (see Appendix E). Determine the cross table for these two categorical 
variables. 

A: The cross table can be obtained with the commands listed in Commands 2.4. 
Table 2.6 shows the counts and frequencies for each pair of values of the two 
categorical variables. Note that the variable Q4 can be considered an ordinal 
variable if we assign ordered scores, e.g. from 1 till 5, from "fully disagree" 
through "fully agree", respectively. 

A cross table is an estimate of the respective bivariate probability or density 
function. Notice the total percentages across columns (last row in Table 2.4) and 
across rows (last column in Table 2.4), which are estimates of the respective 
marginal probability functions. 

D 

Example 2.4 

Q: Determine the trivariate table for the variables SEX, LIKE and DISPL of the 
Freshmen dataset. 

A: In order to represent cross tables for more than two variables, one builds sub
tables for each value of one of the variables in excess of 2, as illustrated in Table 
2.5. D 
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Table 2.4. Cross table (obtained with SPSS) of variables SEX and Q4 of the 
Freshmen dataset. 

Q4 Total 
Fully 

Disagree 
No 

Agree 
Fully 

disagree comment agree 
SEX male Count 3 8 18 37 31 97 

%of Total 2.3% 6.1% 13.6% 28.0% 23.5% 73.5% 

female Count 2 4 13 15 35 
%of Total .8% 1.5% 3.0% 9.8% 11.4% 26.5% 

Total Count 4 10 22 50 46 132 
%of Total 3.0% 7.6% 16.7% 37.9% 34.8% 100.0% 

Table 2.5. Trivariate cross table (obtained with SPSS) of variables SEX, LIKE and 
DISPL of the Freshmen dataset. 

LIKE Total 

DISPL like dislike no comment 

yes SEX male Count 25 25 
%of Total 67.6% 67.6% 

female Count 10 2 12 
%of Total 27.0% 5.4% 32.4% 

Total Count 35 2 37 
%of Total 94.6% 5.4% 100.0% 

no SEX male Count 64 6 71 
%of Total 68.1% 1.1% 6.4% 75.5% 

female Count 21 2 23 
%of Total 22.3% 2.1% 24.5% 

Total Count 85 8 94 
%of Total 90.4% 1.1% 8.5% 100.0% 

Commands 2.4. STATISTICA, SPSS and MATLAB commands used to obtain 
cross tables. 

Statistics; Basic Statistics and Tables; 
STATISTICA Descriptive Statistics; (Tables and 

banners I Multiple Response Tables) 

SPSS Analyze; Descriptive Statistics; Crosstabs 

MATLAB cross tab (x, y) 

• 
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The most popular graphical tools for multivariate data are the scatter plots for 
bivariate data and the 3D plots for trivariate data . Examples of these plots, for the 
cork stopper data, are shown in Figures 2.19 and 2.20. As a matter of fact, the 30 
plot is often not so easy to interpret (as in Figure 2.20); therefore, in normal 
practice, one often inspects multivariate data graphically through scatter plots of 
the variables grouped in pairs. 
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Figure 2.19. Scatter plot obtained with ST A TISTICA of the variables ART and 
PRT of the cork stopper dataset. 
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Figure 2.20. 30 plot obtained with STATISTICA of the variables ART, PRT and 
N of the cork stopper dataset. 
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Besides scatter plots and 3D plots, it may be convenient to inspect bivariate 
histograms or bar plots (such as the one shown in Figure A.l, Appendix A). 
STATISTICA affords the possibility of obtaining such bivariate histograms from 
within the Frequency Tables window ofthe Descriptive Statistics 
menu. 

Commands 2.5. STATISTICA, SPSS and MATLAB commands used to obtain 
scatter plots and 3D plots. 

STATISTICA 

SPSS 

MATLAB 

Graphs; Scatterplots 
Graphs; 3D XYZ Graphs; Scatterplots 

Graphs; Scatter; Simple 
Graphs; Scatter; 3-D 

scatter(x,y,s,c) a 

scatter3(x,y,z,s,c) a 

a s, c are the size and colour of the marks, respectively. 

2.2.4 Categorised Plots 

• 

Statistical studies often address the problem of comparing random distributions of 
the same variables for different values of an extra grouping variable. For instance, 
in the case of the cork stopper dataset, one might be interested in comparing 
numbers of defects for the three different groups (or classes) of the cork stoppers. 
The cork stopper dataset, described in Appendix E, is an example of a grouped (or 
classified) dataset. When dealing with grouped data one needs to compare the data 
across the groups. For that purpose there is a multitude of graphic tools, known as 
categorised plots. For instance, with the cork stopper data, one may wish to 
compare the histograms of the first two classes of cork stoppers. This comparison 
is shown as a categorised histogram plot in Figure 2.21, for the variable ART. 
Instead of displaying the individual histograms, it is also possible to display all 
histograms overlaid in only one plot. 

When the number of groups is high, the visual comparison of the histograms 
may be rather difficult. The situation usually worsens if one uses overlaid 
histograms. A better alternative to comparing data distributions for several groups 
is to use the so-called box plot (or box-and-whiskers plot). As illustrated in Figure 
2.22, a box plot uses a distinct rectangular box for each group, where each box 
corresponds to the central 50% of the cases, the so-called inter-quartile range 
(IRQ). A central mark or line inside the box indicates the median, i.e., the value 
below which 50% of the cases are included. The boxes are prolonged with lines 
(whiskers) covering the range of the non-outlier cases, i.e., cases that do not 
exceed, by a certain factor of the IRQ, the above or below box limits. A usual IRQ 
factor for outliers is 1.5. Sometimes box plots also indicate, with an appropriate 
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mark, the extreme cases, similarly defined as the outliers, but using a larger IRQ 
factor, usually 3. As an alternative to using the central 50% range of the cases 
around the median, one can also use the mean ± standard deviation. 

There is also the possibility of obtaining categorised scatter plots or categorised 
3D plots. Their real usefulness is however questionable. 
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Figure 2.21. Categorised histogram plot obtained with STATISTICA for variable 
ART and the first two classes of cork stoppers. 
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Figure 2.22. Box plot of variable ART, obtained with MA TLAB, for the three 
classes of the cork stoppers data. The "+" sign for Class 1 indicates an outlier, i.e. , 
a case exceeding the top of the box by more than 1.5xiRQ. 
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Commands 2.6. STATISTICA, SPSS and MATLAB commands used to obtain 
box lots. 

STATISTICA Graphs; 2D Graphs; Boxplots 

SPSS Graphs; Boxplot 

MATLAB boxplot (x) 

• 

2.3 Summarising the Data 

When analysing a dataset, one usually starts by determining some indices that give 
a global picture on where and how the data is concentrated and what is the shape of 
its distribution, i.e., indices that are useful for the purpose of summarising the data. 
These indices are known as descriptive statistics. All descriptive statistics prsented 
in the following sections are accessible through the Descriptive 
Statistics commands ofthe STATISTICA, SPSS and MATLAB. 

Commands 2.7. STATISTICA, SPSS and MATLAB commands used to obtain 
descriptive statistics. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Basic Statistics/Tables; 
Descriptive Statistics 

Analyze; Descriptive Statistics 

mean(x)l median(x) I prctile(x,p) I iqr(x) 
range (x) I std (x) I var (x) I skewness (x) I 
kurtosis (x) I corrcoef (x) I cov (x) 

2.3.1 Measures of Location 

• 

Measures of location are used in order to determine where the data distribution is 
concentrated. The most usual measures of location are presented next. 

2.3.1.1 Arithmetic Mean 

Let x1. ... ,xn be the data. The arithmetic mean (or simply mean) is: 

_ 1 "n 
X=- L...i=l X;. 

n 
2.5 
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The arithmetic mean is the sample estimate of the mean of the associated 
random variable (see Appendices B and C). If one has a tally sheet of a discrete 
type data, one can also compute the mean using the absolute frequencies (counts), 
nk. of each distinct value x*: 

2.6 

If one has a frequency table of a continuous type data (also known in some 
literature as grouped data), with r bins, one can obtain an estimate ofx, using the 
frequencies,jj of the bins and the mid-bin values, x 1 , as follows: 

~ 1 "n f . x =- L....J=i 1x1 . 
r 

2.7 

This mean estimate used to be presented as an expedite way of calculating the 
arithmetic mean for long tables of data. With the advent of statistical software, the 
interest of such a method is at least questionable. We will proceed no further with 
such a "grouped data" approach. 

Sometimes, when in presence of datasets exhibiting outliers and extreme cases 
(see 2.2.4) that can be suspected to be the result of rough measurement errors, one 
can use a trimmed mean by neglecting a certain percentage of the tail cases (e.g., 
5%). 

The arithmetic mean is a point estimate of the expected value (true mean) of the 
random variable associated to the data and has the same properties as the true mean 
(see A.6.1 ). Note that the expected value can be interpreted as the center of gravity 
of a weightless rod with probability mass-points, in the case of discrete variables, 
or of a rod whose mass-density corresponds to the probability density function, in 
the case of continuous variables. 

2.3.1.2 Median 

The median of a dataset is that value of the data below which lie 50% of the cases. 
It is an estimate of the median, med(.~, of the random variable, .K, associated to the 
data, defined as the root of the equation: 

1 
F~ (x) =- => med(~), 

2 
2.8 

where F~ (x) is the distribution function of .K. Note that, using the previous rod 
analogy, the median divides the rod into equal mass halves corresponding to equal 
areas under the density curve, for the continuous variable case: 

rned(~) f (x) = i f (x) =..!.. 0 

j_= ~ .bed(~) ~ 2 
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The median satisfies the same linear property as the mean (see A.6.1), but not 
the other properties (e.g. additivity). Compared to the mean, the median has the 
advantage of being quite insensitive to outliers and extreme cases. 

Notice that, if we sort the dataset, the median is the central value if the number 
ofthe data values is odd; if it is even, it is computed as the average of the two most 
central values. 

2.3.1.3 Quantiles 

The quantile of order a (0 < a < 1) of a random variable distribution F:t (x) ts 

defined as the root of the equation (see A.5.2): 

F:t (x) =a. 2.9 

We denote the root as: Xa. 

Likewise we compute the quantile of order a of a dataset as the value below 
which lies a percentage a of cases of the dataset. The median is therefore the 50% 
quantile, or x05• Often used are: 

- Quartiles, corresponding to multiples of 25% of the cases. The box plot 
mentioned in 2.2.4 uses the quartiles and the inter-quartile range (IRQ) in order 
to determine the outliers of the dataset distribution. 

- Deciles, corresponding to multiples of 10% of the cases. 
- Percentiles, corresponding to multiples of 1% of the cases. We will often use 

the percentile p = 5% and its complement p = 95%. 

2.3.1.4 Mode 

The mode of a dataset is its maximum value. It is an estimate of the probability or 
density function maximum. For continuous type data one should determine the 
midpoint of the modal class of the data grouped into an appropriate number of 
bins. When a data distribution exhibits several relative maxima of almost equal 
value, we say that it is a multimodal distribution. 

Example 2.5 

Q: Consider the Cork Stoppers' dataset. Determine the measures of location 
of the variable PRT. Comment the results. Imagine that we had a new variable, 
PRTI, obtained by the following linear transformation ofPRT: PRTI = 0.2 PRT + 
5. Determine the mean and median ofPRTl. 

A: Table 2.7 shows some measures of location of the variable PRT, computed with 
ST A TISTICA. Notice that as a mode estimate we can use the midpoint of the bin 
[355.3 606.7] as shown in Figure 2.16, i.e., 481. Notice also the values of the lower 
and upper quartiles delimiting 50% of the cases. The large deviation of the 95% 
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percentile from the upper quartile, when compared to the deviation of the 5% 
percentile from the lower quartile, is evidence of a right skewed asymmetrical 
distribution. 

By the linear properties of the mean and the median, we have: 

Mean(PRT1) = 0.2 Mean(PRT) + 5 = 147; 
Median(PRT1) = 0.2 Median(PRT) + 5 = 131. 

D 

Table 2.6. Computed location measures (with STATISTICA) for variable PRT of 
the cork stopper dataset ( 150 cases). 

Mean Median 

710.3867 629.0000 

Lower 
Quartile 

410.0000 

Upper 
Quartile 

974.0000 

Percentile 
5% 

246.0000 

Percentile 
95% 

1400.000 

An important aspect to be considered, when using values computed with 
statistical software, is the precision of the results expressed by the number of 
significant digits. Note that every software product will produce results with a 
large number of digits, independent of whether or not they mean something. For 
instance, in the case of the PRT variable (Table 2.6) it would be foolish to publish 
that the mean of the total perimeter ofthe defects of the cork stoppers is 710.3867. 
First of all, the least significant digit is, in this case, the unit (no perimeter can be 
measured in fractions of the pixel unit; see Appendix E). Thus, one would have to 
publish a value rounded up to the units, in this case 710. Second, there are 
omnipresent measurement errors that must be accounted for. Assuming that the 
perimeter measurement error is of one unit, then the mean is 710 ± 1'. As a matter 
of fact, even this one unit precision for the mean is somewhat misleading, as we 
will see in the following chapter. From now on the published results will take this 
issue into consideration and may, therefore, round the results obtained with the 
software products. 

2.3.2 Measures of Spread 

The measures of spread (or dispersion) give an indication of how concentrated a 
data distribution is. The most usual measures of spread are presented next. 

Assuming every measurement as an error &, the mean, in the worst case, has an error of 
±(n.abs(Llx:))/n = &. 
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2.3.2.1 Range 

The range of a dataset is the difference between its maximum and its minimum, 
i.e.: 

R = Xmax- Xmin· 2.10 

The basic disadvantage of using the range as measure of spread is that it is 
dependent on the extreme cases of the dataset. It also tends to increase with the 
sample size, which is an additional disadvantage. 

2.3.2.2 Inter-quartile range 

The inter-quartile range is defined as (see also section 2.2.4): 

IRQ = Xo.7s - Xo.2s . 2.11 

The IRQ is less influenced than the range by outliers and extreme cases. It tends 
also to be less influenced by the sample size (and can either increase or decrease). 

2.3.2.3 Variance 

The variance of a dataset x~. ... ,X11 (sample variance) is defined as: 

2.12 

The sample variance is the point estimate of the associated random variable 
variance (see Appendices B and C). It can be interpreted as the mean square 
deviation (or mean square error, MSE) of the sample values from their mean. The 
use of the n - 1 factor, instead of n as in the usual computation of a mean, is 
explained in C.2. Notice also that given x, only n - 1 cases can vary independently 
in order to achieve the same variance. We say that the variance has df = n - 1 
degrees of freedom. The mean, on the other hand, has n degrees of freedom. 

2.3.2.4 Standard Deviation 

The standard deviation of a dataset is the root square of its variance. It is, therefore, 
a root mean square error (RMSE): [] 

I 'n - 2 1/2 s=vv=L::: ... i=I(xi-x) /(n-1)] . 2.13 

The standard deviation is preferable than the variance as a measure of spread, 
since it is expressed in the same units as the original data. Furthermore, many 
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interesting results about the spread of a distribution are expressed in terms of the 
standard deviation. For instance, for any random variable .:\, the Chebyshev 
Theorem tall us that (see A.6.3): 

Using s as point estimate of a; we can then expect that for any dataset 
distribution at least 75% of the cases lie within 2 standard deviations of the mean. 

Example 2.6 

Q: Consider the Cork Stoppers 1 dataset. Determine the measures of spread of 
the variable PRT. Imagine that we had a new variable, PRTl, obtained by the 
following linear transformation of PRT: PRTl = 0.2 PRT + 5. Determine the 
variance ofPRTl. 

A: Table 2.7 shows measures of spread of the variable PRT, computed with 
ST A TISTICA. The sample variance enjoys the same linear transformation property 
as the true variance (see A.6.1 ). For the PRTl variable we have: 

variance(PRTl) = (0.2)2 variance(PRT) = 5219. 

Note that the addition of a constant to PRT (i.e., a scale translation) has no 
effect on the variance. 

D 

Table 2.7. Spread measures computed with STATISTICA for variable PRT of the 
cork stopper dataset (150 cases). 

Range 

1508 

Inter-quartile 
range 

564 

2.3.3 Measures of Shape 

Variance 

130477 

Standard 
Deviation 

361 

Standard Error 

29 

The most popular measures of shape, exemplified for the PRT variable of the 
Cork Stoppers 1 dataset (see Table 2.8), are presented next. 

2.3.3.1 Skewness 

A continuous symmetrical distribution around the mean, f.L, IS defined as a 
distribution satisfYing: 

fx.. (/1 + x) = fx.. (/1- x). 
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This applies similarly for discrete distributions, substituting the density function 
by the probability function . 

A useful asymmetry measure around the mean is the coefficient of skewness, 
defined as: 

2.14 

This measure uses the fact that any central moment of odd order is zero for 
symmetrical distributions around the mean. For asymmetrical distributions y 
reflects the unbalance of the density or probability values around the mean. The 
formula uses a d standardization factor, ensuring that the same value is obtained 
for the same unbalance, independently of the spread. Distributions that are skewed 
to the right (positively skewed distributions) tend to produce a positive value of y, 
since the longer rightward tail will positively dominate the third order central 
moment; distributions skewed to the left (negatively skewed distributions) tend to 
produce a negative value of y, since the longer leftward tail will negatively 
dominate the third order central moment (see Figure 2.23). The coefficient y, 
however, has to be interpreted with caution, since it may produce a false 
impression of symmetry (or asymmetry) for some distributions. For instance, the 
probability functionpk = {0.1, 0.15, 0.4, 0.35}, k = {1, 2, 3, 4}, has r= 0, although 
it is an asymmetrical distribution. 

The skewness of a dataset x 1,. • • ,xn is the point estimate of y, defined as: 

2.15 

Note that: 

For symmetrical distributions, if the mean exists, it will coincide with the 
median. Based on this property, one can also measure the skewness using 
g = (mean- median)/(standard deviation). It can be proved that -1 ~ g ~ 1. 

- For asymmetrical distributions, with only one maximum (which is then the 
mode), the median is between the mode and the mean as shown in Figure 2.23. 

fi.x) fi.x) 

X X 

mode mean mean mode 
a median b median 

Figure 2.23. Two asymmetrical distributions: a) Skewed to the right (usually with 
y> 0); b) Skewed to the left (usually withy< 0). 
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2.3.3.2 Kurtosis 

The degree of flatness of a probability or density function near its center, can be 
characterised by the so-called kurtosis, defined as: 

2.16 

The factor 3 is introduced in order that K= 0 for the normal distribution. As a 
matter of fact, the Kmeasure as it stands in formula 2.16, is often called coefficient 
of excess (excess compared to the normal distribution). Distributions flatter than 
the normal distribution have K < 0; distributions more peaked than the normal 
distribution have K > 0. 

The sample estimate of the kurtosis is computed as: 

k = [n(n + l)M 4 - 3(n -I)Mi] /[(n -J)(n- 2)(n -3)0.4], 2.17 

with: M j =I: I (xi - x)1 . 

Note that the kurtosis measure has the same shortcomings as the skewness 
measure. It does not always measure what it is supposed to. 

The skewness and the kurtosis have been computed for the PRT variable of the 
Cork Stoppers' dataset as shown in Table 2.8. The PRT variable exhibits a 
positive skewness indicative of a rightward skewed distribution and a positive 
kurtosis indicative of a distribution more peaked than the normal one. 

In order to appreciate the obtained skewness and kurtosis, the reader can refer to 
Figure 2.24 where these measures are plotted for several distributions (see 
Appendix B). For more details see (Dudewicz EJ, Mishra SN, 1988). 

Table 2.8. Skewness and kurtosis for the PRT variable of the cork stopper dataset. 

Skewness 

0.59 

Kurtosis 

0.63 

Figure 2.24. Skewness and kurtosis coefficients for several distributions. 
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2.3.4 Measures of Association for Continuous Variables 

The correlation coefficient is the most popular measure of associatiOn for 
continuous type data. For a dataset with two variables, .:t_and y, the sample estimate 

of the correlation coefficient Pv (see definition in A.8.3) is computed as: 

2.18 

where sx;r the sample covariance of .:t_and y, is computed as: 

2.19 

Note that the correlation coefficient (also known as Pearson correlation) is a 
unitless measure ofthe degree of linear association in the interval [-I, 1], with: 

0 : No linear association (.:t_and yare linearly uncorrelated); 
I : Total linear association, with .:t_and y varying in the same direction; 

-I: Total linear association, with .:t_and y varying in the opposite direction. 

Figure 2.25 shows scatter plots illustrating several situations of correlation. 
Notice that, in the case of Figure 2.25f, although there is an evident association 
between .t and y, the correlation coefficient fails to measure it since they are not 
linearly associated. 

Note also that, as described in Appendix A (section A.8.2), adding a constant or 
multiplying by a constant any or both variables does not change the magnitude of 
the correlation coefficient. Only a change of sign can occur if one of the 
multiplying constants is negative. 

The correlation coefficients can be arranged, in general, into a symmetrical 
correlation matrix, where each element is the correlation coefficient of the 
respective column and row variables. 

Table 2.9. Correlation matrix of five variables of the cork stopper dataset. 

N ART PRT ARTG PRTG 

N 1.00 0.80 0.89 0.68 0.72 

ART 0.80 1.00 0.98 0.96 0.97 

PRT 0.89 0.98 1.00 0.91 0.93 

ARTG 0.68 0.96 0.91 1.00 0.99 

PRTG 0.72 0.97 0.93 0.99 1.00 
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Example 2.7 

Q: Compute the correlation matrix of the following five variables of the Cork 
Stoppers ' dataset: N, ART, PRT, ARTG, PRTG. 

A: Table 2.9 shows the correlation matrix corresponding to the five variables of the 
cork stopper dataset (see Commands 2.8). Notice that the main diagonal elements 
(from the upper left comer to the right lower comer) are all equal to one. In a later 
chapter, we will learn how to correctly interpret the correlation values displayed. 
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Figure 2.25. Sample correlation values for different datasets: a) r = I; b) r = - 1; 
c) r = 0; d) r = 0.81; e) r= - 0.21; f) r= 0.04. 
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In multivariate problems, concerning datasets described by n random variables, 
~. ~ •••• , ~m one sometimes needs to assess what is the degree of association of 
two variables, say ~ and ~. under the hypothesis that they are linearly estimated 
by the remaining n- 2 variables. For this purpose, the correlation Px1x2 is defined 
in terms of the marginal distributions of ~ or ~ given the other variables, and is 
then called the partial correlation of~ and ~ given the other variables. Details on 
how to compute sample estimates of the partial correlations can be found, for 
instance, in Johnson RA, Wichern DW (1992). 

ST A TISTICA and SPSS afford the possibility of computing partial correlations 
as indicated in Commands 2.8. For the previous example, the partial correlation of 
PRTG and ARTG, given PRT and ART, is 0.79. We see, therefore, that PRT and 
ART can "explain" about 20% of the high correlation (0.99) of those two variables. 

Another measure of association for continuous variables is the multiple 
correlation coefficient, which measures the degree of association of one variable y 
in relation to a set of variables, ~. ~ •... , ~m that linearly "predict" y. Details on 
this association measure will be given in Chapter 7. 

Commands 2.8. STATISTICA, SPSS and MATLAB commands used to obtain 
measures of association for continuous variables. 

Statistics; Basic Statistics/Tables; 
STATISTICA Correlation matrices (Quick !Advanced; 

Partial Correlations) 

SPSS Analyze; Correlate; Bivariate I Partial 

MATLAB corrcoef (x) 

2.3.5 Measures of Association for Ordinal Variables 

2.3.5.1 The Spearman Rank Correlation 

• 

When dealing with ordinal data the correlation coefficient, previously described, 
can be computed in a simplified way. Consider the ordinal variables ~andy with 
ranks between 1 and N. It seems natural to measure the lack of agreement between 
~andy by means of the difference of the ranks d; =X;- y; for each data pair (x;, y;). 
Using the differences we can express 2.18 as: 
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2.20 

Assuming the values of X; andy; are ranked from 1 through Nand that there are 
no tied ranks in any variable, we have: 

Applying this result to 2.20, the following Spearman's rank correlation (also 
known as rank correlation coefficient) is derived: 

"n 2 6£.....-tdi r = 1- ,_ 
s N(N 2 -1)' 

2.21 

When tied ranks occur - i.e., two or more cases receive the same rank on the 
same variable-, each ofthose cases is assigned the average of the ranks that would 
have been assigned had no ties occurred. When the proportion of tied ranks is 
small, formula 2.21 can still be used. Otherwise, the following correction factor is 
computed: 

where g is the number of groupings of different tied ranks and t; is the number of 
tied ranks in the ith grouping. The Spearman's rank correlation with correction for 
tied ranks is now written as: 

2.22 

where T" and Ty are the correction factors for the variables .:(andy, respectively. 

Example 2.8 

Q: Compute the rank correlation for the variables N and PRTG of the Cork 
Stopper' dataset, using two new variables, NC and PRTGC, which rank Nand 
PRTG into 4 categories, according to their value falling into the 1 s\ 2nd, 3'd or 41h 

quartile intervals. 

A: The corresponding contingency table is shown in Table 2.1 0. Note that NC and 
PRTGC are ordinal variables since their ranks do indeed satisfy an order relation. 
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The rank correlation coefficient computed for this table is 0.715 which agrees 
fairly well with the 0.72 correlation computed for the corresponding continuous 
variables, as shown in Table 2.9. 

D 

Table 2.10. Contingency table obtained with SPSS of the NC, PRTGC variables 
(cork stopper dataset). 

PRTGC Total 
0 2 3 

NC 0 Count 25 9 4 39 
% ofTotal 16.7% 6.0% 2.7% .7% 26.0% 
Count 12 13 10 1 36 
%of Total 8.0% 8.7% 6.7% .7% 24.0% 

2 Count I 13 15 9 38 
%of Total .7% 8.7% 10.0% 6.0% 25.3% 

3 Count 1 1 9 26 37 
%of Total .7% .7% 6.0% 17.3% 24.7% 

Total Count 39 36 38 37 150 
% ofTotal 26.0% 24.0% 25.3% 24.7% 100.0% 

2.3.5.2 The Gamma Statistic 

Another measure of association for ordinal variables is based on a comparison of 
the values of both variables, -t and y, for all possible pairs of cases (x, y). Pairs of 
cases can be: 

- Concordant (in rank order): The values of both variables for one case are higher 
(or are both lower) than the corresponding values for the other case. For 
instance, in Table 2.10 (-t =NC; y = PRTGC), the pair {(0, 0), (2, 1)} is 
concordant. 

- Discordant (in rank order): The value of one variable for one case is higher than 
the corresponding value for the other case, and the direction is reversed for the 
other variable. For instance, in Table 2.1 0, the pair { (0, 2), (3, 1)} is discordant. 

- Tied (in rank order): The two cases have the same value on one or on both 
variables. For instance, in Table 2.1 0, the pair { ( 1, 2), (3, 2)} are tied. 

The following ymeasure of association (gamma coefficient) is defined: 

P( Concordant) - ?(Discordant) P( Concordant) - ?(Discordant) r= 2.23 
1- P(Tied) P( Concordant) + ?(Discordant) 

Let P and Q represent the total counts for the concordant and discordant cases, 
respectively. A point estimate of yis then: 
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P-Q 
G=-

P+Q' 
2.24 

with P and Q computed from the counts n if (of table cell ij), of a contingency table 
with r rows and c columns, as follows: 

2.25 

where the Nt is the sum of all counts below and to the right of the ijth cell, and 
the Nij is the sum of all counts below and to the left of the ijth cell. 

The gamma measure varies, as does the correlation coefficient, in the interval 
[-1, 1 ]. It will be 1 if all the frequencies lie in the main diagonal of the table (from 
the upper left comer to the lower right comer), as for all cases where there are no 
discordant contributions (see Figure 2.26a). It will be -1 if all the frequencies lie in 
the other diagonal of the table, and also for all cases where there are no concordant 
contributions (see Figure 2.26b). Finally, it will be zero when the concordant 
contributions balance the discordant ones. 

The G value for the example of Table 2.10 is 0.785 . We will see in Chapter 5 
the significance of the G statistic. 

There are other measures of association similar to the gamma coefficient that 
are applicable to ordinal data. For more details the reader can consult e.g. (Siegel 
S, Castellan Jr NJ, 1988). 

X X X X 

X X 

X X 

Figure 2.26. Examples of contingency table formats for: a) G = 1 ( Nij cells are 
shaded gray); b) G = -1 ( N t cells are shaded gray). 

Commands 2.9. STATISTICA, SPSS and MATLAB commands used to obtain 
measures of association for ordinal and nominal variables. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Basic Statistics/Table s; 
Tables and Banners; Options 

Analyze; Descriptive 
Statistics; Crosstabs 

corrcoef (x) (G not available) 

• 
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2.3.6 Measures of Association for Nominal Variables 

Assume we have a multivariate dataset whose variables are of nominal type and we 
intend to measure their level of association. In this case, the correlation coefficient 
approach cannot be applied, since covariance and standard deviations are not 
applicable to nominal data. We need another approach that uses the contingency 
table information in a similar way as when we computed the gamma coefficient for 
the ordinal data. 

The commands of STATISTICA and SPSS for measuring the association of 
nominal variables are the same as in Commands 2.9. Functions for nominal 
association measures are not predefined in MA TLAB and have to be programmed. 

2.3.6.1 The Phi Coefficient 

Let us first consider a bivariate dataset with nominal variables that only have two 
values (dichotomous variables), as in the case of the 2x2 contingency table shown 
in Table 2.11. 

In the case of a full association of both variables one would obtain a 100% 
frequency for the values along the main diagonal of the table, and 0% otherwise. 
Based on this observation, the following index of association, ¢J (phi coefficient), 
is defined: 

¢J = ad -be 

~(a+ b )(c+ d)( a+ c)(b +d) 
2.26 

Note that the denominator of ¢J will ensure a value in the interval [ -1, 1] as with 
the correlation coefficient, with + 1 representing a perfect positive association and 
-1 a perfect negative association. As a matter of fact the phi coefficient is a special 
case of the Pearson correlation. 

Table 2.11. A general cross table for the bivariate dichotomous case. 

a 

X2 c 

Total a+c 

Example 2.9 

Yz 

b 

d 

b+d 

Total 

a+b 

c+d 

a+b+c+d 

Q: Consider the 2x2 contingency table for the variables SEX and INIT of the 
Freshmen dataset, shown in Table 2.12. Compute their phi coefficient. 
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A: The computed value of phi using 2.26 is 0.15, suggesting a very low degree of 
association. The significance of the phi values will be discussed in Chapter 5. 

D 

Table 2.12. Cross table (obtained with SPSS) of variables SEX and INIT of the 
freshmen dataset. 

INIT Total 
yes no 

SEX male Count 91 5 96 
%of Total 69.5% 3.8% 73.3% 

female Count 30 5 35 
%of Total 22.9% 3.8% 26.7% 

Total Count 121 10 131 
% ofTotal 92.4% 7.6% 100.0% 

2.3.6.2 The Lambda Statistic 

Another useful measure of association, for multivariate nominal data, attempts to 
evaluate how well one of the variables predicts the outcome of the other variable. 
This measure is applicable to any nominal variables, either dichotomous or not. We 
will explain it using Table 2.4, by attempting to estimate the contribution of 
variable SEX in lowering the prediction error of Q4 ("liking to be initiated"). For 
that purpose, we first note that if nothing is known about the sex, the best 
prediction of the Q4 outcome is the "agree" category, the so-called modal category, 
with the highest frequency of occurrence (37.9%). In choosing this modal category, 
we expect to be in error 62.1% of the times. On the other hand, if we know the sex 
(i.e., we know the full table), we would choose as prediction outcome the "agree" 
category if it is a male (expecting then 73.5- 28 = 45.5% of errors), and the "fully 
agree" category if it is a female (expecting then 26.5 - 11.4 = 15.1% of errors). 

Let us denote: 

1. Pee = Percentage of errors using only the columns = I 00 - percentage of 
modal column category. 

11. Peer= Percentage of errors using also the rows = sum along the rows of (I 00 -
percentage of modal column category in each row). 

The A measure (Goodman and Kruskal lambda) of proportional reduction of 
error, when using the columns depending from the rows, is defined as: 

2.27 

Similarly, for the prediction of the rows depending from the columns, we have: 
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A =Per -Perc 
rc Per 

2.28 

The coefficient of mutual association (also called symmetric lambda) is a 
weighted average of both lambdas, defined as: 

A= average reduction in errors= (Pee -Pecr)+(Per -Perc). 
2.29 

average number of errors Pee+ Per 

The lambda measure always ranges between 0 and 1, with 0 meaning that the 
independent variable is of no help in predicting the dependent variable and I 
meaning that the independent variable perfectly specifies the categories of the 
dependent variable. 

Example 2.10 

Q: Compute the lambda statistics for Table 2.4. 

A: Using formula 2.27 we find Acr = 0.024, suggesting a non-helpful contribution 
of the sex in determining the outcome of Q4. We also find A,.c = 0 and A= 0.017. 
The significance of the lambda statistic will be discussed in Chapter 5. 

D 

2.3.6.3 The Kappa Statistic 

The kappa statistic is used to measure the degree of agreement for categorical 
variables. Consider the cross table shown in Figure 2.18 where the r rows are 
objects to be assigned to one of c categories (columns). Furthermore, assume that k 
judges assigned the objects to the categories, with n;i representing the number of 
judges that assigned object ito category j. 

The sums of the counts along the rows totals k. Let c1 denote the sum of the 
counts along the column j. If all the judges were in perfect agreement one would 
find a column filed in with k and the others with zeros, i.e., one of the cj would be 
rk and the others zero. The proportion of objects assigned to the jth category is: 

p1 =c1 l(rk). 

If the judges make their assignments at random, the expected proportion of 
agreement for each category is P7 and the total expected agreement for all 
categories is: 

c 

P(E)= LP~. 2.30 
J~l 

The extent of agreement, s;, concerning the ith object, is the proportion of the 
number of pairs for which there is agreement to the possible pairs of agreement: 
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s; = f(niJ);(k). 
j=l 2 2 

The total proportion of agreement is the average of these proportions across all 
objects: 

1 r 

P(A)=- Ls;. 
r i=I 

The K(kappa) statistic, based on the formulas 2.30 and 2.31, is defined as: 

K = _P_,_( A.!_) ----,P_,.( E....!..) 

1- P(E) 

2.31 

2.32 

If there is complete agreement among the judges, then K= 1 (P(A) = 1, 
P(E) = 0). If there is no agreement among the judges other than what would be 
expected by chance, then K= 0 (P(A) = P(E)). 

The kappa statistic can be computed with SPSS only when the values of the first 
variable match the values of the second variable. The kappa function 
implemented in MA TLAB, according to the previous formulas, is supplied in the 
book CD Tools. 

Table 2.13. Contingency table for theN, Sand P categories of the FHR dataset. 

Object# N s p Total 

1 3 0 4 

2 3 0 4 

3 3 0 4 

51 2 4 

Example 2.11 

Q: Consider the FHR dataset, which includes 51 foetal heart rate cases, classified 
by three human experts (E1C, E2C, E3C) and an automatic diagnostic system 
(SPC) into three categories: normal (0), suspect (1) and pathologic (2). Determine 
the degree of agreement among all4 classifiers (experts and automatic system). 

A: We use the N, S and P variables, which contain the data in the adequate 
contingency table format, shown in Table 2.13. For instance, object #1 was 
classified N by one of the classifiers (judges) and S by three of the classifiers. 
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Running the command kappa (x) in MATLAB, where xis the data matrix 
corresponding to the N-S-P columns of Table 2.13, we obtain K = 0.213, which 
suggests some agreement among all 4 classifiers. The significance of the kappa 
values will be discussed in Chapter 5. 

D 

Exercises 

2.1 Consider the "Team Work" evaluation scores ofthe Metal Firms' dataset: 
a) What type_of data is it? Does it make sense to use the mean as location measure of 

this data? 
b) Compute the median value of "Evaluation of Competence" of the same dataset, 

with and without the lowest score value. 

2.2 Does the median have the additive property of the mean (see A.6.1)? Explain why. 

2.3 Variable EF of the Infarct dataset contains "ejection fraction" values (proportion of 
ejected blood between diastole and systole) of the heart left ventricle, measured in a 
random sample of64 patients with some symptom of myocardial infarction. 
a) Determine the histogram of the data using an appropriate number of bins. 
b) Determine the corresponding frequency table and use it to estimate the proportion 

of patients that are expected to have an ejection fraction below 50%. 
c) Determine the mean, median and standard deviation of the data. 

2.4 Consider the Freshmen dataset used in Example 2.3. 
a) What type ofvariables are Course and Exam I? 
b) Determine the bar chart of Course. What category occurs most often? 
c) Determine the mean and median of Exam I and comment on the closeness of the 

values obtained. 
d) Based on the frequency table of Exam I, estimate the number of flunking students. 

2.5 Determine the histograms of variables LB, ASTV, MSTV, AL TV and MLTV of the 
CTG dataset using Sturges' rule for the number of bins. Compute the skewness and 
kurtosis of the variables and check the following statements: 
a) The distribution ofLB is well modelled by the normal distribution. 
b) The distribution of ASTV is symmetric, bimodal and flatter than the normal 

distribution. 
c) The distribution of ALTV is left skewed and more peaked than the normal 

distribution. 

2.6 Taking into account the values of the skewness and kurtosis computed for variables 
ASTV and AL TV in the previous Exercise, which distributions should be selected as 
candidates for modelling these variables (see Figure 2.24)? 

2.7 Consider the bacterial counts in three organs- the spleen, liver and lungs- included in 
the Cells dataset (datasheet CFU). Using box plots, compare the cell counts in the 
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three organs 2 weeks and 2 months after infection. Also, determine which organs have 
the lowest and highest spread of bacterial counts. 

2.8 The inter-quartile ranges of the bacterial counts in the spleen and in the liver after 2 
weeks have similar values. However, the range of the bacterial counts is much smaller 
in the spleen than in the liver. Explain what causes this discrepancy and comment on 
the value of the range as spread measure. 

2.9 Determine the overlaid scatter plot of the three types of clays (Clays 1 dataset), using 
variables Si02 and Alz03. Also, determine the correlation between both variables and 
comment on the results. 

2.10 The Moulds 1 dataset contains measurements of bottle bottoms performed by three 
methods. Determine the correlation matrix for the three methods before and after 
subtracting the nominal value of 34 mm and explain why the same correlation results 
are obtained. Also, express your judgement on the measurement methods taking into 
account their low correlation. 

2. II The Culture dataset contains percentages of budget assigned to cultural activities in 
several Portuguese boroughs randomly sampled from three regions, coded I, 2 and 3. 
Determine the correlations among the several cultural activities and consider them to be 
significant if they are higher than 0.4. Comment on the following statements: 
a) The high negative correlation between "Halls" and "Sport" is due to chance alone. 
b) Whenever there is a good investment in "Cine", there is also a good investment 

either in "Music" or in "Fine Arts". 
c) In the northern boroughs, a high investment in "Heritage" causes a low investment 

in "Sport". 

2.12 Consider the "Halls" variable ofthe Culture dataset: 
a) Determine the overall frequency table and histogram, starting at zero and with bin 

width 0.02. 
b) Determine the mean and median. Which of these statistics should be used as 

location measure and why? 

2.13 Determine the box plots of the Breast Tissue variables 10 through PERIM, for the 
6 classes of breast tissue. By visual inspection of the results, organise a table describing 
which class discriminations can be expected to be well accomplished by each variable. 

2.14 Consider the two variables MH ="neonatal mortality rate at home" and MI ="neonatal 
mortality rate at Health Centre" of the Neonatal dataset. Determine the histograms 
and compare both variables according to the skewness and kurtosis. 

2.15 Determine the scatter plot and correlation coefficient of the MH and Ml variables of the 
previous exercise. Comment on the results. 

2.16 Determine the histograms, skewness and kurtosis of the BPD, CP and AP variables of 
the Foetal Weight dataset. Which variable is better suited to normal modelling? 
Why? 
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2.17 Determine the correlation matrix of the BPD, CP and AP variables of the previous 
exercise. Comment on the results. 

2.18 Determine the correlation between variables 10 and HFS of the Breast Tissue 
dataset. Check with the scatter plot that the very low correlation of those two variables 
does not mean that there is no relation between them. Compute the new variable lOS = 

(10- 1235)2 and show that there is a significant correlation between this new variable 
and HFS. 

2.19 Perform the following statistical analyses on the Rocks 1 dataset: 
a) Determine the histograms, skewness and kurtosis of the variables and categorise 

them into the following categories: left asymmetric; right asymmetric; symmetric; 
symmetric and almost normal. 

b) Compute the correlation matrix for the mechanical test variables and comment on 
the high correlations between RMCS and RCSG and between AAPN and PAOA. 

c) Compute the correlation matrix for the chemical composition variables and 
determine which variables have higher positive and negative correlation with 
silica (Si02) and which variable has higher positive correlation with titanium 
oxide (Ti02). 

2.20 The student performance in a first-year university course on Programming can be partly 
explained by previous knowledge on such matter. In order to assess this statement, use 
the SCORE and PROG variables of the Programming dataset, where the first 
variable represents the final examination score on Programming (in [0, 20]) and the 
second variable categorises the previous knowledge. Using three SCORE categories 
- Poor, if SCORE<! 0, Fair if I 0 $SCORE< 15, and Good if SCORE~ 15 -, determine: 
a) The Spearman correlation between the two variables. 
b) The contingency table ofthe two variables. 
c) The gamma statistic. 

2.21 Show examples of 2x2 contingency tables for nominal data corresponding to ¢J = I, -I, 
0 and to A, Arc and A.,,= I and 0. 

2.22 Consider the classifications of foetal heart rate performed by the human expert 3 
(variable E3C) and by an automatic system (variable SPC) contained in the FHR 
dataset. 
a) Determine two new variables, E3CB and SPCB, which dichotomise the 

classifications in {Normal} vs. {Suspect, Pathologic}. 
b) Determine the 2x2 contingency table ofE3CB and SPCB. 
c) Determine appropriate association measures and assess whether knowing the 

automatic system classification helps predicting the human expert classification. 

2.23 Redo Example 2.9 and 2.10 for the variables Q I and Q4 and comment on the results 
obtained. 

2.24 Consider the leadership evaluation of metallurgic firms, included in the Metal 
Firms 1 dataset, performed by means of seven variables, from TW = "Team Work" 
through DC = "Dialogue with Collaborators". Compute the coefficient of agreement of 
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the seven variables, verifying that they do not agree in the assessment of leadership 
evaluation. 

2.25 Determine the contingency tables and degrees of association between variable TW = 

"Team Work" and all the other leadership evaluation variables of the Metal Firms' 

dataset. 

2.26 Determine the contingency table and degree of association between variable AB = 

"Previous knowledge of Hoole's Algebra" and BA = "Previous knowledge of binary 
arithmetic" of the Programming dataset. 



3 Estimating Data Parameters 

Making inferences about a population based upon a random sample is a major task 
in statistical analysis. Statistical inference comprehends two inter-related 
problems: parameter estimation and test of hypotheses. In this chapter, we describe 
the estimation of several distribution parameters, using sample estimates that were 
presented as descriptive statistics in the preceding chapter. Because these 
descriptive statistics are single values, determined by appropriate formulas, they 
are called point estimates. Appendix C contains an introductory survey on how 
such point estimators are derived and which desirable properties they should have. 
In this chapter, we also introduce the notion and methodology of interval 
estimation. In this and later chapters, we always assume that we are dealing with 
random samples. By definition, in a random sample x~, ... , Xm from a population 
with probability density function ff_x), the random variables associated with the 
sample values,-{!, ... ,~.are i.i.d., i.e., the random sample has a joint density given 
by: 

Therefore, we rule out sampling from a finite population without replacement 
since, then, the random variables-{!, ... , ~are not independent. 

Note, also, that in the applications, one must often carefully distinguish between 
target population and sampled population. For instance, sometimes in the 
newspaper one finds estimation results concerning the proportion of votes on 
political parties. These results are usually presented as estimates for the whole 
population of a given country. However, careful reading discloses that the sample 
(hopefully a random one) was drawn, using a telephone enquiry, from the 
population residing in certain provinces. Although the target population is the 
population of the whole country, any inference made is only legitimate for the 
sampled population, i.e., the population residing in those provinces, and that use 
telephones. 

3.1 Point Estimation and Interval Estimation 

Imagine that someone wanted to weigh a certain object using spring scales. The 
object has an unknown weight, OJ. The weight measurement, performed with the 
scales, has usually two sources of error: a calibration error, because of the spring's 
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loss of elasticity since the last calibration made at the factory, and exhibiting, 
therefore, a permanent deviation (bias) from the correct value; a random parallax 
error, corresponding to the evaluation of the gauge needle position, which can be 
considered normally distributed around the correct position (variance). The 
situation is depicted in Figure 3 .1. 

The weight measurement can be considered as a "bias +variance" situation. The 
bias, or systematic error, is a constant. The source of variance is a random error. 

OJ '-v----f w w 
bias 

Figure 3.1. Measurement of an unknown quantity OJ with a systematic error (bias) 
and a random error (variance d). One measurement instance is w. 

Figure 3.1 also shows one weight measurement instance, w. Imagine that we 
performed a large number of weight measurements and came out with the value of 
w . Then, the difference OJ - w measures the accuracy of the weighing device. On 
the other hand, the standard deviation, o; measures the precision of the weighing 
device. Accurate scales will, on average, yield a measured weight that is in close 
agreement with the true weight. High precision scales yield weight measurements 
with very small random errors. 

Let us now turn to the problem of estimating a data parameter, i.e., a quantity (} 
characterising the distribution function of the random variable ..\. describing the 
data. For that purpose, we assume that there is available a random sample x = 

[x1, x 2 , ••• , xnl' - our dataset in vector format-, and determine a value tn(x), using 
an appropriate function tn. This single value is a point estimate of 8. 

The estimate tn(x) is a value of a random variable, called point estimator or 
statistic, (} = tn(JO, where ~ denotes the n-dimensional random variable 
corresponding to the sampling process. Thus, tn(JO constitutes a sort of 
measurement device of 8. As with any measurement device, we want it to be 
simultaneously accurate and precise. In Appendix C, we introduce the topic of 
obtaining unbiased and consistent estimators. The unbiased property corresponds 
to the accuracy notion. The consistency corresponds to a growing precision for 
increasing sample sizes. 
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When estimating a data parameter the point estimate is usually insufficient. In 
fact, in all the cases that the point estimator is characterised by a probability 
density function, the probability that the point estimate actually equals the true 
value of the parameter is zero. Using the spring scales analogy, we see that no 
matter how accurate and precise the scales are, the probability of obtaining the 
exact weight is zero. We need, therefore, to attach some measure of the possible 
error of the estimate to the point estimate. For that purpose, we attempt to 
determine an interval, called confidence interval, containing the true parameter 
value (} with a given probability 1- a, the so-called confidence level: 

3.1 

where a is a confidence risk. 
The endpoints of the interval (also known as confidence limits), depend on the 

available sample and are determined taking into account the sampling distribution: 

We have assumed that the interval endpoints are finite, the so-called two-sided 
(or two-tail) interval estimation. Sometimes we will also use one-sided (or one
tail) interval estimation by setting 81 (x) = -oo or 82 (x) = +=. 

Let us now apply these ideas to the spring scales example. Imagine that, as 
happens with unbiased point estimators, there were no systematic error; therefore, 
the measurement error is distributed as No.a. with known lJ. Thus, the distribution 
function of an unknown weight, OJ, is Fw(w) = N w,u. We are now able to 
determine the two-sided 95% confidence interval of OJ, given a measurement w, by 
first noticing, from the normal distribution tables, that the percentile 97.5% (i.e. 
100-a12, with a in percentage) corresponds to 1.96o: 

Thus: 

Fw(w) = 0.975 => w0.975 = 1.96a. 3.2 

Given the symmetry of the normal distribution, we have: 

P(w< OJ+1.96a) = 0.975 => P(m-1.96a < w< aJ+1.96a) = 0.95, 

leading to the following confidence interval: 

m-1.96a < w <OJ+ 1.96a. 3.3 

Hence, we expect that in a long run of measurements, 95% will be inside the OJ 

± 1.96a interval, as shown in Figure 3.2a. 
Note that the inequalities 3.3 can also be written as: 

w-1.96a <OJ< w+ 1.96a, 3.4 
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allowing us to define the 95% confidence interval for the unknown weight OJ given 
a particular measurement w. As shown in Figure 3.2b, the equivalent interpretation 
is that in a long run of measurements, 95% of the w ± 1.960" intervals will cover 
the true and unknown weight OJ and the rest, 5%, will miss it. 

OJ.~!..~~- - - - -~ -: ~ 
• I I I I I I I 
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a #I #2 #3 #4 #5 #6 #7 #8 #9 # 10 0 # 1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Figure 3.2. Two interpretations of the confidence interval: a) A certain percentage 
of the cases is inside the OJ± 1.960" interval; b) A certain percentage of the w ± 
1.960" intervals contains the true value OJ. 

Note that when we say that the 95% confidence interval of OJ is w ± 1.96o; it 
does not mean that "the probability that OJ falls in the confidence interval is 95%". 
This is a misleading formulation since OJ is not a random variable but an unknown 
constant. In fact, it is the confidence interval endpoints that are random variables. 

For an arbitrary risk, a, we compute from the standardised normal distribution 
the 1- a/2 percentile: 

N 0,1(z)=1 - a/2 
I 

=> 2 1- a / 2 · 

We now use this percentile in order to establish the confidence interval: 

3.5 

3.6 

The factor z 1_a 12 0" is designated as tolerance, £, and is often expressed as a 
percentage of the measured value, w, i.e.,£ = 100 z 1_a12a I w %. 

In Chapter I , section 1.5, we introduced the notions of confidence level and 
interval estimates, in order to illustrate the special nature of statistical statements 
and to advise taking precautions when interpreting them. We will now proceed to 

It is customary to denote the values obtained with the standardised normal distribution by the letter z, 
the so called z scores. 
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apply these concepts to several descriptive statistics that were presented in the 
previous chapter. 

3.2 Estimating a Mean 

We now estimate the mean of a random variable -'"-using the sample mean, instead 
of a single measurement as in the previous section. Let x~> .. ·.Xn be a random sample 
from a population, described by the random variable x, with mean 11 and standard 
deviation a. Let x be the arithmetic mean: 

3.7 

Therefore, the sampling distribution of .( , taking into account the properties of 

a sum of i.i .d. random variables (see section A.8.4), has the same mean as .{and a 
standard deviation given by: 

3.8 

The standard deviation of .( is known as standard error. 

2.0 n O,at-Jn 

n =25 
1.5 

1.0 

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Figure 3.3. Normal distribution of the arithmetic mean for several values of n and 
with 11 = 0. 
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Assuming that .;x: is normally distributed, i.e., .;x: ~ N Jl,O" , then ,t is also 
normally distributed with mean f1 and standard deviation CJ :r: . The confidence 
interval, following the procedure explained in the previous section, is now 
computed as: 

3.9 

As shown in Figure 3.3, with increasing n, the distribution of,t gets more 
peaked; therefore, the confidence intervals decrease with .J;; (the precision of our 
estimates of the mean increase). 

In normal practice one does not know the exact value of a; using the point 
estimate s instead, previously mentioned in 2.3.2. In this case, the sampling 
distribution is not the normal distribution any more. However, taking into account 
Property 3 described in section B.2.8, the following random variable: 

has a Student's t distribution with n- 1 degrees of freedom. We now compute the 
l-a12 percentile for the Student's t distribution with n- 1 degrees of freedom: 

Tn_1(t)=1-al2 => tn-!,!-a/ 2 , 3.10 

and use this percentile in order to establish the confidence interval: 

X-f.l 
- tn-!l-a 12 < ----r < tn-!!-a 12' 

' slvn ' 
3.11 

or, equivalently: 

X -t n-l,I-al2s I .J;; < f1 <X+ t n-l,!-a/2s I .J;;. 3.12 

Since the Student's t distribution is less peaked than the normal distribution, one 
obtains larger intervals when using formula 3.12 than when using formula 3.9, 
reflecting the added uncertainty about the true value of the standard deviation. 

When applying these results one must note that: 

For large n, the Central Limit theorem (see sections A.8.4 and A.8.5) legitimises 
the assumption of normal distribution of ,t even when .;x: is not normally 
distributed (under very general conditions). 

- For large n, the Student's t distribution does not deviate significantly from the 
normal distribution, and one can then use, for unknown a; the same percentiles 
derived from the normal distribution, as one would use in the case of known CJ. 
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There are several values of n in the literature that are considered "large", ranging 
from 20 to 30. In what concerns the normality assumption of .K:, the value n = 20 is 
usually enough. As to the deviation between zt-an and t 1_m2 it is about 5% for n = 25 
and a= 0.05. In the sequel, we will use the threshold n = 25 to distinguish small 
samples from large samples. Therefore, when estimating a mean we adopt the 
following procedure: 

1. Large sample (n ;::: 25): Use formulas 3.9 (substituting 0' by s) or 3.12. No 
normality assumption of~ is needed. 

2. Small sample (n < 25) and population distribution normal: Use formula 3.12. 

Example 3.1 

Q: Consider the data relative to the variable PRT for the first class (CLASS=!) of 
the Cork Stoppers' dataset. Compute the 95% confidence interval of its 
mean. 

A: There are n = 50 cases. The sample mean and sample standard deviation are 
:X= 365 and s = 110, respectively. We apply the large sample estimate formula 3.9, 
obtaining: 

:X - 1.96 s I J;; < 11 <:X + 1.96 s I J;; => 335 < 11 < 396. 

Notice that this confidence interval corresponds to a tolerance of (365 - 335) I 
365"" 8%. 

D 

Example 3.2 

Q: Consider the subset of the previous PRT data constituted by the first n = 20 
cases. Compute the 95% confidence interval of its mean. 

A: The sample mean and sample standard deviation are now :X= 351 and s = 83, 
respectively. Since n = 20, we apply the small sample estimate formula 3.12, with 
ti9,o.97s= 2.09, obtaining: 

:X -2.09slf;; <11 <:X +2.09slf;; => 312<11 <390. 

If the 95% confidence interval were computed with the z percentile, one would 
obtain a narrower interval: [315, 387]. 

D 

Example 3.3 

Q: How many cases should one have of the PRT data in order to be able to 
establish a 95% confidence interval for its mean, with a tolerance of 3%? 
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A: Since the tolerance is smaller than the one previously obtained in Example 3 .I, 
we are clearly in a large sample situation. We have: 

3.13 

Using the previous sample mean and sample standard deviation and with 
zo.975 = 1.96, one obtains: 

n ~ 558. 

Note the growth of n with the square of 1/c. 
0 

The solutions of all the previous examples can be easily computed using 
Tools. xls (see Appendix F). 

An often used tool in Statistical Quality Control is the control chart for the 
sample mean, the so-called x-bar chart. The x-bar chart displays means, e.g. of 
measurements performed on equal-sized samples of manufactured items, randomly 
drawn along the time. The chart also shows the centre line (CL), corresponding to 
the nominal value or the grand mean in a large sequence of samples, and lines of 
the upper control limit (UCL) and lower control limit (LCL), computed as a ks 
deviation from the mean, usually with k = 3. Items above UCL or below LCL are 
said to be out of control. Sometimes, lines corresponding to a smaller deviation of 
the grand mean, e.g. with k = 2, are also drawn, corresponding to the so-called 
upper warning line (UWL) and lower warning line (L WL ). 
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Figure 3.4. Control chart ofthe sample mean obtained with MATLAB for variable 
ART of the first cork stopper class. 
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Example 3.4 

Q: Consider the first 48 measurements of total area of defects, for the first class of 
the Cork Stoppers dataset, constituting 16 samples of 3 cork stoppers 
randomly drawn at successive times. Draw the respective x-bar chart with 3-sigma 
control lines and 2-sigma warning lines. 

A: Using MATLAB command xbarplot (see Commands 3.1) the x-bar chart 
shown in Figure 3.4 was obtained. We see that a warning should be issued for 
sample #1 and sample #12. No sample is out of control. 

D 

Commands 3.1. STATISTICA, SPSS and MATLAB commands used to obtain 
confidence intervals of the mean. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Descriptive Statistics; Conf. 
limits for means 

Analyze; Descriptive Statistics; Explore; 
Statistics; Confidence interval for mean 

[m s mi si]=normfit(x,delta); 
xbarplot(data,conf,specs) 

STATISTICA, SPSS and MATLAB compute confidence intervals for the mean 
using Student's t distribution, even in the case of large samples. 

The MA TLAB normf it command computes the mean, m, standard deviation, 
s, and respective confidence intervals, mi and si, of a data vector x, using 
confidence level delta (95%, by default). For instance, assuming that the PRT 
data was stored in vector prt, Example 3.2 would be solved as: 

» prt20=prt(1:20); 
» [m s mi si]=normfit(prt20) 

m 
350.6000 

s 
82.7071 

mi = 
311.8919 
389.3081 

si = 
62.8979 

120.7996 

Note that MATLAB has confidence interval commands for specific 
distributions, namely beta, binomial, exponential, gamma, Poisson and uniform. 
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The MATLAB xbarplot command plots a control chart of the sample mean 
for the successive rows of data. Parameter conf specifies the percentile for the 
control limits (0.9973 for 3-sigma); parameter specs is a vector containing the 
values of extra specification lines. Figure 3.4 was obtained with: 

» y=[x(1:3:48) x(2:3:48) x(3:3 : 48)]; 
» xbarplot (y I 0. 9973 I [89 185]) 

Commands 3.2. ST A TISTICA and SPSS commands for case selection. 

STATISTICA Tools; Selection Conditions; Edit 

SPSS Data; Weight cases 

5*1 
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Figure 3.5. Selection of cases: a) Partial view of ST ATISTICA "Case Selection 
Conditions" window; b) SPSS "Select Cases" window. 

In order to solve Examples 3.1 and 3.2 with ST ATISTICA or SPSS, one needs to 
select the values of PRT for CLASS= I and, inside this class, to select the first 20 
cases. Selection of cases is an often-needed operation in statistical analysis. 
ST A TISTICA and SPSS make available specific windows where the user can fill 
in the needed conditions for case selection (see e.g. Figure 3.5a corresponding to 
Example 3.2). Selection can be accomplished by means of logical conditions 
applied to the variables and/or the cases, as well as through the use of especially 
defined filter variables. 
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There is also the possibility of selecting random subsets of cases, as shown in 
Figures 3.5a (Subset/Random Sampling tab) and 3.5b (Random sample 
of cases option). 

• 

3.3 Estimating a Proportion 

Imagine that one wished to estimate the probability of occurrence, p, of a "success" 
event in a series of n Bernoulli trials. A Bernoulli trial is a dichotomous outcome 
experiment (see B.l.l). Let k be the number of occurrences of the success event. 
Then, the unbiased and consistent point estimate of p is (see Appendix C): 

' k p=-
n 

For instance, if there are k = 5 successes in n = 15 trials, the point estimate of p 
(estimation of a proportion) is p = 0.33. Let us now construct an interval 
estimation for p. Remember that the sampling distribution of the number of 
"successes" is the binomial distribution (see B.l.5). Given the discreteness of the 
binomial distribution, it may be impossible to find an interval which has exactly 
the desired confidence level. It is possible, however, to choose an interval which 
covers p with probability at least 1- a. 

Table 3.1. Cumulative binomial probabilities for n = 15,p = 0.33. 

k 0 2 3 4 5 6 7 8 9 10 

B(k) 0.002 0.021 0.083 0.217 0.415 0.629 0.805 0.916 0.971 0.992 0.998 

Consider the cumulative binomial probabilities for n = 15,p = 0.33, as shown in 
Table 3.1. Using the values of this table, we can compute the following 
probabilities for intervals centred at k = 5: 

P(4 ~ k ~ 6) = B(6)- B(3) = 0.59 
P(3 ~ k ~ 7) = B(7)- B(2) = 0.83 
P(2 ~ k~ 8) = B(8)- B(l) = 0.95 
P(l ~ k ~ 9) = B(9)- B(O) = 0.99 

Therefore, a 95% confidence interval corresponds to: 
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2 8 
2~k~8 ~ -~p~- ~ 0.13~p~0.53. 

15 15 

This is too large an interval to be useful. This example shows the inherent high 
degree of uncertainty when performing an interval estimation of a proportion with 
small n. For large n (say n > 50), we use the normal approximation to the binomial 
distribution as described in section A.7.3. Therefore, the sampling distribution of 
p is modelled as N11,a with: 

f1 = p; a= J¥ (q =p-I; see A.7.3). 3.14 

Thus, the large sample confidence interval of a proportion is: 

p-z1_a 12 ~pqln <p<p+z1_a 12 ~pqln. 3.15 

This is the formula already alluded to in Chapter 1, when describing the 
"uncertainties" about the estimation of a proportion. Note that when applying 
formula 3.15, one usually substitutes the true standard deviation by its point 
estimate, i.e., computing: 

p-zl-al2~pq In< p < p+zl-al2~pq In. 3.16 

The deviation of this formula from the exact formula is negligible for large n 
(see e.g. Spiegel MR, Schiller J, Srinivasan RA, 2000, for details). 

Example3.5 

Q: Consider, for the Freshmen dataset, the estimation of the proportion of 
freshmen that are displaced from their home (variable DISPL). Compute the 95% 
confidence interval of this proportion. 

A: There are n = 132 cases, 37 of which are displaced, i.e., p = 0.28. Applying 
formula 3.15, we have: 

p- I.96~pq In <p < p + I.96~pq In ~ 0.20 <p < 0.36. 

Note that this confidence interval is quite large. The following example will 
give some hint as to when we start obtaining reasonably useful confidence 
intervals. 

D 

Example3.6 

Q: Consider the interval estimation of a proportion in the same conditions as the 
previous example, i.e., with estimated proportion p = 0.28 and a= 5%. How large 
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should the sample size be for the confidence interval endpoints deviating less than 
£=2%? 

A: In general, we must apply the following condition: 

3.17 

In the present case, we must have n > 1628. As with the estimation of a mean, n 
grows with the square of 1/£. 

D 

Note that for a 95% confidence level, we can establish the following 
approximate interval limits: 

since the z percentile is approximately 2 and the worst case value of the standard 
deviation corresponds top = Y2 . 

Also, note that if we decrease the tolerance while maintaining n, the confidence 
level decreases as already mentioned in Chapter I and shown in Figure 1.6. 

Confidence intervals for proportions, and lower bounds on n achieving a desired 
deviation in proportion estimation, can be computed with Tools. xls. 

Interval estimation of a proportion can be carried on with STATISTICA, SPSS 
and MA TLAB in the same way as we did with means. The only preliminary step is 
to convert the variable being analysed into a Bernoulli type variable, i.e., a binary 
variable with 1 coding the "success" event, and 0 the "failure" event. As a matter of 
fact, a dataset x 1, ... , Xn, with k successes, represented as a sequence of values of 
Bernoulli random variables (therefore, with k ones and n - k zeros), has the 
following sample mean and sample variance: 

~n ( ')2 , o , 
L...i~t xi - P np- - 2kjJ + k n ( , , 2 ) , , 

v = = = -- p- p "' pq . 
n-1 n-1 n-1 

In Example 3.5, variable DISPL with values 1 for "Yes" and 2 for "No" is 
converted into a Bernoulli type variable, DISPLB, e.g. by using the formula 
DISPLB = 2 - DISPL. Now, the "success" event ("Yes") is coded 1, and the 
complement is coded 0. In STATISTICA and SPSS we can also use "if'' constructs 
to build the Bernoulli variables. This is especially useful if one wants to create 
Bernoulli variables from continuous type variables. STA TISTICA and SPSS also 
have a Rank command that can be useful for the purpose of creating Bernoulli 
variables. 
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3.4 Estimating a Variance 

The point estimate of a variance was presented in section 2.3.2. This estimate is 
also discussed in some detail in Appendix C. We will address the problem of 
establishing a confidence interval for the variance only in the case that the 
population distribution follows a normal law. Then, the sampling distribution of 
the variance follows a chi-square law, namely (see Property 4 of section B.2.7): 

(n-l)v 2 
--2-~Zn-1 

() 

3.18 

The chi-square distribution is asymmetrical; therefore, in order to establish a 
two-sided confidence interval, we have to use two different values for the lower 
and upper percentiles. For the 95% confidence interval, we have: 

2 (n-l)v 2 
% n-1,0.025 ::;; --2- ::;; % n-1,0.975 • 

() 

3.19 

where zJj,a means the a percentile of the chi-square distribution with df degrees 
of freedom. Therefore: 

(~-l)v :s;u 2 ::;; (~-l)v 

% n-1,0.975 % n-1,0.025 

3.20 

Example 3.7 

Q: Consider the distribution of the average perimeter of defects, variable PRM, of 
class 2 in the Cork Stoppers' dataset. Compute the 95% confidence interval 
of its standard deviation. 

A: The assumption of normality for the PRM variable is acceptable, as will be 
explained in Chapter 5. There are, in class 2, n = 50 cases with sample standard 
variance v = 0.7168. The chi-square percentiles are: 

zJ9 o o25 = 31.56; zJ9 o 975 = 10.22. 

Therefore: 

(n-l)v 2 (n-l)v 2 ---::;; () ::;; --- => 0.50::;; () ::;; 1.11 => 0.71::;; ()::;; 1.06. 
70.22 31.56 

D 

The confidence intervals for the variance, as well as for the variance ratio, to be 
discussed, are computed by STATISTICA and SPSS as part of hypothesis tests 
presented in the following chapter. They can be computed, however, either using 
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Tools .xls or, in the case of the variance alone, using the MATLAB command 
normf it mentioned in section 3.2. 

Notice that when "manually" computing confidence intervals or, generally, in 
any other statistical analyses, it may often be helpful to use tables of the 
distributions (see Appendix D) or use the "Probability Calculator" capabilities of 
STATISTICA, SPSS, and MATLAB (as well as of EXCEL). 

Commands 3.3 ST A TISTICA, SPSS and MATLAB commands used to obtain 
probabilities and percentiles of distributions. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Basic Statistics/Tables; 
Probability calculator; Distributions 

Transform; Compute (CDF and IDF functions) 

binomcdf I normcdf chi2cdf fcdf 
binominv I norminv chi2inv finv 
(and other functions) 

3.5 Estimating a Variance Ratio 

• 

In statistical tests of hypotheses, concerning more than one distribution, one often 
needs to compare the respective distribution variances. We will now present the 
topic of estimating a confidence interval for the ratio of two variances, o-12 and o-2 2 , 

based on sample variances, v1 and v2, computed on datasets of size n1 and n2, 

respectively. We assume normal distributions for the two populations from where 
the data samples were obtained. For that purpose, we use the sampling distribution 
ofthe ratio: 

which has the 
Thus, the 

computed as: 

3.21 

Fn1 ~l,nri distribution as mentioned in the section 8.2.9 (Property 6). 
l-a two-sided confidence interval of the variance ratio can be 

3.22 

where we dropped the mention of the degrees of freedom from the F percentiles in 
order to simplify notation. Note that due to the asymmetry of the F distribution, 
one needs to compute two different percentiles in two-sided interval estimation. 
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The confidence intervals for the variance ratio are computed by STA TISTICA 
and SPSS as part of hypothesis tests presented in the following chapter. 

§ 
0 
0 z 

CLASS: 1 CLASS: 2 

Figure 3.6. Histograms obtained with ST ATISTICA of the variable ASTV 
(percentage of abnormal beat-to-beat variability), for the first two classes of the 
cardiotocographic data, with superimposed normal fit. 

Example 3.8 

Q: Consider the distribution of variable ASTV (percentage of abnormal beat-to
beat variability), for the first two classes of the cardiotocographic data. (CTG) The 
respective dataset histograms are shown in Figure 3.5. Class 1 corresponds to 
"calm sleep" and class 2 to "rapid-eye-movement sleep". The assumption of 
normality for both distributions of ASTV is acceptable (to be discussed in chapter 
5). Determine and interpret the 95% one-sided confidence interval, [r, oo[, of the 
ASTV standard deviation ratio for the two classes. 

A: There are n1 = 384 cases of class 1, and n2 = 579 cases of class 2, with sample 
standard deviations s 1 = 15.14 and s2 = 13.58, respectively. The 95% F percentile, 
computed by any of the means explained in section 3.4, is: 

FJsJ,s7s,o.9s = 1.164. 

Therefore: 

sl O'l O'I 
r===== ~- => -~ 1.03. 
~ F3s3,s7s,o.9s s 2 0' 2 0' 2 
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Thus, with 95% confidence level, the standard deviation of class I is higher than 
the standard deviation of class 2, by at least 3%. 

D 

When using F percentiles the following results can be useful: 

1. Fdh ,dJ,,i-a = 1 I Fdf, ,df2 ,a . For instance, if in Example 3.8 we wished to compute 
a 95% one-sided confidence interval, [0, r], for 02la" we would then have to 
compute Fs78,383,o.os = 1 I F383,578,0.95 = 0.859. 

ii. FdJ,~,a = Z~t.a I df. Note that, in formula 3.21, with n2 ~ oo the sample 
variance v2 converges to the true variance, s22, yielding, therefore, the single
variance situation described by the chi-square distribution. In this sense the chi
square distribution can be viewed as a limiting case of the F distribution. 

Exercises 

3.1 Consider the l-a1 and l-a2 confidence intervals of a given statistic with l-a1 > l-a2• 

Why is the confidence interval for l-a1 always larger than or equal to the interval for 
1-az? 

3.2 Consider the measurements of bottle bottom of the Moulds dataset. Determine the 
95% confidence interval of the mean and the x-charts of the three variables RC, CG 
and EG. Taking into account the x-chart, discuss whether the 95% confidence interval 
ofthe RC mean can be considered a reliable estimate. 

3.3 Compute the 95% confidence interval of the mean and of the standard deviation of the 
RC variable of the previous exercise, for the samples constituted by the first 50 cases 
and by the last 50 cases. Comment on the results. 

3.4 Consider the ASTV and AL TV variables of the CTG dataset. Assume that only a IS
case random sample is available for these variables. Can one expect to obtain reliable 
estimates of the 95% confidence interval of the mean of these variables using the 
Student t distribution applied to those samples? Why? (Observe the variable 
histograms.) 

3.5 Obtain a 15-case random sample for the ALTV variable ofthe previous exercise (e.g. 
with the Select Cases of SPSS Data option or with the Subset/Random 
Sampling of STSTISTICA Data option). Compute the respective 95% confidence 
interval assuming a normal and an exponential fit to the data and compare the results. 
The exponential fit can be performed in MATLAB with function expf it. 

3.6 Compute the 90% confidence interval of the ASTV and AL TV variables of the 
previous Exercise 3.4 for 10 random samples of 20 cases and determine how many 
times the confidence interval contains the mean value determined for the whole 2126 
case set. In a long run of these 20-case experiments, which variable is expected to yield 
a higher percentage of intervals containing the whole-set mean? 
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3.7 Compute the mean with the 95% confidence interval of variable ART of the Cork 
Stoppers dataset. Perform the same calculations on variable LOGART = ln(ART). 
Apply the Gauss' approximation formula of A.6.1 in order to compare the results. 
Which point estimates and confidence intervals are more reliable? Why? 

3.8 Consider the PERIM variable of the Breast Tissue dataset. What is the tolerance 
of the PERIM mean with 95% confidence for the carcinoma class? How many cases of 
the carcinoma class should we have available in order to reduce that tolerance to 2%? 

3.9 Imagine that when analysing the TW="Team Work" variable of the Metal Firms 
dataset, someone stated that the team-work is at least good (score 4) for 3/8 = 37.5% of 
the metallurgic firms. Does this statement deserve any credit? (Compute the 95% 
confidence interval of this estimate.) 

3.10 Consider the Culture dataset. Determine the 95% confidence interval of the 
proportion of boroughs spending more than 20% of the budget for musical activities. 

3.11 Using the CTG dataset, determine the percentage of foetal heart rate cases that have 
abnormal short term variability of the heart rate more than 50% of the time, during 
calm sleep (CLASS A). Also, determine the 95% confidence interval of that percentage 
and how many cases should be available in order to obtain an interval estimate with I% 
tolerance. 

3.12 A proportion p was estimated in 225 cases. What are the approximate worst-case 95% 
confidence interval limits of the proportion? 

3.13 Redo Exercises 3.2 and 3.3 for the 95% confidence interval of the standard deviation. 

3.14 Consider the CTG dataset. Compute the 95% and 99% confidence intervals of the 
standard deviation of the ASTV variable. Are the confidence interval limits equally 
away from the sample mean? Why? 

3.15 Consider the computation of the confidence interval for the standard deviation 
performed in Example 3.6. How many cases should one have available in order to 
obtain confidence interval limits deviating less than 5% of the point estimate? 

3.16 In order to represent the area values of the cork defects in a convenient measurement 
unit, the ART values of the Cork Stoppers dataset have been multiplied by 5 and 
stored into variable ARTS. Using the point estimates and 95% confidence intervals of 
the mean and the standard deviation of ART, determine the respective statistics for 
ARTS. 

3.17 Consider the ART, ARM and N variables of the Cork Stoppers dataset. Since ARM = 
ART IN, why isn't the point estimate of the ART mean equal to the ratio of the point 
estimates of the ART and N means? (See properties of the mean in A.6.1.) 

3.18 Redo Example 3.7 for the classes C ="calm vigilance" and D ="active vigilance" of 
the CTG dataset. 
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In statistical data analysis an important objective is the capability of making 
decisions about population distributions and statistics based on samples. In order to 
make such decisions, a hypothesis is formulated, e.g. "is one manufacture method 
better than another?", and tested using an appropriate methodology. Tests of 
hypotheses are an essential item in many scientific studies. In the present chapter, 
we describe the most fundamental tests of hypotheses, assuming that the random 
variable distributions are known - the so-called parametric tests. We will first, 
however, present a few important notions in section 4.1 that apply to parametric 
and to non-parametric tests alike. 

4.1 Hypothesis Test Procedure 

Any hypothesis test procedure starts with the formulation of an interesting 
hypothesis concerning the distribution of a certain random variable in the 
population. As a result of the test, we obtain a decision rule, which allows us to 
either reject or accept the hypothesis with a certain probability of error, referred to 
as the level of significance of the test. 

In order to illustrate the basic steps of the test procedure, let us consider the 
following example. Two methods of manufacturing a special type of drill, 
respectively A and B, are characterised by the following average lifetime (in 
continuous work without failure): f.lA = 1100 hours and f.ls = 1300 hours. Both 
methods have an equal standard deviation of the lifetime, (J= 270 hours. A new 
manufacturer of the same type of drills claims that his brand is of a quality 
identical to the best one, B, and with lower manufacture costs. In order to assess 
this claim, a sample of 12 drills of the new brand were tested and yielded an 
average lifetime of x = 1260 hours. The interesting hypothesis to be analysed is 
that there is no difference between the new brand and the old brand B. We call it 
the null hypothesis and represent it by H0. Denoting by f.1 the average lifetime of 
the new brand, we then formalise the test as: 

Ho: f.l =f.LB =1300. 
HI: J.l=f.LA=llOO. 

Hypothesis H1 is a so-called alternative hypothesis. There can be many 
alternative hypotheses, corresponding to f.1 "l:-f.18 . However, for the time being, we 
assume that f.1 =f.LA is the only interesting alternative hypothesis. We also assume 
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that the lifetime of the drills, ~ for all the brands, follows a normal distribution 
with the same standard deviation'. We know, therefore, that the sampling 
distribution of.{ is also normal with the following standard error (see sections 3.2 
and A.8.4): 

The sampling distributions (pdfs) corresponding to both hypotheses are shown 
in Figure 4.1. We seek a procedure to decide whether the 12-drill-sample provides 
statistically significant evidence leading to the acceptance of the null hypothesis 
H0• Given the symmetry of the distributions, a "common sense" approach would 
lead us to establish a decision threshold, X a, halfway between f.1A and f.ls, i.e. 
:Xa=1200 hours, and decide H0 if :X > l200, decide H1 if :X < I200, and arbitrarily if 
:X=I200. 

Figure 4.1. Sampling distribution (pdf) of .{ for the null and the alternative 
hypotheses. 

Let us consider the four possible situations according to the truth of the null 
hypothesis and the conclusion drawn from the test, as shown in Figure 4.2. For the 
decision threshold X a= 1200 shown in Figure 4.1, we then have: 

a= f3 = P(z :s; (1200-1300) / 77.94) = N0,1 (-1.283) = 0.10, 

where z is normally distributed. Values of a normal random variable standardised 
by subtracting the mean and dividing by the standard deviation are called z-scores. 
In this case, the test errors a and f3 are evaluated using the z-score, -1.283. In 

Strictly speaking the lifetime of the drills cannot follow a normal distribution, since.{> 0. 
Also, as discussed in chapter 9, lifetime distributions are usually skewed. We assume, 
however, in this example, the distribution to be well approximated by the normal law. 
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hypothesis tests, one is usually interested in that the probability of wrongly 
rejecting the null hypothesis is low; one wants to set a low value for the following 
Type I Error: 

Type I Error: a= P(H0 is true and, based on the test, we reject H0) . 

This is the so-called level of significance of the test. The complement, 1-a, is 
the confidence level. A popular value for the level of significance that we will use 
throughout the book is a= 0.05, often given in percentage a= 5%. Knowing the a 
percentile of the standard normal distribution, one can easily determine the 
decision threshold for this level of significance: 

P(z:-::;0.05)=-1.64 => Xa =1300-1.64x77.94=1172.2. 

Decision 

Accept 

Ho 

Correct 
Decision 

Type II Error 

p 

Accept 

HI 
Type I Error 

a 

Correct 
Decision 

Figure 4.2. Types of error in hypothesis testing according to the reality and the 
decision drawn from the test. 

accept H1 

critical region+----

Figure 4.3. The critical region for a significance level of a =5%. 
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Figure 4.3 shows the situation for this new decision threshold, which delimits 
the so-called critical region of the test, the region corresponding to a Type I Error. 
Since the computed sample mean for the new brand of drills, x = 1260, falls in the 
non-critical region, we accept the null hypothesis at that level of significance ( 5% ). 
In adopting this procedure, we expect that using it in a long run of sample-based 
tests, under identical conditions, we would be erroneously rejecting Ho about 5% of 
the times. 

In general, let us denote by C the critical region. If, as it happens in Figure 4.1 
or 4.3, x E: C, we may say that "we accept the null hypothesis at that level of 
significance"; otherwise, we reject it. 

Notice, however, that there is a non-null probability that a value as large as 
x could be obtained by type A drills, as expressed by the non-null f3. Also, when 

we consider a wider range of alternative hypotheses, for instance 11 <j18 , there is 
always a possibility that a brand of drills with mean lifetime inferior to /ls is, 
however, sufficiently close to yield with high probability sample means falling in 
the non-critical region. For these reasons, it is advisable to adopt a conservative 
attitude stating that "there is no evidence to reject the null hypothesis at the a level 
of significance". 

Any test procedure assessing whether or not H0 should be rejected can be 
summarised as follows: 

1. Choose a suitable test statistic t,(x), dependent on the n-dimensional sample 
x = [x1, x2 , ... , xnl', considered a value of a random variable, 8= t,(X), where~ 
denotes the n-dimensional random variable associated to the sampling process. 

2. Choose a level of significance a and use it together with the sampling 
distribution of Bin order to determine the critical region C for H0• 

3. Test decision: If t,(x)E C, then reject H0, otherwise do not reject H0. In the first 
case, the test is said to be significant (at level a); in the second case, the test is 
non-significant. 

Frequently, instead of determining the critical region, we may determine the 
probability of obtaining a deviation of the statistical value corresponding to H0 at 
least as large as the observed one, i.e., p = P( (} ~ t,(x)) or p = P( (} ~ t,(x)). The 
probability p is the so-called observed level of significance. The value of p is then 
compared with a pre-set level of significance. This is the procedure used with 
STATISTICA and SPSS. For the previous example, the test statistic is: 

( ) mean(x)-1300 x-1300 
t12 X = = , 

(Y~ (Y~ 

which, given the normality of -'"' has a sampling distribution identical to the 
standard normal distribution, i.e., 8= z ~ N0,1• A deviation at least as large as the 
observed one in the left tail of the distribution has the observed significance: 
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p = P(z :S: (x- f..la )I a~)= P(z :s: (1260-1300)/77.94) = 0.304. 

If we are basing our conclusions on a 5% level of significance, and since 
p > 0.05, we then have no evidence to reject the null hypothesis. 

Note that until now we have assumed that we knew the true value of the 
standard deviation. This, however, is seldom the case. As already discussed in the 
previous chapter, when using the sample standard deviation - maintaining the 
assumption of normality of the random variable - one must use the Student's t 
distribution. This is the usual procedure, also followed by ST A TISTICA and SPSS, 
where these parametric tests of means are called t tests. 

4.2 Test Errors and Test Power 

As described in the previous section, any decision derived from hypothesis testing 
has, in general, a certain degree of uncertainty. For instance, in the drill example 
there is always a chance that the null hypothesis is incorrectly rejected. Suppose 
that a sample from the good quality of drills has x = 1190 hours. Then, as can be 
seen in Figure 4.1, we would incorrectly reject the null hypothesis at a 10% 
significance level. However, we would not reject the nu11 hypothesis at a 5% level, 
as shown in Figure 4.3. In general, by lowering the chosen level of significance, 
typically 0.1, 0.05 or O.ol, we decrease the Type I Error: 

Type I Error: a= P(H0 is true and, based on the test, we reject H0). 

The price to be paid for the decrease of the Type I Error is the increase of the 
Type II Error, defined as: 

Type II Error: j3= P(H0 is false and, based on the test, we accept H0). 

For instance, when in Figures 4.1 and 4.3 we decreased a from 0.10 to 0.05, the 

value of j3increased from 0.10 to: 

j3 = P(z?: (xa- f..lA )I ar:) = P(z?: (1172.8-1100)/77.94) = 0.177. 

Note that a high value of j3 indicates that when the observed statistic does not 
fa11 in the critical region there is a good chance that this is due not to the 
verification of the null hypothesis itself but, instead, to the verification of an 
alternative hypothesis. Figure 4.4 shows that, for the same level of significance, a, 
as the alternative hypothesis approaches the null hypothesis, the value of j3 
increases, reflecting a decreased protection against an alternative hypothesis. 

The degree of protection against alternative hypotheses is usua11y measured by 
the so-called power of the test, 1-/3, which measures the probability of rejecting the 
null hypothesis when it is false (and thus should be rejected). The values of the 

power for several alternative values of f..lA, using the computed values of j3 as 
shown above, are displayed in Table 4.1. The respective power curve, also called 
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operational characteristic of the test, is shown with a solid line in Figure 4.5. Note 
that the power for the alternative hypothesis f.LA = 11 00 is somewhat higher than 
80%. This is usually considered a lower limit of protection that one must have 
against alternative hypothesis. 

HI --+ 

accept H1 

critical region+----

Figure 4.4. Increase of the Type II Error, fJ, for fixed a, when the alternative 
hypothesis approaches the null hypothesis. 

Table 4.1. Type II Error and power for several alternative hypotheses of the drill 
example, with n = 12 and a = 0.05 . 

/lA z = ()JA - X"o.os )/ <7 ~ fJ 1-fJ 

1100.0 0.93 0.18 0.82 
1172.2 0.00 0.50 0.50 
1200.0 -0.36 0.64 0.36 
1250.0 -0.99 0.84 0.16 

1300.0 -1.64 0.95 0.05 

In general, for a given test and sample size, n, there is always a trade-off 
between either decreasing a or decreasing f3. In order to increase the power of a 
test for a fixed level of significance, one is compelled to increase the sample size. 
For the drill example, let us assume that the sample size increased twofold, n = 24. 
We now have a reduction of J2 of the true standard deviation of the sample mean, 
i.e., <7 ~ = 55.11. The distributions corresponding to the hypotheses are now more 
peaked; informally speaking, the hypotheses are better separated, allowing a 
smaller Type II Error for the same level of significance. Let us confirm this. The 
new decision threshold is now: 

Xa = fls -1.64x6~ = 1300-1.64x55.11 = 1209.6, 
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which, compared with the previous value, is Jess deviated from f.18 . The value of f3 
for f.lA = II 00 is now: 

f3 = P( z 2 (xa- f.lA ) I a~ )= P(z ?: (1209.6-1100) / 55 .11) = 0.023. 

Therefore, the power of the test improved substantially to 98%. Table 4.2 lists 
values of the power for several alternative hypotheses. The new power curve is 
shown with a dotted line in Figure 4.5. For increasing values of the sample size n, 
the power curve becomes steeper, allowing a higher degree of protection against 
alternative hypotheses with a small deviation from the null hypothesis. 

Power =1-/3 
I ......... , 

I 
i 
i 
i 
i 
i 
i 
i 
i 
i 

' i ', ! a ·········································· ' .. f.lA 
I I 00 1200 1300 (ji8 ) 

Figure 4.5. Power curve for the drill example, with a = 0.05 and two values of the 
sample size n. 

Table 4.2. Type II Error and power for several alternative hypotheses of the drill 
example, with n = 24 and a= 0.05 . 

f.lA z = (f.lA - :Xo os )/ a~ f3 1-/3 
1100 1.99 0.02 0.98 
1150 1.08 0.14 0.86 
1200 0.17 0.43 0.57 
1250 -0.73 0.77 0.23 
1300 -1 .64 0.95 0.05 

STATISTICA and SPSS have specific modules - Power Analysis and 
SamplePower, respectively - for performing power analysis for several types of 
tests. Figure 4.6 illustrates the power curve obtained with STATISTICA for the last 
example. The power is displayed in terms of the standardised effect, E., which 
measures the deviation of the alternative hypothesis from the null hypothesis, 
normalised by the standard deviation, as follows: 
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4.1 

For instance, for n = 24 the protection against /1A = 1100 corresponds to a 
standardised effect of(l300- 1100)/260 = 0.74 and the power graph of Figure 4.6 
indicates a value of about 0.94 for Es = 0.74. The difference from the previous 
value of 0.98 in Table 4.2 is due to the fact that, as already mentioned, 
ST A TISTICA uses the Student's t distribution. 

1.0 ~ 

~ 
.9 (l_ 

.8 

.7 

.6 

.5 
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.2 

Standardized Effect (Es) 
0.0 L__~-~-~~-~-~-~~-~____J 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 7 0.8 0.9 1.0 

Figure 4.6. Power curve obtained with ST ATISTICA for the drill example with 
a= 0.05 and n = 24. 

In the work of Cohen (Cohen, 1983), some guidance is provided on how to 
qualify the standardised effect: 

Small effect size: 
Medium effect size: 
Large effect size: 

Es = 0.2. 
Es = 0.5. 
Es = 0.8. 

In the example we have been discussing, we are in presence of a large effect 
size. As the effect size becomes smaller, one needs a larger sample size in order to 
obtain a reasonable power. For instance, imagine that the alternative hypothesis 
had precisely the same value as the sample mean, i.e., J1A=1260. In this case, the 
standardised effect is very small, Es = 0.148. For this reason, we obtain very small 
values of the power for n = 12 and n = 24 (see the power for JlA =1250 in Tables 
4.1 and 4.2). In order to "resolve" such close values (1260 and 1300) with low 
errors a and /3, we need, of course, a much higher sample size. Figure 4. 7 shows 
how the power evolves with the sample size in this example, for the fixed 
standardised effect Es = -0.148 (the curve is independent of the sign of Es). As can 
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be appreciated, in order for the power to increase higher than 80%, we need 
n > 350. 

Note that in the previous examples we have assumed alternative hypotheses that 
are always at one side of the null hypothesis: mean lifetime of the lower quality of 
drills. We then have a situation of one-sided or one-tail tests. We could as well 
contemplate alternative hypotheses of drills with better quality than the one 
corresponding to the null hypothesis. We would then have to deal with two-sided 
or two-tail tests. For the drill example a two-sided test is formalised as: 

Ho: f.1 =f.is . 
H1: f.1 =f.j.ls. 

We will deal with two-sided tests in the following sections. For two-sided tests 
the power curve is symmetric. For instance, for the drill example, the two-sided 
power curve would include the reflection of the curves of Figure 4.5, around the 
point corresponding to the null hypothesis, f.ls-

1.0.----~--~--~--~------, 

Power vs. N (Es = -0.148148. Alpha= 0.05) 

600 

Figure 4.7. Evolution of the power with the sample size for the drill example, 
obtained with STATISTICA, with a= 0.05 andEs= -0.148. 

A difficulty with tests of hypotheses is the selection of sensible values for a and 
p. In practice, there are two situations in which tests of hypotheses are applied: 

1. The reject-support (RS) data analysis situation 

This is by far the most common situation. The data analyst states H1 as his belief, 
i.e., he seeks to reject H0• In the drill example, the manufacturer of the new type of 
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drills would fonnalise the test in a RS fashion if he wanted to claim that the new 
brand were better than brand A: 

H0: J.1 ~ J.1A =II 00. 
HI: J.1 > f.1A· 

Figure 4.8 illustrates this one-sided, single mean test. The manufacturer is 
interested in a high power. In other words, he is interested that when H1 is true (his 
belief) the probability of wrongly deciding H0 (against his belief) is very low. In 
the case of the drills, for a sample size n = 24 and a= 0.05, the power is 90% for 
the alternative J.1 =.X , as illustrated in Figure 4.8. A power above 80% is often 
considered adequate to detect a reasonable departure from the null hypothesis. 

On the other hand, society is interested in a low Type I Error, i.e., it is interested 
in a low probability of wrongly accepting the claim of the manufacturer when it is 
false. As we can see from Figure 4.8, there is again a trade-off between a low a 
and a low /3. A very low a could have as consequence the inability to detect a new 
useful manufacturing method using samples of reasonable size. There is a wide 
consensus that a= 0.05 is an adequate value for most situations. When the sample 
sizes are very large (say, above 100 for most tests), trivial departures from H0 may 
be detectable with high power. In such cases, one can consider lowering the value 
of a(say, a= 0.01). 
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Figure 4.8. One-sided, single mean RS test for the drill example, with a= 0.05. 
The dashed area is the critical region. 

2. The accept-support (AS) data analysis situation 

In this situation, the data analyst states H0 as his belief, i.e., he seeks to accept H0. 

In the drill example, the manufacturer of the new type of drills could fonnalise the 
test in an AS fashion if his claim is that the new brand is at least better than brand 
B: 

Ho: J.1 ~J.1s=1300. 
HI: J.1 < f.1B· 
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Figure 4.9 illustrates this one-sided, single mean test. In the AS situation, 
lowering the Type I Error favours the manufacturer. 

On the other hand, society is interested in a low Type II Error, i.e., 1t IS 

interested in a low probability of wrongly accepting the claim of the manufacturer, 
H0, when it is false. In the case of the drills, for a sample size n = 24 and a= 0.05, 
the power is 18% for the alternative f.1 =.X, as illustrated in Figure 4.9. This is an 
unacceptable low power. Even if we relax the Type I Error to a= 0.10, the power 
is still unacceptably low (29%). Therefore, in this case, although there is no 
evidence supporting the rejection of the null hypothesis, there is also no evidence 
to accept it either. 

In the AS situation, society should demand that the test be done with a 
sufficiently large sample size in order to obtain an adequate power. However, 
given the omnipresent trade-off between a low a and a low /3, one should not 
impose a very high power because the corresponding a could then lead to the 
rejection of a hypothesis that explains the data almost perfectly. Again, a power 
value of at least 80% is generally adequate. 

Note that the AS test situation is usually more difficult to interpret than the RS 
test situation. For this reason, it is also less commonly used. 
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Figure 4.9. One-sided, single mean AS test for the drill example, with a= 0.05. 
The dashed area is the critical region. 

4.3 Inference on One Population 

4.3.1 Testing a Mean 

The purpose of the test is to assess whether or not the mean of a population, from 
which the sample was randomly collected, has a certain value. This single mean 
test was exemplified in the previous section 4.2. The hypotheses are: 
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Ho: f.1 = f.lo , H 1: f.1 t:- f.lo , for a two-sided test; 

Ho: f.1 ::;; f.lo , H1: f.1 > f.lo or 

Ho: f.1 ~ f.lo , H 1: f.1 < f.lo , for a one-sided test. 

We assume that the random variable being tested has a normal distribution. We 
then recall from section 3.2 that when the null hypothesis is verified, the following 
random variable: 

t = ~- f.lo 
slfn' 

4.2 

has a Student's t distribution with n-1 degrees of freedom. We then use as the test 
statistic, tn(x), the following quantity: 

x- f.io 2 

slfn . 

When a statistic as l is standardised using the estimated standard deviation 
instead of the true standard deviation, it is called a studentised statistic. 

For large samples, say n > 25, one could use the normal distribution instead, 
since it will yield a good approximation of the Student's t distribution. Even with 
small samples, we can use the normal distribution if we know the true value of the 
standard deviation. That's precisely what we have done in the preceding sections. 
However, in normal practice, the true value of the standard deviation is unknown 
and the test relies then on the Student's t distribution. 

Assume a two-sided t test. In order to determine the critical region for a level of 
significance a; we compute the 1-a/2 percentile for the Student's t distribution 
with n-1 degrees of freedom: 

Tn_1 (t) = 1-a I 2 => tn-1,1-a/2, 4.3 

and use this percentile in order to establish the non-critical region of the test: 

C = [ -tn-1,1-a/2• +tn-1,1-a/2]. 4.4 

Thus, the two-sided probability of C is 2( a 12) = a. The non-critical region can 
also be expressed in terms of~, instead oft (formula 4.2): 

C = [f.lo -tn-1,1-a/2 s I J;;, f.lo +tn-1,1-a/2 S I fn]. 4.4a 

Notice how the test of a mean is similar to establishing a confidence interval for 
a mean. 

2 
We use an asterisk to denote a test statistic. 
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When performing tests of hypotheses with MA TLAB, adequate percentiles for 
the critical region, the so-called critical values, can be computed using appropriate 
functions. The MATLAB function ttest (see Commands 4.1) can also be used. 
When using ST A TISTICA or SPSS, one obtains the probability of observing a 
value at least as large as the computed test statistic tn(x) = l, assuming the null 
hypothesis. This probability is the observed significance. The test decision is made 
comparing this observed significance with the chosen level of significance. 

Example 4.1 

Q: Consider the Meteo (meteorological) dataset (see Appendix E). Perform the 
single mean test on the variable T81, representing the maximum temperature 
registered during 1981 at several weather stations in Portugal. Assume that, based 
on a large number of yearly records, a "typical" year has an average maximum 
temperature of 37.SO, which will be used as the test value. Also, assume that the 
Meteo dataset represents a random spatial sample and that the variable T81, for 
the population of an arbitrarily large number of measurements performed in the 
Portuguese territory, can be described by a normal distribution. 

A: The purpose of the test is to assess whether or not 1981 was a "typical" year in 
regard to average maximum temperature. We then formalise the single mean test 
as: 

Ho: ,UT8t = 37.5. 

H 1: ,uT8 1 i:- 37.5. 

Table 4.3 lists the results that can be obtained either with STATISTICA or with 
SPSS. The probability of obtaining a deviation from the test value, at least as large 
as 39.8~37.5, is p "" 0. Therefore, the test is significant, i.e., the sample does 
provide enough evidence to reject the null hypothesis at a very low a. 

Notice that Table 4.3 also displays the values of t, the degrees of freedom, 
df = n ~ 1, and the standard error s I J;; = 0.548. 

D 

Example 4.2 

Q: Redo previous Example 4.1, performing the test in its "canonical way", i.e., 
determining the limits of the critical region. 

A: First we determine the t percentile for the set level of significance. In the 
present case, using a = 0.05, we determine: 

t 24,0.975 = 2.06 . 

This determination can be done by either using the t distribution Tables (see 
Appendix D), or the probability calculator of the ST A TISTICA and SPSS, or the 
appropriate MATLAB function. 
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Using the t percentile value and the standard error, the non-critical region is the 
interval [37.5- 2.06x0.548, 37.5 + 2.06x0.548] = [36.4, 38.6]. As the sample mean 
.X= 39.8 falls outside this interval, we also decide the rejection of the null 

hypothesis at that level of significance. 
0 

Table 4.3. Results of the single mean t test for the T81 variable, obtained with 
STATISTICA or SPSS, with test value f.Jo= 37.5. 

Mean 

39.8 

Example 4.3 

Std. 
Dev. 

2.739 

n Std. Err. 

25 0.548 

Test 
Value 

37.5 4.199 

df p 

24 0.0003 

Q: Redo previous Example 4.2 in order to assess whether 1981 was a year with an 
atypically large average maximum temperature. 

A: We now perform a one-sided test, using the alternative hypothesis: 

The critical region for this one-sided test, expressed in terms of ~, is: 

C= [,Uo +tn-11-a s I .J;;, oo [. 

Since t 24,0.95 = 1.71, we have C = [37.5 + 1.7lx0.548, oo [ = [38.4, oo [. Once 
again, the sample mean falls into the critical region, leading to the rejection of the 
null hypothesis. 

0 

Note that when performing the tests with STA TISTICA or SPSS, the published 
value of p corresponds to the two-sided observed significance. For instance, in the 
case of Table 4.3, the observed level of significance for the one-sided test is half of 
the published value, i.e.,p = 0.00015. 

Also note that the alternative hypothesis JLTsi = 39.8 in Example 4.3 corresponds 
to a large effect size, Es = 0.84, to which also corresponds a high power (larger than 
95%; see Exercise 4.2). 

MA TLAB has a specific function for the single mean t test, which is shown in 
its general form in Commands 4.1. The best way to understand the meaning of the 
arguments is to run the previous example for T81. We assume that the sample is 
saved in the array t 81 and perform the test as follows: 
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» [h,sig,ci]=ttest(t81,37.5,0.05,1) 
h 

1 
sig 

1.5907e-004 
ci 

38.8629 40.7371 

The value h = I informs us that the null hypothesis should be rejected (0 for 
not rejected). The variable sig is the observed significance; its value is practically 
the same as the previously mentioned p. Finally, the vector ci is the 1-alpha 
confidence interval for the true mean. 

The parameter tail allows the specification of the type oftest, 0 for a two-tail 
test, I for the upper tail test and -1 for the lower tail test, respectively. 

Commands 4.1. STATISTICA, SPSS and MATLAB commands used to perform 
the single mean t test. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Basic Statistics and Tables; 
t-test, single sample 

Analyze; Compare Means; One-Sample T Test 

[h,sig,ci]=ttest(x,m,alpha,tail) 

• 

4.3.2 Testing a Variance 

The assessment of whether a random variable of a certain population has 
dispersion smaller or higher than a given "typical" value is an often-encountered 
task. Assuming that the random variable follows a normal distribution, this 
assessment can be performed by a test of a hypothesis involving a single variance, 

0 
0'0, as test value. 

Let the sample variance, computed in the n-sized sample, be i. The test of a 
single variance is based on Property 5 of B.2. 7, which states a chi-square sampling 
distribution for the ratio of the sample variance and the hypothesised variance: 

4.5 

Example 4.4 

Q: Consider the meteorological dataset and assume that a typical standard 
deviation for the yearly maximum temperature in the Portuguese territory is 
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a= 2.2°. This standard deviation reflects the spatial dispersion of maximum 
temperature in that territory. Also, consider the variable T81, representing the 1981 
sample of 25 measurements of maximum temperature. Is there enough evidence, 
supported by the 1981 sample, leading to the conclusion that the standard deviation 
in 1981 was atypically high? 

A: The test is formalised as: 

Ho: ai-81 :::;; 4.84. 

H1:ai81 >4.84. 

The sample variance in 1981 is of i = 7.5. Since the sample size of the example 
is n = 25, for a 5% level of significance we determine the percentile: 

zi4 o 95 = 36.42 . 

Thus, zi4095 124=1.52. 
This dete~ination can be done in a variety of ways, as previously mentioned: 

using the probability calculators of STATISTICA and SPSS, using MATLAB 
chi2inv function, consulting tables (see D.4 for P(i > x) = 0.05), etc. 

Since s2 I a 2 = 7.5 I 4.84 = 1.55 lies in the critical region [1.52, +oo[, we 
conclude that the test is significant, i.e., there is evidence supporting the rejection 
ofthe null hypothesis at the 5% level of significance. 

0 

4.4 Inference on Two Populations 

4.4.1 Testing a Correlation 

When analysing two sample variables, one is often interested in knowing whether 
the sample provides enough evidence that the respective random variables are 
correlated. For instance, in data classification, when two variables are correlated 
and their correlation is high, one may contemplate the possibility of discarding one 
of the variables, since a highly correlated variable only conveys redundant 
information. 

Let p represent the true value of the Pearson correlation mentioned in section 
2.3.4. The correlation test is formalised as: 

H0: p= 0, H1: pi:- 0, for a two-sided test. 

For a one-sided test the alternative hypothesis is: 

H 1: p>O or p<O. 



4.4 Inference on Two Populations 101 

Let r represent the sample Pearson correlation when the null hypothesis is 
verified and the sample size is n. Furthermore, assume that the random variables 
are normally distributed. Then, the following test statistic: 

. g-2 t =r --ry , 

1-r-
4.6 

has a Student's t distribution with n - 2 degrees of freedom. 
The Pearson correlation test can be performed as part of the computation of 

correlations with STATISTICA and SPSS. It can also be performed using the 
Correlation Test sheet of Tools .xls (see Appendix F) or the 
Probability Calculator; Correlations of STATISTICA (see 
Commands 4.2). 

Example 4.5 

Q: Consider the variables PMAX and T80 of the meteorological dataset (Meteo), 
representing 25 measurements of the maximum precipitation and the maximum 
temperature during 1980, respectively. Is there evidence, at a= 0.05, of a negative 
correlation between these two variables? 

A: The sample correlation is r = -0.45. Thus, the test statistic is: 

r = -0.45, n = 25 => l = -2.41. 

Since t 23,0.05 = -1.71, the value of l falls in the critical region ] --oo, -1.71 ]; 
therefore, the null hypothesis is rejected, i.e., there is evidence of a negative 
correlation between PMAX and T80 at that level of significance. Note that the 
observed significance is 0.0122, below a. 

0 

Commands 4.2. STATISTICA and SPSS commands used to obtain correlation 
matrices and to perform the correlation test. 

Statistics; Basic Statistics and Tables; 
STATISTICA Correlation Matrices 

Probability Calculator; Correlations 

SPSS Analyze; Correlate; Bivariate 

• 
As a final comment, we draw the reader's attention to the fact that correlation is 

by no means synonymous with causality. As a matter of fact, when two variables .t 
andy are correlated, one of the following situations can happen: 
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- One of the variables is the cause and the other is the effect. For instance, if 
~= "nr of forest fires per year" andy= "area of burnt forest per year", then one 
usually finds that ~ is correlated with y, since y is the effect of-'"' 

Both variables have an indirect cause. For instance, if~= "% of persons daily 
arriving at an Hospital with yellow-tainted fingers " andy= "% of persons daily 
arriving at the same Hospital with pulmonary carcinoma ", one finds that ~is 
correlated withy, but neither is cause or effect. Instead, there is another variable 
that is the cause of both- volume of inhaled tobacco smoke. 

The correlation is fortuitous and there is no causal link. For instance, one may 
eventually find a correlation between ~ = "% of persons with blue eyes per 
household'' and y = "% of persons preferring radio to TV per household''. It 
would, however, be meaningless to infer causality between the two variables. 

4.4.2 Comparing Two Variances 

4.4.2.1 The F Test 

In some comparison problems to be described later, one needs to decide whether or 
not two independent data samples A and B, with sample variances s~ and s~ and 
sample sizes nA and n8, were obtained from normally distributed populations with 
the same variance. 

Using Property 6 ofB.2.9, we know that: 

4.7 

Under the null hypothesis "H0: 0'~ = 0'~ ",we then use the test statistic: 

4.8 

Note that given the asymmetry of the F distribution, for a two-tailed test one 
needs to compute the two l-a12-percentiles ofF, and reject the null hypothesis if 
the observed value ofF is unusually large or unusually small. Note also that for 
applying the F test, it is not necessary to assume that the populations have equal 
means. 

Example 4.6 

Q: Consider the two independent samples shown in Table 4.4 of normally 
distributed random variables. Test whether or not one should reject at a 5% 
significance level the hypothesis that respective population variances are unequal. 
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A: The sample variances are v1 = 1.680 and v2 = 0.482; therefore, F = 3.49, with an 
observed one-sided significance of p = 0.027. The 0.025 and 0.975 percentiles of 
F9,11 are 0.26 and 3.59, respectively. Therefore, since the non-critical region 
[0.26, 3.59] contains p, we do not reject the null hypothesis at the 5% significance 
level. 0 

Table 4.4. Two independent and normally distributed samples. 

Case# 2 3 4 5 6 7 8 9 10 II I2 

Group I 4. 7 3. 7 5.2 6.3 6.2 6. 7 2.8 4.8 6.I 3.9 

Group 2 IO.I 8.6 I0.9 9.7 9.7 IO 9.4 IO.l 9.9 IO I0.8 8.7 

Example4.7 

Q: Consider the meteorological data and test the validity of the following null 
hypothesis at a 5% level of significance: 

Ho: tfrsl = tfrso · 

A: We assume, as in previous examples, that both variables are normally 
distributed. We then have to determine the percentiles of F 24,24 and determine the 
non-critical region: 

C = [Fo.ozs, Fo.975] = [0.44, 2.27] . 

Since F = si81 I si80 = 7.5/4.84 = 1.55 falls inside the non-critical region, the 
null hypothesis is not rejected at the 5% level of significance. 

0 

The software products do not include the test of variances as an individual 
option. Rather, they include this test as part of other tests, as will be seen in later 
sections. 

4.4.2.2 Levene's Test 

A problem with the previous F test is that it is rather sensitive to the assumption of 
normality. A less sensitive test to the normality assumption (a more robust test) is 
Levene's test, which uses deviations from the sample means. The test is carried out 
as follows: 

1. Compute the means in the two samples: :X A and :X8 . 
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2. Let d;A = lx;A -:X A I and diB = lx;8 - :X8 I represent the absolute deviations of 
the sample values around the respective mean. 

3. Compute the sample means, d A and d 8 , and sample variances, vA and v8 of the 
previous absolute deviations. 

4. Compute the pooled variance, vP, for the two samples, with nA and n8 cases, as 
the following weighted average of the individual variances: 

4.9 

5. Finally, perform at test with the test statistic: 

* t 4.10 

There is a modification of the Levene's test that uses the deviations from the 
median instead of the mean (see section 7.3.3.2). 

Example4.8 

Q: Redo the test of Example 4.7 using Levene's test. 

A: The sample means are :X1 = 5.04 and :X2 = 9.825. Using these sample means, we 
compute the absolute deviations for the two groups shown in Table 4.5. 

The sample means and variances of these absolute deviations are: d 1 = 1.06, 
d 2 = 0.492; v1 = 0.432, v2 = 0.235. Applying formula 4.9 we obtain a pooled 
variance vP = 0.324. Therefore, using formula 4.10, the observed test statistic is 
r = 2.33 with a two-sided observed significance of 0.03. 

Thus, we reject the null hypothesis of equal variances at a 5% significance level. 
Notice that this conclusion is the opposite of the one reached in Example 4. 7. 

D 

Table 4.5. Absolute deviations from the sample means, computed for the two 
samples of Table 4.4. 

Case# 2 3 4 5 6 7 8 9 IO II I2 

Group I 0.34 1.34 O.I6 1.26 I.I6 1.66 2.24 0.24 1.06 l.l4 

Group 2 O.I5 1.35 0.95 0.25 0.25 0.05 0.55 O.I5 0.05 0.05 0.85 1.25 
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4.4.3 Comparing Two Means 

4.4.3.1 Independent Samples and Paired Samples 

Deciding whether two samples came from normally distributed populations with 
the same or with different means, is an often-met requirement in many data 
analysis tasks. The test is formalised as: 

Ho: fiA =fiB 

HI: fiA ::!-fiB' 

(or fiA- fiB= 0, whence the name "null hypothesis"), 
for a two-sided test; 

Ho: fiA::::; fiB, H1: fiA > fis , 

Ho: fiA ~ fis, H1: fiA < fis , 

or 
for a one-sided test. 

In tests of hypotheses involving two or more samples one must first clarify if the 
samples are independent or paired, since this will radically influence the methods 
used. 

Imagine that two measurement devices, A and B, performed repeated and 
normally distributed measurements on the same object: 

X~o x2, ••• , Xn with device A; 
Y~o Yz, ... , Yn. with device B. 

The sets x = [x1 x2 ••• Xn]' andy= [ y 1 y2 ••• YnJ', constitute independent samples 
generated according to N II a and N II a , respectively. Assuming that device B 

rA• A rB• B 
introduces a systematic deviation ~. i.e., fis = fiA + ~. our statistical model has 4 
parameters: fiA, ~. O'A and os. 

Now imagine that the n measurements were performed by A and B on a set of n 
different objects. We have a radically different situation, since now we must take 
into account the differences among the objects together with the systematic 
deviation ~. For instance, the measurement of the object X; is described in 
probabilistic terms by N II . a when measured by A and by N II +.<1 as when 

rA1' A rA1 • 
measured by B. The statistical model now has n + 3 parameters: fiAJ. fiAz, ... , fiAn, 

~. aA and CJB. The first n parameters reflect, of course, the differences among the n 
objects. Since our interest is the systematic deviation ~. we apply the following 
trick. We compute the paired differences: d1 = Y1- xi. dz = Yz- Xz, ... , dn = Yn- Xn. 
In this paired samples approach, we now may consider the measurements d; as 
values of a random variable, d, described in probabilistic terms by N L1,a4 • 

Therefore, the statistical model has now only two parameters. 
The measurement device example we have been describing is a simple one, 

since the objects are assumed to be characterised by only one variable. Often the 
situation is more complex because several variables - known as factors, effects or 
grouping variables - influence the objects. The central idea in the "independent 
samples" study is that the cases are randomly drawn such that all the factors, 
except the one we are interested in, average out. For the "paired samples" study 
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(also called dependent or matched samples study), the main precaution is that we 
pair truly comparable cases with respect to every important factor. Since this is an 
important topic, not only for the comparison of two means but for other tests as 
well, we present a few examples below. 

Independent Samples: 

i. We wish to compare the sugar content of two sugar-beet breeds, A and B. For 
that purpose we collect random samples in a field of sugar-beet A and in another 
field of sugar-beet B. Imagine that the fields were prepared in the same way 
(e.g. same fertilizer, etc.) and the sugar content can only be influenced by 
exposition to the sun. Then, in order for the samples to be independent, we must 
make sure that the beets are drawn in a completely random way in what 
concerns the sun exposition. We then perform an "independent samples" test of 
variable "sugar content", dependent on factor "sugar-beet breed" with two 
categories, A and B. 

ii. We are assessing the possible health benefit of a drug against a placebo. 
Imagine that the possible benefit of the drug depends on sex and age. Then, in 
an "independent samples" study, we must make sure that the samples for the 
drug and for the placebo (the so-called control group) are indeed random in 
what concerns sex and age. We then perform an "independent samples" test of 
variable "health benefit", dependent on factor "group" with two categories, 
"drug" and "placebo". 

iii. We want to study whether men and women rate a TV program differently. 
Firstly, in an "independent samples" study, we must make sure that the samples 
are really random in what concerns other influential factors such as degree of 
education, environment, family income, reading habits, etc. We then perform an 
"independent samples" test of variable "TV program rate", dependent on factor 
"sex" with two categories, "man" and "woman". 

Paired Samples: 

1. The comparison of sugar content of two breeds of sugar-beet, A and B, could 
also be studied in a "paired samples" approach. For that purpose, we would 
collect samples of beets A and B lying on nearby rows, and would pair the 
neighbour beets. 

ii. The study of the possible health benefit of a drug against a placebo could also be 
performed in a "paired samples" approach. For that purpose, the same group of 
patients is evaluated after taking the placebo and after taking the drug. 
Therefore, each patient is his/her own control. Of course, in clinical studies, 
ethical considerations often determine which kind of study must be performed. 

iii. Studies of preference of a product, depending on sex, are sometimes performed 
in a "paired samples" approach, e.g. by pairing the enquiry results of the 
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husband with those of the wife. The rationale being that husband and wife have 
similar ratings in what concerns influential factors such as degree of education, 
environment, age, reading habits, etc. Naturally, this assumption could be 
controversial. 

Note that when performing tests with STATISTICA or SPSS for independent 
samples, one must have a datasheet column for the grouping variable that 
distinguishes the independent samples (groups). The grouping variable uses 
nominal codes (e.g. natural numbers) for that distinction. For paired samples, such 
a column does not exist because the variables to be tested are paired for each case. 

4.4.3.2 Testing Means on Independent Samples 

When two independent random variables xA and x8 are normally distributed, as 
N, ~ and N, ~ respectively, then the variable .{:A - .{:8 has a normal rA•vA rB•vB 
distribution with mean /1A - p8 and variance given by: 

4.11 

where nA and n8 are the sizes of the samples with means :X A and :X8 , respectively. 
Thus, when the variances are known, one can perform a comparison of two means 
much in the same way as in sections 4.1 and 4.2. 

Usually the true values of the variances are unknown; therefore, one must apply 
a Student's t distribution. This is exactly what is assumed by STATISTICA and 
SPSS. 

Two situations must now be considered: 

1 - The variances aA and OS can be assumed to be equal. 

Then, the following test statistic: 

4.12 

where vP is the pooled variance computed as in formula 4.9, has a Student's t 

distribution with the following degrees of freedom: 

df=nA +na-2. 4.13 

2 - The variances aA and OS are unequal. 

Then, the following test statistic: 
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t* = XA -XB 4.14 
2 2 

SA Ss -+-
nA ns 

has a Student's t distribution with the following degrees of freedom: 

df= (sllnA+s~ln8 ) 2 

(sl lnA) 2 InA +(s~ ln 8 ) 2 ln 8 

4.15 

In order to decide which case to consider - equal or unequal variances - the F 
test or Levene's test, described in section 4.4.2, are performed. ST ATISTICA and 
SPSS do precisely this. 

Example 4.9 

Q: Consider the Wines' dataset (see description in Appendix E). Test at a 5% 
level of significance whether the variables ASP (aspartame content) and PHE 
(phenylalanine content) can distinguish white wines from red wines. The collected 
samples are assumed to be random. The distributions of ASP and PHE are well 
approximated by the normal distribution in both populations (white and red wines). 
The samples are described by the grouping variable TYPE (1 = white; 2 = red) and 
their sizes are n1 = 30 and n2 = 37, respectively. 

A: Table 4.6 shows the results obtained with SPSS. In the interpretation of these 
results we start by looking to Levene's test results, which will decide if the 
variances can be assumed to be equal or unequal. 

Table 4.6. Partial table of results obtained with SPSS for the independent samples t 
test of the wine dataset. 

Levene's Test t-test 

F df p Mean Std. Error p 
(2-tailed} Difference Difference 

Equal 
ASP variances 0.017 0.896 2.345 65 0.022 6.2032 2.6452 

assumed 

Equal 
variances 2.356 63.16 0.022 6.2032 2.6331 
not assumed 

Equal 
PHE variances 11.243 0.001 3.567 65 0.001 20.5686 5.7660 

assumed 

Equal 
variances 3.383 44.21 0.002 20.5686 6.0803 
not assumed 
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For the variable ASP, we accept the null hypothesis of equal variances, since the 
observed significance is very high (p = 0.896). We then look to the t test results in 
the top row, which are based on the formulas 4.12 and 4.13. Note, particularly, that 
the number of degrees of freedom is df= 30 + 37-2 = 65. According to the results 
in the top row, we reject the null hypothesis of equal means with the observed 
significance p = 0.022. As a matter of fact, we also reject the one-sided hypothesis 
that aspartame content in white wines (sample mean 27.1 mg/1) is smaller or equal 
to the content in red wines (sample mean 20.9 mg/1). Note that the means of the 
two groups are more than two times the standard error apart. 

For the variable PHE, we reject the hypothesis of equal variances; therefore, we 
look to the t test results in the bottom row, which are based on formulas 4.14 and 
4.15. The null hypothesis of equal means is also rejected, now with higher 
significance since p = 0.002. Note that the means of the two groups are more than 
three times the standard error apart. 

D 

Foced Paremetert - Populadon Mean Mu1 27.000( 
Population Mean Mu2 21 .000( 
Population S.D. (SiQma) 2.640( 
Standardized Effect (Es) 2.272r 
Sample Size N1 30.000( 
Sample Size N2 37.000( 
Type I Error Rate (Alpha) 0.050( 
Critical Value oft 1.668E 

hlul : ~[I 
hlu2: ~[I 
Nl : ~[I Type o1 H}'IIOihesis -
N2: w-fl r 2~aied ( hlul • hlu21 
~ 0.05 [I C: Haied ( hlul <• hlu2) 
Signa: ~[I I Haied ( hlul >• hlu2) 

a b Power 1.000( 

Figure 4.10. a) Window of STATISTICA Power Analysis module used for the 
specifications of Example 4.1 0; b) Results window for the previous specifications. 

Example 4.10 

Q: Compute the power for the ASP variable (aspartame content) of the previous 
Example 4.9, for a one-sided test at 5% level, assuming that as an alternative 
hypothesis white wines have more aspartame content than red wines. Determine 
what is the minimum distance between the population means that guarantees a 
power above 90% under the same conditions as the studied samples. 

A: The one-sided test for this RS situation (see section 4.2) is formalised as: 

Ho: f.J.I:::; f.J.2; 
H 1: f.1.1 > f.1.2 • (White wines have more aspartame than red wines.) 

The observed level of significance is half of the value shown in Table 4.6, i.e., 
p = 0.0 II; therefore, the null hypothesis is rejected at the 5% level. When the data 
analyst investigated the ASP variable, he wanted to draw conclusions with 
protection against a Type II Error, i.e., he wanted a low probability of wrongly not 
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detecting the alternative hypothesis when true. Figure 4.1 Oa shows the 
STA TISTICA specification window needed for the power computation. Note the 
specification of the one-sided hypothesis. Figure 4.1 Ob shows that the power is 
very high when the alternative hypothesis is formalised with population means 
having the same values as the sample means; i.e., in this case the probability of 
erroneously deciding H0 is negligible. Note the computed value of the standardised 
effect ()1 1 - J.12)/s = 2.27, which is very large (see section 4.2). 

Figure 4.11 shows the power curve depending on the standardised effect, from 
where we see that in order to have at least 90% power we need Es = 0.75, i.e., we 
are guaranteed to detect aspartame differences of about 2 mg/1 apart (precisely, 
0.75x2.64 = 1.98). 0 

.9 

.8 

I .7 
Q. 

.6 

.5 

.4 

-Eftoa(Eo) 

.3~------------------------------~ 0.0 0.5 1.0 1.5 2.0 2.5 

Figure 4.11. Power curve for the wine data Example 4.1 0. 

Commands 4.3. STATISTICA, SPSS and MATLAB commands used to perform 
the independent samples t test. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Basic Statistics and Tables; 
t-test, independent, by groups 

Analyze; Compare Means; Independent 
Samples T Test 

[h,sig,ci]=ttest2(x,y,alpha,tail] 

The MATLAB function ttest2 works in the same way as the function ttest 
described in 4.3.1, with x andy representing the independent sample vectors. The 
function t test2 assumes that the variances of the samples are equal. 

• 
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4.4.3.3 Testing Means on Paired Samples 

As explained in 4.4.3.1, given the sets x = [x 1 x2 ... Xn]' andy= [y1 y2 ... Yn]', where 
the x;, y; refer to objects that can be paired, we then compute the paired differences: 
d1 = Y1- x1, d2 = Y2- x2, ... , dn= Yn- Xn. Therefore, the null hypothesis: 

is rewritten as: 

Ho: fla= 0 with £= -'".- y. 

The test is, therefore, converted into a single mean t test, using the studentised 
statistic: 

* t 
d 

4.16 

where sd is the sample estimate of the variance of d, computed with the differences 
d;. Note that since -'"- and y are not independent the additive property of the 
variances does not apply (see formula A.58c). 

Example 4.11 

Q: Consider the meteorological dataset. Use an appropriate test in order to compare 
the maximum temperatures of the year 1980 with those of the years 1981 and 
1982. 

A: Since the measurements are performed at the same weather stations, we are in 
adequate conditions for performing a paired samples t test. Based on the results 
shown in Table 4.7, we reject the null hypothesis for the pair T80-T81 and accept it 
for the pair T80-T82. 

D 

Table 4.7. Partial table of results, obtained with SPSS, in the paired samples t test 
for the meteorological dataset. 

Mean 

Pair I T80 - T81 -2.360 

Pair 2 T80 - T82 0.000 

Example 4.12 

Std. Std. Error 
Deviation Mean 

2.0591 

1.6833 

0.4118 

0.3367 

-5.731 

0.000 

Q: Study the power of the tests performed in Example 4.11. 

df 

24 

24 

p (2-tailed) 

0.000 

1.000 
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A: We use the STATISTICA Power Analysis module and the descriptive 
statistics shown in Table 4.8. 

For the pair T80-T81, the standardised effect is Es = (39.8-37.44)/2.059 =1.1 
(see Table 4.7 and 4.8). It is, therefore, a large effect -justifying a high power of 
the test. 

Let us now tum our attention to the pair T80-T82, whose variables happen to 
have the same mean. Looking at Figure 4.12, note that in order to have a power 
1-/3= 0.8, one must have a standardised effect of about Es = 0.58. Since the 
standard deviation of the paired differences is 1.68, this corresponds to a deviation 
of the means computed as Es x 1.68 = 0.97. Thus, although the test does not reject 
the null hypothesis, we only have a reasonable protection against alternative 
hypotheses for a deviation in average maximum temperature of at least 
approximately one degree centigrade. 

0 

Table 4.8. Descriptive statistics of the meteorological variables used in the paired 
samples t test. 

T80 

T81 

T82 

n s 

25 

25 

25 

37.44 

39.80 

37.44 

2.20 

2.74 

2.29 
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Figure 4.12. Power curve for the variable pair T80-T82 of Example 4.11. 
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Commands 4.4. STATISTICA, SPSS and MATLAB commands used to perform 
the paired samples t test. 

STATISTICA Statistics; Basic Statistics and Tables; 
t-test, dependent samples 

SPSS 
Analyze; Compare Means; Paired-Samples T 
Test 

MATLAB [h,sig,ci]=ttest(x,m,alpha,tail] 

With MATLAB the paired samples t test is performed using the single t test 
function t test, previously described. • 

4.5 Inference on More Than Two Populations 

4.5.1 Introduction to the Analysis of Variance 

In section 4.4.3, the two-means tests for independent samples and for paired 
samples were described. One could assume that, in order to infer whether more 
than two populations have the same mean, all that had to be done was to repeat the 
two-means test as many times as necessary. But in fact, this is not a commendable 
practice for the reason explained below. 

Let us consider that we have c independent samples and we want to test whether 
the following null hypothesis is true: 

Ho: J11 = J12 = · · · = f.ic ; 4.17 

the alternative hypothesis being that there is at least one pair with unequal means, 
J.i; "# f.ij· 

We now assume that H0 is assessed using two-means tests for all (~) pairs of 
the c means. Moreover, we assume that every two-means test is performed at a 
95% confidence level, i.e., the probability of not rejecting the null hypothesis when 
true, for every two-means comparison, is 95%: 

4.18 

where H0ii is the null hypothesis for the two-means test referring to the i and j 
samples. 

The probability of rejecting the null hypothesis 4.17 for the c means, when it is 
true, is expressed as follows in terms of the two-means tests: 

a=P(rejectH 0 IH 0 ) 
4.19 

=P(j.i 1 "#J.i 2 IH 0 orj.i1 "#J13 IH 0 or ... orf.ic-J *f.ic IH 0 ) 
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Assuming the two-means tests are independent, we rewrite 4.19 as: 

4.20 

Since H0 is more restrictive than any H0u, as it implies conditions on more than 
two means, we have P(/1; ::t/11 IH 0u) ~ P(/1; ::t/11 IH 0 ), or, equivalently, 
P(/1 i = 11 j I H Oij ) :s; P(/1 i = 11 j I H 0 ) . 

Thus: 

a~1-P(J1! =J1ziHOI2)P(J1! =f131Hou) ... P(f1c-l =f1c IHoc-l,c). 4.21 

For instance, for c = 3, using 4.18 and 4.21, we obtain a Type Error 
a~ 1-0.953 = 0.14. For higher values of c the Type I Error degrades rapidly. 
Therefore, we need an approach that assesses the null hypothesis 4.17 in a "global" 
way, instead of assessing it using several two-means tests. 

In the following sections we describe the analysis of variance (ANOVA) 
approach, which provides a suitable methodology to test the "global" null 
hypothesis 4.17. We only describe the ANOVA approach for one or two grouping 
variables (effects or factors). Moreover, we only consider the so-called "fixed 
factors" model, i.e., we only consider making inferences on several fixed 
categories of a factor, observed in the dataset, and do not approach the problem of 
having to infer to more categories than the observed ones (the so called "random 
factors" model). 

4.5.2 One-Way ANOVA 

4.5.2.1 Test Procedure 

The one-way ANOV A test is applied when only one grouping variable is present in 
the dataset, i.e., one has available c independent samples, corresponding to c 
categories (or levels) of an effect and wants to assess whether or not the null 
hypothesis should be rejected. As an example, one may have three independent 
samples of scores obtained by students in a certain course, corresponding to three 
different teaching methods, and want to assess whether or not the hypothesis of 
equality of student performance should be rejected. In this case, we have an effect 
-teaching method- with three categories. 

A basic assumption for the variable _z being tested is that the c independent 
samples are obtained from populations where _z is normally distributed and with 
equal variance. Thus, the only possible difference among the populations refers to 
the means, J1;. The equality of variance tests were already described in section 
4.4.2. As to the normality assumption, if there are no "a priori" reasons to accept it, 
one can resort to goodness of fit tests described in the following chapter. 

In order to understand the ANOV A approach, we start by considering a single 
sample of size n, subdivided in c subsets of sizes n~. n2, ••• , nc, with averages 
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XI' x2' ... ' xk' and investigate how the total variance, v, can be expressed in terms 
of the subset variances, v;. Let any sample value be denoted xiJ, the first index 
referring to the subset, i = 1, 2, ... , c, and the second index to the case number 
inside the subset, j = I, 2, ... , n;. The total variance is related to the total sum of 
squares, SST, ofthe deviations from the global sample mean, .X: 

c ni 

ssT= L:L:Cxu -x) 2 . 4.22 
i=J }=1 

Adding and subtracting .X; to the deviations, X;; -.X, we derive: 

c ~ c ~ c ~ 

SST= LL(xu -x;) 2 + LL(x; -.X) 2 -2L:L:Cxu -x;)(x; -.X). 4.23 
i=] }=1 i=J }=1 i=J }=1 

The last term can be proven to be zero. Let us now analyse the other two terms. 
The first term is called the within-group (or within-class) sum of squares, SSW, 
and represents the contribution to the total variance of the errors due to the random 
scattering of the cases around their group means. This also represents an error term 
due to the scattering of the cases, the so-called experimental error or error sum of 
squares, SSE. 

The second term is called the between-group (or between-class) sum of squares, 
SSB, and represents the contribution to the total variance of the deviations of the 
group means from the global mean. 

Thus: 

SST= SSW+ SSB. 4.24 

Let us now express these sums of squares, related by 4.24, in terms of variances: 

SST= (n -l)v. 

SSW =SSE= ~(n; -l)v; =[~(n; -1)] vw =(n-c)vw. 

SSB = (c-I)vB. 

Note that: 

4.25a 

4.25b 

4.25c 

1. The within-group variance, vw, is the pooled variance and corresponds to the 
generalization of formula 4.9: 

c 

L(n; -l)v; 
i=l vw =vP =..:......:. ___ _ 

n-c 
4.26 
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This variance represents the stochastic behaviour of the cases around their group 
means. It is the point estimate of d, the true variance of the population, and has 
n - c degrees of freedom. 

2. The within-group variance vw represents a mean square error, MSE, of the 
observations: 

SSE 
MSE=vw =--. 

n-c 
4.27 

3. The between-group variance, v8 , represents the stochastic behaviour of the 
group means around the global mean. It is the point estimate of d when the null 
hypothesis is true, and has c - 1 degrees of freedom. 
When the number of cases per group is constant and equal to n, we get: 

..:..i=....:.l ___ _ 
vs=n =nv-t, 

c-1 
4.28 

which is the sample expression of formula 3.8, allowing us to estimate the 
population variance, using the variance of the means. 

4. The between-group variance, v8 , can be interpreted as a mean between-group or 
classification sum of squares, MSB: 

SSB 
MSB=vn =-

c-1 
4.29 

With the help of formula 4.24, we see that the total sample variance, v, can be 
broken down into two parts: 

(n-1)v=(n-c)vw +(c-1)vs, 4.30 

The ANOVA test uses precisely this "analysis of variance" property. Notice that 
the total number of degrees of freedom, n - 1, is also broken down into two parts: 
n-candc-1. 

Figure 4.13 illustrates examples for c = 3 of configurations for which the null 
hypothesis is true (a) and false (b). In the configuration of Figure 4.13a (null 
hypothesis is true) the three independent samples can be viewed as just one single 
sample, i.e., as if all cases were randomly extracted from a single population. The 
standard deviation of the population (shown in grey) can be estimated in two ways. 
One way of estimating the population variance is through the computation of the 
pooled variance, which assuming the samples are of equal size, n, is given by: 

4.31 
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a 

b 

Figure 4.13. Analysis of variance, showing the means, the standard deviations, s, 
and the standard deviation of the means, s -1-: , multiplied by J;; , in two 
configurations: a) H0 is true; b) H0 is false . 

The second way of estimating the population variance uses the variance of the 
means: 

4.32 

When the null hypothesis is true, we expect both estimates to be near each other; 
therefore, their ratio should be close to I. 

In the configuration of Figure 4.13b (null hypothesis is false), the between
group variance no longer represents an estimate of the population variance. In this 
case, we obtain a ratio v81vw much larger than I. 

The one-way ANOVA, assuming the test conditions are satisfied, uses the 
following test statistic (see properties of the F distribution in section B.2.9): 

F. =~=-M_s_c _ 
vw MSE 

F c- l,n- c (under H0). 4.33 

lf H0 is not true, then F* exceeds I in a statistically significant way. 
The F distribution can be used even when there are mild deviations from the 

assumptions of normality and equality of variances. The equality of variances can 
be assessed using the ANOV A generalization of Levene's test described in the 
section 4.4.2.2 . 
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Table 4.9. Critical F values at a= 0.05 for n = 25 and several values of c. 

c 2 

Fc-l.n-c 4.26 

3 

3.42 

4 

3.05 

5 6 7 

2.84 2.71 2.63 

8 

2.58 

For c = 2, it can be proved that the ANOV A test is identical to the t test for two 
independent samples. As c increases, the 1 - a percentile of Fc-t.n-c decreases (see 
Table 4.9), rendering the rejection of the null hypothesis "easier". Equivalently, for 
a certain level of confidence the probability of observing a given F* under H0 

decreases. In section 4.5 .1, we have already made use of the fact that the null 
hypothesis for c > 2 is more "restrictive" than for c = 2. 

The previous sums of squares can be shown to be computable as follows: 

c r; 2 2 
SST=:L:~:>u-T In, 4.34a 

i=l j=l 

c 

SSB= L(T/ lr;)-T 2 In, 4.34b 
i=l 

where T; and T are the totals along the columns and grand total, respectively. 
These last formulas are useful for manual computation (or when using EXCEL). 

Example 4.13 

Q: Consider the variable ART of the Cork Stoppers' dataset. Is there 
evidence, provided by the samples, that the three classes correspond to three 
different populations? 

A: We use the one-way ANOVA test for the variable ART, with c = 3. Note that 
we can accept that the variable ART is normally distributed in the three classes 
using specific tests to be explained in the following chapter. For the moment, the 
reader has to rely on visual inspection of the normal fit curve to the histograms of 
ART. 

Using MATLAB, one obtains the results shown in Figure 4.14. The box plot for 
the three classes, obtained with MATLAB, is shown in Figure 4.15. The MATLAB 
ANOVA results are obtained with the anoval command (see Commands 4.5) 
applied to a matrix where each column represents an independent sample: 

» x=[art(l:SO) ,art(51:100) ,art(l01:150)]; 

» p=anoval(x) 

Note that the results table shown in Figure 4.14 has the classic disposition of the 
ANOV A tests, with columns for the total sums of squares ( SS), degrees of freedom 
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( df) and mean sums of squares (MS). Note particularly that MSB is much larger 
than MSE, yielding a significant test with the rejection of the null hypothesis of 
equality of means. 

One can also compute the 95% percentile of F2. 147 = 3.06. Since F'= 273.03 falls 
within the critical region [3 .06, +oo [, we reject the null hypothesis at the 5% level. 

Visual inspection of Figure 4.15 suggests that the variances of ART in the three 
classes may not be equal. In order to assess the assumption of equality of variances 
when applying ANOV A tests, it is customary to use the one-way ANOV A version 
of either of the tests described in section 4.4.2. For instance, Table 4.10 shows the 
results of the Levene test for homogeneity of variances, which is built using the 
breakdown of the total variance of the absolute deviations of the sample values 
around the means. The test rejects the null hypothesis of variance homogeneity. 
This casts a reasonable doubt on the applicability of the ANOVA test. 

Source 

Columns 
Error 
Total 

ss 
4 . 75959e+006 

1 . 2813e+006 
6 . 04089e+006 

ANOVA Table 
df 

2 
147 
149 

MS 

2379796 . 17 
8716 . 32 

0 

F Prob>F 

273 . 03 0 

Figure 4.14. One-way ANOV A test results, obtained with MATLAB, for the cork
stopper problem (variable ART). 
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Figure 4.15. Box plot, obtained with MATLAB, for the cork-stopper problem 
(variable ART). 
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Table 4.10. Levene's test results, obtained with SPSS, for the cork stopper problem 
(variable ART). 

Levene Statistic 

27.388 

dfl 
2 

df2 

147 

Sig. 

0.000 

As previously mentioned, a basic assumption of the ANOV A test is that the 
samples are independently collected. Another assumption, related to the use of the 
F distribution, is that the dependent variable being tested is normally distributed. 
When using large samples, say with the smallest sample size larger than 25, we can 
relax this assumption since the Central Limit Theorem will guarantee an 
approximately normal distribution of the sample means. 

Finally, the assumption of equal variances is crucial, especially if the sample 
sizes are unequal. As a matter of fact, if the variances are unequal, we are violating 
the basic assumptions of what MSE and MSB are estimating. Sometimes when the 
variances are unequal, one can resort to a transformation, e.g. using the logarithm 
function of the dependent variable to obtain approximately equal variances. If this 
fails, one must resort to a non-parametric test, described in Chapter 5. 

Table 4.11. Standard deviations of variables ART and ART! = ln(ART) in the 
three classes of cork stoppers. 

ART 

ART! 

Class 1 

43.0 

0.368 

Class 2 

69.0 

0.288 

Class3 

139.8 

0.276 

Table 4.12. Levene's test results, obtained with SPSS, for the cork-stopper problem 
(variable ART! = ln(ART)). 

Levene Statistic 

1.389 

dfl 

2 

df2 

147 

Sig. 

0.253 

Table 4.13. One-way ANOVA test results, obtained with SPSS, for the cork
stopper problem (variable ART! = ln(ART)). 

Sum of 
df Mean Square F Sig. S uares 

Between Groups 51.732 2 25.866 263.151 0.000 

Within Groups 14.449 147 9.829E-02 

Total 66.181 149 
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Example 4.14 

Q: Redo the previous example in order to guarantee the assumption of equality of 
variances. 

A: We use a new variable ART! computed as: ARTl = ln(ART). The deviation of 
this new variable from the normality is moderate and the sample is large (50 cases 
per group), thereby allowing us to use the ANOV A test. As to the variances, Table 
4.11 compares the standard deviation values before and after the logarithmic 
transformation. Notice how the transformation yielded approximate standard 
deviations, capitalising on the fact that the logarithm de-emphasises large values. 

Table 4.12 shows the result of the Levene test, which authorises us to accept the 
hypothesis of equality of variances. 

Applying the ANOVA test to ART! the conclusions are identical to the ones 
reached in the previous example (see Table 4.13), namely we reject the equality of 
means hypothesis. 

D 

Commands 4.5. STATISTICA, SPSS and MATLAB commands used to perform 
the one-way ANOV A test. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Basic Statistics and Tables; 
Breakdown & one-way ANOVA 
Statistics; ANOVA; One-way ANOVA 

Statistics; Advanced Linear/Nonlinear 
Models; General Linear Models; One-way 
AN OVA 

Analyze; Compare Means; MeansiOne-Way 
AN OVA 
Analyze; General Linear Model; Univariate 

[p,table,stats]=anoval(x,group, 'dispopt') 

The easiest commands to perform the one-way ANOVA test with STATISTICA 
and SPSS are ANOVA and Compare Means, respectively. 

"Post hoc" comparisons (e.g. Scheffe test), to be dealt with in the following 
section, are accessible using the Post-hoc tab in STATISTICA (click More 
Results) or clicking the Past Hoc button in SPSS. Contrasts can be performed 
using the Planned camps tab in STATISTICA (click More Results) or 
clicking the Contrasts button in SPSS. 

Note that the ANOVA commands are also used in regression analysis, as 
explained in Chapter 7. When performing regression analysis, one often considers 
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an "intercept" factor in the model. When comparing means, this factor is 
meaningless. Be sure, therefore, to check the No intercept box in 
STATISTICA (Options tab) and uncheck Include intercept in the 
model in SPSS (General Linear Model). In STATISTICA the Sigma
restricted box must also be unchecked. 

The meanings of the arguments and return values of MATLAB anoval 
command are as follows: 

p: 
table: 
stats: 

x: 

group: 
dispopt: 

p value of the null hypothesis; 
matrix for storing the returned ANOV A table; 
test statistics, useful for performing multiple comparison of means 
with the mul tcompare function; 
data matrix with each column corresponding to an independent 
sample; 
optional character array with group names in each row; 
display option with two values, 'on' and 'oft'. The default 'on' displays 
plots of the results (including the ANOVA table). 

• 
4.5.2.2 Post Hoc Comparisons 

Frequently, when performing one-way ANOVA tests resulting in the rejection of 
the null hypothesis, we are interested in knowing which groups or classes can then 
be considered as distinct. This knowledge can be obtained by a multitude of tests, 
known as post-hoc comparisons, which take into account pair-wise combinations 
of groups. These comparisons can be performed on individual pairs, the so-called 
contrasts, or considering all possible pair-wise combinations of means with the aim 
of detecting homogeneous groups of classes. 

Software products such as STATISTICA and SPSS afford the possibility of 
analysing contrasts, using the t test. A contrast is specified by a linear combination 
of the population means: 

4.35 

Imagine, for instance, that we wanted to compare the means of populations 1 
and 2. The comparison is expressed as whether or not f.11 = p2, or, equivalently, 
p 1 -p2 = 0; therefore, we would use a1 = 1 and a2 = -1. We can also use groups of 
classes in contrasts. For instance, the comparison p 1 = (113 + f./4)/2 in a 5 class 
problem would use the contrast coefficients: a1 = 1; a2 = 0; a3 = -0.5; a4 = -0.5; 
as= 0. We could also, equivalently, use the following integer coefficients: a1 = 2; 
a2= 0; a3= -1; a4= -1; as= 0. 

Briefly, in order to specify a contrast (in STATISTICA or in SPSS), one assigns 
integer coefficients to the classes as follows: 

i. Classes omitted from the contrast have a coefficient of zero; 
ii. Classes merged in one group have equal coefficients; 
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iii.Classes compared with each other are assigned positive or negative values, 
respectively; 

iv. The total sum of the coefficients must be zero. 

It is also possible to test a set of contrasts simultaneously, based on the test 
statistic: 

4.36 

where R~ is the observed range of the means. Tables of the sampling distribution of 
q, when the null hypothesis of equal means is true, can be found in the literature. 

It can also be proven that the sampling distribution of q can be used to establish 
the following 1-a confidence intervals: 

4.37 

A popular test available in STATISTICA and SPSS, based on the result 4.37, is 
the Scheffe test. This test assesses simultaneously all possible pair-wise 
combinations of means with the aim of detecting homogeneous groups of classes. 

Example 4.15 

Q: Perform a one-way ANOVA on the Breast Tissue dataset, with post-hoc 
Scheffe test if applicable, using variable P A500. Discuss the results. 

A: Using the goodness of fit tests to be described in the following chapter, it is 
possible to show that variable P A500 distribution can be well approximated by the 
normal distribution in the six classes of breast tissue. Levene's test and one-way 
ANOV A test results are displayed in Tables 4.14 and 4.15. 

We see in Table 4.14 that the hypothesis of homogeneity of variances is not 
rejected at a 5% level. Therefore, the assumptions for applying the ANOV A test 
are fulfilled. 

Table 4.15 justifies the rejection of the null hypothesis with high significance 
(p < 0.01). This result entitles us to proceed to a post-hoc comparison using the 
Scheffe test, whose results are displayed in Table 4.16. We see that the following 
groups of classes were found as distinct at a 5% significance level: 

{CON, ADI, FAD, GLA}; {AD!, FAD, GLA, MAS}; {CAR} 

These results show that variable P A500 can be helpful in the discrimination of 
carcinoma type tissues from other types. 

0 
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Table 4.14. Levene's test results obtained with SPSS for the breast tissue problem 
(variable PA500). 

Levene Statistic 

1.747 

dfl 

5 

dt2 

100 

Sig. 

0.131 

Table 4.15. One-way ANOVA test results obtained with SPSS for the breast tissue 
problem (variable PA500). 

Sum of 
df Mean Square F Sig. 

S uares 
Between 

0.301 5 6.018E-02 31.135 0.000 
Groups 
Within 

0.193 100 1.933E-03 
Groups 

Total 0.494 105 

Table 4.16. Scheffe test results obtained with SPSS, for the breast tissue problem 
(variable PA500). Values under columns "1 ", "2" and "3" are group means. 

Subset for alpha= 0.05 

CLASS N 1 2 3 

CON 14 7.029E-02 

ADI 22 7.355E-02 7.355E-02 

FAD 15 9.533E-02 9.533E-02 

GLA 16 0.1170 0.1170 

MAS 18 0.1231 

CAR 21 0.2199 

Sig. 0.094 0.062 1.000 

Example 4.16 

Q: Taking into account the results of the previous Example 4.15, it may be asked 
whether or not class {CON} can be distinguished from the three-class group {ADI, 
FAD, GLA}, using variable PA500. Perform a contrast test in order to elucidate 
this issue. 

A: We perform the contrast corresponding to the null hypothesis: 

Ho: JlcoN = (JLFAD + f./GLA + f.lADI)/3, 
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i.e., we test whether or not the mean of class {CON} can be accepted equal to the 
mean of the joint class {FAD, GLA, ADI}. We therefore use the contrast 
coefficients shown in Table 4.17. Table 4.18 shows the t-test results for this 
contrast. The possibility of using variable PA500 for discrimination of class 
{CON} from the other three classes seems reasonable. 

Table 4.17. Coefficients for the contrast {CON} vs. {FAD, GLA, ADI}. 

CAR 

0 

FAD 

-1 

MAS 

0 

GLA 

-1 

CON 

3 

Table 4.18. Results of the t test for the contrast specified in Table 4.17. 

ADI 

-1 

0 

Value of 
Std. Error df Sig. (2-tailed) 

Contrast 

Assume equal 
-7.502E-02 3.975E-02 -1.887 100 0.062 

variances 

Does not assume 
-7.502E-02 2.801E-02 -2.678 31.79 0.012 

equal variances 

4.5.2.3 Power of the One-Way ANOVA 

In the one-way ANOV A, the null hypothesis states the equality of the means of c 
populations, p 1 = flz = ... = fln which are assumed to have a common value d for 
the variance. Alternative hypothesies correspond to specifYing different values for 
the population means. In this case, the spread of the means can be measured as: 

c 

~)!1; -Ji)2 /(c-1). 4.38 
i=I 

It is convenient to standardise this quantity by dividing it by d!n: 

c 

L(fl; -Ji) 2 /(c-1) 
f/J2 =..:...i=....:.I _____ _ 

CY21n 
4.39 

where n is the number of observations from each population. 
The square root of this quantity is known as the root mean square standardised 

effect, RMSSE = f/J. The sampling distribution of RMSSE when the basic 
assumptions are met, is available in tables and used by STATISTICA and SPSS 
power modules. 
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Example 4.17 

Q: Determine the power of the one-way ANOV A test performed in Example 4.14 
(variable ARTI) assuming as an alternative hypothesis that the population means 
are the sample means. 

A: Figure 4.16 shows the STATISTICA specification window for this power test. 
The RMSSE value can be specified using the Calc . Effects button and filling 
in the values of the sample means. The computed power is I, therefore a good 
detection of the alternative hypothesis is expected. 

Quick Settings 1/0 I 

Alpha. 

RMSSE 

Type ol Model---~ 

r. F ll<ed Effects 

r Random Effects 

0 

~~ Calc. Effects I 

Figure 4.16. STATISTICA specification window for computing the power of the 
one-way ANOV A test of Example 4.17. 

RMSSE = ?.697, Grou~ = 6, Alpha f 0.05 , 

1.0 -- --------( -- -- ----t ---,-·-·,;·..-..<'>-o-<>-<>-<>-<>-o-o-<>-o ··- ......... 

' 
' 

' I I I 

.9 ---------- !- ---- ----:---------- -~------- ---;----- ---- --r---- ------

• • I I I ' .......... ] .. ·······7··········>··········<······ .... , ......... . 

. 1 ----------! --------- ~- --------- -t --------- -~----- ---- --r-- --------
; 1 j Group Sa~ple Size (N) 

0 5 10 15 20 25 30 

Figure 4.17. Power curve obtained with STATISTICA showing the dependence on 
n, for Example 4.17. 
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Example 4.18 

Q: Consider the one-way ANOV A test performed in Example 4.15 (breast tissue). 
Compute its power assuming population means equal to the sample means and 
determine the minimum value of n that will guarantee a power of at least 95% in 
the conditions of the test. 

A: We compute the power for the worst case of n: n = 14. Using the sample means 
as the means corresponding to the alternative hypothesis, and the estimate of the 
standard deviations= 0.068, we obtain a standardised effect RMSSE = 0.6973. In 
these conditions, the power is 99.7%. 

Figure 4.17 shows the respective power curve. We see that a value of n ~ 10 
guarantees a power higher than 95%. 

D 

4.5.3 Two-Way ANOVA 

In the two-way ANOV A test we consider that the variable being tested, ~ is 
categorised by two independent factors, say Factor 1 and Factor 2. We say that .{ 
depends on two factors: Factor 1 and Factor 2. 

Assuming that Factor 1 has c categories and Factor 2 has r categories, and that 
there is only one random observation for every combination of categories of the 
factors, we get the situation shown in Table 4.19. The means for the Factor 1 
categories are denoted xi., x2., ••• , xc .. The means for the Factor 2 categories are 
denoted X. 1 , x_2 , ••• , x_,. The total mean for all observations is denoted x ... 

Note that the situation shown in Table 4.19 constitutes a generalisation to 
multiple samples of the comparison of means for two paired samples described in 
section 4.4.3.3. One can, for instance, view the cases as being paired according to 
Factor 2 and compare the means for Factor 1. The inverse situation is, of course, 
also possible. 

Table 4.19. Two-way ANOV A dataset showing the means along the columns, 
along the rows and the global mean. 

Factor 1 

Factor 2 2 c Mean 

Xtt Xzt Xc! x.l 

2 Xtz Xzz Xcz x.z 

r Xtr Xzr Xcr x.r 

Mean XI. Xz. XC. x 
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Following the AN OVA approach of breaking down the total sum of squares (see 
formulas 4.22 through 4.30), we are now interested in reflecting the dispersion of 
the means along the rows and along the columns. This can be done as follows: 

c r 

SST= ""(x -.X )2 
Ld . ...- 1J •· 
i=l j=l 

c r c r 

=r"(.X -.X )2 +c"(.X -.X )2 +""<x -.X -.X. +x )2 4.40 L..J I. .. L..J .J .. L..J L..J I] I. .J .. 
i=l j=l i=l j=l 

= SSC+SSR +SSE . 

Besides the term SST described in the previous section, the sums of squares 
have the following interpretation: 

I. SSC represents the sum of squares or dispersion along the columns, as the 
previous SSB. The variance along the columns is Vc = SSC/( c-1 ), has c-1 
degrees of freedom and is the point estimate of cr 2 + rcr?:. 

2. SSR represents the dispersion along the rows, i.e., is the row version of the 
previous SSB. The variance along the rows is vr = SSR/(r-1), has r-1 degrees of 
freedom and is the point estimate of cr 2 +ccr'/:. 

3. SSE represents the residual dispersion or experimental error. The experimental 
variance associated to the randomness of the experiment is ve = SSE I 
[(c-l)(r-1)], has (c-l)(r-1) degrees of freedom and is the point estimate of cr 2 . 

Note that formula 4.40 can only be obtained when c and rare constant along the 
rows and along the columns, respectively. This corresponds to the so-called 
orthogonal experiment. 

In the situation shown in Table 4.19, it is possible to consider every cell value as 
a random case from a population with mean JliJ, such that: 

c r 

Jlii = J1 + Jli. + J.L1 , with LJli. = 0 and LJ.i.J = 0, 4.41 
i=l j=l 

i.e., the mean of the population corresponding to cell ij is obtained by adding to a 
global mean J1 the means along the columns and along the rows. The sum of the 
means along the columns as well as the sum of the means along the rows, is zero. 
Therefore, when computing the mean of all cells we obtain the global mean J.L. It is 
assumed that the variance for all cell populations is d. 

In this single observation, additive effects model, one can, therefore, treat the 
effects along the columns and along the rows independently, testing the following 
null hypotheses: 

H01 : There are no column effects, Jli. = 0. 
H02 : There are no row effects, JlJ = 0. 
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The null hypothesis H01 is tested using the ratio v)ve, which, under the 
assumptions of independent sampling on normal distributions and with equal 
variances, follows the F c--l,(c-IXr-ll distribution. Similarly, and under the same 
assumptions, the null hypothesis H02 is tested using the ratio v,.lve and the 
Fr-l,(c-l)(r-1) distribution. 

Let us now consider the situation where for each combination of column and 
row categories, we have several values available. This repeated measurements 
experiment allows us to analyse the data more fully. We assume that the number of 
repeated measurements per table cell (combination of column and row categories) 
is constant, n, corresponding to the so-called factorial experiment. An example of 
this sort of experiment is shown in Figure 4.18. 

Now, the breakdown of the total sum of squares expressed by the equation 4.40, 
does not generally apply, and has to be rewritten as: 

SST= SSe + SSR + SSI + SSE, 4.42 

with: 

c r n 

1. SST= LLL(Xijk -:X .. J2. 
i=l j=lk=l 

Total sum of squares computed for all n cases in every combination of the cxr 
categories, characterising the dispersion of all cases around the global mean. The 
cases are denoted xiik• where k is the case index in each ij cell. 

c 

2. sse= rn:L(x; .. -:X.J 2 • 

i=l 

Sum of the squares representing the dispersion along the columns. The variance 
along the columns is vc = SSe/(c- 1), has c- 1 degrees of freedom and is the 
point estimate of u 2 +rna}. 

r 

3. SSR =en L (x.j. - :X_J 2 . 
j=l 

Sum of the squares representing the dispersion along the rows. The variance 
along the rows is vr = SSR/(r - 1 ), has r - 1 degrees of freedom and is the point 
estimate of u 2 +en a;. 

4. Besides the dispersion along the columns and along the rows, one must also 
consider the dispersion of the column-row combinations, i.e., one must consider 
the following sum of squares, known as subtotal or model sum of squares 
(similar to SSW in the one-way ANOVA): 

c r 

SSS=n""""(:X .. -:X ) 2 • L., L., 1]. ... 

i=l j=l 

5. SSE= SST- SSS. 
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Sum of the squares representing the experimental error. The experimental 
variance is ve = SSEI[rc(n- 1 )], has rc(n- 1) degrees of freedom and is the point 
estimate of () 2 • 

6. SSI = SSS - (SSC + SSR) = SST - SSC - SSR - SSE. 
The SSI term represents the influence on the experiment of the interaction of the 
column and the row effects. The variance of the interaction, V; = SSII[(c- 1) 
(r - 1)] has (c - 1)(r - 1) degrees of freedom and is the point estimate of 
()2 +n()J. 

Table 4.20. Canonical table for the two-way ANOV A test. 

Variance 
Sum of Squares df Mean Square F 

Source 

Columns sse c-1 Vc = SSCI(c-1) Vc I Ve 

Rows SSR r-1 v, = SSR/(r-1) Vr I Ve 

Interaction SSI (c-1)(r-l) V; = SSII[(c-1)(r-1 )] V; I Ve 

Subtotal SSS=SSC + SSR + SSI cr-1 Vm = SSSI( cr-1) vmf Ve 

Residual SSE cr(n-1) Ve = SSEI[cr(n-1)] 

Total SST crn-1 

Therefore, in the repeated measurements model, one can no longer treat 
independently the column and row factors; usually, a term due to the interaction of 
the columns with the rows has to be taken into account. 

The ANOV A table for this experiment with additive and interaction effects is 
shown in Table 4.20. The "Subtotal" row corresponds to the explained variance 
due to both effects, Factor 1 and Factor 2, and their interaction. The "Residual" row 
is the experimental error. 

The previous sums of squares can be shown to be computable as follows: 

c r n 

SST= L L ~:Xtk - T..~ l(rcn), 4.43a 
i=l J=ik=i 

c r 

SSS = L L xt. -T..~ l(rcn) 4.43b 
i=l J=i 

c 

sse= L (T/ I rn)- r..~ l(rcn)' 4.43c 
i=l 
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r 

SSR = I.r} /(en)- T.2 l(rcn), 4.43d 
)~l 

c r 

SSE= SST- L LrJ. I n-T 2 l(rcn), 4.43e 
i~l J~l 

where h. TJ, Tu. and r .. are the totals along the columns, along the rows, in each 
cell and the grand total, respectively. These last formulas are useful for manual 
computation (or when using EXCEL). 

Example 4.19 

Q: Consider the 3x2 experiment shown in Figure 4 .18, with n = 4 cases per cell. 
Determine all interesting sums of squares, variances and ANOV A results. 

A: In order to analyse the data with STATISTICA and SPSS, one must first create 
a table with two variables corresponding to the columns and row factors and one 
variable corresponding to the data values (see Figure 4.18). 

Table 4.21 shows the results obtained with SPSS. We see that only Factor 2 is 
found to be significant at a 5% level. Notice also that the interaction effect is only 
slightly above the 5% level; therefore, it can be suspected to have some influence 
on the cell means. In order to elucidate this issue, we inspect Figure 4.19, which is 
a plot of the estimated marginal means for all combinations of categories. If no 
interaction exists, we expect that the evolution of both curves is similar. This is not 
the case, however, in this example. We see that the category value of Factor 2 has 
an influence on how the estimated means depend on Factor I. 

The sums of squares can also be computed manually using the formulas 4.43. 
For instance, SSC is computed as: 

Factor I " Q • 
Factor 2 I 2 3 Totals 1 1 1 42.00 

2 1 1 39.00 
42 40 33 3 1 1 33.00 

39 37 46 l 1 1 43.00 

33 28 40 5 1 2 56.00 

I 43 38 45 464 6 1 2 56.00 
7 1 2 47.00 

56 41 39 If 1 2 58.00 
56 43 40 ~ 2 1 40.00 
47 55 49 10 2 1 37.00 

2 58 60 43 587 11 2 1 28.00 

Totals 374 342 335 1051 12 2 1 38.00 

Figure 4.18. Dataset for Example 4.19 two-way ANOV A test. On the left, the 
original table is shown. On the right, a partial view of the corresponding SPSS 
datasheet (fl and f2 are the factors). 
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Notice that in Table 4.21 the total sum of squares and the model sum of squares 
are computed using formulas 4.43a and 4.43b, respectively, without the last term of 
these formulas. Therefore, the degrees of freedom are ern and cr, respectively. 

D 

Table 4.21. Two-way ANOV A test results, obtained with SPSS, for Example 4.19. 

Source 
Type III Sum of 

df Mean Square 

Model 
F1 
F2 
F1 * F2 a 

Error 
Total 
a Interaction term. 

S uares 
46981.250 6 7830.208 

108.083 2 54.042 
630.375 I 630.375 
217.750 2 108.875 
639.750 18 35.542 

47621.000 24 
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F Sig. 

220.311 0.000 
1.521 0.245 

17.736 0.001 
3.063 0.072 

Figure 4.19. Plot of estimated marginal means for Example 4.19. Factor 2 (F2) 
interacts with Factor I (F I). 

Example 4.20 

Q: Consider the FHR-Apgar dataset, relating variability indices of foetal heart 
rate (FHR, given in percentage) with the responsiveness of the new-born (Apgar) 
measured on a 0-10 scale (see Appendix E). The dataset includes observations 
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taken in three hospitals. Perform a factorial model analysis on this dataset, for the 
variable ASTV (FHR variability index), using two factors: Hospital (3 categories, 
HUC = I, HGSA = 2 and HSJ = 3); Apgar I class (2 categories: 0 = [0, 8], I = 
[9, I 0]). In order to use an orthogonal model, select a random sample of n = 6 cases 
for each combination of the categories. 

A: Using specific tests described in the following chapter, it is possible to show 
that variable ASTV can be assumed to approximately follow a normal distribution 
for most combinations of the factor levels. We use the subset of cases marked with 
yellow colour in the FHR-Apgar. xl s file. For these cases Levene's test yields an 
observed significance of p = 0.48; therefore, the equality of variance assumption is 
not rejected. We are then entitled to apply the two-way ANOVA test to the dataset. 

The two-way ANOV A test results, obtained with SPSS, are shown in Table 4.22 
(factors HOSP = Hospital; APCLASS = Apgar 1 class). We see that the null 
hypothesis is rejected for the effects and their interaction (HOSP * APCLASS). 
Thus, the test provides evidence that the heart rate variability index ASTV has 
different means according to the Hospital and to the Apgar 1 category. 

Figure 4.20 illustrates the interaction effect on the means. Category 3 of HOSP 
has quite different means depending on the APCLASS category. 

D 

Table 4.22. Two-way ANOV A test results, obtained with SPSS, for Example 4.20. 

Source 
Type III Sum of 

df Mean Square F Sig. 
Squares 

Model 111365.000 6 18560.833 420.881 0.000 

HOSP 3022.056 2 1511.028 34.264 0.000 
APCLASS 900.000 900.000 20.408 0.000 

HOSP * APCLASS 1601.167 2 800.583 18.154 0.000 
Error 1323.000 30 44.100 
Total 112688.000 36 

Example 4.21 

Q: In the previous example, the two categories of APCLASS were found to exhibit 
distinct behaviours (see Figure 4.20). Use an appropriate contrast analysis in order 
to elucidate this behaviour. Also analyse the following comparisons: hospital 2 vs. 
3; hospital 3 vs. the others; all hospitals among them for category 1 of APCLASS. 

A: Contrasts in two-way ANOV A are carried out in a similar manner as to what 
was explained in section 4.5.2.2. The only difference is that in two-way ANOVA, 
one can specify contrast coefficients that do not sum up to zero. Table 4.23 shows 
the contrast coefficients used for the several comparisons: 
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a. The comparison between both categories of APCLASS uses symmetric 
coefficients for this variable, as in 4.5.2.2. Since this comparison treats all levels 
ofHOSP in the same way, we assign to this variable equal coefficients. 

b. The comparison between hospitals 2 and 3 uses symmetric coefficients for these 
categories. Hospital 1 is removed from the analysis by assigning a zero 
coefficient to it. 

c. The comparison between hospital 3 versus the others uses the assignment rule 
for merged groups already explained in 4.5.2.2. 

d. The comparison between all hospitals, for category 1 of APCLASS, uses two 
independent contrasts. These are tested simultaneously, representing an 
exhaustive set of contrasts that compare all levels of HOSP. Category 0 of 
APCLASS is removed from the analysis by assigning a zero coefficient to it. 

Table 4.23. Contrast coefficients and significance for the comparisons described in 
Example 4.21. 

Contrast (a) (b) (c) (d) 

APCLASS 0 HOSP2 HOSP3 HOSP 
Description vs. vs. vs. for 

APCLASS I HOSP3 {HOSP I, HOSP 2} APCLASSI 

HOSP coef. 0 -1 -2 
1 0 -1 
0 -1 

APCLASS coef. -1 0 

p 0.00 0.00 0.29 0.00 

STATISTICA and SPSS provide the possibility of testing contrasts in multi-way 
ANOV A analysis. With STA TISTICA, the user fills in at will the contrast 
coefficients in a specific window (e.g. click Specify contrasts for LS 
means in the Planned camps tab of the ANOVA command, with 
HOSP*APCLASS interaction effect selected). SPSS follows the approach of 
computing an exhaustive set of contrasts. 

The observed significance values in the last row of Table 4.23 lead to the 
rejection of the null hypothesis for all contrasts except contrast (c). 

D 
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Figure 4.20. Plot of estimated marginal means for Example 4.20. 

Table 4.24. Cell statistics for the FHR-Apgar dataset used in Example 4.20. 

HOSP A PC LASS N Mean Std. Dev. 

I 0 6 64.3 4.18 
I I 6 64. 7 5.57 
2 0 6 43 .0 6.81 
2 I 6 41.5 7.50 
3 0 6 70.3 5.75 
3 6 41.5 8.96 

Example 4.22 

Q: Determine the power for the two-way ANOV A test of previous Example 4.20 
and the minimum number of cases per group that affords a row effect power above 
95%. 

A: Power computations for the two-way ANOV A follow the approach explained in 
section 4.5.2.3. 

First, one has to determine the cell statistics in order to be able to compute the 
standardised effects of the columns, rows and interaction. The cell statistics can be 
easily computed with STA TISTICA, SPSS or MA TLAB. The values for this 
example are shown in Table 4.24. With ST A TISTICA one can fill in these values 
in order to compute the standardised effects as shown in Figure 4.21 b. The other 
specifications are entered in the power specification window, as shown in Figure 
4.21a. 
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The power values computed by ST ATISTICA are 0.90, 1.00 and 0.97 for the 
rows, columns and interaction, respectively. 

The power curve for the row effects, dependent on n is shown in Figure 4.22 . 
We see that we need at least 8 cases per cell in order to achieve a row effect power 
above 95%. 

FIXed Parametets-----. 

N per !Jcql: ~Iii 

~ ~~~ 
No. d ROW$; r-11 
No. d Colt.: ~~~ 

Row Rlo!SSE: j . 783055 ~~ 

Cd. Rlo!SSE: 11.24668 II 
lrt. Rlo!SSE: ji2ii36211J 

l.J ~- Effects ! 

[=--=~~~ 
[~~j:e.;Jj 

S9no ~Iii 

D 

OK 

d-~ --------~----------~--~ b ~=-~--~~~~~~--~~~~ 

Figure 4.21. Specifying the parameters for the power computation with 
STATISTICA in Example 4.22: a) Fixed parameters; b) Standardised effects 
computed with the values of Table 4.24. 

2-Way (2 X 3 ) ANOVA 
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Figure 4.22. Power curve for the row effect of Example 4.22. 
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Commands 4.6. STATISTICA, SPSS and MATLAB commands used to perform 
the two-way ANOV A test. 

STATISTICA 

SPSS 

MATLAB 

Statistics; ANOVA; Factorial ANOVA 

Statistics; Advanced Linear/Nonlinear 
Models; General Linear Models; Main 
effects ANOVA I Factorial ANOVA 

Analyze; General Linear Model; 
Univariate I Multivariate 

[p,table]=anova2(x,reps, 'dispopt') 

The easiest commands to perform the two-way ANOV A test with STA TISTICA 
and SPSS are ANOVA and General Linear Model; Univariate, 
respectively. Contrasts in STATISTICA can be specified using the Planned 
camps tab. 

As mentioned in Commands 4.5 be sure to check the No intercept box in 
STATISTICA (Options tab) and uncheck Include intercept in model 
in SPSS (General Linear Model, Model tab). In STATISTICA the 
Sigma-restricted box must also be unchecked; the model will then be the 
Type I I I orthogonal model. 

The meanings of most arguments and return values of anova2 MA TLAB 
command are the same as in Commands 4.5. The argument reps indicates the 
number of observations per cell. For instance, the two-way ANOV A analysis of 
Example 4.19 would be performed in MA TLAB using a matrix x containing 
exactly the data shown in Figure 4.18a, with the command: 

» anova2(x,4) 

The same results shown in Table 4.21 are obtained. • 

Exercises 

4.1 Consider the meteorological dataset used in Example 4. I. Test whether I 980 and I 982 
were atypical years with respect to the average maximum temperature. Use the same 
test value as in Example 4. I. 

4.2 Show that the alternative hypothesis .Urst = 39.8 for Example 4.3 has a high power. 
Determine the smallest deviation from the test value that provides at least a 90% 
protection against Type II Errors. 

4.3 Perform the computations of the powers and critical region thresholds for the one-sided 
test examples used to illustrate the RS and AS situations in section 4.2. 
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4.4 Compute the power curve corresponding to Example 4.3 and compare it with the curve 
obtained with STATISTICA or SPSS. Determine for which deviation of the null 
hypothesis "typical" temperature one obtains a reasonable protection (power > 80%) 
against alternative hypothesis. 

4.5 Consider the Programming dataset containing student scores during the period 1986-
88. Test at 5% level of significance whether or not the mean score is 10. Study the 
power of the test. 

4.6 Determine, at 5% level of significance, whether the standard deviations of variables CG 
and EG ofthe Moulds dataset are larger than 0.005 mm. 

4.7 Check whether the correlations studied in Exercises 2.9, 2.10. 2.17, 2.18 and 2.19 are 
significant at 5% level. 

4.8 Study the correlation of HFS with lOA= 110- 12351 + 0.1, where HFS and 10 are 
variables of the Breast Tissue dataset. Is this correlation more significant than the one 
between HFS and lOS in Example 2.18? 

4.9 The CFU datasheet of the Cells dataset contains bacterial counts in three organs of 
sacrificed mice at three different times. Counts are performed in the same conditions in 
two groups of mice: a protein-deficient group (KO) and a normal, control group (C). 
Assess at 5% level whether the spleen bacterial count in the two groups are different 
after two weeks of infection. Which type of test must be used? 

4.10 Assume one wishes to compare the measurement sets CG and EG of the Moulds 
dataset. 
a) Which type of test must be used? 
b) Perform the two-sample mean test at 5% level and study the respective power. 
c) Assess the equality of variance of the sets. 

4.11 Assume we want to discriminate carcinoma from other tissue types, using one of the 
characteristics of the Breast Tissue dataset. 
a) Assess, at 5% significance level, whether such discrimination can be achieved 

with one of the characteristics 10, AREA and PERIM. 
b) Assess the equality of variance issue. 
c) Assess whether the rejection of the alternative hypothesis corresponding to the 

sample means is made with a power over 80%. 

4.12 Consider the Infarct dataset containing the measurements EF, lAD and GRD and a 
score variable (SCR), categorising the severeness of left ventricle necrosis. Determine 
which of those three variables discriminate at 5% level of significance the score group 
2 from the group with scores 0 and I. Discuss the methods used checking the equality 
of variance assumption. 

4.13 Consider the comparison between the mean neonatal mortality rate at home (MH) and 
in Health Centres (MI) based on the samples of the Neonatal dataset. What kind of 
test should be applied in order to assess this two-sample mean comparison and which 
conclusion is drawn from the test at 5% significance level? 
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4.14 The FHR-Apgar dataset contains measurements, ASTV, of the percentage of time that 
foetal heart rate tracings exhibit abnormal short-term variability. Use a two-sample t 
test in order to compare ASTV means for pairs of Hospitals HSJ, HGSA and HUC. 
State the conclusions at a 5% level of significance and study the power ofthe tests. 

4.15 The distinction between white and red wines was analysed in Example 4.9 using 
variables ASP and PHE from the Wines dataset. Perform the two-sample mean test for 
all variables of this dataset in order to obtain the list of the variables that are capable of 
achieving the white vs. red discrimination with 95% confidence level. Also determine 
the variables for which the equality of variance assumption can be accepted. 

4.16 For the variable with lowest p in the previous Exercise 4.15 check that the power of the 
test is I 00% and that the test guarantees the discrimination of a 1.3 mg/1 mean 
deviation with power at least 80%. 

4.17 Perform the comparison of white vs. red wines using the GL Y variable of the Wines 
dataset. Also depict the situations of an RS and an AS test, computing the respective 
power for a= 0.05 and a deviation of the means as large as the sample mean deviation. 
Hint: Represent the test as a single mean test with fJ = f11 - 112 and pooled standard 
deviation. 

4.18 Determine how large the sample sizes in the previous exercise should be in order to 
reach a power of at least 80%. 

4.19 Using the Programming dataset, compare at 5% significance level the scores 
obtained by university freshmen in a programming course, for the following two 
groups: "No pre-university knowledge of programming"; "Some degree of pre
university knowledge of programming". 

4.20 Consider the comparison of the six tissue classes of the Breast Tissue dataset 
studied in Example 4.15. Perform the following analyses: 
a) Verify that PA500 is the only suitable variable to be used in one-way ANOVA, 

according to Levene's test of equality of variance. 
b) Use adequate contrasts in order to assess the following class discriminations: 

{car}, {con, adi}, {mas, fad, gla}; {car} vs. all other classes. 

4.21 Assuming that in the previous exercise one wanted to compare classes {fad}, {mas} 
and {con}, answer the following questions: 
a) Does the one-way ANOV A test reject the null hypothesis at a = 0.005 

significance level? 
b) Assuming that one would perform all possible two-sample t tests at the same a= 

0.005 significance level, would one reach the same conclusion as in a)? 
c) What value should one set for the significance level of the two-sample t tests in 

order to reject the null hypothesis in the same conditions as the one-way ANOV A 
does? 

4.22 Determine whether or not one should accept with 95% confidence that pre-university 
knowledge of programming has no influence on the scores obtained by university 
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:freshmen in a programming course (Porto University), based on the Programming 
dataset. 
Use the Levene test to check the equality of variance assumption and determine the 
power of the test. 

4.23 Perform the following post-hoc comparisons for the previous exercise: 
a) Scheffe test. 
b) "No previous knowledge" vs. "Some previous knowledge" contrast. Compare the 

results with those obtained in Exercise 4.19 

4.24 Consider the comparison of the bacterial counts as described in the CFU datasheet of 
the Cells dataset (see Exercise 4.9) for the spleen and the liver at two weeks and at 
one and two months ("time of count" categories). Using two-way AN OVA performed 
on the first 5 counts of each group ("knock-out" and "control"), check the following 
results: 
a) In what concerns the spleen, there are no significant differences at 5% level either 

for the group categories or for the "time of count" categories. There is also no 
interaction between both factors. 

b) For the liver there are significant differences at 5% level, both for the group 
categories and for the "time of count" categories. There is also a significant 
interaction between these factors as can also be inferred from the respective 
marginal mean plot. 

c) The test power in this last case is above 80% for the main effects. 

4.25 The SPLEEN datasheet of the Cells dataset contains percent counts of bacterial load 
in the spleen of two groups of mice ("knock-out" and "control") measured by two 
biochemical markers (CD4 and CDS). Using two-way ANOVA, check the following 
results: 
a) Percent counts after two weeks of bacterial infection exhibit significant 

differences at 5% level for the group categories, the biochemical marker 
categories and the interaction of these factors. However, these results are not 
reliable since the observed significance of the Levene test is low (p = 0.0 14). 

b) Percent counts after two months of bacterial infection exhibit a significant 
difference (p = 0) only for the biochemical marker. This is a reliable result since 
the observed significance ofthe Levene test is larger than 5% (p = 0.092). 

c) The power in this last case is very large (p "' I). 

4.26 Using appropriate contrasts check the following results for the ANOVA study of 
Exercise 4.24 b: 
a) The difference of means for the group categories is significant with p = 0.006. 
b) The difference of means for "two weeks" vs "one or two months" is significant 

with p = 0.001. 
c) The difference of means of the time categories for the "knock-out" group alone is 

significant with p = 0.027. 



5 Non-Parametric Tests of Hypotheses 

The tests of hypotheses presented in the previous chapter were "parametric tests", 
that is, they concerned parameters of distributions. In order to apply these tests, 
certain conditions about the distributions must be verified. In practice, these tests 
are applied when the sampling distributions of the data variables reasonably satisfy 
the normal model. 

Non-parametric tests make no assumptions regarding the distributions of the 
data variables; only a few mild conditions must be satisfied when using most of 
these tests. Since non-parametric tests make no assumptions about the distributions 
of the data variables, they are adequate to small samples, which would demand the 
distributions to be known precisely in order for a parametric test to be applied. 
Furthermore, non-parametric tests often concern different hypotheses about 
populations than do parametric tests. Finally, unlike parametric tests, there are non
parametric tests that can be applied to ordinal and/or nominal data. 

The use of fewer or milder conditions imposed on the distributions comes with a 
price. The non-parametric tests are, in general, less powerful than their parametric 
counterparts, when such a counterpart exists and is applied in identical conditions. 
In order to compare the power of a test B with a test A, we can determine the 
sample size needed by B, n8 , in order to attain the same power as test A, using 
sample size nA, and with the same level of significance. The following power
efficiency measure of test B compared with A, 17sA. is then defined: 

5.1 

For many non-parametric tests (B) the power efficiency, 17 BA, relative to a 
parametric counterpart (A) has been studied and the respective results divulged in 
the literature. Surprisingly enough, the non-parametric tests often have a high 
power-efficiency when compared with their parametric counterparts. For instance, 
as we shall see in a later section, the Mann-Whitney test of central location, for two 
independent samples, has a power-efficiency that is usually larger than 95%, when 
compared with their parametric counterpart, the t test. This means that when 
applying the Mann-Whitney test we usually attain the same power as the t test 
using a sample size that is only 1/0.95 bigger (i.e., about 5% bigger). 

J. P. Marques de Sá, Applied Statistics Using SPSS, STATISTICA and MATLAB
© Springer-Verlag Berlin Heidelberg 2003
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5.1 Inference on One Population 

5.1.1 The Runs Test 

The runs test assesses whether or not a sequence of observations can be accepted 
as a random sequence, that is, with independent successive observations. Note that 
most tests of hypotheses do not care about the order of the observations. Consider, 
for instance, the meteorological data used in Example 4.1. In this example, when 
testing the mean based on a sample of maximum temperatures, the order of the 
observations is immaterial. The maximum temperatures could be ordered by 
increasing or decreasing order, or could be randomly shuffled, still giving us 
exactly the same results. 

Sometimes, however, when analysing sequences of observations, one has to 
decide whether a given sequence of values can be assumed as exhibiting a random 
behaviour. 

Consider the following sequences of n = 12 trials of a dichotomous experiment, 
as one could possibly obtain when tossing a coin: 

Sequence 1: 0 0 0 0 0 0 

Sequence 2: 0 0 0 0 0 0 

Sequence 3: 0 0 0 0 0 0 

Sequences I and 2 would be rejected as random since a dependency pattern is 
clearly present'. Such sequences raise a reasonable suspicion concerning either the 
"fairness" of the coin-tossing experiment or the absence of some kind of data 
manipulation (e.g. sorting) of the experimental results. Sequence 3, on the other 
hand, seems a good candidate of a sequence with a random pattern. 

The runs test analyses the randomness of a sequence of dichotomous trials. Note 
that all the tests described in the previous chapter (and others to be described next 
as well) are insensitive to data sorting. For instance, when testing the mean of the 
three sequences above, with H0 : 11 = 6/12 = Yz, one obtains the same results. 

The test procedure uses the values of the number of occurrences of each 
category, say n1 and n2 for I and 0 respectively, and the number of runs, i.e., the 
number of occurrences of an equal value subsequence delimited by a different 
value. For sequence 3, the number of runs, r, is equal to 7, as seen below: 

Sequence 3: 0 0 

Runs: 

0 

2 3 4 

0 

5 6 

0 0 

7 

Note that we are assessing the randomness of the sequence, not of the process that generated it. The 
interested reader will find a detailed discussion of this topic in (Beltrami E, 1999). 
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The runs test assesses the null hypothesis of randomness, using the sampling 
distribution of r, given n1 and n2• Tables of this sampling distribution can be found 
in the literature. For large n1 or n2 (say above 20) the sampling distribution of r is 
well approximated by the normal distribution with the following parameters: 

5.2 

Notice that the number of runs always satisfies, 1 s r s n, with n = n1 + n2• The 
null hypothesis is rejected when there are either too few (e.g. Sequence 1) or too 
many (e.g. Sequence 2) runs. For the previous sequences, at a 5% level the critical 
values of r for n1 = n2 = 6 are 3 and 11, i.e. the non-critical region is [ 4, 1 0]. We, 
therefore, reject at 5% level the null hypothesis of randomness for Sequence 1 
(r = 2) and Sequence 2 (r = 12), and do not reject the null hypothesis for Sequence 
3 (r = 7). 

The runs test can be used with any sequence of values and not necessarily 
dichotomous, if previously the values were dichotomised, e.g. using the mean or 
the median. 

Example 5.1 

Q: Consider the noise sequence in the Signal & Noise dataset (first column) 
generated with the "normal random number" routine of EXCEL with zero mean. 
The sequence has n = 100 noise values. Use the runs test to assess the randomness 
of the sequence. 

A: We apply SPSS runs test command, using an imposed (Custom) 
dichotomization around zero, obtaining an observed two-tailed significance of 
p = 0.048. At a 5% level of significance the randomness of the sequence is not 
rejected. 

0 

Example 5.2 

Q: Consider the Forest Fires dataset (see Appendix E), which contains the 
area (ha) of burnt forest in Portugal during the period 1943-1978. Is there evidence 
from this sample, at a 5% significance level, that the area of burnt forest behaves as 
a random sequence? 

A: The area of burnt forest depending on the year is shown in Figure 5.1. Notice 
that there is a clear trend we must remove before attempting the runs test. Figure 
5.1 also shows the regression line with a null intercept, i.e. passing through the 
point (0,0), obtained with the methods that will be explained later in Chapter 7. 

We now compute the residuals and use them for the runs test. When analysed 
with SPSS, we find an observed two-tailed significance of p = 0.335. Therefore, 
we do not reject the null hypothesis that the area of burnt forest behaves as a 
random sequence superimposed on a linear trend. 

0 
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Figure 5.1. Area of burnt forest in Portugal during the years I943-I978. The 
dotted line is a linear fit with null intercept. 

Commands 5.1. SPSS command used to perform the runs test. 

SPSS Analyze; Nonparametric Tests ; Runs 

• 

5.1.2 The Binomial Test 

The binomial or proportion test is used to assess whether there is evidence from 
the sample that one category of a dichotomised population occurs in a certain 
proportion of times. Let us denote the categories or classes of the population by {1), 

coded 1 for the category of interest and 0 for the complement. The test can be then 
formalised as: 

H0: P({I)=I) = p 
Ht : P({I)=I) ;e p 

(andP({I) =O) = I-p = q); 
(and P({I)=O) ;e q ). 

Given a data sample with n i.i.d. cases, k of which correspond to {I) = I, we know 
from Chapter 3 (see also Appendix C) that the point estimate of p is p = kin. In 
order to establish the critical region of the test, we take into account that the 
probability of obtaining k events of {I)= I in n trials is given by the binomial law. 
Let It denote the random variable associated to the number of times that {I) = I 
occurs in a sample of size n. We then have the binomial sampling distribution 
(section A.7 .1): 

P(p = p) = P( It = k) = (: )p k q n-k ; k = 0, I, ... ,n. 
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When n is small (say, below 25), the non-critical region is usually quite large 
and the power of the test quite low. We have also found useless large confidence 
intervals for small samples in section 3.3, when estimating a proportion. The test 
yields useful results only for large samples (say, above 25). In this case (especially 
when np or nq are larger than 25, see A.7.3), we use the normal approximation of 
the sampling distribution: 

k. -np 
z=-- ~ N 01 

~npq , 
5.3 

Notice that denoting by p the random variable corresponding to the proportion 
of successes in the sample (with observed value p =kin), we may write 5.3 as: 

k. -np ft/n- p p- p 
z=--= =--=== 

~npq ~pq/n ~pq/n. 
5.4 

The binomial test is then performed in the same manner as the test of a single 
mean described in section 4.3 .1. The approximation to the normal distribution 
becomes better if a continuity correction is used, reducing by 0.5 the difference 
between the observed mean ( np) and the expected mean (np). 

As shown in Commands 5.3, SPSS has a specific command for carrying out the 
binomial test. SPSS uses the normal approximation with continuity correction for 
n > 25. In order to perform the binomial test with STATISTICA or MATLAB, one 
uses the single sample t test command. 

Example 5.3 

Q: According to Mendel's Heredity Theory, a cross breeding of yellow and green 
peas should produce them in a proportion of three times more yellow peas than 
green peas. A cross breeding of yellow and green peas was performed and 
produced 176 yellow peas and 48 green peas. Are these experimental results 
explainable by the Theory? 

A: Given the theoretically expected values of the proportion of yellow peas, the 
test is formalised as: 

Ho: P(m=l) =%; 
Ht: P(m=l) :;t: %. 

In order to apply the binomial test to this example, using SPSS, we start by 
filling in a datasheet as shown in Table 5.1. 

Next, in order to specify that category 1 of pea-type occurs 176 times and the 
category 0 occurs 48 times, we use the "weight cases" option of SPSS, as shown in 
Commands 5.2. In the Weight Cases window we specify that the weight 
variable is n. 
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Finally, with the binomial command of SPSS, we obtain the results shown in 
Table 5.2, using % = 0.75 as the tested proportion. Note the "Based on Z 
Approximation" foot message displayed by SPSS. The two-tailed significance is 
0.248, so therefore, we do not reject the null hypothesis P(m=l) = 0.75. 

Table 5.1. Datasheet for Example 5.3. 

group 

1 

2 

pea-type 

I 

0 

n 

176 

48 

Table 5.2. Binomial test results obtained with SPSS for the Example 5.3. 

Category 
Observed 

Test Prop. 
Asymp. Sig. 

n 
Prop. (!-tailed) 

PEA TYPE Group 1 1 176 0.79 0.75 O.J24a 

Group 2 0 48 0.21 

Total 224 1.00 
a Based on Z approximation. 

Let us now carry out this test using the values of the standardised normal 
distribution. The important values to be computed are: 

np = 224x0.75 = 168; 
s = ~npq = .J'22_4_x-0.-7-5x-0-.2-5 = 6.48. 

Therefore, using the continuity correction, we obtain z = (168- 176 + 0.5)/6.48 
= -1.157, to which corresponds a one-tailed probability of 0.124 as reported in 
Table 5.2. 

When performing this test with STA TISTICA or MA TLAB using the single 
sample t test, a somewhat different value is obtained because no continuity 
correction is used and the standard deviation is estimated from p. This difference 
is frequently of no importance. With MATLAB the test is performed as follows: 

» x = [ones(176,1); zeros(48,1)]; 
» [h, sig, ci]=ttest(x,0.75,0.05,0) 
h 

0 
sig 

0.195 
ci 

0.7316 0.8399 
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Note that x is defined as a column vector filled in with 176 ones followed by 48 
zeros. The commands ones (m, n) and zeros (m, n) define matrices with m 
rows and n columns filled with ones and zeros, respectively. The notation [A; B] 
defines a matrix by juxtaposition of the matrices A and B side by side along the 
columns (along the rows when omitting the semicolon). 

The results of the test indicate that the null hypothesis cannot be rejected (h= 0 ). 
The two-tailed significance is 0.195, somewhat lower than previously found 
(0.248), for the above mentioned reasons. 

0 

Example 5.4 

Q: Consider the Freshmen dataset, relative to the Porto Engineering College. 
Assume that this dataset represents a random sample of the population of freshmen 
in the College. Does this sample support the hypothesis that there is an even 
chance that a freshman in this College can be either male or female? 

A: We formalise the test as: 

Ho: P(w=l) = 12; 
H1: P(w=l) * 12. 

The results obtained with SPSS are shown in Table 5.3. Based on these results, 
we reject the null hypothesis with high confidence. 

Note that SPSS always computes a two-tailed significance for a test proportion 
of 0.5 and a one-tailed significance otherwise. 0 

Table 5.3. Binomial test results, obtained with SPSS, for the freshmen dataset. 

Category 
Observed 

Test Prop. 
Asymp. Sig. 

n 
ProE. {2-tailed} 

SEX Group I female 35 0.27 0.50 0.000 

Group 2 male 97 0.73 

Total 132 1.00 

Commands 5.2. STATISTICA and SPSS commands used to specify case 
weighing. 

STATISTICA Tools; Weight 

SPSS Data; Weight Cases 

These commands pop up a window where one specifies which variable to use as 
weight variable and whether weighting is "On" or "Off'. Many STATISTICA 
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commands also include a weight button (a, !!'! ) in connection with the weight 
specification window. Case weighing is useful whenever the datasheet presents the 
data in a compact way, with a specific column containing the number of 
occurrences of each case. 

• 
Commands 5.3. STATISTICA, SPSS and MATLAB commands used to perform 
the binomial test. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Basic Statistics and Tables; 
t-test, single sample 

Analyze; Nonparametric Tests; Binomial 

[h,sig,ci]=ttest(x,m,alpha,tail) 

5.1.3 The Chi-Square Goodness of Fit Test 

• 

The previous binomial test applied to a dichotomised population. When there are 
more than two categories, one often wishes to assess whether the observed 
frequencies of occurrence in each category are in accordance to what should be 
expected. Let us start with the statistic 5.3 and square it: 

2 ( ) ? 2 z2 = (p- p) = n(p- p)2 _!_+_!_ = c~l -npt + (~2 -nq) , 
pq! n p q np nq 

5.5 

where~ and .\2 are the random variables associated with the number of "successes" 
and "failures", respectively, in then-sized sample. 

Let us now consider k categories of events, each one represented by a random 
variable ~i, and, furthermore, let us denote by Pi the probability of occurrence of 
each category. Note that the joint distribution of the ~ i is a multinomial 
distribution, described in B.l.6. The result 5.5 is generalised for this multinomial 
distribution, as follows (see property 5 ofB.2.7): 

5.6 

where the number of degrees of freedom, df = k- 1, is imposed by the restriction: 

k 

L~i =n. 
i=l 

5.7 
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As a matter of fact, the chi-square law is only an approximation for the sampling 
distribution of z*l, given the dependency expressed by 5.7. 

In order to test the goodness of fit of the observed counts Oi to the expected 
counts Ei, that is, to test whether or not the following null hypothesis is rejected: 

H0: The population has absolute frequencies Ei for each of the i =1, .. , k 
categories, 

we then use test the statistic: 

5.8 

which, according to formula 5.6, has approximately a chi-square distribution with 
df = k - 1 degrees of freedom. The approximation is considered acceptable if the 
following conditions are met: 

i. For df= 1, no Ei must be smaller than 5; 

11. For df> 1, no Ei must be smaller than 1 and no more than 20% of the Ei must 
be smaller than 5. 

Expected absolute frequencies can sometimes be increased, in order to meet the 
above conditions, by merging adjacent categories. 

When the difference between observed ( Oi) and expected counts (E) is large, 
the value of £ 2 will also be large and the respective tail probability small. For a 
0.95 confidence level, the critical region is above xf-1.0.95. 

Example 5.5 

Q: A die was thrown 40 times with the observed number of occurrences 8, 6, 3, 10, 
7, 6, respectively for the face value running from 1 through 6. Does this sample 
provide evidence that the die is not honest? 

A: Table 5.4 shows the results of applying the chi-square test to this data sample. 
Based on the high value of the observed significance, we do not reject the null 
hypothesis that the die is honest. 

0 

Example 5.6 

Q: It is a common belief that the best academic freshmen students usually 
participate in freshmen initiation rites only because they feel compelled to do so. 
Does the Freshmen dataset confirm that belief for the Porto Engineering 
College? 

A: We use the categories of answers obtained for Question 6, "I felt compelled to 
participate in the Initiation", of the freshmen dataset (see Appendix E). The 
respective EXCEL file contains the computations of the frequencies of occurrence 
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of each category and for each question, assuming a specified threshold for the 
average results in the examinations. Using, for instance, the threshold = 10, we see 
that there are I 02 "best" students, with average examination score not less than the 
threshold. From these I 02, there are varied counts for the five categories of 
Question 6, ranging from 16 students that "fully disagree" to 5 students that "fully 
agree". 

Under the null hypothesis, the answers to Question 6 have no relation with the 
freshmen performance, and we would expect equal frequencies for all categories. 

The chi-square test results obtained with SPSS are shown in Table 5.5. Based on 
these results, we reject the null hypothesis: there is evidence that the answer to 
Question 6 of the freshmen enquiry bears some relation with the student 
performance. 

0 

Table 5.4. Dataset (a) and results (b), obtained with SPSS, of the chi-square test 
for the die-throwing experiment (Example 5.5). The residual column represents the 
differences between observed and expected frequencies. 

FACE Observed N Expected N Residual FACE 

8 6.7 1.3 
Chi-Square 4.100 

2 6 6.7 -0.7 

3 3 6.7 -3.7 
df 5 

4 10 6.7 3.3 

5 7 6.7 0.3 
Asymp. Sig. 0.535 

6 6 6.7 -0.7 
a b 

Table 5.5. Dataset (a) and results (b), obtained with SPSS, for Question 6 of the 
freshmen enquiry and 102 students with average score ~10. 

CAT Observed N Expected N Residual CAT 

16 20.4 -4.4 Chi-Square 32.020 
2 26 20.4 5.6 

3 39 20.4 18.6 df 4 
4 16 20.4 --4.4 

5 5 20.4 -15.4 Asymp. Sig. 0.000 
a b 

Example 5.7 

Q: Consider the variable ART representing the total area of defects of the Cork 
Stoppers' dataset, for the class I (Super) of corks. Does the sample data 
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provide evidence that this variable can be accepted as being normally distributed in 
that class? 

A: This example illustrates the application of the chi-square test for assessing the 
goodness of fit to a known distribution. In this case, the chi-square test uses the 
deviations of the observed absolute frequencies vs. the expected absolute 
frequencies under the condition of the stated null hypothesis, i.e., that the variable 
ART is normally distributed. 

In order to compute the absolute frequencies, we have to establish a set of 
intervals based on the percentiles of the normal distribution. Since the number of 
cases is n = 50, and we want the conditions for using the chi-square distribution to 
be fulfilled, we use intervals corresponding to 20% of the cases. Table 5.6 shows 
these intervals, under the "z-Interval" heading, which can be obtained from the 
tables of the standard normal distribution or using software functions, such as the 
ones already described for ST A TISTICA, SPSS and MA TLAB. 

Table 5.6. Observed and expected (under the normality assumption) absolute 
frequencies, for variable ART of the cork-stopper dataset. 

Cat. z-lnterva1 Cumulative ART-Interval Expected Observed 
p Frequencies Frequencies 

]- oo, -0.8416] 0.20 [0, 101] 10 10 

2 ]-0.8416, -0.2533] 0.40 ]101, 126] 10 8 

3 ]-0.2533, 0.2533] 0.60 ]126, 148] 10 14 

4 ] 0.2533, 0.8416] 0.80 ] 148, 173] 10 9 

5 ] 0.8416, +oo [ 1.00 > 173 10 9 

The corresponding interval cutpoints for the random variable under analysis, .K, 

can now be easily determined, using: 

5.9 

where we use the sample mean and standard deviation as well as the cutpoints 
determined for the normal distribution, Zcut· In the present case, the mean and 
standard deviation are 137 and 43, respectively, which leads to the intervals under 
the "ART-Interval" heading. 

The absolute frequency columns are now easily computed. With STATISTICA, 
SPSS and MATLAB we now obtain the value of £ 2 = 2.2. We must be careful, 
however, when obtaining the corresponding significance in this application of the 
chi-square test. The problem is that now we do not have df = k - 1 degrees of 
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freedom, but df = k- I - np, where np is the number of parameters computed from 
the sample. In our case, we derived the interval boundaries using the sample mean 
and sample standard deviation, i.e., we lost two degrees of freedom. Therefore, we 
have to compute the probability using df = 5 - I - 2 = 2 degrees of freedom, or 
equivalently, compute the critical region boundary as: 

z?.o.95 = 5.99. 

Since the computed value of the £ 2 is smaller than this critical region boundary, 
we do not reject at 5% significance level the null hypothesis of variable ART being 
normally distributed. 

D 

Commands 5.4. STATISTICA, SPSS and MATLAB commands used to perform 
the chi-square goodness of fit test. 

STATISTICA 
Statistics; Nonparametrics; Observed 
versus expected X2 • 

SPSS 

MATLAB 

Analyze; Nonparametric Tests; Chi-Square 

chi2critical = chi2inv(p,df) 

• 

5.1.4 The Kolmogorov-Smirnov Goodness of Fit Test 

The Kolmogorov-Smimov goodness of fit test is a one-sample test designed to 
assess the goodness of fit of a data sample to a hypothesised continuous 
distribution, F Jx). The null hypothesis is formalised as: 

H0: Data variable .thas a cumulative probability distribution F4,x) = F(x). 

Let Sn(x) be the observed cumulative distribution of the random sample, x 1, 

x2, • •• , Xn, also called empirical distribution. Assuming the sample data is sorted in 
increasing order, the values of Sn(x) are obtained by adding the successive 
frequencies of occurrence, k/n, for each distinct X;. 

Under the null hypothesis one expects to obtain small deviations of Sn(x) from 
F(x). The Kolmogorov-Smimov test uses the largest of such deviations as a 
goodness of fit measure: 

Dn =max I F(x) - Sn(x) I, for every distinct X;. 5.IO 

The sampling distribution of Dn is given in the literature. Unless n is very small 
the following asymptotic result can be used: 

5.11 
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The Kolmogorov-Smimov test rejects the null hypothesis at level a if 

Dn> dn,a, wheredn,a is such that: 

PHo (D/1 > d n,a) =a. 5.12 

Using formula 5.11 the following critical points are obtained: 

d n,O.Ol = 1.63 I .,/n; d 11 0 OS = 1.36 I ../n; d n,O.l 0 = 1.22 I .,{r; . 5.13 

Note that when applying the Kolmogorov-Smimov test, one often uses the 
distribution parameters computed from the actual data. For instance, in the case of 
assessing the normality of an empirical distribution, one often uses the sample 
mean and sample standard deviation. This is a source of uncertainty in the 
interpretation of the results. 

Example 5.8 

Q: Redo the previous Example 5.7 (assessing the normality of ART for class 1 of 
the cork-stopper data), using the Kolmogorov-Smimov test. 

A: Running the test with SPSS we obtain the results displayed in Table 5.7, 
showing no evidence (p = 0.8) supporting the rejection of the null hypothesis 
(normal distribution). 

D 

Table 5.7. Kolmogorov-Smimov test results for variable ART obtained with SPSS 
in the goodness of fit assessment of normal distribution. 

ART 

N 50 

Normal Parameters Mean 137.0000 

Std. Deviation 42.9969 

Most Extreme Differences Absolute 0.092 

Positive 0.063 

Negative -0.092 

Kolmogorov-Smimov Z 0.652 

Asymp. Sig. (2-tailed) 0.789 

In the goodness of fit assessment of a normal distribution it may be convenient 
to inspect cumulative distribution plots and normal probability plots. Figure 5.2 
exemplifies these plots for the ART variable of Example 5.8. The cumulative 
distribution plot helps to detect the regions where the empirical distribution mostly 
deviates from the theoretical distribution, and can also be used to measure the 
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statistic Dn (fonnula 5.10). The nonnal probability plot displays z scores for the 
data and for the standard nonnal distribution along the vertical axis. These last 
ones lie on a straight line. Large deviations of the observed z scores, from the 
straight line corresponding to the nonnal distribution, are a symptom of poor 
nonnal approximation. 
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o~ ~ -· -~-~--~-~-•-~- e-~ -
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Figure 5.2. Visually assessing the nonnality of the ART variable (cork stopper 
dataset) with MATLAB: a) Empirical cumulative distribution plot with 
superimposed nonnal distribution (smooth line); b) Nonnal probability plot. 

Commands 5.5. ST A TISTICA, SPSS and MA TLAB commands used to perfonn 
goodness of fit tests. 

Statistics; Basic Statistics/Tables; 
STATISTICA Histograms 

SPSS 

MATLAB 

Graphs; Histograms 

Analyze; Nonparametric Tests; 1-Sample K-S 
Analyze; Descriptive Statistics; Explore; 
Plots; Normality plots with tests 

[h,p,ksstat,cv)= kstest(x,cdf,alpha,tail) 
[h,p,lstat,cv)= lillietest(x,alpha) 

With ST A TISTICA the one-sample Kolmogorov-Smimov test is not available as a 
separate test. It can, however, be perfonned together with other goodness of fit 
tests when displaying a histogram (Advanced option). SPSS also affords the 
goodness of fit tests with the nonnality plots that can be obtained with the 
Explore command. 
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With the MATLAB commands kstest and lillietest, the meaning ofthe 
parameters and return values when testing the data sample x, at level alpha, is as 
follows: 

cdf: Two-column matrix, with the first column contammg the random 
sample x and the second column containing the hypothesised 
cumulative distribution. 

tail: Type of test with values 0, -1, I corresponding to the alternative 
hypothesis F(x) -:f. Sn(x), F(x) > Sn(x) and F(x) < Sn(x), respectively. 

h: Test result, equal to 1 ifH0 can be rejected, 0 otherwise. 
p: Observed significance. 
ksstat, lstat: Values of the Kolmogorov-Smirnov and Liliefors statistics, 

respectively. 
cv: Critical value for significant test. 

Some of these parameters and return values can be omitted. For instance, 
h = kstest (x) only performs the normality test ofx. 

• 
Commands 5.6. ST A TISTICA, SPSS and MATLAB commands used to obtain 
cumulative distribution plots and normal probability plots. 

STATISTICA 

SPSS 

MATLAB 

Graphs; Histograms; Showing Type; 
Cumulative 
Graphs; 2D Graphs; Probability-Probability 
Plots 

Graphs; Interactive; Histogram; Cumulative 
histogram 
Analyze; Descriptive Statistics; Explore; 
Plots; Normality plots with tests I 
Graphs; P-P 

cdfplot(x) 
normplot(x) 

The cumulative distribution plot shown in Figure 5.2a was obtained with 
MA TLAB using the following sequence of commands: 

» art = corkstoppers(l:50,3); 
» cdfplot(art) 
» hold on 
» xaxis = 0:1:250; 
» plot(xaxis,normcdf(xaxis,mean(art) ,std(art))) 
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Note the hold on command used to superimpose the standard normal 
distribution over the previous empirical distribution of the data. This facility is 
disabled with hold off. The normcdf command is used to obtain the normal 
cumulative distribution in the interval specified by xaxis with the mean and 
standard deviation also specified. 

• 

5.1.5 The Lilliefors Test for Normality 

The Lilliefors test resembles the Kolmogorov-Smimov but it is especially tailored 
to assess the normality of a distribution, with the null hypothesis formalised as: 

Ho: F(x) = N p,a (x). 5.14 

For this purpose, the test standardises the data using the sample estimates of J1 
and a. Let z represent the standardised data, i.e., z; = (x; -:X) Is . The Lilliefors' 

test statistic is: 

Dn =max I F(z) - Sn(z) I· 5.15 

The test is, therefore, performed like the Kolmogorov-Smimov test (see formula 
5.12), but with the advantage that the sampling distribution of Dn takes into 
account the fact that the sample mean and sample standard deviation are used. The 
asymptotic critical points are: 

dnOlO =0.805/.rn. 5.16 

Critical values and extensive tables of the sampling distribution of Dn can be 
found in the literature (see e.g. Conover, 1980). 

The Liliefors test can be performed with STATISTICA and SPSS as described 
in Commands 5.5. When applied to Example 5.8 it produces a lower bound for the 
significance (p = 0.2), therefore not providing evidence allowing us to reject the 
null hypothesis. 

5.1.6 The Shapiro-Wilk Test for Normality 

The Shapiro-Wilk test is also tailored to assess the goodness of fit to the normal 
distribution. It is based on the observed distance between symmetrically positioned 
data values. Let us assume that the sample size is n and the successive values x~. 
x2, ... , Xm were preliminarily sorted by increasing value: 
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The distance of symmetrically positioned data values, around the middle value, 
is measured by: 

( Xn _; + 1 -X; ), for i = 1, 2, ... , k, 

where k = (n + 1 )/2 if n is odd and k = n/2 otherwise. 
The Shapiro-Wilk statistic is given by: 

5.17 

The coefficients a; in formula 5.17 and the critical values of the sampling 
distribution of W, for several confidence levels, can be obtained from table look-up 
(see e.g. Conover, 1980). 

The Shapiro-Wilk test is considered a better test than the previous ones, 
especially when the sample size is small. It is available in ST A TISTICA and SPSS 
as a complement of histograms and normality plots, respectively (see Commands 
5.5). When applied to Example 5.8, it produces an observed significance of 
p = 0.90. With this high significance, it is safe to accept the null hypothesis. 

Table 5.8 illustrates the behaviour of the goodness of fit tests in an experiment 
using small to moderate sample sizes (n = 10, 25 and 50), generated according to a 
known law. The lognormal distribution corresponds to a random variable whose 
logarithm is normally distributed. The "Bimodal" samples were generated using the 
sum of two Gaussian functions separated by 4o: For each value of n a large 
number of samples were generated (see top of Table 5.8), and the percentage of 
correct decisions at a 5% level of significance was computed. 

Table 5.8. Percentages of correct decisions in the assessment at 5% level of the 
goodness of fit to the normal distribution, for several empirical distributions (see 
text). 

n = I 0 (200 samples) n = 25 (80 samples) n =50 (40 samples) 

KS L sw KS L sw KS L sw 

Normal, N0,1 100 95 98 100 100 98 100 100 100 

Lognormal 2 42 62 32 94 100 92 100 100 

Exponential, £ 1 33 43 9 74 91 32 100 100 

Student t2 2 28 27 II 55 66 38 88 95 

Uniform, U0•1 0 8 6 0 6 24 0 32 88 

Bimodal 0 16 IS 0 46 51 5 82 92 

KS: Kolmogorov-Smirnov; L: Lilliefors; SW: Shapiro-Wilk. 
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As can be seen in Table 5.8, when the sample size is very small (n = 10), all the 
previous tests make numerous mistakes. For larger sample sizes the Shapiro-Wilk 
test performs somewhat better than the Lilliefors test, which in turn, performs 
better than the Kolmogorov-Smirnov test. This test is only suitable for very large 
samples (say n >> 50). It also has the advantage of allowing an assessment of the 
goodness of fit to other distributions, whereas the Liliefors and Shapiro-Wilk tests 
can only assess the normality of a distribution. 

Also note that most of the test errors in the assessment of the normal distribution 
occur when the empirical distribution is symmetric (three last rows of Table 5.8). 
The tests make fewer mistakes when the data follows an asymmetric distribution, 
e.g. the lognormal or exponential distribution. Taking into account these 
observations the reader should keep in mind that the statements "a data sample can 
be well modelled by the normal distribution" and a "data sample comes from a 
population with a normal distribution" mean entirely different things. 

5.2 Contingency Tables 

Contingency tables were introduced in section 2.2.3 as a means of representing 
multivariate data. In sections 2.3.5 and 2.3.6, some measures of association 
computed from these tables were also presented. In this section, we describe tests 
of hypotheses concerning these tables. 

5.2.1 The 2x2 Contingency Table 

The 2x2 contingency table is a convenient formalism whenever one has two 
random and independent samples obtained from two distinct populations whose 
cases can be categorised into two classes, as shown in Figure 5.3. The sample sizes 
are n1 and n2 and the observed occurrence counts are the OiJ. 

This formalism is used when one wants to assess whether, based on the samples, 
one can conclude that the probability of occurrence of one of the classes is 
different for the two populations. It is a quite useful formalism, namely in clinical 
research, when one wants to assess whether a specific treatment is beneficial; then, 
the populations correspond to "without" and "with" the treatment. 

Let p 1 and p 2 denote the probabilities of occurrence of one of the classes, e.g. 
class 1, for the populations 1 and 2, respectively. For the two-sided test, the 
hypotheses are: 

Ho: PI =p2; 
Hl: PI *P2· 
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Class I Class 2 

Population I 

Population 2 

Figure 5.3. The 2x2 contingency table with the sample sizes (n 1 and n2) and the 
observed absolute frequencies (counts Oij)· 

The one-sided test is formalised as: 

Ho: P1 sp2, 
Ho: P1 ?.p2; 

HI: PI >p; 
HI: PI <p2. 

or 

In order to assess the null hypothesis, we use the same goodness of fit measure 
as in formula 5.8, now reflecting the sum of the squared deviations for all four cells 
in the contingency table: 

where the expected absolute frequencies E;; are estimated as: 

n;(OlJ +02;) 

n 

with n = n1 + n2 (total number of cases). 

5.18 

5.19 

Thus, we estimate the expected counts in each cell as the ratio of the observed 
marginal counts. With these estimates, one can rewrite 5.18 as: 

T = n(Oll022 -012021 )2 
5.20 

n1n2(011 +021 )(012 +022 ) 

The sampling distribution of T, assuming that the null hypothesis is true, 
p 1 = p2 = p, can be computed by first noticing that the probability of obtaining 0 11 

cases of class 1 in a sample of n1 cases from population I, is given by the binomial 
law (see A.7): 

P(O )-(nl) Oil "l-oll 11-opq. 
II 
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Similarly, for the probability of obtaining 0 21 cases of class 1 in a sample of n2 

cases from population 2: 

Because the two samples are independent the probability of the joint event is 
given by: 

P(O 0 )=( n1 J( n2 J On+021 n-0],-021 
11• 21 0 0 p q ' 

11 21 

5.21 

The exact values of P(Oll, 0 21 ) are, however, very difficult to compute, except 
for very small n1 and n2 (see e.g. Conover, 1980). Fortunately, the asymptotic 
distribution of T is well approximated by the chi-square distribution with one 
degree of freedom (z12 ). We then use the critical values of the chi-square 
distribution in order to test the null hypothesis in the usual way. When dealing with 
a one-sided test we face the difficulty that the T statistic does not reflect the 
direction of the deviation between observed and expected frequencies. In this 
situation, it is simpler to use the sampling distribution of the signed square root of 
T (with the sign of 0 11 0 22 -012 0 21 ), which is approximated by the standard 
normal distribution. Denoting by T1 the signed square root of T, the one-sided test 
is performed as: 

Ho: P1 ~ p2: reject at level a if T1 > z1 _a; 
Ho: p, ~ p2: reject at level a if T1 < Za. 

A "continuity correction", known as "Yates' correction", is sometimes used in 
the chi-square test of 2x2 contingency tables. This correction attempts to 
compensate for the inaccuracy introduced by using the continuous chi-square 
distribution, instead of the discrete distribution ofT, as follows: 

5.22 

Example 5.9 

Q: Consider the male and female populations related to the Freshmen dataset. 
Based on the evidence provided by the respective samples, is it possible to 
conclude that the proportion of male students that are "initiated" differs from the 
proportion of female students? 

A: We apply the chi-square test to the 2x2 contingency table whose rows are the 
populations (variable SEX) and whose columns are the counts of initiated 
freshmen (column INIT). 
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The contingency table is shown in Table 5.9. The chi-square test results are 
shown in Table 5.1 0. Since the observed significance, with and without the 
continuity correction, is above the 5% significance level, we do not reject the null 
hypothesis at that level. 

D 

Example 5.10 

Q: Redo the previous example assuming that the null hypothesis is "the proportion 
of male students that are 'initiated' is higher than that of female students". 

A: We now perform a one-sided chi-square test. For this purpose we notice that the 
sign of011 0 22 -012 0 21 is positive, therefore T1 =+./2.997=1.73. Since 
T1 > za= -1.64, we also do not reject the null hypothesis for this one-sided test. 

D 

Table 5.9. Contingency table obtained with SPSS for the SEX and INIT variables 
of the freshmen dataset. Note that a missing case for INIT (case # 118) is not 
included. 

!NIT Total 
yes no 

SEX male 91 5 96 

female 30 5 35 

Total 121 10 131 

Table 5.1 0. Partial list of the chi-square test results obtained with SPSS for the 
SEX and INIT variables of the freshmen dataset. 

Value df 

Chi-Square 

Continuity Correction 

2.997 

1.848 

Asymp. Sig. (2-sided) 

0.083 

0.174 

Commands 5.7. STATISTICA, SPSS and MATLAB commands used to perform 
tests on contingency tables. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Basic Statistics/Tables; 
Tables and banners 

Analyze; Descriptive Statistics; Crosstabs 

[table,chi2,p]=crosstab(coll,col2) 
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The meaning of the MATLAB crosstab parameters and return values is as 
follows: 

call, col2: 
table: 
chi2, p: 

vectors containing integer data used for the cross-tabulation. 
cross-tabulation matrix. 
value and significance of the chi-square test. 

5.2.2 The rxc Contingency Table 

• 

The rxc contingency table is an obvious extension of the 2x2 contingency table, 
when there are more than two categories of the nominal (or ordinal) variable 
involved. However, some aspects described in the previous section, namely the 
Yates' correction and the computation of exact probabilities, are only applicable to 
2x2 tables. 

Class 1 Class 2 Class c 

Population 1 011 012 . . . o.c 

Population 2 021 022 . . . 02c 

. . . . . . . . . . . . 
Population r o,. 0,2 . . . o,c 

Figure 5.4. The rxc contingency table with the sample sizes (nJ and the observed 
absolute frequencies (counts Oij)· 

The rxc contingency table is shown in Figure 5.4. All samples from the r 
populations are assumed to be independent and randomly drawn. All observations 
are assumedly categorised into exactly one of c categories. The total number of 
cases is: 

where the cj are the column counts, i.e., the total number of observations in the jth 
class: 

r 

c;=LO!i. 
i=l 
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Let PiJ denote the probability that a randomly selected case of population i is 
from class j. The hypotheses formalised for the rxc contingency table are a 
generalisation of the two-sided hypotheses for the 2x2 contingency table (see 
5.2.1 ): 

H0 : For a certain class, the probabilities are the same for all populations: p 11 = p 21 
= ... =prj• '\lj. 

H 1: There are at least two populations with different probabilities in one class: 3 
i,j, PiJ *- PkJ· 

The test statistic is also a generalisation of 5.18: 

n.c. 
with E =-'-1 

" n 
5.23 

If H0 is true, we expect the observed counts OiJ to be near the expected counts 
EiJ, estimated as in the above formula 5.23, using the row and column marginal 
counts. The asymptotic distribution of T is the chi-square distribution with 
df = (r - 1 )( c - I) degrees of freedom. As with the chi-square goodness of fit test 
described in section 5.1.3, the approximation is considered acceptable if the 
following conditions are met: 

1. For df = I, i.e. for 2x2 contingency tables, no EiJ must be smaller than 5; 
ii. For dj> I, no EiJ must be smaller than I and no more than 20% of the EiJ must 

be smaller than 5. 

The ST ATISTICA, SPSS and MATLAB commands for testing rxc contingency 
tables are indicated in Commands 5.7. 

Example 5.11 

Q: Consider the male and female populations of the Freshmen dataset. Based on 
the evidence provided by the respective samples, is it possible to conclude that 
male and female students have different behaviour participating in the "initiation" 
on their own will? 

A: Question 7 (column Q7) of the freshmen dataset addresses the issue of 
participating in the initiation on their own will. The 2x5 contingency table, using 
variables SEX and Q7, has more than 20% of the cells with expected counts below 
5 because of the reduced number of cases ranked I and 2. We, therefore, create a 
new variable Q7 _12 where the ranks 1 and 2 are merged into a new rank, coded 12. 

The contingency table for the variables SEX and Q7_)2 is shown in Table 5.11. 
The chi-square value for this table has an observed significance p = 0.15; therefore, 
we do not reject the null hypothesis of equal behaviour of male and female students 
at the 5% level. 
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Since one of the variables, SEX, is nominal, we can determine the association 
measures suitable to nominal variables, as we did in section 2.3.6. In this example 
the phi and uncertainty coefficients both have significances (0.15 and 0.08, 
respectively) that do not support the rejection of the null hypothesis (no association 
between the variables) at the 5% level. 

D 

Table 5.11. Contingency table obtained with SPSS for the SEX and Q7_12 
variables of the freshmen dataset. Q7 _12 is created with the SPSS recode 
command, using Q7. Note that three missing cases are not included. 

Q7_12 Total 
3 4 5 12 

SEX male Count 18 36 29 12 95 

Expected Count 14.0 36.8 30.9 13.3 95.0 

female Count 14 13 6 34 

Expected Count 5.0 13.2 11.1 4.7 34.0 

Total Count 19 50 42 18 129 

Expected Count 19.0 50.0 42.0 18.0 129.0 

5.2.3 The Chi-Square Test of Independence 

When performing tests of hypotheses one often faces the situation in which a 
decision must be made as to whether or not two or more variables pertaining to the 
same population can be considered independent. In order to assess the 
independency of two variables we use the contingency table formalism, which 
now, however, is applied to only one population whose variables can be 
categorised into two or more categories. The variables can either be discrete 
(nominal or ordinal) or continuous. In this latter case, one must choose suitable 
categorisations for the continuous variables. 

The rxc contingency table for this situation is the same as shown in Figure 5.4. 
The only differences being that whereas in the previous section the rows 
represented different populations and the row totals were assumed to be fixed, now 
the rows represent categories of a second variable and the row totals can vary 
arbitrarily, constrained only by the fact that their sum is the total number of cases. 

The test is formalised as: 

H0: The event "an observation is in row i" is independent of the event "the same 
observation is in columnj", i.e.: 

P(row i, columnj) = P(row i)xP(columnj), Vi,j. 
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H1: The events "an observation is in row i" and "the same observation is in 
columnj", are dependent, i.e.: 

3 i,j, P(row i, columnj) t:. P(row i)xP(columnj). 

Let r; denote the row totals as in Figure 2.18, such that: 

c 

r;=L;Oii and n=r1+r2+ ... + rr=c1+c2+ ... +cc. 
j=l 

As before, we use the test statistic: 

T =~~(oii-Eii) 2 .hE r;c1 
£.... £.... , Wlt ij = -- , 
i=I J=I Eii n 

5.24 

which has the asymptotic chi-square distribution with df = (r- 1 )(c- 1) degrees of 
freedom. Note, however, that since the row totals can vary in this situation, the 
exact probability associated to a certain value of T is even more difficult to 
compute than before because there are a greater number of possible tables with the 
same T. 

Example 5.12 

Q: Consider the Programming dataset, containing results of pedagogical 
enquiries made during the period 1986-1988, of freshmen attending the course 
"Programming and Computers" in the Electrotechnical Engineering Department of 
Porto University. Based on the evidence provided by the respective samples, is it 
possible to conclude that the performance obtained by the students at the final 
examination is independent of their previous knowledge on programming? 

A: Note that we have a single population with two attributes: "previous knowledge 
on programming" (variable PROG), and "final examination score" (variable 
SCORE). In order to test the independence hypothesis of these two attributes, we 
first categorise the SCORE variable into four categories. These can be classified 
as: "Poor" corresponding to a final examination score below 10; "Fair" 
corresponding to a score between 10 and 13; "Good" corresponding to a score 
between 14 and 16; "Very Good" corresponding to a score above 16. Let us call 
PERF (performance) this new categorised variable. 

The 3x4 contingency table, using variables PROG and PERF, is shown in Table 
5.12. Only two (16.7%) cells have expected counts below 5; therefore, the 
recommended conditions, mentioned in the previous section, for using the 
asymptotic distribution ofT, are met. 

The value of T is 43.044. The asymptotic chi-square distribution of T has 
(3 - 1 )( 4 - 1) = 6 degrees of freedom. At a 5% level, the critical region is above 
12.59 and therefore the null hypothesis is rejected at that level. As a matter of fact, 
the observed significance ofT is p "' 0. 

D 
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Table 5.12. The 3x4 contingency table obtained with SPSS for the independence 
test ofExample 5.12. 

PERF Total 

Poor Fair Good 
Very 
Good 

PROG 0 Count 76 78 16 7 177 
Expected Count 63.4 73.8 21.6 18.3 177.0 
Count 19 29 10 13 71 
Expected Count 25.4 29.6 8.6 7.3 71.0 

2 Count 2 6 7 8 23 
Expected Count 8.2 9.6 2.8 2.4 23.0 

Total Count 97 113 33 28 271 
Expected Count 97.0 113.0 33.0 28.0 271.0 

The chi-square test of independence can also be applied to assess whether two 
or more groups of data are independent or can be considered as sampled from the 
same population. For instance, the results obtained for Example 5.7 can also be 
interpreted as supporting, at a 5% level, that the male and female groups are not 
independent for variable Q7: they can be considered samples from the same 
population. 

5.2.4 Measures of Association Revisited 

When analysing contingency tables, it is also convenient to assess the degree of 
association between the variables, using the ordinal and nominal association 
measures described in sections 2.3.5 and 2.3.6, respectively. As in 4.4.1, the 
hypotheses in a two-sided test concerning any measure of association r are 
formalised as: 

Ho: y= 0; 
HI: yt:O. 

5.2.4.1 Measures for Ordinal Data 

Let ;t and y denote the variables whose association is being assessed. The exact 
values of the sampling distribution of the Spearman's rank correlation, when H0 is 
true, can be derived if we note that for any given ranking of y, any rank order of ;t 
is equally likely, and vice-versa. Therefore, any particular ranking has a probability 
of occurrence of lin!. As an example, let us consider the situation of n = 3, with ;t 
andy having ranks 1, 2 and 3. As shown in Table 5.13, there are 3! = 6 possible 
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permutations of the y ranks. Applying formula 2.21, one then obtains the rs values 
shown in the last row. Therefore, under H0, the ±1 values have a 1/6 probability 
and the ±Y2 values have a 1/3 probability. When n is large (say, above 20), the 
significance of rs under H0 can be obtained using the test statistic: 

z* =rs~• 5.25 

which is approximately distributed as the standard normal distribution. 

Table 5.13. Possible rankings and Spearman correlation for n = 3. 

~ y y y y y y 

I 2 2 3 3 

2 2 3 1 3 2 

3 3 2 3 2 

r,. 0.5 0.5 -0.5 -0.5 -1 

In order to test the significance of the gamma statistic, a large sample (say, 
above 25) is required. We then use the test statistic: 

z* =(G-y) P+Q , 
n(I-G 2 ) 

5.26 

which, under H0 (y = 0), is approximately distributed as the standard normal 
distribution. The values of P and Q were defined in section 2.3.5. 

The Spearman correlation and the gamma statistic were computed for Example 
5.12, with the results shown in Table 5.14. We see that the observed significance is 
very low, leading to the conclusion that there is an association between both 
variables (PERF, PROG). 

Table 5.14. Measures of association for ordinal data computed with SPSS for 
Example 5.12. 

Gamma 

Spearman Correlation 

Value 

0.486 

0.332 

Asymp. Std. 
Error 

0.076 

0.058 

Approx. T 

5.458 

5.766 

Approx. Sig. 

0.000 

0.000 
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5.2.4.2 Measures for Nominal Data 

In Chapter 2, the following measures of association were described: the index of 
association (phi coefficient), the proportional reduction of error (Goodman and 
Kruskallambda), and the Kstatistic for the degree of agreement. 

Note that taking into account formulas 2.24 and 5.20, the phi coefficient can be 
computed as: 

5.27 

with the phi coefficient now lying in the interval [0, 1]. Since the asymptotic 
distribution of T1 is the standard normal distribution, one can then use this 
distribution in order to evaluate the significance of the signed phi coefficient (using 
the sign of 0 11 0 22 -012 0 21 ) multiplied by .J;;. 

Table 5.15 displays the value and significance ofthe phi coefficient for Example 
5.9. The computed two-sided significance of phi is 0.083; therefore, at a 5% 
significance level, we do not reject the hypothesis that there is no association 
between SEX and INIT. 

Table 5.15. Phi coefficient computed with SPSS for the Example 5.9 with the two
sided significance. 

Phi 

Value 

0.151 

Approx. Sig. 

0.083 

The proportional reduction of error has a complex sampling distribution that we 
will not discuss. For Example 5.9 the only situation of interest for this measure of 
association is: INIT depending on SEX. Its value computed with SPSS is 0.038. 
This means that variable SEX will only reduce by about 4% the error of predicting 
INIT. As a matter of fact, when using INIT alone, the prediction error is 
(131 - 121)/131 = 0.076. With the contribution of variable SEX, the prediction 
error is the same (5/131 + 5/131). However, since there is a tie in the row modes, 
the contribution ofiNIT is computed as half of the previous error. 

In order to test the significance of the K statistic measuring the agreement 
among several variables, the following statistic, approximately normally 
distributed for large n with zero mean and unit standard deviation, is used: 

z = K I ~var(K) , with 5.28 

var(K)"" 2 P(E)-(2K-3)[P(E)J2 +2(K-2)LPJ 
nK(K-1) (1-P(E)F 

5.28a 
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As described in 2.3.6.3, the K statistic can be computed with function kappa 
implemented in MATLAB; kappa (x, alpha) computes for a matrix x, 
formatted as columns N, S and P in Table 2.13, the row vector [ko, z, zc] 
containing the observed value of K, ko, the z value of formula 5.28 and the 
respective critical value, zc, at alpha level. The results of the K statistic 
significance for Example 2.11 are obtained as shown below. We see that the null 
hypothesis (disagreement among all four classifiers) is not rejected at a 5% level of 
significance, since z < zc. 

[ko,z,zc]=kappa(x,0.05) 
ko = 

0.2130 
z = 

3.9436 
zc 

4.6527 

5.3 Inference on Two Populations 

In this section, we describe non-parametric tests that have parametric counterparts 
described in section 4.4.3. As discussed in 4.4.3.1, when testing two populations, 
one must assess whether or not the available samples are independent. Tests for 
two paired or matched samples are used to assess whether two treatments are 
different or whether one treatment is better than the other. Either treatment is 
applied to the same group of cases (the "before" and "after" experiments), or 
applied to pairs of cases which are as much alike as possible, the so-called 
"matched pairs". When it is impossible to design a study with paired samples, we 
resort to tests for independent samples. Note that some of the tests described for 
contingency tables also apply to two independent samples. 

5.3.1 Tests for Two Independent Samples 

Commands 5.8. ST ATISTICA, SPSS and MATLAB commands used to perform 
non-parametric tests on two independent samples. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Nonparametrics; Comparing two 
independent samples (groups) 

Analyze; Nonparametric Tests; 2 
Independent Samples 

[p,h,stats]=ranksum(x,y,alpha) 

• 
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5.3.1.1 The Kolmogorov-Smirnov Two-Sample Test 

The Kolmogorov-Smimov test is used to assess whether two independent samples 
were drawn from the same population, or from populations with the same 
distribution, for the variable .K. being tested, which is assumed to be continuous. Let 
F(x) and G(x) represent the unknown distributions for the two independent 
samples. The null hypothesis is formalised as: 

H0: Data variable .K. has equal cumulative probability distributions for the two 
samples: F (x) = G(x). 

The test is conducted similarly to the way described in section 5.1.4. Let Sm(x) 
and Sn(x) represent the empirical distributions of the two samples, with sizes m and 
n, respectively. We then use as test statistic, the maximum deviation of these 
empirical distributions: 

5.29 

For large samples (say, m and n above 25) and two-tailed tests (the most usual), 
the significance of Dm.n can be evaluated using the critical values obtained with the 
expression: 

5.30 

where c is a coefficient that depends on the significance level, namely c = 1.36 for 
a = 0.05 (for details, see e.g. Siegel S, Castellan Jr NJ, 1998). 

Table 5.16. Two sample Kolmogorov-Smimov test results obtained with SPSS for 
variable ART of the cork-stopper dataset. 

Most Extreme Differences 

Kolmogorov-Smimov Z 

Asymp. Sig. (2-tailed) 

Example 5.13 

Absolute 

Positive 

Negative 

ART 

0.800 

0.800 

0.000 

4.000 

0.000 

Q: Consider the variable ART, the total area of defects, of the cork-stopper dataset. 
Can one assume that the distributions of ART for the first two classes of cork
stoppers are the same? 
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A: Variable ART can be considered a continuous variable, and the samples are 
independent. Table 5.16 shows the Kolmogorov test results, from where we 
conclude that the null hypothesis is rejected, i.e., for variable ART, the first two 
classes have different distributions. 

D 

When compared with its parametric counterpart, the t test, the Kolmogorov
Smimov test has a high power-efficiency of about 95%, even for small samples. 

5.3.1.2 The Mann-Whitney Test 

The Mann-Whitney test, also known as Wilcoxon-Mann-Whitney or rank-sum test, 
is used like the previous test to assess whether two independent samples were 
drawn from the same population, or from populations with the same distribution, 
for the variable being tested, which is assumed to be at least ordinal. 

Let F Jx) and Gjx) represent the unknown distributions of the two independent 
populations, where we explicitly denote by ~ and y the corresponding random 
variables. The null hypothesis can be formalised as in the previous section (F Jx) = 

Gjx)). However, when the distributions are different, it often happens that the 
probability associated to the event "~ > y" is not Y2, as should be expected for equal 
distributions. Following this approach, the hypotheses for the Mann-Whitney test 
are formalised as: 

Ho: P(~ > y) = lh ; 
H 1: P(~>y):;tlh, 

for the two-sided test, and 

H0: P(~ > y) ;::: Y2; 
Ho: P(~ > y)::;; lh; 

for the one-sided test. 

H 1: P(~ > y) < lh, or 
H 1: P(~ > y) > lh, 

In order to assess these hypotheses, the Mann-Whitney test starts by assigning 
ranks to the samples. Let the samples be denoted x" x2, ••• , Xn andy" y 2, ••• , Ym· 
The ranking of the x; andy; assigns ranks in 1, 2, ... , n + m. As an example, let us 
consider the following situation: 

X;: 12 21 15 8 
y;: 9 13 19 

The ranking of X; andy; would then yield the result: 

X;,y;: X y X y X y X 

Data: 8 9 12 13 15 19 21 
Rank: 1 2 3 4 5 6 7 

The test statistic is the sum of the ranks for one of the variables, say x;: 
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5.31 

where R(x;) are the ranks assigned to the X;. For the example above, Wx = 16. 
Similarly, Wv = 12 with: 

W + W = N(N + l) total sum of the ranks from I through N = n + m. 
X y 2 ' 

The rationale for using Wx as a test statistic is that under the null hypothesis, 
P(~ > y) = Yz, one expects the ranks to be randomly distributed between the x; and 
y;, therefore resulting in approximately equal average ranks in each of the two 
samples. For small samples, there are tables with the exact probabilities of Wx. For 
large samples (say m or n above 10), the sampling distribution of Wx rapidly 
approaches the normal distribution with the following parameters: 

n(N +1) 
f..Lwx = 2 ; 

nm(N +1) 

12 
5.32 

Therefore, for large samples, the following test statistic with standard normal 
distribution is used: 

• Wx ±0.5-J..Lw 
Z = X 5.33 

CJwx 

The 0.5 continuity correction factor is added when one wants to determine 
critical points in the left tail of the distribution, and subtracted to determine critical 
points in the right tail of the distribution. 

When compared with its parametric counterpart, the t test, the Mann-Whitney 
test has a high power-efficiency, of about 95.5%, for moderate to large n. In some 
cases, it was even shown that the Mann-Whitney test is more powerful than the t 
test! There is also evidence that it should be preferred over the previous 
Kolmogorov-Smimov test for large samples. 

Table 5.17. Mann-Whitney test results obtained with SPSS for Example 5.14: 
a) Ranks; b) Test statistic and significance. F= 1 for freshmen, 0, otherwise. 

F N 
Mean Sum of SCORE 
Rank Ranks Mann-Whitney U 3916 

0 34 132.68 4511 Wilcoxon W 4511 

237 136.48 32345 z -0.265 
Asymp. Sig. 

0.791 Total 271 (2-tailed) 
a b 
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Example 5.14 

Q: Consider the Programming dataset. Does this data support the hypothesis that 
freshmen and non-freshmen have different distributions of their scores? 

A: The Mann-Whitney test results are summarised in Table 5.17. From this table 
one concludes that the null hypothesis (equal distributions) cannot be rejected at 
the 5% level. 

D 

Example 5.15 

Q: Consider the t test performed in Example 4.9, for variables ASP and PHE of the 
wine dataset. Apply the Mann-Whitney test to these continuous variables and 
compare the results with those previously obtained. 
A: Tables 5.18 and 5.19 show the results with identical conclusions (and p values!) 
to those presented in Example 4.9. Note that at a 1% level, we do not reject the null 
hypothesis for the ASP variable. This example constitutes a good illustration of the 
power-efficiency of the Mann-Whitney test when compared with its parametric 
counterpart, the t test. 

D 

Table 5.18. Ranks for variables ASP and PHE (Example 5.15), obtained with 
SPSS. 

TYPE N Mean Rank Sum of Ranks 

ASP 30 40.12 1203.5 

2 37 29.04 1074.5 

Total 67 

PHE 1 30 42.03 1261.0 

2 37 27.49 1017.0 

Total 67 

Table 5.19. Mann-Whitney test results for variables ASP and PHE (Example 5.15) 
with grouping variable TYPE, obtained with SPSS. 

ASP PHE 

Mann-Whitney U 371.5 314 

Wilcoxon W 1074.5 1017 

z -2.314 -3.039 

Asymp. Sig. (2-tailed) 0.021 0.002 



174 5 Non-Parametric Tests of Hypotheses 

5.3.2 Tests for Two Paired Samples 

Commands 5.9. STATISTICA, SPSS and MATLAB commands used to perform 
non-parametric tests on two paired samples. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Nonparametrics; Comparing two 
dependent samples (variables) 

Analyze; Nonparametric Tests; 2 Related 
Samples 

[p,h,stats]=signrank(x,y,alpha) 
[p,h,stats]=signtest(x,y,alpha) 

5.3.2.1 The McNemar Change Test 

• 

The McNemar change test is particularly suitable to "before and after" 
experiments, in which each case can be in either of two categories or responses and 
is used as its own control. The test addresses the issue of deciding whether or not 
the change of response is due to hazard. Let the responses be denoted by the + and 
-signs and a change denoted by an arrow,~- The test is formalised as: 

H0: After the treatment, P(+ ~ -) = P(- ~ +); 
H1: After the treatment, P(+ ~ -)::f. P(- ~ +). 

Let us use a 2x2 table for recording the before and after situations, as shown in 
Figure 5.5. We see that a change occurs in situations A and D, i.e., the number of 
cases which change of response is A + D. If both changes of response are equally 
likely, the expected count in both cells is (A+ D)/2. 

The McNemar test uses the following test statistic: 

[A- A:Dr [D- A:Dr 
=-----=---+=-----=---

A+D 
2 

A+D 
2 

(A -D) 2 

A+D 
5.34 

The sampling distribution of this test statistic, when the null hypothesis is true, 
is asymptotically the chi-square distribution with df = 1. A continuity correction is 
often used, especially for small absolute frequencies, in order to make the 
computation of significances more accurate. 

An alternative to using the chi-square test is to use the binomial test. One would 
then consider the sample with n = A + D cases, and assess the null hypothesis that 
the probabilities of both changes are equal to 12. 
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After 
+ 

Before+~ 
-~ 

Figure 5.5. Table for the McNemar change test, where A, B, C and D are cell 
counts. 

Example 5.16 

Q: Consider that in an enquiry into consumer preferences of two products A and B, 
a group of 57 out of 160 persons preferred product A, before reading a study of a 
consumer protection organisation. After reading the study, 8 persons that had 
preferred product A and 21 persons that had preferred product B changed opinion. 
Is it possible to accept, at a 5% level, that the change of opinion was due to hazard? 

A: Table 5.20a shows the respective data in a convenient format for analysis with 
STATISTICA or SPSS. The column "Number" should be used for weighing the 
cases corresponding to the cells of Figure 5.5 with "1" denoting product A and "2" 
denoting product B. Case weighing was already used in section 5.1.2. 

Table 5.20b shows the results of the test; at a 5% significance level, we reject 
the null hypothesis that the change of opinion was due to hazard. 

D 

Table 5.20. (a) Data of Example 5.16 in an adequate format for running the 
McNmear test with ST ATISTICA or SPSS, (b) Results of the test obtained with 
SPSS. 

a 

Before 

2 

2 

After 

1 

2 

2 

5.3.2.2 The Sign Test 

Number 

49 

8 

82 
21 

BEFORE& 
AFTER 

N 160 

Chi-Square 4.966 

Asymp. Sig. 0.026 
b 

The sign test compares two paired samples (xJ. y 1), (x2, y 2), ••• , (xm Yn), using the 
sign of the respective differences: (x1 - y 1), (x2 - y2), ••• , (xn- Yn), i.e., using a set 
of dichotomous values (+ and - signs), to which the binomial test described in 
section 5.1.2 can be applied in order to assess the truth of the null hypothesis: 
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Ho: P(x; > y; ) = P(x; < y; ) = Yz . 5.35 

Note that the null hypothesis can also be stated in terms of the sign of the 
differences X; - y;, by setting their median to zero. 

Previous to applying the binomial test, all cases with tied decisions, X; = y;, are 
removed from the analysis, and the sample size, n, adjusted accordingly. The null 
hypothesis is rejected if too few differences of one sign occur. 

The power-efficiency of the test is about 95% for n = 6, decreasing towards 63% 
for very large n. Although there are more powerful tests for paired data, an 
important advantage of the sign test is its broad applicability to ordinal data. 
Namely, when the magnitude of the differences cannot be expressed as a number, 
the sign test is the only possible alternative. 

Example 5.17 

Q: Consider the Metal Firms' dataset containing several performance indices 
of a sample of eight metallurgic firms (see Appendix E). Use the sign test in order 
to analyse the following comparisons: a) leadership teamwork (TW) vs. leadership 
commitment to quality improvement (CI), b) management of critical processes 
(MC) vs. management of alterations (MA). Discuss the results. 

A: All variables are ordinal type, measured on a 1 to 5 scale. One must note, 
however, that the numeric values of the variables cannot be taken to the letter. One 
could as well use a scale of A toE or use "very poor", "poor", "fair", "good" and 
"very good". Thus, the sign test is the only two-sample comparison test appropriate 
here. 

Running the test with STATISTICA, SPSS or MATLAB yields observed one
tailed significances of 0.0625 and 0.5 for comparisons (a) and (b), respectively. 
Thus, at a 5% significance level, we do not reject the null hypothesis of 
comparable distributions for pair TW and CI nor for pair MC and MA. 

Let us analyse in detail the sign test results for the TW -CI pair of variables. The 
respective ranks are: 

TW: 
CI : 
Difference: 

4 
3 
+ 

4 3 2 4 
2 3 2 4 
+ 0 0 0 

3 3 3 
3 2 2 
0 + + 

We see that there are 4 ties (marked with 0) and 4 positive differences TW- Cl. 
Figure 5.6a shows the binomial distribution of the number k of negative differences 
for n = 4 and p = Yz. The probability of obtaining as few as zero negative 
differences TW- CI, under H0, is (Yz)4 = 0.0625. 

We will now consider the MC-MA comparison. The respective ranks are: 

MC: 
MA: 
Difference: 

2 2 
1 3 
+ 

2 2 1 
1 1 1 
+ + 0 

2 3 2 
4 2 4 

+ 
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Figure 5.6. Binomial distributions for the sign tests in Example 5.18: a) TW-CI 
pair, under H0; b) MC-MA pair, under H0; c) MC-MA pair for the alternative 
hypothesis H 1: P(MC < MA) = V.. 

Figure 5.6b shows the binomial distribution of the number of negative 
differences for n = 7 and p = V2. The probability of obtaining at most 3 negative 
differences MC - MA, under H0, is V:!, given the symmetry of the distribution. The 
critical value of the negative differences, k = 1, corresponds to a Type I Error of 
a= 0.0625. 

Let us now determine the Type II Error for the alternative hypothesis "positive 
differences occur three times more often than negative differences". In this case, 
the distributions of MC and MA are not identical; the distribution of MC favours 
higher ranks than the distribution of MA. Figure 5.6c shows the binomial 
distribution for this situation, with p = P(MC < MA) = V.. We clearly see that, in 
this case, the probability of obtaining at most 3 negative differences MC - MA 
increases. The Type II Error for the critical value k = 1 is the sum of all 
probabilities for k ~ 2, which amounts to f3 = 0.56. Even if we relax the a level to 
0.23 for a critical value k = 2, we still obtain a high Type II Error, f3 = 0.24. This 
low power of the binomial test, already mentioned in 5 .1.2, renders the conclusions 
for small sample sizes quite uncertain. 

D 

Example 5.18 

Q: Consider the FHR dataset containing measurements of basal heart rate 
frequency (beats per minute) made on 51 foetuses (see Appendix E). Use the sign 
test in order to assess whether the measurements performed by an automatic 
system (SPB) are comparable to the average of measurements performed by three 
human experts (AEB). 

A: There is a clear lack of fit of the distributions of SP and AE to the normal 
distribution. A non-parametric test has, therefore, to be used here. The sign test 
results, obtained with STATISTICA are shown in Table 5.21. At a 5% significance 
level, we do not reject the null hypothesis of equal measurement performance of 
the automatic system and the "average" human expert. 

D 
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Table 5.21. Sign test results obtained with ST A TISTICA for the SPB-AEB 
comparison (FHR dataset). 

No. of Non-Ties 

49 

Percent v < V 

63.26531 

z 
1.714286 

5.3.2.3 The Wilcoxon Signed Ranks Test 

p-level 

0.086476 

The Wilcoxon signed ranks test uses the magnitude of the differences di = xi - yj, 
which the sign test disregards. One can, therefore, expect an enhanced power
efficiency of this test, which is in fact asymptotically 95.5%, when compared with 
its parametric counterpart, the t test. The test ranks the d/s according to their 
magnitude, assigning a rank of 1 to the di with smallest magnitude, the rank of 2 to 
the next smallest magnitude, etc. As with the sign test, xi and Yi ties (di = 0) are 
removed from the dataset. If there are ties in the magnitude of the differences, 
these are assigned the average of the ranks that would have been assigned without 
ties. Finally, each rank gets the sign of the respective difference. For the MC and 
MA variables of Example 5.17, the ranks are computed as: 

MC: 2 2 2 2 1 2 3 2 
MA: 1 3 1 1 4 2 4 
MC-MA: +1 -1 +1 +1 0 -2 +1 -2 

Ranks: 1 2 3 4 6 5 7 
Signed Ranks: 3 -3 3 3 -6.5 3 ~.5 

Note that all the magnitude 1 differences are tied; we, therefore, assign the 
average of the ranks from 1 to 5, i.e., 3. Magnitude 2 differences are assigned the 
average rank (6+7)/2 = 6.5. 

The Wilcoxon test uses the test statistic: 

r =sum of the ranks of the positive dj. 5.36 

The rationale is that under the null hypothesis - samples are from the same 
population or from populations with the same median - one expects that the sum of 
the ranks for positive di will balance the sum of the ranks for negative di. Tables of 
the sampling distribution ofT for small samples can be found in the literature. For 
large samples (say, n > 15), the sampling distribution of r converges 
asymptotically, under the null hypothesis, to a normal distribution with the 
following parameters: 

n(n+ 1) 
JlT+ = 4 ; 

2 n(n + 1)(2n + 1) 
(}' = ----'-----'-'---"-

T+ 24 . 5.37 
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A test procedure similar to the t test can then be applied in the large sample 
case. Note that instead ofT, the test can also use 1, the sum of the negative ranks. 

Example 5.19 

Q: Redo the two-sample comparison of Example 5 .18, using the Wilcoxon signed 
ranks test. 

A: The Wilcoxon test results obtained with SPSS are shown in Table 5.22. At a 5% 
significance level, we reject the null hypothesis of equal measurement performance 
of the automatic system and the "average" human expert. Note that the conclusion 
is different from the one reached using the sign test in Example 5.18. 

D 

Table 5.22. Wilcoxon test results obtained with SPSS for the SPB-AEB 
comparison (FHR dataset): a) ranks, b) significance based on negative ranks. 

N Mean Rank Sum of Ranks AE-SP 
Negative Ranks 18 20.86 375.5 
Positive Ranks 31 27.40 849.5 z -2.358 
Ties 2 Asymp. Sig. 
Total 51 (2-tailed) 

0.018 
a b 

Example 5.20 

Q: Estimate the power of the Wilcoxon test performed in Example 5.19 and the 
needed value of n for reaching a power of at least 90%. 

A: We estimate the power of the Wilcoxon test using the concept of power
efficiency (see formula 5.1). Since Example 5.19 involves a large sample (n =51), 
the power-efficiency of the Wilcoxon test is of about 95.5%. 

Figure 5.7a shows the STATISTICA specification window for the dependent 
samples t test. The values filled in are the sample means and sample standard 
deviations of the two samples, as well as the correlation between them. The 
"Alpha" value is the previous two-tailed observed significance (see Table 5.22). 
The value of n, using formula 5.1, is n = nA = 0.955x51 "" 49. STATISTICA 
computes a power of76% for these specifications. 

The power curve shown in Figure 5.7b indicates that the parametric test reaches 
a power of 90% for nA = 70. Therefore, for the Wilcoxon test we need a number of 
samples of n8 = 70/0.955 "" 73 for the same power. 

D 
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Figure 5.7. Determining the power for a two-paired samples t test, with 
STATISTICA: a) Specification window, b) Power curve dependent on n. 

5.4 Inference on More Than Two Populations 

In the present section, we describe non-parametric tests that have parametric 
counterparts already described in section 4.5 . Note that some of the tests described 
for contingency tables also apply to more than two independent samples. 

5.4.1 The Kruskal-Wallis Test for Independent Samples 

The Kruskal- Wallis test is the non-parametric counterpart of the one-way ANOV A 
test described in section 4.5.2. The test assesses whether c independent samples are 
from the same population or from populations with continuous distribution and the 
same median for the variable being tested. The variable being tested must be at 
least of ordinal type. The test procedure is a direct generalisation of the Mann
Whitney rank sum test described in section 5.3.1.2. Thus, one starts by assigning 
natural ordered ranks to the sample values, from the smallest to the largest. Tied 
ranks are substituted by their average. 

Let R; denote the sum of ranks for sample i , with n; cases. Under the null 
hypothesi~ we expect that each K will exhibit a small deviation from the average 
of all R;, R . The test statistic is: 

12 c - 2 
KW= 'L,n;(R;-R) , 

n(n+ 1) i =l 
5.38 

which, under the null hypothesis, has an asymptotic chi-square distribution with 
df = c - I degrees of freedom (when the number of observations in each group 
exceeds 5). 

When there are tied ranks, a correction is inserted in formula 5.38, dividing the 
KW value by: 
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where f; is the number of ties in group i of g tied groups, and N is the total number 
of cases in the c samples (sum of the nJ. 

The power-efficiency of the Kruskal-Wallis test, referred to the one-way 
ANOVA, is asymptotically 95.5%. 

Example 5.21 

Q: Consider the Clays' dataset (see Appendix E). Assume that at a certain stage 
of the data collection process, only the first 15 cases were available and the 
Kruskal-Wallis test was used to assess which clay features best discriminated the 
three types of clays (variable AGE). Perform this test and analyse its results for the 
alumina content (Al20 3) measured with only 3 significant digits. 

A: Table 5.23 shows the 15 cases sorted and ranked. Notice the tied values for 
Ah03 = 17.3, corresponding to ranks 6 and 7, which are assigned the mean rank 
(6+7)/2. 

The sum of the ranks is 57, 41 and 22 for the groups I, 2 and 3, respectively; 
therefore, we obtain the mean ranks shown in Table 5.24. The asymptotic 
significance of 0.046 leads us to reject the null hypothesis of equality of medians 
for the three groups at a 5% level. 

D 

Table 5.23. The first fifteen cases of the Clays' dataset, sorted and ranked. 

AGE 2 2 2 2 2 3 3 3 3 3 

Al20 3 23.0 21.4 16.6 22.1 18.8 17.3 17.8 18.4 17.3 19.1 11.5 14.9 11.6 15.8 19.5 

Rank 15 13 5 14 I 0 6.5 8 9 6.5 II 3 2 4 12 

Table 5.24. Results, obtained with SPSS, for the Kruskal-Wallis test of alumina in 
the Clays' dataset: a) ranks, b) significance. 

AGE N Mean Rank AL203 

pliocenic (good) 5 11.40 Chi-Square 6.151 
pliocenic (bad) 5 8.20 

df 2 
holocenic 5 4.40 

Total 15 Asymp. Sig. 0.046 

a b 
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Example 5.22 

Q: Consider the Freshmen dataset and use the Kruskal-Wallis test in order to 
assess whether the freshmen performance (EXAMAVG) differs according to their 
attitude towards skipping the Initiation (Question 8). 

A: The mean ranks and results of the test are shown in Table 5.25. Based on the 
observed asymptotic significance, we reject the null hypothesis at a 5% level, i.e., 
we have evidence that the freshmen answer Question 8 of the enquiry differently, 
depending on their average performance on the examinations. 

0 

Table 5.25. Results, obtained with SPSS, for the Kruskal-Wallis test of average 
freshmen performance in 5 categories of answers to Question 8: a) ranks; b) 
significance. 

Q8 N Mean Rank EXAMAVG 
10 104.45 

2 22 75.16 Chi-Square 14.081 
3 48 60.08 

4 39 59.04 df 4 

5 12 63.46 

Total 131 
Asymp. Sig. 0.007 

a b 

Example 5.23 

Q: The variable ART of the Cork Stoppers' dataset was analysed in section 
4.5.2.1 using the one-way ANOV A test. Perform the same analysis using the 
Kruskal-Wallis test and estimate its power for the alternative hypothesis 
corresponding to the sample means. 

A: We saw in 4.5.2.1 that a logarithmic transformation of ART was needed in 
order to be able to apply the ANOV A test. This transformation is not needed with 
the Kruskal-Wallist test, whose only assumption is the independency of the 
samples. 

Table 5.26 shows the results, from which we conclude that the null hypothesis 
of median equality of the tree populations is rejected at a 5% significance level (or 
even at a smaller level). 

In order to estimate the power of this Kruskal-Wallis test, we notice that the 
sample size is large, and therefore, we expect the power to be the same as for the 
one-way ANOV A test using a number of cases equal to n = 50x0.955 "" 48. The 
power of the one-way ANOV A, for the alternative hypothesis corresponding to the 
sample means and with n = 48, is l. 

0 
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Table 5.26. Results, obtained with SPSS, for the Kruskal-Wallis test of variable 
ART of the Cork Stoppers' dataset: a) ranks, b) significance. 

c N Mean Rank ART 

50 28.18 Chi-Square 121.590 

2 50 74.35 df 2 
3 50 123.97 Asymp. 
Total 150 Sig. 

0.000 

a b 

Commands 5.10. STATISTICA, SPSS and MATLAB commands used to perform 
the Kruskal-Wallis test. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Nonparametrics; Comparing 
multiple indep. samples (groups) 

Analyze; Nonparametric Tests; K 
Independent Samples 

p=kruskalwallis(x) 

5.4.2 The Friedmann Test for Paired Samples 

• 

The Friedman test can be considered the non-parametric counterpart of the two
way ANOV A test described in section 4.5.3. The test assesses whether c-paired 
samples, each with n cases, are from the same population or from populations with 
continuous distributions and the same median. The variable being tested must be at 
least of ordinal type. The test procedure starts by assigning natural ordered ranks 
from I to c to the matched case values in each row, from the smallest to the largest. 
Tied ranks are substituted by their average. 

Let R; denote the sum of ranks for sample i. Under the null hypothesis, we 
expect that each R; will exhibit a small deviation from the value that would be 
obtained by chance, i.e., n( c + 1 )/2. The test statistic is: 

c 

12LR;2 -3n 2c(c+l) 2 

Fr = _:..._i=-"-1 -------

nc(c+ 1) 
5.40 

Tables with the exact probabilities ofF" under the null hypothesis, can be found 
in the literature. For c > 5 or for n > 15 Fr has an asymptotic chi-square distribution 
with df = c- 1 degrees of freedom. 
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When there are tied ranks, a correction is inserted in formula 5.40, subtracting 
from nc(c + 1) in the denominator the following term: 

5.41 
c-1 

where tiJ is the number of ties in group j of gi tied groups in the ith row. 
The power-efficiency of the Friedman test, when compared with its parametric 

counterpart, the two-way ANOV A, is 64% for c = 2 and increases with c, namely 
to 80% for c = 5. 

Example 5.24 

Q: Consider the evaluation of a sample of eight metallurgic firms (Metal 
Firms' dataset), in what concerns social impact, with variables: CEI = 
"commitment to environmental issues"; IRM ="incentive towards using recyclable 
materials"; EMS = "environmental management system"; CLC = "co-operation 
with local community"; OEL = "obedience to environmental legislation". Is there 
evidence at a 5% level that all variables have distributions with the same median? 

A: Table 5.27 lists the scores assigned to the eight firms. From the scores, the ranks 
are computed as previously described. Note particularly how ranks are assigned in 
the case of ties. For instance, Firm #1 IRM, EMS and CLC are tied for rank 1 
through 3; thus they get the average rank 2. Firm #1 CEI and OEL are tied for 
ranks 4 and 5; thus they get the average rank 4.5. Table 5.28 lists the results of the 
Friedman test, obtained with SPSS. Based on these results, the null hypothesis is 
rejected at 5% level (or even at a smaller level). 

D 

Table 5.27. Scores and ranks of the variables related to "social impact" in the 
Metal Firms dataset (Example 5.24). 

Data Ranks 
CEI IRM EMS CLC OEL CEI IRM EMS CLC OEL 

Firm#1 2 2 4.5 2 2 2 4.5 
Firm #2 2 2 4.5 2 2 2 4.5 
Firm #3 2 2 2 4 1.5 1.5 4 4 
Firm #4 2 1 2 4.5 2 2 2 4.5 
Firm #5 2 2 1 1 4.5 4.5 2 2 2 
Firm #6 2 2 2 3 2 2.5 2.5 2.5 5 2.5 
Firm #7 2 1 2 2 4 1.5 1.5 4 4 
Firm #8 3 3 2 2 4.5 4.5 2.5 2.5 
Total 33 20.5 14.5 23.5 28.5 
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Table 5.28. Results obtained with SPSS for the Friedman test of social impact 
scores of the Metal Firms' dataset: a) ranks, b) significance. 

Mean Rank N 8 
CEI 4.13 

IRM 2.56 Chi-Square 13.831 

EMS 1.81 df 4 
CLC 2.94 

Asymp. 
OEL 3.56 Sig. 

0.008 

a b 

Commands 5.11. STATISTICA, SPSS and MATLAB commands used to perform 
the Friedmann test. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Nonparametrics; Comparing 
multiple dep. samples (groups) 

Analyze; Nonparametric Tests; K Related 
Samples 

[p,table,stats]=friedman(x,reps) 

5.4.3 The Cochran Q test 

• 

The Cochran Q test is particularly suitable to dichotomous data of k related 
samples with n items, e.g., when k judges evaluate the presence or absence of an 
event in the same n cases. The null hypothesis is that there is no difference of 
probability of one of the events (say, a "success") for the k judges. If the null 
hypothesis is true, the statistic: 

k 

k(k-l)L(G1 -G) 2 

}=1 Q = ---'-------
n n 

kLLi- :LL7 
i=l i=l 

5.42 
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is distributed approximately as i with df= k- 1, for not too small n (n > 4 and 
nk > 24), where Gj is the total number of successes in the jth column, G is the 
mean of Gj and L; is the total number of successes in the ith row. 

Example 5.25 

Q: Consider the FHR dataset, which includes 51 foetal heart rate cases classified by 
three human experts (ElC, E2C, E3C) and an automatic diagnostic system (SPC) 
into three categories: normal, suspect and pathologic. Apply the Cochran Q test for 
the dichotomy normal (0) vs. not normal (1). 

A: Table 5.29 shows the frequencies and the value and significance of the Q 
statistic. Based on these results, we reject with p ~ 0 the null hypothesis of equal 
classification of the "normal" event for the three human experts and the automatic 
system. As a matter of fact, the same conclusion is obtained for the three human 
experts group (left as an exercise). 

D 

Table 5.29. Frequencies (a) and Cochran Q test results (b) obtained with SPSS for 
the FHR dataset in the classification of the normal event. 

Value N 51 
0 

SPCB 41 10 
Cochran's Q 61.615 

ElCB 20 31 df 3 

E2CB 12 39 
Asymp. Sig. 0.000 

E3CB 35 16 
a b 

Exercises 

5.1 Consider the three sets of measurements, RC, CG and EG, of the Moulds dataset. 
Assess their randomness with the Runs test, dichotomising the data with the mean, 
median and mode. Check with a data plot why the random hypothesis is always 
rejected for the RC measurements (see Exercise 3.2). 

5.2 In Statistical Quality Control a process variable is considered out of control if the 
respective data sequence exhibits a non-random pattern. Assuming that the Cork 
Stoppers dataset is a valid sample of a cork stopper manufacture process, apply the 
Runs test to Example 3.4 data, in order to verify that the process is not out of control. 

5.3 Consider the Culture dataset, containing a sample of budget expenditure in cultural 
and sport activities, given in percentage of the total budget. Based on this sample, one 
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could state that more than 50% of the budget is spent on sport activities. Test the 
validity of this statement with 95% confidence. 

5.4 The Flow Rate dataset contains measurements of water flow rate at two dams, 
denoted AC and T. Assuming the data is a valid sample of the flow rates at those two 
dams, assess at a 5% level of significance whether or not the flow rate at AC is half of 
the time higher than at T. Compute the power of the test. 

5.5 Redo Example 5.5 for Questions Q1, Q4 and Q7 (Freshmen dataset). 

5.6 Redo Example 5.7 for variable PRT (Cork Stoppers dataset). 

5.7 Several previous Examples and Exercises assumed a normal distribution for the 
variables being tested. Using the Lilliefors and Shapiro-Wilk tests, check this 
assumption for variables used in: 
a) Examples 3.6, 3.7, 4.1, 4.5, 4.13, 4.14 and 4.20. 
b) Exercises 3.2, 3.8, 4.9, 4.12 and4.13. 

5.8 The Signal & Noise dataset contains amplitude values of a noisy signal for 
consecutive time instants, and a "detection" variable indicating when the amplitude is 
above a specified threshold,~. For~= 1, compute the number of time instants between 
successive detections and use the chi-square test to assess the goodness of fit of the 
geometric, Poisson and Gamma distributions to the empirical inter-detection time. The 
geometric, Poisson and Gamma distributions are described in Appendix B. 

5.9 Consider the temperature data, T, of the Weather dataset (Data 1) and assume that 
it is a valid sample of the yearly temperature at 12HOO in the respective locality. 
Determine whether one can, with 95% confidence, accept the Beta distribution model 
with p = q = 3 for the empirical distribution ofT. The Beta distribution is described in 
Appendix B. 

5.10 Consider the ASTV measurement data sample of the FHR-Apgar dataset. Check the 
following statements: 
a) Variable ASTV cannot have a normal distribution. 
b) The distribution of ASTV in hospital HUC can be well modelled by the normal 

distribution. 
c) The distribution of ASTV in hospital HSJ cannot be modelled by the normal 

distribution. 
d) If variable ASTV has a normal distribution in the three hospitals, HUC, HGSA 

and HSJ, then ASTV has a normal distribution in the Portuguese population. 
e) If variable ASTV has a non-normal distribution in one of the three hospitals, 

HUC, HGSA and HSJ, then ASTV cannot be well modelled by a normal 
distribution in the Portuguese population. 

5.11 Some authors consider Yates' correction overly conservative. Using the Freshmen 
dataset (see Example 5.9), assess whether or not "the proportion of male students that 
are 'initiated' is smaller than that of female students" with and without Yates' correction 
and comment on the results. 
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5.12 Consider the "Commitment to quality improvement" and "Time dedicated to 
improvement" variables of the Metal Firms 1 dataset. Assume that they have binary 
ranks: 1 if the score is below 3, and 0 otherwise. Can one accept the association of 
these two variables with 95% confidence? 

5.13 Redo the previous exercise using the original scores. Can one use the chi-square 
statistic in this case? 

5.14 Consider the data describing the number of students passing (SCORE ~ 1 0) or flunking 
(SCORE< 10) the Programming examination in the Programming dataset. Assess 
whether or not one can be 95% confident that the pass/flunk variable is independent of 
previous knowledge in Programming (variable PROG). Also assess whether or not the 
variables describing the previous knowledge of Boole1S Algebra and binary arithmetic 
are independent. 

5.15 Redo Example 5.14 for the variable AB. 

5.16 The FHR dataset contains measurements of foetal heart rate baseline performed by 
three human experts and an automatic system. Is there evidence at the 5% level of 
significance that there is no difference among the four measurement methods? Is there 
evidence, at 5% level, of no agreement among the human experts? 

5.17 The Culture dataset contains budget percentages spent on promoting sport activities 
in samples of Portuguese boroughs randomly drawn from three regions. Based on the 
sample evidence is it possible to conclude that there are no significant differences 
among those three regions on how the respective boroughs assign budget percentages 
to sport activities? Also perform the budget percentage comparison for pairs of regions. 

5.18 Consider the flow rate data measured at Cavado and Toco Dams included in the Flow 

Rate dataset. Assume that the December samples are valid random samples for that 
period of the year and, furthermore, assume that one wishes to compare the flow rate 
distributions at the two samples. 
a) Can the comparison be performed using a parametric test? 
b) Show that the conclusions of the sign test and of the Wilcoxon signed ranks test 

are contradictory at 5% level of significance. 
c) Estimate the power of the Wilcoxon signed ranks test. 
d) Repeat the previous analyses for the January samples. 

5.19 Using the McNemar Change test compare the pre and post-functional class of patients 
having undergone heart valve implant using the data sample of the Heart Valve 
dataset. 

5.20 Determine which variables are important in the discrimination of carcinoma from other 
tissue types using the Breast Tissue dataset, as well as in the discrimination 
among all tissue types. 

5.21 Consider the bacterial counts in the spleen contained in the Cells 1 dataset and check 
the following statements: 
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a) In general, the CD4 marker is more efficacious than the CDS marker in the 
discrimination of the knock-out vs. the control group. 

b) However, in the first two weeks the CDS marker is by far the most efficacious in 
the discrimination of the knock-out vs. the control group. 

c) Two months after the infection the biochemical markers CD4 and CDS are unable 
to discriminate the knock-out from the control group. 

5.22 Based on the sample data included in the Clays 1 dataset, compare the holocenic with 
pliocenic clays according to the content of chemical oxides and show that the main 
difference is in terms of alumina, Al20 3• Estimate what is the needed difference in 
alumina that will correspond to an approximate power of90%. 

5.23 Run the non-parametric counterparts of the tests used in Exercises 4.9, 4.10 and 4.20. 
Compare the results and the power of the tests with those obtained using parametric 
tests. 

5.24 Using appropriate non-parametric tests, determine which variables of the Wines 1 

dataset are most discriminative ofthe white from the red wines. 

5.25 The Neonatal dataset contains mortality data for delivery taking place at home (MH) 
and at a Health Centre (MI). Assess whether there are significant differences at 5% 
level between delivery conditions, using the sign and the Wilcoxon tests. 

5.26 Consider the Firms 1 dataset containing productivity figures (P) for a sample of 
Portuguese firms in four branches of activity (BRANCH). Study the dataset in order to: 
a) Assess with 5% level of significance whether there are significant differences 

among the productivity medians ofthe four branches. 
b) Assess with 1% level of significance whether Commerce and Industry have 

significantly different medians. 

5.27 Apply the appropriate non-parametric test in order to rank the discriminative capability 
of the features used to characterise the tissue types in the Breast Tissue dataset. 

5.2S Redo the previous Exercise 5.27 for the CTG dataset and the three-class discrimination 
expressed by the grouping variable NSP. 

5.29 Consider the discrimination of the three clay types based on the sample data of the 
Clays 1 dataset. Show that the null hypothesis of equal medians for the three clay 
types is: 
a) Rejected with more than 95% confidence for all grading variables (LG, MG, HG). 
b) Not rejected for the iron oxide features. 
c) Rejected with higher confidence for the lime (CaO) than for the silica (Si02). 

5.30 The FHR dataset contains measurements of basal heart rate performed by three human 
experts and an automatic diagnostic system. Assess whether the null hypothesis of 
equal median measurements can be accepted with 5% significance for the three human 
experts and the automatic diagnostic system. 
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5.31 When analysing the contents of questions Q4, Q5, Q6 and Q7, someone said that "these 
questions were essentially evaluating the same thing". Assess whether this statement 
can be accepted at a 5% significance level. Compute the coefficient of agreement Kand 
discuss its significance. 

5.32 The Programming dataset contains results of an enquiry regarding freshman 
previous knowledge on programming (PROG), Boole's Algebra (AB), binary 
arithmetic (BA) and computer hardware (H). Consider the variables PROG, AB, BA 
and H dichotomised in a "yes/no" fashion. Can one reject with 99% confidence the 
hypothesis that the four dichotomised variables essentially evaluate the same thing? 

5.33 Consider the share values of the firms BRISA, CIMPOR, EDP and SONAE of the 
Stock Exchange dataset. Assess whether or not the distribution of the daily 
increase and decrease of the share values can be assumed to be similar for all the firms. 
Hint: Create new variables with the daily "increase/decrease" information and use an 
appropriate test for this dichotomous information. 



6 Statistical Classification 

Statistical classification deals with rules of case assignment to categories or 
classes. The classification, or decision rule, is expressed in terms of a set of 
random variables - the case features. In order to derive the decision rule, one 
assumes that a training set of pre-classified cases - the data sample - is available, 
and can be used to determine the sought after rule applicable to new cases. The 
decision rule can be derived in a model-based approach, whenever a joint 
distribution of the independent variables can be assumed, or in a model-free 
approach, otherwise. 

6.1 Decision Regions and Functions 

Consider a data sample constituted by n cases, depending on d features. The central 
idea in statistical classification is to use the data sample, represented by vectors in 
an 9\ d feature space, in order to derive a decision rule that partitions the feature 
space into regions assigned to the classification classes. These regions are called 
decision regions. If a feature vector falls into a certain decision region, the 
associated case is assigned to the corresponding class. 

Let us assume two classes a)] and OJ:! of cases described by two-dimensional 
feature vectors (coordinates x 1 and x2) as shown in Figure 6.1. The features are 
random variables,~ and .u, respectively. 

Each case is represented by a vector x = [x1 x2 ]• E 9\ 2 • In Figure 6.1, we 
used "o" to denote class a)] cases and "x" to denote class OJ:! cases. In general, the 
cases of each class will be characterised by random distributions of the 
corresponding feature vectors, as illustrated in Figure 6.1, where the ellipses 
represent equal-probability density curves that enclose most of the cases. 

Figure 6.1 also shows a straight line separating the two classes. We can easily 
write the equation of the straight line in terms of the features ~. ~ using 
coefficients or weights w1, w2 and a bias term w0 as shown in equation 6.1. The 
weights determine the slope of the straight line; the bias determines the straight 
line intersect with the axes. 

6.1 

Equation 6.1 also allows interpretation of the straight line as the root set of a 
linear function d(x). We say that d(x) is a linear decision JUnction that divides 
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(categorises) 9\ 2 into two decision regions: the upper half plane corresponding to 
d(x) > 0 where each feature vector is assigned to WJ; the lower half plane 
corresponding to d(x) < 0 where each feature vector is assigned to ~· The 
classification is arbitrary for d(x) = 0. 

~2 ............. . 
.. ····· o o···· .. ~ 

... 0 0 \ 
[ 0 oiP o } 
.......... 9 ... ~.:\?-······· . . 

........ ~'\')("""•")("·· 
/ ... x x'\ . X . 
\ •. X X X X .• / 
Ul.!···· ...................... ···· 

~I 

Figure 6.1. Two classes of cases described by two-dimensional feature vectors 
(random variables~ and .K2). The black dots are class means. 

The generalisation of the linear decision function for a d-dimensional feature 
space in 9\d is straightforward: 

d(x)=w'x+w 0 , 6.2 

where w'x represents the dot product' of the weight vector and the d-dimensional 
feature vector. 

The root set of d(x) = 0, the decision surface, or discriminant, is now a linear 
d-dimensional surface called a linear discriminant or hyperplane. 

Besides the simple linear discriminants, one can also consider using more 
complex decision functions. For instance, Figure 6.2 illustrates an example of 2-
dimensional classes separated by a decision boundary obtained with a quadratic 
decision function: 

6.3 

Linear decision functions are quite popular, as they are easier to compute and 
have simpler statistical analysis. For this reason in the following we will only deal 
with linear discriminants. 

The dot product x'y is obtained by adding the products of corresponding elements of the 
two vectors x andy. 
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Figure 6.2. Decision regions and boundary for a quadratic decision function. 

6.2 Linear Discriminants 

6.2.1 Minimum Euclidian Distance Discriminant 

The minimum Euclidian distance discriminant classifies cases according to their 
distance to class prototypes, represented by vectors mk. Usually, these prototypes 
are class means. We consider the distance taken in the "natural" Euclidian sense. 
For any d-dimensional feature vector x and any number of classes, w,(k = 1, ... , c), 
represented by their prototypes mh the square of the Euclidian distance between 
the feature vector x and a prototype mk is expressed as follows: 

d 

df(x) = L,(x; -m;d 2 . 6.4 
i=l 

This can be written compactly in vector form, using the vector dot product: 

6.5 

Grouping together the terms dependent on mk, we obtain: 

df(x) = -2 (mk' x -0.5mk 'mk )+ x'x. 6.6a 

We choose class~. therefore the mh which minimises df(x). Let us assume 

c = 2. The decision boundary between the two classes corresponds to: 

6.6b 

Thus, using 6.6a, one obtains: 
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6.6c 

Equation 6.6c, linear in x, represents a hyperplane perpendicular to {m1 - m2)' 

and passing through the point 0.5(m1 + m2)' halfway between the means, as 
illustrated in Figure 6.1 ford= 2 (the hyperplane is then a straight line). 

For c classes, the minimum distance discriminant is piecewise linear, composed 
of segments of hyperplanes, as illustrated in Figure 6.3 with an example of a 
decision region for class~ in a situation of c = 4. 

~ m3 _./rt m• 

........... 

m2 
............................... 

Figure 6.3. Decision region for OJ 1 (hatched area) showing linear discriminants 
relative to three other classes. 

Example 6.1 

Q: Consider the Cork Stopper s' dataset (see Appendix E). Design and 
evaluate a minimum Euclidian distance classifier for classes I (~) and 2 ( OJ 2), 

using only feature N (number of defects). 

A: In this case, a feature vector with only one element represents each case: 
x = [N]. Let us first inspect the case distributions in the feature space (d = I) 
represented by the histograms of Figure 6.4. The distributions have a similar shape 
with some amount of overlap. The sample means are m1 = 55.3 for ~ and m2 = 
79.7 for OJz. 

Using equation 6.6c, the linear discriminant is the point at half distance from the 
means, i.e., the classification rule is: 

6.7 

The separating "hyperplane" is simply point 682
• Note that in the equality case 

(x = 68), the class assignment is arbitrary. 

We assume an underlying real domain for the ordinal feature N. Conversion to an ordinal 
is performed when needed. 
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The classifier performance evaluated in the whole dataset can be computed by 
counting the wrongly classified cases, i.e., falling into the wrong decision region (a 
half-line in this case). This amounts to 23% of the cases. 
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Figure 6.4. Feature N histograms obtained with ST ATISTICA for the first two 
classes of the cork-stopper data. 

120 

100 

80 

0 .... 60 ; 
Q. 

<10 

20 

0 
0 

I 
1:. 

20 60 

N 

0 

1:. u : l 

80 100 120 0 u : 2 

Figure 6.5. Scatter diagram, obtained with ST ATISTICA, for two classes of cork 
stoppers (features N, PRTIO) with the linear discriminant (solid line) at half 
distance from the means (solid marks). 
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Example 6.2 

Q: Redo the previous example, using one more feature: PRTlO = PRT/10. 

A: The feature vector is: 

x=[ N ] or x=[N PRTlO]'. 
PRTlO 

6.8 

In this two-dimensional feature space, the mmtmum Euclidian distance 
classifier is implemented as follows (see Figure 6.5): 

1. Draw the straight line (decision surface) equidistant from the sample means, i.e., 
perpendicular to the segment linking the means and passing at half distance. 

2. Any case above the straight line is assigned to ~· Any sample below is assigned 
to ffli. The assignment is arbitrary if the case falls on the straight-line boundary. 

Note that using PRTlO instead ofPRT in the scatter plot of Figure 6.5 eases the 
comparison of feature contribution, since the feature ranges are practically the 
same. 

Counting the number of wrongly classified cases, we notice that the overall 
error falls to 18%. The addition ofPRTlO to the classifier seems beneficial. 

0 

6.2.2 Minimum Mahalanobis Distance Discriminant 

In the previous section, we used the Euclidian distance in order to derive the 
minimum distance, classifier rule. Since the features are random variables, it seems 
a reasonable assumption that the distance of a feature vector to the class prototype 
(class sample mean) should reflect the multivariate distribution of the features. 
Many multivariate distributions have probability functions that depend on the joint 
covariance matrix. This is the case with the multivariate normal distribution, as 
described in section A.8.3 (see formula A.53). Let us assume that all classes have 
an identical covariance matrix :I., reflecting a similar hyperellipsoidal shape of the 
corresponding feature vector distributions. The "surfaces" of equal probability 
density of the feature vectors relative to a sample mean vector mk correspond to a 
constant value of the following Mahalanobis distance: 

6.9 

When the covariance matrix is the unit matrix, we obtain: 

which is the squared Euclidian distance offormula 6.7. 
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a b 
Figure 6.6. 3D plots of I 000 points with normal distribution: a) Uncorrelated 
variables with equal variance; b) Correlated variables with unequal variance. 

Let us now interpret these results. When all the features are uncorrelated and 
have equal variance, the covariance matrix is the unit matrix multiplied by the 
equal variance factor. In the three-dimensional space, the clouds of points are 
distributed as spheres, illustrated in Figure 6.6a, and the usual Euclidian distance to 
the mean is used in order to estimate the probability density at any point. The 
Mahalanobis distance is a generalisation of the Euclidian distance applicable to the 
general case of correlated features with unequal variance. In this case, the points of 
equal probability density lie on an ellipsoid and the data points cluster in the shape 
of an ellipsoid, as illustrated in Figure 6.6b. The orientations of the ellipsoid axes 
correspond to the correlations among the features. The lengths of straight lines 
passing through the centre and intersecting the ellipsoid correspond to the 
variances along the lines. The probability density is now estimated using the 
Mahalanobis distance 6.9. 

Formula 6.9 can also be written as: 

Grouping, as we have done before, the terms dependent on mk. we obtain: 

df (x) = -2 (<:E-lm k )' x- 0.5mk '1:-1mk )+ x'1: - 1 x . 

6.10a 

6.10b 

Since x'1: - I xis independent of k, minimising dk{x) is equivalent to maximising 
the following decision functions : 

6.10c 

' h ..., - I 05 ,...,-I 610d Wit w k = .... mk; wk ,O =- . mk .... mk. . 
Using these decision functions, we again obtain linear discriminant functions in 

the form of hyperplanes passing through the middle point of the line segment 
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linking the means. The only difference from the results of the previous section is 
that the hyperplanes separating class mi from class a.~j, are now orthogonal to the 
vector I:"1(mi- mj). 

In practice, it is impossible to guarantee that all class covariance matrices are 
equal. Fortunately, the decision surfaces are usually not very sensitive to mild 
deviations from this condition; therefore, in normal practice, one uses an estimate 
of a pooled covariance matrix, computed as an average of the sample covariance 
matrices. This is the practice followed by STATISTICA, SPSS and MATLAB. 

Example 6.3 

Q: Redo Example 6.1, using a minimum Mahalanobis distance classifier. Check 
the computation of the discriminant parameters and determine to which class a 
cork with 65 defects is assigned. 

A: Given the similarity of both distributions, the Mahalanobis classifier produces 
the same classification results as the Euclidian classifier. Table 6.1 shows the 
classification matrix (obtained with SPSS) with the predicted classifications along 
the columns and the true (observed) classifications along the rows. We see that for 
this simple classifier, the overall percentage of correct classification in the data 
sample (training set) is 77%, or equivalently, the overall training set error is 23% 
(18% for liJj and 28% for ~). For the moment, we will not assess how the 
classifier performs with independent cases, i.e., we will not assess its test set error. 

The decision function coefficients (also known as Fisher's coefficients), as 
computed by SPSS, are shown in Table 6.2. 

Table 6.1. Classification matrix obtained with SPSS of two classes of cork 
stoppers using only one feature, N. 

Predicted Group Membership Total 
Class I 2 

Original Count I 41 9 50 
Group 2 14 36 50 

% 82.0 18.0 100 
2 28.0 72.0 100 

77.0% of original grouped cases correctly classified. 

Table 6.2. Decision function coefficients obtained with SPSS for two classes of 
cork stoppers and one feature, N. 

N 

(Constant) 

Class 1 

0.192 

-6.005 

Class 2 

0.277 

-11.746 
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Let us check these results. The class means are m1 = [55.28] and m2 = [79.74]. 
The average variance is i = 287.63. Applying formula 6.1 Od we obtain: 

w 1 =m 1 ls 2 =[0.192] 

w2 = m2 I s2 = [0.277] 

w1.o =-0.5IIm 1ll 2 ls 2 =-6.005. 

w2,0 = -0.5IIm2 ll2 I s2 = -11.746 . 

6. II a 

6.11 b 

These results confirm the ones shown in Table 6.2. Let us determine the class 
assignment of a cork-stopper with 65 defects. As g 1([65]) = 0.192x65 - 6.005 = 
6.48 is greater than g2([65]) = 0.227x65 - II. 746 = 6.26 it is assigned to class 1M. 

D 

Example 6.4 

Q: Redo Example 6.2, using a minimum Mahalanobis distance classifier. Check 
the computation of the discriminant parameters and determine to which class a 
cork with 65 defects and with a total perimeter of 520 pixels (PRTIO = 52) is 
assigned. 

A: The training set classification matrix is shown in Table 6.3. A significant 
improvement was obtained in comparison with the Euclidian classifier results 
mentioned in section 6.2.1; namely, an overall training set error of I 0% instead of 
18%. The Mahalanobis distance, taking into account the shape of the data clusters, 
not surprisingly, performed better. The decision function coefficients are shown in 
Table 6.4. Using these coefficients, we write the decision functions as: 

g 1 (x) = w 1' x+w1,0 = [ 0.262 -0.09783]x-6.138. 

g 2 (x)=w 2 'x+w20 =[0.0803 0.2776]x-12.817. 

The point estimate of the pooled covariance matrix of the data is: 

[ 
287.63 204.070] 

s = 204.070 172.553 => 8 _, =[ o.o216 -0.0255]· 
-0.0255 0.036 

6.12a 

6.12b 

6.13 

Substituting s·' in formula 6.1 Od, the results shown in Table 6.4 are obtained. 

Table 6.3. Classification matrix obtained with SPSS for two classes of cork 
stoppers with two features, N and PR Tl 0. 

Predicted Group Membership Total 

Class 2 

Original Count I 49 50 
Group 2 9 41 50 

% 1 98.0 2.0 100 

2 18.0 82.0 100 
90.0% of original grouped cases correctly classified. 
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It is also straightforward to compute s-1(m 1 - m2) = [0.18 -0.376]'. The 
orthogonal line to this vector with slope 0.4787 and passing through the middle 
point between the means is shown with a solid line in Figure 6.7. As expected, the 
"hyperplane" leans along the regression direction of the features (see Figure 6.5 for 
comparison). 

As to the classification of x = [65 52]', since g 1([65 52]')= 5.80 is smaller than 
g2([65 52]') = 6.86, it is assigned to class ~- This cork stopper has a total 
perimeter of the defects that is too big to be assigned to class WJ. 

0 

Table 6.4. Decision function coefficients, obtained with SPSS, for the two classes 
of cork stoppers with features Nand PRTIO. 

N 

PRTIO 

(Constant) 

= ... 
1-a: 
Cl. 
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0.262 

-0.09783 

-6.138 

20 "10 

0 

60 80 100 120 

N 

Class 2 

0.0803 

0.278 

-12.817 

t. m: 1 

0 m: 2 

Figure 6.7. Mahalanobis linear discriminant (solid line) for the two classes of cork 
stoppers. Scatter plot obtained with ST A TISTICA. 

Notice that if the distributions of the feature vectors in the classes correspond to 
different hyperellipsoidal shapes, they will be characterised by unequal covariance 
matrices. The distance formula 6.10 will then be influenced by these different 
shapes in such a way that we obtain quadratic decision boundaries. Table 6.5 
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summarises the different types of minimum distance classifiers, depending on the 
covariance matrix. 

Table 6.5. Summary of minimum distance classifier types. 

Covariance Classifier 
Equal-density 

Discriminants 
surfaces 

l:;= ii Linear, Euclidian Hyperspheres 
Hyperplanes orthogonal to the segment 

linking the means 

l:;= l: Linear, Mahalanobis Hyperellipsoids 
Hyperplanes leaning along the 

regression 

l:; Quadratic, Mahalanobis Hyperellipsoids Quadratic surfaces 

Commands 6.1. STATISTICA, SPSS and MATLAB commands used to perform 
discriminant analysis. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Multivariate Exploratory 
Techniques; Discriminant Analysis 

Analyze; Classify; Discriminant 

class=classify(sample,training,group) 

A large number of statistical analyses are available with STATISTICA and SPSS 
discriminant analysis commands. For instance, the pooled covariance matrix 
exemplified in 6.15 can be obtained with SPSS by checking the Pooled 
Within-Groups Matrices of the Statistics tab. There is also the 
possibility of obtaining several types of results, such as listings of decision 
function coefficients, classification matrices, graphical plots illustrating the 
separability of the classes, etc. The discriminant classifier can also be configured 
and evaluated in several ways. Many of these possibilities are described in the 
following sections. 

The classify command ofMATLAB uses a matrix of training cases and 
a group vector containing the classifications of the training cases. Therefore, the 
training matrix has the same number of rows as the group vector. The 
command uses this information to design a linear Mahalanobis classifier, which is 
applied to the sample data, returning a class vector with the class assignments 
of the sample data. 

• 
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6.3 Bayesian Classification 

In the previous sections, we presented linear classifiers based solely on the notion 
of distance to class means. We did not assume anything specific regarding the data 
distributions. In this section, we will take into account the specific probability 
distributions of the cases in each class, thereby being able to adjust the classifier to 
the specific risks of a classification. 

6.3.1 Bayes Rule for Minimum Risk 

Let us again consider the cork stopper problem and imagine that factory production 
was restricted to the two classes we have been considering, denoted as: CO] = Super 
and ~ = Average. Let us assume further that the factory had a record of production 
stocks for a reasonably long period, summarised as: 

Number of produced cork stoppers of class Oh: 
Number of produced cork stoppers of class m2: 

Total number of produced cork stoppers: 

n1 = 901420 
n2 = 1 352 130 
n = 2 253 550 

With this information, we can readily obtain good estimates of the probabilities 
of producing a cork stopper from either of the two classes, the so-called prior 
probabilities or prevalences: 

P(~) = n2/n = 0.6. 6.14 

Note that the prevalences are not entirely controlled by the factory, and that they 
depend mainly on the quality of the raw material. Just as, likewise, a cardiologist 
cannot control how prevalent myocardial infarction is in a given population. 
Prevalences can, therefore, be regarded as "states of nature". 

Suppose we are asked to make a blind decision as to which class a cork stopper 
belongs without looking at it. If the only available information is the prevalences, 
the sensible choice is class ~. This way, we expect to be wrong only 40% of the 
times. 

Assume now that we were allowed to measure the feature vector x of the 
presented cork stopper. Let P(coi I x) be the conditional probability of the cork 
stopper represented by x belonging to class CO;. If we are able to determine the 
probabilities P(co1 I x) and P(w2 I x), the sensible decision is now: 

If P(w1 I x) > P(m2 I x) 
If P(co1 I x) < P(m2 I x) 
If P(w1 I x) = P(co2 I x) 

We can condense 6.15 as: 

we decide x E w1 ; 

we decide x E m2 ; 

the decision is arbitrary. 

If P(w1 I x) > P(co2 I x) then x E m1 else x E w2 • 

6.15 

6.15a 
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The posterior probabilities P(OJ; I x) can be computed if we know the pdfs of 
the distributions of the feature vectors in both classes, p(x I OJ;), the so-called 
likelihood ofx. As a matter of fact, the Bayes law (see Appendix A) states that: 

P(OJ . I x) = p(x I OJ; )P(OJ; ) 
' p(x) , 

6.16 

c 

with p(x) = L p(x I OJ; )P(OJ;), the total probability ofx. 
i=l 
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Figure 6.8. Histograms of feature N for two classes of cork stoppers, obtained with 
ST A TISTICA. The threshold value N = 65 is marked with a vertical line. 

Note that P(OJ;) and P(OJ; I x) are discrete probabilities (symbolised by a capital 
letter), whereas p(x IOJ;) and p(x) are values of pdf functions. Note also that the 
term p(x) is a common term in the comparison expressed by 6.15a, therefore, we 
may rewrite for two classes: 

Example 6.5 

Q: Consider the classification of cork stoppers based on the number of defects, N, 
and restricted to the first two classes, "Super" and "Average". Estimate the 
posterior probabilities and classification of a cork stopper with 65 defects, using 
prevalences 6.14. 
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A: The feature vector is x = [N], and we seek the classification of x = [65]. Figure 
6.8 shows the histograms of both classes with a superimposed normal curve. 

From this graphic display, we can estimate the likelihoods3 and the posterior 
probabilities: 

p(x lm1) = 20 I 24 = 0.833 ~ P(m1 )p(x lm1) = 0.4x0.833 = 0.333; 6.18a 

p(x 1m2 )= 16 / 23 = 0.696 ~ P(m2 )p(x 1m2 )= 0.6x0.696 = 0.418. 6.18b 

We then decide class~. although the likelihood of m1 is bigger than that of~· 
Notice how the statistical model prevalences changed the conclusions derived by 
the minimum distance classification (see Example 6.3). 
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Figure 6.9. Influence of the prevalence threshold on the classification errors, 
represented by the shaded areas (dark grey represents the errors for class OJ}). (a) 
Equal prevalences; (b) Unequal prevalences. 

Figure 6.9 illustrates the effect of adjusting the prevalence threshold assuming 
equal and normal pdfs: 

• Equal prevalences. With equal pdft, the decision threshold is at half distance 
from the means. The number of cases incorrectly classified, proportional to the 
shaded areas, is equal for both classes. This situation is identical to the 
minimum distance classifier. 

• Prevalence of OJ} bigger than that of ~- The decision threshold is displaced 
towards the class with smaller prevalence, therefore decreasing the number of 
cases of the class with higher prevalence wrongly classified, as seems 
convenient. 

J 
The normal curve fitted by STA TISTICA is multiplied by the factor "number of cases" x 
"histogram interval width", which is I 00 in the present case. This constant factor is of no 
importance and is neglected in the computations 6.18. 
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DISCRIM . Revs : Observed classifications 
ANALYSIS Colu~ns : Predicted classifications 

Figure 6.10. Classification results, obtained with STATISTICA, of the cork 
stoppers with unequal prevalences: 0.4 for class OJj and 0.6 for class OJ:1. 

Example 6.6 

Q: Compute the classification matrix for all the cork stoppers of Example 6.5 and 
comment the results. 

A: Figure 6.10 shows the classification matrix obtained with the prevalences 
computed in 6.14, which are indicated in the Group row. We see that indeed the 
decision threshold deviation led to a better performance for class OJ:1 than for class 
OJj . This seems reasonable since class OJ:1 now occurs more often. Since the overall 
error has increased, one may wonder if this influence of the prevalences was 
beneficial after all. The answer to this question is related to the topic of 
classification risks, presented below. 

0 

Let us assume that the cost of a OJj ("super") cork stopper is 0.025 € and the cost 
of a OJ:1 ("average") cork stopper is 0.015 €. Suppose that the OJj cork stoppers are 
to be used in special bottles whereas the OJ:1 cork stoppers are to be used in normal 
bottles. 

A wrong classification of a super quality cork stopper will amount to a loss of 
0.025 - 0.0 15=0.0 I € (see Figure 6.11 ). A wrong classification of an average cork 
stopper leads to its rejection with a loss of 0.015 €. 

Denote: 

SB - Action of using a cork stopper in special bottles. 
NB- Action of using a cork stopper in normal bottles. 
OJj =S (class super); Oh =A (class average) 

l-----+< Special Bottles 

0.01 € 

Figure 6.11. Loss diagram for two classes of cork stoppers. Correct decisions have 
zero loss. 
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Define: Au = ..i(a; I OJ;) as the loss associated with an action a; when the 
correct class is 01· In the present case, a; E { SB, NB}. 

We can arrange the ..iii in a loss matrix A, which in the present case is: 

A=[ 0 0.015]· 
0.01 0 

6.19 

Therefore, the risk (expected value of the loss) associated with the action of 
using a cork, characterised by feature vector x, in special bottles, can be expressed 
as: 

R(SB I x)= ..i(SB I S)P(S I x)+ ..i(NB I M)P(A I x)= 0.015P(A I x); 6.20a 

And likewise for normal bottles: 

R(NB I x)= ..i(NB I S)P(S I x)+ ..i(NB I A)P(A I x)= O.OIP(S I x); 6.20b 

We are assuming that in the risk evaluation, the only influence is from wrong 
decisions. Therefore, correct decisions have zero loss, ..iii= 0, as in 6.19. If instead 
of two classes, we have c classes, the risk associated with a certain action a; is 
expressed as follows: 

c 

R(a; I x) = L ..i(a; I OJ; )P(OJ1 I x). 
j=l 

6.21 

We are obviously interested in minimising an average risk computed for an 
arbitrarily large number of cork stoppers. The Bayes rule for minimum risk 
achieves this through the minimisation of the individual conditional risks R(a; I x). 

Let us assume, first, that wrong decisions imply the same loss, which can be 
scaled to a unitary loss: 

{
0 if i = j 

A-if = ..i(a; 1 OJ;)= 1 1.f 
i =I- j 

6.22a 

In this situation, since all posterior probabilities add up to one, we have to 
minimise: 

R(a; lx)=LP(OJ1 lx)=l-P(OJ; lx). 
}*i 

6.22b 

This corresponds to maximising P( OJ; I x), i.e., the Bayes decision rule for 
minimum risk corresponds to the generalised version of 6.15a: 

Decide OJ; if P(OJ; I x) > P(OJ; I x), Vj =I- i. 6.22c 
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Thus, the decision function for class W; is the posterior probability, 
g;(x)=P(W; I x), and the classification rule amounts to selecting the class with 
maximum posterior probability. 

Let us now consider the situation of different losses for wrong decisions, 
assuming, for the sake of simplicity, that c = 2. Taking into account expressions 
6.20a and 6.20b, it is readily concluded that we will decide WI if: 

This is equivalent to formula 6.17 using the following adjusted prevalences: 

STA TISTICA and SPSS allow specifYing the priors as estimates of the sample 
composition (as in 6.14) or by user assignment of specific values. In the latter the 
user can adjust the priors in order to cope with specific classification risks. 

Example 6.7 

Q: Redo Example 6.6 using adjusted prevalences that take into account 6.14 and 
the loss matrix 6.19. Compare the classification risks with and without prevalence 
adjustment. 

A: The losses are Au= 0.015 and ~1 = 0.01. Using the prevalences 6.14, one 
obtains P*(WI) = 0.308 and P*(WJ.) = 0.692. The higher loss associated with a 
wrong classification of a OJ]. cork stopper leads to an increase of P*( WJ.) compared 
with P*( WI). The consequence of this adjustment is the decrease of the number of 
WJ. cork stoppers wrongly classified as WI. This is shown in the classification matrix 
of Table 6.6. 

Table 6.6. Classification matrix obtained with STATISTICA of two classes of 
cork stoppers with adjusted prevalences (Class 1 =WI; Class 2 =WJ.). The column 
values are the predicted classifications. 

Class 1 

Class 2 

Total 

Percent Correct 

54 

90 

72 

Class 1 

27 

5 

32 

Class 2 

23 

45 

68 

We can now compute the average risk for this 2-class situation, as follows: 
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where Peii is the error probability of deciding class OJ; when the true class is OJi. 

Using the training set estimates of these errors, Pe12 = 0.1 and Pe21 = 0.46 (see 
Table 6.6), the average risk per cork stopper is computed as R = 0.015Pe12 + 
0.01Pe21 = 0.015x0.01 + O.Olx0.46 = 0.0061 €. If we had not used the adjusted 
prevalences, we would have obtained the higher risk of 0.0063 € (use the Peu from 
Figure 6.10). 

D 

6.3.2 Normal Bayesian Classification 

Up to now, we have assumed no particular distribution model for the likelihoods. 
Frequently, however, the normal model is a reasonable assumption. ST A TISTICA, 
SPSS and MATLAB make this assumption when computing posterior 
probabilities. 

A normal likelihood for class OJ; is expressed by the following pdf (see 
Appendix A): 

p(x I OJ;)= (2ff )d ~~II:; II/2 exp( -± (x -11; )' I:j' (x -11; )J' 
with: 

11; = E;[x], mean vector for class 0)[; 

I:; = E; [(x -11; )(x -11; )•], covariance for class OJ;. 

6.24 

6.24a 

6.24b 

Since the likelihood 6.24 depends on the Mahalanobis distance of a feature 
vector to the respective class mean, we obtain the same types of classifiers shown 
in Table 6.5. 

Note that even when the data distributions are not normal, as long as they are 
symmetric and in correspondence to ellipsoidal shaped clusters of points, we obtain 
the same decision surfaces as for a normal classifier, although with different error 
rates and posterior probabilities. 

As previously mentioned, ST A TISTICA, SPSS and MATLAB use a pooled 
covariance matrix when performing linear discriminant analysis. The influence of 
this practice on the obtained error, compared with the theoretical optimal Bayesian 
error corresponding to a quadratic classifier, is discussed in detail in (Fukunaga, 
1990). Experimental results show that when the covariance matrices exhibit mild 
deviations from the pooled covariance matrix, the designed classifier has a 
performance similar to the optimal performance with equal covariances. This is 
reasonable since for covariance matrices that are not very distinct, the difference 
between the optimum quadratic solution and the sub-optimum linear solution 
should only be noticeable for cases that are far away from the prototypes, as shown 
in Figure 6.12. 
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As already mentioned in section 6.2.3, using decision functions based on the 
individual covariance matrices, instead of a pooled covariance matrix, will produce 
quadratic decision boundaries. SPSS affords the possibility of computing such 
quadratic discriminants, using the Separate-groups option of the Classify 
tab. However, a quadratic classifier is less robust (more sensitive to parameter 
deviations) than a linear one, especially in high dimensional spaces, and needs a 
much larger training set for adequate design (see e.g. Fukunaga and Hayes, 1989). 

ST ATISTICA and SPSS provide complete listings of the posterior probabilities 
6.18 for the normal Bayesian classifier, i.e., using the likelihoods 6.24. 

Figure 6.12. Discrimination of two classes with optimum quadratic classifier (solid 
line) and sub-optimum linear classifier (dotted line). 

Table 6. 7. Partial listing of the posterior probabilities, obtained with SPSS, for the 
classification of two classes of cork stoppers with equal prevalences. The columns 
headed by "P(G=g I D=d)" are posterior probabilities. 

Actual Group Highest Group Second Highest Group 

Case 
Predicted Group P(G=g I D=d) Group P(G=g I D=d) 

Number 

50 I 0.964 2 0.036 
51 2 2 0.872 0.128 
52 2 2 0.728 0.272 
53 2 2 0.887 0.113 
54 2 2 0.843 I 0.157 
55 2 I** 0.782 2 0.218 
56 2 2 0.905 0.095 
57 2 2 0.935 0.065 

61 2 I** 0.522 2 0.478 

** Misclassified case 
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Example 6.8 

Q: Detennine the posterior probabilities corresponding to the classification of two 
classes of cork stoppers with equal prevalences as in Example 6.4 and comment the 
results. 

A: Table 6.7 shows a partial listing of the computed posterior probabilities, 
obtained with SPSS. Notice that case #55 is marked with **, indicating a 
misclassified case, with a posterior probability that is higher for class I (0.782) 
than for class 2 (0.218). Case #61 is also misclassified, but with a small difference 
of posterior probabilities. Borderline cases as case #61 could be re-analysed, e.g. 
using more features. 

D 
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Figure 6.13. Error probability of a Bayesian two-class discrimination with nonnal 
distributions and equal prevalences and covariance. 

For a two-class discrimination with nonnal distributions and equal prevalences 
and covariance, there is also a simple fonnula for the probability of error of the 
classifier (see e.g. Fukunaga, I 990): 

Pe = 1- N 0,1 (8 I 2), 6.25 

with: 

6.25a 

the square of the so-called Bhattacharyya distance, a Mahalanobis distance of the 
means, reflecting the class separability. 

Figure 6.13 shows the behaviour of Pe with increasing squared Bhattacharyya 
distance. After an initial quick, exponential-like decay, Pe converges 
asymptotically to zero. It is, therefore, increasingly difficult to lower a classifier 
error when it is already small. 
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6.3.3 Dimensionality Ratio and Error Estimation 

The Mahalanobis and the Bhattacharyya distances can only increase when adding 
more features, since for every added feature a non-negative distance contribution is 
also added. This would certainly be the case if we had the true values of the means 
and the covariances available, which, in practical applications, we do not. 

When using a large number of features we get numeric difficulties in obtaining a 
good estimate of 1:"1, given the finiteness of the training set. Surprising results can 
then be expected; for instance, the performance of the classifier can degrade when 
more features are added, instead of improving. 

Figure 6.14 shows the classification matrix for the two-class, cork-stopper 
problem, using the whole ten-feature set and equal prevalences. The training set 
performance did not increase significantly compared with the two-feature solution 
presented previously, and is worse than the solution using the four-feature vector 
[ART PRM NG RAAR]', as shown in Figure 6.14b. 

Figure 6.14. Classification results obtained with STATISTICA, of two classes of 
cork stoppers using: (a) Ten features; (b) Four features . 

There are, however, further compelling reasons for not using a large number of 
features. In fact, when using estimates of means and covariance derived from a 
training set, we are designing a biased classifier, fitted to the training set. 
Therefore, we should expect that our training set error estimates are, on average, 
optimistic. On the other hand, error estimates obtained in independent test sets are 
expected to be, on average, pessimistic. It is only when the number of cases, n, is 
sufficiently larger than the number of features, d, that we can expect that our 
classifier will generalise, that is it will perform equally well when presented with 
new cases. The n/d ratio is called the dimensionality ratio. 

The choice of an adequate dimensionality ratio has been studied by several 
authors (see References). Here, we present some important results as an aid for the 
designer to choose sensible values for the n/d ratio. Later, when we discuss the 
topic of classifier evaluation, we will come back to this issue fro~ another 
perspective. 

Let us denote: 

Pe 
Pejn) 
Pet(n) 

Probability of error of an optimum Bayesian classifier; 
Training (design) set estimate of Pe for n cases; 
Test set estimate of Pe for n cases. 
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The quantity Pel.n) represents an estimate of Pe influenced only by the finite 
size of the design set, i.e., the classifier error is measured exactly, and its deviation 
from Pe is due solely to the finiteness of the design set. The quantity Per(n) 
represents an estimate of Pe influenced only by the finite size of the test set, i.e., 
the error of the Bayesian classifier is estimated by counting how many of n cases 
are misclassified. These quantities verify Pel._ oo) = Pe and Per( oo) = Pe, i.e., they 
converge to the theoretical value Pe with increasing values of n. 

In normal practice, these error probabilities are not known exactly. Instead, we 
compute estimates of these probabilities, Ped and Pet , as percentages of 
misclassified cases, in exactly the same way as we have done in the classification 
matrices presented so far. The probability of obtaining k misclassified cases out of 
n for a classifier with a theoretical error Pe, is given by the binomial law: 

6.26 

The maximum likelihood estimation of Pe under this binomial law is precisely 
(see Appendix C): 

Pe=kln, 6.27 

with standard deviation: 

6.28 

Formula 6.28 allows the computation of confidence interval estimates for Pe, 
by substituting Pe in place of Pe and using the normal distribution approximation 
for sufficiently large n (say, n ~ 25). Note that formula 6.28 yields zero for the 
extreme cases of Pe = 0 or Pe = 1. Furthermore, as this formula is independent of 
the classifier model, its value is to be considered a worst-case value, yielding in 
many circumstances unrealistically large intervals. 

In normal practice, we compute Ped by designing and evaluating the classifier 
in the same set with n cases, Ped(n). This is what we have done so far. As for 
Pet, we may compute it using an independent set of n cases, Pe1 (n). In order to 
have some guidance on how to choose an appropriate dimensionality ratio, we 
would like to know the deviation of the expected values of these estimates from the 
Bayes error. Here the expectation is computed on a population of classifiers of the 
same type and trained in the same conditions. Formulas for these expectations, 
E[ Ped (n)] and E[ Pet (n) ], are quite intricate and can only be computed 
numerically. Like formula 6.27, they depend on the Bhattacharyya distance. A 
software tool, sc Size, computing these formulas for two classes with normally 
distributed features, separated by a linear discriminant, is on the CD included with 
the book. SC Size also allows the computation of confidence intervals ofthese 
estimates, using formula 6.28. 
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Figure 6.15. Two-class linear discriminant E[ Ped (n)] and E[ Pe, (n)] curves, for 

d = 7 and 5 2= 3, below and above the dotted line, respectively. The dotted line 
represents the Bayes error (0.193). 

Figure 6.15 is obtained with sc Size and illustrates how the expected values 

of the error estimates evolve with n cases assumed here to be the number of cases 

in each class, in the situation of equal covariance. Both curves have an asymptotic 

behaviour with n ~ oo ' , with the average design set error estimate converging to 

the Bayes error from below and the average test set error estimate converging from 

above. 
Both standard deviations, which can be inspected in text boxes for a selected 

value of nld, are initially high for low values of n and converge slowly to zero with 

n ~ oo . For the situation shown in Figure 6.15, the standard deviation of Ped (n) 
changes from 0.089 for n = d (14 cases, 7 per class) to 0.033 for n = 10d (140 

cases, 70 per class). 
Based on the behaviour ofthe E[Ped(n)] and E[Pe,(n)] curves, some criteria 

can be established for the dimensionality ratio. As a general rule of thumb, using 
dimensionality ratios well above 3 is recommended. 

1f the cases are not equally distributed by the classes, it is advisable to use the 

smaller number of cases per class as value of n. Notice also that a multi-class 

problem can be seen as a generalisation of a two-class problem if every class is 

well separated from all the others. Then, the total number of needed training 

samples for a given deviation of the expected error estimates from the Bayes error 

can be estimated as en' , where n' is the particular value of n that achieves such a 

deviation in the most unfavourable, two-class dichotomy of the multi-class 
problem. 

Numerical approximations in the computation of the average test set error may result in a 

deviation from this asymptotic behaviour, for sufficiently large n. 
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6.4 The ROC Curve 

The classifiers presented in the previous sections assumed a certain model of the 
feature vector distributions in the feature space. Other model-free techniques to 
design classifiers do not make assumptions about the underlying data distributions. 
They are called non-parametric methods. One of these methods is based on the 
choice of appropriate feature thresholds by means of the ROC curve method (where 
ROC stands for Receiver Operating Characteristic). 

The ROC curve method (available with SPSS; see Commands 6.2) appeared in 
the fifties as a means of selecting the best voltage threshold discriminating pure 
noise from signal plus noise, in signal detection applications such as radar. Since 
the seventies, the concept has been used in the areas of medicine and psychology, 
namely for test assessment purposes. 

The ROC curve is an interesting analysis tool for two-class problems, especially 
in situations where one wants to detect rarely occurring events such as a special 
signal, a disease, etc., based on the choice of feature thresholds. Let us call the 
absence of the event the normal situation (N) and the occurrence of the rare event 
the abnormal situation (A). Figure 6.16 shows the classification matrix for this 
situation, based on a given decision rule, with true classes along the rows and 
decided (predicted) classifications along the columns5

• 

Decision 

A N 

A~ 
NeG] 

Figure 6.16. The canonical classification matrix for two-class discrimination of an 
abnormal event (A) from the normal event (N). 

From the classification matrix of Figure 6.16, the following parameters are 
defmed: 

True Positive Ratio= TPR = a/(a+b). Also known as sensitivity, this parameter 
tells us how sensitive our decision method is in the detection of the abnormal 
event. A classification method with high sensitivity will rarely miss the 
abnormal event when it occurs. 
True Negative Ratio= TNR = d/(c+d). Also known as specificity, this parameter 
tells us how specific our decision method is in the detection of the abnormal 
event. A classification method with a high specificity will have a very low rate 
of false alarms, caused by classifying a normal event as abnormal. 

The reader may notice the similarity of the canonical two-class classification matrix with the 

hypothesis decision matrix in chapter 4 (Figure 4.2). 
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- False Positive Ratio = FPR = c/(c+d) = I -specificity. 
- False Negative Ratio= FNR = bl(a+b) =I- sensitivity. 

Both the sensitivity and specificity are usually given in percentages. A decision 
method is considered good if it simultaneously has a high sensitivity (rarely misses 
the abnormal event when it occurs) and a high specificity (has a low false alarm 
rate). The ROC curve depicts the sensitivity versus the FPR (complement of the 
specificity) for every possible decision threshold. 

Example 6.9 

Q: Consider the Programming dataset (see Appendix E). Determine whether a 

threshold-based decision rule using attribute AB, "previous learning of Boolean 
Algebra", has a significant influence deciding the student passing (SCORE :2: I 0) or 

flunking (SCORE < 10) the Programming course, by visual inspection of the 
respective ROC curve. 

A: Using the Programming dataset we first establish the following Table 6.8. 

Next, we set the following decision rule for the attribute (feature) AB: 

Decide "Pass the Programming examination" if AB :2: 1'1. 

We then proceed to determine for every possible threshold value, 1'1, the 
sensitivity and specificity of the decision rule in the classification of the students. 

These computations are summarised in Table 6.9. Note that when L'1 = 0 the 

decision rule assigns all students to the "Pass" group. For 0 < L'1 :S; 1 the decision 
rule assigns to the "Pass" group 135 students that have indeed "passed" and 60 

students that have "flunked". Likewise for other values of 1'1. Based on the 

classification matrices for each value of L'1 the sensitivities and specificities are 
computed as shown in Table 6.9. 

The ROC curve can be directly drawn using these computations, or using SPSS 
as shown in Figure 6.17c. Figures 6.17a and 6.17b show how the data must be 
specified. From visual inspection, we see that the ROC curve is only moderately 
off the diagonal, corresponding to a non-informative decision rule (more details, 
later). 

0 

Table 6.8. Number of students passing and flunking the "Programming" 
examination for three categories of AB (Programming dataset). 

Previous learning of AB = Boolean Algebra 

0 =None 

I= Scarcely 

2 =A lot 

Total 

I =Pass 

39 

86 

49 

174 

0 =Flunk 

37 

46 
14 

97 
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Table 6.9. Computation of the sensitivity (TPR) and !-specificity (FPR) for 
Example 6.9. 

Pass/Flunk Decision Based on AB ::=: ~ 

Pass I Flunk Total 
~=0 0<~$1 1<~$2 ~>2 

Reality Cases 

0 0 0 0 

174 174 0 135 39 49 125 0 174 

0 97 97 0 60 37 14 83 0 97 

TPR 0.78 0.28 0 

FPR 0.62 0.14 0 

I 
ab c n 

1 0 1 39 
2 0 0 37 
3 1 1 86 
4 1 0 46 

TesiVaoioblo: 1.00 

[!] r Sonsmity , , 
, ,' 

.75 , , 
, , 

SlateVaoioblo: 
.SO 

,,'' 
IJ] l•c , , , ,, 

, , , 
5 2 1 49 
6 2 0 14 a 

0~ , ,' r 17 ROCC..V. 
, 

1·Specificity 

b 17 Wtil cfoaoonol•ofer ..... lne .25 .so .75 1.00 

Figure 6.17. ROC curve for Example 6.9, solved with SPSS: a) Datasheet with 
column "n" used as weight variable; b) ROC curve specification window; c) ROC 
curve. 

Example 6.10 

Q: Consider the Signal & Noise dataset (see Appendix E). This set presents 
100 signal plus noise values s(n) (Signal+Noise variable), consisting of random 
noise plus signal impulses with random amplitude, occurring at random times 
according to the Poisson law. The Signal & Noise data is shown in Figure 
6.18. Determine the ROC curve corresponding to the detection of signal impulses 
using several threshold values to separate signal from noise. 

A: The signal plus noise amplitude shown in Figure 6.18 is often greater than the 
average noise amplitude, therefore revealing the presence of the signal impulses 
(e.g. at time instants 53 and 85). The discrimination between signal and noise is 
made setting an amplitude threshold, ~. such that we decide "impulse" (our rare 
event) if s(n) > ~. and "noise" (the normal event) otherwise. For each threshold 
value, it's then possible to establish the signal vs. noise classification matrix and 
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compute the sensitivity and specificity values. By varying the threshold (easily 
done in the Signal & Noise. xls file), the corresponding sensitivity and 
specificity values can be obtained, as shown in Table 6.1 0. 

Figure 6.18. One hundred samples of a signal consisting of noise plus signal 
impulses (bold lines) occurring at random times. 

There is a compromise to be made between sensitivity and specificity. This 
compromise is made more patent in the ROC curve, which was obtained with 
SPSS, and corresponds to eight different threshold values, as shown in Figure 
6.19a (using the Data worksheet of Signal & Noise.xls). Notice that 

given the limited number of threshold values, the ROC curve has a stepwise aspect, 
with different values of the FPR corresponding to the same sensitivity, as also 
appearing in Table 6.10 for the specificity value of 0.7. With a large number of 
signal samples and threshold values, one would obtain a smooth ROC curve, as 
represented in Figure 6.19b. 

D 

Looking at the ROC curves shown in Figure 6.19 the following characteristic 
aspects are clearly visible: 

- The ROC curve graphically depicts the compromise between sensitivity and 
specificity. If the sensitivity increases, the specificity decreases, and vice-versa. 

- All ROC curves start at (0,0) and end at (1,1) (see Exercise 6.7). 
- A perfectly discriminating method corresponds to the point (0, I). The ROC 

curve is then a horizontal line at a sensitivity =1. 

A non-informative ROC curve corresponds to the diagonal line of Figures 6.19, 
with sensitivity = I - specificity. In this case, the true detection rate of the 
abnormal situation is the same as the false detection rate. The best compromise 
decision of sensitivity= specificity= 0.5 is then just as good as flipping a coin. 
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Table 6.10. Sensitivity and specificity in impulse detection (100 signal values). 

Threshold Sensitivity Specificity 

I 0.90 0.66 
2 0.80 0.80 
3 0.70 0.87 
4 0.70 0.93 

.75 

i ·;;; .50 ~ -;;; .50 
c c 
"' 

., 
en en 

.25 .25 

0.00 1 -Specificity 0.00 1 • Specificity 

a 0.00 .25 .50 .75 1.00 bl 0.00 .25 .50 .75 1.00 

Figure 6.19. ROC curve (bold line), obtained with SPSS, for the signal + noise 
data: (a) Eight threshold values (the values for Ll = 2 and Ll = 3 are indicated); b) A 
large number of threshold values (expected curve) with the 45° slope point. 

One of the uses of the ROC curve is related to the issue of choosing the best 
decision threshold that can differentiate both situations; in the case of Example 
6.1 0, the presence of the impulses from the presence of the noise alone. Let us 
address this discriminating issue as a cost decision issue as we have done in section 
6.3.1. Representing the sensitivity and specificity of the method for a threshold Ll 
by s(Ll) andj{Ll) respectively, and using the same notation as in formula 6.20, we 
can write the total risk as: 

or, 
R = s(Ll)(AaaP(A)- AanP(A))+ f(Ll)(AnaP(N)- AnnP(N))+ constant. 

In order to obtain the best threshold, we minimise the risk R by differentiating 
and equalling to zero, obtaining then: 

6.29 
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The point of the ROC curve where the slope has the value given by formula 
6.29 represents the optimum operating point or, in other words, corresponds to the 
best threshold for the two-class problem. Notice that this is a model-free technique 
of choosing a feature threshold for discriminating two classes, with no assumptions 
concerning the specific distributions of the cases. 

Let us now assume that, in a given situation, we assign zero cost to correct 
decisions, and a cost that is inversely proportional to the prevalences to a wrong 
decision. Then, the slope of the optimum operating point is at 45°, as shown in 
Figure 6.19b. For the impulse detection example, the best threshold would be 
somewhere between 2 and 3. 

Another application of the ROC curve is in the comparison of classification 
performance, namely for feature selection purposes. We have already seen in 6.3.1 
how prevalences influence classification decisions. As illustrated in Figure 6.9, for 
a two-class situation, the decision threshold is displaced towards the class with the 
smaller prevalence. Consider that the classifier is applied to a population where the 
prevalence of the abnormal situation is low. Then, for the previously mentioned 
reason, the decision maker should operate in the lower left part of the ROC curve 
in order to keep FPR as small as possible. Otherwise, given the high prevalence of 
the normal situation, a high rate of false alarms would be obtained. Conversely, if 
the classifier is applied to a population with a high prevalence of the abnormal 
situation, the decision-maker should adjust the decision threshold to operate on the 
FPR high part of the curve. 

Briefly, in order for our classification method to perform optimally for a large 
range of prevalence situations, we would like to have an ROC curve very near the 
perfect curve, i.e., with an underlying area of 1. It seems, therefore, reasonable to 
select from among the candidate classification methods (or features) the one that 
has an ROC curve with the highest underlying area. 

The area under the ROC curve is computed by the SPSS with a 95% confidence 
interval. 

Despite some shortcomings, the ROC curve area method is a popular method of 
assessing classifier or feature performance. This and an alternative method based 
on information theory are described in Metz et al. (1973). 

Commands 6.2. SPSS command used to perform ROC curve analysis. 

SPSS Graphs; ROC Curve 

• 
Example 6.11 

Q: Consider the FHR-Apgar dataset, contammg several parameters computed 
from foetal heart rate (FHR) tracings obtained previous to birth, as well as the so
called Apgar index. This is a ranking index, measured on a one-to-ten scale, and 
evaluated by obstetricians taking into account clinical observations of a newborn 
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baby. Consider the two FHR features, ALTV and ASTV, representing the 
percentages of abnormal long term and abnormal short-term heart rate variability, 
respectively. Use the ROC curve in order to elucidate which of these parameters is 
better in the clinical practice for discriminating an Apgar > 6 (normal situation) 
from an Apgar::; 6 (abnormal or suspect situation). 

A: The ROC curves for AL TV and ASTV are shown in Figure 6.20. The areas 
under the ROC curve, computed by SPSS with a 95% confidence interval, are 
0.709 ± 0.11 and 0.781 ± 0.10 for ALTV and ASTV, respectively. We, therefore, 
select the ASTV parameter as the best diagnostic feature. 

D 

.75 
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Figure 6.20. ROC curves for the FHR Apgar dataset, obtained with SPSS, 
corresponding to features ALTV and ASTV. 

6.5 Feature Selection 

As already discussed in section 6.3.3, great care must be exercised in reducing the 
number of features used by a classifier, in order to maintain a high dimensionality 
ratio and, therefore, reproducible performance, with error estimates sufficiently 
near the theoretical value. For this purpose, one may use the hypothesis test 
methods described in chapters 4 and 5 with the aim of discarding features that are 
clearly non-useful at an initial stage of the classifier design. This feature 
assessment task, while assuring that an information-carrying feature set is indeed 
used in the classifier, does not guarantee it will need the whole set. Consider, for 
instance, that we are presented with a classification problem described by 4 
features, x~> x2, x3 and x4, with x 1 and x2 perfectly discriminating the classes, and x3 

and x4 being linearly dependent of x 1 and x2• The hypothesis tests will then find that 
all features contribute to class discrimination. However, this discrimination could 
be performed equally well using the alternative sets {x 1, x2 } or {x3, x4 }. Briefly, 
discarding features with no aptitude for class discrimination is no guarantee against 
redundant features. 
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There is abundant literature on the topic of feature selection (see References). 
Feature selection uses a search procedure of a feature subset (model) obeying a 
stipulated merit criterion. A possible choice for this criterion is minimising Pe, 
with the disadvantage of the search process depending on the classifier type. More 
often, a class separability criterion such as the Bhattacharyya distance or the 
ANOVA F statistic is used. The Wilks' lambda, defined as the ratio of the 
determinant of the pooled covariance over the determinant of the total covariance, 
is also a popular criterion. Physically, it can be interpreted as the ratio between the 
average class volume and the total volume of all cases. Its value will range from 0 
(complete class separation) to 1 (complete class fusion). 

As for the search method, the following are popular ones and available in 
STATISTICA and SPSS: 

1. Sequential search (direct) 

The direct sequential search corresponds to performing successive feature 
additions or eliminations to the target set, based on a separability criterion. 

In a forward search, one starts with the feature of most merit and, at each step, 
all the features not yet included in the subset are revised; the one that contributes 
the most to class discrimination is evaluated through the merit criterion. This 
feature is then included in the subset and the procedure advances to the next search 
step. The process goes on until the merit criterion for any candidate feature is 
below a specified threshold. 

In a backward search, the process starts with the whole feature set and, at each 
step, the feature that contributes the least to class discrimination is removed. The 
process goes on until the merit criterion for any candidate feature is above a 
specified threshold. 

2. Sequential search (dynamic) 

The problem with the previous search methods is the existence of "nested" feature 
subsets that are not detected by direct sequential search. This problem is tackled in 
a dynamic search by performing a combination of forward and backward searches 
at each level, known as "plus /-take away r" selection. 

Direct sequential search methods can be applied using STATISTICA and SPSS, 
the latter affording a dynamic search procedure that is in fact a "plus 1-take away 
1" selection. As merit criterion, STA TISTICA uses the ANOVA F (for all selected 
features at a given step) with default value of one. SPSS allows the use of other 
merit criteria such as the squared Bhattacharyya distance (i.e., the squared 
Mahalanobis distance of the means). 

It is also common to set a lower limit to the so-called tolerance level, T = 1 - r2, 

which must be satisfied by all features, where r is the multiple correlation factor of 
one candidate feature with all the others. Highly correlated features are therefore 
removed. One must be quite conservative, however, in the specification of the 
tolerance. A value at least as low as 1% is common practice. 
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Example 6.12 

Q: Consider the first two classes of the Cork Stoppers' dataset. Perform 
forward and backward searches on the available 10-feature set, using default values 
for the tolerance (0.01) and the ANOVA F (1.0). Evaluate the training set errors of 
both solutions. 

A: Figure 6.21 shows the summary listing of a forward search for the first two 
classes of the cork-stopper data obtained with STATISTICA. Equal priors are 
assumed. Note that variable ART, with the highest F, entered in the model in "Step 
I". The Wilk's lambda, initially I, decreased to 0.42 due to the contribution of 
ART. Next, in "Step 2", the variable with highest F contribution for the model 
containing ART, enters in the model, decreasing the Wilks' lambda to 0.4. The 
process continues until there are no variables with F contribution higher than 1. In 
the listing an approximate F for the model, based on the Wilk's lambda, is also 
indicated. Figure 6.21 shows that the selection process stopped with a highly 
significant (p "" 0) Wilks' lambda. The four-feature solution {ART, PRM, NG, 
RAAR} corresponds to the classification matrix shown before in Figure 6.14b. 

Stepwise Analysis - Step 0 

NumbeE of vaEiables in the model: 0 
TJilks' Lambda: 1.000000 

Stepwise Analysis - Step 1 

NumbeE of vaEiables in the model: 1 
Last vaEiable enteEed: ART F 1, 99) 136.5565 p < .0000 
TJilks' Lambda: . 4178098 appEOX. F 1, 98) 136.5565 p < .0000 

Stepwise Analysis - Step 2 

"NumbeE of vaEiables in the model: 2 
Last vaEiable enteEed: PRM F 1, 98) 3.880044 p < .0517 
TJilks' Lambda: . 4017400 appEOX. F 2, 97) 72.22485 p < .0000 

·Stepwise Analysis -Step 3 

.NumbeE of vaEiables in the model: 3 
Last vaEiable enteEed: NG F 1, 97) 2.561449 p < .1128 
TJilks' Lambda: .3912994 appEOX. F 3, 96) 49.77880 p < .0000 

Stepwise Analysis - Step 4 

NumbeE of vaEiables in the model: 4 
Last vaEiable enteEed: RAAR F ( 1, 96) l. 619636 p < .2062 
1Jilks' Lambda: . 3847401 appEOX. F ( 4, 95) 37.97999 p < .0000 

Stepwise Analysis - Step 4 (Final Step) 

NumbeE of vaEiables in the model: 4 
Last vaEiable enteEed: RAAR F 1, 95) = .3201987 p < . 5728 

Figure 6.21. Feature selection listing, obtained with STATISTICA, using a 
forward search for two classes of the cork-stopper data. 
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Using a backward search, a solution with only two features (N and PRT) is 
obtained. It has the performance presented in Example 6.2. Notice that the 
backward search usually needs to start with a very low tolerance value (in the 
present case T = 0.002 is sufficient). The dimensionality ratio of this solution is 
comfortably high: nld = 25. One can therefore be confident that this classifier 
performs in a nearly optimal way. 

D 

Entered Removed Min. D Squared 

Statistic Between Exact F 
Groups 

Step Statistic df1 df2 Sig. 

1 PRT 2.401 1.00and 2.00 60.015 1 147.000 1.1 76E-12 

2 PRM 3.083 1.00and 2.00 38.279 2 146.000 4.330E-14 

3 N 4.944 1. OOand 2. 00 40.638 3 145.000 .000 

4 ARTG 5.267 1. OOand 2. 00 32.248 4 144.000 7.438E-15 

5 PRT 5.098 1.00and 2.00 41.903 3 145.000 .000 

6 RAAR 6.473 1. OOand 2. 00 39.629 4 144.000 2.316E-22 

Figure 6.22. Feature selection listing, obtained with SPSS (Stepwise Method; 
Mahalanobis), using a dynamic search on the cork stopper data (three classes). 

Example 6.13 

Q: Redo the previous Example 6.12 for a three-class classifier, using dynamic 
search. 

A: Figure 6.22 shows the listing produced by SPSS in a dynamic search performed 
on the cork-stopper data (three classes), using the squared Bhattacharyya distance 
(D squared) of the two closest classes as a merit criterion. Furthermore, features 
were only entered or removed from the selected set if they contributed significantly 
to the ANOV A F. The solution corresponding to Figure 6.22 used a 5% level for 
the statistical significance of a candidate feature to enter the model, and a 10% 
level to remove it. Notice that PRT, which had entered at step 1, was later 
removed, at step 5. The nested solution {PRM, N, ARTG, RAAR} would not have 
been found by a direct forward search. 
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6.6 Classifier Evaluation 

The determination of reliable estimates of a classifier error rate is obviously an 
essential task in order to assess its usefulness and to compare it with alternative 
solutions. 

As explained in section 6.3.3, design set estimates are on average optimistic and 
the same can be said about using an error formula such as 6.25, when true means 
and covariance are replaced by their sample estimates. It is, therefore, mandatory 
that the classifier be empirically tested, using a test set of independent cases. As 
previously mentioned in section 6.3.3, these test set estimates are, on average, 
pessimistic. 

The influence of the finite sample sizes can be summarised as follows (for 
details, consult Fukunaga K, 1990): 

The bias - deviation of the error estimate from the true error - is predominantly 
influenced by the finiteness of the design set; 
The variance of the error estimate is predominantly influenced by the finiteness 
of the test set. 

In normal practice, we only have a data set S with n samples available. The 
problem arises of how to divide the available cases into design set and test set. 
Among a vast number of methods (see e.g. Fukunaga K, Hayes RR, 1989b) the 
following ones are easily implemented in STATISTICA and/or SPSS: 

Resubstitution method 

The whole set S is used for design, and for testing the classifier. As a consequence 
of the non-independence of design and test sets, the method yields, on average, an 
optimistic estimate of the error, E[Ped(n)] mentioned in section 6.3.3. For the 
two-class linear discriminant with normal distributions, an example of such an 
estimate for various values of n is plotted in Figure 6.15 (lower curve). 

Holdout method 

The available n samples of S are randomly divided into two disjointed sets 
(traditionally with 50% of the samples each), Sd and S1 used for design and test, 
respectively. The error estimate is obtained from the test set, and therefore, suffers 
from the bias and variance effects previously described. By taking the average over 
many partitions of the same size, a reliable estimate of the test set error, 
E[ Pe1 (n) ], is obtained (see section 6.3.3). For the two-class linear discriminant 
with normal distributions, an example of such an estimate for various values of n is 
plotted in Figure 6.15 (upper curve). 

Partition methods 

Partition methods divide the available set S into a certain number of subsets, which 
rotate in their use of design and test, as follows: 
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I. Divide S into k > I subsets of randomly chosen cases, with each subset having 
n/k cases. 

2. Design the classifier using the cases of k- 1 subsets and test it on the remaining 
one. A test set estimate Pe,; is thereby obtained. 

3. Repeat the previous step rotating the position of the test set, obtaining thereby k 
estimates Pe,;. 

4. Compute the average test set estimate Pe1 = L~=l Pe1; I k and the variance of 
the Pe1;. 

For k = 2, the method is similar to the traditional holdout method. For k = n, the 
method is called the leave-one-out method, with the classifier designed with n - I 
samples and tested on the one remaining sample. Since only one sample is being 
used for testing, the variance of the error estimate is large. However, the samples 
are being used independently for design in the best possible way. Therefore the 
average test set error estimate will be a good estimate of the classifier error for 
sufficiently high n, since the bias contributed by the finiteness of the design set will 
be low. For other values of k, there is a compromise between the high bias-low 
variance of the holdout method, and the low bias-high variance of the leave-one
out method, with less computational effort. 

Statistical software products such as SPSS and STATISTICA allow the 
selection of the cases used for training and for testing linear discriminant 
classifiers. With SPSS, it is possible to use a selection variable, easing the task of 
specifying randomly selected samples. SPSS also affords performing a leave-one
out classification. With ST ATISTICA, one can initially select the cases used for 
training (Selection Conditions option in the Tools menu), and once the 
classifier is designed, specify test cases (Select Cases button in the 
Classification tab ofthe command form). 

Table 6.11. Listing of the classification matrices obtained with SPSS, using the 
leave-one-out method in the classification of the first two classes of the cork-
stopper data with two features. 

Predicted Group Membership Total 

c 2 
Original Count I 49 50 

2 9 41 50 
% 98.0 2.0 100 

2 18.0 82.0 100 
Cross-validated Count 1 49 50 

2 9 41 50 
% I 98.0 2.0 100 

2 18.0 82.0 100 
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Example 6.14 

Q: Consider the two-class cork-stopper classifier, with two features, presented in 
section 6.2.2 (see classification matrix in Table 6.3). Evaluate the performance of 
this classifier using the partition method with k = 3, and the leave-one-out method. 

A: Using the partition method with k = 3, a test set estimate of Pet= 9.9 % was 
obtained, which is near the training set error estimate of I 0%. The leave-one-out 
method also produces Pet= 10 % (see Table 6.12; the "Original" matrix is the 
training set estimate, the "Cross-validated" matrix is the test set estimate). The 
closeness of these figures is an indication of reliable error estimation for this high 
dimensionality ratio classification problem (n/d = 25). Using formula 6.28 we 
obtain worst-case 95% confidence limits for these error estimates: s = 0.03 => Pe = 
10%±5.9%. 

D 

Table 6.12. Listing of the classification matrices obtained with SPSS, using the 
leave-one-out method in the classification of the three classes of the cork-stopper 
data with four features. 

Predicted Group Membership Total 

c 2 3 

Original Count 1 43 7 0 50 

2 5 45 0 50 

3 0 4 46 50 

% 86.0 14.0 0.0 100 

2 10.0 90.0 .0 100 

3 0.0 8.0 92.0 100 

Cross-validated Count I 43 7 0 50 

2 5 44 I 50 

3 0 5 45 50 

% 86.0 14.0 0.0 100 

2 10.0 88.0 2.0 100 

3 0.0 10.0 90.0 100 

Example 6.15 

Q: Consider the three-class, cork-stopper classifier, with four features, determined 
in Example 6.13. Evaluate the performance of this classifier using the leave-one
out method. 
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A: Table 6.12 shows the leave-one-out results, obtained with SPSS, in the 
classification of the three cork-stopper classes, using the four features selected by 
dynamic search in Example 6.13. The training set error is 10.7%; the test set error 
estimate is 12%. Therefore, we still have a reliable error estimate of about (10.7 + 
12)/2 = 11.4% for this classifier, which is not surprising since the dimensionality 
ratio is high (n/d = 12.5). For the estimate Pe = 11.4% the worst-case 95% 
confidence interval corresponds to an error tolerance of 5%. D 

6. 7 Tree Classifiers 

In multi-group classification, one is often confronted with the problem that 
reasonable performances can only be achieved using a large number of features. 
This requires a very large design set for proper training, probably much larger than 
what we have available. Also, the feature subset that is the most discriminating set 
for some classes can perform rather poorly for other classes. In an attempt to 
overcome these difficulties, a "divide and conquer" principle using multistage 
classification can be employed. This is the approach of decision tree classifiers, 
also known as hierarchical classifiers, in which an unknown case is classified into 
a class using decision functions in successive stages. 

At each stage of the tree classifier, a simpler problem with a smaller number of 
features is solved. This is an additional benefit, namely in practical multi-class 
problems where it is rather Jifficult to guarantee normal or even symmetric 
distributions with similar covariance matrices for all classes, but it may be 
possible, with the multistage approach, that those conditions are approximately met 
at each stage, affording then optimal classifiers. 

Example 6.16 

Q: Consider the Breast Tissue dataset (electric impedance measurements of 
freshly excised breast tissue) with 6 classes denoted CAR (carcinoma), FAD 
(fibro-adenoma), G LA (glandular), MAS (mastopathy), CON (connective) and 
ADI (adipose). Derive a decision tree solution for this classification problem. 

A: Performing a Kruskal-Wallis analysis, it is readily seen that all the features have 
discriminative capabilities, namely IO and P A500, and that it is practically 
impossible to discriminate between classes GLA, FAD and MAS. The low 
dimensionality ratio of this dataset for the individual classes (e.g. only 14 cases for 
class CON) strongly recommends a decision tree approach, with the use of merged 
classes and a greatly reduced number of features at each node. 

As 10 and P A500 are promising features, it is worthwhile to look at the 
respective scatter diagram shown in Figure 6.23. Two case clusters are visually 
identified: one corresponding to {CON, ADI}, the other to {MAS, GLA, FAD, 
CAR}. At the first stage of the tree we then use 10 alone, with a threshold of 
10 = 600, achieving zero errors. 
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At stage two, we attempt the most useful discrimination from the medical point 
of view: class CAR (carcinoma) vs. {FAD, MAS, GLA} . Using discriminant 
analysis, this can be performed with an overall training set error of about 8%, using 
features AREA_ DA and IPMAX, whose distributions are well modelled by the 
normal distribution. 

Figure 6.24 shows the corresponding linear discriminant. Performing two 
randomised runs using the partition method in halves (half of the samples for 
design and the other half for testing), an average test set error of 8.6% was 
obtained, quite near the design set error. At stage two, the discrimination CON vs. 
ADI can also be performed with feature 10 (threshold IO =1550), with zero errors 
for ADI and 14% errors for CON. 
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Figure 6.23. Scatter plot of six classes of breast tissue using features 10 and 
PA500. 

With these results, we can establish the decision tree shown in Figure 6.25 . At 
each level of the decision tree, a decision function is used, shown in Figure 6.25 as 
a decision rule to be satisfied. The left descendent tree branch corresponds to 
compliance with a rule, i.e., to a "Yes" answer; the right descendent tree branch 
corresponds to a "No" answer. 

Since a small number of features is used at each level, one for the first level and 
two for the second level, respectively, we maintain a reasonably high 
dimensionality ratio at both levels; therefore, we obtain reliable estimates of the 
errors with narrow 95% confidence intervals (less than 2% for the first level and 
about ±3% for the CAR vs. {FAD, MAS, GLA} level). 
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Figure 6.24. Scatter plot of breast tissue classes CAR and {MAS, GLA, FAD} 
(denoted not car) using features AREA_DA and IPMAX, showing the linear 
discriminant separating the two classes. 

Figure 6.25. Hierarchical tree classifier for the breast tissue data with percentages 
of correct classifications and decision functions used at each node. Left branch = 
"Yes"; right branch= "No". 

For comparison purposes, the same four-class discrimination was carried out 
with only one linear classifier using the same three features 10, AREA_DA and 
IPMAX as in the hierarchical approach. Figure 6.26 shows the classification 
matrix. Given that the distributions are roughly symmetric, although with some 
deviations in the covariance matrices, the optimal error achieved with linear 
discriminants should be close to what is shown in the classification matrix. The 
degraded performance compared with the decision tree approach is evident. 
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On the other hand, if our only interest is to discriminate class car from all other 
ones, a linear classifier with only one feature can achieve this discrimination with a 
performance of about 86% (see Exercise 6.5). This is a comparable result to the 
one previously obtained with the tree classifier. 

D 

Figure 6.26. Classification matrix obtained with ST A TISTICA, of four classes of 
breast tissue using three features and linear discriminants. Class fad+ is actually 
the class set {FAD, MAS, GLA}. 

The decision tree used for the Breast Tissue dataset is an example of a 
binary tree: at each node, a dichotomic decision is made. Binary trees are the most 
popular type of trees, namely when a single feature is used at each node, resulting 
in linear discriminants that are parallel to the feature axes, and easily interpreted by 
human experts. Binary trees also allow categorical features to be easily 
incorporated with node splits based on a "yes/no" answer to the question whether 
or not a given case belongs to a set of categories. For instance, this type of trees is 
frequently used in medical applications, and often built as a result of statistical 
studies of the influence of individual health factors in a given population. 

The design of decision trees can be automated in many ways, depending on the 
split criterion used at each node, and the type of search used for best group 
discrimination. A split criterion has the form: 

d(x) ~ ~. 

where d(x) is a decision function of the feature vector x and ~ is a threshold. 
Usually, linear decision functions are used. In many applications, the split criteria 
are expressed in terms of the individual features alone (the so-called univariate 
splits). 

An essential concept regarding split criteria is the concept of node impurity. The 
node impurity is a function of the fraction of cases belonging to a specific class at 
that node. 

Consider the two-class situation shown in Figure 6.27. Initially, we have a node 
with equal proportions of cases belonging to the two classes. We say that its 
impurity is maximal. The right split results in nodes with zero impurity, since they 
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contain cases from only one of the classes. The left split, on the contrary, increases 
the proportion of cases from one of the classes, therefore decreasing the impurity, 
although some impurity remains present. 

0 !0· 
0 •\. 

a 

!2 0 ?-··~ 
Q./. • 

• 
Figure 6.27. Splitting a node with maximum impurity. The left split (x1 ~ il) 
decreases the impurity, which is still non-zero; the right split (w1x 1 + w2x2 ~ il) 
achieves pure nodes. 

A popular measure of impurity, expressed in the [0, 1] interval, is the Gini index 
of diversity: 

c 

i(t)= IP(Jit)P(kit). 
j,k=l 
J*k 

For the situation shown in Figure 6.27, we have: 

i(t1) = i(t2) = lxl = I; 

2 I 2 
i(tJJ) = i(tll) = 33=9; 
i(t21) = i(tn) = lxO = 0. 

6.30 

In the automatic generation of binary trees the tree starts at the root node, which 
corresponds to the whole training set. Then, it progresses by searching for the 
decision function and threshold level that achieve the maximum decrease of the 
impurity at each node. The generation of splits stops when no significant decrease 
of the impurity is achieved. It is common practice to use the individual feature 
values of the training set cases as candidate threshold values. Often, after 
generating a tree automatically, some sort of tree pruning must be performed in 
order to remove branches of no interest. 

ST A TISTICA has a specific command for designing tree classifiers, based on 
either univariate splits or on linear combinations ("discriminant-based") of 
specified features. The method of exhaustive search for the best univariate splits is 
usually called the CART (or C&RT) method, pioneered by Breiman, Friedman, 
Olshen, and Stone (see Breiman eta!., 1993). 
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Example 6.17 

Q: Use the CART approach with univariate splits and the Gini index as splitting 
criterion in order to derive a decision tree for the Breast Tissue dataset. 
Assume equal priors of the classes. 

A: The following univariate splits were found with STATISTICA for the Breast 
Tissue dataset: 

- First level node: {ADI, CON} vs. others. Feature IO was used, with the 
threshold 10 = 600.62. This split is achieved with zero misclassified cases. 

- Second level, right node: ADI vs. CON. Feature PERIM was used, with the 
threshold PERIM = 1563.8. This split is achieved with one misclassified case 
(2.8%). 

- Second level, left node: CAR vs. {MAS, GLA, FAD}. Feature AREA was used, 
with the threshold AREA = 1710.5. This split is achieved with four 
misclassified cases (5.7%). 

- Third level node: GLA vs. {MAS, FAD}. Feature DA was used, with the 
threshold DA = 36.5. This split is achieved with eight misclassified cases (17%). 

Notice how the CART approach achieves a tree solution with similar structure to 
the one "manually" derived and shown in Figure 6.25. Also, notice the gradual 
error increase as one progresses through the tree. Node splitting stops when no 
significant classification is found, and in this case when reaching the {MAS, 
FAD}, as expected. Figure 6.28 shows part of this tree, without the third level. 

Table 6.13. Misclassification matrix obtained with STATISTICA in the cross 
validation of the breast-tissue, tree classifier. Observed values are along the 
columns and predicted values along the rows. 

CAR FAD MAS GLA CON ADI 

CAR 0 2 1 0 0 

FAD 8 7 0 0 

MAS 3 6 0 0 

GLA 0 2 2 0 0 

CON 0 0 0 0 9 

ADI 0 0 0 0 

STATISTICA also affords the possibility of cross-validating the designed tree 
using the partition method described in 6.6. In the present case, since the 
dimensionality ratios are small, one has to perform the cross-validation with very 
small test samples. The results of such a cross-validation are shown in Table 6.13. 
The first level split is cross-validated with zero misclassifications. The CAR vs. 
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{MAS, GLA, FAD} node yielded 7 misclassified cases, corresponding to an error 
of I 0%. The other nodes yielded much higher errors than the training set values 
mentioned above, respectively 28% for ADI vs. CON and 47% (!) for GLA vs. 
{MAS, FAD} . 
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Figure 6.28. Tree plot, obtained with ST ATISTICA for the breast-tissue, tree 
classifier, shown up to the second level. Univariate search with equal priors and the 
Gini index as splitting criterion were used. 

Commands 6.3. STATISTICA command used to design tree classifiers. 

STATISTICA 

Exercises 

Statistics; Multivariate Exploratory 
Techniques; Classification Trees 

• 

6.1 Consider the first two classes of the Cork Stoppers 1 dataset described by features 
ART and PRT. 
a) Determine the Euclidian and Mahalanobis classifiers using feature ART alone, 

then using both ART and PRT. 
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b) Compute the Bayes error using a pooled covariance estimate as the true 
covariance for both classes. 

c) Determine whether the Mahalanobis classifiers are expected to be near the optimal 
Bayesian classifier. 

d) Using sc Size, determine the average deviation of the training set error 
estimate from the Bayes error, and the 95% confidence interval of the error 
estimate. 

6.2 Repeat the previous exercise for the three classes of the Cork Stoppers 1 dataset, 
using features N, PRM and ARTG. 

6.3 Consider the problem of classifying cardiotocograms (CTG dataset) into three classes: 
N (normal), S (suspect) and P (pathological). 
a) Determine which features are most discriminative and appropriate for a 

Mahalanobis classifier approach for this problem. 
b) Design the classifier and estimate its performance using a partition method for the 

test set error estimation. 

6.4 Repeat the previous exercise using the Rocks 1 dataset and two classes: {granites} vs. 
{I imestones, marbles}. 

6.5 A physician would like to have a very simple rule available for screening out 
carcinoma situations from all other situations using the same diagnostic means and 
measurements as in the Breast Tissue dataset. 
a) Using the Breast Tissue dataset, find a linear Bayesian classifier with only 

one feature for the discrimination of carcinoma versus all other cases (relax the 
normality and equal variance requirements). Use forward and backward search 
and estimate the priors from the training set sizes of the classes. 

b) Obtain training set and test set error estimates of this classifier, and 95% 
confidence intervals. 

c) Using the SC Size program, assess the deviation of the error estimate from the 
true Bayesian error, assuming that the normality and equal variance requirements 
were satisfied. 

d) Suppose that the risk of missing a carcinoma is three times higher than the risk of 
misclassifying a non-carcinoma. How should the classifying rule be reformulated 
in order to reflect these risks, and what is the performance of the new rule? 

6.6 Design a linear discriminant classifier for the three classes of the Clays 1 dataset and 
evaluate its performance. 

6. 7 Explain why all ROC curves start at (0,0) and finish at (I, I) by analysing what kind of 
situations these points correspond to. 

6.8 Consider the Breast Tissue dataset. Use the ROC curve approach to determine 
single features that will discriminate carcinoma cases from all other cases. Compare the 
alternative methods using the ROC curve areas. 

6.9 Repeat the ROC curve experiments illustrated m Figure 6.20 for the FHR Apgar 
dataset, using combinations of features. 
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6.10 Increase the amplitude of the signal impulses by 20% in the Signal & Noise 
dataset. Consider the following impulse detection rule: 

An impulse is detected at time n when s(n) is bigger than a,L:=l (s(n- i) + s(n + i)). 
Determine the ROC curve corresponding to a variable a, and determine the best a for 
the impulse/noise discrimination. How does this method compare with the amplitude 
threshold method described in section 6.4? 

6.11 Consider the Inf a ret dataset, containing four continuous-type measurements of 
physiological variables ofthe heart (EF, CK, lAD, GRD), and one ordinal-type variable 
(SCR: 0 through 5) assessing the severity of left ventricle necrosis. Use ROC curves of 
the four continuous-type measurements in order to determine the best threshold 
discriminating "low" necrosis (SCR < 2) from "medium-high" necrosis (SCR ~ 2), as 
well as the best discriminating measurement. 

6.12 Repeat Exercises 6.3 and 6.4 performing sequential feature selection (direct and 
dynamic). 

6.13 Perform a resubstitution and leave-one-out estimation of the classification errors for the 
three classes of cork stoppers, using the features obtained by dynamic selection 
(Example 6.13). Comment on the reliability of these estimates. 

6.14 Compute the 95% confidence interval of the error for the classifier designed in 
Exercise 6.3 using the standard formula. Perform a partition method evaluation of the 
classifier, with 10 partitions, obtaining another estimate of the 95% confidence interval 
of the error. 

6.15 Compute the decrease of impurity in the trees shown in Figure 6.25 and Figure 6.28, 
using the Gini index. 

6.16 Compute the classification matrix CAR vs. {MAS, GLA, FAD} for the Breast 
Tissue dataset in the tree shown in Figure 6.25. Observe its dependence on the 
prevalences. Compute the linear discriminant shown in the same figure. 

6.17 Using the CART approach, find decision trees that discriminate the three classes of the 
CTG dataset, N, S and P, using several initial feature sets that contain the four 
variability indexes ASTV, ALTV, MSTV, MLTV. Compare the classification 
performances for the several initial feature sets. 

6.18 Consider the four variability indexes of foetal heart rate (M LTV, MSTV, AL TV, 
ASTV) included in the CTG dataset. Using the CART approach, find a decision tree 
that discriminates the pathological foetal state responsible for a "flat-sinusoidal" (FS) 
tracing from all the other classes. 

6.19 Design a tree classifier for the three classes of the Clays' dataset using the CART 
approach, and compare its performance with the classifier of Exercise 6.6. 

6.20 Design a tree classifier for Exercise 6.11 and evaluate its performance comparatively. 
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An important objective in scientific research and in more mundane data analysis 
tasks concerns the possibility of predicting the value of a dependent random 
variable based on the values of other independent variables, establishing a 
functional relation of a statistical nature. The study of such functional relations, 
known for historical reasons as regressions, goes back to pioneering works in 
Statistics. 

Let us consider a functional relation of one random variable y depending on a 
single predictor variable .K, which may or may not be random. 

y = g(~. 

We study such a functional relation by means of a regression model, which is a 
formal way of expressing the statistical nature of the functional relation, as 
illustrated in Figure 7.1. We see that for every predictor value X;, we must take into 
account the probability distribution of y as expressed by the density functionfjy). 
The stochastic means of these probability distributions determine the sought for 
functional relation. 

y 

Figure 7.1. Statistical functional relation in single predictor regression. They; are 
the observations for the predictor values x;. 

Correlation differs from regression since in correlation analysis all variables are 
assumed to be random and play a symmetrical role, with no dependency 
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assignment. As it happens with correlation, one must also be cautious when trying 
to infer causality relations from regression. As a matter of fact, the existence of a 
statistical relation between the response y and the predictor variable ~ does not 
necessarily imply that y depends causally on~ (see also 4.4.1 ). 

7.1 Simple Linear Regression 

7 .1.1 Simple Linear Regression Model 

In simple linear regression, one has a single predictor variable and the functional 
relation is assumed to be linear. The only random variable is y and the regression 
model is expressed as: 

7.1 

where: 

i. They; are the observed values for the predictor variable ~- The linear regression 
parameters, flo and /31, are known as intercept and slope, respectively. 

ii. The C:; are random error terms, with: 

Therefore, the errors are assumed to have zero mean, equal variance and to be 
uncorrelated among them (see Figure 7.1 ). With these reasonable assumptions, the 
following model features can be derived: 

1. E[c:J=o => E[y;]=f30 +/31x; => E[y]=/30 +/31 ~. 
This last equation expresses the linear regression ofy dependent on .-r, The linear 
regression parameters flo and /31 have to be estimated. 

iii. y; and yj are uncorrelated. 

7.1.2 Estimating the Regression Function 

A popular method of estimating the regression function parameters is to use a least 
square error (LSE) approach, by minimising the total sum of the squares of the 
errors: 

n n 

E = Ic:? = L(Y;- f3o- f3,x;) 2 • 7.2 
i=l i=l 
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In order to apply the LSE method one starts by differentiating E in order to f3o 
and /lJ and equalising to zero, obtaining the so-called normal equations: 

7.3 

where the summations, from now on, are always assumed to be for the n predictor 
values. The parameters b0 and b1 are the estimates, obtained through this least 
square approach, of the true parameters f3o and p,. By solving the normal 
equations, the following parameter estimates, b0 and bt. are derived: 

b = I<x; -x)(Y;- .Y) 
' I<x; -x)2 . 

7.4 

b0 = y-b1x. 7.5 

The least square estimates of the linear regression parameters enjoy a number of 
desirable properties: 

i. The parameters b0 and b1 are unbiased estimates of the true parameters f3o and 
p, - E[b0 ] = Po; E[b1 ] = p, -, and have minimum variance among all 
unbiased linear estimates. 

11. The predicted (or fitted) values y; = b0 + b1 X; are point estimates of the true, 
observed values, y;. The same is valid for the whole relation y = b0 + b1 ~ , 

which is the point estimate of the mean response E[y] 

iii. The regression line always goes through the point ( x, y ). 

iv. The computed errors e; = Y;- Y; = Y; -b0 -b1x;, called the residuals, are 
point estimates of the error terms £;. The sum of the residuals is zero: 
Le; =0. 

v. The residuals are uncorrelated with the predictor and the predicted values: 
Le;X; = 0; Le;Y; = 0. 

vi. LY; = LY; => y = y , i.e., the predicted values have the same mean as 
the observed values 

Example 7.1 

Q: Consider the variables ART and PRT of the Cork Stoppers' dataset. 
Imagine that we wanted to predict the total area of the defects of a cork stopper 
(ART) based on their total perimeter (PRT), using a linear regression approach. 
Determine the regression parameters and represent the regression line. 

A: Figure 7.2 shows the scatter plot obtained with STATISTICA of these two 
variables with the linear regression fit (Linear Fit box in Scatterplot), 
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using equations 7.4 and 7.5. Figure 7.3 shows the summary of the regression 
analysis obtained with STATISTICA (see Commands 7.1). Using the values of the 
linear parameters (Column B in Figure 7.3) we conclude that the fitted regression 
line is: 

ART = -64.5 + 0.547xPRT. 

Note that the regression line passes through the point of the means of ART and 
----

PRT: (ART, PRT) = (324, 71 0). 
D 
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Figure 7.2. Scatter plot of variables ART and PRT (cork-stopper dataset), obtained 
with STATISTICA, with the fitted regression line. 

R= .98114218 R~ .96263997 Adjusted R~ .96238754 
F(1 ,148)=3813.5 p<O.OOOO Std. Error of estimate: 39.050 

Beta Std. Err.~ 8 ~ Std.Err. I t(148) p-I eve I 
N=150 of Beta ofB 
lnterceDt -64 .4~~ 7.053354 -9.14320 0.000000 
PRT 0.981142. 0.015888 0.5469 0.008857 61 .75316 0.000000 

Figure 7.3. Table obtained with ST A TISTICA containing the results of the simple 
linear regression for cork-stopper Example 7 .1. 

The value of Beta, mentioned in Figure 7.3, Is related to the so-called 
standardised regression model: 
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In equation 7.6 only one parameter is used, since y; and x; are standardised 
variables (mean = 0, standard deviation = l) of the observed and predictor 
variables, respectively. 

It can be shown that: 

7.7 

The standardised p; is the so-called beta coefficient, which has the point 
estimate value b; = 0.98 in the table shown in Figure 7.3. 

Figure 7.3 also mentions the values of R, R2 and Adjusted R2 • These are 
measures of association useful to assess the goodness of fit of the model. In order 
to understand their meanings we start with the estimation of the error variance, by 
computing the error sum of squares or residual sum of squares (SSE)1

, as follows: 

7.8 

Note that the deviations are referred to each predicted value; therefore, SSE has 
n - 2 degrees of freedom since two degrees of freedom are lost: b0 and b1• The 
following quantities can also be computed: 

SSE 
Mean square error: MSE = --. 

n-2 

- Root mean square error, or standard error: RMS = .JMSE . 

The total variance of the observed values is related to the total sum of squares 
(SST)1: 

7.9 

The goodness of fit of the regression model is evaluated using the following 
association measure, known as coefficient of determination or multiple R square: 

2 SST-SSE 
r = E 

SST 
[o, 1]. 7.10 

Therefore, "R square", which can also be shown to be the square of the Pearson 
correlation between x; and y;, measures the contribution of ~ in reducing the 
variation of y, i.e., in reducing the uncertainty in predicting y. Notice that: 

Note the analogy of SSE and SST with the corresponding ANOV A sums of squares, 
formulas 4.25b and 4.22, respectively. 
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1. If all observations fall on the regression line (perfect regression, complete 
certainty), then: SSE= 0, / = 1. 

2. If the regression line is horizontal (no contribution of ~ in predicting y), then: 
SSE = SST, r2 = 0. 

Often the value of "R square" is found to be slightly optimistic. Several authors 
propose using the following "Adjusted R square" instead: 

7.11 

For the cork-stopper example the value of the "R square" is quite high, r2 = 0.96, 
as shown in Figure 7.3. STATISTICA highlights the summary table when this 
value is found to be significant, therefore showing evidence of a good linear fit. 
Figure 7.4 shows the observed versus predicted values. A perfect model would 
correspond to a unit slope straight line. 

Figure 7.4. Scatter plot, obtained with ST A TISTICA, of the observed values 
versus predicted values of the ART variable (cork-stopper data) with the fitted line 
and the 95% confidence interval (dotted line). 

Commands 7.1. STATISTICA, SPSS and MATLAB commands used to perform 
the simple linear regression. 

Statistics; Multiple regression I 
STATISTICA Advanced Linear/Nonlinear Models; 

General Linear Models 

SPSS Analyze; Regression; Linear 

MATLAB [b,bint,r,rint,stats]=regress(y,x,alpha] 
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ST A TISTICA and SPSS commands for regression analysis have a large number of 
options that the reader should explore in the following examples. With 
STA TISTICA and SPSS, there is also the possibility of obtaining a variety of 
detailed listings of predicted values and residuals as well as graphic help, such as 
specialised scatter plots. For instance, Figure 7.4 shows the scatter plot of the 
observed versus the predicted values of variable ART (cork-stopper example), 
together with the 95% confidence interval for the linear fit. 

For the MATLAB regress command, the meaning of the non-obvious 
arguments is as follows: 

b - estimate of Beta; 
r - residuals; 
stats- R2 and other statistics. 

bint -alpha confidence interval forb; 
rint- alpha confidence intervals for r; 

7.1.3 Inferences in Regression Analysis 

• 

In order to make inferences about the regression model, the errors t:; are assumed to 
be independent and normally distributed, No.a- This constitutes the so-called 
normal regression model. It can then be shown that the unbiased estimate of (]"is 
RMS. 

The inference tests described in the following sections continue to be valid in 
the case of mild deviations from normality. Even if the distributions of y; are far 
from normal, the estimators of b0 and b1 have the property of asymptotic normality: 
their distributions approach normality under very general conditions, as the sample 
size mcreases. 

7 .1.3.1 Inferences About b1 

The point estimate of b1 is given by formula 7.4. This formula can also be 
expressed as: 

with 7.12 

The sampling distribution of b1 for the normal regression model is also normal 
(since b1 is a linear combination of they;), with: 

- Mean: 

- Variance: 
2 

v[b,]=vr~k-y.]="'k 2v[y.]=(J" 2 "'k 2 = (]" 
I.L. l l L, l l L, l L(X; -:X)2 

If instead of(]", we use its estimate RMS = .JMSE , we then have: 

7.13 
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Thus, in order to make inferences about bh we take into account that: 

7.14 

The sampling distribution of the studentised statistic r* allows us to compute 
confidence intervals for /31 as well as to perform tests of hypotheses, in order to, for 
example, assess if there is no linear association: H0 : /31 = 0. 

Example 7.2 

Q: Determine the 95% confidence interval of b1 for the ART(PRT) linear 
regression in Example 7.1. 

A: The MSE value can be found in STA TISTICA or SPSS ANOV A table (see 
Commands 7.2). The Model Summary of STA TISTICA or SPSS also publishes 
the value of RMS (Standard Error of Estimate). When using 
MA TLAB, the values of MSE and RMS can also be easily computed using the 
vector r of the residuals (see Commands 7.1). The value of ~)xi -xi is 
computed from the variance of the predictor values. Thus, in the present case we 
have: 

MSE = 1525, sPRT = 361.2 ::::;> s 61 = ~MSE I (cn-l)s~RT) = 0.00885676. 

Since !148,0.975 = 1.976 the 95% confidence interval of is [0.547- 0.0175, 0.547 + 
0.0 175], which agrees with the values published by SPSS (confidence 
intervals option), STATlSTICA (Advanced Linear /Nonlinear 
Models) and MATLAB. 

D 

Example 7.3 

Q: Consider the ART(PRT) linear regression in Example 7.1. Is it valid to reject 
the null hypothesis of no linear association, at a 5% level of significance? 

A: The results of the respective t test are shown in the last two columns of Figure 
7.3. Taking into account the value ofp (p"" 0 for r* = 61.8), the null hypothesis is 
rejected. 

D 

7 .1.3.2 Inferences About b0 

The point estimate of b0 is given by formula 7.5. The sampling distribution of b0 

for the normal regression model is also normal (since b0 is a linear combination of 
they;), with: 

- Mean: E[b0 ] = /30 ; 
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Since a is usually unknown we use the point estimate of the variance: 

si = MSE -+ x . [
I -2 ; 

o n I<xi -x)2 
7.15 

Therefore, in order to make inferences about b0, we take into account that: 

• ho- f3o 
f = ~ fn-2· 7.16 

sho 

This allows us to compute confidence intervals for flo, as well as to perform tests 
of hypotheses, e.g. in order to assess whether or not the regression line should pass 

at the origin: H0 : flo= 0. 

Example 7.4 

Q: Determine the 95% confidence interval of b0 for the ART(PRT) linear 
regression in Example 7.1. 

A: Using the MSE, srRT and t 148_0975 values as described in Example 7.2, we obtain: 

s£0 =MSE(lln+x 2 /L(xi -x) 2 ) =49.7563. 

Thus: sh0 E [-64.49 - 13.9, -64.49 + 13.9] with 95% confidence level. This 

interval agrees with ST A TISTICA, SPSS and MA TLAB results. 
0 

Example 7.5 

Q: Consider the ART(PRT) linear regression in Example 7 .1. Is it valid to reject 
the null hypothesis of a linear fit through the origin at a 5% level of significance? 

A: The results of the respective t test are shown in the last two columns of Figure 

7.3. Taking into account the value of p (p"' 0 for/= -9.1), the null hypothesis is 

rejected. This is a somewhat strange result, since one would expect a null area 

corresponding to a null perimeter. As a matter of fact a ART(PRT) linear 
regression without intercept is also a valid data model (see Exercise 7.3). 

0 

7 .1.3.3 Inferences About Predicted Values 

Let us assume that one wants to derive interval estimators of E[y k], i.e., one wants 

to determine which value would be obtained, on average, for a predictor variable 

level xh and if repeated samples (or trials) were used. 
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The point estimate of E[y k ] , corresponding to a certain value xk. is the 
computed predicted value: 

The sampling distribution for the normal regression model is also normal (since 
it is a linear combination of observations), with: 

Note that the variance is affected by how far xk is from the sample mean :X. This 
is a consequence of the fact that all regression estimates must pass through (:X, y) . 
Therefore, values xk far away from the mean lead to higher variability in the 
estimates. 

Since ais usually unknown we use the estimated variance: 

7.17 

Thus, in order to make inferences about Yk. we use the studentised statistic: 

7.18 

This sampling distribution allows us to compute confidence intervals for the 
predicted values. Figure 7.4 shows with dotted lines the 95% confidence interval 
for the cork-stopper Example 7 .1. Notice how the confidence interval widens as we 
move away from (:X, y) . 

Example 7.6 

Q: The observed value of ART for PRT = 1612 is 882. Determine the 95% 
confidence interval of the predicted ART value using the ART(PRT) linear 
regression model derived in Example 7 .1. 

A: Using the MSE, sPRT and !148,0.975 values as described in Example 7.2, and taking 

into account that PRT = 710.4, we compute: 

(xk -:X) 2 = (1612-710.4)2 = 812882.6; 'L<xi -x) 2 = 19439351; 

VU\]=MSE[_!_+ (xk-:X)
2

]=73.94. 
n L(xi -:X)2 
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Thus: hE [882- 17, 882 + 171 with 95% confidence level. This corresponds 

to the 95% confidence interval depicted in Figure 7 .4. 
D 

7.1.3.4 Prediction of New Observations 

Imagine that we want to predict a new observation, i.e., an observation for new 
predictor values independent of the original n cases. The new observation on y is 
viewed as the result of a new trial. To stress this point we call it: 

Yk(new) · 

If the regression parameters were perfectly known, one would easily find the 
confidence interval for the prediction of a new value. Since the parameters are 
usually unknown, we have to take into account two sources of variation: 

- The location of ElYk(new)j, i.e., where one would locate, on the average, the 
new observation. This was discussed in the previous section. 

- The distribution of y k(new), i.e., how to assess the expected deviation of the new 
observation from its average value. For the normal regression model, the 
variance of the prediction error for the new prediction can be obtained as 
follows, assuming that the new observation is independent of the original n 

cases: 

vpred = v~k(new)- .h ]= <7 2 + v[yk ]. 

The sampling distribution of y k(new) for the normal regres'lion model takes into 
account the above sources of variation, as follows: 

• Yk(new)- Yk 
t = ~ t,.2, 7.19 

5 pred 

where s ~red is an unbiased estimator of V pred : 

7.20 

Thus, the I -a confidence interval for the new observation y k(new), is: 

' + Y k - f n-2,1-a 12 S pred · 7.20a 

Example 7.7 

Q: Compute the estimate of the total area of defects of a cork stopper with a total 
perimeter of the defects of 800 pixels, using Example 7 .I regression model. 
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A: Using the MSE, SpRT, PRT and !148,0.975 values presented in Examples 7.2 and 
7.6, we compute using formula 7.20: 

Yk(new)E [437.5 -77.4, 437.5 + 77.4] = [360, 515], with 95% confidence level. 

Figure 7.5 shows the table obtained with STATISTICA (using the Predict 
dependent variable button of the Multiple regression command), 
displaying the predicted value of variable ART for the predictor value PRT = 800, 
together with the 95% confidence interval. Notice that the 95% confidence interval 
is quite smaller than we have computed above, since ST A TISTICA is using 
formula 7.17 instead of formula 7 .20, i.e., is considering the predictor value as 
making part of the dataset. 

D 

B-Welght Value I 8-Weight 
Variable *Value 
PRT 0.546918 800.0000 L,j37 .5347 
Intercept I -64.4902 
Predicted 373.0445 
-95.0%CL 366.5515 
+95.0%CL 379.5375 

Figure 7.5. Prediction of the new observation of ART for PRT = 800 (cork
stopper dataset), using STA TISTICA. 

7.1.4 ANOVA Tests 

The analysis of variance tests are quite popular in regression analysis since they 
can be used to evaluate the regression model into several aspects. We start with a 
basic ANOV A test for evaluating the following hypotheses: 

Ho: /31 = 0; 
H1: /31 :t= 0. 

7.2la 
7.21b 

For this purpose, we break down the total deviation of the observations around 
the mean, given in equation 7.9, into two components: 

7.22 

The first component represents the deviations of the fitted values around the 
mean, and is known as regression sum of squares, SSR: 

7.23 
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The second component was presented previously as the error sum of squares, 
SSE (see equation 7.8). It represents the deviations of the observations around the 
regression line. We, therefore, have: 

SST = SSR + SSE. 7.24 

The number of degrees of freedom of SST is n - 1 and it breaks down into one 

degree of freedom for SSR and n - 2 for SSE. Thus, we define the regression mean 
square: 

MSR = SSR =SSR. 
1 

The mean square error was already defined in section 7.1.2. In order to test the 
null hypothesis 7.21 a, we then use the following ratio: 

F* = MSR ~ F . 
MSE I,n-2 

7.25 

From the definitions of MSR and MSE we expect that large values ofF support 
H 1 and values ofF near I support H0• Therefore, the appropriate test is an upper
tail F test. 

Table 7.1. ANOVA test for the simple linear regression example of predicting 
ART based on the values ofPRT (cork-stopper data). 

SSR 

SSE 

Sum of 
Squares 

5815203 

225688 

SST 6040891 

Example 7.8 

df 

148 

Mean 
Squares 

5815203 

1525 

F 

3813.453 

p 

0.00 

Q: Apply the ANOV A test to the regression Example 7.1 and discuss its results. 

A: For the cork-stopper Example 7.1, the ANOV A array shown in Table 7.1 can be 
obtained using either ST ATISTICA or SPSS. Based on the observed significance 
of the test, we reject H0, i.e., we conclude the existence of the linear component 

(/31-:/= 0). 
D 
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Commands 7.2. ST A TISTICA and SPSS commands used to perform the ANOV A 
test in simple linear regression. 

STATISTICA 

SPSS 

Statistics; Multiple regression; 
Advanced; ANOVA 

Analyze; Regression; Linear; Statistics; 
Model Fit 

• 

There are also specific ANOV A tests for assessing whether a certain regression 
function adequately fits the data. We will now describe the ANOV A test for lack of 
fit, which assumes that the observations of y are independent, normally distributed 
and with the same variance. The test takes into account what happens to repeat 
observations at one or more ~levels, the so-called replicates. 

Let us assume that there are c distinct values of~ replicates or not, each with n1 

replicates: 

7.26 

The ith replicate for the j level is denoted Yii· Let us first assume that the 
replicatesyiJ obey the so-calledfu// model, with: 

y iJ = 11 i + t: iJ , with t:iJ i.i.d. N(O,d) ~ E[yiJ] = 111. 7.27 

Notice that the full model does not impose any restriction on the 111, whereas in 
the linear regression model the mean responses are linearly related. 

To fit the full model to the data, we require: 

7.28 

Thus, we have the following error sum of squares for the full model (F denotes 
the full model): 

7.29 
j i j 

Any ~level with no replicates makes no contribution to SSE(F). SSE(F) is also 
called pure error sum of squares and denoted SSPE. 

Under the linear regression assumption, the 111 are linearly related with x1. 

Therefore, we have a reduced model, with: 
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The error sum of squares for the reduced model is the usual error sum (R 
denotes the reduced model): 

SSE(R) =SSE, with dfR = n- 2. 

The difference SSLF = SSE - SSPE is called the lack of fit sum of squares and 
has (n- 2)- (n- c)= c- 2 degrees of freedom. The decomposition SSE= SSPE + 
SSLF corresponds to: 

Yij-Yii = (yiJ-yi) + (yi-yiJ) 7.30 
error deviation pure error deviation lack of fit deviation 

If there is a lack of fit, SSLF will dominate SSE, compared with SSPE. 
Therefore, the ANOV A test, assuming that the null hypothesis is the lack of fit, is 
performed using the following statistic: 

F* _ SSLF . SSPE _ MSLF F 
- c-2 ..,. n-c - MSPE- c-2,n-c 

The test for lack of fit is formalised as: 

Ho: E[y]= Po+ A~· 
H,: E[y]t: Po+ p,~. 

7.30a 

7.31a 

7.3lb 

Let F1_a represent the 1 - a percentile of Fc.2,n·c· Then, if F* ::;; F1_a we accept 
the null hypothesis, otherwise (significant test), we conclude for the lack of fit. 

Repeat observations at only one or some levels of ~are sufficient for the test. 
When no replications are present in a data set, an approximate test for lack of fit 
can be conducted if there are some cases, at adjacent ~levels, for which the mean 
responses are quite close to each other. These adjacent cases are grouped together 
and treated as pseudo-replicates. 

Example 7.9 

Q: Apply the ANOV A lack of fit test for the regression in Example 7.1 and discuss 
its results. 

A: First, we know from the previous results ofTable 7.1, that: 

SSE= 225688; df= n- 2 = 148; MSE = 1525. 7.32 

In order to obtain the value of SSPE, using ST A TISTICA, we must run the 
General Linear Models command and in the Options tab of Quick 
Specs Dialog, we must check the Lack of fit box. After conducting a 
Whole Model R (whole model regression) with the variable ART depending on 
PRT, the following results are obtained: 

SSPE = 65784.3; df= n- c = 20; MSPE = 3289.24. 7.33 
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Notice, from the value of dj, that there are 130 distinct values ofPRT. Using the 
results 7.32 and 7.33, we are now able to compute: 

SSLF =SSE- SSPE = 159903.7; df= c- 2 = 128; MSLF = 1249.25. 

Therefore, F* = MSLF/MSPE = 0.38. For a 5% level of significance, we 
determine the 95% percentile of F 128,20 , which is F0.95 = 1.89. Since F < F0.95 , we 
then conclude for the goodness of fit of the simple linear model. D 

7.2 Multiple Regression 

7.2.1 General Linear Regression Model 

Assuming the existence of p - 1 predictor variables, the general linear regression 
model is the direct generalisation of 7.1 : 

p-l 

Y; = f3o + f3txil + fJ2xi2 + · · · + f3 p-t xi,p-t + c; = L f3kxik +t:;, 
k=O 

with xiO = 1, and the errors c; are i.i.d. No,a· 

Note that: 

7.34 

- The general linear regression model implies that the observations are 
independent normal variables. 

- When the x; represent different predictor variables the model is called a first
order model, in which there are no interaction effects between the predictor 
variables. 

- The general linear regression model encompasses also qualitative predictors. 
For example: 

7.35 

xil =patient's weight 

x _
2 

= { I if patient female 
' 0 if patient male 

Patient is male: 

Patient is female: 

Multiple linear regression can be performed with ST A TISTICA, SPSS and 
MATLAB with the same commands already listed in Commands 7.1. MATLAB 
has a specific diagnostic tool, called regstats, which uses a graphical interface 
guiding the user in the evaluation of the regression model. 
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7.2.2 General Linear Regression in Matrix Terms 

In order to understand the computations performed to fit the general linear 
regression model to the data, one will find it convenient to study the normal 
equations 7.3 in matrix form. 

We start by expressing the general linear model (generalisation of7.1) in matrix 
terms as: 

y =X~+£, 7.36 

where: 

- y is an nxl matrix (i.e., a column vector) of the predictions; 
- X is an nxp matrix of the p - 1 predictor values plus a bias (of value 1 ); 
- ~ is a px I matrix of the coefficients; 
- £is an nxl matrix ofthe errors. 

For instance, the multiple regression expressed by formula 7.35 is represented as 
follows in matrix form, assuming n = 3 predictor levels: 

We assume, as for the simple regression, that the errors are i.i.d. with zero mean 
and equal variance: 

Thus: E[y]= xp. 
The least square estimation of the coefficients starts by computing the total 

error: 

E = LEi2 = E'E = (y-Xb)'(y-Xb) = y'y-(X'y)'b-b' X'y+b' X'Xb. 

Next, the error is minimised by setting to zero the derivatives in order to the 
coefficients, obtaining the normal equations in matrix terms: 

- 2X'y + 2X' Xb = 0 X'Xb=X'y. 

Thus: 

b = (X'X)-1 X'y = x*y, 7.37 

where x* is the so-called pseudo-inverse matrix of X. 
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The fitted values can now be computed as: 

y=Xb. 

Note that this formula, using the predictors and the estimated coefficients, can 
also be expressed in terms of the predictors and the observations, substituting the 
vector of the coefficients given in 7.37. 

Let us consider the normal equations: 

For the standardised model (i.e., using standardised variables) it can be shown 
that: 

r12 rl,p-1 

X'X=rxx = 
r2,p-l 

7.38 

r p-1,1 r p-1,2 

X'Y =ryx = 7.39 

Hence: 

b= 7.40 

where b is the vector contammg the point estimates of the beta coefficients 
(compare with formula 7.7 in section 7.1.2), r,, is the symmetric matrix of the 
predictor correlations (see A.8.2) and ryx is the vector of the correlations between 
y and each of the predictor variables. We will use this result in section 7.5. 

Example 7.10 

Q: Consider the following six cases of the Foetal Weight dataset: 

Variable Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 
CP 30.1 31.1 32.4 32 32.4 35.9 
AP 28.8 31.3 33.1 34.4 32.8 39.3 
FW 2045 2505 3000 3520 4000 4515 
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Determine the beta coefficients of the linear regression of FW (foetal weight in 
grams) using CP (cephalic perimeter in mm) and AP (abdominal perimeter in mm) 
as predictors, and performing the computations expressed by formula 7.40. 

A: We can use MATLAB function corrcoef or appropriate STATISTICA and 
SPSS commands to compute the correlation coefficients. Using MATLAB, 
denoting by fw the matrix containing the data above with cases along the rows and 
variables along the columns, we obtain: 

» c=corrcoef(fw(:, :)) 
» c 

1.0000 
0.9692 
0.8840 

0.9692 
1.0000 
0.8880 

0.8840 
0.8880 
1.0000 

We now apply formula 7.40 as follows: 

» rxx=c(1:2,1:2); ryx=s1(1:2,3); 
» b=inv(rxx)*ryx 
b 

0.3847 
0.5151 

These are also the values obtained with STATISTICA and SPSS. It is 
interesting to note that the beta coefficients for the 414 cases of the Foetal 
Weight dataset are 0.3 and 0.64 respectively. D 

Example 7.11 

Q: Determine the multiple linear regression coefficients of the previous example. 

A: Since the beta coefficients are the regression coefficients of the standardised 
model, we have: 

FW -FW 0_3847 CP-CP +0.5151 AP-AP. 

Thus: 

- [ CP APJ b0 = FW +sFw -0.3847--0.5151- = -7125.7. 
Scp SAP 

b1 =-0.3847 SFW =-181.44. 
scp 

b2 = -0.5151 SFW =-135.99. 
SAP 

These computations can be easily carried out in MATLAB. For instance, b2 is 
computed as b2 =- 0. 5151 * std ( fw ( : , 3) ) I std ( fw ( : , 2) ) . D 
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7 .2.3 Inferences on Regression Parameters 

Inferences on parameters in the general linear model are carried out similarly to the 
way in section 7 .1.3. Here, we review the main results : 

- Interval estimation of (Jk: b k ± t n- p,l -a 12 s bk . 

- Confidence interval for E[yk]: h ±tn- p,l-al2syk . 

- Confidence region for regression surface: h ± W sh with W2 = pFp,n-p, l-a . 

Example 7.12 

Q: Consider the Foetal Weight dataset, contammg foetal echographic 
measurements, such as the biparietal diameter (BPD), the cephalic perimeter (CP), 
the abdominal perimeter (AP), etc., and the respective weight-just-after-delivery. 
Determine the linear regression model needed to predict the newborn weight, FW, 
using the three variables BPD, CP and AP. Discuss the results. 

A: Having filled in the three variables BPD, CP and AP as predictor or 
independent variables and the variable FW as the dependent variable, one can 
obtain with STATISTICA the result summary table shown in Figure 7.6. 

The standardised beta coefficients have the same meaning as in 7 .1.2. Since 
these reflect the contribution of standardised variables, they are useful for 
comparing the relative contribution of each variable. In this case, variable AP has 
the highest contribution and variable CP the lowest. Notice that in the last column 
of the table, all t tests were found significant as well as the high coefficient of 
multiple determination, R2. 

Figure 7. 7 shows line plots of the predicted values and the true (observed) 
values of the foetal weight using the multiple linear regression model. The 
horizontal axis of these line plots is the case number. The true foetal weights were 
previously sorted by increasing order. Figure 7.8 shows the scatter plot of the 
observed and predicted values obtained with the Multiple Regression 
command of ST A TISTICA. 0 

R= .88655938 R~ .78598754 Adjusted R~ .78442160 
F(3,410)=501 .93 p<O.OOOO Std. Error of estimate: 291 .84 

Beta Std.Err. I 8 I st:i~rr. l t(410) I p-level 
N=414 of Beta 
Intercept -4765.66 1261 .9039 -18. 1962 0.000000 
BPD o.26266oio.o4o5o4r 292.28 45.0721 6.4848 o.oooooo 
CP 0.10538210.0437641 36.00 14.9485 ~07$] 0.016483 
AP 0.609095 0.031987 124.72 6.5499 19.0421 0.000000 

Figure 7.6. Estimation results obtained with STA TISTICA of the trivariate linear 
regression of the foetal weight data. 
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1000 

Figure 7.7. Plot obtained with STATISTICA of the predicted (dotted line) and 
observed (solid line) foetal weights with a trivariate (BPD, CP, AP) linear 
regression model. 

500 1000 1500 2000 2500 3000 3!500 4000 4500 ~ 

Figure 7.8. Plot obtained with ST A TISTICA of the observed versus predicted 
foetal weight values with fitted line and 95% confidence interval. 

7.2.4 ANOVA and Extra Sums of Squares 

The simple ANOV A test presented in 7.1.4, corresponding to the decomposition of 
the total sum of squares as expressed by formula 7.24, can be applied in a 
straightforward way to the multiple regression model. 
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Example 7.13 

Q: Apply the simple ANOV A test to the foetal weight data (Example 7 .12). 

A: Table 7.2 lists the results of the simple ANOVA test, obtainable either with 
STATISTICA or with SPSS, for the foetal weight data, showing that the linear 
parameters are significant (p"' 0). 

D 

Table 7.2. ANOVA test for Example 7.7. 

Sum of 
df 

Mean 
F 

Squares Squares 
p 

SSR 128252147 3 42750716 501.9254 0.00 

SSE 34921110 410 85173 

SST 163173257 

It is also possible to apply the ANOV A test for lack of fit in the same way as 
was done in 7 .1.4. However, when there are several predictor values playing their 
influence in the regression model, it is useful to assess their contribution by means 
of the so-called extra sums of squares. An extra sum of squares measures the 
marginal reduction in the error sum of squares when one or several predictor 
variables are added to the model. 

We will now illustrate this concept using the foetal weight data. Imagine that we 
had started by studying the regression of the foetal weight using only a single 
variable, BPD. As shown in the first data row of Table 7.3, for the single variable 
BPD we can compute the regression line, SSE and SSR, in the usual way. After 
adding CP to BPD we can, similarly, compute the values in the last row of Table 
7.3. Notice how the addition of CP decreased the residual error at the same time 
increasing the regression sum of squares. Notice also that the decrease in SSE is 
perfectly matched by the increase in SSR. Likewise, for the addition of BPD to the 
model with CP alone. 

Table 7.3. Computed models with SSE, SSR and respective degrees of freedom for 
the foetal weight data (sums of squares divided by 1 06). 

Abstract 
Computed model SSE df SSR df 

Model 

y = gJ(.~) FW(BPD) = -4229.11 + 813.34 BPD 76 412 87 

y = g2(.~) FW(CP) = -5096.23 + 253.83 CP 73 412 90 

y =g2(~.~) 
FW(BPD,CP) = -5464.65 + 411.98 66 411 97 BPD + 149.89 CP 
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We now define the following extra sum of squares, SSR(;tzl.{j ), which measures 
the improvement obtained by adding the second variable ;rz: 

SSR(;rz l.{j) = SSE(-XJ)- SSE(.{j, ;rz) = SSR(-XJ, ;rz)- SSR(-XJ). 

Similarly, one can define: 

SSR(.\31-XJ, ;rz) = SSE(.{j, ;rz)- SSE(.{j, ;rz, .\3) = SSR(.{j, ;rz, .\3)- SSR(.{j, ;rz). 

SSR(;rz, .\JI.{j) = SSE(.{j)- SSE(.{j, ;rz, .\3) = SSR(.{j, ;rz, .\3)- SSR(.{j). 

The first extra sum, SSR(.\3 I .{j, ;rz), represents the improvement obtained when 
adding a third variable, .\3, to a model that has already two variables, .{j and ;rz. The 
second extra sum, SSR(;rz, .\3 I ~), represents the improvement obtained when 
adding two variables, ;rz and .\3, to a model that has only one variable, .{j. 

The extra sums of squares are especially useful for performing tests on the 
regression coefficients and for detecting multicollinearity situations, as explained 
in the following sections. 

7.2.4.1 Tests for Regression Coefficients 

We will only present the test for a single coefficient, formalised as: 

Ho: fJk= 0; 
H1: fJk-:t. 0. 

The statistic appropriate for this test, is: 

7.41 

We may also use, as in section 7.1.4, the ANOVA test approach. For this 
purpose, let us consider a model with three variables, .{j, ;rz, .\3, and, furthermore, 
let us assume that we want to test whether "H0 : /33 = 0" can be accepted or rejected. 
For this purpose, we first compute the error sum of squares for the full model: 

The reduced model, corresponding to H0, has the following error sum of 
squares: 

The ANOVA test then uses: 
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F* = SSE(R)- SSE(F) : SSE(F) = SSR(~3 I ~1 , ~2 ) : SSE(~1 , ~2 , ~3 ) 

dfR -dfF dfF 1 n-4 

MSR(~3 I ~I' ~2) 
= 
MSE(~I '~2' ~3) 

In general, we have: 

7.42 

The F test using this sampling distribution is equivalent to the t tests 7.14 and 
7.16. 

7.2.4.2 Multicollinearity and its Effects 

If the predictor variables are uncorrelated, the regression coefficients are the same, 
independent of whether or not another predictor variable is in the model. Similarly, 
the same applies for the sum of squares. For instance, for a model with two 
uncorrelated predictor variables, the following should be verified: 

SSR(~ I~)= SSE(~)- SSE(~,~)= SSR(~); 

SSR(~ I~)= SSE(~)- SSE(~,~)= SSR(~). 

7.43a 
7.43b 

On the other hand, if there is a perfect correlation between ~ and ~ - in other 
words, ~ and~ are collinear- we would be able to determine an infinite number of 
regression solutions (planes) intersecting at the straight line relating ~ and ~
Multicollinearity leads to imprecise determination coefficients, imprecise fitted 
values and imprecise tests on the regression coefficients. 

In practice, when predictor variables are correlated, the marginal contribution of 
any predictor variable in reducing the error sum of squares varies, depending on 
which variables are already in the regression model. 

Example 7.14 

Q: Consider the trivariate regression of the foetal weight in Example 7.12. Use 
formulas 7.43 to assess the collinearity ofCP given BPD and of AP given BPD and 
BPD, CP. 

A: Applying formulas 7.43 to the results displayed in Table 7.3, we obtain: 

SSR(CP) = 90x106 • 

SSR(CP I BPD) = SSE(BPD)- SSE(CP, BPD) = 76xl06 - 66x106 = 10xl06 . 

We see that SSR(CPIBPD) is small compared with SSR(CP), which is a 
symptom that BPD and CP are highly correlated. Thus, when BPD is already in the 
model, the marginal contribution of CP in reducing the error sum of squares is 
small because BPD contains much of the same information as CP. 
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In the same way, we compute: 

SSR(AP) = 46x106 • 

SSR(AP I BPD) = SSE(BPD)- SSE(BPD, AP) = 41x106 • 

SSR(AP I BPD, CP) = SSE(BPD, CP)- SSE(BPD, CP, AP) = 31xl06 • 

We see that AP seems to bring a definite contribution to the regression model by 
reducing the error sum of squares. 0 

7.2.5 Polynomial Regression and Other Models 

Polynomial regression models contain squared and higher order terms of the 
predictor variables. These models can be viewed as a generalisation of the 
multivariate linear model. 

As an example, consider the following second order model: 

7.44 

They; can also be linearly modelled as: 

with 

As a matter of fact, many complex dependency models can be transformed into 
the general linear model after suitable transformation of the variables. The general 
linear model encompasses also the interaction effects, as in the following example: 

7.45 

which can be transformed into the linear model, using the extra 
variable x;3 = xn x;2 • 

Frequently, when dealing with polynomial models, the predictor variables are 
previously centred, replacing x; by x; -:X . The reason is that ~and ~2 will often be 
highly correlated. Using centred variables reduces multicollinearity and tends to 
avoid computational difficulties. 

Note that in all the previous examples, the model is linear in the parameters flk· 
When this condition is not satisfied, we then have to deal with a non-linear model, 
as in the following example of the so-called exponential regression: 

7.46 

Unlike linear models, it is not generally possible to find analytical expressions 
for the estimates of the coefficients of non-linear models, similarly to the normal 
equations 7.3. These have to be found using standard numerical search procedures. 
The statistical analysis of these models is also a lot more complex. For instance, if 
we linearise the model 7.46 using a logarithmic transformation, the errors will no 
longer be normal and with equal variance. 
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Commands 7.3. STATISTICA and SPSS commands used to perform polynomial 
and non-linear regression. 

STATISTICA 

SPSS 

Example 7.15 

Statistics; Advanced Linear/Nonlinear 
Models; General Linear Models; Polynomial 
Regression 

Statistics; Advanced Linear/Nonlinear 
Models; Non-Linear Estimation 

Analyze; Regression; Curve Estimation 

Analyze; Regression; Nonlinear 

• 

Q: Consider the Stock Exchange dataset (see Appendix E). Design and 
evaluate a second order polynomial model for the SONAE share values depending 
on the predictors EURIBOR and USD. 

A: Table 7.4 shows the estimated parameters of this second order model, along 
with the results oft tests. From these results, we conclude that all coefficients have 
an important contribution to the designed model. The simple ANOV A test gives 
also significant results. However, Figure 7.9 suggests that there is some trend of 
the residuals as a function of the observed values. This is a symptom that some 
lack of fit may be present. In order to investigate this issue we now perform the 
ANOVA test for lack of fit. We may use STATISTICA for this purpose, in the 
same way as in the example described in section 7.1.4. 

Table 7.4. Results obtained with ST A TISTICA for a second order model, with 
predictors EURIBOR and USD, in the regression of SONAE share values (Stock 
Exchange dataset). 

Effect 
SONAE SONAE -95% +95% 
Param. Std.Err 

p 
Cnf.Lmt Cnf.Lmt 

Intercept -283530 24151 -11.7 0.00 -331053 -236008 

EURIBOR 13938 1056 13.2 0.00 11860 16015 

EURIBOR2 -1767 139.8 -12.6 0.00 -2042 -1491 

USD 560661 49041 11.4 0.00 464164 657159 

USD2 -294445 24411 -12. I 0.00 -342479 -246412 

First, note that there are p - I = 4 predictor variables in the model; therefore, 
p = 5. Secondly, in order to have enough replicates for STATISTICA to be able to 
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compute the pure error, we use two new variables derived from EURIBOR and 
USD by rounding them to two and three significant digits, respectively. We then 
obtain (removing a I 03 factor): 

SSE = 345062; df= n- p = 308; MSE = 1120. 
SSPE = 87970; df= n- c = 208; MSPE = 423. 

From these results we compute: 

SSLF =SSE - SSPE = 257092; df = c- p = I 00; MSLF = 2571. 
F* = MSLF/MSPE = 6.1 . 

The 95% percentile of F 100,208 is 1.3. Since F" > 1.3, we then conclude for the 
lack of fit ofthe model. D 
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Figure 7.9. Observed versus predicted values in the Stock Exchange example. 

7.3 Building and Evaluating the Regression Model 

7.3.1 Building the Model 

When there are several variables that can be used as candidates for predictor 
variables in a regression model, it would be fastidious having to try every possible 
combination of variables. In such situations, one needs a search procedure 
operating in the variable space in order to build up the regression model much in 
the same way as we performed feature selection in Chapter 6. The search 
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procedure has also to use an appropriate criterion for predictor selection. There are 
many such criteria published in the literature. We indicate here just a few: 

- SSE (minimisation) 
- R square (maximisation) 
- t statistic (maximisation) 
- F statistic (maximisation) 

When building the model, these criteria can be used in a stepwise manner the 
same way as we performed sequential feature selection in Chapter 6. That is, by 
either adding consecutive variables to the model - the so-called forward search 
method -, or by removing variables from an initially selected set - the so-called 
backward search method. 

For instance, a very popular method is to use forward stepwise building up the 
model using the F statistic, as follows: 

I. Initially enters the variable, say ~. that has maximum Fk = MSR(.r..)IMSE(~), 
which must be above a certain specified level. 

2. Next is added the variable with maximum Fk = MSR(~ I ~)I MSE(~, ~)and 
above a certain specified level. 

3. The Step 2 procedure goes on until no variable has a partial F above the 
specified level. 

Example 7.16 

Q: Apply the forward stepwise procedure to the foetal weight data (see Example 
7.12), using as inital predictor sets {BPD, CP, AP} and {MW, MH, BPD, CP, AP, 
FL}. 

A: Figure 7.10 shows the evolution of the model using the forward stepwise 
method to {BPD, CP, AP}. The first variable to be included, with higher F, is the 
variable AP. The next variables that are included have a decreasing F contribution 
but still higher than the specified level of "F to Enter", equal to I. 

Let us now assume that the initial set of predictors is {MW, MH, BPD, CP, AP, 
FL}. Figure 7.11 shows the evolution of the model at each step. Notice that one of 
the variables, MH, was not included in the model, and the last one, CP, has a non
significant F test (p > 0.05), and therefore, should also be excluded. 

0 

Step Multiple Multiple I R-square I F - to I p-level I Variabls 
Variable +In/ -Out R R-sauare chanae entr/rem included 
AP 1 0.846657 0716827 0716827 1042.94310.000000 1 
BPD 2 0.884851 0.782961 o.o66134 125.235 o.oooooo ' 2 

>-- -------
CP 3 0.886559 0.785988 0.003027 5.798 0.016483 3 

Figure 7.10. Forward stepwise regression for the foetal weight example, using 
{BPD, CP, AP} as initial predictor set (obtained with STATISTICA). 
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Step Multiple Multiple I R-square li F - to p-I eve I Variabls 
Variable +In! -Out R R-sauare chan~:~e entr/rem included 
AP 1 0.846657 0.716827 0.716827[ 1042.943 0.000000 1 
BPD 210.884851 0.782961 0.066134 125.235 O.OOOOOo 2 ..._....__ -
FL 3 0.897886 0.806198 0.023237 49.160 0.000000 3 -
MW 4 0 .90293~1 Q..81.5298 0.0090991 20 . 14~i 0.000009 4 
CP 5 0.903231 0.815827 0.000529 1 .172 0.279681 5 

Figure 7.11. Forward stepwise regression for the foetal weight example, using 
{MW, MH, BPD, CP, AP, FL} as initial predictor set (obtained with 
STATISTICA). 

Commands 7.4. ST A TISTICA and SPSS commands used to perform stepwise 
linear regression. 

STATISTICA 

SPSS 

Statistics; Multiple Regression; 
Advanced; Forward Stepwise 

Analyze; Regression; Linear; Method 
Forward 

With ST ATISTICA and SPSS the user can specify the level ofF in order to enter 
or remove variables. • 

7 .3.2 Evaluating the Model 

7.3.2.1 Identifying Outliers 

Outliers correspond to cases exhibiting a strong deviation from the fitted regression 
curve, which can have a harmful influence in the process of fitting the model to the 
data. Identification of outliers, for their possible removal from the dataset, is 
usually carried out using the so-called semistudentised residuals (or standard 
residuals), defined as: 

• _ e; - e _ e; e . - --- - - - -
' .JMSE .JMSE . 

7.47 

Cases whose magnitude of the semistudentised residuals exceeds a certain 
threshold (usually 2), are considered outliers and are candidates for removal. 

Example 7.17 

Q: Detect the outliers of the model designed in Example 7.12 using 
semistudentised residuals. 
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A: Figure 7.12 shows the partial listing, obtained with STA TISTICA, of the 18 
outliers for the foetal weight regression with the three predictors AP, BPD and CP 
(Figure 7.10). Notice that the magnitudes of the Standard Residual column 
are all above 2. D 

Standard Residual: FW (fetatweight.STA) 
~ Outliers 

Scandard Re~idual~ Retidlilll Stendlld 1 Milhaileno6isj Deleted Cook's 
C~e -4 . -3 . ±2. 3. 4. Rnidull Dietenc:e I Residual Distanc:e 
52 •. ·628.427 ·2.15329 0.24594 -63J.325 0.003511 

I '74 • -825.597 ·2.14360 0.15re8 -627 .~~ 0.003212 
007.7~ 2.767~ 

. 
16.59577 0 100142 ,86 . • . 648.028 

87 . • -722.756 -2.47652 2.68339 -729.256 0:013913 
1311' • ·592.949 -2.03173 1.61766 -~.728 0.(Di616 
174 . • -610.Dl -2.09120 3.65717 -617.263 0.012604 
~25 • 683.513 2.34204 0.56303 686.105 0.005221 

, ~zg . 699.999 2.39853 0.~116 703.232 O.CDi673 
~58 • 652.537 2 .~1 0.00541 655.526 0.005751 
~5~ • 639.499 2.19123]_ 6.33510 654.284 0.028394 
~71 • . 679.461 2.32823 0.04$6 661 .206 0.003454 

ill ;'"~~· .............. ·~-- '-
646.622 2.22249 7.17145 661 .71110.025421 iJ 

- - ,.!. 

Figure 7.12. Outliers list obtained with ST A TISTICA for the foetal weight 
example. 

There are other ways to detect outliers, such as: 

Use of deleted residuals: the residual is computed for the respective case, 
assuming that it was not included in the regression analysis. If the deleted 
residual differs greatly from the original residual (i .e., with the case included) 
then the case is, possibly, an outlier. Note in Figure 7.12 how case 86 has a 
deleted residual that exhibits a large difference from the original residual, when 
compared with similar differences for cases with smaller standard residual. 

- Cook's distance: measures the distance between beta values with and without 
the respective case. If there are no outlier cases, these distances are of 
approximately equal amplitude. Note in Figure 7.12 how the Cook's distance for 
case 86 is quite different from the distances of the other cases. 

7.3.2.2 Assessing Multicollinearity 

Besides the methods described in 7.2.3.2, multicollinearity can also be assessed 
using the so-called variance inflation factors (VIF), which are defined for each 
predictor variable as: 

7.48 
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where r/ is the coefficient of multiple determination when xk is regressed on the 

p - 2 remaining variables in the model. Note that an rk2 near 1, indicating 
significant correlation with the remaining variables, will result in a large value of 
VIF. A VIF larger than 10 is usually taken as an indicator of multicollinearity. 

For assessing multicollinearity, the mean of the VIF values is also computed: 

7.49 

A mean VIF considerably larger than 1 is indicative of serious multicollinearity 
problems. 

7 .3.3 Case Study 

We have already mentioned the foetal weight prediction task in order to illustrate 
specific topics on regression. We will now consider this task in a more detailed 
fashion so that the reader can appreciate the application of the several topics that 
were previously described in a complete worked-out case study. 

7.3.3.1 Determining a Linear Model 

We start with the solution obtained by forward stepwise search, summarised in 
Figure 7.10. Table 7.5 shows the coefficients of the model. The values of beta 
indicate that their contributions are different. All t tests are significant; therefore, 
no coefficient is discarded at this phase. The ANOVA test, shown in Table 7.6 
gives also a good prognostic of the goodness of fit of the model. 

Table 7.5. Parameters and t tests of the trivariate linear model for the foetal weight 
exam !e. 

Beta Std. Err. of Beta B Std. Err. ofB t410 p 

Intercept -4765.7 261.9 -18.2 0.00 

AP 0.609 0.032 124.7 6.5 19.0 0.00 

BPD 0.263 0.041 292.3 45. I 6.5 0.00 

CP 0.105 0.044 36.0 15.0 2.4 0.02 

Table 7.6. ANOV A test of the trivariate linear model for the foetal weight 
exam !e. 

Sum of Squares df Mean Squares F p 

Regress. 128252147 3 42750716 501.9254 0.00 

Residual 34921110 410 85173 

Total 163173257 
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Figure 7.13. Distribution of the residuals for the foetal weight example: a) Normal 
probability plot; b) Histogram. 

7 .3.3.2 Evaluating the Linear Model 

Distribution of the Residuals 

In order to assess whether the errors can be assumed normally distributed, one can 
use graphical inspection, as in Figure 7 .13, and also perform the distribution fitting 
tests described in chapter 5. In the present case, the assumption of normal 
distribution for the errors seems a reasonable one. 

The constancy of the residual variance can be assessed using the following 
modified Levene test: 

I. Divide the data set into two groups: one with the predictor values comparatively 
low and the other with the predictor values comparatively high. The objective is 
to compare the residual variance in the two groups. In the present case, we 
divide the cases into the two groups corresponding to observed weights below 
and above 3000 g. The sample sizes are n1 = I 18 and n2 = 296, respectively. 

2. Compute the medians of the residuals e; in the two groups: med1 and med2• In 
the present case med 1 = -182.32 and med2 = 59.87. 

3. Let dn =I e;1 - med 11 and d;2 =I e;2 - med 21 represent the absolute deviations 
of the residuals around t~ med~ns in each group. We now compute the 
respective samp.!_e means, d1 ~nd d 2 of these absolute deviations, which in our 
study case are: d1 = 187.37, d 2 = 221.42. 

4. Compute: 

• t 7.50 
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In the present case the computed t value is l = -1.83 and the 0.975 percentile of 
1412 is 1.97. Since Ill< !412•0.975 , we accept that the residual variance is constant. 

Test of Fit 

We now proceed to evaluate the goodness of fit of the model, using the method 
described in 7 .1.4, based on the computation of the pure error sum of squares. 
Using STATISTICA or SPSS, we determine: 

n=414; c=381; n-c=33; c-2=379. 
SSPE = 1846345.8; MSPE=SSPE/( n- c)= 55949.9. 
SSE= 34921109. 

Based on these values, we now compute: 

SSLF =SSE- SSPE = 33074763.2; MSLF = SSLF/(c- 2) = 87268.5 . 

Thus, the computed fl is: fl = MSLF/MSPE = 1.56. On the other hand, the 95% 
percentile of F379, 33 is 1.6. Since fl < F379, 33 , we do not reject the goodness of fit 
hypothesis. 

Detecting Outliers 

The detection of outliers was already performed in 7.3.2.1. Fourteen cases are 
identified as being outliers. The evaluation of the model without including these 
outlier cases is usually performed at a later phase. We leave as an exercise the 
preceding evaluation steps after removing the outliers for the reader to study. 

Assessing Multicollinearity 

Multicollinearity can be assessed either using the extra sums of squares as 
described in 7.2.3.2 or using the VIF factors described in 7.3.2.2. This last method 
is particularly fast and easy to apply. 

Using STATISTICA, SPSS or MATLAB, one can easily obtain the coefficients 
of determination for each predictor variable regressed on the other ones. Table 7. 7 
shows the values obtained for our case study. 

Table 7.7. VIF factors obtained for the foetal weight data. 

VIF 

BPD(CP,AP) 

0.6818 

3.14 

CP(BPD,AP) 

0.7275 

3.67 

AP(BPD,CP) 

0.4998 

2 
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Although no single VIF is larger than I 0, the mean VIF is 2.9, larger than 1 and, 
therefore, indicative that some degree of multicollinearity may be present. 

7.3.3.3 Determining a Polynomial Model 

We now proceed to determine a third order polynomial model for the foetal weight 
regressed by the same predictors but without interaction terms. As previously 
mentioned in 7.2.4, in order to avoid numerical problems, we use centred 
predictors by subtracting the respective mean. We then use the following predictor 
variables: 

2 
.{ 1 =BPD-mean(BPD); .{ 11 =.{1 ; 

2 
.{ 2 = CP- mean(CP); .{ 22 = .{ 2 ; 

.{ 3 = AP- mean(AP); 

3 
.{222 = .{2. 

3 
.{333 = .{3 . 

With STATISTICA and SPSS, in order to perform the forward stepwise search, 
the predictor variables must first be created before applying the respective 
regression commands. Table 7.8 shows some results obtained with the forward 
stepwise search. Note that although six predictors were included in the model using 
the threshold of 1 for the "F to enter", the three last predictors do not have 
significant F tests and the predictors ~22 and .{11 also do not pass in the respective t 
tests (at 5% significance level). 

Let us now apply the backward search process. Figure 7.14 shows the summary 
table of this search process, obtained with STATISTICA, using a threshold of "F to 
remove" 10 (one more than the number of initial predictors). Notice that when 
removed, the variables are removed consecutively by increasing order of their F 
contribution until reaching the end of the process with two included variables, ~ 
and ~- Notice, however, that variable ~ is found significant in the F test, and 
therefore, it should probably be included too. 

Table 7.8. Parameters of a third order polynomial regression model found with a 
forward stepwise search for the foetal weight data (using STA TISTICA or SPSS). 

Beta Std. Err. ofBeta F to Enter p t410 p 

Intercept 181.7 0.00 

~ 0.6049 0.033 1043 0.00 18.45 0.00 

~ 0.2652 0.041 125.2 0.00 6.492 0.00 

~ 0.1399 0.047 5.798 0.02 2.999 0.00 

~22 -0.0942 0.056 1.860 0.17 -1.685 0.09 

~2 -0.1341 0.065 2.496 0.12 -2.064 0.04 

~I 0.0797 0.0600 1.761 0.185 1.327 0.19 
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Step Multiple Multiple I R-square F- to p-I eve I Variabls 
Variable +In/ .out R R-sauare chanae entr/rem included 
x333 -1 0.888697 0.789783 -0.000000 0.000285 0.986540 8 
x111 -2 0.888551 0.789522 -0.000261 0.502880 0.478645 7 
x33 -3 0.888349 0.789164 -0.000358 0.690113 0.406614 6 
x11 -4 0.887836 0.788252 -0.000912 1.761362 0.185199 5 
x22 -=s M 871o6 0.786957 1 -0.001295 -2.4957 49 1 0.1 14929 4 
x222 -6 0.886559 0. 785988 -0.000969 1.860499 0.173317 3 
x2 -7 0.884851 0.782961 -0.003027 5.798190 0.016483 2 

Figure 7.14. Parameters and tests obtained with STATISTICA for the third order 
polynomial regression model (foetal weight example) using the backward stepwise 
search procedure. 

7.3.3.4 Evaluating the Polynomial Model 

We now evaluate the polynomial model found by forward search and including the 
six predictors .:\j, Xl, .u, .:\j 1, X22, X222. This is done for illustration purposes only since 
we saw in the previous section that the backward search procedure found a simpler 
linear model. Whenever a simpler (using less predictors) and similarly performing 
model is found, it should be preferred for the same generalisation reasons that were 
explained in the previous chapter. 

Table 7.9. Results of the test using extra sums of squares for assessing the 
contribution of each predictor in the polynomial model (foetal weight example). 

Variable ~ ~2 .\:3 .til .\:22 .\:222 

Coefti cient bl bz b3 bll b22 b222 

Variables in the ;u, ~3 . ~ 1], ~ . ~3. ~11. ~. ~2, ~ ~ ~. ~ . ~2· .\:}, ~. ;u, ~3 . ~. ;u, ~3· 
Reduced Model .Uz, ~222 ~22 · ~222 ~22 · .U22 ~22, .Un ~II. ~222 ~I h ~22 

SSE(R) (/ I 03) 37966 36163 36162 34552 347623 34643 

SSR = SSE(R)- 3563 1760 1759 149 360 240 
SSE( F) (/I 03) 

F'= SSR!MSE 42.15 20.82 20.81 1.76 4.26 2.84 

Reject Ho Yes Yes Yes No Yes No 

The distribution of the residuals is similar to what is displayed in Figure 7 .13. 
Since the backward search cast some doubts as to whether some of these predictors 
have a valid contribution, we will now use the methods based on the extra sums of 
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squares. This is done in order to evaluate whether each regression coefficient can 
be assumed to be zero, and to assess the multicollinearity of the model. As a final 
result of this evaluation, we will conclude that the polynomial model does not 
bring about any significant improvement compared to the previous linear model 
with three predictors. 

Testing whether individual regression coefficients are zero 

We use the test described in section 7.2.4.1 as expressed by formula 7.42. As a 
preliminary step, we determine with STATISTICA, SPSS or MATLAB the SSE 
and MSE of the model: 

SSE= 34402739; MSE = 84528. 

We now use the 95% percentile of F 1,407 = 3.86 to perform the individual tests as 
summarised in Table 7.9. According to these tests, variables~ 1 and -'222 should be 
removed from the model. 

Assessing multicollinearity 

We use the test described in section 7.2.4.2 using the same SSE and MSE as 
before. Table 7.10 summarises the individual computations. According to Table 
7.10, the larger differences between SSE(~ and SSE(.:( R) occur for variables ~ 1 , -'22 

and -"z22 . These variables have a strong influence in the multicollinearity of the 
model and should, therefore, be removed. 

Table 7.10. Sums of squares for each predictor in the polynomial model (foetal 
weight example) using the full and reduced models. 

Variable ~ -U ~3 ~II ~22 -u22 

SSE(~ (/1 03) 76001 73062 46206 131565 130642 124828 

Reduced Model :(z, :(3, .t1 1> -\J, :(), .tJJ, -\i, .:(], .tJ J, -\i' .:(], :(3, -\i, :(z, :(), -\i, :(z, :(J, 

uz, .t222 .tzz, -t222 .tzz, .t222 :(zz, .t222 .tJ J, .t222 .til• .t22 

SSE(R) (/1 03) 37966 36163 36162 34552 34763 34643 

SSE(.t I R) = SSE(R) 
3563 1760 1759 149 360 240 -SSE (/103) 

Larger Differences --.) --.) --.) 



7.4 Regression Through the Origin 273 

7.4 Regression Through the Origin 

In some applications of regression models, we may know beforehand that the 
regression function must pass through the origin. STATISTICA and SPSS have 
options that allow the user to include or exclude the "intercept" or "constant" term 
in/from the model. Let us discuss here the simple linear model with normal errors. 
Without the "intercept" term the model is written as: 

7.51 

The point estimator of /31 is: 

7.52 

The unbiased estimator of the error variance is now: 

~>2 
MSE = __ ,_· with n - 1 (instead of n- 2) degrees of freedom. 7.53 

n-1 ' 

Example 7.18 

Q: Determine the simple linear regression model FW(AP) with and without 
intercept for the Foetal Weight dataset. Compare both solutions. 

A: Table 7.11 shows the results of fitting a single linear model to the regression 
FW(AP) with and without the "intercept" term. Note that in this last case the 
magnitude oft for b1 is much larger than with the "intercept" term. This would lead 
us to prefer the "without-intercept" model, which by the way seems to be the most 
reasonable model since one expects FW and AP tending jointly to zero. 

Figure 7.15 shows the observed versus the predicted cases in both situations. 
The difference between fitted lines is very small. 

0 

Table 7.11. Parameters of single linear regression FW(AP), with and without the 
"intercept" term. 

With Intercept 

Without Intercept 

b 

-1996.37 

157.61 

97.99 

Std. Err. ofb 

188.954 

5.677 

0.60164 

-10.565 

27.763 

162.874 

p 

0.00 

0.00 

0.00 
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An important aspect to be taken into consideration when regressing through the 
origin is that the sum of the residuals is not zero. The only constraint on the 
residuals is: 

7.54 

Another problem with this model is that SSE may exceed SST! This can occur 
when the data has an intercept away from the origin. Hence, the coefficient of 
determination r 2 may tum out to be negative. As a matter of fact, the coefficient of 
determination r2 has no clear meaning for the regression through the origin. 

-.-------------------------· ---------------------------· 

... 

-·-
Figure 7.15. Scatter plots of the observed vs. predicted values for the single linear 
regression FW(AP): a) with "intercept" term, b) without "intercept" term. 

7.5 Ridge Regression 

Let us consider once again formula 7.40 of the estimated standardised coefficients 
for the multiple linear regression model. The main idea of the ridge regression is to 
add a small bias to the regression coefficients so that their estimation can be made 
more precise, hoping that the bias will decrease the effects of multicollinearity. 

Instead of formula 7.40 for the standardised regression coefficients, we now 
implement: 

7.55 

where c is the bias, also known as ridge parameter, and the R in bR meaning "ridge 
regression". 

The determination of the best c can be made by graphical inspection of the 
estimated coefficients as a function of c, the so-called ridge traces. One then 
selects the value of c that corresponds to the beginning of a stable evolution of the 
coefficients and with small values of the VIF factors. 
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Example 7.19 

Q: Determine the ridge regression solution for the foetal weight prediction model 
designed in Example 7 .12. 

A: Table 7.12 shows the evolution with c of the coefficients and VIF for the linear 
regression model of the foetal weight data using the predictors BPD, AP and CP. 
The mean VIF is also included in Table 7.12. 

Figure 7.16 shows the ridge traces for the three coefficients as well as the 
evolution of the VIF factors. The ridge traces do not give, in this case, a clear 
indication of the best c value. On the other hand, the evolution of the VIF factors 
shown in Figure 7 .16b suggest the solutions c = 0.5 and c = 0.3 as the most 
appropriate. 

D 

Table 7.12. Values ofVIF and mean VIF for several values of the ridge parameter 
in the case of multiple linear regression of the foetal weight data. 

c 0 0.05 0.10 0.20 0.30 0.40 0.50 0.60 

BPD b 292.28 277.7 1 269.75 260.73 254.51 248.91 243.4 238 

VlF 3.14 2.9 2.72 2.45 2.62 2.12 2 1.92 

CP b 36 47.61 54.76 62.58 66.19 67.76 68.21 68 

VIF 3.67 3.38 3. 14 2.8 2.55 3.09 1.82 2.16 

AP b 124.72 115.79 108.66 97 .77 89.65 83 .24 77.99 73 .6 

VIF 2 1.9 1.85 1.77 1.71 1.65 1.61 1.57 

Mean VIF 2.9 2.7 2.6 2.34 2.17 2.29 1.8 1.88 

'"" b 8 
VlF 

300 3.5 

. : : ::::: .. . ·. ·.· ........... ·-4-: . 

..._____ ... 
25C) 

.s 
200 

1!0 ._ 1.5 

100 --
!0 .-- .5 

c c 
0 0 

0 0.05 0.1 0.2 0.3 0.4 05 o.e 
b 0 0.05 0.1 02 0.3 OA 0.5 0.8 a 

Figure 7.16. a) Plot of the foetal weight regression coefficients for several values 
of the ridge parameter; b) Plot of the VIF factors for several values of the ridge 
parameter. (I= BPD, 2 = AP, 3 = CP.) 
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Commands 7.5. STATISTICA, SPSS and MATLAB commands used to perform 
ridge regression. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Multiple Regression; 
Advanced; Ridge 

Ridge Regression Macro 

b=ridge(y,x,k) (k is the ridge parameter) 

7.6 Log it and Probit Models 

• 

Logit and probit regression models are adequate for those situations where the 
dependent variable of the regression problem is binary, i.e., it has only two 
possible outcomes: either "success"/"failure" or "normal "/"abnormal". We assume 
that these binary outcomes are coded as 1 and 0. The application of linear 
regression models to such problems would not be satisfactory since the fitted 
predicted response would ignore the restriction of binary values for the observed 
data. 

A simple regression model for this situation is: 

7.56 

Let us consider y; to be a Bernoulli random variable with p; = P(y; = I). Then, as 
explained in Appendix A and presented in B.l.1, we have: 

7.57 

On the other hand, assuming that the errors have zero mean, we have: 

7.58 

Therefore, no matter which regression model we are using, the mean response 
for each predictor value represents the probability that the corresponding observed 
variable is one. 

In order to handle the binary valued response we apply a mapping from the 
predictor domain onto the [0, 1] interval. The logit and pro bit regression models 
are precisely popular examples of such a mapping. The logit model uses the so
called logistic function, which is expressed as: 

[y ]- exp(/30 +f31xn + ... +f3p_1X;p- 1) 
E . -----------------~--~---

1 1 + exp(/30 + /31 Xn + ... + f3 p-1 X;p-1) 
7.59 
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The probit model uses the normal probability distribution as mapping function: 

7.60 

Note that both mappings are examples of S-shaped functions (see Figures 7.17 
and A.7.b), also called sigmoidal functions. Both models are examples of non
linear regression. 

The logistic response enjoys the interesting property of simple linearization. As 
a matter of fact, denoting as before the mean response by the probability p;, and if 
we apply the logit transformation: 

p: =Inc~~;). 7.61 

we obtain: 

7.62 

Since the mean binary responses can be interpreted as probabilities, a suitable 
method to estimate the coefficients for the logit and probit models, is the maximum 
likelihood method, explained in Appendix C, instead of the previously used least 
square method. Let us see how this method is applied in the case of the simple logit 
model. We start by assuming a Bernoulli random variable associated to each 
observation y;; therefore, the joint distribution of the n observations is (see B.1.1 ): 

n 

p(y, , ... ,yn) = IJp{; (1- P;)l-_v; · 7.63 
i=l 

Taking the natural logarithm of this likelihood, we obtain: 

7.64 

Using formulas 7.56, 7.60 and 7.61, the logarithm of the likelihood (log
likelihood), which is a function of the coefficients, L(p), can be expressed as: 

7.65 

The maximization of the L(P) function can now be carried out using one of 
many numerical optimisation methods, such as the quasi-Newton method, which 
iteratively improves current estimates of function maxima using estimates of its 
first and second order derivatives. 

The estimation of the pro bit model coefficients follows a similar approach. Both 
models tend to yield similar solutions, although the probit model is more complex 
to deal with, namely in what concerns inference procedures and multiple predictor 
handling. 
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Example 7.20 

Q: Consider the Clays ' dataset, which includes 94 samples of analysed clays 
from a certain region of Portugal. The clays are categorised according to their 
geological age as being pliocenic (y; = I; 69 cases) or holocenic (y; = 0; 25 cases). 
Imagine that one wishes to estimate the probability of a given clay (from that 
region) to be pliocenic, based on its content in high graded grains (variable HG). 
Design simple logit and probit models for that purpose. Compare both solutions. 

A: Let AgeB represent the binary dependent variable. Using STATISTICA or 
SPSS (see Commands 7.6), the fitted logistic and probit responses are: 

AgeB = exp(-2.646 + 0.23xHG) /[I+ exp(-2.646 + 0.23xHG)]; 
AgeB = N0,1(-1.54 + 0.138xHG). 

Figure 7. I 7 shows the fitted response for the logit model and the observed data. 
A similar figure is obtained for the probit model. Also shown is the 0.5 threshold 
line. Any response above this line is assigned the value I, and below the line, the 
value 0. One can, therefore, establish a classification matrix for the predicted 
versus the observed values, as shown in Table 7. I 3, which can be obtained using 
either STATISTICA or the SPSS commands. Incidentally, note how the logit and 
probit models afford a regression solution to classification problems and constitute 
an alternative to the statistical classification methods described in Chapter 6. 

0 

1.2 

1.0 ()(J)(D 00 

o.e 
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0.2 

0.0 «<IDDDXDO CDO CD 

HG 

-o.2 
-5 0 10 15 20 25 30 35 40 45 

Figure 7.17. Logistic response for the clay classification problem, using variable 
HG (obtained with STATISTICA). The circles represent the observed data. 

When dealing with binary responses, we are confronted with the fact that the 
regression errors can no longer be assumed normal and as having equal variance. 
Therefore, the statistical tests for model evaluation, described in preceding 
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sections, are no longer applicable. For the logit and pro bit models, some sort of the 
chi-square test described in Chapter 5 is usually applied in order to assess the 
goodness of fit of the model. ST A TISTICA and SPSS afford another type of chi
square test based on the log-likelihood of the model. Let L 0 represent the log
likelihood for the null model, i.e., where all slope parameters are zero, and L 1 the 
log-likelihood of the fitted model. In the test used by STATISTICA, the following 
quantity is computed: 

L = -2(Lo- Lt), 

which, under the null hypothesis that the null model perfectly fits the data, has a 
chi-square distribution with p - 1 degrees of freedom. The test used by SPSS is 
similar, using only the quantity -2 Lt. which, under the null hypothesis, has a chi
square distribution with n - p degrees of freedom. 

In Example 7.20, the chi-square test is significant for both the logit and probit 
models; therefore, we reject the null hypothesis that the null model fits the data 
perfectly. In other words, the estimated slope parameters b1 (0.23 and 0.138 for the 
logit and probit models, respectively) have a significant contribution for the fitted 
models. 

Table 7.13. Classification matrix for the clay dataset, using predictor HG in the 
logit or probit models. 

Observed Age = 1 

Observed Age = 0 

Example 7.21 

Predicted Age = 1 

65 

10 

Predicted Age = 0 

4 

15 

Error rate 

94.2 

60.0 

Q: Redo the previous example using forward search in the set of all original clay 
features. 

A: STATISTICA (Generalized Linear/Nonlinear Models) and SPSS 
afford forward and backward search in the predictor space when building a logit or 
probit model. Figure 7.18 shows the response function of a logit bivariate model 
built with the forward search procedure and using the predictors HG and Ti02• 

In order to derive the predicted Age values, one would have to determine the 
cases above and below the 0.5 plane. Table 7.14 displays the corresponding 
classification matrix, which shows some improvement, compared with the situation 
of using the predictor HG alone. The error rates of Table 7.14, however, are 
training set estimates. In order to evaluate the performance of the model one would 
have to compute test set estimates using the same methods as in Chapter 6. 

D 
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Table 7.14. Classification matrix for the clay dataset, using predictors HG and 
Ti02 in the logit model. 

Error rate 

Observed Age = 1 

Observed Age = 0 

Predicted Age = 1 

66 

9 

Predicted Age = 0 

3 

16 

95.7 

64.0 

1.Z 

1·0 

o.s 

o.e 

~ 
(JJ 0·" 

Figure 7.18. 3-D plot of the bivariate logit model for the Clays ' dataset. The 
solid circles are the observed values. 

Commands 7.6. STATISTICA and SPSS commands used to perform logit and 
probit regression. 

STATISTICA 

SPSS 

Statistics; Advanced Linear/Nonlinear 
Models; Nonlinear Estimation; Quick Logit 
I Quick Probit 

Statistics; Advanced Linear/Nonlinear 
Models; Generalized Linear/Nonlinear 
Models; Logit I Probit 

Analyze; Regression; Binary Logistic I 
Probit 

• 
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Exercises 

7.1 The Flow Rate dataset contains daily measurements of flow rates in two Portuguese 
Dams, denoted AC and T. Consider the estimation of the flow rate at AC by linear 

regression of the flow rate at T: 
a) Estimate the regression parameters. 
b) Assess the normality ofthe residuals. 
c) Assess the goodness of fit of the model. 
d) Predict the flow rate at AC when the flow rate at Tis 4 m3/s. 

7.2 Redo the previous Exercise 7.1 using quadratic regression confirming a better fit with 

higher R2. 

7.3 Redo Example 7.3 without the intercept term, proving the goodness of fit of the model. 

7.4 In Exercise 2.18 and 4.8 the correlations between HFS and a transformed variable of 10 

were studied. Using polynomial regression, determine a transformed variable of 10 with 
higher correlation with HFS. 

7.5 Using the Clays' dataset, show that the percentage of low grading material depends 

on their composition on K20 and Al20 3. Use for that purpose a stepwise regression 

approach with the chemical constituents as predictor candidates. Furthermore, perform 
the following analyses: 
a) Assess the contribution ofthe predictors using appropriate inference tests. 
b) Assess the goodness of fit of the model. 
c) Assess the degree of multicollinearity of the predictors. 

7.6 Consider the Services' firms of the Firms' dataset. Using stepwise search of a linear 
regression model estimating the capital revenue, CAPR, of the firms with the predictor 
candidates {GI, CA, NW, P, A/C, DEPR}, perform the following analyses: 
a) Show that the best predictor ofCAPR is the apparent productivity, P. 

b) Check the goodness of fit of the model. 
c) Obtain the regression line plot with the 95% confidence interval. 

7.7 Using the Forest Fires' dataset, show that, in the conditions of the sample, it is 

possible to predict the yearly AREA of burnt forest using the number of reported fires 
as predictor, with an R2 over 80%. Also, perform the following analyses: 
a) Use ridge regression in order to obtain better parameter estimates. 
b) Cross-validate the obtained model using a partition of even/odd years. 

7.8 The search of a prediction model for the foetal weight in section 7 .3.3.3 contemplated a 

third order model. Perform a stepwise search contemplating the interaction effects -'iz = 

.-t1-\2, -'iJ = .-t 1.\3, -U3 = .-tz.\3, and show that these interactions have no valid contribution. 

7.9 Variable -\lz, was found to be a good predictor candidate in the forward search process 
in section 7.3.3.3. Study in detail the model with predictors -'i, -\2, .\3, -\lz, assessing 
namely: the multicollinearity; the goodness of fit; and the detection of outliers. 
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7.10 Consider the Wines' dataset. Design a classifier for the white vs. red wines using 
features ASP, GLU and PHE and logistic regression. Check if a better subset of 
features can be found. 

7.11 In Example 7.15, the second order regression of the SONAE share values (Stock 
Exchange dataset) was studied. Determine multiple linear regression solutions for the 
SONAE variable using the other variables of the dataset as predictors and forward and 
backward search methods. Perform the following analyses: 
a) Compare the goodness of fit of the forward and backward search solutions. 
b) For the best solution found in a), assess the multicollinearity and the contribution 

of the various predictors and determine an improved model. Test this model using 
a cross-validation scheme and identify the outliers. 

7.12 Determine a multiple linear regression solution that will allow forecasting the 
temperature one day ahead in the Weather dataset (Data 1 worksheet). Use today's 
temperature as one of the predictors and evaluate the model. 

7.13 Determine and evaluate a logit model for the classification of the CTG dataset in 
normal vs. non-normal cases using forward and backward searches in the predictor set 
{LB, AC, UC, ASTV, MSTV, AL TV, ML TV, DL}. 



8 Data Structure Analysis 

In the previous chapters, several methods of data classification and regression were 
presented. Reference was made to the dimensionality ratio problem, which led us 
to describe and use variable selection techniques. The problem with these 
techniques is that they cannot detect hidden variables in the data, responsible for 
interesting data variability. In the present chapter we describe techniques that allow 
us to analyse the data structure with the dual objective of dimensional reduction 
and improved data interpretation. 

8.1 Principal Components 

In order to illustrate the contribution of data variables to the data variability, let us 
inspect Figure 8.1 where three datasets with a bivariate normal distribution are 
shown. 

In Figure 8.1 a, variables ~and y are uncorrelated and have the same variance, 
d = I. The circle is the equal density curve for a 20" deviation from the mean. 
Therefore, any linear combination of ~ and y corresponds to a radial direction 
exhibiting the same variance. Thus, in this situation, ~ and y are as good in 
describing the data as any other orthogonal pair of variables. 

6 6 6 
y y y 

• 5 
... 

• 

3 3 

• ·' 2 2 .-.' • 
• X .. 

X 
0 0 0 

0 5 0 6 0 3 4 

Figure 8.1. Bivariate, normal distributed datasets showing the standard deviations 
along ~andy with dark grey bars: a) Equal standard deviations (I); b) Very small 
standard deviation along y (0.15); and c) Correlated variables of equal standard 
deviations ( 1.31) with a light-grey bar showing the standard deviation of the main 
principal component (3.42). 
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In Figure 8.1 b, ~and y are uncorrelated but have different variances, namely a 
very small variance along y, 0"~=0.0225. The importance of yin describing the 
data is tenuous. In the limit, with 0"~ ~ 0, y would be discarded as an interesting 
variable and the equal density ellipsis would converge to a line segment. 

In Figure 8.1c, ~andy are correlated (p = 0.99) and have the same variance, 
d =I. 72. In this case, as shown in the figure, any equal density ellipsis leans along 
the regression line at approximately 45°. Based on the variances of ~and y, we 
might be led to the idea that two variables are needed in order to explain the 
variability of the data. However, if we choose an orthogonal co-ordinate system 
with one axis along the regression line, we immediately see that we have a 
situation similar to Figure 8.1 b, that is, only one hidden variable, say z, with high 
standard deviation (3.42) is needed (light-grey bar in Figure 8.1 c). The other 
orthogonal variable is responsible for only a residual standard deviation (0.02). A 
variable that maximises a data variance is called a principal component of the data. 
Using only one variable, z, instead of the two variables ~and y, amounts to a 
dimensional reduction of the data. 

Consider a multivariate dataset, with x = [ -\i ~ . . . ~]', and let S denote the 
sample covariance matrix of the data (point estimate of the population covariance 
I:), where each element su is the covariance between variables ~; and ~j• estimated 
as follows for n cases (see A.8.2): 

8.1 

Notice that covariances are symmetric, su = si;, and that s;; is the usual estimate 
ofthe variance of~;, sf. The covariance is related to the correlation, estimated as: 

n 

L:<xk; -x;)(xkJ -x1 ) 
k~J 

with ruE[-1,1]. 

Therefore, the correlation can be interpreted as a standardised covariance. 

8.2 

In order to obtain the principal components of a dataset, we search uncorrelated 
linear combinations of the original variables whose variances are as large as 
possible. The first principal component corresponds to the direction of maximum 
variance; the second principal component corresponds to an uncorrelated direction 
that maximises the remaining variance, and so on. Let us shift the co-ordinate 
system in order to bring the sample mean to the origin, Xc = x - x . The 
maximisation process needed to determine the ith principal component as a linear 
combination of Xc co-ordinates, z; = u;'(x - x ), is expressed by the following 
equation (for details see e.g. K Fukunaga, 1990): 

(S - A-;1) U; = 0, 8.3 

where I is the dxd unit matrix, A; is a scalar and U; is a dx 1 column vector. 
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In order to obtain non-trivial solutions of equation 8.3, one needs to solve the 
determinant equation IS - 2 II = 0. There are d scalar solutions A; of this equation 
called the eigenvalues or characteristic values of S, which represent the variances 
for the new variables z;. After solving the homogeneous system of equations for the 
different eigenvalues, one obtains a family of eigenvectors or characteristic 
vectors U;, such that V i, j U;Uj = 0 (orthogonal system of uncorrelated variables). 
Usually, one selects from the family of eigenvectors those that have unit length, 
U;U; = l, Vi (orthonormal system). 

We will now illustrate the process of the computation of eigenvalues and 
eigenvectors for the covariance matrix of Figure 8.lc: 

s = [I. 72 1. 7 ] . 
1.7 1.72 

The eigenvalues are computed as: 

[1.72-2 1.7 ] 
S-21= =0 => 1.72-2=±1.7 =>21 =3.42, 2 2 =0.02. 

1.7 1.72-2 

For 21 the homogeneous system of equations is: 

[
-1.7 

1.7 
1.7 ][u1]=o, 

-1.7 u2 

from where we derive the unit length eigenvector: u1 = [0.7071 0.7071]' = [ 11.J2 
1 I .J2]'. For ,1z, in the same way we derive the unit length eigenvector orthogonal 
to u1: u2 = [-0.7071 0.7071]' = [-li.J2 11.J2 ]'.Thus, the principal components 
of the co-ordinates are z1 = (~ + :KJ.)I .J2 and Z2 = (- ~ + :KJ.)I .J2 with variances 
3.42 and 0.02, respectively. 

The unit length eigenvectors make up the column vectors of an orthonormal 
matrix U (i.e., u-1 = U') used to determine the co-ordinates of an observation x in 
the new uncorrelated system of the principal components: 

z=U'(x- i). 8.4 

These co-ordinates in the principal component space are often called "z-scores". 
In order to avoid confusion with the previous meaning of z-scores - standardised 
data with zero mean and unit variance - we will use the term pc-scores instead. 

The extraction of principal components is basically a variance maximising 
rotation of the original variable space. Each principal component corresponds to a 
certain amount of variance of the whole dataset. For instance, in the example 
portrayed in Figure 8.lc, the first principal component represents 2 1/(21+ Az) = 
99% of the total variance; in short, u 1 alone contains practically all the information 
about the data. 

Let A represent the diagonal matrix of the eigenvalues: 
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A= 

0 

0 

The following properties are verified: 

1. U' S U =A and S = U AU'. 

2. The detenninant of the covariance matrix, lSI, is: 

8.5 

8.6 

8.7 

IS I is called the generalised variance and its square root is proportional to the 
area or volume of the data cluster since it is the product of the ellipsoid axes. 

3. The traces ofS and A are equal to the sum of the variances of the variables: 

2 2 2 tr(S) = tr(A) = s1 +s2 + ... +sd. 8.8 

Based on this property, we measure the contribution of a variable .:\.< by e = 
Ak !L Ai = Akl( s~ + si + ... + s3 ), as we did previously. 

The contribution of each original variable :{j to each principal component zi can 
be assessed by means of the corresponding sample correlation: 

8.9 

Function pccorr implemented in MATLAB and supplied m Tools (see 
Appendix F) allows computing the ru correlations. 

Example 8.1 

Q: Consider the first (best) class of the Cork Stoppers' dataset. Compute the 
covariance matrix and their eigenvalues and engeivectors using the original 
variables ART and PRT. Detennine the algebraic expression and contribution of 
the main principal component, its correlation with the original variables as well as 
the new co-ordinates of the first cork-stopper. 

A: We use MATLAB to perfonn the necessary computations (see Commands 8.1). 
Let x represent the data matrix with all 10 features of the first class. We then use: 

» % Extracting data matrix x2 for ART and PRT 
» x2=[x(:,l) x(:,3)]; S = cov(x2); 
» [u,lambda,e] = pcacov(S); 
» % Correlations 
» r=pccorr(x2); 
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The results are shown in Table 8.1. The scatter plots of the data using the 
original variables and the principal components are shown in Figure 8.2. The pc
scores can be obtained with: 

» xc=x2-ones(50,1)*mean(x2); 
» z=p2 1 *XC 1 ; 

We see that the first principal component with algebraic expression, 
-0.350 I xART - 0.9367xPRT, highly correlated with the original variables, 
explains almost 99% of the total variance. The first cork-stopper, represented by 
[81 250]' in the ART-PRT plane, maps into: 

[ -0.3501 -0.9367][ 81-137 ]=[127.3]· 
-0.9367 0.350 I 250-365 12.2 

Note that the eigenvector components are the cosines of the angles subtended by 
the principal components in the ART-PRT plane. In Figure 8.2a, this result can 
only be visually appreciated after giving equal scales to the axes. D 

Table 8.1. Eigenvectors and eigenvalues obtained with MA TLAB for the first 
class of cork-stoppers (variables ART and PRT). 

Covariance Eigenvectors Eigenvalues Explained Correlations for z1 variance 

S (x!0-4) UJ Uz A (x10'4) e (%) rli 

0.1849 0.4482 -0.3501 -0.9367 1.3842 98.76 0.9579 

0.4482 1.2168 -0.9367 0.3501 0.0174 1.24 0.9991 

eoo 
"' PRT 0 z2 0 

!560 
0 -- ~-!!--- - c;p :-0-0- -- ..., 

10 oo o o li, co 
500 0 0 ~ 0 

460 -------- ~-0 - f'O 0 oo 
0 0 0 0 8 'I 0 0 

<400 ·10 0 I 

0 oil 
350 .2C) 0 q 0 

300 

""' 
I 
p 

2!;0 ..., 
200 

0 ""' 150 0 01 
ART .. 

100 

a 0 !!0 100 150 200 250 b "Si .2QO ·'"' ICXl 200 "" 

Figure 8.2. Scatter plots obtained with MATLAB of the cork-stopper data (first 
class) represented in the planes: a) ART-PRT with principal components; b) 
Principal components. Both show the first cork with a solid circle. 
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An interesting application of principal components is in statistical quality 
control. The possibility afforded by principal components of having a much
reduced set of variables explaining the whole data variability is an important 
advantage. Instead of controlling several variables, with the same type of Error 
Type I degradation as explained in 4.5.1, sometimes, only one variable needs to be 
controlled. 

Furthermore, principal components afford an easy computation of the following 
Hotteling's fl measure of variability: 

8.10 

Critical values of flare computed in terms of the F distribution as follows: 

T 2 =d(n-l)F . 
d,n,l-a n- d d,n-d,l-a 8.11 

Example 8.2 

Q: Determine the Hotteling's fl control chart for the previous Example 8.1 and find 
the corks that are "out of control" at a 95% confidence level. 

A: The Hotteling's fl values can be determined with MATLAB princomp 
command. The 95% critical value for F2,48 is 3 .19; hence the 95% critical value for 
the Hotteling's Y, using formula 8.11, is computed as 6.51. Figure 8.3 shows the 
corresponding control chart. Cork #20 is clearly "out of control", i.e., it should be 
reclassified. Corks #34 and #39 are borderline cases. 

102 
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1 0~2 =---~:------:'::---,l:---!;:--=----!::----':':----'-c':----,~--:} 
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D 

Figure 8.3. Y chart for the first class of the cork-stopper data. Case #20 is out of 
control. 
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Commands 8.1. ST A TISTICA, SPSS and MATLAB commands used to perform 
principal component and factor analyses. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Multivariate Exploratory 
Techniques; Factor Analysis 

Analyze; Data Reduction; Factor 

[pc, latent, explained]=pcacov(c); 
[pc, score, latent, tsquare]=princomp(x); 
residuals=pcares(x,ndim); 

The MA TLAB pcacov command determines the principal components of a 
covariance matrix c, which are returned in pc. The return vectors latent and 
explained store the variances and contributions of the principal components to 
the total variance, respectively. 

The princomp command returns the principal components and eigenvalues of 
a data matrix x in pc and latent, respectively. The pc scores and Hotteling's f2 
are returned in score and tsquare, respectively. 

The pcares command returns the residuals obtained by retaining the first 
ndim principal components ofx. 

.......,.,eclcl ...... 

~" 
llerlled c:omnu\ ~NRES) 

~~~-~feclclr 

Cnoid~ 

~-lllllhad 

• 

Figure 8.4. Partial view of ST A TISTICA specification window for principal 
component analysis with standardised data. 

8.2 Dimensional Reduction 

When using principal component analysis for dimensional reduction, one must 
decide how many components (and corresponding variances) to retain. There are 
several criteria published in the literature to consider. The following are commonly 
used: 
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1. Select the principal components that explain a certain percentage (say, 95%) of 
tr(A). This a very simplistic criterion that is not recommended. 

2. The Guttman-Kaiser criterion discards eigenvalues below the average tr(A)/d 
(below 1 for standardised data), which amounts to retaining the components 
responsible for the variance contributed by one variable if the total variance was 
equally distributed. 

3. The scree test uses a plot of the eigenvalues (scree plot), discarding those 
starting where the plot levels off. 

4. A more elaborate criterion is based on the so-called broken stick model. This 
criterion discards the eigenvalues whose proportion of explained variance is 
smaller than what should be the expected length lk of the kth longest segment of 
a unit length stick broken into d segments: 

1 d 1 
lk =-I-:-· 

d i=k l 

A table of h values is given in Tools. xls. 

8.12 

5. The Velicer partial correlation procedure uses the partial correlations among 
the original variables when one or more principal components are removed. Let 
Sk represent the remaining covariance matrix when the covariance of the first k 
principal components is removed: 

k 

s k = s -LA; u i u i' ; 
i=l 

k = 0, I, ... , d. 8.13 

Using the diagonal matrix Dk of Sh containing the variances, we compute the 
correlation matrix: 

R - o-112s o-112 k- k k k . 8.14 

Finally, with the elements rii<kl ofRk we compute the following quantity: 

tk = IIrJ(k) ![d(d-1)]. 8.15 
i .f*i 

The fk are the sum of squares of the partial correlations when the first k principal 
components are removed. As long as fk decreases, the partial covariances decline 
faster than the residual variances. Usually, after an initial decrease, fk will start 
to increase, reflecting the fact that with the removal of main principal 
components, we are obtaining increasingly correlated "noise". The k value 
corresponding to the firstfi minimum is then used as the stopping rule. 
The Velicer procedure can be applied using the velcorr function 
implemented in MATLAB and available in Tools (see Appendix F). 
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Example 8.3 

Q: Using all the previously described criteria, determine the number of principal 
components for the Cork Stoppers' dataset (150 cases, 10 variables) that 
should be retained and assess their contribution. 

A: Table 8.2 shows the computed eigenvalues of the cork-stopper dataset. Figure 
8.5a shows the scree plot and Figure 8.5b shows the evolution of Velicer's 
procedure fk. Finally, Table 8.3 compares the number of retained principal 
components for the several criteria and the respective percentage of explained 
variance. 

D 

Table 8.2. Eigenvalues of the cork-stopper dataset computed with MATLAB (a 
scale factor of 104 has been removed). 

A., 

1.1342 

~ 
0.0087 

~ 
0.1453 

A-1 
0.0025 

A3 
0.0278 

As 
0.0016 

~ 
0.0202 

~ 
0.0006 

As 
0.0137 

Aw 
0.0001 

Table 8.3. Comparison of dimensional reduction criteria (Example 8.3). 

Criterion 
95% Guttman-

Scree test Broken stick Velicer 
variance Kaiser 

k 3 3 3 

Explained 
96.5% 83.7% 96.5% 83.7% 96.5% 

variance 

1.2 
eigenvalue tk 

1.1 

1()()()() 

0.9 

0.8 

0.7 

0.4 

0.3 

10 b 0.2 
1 10 

Figure 8.5. Assessing the dimensional reduction to be performed in the cork 
stopper dataset with: a) Scree plot, b) Velicer partial correlation plot. Both plots 
obtained with MA TLAB. 
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8.3 Principal Components of Correlation Matrices 

Sometimes, instead of computing the principal components out of the original data, 
they are computed out of the standardised data, i.e., using the z-scores of the data. 
This is the procedure followed by ST A TISTICA and SPSS, which is related to the 
factor analysis approach described in the following section. Using the standardised 
data has the consequence of eigenvalues and eigenvectors computed from the 
correlation matrix instead of the covariance matrix (see formula 8.2). The results 
obtained are, in general, different. 

Note that since all diagonal elements of a correlation matrix are 1, we have tr(A) 
= d. Thus, the Guttman-Kaiser criterion corresponds, in this case, to selecting the 
eigenvalues which are greater than I. 

Using standardised data has several benefits, namely imposing equal 
contribution of the original variables when they have different units or 
heterogeneous variances. 

Example 8.4 

Q: Compare the bivariate principal component analysis of the Rocks dataset ( 134 
cases, 18 variables), using covariance and correlation matrices. 

A: Table 8.4 shows the eigenvectors and correlations (called factor loadings in 
STA TISTICA) computed with the original data and the standardised data. The first 
ones, u1 and u2, are computed with MATLAB using the covariance matrix; the 
second ones, f1 and f2, are computed with STA TISTICA (see Figure 8.5) using the 
correlation matrix. Figure 8.6 shows the corresponding pc scores (called factor 
scores in STATISTICA). 

We see that by using the covariance matrix, only one eigenvector has dominant 
correlations with the original variables, namely the "compression breaking load" 
variables RMCS and RCSG. These variables are precisely the ones with highest 
variance. Note also the dominant values of the first two elements ofu. When using 
the correlation matrix, the f elements are more balanced and express the 
contribution of several original features: f1 highly correlated with chemical 
features, and f2 highly correlated with density (MV AP), porosity (PAOA), and 
water absorption (AAPN). 

The scatter plot of Figure 8.6a shows that the pc scores obtained with the 
covariance matrix are unable to discriminate the several groups of rocks; u 1 only 
discriminates the rock classes between high and low "compression breaking load" 
groups. On the other hand, the scatter plot in Figure 8.6b shows that the pc scores 
obtained with the correlation matrix discriminate the rock classes, both in terms of 
chemical composition (f1 basically discriminates Ca vs. SiOrrich rocks) and of 
density-porosity-water absorption features (f2). 

0 
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Table 8.4. Eigenvectors of the rock dataset computed from the covariance matrix 
(uJ and u2) and from the correlation matrix (fJ and f2) with the respective 
correlations. Correlations above 0.7 are shown in bold. 

UJ u2 rl rl fl fl r1 r2 

RMCS -0.695 0.487 -0.983 0.136 -0.079 0.018 -0.569 0.057 

RCSG -0.714 -0.459 -0.984 -0.126 -0.069 0.034 -0.499 0.105 

RMFX -0.013 -0.489 -0.078 -0.606 -0.033 0.053 -0.237 0.163 

MVAP -0.015 -0.556 -0.{)89 -0.664 -0.034 0.271 -0.247 0.839 

AAPN 0.000 0.003 0.251 0.399 0.046 -0.293 0.331 -0.905 

PAOA 0.001 0.008 0.241 0.400 0.044 -0.294 0.318 -0.909 

COLT 0.001 -0.005 0.240 -0.192 0.001 0.177 0.005 0.547 

ROES 0.002 -0.002 0.523 -0.116 0.070 -0.101 0.503 -0.313 

RCHQ -0.002 -0.028 -0.060 -0.200 -0.095 0.042 -0.689 0.131 

Si02 -0.025 0.046 -0.455 0.169 -0.129 -0.074 -0.933 -0.229 

Al203 -0.004 0.001 -0.329 0.016 -0.129 -0.069 -0.932 -0.215 

Fe203 -0.001 -0.006 -0.296 -0.282 -0.111 -0.028 -0.798 -0.087 

MnO -0.000 -0.000 -0.252 -0.039 -0.090 -0.011 -0.647 -0.034 

CaO 0.020 -0.025 0.464 -0.113 0.132 0.073 0.955 0.225 

MgO -0.{)03 -0.007 -0.393 -0.226 -0.024 0.025 -0.175 0.078 

Na20 -0.001 0.004 -0.428 0.236 -0.119 -0.071 -0.856 -0.220 

K20 -0.001 0.005 -0.320 0.267 -0.117 -0.084 -0.845 -0.260 

Ti02 -0.000 -0.000 -0.152 -0.097 -0.088 -0.026 -0.633 -0.079 

Example 8.5 

Q: Consider the three classes of the Cork Stoppers' dataset (!50 cases). 
Evaluate the training set error for linear discriminant classifiers using the I 0 
original features and one or two principal components of the data correlation 
matrix. 

A: The classification matrices are shown in Table 8.5. We see that the dimensional 
reduction didn't degrade the training set error significantly. The first principal 
component, F I, alone corresponds to more than 86% of the total variance. Adding 
the principal component F2, 94.5% of the total data variance is explained. Principal 
component F 1 has a distribution that is well approximated by the normal 
distribution (Shapiro-Wilk p = 0.69, 0.67 and 0.33 for class 1, 2 and 3, 
respectively). For the principal component F2, the approximation is worse for the 
first class (Shapiro-Wilk p = 0.09, 0.95 and 0.40 for class I, 2 and 3, respectively). 

A classifier with only one or two features has, of course, a better dimensionality 
ratio and is capable of better generalisation. 

D 
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Figure 8.6. The rock dataset analysed with principal components computed from 
the covariance matrix (a) and from the correlation matrix (b). 

Table 8.5. Classification matrices for the cork stoppers dataset. Correct 
classifications are along the rows (50 cases per class). 

10 Features F1 and F2 Fl 

OJj ())]_ {l)_J OJj ())]_ {l)_J OJj ())]_ {l)_J 

OJj 45 5 0 46 4 0 47 3 0 

())]_ 7 42 II 39 0 10 40 0 

{l)_J 0 4 46 0 5 45 0 5 45 

Pe 10% 16% 6% 8% 22% 10% 6% 20% 10% 
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Example 8.6 

Q: Compute the main principal components for the two first classes of the Cork 
Stoppers' dataset, using standardised data. Select the principal components 
using the Guttman-Kaiser criterion. Determine the respective correlations with 
each original variable and interpret the results. 

A: Figure 8. 7a shows the eigenvalues computed with ST ATISTICA. The first two 
eigenvalues comply with the Guttman-Kaiser criterion (take note that the sum of 
all eigenvalues is 1 0). 

The factor loadings of the two main principal components are shown in Figure 
8.8a. Significant values appear in bold. A plot of these factor loadings is shown in 
Figure 8.8b. It is clearly visible that the first principal component, F~o is highly 
correlated with all cork-stopper features except N and the opposite happens with 
F2. These observations suggest, therefore, that the description (or classification) of 
the two cork-stopper classes can be achieved either with F1 and F2, or with feature 
Nand one of the other features, namely the highest correlated feature PRTG (total 
perimeter of the big defects). 

Furthermore, we see that the only significant correlation relative to F2 is smaller 
that any of the significant correlations relative to F 1• Thus, F 1 or PRTG alone 
describes most of the data, as suggested by the scatter plot of Figure 8.7b (pc 
scores). D 

When analysing grouped data with principal components, as we did in the 
previous Examples 8.4 and 8.6, one often wants to determine the most important 
variables as well as the data groups that best reflect the behaviour of those 
variables. 

Consider the means of variable F1 in Example 8.6: 0.71 for class 1 and -0.71 
for class 2 (see Figure 8.7b). As expected, given the translation y = x- x, the 
means are symmetrically located around Fl = 0. Moreover, by visual inspection, 
we see that the class 1 cases cluster on a high F I region and class 2 cases cluster on 
a low F I region. Notice that since the scatter plot 8.7b uses the projections of the 
standardised data onto the F I-F2 plane, the cases tend to cluster around the ( 1, I) 
and ( -1, -1) points in this plane. 

In order to analyse this issue in further detail, let us consider the simple dataset 
shown in Figure 8.9a, consisting of normally distributed bivariate data generated 
with (true) mean Jlo = [3 3)' and the following (true) covariance matrix: 

Figure 8.9b shows this dataset after standardisation (subtraction of the mean and 
division by the standard deviation) with the new covariance matrix: 

.E = [ I 0.9478]. 
0.9478 1 
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Value 
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Figure 8.7. Dimensionality reduction of the first two classes of cork-stoppers: a) 
Eigenvalues; b) Principal component scatter plot (compare with Figure 6.5). (Both 
graphs obtained with ST A TISTICA.) 

~ariable 
Factor Factor 

1 2 
0.8 N 

F2 . 
N -0.692842 0.711276 0.6 

IAAT -il.928675 0.299179 
PRT . 

PRT -i1.867473 0.473586 OA 
ART 

ARM .{).814819 -0.365608 
PRM -ii.B30937 -0.304390 

. 
0.2 

I~ -il.945471 -0.080143 
lNG' -il.943425 0.011087 

NG 
0.0 PR0T9urJ-G . 

PRTG .{).969659 -0.045857 .02 
RAARPRM RAN 

RMR .{).843413 -0.297383 . • • ARM 

RAN -ii.BB7361 -0.304314 -o.• 

a 
Expi.Var 7.672320 1.235721 
Prr:I.Totl 0.767232 0.123572 

F1 
.0.6 

b ·1 .0.95 .0.9 .0.85 -o.a .0.75 -().7 -o.as 

Figure 8.8. Factor loadings table (a) with significant correlations in bold and graph 
(b) for the first two classes of cork-stoppers, obtained with STATISTICA. 

The standardised data has unit variance along all variables with the new 
covariance: Oj 2 = 02 1 = 3/( .J5.fi) = 0.9487. The eigenvalues and eigenvectors ofi: 
(computed with MATLAB function eig), are: 

A= [1.9487 0 ] . 
0 0.0513 ' 

U = r- I I .fi_ II .fi_l 
II .fi II .fi . 

Note that tr(A) = 2, the total variance, and that the first principal component 
explains 97% of the total variance. 

Figure 8.9c shows the standardised data projected onto the new system of 
variables Fl and F2. 
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Let us now consider a group of data with mean mo = [4 4]' and a one-standard
deviation boundaiJ_ corresponding to the ellipsis shown in Figure 8.9a, with s, 
=.J5 12 and sy =..J2 12, respectively. The mean vector maps onto m = mo - ~a = 
[I I] '; given the values of the standard deviation, the ellipsis maps onto a circle of 
radius 0.5 (Figure 8.9b). This same group of data is shown in the FI-F2 plane 
(Figure 8.9c) with mean: 

m = U' m =[-I 1 J2 
p u.fi 11 J2][1] [ 0 ] u.fi 1 = J2 · 
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Figure 8.9. Principal component transformation of a bivariate dataset: a) original 
data with a group delimited by an ellipsis; b) Standardised data with the same 
group (delimited by a circle); c) Standardised data projection onto the Fl-F2 plane; 
d) Plot of the correlations (circles) of the original variables with Fl and F2. 
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Figure 8.9d shows the correlations of the principal components with the original 
variables, computed with formula 8.9: 

YFtx = YFty = 0.987; Yp2x =- Ypzy = 0.16 . 

These correlations always lie inside a unit-radius circle. Equal magnitude 
correlations occur when the original variables are ~rfectly correlated with 
A1 = A.z = 1. The correlations are then I rFtx I= I rp1y I =11../2 (apply formula 8.9). 

In the case of Figure 8.9d, we see that Fl is highly correlated with the original 
variables. At the same time, a data group lying in the "high region" of .tand y tends 
to cluster around the Fl = 1 value after projection of the standardised data. We may 
superimpose these two different graphs - the pc scores graph and the correlation 
graph - in order to facilitate the interpretation of the data groups that exhibit some 
degree of correspondence with high values of the variables involved. 

Example 8.7 

Q: Consider the Rocks' dataset, a sample of 134 rocks classified into five classes 
(l="granite", 2="diorite", 3="marble", 4="slate", 5="limestone") and characterised 
by 18 features (see Appendix E). Use the two main principal components of the 
data in order to interpret it. 

A: Only the first four eigenvalues satisfy the Kaiser criterion. The first two 
eigenvalues are responsible for about 58% of the total variance; therefore, when 
discarding the remaining eigenvalues, we are discarding a substantial amount of 
the information from the dataset (see Exercise 8.12). 

We can conveniently interpret the data by using a graphic display of the 
standardised data projected onto the plane of the first two principal components, 
say Fl and F2, superimposed over the correlation plot. In STATISTICA, this 
overlaid graphic display can be obtained by first creating a datasheet with the 
projections ("factor scores") and the correlations ("factor loadings"). For this 
purpose, we first extract the scrollsheet of the "factor scores" (click with the right 
button of the mouse over the corresponding "factor scores" sheet in the workbook 
and select Extract as stand alone window). Then, secondly, we join 
the factor loadings in the same Fl and F2 columns and create a grouping variable 
that labels the data classes and the original variables. Finally, a scatter plot with all 
the information, as shown in Figure 8.10 is obtained. 

By visual inspection of Figure 8.10, we see that Fl has high correlations with 
chemical features, i.e., reflects the chemical composition of the rocks. We see, 
namely, that Fl discriminates between the silica-rich rocks such as granites and 
diorites from the lime-rich rocks such as marbles and limestones. On the other 
hand, F2 reflects physical properties of the rocks, such as density (MV AP), 
porosity (PAOA) and water absorption (AAPN). F2 discriminates dense and 
compact rocks (e.g. marbles) from less dense and more porous counterparts (e.g. 
some limestones). 

0 
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Figure 8.1 0. Partial view of the standardised rock dataset projected onto the F I-F2 
principal component plane, overlaid with the correlation plot. 

8.4 Factor Analysis 

Let us again consider equation 8.4 which yields the pc-scores of the data using the 
dxd matrix U of the eigenvectors: 

z = U'(x - x). 8.16 

Reversely, with this equation we can obtain the original data from their principal 
components: 

x = x + Uz. 8.17 

If we discard some principal components, using a reduced dxk matrix Uk, we no 
longer obtain the original data, but an estimate i : 

8.18 

Using 8.17 and 8.18, we can express the original data in terms of the estimation 
errore = x - x , as: 
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8.19 

When all principal components are used, the covariance matrix satisfies 
S = U AU' (see formula 8.6 in the properties mentioned in section 8.1 ). Using the 
reduced eigenvector matrix U h and taking 8.19 into account, we can express S in 
terms of an approximate covariance matrix Sk and an error matrix E: 

8.20 

In factor analysis, the retained principal components are called common factors. 
Their correlations with the original variables are called factor loadings. Each 
common factor u1 is responsible by a communality, hl , which is the variability 
associated with the original ith variable: 

k 

hl = L,IL1ut. 8.21 
j=l 

The communalities are the diagonal elements of Sk and make up a diagonal 
communality matrix H. 

Example8.8 

Q: Compute the approximate covariance, communality and error matrices for 
Example 8.1. 

A: Using MATLAB to carry out the computations, we obtain: 

S -U AU'- · [
0.1697 0.4539] 

I - I I - 0.4539 1.2145 ' 
H=[O.l697 0 ]· 

0 1.2145 ' 

E=S-S =[0.1849 0.4482]-[0.1697 0.4539]=[0.0152 -0.0057]· 
I 0.4482 1.2168 0.4539 1.2145 -0.0057 0.0023 

0 

In the previous example, we can appreciate that the matrix of the diagonal 
elements of E is the difference between the matrix of the diagonal elements of S 
and H. In factor analysis, one searches for a solution for the equation 8.20, such 
that E is a diagonal matrix, i.e., one tries to obtain uncorrelated errors from the 
estimation process. In this case, representing by D the matrix of the diagonal 
elements of S, we have: 

8.22 

In order to cope with different units of the original variables, it is customary to 
carry out the factor analysis on correlation matrices: 

R = Rk + (I - H). 8.23 
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There are several algorithms for finding factor analysis solutions which 
basically improve current estimates of communalities and factors according to a 
specific criterion (for details see e.g. Jackson JE, 1991 ). One such algorithm, 
known as principal factor analysis, starts with an initial estimate of the 
communalities, e.g. as the multiple R square of the respective variable with all 
other variables (see formula 7 .I 0). It uses a principal component strategy in order 
to iteratively obtain improved estimates of communalities and factors. 

In principal component analysis, the principal components are directly 
computed from the data. In factor analysis, the common factors are estimates of 
unobservable variables, called latent variables, which model the data in such a way 
that the remaining errors are uncorrelated. Equation 8.19 then expresses the 
observations x in terms of the latent variables zk and errors e. The true values of the 
observations x, before any error has been added, are values of the so-called 
manifest variables. 

The main benefits of factor analysis when compared with principal component 
analysis are the uncorrelation of the residuals and the invariance of the solutions 
with respect to scale change. 

After finding a factor analysis solution, it is still possible to perform a new 
transformation that rotates the factors in order to achieve special effects as, for 
example, to align the factors with maximum variability directions (varimax 
procedure). 

Example 8.9 

Q: Redo Example 8.8 using principal factor analysis with the communalities 
computed by the multiple R square method. 

A: The correlation matrix is: 

R = [ 1 0.945]. 
0.945 I 

Starting with communalities = multiple R2 square = 0.893, ST A TISTICA 
(Communalities = multiple R') converges to solution: 

H =[0.919 0 ] . A =[1.838 0 ] 
0 0.919 ' 0 0.162 . 

For unit length eigenvectors, we have: 

R = U AU , = [1 I .fi. 0] [1.838 0 ] [ll.fi. 11.fi.l = [0.919 0.919] . 
I I I 1/.fi. 0 0 0.162 0 0 0.919 0.919 

[ 
I 0.919] Thus: R 1 +(I~ H)= . 

0.919 I 

We see that the residual cross-correlations are only 0.945 ~ 0.919 = 0.026. 
0 
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Example 8.10 

Q: Redo Example 8. 7 using principal factor analysis and varimax rotation. 

A: Using STATISTICA with Communalities=Multiple R' checked (see 
Figure 8.4) in order to apply formula 8.21, we obtain the solution shown in Figure 
8.11. The varimax procedure is selected in the Factor rotation box included 
in the Loadings tab (after clicking OK in the window shown in Figure 8.4). 

The rock dataset projected onto the factor plane shown in Figure 8.11 leads us to 
the same conclusions as in Example 8.7, stressing the opposition SiOrCaO and 
"aligning" the factors in such a way that facilitates the interpretation of the data 
structure. 

D 
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Figure 8.11. Partial view of the rock dataset projected onto the Fl-F2 factor plane, 
after varimax rotation, overlaid with the factor loadings plot. 

Exercises 

8.1 Consider the standardised electrical impedance features of the Breast Tiss u e 
dataset and perform the following principal component analyses: 
a) Check that only two principal components are needed to explain the data 

according to the Guttman-Kaiser, broken stick and Velicer criteria. 
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b) Determine which of the original features are highly correlated to the principal 
components found in a). 

c) Using a scatter plot of the pc-scores check that the {ADI, CON} class set is 
separated from all other classes by the first principal component only, whereas the 
discrimination of the carcinoma class requires the two principal components. 
(Compare with the results of Examples 6.16 and 6.17.) 

d) Redo Example 6.16 using the principal components as classifying features. 
Compare the classification results with those obtained previously. 

8.2 Perform a principal component analysis of the correlation matrix of the chemical and 
grading features of the Clays' dataset, showing that: 
a) The scree plot has a slow decay after the first eigenvalue. The Velicer criterion 

indicates that only the first two eigenvalues should be retained. 
b) The pc correlations show that the first principal component reflects the silica

alumina content of the clays; the second principal component reflects the lime 
content; and the third principal component reflects the grading. 

c) The scatter plot of the pc-scores of the first two principal components indicates a 
good discrimination of the two clay sorts (holocenic and pliocenic). 

8.3 Redo the previous Exercise 8.2 using principal factor analysis. Show that only the first 
factor has a high loading with the original features, namely the alumina content of the 
clays. 

8.4 Design a classifier for the first two classes of the Cork Stoppers' dataset using the 
main principal components of the data. Compare the classification results with those 
obtained in Example 6.3. 

8.5 Consider the CTG dataset with 2126 cases of foetal heart rate (FHR) features computed 
in normal suspect and pathological FHR tracings (variable NSP). Perform a principal 
component analysis using the feature set {LB, ASTV, MSTV, AL TV, ML TV, 
WIDTH, MIN, MAX, MODE, MEAN, MEDIAN, V} containing continuous-type 
features. 
a) Show that the two main principal components computed for the standardised 

features satisfy the broken-stick criterion. 
b) Obtain a pc correlation plot superimposed onto the pc-scores plot and verify that: 

first, there is a quite good discrimination of the normal vs. pathological cases with 
the suspect cases blending in the normal and pathological clusters; and that there 
are two pathological clusters, one related to a variability feature (MSTV) and the 
other related to FHR histogram features. 

8.6 Using principal factor analysis, determine which original features are the most 
important explaining the variance of the Firms' dataset. Also compare the principal 
factor solution with the principal component solution of the standardised features and 
determine whether either solution is capable to conveniently describe the activity 
branch ofthe firms. 

8. 7 Perform a principal component and a principal factor analysis of the standardised 
features BASELINE, ACELRATE, ASTV, ALTV, MSTV and MLTV of the FHR

Apgar dataset checking the following results: 
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a) The principal factor analysis affords a univariate explanation of the data variance 
related to the FHR variability features ASTV and ALTV, whereas the principal 
component analysis affords an explanation requiring three components. Also 
check the scree plots. 

b) The pc-score plots of the factor analysis solution afford an interpretation of the 
Apgar index. For this purpose, use the varimax rotation and plot the categorised 
data using three classes for the Apgar at I minute after birth (Apgar I: :o;5; >5 and 
:o;8; >8) and two classes for the Apgar at 5 minutes after birth (Apgar5: :o;8; >8). 

8.8 Redo the previous Exercise 8.7 for the standardised features EF, CK, lAD and GRD of 
the Infarct dataset showing that the principal component solution affords an 
explanation of the data based on only one factor highly correlated with the ejection 
fraction, EF. Check the discrimination capability of this factor for the necrosis severity 
score SCR > 2 (high) and SCR < 2 (low). 

8.9 Consider the Stock Exchange dataset. Using principal factor analysis, determine 
which economic variable best explains the variance of the whole data. 

8.10 Using the Hotteling's T- control chart for the wines of the Wines' dataset, determine 
which wines are "out of control" at 95% confidence level and present an explanation 
for this fact taking into account the values of the variables highly correlated with the 
principal components. Use only variables without missing data for the computation of 
the principal components. 

8.11 Perform a principal factor analysis of the wine data studied in the previous Exercise 
8.10 showing that there are two main factors, one highly correlated to the GLU-THR 
variables and the other highly correlated to the PHE-L YS variables. Use varimax 
rotation and analyse the clustering of the white and red wines in the factor plane 
superimposed with the factor loading plane. 

8. I 2 Redo the principal factor analysis of Example 8.10 using three factors and varimax 
rotation. With the help of a 3D plot interpret the results obtained checking that the three 
factors are related to the following original variables: Si02-AI203, AAPN-AAOA and 
RMCS-RCSG. 



9 Survival Analysis 

In medical studies one is often interested in studying the expected time until the 
death of a patient, undergoing a specific treatment. Similarly, in technological 
tests, one is often interested in studying the amount of time until a device subjected 
to specified conditions fails. Times until death and times until failure are examples 
of survival data. The statistical analysis of survival data is based on the use of 
specific data models and probability distributions. In this chapter, we present 
several relevant topics of survival analysis and their application to survival data 
using STATISTICA and SPSS. 

9.1 Survivor Function and Hazard Function 

Consider a random variable t E 9\+ representing the lifetime of a class of objects or 
individuals, and letj(t) denote the respective pdf. The distribution function oft is: 

F(t) = P(t < t) = f~ f(u)du. 9.1 

In general,j(t) is a positively skewed function, with a long right tail. Continuous 
distributions such as the exponential or the Weibull distributions (see B.2.3 and 
B.2.4) are good candidate models forj(t). 

The survivor function or reliability function, S(t), is defined as the probability 
that the lifetime (survival time) of the object is greater than or equal tot: 

S(t) = P(t ~ t) = 1- F(t) . 9.2 

The hazard function (or failure rate function) represents the probability that the 
object ends its lifetime (fails) at time t, conditional on having survived until that 
time. In order to compute this probability, we first consider the probability that the 
survival time t lies between t and t +At, conditional on t ~ t: P(t :S t < t + At I t ~ t). 
The hazard function is the limit of this probability when At~ 0: 

h(t) = lim P(t ~ t < t +At I t ~ t) . 
!lt-40 At 

9.3 

Given the property A. 7 of conditional probabilities, the numerator of 9.3 can be 
written as: 

J. P. Marques de Sá, Applied Statistics Using SPSS, STATISTICA and MATLAB
© Springer-Verlag Berlin Heidelberg 2003
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I P(t~t<t+b.t) F(t+b.t)-F(t) 
P(t ~ t < t + b.t t?. t) = = . 

P(t?. t) S(t) 

Thus: 

h(t) = lim F(t + b.t)- F(t) 1 
l>HO b.t S(t) 

f(t) 

S(t) ' 

sincej(t) is the derivative of F(t): f(t) = dF(t) I dt. 

9.2 Non-Parametric Analysis of Survival Data 

9.2.1 The Life Table Analysis 

9.4 

9.5 

In survival analysis, the survivor and hazard functions are estimated from the 
observed survival times. Consider a set of ordered survival times t 1, t2, ••• , tk. One 
may then estimate any particular value of the survivor function, S(t;), in the 
following way: 

S(ti) =?(surviving to timet;) = 

?(surviving to time t 1) 

xP(surviving to time t1 I survived to time t2) 

xP(surviving to time ti I survived to time ti_ 1). 9.6 

Let us denote by n1 the number of individuals that are alive at the start of the 
interval [t1 , t1+1 [, and by 0 the number of individuals that die during that interval. 
We then derive the following non-parametric estimate: 

, n -d 
?(surviving tot J+l I survived tot 1 ) = 1 1 

ni 

from where we estimate S(t;) using formula 9.6. 

Example 9.1 

9.7 

Q: A car sale stand has a record of the sale date and the date that a complaint was 
first presented for three different cars (this is a subset of the Car Sale dataset in 
Appendix E). These dates are shown in Table 9.1. Compute the estimate of the 
time-to-complaint probability fort= 300 days. 

A: In this example, the time-to-complaint, "Complaint Date" - "Sale Date", is the 
survival time. The computed times in days are shown in the last column of Table 
9.1. Since there are no complaints occurring between days 261 and 300, we may 
apply 9.6 and 9.7 as follows: 
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S(300) = S(261) = i>(surviving to 240) P(surviving to 2611 survived to 240) 

3-1 2-1 I 
---- -

2 2 3 

Alternatively, one could also compute this estimate as (3- 2)/3, considering the 
[0, 261] interval. D 

Table 9.1. Time-to-complaint data in car sales (3 cars). 

Car Sale Date Complaint Date 
Time-to-complaint 

(days) 
#I 1-Nov-00 29-Jun-01 240 
#2 22-Nov-00 10-Aug-01 261 
#3 16-Feb-01 30-Jan-02 348 

In a survival study, information concerning the "death" times of one or more 
cases that entered the study is often not available either because the cases were 
"lost" during the study or because they are still "alive" at the end of the study. 
These are the so-called censored cases'. 

The information of the censored cases must also be taken into consideration 
when estimating the survivor function. Let us denote by c1 the number of cases 
censored in the interval [t1 , t1+![. The actuarial or life-table estimate of the survivor 
function is a non-parametric estimate that assumes that the censored survival times 
occur uniformly throughout that interval, so that the average number of individuals 
that are at risk of dying during [t1 , t1+1 [ is: 

n~ =n -c /2. 
J J J 

9.8 

Taking into account formulas 9.6 and 9.7, the life-table estimate of the survivor 
function is computed as: 

9.9 

The hazard function is an estimate of9.5, given by: 

9.10 

where r 1 is the length of the jth time interval. 

The type of censoring described here is the one most frequently encountered, known as right 
censoring. There are other, less frequent types of censoring (see e.g. Collet D, 1994 ). 
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Example 9.2 

Q: Consider that the data records of the car sales stand (Car Sale dataset), 
presented in the previous example, was enlarged to 8 cars, as shown in Table 9.2. 
Determine the survivor and hazard functions using the life-table estimate. 

Table 9.2. Time-to-complaint data in car sales (8 cars). 

Car 
Sale Complaint Without Complaint at Last Date Known to be 
Date Date the End of the Study Without Complaint 

#I 12-Sep-00 31-Mar-02 

#2 26-0ct-00 31-Mar-02 

#3 01-Nov-00 29-Jun-01 

#4 22-Nov-00 10-Aug-01 

#5 18-Jan-01 31-Mar-02 

#6 02-Ju1-0I 24-Sep-01 

#7 16-Feb-01 30-Jan-02 

#8 03-May-01 31-Mar-02 

Table 9.3. Summary table ofthe time-to-complaint data in car sales (8 cars). 

Car Start Date Stop Date Censored 
Time-to-complaint 

(days) 
#1 12-Sep-00 31-Mar-02 TRUE 565 

#2 26-0ct-00 31-Mar-02 FALSE 521 

#3 01-Nov-00 29-Jun-01 FALSE 240 

#4 22-Nov-00 10-Aug-01 FALSE 261 

#5 18-Jan-01 31-Mar-02 TRUE 437 

#6 02-Jul-01 24-Sep-01 TRUE 84 

#7 16-Feb-01 30-Jan-02 FALSE 348 

#9 03-May-01 31-Mar-02 TRUE 332 

A: We now have two sources of censored data: the three cars that are known to 
have had no complaints at the end of the study, and one car whose owner could not 
be contacted at the end of the study, but whose car was known to have had no 
complaint at a previous date. We can summarise this information as shown in 
Table 9.3. 

Using SPSS, with the time-to-complaint and censored columns of Table 9.3 and 
a specification of displaying time intervals 0 through 600 days by 75 days, we 
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obtain the life-table estimate results shown in Table 9.4. Figure 9.1 shows the 
survivor function plot. Note that it is a monotonic decreasing function. 

Columns 2 through 5 of Table 9.4 list the successive values of n1, c1, n ~, and d1, 

respectively. The "Propn Surviving" column is obtained by applying formula 9.7 
with correction for censored dat~ (formula 9.8). The "Cumul Propn Surv at End" 
column lists the values of S(t) obtained with formula 9.9. The "Propn 
Terminating" column is the complement of the "Propn Surviving" column. Finally, 
the last two columns list the values of the probability density and hazard functions, 
computed with the finite difference approximation of j(t) = M(t)/11t and formula 
9.5, respectively. 

D 

Table 9.4. Life-table of the time-to-complaint data, obtained with SPSS. 

Intrvl Number 
Number 

Number Number of Propn Propn 
Cumul 

Proba-
Wdrawn Propn Hazard 

Start Entrng this 
During 

Exposed Termnl Termi- Sur-
Surv at 

bility 
Rate 

Time lntrvl 
Intrvl 

to Risk Events nating viving 
End 

Density 

() 8 0 8 0 0 I 0 0 

75 8 7.5 0 0 I 0 0 

150 7 0 7 0 0 0 0 

225 7 0 7 2 0.2857 0.7143 0.7I43 0.0038 0.0044 

300 5 4.5 0.2222 0.7778 0.5556 0.002I 0.0033 

375 3 2.5 0 0 0.5556 0 0 

450 2 () 2 I 0.5 0.5 0.2778 0.0037 0.0089 

525 0.5 0 0 I 0.2778 0 0 

1.2..---------------------, 

1 0 

.8 

TWE 

-100 100 200 300 400 500 600 700 

Figure 9.1. Life-table estimate of the survivor function for the time-to-complaint 
data (first eight cases of the Car Sale dataset) obtained with SPSS. 
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Example 9.3 

Q: Consider the amount of time until breaking of iron specimens, submitted to low 
amplitude sinusoidal loads (Group 1) in fatigue tests, a sample of which is given in 
the Fatigue dataset. Determine the survivor, hazard and density functions using 
the life-table estimate procedure. What is the estimated percentage of specimens 
breaking beyond 2 million cycles? In addition determine the estimated percentage 
of specimens that will break at 500000 cycles. 

A: We first convert the time data, given in number of 20 Hz cycles, to a lower 
range of values by dividing it by 10000. Next, we use this data with SPSS, 
assigning the Break variable as a censored data indicator (Break = 1 if the 
specimen has broken), and obtain the plots of the requested functions between 0 
and 400 with steps of20, shown in Figure 9.2. 

Note the right tailed, positively skewed aspect of the density function, shown in 
Figure 9.2b, typical of survival data. From Figure 9.2a, we see that the estimated 
percentage of specimens surviving beyond 2 million cycles (marked 200 in the t 
axis) is over 45%. From Figure 9.2c, we expect a break rate of about 0.4% at 
500000 cycles (marked 50 in the taxis). 

0 

b 014rh-(l-) ---,c,---------, 
012 

010 
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o.o~--.0 __ 100..___200..___300..,..-------"-J400 o.ooo!--..--.--..:,:~~,.--.-.-"-±--'---':! 

Figure 9.2. Survival functions for the group 1 iron specimens of the Fatigue 
dataset, obtained with SPSS: a) Survivor function; b) Density function; c) Hazard 
function. The time scale is given in 104 cycles. 

Commands 9.1. STATISTICA, SPSS and MATLAB commands used to perform 
survival analysis. 

STATISTICA 

SPSS 

MATLAB 

Statistics; Advanced Linear/Nonlinear 
Models; Survival Analysis; Life tables & 
Distributions I Kaplan & Meier I Comparing 
two samples I Regression models 

Analyze; Survival 

[par, pci] 
[par, pci] 

expfit(x,alpha); 
weibfit(x,alpha); 
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SPSS uses as input data in survival analysis the survival time (e.g. last column of 
Table 9.3) and a censoring variable (Status). STATISTICA allows, as an 
alternative, the specification of the start and stop dates (e.g., second and third 
columns of Table 9.3) either in date format or as separate columns for day, month 
and year. 

The MATLAB functions expfit and weibfit compute the maximum 
likelihood estimates of the parameters of the exponential and Weibull distributions, 
respectively, fitting the data vector x. The parameter estimates are returned in par. 
The confidence intervals of the parameters, at alpha significance level, are 
returned in pci. 

• 

9.2.2 The Kaplan-Meier Analysis 

The Kaplan-Meier estimate, also known as product-limit estimate of the survivor 
function is another type of non-parametric estimate, which uses intervals starting at 
"death" times. The formula for computing the estimate of the survivor function is 
similar to formula 9.9, using n; instead of n ~: 

, k [n--d·] S(t) =IT 1 1 , for tk::;; t < tk+l· 

J=I n1 

9.11 

Since, by construction, there are n1 individuals who are alive just before t1 and 0 
deaths occurring at f;, the probability that an individual dies between t1 - 6 and t; is 
estimated by 0 I n1. Thus, the probability of individuals surviving through [I;, t1+ 1[ 

is estimated by (n1 - d; )/ n1. 

The only influence of the censored data is in the computation of the number of 
individuals, n1 , who are alive just before t1 . If a censored survival time occurs 
simultaneously with one or more deaths, then the censored survival time is taken to 
occur immediately after the death time. 

The Kaplan-Meier estimate of the hazard function is given by: 

9.12 

where r1 is the length ofthejth time interval. For details, see e.g. (Collet D, 1994). 

Example 9.4 

Q: Redo Example 9.2 using the Kaplan-Meier estimate. 

A: Table 9.5 summarises the computations needed for obtaining the Kaplan-Meier 
estimate of the "time-to-complaint" data. Figure 9.3 shows the respective survivor 
function plot obtained with STATISTICA. The computed data in Table 9.5 agrees 
with the results obtained with ST A TISTICA or with SPSS. 0 
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Table 9.5. Kaplan-Meier estimate of the survivor function for the first eight cases 
ofthe Car Sale dataset. 

Interval 
Start 
84 

240 

261 

332 

348 

437 

521 

565 

Event nj 0 pj 

Censored 8 0 

"Death" 7 0.8571 

"Death" 6 1 0.8333 

Censored 5 0 I 
"Death" 4 I 0.75 

Censored 3 0 1 

"Death" 2 0.5 
Censored 0 

1.2 ~-~--~--~--~--~--~----, 

: • Compldte l> Ce~sored 
1.1 ---------:-------- -.!-- ------- ~-- ------- ~- ------- -~-- -------:.---------

1.0 

"' :~ 0.9 

~ 
c1l 0.8 
c 
0 
t: 0.7 
8. 
£ 0.6 ., 
~ 0.5 
:; 
§ 0.4 
t> 

1 I l I I I 

: : : : I : 
! I I I I 0 : : ----- r- ------- r------ ---r-- -------:--------

______ -- _._ ______ -- J __ - ----- .1 •• ------- .L •• --- ----L--- ------1.. •• •••• •• 
I I I I o I 
I I I I o I 

: : : : : : 
-------- "'!------ --- ~----- ·--- ~-- -------:-------- -~ ------ ---~ --------

I I I I ' I 
I I I I I I 

_________ : _________ .,!_____ -- -- ____ !·--------~---------~--------
' I I I I I 

: : : : I : 
••••• •••..(•••• •• ••-""'••• ••• •••ol ••• • • • •• + • •• • •• • ••IF• ·-- ••- --1>-· ------ • 

I I I I I I 

--------1------ __ J_ __ -_____ j ------- -- ~ - -- ... --~ -- ~ ~ -~ --- ~ -~---- ----
1 I I I r I 

l : : i : : --- --· ---.,---- --~ .................. ----- , ... ------- .. , ~ -~~ --~ ~ -~~ -~ ---~ -~---~ ----
• I I I I I 

: : : : : : 
o.J ------ ·-T ------ --T- -------:--------·r ---- ----:-~-- T------ --

• I I I I I 

0.2 --- ........... -'"'!-·-· .......... -~-·-- ---- -1 .......... ----- + ... ---- --- -~-- -- .. ----:----------
: l J ' Surv!val Time 

0.1 L--~~-~--~--~--~--~----.J 
0 100 200 300 400 500 600 700 

s .I 

0.8571 

0.7143 

0.7143 
0.5357 

0.5357 

0.2679 

0.2679 

Figure 9.3. Kaplan-Meier estimate of the survivor function for the first eight cases 
of the Car Sale dataset, obtained with STATISTICA. (The "Complete" cases 
are the "deaths" .) 

Example 9.5 

Q: Consider the Heart Valve dataset containing operation dates for heart valve 
implants at Sao Joao Hospital, Porto, Portugal, and dates of subsequent event 
occurrences, namely death, re-operation and endocarditis. Compute the Kaplan
Meier estimate for the event-free survival time, i.e., survival time without 
occurrence of death, re-operation or endocarditis events. What is the percentage of 
patients surviving 5 years without any event occurring? 
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A: The Heart Valve Survival datasheet contains the computed final date 
for the study (variable DATE_ STOP). This is the date of the first occurring event, 
if it did occur, or otherwise, the last date the patient was known to be alive and 
well. The survivor function estimate shown in Figure 9.4 is obtained by using 
STATISTICA with DATE_OP and DATE_STOP as initial and final dates, and 
variable EVENT as censored data indicator. From this figure, we can estimate that 
about 85% of patients survive five years ( 1825 days) without any event occurring. 
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Figure 9.4. Kaplan-Meier estimate of the survivor function for the event-free 
survival of patients with heart valve implant, obtained with STA TISTICA. 

9.2.3 Statistics for Non-Parametric Analysis 

The following statistics are often needed when analysing survival data: 

I. Confidence intervals for S(t). 

For the Kaplan-Meier estimate, the confidence interval is computed assuming that 
the estimate S(t) is normally distributed (say for a number of intervals above 30), 
with mean S(t) and standard error given by the Greenwood's formula: 

9.13 
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2. Median and percentiles of survival time. 

Since the density function of the survival times,j(t), is usually a positively skewed 
function, the median survival time, t0.5, is the preferred location measure. The 
median can be obtained from the survivor function, namely: 

F(to.s) = 0.5 ~ S(to.s) = 1 -0.5 = 0.5. 9.14 

When using non-parametric estimates of the survivor function, it is usually not 
possible to determine the exact value of !0.5, given the stepwise nature of the 
estimate S(t) . Instead, the following estimate is determined: 

t0.5 =min{ t;; S(t;) s; 0.5 }. 9.15 

Percentiles p of the survival time are computed in the same way: 

9.16 

3. Confidence intervals for the median and percentiles. 

Confidence intervals for the median and percentiles are usually determined 
assuming a normal distribution of these statistics for a sufficiently large number of 
cases (say, above 30), and using the following formula for the standard error of the 
percentile estimate (for details see e.g. Collet D, 1994): 

9.17 

where the estimate of the probability density can be obtained by a finite difference 
approximation of the derivative of S(t). 

Example 9.6 

Q: Determine the 95% confidence interval for the survivor function of Example 
9.3, as well as for the median and 60% percentile. 

A: SPSS produces an output containing the value of the median and the standard 
errors of the survivor function. The standard values of the survivor function can be 
used to determine the 95% confidence interval, assuming a normal distribution. 
The survivor function with the 95% confidence interval is shown in Figure 9.5. 

The median survival time of the specimens is 1 OOx 1 04 = 1 million cycles. The 
60% percentile survival time can be estimated as follows: 



9.2 Non-Parametric Analysis of Survival Data 315 

From Figure 9.5 (or from the life table), we then see that i0 6 = 280 xl04 cycles. 
Let us now compute the standard errors of these estimates: 

s(!00]=--- 1-s[S(IOO)]= 0·0721 =72.1. 
f(l 00) 0.00 I 

s[280]= -.-1-s[S(280)]= 0·0706 = 70.6. 
f(280) 0.00 I 

Thus, under the normality assumption, the 95% confidence intervals for the 
median and 60% percentile of the survival times are [0, 241.3] and [41.6, 418.4], 
respectively. We observe that the non-parametric confidence intervals are too large 
to be useful. Only for a much larger number of cases are the survival functions 
shown in Figure 9.2 smooth enough to produce more reliable estimates of the 
confidence intervals. 0 
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Figure 9.5. Survivor function of the group I iron specimens, of the Fatigue 
dataset with the 95% confidence interval (plot obtained with EXCEL using SPSS 
results). The time scale is given in 104 cycles. 

9.3 Comparing Two Groups of Survival Data 

Let h1(t) and h2(t) denote the hazard functions of two independent groups of 
survival data, often called the exposed and unexposed groups. Comparison of the 
two groups of survival data can be performed as a hypothesis test formalised in 

terms of the hazard ratio If/= h1(t) / h2(t), as follows: 

H0: If/= I (survival curves are the same); 
H 1: If/*- 1 (one ofthe groups will consistently be at a greater risk). 
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The following two non-parametric tests are of widespread use: 

1. The Log-Rank Test. 

Suppose that there are r distinct death times, t~. t2, ••• , t" across the two groups, and 
that at each time f_j, there are dv, d21 individuals of groups 1 and 2 respectively, that 
die. Suppose further that just before time t1, there are n1b n21 individuals of groups 1 
and 2 respectively, at risk of dying. Thus, at time t1 there are 0 = dv + d21 deaths in 
a total of n1 = nv + n21 individuals at risk, as shown in Table 9.6. 

Table 9.6. Number of deaths and survivals at time t1 in a two-group comparison. 

Deaths at t1 Survivals beyond t1 
Individuals at risk 

before f_j- o Group 

dv n11 - dv nv 

2 dz1 nz;- dz; nz; 

Total 0 n;-0 n; 

If the marginal totals along the rows and columns in Table 9.6 are considered 
fixed, and the null hypothesis is true (survival time is independent of group), the 
remaining four cells in Table 9.6 only depend on one of the group deaths, say dv. 
As described in section B.1.4, the probability of the associated random variable, 
tft1, taking value in [0, min(n11, 0)], is given by the hypergeometric law: 

9.18 

The mean of tit; is the expected number of group 1 individuals who die at time t1 

(see B.1.4): 

9.19 

The Log-Rank test combines the information of all 2x2 contingency tables, 
similar to Table 9.6 that one can establish for all t1, using a test based on the i test 
(see 5.1.3). The method of combining the information ofall2x2 contingency tables 
is known as the Mantel-Haenszel procedure. The test statistic is: 
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~ z? (under H0). 9.20 

Note that the numerator, besides the 0.5 continuity correction, is the absolute 
difference between observed and expected frequencies of deaths in group 1. The 
denominator is the sum of the variances of djj, according to the hypergeometric 
law. 

2. The Peto-Wilcoxon test. 

The Peto-Wilcoxon test uses the following test statistic: 

~ zf (under H0). 9.21 

This statistic differs from 9.20 on the factor nj that weighs the differences 
between observed and expected group 1 deaths. 

The Log-Rank test is more appropriate then the Peto-Wilcoxon test when the 
alternative hypothesis is that the hazard of death for an individual in one group is 
proportional to the hazard at that time for a similar individual in the other group. 
The validity of this proportional hazard assumption can be elucidated by looking 
at the survivor functions of both groups. If they clearly do not cross each other then 
the proportional hazard assumption is quite probably true, and the Log-Rank test 
should be used. In other cases, the Peto-Wilcoxon test is used instead. 

Example 9.7 

Q: Consider the fatigue test results for iron and aluminium specimens, subject to 
low amplitude sinusoidal load (Group 1), given in the Fatigue dataset. Compare 
the survival times of the iron and aluminium specimens using the Log-Rank and 
the Peto-Wilcoxon tests. 

A: Using STATISTICA to perform these tests, the observed significances are 0.66 
and 0.89, for the Log-Rank and Peto-Wilcoxon tests respectively. Looking at the 
survivor functions shown in Figure 9.6, drawn with values computed with 
STA TISTICA, we observe that they practically do not cross. Therefore, the 
proportional hazard assumption is probably true and the Log-Rank is more 
appropriate than the Peto-Wilcoxon test. With p = 0.66, the null hypothesis of 
equal hazard functions is not rejected. 

D 
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Figure 9.6. Life-table estimates of the survivor functions for the iron and 
aluminium specimens (Group 1). (Plot obtained with EXCEL using SPSS results.) 

9.4 Models for Survival Data 

9.4.1 The Exponential Model 

The simplest distribution model for survival data is the exponential distribution 
(see B.2.3). It is an appropriate distribution when the hazard function is constant, 
h(t) = /!., i.e., the age of the object has no effect on its probability of surviving (lack 
of memory property). 

Note that using 9.2 one can also write 9.5 as: 

h(t) = -dS(t) I dt =_dIn S(t) . 
S(t) dt 

9.22 

Equivalently: 

S(t) = exp[- J~ h(u)du l 9.23 

Thus, when h(t) = /!., we obtain the exponential distribution: 

9.24 

The exponential model can be fitted to the data using a maximum likelihood 
procedure (see Appendix C). Concretely, let the data consist of n survival times, t 1, 

t2, .. . , tm of which r are death times and n - r are censored times. Then, the 
likelihood function is: 

9.25 
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Equivalently: 

n 
L(A) = IJ AS; e-lu;, 9.26 

i=l 

from where the following Jog-likelihood formula is derived: 

n n n 

JogL(A)= Lb'; IogA-ALt; =rlogA-ALt;. 9.27 
i=l i=l i=l 

The maximum log-likelihood is obtained by setting to zero the derivative of 
9.27, yielding the following estimate of the parameter A: 

' 1 n 
A=- Li=lt;. 

r 
9.28 

The standard error of this estimate is ,i I r. The following statistics are easily 
derived from 9.24: 

i 0 5 = In 2 I ,i . 

iP =ln(l/(1-p))d. 

The standard error of these estimates is i P I .J; . 

Example 9.8 

9.29a 

9.29b 

Q: Consider the survival data of Example 9.5 (Heart Valve dataset). Determine 
the exponential estimate of the survivor function and assess the validity of the 
model. What are the 95% confidence intervals of the parameter A and of the 
median time until an event occurs? 

A: Using ST A TIST!CA, we obtain the survival and hazard functions estimates 
shown in Figure 9.7. STATISTICA uses a weighted least square estimate of the 
model function instead of the log-likelihood procedure. The exponential model fit 
shown in Figure 9.7 is obtained using weights n;h;, where n; is the number of 
observations at risk in interval i of width h;. Note that the life-table estimate of the 
hazard function is suggestive of a constant behaviour. The chi-square goodness of 
fit test yields an observed significance of 0.59; thus, there is no evidence leading to 
the rejection of the null, goodness of fit, hypothesis. 

STATISTICA computes the estimated parameter as -i= 9.8xl0.5 (day-'), with 
standard error s = lx10-5. Therefore, the 95% confidence interval, under the 
normality assumption, is [7 .84 x 10-5, 11.76 x 10-5]. 

Applying formula 9.29, the median is estimated as ln21 ,i = 3071 days = 8.4 
years. Since there are r = 106 events, the standard error of this estimate is 0.8 
years. Therefore, the 95% confidence interval of the median event-free time, under 
the normality assumption, is [6.8, 10] years. 0 
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Figure 9. 7. Survivor function (a) and hazard function (b) for the Heart Valve 
dataset with the fitted exponential estimates shown with dotted lines. Plots 
obtained with STATISTICA 

9.4.2 The Weibull Model 

The Weibull distribution offers a more general model for describing survival data 
than the exponential model does. Instead of a constant hazard function, it uses the 
following parametric form, with positive parameters A and y, of the hazard 
function: 

h(t)=At r-l . 9.30 

The exponential model corresponds to the particular case y= I . For y > I, the 
hazard increases monotonically with time, whereas for y < I, the hazard function 
decreases monotonically. Taking into account 9.23, one obtains: 

S(t) =e-.-t rY . 9.31 

The probability density function of the survival time is given by the derivative 
of F(t) = I - S(t). Thus: 

f( ) 1 y-1 - .-t tY t = /l,rt e . 9.32 

This is the Weibull density function with shape parameter yand scale parameter 
{/I I A (see B.2.4): 

f(t) = w yr;-;-; (t). 
r.vl l .-t 

9.33 

Figure B. II illustrates the influence of the shape and scale parameters of the 
Weibull distribution. Note that in all cases the distribution is positively skewed, 
i.e., the probability of survival in a given time interval always decreases with 
increasing time. 
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The parameters of the distribution can be estimated from the data using a log
likelihood approach, as described in the previous section, resulting in a system of 
two equations, which can only be solved by an iterative numerical procedure. An 
alternative method to fitting the distribution uses a weighted least squares 
approach, similar to the method described in section 7.1.2. From the estimates 
A and y, the following statistics are then derived: 

• ( •)1/y 
t o.s = In 2 I A . 9.34 

. ( •)lly 
tP = ln(l/(1-p))/A . 

The standard error of these estimates has a complex expression (see e.g. Collet 
D, 1994). 

In the assessment of the suitability of a particular distribution for modelling the 
data, one can resort to the comparison of the survivor function obtained from the 
data, using the Kaplan-Meier estimate, S(t), with the survivor function prescribed 
by the model, S(t). From 9.31 we have: 

ln(-lnS(t)) = ln A+ yin t. 9.35 

If S(t) is close to S(t), the log-cumulative hazard plot of In( -ln S(t)) against In t 
will be almost a straight line. 

An alternative way to assessing the suitability of the model uses the r goodness 
of fit test described in section 5 .1.3. 

Example 9.9 

Q: Consider the amount of time until breaking of aluminium specimens submitted 
to high amplitude sinusoidal loads in fatigue tests, a sample of which is given in 
the Fatigue dataset. Determine the Weibull estimate of the survivor function and 
assess the validity of the model. What is the point estimate of the median time until 
breaking? 

A: Figure 9.8 shows the Weibull estimate of the survivor function, determined with 
STATISTICA, using a weighted least square approach similar to the one 
mentioned in Example 9.8. Note that the t values are divided, as in Example 9.3, by 
104• The observed probability of the chi-square goodness of fit test is very high: 
p = 0.96. The model parameters computed by STATISTICA are: 

1 1=0.1867; y=0.7031 

Figure 9.7 also shows the log-cumulative hazard plot obtained with EXCEL and 
computed from the values of the Kaplan-Meier estimate. From the straight-line fit 
of this plot, one can compute another estimate of the parameter r = 0.6393. 
Inspection of this plot and the previous chi-square test result are indicative of a 
good fit to the Weibull distribution. 
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The point estimate of the median time until breaking is computed with formula 
9.34: 

i =(In 2 I A)11 r = ( 0·301 )1.42 
= 1.97. 

o.s 0.1867 

Thus, taking into account the 104 scale factor used for the t axis, a median 
number of 19700 20Hz-cycles is estimated for the time until breaking of the 
aluminium specimens. D 

Figure 9.8. Fitting the Weibull model to the time until breaking of aluminium 
specimens submitted to high amplitude sinusoidal loads in fatigue tests: a) Life
table estimate of the survivor function with Weibull estimate (solid line); b) Log
cumulative hazard plot (solid line) with fitted regression line (dotted line). 

9.4.3 The Cox Regression Model 

When analysing survival data, one is often interested in elucidating the influence of 
explanatory variables in the survivor and hazard functions . For instance, when 
analysing the Heart Valve dataset, one is probably interested in knowing the 
influence of a patient's age on chances of surviving. 

Let h1(t) and h2(t) be the hazards of death at timet, for two groups: 1 and 2. The 
Cox regression model allows elucidating the influence of the group variable using 
the proportional hazards assumption, i.e., the assumption that the hazards can be 
expressed as: 

9.36 

where the positive constant If/is known as the hazard ratio, mentioned in 9.3. 
Let .:t be an indicator variable such that its value for the ith individual, x;, is I or 

0, according to the group membership of the individual. In order to impose a 
positive value to If/, we rewrite formula 9.36 as: 
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Thus h2(t) = h0(t) and ljl = efl. This model can be generalised for p explanatory 
variables: 

9.38 

where Tli is known as the risk score and h0(t) is the baseline hazard function, i.e., 
the hazard that one would obtain if all independent explanatory variables were 
zero. 

The Cox regression model is the most general of the regression models for 
survival data since it does not assume any particular underlying survival 
distribution. The model is fitted to the data by first estimating the risk score using a 
log-likelihood approach and finally computing the baseline hazard by an iterative 
procedure (for details see e.g. Collet D, 1994). As a result of the model fitting 
process, one can obtain parameter estimates and plots for specific values of the 
explanatory variables. 
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Figure 9.9. Baseline survivor function (a) and survivor functions for different 
patient ages (b, c and d) submitted to heart valve implant (Heart Valve 
dataset), obtained with STA TISTICA by Cox regression. The survival times are in 
days. The Age = 4 7.17 (years) corresponds to the sample mean age. 
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Example 9.10 

Q: Determine the Cox regression solution for the Heart Valve dataset (event
free survival time}, using Age as the explanatory variable. Compare the survivor 
functions and determine the estimated percentages of an event-free 10-year post
operative period for the mean age and for 20 and 60 years-old patients as well. 

A: STATISTICA determines the parameter PAge= 0.0214 for the Cox regression 
model. The chi-square test under the null hypothesis of "no Age influence" yields 
an observed p = 0.004. Therefore, variable Age is highly significant in the 
estimation of survival times, i.e., is an explanatory variable. 

Figure 9.8a shows the baseline survivor function. Figures 9.8b, c and d, show 
the survivor function plots for 20, 47.17 (mean age) and 60 years, respectively. As 
expected, the probability of a given post-operative event-free period decreases with 
age (survivor curves lower with age). From these plots, we see that the estimated 
percentages of patients with post-operative event-free 10-year periods are 80%, 
65% and 59% for 20, 47.17 (mean age) and 60 year-old patients, respectively. 

D 

Exercises 

9.1 Determine the probability of having no complaint in the first year for the Car Sale 
dataset using the life table and Kaplan-Meier estimates of the survivor function. 

9.2 Redo Example 9.3 for the iron specimens submitted to high loads using the Kaplan
Meier estimate of the survivor function. 

9.3 Redo the previous Exercise 9.2 for the aluminium specimens submitted to low and high 
loads. Compare the results. 

9.4 Consider the Heart Valve dataset. Compute the Kaplan-Meier estimate for the 
following events: death after I st operation, death after I st or 2nd operations, re-operation 
and endocarditis occurrence. Compute the following statistics: 
a) Percentage of patients surviving 5 years. 
b) Percentage of patients without endocarditis in the first 5 years. 
c) Median survival time with 95% confidence interval. 

9.5 Compute the median time until breaking for all specimen types of the Fatigue 
dataset. 

9.6 Redo Example 9.7 for the high amplitude load groups of the Fatigue dataset. 
Compare the survival times of the iron and aluminium specimens using the Log-Rank 
or Peto-Wilcoxon tests. Discuss which of these tests is more appropriate. 

9.8 Consider the following two groups of patients submitted to heart valve implant (Heart 
Valve dataset), according to the pre-surgery heart functional class: 
1. Patients with mild or no symptoms before the operation (PRE C < 3). 
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ii. Patients with severe symptoms before the operation (PRE C ~ 3). 
Compare the survival time until death of these two groups using the most appropriate 
of the Log-Rank or Peto-Wilcoxon tests. 

9.9 Determine the exponential and Weibull estimates of the survivor function for the Car 
Sale dataset. VerifY that a Weibull model is more appropriate than the exponential 
model and compute the median time until complaint for that model. 

9.10 Redo Example 9.9 for all group specimens of the Fatigue dataset. Determine which 
groups are better modelled by the Wei bull distribution. 

9.11 Consider the Weather dataset (Data 1) containing daily measurements of wind 
speed in m/s at 12HOO. Assuming that a wind stroke at 12HOO was used to light an 
electric lamp by means of an electric dynamo, the time that the lamp would glow is 
proportional to the wind speed. The wind speed data can thus be interpreted as survival 
data. Fit a Weibull model to this data using n = 10, 20 and 30 time intervals. Compare 
the corresponding parameter estimates. 

9.12 Compare the survivor functions for the wind speed data of the previous Exercise 9.11 
for the groups corresponding to the two seasons: winter and summer. Use the most 
appropriate of the Log-Rank or Peto-Wilcoxon tests. 

9.13 Using the Heart Valve dataset, determine the Cox regression solution for the 
survival time until death of patients undergoing heart valve implant with Age as the 
explanatory variable. Determine the estimated percentage of a I 0-year survival time 
after operation for 30 years-old patients. 

9.14 Using the Cox regression model for the time until breaking of the aluminium 
specimens of the Fatigue dataset, verifY the following results: 
a) The load amplitude (AMP variable) is an explanatory variable, with chi-square 

p=O. 
b) The probability of surviving 2 million cycles for amplitude loads of 80 and I 00 

MPa is 0.6 and 0.17, respectively (point estimates). 

9.15 Using the Cox regression model, show that the load amplitude (AMP variable) cannot 
be accepted as an explanatory variable for the time until breaking of the iron specimens 
of the Fatigue dataset. VerifY that the survivor functions are approximately the same 
for different values of AMP. 



10 Directional Data 

The analysis and interpretation of directional data requires specific data 
representations, descriptions and distributions. Directional data occurs in many 
areas, namely the Earth Sciences, Meteorology and Medicine. Note that directional 
data is an "interval type" data: the position of the "zero degrees" is arbitrary. Since 
usual statistics, such as the arithmetic mean and the standard deviation, do not have 
this rotational invariance, one must use other statistics. For example, the mean 
direction between I 0° and 350° is not given by the arithmetic mean 180°. 

In this chapter, we describe the fundamentals of statistical analysis and the 
interpretation of directional data, for both the circle and the sphere. STATISTICA, 
SPSS and MATLAB do not provide specific tools for dealing with directional data; 
therefore, the needed software tools have to be built up from scratch. MA TLAB 
offers an adequate environment for this purpose. In the following sections, we 
present a set of "directional data"-functions- developed in MATLAB and included 
in the CD Tools-, and explain how to apply them to practical problems. 

10.1 Representing Directional Data 

Directional data is analysed by means of unit length vectors, i.e., by representing 
the angular observations as points on the unit radius circle or sphere. 

For circular data, the angle, fJ, is usually specified in [-180°, 180°] or in 
[0°, 360°]. Spherical data is represented in polar form by specifying the azimuth (or 
declination) and the latitude (or inclination). The azimuth, ¢', is given in [-180°, 
180°]. The latitude (also called elevation angle), fJ, is specified in [-90°, 90°]. 
Instead of an azimuth and latitude, a longitude angle in [0°, 360°] and a co-latitude 
angle in [0°, 180°] are often used. 

In the following sections we assume, unless stated otherwise, that circular data 
is specified in [0°, 360°] and spherical data is specified by the pair (longitude, co
latitude). We will call these specifications the standard format for directional data. 

The MATLAB-implemented functions convazi and convlat (see 
Commands 10.2) perfonn the azimuth and latitude conversions to standard format. 
Note that in all MA TLAB functions described in the following sections, the 
directional data is represented by a matrix, a, whose first column contains the 
circular or longitude data, and the second column, when it exists, the co-latitudes 
(both in degrees). 

When dealing with directional data, one often needs, e.g. for representational 
purposes, to obtain the Cartesian co-ordinates of vectors with specified length and 
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angular directions or, vice-versa, to convert Cartesian co-ordinates to angular, 
polar, form. The conversion formulas for azimuths and latitudes are given in Table 
I 0.1 with the angles expressed in radians through multiplication of the values in 
degrees by ;r /180. 

The MA TLAB functions for performing these conversions, with the angles 
expressed in radians, are also given in Table 1 0.1. 

Example 10.1 

Q: Consider the Joints' dataset, containing measurements of azimuth and pitch 
in degrees for several joint surfaces of a granite structure. What are the Cartesian 
co-ordinates of the unit length vector representing the first measurement? 

A: Since the pitch is a descent angle, we use the following MATLAB instructions, 
where joints is the original data matrix (azimuth in the first column, pitch in the 
second column): 

» j = joints*pi/180; % convert to radians 

» [x,y,z]=sph2cart(j (1,1) ,-j (1,2) ,1) 

X 

0.1162 
y 

-0.1290 
z 

-0.9848 0 

Table 10.1. Conversion formulas from Cartesian to polar co-ordinates (azimuths 
and latitudes) and vice-versa, with the corresponding MATLAB functions. 

Circle 

Sphere 

Polar to Cartesian 

(B,p)~(x,y) 

x =p cos(); y =p sin () 

[x,y]=pol2cart(theta,rho) 

(¢', 0, p) ~ (x,y, z) 

x = p cosO cos¢'; y = p cosO sin¢'; 
z =psin() 

Cartesian to Polar 

(x,y) ~ (0, p) 

2 0 '!, 
()= atan2(y,x) a; p = (x + y") 

[theta,rho]=cart2pol(x,y) 

(x, y, z) ~ ( ¢', 0, p) 

o 2 'lz 
()= arctan(z I (x- + y ) ) ; 

2 7 2'12 ¢J=atan2(y,x);p=(x + y-+ z) 

[x,y,z]=sph2cart(phi,theta,rho) [phi,theta,rho]=cart2sph(x,y,z) 

a atan2(y,x) denotes the arc tangent ofy!x with correction of the angle for x < 0 (see 
formula 10.4). 
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Circular data is usually plotted in circular plots with a marker for each direction 
plotted over the corresponding point in the unit circle. Spherical data is 
conveniently represented in spherical plots, showing a projection of the unit sphere 
with markers over the points corresponding to the directions. 

For circular data, a popular histogram plot is the rose diagram, which shows 
circular slices whose height is proportional to the frequency of occurrence in a 
specified angular bin. 

Commands I 0.1 lists the MA TLAB functions used for obtaining these plots. 

Example 10.2 

Q: Plot the March, 1999 wind direction WDB sample, included in the Weather 
dataset ( datasheet Data 3 ). 

A: Figure 10.1 shows the circular plot ofthis data obtained with polar2d. Visual 
inspection of the plot suggests a multimodal distribution with dispersed data and a 
mean direction somewhere near 135°. 
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Figure 10.1. Circular plot of the March, 1999 wind direction WDB sample 
included in the Weather dataset. 

Example 10.3 

Q: Plot the Joints 1 dataset consisting of azimuth and pitch of granite joints of a 
city street in Porto, Portugal. Assume that the data is stored in the joints matrix 
whose first column is the azimuth and the second column is the pitch (descent 

I 
angle). 

Note that strictly speaking the joints' data is an example of axial data , since there is no difference 

between the symmetrical directions (1/1, B) and (1/J+lf,-B). We will treat it, however, as spherical data. 
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A: Figure 10.2 shows the spherical plot obtained with: 

» j=convlat ([joints (: ,1), -joints ( : ,2)]); 
» polar3d(j); 

Figure 10.2 suggests a unimodal distribution with the directions strongly 
concentrated around a modal co-latitude near 180°. We then expect the anti-mode 
(distribution minimum) to be situated near 0°. 

0 

z 

y 

Figure 10.2. Spherical plot of the Joints 1 dataset. Solid circles are visible 
points; open circles are occluded points. 
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Figure 10.3. Rose diagram of the angular H measurements of the VCG dataset. 
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Example 10.4 

Q: Represent the rose diagram of the angular measurements H of the VCG dataset. 

A: Let vcg denote the data matrix whose first column contains the H 
measurements. Figure 10.3 shows the rose diagram using the MATLAB rose 
command: 

» rose(vcg(: 1 1) *pi/180 1 12) %twelve bins 

Using [t I r] =rose (vcg ( : 1 1) *pi I 18 0 1 12), one can confirm that 47/97 
= 48% of the measurements are in the [-30°, 30°) interval. 

D 

Commands 10.1. MATLAB function rose and MATLAB-implemented 
functions for representing and graphically assessing directional data. 

MATLAB 

[t 1 r] = rose(x 1 n) 
polar2d(a 1 mark) I polar3d(a) 
unifplot(a) 
h=colatplot(a 1 kl) I h=longplot(a) 

The MATLAB function rose (x 1 n) plots the rose diagram of the circular data 
vector x (radians) with n bins; [t 1 r] =rose (X 1 n) returns the vectors t and r 
such that polar ( t 1 r) is the histogram (no plot is drawn in this case). 

The polar2d and polar3d functions are used to obtain circular and spherical 
plots, respectively. The argument a is, as previously mentioned, either a column 
vector for circular data or a matrix whose first column contains the longitudes, and 
the second column the co-latitudes (in degrees). 

The unifplot command draws a uniform probability plot of the circular data 
vector a (see section 10.4). The colatplot and longplot commands are used 
to assess the von Misesness of a spherical distribution (see section I 0.4). The 
returned value h is I if the von Mises hypothesis is rejected at 1% significance 
level, and 0 otherwise. The parameter kl of colatplot must be I for assessing 
von Misesness with large concentration distributions and 0 for assessing uniformity 
with low concentration. 

• 

10.2 Descriptive Statistics 

Let us start by considering circular data, with data points represented by a unit 
length vector: 

x =[cosO sinO]'. 10.1 
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The mean direction of n observations can be obtained in Cartesian co-ordinates, 
in the usual way: 

10.2 

The vector r = [ c s ]' is the mean resultant vector of the n observations, with 
mean resultant length: 

10.3 

and mean direction (for r "# 0): 

jj = {arctan(s I c), if c ~ 0; 

arctan(s I c)+ 1l' sgn(s), if c < 0. 
10.4 

Note that the arctl!!lgent function (MATLAB atan function) takes value in 
[-m'2, m'2], whereasB takes value in [-1l', Jil, the same as using the MATLAB 
function atan2 (y, x) with y representing the vertical component s and x the 
horizontal component c . Also note that r and if are invariant under rotation. 

The mean resultant vector can also be obtained by computing the resul!Ent of 
then unit length vectors. The resultant, r = [n c n s ]',has the same angle, 8 , and 
a vector length of r = n r E [0, n]. The unit length vector representing the mean 
direction, called the mean direction vector, is i 0 = [cos if sin if ] '. 

The mean resultant length r , point estimate of the population mean length p, 
can be used as a measure of distribution concentration. If the vector directions are 
uniformly distributed around the unit circle, then there is no preferred direction and 
the mean resultant length is zero. On the other extreme, if all the vectors are 
concentrated in the same direction, the mean resultant length is maximum and 
equal to 1. Based on these observations, the following sample circular variance is 
defined: 

v = 2(1 - ;; ) e [O, 2]. 10.5 

The sample circular standard deviation is defined as: 

s=.J-2lnr, 10.6 

reducing to approximately~ for small v. The justification for this definition lies in 
the analysis of the distribution of the wrapped random variable ,t.,: 

~ 

.t- n11,u(x) => .tw = ,t(mod 21l') - w11 ,p(x,.) = Ln11,u(x+2llk). 10.7 
k=~ 

The wrapped normal density, W,u,,o. hasp given by: 

p=exp(-0'2 12) => 0'=~-2lnp. 10.8 
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For spherical directions, we consider the data points represented by a unit length 
vector, with the x, y, z co-ordinates computed as in Table I 0.1. 

The mean resultant vector co-ordinates are then computed in a similar way as in 
formula I 0.2. The definitions of spherical mean direction, (8, ¢) , and spherical 
variance are the direct generalisation to the sphere of the definitions for the circle, 
using the three-dimensional resultant vector. In particular, the mean direction 
vector is: 

x0 =[sinO cos¢' sinO sin¢' cosO]'. 10.9 

Example 10.5 

Q: Consider the data matrix j of Example I 0.3 (Joints' dataset). Compute the 
longitude, co-latitude and length of the resultant, as well as the mean resultant 
length and the standard deviation. 

A: We use the function resultant (see Commands 10.2), as follows: 

» [x,y,z,f,t,r]=resultant(j) 

f 
65.4200 % longitude 

t 
178.7780 % co-latitude 

r 
73.1305 % resultant length 

» rbar=r/size(j,1) 
rbar = 

0.9376 % mean resultant length 

» s=sqrt(-2*log(rbar)) 
s 

0.3591 % standard deviation in radians 

Note that the mean co-latitude (178.8°) does indeed confirm the visual 
observations of Example I 0.3. The data is highly concentrated ( r =0.94, near I). 
The standard deviation corresponds to an angle of 20.6°. 

0 

Commands 10.2. MATLAB-implemented functions for computing descriptive 
statistics and performing simple operations with directional data. 

MATLAB 

as=convazi (a) I as=convlat (a) 
[x,y,z,f,t,r] = resultant(a) 
m = meandir(a,alphal) 
[m,rw,rhow]=pooledmean(a) 
v=rotate (a) I t=scattermx (a) I d=dirdif (a, b) 
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Functions convazi and convlat convert azimuth into longitude and latitude 
into co-latitude, respectively. 

Function resultant determines the resultant of unit vectors whose angles are 
the elements of a (in degrees). The Cartesian co-ordinates of the resultant are 
returned in x, y and z. The polar co-ordinates are returned in f ( ¢1 ), t (B) and r. 

Function meandir determines the mean direction of the observations a. The 
angles are returned in m ( 1) and m ( 2) . The mean direction length r is returned in 
m ( 3) . The standard deviation in degrees is returned in m ( 4 ) . The deviation angle 
corresponding to a confidence level indicated by alphal, assuming a von Mises 
distribution (see section 10.3), is returned in m(5). The allowed values of 
alphal are 1, 2 3 and 4 for a= 0.001, 0.01, 0.05 and 0.1, respectively. 

Function pooledmean computes the pooled mean (see section 1 0.6.2) of 
independent samples of circular or spherical observations, a. The last column of a 
contains the group codes, starting with 1. The mean resultant length and the 
weighted resultant length are returned through rw and rhow, respectively. 

Function rotate returns the spherical data matrix v (standard format), 
obtained by rotating a so that the mean direction maps onto the North Pole. 

Function scat termx returns the scatter matrix t of the spherical data a (see 
section 10.4.4). 

Function dirdif returns the directional data of the differences of the unit 
vectors corresponding to a and b (standard format). 

• 

10.3 The von Mises Distributions 

The importance of the von Mises distributions (see B.2.1 0) for directional data is 
similar to the importance of the normal distribution for linear data. As mentioned 
in B.2.1 0, several physical phenomena originate von Mises distributions. These 
enjoy important properties, namely their proximity with the normal distribution as 
mentioned in properties 3, 4 and 5 of B.2.10. The convolution of von Mises 
distributions does not produce a von Mises distribution; however, it can be well 
approximated by a von Mises distribution. 

The generalised (p - 1 )-dimensional von Mises density function, for a vector of 
observations x, can be written as: 

_ KJ.l'X m11,K,p(x)-Cp(K)e , I 0.10 

where J.L is the mean vector, K is the concentration parameter, and Cp( K) is a 
normalising factor with the following values: 

c2 (K) = 1 /(2Jr I 0 (K)) 2
, for the circle (p = 2); 

C3 (K) = K /( 4Jr sinh(K)), for the sphere (p = 3). 

lp denotes the modified Bessel function of the first kind and order p (see 8.2.1 0). 
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For p = 2, one obtains the circular distribution first studied by R. von Mises; for 
p = 3, one obtains the spherical distribution studied by R. Fisher (also called von 
Mises-Fisher or Langevin distribution). 

Note that for low concentration values, the von Mises distributions approximate 
the uniform distribution as illustrated in Figure I 0.4 for the circle and in Figure 
10.5 for the sphere. The sample data used in these figures was generated with the 
vmises2rnd and vmises3rnd functions, respectively (see Commands 10.3). 

10 10 • 

210 210 

Figure I 0.4. Rose diagrams of 50-point samples of circular von Mises distribution 
around J.L = 0, and K = 0.1, 2, I 0, from left to right, respectively. 

X 

Figure 10.5. Spherical plots of 150-point-samples with von Mises-Fisher 
distribution around [0 0 I]', and K = 0.00 I, 2, I 0, from left to right, respectively. 

Given a von Mises distribution MjL,K.p• the maximum likelihood estimation of~ 
is precisely the mean direction vector. On the other hand, the sample resultant 
mean length r is the maximum likelihood estimation of the population mean 
resultant length, a function of the concentration parameter, p = Ap( x), given by: 

p = A2 (k) = / 1 (K) I I 0 (K), for the circle; 

p = A3 (k) = coth K-1 I K, for the sphere. 
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Thus, the maximum likelihood estimation of the concentration parameter K is 
obtained by the inverse function of AP: 

10.11 

Values of k =A ; 1 (r) for p = 2, 3 are given in tables in the literature (see e.g. 
Mardia KV, Jupp PE, 2000). The function ainv, built in MA TLAB, implements 
10.11 (see Commands 1 0.3). The estimate of K can also be derived from the 
sample variance, when it is low (large r ): 

k=:(p-1)/v. 10.12 

As a matter of fact, it can be shown that the inflection points of mwc.z are given 
by: 

1 
5 = (]" , for large K. 10.13 

Therefore, we see that 115 influences the von Mises distribution in the same 
way as (]"influences the linear normal distribution. 

Once the ML estimate of Khas been determined, the circular or spherical region 
around the mean, corresponding to a (1-a) probability of finding a random 
direction, can also be computed using tables of the von Mises distribution function. 
The MATLAB-implemented function vmisesinv gives the respective deviation 
angle, J, for several values of a. Function vmises2cdf gives the left tail area of 
the distribution function of a circular von Mises distribution. These functions use 
exact-value tables and are listed and explained in Commands I 0.3. 

Approximation formulas for estimating the concentration parameter, the 
deviation angles of von Mises distributions and the circular von Mises distribution 
function can also be found in the literature. 

Example 10.6 

Q: Assuming that the Joints' dataset (Example I 0.3) is well approximated by the 
von Mises-Fisher distribution, determine the concentration parameter and the 
region containing 95% of the directions. 

A: We use the following sequence of commands: 

» k=ainv(rbar,3) %using rbar from Example 10.5 
k 

16.0885 
» delta=vmisesinv(k,3,3) 
delta = 

35.7115 

%alphal=3 --> alpha=0.05 

Thus, the region contammg 95% of the directions is a spherical cap with 
J= 35.7° aperture from the mean (see Figure 10.6). 
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Note that using formula I 0.12, one obtains an estimate of f( = 16.0181. For the 
linear normal distribution, this corresponds to 6" = 0.2499, using formula 10.13. 
For the equal variance bivariate normal distribution, the 95% percentile 
corresponds to 2.448a"" 2.4486"= 0.1617 radians = 35.044 °. The approximation 
to the previous value of 8 is quite good. 

D 

We will now consider the estimation of a confidence interval for the mean 
direction x 0 , using a sample of n observations, x~> x2, ..• , xm from a von Mises 
distribution. The joint distribution of x~> x2, • .. , Xn is: 

10.14 

From I 0.1 0, it follows that the confidence interval ofx0 , at a level, is obtained 
from the von Mises distribution with the concentration parameter n Kr . Function 
meandir (see Commands 10.2) uses precisely this result. 

Figure 10.6. Spherical plot of the Joints' dataset with the spherical cap around 
the mean direction (shaded area) enclosing 95% of the observations (8 = 35.7°). 

Example I 0. 7 

Q: Compute the deviation angle of the mean direction of the Joints' dataset for a 
95% confidence interval. 

A: Using the meandir command we obtain 8 = 4.1 °, reflecting the high 
concentration of the data. 

D 
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Example 10.8 

Q: A circular distribution of angles follows the von Mises law with concentration 
K=2. What is the probability of obtaining angles deviating more than 20° from the 
mean direction? 

A: Using 2*vmises2cdf ( -20,2) we obtain a probability of0.6539. 
D 

Commands 10.3. MATLAB-implemented functions for operating with von Mises 
distributions. 

MATLAB 

k=ainv(rbar,p) 
delta=vmisesinv(k, p, alphal) 
a=vmises2rnd(n,mu,k) I a=vmises3rnd(n,k) 
f=vmises2cdf(a,k) 

Function ainv returns the concentration parameter, k, of a von Mises distribution 
of order p (2 or 3) and mean resultant length rbar. Function vmisesinv returns 
the deviation angle delta of a von Mises distribution corresponding to the a level 
indicated by alphal. The valid values of alphal are 1, 2 3 and 4 for a= 0.001, 
0.01, 0.05 and 0.1, respectively. 

Functions vmises2rnd and vmises3rnd generate n random points with 
von Mises distributions with concentration k, for the circle and the sphere, 
respectively. For the circle, the distribution is around mu; for the sphere around 
[0 0 1]'. These functions implement algorithms described in (Mardia JP, Jupp PE, 
2000) and (Wood, 1994), respectively. 

Function vmises2cdf (a,k) returns a vector, f, containing the left tail 
areas of a circular von Mises distribution, with concentration k , for the vector a 
angles in [ -180°, 180°], using the algorithm described in (Hill GW, 1977). 

• 

10.4 Assessing the Distribution of Directional Data 

10.4.1 Graphical Assessment of Uniformity 

An important step in the analysis of directional data is determining whether or not 
the hypothesis of uniform distribution of the data is significantly supported. As a 
matter of fact, if the data can be assumed uniformly distributed in the circle or in 
the sphere, there is no mean direction and the directional concentration is zero. 

It is usually convenient to start the assessment of uniformity by graphic 
inspection. For circular data, one can use a uniform probability plot, where the 
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sorted observations ();!(2ft) are plotted against i/( n+ 1 ), i = 1, 2, ... , n. If the 0; come 
from a uniform distribution, then the points should lie near a unit slope straight line 
passing through the origin. 

Example 10.9 

Q: Use the uniform probability plot to assess the uniformity of the wind direction 
WDB sample of Example 10.2. 

A: Figure 10.7 shows the uniform probability plot of the data using command 
unifplot (see Commands 10.1). Visual inspection suggests a sensible departure 
from uniformity. 
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Figure 10.7. Uniform probability plot of the wind direction WDB data. 

D 

Let us now tum to the spherical data. In a uniform distribution situation the 
longitudes are also uniformly distributed in [0, 21l[, and their uniformity can be 
graphically assessed with the uniform probability plot. In what concerns the co
latitudes, their distribution is not uniform. As a matter of fact, one can see the 
uniform distribution as the limit case of the von Mises-Fisher distribution. By 
property 6 ofB.2.10, the co-latitude is independently distributed from the longitude 
and its density f,jJJ) will tend to the following density forK~ 0: 

10.15 

One can graphically assess this distribution by means of a co-latitude plot where 
the sorted observations 0; are plotted against arccos(1-2(i/n)), i = 1, 2, ... , n. In 
case of uniformity, one should obtain a unit slope straight line passing through the 
origin. 
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Example 10.10 

Q: Consider the spherical data represented in Figure 10.5 with K= 0.001. Assess its 
unifonnity . 

A: Let a represent the data matrix. We use unifplot (a) and 
colatplot (a, 0) (see Commands 10.1) to obtain the graphical plots shown in 
Figure 10.8. We see that both plots strongly suggest a unifonn distribution on the 
sphere. 
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Figure 10.8. Longitude plot (a) and co-latitude plot (b) of the von Mises-Fisher 
distributed data of Figure 10.5 with K= 0.001. 

10.4.2 The Rayleigh Test of Uniformity 

Let p denote the population mean resultant length, i.e., the population 
concentration, whose sample estimate is r . The null hypothesis, H0, for the 
Rayleigh's test ofunifonnity is: p= 0 (zero concentration). 

For circular data the Rayleigh test statistic is: 

10.16 

Critical values of the sampling distribution of z can be computed using the 
following approximation (Wilkie D, 1983): 

P(z:?: k) = exp( ~I +4n+4(n 2 -nk) -(1 + 2n)). 10.17 

For spherical data, the Rayleigh test statistic is : 

z = 3n r 2 = 3//n. 10.18 
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Using the modified test statistic: 

z' =(l-I /(2n))z+z 2 /(IOn) , 10.19 

it can be proven that the distribution of z* is asymptotically % i with an error 
decreasing as l i n (Mardia KV, Jupp PE, 2000). 

The Rayleigh test is implemented in MATLAB function rayleigh (see 
Commands 10.4) 

Example 10.11 

Q: Apply the Rayleigh test to the wind direction WDF data of the Weather 
dataset and to the measurement data M l of the Soil Pollution dataset. 

A: Denoting by wdf and ml the matrices for the datasets, the probability values 
under the null hypothesis are obtained as follows: 

» p=rayleigh(wdf) 
p 

0.1906 

» p=rayleigh (ml) 
p 

0 

Thus, we accept the null hypothesis of uniformity at the 5% level for the WDF 
data, and reject it for the soil pollution M I data (see Figure l 0.9). 

z 

X 

Figure 10.9. Measurement set M I (negative gradient of Ph-tetraethyl 
concentration in the soil) of the Soil Pollution dataset. 
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Commands 10.4. Functions implemented in MATLAB for computing statistical 
tests of directional data. 

MATLAB 

p=rayleigh(a) 
[u2,uc]=watson(a,f,alphal) 
[u2,uc]=watsonvmises(a,alphal) 
[fo,fc,kl,k2]=watswill(al,a2,alpha) 
[w,wc]=unifscores(a,alpha) 
[gw,gc]=watsongw(a,alpha) 

Function rayleigh (a) implements the Rayleigh test of uniformity for the data 
matrix a (circular or spherical data). 

Function watson implements the Watson goodness-of-fit test, returning the 
test statistic u2 and the critical value uc computed for the data vector a (circular 
data) with theoretical distribution values in f. Vector a must be previously sorted 
in ascending order (and f accordingly). The valid values of alphal are 1, 2, 3, 4 
and 5 for a = 0.1, 0.05, 0.025, O.ol and 0.005, respectively. 

The watsonvmises function implements the Watson test assessing von 
Misesness at alphal level. No previous sorting of the circular data a is 
necessary. 

Function watswill implements the Watson-Williams two-sample test for von 
Mises populations, using samples al and a2 (circular or spherical data), at a 
significance level alpha. The observed test statistic and theoretical value are 
returned info and fc, respectively; kl and k2 are the estimated concentrations. 

Function unifscores implements the uniform scores test at alpha level, 
returning the observed statistic w and the critical value we. The first column of 
input matrix a must contain the circular data of all independent groups; the second 
column must contain the group codes from 1 through the highest code number. 

Function watsongw implements the Watson test of equality of means for 
independent spherical data samples. The first two columns of input matrix a 
contain the longitudes and colatitudes. The last column of a contains group codes, 
starting with 1. The function returns the observed test statistic gw and the critical 
value gc at alpha significance value. 

• 

1 0.4.3 The Watson Goodness of Fit Test 

The Watson's U2 goodness of fit test for circular distributions is based on the 
computation of the mean square deviation between the empirical and the 
theoretical distribution. 

Consider the n angular values sorted by ascending order: 81 $ ~ $ ... $ (}n· Let 
V; = F( (} ;) represent the value of the theoretical distribution for the angle (} ;, and 
V represent the average of the V;. The test statistic is: 
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2_~ 2 ~(2i-l)V; [' (- ')
2

] U -L.V-L. +n--V--
" i=l ' i=l n 3 2 . 

10.20 

Critical values of U,~ can be found in tables (see e.g. Kanji GK, 1999). 
Function watson, implemented in MATLAB (see Commands 10.4), can be 

used to apply the Watson goodness of fit test to any circular distribution. It is 
particularly important to assess the goodness of fit to the von Mises distribution, 
using the mean direction and concentration factor estimated from the sample. 

Example 10.12 

Q: Assess, at the 5% significance level, the von Misesness of the data represented 
in Figure 10.4 with K = 2 and the wind direction data WDB of the Weather 
dataset. 

A: The watson function assumes that the data has been previously sorted. Let us 
denote the data of Figure I 0.4 with K = 2 by a. We then use the following 
sequence of commands: 

» a=sort(a); 
» m=meandir(a); 
» k=ainv(m(3) ,2) 
k 

2.5192 
» f=vmises2cdf(a,k) 
» [u2,uc]=watson(a,f,2) 
u2 

0.1484 
uc 

0.1860 

Therefore, we do not reject the null hypothesis, at the 5% level, that the data 
follows a von Mises distribution since the observed test statistic u2 is lower than 
the critical value uc. 

Note that the function vmises2cdf assumes a distribution with 11 = 0. In 
general, one should therefore previously refer the data to the estimated mean. 
Although data matrix a was generated with 11 == 0, its estimated mean is not zero; 
using the data referred to the estimated mean, we obtain a smaller u2 = 0.1237. 

Also note that when using the function vmises2cdf, the input data a must be 
specified in the [ -180°, 180°] interval. 

Function watsonvmises (see Commands 10.4) implements all the above 
operations taking care of all the necessary data recoding for an input data matrix in 
standard format. Applying watsonvmises to the WDB data, the von Mises 
hypothesis is not rejected at the 5% level (u2= 0.1 042; uc= 0.185). This 
contradicts the suggestion obtained from visual inspection in Example I 0.2 for this 
low concentrated data ( r = 0.358). 

D 
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10.4.4 Assessing the von Misesness of Spherical Distributions 

When analysing spherical data it is advisable to first obtain an approximate idea of 
the distribution shape. This can be done by analysing the eigenvalues of the 
following scatter matrix of the points about the origin: 

- I n 
T=-Lx;x;'· 

n i=l 

10.2I 

Let the eigenvalues be denoted by 21, 2:z and 23 and the eigenvectors by t~, t2 

and t3, respectively. The shape of the distribution can be inferred from the 
magnitudes of the eigenvalues as shown in Table I0.2 (for details, see Mardia KV, 
Jupp PE, 2000). The scatter matrix can be computed with the scattermx 
function implemented in MATLAB (see Commands I0.2). 

Table 10.2. Distribution shapes of spherical distributions according to the 
eigenvalues and mean resultant length, r . 

Magnitudes 

21 "" 2:z large; ~ small 

Example 10.13 

Type of Distribution 

Uniform 

Unimodal if r "" 1, bimodal otherwise 

Unimodal if r"" I, bimodal otherwise with 
rotational symmetry about t 1 

Girdle concentrated about circle in plane oft~, t2 

Girdle with rotational symmetry about t3 

Q: Analyse the shape of the distribution of the gradient measurement set MI of the 
Soil Pollution dataset (see Example 10.11 and Figure I0.9) using the scatter 
matrix. Assume that the data is stored in ml in standard format. 

A: We first run the following sequence of commands: 

» m=meandir(ml); 
» rbar=m ( 3) 
rbar = 

0.9165 

» t=scattermx(ml); 
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» [v,lambda]=eig(t) 

v 
-0.3564 -0.8902 0.2837 

0.0952 -0.3366 -0.9368 
0.9295 -0.3069 0.2047 

lambda = 
0.0047 0 0 

0 0.1379 0 
0 0 0.8574 

We thus conclude that the distribution is unimodal without rotational symmetry. 
0 

The von Misesness of a distribution can be graphically assessed, after rotating 
the data so that the mean direction maps onto [0 0 I]' (using function rotate 
described in Commands I 0.2), by the following plots: 

1. Co-latitude plot: plots the ordered values of 1- cosOi against -ln(l- (i- 0.5)/n). 

For a von Mises distribution and a not too small K(say, K> 2), the plot should 
be a straight line through the origin and with slope I I K. 

2. Longitude plot: plots the ordered values of cjJi against (i- 0.5)/n. For a von Mises 
distribution, the plot should be a straight line through the origin with unit slope. 

The plots are implemented in MATLAB (see Commands 10.1) and denoted 
colatplot and longplot. These functions, which internally perform a 
rotation of the data, also return a value indicating whether or not the null 
hypothesis should be rejected at the I% significance level, based on test statistics 
described in (Fisher NI, Best OJ, 1984). 
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Figure 10.10. Co-latitude plot (a) and longitude plot (b) for the gradient 
measurement set M1 of the soil pollution dataset. 
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Example 10.14 

Q: Using the co-latitude and longitude plots, assess the von Misesness of the 
gradient measurement set Ml of the Soil Pollution dataset. 

A: Figure 10.10 shows the respective plots obtained with MATLAB functions 
colatplot and longplot. Both plots suggest an important departure from von 
Misesness. The colatplot and longplot results also indicate the rejection of 
the null hypothesis for the co-latitude (h = 1) and the non-rejection for the 
longitude (h = 0). D 

10.5 Tests on von Mises Distributions 

10.5.1 One-Sample Mean Test 

The most usual one-sample test is the mean direction test, which uses the same 
approach followed in the determination of confidence intervals for the mean 
direction, described in section I 0.3. 

Example 10.15 

Q: Consider the Joints' dataset, containing directions of granite joints measured 
from a city street in Porto, Portugal. The mean direction of the data was studied in 
Example I 0.5; the 95% confidence interval for the mean was studied in Example 
10.7. Assume that a geotectonic theory predicts a 90° pitch for the granites in 
Porto. Does the Joints' sample reject this theory at a 95% confidence level? 

A: The mean direction of the sample has a co-latitude (} = I78.8° (see Example 
I 0.5). The 95% confidence interval of the mean direction corresponds to a 
deviation of 4.1° (see Example 10.7). Therefore, the Joints' dataset does not 
reject the theory at 5% significance level, since the 90° pitch corresponds to a co
latitude of I80° falling inside the [178.8°- 4.I 0 , 178.8° + 4.1°] interval. 

D 

10.5.2 Mean Test for Two Independent Samples 

The Watson-Williams test assesses whether or not the null hypothesis of equal 
mean directions of two von Mises populations must be rejected based on the 
evidence provided by two independent samples with n1 and n2 directions. The test 
assumes equal concentrations of the distributions and is based on the comparison 
of the resultant lengths. For large K(say K> 2) the test statistic is: 

F* =k (n-2)(r1 +r2 -r) 
n-r1 -r2 

~ Fp-l,(p-l)(n-2)' I0.22 
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where r1 and r2 are the resultant lengths of each sample and r is the resultant length 
of the combined sample with n = n1 + n2 cases. For the sphere, the factor k is 1; for 
the circle, the factor k is estimated as 1 + 3/(8 f( ). 

The Watson-Williams test is implemented in the MATLAB function 
watswill (see Commands 10.4). It is considered a robust test, suffering little 
influence from mild departures of the underlying assumptions. 

Example 10.16 

Q: Consider the wind direction WD data of the Weather dataset (Data 2 
datasheet), which represents the wind directions for several days in all seasons, 
during the years 1999 and 2000, measured at a location in Porto, Portugal. 
Compare the rpean wind direction of Winter (SEASON = 1) vs. Summer 
(SEASON = 3) assuming that the WD data in every season follows a von Mises 
distribution, and that the sample is a valid random sample. 

A: Using the watswill function as shown below, we reject the hypothesis of 
equal mean wind directions during winter and summer, at the 5% significance 
level. Note that the estimated concentrations have close values. 

[fo,fc,k1,k2]=watswill(wd(1:25) ,wd(50:71) ,0.05) 
fo 

69.7865 
fc 

4.0670 
k1 

1.4734 
k2 

1.3581 

10.6 Non-Parametric Tests 

D 

The von Misessness of directional data distributions is difficult to guarantee in 
many practical cases3

• Therefore, non-parametric tests, namely those based on 
ranking procedures similar to those described in Chapter 5, constitute an important 
tool when comparing directional data samples. 

1 0.6.1 The Uniform Scores Test for Circular Data 

Let us consider q independent samples of circular data, each with nk cases. The 
uniform scores test assesses the similarity of the q distributions based on scores of 
the ordered combined data. For that purpose, let us consider the combined dataset 

3 
Unfortunately, there is no equivalent of the Central Limit Theorem for directional data. 
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with n = Lk=l nk observations sorted by ascending order. Denoting the ith 
observation in the kth group by B;k. we now substitute it by the uniform score: 

2awik . 
Pik =---, z = 1, ... , nk> 

n 
10.23 

where the wik are linear ranks in [1, n]. Thus, the observations are replaced by 
equally spaced points in the unit circle, preserving their order. 

Let rk represent the resultant length of the kth sample corresponding to the 
uniform scores. Under the null hypothesis of equal distributions, we expect the ftk 
to be uniformly distributed in the circle. Using the test statistic: 

10.24 

we then reject the null hypothesis for significantly large values of W. 
The asymptotic distribution of W, adequate for n > 20, is zi<q-l) . For further 

details see (Mardia KV, Jupp PE, 2000). The uniform scores test is implemented 
by function unifseores (see Commands 10.4). 

Example 10.17 

Q: Assess whether the distribution of the wind direction (WD) of the Weather 
dataset (Data 2 datasheet) can be considered the same for all four seasons. 

A: Denoting by wd the matrix whose first column is the wind direction data and 
whose second column is the season code, we apply the unifseores command as 
shown below and conclude the rejection of equal distributions of the wind direction 
in all four seasons at the 5% significance level (w >we). 

» [w,we]=unifseores(wd,0.05) 
w 

35.0909 
we 

12.5916 D 

1 0.6.2 The Watson Test for Spherical Data 

Let us consider q independent samples of spherical data, each with ni cases. The 
Watson test assesses the equality of the q mean directions, assuming that the 
distributions are rotationally symmetric. 

The test is based on the estimation of a pooled mean of the q samples, using 
appropriate weights, wk, summing up to unity. For not too different standard 
deviations, the weights can be computed as w* = nJn with n = Lk=l nk . More 
complex formulas have to be used in the computation of the pooled mean in the 
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case of very different standard deviations. For details see (Fisher NI, Lewis T, 
Embleton BJJ (1987). Function pooledmean (see Commands 10.2) implements 
the computation of the pooled mean of q independent samples of circular or 
spherical data. 

Denoting by Xok = [xok, Yok, z0d' the mean direction of each group, the pooled 
mean projections are computed as: 

10.25 

The pooled mean resultant length is: 

10.26 

Under the null hypothesis of equality of means, we would obtain the same value 
of the pooled mean resultant length simply by weighting the group resultant 
lengths: 

10.27 

The Watson test rejects the null hypothesis for large values of the following 
statistic: 

10.28 

The asymptotic distribution of Gw is z~q-2 (for nk 2 25). Function watsongw 
(see Commands 10.4) implements this test. 

Example 10.18 

Q: Consider the measurements R4, R5 and R6 ofthe negative gradient ofthe Soil 
Pollution dataset, performed in similar conditions. Assess whether the mean 
gradients above and below 20 m are significantly different at 5% level. 

A: We establish two groups of measurements according to the value of variable z 
being above or below 20m. The mean directions of these two groups are: 

Group 1: 
Group 2: 

( 156.17°, 117 .40°); 
(316.99°, 116.25°). 

Assuming that the groups are rotationally symmetric and since the sizes are 
n1 = 45 and n2 = 30, we apply the Watson test at a significance level of 5%, 
obtaining an observed test statistic of 44.9. Since zJ 95 2 =5.99, we reject the null 
hypothesis of equality of means. 

0 
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10.6.3 Testing Two Paired Samples 

The previous two-sample tests assumed that the samples were independent. The 
two-paired-sample test can be reduced to a one-sample test using the same 
technique as in Chapter 4 (see section 4.4.3.1), i.e., employing the differences 
between pair members. If the distributions of the two samples are similar, we 
expect that the difference sample will be uniformly distributed. The function 
dirdif implemented in MATLAB (see Commands 10.2) computes the 
directional data of the difference set in standard format. 

Example 10.19 

Q: Consider the measurements M2 and M3 of the Soil Pollution dataset. 
Assess, at the 5% significance level, if one can accept that the two measurement 
methods yield similar distributions. 

A: Let soil denote the data matrix containing all measurements of the Soil 
Pollution dataset. Measurements M2 and M3 correspond to the column pairs 
3-4 and 5-6 of soil, respectively. We use the sequence of commands shown below 
and do not reject the hypothesis of similar distributions at the 5% level of 
significance. 

» m2=soil(:,3:4); m3=soil(:,5:6); 
» d=dirdif(m2,m3); 
» p=rayleigh(d) 
p 
0.5837 D 

Exercises 

10.1 Compute the mean directions of the wind variable WD (Weather dataset, Data 2) 
for the four seasons and perform the following analyses: 
a) Assess the uniformity of the measurements both graphically and with the 

Rayleigh test. Comment on the relation between the uniform plot shape and the 
observed value of the test statistic. Which set(s) can be accepted as being 
uniformly distributed at a I% level of significance? 

b) Assess the von Misesness of the measurements. 

I 0.2 Consider the three measurements sets, H, A and I, of the VCG dataset. Using a specific 
methodology, each of these measurement sets represents circular direction estimates 
of the maximum electrical heart vector in 97 patients. 
a) Inspect the circular plots ofthe three sets. 
b) Assess the uniformity of the measurements both graphically and with the 

Rayleigh test. Comment on the relation between the uniform plot shape and the 
observed value of the test statistic. Which set(s) can be accepted as being 
uniformly distributed at a I% level of significance? 

c) Assess the von Misesness of the measurements. 
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I 0.3 Which type of test is adequate for the comparison of any pair of measurement sets 
studied in the previous Exercise I 0.2? Perform the respective pair-wise comparison of 
the distributions. 

I 0.4 Assuming a von Mises distribution, compute the 95% confidence intervals of the 
mean directions of the measurement sets studied in the previous Exercise I 0.2. Plot 
the data in order to graphically interpret the results. 

I 0.5 In the von Misesness assessment of the WDB measurement set studied in 
Example 10.12, an estimate of the concentration parameter Kwas used. Show 
that if instead of this estimate we had used the value employed in the data 
generation (K= 2), we still would not have rejected the null hypothesis. 

I 0.6 Compare the wind directions during March on two streets in Porto, using the 
Weather dataset (Data 3) and assuming that the datasets are valid samples. 

10.7 Consider the Wave dataset containing angular measurements corresponding to 
minimal acoustic pressure in ultrasonic radiation fields. Perform the following 
analyses: 
a) Determine the mean directions of the TRa and TRb measurement sets. 
b) Show that both measurement sets support at a 5% significance level the 

hypothesis of a von Mises distribution. 
c) Compute the 95% confidence interval ofthe mean direction estimates. 
d) Compute the concentration parameter for both measurement sets. 
e) For the two transducers TRa and TRb, compute the angular sector spanning 95% 

of the measurements, according to a von Mises distribution. 

I 0.8 Compare the two measurement sets, TRa and TRb, studied in the previous Exercise 
I 0. 7, using appropriate parametric and non-parametric tests. 

10.9 The Pleiades' data of the Stars' dataset contains measurements of the longitude 
and co-latitude of the stars constituting the Pleiades' constellation as well as their 
photo-visual magnitude. Perform the following analyses: 
a) Determine whether the Pleiades' data can be modelled by a von Mises 

distribution. 
b) Determine the mean direction of the Pleiades' data with the 95% confidence 

interval. 
c) Compare the mean direction of the Pleiades' stars with photo-visual magnitude 

above 12 with the mean direction of the remaining stars. 

I 0.10 The Praesepe data of the Stars' dataset contains measurements of the longitude 
and co-latitude of the stars constituting the Praesepe constellation obtained by two 
researchers (Gould and Hall). 
a) Determine whether the Praesepe data can be modelled by a von Mises 

distribution. 
b) Determine the mean direction of the Praesepe data with the 95% confidence 

interval. 
c) Compare the mean directions of the Prasepe data obtained by the two 

researchers. 



Appendix A- Short Survey on Probability Theory 

In Appendix A we present a short survey of Probability Theory, emphasising the 
most important results in this area in order to afford an understanding of the 
statistical methods described in the book. We skip proofs of Theorems, which can 
be found in abundant references on the subject. 

A.1 Basic Notions 

A.1.1 Events and Frequencies 

Probability is a measure of uncertainty attached to the outcome of a random 
experiment, the word "experiment" having a broad meaning, since it can, for 
instance, be a thought experiment or the comprehension of a set of given data 
whose generation could be difficult to guess. The main requirement is being able to 
view the outcomes of the experiment as being composed of single events, such as 
A, B, . . . The measure of certainty must, however, satisfy some conditions, 
presented in section A.1.2. 

In the frequency approach to fixing the uncertainty measure, one uses the 
absolute frequencies of occurrence, nA, n8 , ... ,of the single events inn independent 
outcomes of the experiment. We then measure, for instance, the uncertainty of A in 
n outcomes using the relative frequency (or frequency for short): 

f - nA 
A--. A. 1 

n 

In a long run of outcomes, i.e., with n ~ oo , the relative frequency is expected 
to stabilise, "converging" to the uncertainty measure known as probability. This 
will be a real number in [0, 1 ], with the value 0 corresponding to an event that 
never occurs (the impossible event) and the value 1 corresponding to an event that 
always occurs (the sure event). Other ways of obtaining probability measures in 
[0, 1 ], besides this classical "event frequency" approach have also been proposed. 

We will now proceed to describe the mathematical formalism for operating with 
probabilities. Let P. denote the set constituted by the single events E; of a random 
experiment, known as the sample space: 

A.2 

Subsets of P. correspond to events of the random experiment, with singleton 
subsets corresponding to single events. The empty subset, rp , denotes the 
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impossible event. The usual operations of union ( U ), intersection ( n) and 
complement ( - ) can be applied to subsets of C£. 

Consider a collection of events,)! , defined on C£, such that: 

1. If A; E )! then A; = C£- A; E )! . 

11. Given the finite or denumerably infinite sequence A1, A2 , ..• , such that 
A; E )1, Vi , then U A; E )! . 

Note that C£ E )! since C£ =AU A. In addition, using the well-known De 
Morgan's law (A; u A j = A; n Aj ), it is verified that n A; E )! as well as ifJ E )! . 
The collection )! with the operations of union, intersection and complement 
constitutes what is known as a Boote's algebra. 

A.1.2 Probability Axioms 

To every event A E)!, of a Hoole's algebra, we assign a real number P(A), 

satisfying the following Kolmogorov's axioms of probability: 

1. 0 :s; P(A) :s;I. 
2. Given the finite or denumerably infinite sequence A1, A2 , ... , such that any two 

events are mutually exclusive, A; n A 1 = (J, Vi, j , then 

p( YA;) = ~P(A; ). 

3. P(C£)=1. 

The triplet ( C£, )!, P) is called a probability space. 

Let us now enumerate some important consequences of the axioms: 

1. P(A) = 1- P(A); P((J) = 1- P(C£) = 0. 
11. AcB~P(A):s;P(B). 

111. An B =t: (J ~ P(A UB) = P(A)+ P(B)- P(An B). 

lV. P(~ P(A; )) :s; ~P(A;). 
If the set C£ = {E1, E 2 , •.. , E k} of all possible outcomes is finite, and if all 

outcomes are equally likely, P(E;) = p, then the triplet (C£, )!, P) constitutes a 
classical probability space. We then have: 

( 
k ) k 1 

1=P(C£)=P UE; = L.P(E;)=kp ~ p=-. 
i=l i=l k 

Furthermore, if A is the union of m elementary events, one has: 

P(A)= m, 
k 

A.3 

A.4 
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corresponding to the classical approach of defining probability, also known as 
Laplace rule: ratio of favourable events over the possible events, considered 
equiprobable. 

One often needs to use the main operations of combinatorial analysis in order to 
compute the number of favourable events and of possible events. 

Example A. I 

Q: Two dice are thrown. What is the probability that the sum of their faces is four? 

A: When throwing two dice there are 6x6 equiprobable events. From these, only 
the events ( 1 ,3), (3, 1 ), (2,2) are favourable. Therefore: 

3 
p(A) =-= 0.083 . 

36 
Thus, in the frequency interpretation of probability we expect to obtain four as 

sum of the faces roughly 8% of the times in a long run of two-dice tossing. 
0 

Example A. 2 

Q: Two cards are drawn from a deck of 52 cards. Compute the probability of 
obtaining two aces, when drawing with and without replacement. 

A: When drawing a card from a deck, there are 4 possibilities of obtaining an ace 
out of the 52 cards. Therefore, with replacement, the number of possible events is 
52x52 and the number of favourable events is 4x4. Thus: 

P(A) = ~ = 0.0059 . 
52x52 

When drawing without replacement we are left, in the second drawing, with 51 
possibilities, only 3 of which are favourable. Thus: 

P(A)=~=0.0045. 0 
52x51 

Example A. 3 

Q: N letters are put randomly into N envelopes. What is the probability that the 
right letters get into the envelopes? 

A: There are N distinct ways to put one of the letters (the first) in the right 
envelope. The next (second) letter has now a choice of N- 1 free envelopes, and so 
on. We have, therefore, a total number of factorial of N, N! = N(N- l)(N- 2) ... 1 
permutations of possibilities for theN letters. Thus: 

P(A) = 1 IN!. 0 
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A.2 Conditional Probability and Independence 

A.2.1 Conditional Probability and Intersection Rule 

If in n outcomes of an experiment, the event B has occurred n8 times and among 
them the event A has occurred nAB times, we have: 

A.5 

We define the conditional frequency of occurring A given that B has occurred 

A.6 

Likewise, we define the conditional probability of A given that B has occurred, 
with P(B) > 0, as the ratio: 

P(A I B)= P(AnB). 
P(B) 

A. 7 

We have, similarly, for the conditional probability of B given A: 

A.8 

From the definition of conditional probability, the following rule of compound 
probability results: 

P(A n B)= P(A)P(B I A)= P(B)P(A I B), A.9 

which generalizes to the following rule of event intersection: 

P(AI nA2 n ... nAn)= 
P(AI )P(A2 I AI )P(A3 I AI n A2) ... P(An I AI n A2 n ... n An-I) 

A.lO 

A.2.21ndependent Events 

If the occurrence of B has no effect on the occurrence of A, both events are said to 
be independent, and we then have, for non-null probabilities of A and B: 

P(A I B)= P(A) and P(B I A)= P(B) . A. 11 

Therefore, using the intersection rule A.9, we define two events as being 
independent when the following multiplication rule holds: 

P(A n B)= P(A)P(B). A. 12 
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Given a set of n events, they are jointly or mutually independent if the 
multiplication rule holds for: 

- Pairs: 
- Triplets: 

and so on, 
- until n: 

P(Ai nAj) = P(Ai)P(Aj ), 1 ~ i,j ~ n; 
P(Ai nAj nAk) = P(Ai )P(Aj )P(Ad, 1 ~ i,j,k ~ n; 

P(A1 nA2 n ... nAn) = P(A1)P(A2 ) ••• P(An). 

If the independence is only verified for pairs of events, they are said to be 
pairwise independent. 

Example A. 4 

Q: What is the probability of winning the football lottery composed of 13 matches 
with three equiprobable outcomes: "win", "loose", or "even"? 

A: The outcomes of the 13 matches are jointly independent, therefore: 
1 1 1 1 

P(A)=-.- ... -=13 . 
3 3 3 3 
~ 

13 times 

Example A. 5 

D 

Q: An airplane has a probability of 1/3 to hit a railway with a bomb. What is the 
probability that the railway is destroyed when 3 bombs are dropped? 

A: The probability of not hitting the railway with one bomb is 2/3. Assuming that 
the events of not hitting the railway are independent, we have: 

P(A)=l-(~r =0.7. D 

Example A. 6 

Q: What is the probability of obtaining 2 sixes when throwing a dice 6 times? 

A: For any sequence with 2 sixes out of 6 throws the probability of its occurrence 
IS: 

In order to compute how many such sequences exist we just notice that this is 
equivalent to choosing two positions of the sequence, out of six possible positions. 
This is given by 

( 6) 6! 6x5 =-=-= 15 · therefore: P(6 2) = 15P(A) = 0.2 . 
2 2!4! 2 ' ' 

D 
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A.3 Compound Experiments 

Let 'E1 and 'E2 be two sample spaces. We then form the space of the Cartesian 
product 'E1x'E2, corresponding to the compound experiment whose elementary 
events are the pairs of elementary events of 'E1 and 'E2• 

We now have the triplet ('E1x'E2, fl_, P) with: 

{
P(A;,B1 ):P(AJP(B1 ), if A; E 'E~,B1 E'E 2 areindependent; 

P( A;, B J) - P( A; )P( B J I A; ), otherwise. 

This is generalized in a straightforward way to a compound experiment 
corresponding to the Cartesian product of n sample spaces. 

Example A. 7 

Q: An experiment consists in drawing two cards from a deck, with replacement, 
and noting down if the cards are: ace, figure (king, queen, jack) or number (2 to 
I 0) . Represent the sample space of the experiment composed of two "drawing one 
card" experiments, with the respective probabilities. 

A: Since the card drawing is made with replacement, the two card drawings are 
jointly independent and we have the representation of the compound experiment 
shown in Figure A. I . 0 

Notice that the sums along the rows and along the columns, the so-called 
marginal probabilities, yield the same value: the probabilities of the single 
experiment of drawing one card. We have: 

k k 

P(A; )= 'L.P(A;)P(Bj I A;)='L.P(AJP(Bj ); A. 13 
j =l J=l 

k k 

LLP(A;)P(B1 )=1. 
i=l J=l 

ace figure number 

ace 0.006 0.018 0.053 0.077 

figure 0.018 0.053 0.160 0.231 

number 0.053 0.160 0.479 0.692 

0.077 0.231 0.692 1.000 

number 

Figure A.l. Sample space and probabilities corresponding to the compound card 
drawing experiment. 
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The first rule, A.l3, is known as the total probability rule, which applies 
whenever one has a partition of the sample space into a finite or denumerably 
infinite sequence of events, C1. C2, ••• , with non-null probability, mutually disjoint 
and with P(UC;) = 1 . 

A.4 Bayes' Theorem 

Let C1. C2, ••• be a partition, to which we can apply the total probability rule as 
previously mentioned in A.13. From this rule, the following Bayes' Theorem can 
then be stated: 

P(CdP(A I Ck) 
P(Ck I A)= k=1,2, ... 

_LP(c1 )P(A 1 c 1 ) 
j 

Notice that _L P(Ck I A)= 1. 
k 

A. 14 

In classification problems the probabilities P( C k) are called the "a priori" 
probabilities, priors or prevalences, and the P(Ck I A) the "a posteriori" or 
posterior probabilities. 

Often the Ck are the "causes" and A is the "effect". The Bayes' Theorem allows 
us then to infer the probability of the causes, as in the following example. 

Example A. 8 

Q: The probabilities of producing a defective item with three machines M1. M2, M3 

are 0.1, 0.08 and 0.09, respectively. At any instant, only one of the machines is 
being operated, in the following percentage of the daily work, respectively: 30%, 
30%, 40%. An item is randomly chosen and found to be defective. Which machine 
most probably produced it? 

A: Denoting the defective item by A, the total probability breaks down into: 

P(M1 )P(A I M 1) = 0.3x0.1; 

P(M 2 )P(A I M 2) = 0.3x0.08; 

P(M 3 )P(A I M 3) = 0.4x0.09. 

Therefore, the total probability is 0.09 and using Bayes' Theorem we obtain: 
P(M1 IA)=0.33; P(M2 IA)=0.27; P(M3 IA)=0.4. The machine that most 
probably produced the defective item is M3• Notice that _L P( M d = I and 
.L P(M k I A)= I. k D 

k 

Example A. 9 

Q: An urn contains 4 balls that can either be white or black. Four extractions are 
made with replacement from the urn and found to be all white. What can be said 
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about the composition of the urn if: a) all compositions are equally probable; b) the 
compositions are in accordance to the extraction with replacement of 4 balls from 
another urn, with an equal number of white and black balls? 

A: There are five possible compositions, C;, for the urn: zero white balls ( C0) , 1 
white ball (C1), ••• , 4 white balls (C4). Let us first solve situation "a", equally 
probable compositions. Denoting by Pk = P( C k ) the probability of each 
composition, we have: P0 = ~ = ... = P4 = 1 I 5 . The probability of the event A, 
consisting in the extraction of 4 white balls, for each composition, is: 

P(AICo)=O, P(AICt)=(~r .... ,P(AIC4)=(~r =1. 

Applying Bayes Theorem, the probability that the urn contains 4 white balls is: 

P(C4IA)= P(C4)P(AIC4) = 44 =0.723. 
L P( c j )P( A I c j) 14 + 2 4 + 3 4 + 4 4 

j 

This is the highest "a posteriori" probability one can obtain. Therefore, for 
situation "a", the most probable composition is c4. 

In situation "b" the "a priori" probabilities of the composition are in accordance 
to the binomial probabilities of extracting 4 balls from the second urn. Since this 
urn has an equal number of white and bl~ck balls, the prevalences are therefore 
proportional to the binomial coefficients (1 ). For instance, the probability of C4 is: 

P(C4IA)= P(C4)P(AIC4) = 44 =0.376. 
LP(Cj)P(AICj) 4.1 4 +6.2 4 +4.34 +1.44 

j 

This is, however, smaller than the probability for C3: P(C3 I A)= 0.476. 
Therefore, C3 is the most probable composition, illustrating the drastic effect of the 
prevalences. D 

A.S Random Variables and Distributions 

A.5.1 Definition of Random Variable 

A real function .( = .( (E;), defined on the sample space 'E = {E;} of a random 
experiment, is a random variable for the probability space ( 'E, )I, P), if for every 
real number z, the subset: 

A. 15 

is a member of the collection of events fl. Particularly, when z ~ oo, one obtains 'E 
and with z ~ - oo, one obtains t/J. 
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From the definition, one determines the event corresponding to an interval 
]a,b]as: 

{a<-t::;b}={Ei; -t(Ed:s;;b}-{Ei; -t(Ei)::;a}. A.16 

Example A. 10 

Consider the random experiment of throwing two dice, with sample space 'E = 
{(a, b); I ::; a, b ::; 6} = { (1, 1 ), ( 1 ,2), ... , ( 6,6)} and the collection of events )I that is 
a Boole's algebra defined on { {(1,1)}, {(1,2), (2,1)}, {(1,3), (2,2), (3,1)}, {(1,4), 
(2,3), (3,2), (4,1)}, {(1,5), (2,4), (3,3), (4,2), (5,1)}, ... , {(6,6)} }. The following 
variables ~'E) can be defined: 

~a, b)= a+b. This is a random variable for the probability space ('E, )I, P). For 
instance, {-t::; 4.5}= {(1,1), (1,2), (2,1), (1,3), (2,2), (3,1)} E )l. 

-t(a, b)= ab. This is not a random variable for the probability space ('E, )I, P). For 
instance, {-t::; 3.5}= {(1,1), (1,2), (2,1), (1,3), (3,1)} e: )I. 0 

A.5.2 Distribution and Density Functions 

The probability distribution function (PDF) of a random variable -tis defined as: 

F,(x) = P(-t::; x). A. 17 

We usually simplifY the notation, whenever no confusion can arise from its use, 
by writing F(x) instead of Fx.. (x). 

Figure A.2 shows the distribution function of the random variable -t (a, b) = 
a+ b of Example A.lO. 

Until now we have only considered examples involving sample spaces with a 
finite number of elementary events, the so-called discrete sample spaces to which 
discrete random variables are associated. These can also represent a denumerably 
infinite number of elementary events. 

For discrete random variables, with probabilities Pi assigned to the singleton 
events of )I, the following holds: 

F(x)= LPi. A. 18 
x1<5,x 

For instance, in Example A.1 0, we have F( 4.5) = p 1 + p 2 + p3 = 0.17 with 
p 1 = P({(1,1)}, p2 = P({(1,2), (2,1)}) and p3 = P({(l,3), (2,2), (3,1)}). The Pi 
sequence is called a probability distribution. 

When dealing with non-denumerable infinite sample spaces, one needs to resort 
to continuous random variables, characterized by a continuous distribution 
function F(x), differentiable everywhere (except perhaps at a finite number of 
points). 
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1.2 -~---------------, 

F(x) I 

~~ 0.8 

0.6 

0.4 

~ I 0.2 -- I - -----
X I 

0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Figure A.2. Distribution function of the random variable associated to the sum of 
the faces in the two-dice throwing experiment. The solid circles represent point 
inclusion. 

The function f~ (x) = dF(x) I dx (or simply j(x)) is called the probability density 
function (pdf) of the continuous random variable ~ The properties of the density 
function are as follows: 

i. f(x) 2:: 0 (where defined) ; 

11. [ f(t)dt = 1; 

m. F(x) = [ f(t)dt. 

Note that the event corresponding to ] a, b] has the following probability: 

P(a <~:$;b) =P(~ :$; b)-P(~ :$;a)= F(b)-F(a) = J:J(t)dt. A. 19 

This is the same as P(a :$;~:$;b) in the absence of a discontinuity at a. For an 
infinitesimal interval we have: 

P(a <~:$;a+ &1) = F(a +~a)-F(a) = f(a)~a => 

f(a)= F(a+~a)-F(a) = P([a,a+&l]), 
~a ~a 

A.20 

which justifies the name density function, since it represents the "mass" probability 
corresponding to the interval ~a, measured at a, per "unit length" of the random 
variable (see Figure A.3a). 

The solution~= X a of the equation: 

F~(x)=a, A. 21 

is called the a-quantile of the random variable -~ For a= 0.1 and 0.01, the 
quantiles are called deciles and percentiles. Especially important are also the 
quartiles (a= 0.25) and the median (a= 0.5) as shown in Figure A.3b. Quantiles 
are useful location measures; for instance, the inter-quartile range, x0_75 - x0_25, is 
often used to locate the central tendency of a distribution. 
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0.5 .5 

f(x:) f(x:) 

0.4 

0.3 

0.2 

0.1 

0 
a aa+ tJ.a X: b X: 

Figure A.3. a) An example of a probability density function; the area subtended by 
the curve in [a, a+~a] is an infinitesimal probability mass corresponding to that 
interval. b) Interesting points of a density function: lower quartile (25% of the 
total area); median (50% of the total area); upper quartile (75% of the total area). 

12 1.2 
f(x) F(x) 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

' )( 
0 0 

-02 0 0.2 0.4 0.6 0.8 1.2 a L_ ________________________ _J 1.2 -0.2 0 0.2 0.4 0.6 0.8 
b ~--------------------~ 

Figure A.4. Uniform random variable: a) Density function (the circles indicate 
point inclusion); b) Distribution function . 

Figure A.4 shows the uniform density and distribution functions defined in 
[0, 1[. Note that P(a<~~a+w)=w for every a such that [a,a+w]c[O, 1[, 
which justifies the name uniform distribution. Quartiles and median are in this case 
trivially determined. 

A.5.3 Transformation of a Random Variable 

Let ~be a random variable defined in the probability space ('E, )I, P), whose 
distribution function is: 
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Consider the variable y = g(~ such that every interval -= < y ::;; y maps into an 
event Sy of the collection )l. Then y is a random variable whose distribution 
function is: 

G y (y) = P(y :5: y) = P(g( ~) :5: y) = P( x E Sv) . A.22 

Example A. 11 

Q: Given a random variable ~determine the distribution and density functions of 
y=:(. 

A: Whenever y ~ 0 one has - JY::;; ~ ::;; JY . Therefore: 

{
0 if y < 0 

G y (y) = P(y ::;; y) if y ~ 0 

For y ~ 0 we then have: 

If F£x) is continuous and differentiable, we obtain for y > 0: 

0 

A.6 Expectation, Variance and Moments 

A.6.1 Definitions and Properties 

Let ~ be a random variable and g(~ a new random variable resulting from 
transforming .r, with the function g. The expectation of g(~, denoted E(g(~)], is 
defined as: 

E(g(~)] = L g(x; )P(~ =X;), if~ is discrete (and the sum exists); A.23a 

E[g(~)] = [ g(x)f(x)dx, if~ is continuous (and the integral exists). A.23b 

Example A. 12 

Q: A gambler throws a dice and wins 1€ if the face is odd, loses 2.5€ if the face is 
2 or 4, and wins 3€ if the face is 6. What is the gambler's expectation? 

A: We have: 
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1
1 if ~=1,3,5; 

g(~) = -2.5 if ~ = 2, 4; 

3 if ~ = 6. 

[g ] I 2.5 3 1 
Therefore: E (~) =3--2-+-=-. 

6 6 6 6 

The word "expectation" is somewhat misleading since the gambler will only 

expect to get close to winning 1/6€ in a long run of throws. D 

The following cases are worth noting: 

1. g(~ =~:Expected value, mean or average of~-

f.1 = E[~] = L, x;P(~ =X;), if~ is discrete (and the sum exists); A.24a 

f.1 = Ek] = [ xf(x)dx, if~ is continuous (and the integral exists). A.24b 

The mean of a distribution is the probabilistic mass center (center of gravity) of 
the distribution. 

Example A. 13 

Q: Consider the Cauchy distribution, with: f:c (x) = !!_ " 1 
2 , xE 9\. 

tr a- +x 
What is its mean? 

A: We have: 

Ek]=!!_[ 7 x dx. But J x dx=..!_ln(a 2 +x 2 ), therefore the 
tr ~a-+x 2 a 2 +x 2 2 

integral diverges and the mean does not exist. D 

Properties of the mean (for arbitrary real constants a, b): 

1. E[a~ +b]= aEk]+b 

11. Ek + y] = E(~]+ E(y] 

m. E(;ry)= Ek)E(y) 

(linearity); 

(additivity); 

if~ andy are independent. 

The mean reflects the "central tendency" of a distribution. For a data set with n 
values X; occurring with frequencies};, the mean is estimated as (see A.24a): 

n 

{l=x=L,xJ;. A. 25 
i=l 

This is the so-called sample mean. 
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Example A. 14 

Q: Show that the random variable :{-11 has zero mean. 

A. Applying the linear property to E[:{ -11] we have: 

Ek -f.l]= E[:{]-11 = 11-11 = 0. 

2. g(x) = :{k: Moments of order k of :{. 

E[:{ k. ]=LX; k P(:{ =X;), if:{ is discrete (and the sum exists); 

D 

A.26a 

E[:{k. ]= [ (x-11)k f(x)dx, if:{ is continuous (and the integral exists). A.26b 

Especially important, as explained below, is the moment of order two: E[:{ 2 ]. 

3. g(x) = (:{ -11t Central moments of order k of :{. 

mk = E[(:{ -11)k.] = L; (x; -11)k P(:{ =X;), 

if:{ is discrete (and the sum exists); A.27a 

mk = E[ (:{ -11)k. ]= [ (x-11)k f(x)dx 

if:{ is continuous (and the integral exists). A.27b 

Of particular importance is the central moment of order two, m2 (we often use 
V[~ instead}, and known as variance. Its square root is the standard deviation: 
a-~: = {v[:{Dv, . 

Properties of the variance: 

i. V[:{]:2: 0; 

ii. V[:{] = 0 iff :{is a constant; 

iii. v[a:{ + b] = a2vk]; 
IV. Vk + y] = Vk]+ V[y] if:{ andy are independent. 

The variance reflects the "data spread" of a distribution. For a data set with n 
values xi occurring with frequencies Ji, and estimated mean x, the variance can be 
estimated (see A.27a) as: 

A.28 

This is the so-called sample variance. The square root of v, s = Fv , is the 
sample standard deviation. In Appendix C we present a better estimate of v. 

The variance can be computed using the order 2 moment, observing that: 



A.6 Expectation, Variance and Moments 367 

4. Gauss' approximation formulae: 

A.6.2 Moment-Generating Function 

The moment-generating JUnction of a random variable -'"' is defined as the 
expectation of e1"- (when it exists), i.e.: 

A.30 

The importance of this function stems from the fact that one can derive all 
moments from it, using the result: 

r k] dn!fF:{_(t) 
EL~ = ----"-1 

dtn 
t=O 

A. 31 

A distribution function is uniquely determined by its moments as well as by its 
moment-generating function. 

Example A. 15 

Q: Consider a random variable with the Poisson probability function 
P(~ = k) =e-A. ;,_k I k!, k ~ 0. Determine its mean and variance using the moment
generating function approach. 

A: The moment-generating function is: 

lfF"-(t)=E[er"-]=L;=oerke-.t;,_k lk!=e-A.L;=o(kt)k lk!. 

Since the power series expansion of the exponential is ex = L;=O xk I k! one 
can write: 

'1'"-(t)=e-.te.-le' =eA.(e'-1). 

Hence: J.1 = dlfF "- (t)l = ;.er e.t<e' -1) I =A.; 
dt t=O t=O 

E[~ z] dzlfF "- (t) 

dt 2 
= (k1 + l)k1 eA(e' - 1) I = /l? +A. => vk] =A. 0 

t=O 
t=O 

D 
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A.6.3 Chebyshev Theorem 

The Chebyshev Theorem states that for any random variable .{ and any real 
constant k, the following holds: 

1 
P(k- .ul > ke7) .,; -2 · 

k 
A. 32 

Since it is applicable to any probability distribution, it is instructive to see the 
proof (for continuous variables) of this surprising and very useful Theorem; from 
the definition of variance, and denoting by S the domain where (.{ - ,LL )2 >a, we 
have: 

,LL2 =E[(.{-,LL) 2 ]= [<x-,LL) 2 f(x)dx~ 
J,Cx-,LL) 2 f(x)dx~a fsJ(x)dx=aP((.{-,LL) 2 >a) 

Taking a= ~d, we get: 

P((.{ _ ,LL)2 > k2CJ2).,; ~ , 
k 

from where the above result is obtained. 

Example A. 16 

Q: A machine produces resistances of nominal value lOOQ (ohm) with a standard 
deviation of 1Q. What is an upper bound for the probability of finding a resistance 
deviating more than 3Q from the mean? 

A: The 3Q tolerance corresponds to three standard deviations; therefore, the upper 
bound is 119 = 0.11. 0 

A.7 The Binomial and Normal Distributions 

A.7.1 The Binomial Distribution 

One often needs to compute the probability that a certain event occurs k times in a 
sequence of n events. Let the probability of the interesting event (the success) be p. 
The probability of the complement (the failure) is, therefore, q = 1 - p. The random 
variable associated to the occurrence of k successes in n trials has the binomial 
probability distribution (see Example A.6): 

A. 33 
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0.25 0.25 ,.--------------------------, 
P(x: k) P(x~ lc) 

0.2 0.2 

0.15 0.15 

0.1 

0.05 

I I . k 
0 

lc 

a bL-____ • __ 9 __ ~---~--~--~---~--39 __ " ___ •9~ 0 1 2 3 • s e 7 a 9 n n ~ n ~ fi 

Figure A.S. Binomial probability functions for p = 0.3: a) n = 15 (np- q = 3.8); 
b)n = 50. 

By studying the P( :K. n =k+l) l P(:K. 11 =k) ratios one can prove that the largest 
probability value occurs at the integer value close to np-q or np. Figure A.5 shows 
the binomial probability function for two different values of n. 

For the binomial distribution, one has: 

M V . 2 
ean: f.1 = np; anance: CJ = npq . 

Given the fast growth of the factorial function, it is often convenient to compute 
the binomial probabilities using the Stirling formula: 

1- n - n ~2 (I ) n.- n e vLJm +£11 • A. 34 

The quantity £11 tends to zero with large n, with n£11 tending to 1112• The 
convergence is quite fast: for n = 20 the error of the approximation is already 
below 0.5%. 

A.7.2The Laws of Large Numbers 

The following important result, known as Weak Law of Large Numbers, or 
Bernoulli Theorem, can be proved using the binomial distribution: 

Therefore, in order to obtain a certainty I - a (confidence level) that a relative 
frequency deviates from the probability of an event less than £(tolerance or error), 
one would need a sequence of n trials, with: 

A. 36 
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Note that l~ P(l~- pi~ t:) = 0. 

A stronger result is provided by the Strong Law ofLarge Numbers, which states 
the convergence of kin top with probability one. 

These results fundament the assumption made in section A.l of the convergence 
of the relative frequency of an event to its probability, in a long sequence of trials. 

Example A. 17 

Q: What is the tolerance of the percentage, p, of favourable votes on a certain 
market product, based on a sample enquiry of 2500 persons, with a confidence 
level of at least 95%? 

A: As we do not know the exact value of p, we assume the worst-case situation for 
A.36, occurring at p = q = Y:!. We then have: 

t: = {Pq = 0.045. D v-;; 

A.7.3 The Normal Distribution 

For increasing values of n and with fixed p, the probability function of the 
binomial distribution becomes flatter and the position of its maximum also grows 
(see Figure A.5). Consider the following random variable, which is obtained from 
the random variable with a binomial distribution by subtracting its mean and 
dividing by its standard deviation (the so-called standardised random variable or 
z-score): 

~n -np 
z= 

~npq 
A. 37 

It can be proved that for large n and not too small p and q (say, with np and nq 
greater than 5), the standardised discrete variable is well approximated by a 
continuous random variable having density function f{z), with the following 
asymptotic result: 

p(z) f(z) = ~ e-z2 12. 

v2:rr 
A. 38 

This result, known as De Moivre's Theorem, can be proved using the above 
Stirling formula A.34. The density functionj{z) is called the standard normal (or 
Gaussian) density and is represented in Figure A.7 together with the distribution 
function, also known as error function. Notice that, taking into account the 
properties of the mean and variance, this new random variable has zero mean and 
unit variance. 

The approximation between normal and binomial distributions is quite good 
even for not too large values of n. Figure A.6 shows the situation with n = 50, 
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p = 0.5. The maximum deviation between binomial and normal approximation 
occurs at the middle of the distribution and is 0.056. For n = 1000, the deviation is 
0.0 13. In practice, when np or nq are larger than 25, it is reasonably safe to use the 
normal approximation of the binomial distribution. 

Note that: 

.{.n -np 
z ==____::==-

Jnpq 
No.I A. 39 

where Nf.l, a is the Gaussian distribution with mean 11 and standard deviation a, and 
the following density function : 

f .( ) ==_I_ -(x- p)2 12a2 
x ~ e . 

"I/21U7 
A.40 

Both binomial and normal distribution values are listed in tables (see Appendix 
D) and can also be obtained from software tools (such as EXCEL, ST ATISTICA, 
SPSS, and MATLAB). 
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Figure A.6. Normal approximation (solid line) of the binomial distribution (grey 
bars) for n =50, p = 0.5 . 
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Figure A.7. The standard normal density (a) and distribution (b) functions . 
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Example A. 18 

Q: Compute the tolerance of the previous Example A.l7 using the nonnal 
approximation. 

A: Like before, we consider the worst-case situation with p = q = lh. Since 
CY P = .J1 I 4n = 0.01, and the 95% confidence level corresponds to the interval 
[-1.96o; 1.96dj (see nonnal distribution tables), we then have:£= 1.96CY = 0.0196 
(smaller than the previous "model-free" estimate). 0 

Example A. 19 

Q: Let .:\:be a standard nonnal variable. Detennine the density of y = :( and its 
expectation. 

A: Using the previous result of Example A.ll: 

g(y) = 1c [f(JY)+ f(-JY)]= ~ e-y/2 

2-v y " 21!)! 

y>O. 

This is the density function of the so-called chi-square distribution with one 
degree of freedom. 

The expectation is: E[y]= r yg(y)dy = (u.J21{)r JYe-y 12 dy. Substitutingy 
by::?, it can be shown to be 1. 0 0 0 

A.8 Multivariate Distributions 

A.8.1 Definitions 

A sequence of random variables .:\1, -'2, ... , Xd, can be viewed as a vector 

x = k1, .:\:2 , ... :\:d] with d components. The multivariate (or joint) distribution 

function is defined as: 

A. 41 

The following results are worth mentioning: 

1. If for a fixed}, I ~ j ~ d,-'/ ~ oo, then F(x1, x 2 , ... xd) converges to a function of 
d- 1 variables which is the distribution function F(x1, ... , xi-I, xi+l, ... , xd), 

the so-calledjth marginal distribution. 

2. If the d-fold partial derivative: 

f _ (J(d)F(x1,x2, ... ,xd) 
(x1,x2, ... ,xd)- , 

ax]ax2 ... axd 
A. 42 

exists, then it is called the density function ofx. We then have: 
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Example A. 20 

For the Example A.7, we defined the bivariate random vector x = {.{ 1, .{ 2 }, where 

each ~ performs the mapping: ~(ace)=O ; 4figure)=l ; ~(number)=2 . The joint 

distribution is shown in Figure A.8, computed from the probability function (see 

Figure A.l ). 0 

2 

Figure A.S. Joint distribution of the bivariate random experiment of drawing two 

cards, with replacement from a deck, and categorising them as ace (0), figure (I) 
and number (2) . 

Example A. 21 

Q: Consider the bivariate density function: 

if o::;x, ::;x2 ::;]; 

otherwise. 

Compute the marginal distributions and densities as well as the probability 

corresponding to x~. x2::; Y2. 

A: Note first that the domain where the density is non-null corresponds to a 
triangle of area Y2. Therefore, the total volume under the density function is I as it 
should be. The marginal distributions and densities are computed as follows: 
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F1 (x1) = £: [f(u, v)dudv = J:' ( f 2dv }u = 2x1 -xf 

. dF1 (x 1) 
=> j 1(x1)= =2-2x1 

dx 1 

F2 (x 2) = [ C f(u, v)dudv = J:2 ( J; 2du )dv =xi => f 2 (x 2) = dF2 (x 2) 2x2. 
dx 2 

The probability is computed as: 

[ y, iv ry, P(:{ 1 $; Y2 , :{ 2 $; Y2) = ~ ~ 2dudv = Jo 2vdv = '/. . 

The same result could be more simply obtained by noticing that the domain has 
an area of 1/8. D 

t ffx ,y) 

Figure A.9. Bell-shaped surface of the bivariate normal density function. 

The bivariate normal density function has a bell-shaped surface as shown in 
Figure A.9. The equidensity curves in this surface are circles or ellipses (an 
example ofwhich is also shown in Figure A.9). The probability of the event (x 1$; :{ 

<x2, y 1 $; y <y2) is computed as the volume under the surface in the mentioned 
interval of values for the random variables :{andy. 

The equidensity surfaces of a trivariate normal density function are spheres or 
ellipsoids, and in general, the equidensity hypersurfaces of a d-variate normal 
density function are hyperspheres or hyperellipsoids in the d-dimensional space, 
9\d. 

A.8.2 Moments 

The moments of multivariate random variables are a generalisation of the previous 
definition for single variables. In particular, for bivariate distributions, we have the 
central moments: 

A.44 
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The following central moments are worth noting: 

m20 = 0"~ : variance of.:(; m02 =a-;: variance of y; 

m11 = a-XJ= O"Yt: covariance of-t andy. 

Note that: m 11 = E[~]- f.l-'.U Y. 

For multivariate d-dimensional distributions we have a symmetric positive 
definite covariance matrix: 

0"2 a-,2 ... u,.l I 

l:= 0"21 a-i ... (J"2d 
A. 45 

(J" dl (J" d2 a-J 

The correlation coefficient, which is a measure of linear association between -t 
and y, is defined by the relation: 

p = p :ry = ..!!....::!_ . A. 46 
(J" X .CJ" y 

Properties of the correlation coefficient: 

I. -l~p~l; 

11 • P:ry=Py"; 

111. p = ±1 iff (y-.Uy)/ (J"y =±(-t- f.l-\ )I 0"-\; 

IV. Pa-\+b.cy+d = P:ry' ac > 0; Pa-\+b.cy+d = -p:ry' ac < 0. 

If m 11 = 0, the random variables are said to be uncorrelated. Since 
E[~]= E[-t]E[y] if the variables are independent, then they are also uncorrelated. 
The converse statement is not generally true. However, it is true in the case of 
normal distributions, where uncorrelated variables are also independent. 

The definitions of covariance and correlation coefficient have a straightforward 
generalisation for the d-variate case. 

A.8.3 Conditional Densities and Independence 

Assume that the bivariate random vector[~ y] has a density functionj(x, y). Then, 
the conditional distribution of-t given y is defined, whenever j(y) 'i' 0, as: 

F(xly)=P(:t~xly=y)= lim P(:t~xly<y~y+Ay). 
.1-y-40 

A.47 

From the definition it can be proved that the following holds true: 

f(x, y) = f(x I y)f(y) · A.48 
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In the case of discrete y, F(x 1 y) can be computed directly. It can also be 

proved the Bayes' Theorem version for this case: 

P(y; I x) = P(y; )f(x I y;) 
L P(Yk )f(x I Yk) 

k 

A. 49 

Note the mixing of discrete prevalences with values of conditional density 
functions. 

A set of random variables ~ 1 , ~ 2 , ••• ~d are independent if the following applies: 

F(x1 ,x2 , ... xd) = F(x1)F(x2 ) ... F(xd); 

f(xl, X2, · · · xd) = f(xl )f(x2) · · · f(xd) · 

Note that for two independent variables, we then have: 

A.50a 

A.50b 

f(x,y) = f(x)f(y); therefore, f(x I y) = f(x); f(y I x) = f(y). A. 51 

Also: E[~ y]= Ek].E[y]. A. 52 

Note that the random variables in correspondence with the bivariate density of 
Example A.21 are not independent since f(x1, x 2) =I= f(x 1 )f(x2) . 

Consider two independent random variables, ~ 1 , ~ 2 , with Gaussian densities 
and parameters {JiJ. 0"1 ), {JL2, 0"2) respectively. The joint density is the product of the 
marginal Gaussian densities: 

-l(x!-.Ui)2 + (xr.u})2 J 
f( ) - 1 20"1 20"2 
~.~ - e . 

2JrO"I (T 2 
A. 53 

In this case it can be proved that p 12 = 0, i.e., for Gaussian distributions, 
independent variables are also uncorrelated. Note that, in this case, the equidensity 
curves in the (XJ, .rz) plane are circles. 

If the distributions are not independent (and are, therefore, correlated) one has: 

_ 1 l(xl-.uJ)2 + (xr.U2)2 _ 2f1<JX2 J 
f( ) _ 1 2(1-p2 ) 2at 2ai O"J0"2 

x 1 ,x2 - e 
2Jr(TI (T 2 ~~- p2 

A. 54 

For the d-variate case, this generalises to: 

where l: is the symmetric matrix of the covariances with determinant det(l:) and 
x - J.l is the difference vector between the d-variate random vector and the mean 
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vector. The equidensity surfaces for the correlated normal variables are ellipsoids, 
whose axes are the eigenvectors ofl:. 

A.8.4 Sums of Random Variables 

Let ~ and y be two independent random variables. Then, the distribution of their 
sum corresponds to: 

P(~ + y = s) = L P(~ =xi )P(y = y 1), if they are discrete; A.56a 
J(;+Yj=s 

fJC+y(z) = [!JC (u)fy(z-u)du, ifthey are continuous. A.56b 

The roles of fJ( ( u) and fy ( u) can be interchanged. The operation performed on 
the probability or density functions is called a convolution operation. By analysing 
the integral A.56b, it is readily seen that the convolution operation can be 
interpreted as multiplying one of the densities by the reflection of the other as it 
slides along the domain variable u. 

Figure A.lO illustrates the effect of the convolution operation when adding 
discrete random variables for both symmetrical and asymmetrical probability 
functions. Notice how successive convolutions will tend to produce a bell-shaped 
probability function, displacing towards the right, even when the initial probability 
function is asymmetrical. 

Consider the arithmetic mean, .t , of n i.i.d. random variables with mean 11 and 
standard deviation a: 

A. 57 

As can be expected the probability or density function of .twill tend to a bell
shaped curve for large n. Also, taking into account the properties of the mean and 
the variance, mentioned in A.6.1, it is clearly seen that the following holds: 

E[~:] = 11; 

V[.t] = a 2 In . 

A.58a 

A.58b 

Therefore, the distribution of .twill have the same mean as the distribution of~ 
and a standard deviation (spread or dispersion) that decreases with.f;;. Note that 
for any variables the additive property of the means is always verified but for the 
variance this is not true: 

v[:Lci~i] = :Lc?v[~J+2~:Cic1a J(;J(1 
I l l<j 

A.58c 
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A.8.5 Central Limit Theorem 

We have previously seen how multiple addition of the same random variable tends 
to produce a bell-shaped probability or density function . The Central Limit 
Theorem (also known as Levy-Lindeberg Theorem) states that the sum of n 
independent random variables, all with the same mean, f.J, and the same standard 
deviation a -:t 0 has a density that is asymptotically Gaussian, with mean nj.J and 
an = afn. Equivalently, the random variable: 

In particular the .KJ, ... ~may ben independent copies of~· 

a 

0.25 .-----~--~--~--~--~----, 
p (x) 

0.2 

0.15 

0.1 

0.05 

X 
0 
-1.5 -1 -0.5 0 0.5 1.5 

0.4 
p (x) 

0.3 

0.2 

0.1 

X 
O L-~~~~~~et~~~~~~~~~__J 

b -1 .5 -1 -0.5 0 0.5 1.5 

A. 59 

Figure A.lO. Probability function for the addition of k i.i.d. discrete random 
variables, k = 1, ... ,4: a) Equiprobable random variable (symmetrical); b) 
Asymmetrical random variable. The solid line shows the univariate probability 
function; all other curves correspond to probability functions with a coarser dotted 
line for growing k. The circles represent the probability values. 
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Let us now consider the sequence of n mutually independent variables ~ •... ~ 
with means f.ik and variances a{ Then, the sum s = ~ 1 + ... + ~n has mean and 
.. b d2 2 2 ') vanance g1ven y f.1 = f.11 + ... + f.in an a = a 1 + ... +an , respective y. 
We say that the sequence obeys the Central Limit Theorem if for every fixed 

a < fJ, the following holds: 

( S-f.l ) P a<--< fJ ~ N 0•1 (fJ)-N0,1(a). 
a n->= 

A. 60 

As it turns out, a surprisingly large number of distributions satisfy the Central 
Limit Theorem. As a matter of fact, a necessary and sufficient condition for this 
result to hold is that the ~* are mutually independent and uniformly bounded, i.e., 
1~ * I< A (see Galambos, 1984, for details). In practice, many phenomena can be 
considered the result of the addition of many independent causes, yielding then, by 
the Central Limit Theorem, a distribution that closely approximates the normal 
distribution, even for a moderate number of additive causes (say above 5). 

Example A. 22 

Consider the following probability functions defined for the domain {I , 2, 3, 4, 5, 
6, 7} (zero outside): 

P,= {0.183, 0.270, 0.292, 0.146, 0.073, 0.029, 0.007}; 
?1 = {0.2, 0.2, 0.2, 0.2, 0.2, 0, 0} ; 
P,= {0.007, 0.029, 0.073, 0.146, 0.292, 0.270, 0.183} . 

Figure A. II shows the resulting probability function of the sum ~ + y + z. The 
resemblance with the normal density function is manifest. 0 

0.~ 0.2 
p(x) p(x) 

0.3 15 

02 0.1 

0.1 0 05 

X 

1.5 b ~1 
X 

0 a -1.5 -0.5 0 0.5 

Figure A.ll. a) Probability function (curve with stars) resulting from the addition 
of three random variables with distinct distributions; b) Comparison with the 
normal density function (dotted line) having the same mean and standard deviation 
(the peaked aspect is solely due to the low resolution used). 
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8.1 Discrete Distributions 

8.1.1 Bernoulli Distribution 

Description: Success or failure in one trial. The probability of dichotomised events 
was studied by Jacob Bernoulli ( 1645-1705), hence the name. A dichotomous trial 
is also called a Bernoulli trial. 

Sample space: {0, I}, with 0 =failure (no success) and I = success. 

Probability function: 

p(x) = P(~ = x) = px (1 - p)J-x , or putting it more simply, 

P(x) -- {1-p=q, x=O 

p, x= l 
(0, otherwise). 

Mean: f.J = p. 

Variance: d = pq, 

0.9 

0.8 P(x ) 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 -+-
0 

0 1 X 

B.l 

Figure 8.1. Bernoulli probability function for p 

corresponds to the f.J ± a- interval . 
0.2. The double arrow 

Example B. 1 

Q: A train waits 5 minutes at the platform of a railway station, where it arrives at 
regular half-hour intervals. Someone unaware of the train timetable arrives 
randomly at the railway station. What is the probability that he will catch the train? 
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A: The probability of a success in the single "train-catching" trial is the percentage 
of time that the train waits at the platform in the inter-arrival period, i.e. , p = 5/30 = 
0.17. 0 

8.1.2 Uniform Distribution 

Description: Probability of occurring one out of n equiprobable events. 

Sample space: {1, 2, . .. , n}. 

Probability function : 

I 
u(k)=P(:t=k)=-, 1:5:k:S:n 

n 

Distribution function : 

k 

U(k) = Lu(i). 
i=l 

Mean: ,u=(n+l)/2. 

Variance: d = [(n+1) (2n+1)]/6. 

0.15 
u(x) 

0.125 

0.1 

0.075 

0.05 

0.025 

0 
1 2 3 

(0, otherwise). 

'~ X 

4 5 6 7 8 

B.2 

B.3 

Figure 8.2. Uniform probability function for n=8. The double arrow corresponds 
to the,u ±a interval. 

Example B. 2 

Q: A card is randomly drawn out of a deck of 52 cards until it matches a previous 
choice. What is the probability function of the random variable representing the 
number of drawn cards until a match is obtained? 

A: The probability of a match at the first drawn card is 1/52. For the second drawn 
card it is (51 /52)(1 /51)=1 /52 . In general, for a match at the kth trial , we have: 
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(k)= 2.!_50 ... 52-(k-1) - = __!_ 
p 52 51 52-(k-2) 52 52 

wrong card in the first k- 1 trials 

Therefore the random variable follows a uniform law with n =52. 0 

6.1.3 Geometric Distribution 

Description: Probability of an event occurring for the first time at the kth trial, in a 
sequence of independent Bernoulli trials, when it has a probability p of occurrence 
in one trial. 

Sample space: {I, 2, 3, ... } . 

Probability function: 

g p(k) = P(~ =k) =(1- p)k- l p, xE{l, 2, 3, . .. } (0, otherwise). B. 4 

Distribution function: 

k 

G p (k) = L g p (i). B. 5 
i= l 

Mean: I /p. 

Variance: ( 1- p ) ! p2. 

0.3 
gp(x ) 

0.25 

0.2 

0.15 

0.1 

0.05 I I I 0 I • • - - X 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 8.3. Geometric probability function for p = 0.25. The mean occurs at x = 4. 

Example B. 3 

Q: What is the probability that one has to wait at least 6 trials before obtaining a 
certain face when tossing a dice? 
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A: The probability of obtaining a certain face is 1/6 and the occurrence of that face 
at the kth Bernoulli trial obeys the geometric distribution, therefore: P(JC ~ 6) = 
1-G116 (5)= 1-0.6=0.4. D 

8.1.4 Hypergeometric Distribution 

Description: Probability of obtaining k items, in one out of two categories, in a 
sample of n items extracted without replacement from a population of N items that 
has D = pN items of that category (and ( 1-p )N = qN items from the other 
category). In quality control, the category of interest is usually one of the defective 
items. 

Sample space: {max(O, n- N +D), ... , min(n,D)}. 

Probability function: 

( D )(N~-D) (Np )(Nq ) 
h (k) = P( _ k) _ k n-k _ k n-k 

N,D,n - :{- - (~) - (~) ' 8.6 

k E {max(O, n-N+D), .. . , min(n,D)} (0, otherwise). 

From the (~) possible samples of size n, extracted from the population of N 
items, their composition consists of k items from the in\Frest~g category and n - k 
items from the complement category. There are (f A~--t )possibilities of such 
compositions; therefore, one obtains the previous formula. 

Distribution function: 
k 

H N,D,n(k) = L hN,D,n(i) · B. 7 
i=max(O,n-N +D) 

Mean: 

Variance: 
np. (N -n) N -n 
npq -- , with --called the finite population correction. 

N-1 N-1 

Example B. 4 

Q: In order to study the wolf population in a certain region, 13 wolves were 
captured, tagged and released. After a sufficiently long time had elapsed for the 
tagged animals to mix with the untagged ones, 1 0 wolves were captured, 2 of 
which were found to be tagged. What is the most probable number of wolves in 
that region? 

A: Let N be the size of the population of wolves of which D = 13 are tagged. The 
number of tagged wolves in the second capture sample is distributed according to 
the hypergeometric law. By studying the hN.D,n I h<N-I).D,n ratio, it is found that the 
value of N that maximizes hN,D,n is: 

N=D~=I3~=65. D 
k 2 
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0.7 
h I OOO,D .!O(k ) 

0.6 

0.5 

0.4 

0.3 

0.2 

~l _.1 0.1 I 0 • k 
0 1 2 3 4 5 6 7 8 9 10 

Figure B. 4. Geometric probability function for N = I 000 and n = I 0, for: D = 50 
(p = 0.05) (light grey); D = I 00 (p = 0.1) (dark grey); D = 500 (p = 0.5) (black). 

8.1.5 Binomial Distribution 

Description: Probability of k successes in n independent and constant probability 
Bernoulli trials. 

Sample space: {0, I, .. . , n}. 

Probability function: 

bn. p(k) = P(~ = k) = (: Jpk (1- p)n-k = (: Jpkqn- k , 

with k E {0, I, ... , n} (0, otherwise). 
k 

Distribution function: B n ,p ( k) = 2> n,p (i) . 
i=O 

B. 8 

B. 9 

A binomial random variable can be considered as a sum of n Bernoulli random 
variables, and when sampling from a finite population, arises only when the 
sampling is done with replacement. The name comes from the fact that 8 .8 is the 
kth term of the binomial expansion of(p + qr. 

For a sequence of k successes in n trials - since they are independent and the 
success in any trial has a constant probability,p, we have: 

P(k successes inn trials)= pk qn-k. 

Since there are (Z) such sequences, the formula above is obtained. 

Mean : Jl= np. 

Variance: 
? 

if= npq 

Properties: 

I. 
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For large N, sampling without replacement is similar to sampling with 
replacement. Notice the asymptotic behaviour of the finite population 
correction in the variance of the hypergeometric distribution. 

2. x.. ~ Bn, p => n-x.. ~ Bn, l -p· 

3. x.. ~ Bn,,p and y ~ Bnz,p independent=> x..+y ~ Bn, +nz,p· 

4. The mode occurs at fl (and at jl-1 if (n+ I )p happens to be an integer). 

0.3 

0.25 
b n.p (k.) 

0.2 o( I )o 

0.15 

0.1 

0.05 

I 1.11. I 0 n I h 
0 2 4 6 8 10 12 14 16 18 20 k 

Figure B.S. Binomial probability functions: B8, 0.5 (light grey); B20, 0.5 (dark grey); 
B20, 0.85 (black). The double arrow indicates the fl ±a interval for B20, 0_5. 

Example B. 5 

Q: The cardiology service of a Hospital screens patients for myocardial infarction. 
In the population with heart complaints arriving at the service, the probability of 
having that disease is 0.2. What is the probability that at least 5 out of 10 patients 
do not have myocardial infarction? 

A: Let us denote by p the probability of not having myocardial infarction, i.e. , 
p = 0.8. The probability we want to compute is then: 

10 

P = ~)10, 0 . 8 (k) =I -B10, 0.8 (4) =0.9936. 
k =5 

8.1.6 Multinomial Distribution 

0 

Description: Generalisation of the binomial law when there are more than two 
categories of events in n independent trials with constant probability, p; (for i = I, 
2, ... ,k categories), throughout the trials. 

Sample space: {0, 1, ... , n}k. 
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with L;=J Pi= I; n; E {0, I, . .. , n}, L;=J n; = n (0, otherwise). 8.10 

Distribution function : 
n1 nk 

M n,p,, .. ,pk (n1 , ... ,nd = L ·· · :Lmn,p,, .. ,pk {i1 , .. . ,id, L;=J n; = n. B. II 

Mean: 

Variance: 

Properties: 

2. 

J.l; = np; 
2 

Oi = np;q; 

i1=o ;k =O 

Figure 8 .6. Multinomial probability function for the card-hand problem of 
Example 8.6. The mode is m(O, 2, 8) = 0.1265. 

Example B. 6 

Q: Consider a hand of I 0 cards drawn randomly from a 52 cards deck. Compute 
the probability that the hand has at least one ace or two figures (king, dame or 
valet). 
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A: The probabilities of one single random draw of an ace (.~), a figure (.;r:z) and a 
number (.\3) are p 1 = 4/52, p2 = 12/52 and p3 = 36/52, respectively. In order to 
compute the probability of getting at least one ace or two figures, in the I 0-card 
hand, we use the multinomial probability function m( n1, n2 , n3 ) -

m 10,p1,p2 ,p3 (n 1, n 2 , n3 ), shown in Figure 8.6, as follows: 

P(::( 1 ~1U::( 2 ~2)=1-?(::( 1 <ln::(2 <2)=1-m(O,O,lO)-m(O,l,9)= 1- 0.025 

- 0.084 = 0.89. D 

8.1.7 Poisson Distribution 

Description: Probability of obtaining k events when the probability of an event is 
very small and occurs at an average rate of A events per unit time or space 
(probability of rare events). The name comes from Simeon Poisson (1781-1840), 
who first studied this distribution. 

Sample space: [0, 1, 2, ... , oo[. 

Probability function: 

Ax 
pA(k)=e-A-, k~O (O,otherwise). 

k! 
B. 12 

The Poisson distribution can be considered an approximation of the binomial 
distribution for a sufficiently large sequence of Bernoulli trials. 

Let ::( represent a random occurrence of an event in time, such that: the 
probability of only one success in /',.t is asymptotically (i.e., with /',.t ~ 0) AM; the 
probability of two or more successes in M is asymptotically zero; the number of 
successes in disjointed intervals are independent random variables. Then, the 
probability Pk(t) of k successes in time tis P:trCk). Therefore, A is a measure of the 
density of events in the interval t. This same model applies to rare events in other 
domains, instead of time (e.g. bacteria in a Petri plate). 

Distribution function: 

k 

P;t(k)= LPA(i). 
i~O 

Variance: A. 

Properties: 

B. 13 

1. For small probability of the success event, assuming p = np is constant, 
the binomial distribution converges to the Poisson distribution, i.e., 
bn,p ~ p A, A= np. 

n-+oo; np<5 
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J J I • 
7 8 9 10 11 12 X 

Figure 8.7. Probability function of the Poisson distribution for 4 = I (light grey), 
A,= 3 (dark grey) and A,= 5 (black). Note the asymmetry of the distributions. 

Example B. 7 

Q: A radioactive substance emits alpha particles at a constant rate of one particle 
every 2 seconds, in the conditions stated above for applying the Poisson 
distribution model. What is the probability of detecting at most 1 particle in a 
1 0-second interval? 

A: Assuming the second as the time unit, we have A,= 0.5. Therefore 4 t = 5 and 
we have: 

P(:K. :s; I)= p5(0)+ p 5(!) = e-5 (1 +2_) = 0.04. 
I! 

D 

8.2 Continuous Distributions 

6.2.1 Uniform Distribution 

Description: Equiprobable equal-length sub-intervals of an interval. Approximation 
of discrete uniform distributions, an example of which is the random number 
generator routine of a computer. 

Sample space: 91 . 

Density function: B. 14 
otherwise 
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Distribution function: 

1
0 
x-a 

uab(x)= r u(t)dt= -
• oo b-a 

I 

Mean: J1 =(a+ b)/2. 

Variance: d = (b- a)2/12. 

Properties: 

if x<a; 

if a:::; x < b; 

if X?. b. 

B. 15 

I. u(x) = u0,1(x) is the model of the typical random number generator routine 
in a computer. 

2. 

Example B. 8 

=> P(h::;~<h+w)=~, Vh,[h,h+w]c[a,b]. 
b-a 

Q: In a cathode ray tube, the electronic beam sweeps a 10 em line at constant high 
speed, from left to right. The return time of the beam from right to left is 
negligible. At random instants the beam is stopped by means of a switch. What is 
the most probable 2a-interval to find the beam? 

A: Since for every equal length interval in the swept line there is an equal 
probability to find the beam, we use the uniform distribution and compute the most 
probable interval within one standard deviation as J1 ±a = 5 ± 2.9 em (see 
formulas above). D 

1.2 
u (x) 

T' 

0.8 

0.6 

0.4 

0.2 
' ' 
~ X 

0 --0.2 0 0.2 0.4 0.6 0.8 1 1.2 

Figure B.S. The uniform distribution in [0, I[, model of the usual random number 
generator routine in computers. The solid circle means point inclusion. 
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8.2.2 Normal Distribution 

Description: The normal distribution is an approximation of the binomial 
distribution for large n and not too small p and q, as first studied by Abraham de 
Moivre (1667-1754) and Pierre Simon de Laplace (1749-1855). It is also an 
approximation of large sums of random variables acting independently (Central 
Limit Theorem). Measurement errors often fall into this category. Sequences of 
measurements whose deviations from the mean satisfy this distribution law, the so
called normal sequences, were studied by Karl F. Gauss (1777-1855). 

Sample space: 9l . 

Density function: 
(x-,u )2 

1 ---2-
n (x)=--e Za 

,u,a &a B. 16 

Distribution function: 

B. 17 

N0,1 (zero mean, unit variance) is called the standard normal distribution. Note 
that one can always compute N ,u,a (x) by referring it to the standard distribution: 

( X- f.lJ N ,u,a ----;;- = No,l (x). 

Mean: f.l· 

Variance: d. 
Properties: 

1. ~ ~ Bn,p 

2. ~ ~ Bn,p 

3. ~. ~ 2, ... , ~n ~ n,u,m independent~ ~ = L:;=l ~; ~ n ,u,az In 

4. No,I(-x} = 1- No,J(x). 

5. No,J(Xa) =a~ No,!(Xaf2) -No,J(-XaJz) =P(-XaJz <~ :S;xaJz) = 1-a 

6. The points f.l ± a are inflexion points (points where the derivative 
changes of sign) of np,a. 

7. n0,1(x)lx- n0,1(x)lx3 < 1 - N0,1(x) < n0,1(x)lx, for every x > 0. 

8. 1 - N0, 1(x) ~ no,J(x)/x. 
x~oo 

) x( 4.4- x) I . h I I 9. N 01 (x = +-+& w1t c :S;0.005. 
' 10 2 



392 Armendix B - Distributions 

0.45 
n O.l(x) a=1 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 
-6 -5 -4 -3 -2 -1 0 2 3 4 5 X 6 

Figure B.9. Normal density function with zero mean for three different values of 
(}', 

Values of interest for P(x_ > x a ) =a with x_- n0, , : 

a 0.0005 

3.29 

Example B. 9 

0.001 

3.09 

0.005 

2.58 

0.01 

2.33 

0.025 

1.96 

0.05 

1.64 

0.10 

1.28 

Q: The length of screws produced by a machine follows a normal law with average 
value of 1 inch and standard deviation of 0.05 inch. In a large stock of screws, 
what is the percentage of screws one may expect to exceed 1.15 inches? 

A: Referring to the standard normal distribution we determine: 

( 1.15-1) P x >-- =P(x > 3)~0.1%. 
0.05 

D 

6.2.3 Exponential Distribution 

Description: Distribution of decay phenomena, where the rate of decay is constant, 
such as in radioactivity phenomena. 

Sample space: 9t +. 

Density function: 

&,t (x)=k -A.x , x ~ O (O,otherwise). B. 18 

A. is the so-called spread factor. 
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Distribution function: 

E ). (x) = r & ). (t)dt = 1-e-Ax (if X~ 0; 0, otherwise). B. 19 

Mean: J1 = I I A. 

Variance: d = I IA2• 

Properties: 

I. Let .t be a random variable with a Poisson distribution, describing the 
event of a success in time. The random variable associated to the event 
that the interval between consecutive successes is :5: t follows an 
exponential distribution. 

2. Let the probability of an event lasting more than t + s seconds be 
represented by P(t + s) = P(t)P(s), i.e., the probability of lasting s seconds 
after t does not depend on t. Then P(t + s) follows an exponential 
distribution. 

2.5 
&.t(X) 

2 
'.J=2 

1.5 

.:~ 
0 

0 0.4 0.8 1.2 1.6 2 2.4 2.8 X 

Figure 8.10. Exponential density function for two values of A. The double arrows 
indicate the J1 ±cr intervals. 

Example B. 10 

Q: The lifetime of a micro-organism in a certain culture follows an exponential law 
with an average lifetime of I hour. In a culture of such micro-organisms, how long 
must one wait until find ing more than 80% of the micro-organisms dead? 

A: Let .trepresent the lifetime of the micro-organisms, modelled by the exponential 
law with A= I. Therefore: 

P(.t :o; t) = 0.8 => J:e-x dx = 0.8 => x = 1.6 hours. 0 
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8.2.4 Wei bull Distribution 

Description: The Weibull distribution describes the failure rate of equipment and 
the wearing-out of materials. Named after W. Weibull, a Swedish physicist 
specialised in applied mechanics. 

Sample space: 9l +. 

Density function: 

( ) = !!._ ( / fJ)a-l - (x I j])a fJ 0 (0 h . ) wa.fJ x fJ x e , a, > , ot erwtse, 

where a and fJ are known as the shape and scale parameters, respectively. 

Distribution function: 

W (x)= rxw (t)dt=l-e - (xl fJla 
a,j] Jo a ,j] 

Mean: f.i= fJf((I+a) ! a) 

Variance: d= fJ 2 {r((2+a) ! a)-[r((I+a) ! a))2} 

2 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

o.~ k:,,...-,---,---.,--,.----,---~==:=::~~~~:;;:;::~~~~d 
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 2.2 2.4 

a L-------------------------------------------~ 

1.2 w ,. 2(x) 

0.8 

b 
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 

B. 20 

B. 21 

Figure 8.11. Weibull density functions for fixed fJ=I (a), /] =2 (b), and three 
values of a. Note the scaling and shape effects. For a = I the exponential density 
function is obtained. 
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Properties: 

1. w1,w(x) = c'ix). 

2. w2,1u (x) is the so-called Rayleigh distribution. 

3. .{. ~ & A => '{( ~ W a.'f./1/i . 

4. .{. ~ W a,'f./1/i => .{.a ~ & A • 

Example B. 11 

Q: Consider that the time in years that an implanted prosthesis survives without 

needing replacement follows a Wei bull distribution with parameters a= 2, f3 = 10. 
What is the expected percentage of patients needing a replacement of the prosthesis 
after 6 years? 

A: P = W0.5,1 (6) = 30.2%. 0 

8.2.5 Gamma Distribution 

Description: The Gamma distribution is a sort of generalisation of the exponential 

distribution, since the sum of independent random variables, each with the 
exponential distribution, follows the Gamma distribution. Several continuous 
distributions can be regarded as a generalisation of the Gamma distribution. 

Sample space: 91 +. 

Density function: 

( ) - 1 -x/a p-1 
Yapx- e x, 

. aPr(p) 
a, p > 0 (0, otherwise), B. 22 

with f(p), the gamma function, defined as r(p)= r e-xxp-ldx, constituting a 

generalization ofthe notion of factorial, since f(l)=1 ~nd f(p) = (p -1) f(p -1). 

Thus, for integer p, one has: f(p) = (p -1)! 

Distribution function: 

Mean: f.1 = a p. 

Variance: d = a2p. 

Properties: 

I. rc,, 1(x) = &11a(x). 

8.23 

2. Let .\i, .Kl ... . , .~ be a set of n independent random variables, each with 

exponential distribution and spread factor A. Then, .{. = .:D + .K:2 + ... + .:to ~ 

Yl!A,n-
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1.2 
Yo,p(x) 

0.8 

0.6 

0.4 

0.2 

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8X 

Figure B.12. Gamma density functions for three different pairs of a, p. Notice that 
p works as a shape parameter and a as a scale parameter. 

Example B. 12 

Q: The lifetime in years of a certain model of cars, before a major motor repair is 
needed, follows a gamma distribution with a = 0.2, p = 3.5. In the first 6 years, 
what is the probability that a given car needs a major motor repair? 

A: fo.2, 3.5(6) = 0.066. D 

8.2.6 Beta Distribution 

Description: The Beta distribution is a continuous generalization of the binomial 
distribution. 

Sample space: [0, 1]. 

Density function: 

fJpq(x)= 1 xP-1(1-x)q-l, XE[O, I] (O,otherwise), 
. B(p,q) 

B. 24 

. h B( ) - f(p )f( q) 0 h II d b fi . Wit p, q - , p, q > , t e so-ca e eta unctwn. 
f(p+q) 

Distribution function : 

B p,q (x) = £: j3 p,q (t)dt 8.25 

Mean: f.J = p l(p + q) . The sum c = p + q is called concentration parameter. 

Variance: a 2 =pq ![ (p+q) 2 (p+q+l) ]=J.J(l-J.J) /(c+l). 
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Properties: 

I. 

2. 

3. 

4. 

fJ~.~(x) = u(x). 

J( ~ Bn,p(k) => P(J( ~ a)=Ba,n-a+ l(p). 

J( ~fJr.q => I I J( ~ /]q.P" 
,....--:-; ( J( - f.i) 

J( ~ fJp.q => vc+l 1 ~ n01 . 
V j.i(I- j.i) large c ' 

Example B. 13 

Q: Assume that in a certain country the wine consumption in daily litres per capita 
(for the above 18 year old population) follows a beta distribution with p = 1.3, 
q = 0.6. Find the median value of this distribution. 

A: The median value of the wine consumption is computed as: 

P13 , 06{J( :<::; 0.5) = 0.26 litres. D 

0.6 

0.6 

0.4 

b 6 7.5 7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 
~------------------------------------------~ 

Figure 8.13. a) Beta density functions for different values of p, q; b) P(J( ~ a) 
assuming the binomial distribution with n = 8 and p = 0.5 (circles) and the beta 
distribution according to property 2 (solid line). 
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8.2.7 Chi-Square Distribution 

Description: The sum of squares of independent random variables, with standard 
normal distribution, follows the chi-square (X2) distribution. The number n of 
added terms is the so-called number of degrees of freedom 1

, df= n (number of 
terms that can vary independently, achieving the same sum). 

Sample space: 9i + . 

Density function: 

x~1 (x)= 1 x(df l 2)-le - x 12 ,x?:O (O, otherwise), 8.26 
2d1 12 r(df l 2) 

with df degrees of freedom. 

All density functions are skew, but the larger df is, the more symmetric the 
distribution. 

Distribution function: 

B. 27 

Mean: J.i = df 

Variance: d =2 df 

0.5 

0.45 idf(X) 
0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 
0 2 3 4 5 6 7 8 9 X 10 

Figure 8.14. i2 density functions for different values of the degrees of freedom, df 
Note the particular cases for df=l (hyperbolic behaviour) and df= 2 (exponential). 

I 
Also denoted v in the literature. 
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Properties: 

1. XJt(x)=Ydtl 2,2 (x); in particular, df 
distribution with A.= Yl. 

2 yields the exponential 

2. 

3. 

-t = L~=I -t? , -t; independent ~ n0,1 

2 => -t ~ Xn-1 

4. -t=~:L:1 (-t; -p) 2 , -t; independent~n,u,a => -t~x~ 
(J' 

5 1 "'n ( -)2 . d d 2 . -t = - 2 L..i=I -t; - x , -t; m epen ent ~ n ,u,a => -t ~ X n-I 
(J' 

6. -t ~ X Jfi , y ~ X J12 => -t + y ~ X Jii +dfz (convolution of two i results 

inai). 

Example B. 14 

Q: The electric current passing through a 10 n resistance shows random 
fluctuations around its nominal value that can be well modelled by no,a with 
a = 0.1 Ampere. What is the probability that the heat power generated in the 
resistance deviates more than 0.1 Watt from its nominal value? 

A: The heat power is p = 10 P, where i is the current passing through the 10 n 
resistance. Therefore: 

P(p>0.1)=P(10i 2 >0.l)=P(100i 2 >1). 
1 -2 -2 2 

But: i ~ no.o.I => - 2 1 = 1001 ~ x1 
(J' 

Hence: P(p>O.l)=P(x12 >1)=0.317. 0 

8.2.8 Student's t Distribution 

Description: The Student's t distribution is the distribution followed by the ratio of 
the mean deviations over the sample standard deviation. It was derived by the 
English brewery chemist W.S. Gosset (pen-name "Student") at the beginning of the 
201h century. 

Sample space: ~ . 

Density function: 

[ 
2 )-(<if +I)/ 2 r d +1 12 x . 

td1 (x)= JfJ! ) ) 1+- , w1th dfdegreesoffreedom. 
dftr r(df I 2) df 

B. 28 
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Distribution function: 

Mean: 11= 0. 

Variance: d =df/( df- 2) for df>2. 

Properties: 

I. 

2. 

3. 

--+ no.J. 
df--->oo 

n n-1 

.ti independent ~ n f.i,IJ ~ .t ~ t n- 1 . 

Example B. 15 

B. 29 

Q: A sugar factory introduced a new packaging machine for the production of I Kg 
sugar packs. In order to assess the quality of the machine, 15 random packs were 
picked up and carefully weighted. The mean and standard deviation were 
computed and found to be m = 1.1 Kg and s = 0.08 Kg. What is the probability that 
the true mean value is at least I Kg? 

( m-fl ) A: P(fl ~ 1) = P(m- f1 :s; 0.1) = P ,-;--;- ::; 0.323 = P(t14 ::; 0.323) = 0.62. 
0.08-v15 

D 

0.45 

0.4 I df(x) 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 
-3 -2 -1 0 2 X 3 

Figure 8.15. Student's t density functions for several values of the degrees of 
freedom, df The dotted line corresponds to the standard normal density function. 
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8.2.9 F Distribution 

Description: The F distribution was introduced by Ronald A. Fisher (1890-1962), 
in order to study the ratio of variances, and is named after him. The ratio of two 
independent Gamma-distributed random variables, each divided by its mean, also 
follows the F distribution. 

Sample space: 9t +. 

Density function: 

r( df! +2 df2 )(-ddlff!J2! Jdfl I 2 
x<dfi-2)12 

fdfi,dh (x) = r(d/, 12)r(dfz 12) -(--dJ;--J-(dfi-,+-df_2_)1-2 
1+-1 x 2 

d/2 

with dfi, d/2 degrees of freedom. 

Distribution function: 

Fdfi,dh (x) = J:!dfi,dh (t)dt · 

Mean: 
d/2 

p= df2 -2, dfz> 2. 

Variance: d = 2df22 (df, + dfz- 2) , for dfz > 4. 
dfi(d/2 -2) 2 (df2 -4) 

Properties: 

J. .\.1 ~ y O!oPl '.\.2 ~ y a2,P2 

2. => 
.\,Ia 

(1- .\.)I b 

,x~o. 

B. 30 

B. 31 

3. .\. ~ fa,b => I I.\.~ fb,a, as can be derived from the properties of the 
beta distribution. 

4. 2 7 • d d .\. ~ Xn,, y ~ X~2 , ~ y m epen ent => 

5. Let .{], ... , .\.n and )1, ... , Ym be n + m independent random variables such 

that .\.; ~ n 111 .a·, and Y; ~ n 112 ,a2 • 

Then (L:~=l (.\.;- p 1 ) 2 l(na})) I (L::, (y;- p 2 ) 2 l(mai)) ~ fn,rn. 

6. Let.{], ... , .\.nand y1 ... , Ym ben+ m independent random variables such that 

.\.; ~ n Ill ,a, and Y; ~ n 1'2.02 • 

Then(L::,(.\.; -.X) 2 l((n-l)a12 ))!{L;:,(y;- )1) 2 l((m-I)ai)) ~fn-I,m-I. 
where .X and y are sample means. 
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o .~il~~~~~~~~==~~==::~~~~~~~~-. .. J 
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 X 

Figure B. 16. F density functions for several values of the degrees of freedom, dft, 
df2. 

Example B. 16 

Q: A factory is using two machines, M I and M2, for the production of rods with a 
nominal diameter of I em. In order to assess the variability of the rods' diameters 
produced by the two machines, a random sample of each machine was collected as 
follows: n 1 = IS rods produced by MI and n2 = 2I rods produced by M2. The 
diameters were measured and the standard deviations computed and found to be: 
s 1= O.OI2 em, s2= O.QI em. What is the probability that the variability of the rod 
diameters produced by M2 is smaller than the one referring to M 1? 

A: Denote by 0'1, 0'2 the standard deviations corresponding to M I and M2, 
respectively. We want to compute: 

?(0'2 < 0'1 )= P( :~ < 1). 
According to property 6, we have: 

p[O'~ <I)=P[s~ IO'~ < s~)=P[s~ IO'~ <I.44)=F14,20 (1.44)=0.78. D 
0'1 s2 10'2 s1 s1 10'1 

8.2.1 0 Von Mises Distributions 

Description: The von Mises distributions are the normal distribution equivalent for 
circular and spherical data. The von Mises distribution for circular data, also 
known as circular normal distribution, was introduced by R. von Mises ( 1918) in 
order to study the deviations of measured atomic weights from integer values. It 
also describes many other physical phenomena, e.g. diffusion processes on the 
circle, as well as in the plane, for particles with Brownian motion hitting the unit 
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circle. The von Mises-Fisher distribution is a generalization for a (p-1 )
dimensional unit-radius hypersphere Sp-1 (x'x = 1), embedded in 9ip. 

Sample space: sp-t c 9i P • 

Density function: 

(
KJp/2-l Kll'X 

m (x)- - -------e 
ll,K,p - 2 f(p I 2)1 p/2-1 (K) ' 

B. 32 

where ~ is the unit length mean vector (also called polar vector), K:?: 0 is the 
concentration parameter and I v is the modified Bessel function of the first kind and 
order v. 

For p = 2 one obtains the original von Mises circular distribution: 

B. 33 

where /0 denotes the modified Bessel function of the first kind and order 0, which 
can be computed by the power series expansion: 

B. 34 

For p = 3 one obtains the spherical Fisher distribution: 

K Kll'X m (x)- e 
!l,K,3 - 2 "nh 

Sl K 
B. 35 

Mean: ~. 

Circular Variance: 

v=1- f 1(K)/J0(K)= K{1-~+~-llK6 + ... }. 
2 9 48 3072 

Spherical Variance: 

v= 1- coth K- liK. 

Properties: 

1. mf.l,K((J+ 2rc) = mf.l,K(fJ). 

2. Mw.f...B+2rc) - Mw.f...fJ) =1, where Mw is the circular von Mises 
distribution function. 

3. M JJ,K, K ~ oo - N 0,1 (approx.). 

4. MJJ,K =.WNJJ,A(K) with A(K)=I1(K)II0(k), and WN,u,,.the wrapped 
normal distribution (wrapping around 2Jr). 
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0.6 

0.5 

0.4 

0.3 

0.2 

5. Let x = r(cosB, sinO)' have a bivariate normal distribution with mean 1-1 = 
(cos,u, sinJ.L)' and equal variance liK. Then, the conditional distribution of 
Bgiven r = 1 is M J.l,K" 

6. Let the unit length vector x be expressed in polar co-ordinates in 91 3 , i.e., 
x = (cosB, sinBcos¢, sinBsin¢ )', with B the co-latitude and ¢ the 
azimuth. Then, B and ¢are independently distributed, with: 

'(B)= K eK cosB sinB BE[O~r] · 
1 K 2 sinh K ' ' ' 

h(¢) = 1 /(2~r), ¢ E [0, 2~r[, is the uniform distribution. 

0~~~~~~~~~~~~~ 
a -1eo ·140 -1oo .ao -20 20 eo 100 140 180 40 80 120 

Example B. 17. a) Density function of the circular von Mises distribution for 
J1 = 0 and several values of K; b) Density function of the co-latitude of the spherical 
von Mises distribution for several values of K. 
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In Appendix C, we present some introductory concepts used in the book on point 
estimation and on results regarding the estimation of the mean and the variance. 

C.1 Definitions 

Let F£x) be a distribution function of a random variable ~ dependent on a certain 
parameter 8. We assume that there is available a random sample x = [x~o x2 , ••• , xn]' 
and build a function tn(x) that constitutes a point estimate of 8. Note that, by 
definition, in a random sample from a population with a density functionf£x), the 
random variables associated with the values x~o ... , Xm are i.i.d., i.e., the random 
sample has a joint density given by: 

The estimate tn(x) is considered a value of a random variable, called a point 
estimator or statistic, 8= tn(JO, where~ denotes the n-dimensional random variable 
corresponding to the sampling process. 

The following properties are desirable for a point estimator: 

- Unbiased ness. A point estimator is said to be unbiased if its expectation is fJ: 

E[ 8] = E[tn(JO] = B. 

- Consistency. A point estimator is said to be consistent if the following holds: 

\i c > 0, P( I t n (~)- 81 >c) --) 0 . 
n-+= 

As illustrated in Figure C.I, a biased point estimator yields a mean value 
different from the true value of the distribution parameter. Figure C.l also 
illustrates the notion of consistency. 

When comparing two unbiased and consistent point estimators (),. and ~. it is 
reasonable to prefer the one that has a smaller variance, say (),.: 

V[(),.]::; V[~]. 

The estimator 81 is then said to be more efficient than ~-
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There are several methods to construct the point estimator functions. A popular 
one is the maximum likelihood (ML) method, which is applied by first constructing 
for sample x, the following likelihoodfonction: 

n 

L(x I B)= f(x1 I B)f(x2 I B) .. . f(x3 I B)= rr f(xi I B) ' 
i=1 

where J(xM1) is the density function (probability function in the discrete case) 
evaluated at xi, given the valueBofthe parameter to be estimated. 

Next, the value that maximizes L( fJ) (within the domain of values of fJ) is 
obtained. The ML method will be applied in the next section. Its popularity derives 
from the fact that it will yield, under very general conditions, a consistent point 
estimator, which, when biased, is easy to adjust by using a simple corrective factor. 

a E[8 ] B b E[8 ]=B 

Figure C.l. a) Density function of a biased point estimator (expected mean is 
different from the true parameter value); b) Density functions of an unbiased and 
consistent estimator for two different values of n: the probability of a ± E deviation 
from the true parameter value- shaded area- tends to zero with growing n. 

C.2 Estimation of Mean and Variance 

Let ~be a normal random variable with mean 11 and variance v: 

l _ (x- Jd 

f(x)=-- e 2v 

.J2nv 

Assume that we were given a sample of size n from ~and were asked to derive 
the ML point estimators of 11 and variance v. We would then have: 



C.2 Estimation of Mean and Variance 407 

n _ _!_ :L" (x·-p)2 /v 
L(xiB)= ITf(x; IB)=(2JZV)-n 12 e 2 i=I ' 

i=l 

Instead of maximizing L(xlfJ) we may, equivalently, maximize its logarithm: 

Therefore, we obtain: 

a In L( X I B) = 0 => 
all 

ainL(x I B)= 0 => 
av 

Let us now comment on these results. The point estimate of the mean, given by 
the arithmetic mean, :X, is unbiased and consistent. This is a general result, valid 
not only for normal random variables but for any random variables as well. As a 
matter of fact, from the properties of the arithmetic mean (see Appendix A) we 
know that it is unbiased (A.58a) and consistent, given the inequality of Chebyshev 
and the expression of the variance (A.58b ). Notice that as a consequence, the 
unbiased and consistent point estimator of a proportion is readily seen to be: 

k 
p=-, 

n 

where k is the number of times the "success" event has occurred in the n i.i.d. 
Bernoulli trials. This results from the fact that the summation of xi for the Bernoulli 
trials is precisely k. The reader can also try to obtain this same estimator by 
applying the ML method to a binomial random experiment. 

Let us now consider the point estimate of the variance. We have: 

E[~)x; -m) 2 ] = E[,L (x;- /1) 2 ]- nE[(m- /1) 2 ] 

(J2 • 

= nv[.d-nv[~]= nu 2 -n- = (n-1)u2 

n 

Therefore, in general, an unbiased estimator of the variance is: 

2 1 "n - 2 s =--1 L...i=l(x; -x) . 
n-

This corresponds to multiplying the previous ML estimator by the corrective 
factor n/(n- 1) (only noticeable for small n). The point estimator of the variance 
can also be proven to be consistent. 
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0.1 Binomial Distribution 

The following table lists the values of Bn,p(k) (see 8.1.2). 

p 

n k 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

I 0 0.9500 0.9000 0.8500 0.8000 0.7500 0.7000 0.6500 0.6000 0.5500 0.5000 

I 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2 0 0.9025 0.8100 0.7225 0.6400 0.5625 0.4900 0.4225 0.3600 0.3025 0.2500 

I 0.9975 0.9900 0.9775 0.9600 0.9375 0.9100 0.8775 0.8400 0.7975 0.7500 

2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

3 0 0.8574 0.7290 0.6141 0.5120 0.4219 0.3430 0.2746 0.2160 0.1664 0.1250 

1 0.9928 0.9720 0.9393 0.8960 0.8438 0.7840 0.7183 0.6480 0.5748 0.5000 

2 0.9999 0.9990 0.9966 0.9920 0.9844 0.9730 0.9571 0.9360 0.9089 0.8750 

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

4 0 0.8145 0.6561 0.5220 0.4096 0.3164 0.2401 0.1785 0.1296 0.0915 0.0625 

I 0.9860 0.9477 0.8905 0.8192 0.7383 0.6517 0.5630 0.4752 0.3910 0.3125 

2 0.9995 0.9963 0.9880 0.9728 0.9492 0.9163 0.8735 0.8208 0.7585 0.6875 

3 1.0000 0.9999 0.9995 0.9984 0.9961 0.9919 0.9850 0.9744 0.9590 0.9375 

4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

5 0 0.7738 0.5905 0.4437 0.3277 0.2373 0.1681 0.1160 0.0778 0.0503 0.0313 

0.9774 0.9185 0.8352 0.7373 0.6328 0.5282 0.4284 0.3370 0.2562 0.1875 

2 0.9988 0.9914 0.9734 0.9421 0.8965 0.8369 0.7648 0.6826 0.5931 0.5000 

3 1.0000 0.9995 0.9978 0.9933 0.9844 0.9692 0.9460 0.9130 0.8688 0.8125 

4 1.0000 1.0000 0.9999 0.9997 0.9990 0.9976 0.9947 0.9898 0.9815 0.9688 

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

6 0 0.7351 0.5314 0.3771 0.2621 0.1780 0.1176 0.0754 0.0467 0.0277 0.0156 

I 0.9672 0.8857 0.7765 0.6554 0.5339 0.4202 0.3191 0.2333 0.1636 0.1094 

2 0.9978 0.9842 0.9527 0.9011 0.8306 0.7443 0.6471 0.5443 0.4415 0.3438 

3 0.9999 0.9987 0.9941 0.9830 0.9624 0.9295 0.8826 0.8208 0.7447 0.6563 

4 1.0000 0.9999 0.9996 0.9984 0.9954 0.9891 0.9777 0.9590 0.9308 0.8906 

5 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9982 0.9959 0.9917 0.9844 

6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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p 
n k 0.05 0.1 o 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

7 0 0.6983 0.4783 0.3206 0.2097 0.1335 0.0824 0.0490 0.0280 0.0152 0.0078 

0.9556 0.8503 0.7166 0.5767 0.4449 0.3294 0.2338 0.1586 0.1024 0.0625 

2 0.9962 0.9743 0.9262 0.8520 0.7564 0.6471 0.5323 0.4199 0.3164 0.2266 

3 0.9998 0.9973 0.9879 0.9667 0.9294 0.8740 0.8002 0.7102 0.6083 0.5000 

4 1.0000 0.9998 0.9988 0.9953 0.9871 0.9712 0.9444 0.9037 0.8471 0.7734 

5 1.0000 1.0000 0.9999 0.9996 0.9987 0.9962 0.9910 0.9812 0.9643 0.9375 

6 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9994 0.9984 0.9963 0.9922 

7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

8 0 0.6634 0.4305 0.2725 0.1678 0.1001 0.0576 0.0319 0.0168 0.0084 0.0039 

I 0.9428 0.8131 0.6572 0.5033 0.3671 0.2553 0.1691 0.1064 0.0632 0.0352 

2 0.9942 0.9619 0.8948 0.7969 0.6785 0.5518 0.4278 0.3154 0.2201 0.1445 

3 0.9996 0.9950 0.9786 0.9437 0.8862 0.8059 0.7064 0.5941 0.4770 0.3633 

4 1.0000 0.9996 0.9971 0.9896 0.9727 0.9420 0.8939 0.8263 0.7396 0.6367 

5 1.0000 1.0000 0.9998 0.9988 0.9958 0.9887 0.9747 0.9502 0.9115 0.8555 

6 1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9964 0.9915 0.9819 0.9648 

7 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9983 0.9961 

8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

9 0 0.6302 0.3874 0.2316 0.1342 0.0751 0.0404 0.0207 0.0101 0.0046 0.0020 

0.9288 0.7748 0.5995 0.4362 0.3003 0.1960 0.1211 0.0705 0.0385 0.0195 

2 0.9916 0.9470 0.8591 0.7382 0.6007 0.4628 0.3373 0.2318 0.1495 0.0898 

3 0.9994 0.9917 0.9661 0.9144 0.8343 0.7297 0.6089 0.4826 0.3614 0.2539 

4 1.0000 0.9991 0.9944 0.9804 0.9511 0.9012 0.8283 0.7334 0.6214 0.5000 

5 1.0000 0.9999 0.9994 0.9969 0.9900 0.9747 0.9464 0.9006 0.8342 0.7461 

6 1.0000 1.0000 1.0000 0.9997 0.9987 0.9957 0.9888 0.9750 0.9502 0.9102 

7 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9986 0.9962 0.9909 0.9805 

8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9992 0.9980 

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

10 0 0.5987 0.3487 0.1969 0.1074 0.0563 0.0282 0.0135 0.0060 0.0025 0.0010 

0.9139 0.7361 0.5443 0.3758 0.2440 0.1493 0.0860 0.0464 0.0233 0.0107 

2 0.9885 0.9298 0.8202 0.6778 0.5256 0.3828 0.2616 0.1673 0.0996 0.0547 

3 0.9990 0.9872 0.9500 0.8791 0.7759 0.6496 0.5138 0.3823 0.2660 0.1719 

4 0.9999 0.9984 0.9901 0.9672 0.9219 0.8497 0.7515 0.6331 0.5044 0.3770 

5 1.0000 0.9999 0.9986 0.9936 0.9803 0.9527 0.9051 0.8338 0.7384 0.6230 

6 1.0000 1.0000 0.9999 0.9991 0.9965 0.9894 0.9740 0.9452 0.8980 0.8281 

7 1.0000 1.0000 1.0000 0.9999 0.9996 0.9984 0.9952 0.9877 0.9726 0.9453 

8 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983 0.9955 0.9893 

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990 

I 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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p 
n k 0.05 0.1 o 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

II 0 0.5688 0.3138 0.1673 0.0859 0.0422 0.0198 0.0088 0.0036 0.0014 0.0005 

0.8981 0.6974 0.4922 0.3221 0.1971 0.1130 0.0606 0.0302 0.0139 0.0059 

2 0.9848 0.9104 0.7788 0.6174 0.4552 0.3127 0.2001 0.1189 0.0652 0.0327 

3 0.9984 0.9815 0.9306 0.8389 0.7133 0.5696 0.4256 0.2963 0.1911 0.1133 

4 0.9999 0.9972 0.9841 0.9496 0.8854 0.7897 0.6683 0.5328 0.3971 0.2744 

5 1.0000 0.9997 0.9973 0.9883 0.9657 0.9218 0.8513 0.7535 0.6331 0.5000 

6 1.0000 1.0000 0.9997 0.9980 0.9924 0.9784 0.9499 0.9006 0.8262 0.7256 

7 1.0000 1.0000 1.0000 0.9998 0.9988 0.9957 0.9878 0.9707 0.9390 0.8867 

8 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9980 0.9941 0.9852 0.9673 

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9993 0.9978 0.9941 

I 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9995 

I I 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

12 0 0.5404 0.2824 0.1422 0.0687 0.0317 0.0138 0.0057 0.0022 0.0008 0.0002 

I 0.8816 0.6590 0.4435 0.2749 0.1584 0.0850 0.0424 0.0196 0.0083 0.0032 

2 0.9804 0.8891 0.7358 0.5583 0.3907 0.2528 0.1513 0.0834 0.0421 0.0193 

3 0.9978 0.9744 0.9078 0.7946 0.6488 0.4925 0.3467 0.2253 0.1345 0.0730 

4 0.9998 0.9957 0.9761 0.9274 0.8424 0.7237 0.5833 0.4382 0.3044 0.1938 

5 1.0000 0.9995 0.9954 0.9806 0.9456 0.8822 0.7873 0.6652 0.5269 0.3872 

6 1.0000 0.9999 0.9993 0.9961 0.9857 0.9614 0.9154 0.8418 0.7393 0.6128 

7 1.0000 1.0000 0.9999 0.9994 0.9972 0.9905 0.9745 0.9427 0.8883 0.8062 

8 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983 0.9944 0.9847 0.9644 0.9270 

9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9972 0.9921 0.9807 

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9968 

II 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 

12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

13 0 0.5133 0.2542 0.1209 0.0550 0.0238 0.0097 0.0037 0.0013 0.0004 0.0001 

I 0.8646 0.6213 0.3983 0.2336 0.1267 0.0637 0.0296 0.0126 0.0049 0.0017 

2 0.9755 0.8661 0.6920 0.5017 0.3326 0.2025 0.1132 0.0579 0.0269 0.0112 

3 0.9969 0.9658 0.8820 0.74 73 0.5843 0.4206 0.2783 0.1686 0.0929 0.0461 

4 0.9997 0.9935 0.9658 0.9009 0.7940 0.6543 0.5005 0.3530 0.2279 0.1334 

5 1.0000 0.9991 0.9925 0.9700 0.9198 0.8346 0.7159 0.5744 0.4268 0.2905 

6 1.0000 0.9999 0.9987 0.9930 0.9757 0.9376 0.8705 0.7712 0.6437 0.5000 

7 1.0000 1.0000 0.9998 0.9988 0.9944 0.9818 0.9538 0.9023 0.8212 0.7095 

8 1.0000 1.0000 1.0000 0.9998 0.9990 0.9960 0.9874 0.9679 0.9302 0.8666 

9 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9975 0.9922 0.9797 0.9539 

I 0 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9987 0.9959 0.9888 

II 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983 

12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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p 
n k 0.05 0.1 o 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

14 0 0.4877 0.2288 0.1028 0.0440 0.0178 0.0068 0.0024 0.0008 0.0002 0.000 I 

I 0.8470 0.5846 0.3567 0.1979 0.1010 0.0475 0.0205 0.0081 0.0029 0.0009 

2 0.9699 0.8416 0.6479 0.4481 0.2811 0.1608 0.0839 0.0398 0.0170 0.0065 

3 0.9958 0.9559 0.8535 0.6982 0.5213 0.3552 0.2205 0.1243 0.0632 0.0287 

4 0.9996 0.9908 0.9533 0.8702 0.7415 0.5842 0.4227 0.2793 0.1672 0.0898 

5 1.0000 0.9985 0.9885 0.9561 0.8883 0.7805 0.6405 0.4859 0.3373 0.2120 

6 1.0000 0.9998 0.9978 0.9884 0.9617 0.9067 0.8164 0.6925 0.5461 0.3953 

7 1.0000 1.0000 0.9997 0.9976 0.9897 0.9685 0.9247 0.8499 0.7414 0.6047 

8 1.0000 1.0000 1.0000 0.9996 0.9978 0.9917 0.9757 0.9417 0.8811 0.7880 

9 1.0000 1.0000 1.0000 1.0000 0.9997 0.9983 0.9940 0.9825 0.9574 0.9102 

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9989 0.9961 0.9886 0.9713 

II 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9978 0.9935 

12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9991 

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 

14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

15 0 0.4633 0.2059 0.0874 0.0352 0.0134 0.0047 0.0016 0.0005 0.0001 0.0000 

0.8290 0.5490 0.3186 0.1671 0.0802 0.0353 0.0142 0.0052 0.0017 0.0005 

2 0.9638 0.8159 0.6042 0.3980 0.2361 0.1268 0.0617 0.0271 0.0107 0.0037 

3 0.9945 0.9444 0.8227 0.6482 0.4613 0.2969 0.1727 0.0905 0.0424 0.0176 

4 0.9994 0.9873 0.9383 0.8358 0.6865 0.5155 0.3519 0.2173 0.1204 0.0592 

5 0.9999 0.9978 0.9832 0.9389 0.8516 0.7216 0.5643 0.4032 0.2608 0.1509 

6 1.0000 0.9997 0.9964 0.9819 0.9434 0.8689 0.7548 0.6098 0.4522 0.3036 

7 1.0000 1.0000 0.9994 0.9958 0.9827 0.9500 0.8868 0.7869 0.6535 0.5000 

8 1.0000 1.0000 0.9999 0.9992 0.9958 0.9848 0.9578 0.9050 0.8182 0.6964 

9 1.0000 1.0000 1.0000 0.9999 0.9992 0.9963 0.9876 0.9662 0.9231 0.8491 

10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9972 0.9907 0.9745 0.9408 

11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9981 0.9937 0.9824 

12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9963 

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 

14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

16 0 0.4401 0.1853 0.0743 0.0281 0.0100 0.0033 0.0010 0.0003 0.0001 0.0000 

0.8108 0.5147 0.2839 0.1407 0.0635 0.0261 0.0098 0.0033 0.0010 0.0003 

2 0.9571 0.7892 0.5614 0.3518 0.1971 0.0994 0.0451 0.0183 0.0066 0.0021 

3 0.9930 0.9316 0.7899 0.5981 0.4050 0.2459 0.1339 0.0651 0.0281 0.0106 

4 0.9991 0.9830 0.9209 0.7982 0.6302 0.4499 0.2892 0.1666 0.0853 0.0384 

5 0.9999 0.9967 0.9765 0.9183 0.8103 0.6598 0.4900 0.3288 0.1976 0.1051 

6 1.0000 0.9995 0.9944 0.9733 0.9204 0.8247 0.6881 0.5272 0.3660 0.2272 

7 1.0000 0.9999 0.9989 0.9930 0.9729 0.9256 0.8406 0.7161 0.5629 0.4018 

8 1.0000 1.0000 0.9998 0.9985 0.9925 0.9743 0.9329 0.8577 0.7441 0.5982 
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p 

n k 0.05 0.1 o 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

16 9 1.0000 1.0000 1.0000 0.9998 0.9984 0.9929 0.9771 0.9417 0.8759 0.7728 

I 0 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9938 0.9809 0.9514 0.8949 

II 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9851 0.9616 

12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991 0.9965 0.9894 

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9979 

14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

17 0 0.4181 0.1668 0.0631 0.0225 0.0075 0.0023 0.0007 0.0002 0.0000 0.0000 

I 0.7922 0.4818 0.2525 0.1182 0.050 I 0.0193 0.0067 0.0021 0.0006 0.000 I 

2 0.9497 0.7618 0.5198 0.3096 0.1637 0.0774 0.0327 0.0123 0.0041 0.0012 

3 0.9912 0.9174 0.7556 0.5489 0.3530 0.2019 0.1028 0.0464 0.0184 0.0064 

4 0.9988 0.9779 0.9013 0.7582 0.5739 0.3887 0.2348 0.1260 0.0596 0.0245 

5 0.9999 0.9953 0.9681 0.8943 0.7653 0.5968 0.4197 0.2639 0.1471 0.0717 

6 1.0000 0.9992 0.9917 0.9623 0.8929 0.7752 0.6188 0.4478 0.2902 0.1662 

7 1.0000 0.9999 0.9983 0.9891 0.9598 0.8954 0.7872 0.6405 0.4743 0.3145 

8 1.0000 1.0000 0.9997 0.9974 0.9876 0.9597 0.9006 0.8011 0.6626 0.5000 

9 1.0000 1.0000 1.0000 0.9995 0.9969 0.9873 0.9617 0.9081 0.8166 0.6855 

10 1.0000 1.0000 1.0000 0.9999 0.9994 0.9968 0.9880 0.9652 0.9174 0.8338 

II 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9970 0.9894 0.9699 0.9283 

12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9975 0.9914 0.9755 

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9981 0.9936 

14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9988 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 

16 1.0000 I .0000 I .0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

18 0 0.3972 0.1501 0.0536 0.0180 0.0056 0.0016 0.0004 0.0001 0.0000 0.0000 

0.7735 0.4503 0.2241 0.0991 0.0395 0.0142 0.0046 0.0013 0.0003 0.0001 

2 0.9419 0.7338 0.4797 0.2713 0.1353 0.0600 0.0236 0.0082 0.0025 0.0007 

3 0.9891 0.9018 0.7202 0.5010 0.3057 0.1646 0.0783 0.0328 0.0120 0.0038 

4 0.9985 0.9718 0.8794 0.7164 0.5187 0.3327 0.1886 0.0942 0.0411 0.0154 

5 0.9998 0.9936 0.9581 0.8671 0.7175 0.5344 0.3550 0.2088 0.1077 0.0481 

6 1.0000 0.9988 0.9882 0.9487 0.8610 0.7217 0.5491 0.3743 0.2258 0.1189 

7 1.0000 0.9998 0.9973 0.9837 0.9431 0.8593 0.7283 0.5634 0.3915 0.2403 

8 1.0000 1.0000 0.9995 0.9957 0.9807 0.9404 0.8609 0.7368 0.5778 0.4073 

9 1.0000 1.0000 0.9999 0.9991 0.9946 0.9790 0.9403 0.8653 0.7473 0.5927 

10 1.0000 1.0000 1.0000 0.9998 0.9988 0.9939 0.9788 0.9424 0.8720 0.7597 

II 1.0000 1.0000 1.0000 1.0000 0.9998 0.9986 0.9938 0.9797 0.9463 0.8811 

12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9986 0.9942 0.9817 0.9519 

13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9846 
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p 
n k 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

18 14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9990 0.9962 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 

17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

19 0 0.3774 0.1351 0.0456 0.0144 0.0042 0.0011 0.0003 0.0001 0.0000 0.0000 

0.7547 0.4203 0.1985 0.0829 0.0310 0.0104 0.0031 0.0008 0.0002 0.0000 

2 0.9335 0.7054 0.4413 0.2369 0.1113 0.0462 0.0170 0.0055 0.0015 0.0004 

3 0.9868 0.8850 0.6841 0.4551 0.2631 0.1332 0.0591 0.0230 0.0077 0.0022 

4 0.9980 0.9648 0.8556 0.6733 0.4654 0.2822 0.1500 0.0696 0.0280 0.0096 

5 0.9998 0.9914 0.9463 0.8369 0.6678 0.4739 0.2968 0.1629 0.0777 0.0318 

6 1.0000 0.9983 0.9837 0.9324 0.8251 0.6655 0.4812 0.3081 0.1727 0.0835 

7 1.0000 0.9997 0.9959 0.9767 0.9225 0.8180 0.6656 0.4878 0.3169 0.1796 

8 1.0000 1.0000 0.9992 0.9933 0.9713 0.9161 0.8145 0.6675 0.4940 0.3238 

9 1.0000 1.0000 0.9999 0.9984 0.9911 0.9674 0.9125 0.8139 0.6710 0.5000 

10 1.0000 1.0000 1.0000 0.9997 0.9977 0.9895 0.9653 0.9115 0.8159 0.6762 

II 1.0000 1.0000 1.0000 1.0000 0.9995 0.9972 0.9886 0.9648 0.9129 0.8204 

12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9969 0.9884 0.9658 0.9165 

13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9969 0.9891 0.9682 

14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9972 0.9904 

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9978 

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 

17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

20 0 0.3585 0.1216 0.0388 0.0115 0.0032 0.0008 0.0002 0.0000 0.0000 0.0000 

0.7358 0.3917 0.1756 0.0692 0.0243 0.0076 0.0021 0.0005 0.0001 0.0000 

2 0.9245 0.6769 0.4049 0.2061 0.0913 0.0355 0.0121 0.0036 0.0009 0.0002 

3 0.9841 0.8670 0.6477 0.4114 0.2252 0.1071 0.0444 0.0160 0.0049 0.0013 

4 0.9974 0.9568 0.8298 0.6296 0.4148 0.2375 0.1182 0.0510 0.0189 0.0059 

5 0.9997 0.9887 0.9327 0.8042 0.6172 0.4164 0.2454 0.1256 0.0553 0.0207 

6 1.0000 0.9976 0.9781 0.9133 0.7858 0.6080 0.4166 0.2500 0.1299 0.0577 

7 1.0000 0.9996 0.9941 0.9679 0.8982 0.7723 0.6010 0.4159 0.2520 0.1316 

8 1.0000 0.9999 0.9987 0.9900 0.9591 0.8867 0.7624 0.5956 0.4143 0.2517 

9 1.0000 1.0000 0.9998 0.9974 0.9861 0.9520 0.8782 0.7553 0.5914 0.4119 

10 1.0000 1.0000 1.0000 0.9994 0.9961 0.9829 0.9468 0.8725 0.7507 0.5881 

11 1.0000 1.0000 1.0000 0.9999 0.9991 0.9949 0.9804 0.9435 0.8692 0.7483 

12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9940 0.9790 0.9420 0.8684 

13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9985 0.9935 0.9786 0.9423 

14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9936 0.9793 
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D.2 Normal Distribution 

The following table lists the values of N0, 1(x) (see B.l.2). 

X 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

0 

0.5 

0.53983 

0.57926 

0.61791 

0.65542 

0.69146 

0.72575 

0.75804 

0.78814 

0.81594 

0.84134 

0.86433 

0.88493 

0.9032 

0.91924 

0.93319 

0.9452 

0.95543 

0.96407 

0.97128 

0.97725 

0.98214 

0.9861 

0.98928 

0.9918 

0.99379 

0.99534 

0.99653 

0.99744 

0.99813 

O.oJ 

0.50399 

0.5438 

0.58317 

0.62172 

0.6591 

0.69497 

0.72907 

0.76115 

0.79103 

0.81859 

0.84375 

0.8665 

0.88686 

0.9049 

0.92073 

0.93448 

0.9463 

0.95637 

0.96485 

0.97193 

0.97778 

0.98257 

0.98645 

0.98956 

0.99202 

0.99396 

0.99547 

0.99664 

0.99752 

0.99819 

0.02 

0.50798 

0.54776 

0.58706 

0.62552 

0.66276 

0.69847 

0.73237 

0.76424 

0.79389 

0.82121 

0.84614 

0.86864 

0.88877 

0.90658 

0.9222 

0.93574 

0.94738 

0.95728 

0.96562 

0.97257 

0.97831 

0.983 

0.98679 

0.98983 

0.99224 

0.99413 

0.9956 

0.99674 

0.9976 

0.99825 

0,03 

0.51197 

0.55172 

0.59095 

0.6293 

0.6664 

0.70194 

0.73565 

0.7673 

0.79673 

0.82381 

0.84849 

0.87076 

0.89065 

0.90824 

0.92364 

0.93699 

0.94845 

0.95818 

0.96638 

0.9732 

0.97882 

0.98341 

0.98713 

0.9901 

0.99245 

0.9943 

0.99573 

0.99683 

0.99767 

0.99831 

0.04 

0.51595 

0.55567 

0.59483 

0.63307 

0.67003 

0.7054 

0.73891 

0.77035 

0.79955 

0.82639 

0.85083 

0.87286 

0.89251 

0.90988 

0.92507 

0.93822 

0.9495 

0.95907 

0.96712 

0.97381 

0.97932 

0.98382 

0.98745 

0.99036 

0.99266 

0.99446 

0.99585 

0.99693 

0.99774 

0.99836 

0.05 

0.51994 

0.55962 

0.59871 

0.63683 

0.67364 

0.70884 

0.74215 

0.77337 

0.80234 

0.82894 

0.85314 

0.87493 

0.89435 

0.91149 

0.92647 

0.93943 

0.95053 

0.95994 

0.96784 

0.97441 

0.97982 

0.98422 

0.98778 

0.99061 

0.99286 

0.99461 

0.99598 

0.99702 

0.99781 

0.99841 

0.06 

0.52392 

0.56356 

0.60257 

0.64058 

0.67724 

0.71226 

0.74537 

0.77637 

0.80511 

0.83147 

0.85543 

0.87698 

0.89617 

0.91308 

0.92785 

0.94062 

0.95154 

0.9608 

0.96856 

0.975 

0.9803 

0.98461 

0.98809 

0.99086 

0.99305 

0.99477 

0.99609 

0.99711 

0.99788 

0.99846 

O.o7 
0.5279 

0.56749 

0.60642 

0.64431 

0.68082 

0.71566 

0.74857 

0.77935 

0.80785 

0.83398 

0.85769 

0.879 

0.89796 

0.91466 

0.92922 

0.94179 

0.95254 

0.96164 

0.96926 

0.97558 

0.98077 

0.985 

0.9884 

0.99111 

0.99324 

0.99492 

0.99621 

0.9972 

0.99795 

0.99851 

0.08 

0.53188 

0.57142 

0.61026 

0.64803 

0.68439 

0.71904 

0.75175 

0.7823 

0.81057 

0.83646 

0.85993 

0.881 

0.89973 

0.91621 

0.93056 

0.94295 

0.95352 

0.96246 

0.96995 

0.97615 

0.98124 

0.98537 

0.9887 

0.99134 

0.99343 

0.99506 

0.99632 

0.99728 

0.99801 

0.99856 

0.09 

0.53586 

0.57535 

0.61409 

0.65173 

0.68793 

0.7224 

0.7549 

0.78524 

0.81327 

0.83891 

0.86214 

0.88298 

0.90147 

0.91774 

0.93189 

0.94408 

0.95449 

0.96327 

0.97062 

0.9767 

0.98169 

0.98574 

0.98899 

0.99158 

0.99361 

0.9952 

0.99643 

0.99736 

0.99807 

0.99861 
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D.3 Student's t Distribution 

The following table lists the values of (see B.l.2): P(t df :S: x) = 1- L t df (t)dt. 

X 3 5 7 9 II 

0 0.5 0.5 0.5 0.5 0.5 0.5 

df 

13 

0.5 

15 

0.5 

17 19 

0.5 0.5 

21 23 25 

0.5 0.5 0.5 

0.1 0.532 0.537 0.538 0.538 0.539 0.539 0.539 0.539 0.539 0.539 0.539 0.539 0.539 

0.578 

0.616 

0.653 

0.689 

0.723 

0.578 0.578 

0.617 0.617 

0.654 0.654 

0.689 0.689 

0.723 

0.2 0.563 0.573 0.575 0.576 0.577 0.577 0.578 0.578 0.578 0.578 

0.3 0.593 0.608 0.612 0.614 0.615 0.615 0.616 0.616 0.616 0.616 

0.4 0.621 0.642 0.647 0.649 0.651 0.652 0.652 0.653 0.653 0.653 

0.5 0.648 0.674 0.681 0.684 0.685 0.687 0.687 0.688 0.688 0.689 

0.6 0.672 0.705 0.713 0.716 0.718 0.72 0.721 0.721 0.722 0.722 

0.7 0.694 0.733 0.742 0.747 0.749 0.751 0.752 0.753 0.753 0.754 

0.8 0.715 0.759 0.77 0.775 0.778 0.78 0.781 0.782 0.783 0.783 

0.9 0.733 0.783 0.795 0.801 0.804 0.806 0.808 0.809 0.81 0.81 

0.754 0.755 

0.784 0.784 

0.723 

0.755 

0.784 

0.75 0.804 0.818 0.825 0.828 0.831 0.832 0.833 0.834 0.835 

0.811 0.811 0.812 

0.836 0.836 0.837 

1.1 0.765 0.824 0.839 0.846 0.85 0.853 0.854 0.856 0.857 0.857 0.858 0.859 0.859 

1.2 0.779 0.842 0.858 0.865 0.87 0.872 0.874 0.876 

1.3 0.791 0.858 0.875 0.883 0.887 0.89 0.892 0.893 

1.4 0.803 0.872 0.89 0.898 0.902 0.905 0.908 0.909 

1.5 0.813 0.885 0.903 0.911 0.916 0.919 0.921 0.923 

1.6 0.822 0.896 0.915 0.923 0.928 0.931 0.933 0.935 

1.7 0.831 0.906 0.925 0.934 0.938 0.941 0.944 0.945 

1.8 0.839 0.915 0.934 0.943 0.947 0.95 0.952 0.954 

1.9 0.846 0.923 0.942 0.95 0.955 0.958 0.96 0.962 

0.877 0.878 0.878 0.879 0.879 

0.895 0.895 0.896 0.897 0.897 

0.91 0.911 0.912 0.913 0.913 

0.924 0.925 0.926 0.926 0.927 

0.936 0.937 0.938 0.938 0.939 

0.946 0.947 0.948 0.949 0.949 

0.955 0.956 0.957 0.958 0.958 

0.963 0.964 0.964 0.965 0.965 

0.969 0.97 0.971 0.971 0.972 

0.975 0.975 0.976 0.977 0.977 

2 0.852 0.93 0.949 0.957 0.962 0.965 0.967 0.968 

2.1 0.859 0.937 0.955 0.963 0.967 0.97 0.972 0.973 

2.2 

2.3 

2.4 

0.864 0.942 

0.869 0.948 

0.96 0.968 

0.965 0.973 

0.874 0.952 0.969 0.976 

0.972 0.975 0.977 0.978 0.979 0.98 0.98 0.981 0.981 

0.977 0.979 0.981 0.982 0.983 0.984 0.984 0.985 0.985 

0.98 0.982 0.984 0.985 0.986 0.987 0.987 0.988 0.988 

2.5 0.879 0.956 0.973 0.98 0.983 0.985 0.987 0.988 0.989 0.989 0.99 0.99 0.99 

2.6 0.883 0.96 0.976 0.982 

2. 7 0.887 0.963 0.979 0.985 

2.8 0.891 0.966 0.981 0.987 

2.9 0.894 0.969 0.983 0.989 

3 0.898 0.971 0.985 0.99 

3.1 0.901 0.973 0.987 0.991 

3.2 0.904 0.975 0.988 0.992 

3.3 0.906 0.977 0.989 0.993 

3.4 0.909 0.979 0.99 0.994 

3.5 0.911 0.98 0.991 0.995 

0.986 0.988 0.989 0.99 0.991 

0.988 0.99 0.991 0.992 0.992 

0.99 0.991 0.992 0.993 0.994 

0.991 0.993 0.994 0.995 0.995 

0.993 0.994 0.995 0.996 0.996 

0.991 

0.993 

0.994 

0.995 

0.996 

0.992 

0.993 

0.995 

0.996 

0.997 

0.994 0.995 0.996 0.996 0.997 0.997 0.997 

0.995 0.996 0.997 0.997 0.997 0.998 0.998 

0.995 0.996 0.997 0.998 0.998 0.998 0.998 

0.996 0.997 0.998 0.998 0.998 0.998 0.999 

0.997 0.998 0.998 0.998 0.999 0.999 0.999 

0.992 0.992 

0.994 0.994 

0.995 0.995 

0.996 0.996 

0.997 0.997 

0.997 0.998 

0.998 0.998 

0.998 0.999 

0.999 0.999 

0.999 0.999 
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D.4 Chi-Square Distribution 

Table of the one-sided chi-square probability: P(z~1 > x) = 1- ,bx~1 (t)dt. 

X 

0.317 

2 0.157 

3 0.083 

4 0.046 

5 0.025 

6 0.014 

7 0.008 

3 5 

0.801 0.963 

0.572 0.849 

0.392 0.700 

0.261 0.549 

0.172 0.416 

0.112 0.306 

0.072 0.221 

7 

0.995 

0.960 

0.885 

0.780 

0.660 

0.540 

0.429 

9 

df 
11 

0.999 1.000 

0.991 0.998 

0.964 0.991 

0.911 0.970 

0.834 0.931 

0.740 0.873 

0.637 0.799 

13 

1.000 

1.000 

0.998 

0.991 

0.975 

0.946 

0.902 

15 17 19 21 

1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 

1.000 1.000 1.000 1.000 

0.998 0.999 1.000 1.000 

0.992 0.998 0.999 1.000 

0.980 0.993 0.998 0.999 

0.958 0.984 0.994 0.998 

23 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.999 

25 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

8 0.005 0.046 0.156 0.333 0.534 0.713 0.844 0.924 0.967 0.987 0.995 0.998 0.999 

9 0.003 0.029 0.109 

I 0 0.002 0.019 0.075 

II 0.001 0.012 0.051 

12 0.00 I 0.007 0.035 

13 0.000 0.005 0.023 

14 0.000 0.003 0.016 

15 0.000 0.002 0.010 

16 0.000 0.00 I 0.007 

17 0.000 0.00 I 0.004 

18 0.000 0.000 0.003 

19 0.000 0.000 0.002 

20 0.000 0.000 0.00 I 

21 0.000 0.000 0.001 

0.253 

0.189 

0.139 

0.101 

0.072 

0.051 

0.036 

0.025 

0.017 

0.437 0.622 0.773 0.878 0.940 0.973 0.989 0.996 0.999 

0.350 0.530 0.694 0.820 0.904 0.953 0.979 0.991 0.997 

0.276 0.443 0.611 0.753 0.857 0.924 0.963 0.983 0.993 

0.213 0.364 0.528 0.679 0.800 0.886 0.940 0.970 0.987 

0.163 0.293 0.448 0.602 0.736 0.839 0.909 0.952 0.977 

0.122 0.233 0.374 0.526 0.667 0.784 0.870 0.927 0.962 

0.091 0.182 0.307 0.451 0.595 0.723 0.823 0.895 0.941 

0.067 0.141 0.249 0.382 0.524 0.657 0.770 0.855 0.915 

0.049 0.108 0.199 0.319 0.454 0.590 0. 711 0.809 0.882 

0.012 0.035 0.082 

0.008 0.025 0.061 

0.006 0.018 0.045 

0.004 0.013 0.033 

22 0.000 0.000 0.001 0.003 

23 0.000 0.000 0.000 0.002 

24 0.000 0.000 0.000 0.00 I 

25 0.000 0.000 0.000 0.00 I 

26 0.000 0.000 0.000 0.001 

27 0.000 0.000 0.000 0.000 

0.009 

0.006 

0.004 

0.003 

0.002 

0.001 

0.024 

0.018 

0.013 

0.009 

0.006 

0.005 

28 0.000 0.000 0.000 0.000 0.001 0.003 

29 0.000 0.000 0.000 0.000 0.001 0.002 

30 0.000 0.000 0.000 0.000 0.000 0.002 

31 0.000 0.000 0.000 0.000 0.000 0.00 I 

32 0.000 0.000 0.000 0.000 0.000 0.001 

33 0.000 0.000 0.000 0.000 0.000 0.001 

34 0.000 0.000 0.000 0.000 0.000 0.000 

35 0.000 0.000 0.000 0.000 0.000 0.000 

0.158 0.263 0.389 0.522 0.649 0.757 

0.123 0.214 0.329 0.457 0.585 0.70 I 

0.095 0.172 0.274 0.395 0.521 0.642 

0.073 0.137 0.226 0.337 0.459 0.581 

0.842 

0.797 

0.747 

0.693 

0.055 0.108 0.185 

0.042 0.084 0.149 

0.031 0.065 0.119 

0.023 0.050 0.095 

0.017 0.038 0.074 

0.012 0.029 0.058 

0.284 0.400 

0.237 0.344 

0.196 0.293 

0.161 0.247 

0.130 0.206 

0.105 0.171 

0.520 0.636 

0.461 0.578 

0.404 0.519 

0.350 0.462 

0.301 0.408 

0.256 0.356 

0.009 0.022 0.045 0.083 0.140 0.216 0.308 

0.007 0.016 0.035 0.066 0.114 0.180 0.264 

0.005 0.012 0.026 0.052 0.092 0.149 0.224 

0.003 0.009 0.020 0.040 0.074 0.123 0.189 

0.002 0.006 0.015 

0.002 0.005 0.0 II 

0.031 0.059 0.100 

0.024 0.046 0.081 

0.158 

0.131 

0.00 I 0.003 0.008 0.018 0.036 0.065 0.108 

0.001 0.002 0.006 0.014 0.028 0.052 0.088 

36 0.000 0.000 0.000 0.000 0.000 0.000 0.00 I 0.002 0.005 0.0 II 0.022 0.041 0.072 

37 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.008 0.017 0.033 0.058 
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0.5 Critical Values for the F Distribution 

For a= 0.99: 

df1 
df2 2 3 4 6 8 1 0 15 20 30 40 50 

1 4052 4999 5404 5624 5859 5981 6056 6157 6209 6260 6286 6302 

2 98.50 99.00 99.16 99.25 99.33 99.38 99.40 99.43 99.45 99.47 99.48 99.48 

3 34.12 30.82 29.46 28.71 27.91 27.49 27.23 26.87 26.69 26.50 26.41 26.35 

4 21.20 18.00 16.69 15.98 15.21 14.80 14.55 14.20 14.02 13.84 13.75 13.69 

5 16.26 13.27 12.06 11.39 10.67 10.29 10.05 9.72 9.55 9.38 9.29 9.24 

6 13.75 10.92 9.78 9.15 8.47 8.10 7.87 7.56 7.40 7.23 7.14 7.09 

7 12.25 9.55 8.45 7.85 7.19 6.84 6.62 6.31 6.16 5.99 5.91 5.86 

8 11.26 8.65 7.59 7.01 6.37 6.03 5.81 5.52 5.36 5.20 5.12 5.07 

9 10.56 8.02 6.99 6.42 5.80 5.47 5.26 4.96 4.81 4.65 4.57 4.52 

10 10.04 7.56 6.55 5.99 5.39 5.06 4.85 4.56 4.41 4.25 4.17 4.12 

For a= 0.95: 

df1 
df2 2 3 4 6 8 10 15 20 30 40 50 

1 161.45 199.50 215.71 224.58 233.99 238.88 241.88 245.95 248.02 250.10 251.14 251.77 

2 18.51 19.00 19.16 19.25 19.33 19.37 19.40 19.43 19.45 19.46 19.47 19.48 

3 10.13 9.55 9.28 9.12 8.94 8.85 8.79 8.70 8.66 8.62 8.59 8.58 

4 7.71 6.94 6.59 6.39 6.16 6.04 5.96 5.86 5.80 5.75 5.72 5.70 

5 6.61 5.79 5.41 5.19 4.95 4.82 

6 5.99 5.14 4.76 4.53 4.28 4.15 

7 5.59 4.74 4.35 4.12 3.87 3.73 

8 5.32 4.46 4.07 3.84 3.58 3.44 

9 5.12 4.26 3.86 3.63 3.37 3.23 

10 4.96 4.10 3.71 3.48 3.22 3.07 

11 4.84 3.98 3.59 3.36 3.09 2.95 

12 4.75 3.89 3.49 3.26 3.00 2.85 

13 4.67 3.81 3.41 3.18 2.92 2.77 

14 4.60 3.74 3.34 3.11 2.85 2.70 

15 4.54 3.68 3.29 3.06 2.79 2.64 

16 4.49 3.63 3.24 3.01 2.74 2.59 

17 4.45 3.59 3.20 2.96 2.70 2.55 

18 4.41 3.55 3.16 2.93 2.66 2.51 

19 4.38 3.52 3.13 2.90 2.63 2.48 

20 4.35 3.49 3.10 2.87 2.60 2.45 

30 4.17 3.32 2.92 2.69 2.42 2.27 

40 4.08 3.23 2.84 2.61 2.34 2.18 

60 4.00 3.15 2.76 2.53 2.25 2.10 

4.74 

4.06 

3.64 

3.35 

3.14 

2.98 

2.85 

2.75 

2.67 

2.60 

2.54 

2.49 

2.45 

2.41 

2.38 

2.35 

2.16 

2.08 

1.99 

4.62 

3.94 

3.51 

3.22 

3.01 

2.85 

2.72 

2.62 

2.53 

2.46 

2.40 

2.35 

2.31 

2.27 

2.23 

2.20 

2.01 

1.92 

1.84 

4.56 4.50 4.46 4.44 

3.87 3.81 3.77 3.75 

3.44 3.38 3.34 3.32 

3.15 3.08 3.04 3.02 

2.94 2.86 2.83 2.80 

2.77 2.70 2.66 2.64 

2.65 2.57 2.53 2.51 

2.54 2.47 2.43 2.40 

2.46 2.38 2.34 2.31 

2.39 2.31 2.27 2.24 

2.33 2.25 2.20 2.18 

2.28 2.19 2.15 2.12 

2.23 2.15 2.10 2.08 

2.19 2.11 2.06 2.04 

2.16 2.07 2.03 2.00 

2.12 2.04 1.99 1.97 

1.93 1.84 1.79 1.76 

1.84 1.74 1.69 1.66 

1.75 1.65 1.59 1.56 
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Datasets included in the book CD are presented in the form of Microsoft EXCEL 
files with a description worksheet. 

E.1 Breast Tissue 

The Breast Tissue. xls file contains I 06 electrical impedance measurements 
performed on samples of freshly excised breast tissue. Six classes of tissue were 
studied: 

CAR: 
MAS: 
CON: 

carcinoma (21 cases) 
mastopathy ( 18 cases) 
connective ( 14 cases) 

FAD: 
GLA: 
ADI: 

fibro-adenoma ( 15 cases) 
glandular ( 16 cases) 
adipose (22 cases) 

Impedance measurements were taken at seven frequencies and plotted in the 
real-imaginary plane, constituting the impedance spectrum from which the 
following features were computed: 

IO: 
PA500: 
HFS: 
DA: 
AREA: 
AIDA: 
MAXIP: 
DR: 

P: 

impedance at zero frequency (Ohm) 
phase angle at 500 KHz 
high-frequency slope of the phase angle 
impedance distance between spectral ends 
area under the spectrum 
area normalised by DA 
maximum amplitude of the spectrum 
distance between IO and the real part of the maximum frequency 
point 
length of the spectral curve 

Source: J Jossinet, INSERM U.281, Lyon, France. 

E.2 Car Sale 

The Car Sale. xl s file contains data on 22 cars that was collected between 
12 September, 2000 and 31 March, 2002. 

The variables are: 
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Sale 1: Date that a car was sold. 
Complaint: 

Sale2: 

Lost: 
End: 
Time: 

Date that a complaint about any type of malfunctioning was 
presented for the first time. 
Last date that a car accessory was purchased (unrelated to the 
complaint). 
Lost contact during the study? True = Yes; False =No. 
End date of the study. 
Number of days until event (Sale2, Complaint or End). 

Source: New and Used Car Stand in Porto, Portugal. 

E.3 Cells 

The Cells. xls file has the following two datasheets: 

1. CFU Datasheet 

The data consists of counts of "colony forming units", CFUs, in mice infected with 
a mycobacterium. Bacterial load is studied at different time points in three target 
organs: the spleen, the liver and the lungs. 

After the mice are dissected, the target organs are homogenised and plated for 
later bacterial counts (CFUs). 

There are two samples for each time point: 

1 Anti-inflammatory protein deficient group (knock-out group, KO). 
2 Normal control group (C). 

Both groups (1 and 2) dissected at different times are independent. 

2. SPLEEN Datasheet 

The data consists of stained cell counts from infected mice spleen, using two 
biochemical markers: CD4 and CD8. 

Cell counting is performed with a flow cytometry system. Both groups ( 1 and 2) 
dissected at different times are independent. 

Source: S Lousada, IBMC (Instituto de Biologia Molecular e Celular), Porto, 
Portugal. 

E.4 Clays 

The Clays . xl s file contains the analysis results of 94 clay samples from probes 
collected in an area with two geological formations (in the region of Anadia, 
Portugal). The following variables characterise the dataset: 
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Age: Geological age: 1 - pliocenic (good quality clay); 2 - pliocenic 
(bad quality clay); 3- holocenic. 

Level: Probe level (m). 
Grading: LG (%)-low grading:< 2 microns; 

MG (%)-medium grading: 2 2, < 62 microns; 
HG (%}-high grading: 2 62 microns. 

Minerals: Ilite, pyrophyllite, caolinite, lepidolite, quartz, goethite, K
feldspar, Na-feldspar, hematite(%). 

BS: Bending strength (Kg/cm2). 
Contraction: v/s (%)-volume contraction, 1st phase; 

s/c (%)-volume contraction, 2nd phase; 
tot(%)- volume contraction, total. 

Chemical analysis results: Si02, Ah03, Fe20 3, FeO, CaO, MgO, Na20, K20, 
Ti02 (%). 

Source: C Carvalho, IGM - Instituto Geol6gico-Mineiro, Porto, Portugal. 

E.S Cork Stoppers 

The Cork Stoppers. xls file contains measurements of cork stopper defects. 
These were automatically obtained by an image processing system on 150 cork 
stoppers belonging to three classes. 

The first column of the Cork Stoppers .xls datasheet contains the class 
labels assigned by human experts: 

1: 
2: 
3: 

Super Quality 
Normal Quality 
Poor Quality 

(n 1 =50 cork stoppers) 
(n2 =50 cork stoppers) 
(n3 =50 cork stoppers) 

The following columns contain the measurements: 

N: 
PRT: 
ART: 
PRM: 
ARM: 
NG: 
PRTG: 
ARTG: 
RAAR: 
RAN: 

Total number of defects. 
Total perimeter of the defects (in pixels). 
Total area of the defects (in pixels). 
Average perimeter of the defects (in pixels)= PRT/N
Average area of the defects (in pixels)= ART IN. 
Number of big defects (area bigger than an adequate threshold). 
Total perimeter of big defects (in pixels). 
Total area of big defects (in pixels). 
Area ratio of the defects= ARTG/ART. 
Big defects ratio= NG/N. 

Source: A Campilho, Dep. Engenharia Electrotecnica e de Computadores, 
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal. 
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E.6 CTG 

The CTG. xls file contains measurements and classification results of 
cardiotocographic (CTG) examinations of 2126 foetuses. The examinations were 
performed at Sao Joiio Hospital, Porto, Portugal. Cardiotocography is a popular 
diagnostic method in Obstetrics, consisting of the analysis and interpretation of the 
following signals: foetal heart rate; uterine contractions; foetal movements. 

The measurements included in the CTG. xls file correspond only to foetal heart 
rate features (e.g., basal value, accelerative/decelerative events), computed by an 
automatic system. The classification corresponds to a diagnostic category assigned 
by expert obstetricians independently of the CTG. 

The following cardiotocographic features are available in the CTG. xls file: 

LBE 

AC 
uc 
DS 
DR 

baseline value (medical expert) 
accelerations 
uterine contractions 
severe decelerations 
repetitive decelerations 
high freq. of the histogram 
number of histogram zeros 
number of histogram peaks 
histogram median 

LB baseline value (system) 
FM foetal movement 
DL light decelerations 
DP prolonged decelerations 
MIN low freq. of the histogram 
MEAN histogram mean 
MODE histogram mode 
v AR histogram variance 

MAX 

NZER 

NMAX 

MEDIAN 

WIDTH 

TEND 

ASTV 

MSTV 

ALTV 

MLTV 

histogram width (histogram of foetal heart rate values) 
histogram tendency: -1 =left assym.; 0 = symm.; 1 =right assym. 
percentage of time with abnormal short term (beat-to-beat) variability 
mean value of short term variability 
percentage of time with abnormal long term (one minute) variability 
mean value of long term variability 

The data is classified into ten classes: 

A: calm sleep 
B: rapid-eye-movement sleep 
C: calm vigilance 
D: active vigilance 
SH: shift pattern (A or SUSP with shifts) 
AD: accelerative/decelerative pattern (stress situation) 
DE: decelerative pattern (vagal stimulation) 
LD: largely decelerative pattern 
FS: flat-sinusoidal pattern (pathological state) 
SUSP: suspectpattern 

A column containing the codes of Normal (1), Suspect (2) and Pathologic (3) 
classification is also included. 

Source: 1 Bernardes, Faculdade de Medicina, Universidade do Porto, Porto, 
Portugal. 
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E.7 Culture 

The Culture. xls file contains percentages of the "culture budget" assigned to 
different cultural activities in 165 Portuguese boroughs in 1995. 

The boroughs constitute a sample of 3 regions: 

Region: I - Alentejo province; 
2 - Center provinces; 
3 -Northern provinces. 

The cultural activities are: 

Cine: 
Halls: 
Sport: 
Music: 
Literat: 
Heritage: 
Theatre: 
Fine Arts: 

Cinema and photography 
Halls for cultural activities 
Games and sport activities 
Musical activities 
Literature 
Cultural heritage (promotion, maintenance, etc.) 
Performing Arts 
Fine Arts (promotion, support, etc.) 

Source: INE- Instituto Nacional de Estatistica, Portugal. 

E.8 Fatigue 

The Fatigue. xls file contains results of fatigue tests performed on aluminium 
and iron specimens for the car industry. The specimens were subject to a sinusoidal 
load (20 Hz) until breaking or until a maximum of 107 (ten million) cycles was 
reached. There are two datasheets, one for the aluminium specimens and the other 
for the iron specimens. 

The variables are: 

Ref: 
Amp: 
NC: 
DFT: 
Break: 
AmpG: 

Specimen reference. 
Amplitude of the sinusoidal load in MPa. 
Number of cycles. 
Defect type. 
Yes/No according to specimen having broken or not. 
Amplitude group: I - Low; 2 - High. 

Source: Laborat6rio de Ensaios Tecnol6gicos, Dep. Engenharia Meciinica, 
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal. 
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E.9 FHR 

The FHR . xl s file contains measurements and classifications performed on 51 
foetal heart rate (FHR) signals with a 20-minute duration, and collected from 
pregnant women at intra-partum stage. 

All the signals were analysed by an automatic system (SP=SisPorto) and three 
human experts (El=Expert I, E2=Expert 2 and E3=Expert 3). 

The analysis results correspond to the following variables: 

Baseline: The baseline value represents the stable value of the foetal heart 
rate (in beats per minute). The variables are SPB, ElB, E2B, E3B. 

Class: The classification columns (variables SPC, EIC, E2C, E3C) have 
the following values: 
N (=0)- normal; S (=1)- suspect; P (=2)- pathologic. 

Source: J Bernardes, Faculdade de Medicina, Universidade do Porto, Porto, 
Portugal. 

E.10 FHR-Apgar 

The FHR-Apgar. xls file contains 227 measurements of foetal heart rate (FHR) 
tracings recorded just previous to birth, and the respective Apgar index, evaluated 
by obstetricians according to a standard clinical procedure one minute and five 
minutes after birth. All data was collected in Portuguese hospitals following a strict 
protocol. The Apgar index is a ranking index in the [0, 10] interval assessing the 
wellbeing of the newborn babies. Low values (below 5) are considered bad 
prognosis. Normal newborns have an Apgar above 6. 

The following measurements are available in the FHR-Apgar. xl s file: 

Apgarl: 
Apgar5: 
Duration: 
Baseline: 
Acelnum: 
Acelrate: 
ASTV: 
MSTV: 
ALTV: 
MLTV: 

Apgar measured at I minute after birth. 
Apgar measured at 5 minutes after birth. 
Duration in minutes of the FHR tracing. 
Basal value of the FHR in beat/min. 
Number ofFHR accelerations. 
Number ofFHR accelerations per minute. 
Percentage of time with abnormal short term variability. 
Average duration of abnormal short term variability. 
Percentage of time with abnormal long term variability. 
Average duration of abnormal long term variability. 

Source: D Ayres de Campos, Faculdade de Medicina, Universidade do Porto, 
Porto, Portugal. 
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E.11 Firms 

The Firms. xls file contains values of the following economic indicators relative 
to 838 Portuguese firms during the year 1995: 

Branch: 
GI: 
CAP: 
CA: 
NI: 

NW: 
P: 
GIR: 
CAPR: 
A/C: 
DEPR: 

l = Services; 2 = Commerce; 3 = Industry; 4 = Construction. 
Gross Income (millions of Portuguese Escudos). 
Invested Capital (millions of Portuguese Escudos). 
Capital + Assets. 
Net Income (millions of Portuguese Escudos) = GI - (wages + 
taxes). 
Number of workers. 
Apparent Productivity= GI/NW. 
Gross Income Revenue= NI/GI. 
Capital Revenue = Nil CAP. 
Assets share = (CA-CAP)/CAP %. 
Depreciations + provisions. 

Source: Jomal de Noticias - Suplemento, Nov. 1995, Porto, Portugal. 

E.12 Flow Rate 

The Flow Rate.xls file contains daily measurements of river flow (m3/s), 
during December 1985 and January 1986. Measurements were performed at two 
river sites in the North of Portugal: AC- Alto Cavado Dam; T- Toco Dam. 

Source: EDP - Electricidade de Portugal, Portugal. 

E.13 Foetal Weight 

The Foetal Weight. xls file contains echographic measurements obtained 
from 414 newborn babies shortly before delivery at four Portuguese hospitals. 
Obstetricians use such measurements in order to predict foetal weight and related 
delivery risk. 

The following measurements, all obtained under a strict protocol, are available: 

MW 
GA 
BPD 
AP 
FTW 
CPB 

Mother's weight 
Gestation age in weeks 
Biparietal diameter 
Abdominal perimeter 
Foetal weight at birth 
Cephalic perimeter at birth 

MH 
DBMS 
CP 
FL 
FTL 

Mother's height 
Days between meas. and birth 
Cephalic perimeter 
Femur length 
Foetal length at birth 

Source: A Matos, Hospital de Sao Joao, Porto, Portugal. 
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E.14 Forest Fires 

The Forest Fires. xls file contains data on the number of fires and area of 
burnt forest in continental Portugal during the period 1943-1978. The variables are: 

Year: 1943 -1978. 
Nr: Number of forest fires. 
Area: Area of burnt forest in ha. 

Source: INE- Instituto Nacional de Estatistica, Portugal. 

E.15 Freshmen 

The Freshmen . xl s file summarises the results of an enquiry carried out at the 
Faculty of Engineering, Porto University, involving 132 freshmen. The enquiry 
intention was to evaluate the freshmen attitude towards the "freshmen initiation 
rites". 

The variables are: 

SEX: 
AGE: 
CS: 
COURSE: 

DISPL: 
ORIGIN: 

WS: 

OPTION: 
LIKE: 

EXAM 1-5: 
EXAMAVG: 
INIT: 

Questions: 

1 =Male; 2 =Female. 
Freshman age in years. 
Civil status: 1 = single; 2 =married. 
1 = civil engineering; 2 = electrical and computer engineering; 
3 = informatics; 4 = mechanical engineering; 5 = material 
engineering; 6 = mine engineering; 7 = industrial management 
engineering; 8 = chemical engineering. 
Displacement from the local of origin: 1 =Yes; 2 =No. 
1 = Porto; 2 = North; 3 = South; 4 = Center; 5 = Islands; 6 = 
Foreign. 
Work status: 1 =Only studies; 2 =Part-time work; 3 =Full-time 
work. 
Preference rank when choosing the course: 1 .. .4. 
Attitude towards the course: 1 = Like; 2 = Dislike; 3 = No 
comment. 
Scores in the first 5 course examinations, measured in [0, 20]. 
Average ofthe examination scores. 
Whether or not the freshman was initiated: 1 =Yes; 2 =No. 

Q 1: Initiation makes it easier to integrate in the academic life. 
Q2: Initiation is associated to a political ideology. 
Q3: Initiation quality depends on who organises it. 
Q4: I liked to be initiated. 
Q5: Initiation is humiliating. 
Q6: I felt compelled to participate in the Initiation. 
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Q7: I participated in the Initiation on my own will. 
Q8: Those that do not participate in the Initiation feel excluded. 

All the answers were scored as: I = Fully disagree; 2 = Disagree; 3 = No 
comment; 4 =Agree; 5 =Fully agree. The missing value is coded 9. 

The file contains extra variables in order to facilitate the data usage. These are: 

Positive average: I, if the average is at least I 0; 0, otherwise. 
QIP, ... , Q8P: The same as Ql, ... , Q8 if the average is positive; 0, 

otherwise. 

Source: H Rebelo, Serviyo de Apoio Psico16gico, Faculdade de Engenharia, 
Universidade do Porto, Porto, Portugal. 

E.16 Heart Valve 

The Heart Valve. xls file contains the data from the follow-up study of 526 
patients submitted to a heart valve implant at Sao Joao Hospital, Porto, Portugal. 

The variables are: 

VALVE: 
SIZE: 
AGE: 
EXCIRC: 
CLAMP: 
PRE C: 

Valve type. 
Size of the prosthesis. 
Patient age at time of surgery. 
Extra body circulation in minutes. 
Time of aorta clamp. 
Pre-surgery functional class, according to NYHA (New York 
Heart Association): 0 =No symptoms; I, 2 =Mild symptoms; 3, 
4 =Severe symptoms). 

POST C: Post-surgery functional class, according to NYHA. 
ACT C: Functional class at last consultation, according to NYHA. 
DATE OP: Date ofthe operation. 
DDOP: Death during operation (TRUE, FALSE). 
DATE DOP: Date of death due to operation complications. 
DCAR: Death by cardiac causes in the follow-up (TRUE, FALSE). 
DCARTYPE: Type of death for DCAR =TRUE: 1 -Sudden death; 2- Cardiac 

failure; 3 -Death in there-operation. 
NDISF: Normo-disfunctional valve (morbility factor): 1 =No; 2 =Yes. 
VAL VESUB: Subject to valve substitution in the follow-up (TRUE, FALSE). 
LOST: Lost in the follow-up (not possible to contact). 
DATE_ EC: Date of endocarditis (morbility factor). 
DATE_ ECO: Date of last echocardiogram (usually the date used for follow-up 

when there is no morbility factor) or date of last consultation. 
DATE LC: Date of the last consultation (usually date of follow-up when no 

morbility is present). 
DATE FU: Date of death in the follow-up. 
REOP: Re-operation? (TRUE, FALSE). 



428 Appendix E- Datasets 

DATE_REOP:Re-operation date. 

The Survival Data worksheet contains the data needed for the "time-until
event" study and includes the following variables computed from the previous 
ones: 

EC: TRUE, if endocarditis has occurred; FALSE, otherwise. 
EVENT: True, if an event (re-operation, death, endocarditis) has occurred 
DATE_STOP: Final date for the study, computed either from the events 

(EVENT=TRUE) or as the maximum of the other dates (last 
consultation, etc.) (EVENT=F ALSE). 

Source: Centro de Cirurgia Tonicica, Hospital de Sao Joao, Porto, Portugal. 

E.17 Infarct 

The Infarct. xls file contains the following measurements performed on 64 
patients with myocardial infarction: 

EF: Ejection Fraction = (dyastolic volume - systolic volume)/dyastolic 
volume, evaluated on echocardiographic images. 

CK: Maximum value of creatinokynase enzyme (measuring the degree of 
muscular necrosis of the heart). 

lAD: Integral of the amplitude of the QRS spatial vector during abnormal 
depolarization, measured on the electrocardiogram. The QRS spatial 
vector is the electrical vector during the stimulation of the heart left 
ventricle. 

GRD: Ventricular gradient = integral of the amplitude of the QRST spatial 
vector. The QRST spatial vector is the electrical vector during the 
stimulation of the heart left ventricle, followed by its relaxation back 
down to the restful state. 

SCR: Score (0 to 5) of the necrosis severeness, based on the 
vectocardiogram. 

Source: C Abreu-Lima, Faculdade de Medicina, Universidade do Porto, Porto, 
Portugal. 

E.18 Joints 

The Joints. xls file contains 78 measurements of joint surfaces in the granite 
structure of a Porto street. The variables are: 

Phi: 
Theta: 

Azimuth CO) of the joint. 
Pitch (0 ) of the joint. 



Appendix E - Datasets 429 

x,y, z: Cartesian co-ordinates corresponding to (Phi, Theta). 

Source: C Marques de Sa, Dep. Geologia, Faculdade de Ciencias, Universidade do 
Porto, Porto, Portugal. 

E.19 Metal Firms 

The Metal Firms. xls file contains benchmarking study results concerning the 
metallurgical industry. The sample is composed of eight firms. The data includes 
scores, percentages and other enquiry results in the following topics: 

Leadership; 
Policy and Strategy; 
People management - organizational structure; 
People management - policies; 
People management - evaluation and development of competence; 
Assets management - financial; 
Process management; 
Client satisfaction; 
Social impact; 
Results (objectives, rentability, productivity, investment, growth). 

Source: L Ribeiro, Dep. Engenharia Metalurgica e de Materiais, Faculdade de 
Engenharia, Universidade do Porto, Porto, Portugal. 

E.20 Meteo 

The Met eo. xls file contains data of weather variables reported by 25 
meteorological stations in the continental territory of Portugal. The variables are: 

Pmax: 
RainDays: 
T80: 
T81: 
T82: 

Maximum precipitation (mm) in 1980. 
Number of rainy days. 
Maximum temperature (0 C) in the year 1980. 
Maximum temperature (0C) in the year 1981. 
Maximum temperature eC) in the year 1982. 

Source: INE- Instituto Nacional de Estatistica, Portugal. 

E.21 Moulds 

The Moulds . xl s file contains paired measurements performed on 100 moulds of 
bottle bottoms using three methods: 
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RC: Ring calibre; 
CG: Conic gauge; 
EG: End gauges. 

Source: J Rademaker, COVEF A, Leerdam, The Netherlands. 

E.22 Neonatal 

The Neonatal. xls file contains neonatal mortality rates in a sample of 29 
Portuguese localities (1980 data). The variables are: 

MORT-H: 
MORT-I: 

Neonatal mortality rate at home (in 1/1000) 
Neonatal mortality rate at Health Centre (in 111000) 

Source: INE- Instituto Nacional de Estatistica, Portugal. 

E.23 Programming 

The Programming. xls file contains data collected for a pedagogical study 
concerning the teaching of "Programming in Pascal" to first year Electrical 
Engineering students. As part of the study, 271 students were enquired during the 
years 1986-88. The results of the enquiry are summarised in the following 
variables: 

SCORE: 
F: 
0: 
PROG: 

AB: 

BA: 

H: 

K: 
LANG: 

Final score in the examinations ([0, 20]). 
Freshman? 0 = No, 1 = Yes. 
Was Electrical Engineering your first option? 0 =no, 1 =yes. 
Did you learn programming at the secondary school? 0 = no; 1 = 
scarcely; 2 = a lot. 
Did you learn Boole's Algebra in secondary school? 0 = no; 1 
scarcely; 2 = a lot. 
Did you learn binary arithmetic in secondary school? 0 = no; 1 
scarcely; 2 = a lot. 
Did you learn digital systems in secondary school? 0 = no; 
scarcely; 2 = a lot. 
Knowledge factor: 1 if(Prog + AB + BA +H) :2: 5; 0 otherwise. 
If you have learned programming in the secondary school, which 
language did you use? 0 = Pascal; 1 = Basic; 2 = other. 

Source: J Marques de Sa, Dep. Engenharia Electrotecnica e de Computadores, 
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal. 
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E.24 Rocks 

The Rocks. xls file contains a table of 134 Portuguese rocks with names, 
classes, code numbers, values of oxide composition in percentages (Si02, ••• , Ti02) 

and measurements obtained from physical-mechanical tests: 

RMCS: 
RCSG: 

RMFX: 
MVAP: 
AAPN: 
PAOA: 
COLT: 
RDES: 
RCHQ: 

Compression breaking load, DIN 52105/E226 standard (kg/cm2). 
Compression breaking load after freezing/thawing tests, DIN 
52105/E226 standard (kg/cm2). 
Bending strength, DIN 52112 standard (kg/cm2). 
Volumetric weight, DIN 52102 standard (Kg/m3). 
Water absorption at NP conditions, DIN 52103 standard(%). 
Apparent porosity, LNEC E-216-1968 standard(%). 
Thermal linear expansion coefficient (x 10"6/ 0 C). 
Abrasion test, NP-309 (mm). 
Impact test: minimum fall height (em). 

Source: IGM - Instituto Geol6gico-Mineiro, Porto, Portugal, collected by J G6is, 
Dep. Engenharia de Minas, Faculdade de Engenharia, Universidade do Porto, 
Porto, Portugal. 

E.25 Signal & Noise 

The Signal+Noise worksheet of the Signal & Noise. xls file contains 
100 equally spaced values of a noise signal generated with a chi-square 
distribution, to which were added impulses with arrival times following a Poisson 
distribution. The amplitudes of the impulses were also generated with a chi-square 
distribution. The resulting signal with added noise is shown in the Signal+Noise 
variable. 

A threshold value (variable THRESHOLD) can be specified in order to detect 
the signal impulses. Changing the value of the threshold will change the number of 
true (Correct Detections variable) and false impulse detections. 

The computed sensibility and specificity are shown at the bottom of the 
Signal+Noise datasheet. 

The Data worksheet ofthe Signal & Noise.xls file contains the data 
used for ROC curve studies, with column A containing 8 times the signal + noise 
sequence and column B the true detections for 8 different thresholds (0.8, 1, 2, 3, 4, 
5, 6, 7). 

Source: J Marques de Sa, Dep. Engenharia Electrotecnica e de Computadores, 
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal. 



432 Appendix E - Datasets 

E.26 Soil Pollution 

The Soil Pollution. xls file contains thirty measurements of Ph-tetraethyl 
concentrations in ppm (parts per million) collected at different points in the soil of 
a petrol processing plant in Portugal. The variables are: 

x,y,z: 

c: 
xm,ym: 

Space coordinates in metres (geo-references ofMatosinhos Town 
Hall); z is a depth measurement. 
Ph-tetraethyl concentration in ppm. 
x, y referred to the central (mean) point. 

The following computed variables were added to the datasheet: 

phi, theta: longitude and co-latitude of the negative of the local gradient at 
each point, estimated by 6 methods (M1, M2, M3, R4, R5, R6): 
M1, M2 and M3 use the resultant of 1, 2 and 3 fastest descent 
vectors; R4, R5, R6: use linear interpolation of the concentration 
in 4, 5, and 6 nearest points. A zero value codes a missing value. 

Source: A Filiza, Dep. Engenharia de Minas, Faculdade de Engenharia, 
Universidade do Porto, Porto, Portugal. The phi and theta angles were computed 
by J Marques de Sa, Dep. Engenharia Electrotecnica e de Computadores, 
Faculdade de Engenharia, Universidade do Porto, Porto, Portugal. 

E.27 Stars 

The Stars. xls file contains measurements of star positions. The stars are from 
two constellations, Pleiades and Praesepe. To each constellation corresponds a 
datasheet: 

Pleiades (positions ofthe Pleiades' stars in 1969). Variables: 

Hertz 

PTV 
RAh 
RAm 

RAs 
DEd 
DEm 
DEs 
PHI 
THETA 

Hertzsprung catalog number 
Photo-visual magnitude 
Right Ascension (h) 
Right Ascension (min) 
Right Ascension ( s) 
Declination (de g) 
Declination (arcmin) 
Declination (arc sec) 
Longitude (computed from RAh, RAm and RAs) 
Latitude (computed from DEd, DEmand DEs) 

PTV is a dimensionless measure given by -2.5log(light energy)+ constant. The 
higher PTV is the lower is the star shine. 
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Source: Warren Jr WH, US Naval Observatory Pleiades Catalog, 1969. 

Praesepe (positions of Praesepe stars measured by Gould BA and Hall A). 
Variables: 

Gab Right Ascension (h) measured by Gould 
Gam Right Ascension (min) measured by Gould 
Gas Right Ascension (s) measured by Gould 
Hah Right Ascension (h) measured by Hall 
Ham Right Ascension (min) measured by Hall 
Has Right Ascension (s) measured by Hall 
Gdh Declination ( deg) measured by Gould 
Gdm Declination (min) measured by Gould 
Gds Declination (s) measured by Gould 
Hdh Declination (de g) measured by Hall 
Hdm Declination (min) measured by Hall 
Hds Declination (s) measured by Hall 
Gphi Longitude according to Gould 
Gtheta Latitude according to Gould 
Hphi Longitude according to Hall 
Htheta Latitude according to Hall 

Source: Chase EHS, The Astronomical Journal, 1889. 

E.28 Stock Exchange 

The Stock Exchange. xls file contains data from daily share values of 
Portuguese enterprises listed on the Lisbon Stock Exchange Bourse, together with 
important economic indicators, during the period of June 1, 1999 through August 
31, 2000. The variables are: 

Lisbor6M: 
Euribor6M: 
BVL30: 
BCP: 
BESC: 
BRISA: 
CIMPOR: 
EDP: 
SONAE: 
PTEL: 
CHF: 
JPY: 
USD: 

Bank of Portugal Interest Rate for 6 months. 
European Interest Rate for 6 months. 
Lisbon Stock Exchange index ("Bolsa de Valores de Lisboa"). 
Banco Comercial Portugues. 
Banco Espirito Santo. 
Road construction firm. 
Cement firm. 
Electricity of Portugal Utilities Company. 
Large trade firm. 
Portuguese telephones. 
Swiss franc (exchange rate in Euros ). 
Japanese yen (exchange rate in Euros). 
US dollar (exchange rate in Euros). 

Source: Portuguese bank newsletter bulletins. 



434 Appendix E - Datasets 

E.29 VCG 

The VCG. xl s file contains measurements of the mean QRS vector performed in a 
set of 120 vectocardiograms (VCG). 

QRS designates a sequence of electrocardiographic waves occurring during 
ventricular activation. As the electrical heart vector evolves in time, it describes a 
curve in a horizontal plane. The mean vector, during the QRS period, is commonly 
used for the diagnosis of right ventricular hypertrophy. 

The mean vector was measured in 120 patients by the following three methods: 

H: Half area: the vector that bisects the QRS loop into two equal areas. 
A: Amplitude: the vector computed with the maximum amplitudes in two 

orthogonal directions (x, y). 
1: Integral: The vector computed with the signal areas along (x, y). 

Source: C Abreu-Lima, Faculdade de Medicina, Universidade do Porto, Porto, 
Portugal. 

E.30 Wave 

The Wave. xls file contains eleven angular measurements corresponding to the 
direction of minimum acoustic pressure in an ultrasonic radiation field, using two 
types of transducers: TRa and TRb. 

Source: D Freitas, Dep. Engenharia Electrotecnica e de Computadores, Faculdade 
de Engenharia, Universidade do Porto, Porto, Portugal. 

E.31 Weather 

The Weather. xl s file contains measurements of several meteorological 
variables made in Porto at 12HOO and grouped in the following datasheets: 

Data 1: 
Weather data refers to the period of January 1, 1999 through August 23, 2000. All 
measurements were made at 12HOO, at "Rua dos Bragas" (Bragas Street), Porto, 
Portugal. The variables are: 

T: Temperature COC); 
H: Humidity(%); 
WS: Wind speed (m/s), 
WD: Wind direction (anticlockwise, relative to North); 
NS: Projection ofWD in the North-South direction; 
EW: Projection ofWD in the East-West direction. 
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Data 2: 
Wind direction measured at "Rua dos Bragas", Porto, Portugal, over several days in 
the period January 1, 1999 through August 23,2000 (12HOO). The variables are: 

WD: 
SEASON: 

Wind direction (anticlockwise, relative to North); 
0 =Winter; 1 =Spring; 2 =Summer; 3 =Autumn. 

Data 3: 
Wind direction measured during March, 1999 at 12HOO in two locations in Porto, 
Portugal: 

WDB: "Bragas" Street, Porto; WDF: "Formosa" Street, Porto. 

Data4: 
Time of occurrence of the maximum daily temperature at "Rua dos Bragas", Porto, 
for the following months: January, February and July, 2000. The variables are: 

Tmax: Maximum temperature COC). 
Time: Time of occurrence of maximum temperature. 
TimeNr: Number codifying the time in [0, 1], with 0 = 0:00:00 (12:00:00 

AM) and 1 = 23:59:59 (11:59:59 P.M). 

Source: "Estar;:ao Meteoro16gica da FEUP" and "Direcr;:ao Regional do Ambiente", 
Porto, Portugal. Compiled by J G6is, Dep. Engenharia de Minas, Faculdade de 
Engenharia, Universidade do Porto, Porto, Portugal. 

E.32 Wines 

The Wines. xls file contains the results of chemical analyses performed on 67 
Portuguese wines. The WINE column is a label, with the VB code for the white 
wines (30 cases) and the VT code for the red wines (37 cases). The data sheet gives 
the concentrations (mg/1) of: 

ASP: aspartame; GLU: glutamate; 
SER: serine; GLN: glutamine; 
GLY: glycine; THR: threonine; 
ARG: arginine; ALA: alanine; 
TYR: tyrosine; ETA: ethanolamine; 
MET: methionine; HIST A: histamine; 
METIL: methylamine; PHE: phenylalanine; 
LEU: leucine; ORN: ornithine; 
ETIL: ethylamine; TIRA: thyramine; 
ISO: isoamilamine; PRO: proline; 
TRY +FEN: tryptamine+l3-phenylethylamine 

ASN: 
HIS: 
CIT: 
GABA: 
VAL: 
TRP: 
ILE: 
LYS: 
PUT: 

asparagine; 
histidine; 
citruline; 
y-aminobutyric acid; 
valine; 
tryptophan; 
isoleucine; 
lysine; 
putrescine; 

Source: P Herbert, Dep. Engenharia Quimica, Faculdade de Engenharia, 
Universidade do Porto, Porto, Portugal. 
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F.1 MATLAB Functions 

The functions below, implemented in MATLAB, are available in files with the 
same function name and suffix ". m". Usually these files should be copied to the 
MATLAB work directory. 

Function 

k = ainv(rbar,p) 

h=colatplot(a,kl) 

as=convazi(a) 

as=convlat(a) 

d=dirdif(a,b) 

[ko,z,zc]=kappa(x,alpha) 

h=longplot(a) 

m meandir(a,alphal) 

c=pccorr(x) 

polar2d(a,mark) 

polar3d(a) 

[m,rw,rhow]=pooledmean(a) 

p=rayleigh(a) 

[x,y,z,f,t,r] = resultant(a) 

v=rotate(a) 

t=scattermx(a) 

unifplot(a) 

[w,wc]=unifscores(a,alpha) 

f=velcorr(x,icov) 

f=vmises2cdf(a,k) 

a=vmises2rnd(n,mu,k) 

a=vmises3rnd(n,k) 

delta=vmisesinv(k, p, alphal) 

Described In 

Commands 10.3 

Commands 10.1 

Commands 10.2 

Commands 10.2 

Commands 10.2 

Section 5.2.4.2 

Commands 10.1 

Commands 10.2 

Section 8.1 

Commands 10.1 

Commands 10.1 

Commands 10.2 

Commands 10.4 

Commands 10.2 

Commands 10.2 

Commands 10.2 

Commands 10.1 

Commands 10.4 

Section 8.2 

Commands 10.3 

Commands 10.3 

Commands 10.3 

Commands 10.3 
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[u2,uc]=watson(a,f,alphal) 

[gw,gc]=watsongw(a, alpha) 

[u2,uc]=watsonvmises(a,alphal) 

[fo,fc,kl,k2]=watswill(al,a2,alpha) 

F .2 Tools EXCEL File 

The Tools. xls file has the following data sheets: 

Commands 10.4 

Commands 10.4 

Commands 10.4 

Commands 10.4 

Nr of Bins 

Conflnt 
Corr Test 
Broken Stick 

Computes the number of histogram bins using the criteria of 
Sturges, Larson and Scott (see section 2.2.2, for details). 
Computes confidence intervals for a proportion and a variance. 
Computes the 5% critical value for the correlation test. 
Computes the expected length percentage of the kth largest 
segment of a stick, with total length one, randomly broken into d 
segments (see section 8.2, for details). 

The Macros of the Tools. xls EXCEL file must be enabled in order to work 
adequately (use security level Medium in the Macro Security button of the 
EXCEL Options menu). 

F.3 SCSIZE Program 

Displays a picture box containing graphics of the following variables, for a two
class linear classifier with specified Battacharrya distance (Mahalanobis distance 
of the means) and for several values of the dimensionality ratio, n!d: 

Bayes error; 
Expected design set error (resubstitution method); 
Expected test set error (holdout method). 

Both classes are assumed to be represented by the same number of patterns per 
class, n. 

The user only has to specify the dimension d and the square of the Battacharrya 
distance (computable by several statistical software products). 

For any chosen value of n/d, the program also displays the standard deviations 
of the error estimates when the mouse is clicked over a selected point of the picture 
box. 

The expected design and test set errors are computed using the formulas 
presented in the work of Foley (Foley, 1972). The formula for the expected test set 
error is an approximation formula, which can produce slightly erroneous values, 
below the Bayes error, for certain n/d ratios. 

The program is installed in the Windows standard way. 



References 

Chapters 1 and 2 

Anderson TW, Finn JD (1996) The New Statistical Analysis of Data. Springer-Verlag New 
York, Inc. 

Beltrami E ( 1999) What is Random? Chance and Order in Mathematics and Life. Springer
Verlag New York, Inc. 

Bendat JS, Piersol AG ( 1986) Random Data Analysis and Measurement Procedures. Wiley, 
lnterscience. 

Biran A, Breiner M (1995) MATLAB for Engineers, Addison-Wesley Pub. Co. Inc. 
Buja A, Tukey PA (1991) Computing and Graphics in Statistics. Springer-Verlag. 
Chatfield C (1981) Statistics for Technology. Chapman & Hall Inc. 
Cleveland WS (1984) Graphical Methods for Data Presentation: Full Scale Breaks, Dot 

Charts, and Multibased Logging. The American Statistician, 38:270-280. 
Cleveland WS ( 1984) Graphs in Scientific Publications. The American Statistician, 38, 270-

280. 
Cox DR, Snell EJ (1981) Applied Statistics. Chapman & Hall Inc. 
Dixon WJ, Massey Jr FJ ( 1969). Introduction to Statistical Analysis. McGraw Hill Pub. Co. 
Foster JJ (1993) Starting SPSS/PC+ and SPSS for Windows. Sigma Press. 
Gilbert N ( 1976) Statistics. W. B. Saunders Co. 
Green SB, Salkind NJ, Akey TM (1997) Using SPSS for Windows. Analyzing and 

Understanding Data. Prentice-Hall, Inc. 
Hoe! PG ( 1976) Elementary Statistics. John Wiley & Sons Inc., Int. Ed. 
Iversen GR ( 1997) Statistics. The Conceptual Approach. Springer-Verlag. 
Johnson RA, Bhattacharyya GK ( 1987) Statistics. Principles & Methods. John Wiley & 

Sons, Inc. 
Larson HJ ( 1975) Statistics: An Introduction. John Wiley & Sons, Inc. 
Martinez WL, Martinez AR (2002) Computational Statistics Handbook with MATLAB®. 

Chapman & Hall/CRC. 
Meyer SL ( 1975) Data Analysis for Scientists and Engineers. John Wiley & Sons, Inc. 
Milton JS, McTeer PM, Corbet JJ (2000) Introduction to Statistics. McGraw Hill College 

Div. 
Mood AM, Graybill FA, Boes DC (1974) Introduction to the Theory of Statistics. McGraw

Hill Pub. Co. 
Nie NH, Hull CH, Jenkins JG, Steinbrenner K, Bent DH (1970) Statistical Package for the 

Social Sciences. McGraw Hill Pub. Co. 
Salsburg D (2001) The Lady Tasting Tea: How Statistics Revolutionized Science in the 

Twentieth Century. W H Freeman & Co. 
Sanders DH ( 1990) Statistics. A Fresh Approach. McGraw-Hill Pub. Co. 
Scott OW ( 1979) On Optimal and Data-Based Histograms. Biometrika, 66:605-610. 
Sellers GR ( 1977) Elementary Statistics. W. B. Saunders Co. 



440 References 

Spiegel MR, Schiller J, Srinivasan RA (2000) Schaum's Outline of Theory and Problems of 
Probability and Statistics. McGraw-Hill Pub. Co. 

Sturges HA ( 1926) The Choice of a Class Interval. J. Am. Statist. Assoc., 21 :65-66. 
Waller RA (1979) Statistics. An Introduction to Numerical Reasoning. Holden-Day Inc. 

Chapters 3, 4 and 5 

Andersen EB (1997) Introduction to the Statistical Analysis of Categorical Data. Springer
Verlag. 

Anderson TW, Finn JD (1996) The New Statistical Analysis of Data. Springer-Verlag New 
York, Inc. 

Barlow RE, Proschan F (1975) Statistical Theory of Reliability and Life Testing. Holt, 
Rinehart & Winston, Inc. 

Beltrami E (1999) What is Random? Chance and Order in Mathematics and Life. Springer
Verlag New York, Inc. 

Bishop YM, Fienberg SE, Holland PW (1975) Discrete Multivariate Analysis. Theory and 
Practice. The MIT Press. 

Blom G ( 1989) Probability and Statistics, Theory and Applications. Springer-Verlag New 
York Inc. 

Box GEP, Hunter JS, Hunter WG (1978) Statistics for Experimenters: An Introduction to 
Design, Data Analysis and Model Building. John Wiley & Sons, Inc. 

Breiman L, Friedman JH, Olshen RA, Stone CJ (1993) Classification and Regression Trees. 
Chapman & Hall I CRC. 

Chow SL (1996) Statistical Significance. Rationale, Validity and Utility. Sage Publications 
Ltd. 

Cohen J (1983) Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Lawrence 
Erlbaum Associates, Publishers. 

Conover WJ (1980) Practical Nonparametric Statistics. John Wiley & Sons, Inc. 
D' Agostino RB, Stephens MA (1986) Goodness-of-Fit Techniques. Marcel Dekker Inc. 
Dixon WJ, Massey Jr. FJ (1969) Introduction to Statistical Analysis. McGraw-Hill Pub. Co. 
Dodge Y (1985) Analysis of Experiments with Missing Data. John Wiley & Sons, Inc. 
Hoe! PG (1976) Elementary Statistics. John Wiley & Sons, Inc., Int. Ed. 
Dudewicz EJ, Mishra SN (1988) Modem Mathematical Statistics. John Wiley & Sons, Inc. 
Everitt BS (1977) The Analysis of Contingency Tables. Chapman & Hall, Inc. 
Gardner MJ, Altman DG (1989) Statistics with Confidence - Confidence Intervals and 

Statistical Guidelines. British Medical Journal. 
Gibbons JD (1985) Nonparametrical Statistic Inference. Marcel Dekker, Inc. 
Hettmansperger TP (1984) Statistical Inference Based on Ranks. John Wiley & Sons, Inc. 
Hollander M, Wolfe DA (1973) Nonparametric Statistical Methods. John Wiley & Sons, 

Inc. 
Iversen GR (1997) Statistics. The Conceptual Approach. Springer-Verlag. 
James LR, Mulaik SA, Brett JM (1982) Causal Analysis. Assumptions, Models and Data. 

Sage Publications Ltd. 
Kachigan SK ( 1986) Statistical Analysis. Radius Press. 
Kanji GK (1999) 100 Statistical Tests. Sage Publications Ltd. 
Kenny DA (1979) Correlation and Causality. John Wiley & Sons, Inc. 
Lavalle IH (1970) An Introduction to Probability, Decision and Inference. Holt, Rinehart & 

Winston, Inc. 



References 441 

Lindman HR (1974) Analysis of Variance in Complex Experimental Designs. W.H. 
Freeman & Co. 

Mason RL, Gunst RF, Hess JL (1989) Statistical Design and Analysis of Experiments with 
Applications to Engineering and Science. John Wiley & Sons, Inc. 

Milton JS, McTeer PM, Corbet JJ (2000) Introduction to Statistics. McGraw Hill College 
Div. 

Montgomery DC (1984) Design and Analysis of Experiments. John Wiley & Sons, Inc. 
Montgomery DC (1991) Introduction to Statistical Quality Control. John Wiley & Sons, Inc. 
Mood AM, Graybill FA, Boes DC (1974) Introduction to the Theory of Statistics. McGraw-

Hill Pub. Co. 
Murphy KR, Myors B (1998) Statistical Power Analysis. Lawrence Erlbaum Associates, 

Publishers. 
Randles RH, Wolfe DA (1979) Introduction to the Theory of Nonparametric Statistics. 

Wiley. 
Sachs L ( 1982) Applied Statistics. Springer-Verlag New York, Inc. 
Sanders DH ( 1990) Statistics, A Fresh Approach. McGraw-Hill Pub. Co. 
Sellers GR (1977) Elementary Statistics. W. B. Saunders Co. 
Shapiro SS, Wilk SS, Chen SW (1968) A comparative study of various tests for normality. J 

Am Stat Ass, 63:1343-1372. 
Siegel S, Castellan Jr NJ ( 1998) Nonparametric Statistics for the Behavioral Sciences. 

McGraw Hill Book Co. 
Spanos A ( 1999) Probability Theory and Statistical Inference - Econometric Modeling with 

Observational Data. Cambridge University Press. 
Spiegel MR, Schiller J, Srinivasan RA (2000) Schaum's Outline of Theory and Problems of 

Probability and Statistics. McGraw-Hill Pub. Co. 
Sprent P ( 1993) Applied Non-Parametric Statistical Methods. CRC Press. 
Waller RA (1979) Statistics. An Introduction to Numerical Reasoning. Holden-Day, Inc. 
Wilcox RR (2001) Fundamentals of Modem Statistical Methods. Springer-Verlag. 

Chapter6 

Argentiero P, Chin R, Baudet P (1982) An Automated Approach to the Design of Decision 
Tree Classifiers. IEEE Tr. Patt. An. Mach. Intel., 4:51-57. 

Bell DA ( 1978) Decision Trees, Tables and Lattices. In: Batchelor BG ( ed) Case 
Recognition. Ideas in Practice. Plenum Press, New York, pp. 119-141. 

Centor RM (1991) Signal Detectability: The Use of ROC Curves and Their Analyses. 
Medical Decision Making, 11: I 02-l 06. 

Chang CY (1973) Dynamic Programming as Applied to Feature Subset Selection in a 
Pattern Recognition System. IEEE Tr. Syst. Man and Cybem., 3:166-171. 

Cooley WW, Lohnes PR (1971) Multivariate Data Analysis. Wiley. 
Devijver P A (1982) Statistical Pattern Recognition. In: Fu KS ( ed) Applications of Case 

Recognition, CRC Press Inc., pp. 15-35. 
Duda RO, Hart PE ( 1973) Pattern Classification and Scene Analysis. J. Wiley & Sons, Inc. 
Dudewicz EJ, Mishra SN (1988) Modem Mathematical Statistics. John Wiley & Sons, Inc. 
Foley DH (1972) Considerations of sample and feature size. IEEE Tr. Info. Theory, 18:618-

626. 
Fu KS (1982) Introduction. In: Fu KS (ed) Applications of Pattern Recognition. CRC Press 

Inc., pp. 2-13. 



442 References 

Fukunaga K (1969) Calculation of Bayes' Recognition Error for Two Multivariate Gaussian 
Distributions. IEEE Tr. Comp., 18:220-229. 

Fukunaga K (1990) Introduction to Statistical Pattern Recognition. Academic Press. 
Fukunaga K, Hayes RR (1989a) Effects of Sample Size in Classifier Design. IEEE Tr. Patt. 

Anal. Mach. Intel., 11 :873-885. 
Fukunaga K, Hayes RR ( 1989b) Estimation of Classifier Performance. IEEE Tr. Patt. Anal. 

Mach. Intel., 11:1087-110 I. 
Jain AK, Chandrasekaran B (1982) Dimensionality and Sample Size Considerations in 

Pattern Recognition. In: Krishnaiah PR, Kana! LN (eds) Handbook of Statistics, 2, North 
Holland Pub. Co., pp. 835-855. 

Jain AK, Duin RPW, Mao J (2000). Statistical Pattern Recognition: A Review. IEEE Tr. 
Patt. Anal. Mach. Intel., 1:4-37. 

Kittler J (1978) Feature Set Search Algorithms. In (Chen CH ed): Pattern Recognition and 
Signal Processing, Noordhoff Pub. Co. 

Klecka WR (1980) Discriminant Analysis. Sage Publications Ltd. 
Lusted L ( 1978) General Problems in Medical Decision Making with Comments on ROC 

Analysis. Seminars in Nuclear Medicine, 8:299-306. 
Metz CE ( 1978) Basic Principles of ROC Analysis. Seminars in Nuclear Medicine, 8:283-

298. 
Metz CE, Goodenough OJ, Rossmann K (1973) Evaluation of Receiver Operating 

Characteristic Curve Data in Terms of Information Theory, with Applications in 
Radiography. Radiology, 109:297-304. 

Mucciardi AN, Gose EE (1971) A Comparison of Seven Techniques for Choosing Subsets 
of Pattern Recognition Properties. IEEE Tr. Comp., 20:1023-1031. 

Raudys S, Pikelis V (1980) On dimensionality, sample size, classification error and 
complexity of classification algorithm in case recognition. IEEE Tr. Patt. Anal. Mach. 
Intel., 2:242-252. 

Sharma S (1996) Applied Multivariate Techniques. John Wiley & Sons, Inc. 
Swain PH (1977) The decision tree classifier: Design and potential. IEEE Tr. Geosci. Elect., 

15:142-147. 
Swets JA (1973) The Relative Operating Characteristic in Psychology. Science, 182:990-

1000. 
Tabachnick BG, Fidell LS (1989) Using Multivariate Statistics. Harper & Row Pub., Inc. 
Toussaint GT (1974) Bibliography on Estimation of Misclassification. IEEE Tr. Info. 

Theory, 20:472-479. 

Chapter 7 

Aldrich JH, Nelson FD (1984). Linear probability, Iogit, and probit models. Sage 
Publications Ltd. 

Anderson JM (1982) Logistic Discrimination. In: Krishnaiah PR, Kana! LN (eds) Handbook 
of Statistics vol. 2, North Holland Pub. Co., 169-191. 

Bates OM, Watts DG (1988) Nonlinear Regression Analysis and its Applications. John 
Wiley & Sons, Inc. 

Bronson R ( 1991) Matrix Methods. An Introduction. Academic Press, Inc. 
Box GE, Hunter JS, Hunter WG (1978) Statistics for Experimenters: An Introduction to 

Design, Data Analysis and Model Building. John Wiley & Sons. 
Cooley WW, Lohnes PR (1971) Multivariate Data Analysis. Wiley. 



References 443 

Darlington RB ( 1990) Regression and Linear Models. McGraw-Hill Pub. Co .. 
Dixon WJ, Massey FJ (1983).Introduction to Statistical Analysis. McGraw Hill Pub. Co. 

Draper NR, Smith H ( 1966) Applied Regression Analysis. John Wiley & Sons, Inc. 

Dudewicz EJ, Mishra SN ( 1988) Modern Mathematical Statistics. John Wiley & Sons, Inc. 

Mason RL, Gunst RF, Hess JL ( 1989) Statistical Design and Analysis of Experiments with 

Applications to Engineering and Science. John Wiley & Sons, Inc. 

Mendenhall W, Sincich T ( 1996) A Second Course in Business Statistics - Regression 

Analysis. Prentice Hall, Inc. 
Seber GA, Wild CJ ( 1989) Nonlinear Regression. John Wiley & Sons, Inc. 

Tabachnick BG, Fidell LS ( 1989) Using Multivariate Statistics. Harper & Row Pub., Inc. 

Chapter 8 

Cooley WW, Lohnes PR ( 1971) Multivariate Data Analysis. Wiley. 
Fukunaga K ( 1990) Introduction to Statistical Pattern Recognition. Academic Press, Inc. 

Jambu M ( 1991) Exploratory and Multivariate Data Analysis. Academic Press, Inc. 

Jackson JE ( 1991) A User's Guide to Principal Components. John Wiley & Sons, Inc. 

Johnson M (1991) Exploratory and Multivariate Data Analysis. Academic Press, Inc. 

Johnson RA, Wichern OW ( 1992) Applied Multivariate Statistical Analysis. Prentice-Hall 

International, Inc. 
Loehlin JC ( 1987) Latent Variable Models: An Introduction to Latent, Path, and Structural 

Analysis. Erlbaum Associates, Publishers. 
Manly BF (1994) Multivariate Statistical Methods. A Primer. Chapman & Hall, Inc. 

Morisson OF ( 1990) Multivariate Statistical Methods. McGraw-Hill Pub. Co. 

Sharma S ( 1996) Applied Multivariate Techniques. John Wiley & Sons, Inc. 

Yelicer WF, Jackson ON (1990) Component Analysis vs. Factor Analysis: Some Issues in 

Selecting an Appropriate Procedure. Multivariate Behavioral Research, 25, 1-28. 

Chapter 9 

Chatfield C ( 1981) Statistics for Technology (2"d Edition). Chapman & Hall, Inc. 

Collet D ( 1994) Modelling Survival Data in Medical Research. Chapman & Hall, Inc. 

Cox DR, Oakes D (1984) Analysis of Survival Data. Chapman & Hall, Inc. 

Dawson-Saunders B, Trapp RG ( 1994) Basic & Clinical Biostatistics. Appleton & Lange. 

Dudewicz EJ, Mishra SN (1988) Modern Mathematical Statistics. John Wiley & Sons, Inc. 

Elandt-Johnson RC, Johnson NL ( 1980). Survival Models and Data Analysis. John Wiley & 

Sons, Inc. 
Feigl P, Zelen M ( 1965). Estimation of Exponential Survival Probabilities with Concomitant 

Information. Biometrics, 21, 826- 838. 
Gehan EA, Siddiqui MM ( 1973). Simple Regression Methods for Survival Time Studies. 

Journal Am. Stat. Ass., 68, 848-856. 
Gross AJ, Clark VA ( 1975). Survival Distributions: Reliability Applications in the Medical 

Sciences. John Wiley & Sons, Inc. 
Hahn GJ, Shapiro SS (1967) Statistical Models in Engineering. John Wiley & Sons, Inc. 

Miller R (1981) Survival Data. John Wiley & Sons, Inc. 
Rosner B ( 1995) Fundamentals of Biostatistics. Duxbury Press, Int. Thomson Pub. Co. 



444 References 

Chapter 10 

Fisher NI, Best DJ (1984) Goodness-of-Fit Tests for Fisher's Distribution on the Sphere. 
Austral. J. Statist., 26:142-150. 

Fisher NI, Lewis T, Embleton BJJ (1987) Statistical Analysis of Spherical Data. Cambridge 
University Press. 

Greenwood JA, Durand D ( 1955) The Distribution of Length and Components of the Sum 
ofn Random Unit Vectors. Ann. Math. Statist., 26:233-246. 

Gumbel EJ, Greenwood JA, Durand D (1953) The Circular Normal Distribution: Theory 
and Tables. J. Amer. Statist. Assoc., 48: 131: 152. 

Hill GW ( 1976) New Approximations to the von Mises Distribution. Biometrika, 63:676-
678. 

Hill GW (1977) Algorithm 518. Incomplete Bessel Function 10: The Von Mises Distribution. 
ACM Tr. Math. Software, 3:270-284. 

Jammalamadaka SR (1984) Nonparametric Methods in Directional Data Analysis. In: 
Krishnaiah PR, Sen PK (eds), Handbook of Statistics, vol. 4, Elsevier Science B.V., 755-
770. 

Kanji GK (1999) 100 Statistical Tests. Sage Publications Ltd. 
Mardia KV, Jupp PE (2000) Directional Statistics. John Wiley and Sons, Inc. 
Schou G (1978) Estimation of the Concentration Parameter in von Mises Distributions. 

Biometrika, 65:369-377. 
Upton GJG (1973) Single-Sample Test for the von Mises Distribution. Biometrika, 60:87-

99. 
Upton GJG (1986) Approximate Confidence Intervals for the Mean Direction of a von 

Mises Distribution. Biometrika, 73:525-527. 
Watson GS, Williams EJ (1956) On the Construction of Significance Tests on the Circle and 

the Sphere. Biometrika, 48:344-352. 
Wilkie D (1983) Rayleigh Test for Randomness of Circular Data. Appl. Statist., 7:311-312. 
Wood, ATA (1994) Simulation ofthe von Mises Fisher Distribution. Comm. Statist. Simul., 

23:157-164. 
Zar JH ( 1996) Biostatistical Analysis. Prentice Hall, Inc. 

Appendices A, B and C 

Aldrich, JH, Nelson FD (1984). Linear probability, logit, and probit models. Sage 
Publications Ltd. 

BJorn G (1989) Probability and Statistics, Theory and Applications. Springer-Verlag New 
York Inc. 

Borel E, Deltheil R, Huron R (1964) Probabilites. Erreurs. Collection Armand Colin. 
Brunk HD (1975) An Introduction to Mathematical Statistics. Xerox College Pub. 
Burington RS, May DC (1970) Handbook of Probability and Statistics with Tables. 

McGraw-Hill Pub. Co. 
Chatfield C (1981) Statistics for Technology. Chapman & Hall Inc. 
Dudewicz EJ, Mishra SN (1988) Modem Mathematical Statistics. John Wiley & Sons, Inc. 
Dwass M (1970) Probability. Theory and Applications. W. A. Benjamin, Inc. 
Feller W (1968) An Introduction to Probability Theory and its Applications. John Wiley & 

Sons, Inc. 
Galambos J (1984) Introduction to Probability Theory. Marcel Dekker, Inc. 



References 445 

Johnson NL, Kotz S ( 1970) Discrete Distributions. John Wiley & Sons, Inc. 

Johnson NL, Kotz S ( 1970) Continuous Univariate Distributions (vols I, 2). John Wiley & 

Sons, Inc. 
Lavalle IH ( 1970) An Introduction to Probability, Decision and Inference. Holt, Rinehart & 

Winston, Inc. 
Mardia KV, Jupp PE ( 1999) Directional Statistics. John Wiley & Sons, Inc. 

Papoulis A (1965) Probability, Random Variables and Stochastic Processes, McGraw-Hill 

Pub. Co. 
Renyi A ( 1970) Probability Theory. North Holland Pub. Co. 

Ross SM (1979) Introduction to Probability Models. Academic Press, Inc. 

Spanos A ( 1999) Probability Theory and Statistical Inference- Econometric Modeling with 

Observational Data. Cambridge University Press. 
Wilcox RR (200 I) Fundamentals of Modern Statistical Methods. Springer-Verlag. 



Index 

A 
accuracy, 68 
actuarial table, 307 
adjusted prevalences, 207 
alternative hypothesis, 85 
ANOVA, 114 

one-way, 117 
two-way, 127 

AS analysis, 94 

B 

backward search, 221, 264 
bar graph, 31 
baseline hazard, 323 
Bayes classifier, 203 
Bayes' Theorem, 359, 376 
Bernoulli trial, 77, 381 
beta coefficient, 240 
beta function, 396 
Bhattacharyya distance, 210, 221 
bias, 68, 191, 405 
binomial distribution, 368 
broken stick model, 290 

c 
CART method, 231 
causality, 101 
censored cases, 307 
Central Limit Theorem, 378 
central moments, 366 
chaos, 3 
Chebyshev Theorem, 368 
circular plot, 329 
circular variance, 332, 403 
classification matrix, 198 
classification risk, 205 
coefficient of determination, 241 
co-latitude plot, 339, 345 
Commands 

2.1 (frequency table), 29 

2.2 (bar graph), 31 
2.3 (histogram), 38 
2.4 (cross table), 41 
2.5 (scatter plots), 43 
2.6 (box plot), 45 
2.7 (descriptive statistics), 45 
2.8 (correlation), 55 
3.1 (conf. int. of mean), 75 
3.2 (case selection), 76 
3.3 (probabilities), 81 
4.1 (single meant test), 99 
4.2 (correlation test), I 0 I 
4.3 (independent samples t test), 110 
4.4 (paired samples t test), 113 
4.5 (one-way ANOVA), 121 
4.6 (two-way ANOVA), 137 
5.1 (runs test), 144 
5.2 (case weighing), 147 
5.3 (binomial test), 148 
5.4 <i goodness of fit), 152 
5.5 (goodness of fit tests), 154 
5.6 (distribution plots), 155 
5.7 (contingency table tests), 161 
5.8 (two indep. samples tests), 169 
5.9 (two paired samples tests), 174 
5.10 (Kruskal-Wallis test), 183 
5.11 (Friedmann test), 185 
6. I (discriminant analysis), 20 I 
6.2 (ROC curve), 219 
6.3 (tree classifiers), 233 
7.1 (simple linear regression), 242 
7.2 (ANOVA test in regression), 249 
7.3 (non-linear regression), 262 
7.4 (stepwise regression), 265 
7.5 (ridge regression), 276 
7.6 (logit and probit regression), 280 
8.1 (pc and factor analysis), 289 
9.1 (survival analysis), 310 
I 0.1 (directional data plots), 331 
10.2 (direct. data descriptives), 333 
I 0.3 (von Mises distributions), 338 
10.4 (directional data tests), 342 



448 Index 

communality, 300 
compound experiment, 358 
concentration parameter, 332, 396, 403 
concordant pair, 57 
conditional distribution, 375 
conditional probability, 356 
confidence interval, 69 
confidence level, 13, 69, 87, 369 
consistency, 405 
contingency table, 39, 158 
continuity correction, 145 
contrasts, 122, 133 
control chart, 74 
control group, 106 
convolution, 377 
Cook's distance, 266 
correlation, 53, 375 

matrix, 53 
Pearson correlation, I 00 
rank correlation, 56 
Spearman correlation, 56, 166 

covariance, 284, 375 
matrix, 196, 375 

Cox regression, 322 
critical region, 88 
critical value, 97 
cross table, 39 
cross validation, 226 
cumulative distribution, 153 

D 
data 

deterministic data, I 
discrete data, 28 
grouped data, 43 
missing data, 22, 29 
random data, 2 
rank data, I 0 
sorting, 27 
spreadsheet, 21 
transposing, 28 

dataset 
Breast Tissue, 123, 227, 419 
Car Sale, 306, 419 
Cells, 420 
Clays, 181, 278, 420 
Cork Stoppers, 36, 47, 50, 54, 56, 73, 
75, 80, 118, 150, 182, 194, 222, 239, 
286,293,421 
CTG, 82,422 
Culture, 423 

Fatigue, 310, 317, 423 
FHR, 62, 177, 186,424 
FHR-Apgar, 132, 219, 424 
Firms, 425 
Flow Rate, 425 
Foetal Weight, 254, 264, 273, 425 
Forest Fires, 143, 426 
Freshmen, 40, 59, 78, 147, 149, 160, 
163, 182, 426 
Heart Valve, 312, 319, 427 
Infarct, 428 
Joints, 328, 329, 336, 346, 428 
Metal Firms, 176, 184, 429 
Meteo, 21, 29, 97, 99, 101,429 
Moulds, 429 
Neonatal, 430 
Programming, 165, 173, 215, 430 
Rocks,292,298,431 
Signal & Noise, 216,431 
Soil Pollution, 344, 346, 349, 432 
Stars, 432 
Stock Exchange,262,433 
VCG, 331, 434 
Wave,434 
Weather, 329,341,347,434 
Wines, 108,173,435 

De Moivre's Theorem, 370 
decile, 47 
decision 

function, 191 
region, 191 
rule, 191, 228 
threshold, 86 
tree, 227 

declination, 327 
degrees of freedom, 49, 80, 398, 40 I 
deleted residuals, 266 
density function, 13, 362 
dependent samples, I 06 
dimensional reduction, 284, 289 
dimensionality ratio, 21 I 
discordant pair, 57 
distribution 

Bernoulli, 381 
Beta, 396 
binomial, 12, 77, 368, 385 
chi-square, 80, 149, 398 
circular normal, 402 
exponential, 305, 318, 392 
F, 81, 102, 117,401 
function, II, 13, 361 
Gamma, 395 



Gauss, 13, 370, 391 
geometric, 383 
hypergeometric, 316, 384 
multimodal, 47 
multinomial, 148, 386 
normal, 13,370,391 
Poisson, 388 
Rayleigh, 395 
Student's t, 72, 92, 96, 399 
uniform, 363, 382, 389 
von Mises, 334, 402 
von Mises-Fisher, 334, 403 
Weibull, 305, 320, 394 

dynamic search, 221 

E 
effects, I 05, 114 

additive effects, 128 
interaction effect, 130 

eigenvalue, eigenvector, 285, 344 
empirical distribution, 152 
ergodic process, 8 
error, 238 

experimental error, 115, 128, 130 
function, 370 
mean square error, I 16 
probability of, 210 
proportional reduction of, 60 
root mean square error, 49 
standard deviation, 212 
sum of squares, 115, 241 
test set error, 21 I 
training set error, 198, 211 
type I error, 87 
type II error, 89 
variance, 224 

expectation, 364 
explanatory variable, 322 
exponential regression, 261 
exposed group, 315 
extra sums of squares, 258 

F 
factor loadings, 292, 300 
factorial experiment, 129 
factors, I 05, 114, 127 
failure rate, 305 
feature selection, 221 
Fisher coefficients, 198 
fixed factors, I 14 
forward search, 221, 264 

Index 449 

frequency, 7 
absolute frequency, II, 28, 46, 353 
relative frequency, II, 28, 353 
table, 29, 36 

full model, 250, 259 

G 
gamma function, 395 
gamma statistic, 167 
Gauss' approximation formulae, 367 
Gaussian distribution, 370 
generalised variance, 286 
Gini index, 231 
Goodman and Kruskal lambda, 168 
goodness of tit, 148, !52, !56 
Greenwood's formula, 313 
Guttman-Kaiser criterion, 290 

H 
hazard function, 305 
hazard ratio, 322 
histogram, 36 
holdout method, 224 
Hotteling's T2, 288 
hyperellisoid, 196 
hyperplane, 192, 194 

I 

independent events, 356 
independent samples, I 05 
index of association, 168 
inter-quartile range, 43, 47, 49, 362 
interval estimation, 14, 67 

one-sided, 69 
two-sided, 69 

J 
joint distribution, 372 

K 
Kaiser criterion, 290 
Kaplan-Meier estimate, 311 
kappa statistic, 168 
Kolmogorov axioms, 354 
kurtosis, 52 

L 
Laplace rule, 355 



450 Index 

large sample, 73 
Larson's formula, 37 
latent variable, 301 
Law of Large Numbers, 369 
least square error, 238 
leave-one-out method, 225 
life table, 307 
likelihood, 203, 406 
linear discriminant, I 92, 20 I 
linear regression, 238 
log-cumulative hazard, 321 
logit model, 276 
log-likelihood, 277 
longitude plot, 345 
loss matrix, 206 
lower control limit, 74 

M 
Mahalanobis distance, 196 
manifest variables, 30 I 
Mantel-Haenszel procedure, 316 
marginal distribution, 372 
matched samples, I 06 
maximum likelihood estimate, 406 
mean, 13, 45, 365 

direction, 332 
ensemble mean, 8 
estimate, 71 
population mean, 7 
response, 239 
resultant, 332 
sample mean, 7 
temporal mean, 8 
trimmed mean, 46 

median, 43, 46, 47, 362 
minimum risk, 206 
mode, 47 
modified Levene test, 268 
moment generating function, 367 
moments, 366, 374 
multicollinearity, 260, 266 
multiple correlation, 221 
multiple R square, 241 
multivariate distribution, 372 

N 
node impurity, 230 
node splitting, 232 
non-linear regression, 261 
normal 

distribution, 3 70 

equations, 239 
probability plot, 153 
regression, 243 
sequences, 391 

null hypothesis, 85 

0 
observed significance, 88, 97, 98 
orthogonal experiment, 128 
orthonormal matrix, 285 
outliers, 265 

p 

paired differences, Ill 
paired samples, I 05 
parameter estimate, 67, 239 
partition method, 224 
pc scores, 285 
percentile, 47, 96 
phi coefficient, 168 
plot 

3D plot, 42, 43 
box plot, 43, 45 
categorised plot, 43 
scatter plot, 42, 43 

point estimate, 14, 67, 68, 405 
polar vector, 403 
polynomial regression, 261 
pooled covariance, 209 
pooled mean, 348 
pooled variance, I 04 
posterior probability, 207, 359 
post-hoc comparison, 121, 122 
power, 89 

curve, 89 
one-way ANOV A power, 125 
two-way ANOV A power, 135 

power-efficiency, 141 
predictor, 237 
predictor correlations, 254 
prevalence, 202, 359 
principal component, 284 
principal factor, 30 I 
prior probability, 359 
probability, 354 

density, 12 
function, I I 
space, 354 
distribution, 361 

probit model, 276 
product-limit estimate, 311 



proportional hazard, 317, 322 

Q 
quadratic classifier, 201, 209 
quality control, 288 
quantile, 47, 362 
quartile, 47, 362 

R 

random 
data, 2 
error, 68 
sample, 7, 67 
variable, 5, 8, 360 
experiment, 353 

range, 49 
reduced model, 250, 259 
reliability function, 305 
replicates, 250 
residuals, 239 
resubstitution method, 224 
ridge regression, 274 
risk, 206 
ROC curve, 214,217 
ROC threshold, 218 
rose diagram, 329 
RS analysis, 93 

s 
sample, 5 

mean, 365 
size, 14 
space, 353 
variance, 366 

sampling distribution, 14, 69, 88 
correlation, I 0 I 
gamma, 167 
kappa statistic, 168 
Mann-Whitney W, 172 
mean, 72,96 
phi coefficient, 168 
proportion, 145 
range of means, 123 
Spearman's correlation, 166 
two independent samples, I 07 
two paired samples, Ill 
variance, 80, 99 
variance ratio, 81, 102 

scale parameter, 394 
scatter matrix. 344 

Index 451 

Scott's formula, 37 
scree test, 2 90 
semistudentised residuals, 265 
sensitivity, 214 
sequential search, 221 
shape parameter, 394 
sigmoidal functions, 277 
significance level, 13, 85, 88 
significant digits, 48 
skewness, 51 
small sample, 73 
specificity, 214 
spherical mean direction, 333 
spherical plot, 329 
spherical variance, 333, 403 
split criterion, 230 
standard deviation, 13, 44, 49, 366 
standard error, 71, 97, 241 
standard normal distribution, 391 
standard residuals, 265 
standardised 

effect, 91, 125 
model, 240, 254 
random variable, 370 

statistic, 5, 7, 68, 405 
descriptive statistic, 21, 45 
gamma statistic, 57 
kappa statistic, 61 
lambda statistic, 60 

Statistical Quality Control, 74 
Stirling formula, 369 
studentised statistic, 96, 244 
Sturges' formula, 37 
sum of squares 

between-group, 115 
columns, 128 
error, 115 
lack of fit, 251 
classification, 116 
model, 129 
pure error, 250 
regression, 248 
residual, 128 
rows, 128 
total, 115 
within-group, 115 

survival data, 305 
survivor function, 305 

T 

test ofhypotheses, 67, 85 



452 Index 

binomial, 144 
Cochran Q, 185 
correlation, I 00 
equality of variance, I 02 
Friedman, 183 
Kolmogorov-Smirnov one-sample, 
152 
Kolmogorov-Smirnov two-sample, 
170 
Kruskai-Wallis, 180 
lack of fit, 250 
Levene, 103 
Lilliefors, 156 
log-rank, 316 
Mann-Whitney, 171 
McNemar, 174 
one-sided, 93 
one-way ANOVA, 114 
operational characteristic, 89 
Peto-Wilcoxon, 317 
power, 89 
proportion, 144 
rank-sum, 171 
Rayleigh, 340 
robust, 103 
runs, 142 
Scheffe, 121, 123 
set, 198 
Shapiro-Wilk, 156 
sign, 175 
single mean, 95 
single variance, 99 
t test, 89, 96, 104, 108, Ill, 118, 145 
two means, I 07, 111 
two-sided, 93 
uniform scores, 348 
variance ratio, I 02 
Watson, 348 
Watson U2, 342 
Watson-Williams, 346 
Wilcoxon, 178 
i 2x2 contingency table, 160 
i goodness of fit, 149 
i of independence, 164 
i rxc contingency table, 163 

tolerance, 14, 70, 221, 369 
total probability, 203, 359 
training set, I 91 
tree classifier, 227 

tree pruning, 231 

u 
unbiased estimates, 239 
unexposed group, 315 
uniform probability plot, 338 
univariate split, 230 
upper control limit, 74 

v 
variable 

continuous, 9, 12, 361 
dependent, 237 
discrete, 9, I 0 
grouping, 43, I 05 
hidden, 283 
independent, 237 
interval-type, I 0 
nominal, 9 
ordinal, 9 
random, 21 
ratio-type, I 0 

variance, 49, 366 
analysis, 114, 116 
between-group, 116 
estimate, 80 
inflation factors, 266 
of the means, 117 
pooled, I 04, 115 
ratio, 81 
total, 115 
within-group, 115 

varimax procedure, 301 
Velicer partial correlation, 290 

w 
warning line, 74 
weights, 191 
Wilks' lambda, 221 
wrapped normal, 332 

y 

Yates' correction, 160 

z 
z score, 86, 370 


