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Preface to Hydrocarbon and Lipid Microbiology
Protocols’

All active cellular systems require water as the principal medium and solvent for their metabolic and
ecophysiological activities. Hydrophobic compounds and structures, which tend to exclude water,
although providing inter alia excellent sources of energy and a means of biological compartmental-
ization, present problems of cellular handling, poor bioavailability and, in some cases, toxicity.
Microbes both synthesize and exploit a vast range of hydrophobic organics, which includes biogenic
lipids, oils and volatile compounds, geochemically transformed organics of biological origin
(i.e. petroleum and other fossil hydrocarbons) and manufactured industrial organics. The underlying
interactions between microbes and hydrophobic compounds have major consequences not only for
the lifestyles of the microbes involved but also for biogeochemistry, climate change, environmental
pollution, human health and a range of biotechnological applications. The significance of this
“greasy microbiology” is reflected in both the scale and breadth of research on the various aspects
of the topic. Despite this, there was, as far as we know, no treatise available that covers the subject.
In an attempt to capture the essence of greasy microbiology, the Handbook of Hydrocarbon and
Lipid Microbiology (http://www.springer.com/life+sciences/microbiology/book/978-3-540-77584-
3) was published by Springer in 2010 (Timmis 2010). This five-volume handbook is, we believe,
unique and of considerable service to the community and its research endeavours, as evidenced by
the large number of chapter downloads. Volume 5 of the handbook, unlike volumes 1-4 which
summarize current knowledge on hydrocarbon microbiology, consists of a collection of experimen-
tal protocols and appendices pertinent to research on the topic.

A second edition of the handbook is now in preparation and a decision was taken to split off
the methods section and publish it separately as part of the Springer Protocols program (http://
www.springerprotocols.com/). The multi-volume work Hydrocarbon and Lipid Microbiology
Protocols, while rooted in Volume 5 of the Handbook, has evolved significantly, in terms of
range of topics, conceptual structure and protocol format. Research methods, as well as
instrumentation and strategic approaches to problems and analyses, are evolving at an unprec-
edented pace, which can be bewildering for newcomers to the field and to experienced
researchers desiring to take new approaches to problems. In attempting to be comprehensive
— a one-stop source of protocols for research in greasy microbiology — the protocol volumes
inevitably contain both subject-specific and more generic protocols, including sampling in the
field, chemical analyses, detection of specific functional groups of microorganisms and com-
munity composition, isolation and cultivation of such organisms, biochemical analyses and
activity measurements, ultrastructure and imaging methods, genetic and genomic analyses,

! Adapted in part from the Preface to Handbook of Hydrocarbon and Lipid Microbiology.
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systems and synthetic biology tool usage, diverse applications, and the exploitation of bioin-
formatic, statistical and modelling tools. Thus, while the work is aimed at researchers working
on the microbiology of hydrocarbons, lipids and other hydrophobic organics, much of it will be
equally applicable to research in environmental microbiology and, indeed, microbiology in
general. This, we believe, is a significant strength of these volumes.

We are extremely grateful to the members of our Scientific Advisory Board, who have
made invaluable suggestions of topics and authors, as well as contributing protocols them-
selves, and to generous ad hoc advisors like Wei Huang, Manfred Auer and Lars Blank. We also
express our appreciation of Jutta Lindenborn of Springer who steered this work with profes-
sionalism, patience and good humour.

Colchester, Essex, UK Terry J. McGenity
Braunschweig, Germany Kenneth N. Timmis
Palma de Mallorca, Spain Balbina Nogales
Reference

Timmis KN (ed) (2010) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, Heidelberg
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Introduction to Primer-Based Detection of Microbial
Genes, Particularly Those Encoding Enzymes
for Aromatic/Aliphatic Hydrocarbon Biodegradation

Howard Junca

Abstract

One major contribution to understand the microbial ecology of biodegradation of pollutants in the
environment has been the retrieval of information by using primers targeting genes that code for enzymes
acting on aromatic or aliphatic hydrocarbons, therefore helping to survey and understand the microbial
catabolome related with pollutant biodegradation in contaminated environments. In this introduction the
advantages and limitations of using oligonucleotides generally and for hydrocarbon catabolism specifically
are presented, and some common technical and theoretical considerations about using primers are

explained.

Keywords Primers, Oligonucleotides, Aromatic, Aliphatic, Biodegradation, Bacterial, Microbial
Communities, Environmental, Catabolic Pathways, Gene Targets

1 The Versatility of Oligonucleotides

Few other simple yet versatile and highly used molecules in biology
are as important as synthetic oligonucleotides, abbreviated depend-
ing on the experimental context as oligos, probes or primers. They
are among the most powerful tools in molecular biology and, as a
logical extension, to modern techniques in environmental microbi-
ology and microbial ecology. The annealing of complementary
DNA strands, with precision that can be easily modulated by chem-
ical and physical means to be either quite strict or relatively relaxed
regarding overall similarity of the annealing molecules, has been a
great help to countless research interests and needs. This feature
was observed and mainly developed by utilizing DNA fragments
from genomes as a source for oligonucleotide probes in DNA
hybridization assays. While the synthesis of oligonucleotides with
a precise sequence of nucleotides was in constant development
since the middle of the twentieth century, semi-automated

T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks, (2017) 1-7,
DOI 10.1007/8623_2016_201, © Springer-Verlag Berlin Heidelberg 2016, Published online: 03 May 2016

1



Howard Junca

platforms were developed by the end of the 1980s for commercially
producing such oligos with the nucleic acid sequence of interest
[1]. Almost simultaneously, the community of researchers requir-
ing the production and availability of oligos grew rapidly thanks to
the invention of PCR [2]. There are many different, complemen-
tary or even combinatorial applications for which synthetic oligo-
nucleotides have been used for a wide diversity of applications, such
as for detection, quantification, differentiation, diagnostics, thera-
peutics, genomic sequencing, gene cloning, gene diversity analysis
and protein engineering by gene mutagenesis [3, 4]. The possibi-
lities to couple primers to another molecular biology technique are
virtually endless. While there has been an explosion of genomic data
production thanks to the emergence of the new sequencing tech-
nologies, it is important to note that despite looking at the utiliza-
tion of primers for detecting or amplifying genes targeted in
environmental DNA as a rather old and fading technique, its use
is indeed steadily increasing precisely because of widespread use in
the current state-of-the-art technologies or in synthetic genomics
[5, 6]. It is not surprising that, after all, the evolutionary process
resulted in such molecules to host the genetic information of all
living forms and all its encoded complexity from very basic patterns
and chemical building blocks. Thus, it is possible to assume that we
are in the early stages of discovering the extensive applications of
primers. In the beginning, primer applications were rather deter-
minative, with important functions in all kinds of diagnostics, i.e.
using known DNA sequence information, it was then possible to
design a primer set to amplify a specific fragment to obtain a
discrete presence/absence result about a gene fragment targeted
in the template DNA under scrutiny.

Some basic categorizations on the use of oligos include: pri-
mers acting on dsDNA as a starting point for 5'-3' DNA polymeri-
zation, a feature used for amplifying a specific nucleic acid
sequence, as in PCR and its numerous variants, or for Sanger
sequencing using dideoxy nucleotides. Oligos can also be used as
probes in hybridization assays on complementary strands of the
sample tested, for instance, in macro- or microarrays or in fluores-
cence in situ hybridization. There are also possibilities of using
probing and priming capabilities together. For example, they can
be used as capturing probes coupled to its use as primers for
amplification of the fragment rescued, or for specific enrichment
of genomes targeted in metagenomes by adding specific probing
primers on isothermal amplifications. Another complementary
application of both features is for example when oligos are the
overlapping building blocks joined and extended by ligation and
polymerization for directed mutagenesis or for synthetic genomics
and systems biology applications.
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2 The Contribution of Primer-Based Surveys to the Improved Understanding
of the Microbial Ecology of Environmental Pollutant Biodegradation

In this accompanying volume we have an outstanding collection of
authoritative chapters showing many different examples of how to
design and use primers, especially to retrieve functional gene frag-
ments related to catabolism of hydrocarbons, including chlorinated
hydrocarbons, as well as for investigating methanogens, methano-
trophs, methylotrophs and other microbial processes of relevance
to oil reservoir management. Each chapter thoughtfully explores:
the function of interest, the main gene group or groups targeted
(generally the gene families or subfamilies encoding proteins essen-
tial for the enzymatic activities of interest), and the different experi-
ments detecting or quantifying gene copies or discerning gene
complexities in the analysed samples, mostly from sites or treat-
ments under the effect of the selecting compound. Basically there is
a common experimental workflow on primer design and testing,
such as the use of sequence alignments of the gene families and
experimental testing after a careful primer design, especially when
using primers to amplify from environmental samples where the
presence of the gene family or subfamily targeted is unknown. In
addition, an important limitation of PCR-based methods is poten-
tial variability at the conserved annealing site with priming-site
sequences in the environmental sample differing from those in the
databases. Another consideration is when the complexity of the
gene family targeted and amplified requires further methods to
discriminate the sequence diversity composition of the amplicon
mixture, as is the case resulting from metagenomic DNA from an
environmental microbial community. It was soon realized that PCR
was a way to finally decipher whether the large proportion of non-
cultured microorganism quantified and alive in environmental sam-
ples were similar or very divergent compared to our reference
microbial type species. In that case the rationale was, and still is,
to use one taxonomically informative and extremely conserved
gene [7]. The results obtained revolutionized our understanding
of the diversity of the microbial life in our planet. The use of 16S
rRNA gene amplicons to describe the bacterial and archaeal com-
munity composition was adapted to detect functions only found in
certain microbes in order to determine the distribution of those
functions in the environment and how they were selected by differ-
ent treatments and environmental conditions. The chapters in this
volume highlight the approaches for designing primers targeting a
given gene family, e.g. catabolic genes, which differ in many
respects to the approaches applied to describe diversity of those
non-protein coding and extremely conserved in microbial evolu-
tion such as coding rRNA genes. A common finding of all the
chapters in this volume is that obtaining a “universal primer” is
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close to unattainable or even undesirable to some extent in non-
central metabolism protein-coding genes: the variability of silent
mutations and the divergence inside a family imply that, in order to
detect its major members by PCR-based approaches, it is more
appropriate to use multiple primer sets able to cover as many
members of each subfamily as possible. The subfamilies are defined
and based on sequence distances; these distances are visualized as
clusters of gene sequences composing branches in a gene phylogeny
tree calculated from multiple sequence alignments of the family.
For the case of bioremediation of contaminated environments, the
purposes can be, for instance, detecting whether, in a bioaugmen-
tation process, the functions are maintained over the threshold of
PCR detection, indicating that the deployed microorganisms with
the desired activities are maintained, possibly improving the biore-
mediation process. On the other hand, it could also be used to
assess whether the same kind of genes from autochthonous
microbes, even if not identical, are increasing in abundance due to
selection when a sample is exposed to the contaminant or when it is
subjected to biostimulation [8]. There are many other cases where
the use of primers targeting a gene subfamily may not be the best
way to find the gene responsible for the activity of interest. As
detailed in the chapters, and almost for all the gene families men-
tioned, in the last 8 years there have been reports of the discovery,
in isolates or in metagenomic libraries, of at least one new gene
family having a functional convergence to the activity known to be
encoded by gene members of completely different gene family or
superfamily. Thus, as with virtually all methods, primers are a
powerful complementary tool that greatly helped us comprehend
the kind and composition of catabolic functions in contaminated
environments, but it requires additional information to improve
the precision of our understanding of biodegradation processes and
to enrich our vision on the possibilities for a process in a given
environment, e.g. in the microbial ecology of bioremediation.

Many chapters in this volume describe the approaches to detect-
ing a particular part of what can be called collectively the microbial
catabolome, a group of catabolic gene families encoding enzymes
crucial for aerobic/anaerobic aromatic/aliphatic (chlorinated)
hydrocarbon degradation, and as such, for pollutant bioremediation
in the environment. Thus, in this concept the variable part is the
contaminant and consequently, the gene family involved in its deg-
radation and the electron acceptor condition where it can take place.
As soon as this is defined, then it is possible to proceed to establish
the information available for the gene or gene families targeted, the
feasibility of finding conserved regions with the widest coverage for
a given subgroup (subfamily), the meaning in terms of substrate
specificity that the presence of this gene type may represent, and the
meaning of the sequencing variations regarding possible modifica-
tion of structure and /or substrate specificity.
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The authors of the chapters are some of the most renowned
experts on each kind of gene group targeted. The chapters summa-
rize the vast knowledge accumulated over the last 60 years on each
gene family identified as important from isolated microorganisms
and environmental samples. Apart from the technical details of
protocol and primer design, the following are considered in most
chapters: further possibilities for sequence diversity assessment; the
meaning of this diversity regarding substrate activities and specific-
ity; genomic and taxonomic associations of catabolic capabilities
hosted and community catabolic gene flow, selection, horizontal
gene transferring and natural protein evolution adapting existing
enzymes to new analogous substrates.

While an enormous diversity of such catabolic functions is
continuously discovered in isolates, enrichments and in environ-
ments, contaminated sites select for microbiomes that are enriched
in gene variants related to members of known catabolic gene
families, i.e. that are not completely different to what has been
already reported. This is not just an issue of the bias of obtaining
something similar to what is known as the most obvious limitation
of a targeted PCR-based approach; it is also observed in results
from functional screening of metagenomic libraries or detected in
direct metagenomic sequencing results [9, 10]. Nevertheless, given
the importance of primers as a means of obtaining a window into
microbial diversity, it is important to consistently check primer
validity based on new information, and refine them accordingly.

For almost all these activities and contaminant conditions, a few
years ago it was still an open question whether the known genes and
functions found in isolates were also present and important in
contaminated environments, as it can be seen, in the last years
there are many results applying primer surveys to environmental
samples that support the idea of the environmental importance of
such mechanisms. While there are various gene types that were not
known and very different to what was described for the activity
encoded, and possibly there are many more of this kind to be
found, the catabolic gene families we know so far seem to encode
the main kind of activities and bioremediation processes in the
environment. In contaminated sites it is still hard to predict
the selection and emergence in certain catabolic gene family
members of the subfamily type mainly associated with the preferen-
tial substrate specificity against the pollutant at highest concentra-
tion in situ. For instance, it is sometimes possible to detect
abundant members of other subfamilies associated with a different
substrate preference and gene variants with few sequence changes
that are producing enzymes that are able to degrade the contami-
nant, as we observed in a previous study [11].

In their corresponding chapters Lueders and von Netzer
(anaerobic aromatics/aliphatics degradation) [12], Lu et al.
(organohalide-respiring bacteria) [ 13], and Narihiro and Sekiguchi
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for Assessing Biodegradation of Aromatic Hydrocarhons
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Abstract

The ability of bacteria to degrade hazardous pollutants is a valuable tool that can be employed for cleaning
contaminated sites. As a result of the complex mixtures of organic compounds present in contaminated
areas, the combined genetic information of more than one organism is necessary to enhance the degrada-
tion process. Aromatic compounds are believed to constitute approximately 25% of all biomass on earth.
Community profiling and other molecular techniques, such as quantitative real-time PCR and fluorescence
in situ hybridization, provide the phylogenetic context of the potential key genes associated with the
degradation of aromatic compounds. The application of molecular techniques may help to identify
potentially remediating organisms and to discover particular degradation abilities. Increased knowledge
on the microbial diversity in environments contaminated with aromatic compounds may assist in the
characterization of highly efficient and tolerant bacteria when exposed to a broad range of stresses.
Ultimately, such knowledge may support the development of novel and effective bioremediation strategies.

Keywords Biomolecular approaches, Biodegradation, Aromatic hydrocarbons

1 Microbial Consortia and Their Role in Aromatic Hydrocarbon Degradation

A cost-effective biodegradation of organic pollutants can be
achieved through diverse microbial metabolic processes. Indeed,
microorganisms are capable of degrading environmental contami-
nants in diverse matrices and environments [ 1]. Thus, the ability of
bacteria to degrade hazardous pollutants is a valuable tool that can
be employed for cleaning contaminated sites [2]. A goal of biore-
mediation is to use organic pollutants as carbon and energy sources
and ultimately mineralize the pollutants [ 3]. Many factors influence
the efficient degradation of pollutants and their co-metabolism.
Understanding the degradation mechanisms and responsible
enzymes is fundamental to outline an efficient strategy for clean-
up of pollutants. Aromatic compounds are believed to constitute
approximately 25% of all biomass on earth [4] and may be of natural
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as well as anthropogenic origin. There are three major groups of
aromatic pollutants, which are polycyclic aromatic hydrocarbons
(PAHs), heterocyclics, and substituted (e.g. chloro- or nitro-
substituted) aromatics.

The catabolic pathways for the degradation of aromatic com-
pounds have been extensively studied and deeper insights have
been reported [3, 5]. The activation of the aromatic ring is facili-
tated by either Rieske non-heme iron oxygenases, flavoprotein
monooxygenases, or soluble diiron monooxygenases [6]. The fur-
ther aerobic degradation of di- or trihydroxylated intermediates can
be catalysed by either intradiol or extradiol dioxygenases [7]. The
enzymes reported to be involved in the extradiol ring cleavage of
hydroxylated aromatics can be categorized in three different super-
families: type I extradiol dioxygenases (e.g. catechol 2,3-
dioxygenases), which belong to the vicinal oxygen chelate super-
family, type II or LigB superfamily extradiol dioxygenases, which
comprise the protocatechuate 4,5-dioxygenases, among others,
and type III enzymes such as gentisate dioxygenases, comprising
enzymes of the cupin superfamily [6]. Alternatively, activation may
be mediated by CoA ligases and the formed CoA derivatives are
subjected to oxygenations that generate non-aromatic intermedi-
ates [8-15] which is extensively reviewed in Perez Pantoja et al.
[16]. However, the limiting factor in aerobic degradation is the
oxygen concentration, because heavily polluted ecosystems are
often oxygen depleted [17]. Hence, facultative and strict anaerobes
become essential to the bioremediation process [ 18]. For instance,
studies focusing on the anaerobic degradation of BTEX com-
pounds have indicated that these components are degraded anaer-
obically and over a longer timeframe when compared to aerobic
processes [19, 20].

Our main knowledge on anaerobic degradation of pollutants is
centred on biochemical studies involving both facultative and strict
anaerobic microorganisms [18]. Strict anaerobes are challenging
subjects, as a result of their sensitivity to sampling and storage and
their fastidious growth requirements. Nevertheless, analysis of
anaerobic naphthalene degraders and communities has been
accomplished and new metabolic pathways [21], including novel
ATP-independent benzoyl-CoA reductases or ring-reducing
enzymes that act on substrates other than benzoyl-CoA, have
been identified [18, 22, 23].

A detailed description of primers for detecting functional genes
involved in anaerobic hydrocarbons degradation has been included
in the current version of this volume [24].

Although many bacteria are able to metabolize organic pollu-
tants (Fig. 1), a single bacterium does not possess the enzymatic
capability to degrade all or even most of the organic compounds in
a polluted soil. Mixed microbial communities have the most pow-
erful biodegradation potential. Due to the complexity of the
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mixtures of organic compounds present in contaminated areas, the
combined genetic information of more than one organism is nec-
essary to unravel the degradation process.

Community profiling and other molecular techniques, such as
quantitative real-time PCR (qPCR) and fluorescence in situ hybri-
dization (FISH), are typically used to analyse microbial community
structures and thus the phylogenetic context in which biodegrada-
tion is occurring. On the other hand, the analysis of catabolic key
genes associated with the degradation of aromatic compounds is
crucial to understand biodegradation processes since there is often
no direct correlation between taxonomy and catabolic potentials.
As aresult, the design of suitable primers targeting genes encoding
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representative proteins involved in the above processes is a basic
requirement for understanding biodegradation. To achieve the
correct primer design it is crucial to generate broad, comprehen-
sive, updated and manually curated databases that include catabolic
key proteins involved in the degradation of aromatic pollutants.

2 Molecular Tools Employed for Describing the Functional Gene Diversity
for Aromatic Degradation

2.1 Quantitative
PCR (qPCR)

Therefore, the targeted sequencing of functional genes may directly
supply information to set a framework for classification as recently
accomplished in Aromadeg [6]. A dedicated analysis of catabolic
genes and genomes may also indicate to what extent catabolic genes
may be used as a marker for the taxonomic identity of the organism
harbouring such activity [16]. In summary, the application of
molecular techniques may help to identify potential remediating
organisms and to discover particular degradation abilities. Further-
more, increased knowledge on the microbial diversity in environ-
ments contaminated with aromatic compounds may assist in the
characterization of highly efficient and tolerant bacteria exposed to
a broad range of stresses. Ultimately, this may support the develop-
ment of novel and effective bioremediation strategies.

Real-time PCR (qPCR) has been widely employed in microbial
ecology for profiling and bioprospecting of environmental samples
[25]. The high sensitivity for quantifying specific genes in complex
DNA mixtures also makes qPCR highly suitable for analysis of
environmental samples [26, 27]. Furthermore, this technique can
be employed to validate results of high-throughput methodologies
at the genomic, metagenomic and metatranscriptomic levels.

The use of 16S rRNA gene qPCRin conjunction with functional
gene analysis has been used successfully to acquire information
regarding bacterial population size and dynamics [27]. However,
the mere presence of a gene does not mean that it actually has a
function under analysed conditions. Approximation of the impor-
tance of a particular function can be achieved through the use of
reverse-transcriptase quantitative PCR (rt-qPCR), where mRNA is
isolated from a sample and retro-transcribed to cDNA before being
quantified using specific primers [28]. The use of rt-qPCR allows
measuring both the in situ microbial activity in a particular environ-
ment [29] and the importance of targeted genes [30].

Multiplex real-time PCR is a methodology that utilizes multi-
ple primer sets within a single PCR mix. Each primer set is labelled
with distinct fluorescent dyes and therefore the excitation signals
will not overlap. In this way, multiple genes are targeted at once and
several amplicons are simultaneously produced. Careful design of
primers and optimizing the annealing conditions are indispensable
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to obtain accurate and reliable information. Internal controls (like
house-keeping genes) allow for precise quantification of target
genes. Multiplex PCR has been extensively employed in bioreme-
diation studies, mainly to detect mono- or dioxygenase encoding
genes involved in polycyclic aromatic hydrocarbons (PAH) metab-
olism [30-33]. Other studies using generic primers and real-time
PCR focused on targeting the gene region encoding the Rieske iron
sulfur center to track the population shifts of PAH-degrading
microorganisms [ 34, 35]. However, care has to be taken to exclu-
sively monitor genes/enzymes involved in PAH degradation,
which are very different among, e.g., Proteobacteria and Actino-
bacteria [6, 36], and avoid amplification of genes that may be
fortuitously enriched.

In summary, the use of rt-qPCR or multiplex qPCR using
cDNA as a template allows for measuring both the in situ microbial
activity in a particular environment and the involvement of targeted
genes. In this way, the use of mRNA in rt-qPCR assays is a first
approximation to obtain an overview of the key genes expressed
within a community. Subsequently, new recently developed meth-
ods, such as proteomics, microarrays, or metatranscriptomics (see
below), can provide more information on undiscovered genes and
potential key players in the community.

All techniques described below were initially developed for studies
targeting 16S rRNA genes and, afterwards, they were applied in
more or less extent to catabolic genes [37].

Denaturing (Temperature) Gradient Gel Electrophoresis
(DGGE/TGGE) relies on the difference in melting behavior of
different double-stranded DNA strands upon the application
of heat (TGGE) or chemical denaturants (DGGE). If mixtures of
homologous DNA fragments are subjected to electrophoresis on
gels applying denaturing gradients, specific melting behaviors will
be obtained depending on the sequence composition (G + C con-
tent). The so-called GC-clamp, a GC rich terminal region, is artifi-
cially introduced by means of PCR at one end of the amplification
mixture, which ensures the connection of both strands thus pre-
venting migration once the strands are partially melted.

DGGE/TGGE has been one of the methods of choice as a
primary analysis in assessing the community composition of an
environment [38], as it is accurate enough to determine the domi-
nant members of microbial communities. DGGE has recently been
applied to follow the presence of bamA genes in anaerobic environ-
ments. The gene product catalyses the hydrolysis of 6-oxocyclohex-
1-ene-1-carbonyl-CoA formed after reduction of benzoyl-CoA as
central intermediate in anaerobic aromatic degradation. The gene is
considered as a good genetic marker for anaerobic aromatic metab-
olism since, in contrast to benzoyl-CoA reduction which in faculta-
tive and strict anaerobic bacteria is catalysed by different enzyme
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2.3 RNA-SIP

2.4 Fluorescence In
Situ Hybridization

classes, hydrolysis is catalysed by members of just one enzyme
family in different bacteria. In accordance, DGGE-based analysis
of bamA diversity has shown that the population structure of
aromatic hydrocarbon degrading bacteria changes with depth [39].
Single Strand Conformation Polymorphism (SSCP) has been
another powerful fingerprinting technique, which takes advantage
of the fact that single stranded DNA (ssDNA), under nondenatur-
ing conditions, acquires a secondary conformation of intramolecu-
lar loops and foldings due to complementarity of the bases on the
same strand [ 37 ]. To a smaller extent, terminal-restriction fragment
length polymorphism (T-RFLP) has also been applied for finger-
printing functional genes as mentioned in Junca and Pieper [37].
However, with the development of next generation sequencing
methods such as barcode sequencing using the Illumina platform
(see below), these methods are becoming more and more obsolete
for the retrieval of sequence information from the environment.

Nucleic acid-based stable isotope probing (SIP) is another tech-
nique used for the identification of key microbes involved in degra-
dation pathways [40]. SIP involves pulsing stable-isotope-labelled
substrates into phylogenetic or functional marker molecules of
microbial communities; for instance, through the incorporation
of *C-labelled substrates into nucleic acids. Density gradient sepa-
ration of labelled nucleic acids allows for the molecular identifica-
tion of the microorganisms responsible for degrading the substrates
[41]. In this way, SIP provides access to the relationship between
environmental functions and the specific microbial community
members involved in community performance [42]. SIP has been
utilized to identify key microbes utilizing various aromatic and
chlorinated hydrocarbons [42—46], methanotroph populations in
soda lakes [47], microbial communities in activated sludge [48], in
PAH contaminated soil [49], for the molecular analysis of arsenic
reducing bacteria in groundwater sources [50] and to identify the
key iron-reducing microorganisms involved in anaerobic benzene
degradation [40]. Currently, a novel technique using high-
throughput sequencing of labelled DNA obtained following iso-
pycnic centrifugation [51] has been applied to monitor microbial
communities consuming labelled toluene as a substrate. SIP,
together with high-throughput sequencing, has enabled the iden-
tification of key bacteria involved in degrading specific compounds
of interest, for example, the bacterial taxa involved in the degrada-
tion of polycyclic aromatic hydrocarbons in oil-contaminated
waters [52].

FISH is a method used to quantify microbial subpopulations in a
community sample. In this technique microbial cells are treated
with fixative, hybridized with specific probes (usually 15-25 bp
fluorescent dye-labelled oligonucleotide probes) on a glass slide
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or on membrane filters, and then visualized with either epifluores-
cence or confocal laser microscopy, or quantified by flow cytometry.
However, FISH alone does not provide insights in the metabolic
functions of microorganisms. Moreover, the sensitivity of the
methodology can diminish if microbial cells are small, slow-
growing, starving or when they contain low amounts of
cellular rRNA. Multiple group-specific rRNA probes can be used
simultaneously for the quantification of physiologically active
microbial populations in an environmental sample [53]. Population
dynamics and interspecies relationships at the single cell level have
been widely monitored using catalysed reporter deposition
(CARD)-FISH in petroleum-contaminated sites [54]. Co-
localization studies combining FISH and digital image analysis are
providing comparative analysis of temporal or spatial information in
structured ecosystems for metagenome analysis [53]. FISH can also
be associated with other methods, such as microautoradiography,
mRNA-FISH, and nanoSIMS, to simultaneously reveal the physio-
logical and functional traits of selected microbial populations in
complex environments [54].

One of the limitations of FISH is that the results depend on
previously available sequence information to design probes. This
issue may be of minor importance if a taxonomical overview of the
community should be achieved. However, the limitation becomes
important if the probe targets functional genes. In that case, probes
need to be designed using updated and manually curated databases.

It should be noted that applying microarrays for the survey of
functional genes in environmental samples face some obstacles in
comparison with those microarrays applied to analyse gene expres-
sion in pure cultures. Expression analysis typically compares two
different controlled experimental conditions, where due to the
relative quantification approach the majority of signals arising
from unspecific hybridization are eliminated during the normaliza-
tion procedure and only signals exhibiting a defined fold change are
considered. However, if microarray analyses are applied to environ-
mental samples, the goal is usually gene detection rather than
determination of expression levels and normalization across two
different conditions is not possible. Thus, another experimental
design should be taken into consideration. As normalization across
two different conditions cannot be done, the proper approach to
determine the reliability of microarray results requires the use of
internal positive controls (an internal calibration in each single
microarray) for setting the correct threshold according to the
desired precision of the experiment, rather than artificial signal to
noise ratios. Recently, a microarray to survey the metabolic poten-
tial of microbial communities for the degradation of aromatic but
also of aliphatic environmental pollutants was reported [55]. This
microarray was designed using curated databases of catabolic key
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26 OMICS
Approaches

proteins. The use of internal controls allows systematic validation,
optimization, normalization and cross-experiment comparisons.
The newly developed protocol and engineered internal control
also allowed for the analysis of catabolic gene expression levels
and facilitates more accurate comparisons across environmental
samples.

It should be noticed that the microarray approach is also a
sequence-dependent technique as a specific probe is required with
a threshold of homology between the probe and the target gene to
allow its detection. A continuous update of the set of probes will
increase the overview of the catabolic landscape in one environ-
mental sample. As a matter of fact, new sequences with catabolic
potentials that are continuously discovered using techniques such
as clone libraries [ 56 ], metatranscriptomics [57 ], or genomics [58],
among others, can be used for generating the corresponding
probes and be implemented on microarrays in future updates.

Taking into account all the considerations mentioned above,
the microarray may be considered a technique that produces the
results of multiple PCRs (as many as probes are represented on the
microarray) in a single experiment.

Most culture-independent surveys of catabolic gene diversity in
contaminated environments rely on conserved nucleotide
sequences used for designing primers to examine the presence,
abundance and diversity of catabolic genes encoding a defined
group of enzymes which are assumed to be critical in the target
environment. Designing primers requires prior knowledge of gene
sequences, which have been identified from pure cultures, and
therefore restrict the overview of the potential community func-
tions. During the last years, new techniques for gene sequencing
have been developed, opening a new frame in the research that
allows for detecting new genes and their products without the need
for pre-existing sequencing knowledge [58, 59].

Nevertheless, these techniques can be purely descriptive if they
are applied without any specific questions. For instance, metage-
nomic approaches, i.e., the sequencing of the genetic content of a
target environment, if applied arbitrarily, will lead to an accumula-
tion of sequence information defined as “unknown,” recently
described as “the know unknown” [60], with no ecological mean-
ing. On the other hand, if the aim is to detect new unknown genes
involved in the degradation of pollutants in situ, metatranscrip-
tomics studies based on the gene transcription levels by comparing
two environmental samples (control and contaminated) may allow
tor the discovery of key-catabolic genes transcripts, which cannot
be detected using sequence-based techniques as the ones described
above. By means of comparative metatranscriptomics, De Menezes
and collaborators recently identified an increase in transcripts asso-
ciated with the metabolism of aromatic compounds, respiration and
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stress response upon PAH amendment [1]. Moreover, they
detected an up-regulation of heavy metal P-type ATPases and
thioredoxin previously not associated with polycyclic aromatic
hydrocarbon stress in microorganisms. Luo and collaborators
investigated the genes involved in the anaerobic benzene and ben-
zoate degradation in a nitrate-reducing enrichment culture apply-
ing comparative metatranscriptomics between the enrichment with
and without the substrate. Outstandingly, the enrichment culture
used for this experiment was the result of 16 years of maintenance,
adding benzene and nitrate monthly and executing periodic trans-
fers. As a result, the syntrophic association between a benzene-
degrading Peptococcacene strain and a benzoate-degrading denitri-
fying Azoarcus sp. was confirmed for the complete catabolism of
benzene with nitrate as the terminal electron acceptor [57].

In addition, applying a combination of omics approaches allows
discovering new pathways and enzymes, which could not be found
using sequence-based techniques. Wu and collaborators studied the
anaerobic degradation of terephthalate in methanogenesis consor-
tia combining microbiomic and proteomic approaches. The com-
munity acts by degrading the terephthalate due to Pelotomaculum
spp. transforming the substrate into acetate, carbon dioxide, and
hydrogen. Afterwards, acetate is utilized by the acetoclastic Metha-
nosaeta spp. producing methane and carbon dioxide, while hydro-
gen is utilized by the hydrogenotrophic Methanolinea spp.
producing methane [61].

Finally, metabolomics investigations may be a powerful tool in
finding molecular biomarkers in aromatic degradation as, although
acrobic pathways have a high degree of complexity, the technique
was successfully applied so far to anaerobic environments [62].

3 Databases

Nowadays, due to the rapid development of DNA sequencing
technologies, massive amount of sequence information is continu-
ously generated, which needs to be properly annotated. Databases
play a fundamental role in understanding and increasing our knowl-
edge of the sequences retrieved from the environment. Limited
efforts have been invested in the collection and curation of
sequences for being deposited into databases and to carry out the
annotation in an accurate manner. Certainly, databases have to be
continuously updated by including key-catabolic genes that are
continuously being discovered, such as the new phenylacetyl-
CoA, benzylsuccinate synthases, or benzoyl-CoA reductases genes.

A novel database termed AromaDeg (http: //aromadeg.siona.
helmholtz-hzi.de), an open source database with a total of
3,605 protein sequences of key-catabolic enzymes for aromatic
degradation, allows query, and data mining of novel genomic,


http://aromadeg.siona.helmholtz-hzi.de/
http://aromadeg.siona.helmholtz-hzi.de/

18 Emma Hernandez-Sanabria et al.

metagenomic, or metatranscriptomic data sets [6]. Moreover,
HyDeg (http: //www.hydeg.ugent.be) assists in targeting subfami-
lies of genes involved in the catabolism of aromatic/aliphatic
hydrocarbons [55] and provides practical examples of primer
design [63].

R.V.V. is a postdoctoral fellow supported by the Belgian Science
Policy Office (BELSPO). E.H-S is funded by a postdoctoral fellow-
Research Foundation of Flanders (Fonds
Wetenschappelijk Onderzoek-Vlaanderen, FWO). A.S and DHP
have received funding from the European Community’s Seventh
Framework Programme (FP7,/2007-2013) (MAGICPAH (FP7-

KBBE-2009-245226) and BACSIN (project number 211684).

Acknowledgements
ship from the
References
1. de Menezes A, Clipson N, Doyle E (2012)

Comparative metatranscriptomics reveals wide-
spread community responses during phenan-
threne degradation in soil. Environ Microbiol
14:2577-2588

. Seo JS, Keum YS, Li QX (2009) Bacterial deg-

radation of aromatic compounds. Int J Environ
Res Public Health 6:278-309

. Pérez-Pantoja D, Gonzilez B, Pieper DH

(2010) Aerobic degradation of aromatic
hydrocarbons. In: Timmis K (ed) Handbook
of hydrocarbon and lipid microbiology.
Springer, Berlin/Heidelberg, pp 799-837

. Gibson J, Harwood SC (2002) Metabolic

diversity in aromatic compound utilization by
anaerobic microbes. Annu Rev Microbiol
56:345-369

. Pieper DH, Gonzalez B, Cadmara B, Pérez-Pan-

toja D, Reineke W (2010) Acerobic degradation
of chloroaromatics. In: Timmis K (ed) Hand-
book of hydrocarbon and lipid microbiology.
Springer, Berlin/Heidelberg, pp 839-864

. Duarte M, Jauregui R, Vilchez-Vargas R, Junca

H, Pieper DH (2014) AromaDeg, a novel
database for phylogenomics of aecrobic bacterial
degradation of aromatics. Database (Oxford)
2014, baull8

. Vaillancourt FH, Bolin JT, Eltis LD (2006)

The ins and outs of ring-cleaving dioxygenases.
Crit Rev Biochem Mol Biol 41:241-267

. Altenschmidt U, Fuchs G (1992) Novel acro-

bic 2-aminobenzoate metabolism. Purification
and characterization of 2-aminobenzoate-CoA
ligase, localisation of the gene on a 8-kbp

10.

11.

12.

13.

14.

plasmid, and cloning and sequencing of the
gene from a denitrifying Pseudomonas sp.
Eur J Biochem 205:721-727

. Bains J, Boulanger MJ (2007) Biochemical and

structural characterization of the paralogous
benzoate CoA ligases from Burkholderia xeno-
vorans LB400: defining the entry point into
the novel benzoate oxidation (box) pathway. J
Mol Biol 373:965-977

Buder R, Fuchs G (1989) 2-Aminobenzoyl-
CoA monooxygenase,/reductase, a novel type
offlavoenzyme. Purification and some properties
of the enzyme. Eur ] Biochem 185:629-635

El-Said Mohamed M (2000) Biochemical and
molecular characterization of phenylacetate-
coenzyme A ligase, an enzyme catalyzing the
first step in aerobic metabolism of phenylacetic
acid in Azoarcus evansii. ] Bacteriol
182:286-294

Ferrandez A, Minambres B, Garcia B, Olivera
ER, Luengo JM, Garcia JL, Diaz E (1998)
Catabolism of phenylacetic acid in Escherichia
coli. Characterization of a new aerobic hybrid
pathway. ] Biol Chem 273:25974-25986

Ismail W, El-Said Mohamed M, Wanner BL,
Datsenko KA, Eisenreich W, Rohdich F et al
(2003) Functional genomics by NMR spec-
troscopy. Phenylacetate catabolism in Escheri-
chia coli. Eur J Biochem 270:3047-3054

Schuhle K| Jahn M, Ghisla S, Fuchs G (2001)
Two similar gene clusters coding for enzymes
of a new type of aecrobic 2-aminobenzoate
(anthranilate) metabolism in the bacterium
Azoarcus evansii. ] Bacteriol 183:5268-5278


http://www.hydeg.ugent.be/

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Current Landscape of Biomolecular Approaches. . .

Zaar A, Gescher J, Eisenreich W, Bacher A,
Fuchs G (2004) New enzymes involved in aer-
obic benzoate metabolism in Azoarcus evansii.
Mol Microbiol 54:223-238

Pérez-Pantoja D, Donoso R, Junca H, Gonza-
lez B, Pieper DH (2010) Phylogenomics of
aerobic bacterial degradation of aromatics. In:
Timmis K (ed) Handbook of hydrocarbon and
lipid microbiology. Springer, Berlin/Heidel-
berg, pp 1355-1397

Fuchs G, Boll M, Heider J (2011) Microbial
degradation of aromatic compounds - from one
strategy to four. Nat Rev Microbiol 9:803-816

Boll M, Loffler C, Morris BE, Kung JW (2014)
Anaerobic degradation of homocyclic aromatic
compounds via arylcarboxyl-coenzyme A
esters: organisms, strategies and key enzymes.
Environ Microbiol 16:612-627

deNardi IR, Zaiat M, Foresti E (2007) Kinetics
of BTEX degradation in a packed-bed anaero-
bic reactor. Biodegradation 18:83-90

Wilson BH, Smith GB, Rees JF (1986) Bio-
transformations of selected alkylbenzenes and
halogenated aliphatic hydrocarbons in metha-
nogenic aquifer material: a microcosm study.
Environ Sci Technol 20:997-1002

Kummel S, Herbst FA, Bahr A, Duarte M,
Pieper DH, Jehmlich N et al (2015) Anaerobic
naphthalene degradation by sulfate-reducing
Desulfobacteraceae from various anoxic aqui-
fers. FEMS Microbiol Ecol 91

Eberlein C, Estelmann S, Seifert J, von Bergen
M, Muller M, Meckenstock RU, Boll M
(2013) Identification and characterization of
2-naphthoyl-coenzyme A reductase, the proto-
type of a novel class of dearomatizing reduc-
tases. Mol Microbiol 88:1032-1039

Estelmann S, Blank I, Feldmann A, Boll M
(2015) Two distinct old yellow enzymes are
involved in naphthyl ring reduction during

anaerobic naphthalene degradation. Mol
Microbiol 95:162-172

Lueders T, von Netzer F (2014 ) Primers: func-
tional genes for anaerobic hydrocarbon
degrading microbes. In: McGenity TJ, Timmis
KN, Nogales B (eds) Hydrocarbon and lipid
microbiology protocols, Springer Protocols
Handbooks. Humana Press, New York.
doi:10.1007,/8623_2014_64

McKew BA, Smith CJ (2015) Real-time PCR
approaches for analysis of hydrocarbon-
degrading bacterial communities. In: McGe-
nity TJ, Timmis KN, Nogales B (eds) Hydro-
carbon and lipid microbiology protocols,
Springer protocols handbooks. Springer, Hei-
delberg. doi:10.1007,/8623_2015_64

26.

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

19

Powell SM, Ferguson SH, Bowman JP, Snape I
(2006) Using real-time PCR to assess changes
in the hydrocarbon-degrading microbial com-
munity in Antarctic soil during bioremediation.
Microb Ecol 52:523-532

. Ritalahti KM, Amos BK, Sung Y, Wu Q, Koe-

nigsberg SS, Loffler FE (2006) Quantitative
PCR targeting 16S rRNA and reductive deha-
logenase genes simultaneously monitors multi-

ple Dehalococcoides strains. Appl Environ
Microbiol 72:2765-2774

Akondi KB, Lakshmi VV (2013) Emerging
trends in genomic approaches for microbial
bioprospecting. Omics 17:61-70

Lloyd KG, Macgregor BJ, Teske A (2010)
Quantitative PCR methods for RNA and
DNA in marine sediments: maximizing yield
while overcoming inhibition. FEMS Microbiol
Ecol 72:143-151

Baldwin BR, Biernacki A, Blair J, Purchase MP,
Baker JM, Sublette K et al (2010) Monitoring
gene expression to evaluate oxygen infusion at
a gasoline-contaminated site. Environ Sci
Technol 44:6829-6834

Dionisi HM, Lozada M, Olivera NL (2012)
Bioprospection of marine microorganisms:
biotechnological applications and methods.
Rev Argent Microbiol 44:49-60

Gilbride KA, Lee DY, Beaudette LA (2006)
Molecular techniques in wastewater: under-
standing microbial communities, detecting
pathogens, and real-time process control. J
Microbiol Methods 66:1-20

Harms G, Layton AC, Dionisi HM, Gregory
IR, Garrett VM, Hawkins SA et al (2003) Real-
time PCR quantification of nitrifying bacteria
in a municipal wastewater treatment plant.
Environ Sci Technol 37:343-351

Cebron A, Norini MP, Beguiristain T, Leyval C
(2008) Real-Time PCR quantification of PAH-
ring hydroxylating dioxygenase (PAH-
RHDalpha) genes from Gram positive and
Gram negative bacteria in soil and sediment
samples. ] Microbiol Methods 73:148-159

Ni Chadhain SM, Norman RS, Pesce KV,
Kukor JJ, Zylstra GJ (2006) Microbial dioxy-
genase gene population shifts during polycyclic
aromatic hydrocarbon biodegradation. Appl
Environ Microbiol 72:4078-4087

Khan AA, Wang RF, Cao WW, Doerge DR,
Wennerstrom D, Cerniglia CE (2001) Molec-
ular cloning, nucleotide sequence, and expres-
sion of genes encoding a polycyclic aromatic
ring dioxygenase from Mycobacterium sp.
strain - PYR-1. Appl Environ Microbiol
67:3577-3585


http://dx.doi.org/10.1007/8623_2014_64
http://dx.doi.org/10.1007/8623_2015_64

20

37

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Emma Hernandez-Sanabria et al.

. Junca H, Pieper DH (2010) Functional marker
gene assays for hydrocarbon degrading micro-
bial communities: aerobic. In: Timmis K (ed)
Handbook of hydrocarbon and lipid microbi-
ology. Springer, Berlin/Heidelberg, pp
42894312

Green SJ, Leigh MB, Neufeld JD (2010)
Denaturing gradient gel electrophoresis
(DGGE) for microbial community analysis.
In: Timmis K (ed) Handbook of hydrocarbon
and lipid microbiology. Springer, Berlin/Hei-
delberg, pp 41374158

Andrade LL, Leite DC, Ferreira EM, Ferreira
LQ, Paula GR, Maguire M]J et al (2012) Micro-
bial diversity and anaerobic hydrocarbon deg-
radation potential in an oil-contaminated
mangrove sediment. BMC Microbiol 12:186

Kunapuli U, Lueders T, Meckenstock RU
(2007) The use of stable isotope probing to
identify key iron-reducing microorganisms
involved in anaerobic benzene degradation.
ISME J 1:643-653

Radajewski S, Ineson P, Parekh NR, Murrell JC
(2000) Stable-isotope probing as a tool in
microbial ecology. Nature 403:646-649

Manefield M, Whiteley AS, Griffiths RI, Bailey
MJ (2002) RNA stable isotope probing, a
novel means of linking microbial community
function to phylogeny. Appl Environ Microbiol
68:5367-5373

Jeon CO, Park W, Padmanabhan P, DeRito C,
Snape JR, Madsen EL (2003) Discovery of a
bacterium, with distinctive dioxygenase, that is
responsible for in situ biodegradation in con-
taminated sediment. Proc Natl Acad Sci U S A
100:13591-13596

Mahmood S, Paton GI, Prosser JI (2005)
Cultivation-independent in situ molecular
analysis of bacteria involved in degradation of
pentachlorophenol in soil. Environ Microbiol
7:1349-1360

Padmanabhan P, Padmanabhan S, DeRito C,
Gray A, Gannon D, Snape JR et al (2003)
Respiration of 13C-labeled substrates added
to soil in the field and subsequent 16S rRNA
gene analysis of 13C-labeled soil DNA. Appl
Environ Microbiol 69:1614-1622

Yu CP, Chu KH (2005) A quantitative assay for
linking microbial community function and
structure of a naphthalene-degrading microbial
consortium. Environ Sci Technol
39:9611-9619

Lin JL, Radajewski S, Eshinimaev BT, Trot-
senko YA, McDonald IR, Murrell JC (2004)
Molecular diversity of methanotrophs in Trans-
baikal soda lake sediments and identification of

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

potentially active populations by stable isotope
probing. Environ Microbiol 6:1049-1060
Manefield M, Griffiths RI, Leigh MB, Fisher R,
Whiteley AS (2005) Functional and composi-
tional comparison of two activated sludge com-
munities remediating coking effluent. Environ
Microbiol 7:715-722

Singleton DR, Sangaiah R, Gold A, Ball LM,
Aitken MD (2006) Identification and quantifi-
cation of uncultivated Proteobacteria asso-
ciated with pyrene degradation in a bioreactor
treating PAH-contaminated soil. Environ
Microbiol 8:1736-1745

Lear G, Song B, Gault AG, Polya DA, Lloyd JR
(2007) Molecular analysis of arsenate-reducing
bacteria within Cambodian sediments follow-

ing amendment with acetate. Appl Environ
Microbiol 73:1041-1048

Pilloni G, von Netzer F, Engel M, Lueders T
(2011) Electron acceptor-dependent identifi-
cation of key anaerobic toluene degraders at a
tar-oil-contaminated aquifer by Pyro-SIP.
FEMS Microbiol Ecol 78:165-175

Gutierrez T, Singleton DR, Berry D, Yang T,
Aitken MD, Teske A (2013) Hydrocarbon-
degrading bacteria enriched by the Deepwater
Horizon oil spill identified by cultivation and
DNA-SIP. ISME ] 7:2091-2104

Malik S, Beer M, Megharaj M, Naidu R (2008)
The use of molecular techniques to character-
ize the microbial communities in contaminated
soil and water. Environ Int 34:265-276

Tischer K, Zeder M, Klug R, Pernthaler J,
Schattenhofer M, Harms H, Wendeberg A
(2012) Fluorescence in situ hybridization
(CARD-FISH) of microorganisms in hydrocar-
bon contaminated aquifer sediment samples.
Syst Appl Microbiol 35:526-532

Vilchez-Vargas R, Geffers R, Suarez-Diez M,
Conte I, Waliczek A, Kaser VS et al (2013)
Analysis of the microbial gene landscape and
transcriptome for aromatic pollutants and
alkane degradation using a novel internally cali-
brated microarray system. Environ Microbiol
15:1016-1039

Acosta-Gonzalez A, Rossello-Mora R, Mar-
ques S (2013) Diversity of benzylsuccinate
synthase-like (bssA) genes in hydrocarbon-
polluted marine sediments suggests substrate-
dependent clustering. Appl Environ Microbiol
79:3667-3676

Luo F, Gitiafroz R, Devine CE, Gong Y, Hug
LA, Raskin L, Edwards EA (2014) Metatran-
scriptome of an anaerobic benzene-degrading,
nitrate-reducing enrichment culture reveals
involvement of carboxylation in benzene ring



58.

59.

60.

Current Landscape of Biomolecular Approaches. . . 21

activation. Appl Environ Microbiol

80:4095-4107

Selesi D, Jehmlich N, von Bergen M, Schmidt
F, Rattei T, Tischler P et al (2010) Combined
genomic and proteomic approaches identify
gene clusters involved in anaerobic 2-
methylnaphthalene degradation in the sulfate-
reducing enrichment culture N47. ] Bacteriol
192:295-306

Abu Laban N, Selesi D, Rattei T, Tischler P,
Meckenstock RU (2010) Identification of
enzymes involved in anaerobic benzene degra-
dation by a strictly anaerobic iron-reducing
enrichment  culture. Environ  Microbiol
12:2783-2796

Muller EE, Glaab E, May P, Vlassis N, Wilmes P
(2013) Condensing the omics fog of microbial
communities. Trends Microbiol 21:325-333

6l.

62.

63.

Wu JH, Wu FY, Chuang HP, Chen WY, Huang
HJ, Chen SH, Liu WT (2013) Community and
proteomic analysis of methanogenic consortia
degrading terephthalate. Appl Environ Micro-
biol 79:105-112

Callaghan AV (2013) Metabolomic investiga-
tions of anaerobic hydrocarbon-impacted
environments. Curr  Opin  Biotechnol
24:506-515

Scoma A, Hernandez-Sanabria E, Lacoere T,
Junca H, Boon N, Pieper DH, Vilchez-Vargas
R (2015) Primers: bacterial genes encoding
enzymes for aerobic alkane degradation. In:
McGenity TJ, Timmis KN, Nogales B (eds)
Hydrocarbon and lipid microbiology protocols,
Springer protocols handbooks. Humana Press,
New York. doi:10.1007,/8623_2015_140


http://dx.doi.org/10.1007/8623_2015_140

Primers: Bacterial Genes Encoding Enzymes for Aerobic
Hydrocarhon Degradation

Alberto Scoma, Emma Hernandez-Sanabria, Tim Lacoere, Howard Junca,
Nico Boon, Dietmar H. Pieper, and Ramiro Vilchez-Vargas

Abstract

Alkanes are saturated hydrocarbons that are ubiquitous in the environment. Microbial degradation
pathways evolved to activate and catabolise these compounds in order to gain energy and building blocks
for cell growth. These pathways involve a number of hydroxylases, which primarily differ according to the
nature of the hydrocarbon itself (e.g. aromatic or aliphatic). Given the widespread distribution of alkanes in
the environment, a number of variants of such enzymes are present among microbes. Hence, primers
designed to detect such environmental variants would require a database with a sufficiently large number of
sequences. In the present chapter, we selected the integral-membrane alkane hydroxylases (AlkB) and
cytochrome P450 alkane hydroxylases (CYP153) superfamilies for sketching a general proposal of a design
pipeline to target bacterial genes involved in aerobic alkane degradation. Further, we introduce HyDeg, a
web-based tool that targets multiple subfamilies of enzymes involved in the microbial degradation of
aromatic/aliphatic hydrocarbons. The website allows to retrieve amino acid and nucleotide sequences of
the target family and proposes an evolutionary relationship for the selected enzyme.

Keywords: Biodegradation pollutants compounds, Hydeg, Primer design

1 Targeting the Key Bacterial Genes Involved in Aerobic Alkane Degradation

Alkanes are saturated hydrocarbons with low chemical reactivity,
which can be found arranged in different structures (linear, cyclic or
branched, named #-, cyclo- or iso-alkanes, respectively). Besides
being components of crude oil, several different prokaryotes and
eukaryotes produce them, contributing to the widespread distribu-
tion of alkanes in both soil and wet environments. As a conse-
quence, prokaryotes and eukaryotes possess enzymatic systems to
oxidise hydrocarbons and to complete the biodegradation of
alkanes [1].

Currently, the enzymes involved in aerobic alkane activation
can be clustered in soluble di-iron methane monooxygenases
(sMMO) and membrane-bound copper-containing methane

T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks, (2017) 23-37,
DOI 10.1007/8623_2015_140, © Springer-Verlag Berlin Heidelberg 2015, Published online: 08 September 2015
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1.1 The HyDeg
Website

monooxygenases (pMMO) [2]; cytochrome P450 class I P450
(CYP153) and cytochrome P450 class I P450 (CYP52, CYP2E,
and CYP4B) [3]; integral-membrane di-iron alkane hydroxylases
(AlkB) [2]; flavin-binding monooxygenases (AlmA), firstly found
in Acinetobacter strain DSM 17874 [4]; or long-chain alkane
monooxygenases (LadA), initially found in Geobacillus thermodeni-
trificans NG80-2 [5] superfamilies. These discoveries indicate that
new superfamilies of enzymes with alkane hydroxylase activity are
still waiting to be recovered and characterised in the near future.

Concerning the chain length of the substrate, sMMO and
pMMO oxidise C;—C4 hydrocarbons. CYP52, CYP2E and
CYP4B, which are found in fungi and humans, oxidise alkanes in
the Cs—C, ¢ range; CYP153, which is typically found in Exbacteria,
is able to oxidise C4—C¢ alkanes, whereas AlkB oxidises C5—Csy
and exceptionally up to Cye [6] alkanes. AlmA oxidises alkanes up
to C4o and LadA oxidises alkanes between C;5—Cgzq [7]. Thus, it is
possible that enzymes belonging to completely distinct superfami-
lies can hydroxylate similar alkane lengths.

Generating a database with large enough number of representa-
tive sequences is crucial for designing primers in a systematic man-
ner, aiming to detect environmental variants. AlIkB and CYP153
superfamilies have been extensively studied in environmental niches
(Tables 1 and 2). Thus, massive sequence information is available. In
the present chapter, we selected the AlkB and CYP153 superfamilies
to outline a general pipeline for primer design to target bacterial
genes involved in aerobic alkane degradation.

Based on the information for AlkB and CYP153 superfamilies
previously reported [17], we created HyDey (http: //www.hydeg.
ugent.be), a user-friendly interface with practical examples of pri-
mers designed to target subfamily groups of gene families included
in the microbial catabolome for aromatic/aliphatic hydrocarbon
biodegradation.

HyDey (http: //www.hydeg.ugent.be) contains several superfamilies
of functional genes known to be involved in the aerobic degradation
of hydrocarbons, namely, alkane monooxygenases (AlkB in the
HyDeg website) and cytochrome alkane hydroxylases P450
(CYP153), for aliphatic hydrocarbons, and alpha subunit of Rieske
nonheme iron oxygenases (RHDO), extradiol oxygenases (EXDO),
alpha subunit of soluble di-iron monooxygenases (RHMO), intradiol
dioxygenases (INDO), muconate /chloromuconate cycloisomerases
(MCIS) and maleylacetate reductases (MACR), for aromatic hydro-
carbons. The website allows the user to retrieve both the amino acid
and nucleotide sequences of each subfamily and to observe the evo-
lutionary relationship of such enzymes within the microbial domain.
Moreover, the website allows the user to select the desired node and
to download all the nucleotide sequences employed for the design of
a selected pair or primers.
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2 Preceding Considerations for Primer Design Approaches

2.1 Microbial
GCommunity
Gomposition Versus
Catabolic Gene
Diversity

The 16S rRNA gene sequence has been recognised as the most
reliable target for bacterial phylogenetic identification and classifi-
cation and for biodiversity composition studies in complex com-
munities [18]. It contains nine hypervariable regions which are
flanked by highly conserved regions [19]. This particular feature
allows the estimation of bacterial community composition and
diversity in a single step. In this way, a single primer pair can be
annealed to the highly conserved regions and the hypervariable
regions between will be retrieved.

In contrast, this approach is not feasible with the majority of the
catabolic genes. Because of the higher mutation rate within the
protein-encoding families, the sequence variation is higher [20]. As
illustrated in Fig. 1, the cumulative alignment of DNA sequences
encoding AlkB from cluster 1 to cluster 9 shows the lack of a fully
conserved region across the whole alignment (Fig. 1b). Instead,
conserved sequences along highly similar subclusters are present
(http: //www.hydeg.ugent.be).

Some studies use the most conserved positions in the global
alignments to design primers aiming to detect AlkB and CYP153.
For example, the well-known conserved domains in alkane hydro-
xylases and in cytochrome P450 CYP153 alkane hydroxylases [16].
In the same way as the universal amplification of 16S rRNA gene
fragments, such approaches are limited when applied to families
with higher variation. For instance, a highly conserved motif
“NTAHELGHK?” [9] is absent in the alkane hydroxylases of Fla-
vobacteria bacterium BBFL7 (ZP01201250), Alcanivorax borku-
mensis SK2 (BAC98365 or YP691842), Rhodococcus Q15
(AAK97446), Psendomonas putida P1 (CAB51047), Pseudomonas
fredeviksbergensis  (AAR13803),  Tetrabymena  thermophila
(XP001020064), Burkholderia lata 383 (YP371980) and Polaro-
monas JS666 (YP552229) among others. In addition, motif
“MFIAMDPP” [21] is absent in the cytochrome P450 CYP153
alkane hydroxylases of Caulobacter crescentus CB15 (NP418882),
Sphingopyxis  macrogoltabida  HXN-200 (CAH61448 or
CAHO61454), Bradyrbizobium  diazoefficiens USDA 110
(NP768493), Rhodopseudomonas palustris CGA009 (NP946959),
Erythrobacter litoralis HTCC2594 (YP458852), Novosphingobium
aromaticivorans DSM 12444 (YP495502) and Oceanicola batsensis
HTCC2597 (ZP00997728) among others. Therefore, these
domains cannot be considered universally conserved.

Consequently, designing primers based on such conserved
motifs or nonexistent conserved regions may bias the aim of detect-
ing all the key players involved in alkane degradation. Hence,
primer design based on consensus regions of a subset of sequences
will provide comprehensive coverage and detection range. There-
fore, all the related family members that may be present in a given
environment or isolate can be revealed.
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Fig. 1 (a) Evolutionary relationships of the alkane hydroxylases [17]. Nodes were defined considering clusters
with an increasing number of representatives (cluster 1 to cluster 9). (b) Level of degenerate bases per base
position in alkane hydroxylase genes (gaps were not considered) for each cluster showed in (a), cluster 1 and
cluster 9 are highlighted; in the y-axis the levels of degenerate bases are indicated as follows: A, T, C or G
(0 degenerate bases or 100% conserved); R, Y, S, W, K or M (two degenerate bases or 50% conserved); D, B, H
or V (three degenerate bases or 25% conserved) and N (four degenerate bases or 0% conserved)

The proposed methodology would entail a preceding screening
of the taxonomic biodiversity of the studied samples. Tools in the
field of molecular biology, such as high-throughput sequencing, are
recommended as a preliminary screening. In addition to taxonomic
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2.2 Relating Previous
Screenings with
Alkane Catabolism

studies, microarrays [17] or meta-omics [22] can be carried out to
detect critical genes.

Based on these screenings, the potential catabolic targets must
be located in the corresponding associated node. Sequences
included in this node are retrieved and aligned and the consensus
sequence is generated. Finally, primers are designed.

There is a high sequence divergence in AlkB within different bacte-
rial taxonomic groups [10, 23]. Nevertheless, the amino acid
sequences of the alkane hydroxylases clustered by taxonomic
groups can be useful for primer design. These findings are sum-
marised in the phylogenetic tree shown in Fig. 2 (the accession
number of each member of this dendrogram is shown at HyDey).
The evolutionary relationships of AlkB are described as follows:
cluster 1, including alkane hydroxylases of Actinobacteria related
to AlkB1 (AAK97448) and AlkB2 (AAK97454) of Rhodococcus sp.
Q15; cluster 2, including the alkane hydroxylases of Proteobacteria
related to AlkB of Pseudomonas fluorescens Pt-5 (YP260041); clus-
ter 3, with the alkane hydroxylases related to Mvan_3100 of Myco-
bacterium vanbaalenii PYR-1 (YP953908); cluster 4, the alkane
hydroxylases of Actinobacteria related to AlkB3 (AAK97446) and
AlkB4 (AAK97447) of Rhodococcus sp. Q15; cluster 5, comprising

Cl 4 CL5

01

Fig. 2 Evolutionary relationships of integral-membrane alkane hydroxylases.
Both accession number and bacteria harbouring the alkane hydroxylase genes
are detailed at HyDeg (http:/www.hydeg.ugent.be)
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the alkane hydroxylases of Acinetobacter spp. (YP046098 from
Acinetobacter sp. ADP1, among others); cluster 6, the alkane
hydroxylases related to AlkB1 of Alcanivorax borkumensis SK2
(BAC98365); cluster 7, including the alkane hydroxylases of Pro-
teobacterin related to AlkB1 (NP250216) and AlkB2 (NP251264)
of Pseudomonas aeruginosa PAO1; and cluster 8, with the p-cymene
and xylene monooxygenases (NP542887).

Taxonomic bacterial diversity profiling can be a powerful
screening tool to target AlkB catabolic gene variants involved in
alkane degradation processes. For instance, we may have observed
Actinobacteria enrichment in a microcosm contaminated with dec-
ane, in comparison with a control microcosm. Therefore, the alkane
hydroxylases responsible for the hydroxylation of the alkane will be
located most probably either in the cluster 1, cluster 3 or cluster 4
of the alkane hydroxylases dendrogram (Fig. 2).

It is important to consider that catabolic genes are species
specific or even sub-species specific. This is to say, only particular
strains within the Pseudomonas genus harbour the catabolic genes
required for decane degradation. Thus, although 16S rRNA gene
offers information about the location of the key genes, previous
considerations beyond the scope of primer design must be
contemplated.

Cytochrome P450 CYP153 alkane hydroxylases are a superfam-
ily of enzymes involved in degradation of linear alkanes. CYP153
amino acid sequences cluster in groups depending on their
sequence, although there is not clear taxa differentiation among
the clusters. As shown in the phylogenetic tree of Fig. 3 (and
displayed at HyDeg with the accession numbers of each sequence),
the CYP153 superfamily may be grouped in three different clusters
based on their amino acid sequences. These may correspond with
different taxonomic classes as follows: cluster 1, which includes
CYP153 related to o- Proteobacteria, p- Proteobacterin and Actino-
bacteria; cluster 2, which includes y- Proteobacteria and Actinobac-
teria; and cluster 3, composed only of a- Proteobacteria.

In this way, taxonomic biodiversity profiles might not accu-
rately indicate which branch of the CYP153 phylogenetic tree
could be the potential target for primer design. Moreover, the
number of genes related to CYP153 and deposited in the database
is smaller than those related to AlkB. Consequently, defining the
potential targets is complicated. In some cases however, prelimi-
nary screening of the taxonomic bacterial diversity may help to
elucidate the CYP153 subgroups to be targeted.

So far we described how to apply our proposed strategy in
controlled microcosm studies. If the aim of the study is to identify
potential catabolic genes involved in the degradation of environ-
mental linear alkanes, some techniques such as catabolic microar-
rays or metatranscriptomics (rather than metagenomics) are highly
recommended as a first screening. In this manner, we might detect
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Fig. 3 Evolutionary relationships of cytochrome P450 CYP153 alkane
hydroxylases. Both accession number and bacteria harbouring the cytochrome
P450 CYP153 alkane hydroxylases genes are detailed at HyDeg (http:/www.
hydeg.ugent.be)

fragments of genes of interest; we can retrieve from the database
those closely related and then proceed as described below. Applying
metatranscriptomics, we will detect all the genes expressed under
specific conditions and not only present in the sample of interest.
Currently, 300 bp reads can be retrieved from high-throughput
sequencing; these can be assigned to any catabolic gene of interest
upon automatic (MG-RAST) [24] and manual annotation.
Following, we can acquire the sequences most closely related to
those probes and design primers. This last approach will provide
larger length and localise the gene in the same microorganism.

3 Primer Design

To ensure consistency, the general methodology for primer design
has to follow common steps, independent of the catabolic gene
family analysed. However, the complexity of the entire process can
differ depending on the specific gene family cluster of interest. Let
us consider the biodiversity of AlkB (Fig. 4): nodes with a low
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Fig. 4 Level of complexity in primer design approaches depending on the
number of representatives per node. Dark blue denotes high level of
complexity, due to low number of representatives per branch, in contrast with
light blue

number of representatives (i.e. one member) are located in the dark
blue zone; the light blue zone contains those with large number of
representatives. When the number of representatives per node
increases (towards the light blue zone), the sequence variability
decreases; thus, the primer design is facilitated. The more branches
the node has, the easier it becomes to design a primer set. In the
graphical representation, the lighter area of Fig. 4 indicates the low
level of complexity for designing a primer set. Nevertheless,
because of the lack of a standard operating procedure that allows
systematic primer design for the whole set of branches, the primer
design protocol requires sequential experimental testing. It must be
noticed that if we consider a large amount of representatives, the
consensus sequence will contain numerous degenerate bases; as a
result the probability to obtain the desired PCR products will be
reduced.

Our suggested methodology is graphically represented in
Fig. 5.

Based on the information resulting from the analysis of any
given set of environmental samples (e.g. taxonomic biodiversity
shifts, catabolic microarrays, metagenomics, metaproteomics or
metatranscriptomics data), we can firstly locate potential key
genes involved in the degradation of alkanes in the databases.
Those databases from AlkB and CYP153, among other catabolic
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Fig. 5 Step-by-step flow for the systematic primer design methodology

genes, can be downloaded from HyDeyg for both DNA and amino
acid sequences. Then, the selection of the specific node to target
can be performed following selection of the closely related repre-
sentatives nearby the genes of interest. Once the node is defined, we
can retrieve those amino acid sequences from the database. Each
sequence will be individually blasted against the NCBI database
(http: //blast.ncbi.nlm.nih.gov /), using the default algorithm para-
meters. Further on, the nucleotide sequences of the positive
matches will be retrieved, generating single fasta files. Finally, all
sequences will be merged into a single fasta file, and duplicate
sequences will be deleted. The complete data set for the targeted
node will include unique DNA sequences of all closely related genes
present in the NCBI database. Subsequently, the DNA sequences
are aligned using MUSCLE [25] or Clustal Omega [26], both
accessible via EMBL [27], and consensus regions are selected for
primer design. We defined a node based on the frequency of the
degenerated nucleotides in the consensus sequence of a given
number of targets, within each superfamily of enzymes. If the
frequency was higher than approximately 65%, the sequences with
the lowest similarity were allocated in the adjacent node.

To illustrate this workflow: for targeting cluster 1 of AlkB
(alkane hydroxylases of Actinobacterin related to AlkBl
(AAK97448) and AlkB2 (AAK97454) of Rhodococcus sp. Q15),
three nodes were defined based on the sequence variability. Primers
for node 1 were designed based on 69 DNA sequences; primers
for node 2 were designed based on 23 DNA sequences; and primers
for node 3 were designed based on 38 DNA sequences. The search
for consensus regions allowed the generation of 13 different candi-
date primer sets; these covered the complete cluster 1 according to
the general primer specifications shown in Fig. 5. All sequences for
targeting cluster 1, among other clusters, can be downloaded from
HyDeg. A summary of the proposed primers is shown in Tables 3
and 4 for targeting alkane hydroxylases and cytochrome P450
CYP153 alkane hydroxylases respectively.


http://blast.ncbi.nlm.nih.gov/

Alberto Scoma et al.

34

9 IV 2pou IV L2qLH

O0DDVVILVVOODADOMOVIVOO
ODIOODLOILODALADLADILOV
DO ILODYLOLODALADLAALOV

IET6 LSSTFSINDIY
89pHC9 JL88THSINDIV
$T9 3L88THSINTIIY

HHDDHLOLVOOIIVOHODVSVY 39p086 1£88THSINIIIY
HHDHLOLVODDVYOIOVSYY 086 1£88THSINDIV
HOLVOONMDLIDVOIVOOON 39pS/E73L88THSINDAV saseuagAxoouowr
S g1V dpou IV L3y DO ILVODLYVOLADVOIVOOO SLEIL8STHSANDIY  SML Swuomopnasg — dUS[AX pue SudwA)
MOLVLIVOLALYODOVODLAD 3P0 1£10T8 TFAVV IV
HOLVLLVOLOLYODVOHOLOD 012 10T8THFAVV DIV
9D LVOOMADDAVOAXLASTIV 3oP1SH JOTSTHAVVLIV NUAOIUVI[Y JO
¥ IV 2pou IV L2y 5D ILYODLLODILYO.LLLOOOVY 1S¥ J0C8 THIVVIIIV FAL vprnd J  sasejfxorpAy suey[y
OVAVIIDIOYVIDILADONDIN  39PT86 1€61#9LC00d XAV
HVAV.IYDILODVOOLADONDLD 786 1€61¥9LT00d XAV
LIOVAMIIVADIODINVIODOOI S9p798 IE6TH9LT00I XTIV
LIOVIOIVADLODIOVIODOI 798716 1%9LT00I XAV
DOOVVOVOUVOOIIAOMIALLA  S9P9FS JS6THILTOOIADTIY T S70d04q3449
€ IV 2PoU PV LI HOOVVOVOOVOILADV.IOLLD %S IE6 19200 ALV SNI030p0Y Y
I1ODOVSLLIOVIOOVOOLADL 0887 1790% TOVO DIV
VOLVOODDILVVOOVOIDOIOL S¥¥ 3290 TOVO DIV
T IV 2pou IV BH VVOVOOVOILVOVIOLLOVO 0%S JC90FTOVOMIY N4 s#99000poqy
LIDIOVOVVOOVAVIIDLOOVIO 39p68TT T1LSTS6IADIV
LIOOVOVYOOVAVILODLOOVOD 68CT ILSTS6d XY 1 ¥Ad
HDOVVOVOOVOILVOMIILLOVO 3908 IT1LSTS6d XAV nuayyquUYa v1.4279090UIY JO sose[Ax01pAY
1 AV dpou IV L3y HOOVVOVOOVODLVOVILOLLOVO €08 J1LSTS6dADIV 1990204917 SISE[AXOIPAY Sue[Y sueyy
ERIEIETEH ,€-,G 99uanbasg (as1ana1 = "1 106ue} 0} annejal sse|) Awepadng
‘plemioy = 7J) /ssejoqng
awieu Jawid

sase|AxoipAy aueyjje Hunabie) 1oy HagAH ul paquasap sisswnid Jo 1s1]

€ 9|qel



35

£ dPou €STJAD Py
G 9pou ¢STJIXD e

¥ opou eGTdXD FLH
8 9pou ¢ST1JXD FoqiH
9 dpou ¢STIXD 2aiH

€ 9pou ¢ST1JXD F2qiH

T oPou ¢ST1dXD 2qiy
89°¢‘T

sapou ¢STAXD A H

1 9pou ¢STIXD L2y

LVOLVOOLIOIIdSLLOOD
OVOVOOVVHOONODOSIIOLY
VVOOOIVAMIDOSLVID.LIDD
VOOVVINOOAWOOVODLYODD
OLOIYDAVADIAVOODLALD
DOOVOSMIAVOOVIAVYSOO
DILI@IAINOSVINIOOOVMIDDIAVAD.LDD
D ILDAIVIVOAVVIOOAVMOODUTAVAD

DLNIVNVOIVVIOOAVVIO O IAVEOD. LI
DOODLLODILOLVINOAVVIOOAVVIOO

OMAVVNOOADVIOVAVOAVVNIONID
OOYVMADDIAVADLIDDSVOYAVSOO
OOALLAVOALAILHSOVAOOLLO

L8TT 10TI9SHVO 0SFIAD
988 JOCTI9SHVOD 0S¥dXD
LTIT 1C8FLYAVI 0SFdAD
8ECFC8TLYAVI 0SFIAD
966 1S8FLYAVI 0S¥IXD
$9€ JS8FLYAVI 0S¥dXO

8 €64 1€STdAO

9 €64 1ESTIXD

€ €64 1ESTAAD
T €64 1€STdAD

L9¥% JESTAAO
IGOTT 9SITIESTIRD
JOTS SIPIESTIRO

SO Wn1.4233190IC7
00CNXH
vprquigoboiIvm sixkdobuigds

00S INXH t#1433904096

FAJ SH0d0416.42 s1193030p0C Y

OIS SISUIMNYL0Q XVLOALTUVI]Y
E8¥LYAVI

WNLI10eq PAINI[NOU)

011 VASN wnqozigikpug
(premioy Auo)

s3a81e3 Jo wn1dads peoig

€5Vsid

SISV G SVUouopnIsqopo

$ISE[AXOIPAY

uey[e €GTIAD
0SFJ dWoIyd014D)

agualajay

,£-,G aouanbhag

aweu Jawid

196.e)} 0} anne|al/ssejagqng

sse|9

Primers: Bacterial Genes Encoding Enzymes for Aerobic Hydrocarbon Degradation

sase|AxoipAy aueyje £G1dA9 0Srd awoayoso)ho Hunabie) oy HaghAH w paquasap stawiid Jo 1siq
¥ 8lqel



36

Alberto Scoma et al.

4

Perspectives

Overall, there are 14 nodes currently defined in HyDeg, along with
the corresponding set of primers. The presence of conserved
regions and similarity among the members composing each group
were considered for their construction. This partitioning allowed
designing primer sets that can effectively cover the complete
sequence diversity reported for the families within each cluster.
Nevertheless, contributions to enhance the representativeness of
this proposal are welcome. Continuous upgrades would indeed
refine and improve the primer design and expected coverage across
family classification, in a systematic and documented manner.

We present the HyDey database as a reliable tool for designing
primers to target enzymes involved in hydrocarbon degradation.
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Primers: Functional Genes for Anaerobhic Hydrocarhon
Degrading Microbes

Tillmann Lueders and Frederick von Netzer

Abstract

The detection of anaerobic hydrocarbon degrader populations via catabolic gene markers is important for
the understanding of processes at contaminated sites. The genes of fumarate-adding enzymes (FAEs; i.e.,
benzylsuccinate and alkylsuccinate synthases) are widely used as specific functional markers for anaerobic
degraders of aliphatic and aromatic hydrocarbons. Several recent studies have shown the existence of new
and deeply branching FAE gene lineages in the environment, and respective FAE gene-targeted primer
systems have been advanced. Here, state-of-the art protocols for the PCR detection, T-RFLP fingerprinting
as well as sequencing of FAE gene amplicons are described. These protocols can also readily be applied to
other established functional markers for anaerobic degraders of petroleum hydrocarbons, such as benzoyl-
CoA reductases as well as the ring-cleaving hydrolases involved in the central catabolism of aromatic
hydrocarbons. In summary, these assays allow for rapid and directed insights into the diversity and identity
of intrinsic degrader populations and degradation potentials in hydrocarbon-impacted systems.

Keywords: Benzoyl-CoA reductase, Benzylsuccinate synthase, Fingerprinting, Fumarate-adding
enzymes, PCR amplification, Sequencing

1 Introduction

1.1 Anaerobic Biodegradation is the key process reducing hydrocarbon contami-
Hydrocarbon nation in natural environments. In the absence of oxygen, the initial
Degrading Microbes activation is the crucial step in the catabolism of aliphatic or aro-
in the Environment matic hydrocarbons. Similar to aerobic catabolic pathways, anaero-

bic hydrocarbon degradation is based on funneling pathways,
where a compound is initially activated and converted to central
metabolites, which are then further degraded to assimilatory units
or completely oxidized to CO, [1].

Currently, three general strategies for the anaerobic activation
of petroleum hydrocarbons are known [2]: (i) addition of a methyl
or methylene group of the hydrocarbon substrate to fumarate via a
glycyl radical enzyme; (ii) oxygen-independent hydroxylation,
known to be involved in the degradation of ethylbenzene and

T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks, (2017) 39-55,
DOI 10.1007/8623_2014_44, © Springer-Verlag Berlin Heidelberg 2014, Published online: 30 December 2014
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related substituted benzenes [3, 4]; and (ili) carboxylation,
proposed for alkanes [5, 6], methylnaphthalenes [7], naphthalene
and benzene [8, 9] as well as for phenanthrene [10].

Fumarate addition by benzylsuccinate synthase (BSS) was first
reported for the activation of toluene by Thauera aromatica strain
K172 [11]. BSS adds an enzyme-bound benzyl radical formed from
toluene to the double bond of fumarate (Fig. 1). Technically, this
process is often referred to as “fumarate addition.” The thus
formed benzylsuccinate is subsequently degraded via further acti-
vation to CoA-thioesters and via reactions similar to f-oxidation to
benzoyl-CoA, the central metabolite in anaerobic aromatic hydro-
carbon degradation [1]. The substrate range of fumarate-adding
enzymes (FAE) is not only limited to the activation of aromatic
compounds such as toluene, xylenes, and also ethylbenzene [2].
The same activation reaction is also used in alkylsuccinate synthases
(ASS, also called methylalkylsuccinate synthase MAS [12, 13]) for
long and short chain alkanes [ 14-16], as well as in naphthylmethyl-
succinate synthases (NMS) for 2-methylnaphthalene activation
[17]. The analogous activation reactions for BSS, NMS, and ASS
are illustrated in Fig. 1.

Cyclic alkanes may also be activated by addition to fumarate
[18, 19]. Furthermore, cresols [2] and also linear alkylbenzene
sulfonate detergents [20] have been reported to be activated via
fumarate addition. Therefore, fumarate addition can be considered
as widely spread key reaction for anaerobic hydrocarbon degrada-
tion [21].

All aforementioned anaerobic aromatics activation pathways
funnel the monoaromatic (and possibly also polyaromatic) com-
pounds to benzoyl-CoA. The aromatic ring is desaturated in several
steps by benzoyl-CoA reductases. There are two systems known for
the initial dearomatization step [1]: either the ATP-dependent
benzoyl-CoA reductase BcrABCD in facultative anaerobes like
T. aromatica and Azoarcus spp. or the ATP-independent benzoyl-
CoA reductase BamBCDEFGHI in strict anaerobes like Geobacter
metalliveducens. Subsequently, the ring-cleaving hydrolase (BamA)
precedes subsequent p-oxidative-like reactions, yielding CO, and
three molecules of acetyl-CoA which can be funneled into central
metabolism (Fig. 1).

A wide diversity of bacterial cultures and enrichments is known
to use fumarate addition for activating hydrocarbons and related
substances while respiring different electron acceptors. We cannot
go into extensive detail here, but important degraders are to be
found within the Rhodocyclaceae ( Betaproteobacteria), Geobactera-
ceae, Desulfobacteracene, Syntrophobacteracene (Deltaproteobac-
teria), and Peptococcacene (Clostridia) [22, 23].
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Fig. 1 Initial activation of toluene, 2-methylnaphthalene, and n-alkanes by the FAEs benzylsuccinate synthase
(BSS), naphthylmethylsuccinate synthase (NMS), and alkylsuccinate synthase (ASS)/methylalkylsuccinate
synthase (MAS). Subsequent degradation steps and funneling into central metabolism are simplified, as
well as the recycling of fumarate
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1.2 Detection Assays
for Anaerobic
Hydrocarbon
Degradation Genes

Because of their widespread occurrence and strict functional affilia-
tion, FAE genes are well suited for tracing natural populations of
anaerobic hydrocarbon degraders [24, 25]. Although FAE display
wide substrate ranges, due to their unique biochemistry — addition
of'a hydrocarbon substrate radical to fumarate — they harbor specific
protein motifs whose gene sequences are ideal for creating func-
tional gene PCR assays. Several primers targeting the genes for the
a-subunit of BSS and ASS are currently in use for the detection of
hydrocarbon degrader lineages (see Table 1 and Fig. 2 for an
overview).

The first primers for qualitative (and quantitative) PCR target-
ing of bssA genes of nitrate-reducing Betaproteobacteria were intro-
duced by Beller and colleagues [26]. This assay was later updated
also for sulfate-reducing bacteria [27]. The primers of Washer et al.
[28] were specifically designed for a toluene-degrading, methano-
genic microcosm. The assay of Winderl and co. [24] extended the
range of detectable hydrocarbon-degrading microbes to iron- and
sulfate-reducing Deltaproteobacterin. Staats et al. [29] applied
altered primers first developed by Botton and co. [30], which
targeted &ssA of iron- and nitrate-reducing degraders in an aquifer
contaminated by landfill leachate. The retrieved bssA sequences
were related to the betaproteobacterial bssA sequence of Georgfuch-
sin tolwolica [31], rather than to the Geobacter populations
expected from in situ 16S rRNA gene studies.

Recently, Callaghan and co. [25] introduced assays also for ASS
genes, evolved from existing bssA primers, on the basis of the small
number of pure culture assA sequences available. These optimized
primer sets were applied to DNA extracted from propane- and
paraffin-degrading enrichments as well as several aquifer, freshwa-
ter, and estuarine habitats contaminated with alkanes, revealing for
the first time a similar diversity of assA genes in the environment as
already known for &ssA genes. Also in contaminated marine sedi-
ments, some of these primers have been proven to successfully
recover hydrocarbon-degrading potentials [32].

However, most of these established &ssA4 and assA gene detec-
tion assays were not designed to target novel, deeply branching
FAE gene sequences. Already Winderl et al. [24] retrieved several
unassigned, deeply branching bssA lineages, the so-called T- and F-
clusters (Fig. 3). Using the same primers on a tar-oil-contaminated
aquifer, Yagi and coworkers found new sequences related to the F2-
cluster [33]. Similarly, Hermann et al. reported sequences related
to T-cluster bssA homologues and nmsA sequence clusters for
xylene-degrading enrichments [34]. These studies emphasize the
existence of new and deeply branching FAE lineages, in addition to
the known BSS, NMS, and ASS lineages.

Furthermore, several novel anaerobic hydrocarbon degraders
within the Clostridia were recently discovered: Desulfitobacterinm
aromaticivorans UKTL, using fumarate addition for toluene
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bssC T. aromatica K172 bssA gene (2585 bp) bssB
bssA Beller et al. (2002) f>—<r

bssA Winderl et al. (2007) f r

bssA Beller et al. (2008) f>—<r
assA/bssA  Callaghan et al. (2010) f> <r

bssA Staats et al. (2011) > <r

FAE-B/-KM  von Netzer et al. (2013) f> <r

FAE-N von Netzer et al. (2013) > r

assA Aitken et al. (2013) f r

Fig. 2 Localization and overlap of selected published bssA and assA primer sets on the bssA gene of Thauera
aromatic K172 (AJ001848). Naming of primer sets and amplicon length are as in Table 1. Modified from [24]

BssA/NmsA

Betaproteobacteria,

BssA Deltaproteobacteria
S.str. | (Desulfobacula toluolica)
F1-cluster 2
(Desulfobulbaceae) %
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Geobacter sp. g |
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Geobacter sp. s

Desulfotomaculum gibsoniae
BssA homologue 1

BssA-homologues (Clostridia)
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Desulfotomaculum gibsoniae
BssA homologue 2

Outgroup PFL

Deltaproteobacteria
(Desulfobacterium cetonicum)

F2-cluster (Clostridia,
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i.e. Thauera sp. & Azoarcus sp.
(and Magnetospirillum sp. TS-6
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Fig. 3 Overview of the phylogeny of known pure culture and environmental FAE gene sequences. Several
lineages are collapsed with only a few representatives named. Additionally, the demonstrated range of
coverage for selected primer pairs is indicated. S.str. sensu stricto, s./. sensu lato. The scale bar represents
10% amino acid sequence divergence
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1.3 Primer Selection

activation [ 35], and strain BF, possessing a &ss-homologous operon
[9] despite utilizing benzene and not toluene. Their FAE genes
were not detectable with the aforementioned &ssA assays. More-
over, the NMS genes of recently described naphthalene-degrading
marine strains NaphS2, NaphS3, NaphS6 [36], and aquifer sedi-
ment enrichment strain N47 [37] were not targeted by these
primers. Also for the syntrophic Smithella spp. found in several
methanogenic alkane-degrading systems, a new clade of asA
genes has recently been identified [38—40]. Consequently, the
optimization of assays for a more comprehensive recovery of FAE
genes with primers less biased towards known proteobacterial FAE
gene sequences is still an ongoing process [21, 41].

Apart from FAE genes, several other functional markers have
also been employed successfully for detecting the functional guild
of anaerobic aromatic degraders: the benzoyl-CoA reductases bcr/
bzd [42, 43] or bamB [44] as well as the ring-cleaving hydrolase
bamA [29, 45, 46] of the central metabolism of aromatic hydro-
carbon degradation. Although less strictly targeted towards anaer-
obic pollutant degraders [29], these assays allow for insights into
the diversity and identity of intrinsic aromatics degrader popula-
tions also when fumarate addition is not involved.

The primary protein structure of the alpha subunit of succinate
synthases is more conserved towards the C-terminus [47]. There-
fore, it is easier to find conserved primer motifs towards the 3'-end
of fumarate-adding enzyme genes (Fig. 2). At the moment, we
recommend the 8543r primer [21], adapted for more optimal
performance compared to prior versions [24, 25, 28], as most
suited for covering a wide selection of FAE gene lineages (Fig. 3).
The lineage specificity of the PCR reaction must then be guided by
the forward primer and also the annealing temperature [21]. For
detecting a wide range of bssA genes sensu stricto (s.str.), the
forward primer 7772f has been used and tested extensively [24,
34, 48-50]. Other forward primers are needed for more deeply
branching &ssA sensu lato (s.l.) and homologues (i.e., the FAE-B
primer for clostridial ssA homologues in Fig. 3) and especially for
the nmsA lineage. The assA-specific primer sets of Callaghan et al.
[25] and Aitken and coworkers [41], as well as the FAE-KM
primers [21] are efficient and specific for recovering assA sequences
[32,41,51].

Other primers are also available for the tracing of specific sub-
lineages of &ssA s.str., such as the primer set of Staats and colleagues
[29] for iron- and nitrate-reducing Proteobacteria, the original bssA
primer set designed for denitrifying Betaproteobacteria [26], as well
as the SRB primers for sulfate-reducing Deltaproteobacteria 27 ].
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1.4 Methods for the
Screening of
Anaerobic
Hydrocarbon
Degradation Genes

The screening for hydrocarbon degradation genes always starts with a
simple PCR as a quick and qualitative check for the presence of
potential degraders but should be followed by further downstream
processing for more detailed characterization. For phylogenetic dis-
section of degrader communities, cloning and sequencing of FAE
genes and also other markers is well established [24, 25, 29, 45].
The cloning yield is directly dependent on the specificity and diversity
coverage of the chosen primer pair for a given site. PCR artifacts of
low stringency primers will reduce the cloning yield drastically.

qPCR with FAE gene primers has also been repeatedly used for
quantifying hydrocarbon degradation genes in environmental sam-
ples [26, 27,41, 52]. However, compared to cloning and sequenc-
ing, qPCR reactions need to be performed under even more
stringent conditions. The detection relies either on SYBR-Green
[27,41] or also on lineage-specific QPCR probes [26, 52]. How-
ever, due to elevated stringency needs, only distinct sublineages
may be readily quantifiable via qPCR. Some of the more general
primers given in Table 1 are certainly too degenerate for providing
reliable quantification results. Table 1 indicates the primers where
qPCR has been performed successfully with either high stringency
settings or for samples with low diversity.

Fingerprinting, such as terminal restriction fragment length
polymorphism (T-RFLP) analysis, offers a means for the rapid
screening of large numbers of amplicon pools. Although T-RFLP
analysis is not diagnostic, the identity of T-RFs may be elucidated
with caution by cross-referencing of fragment lengths to in silico
digested sequences. A dual-digest T-RFLP fingerprinting method
for sequencing-independent diagnostics of major FAE gene
lineages in environmental samples has recently been introduced
[21]. In this manner, clear T-RF identification is facilitated, as
some FAE gene lineages may share the same conserved restriction
sites. Using a second digest with an alternative restriction enzyme
provides a better means of peak identification, as the combined
restriction fragment lengths are unique.

Recently, next-generation sequencing of marker gene ampli-
cons is more and more widely used for targeting the diversity of
environmental gene pools. Next-generation sequencing of 16S
rRNA gene amplicons is already a standard method [53], and
there are well-established, ready-to-use bioinformatics resources
publicly available for automated 16S rRNA sequence classification
[54-57]. In contrast, next-generation sequencing of functional
genes is currently still emerging, requiring the setup of dedicated
pipelines and well-curated classification databases, and has been
employed mostly for aerobic monooxygenase genes [58, 59]. A
first next-generation sequencing pipeline for FAE genes, enabling
the high-throughput characterization of anaerobic hydrocarbon
degrader communities, is currently under development.
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2 Materials

2.1 PCR 1.

Amplification of FAE
Gene Markers

22 T-RFLP 1.
. 5-FAM-labeled FAE-B 8543r reverse primer (biomers.net

Fingerprinting of FAE 2
Gene Amplicons

10.

2.3 Sequencing of 1.
FAE Gene Amplicons 2.

Nuclease-free water (Promega (www.promega.com)), stable at
room temperature but better kept at —20°C for lower contam-
ination risk.

. Taqg Polymerase and PCR Kit (Fermentas (www.

thermoscientificbio.com /fermentas/)), stable at —20°C.

. Bovine serum albumin (BSA; Roche (www.roche.com/

products.htm)), stable at —20°C.

. dNTDPs (Fermentas (www.thermoscientificbio.com /fer

mentas/)), stable at —20°C.

. bssA 7772f and FAE-B 8543r PCR primers (see Table 1, bio-

mers.net (www.biomers.net)), stable at —20°C.

. Any PCR cycler and standard agarose gel electrophoresis unit

available in your lab.

PCR reagents and equipment as listed above.

(www.biomers.net)), stable at —20°C; keep exposure to light
minimal.

. MinElute PCR cleanup columns incl. 10 mM Tris (pH 8.5)

elution buffer (Qiagen (www.qiagen.com/products/)).

. Any UV-spectrophotometer capable of quantifying DNA in

small (~2-5 pl) volumes of DNA available in your lab.

. Tagl and Haelll restriction enzyme kits incl. buffers (New

England Biolabs (www.neb.com/products)), stable at —20°C.

. Dye-Ex Sephadex spin columns (Qiagen (www.qiagen.com/

products/)).

. Any table-top micro-centrifuge available in your lab.

. Hi-Di formamide (Life Technologies (www.lifetechnologies.

com)), stable at —20°C, toxic.

. ROX-labeled MapMarker 1000 fragment ladder (BioVentures

(www.bioventures.com)), stable at 4°C.

Any capillary electrophoresis genetic analyzer and GeneMapper
fragment analysis software (both Life Technologies (www.
lifetechnologies.com)) available in your lab.

PCR reagents and equipment as listed above.

Any routine TA-cloning kit and competent E. colz cells used in
your lab (e.g. TOPO-XL Kit, Invitrogen (www.
lifetechnologies.com/de/en/home /brands/invitrogen.
html)).


http://www.promega.com/
http://www.thermoscientificbio.com/fermentas/
http://www.thermoscientificbio.com/fermentas/
http://www.roche.com/products.htm
http://www.roche.com/products.htm
http://www.thermoscientificbio.com/fermentas/
http://www.thermoscientificbio.com/fermentas/
http://www.biomers.net/
http://www.biomers.net/
http://www.qiagen.com/products/
http://www.neb.com/products
http://www.qiagen.com/products/
http://www.qiagen.com/products/
http://www.lifetechnologies.com/
http://www.lifetechnologies.com/
http://www.bioventures.com/
http://www.lifetechnologies.com/
http://www.lifetechnologies.com/
http://www.lifetechnologies.com/de/en/home/brands/invitrogen.html
http://www.lifetechnologies.com/de/en/home/brands/invitrogen.html
http://www.lifetechnologies.com/de/en/home/brands/invitrogen.html
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3. Appropriate agar plate media for selection of insert-positive
clones as suggested by the manufacturer of the cloning kit.

4. Vector-targeted PCR primers or plasmid isolation kit as speci-
fied by the manufacturer of the cloning kit.

5. Any capillary electrophoresis genetic analyzer and Sanger
sequencing analysis software (both Life Technologies (www.
lifetechnologies.com)) available in your lab.

6. Any standard sequencing software suite (e.g., SeqMan,
DNAStar (www.dnastar.com)) available in your lab.

7. Any sequences alignment database and phylogeny package
available in your lab (e.g., ARB [60]).

3 Methods

3.1 PCR
Amplification of FAE
Gene Markers

The protocols below describe the PCR amplification, T-RFLP
fingerprinting, cloning, and sequencing of FAE gene amplicons
generated with established FAE gene primers [21, 24 ]. Basic work-
flows used in our lab are explained, but preferred kits and available
instruments may differ in others. The general workflows can also
easily be adapted to any other of the catabolic gene primer sets
listed in Table 1.

Start with the DNA extraction protocol established in your lab
and optimize for the respective samples (water, soil, sediments,
enrichments). For the plethora of distinct DNA extraction proto-
cols, further detail cannot be given here. Prior to FAE gene PCR,
the quality and integrity of the recovered genomic DNA must be
verified (e.g., by standard agarose gel electrophoresis).

1. Set up a PCR reaction within a total volume of 50 pl containing
nuclease-free water, 1 x PCR buffer, 1.5 mM MgCl,, 10 pg
BSA, 0.1 mM of each dNTP, and 1.25 U Taq polymerase.

2. Add 0.3 pM of each primer (see Note 1).
3. Add 1-2 pl of DNA extract (~2-20 ng) (see Note 2).

4. Run respective negative and positive controls as well (see
Note 3).

5. Amplity in a PCR cycler under the following conditions: 3 min
initial denaturation at 94°C, 30 cycles of amplification (30 s at
94°C, 30 s at 52°C, 60 s at 72°C), and 5 min at 72°C for
terminal extension (see Note 4).

6. Visualize the resulting FAE gene amplicons by standard aga-
rose gel electrophoresis (sec Note 5).


http://www.lifetechnologies.com/
http://www.lifetechnologies.com/
http://www.dnastar.com/
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3.2 T-RFLP
Fingerprinting of FAE
Gene Amplicons

3.3 Sequencing of
FAE Gene Amplicons

10.

11.
12.

. Generate FAE gene amplicons from an environmental DNA

extract as described in Sect. 3.1 using a 5'-FAM-labeled FAE-B
8543r reverse primer. Alternative fingerprinting assays with a
labeled forward primer are also conceivable.

. After gel visualization, selected amplicons are purified using

PCR cleanup columns following the manufacturer protocols.

. Re-elute amplicons in 25 pl of elution buffer (see Note 6).
. Quantify purified amplicons using UV—photometry (see Notes

7 and 8).

. Separate dual digests can be set up per amplicon to increase

diagnostic strength of downstream T-RF analyses. Thus, steps
7-13 are done in parallel for each sample with separate restric-
tion enzymes.

. Digest 60 ng of the purified amplicon in a 10 pl reaction by

adding 0.3 pl (10 U pl™!) restriction enzyme and 1 pl 10 x
restriction buffer, and add nuclease-free water to a total volume
of 10 pl.

. Incubate for 2 h at 65°C (Taql) or at 37°C (HaellI-digests),

respectively.

. Desalt digested amplicons via Sephadex spin columns by cen-

trifugation at 750 x g and at room temperature following
manufacturer protocols (sec Note 9).

. Load 1 pl of desalted digest into 13 pl of Hi-Di formamide,

containing a 1:400 dilution of ROX-labeled MapMarker 1000
fragment ladder (se¢ Note 10).

Denature fragments at 95°C for 5 min, place immediately
on ice.

Separate fragments by capillary electrophoresis (see Note 11).

Evaluate electropherogram raw data with fragment analysis
software (see Note 12) to size-call T-RFs prior to downstream
data handling (see Note 13).

. Generate FAE gene amplicons from an environmental DNA

extract as described in Sect. 3.1.

. After gel visualization, purify selected amplicons using PCR

cleanup columns following the manufacturer protocols, re-
elute amplicons in elution buffer, and quantify by UV-
measurement (see Notes 5-7, 14).

. Ligate ~35 ng of selected purified FAE gene amplicons into

vector and transform competent E. coli cells using routine TA-
cloning following manufacturer protocols.

. Pick ~50-100 insert-positive clones on appropriate selective

agar plate media.
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5.

Perform vector-targeted PCR of cloned inserts or isolate
plasmids and screen for expected insert size.

. Sequence inserts from both ends with vector primers on a

Sanger sequencer following manufacturer’s protocols.

. Assemble resulting forward and reverse sequence reads for each

clone individually with a standard sequencing software suite.
Perform standard quality checks and crop remaining vector
sequences.

. Preliminarily identify contigs by BLAST (http://blast.ncbi.

nlm.nih.gov/Blast.cgi) for similarities to published FAE genes.

. Introduce generated FAE gene sequences into a database align-

ment for comprehensive downstream phylogenetic analysis.

4 Notes

. Table 1 should assist the reader to select the optimal catabolic

marker gene assay considering the specific research question
and the anaerobic degrader lineages expected for the investi-
gated samples.

. Prior to FAE PCR, it is advised to check respective DNA

extracts for absence of inhibitory humics concentrations and
general amplifiability using routine bacterial 16S rRNA gene
PCR.

. Any DNA extract of an anaerobic toluene-degrading pure cul-

ture can be used as positive control. Thauera aromatica K172
or Geobacter wmetalliveducens can be obtained from the
Deutsche Sammlung fiir Mikroorganismen und Zellkulturen
(DSMZ (www.dsmz.de)) and are easily cultured.

. Alternative thermal cycling programs can be found in the refer-

ences for the other primers given in Table 1.

. Owing to their high degeneracy, FAE gene primers tend to

produce considerable PCR artifacts (smears of unspecific ampli-
fication products). Especially if more deeply branching, atypical
FAE gene lineages are present. To alleviate this, reconsider
primer choice or modify PCR annealing temperature. Gel puri-
fication of the desired amplicon is also a choice to improve
downstream handling.

. The elution volume may be lower or higher (15-50 pl),

depending on the amplicon quality.

.A  NanoDrop spectrophotometer (Thermo  (www.

thermoscientific.com)) is well suited.

. Purified amplicons can be stored frozen (—20°C) at this point.

. Desalted digests can be stored frozen (—20°C) at this point.


http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.dsmz.de/
http://www.thermoscientific.com/
http://www.thermoscientific.com/
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10.

11.

12.

13.

14.

The ratio of necessary ladder amendment may vary depending
on the sequencer used.

Our lab uses an ABI 3730 genetic analyzer (Life Technologies
(www.lifetechnologies.com)). Electrophoresis is done with
POP-7 polymer in a 50 cm capillary array under the following
conditions: 10 s injection time, 2 kV injection voltage, 7 kV run
voltage, 66°C run temperature, and 63 min analysis time.

We use GeneMapper 5.1 (Life Technologies (www.
lifetechnologies.com)). Usually, the fragment analysis window
is set between 50 bp and the maximum amplicon length. Still, it
is relevant to also consider the raw data, to find potential FAE
T-RFs outside these cutoffs [21].

For example, the T-REX software [61]. Noise filtering can be
done on the basis of the peak height with the standard devia-
tion multiplier set to 1. Terminal restriction fragments (T-RFs)
should be defined by aligning peaks with a clustering threshold
of 1 bp.

For cloning of difficult FAE gene amplicons, further amplicon
purification via gel extraction (QIAquick Gel Extraction kit,

Qiagen (www.qiagen.com/products/)) might be necessary.
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Primers: Functional Marker Genes for Methylotrophs
and Methanotrophs

Marc G. Dumont

Abstract

Methylotrophs are a diverse group of microorganisms that use compounds without a carbon—carbon bond
as a sole source of carbon and energy for growth. Methylotrophs play an important role in most environ-
ments, including terrestrial, aquatic, and marine habitats. Several approaches to detect and identify methy-
lotrophs in environmental samples have been developed. A common approach is to target protein-encoding
genes since methylotrophs are phylogenetically diverse, making the design of 16S rRNA primers and probes
with wide coverage difficult or impossible. The mxaF gene encoding the active site subunit of the methanol
dehydrogenase is one of the more universal targets for methylotrophs, as are some of the genes involved in
Cl1-transfer reactions, such as fhcD gene of methanopterin-linked pathway. The pmoA gene, encoding the
B-subunit of the particulate methane monooxygenase, is a common target for methanotrophs. In many
cases the evolution of these functional genes is congruent with the 16S rRNA and other phylogenetic
markers, making them suitable for inferring taxonomy. This chapter summarizes the available primers and
methods to detect or quantify various aerobic methylotrophs in environmental samples.

Keywords: fheD, Methane, Methanol, Methylamine, Microbial ecology, mxaF, PCR, pmoA

1 Introduction

Methylotrophs have the ability to grow using one-carbon com-
pounds as a sole source of carbon and energy. These include a wide
diversity of microorganisms in all domains of life, including Archaea,
Bacteria, and fungi [ 1-3]. This chapter focuses on aerobic methylo-
trophs, which are widely distributed across several bacterial phyla
including Alpha-, Beta-, and Gammaproteobacteria, Verrucomicro-
bia, Cytophagales, Bacteroidetes, and Actinobacteria [1, 3].

A variety of compounds lacking carbon—carbon bonds are used
as substrates for aerobic methylotrophs, including methanol, meth-
ane, methylamine, methanesulfonate, and chloromethane. Methy-
lotrophs capable of aerobic growth with methane are referred to as
methanotrophs. Methanotrophs first oxidize methane to methanol,
which can then be completely oxidized to carbon dioxide with a

T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks, (2017) 57-77,
DOI 10.1007/8623_2014_23, © Springer-Verlag Berlin Heidelberg 2014, Published online: 04 December 2014
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net gain in energy or assimilated into biomass at the level of
formaldehyde or formate [1, 4]. Except for the oxidation of meth-
ane, one-carbon metabolism in methanotrophs and Gram-negative
methanol utilizers is similar. Many methylotrophs use either the
RuMP or serine pathway for carbon assimilation, and some also
possess the Calvin—Benson—-Bassham (CBB) cycle enzymes [5].

In many cases, methylotrophs can be detected in environmental
samples by targeting functional marker genes encoding enzymes
involved in one-carbon metabolism. For many purposes this is
superior to trying to identify methylotrophs with 16S rRNA since
methylotrophy is polyphyletic. One exception is for detection by
conventional fluorescence in situ hybridization (FISH) since the
high ribosome abundance in the cells results in many probe targets
and strong fluorescence signals, which facilitates the procedure [6].
FISH using 16S rRNA probes has been widely used to detect
methylotrophic organisms [ 7—13]. In addition, 16S rRNA targeted
PCR primers have been designed to target individual genera of
methylotrophs, such as Methylobacterium [14], or wider groups
such as methanotrophs belonging to either the family Methylococ-
caceae (traditionally referred to as Type I methanotrophs) or
Methylocystaceae (Type II methanotrophs) [15].

This chapter focuses on the PCR primers and assays used to
target aerobic methylotrophs in environmental samples. Functional
marker genes covering broad groups of methylotrophs are summar-
ized, as well as those specific for specialized classes including meth-
ane, methylamine, methylated sulfur, and halomethane utilizers.
Primers targeting the functional marker genes discussed in the
chapter are shown in Table 1.

2 Functional Marker Genes for the Comprehensive Detection of Methylotrophs

There is no gene that is both unique to methylotrophs and found in
all methylotrophic organisms; however, there are some metabolic
modules that are present in diverse classes of methylotrophs [52].
PCR assays have been designed targeting functional genes encoding
several of these enzymes diagnostic for methylotrophy, such as those
responsible for methanol oxidation, the tetrahydromethanopterin-
linked Cl transfer pathway and Cl assimilation. The assays for
assimilation pathways are not discussed here since c&bL of the Cal-
vin—Benson—-Bassham cycle is not unique to methylotrophs,
attempts to design primers for Aps (3-hexulose 6-phosphate
synthase) of the RuMP pathway were not successful [44 ], and assays
for hpr (encoding hydroxypyruvate reductase) have not been exten-
sively tested [44].
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2.1 Quinoprotein
Methanol
Dehydrogenase
(mxaF/xoxF)

2.2 Tetrahydro-
methanopterin
(H,MPT)-Dependent
Enzymes

Pyrroloquinoline quinone (PQQ)-containing methanol dehydro-
genase (MDH) is found in diverse Alpha-, Beta-, and Gammapro-
teobacteria methylotrophs that have methanol as central metabolite
[18]. Detailed phylogenetic trees of mxaF and related sequences
have been shown and analyzed in the recent literature [53]. In
methanotrophs, the MDH enzyme catalyzes the second step in
the oxidation of methane, whereas in methanol utilizers it is
the first step of carbon metabolism. The mxaF gene, encoding
the large subunit of MDH, has been widely used as a functional
marker [16, 18].

A homolog of mxaF, called xoxF, is found in some methylo-
trophic members of the Proteobacteria [54, 55] and Verrucomi-
crobia [56]. In Methylobacterium, xoxF is present in addition to
mxaF [57] and is necessary for transcription of MDH and growth
on methanol [58]. Recent evidence has shown that the enzyme is a
bona fide methanol dehydrogenase but requires rare earth metals,
such as La®*, as a cofactor [59, 60].

In 1997, McDonald and Murrell [16] described the first PCR
primers for detection of mxaF in environmental samples. The
primers were reevaluated and the reverse primer modified to
account for divergence detected in genome sequences [17]. These
primers also detect some, but not all, xoxF genes. Most recently,
highly degenerate versions of mxaF primers were developed and
tested [18]. A competitive PCR assay has been used to quantify
mxaF in environmental samples [61].

Care must be taken when interpreting the phylogeny of mxaF
sequences retrieved from environmental samples because of evi-
dence of extensive horizontal gene transfer, as demonstrated by
Kist and Tate [62]. Despite this, the study showed that mxaF
could be used as a reliable phylogenetic marker for some genera,
such as Methylobacterium.

Many methylotrophs oxidize formaldehyde via the (H4MPT)-
linked pathway, including Candidatus “Methylomirabilis oxyfera”
of the “NC10” phylum and most Proteobacteria methylotrophs
including Methylobacterinm, Methyloversatilis, and members of the
Methylophilaceae, such as Methylophaga [52, 63]. These enzymes
and coenzymes are also found in methanogens and sulfate-reducing
archaea [64]. Among bacteria, this pathway is mostly unique to
known methylotrophs, with the exception of being present in a few
organisms in which methylotrophic growth has not been clearly
demonstrated, such as Burkholderia, Rubrivivax, and some Planc-
tomycetes [65]. It is possible that methylotrophy occurs in these
organisms in natural environments under conditions that have
not yet been replicated in the laboratory. For example, Begginton
alba which possesses the genes for the pathway was shown to use
methanol only under microoxic conditions in a sulfide gradient
system [66].
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PCR assays have been designed for four genes of
the (H4MPT)-linked pathway, namely, fae, mtdB, mch, and fhcD
[19, 20]. The fae gene of methylotrophs encodes formaldehyde
activating enzyme, mtdB encodes methylene HyMPT dehydroge-
nase, mch encodes methylene HiMPT cyclohydrolase, and fbcD a
subunit of formyltransferase /hydrolase complex (Fig. 1). The fheD
was identified as the best of the four genes for environmental
surveys since it showed no obvious bias, amplified nearly the com-
plete gene sequence providing substantial information for phylog-
eny, and could be amplified in a single PCR step rather than a two-
step PCR necessary for the others [20, 65]. The authors designed
primers targeting bacterial fhcD genes, which they tested using
Lake Washington sediment DNA. The assay retrieved a wide diver-
sity of bacterial fheD that diverged as much as 43 % at the amino
acid level. A phylogenetic analysis of FhcD protein sequences
retrieved from Genbank demonstrates its ability to resolve genera

CH,
pmoA
mmoX

CH,0H o CHSOy"

mxaF l y

mauA
CH,0 €—— CH;NH,

fae RuMP
Pathway
CH,=H,MPT

Biomass
mtdB
CH=H,MPT
mch .
Biomass
CHO-H,MPT

Serine
fheD l Pathway
HCOOH €—> CH,=H,F

T cmuA

co, CH,CI/CH,Br

Fig. 1 Simplified composite depiction of C1 metabolism relevant to the
discussion in this chapter. C1 substrates (blug) and functional genes (red)
described in the text are highlighted. The functional genes are positioned
based on the enzymatic transformation mediated by the encoded enzyme
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of methylotrophs with no evidence of horizontal gene transfer
(Fig. 2). Relatively few studies have targeted fcD in environmental
samples, suggesting it has been underappreciated as a functional
marker gene for methylotrophy.

3 Methanotrophs

3.1 Methane
Monooxygenases
(pmoA, mmoX)

The pmoA gene encoding the f-subunit of the particulate methane
monooxygenase enzyme (pMMO) is the most commonly used
functional marker for identifying methanotrophs in environmental
samples. There is a relatively large and well-curated database of
pmoA [51] and methods available to classify pmoA sequences
obtained by high-throughput sequencing [67]. In addition, there
is a comprehensive microarray available for identifying pmoA phy-
lotypes in environmental samples [68].

The pMMO is found in nearly all methanotrophs, including all
characterized members of the Methylococcaceae, Methylocystaceae,
“NC10” phylum methanotrophs (i.e., Candidatus “Methylomir-
abilis oxyfera”), and Verrucomicrobia methanotrophs (e.g., “Methy-
lacidiphilum infernorum”). The only methanotrophs known to lack
pPMMO are some genera within the family Beijerinckiaceae, such as
Methylocelln [69] and Methyloferula [70]. These methanotrophs
lacking pMMO possess the soluble methane monooxygenase
(sMMO). The A189f/A682r primer set [21] is still the gold stan-
dard for retrieving the broadest diversity of pmoA sequences. These
primers were designed to amplify both pmoA and the amoA gene of
the bacterial ammonia monooxygenase enzyme, which belong to the
same class of copper-containing monooxygenases [ 71]. Despite their
broad coverage, they do not target the pmoA of “NC10” and Verru-
comicrobia methanotrophs, which require specific assays as
described later in this chapter. Environmental surveys using
A189f/A682r primers have recovered a large diversity of pmoA-
related genes from uncultivated microorganisms (Fig. 3). Several of
these novel clades are believed to belong to as yet uncultivated
methanotrophic organisms. For example, the USCa, USCy, and
JR3 clades (Fig. 3) have been proposed to belong to uncultivated
atmospheric methane oxidizers [72, 73]. The enzymatic function
associated with some pmoA-like genes is currently unknown, such as
the pxmA genes (e.g., M84-P105, Methylomonas) [34].

In some samples, PCR products obtained with the A189f/
A682r primer set can be dominated by amoA sequences or by
spurious amplification products [23]. The A189f/mb661r primer
combination was designed to offer greater specificity towards pmoA
genes with less co-amplification of amoA and other pmoA-like
sequences [22]. In addition, these primers generally have fewer
problems with spurious amplification of nontarget sequences. A
semi-nested PCR approach using A189f/A682r first followed by
A189f/mb661r has been used to improve PCR success and further
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3.2 Uncultivated
Atmospheric Methane
Oxidizers

3.3 “NC10” Phylum
Methanotrophs

reduce the amplification of nonspecific targets [74]. Conditions for
qPCR using A189f/mb661r primers have also been established
[27], as well as additional primers and assays designed for the enu-
meration of pmoA from subsets of methanotroph genera (Table 1).

As mentioned above, the sSMMO is an alternative methane
monooxygenase enzyme present in some methanotrophs [75]. It
is the sole enzyme catalyzing methane oxidation in the Beijerinck-
iaceae methanotrophs lacking pMMO. Some species within the
families Methylococcaceae and Methylocystaceae possess both
enzymes, which are differentially expressed [76]. The mmoX gene
encodes the active site subunit of sMMO and several primer sets are
available to target mmoX in environmental samples (Table 1).
Quantitative assays have been designed to specifically enumerate
Methylocelln mmoX sequences [33, 43]. In addition, a competitive
reverse transcription PCR assay was developed for the quantifica-
tion of mmoX mRNA from diverse methanotrophs [77].

The pmoA clades associated with putative atmospheric methane
oxidizers in upland soils, such as USCa, USCy, and JR1 [73, 78,
791, can be detected with the A189t/A682r primer set; however,
amplification products can be difficult to obtain with these primers or
can sometimes be dominated by bacterial amoA or spurious pro-
ducts, as described above. The A189f/mb661r primer combination
is generally poor at recovering these pmoA clades and therefore is not
a good choice for analyzing soils with atmospheric methane uptake
activity. Horz and colleagues [ 74 ] found that PCR using A189f with
amixture of mb661r/A650r primers retrieved pmoA associated with
cultivated methanotrophs as well as the uncultivated JR1 clade. PCR
primers have been designed to specifically target USCa, for example,
A189f/forest675r that was also optimized for qPCR [27]. Another
primer set is USCa-346f/A682r, which the authors reported to
offer slightly better coverage and result in higher copy number
estimations than the A189f/forest675r assay [29]. USCy pmoA
sequences can be targeted with the primers Al189f/Gam634r,
which was also optimized for qPCR [33].

These methanotrophs are represented by Candidatus “Methylo-
mirabilis oxyfera” [80]. They are remarkable in a number of
respects, most notably that they generate their own oxygen pre-
sumably via the dismutation of nitric oxide. Although they oxidize
methane with oxygen, they are active in anoxic environments. They
are evolutionarily very distant from all other known methano-
trophs, but oxidize methane with a pMMO enzyme. A PCR assay
has been designed to amplity pmoA sequences from this clade [32].
It requires a nested approach, with a first round of PCR
with modified versions of the Al89f/A682r pmoA primers
(A189b/cmo682), followed by PCR with internal primers
(cmol82/cmo568) (Table 1).
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3.4 Verrucomicrobia The Verrucomicrobia methanotrophs, represented by “Methylaci-

Methanotrophs diphilum” species [81], are another unique group of methano-
trophs that were discovered in hot (>50°C) and acidic (pH <2)
geothermal environments [82, 83]. An environmental survey of
geothermal springs and acidic wetlands indicated that they are
only present in acidic geothermal spring environments [31].
“Methylacidiphilum” oxidize methane using a pMMO enzyme.
Genome sequencing of “Methylacidiphilum” representatives indi-
cate the presence of three copies of pmoA, two of which are nearly
identical (pmoAl, pmoA2) and a third highly divergent gene
(pmoA3) (Fig. 3). Different primer sets targeting pmoAl and
pmoA2 genes of Verrucomicrobia have been developed by indepen-
dent research groups (Table 1) [28-31]. As noted by Sharp et al.
[31], there are few representative “Methylacidiphilum” isolates
making it difficult to design what could be universal Verrucomicro-
bia pmoA primers that are likely to detect the complete diversity in
environmental samples.

4 Methylamine Utilizers

A variety of Gram-positive and negative bacteria can grow using
methylamine. Many of these species, such as Methylobacterium
extorquens, Pseudomonas denitvificans, Methyloversatilis universalis,
and Methylophaga flagellatus, also grow using methanol [52]. Many
of the Gram-negative methylamine utilizers convert methylamine
to formaldehyde via methylamine dehydrogenase (MADH)
encoded by mauFBEDAGLMN genes [84]. In contrast, M. flagel-
latus uses the indirect gamma-glutamylmethylamide/ N-methyl-
glutamate (GMA/NMG) pathway for methylamine utilization
[85]; this pathway has also been shown to enable the use of methyl-
amine as a nitrogen source in a non-methylotrophic organism [86].
Gram-positive organisms such as Arthrobacter P1 use a methyl-
amine oxidase to convert methylamine to formaldehyde [87].

PCR assays targeting the manA gene has been used as a func-
tional marker to detect methylamine utilizers that operate via the
MADH pathway [17, 44]. This has had some success. However,
failure to obtain PCR products from methylamine enrichments
[88] and cultures of methylamine utilizers [44 | were also reported,
indicating that the PCR conditions were not optimal or that alter-
native enzyme systems might be prevalent. Using marine Roseobac-
ter clade genomes as a template, functional gene primers were
designed to amplify glutamylmethylamide synthetase (gmaS) of
the GMA/NMG pathway [46]. The same study also reported
PCR primers targeting tmm encoding the trimethylamine mono-
oxygenase of these organisms. Most recently, new gmaS primers
were designed that are not limited to targeting sequences from
marine bacteria [45] (Table 1).
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5 Methylated Sulfur Utilizers

Organisms have been isolated that are able to grow using methylated
sulfur compounds such as dimethylsulfoxide (DMSO), dimethylsul-
fide (DMS), dimethyldisulfide (DMDS), and methanesulfonate [89].
These organisms are widely distributed phylogenetically, for
example, known DMS utilizers are found in the Alpha-, Beta-, and
Gammaproteobacteria, Firmicutes, and Actinobacteria [89]. Two
pathways for DMS utilization include a DMS monooxygenase [90]
characteristic of Hyphomicrobium and methyltransferase found in
Thiobacillus [91]. Methylosulfonomonas, Marinosulfonomonas, and
strains of Hyphomicrobium and Methylobacterium can use methane-
sulfonate as a carbon and energy source for growth [92]. This is
performed via a methanesulfonate monooxygenase. The initial
demethylation reactions result in formaldehyde, which is metabolized
via classic methylotrophic pathways [5].

Assays targeting methanesulfonate utilizers have been devel-
oped using the msmA gene, encoding the a-subunit of the hydrox-
ylase of methanesulfonate monooxygenase [47]. The primers
(ForA/Blrev2) amplify a ~785 bp fragment of the gene (Table 1).
Moosvi and colleagues [48] found that the primers coamplified
nonspecific targets from some environmental samples. Therefore,
they designed internal primers (msmA_for/msmA_rev) to perform
a nested PCR that amplifies a ~235 bp internal fragment. Studies
have yet to fully explore the diversity of msmA and compare its
evolution in pure cultures with the 16S rRNA. Hung et al. [44]
reported that five proteobacterial isolates in their culture collection
known to grow with methanesulfonate did not yield PCR products
with msmA primers, indicating suboptimal PCR conditions or an
alternate enzyme system in those organisms. To date, assays target-
ing genes encoding DMS uptake systems in methylotrophs have
not been reported.

6 Halomethane Utilizers

Some specialized methylotrophs can grow using monohalogenated
or dihalogenated methane. Microorganisms using dichloro-
methane first perform a dehalogenation using a glutathione-linked
dehalogenase, which results in formaldehyde that is then further
oxidized or assimilated using standard methylotrophic pathways
[93]. Methylotrophs such as Methylobacterium strain CM4 and
Hyphomicrobium chlovomethanicum that grow on chloromethane
or bromomethane use two enzymes, CmuA and CmuB, which
transfer the methyl group first to a corrinoid protein and then to
tetrahydrofolate (H4F) [94, 95]. The methyl-H4F can directly
enter the serine pathway for carbon fixation. The cmuA gene has
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been used as a functional marker gene target for chloromethane
utilizers [49, 96]. A qPCR system was developed using the primers
cmuA802fand MF2, as described by Nadalig et al. [49] and offers a
means to identify and quantify these organisms in environmental
samples.

7 Perspectives

References
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ronmental sample using suitable next-generation sequencing
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be established, as shown for pmoA [67].

One of the limitations of PCR assays to investigate gene diver-
sity is that it will be limited by the specificity of the primers.
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account for new sequence diversity uncovered in genome and
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methylotrophs that are not detected using existing assays. Several
of these potential functional marker genes for methanol utilizers
were highlighted in the recent literature [100]. Despite the current
limitations, the analysis of methylotroph diversity by targeting
functional marker genes remains an excellent means to characterize
their diversity in environmental samples.
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Primers: Functional Genes and 16S rRNA
Genes for Methanogens

Takashi Narihiro and Yuji Sekiguchi

Abstract

To date, a great number of oligonucleotide probes /primers targeting phylogenetic markers of methanogenic
archaea (methanogens), such as 16S rRNA and the gene for the a-subunit of methyl-coenzyme M
reductase (mcrA), have been developed and used for the identification and quantification of indivi-
duals and groups of methanogens in environmental samples. These probes/primers were designed for
different taxonomic levels of methanogens and have been used for studies in environmental microbi-
ology as hybridization probes or PCR primers of qualitative and quantitative molecular techniques,
such as high-throughput sequencing, quantitative PCR, fluorescence in situ hybridization (FISH), and
rRNA cleavage method. In this chapter, we present a comprehensive list of known oligonucleotide
probes/primers, which enable us to decipher methanogen populations in an environment quantita-
tively and hierarchically, with examples of the practical applications of probes/primers.

Keywords: Methanogenic archaea, Methyl-coenzyme M reductase gene, Oligonucleotide probe,
PCR primer, SSU rRNA

1 Introduction

Methanogenic archaea (methanogens) play a key role in the
anaerobic biodegradation of complex carbon in many ecosystems
on Earth [1-3]. Methanogens utilize a limited number of sub-
strates. These are primarily hydrogen, formate, and acetate, but
occasionally also secondary alcohols, and methyl-group-containing
compounds for methanogenesis [1]. These microorganisms are
frequently found in anoxic environments where external electron
accepters other than carbon dioxide are limited; examples of such
environments are rice paddy fields [4-6], wetlands [7, 8], perma-
frost [9, 10], landfills [11], subsurfaces [12, 13], and ruminants
[14], all of which are considered to be the major sources of atmo-
spheric methane [15]. Recently, a growing number of studies have
shown that methanogens are also active in many oxic environments
such as desert crusts and grasslands [16]. The annual global source

T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks, (2017) 79-139,
DOI 10.1007/8623_2015_138, © Springer-Verlag Berlin Heidelberg 2015, Published online: 09 September 2015
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of methane is estimated to be 542-852 Tg, and atmospheric
methane concentration has risen threefold over the past 200
years, which is now considered one of the most prevalent green-
house gasses [17]. With increased interests in the global climate
change, studies on the diversity, physiology, and ecological
functions of methanogens in these environments have been exten-
sively performed using cultivation-dependent and cultivation-
independent approaches [1, 18]. Methanogens are also considered
key organisms underpinning anaerobic digestion biotechnology
[19-22]. This technology is widely used for the treatment of
municipal and industrial waste /wastewater, often generating meth-
ane from those wastes as reusable energy resource [23]. From
engineering viewpoints, studies deciphering the methanogenic
populations in anaerobic digestion processes have also been topics
of focus. For populations in both natural and engineered ecosys-
tems, methanogen-specific oligonucleotide probes/primers have
long been used for clone library construction, fingerprinting (e.g.,
denaturing gradient gel electrophoresis (DGGE), terminal restriction
fragment length  polymorphism (T-RFLP), and length
heterogeneity-PCR  (LH-PCR)), high-throughput sequencing,
quantitative PCR (qPCR), hierarchical oligonucleotide primer exten-
sion (HOPE), membrane hybridization, fluorescence in situ hybridi-
zation (FISH), cleavage method with ribonuclease H (RNase H
method), DNA microarray, and stable isotope probing (SIP) [24].
Although next-generation sequencing-based molecular methods
without using methanogen-specific primers, such as high-
throughput 16S rRNA gene amplicon sequencing with primers tar-
geting regions broadly conserved in Bacterin and Archaea [25, 26]
and shotgun-sequencing-based metagenomics [27], are being used
as powerful methods for the same purpose, methanogen-specific
oligonucleotides are also required when studying environments
where methanogens are a minority in the general archaeal popula-
tion. In this chapter, we list previously developed oligonucleotide
probes/primers targeting genes of methanogens. Particular emphasis
is placed on the probes/primers for 16S rRNA and the gene for the
a-subunit of methyl-coenzyme M reductase (mcrA), which are the
markers generally used for the taxonomic classification of methano-
gens [1, 28].

2 Phylogeny and Classification of Methanogens

All of the known methanogens have been classified into the archaeal
phylum Euryarchacota [29]. The known methanogens are assigned
into five classes Methanomicrobia, Methanobacteria, Methanococci,
Methanopyri, and Thermoplasmata (Fig. 1). The class Methanomicro-
bin comprises three orders (Methanosarcinales, Methanomicrobinles,
and Methanocellales) and 23 genera belonging to nine families.
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Within the order Methanosarcinales, the genera Methanosarcina and
Methanosaeta are classified, members of which are known to contrib-
ute to the conversion of acetate to methane in various anaerobic
environments. The rest of previously characterized genera in the
Methanosarcinales other than Methanosarcina and Methanosaeta are
known to metabolize relatively broad ranges of substrates, such as
hydrogen, methanol, and methylamines [29]. Known members of
the order Methanomicrobinles are all hydrogenotrophic methano-
gens, and some of them are often observed in anaerobic environ-
ments as important hydrogen scavengers [1]. The class
Methanobacteria consists of the families Methanobacteriaceae and
Methanothermacene. They are recognized as important hydrogeno-
trophic methanogens in anaerobic ecosystems such as bioreactors
[32, 33]. Methanobacteriaceae comprises four known genera, Metha-
nobacterium, Methanosphaera, Methanobrevibacter, and Metha-
nothermobacter, while — Methanothermaceae has only one
characterized genus Methanothermus. The class Methanococcs
includes the families Methanococcaceae and Methanocaldococcacene,
which are widely distributed in natural ecosystems, such as marine
sediments and deep-sea geothermal sediments [1]. The class Metha-
nopyri consists solely of the genus Methanopyrus, a hyperthermo-
philic, hydrogenotrophic methanogen isolated from the deep-sea
hydrothermal field [34].

More recently, a methanogenic archacon, Methanomassiliicoc-
cus lwminyensis strain B10, was isolated from human feces [35].
This strain is the first cultured methanogen of the class Thermo-
plasmata. A closely related strain has also been isolated from ter-
mite guts [36]. The other two Thermoplasmata-related
methanogens Ca. Methanomassiliscoccus intestinalis and Ca. Metha-
nomethylophilus alyus were also found in human feces [37, 38].
Iino et al. further reported that Thermoplasmata-related methano-
gen Ca. Methanogranum caenicoln predominated in a methanogenic
enrichment culture derived from the sludge of an anaerobic diges-
tion process [ 39]. Together with previous findings on other Thermo-
plasmata-related methanogens, the family Methanomassiliscoccacene
and the order Methanomassiliicoccales were proposed for a methano-
genic linage of the class Thermoplasmata [39)]. M. luminyensis can
produce methane by reducing methanol with hydrogen as electron
donor [35]. The genomes of M. luminyensis, Ca. M. intestinalis,
and Ca. M. alvus encode genes involved in the utilization of metha-
nol, methylamines, and methylthiol [37, 40]. These observations
indicate that Methanomassiliicoccales-related methanogens are
methylotrophic.

Despite enormous effort in cultivating yet-to-be-cultured
methanogens, there are still a vast number of uncultured archaeal
taxa that may have similar metabolic functions as those of known
methanogens. For example, members of WSA2 (or Arcl) group
were frequently observed in methanogenic wastewater treatment
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systems [41-43]. The WSA2 group is considered to be an archaeal
taxon at the class level with no cultured representatives [44].
Chouari et al. have found that WSA2-related cells can be enriched
using formate- or hydrogen-containing culture media, suggesting
their capability of hydrogenotrophic methanogenesis [41]. Mem-
bers of the Rice Cluster II (RC-II) group were also considered to be
methanogens because 16S rRNA gene clones associated with this
group were frequently observed in methanogenic enrichment cul-
tures containing ethanol as an electron donor [45]. Based on the
16S rRNA phylogeny, RC-1I group was found to be a lineage
within the phylogenetic radiation of the orders Methanosarcinales
and Methanomicrobinles (Fig. 1). In 2013, near-complete genomic
sequence of a RC-II-related organism was reconstructed by meta-
genomic analysis of thawing permafrost ecosystem in northern
Sweden, and the genome contained the gene sets necessary for
hydrogenotrophic methanogenesis [27]. According to such genetic
signatures, they proposed Ca. Methanoflorens stordalenmirensis of
the family Ca. Methanoflorentaceae tor the RC-II-related methano-
gen. Besides, uncultivated members of anaerobic methanotrophic
archaea (ANME) are phylogenetically associated with the Methano-
microbinlesand Methanosarcinales[46,47]. According to biochem-
ical and metagenomic data, ANME organisms take part in
anaerobic oxidation of methane (AOM) by employing
methanogenesis-related enzymes including mcr [48, 49].

Thus, there is no doubt that the actual biodiversity of methano-
gens will be much expanded in the future as the number of isolated
and bioinformatically described methanogens continues to increase.
In the present chapter, we mainly focus on the quantitative monitor-
ing tools for cultured methanogens characterized to date.

3 Oligonucleotide Probes/Primers for 16S rRNA and Its Gene

16S rRNA and its gene are the most widely used biomarkers for the
detection and quantification of methanogenic populations in envir-
onments. 16S rRNA gene-targeted probes/primers for methano-
gens are listed in Table 1, which is an updated version of a previous
review [24]. The 16S rRNA gene-targeted primer pairs for a wide
range of methanogen taxa, such as 146f/1324r [55], Met83F (or
Met86F)/Met1340R [53], and 0357F /0691R [70], were devel-
oped to decipher entire methanogenic populations in ecosystems of
interest. In addition, a large number of oligonucleotide probes/
primers for specific and hierarchic detection of methanogens were
designed to elucidate abundance of different methanogenic popu-
lations in anaerobic waste/wastewater treatment sludge [33, 39,
42,83-86,91,96,100,112,113], rumen [51, 76, 87,106, 107],
subseafloor sediments [92, 109], sediments [99], the human gut
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[79, 105, 108, 111], wetlands [101, 114, 115], lake [65], rice
paddy field [70], soil [16, 110], and natural gas field [104]
(Table 1). To date, almost all of the known culturable methanogens
can be detected using these probes/primers at the class, order,
family genus, and even species levels. The targeted regions of
probes/primers frequently used for detection of 16S rRNA/
rRNA gene are shown in Fig. 2. At the genus level, the probes/
primers targeting the genera Methermicoccus, Methanoreguln,
Methanosphaerula, and Methanotorris are lacking.

4 Oligonucleotide Probes/Primers for mcrA Gene

Methyl-coenzyme M reductase (mcr) is the terminal enzyme
involved in methanogenesis, which catalyzes the reduction of the
methyl group bond of methyl-coenzyme M to form methane [28].
It has been noted that the phylogeny of methanogens determined
based on methyl-coenzyme M reductase gene (mcrA) and its iso-
enzyme gene (mrtA) (or their translated amino acid) sequences is
in good accordance with those determined based on 16S rRNA
gene sequences (Fig. 3) [118]. Since the mcrA and mrtA are highly
conserved among known methanogens, mcrA/mrtA-targeted oli-
gonucleotide probes/primes have been developed and are widely
used for the detection of methanogens. The targeted regions of the
forward primers of these sets are considerably different, whereas
those of the reverse primers are almost the same with an exception
for the METH-r primer (Fig. 4). Previously reported, frequently
used probes/primers for mcrA/mrtA are categorized into at least
seven groups, namely, MCR [119], ME [64], ML [118], MR1/
ME2[122], METH [123], ME3 /ME2 [124], and mlas/mcrA-rev
[125] (Table 2). The MCR set was originally designed to determine
the phylogeny of the family Methanosarcinacene[119]. The ME set
was designed to analyze methanogenic populations in wetlands
[64], but the difficulty in amplifying mcrA/mrtA relevant to
Methanosarcinaceae and Methanobacteriacene using the primer set
has also been noted [132, 133]. The ML set was developed on the
basis of the mcrA sequences obtained from five orders Methanosar-
cinales, Methanomicrobiales, Methanobacteriales, Methanococcales,
and Methanopyrales [118]. The MR1/ME2-type primer set could
be used to obtain near full length of mcrA sequences and was
successfully applied for the amplification of mcrA gene from pure
cultures of the Methanocorpusculum [123] and Methanosaeta pela-
»ica [98]. The METH and ME3 /ME2 sets were both designed for
the detection of methanogens and ANME archaea populations in
deep-sea sediments [ 122, 124 ]. The mlas forward primer is a short
version of MLf primer (truncated 9 bases of the 3'-end of MLf
primer) with two additional degenerate positions to improve the
coverage of methanogens, while mcrA-rev reverse primer has the
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Fig. 4 The coverage of mcrA with different types of PCR primer sets listed in Table 2. The position (bp) is
according to Methanothermobacter thermautotrophicus strain delta H mcrA gene (accession number U10036)
following Steinberg and Regan [125] and Angel et al. [16]

consensus sequence of MCRr, ME2, and MLr primers [125]. Two
other taxon-specific primer sets for Methanosphaera stadtmanne
[128] and Methanomassiliicoccales [127] have also been reported

(Table 2). In addition, several family-/genus-specific probes were
developed for qPCR and FISH (Table 2).

5 PCR-Based Methods

5.1 Clone Library

Clone library analysis has long been used to elucidate entire com-
munity composition and diversity of methanogens in environ-
ments. Based on the frequency of retrieval of phylotypes in the
library, relative abundance of phylotypes of interest can be inferred.
Several sets of primers for 16S rRNA genes have been used for the
detection and identification by PCR to explore the biodiversity of
methanogens in a wide range of environment (Table 3). For exam-
ple, the 109f/UNIV1492r primer set for virtually all known
methanogens was designed for the 16S rRNA gene clone library
analysis of anaerobic wastewater treatment process [112, 113,
134]. In addition, the Met86F /Met1340R primer set was used
for the same purpose in freshwater sediments [ 184 ], rabbit cecum
[165], and rumen [168] samples.

Similarly, the primers for mcrA have also been used for the
construction of clone library to exclusively explore the diversity of
methanogens in samples. For example, the MCR set was used to
elucidate the diversity of methanogens in various environments
with PCR-based cloning [176, 193, 195]. The ME primer set was
mainly used for clone library analysis of wetland-related environ-
ments [64, 154]. The ML primer set was also used for cloning
analysis in various environmental samples [118, 156, 167, 177,
194, 201]. Comparative studies using these three primer sets have
indicated that the ML primer set is more efficient for retrieving
phylogenetically diverse methanogens in the wetland than others
[132, 202]. Besides, the ME3MF-ME3MF-e/ME2r" primer set



111

Primers: Functional Genes and 16S rRNA Genes for Methanogens

(panunuoo)

1C DVYDIDILVVOVIIDOMVMOOIT ST N-yow-dy,
wﬁ&uueu
[z21] 0T VLIVOIVOILLODILVOVIAVO premiog J-ypu-dy, ypuw-dy, -V ISSOUOUVLITI
81 VOOVVDHOLYVIOODOVOLD 9STARY AN
[g8z1] 0T DILOVODIVOOVVIILVVOVVY piemiog 10J VHIN VMN  dvunugpvis vAavydsouviiapy
¥ IOVIIOOALLOVILOOOIIVOLLOD 98104 AQI-yIOW
[z21] €T VIIVOHOVALLADDOWIODIODIOD premIog Zpow-sejut
4 IOVIIOOALILOVIOODIIVOLIOD ST AST-yIOW
[oz1] €T VINVOWOVILLADOWIDIODIDD premIog pow-se[u
4 IOVIIOOALLOVIOODIIVOLLIOD ST AST-yIOW
[scr] 4 VINVOWOVIOLLADOWIDIODIOD premIog SP[W  AQI-YIDW/Se[u
1C IOVIIOOALIOVINODILVOL CRACHEN | ATAN
€T OVOLLIODDINIODIODIOVOLY premIog >-IINEHIN
[¥21] €T OVALLSDOW.LOHODLOONOLDILV premIog ANEHIN THN/ SHN
8T DIOVVIDOMOOMYOADLX ISI2AY I-HIAN
K44 0¢ DILNIVIVOOVOIMIN LRI pIemioq JFHIAW HLAW
1C IOVIIOONLLOVIMODIIVOL 98104y pPoWZHIN
[86] 1C OVVOVVALOOMIOVOSLOOVO premiog POW TN
1C IOVIIOOALLOVINOOMIVOL 9SI0AY AN
[cen] €T ODOVVOVVALOOMIOVODILIOVO pIemioq AN TAW/ AN
44 LILOVINOOHLIOVIIOONIVOLL 9SIOADY  MIUAITYIOW
[1z1] 54 ODAVILIVOHOVOLLADOWIODIOD pIeMIo  AMOUIOFyIdW
€T LIOVINOOMLIOVIIODLIVOLL 9SToAY ITN
DDVOVMOD
[811] (45 AVINVOVOVOLLYVOOWIOILODIOD premIog JIN TN
€T VVOVVOOIIVMODLODVSOILOOL ISIARY qQzaN
[oz1] 0T DILOILVMOOHIVIVODILVINOD premiog 19N
1C IOVINOOALLOVIMOOMILVOL ST AN
[%9] 0T DIOIVMOOHIVIVODILVINOD premiog TN CTHW/ TN
L1 LINVINOONIVOLIIOV 98104y NOW
[611] A IXODIHIVIVOAVOAVL premiog JIOW NOW SUSSOUELIIW ISO
Aami1ad YD J
aoualaey (w) yibuaj aqoad (,£-,6) @auanbas aqoid  uoneanddy/uondang awep adA 198 dnoub jabie)

auab wow ayy Hunabie) saqoid pue siowud Yod apnoajonuobijg

¢ 9lqel



Takashi Narihiro and Yuji Sekiguchi

112

HSI vonesyrdure feusis aprwrelfl (S-S ‘UonezipqAy nirs ur 3UdSIIONY [T,

REA 3T OVOOVIVVOVVVOVOVLIOLYVVD HSIA-VSL ssed-omT, 0ST TSAN sspnppdivm snasIouvyIapy
logT] 0¢ OOLLVODLOIVVOOLLYOVD HSTA ITHNAOIN 1IIUUBA SHIFOIOUVYITIN
logT] 0¢ DOVOIDIOVIOIVVVOLOLOL HSIA ISHINAOIW 1IBUUBA SHIFOIOUVYITIN
logT] 0¢ DLVOVVOVVOILLYVVVVOD HSIA 0TIV 1IBUUBA SHIFOIOUVYITN
[oz1] €T LXOVOOVILIODOMIOLLNDDALD 5qoid uepybey,  GREVAERIL Y1220UVgIaPY SNUIL)
OVIODIV
[6T1] 8T OOLOIOAVIODIOOOMOLOLOL aqoad uepybey, Tesw VUIIAVSOUYIIY STUID)
[6T1] €T HLLOVMOIOMODLYVIOODLIOO >qoxd uepybey, esw IWa0v33WS0UDHITP] A[TUIe ]
[6T1] 1z OYVINOODLINADDADDDVIAVY >qoid uepybey, udg VN0 UBIIR] STUID)
l6T1] ST  DIOHILOLOLOVOLOVVOOVINOMIOOL 2qoid uepybey, dsw awaov]dsonngiapy Ajueg
“Q&G@N&&.
[621] ¥ DOVOHOLOIOVYIIVYVOVYOHIOOV 5qoxd uepybey, dow -ndrosouvgrapy Aureg
[621] ¥ DHOOVIDVILVIWOLILIADLOVVOD 5qoxd uepybey, v IWIIVLAIIVGOUVYIIPY] AJIUUe]
[6T1] ST IOMOVIOVODILVOWVOVVIOOVOOIV 2qoad uepybeg, yIw-dequ IWaIVL431IVGOULYIIPY] AJTUUE]
[oz1] 97 OVHOHVOHOHIVOILVOOVOIIOVIOVOOV >qoxd uepybey, OVIOTZNOW SNINIOUVYIIP] SIUID)
[oz1] 97 OVHVVOHLIOOIDVIOVVOOILIVVVOV sqoxd uepyber,  OVIOTLAVS DUIIABSOUYIIP] SIUID)
[ozt] 97 IVOOVOHLLOOILOIOVOOIDLLOODOV sqoxd uepybey,  OVIOTIZAVS VIFVSOUVHITP] STUIL)
[%9] 0¢ VOVOVOLLMOOW.ILOHODLOD SUIuIIS SUO[D) SHIN SUZoUrRYIIW JO ISO
m&ak&
aouasaey  (w) yybual aqoud (,£—,6) aouanbas aqold  uonealddy/uonsang auwepn ETTVBELS dnoib 19hie]

(panunuod)
¢ aqel



(panunuod)

[82] €E9IION/I60TIION vIUOUVYIIP]
[88] OVLSCOTISIN/900CION/ IF£ 60V wnjprudsouveapy
ST-t-V-68S0-QUWN-D-S/TE-8-S
[¢6] -6¥7S0-9PIN-D-S/0C-8-S-86£0-2qIN--S A21IVQOULIIYIOUVHITIN
TT-B-V-8450-0BqQIN-D-S/€€-8-V-97S0
[¢6] -eqQIN-D-S/0C-8-S-86£0-2bqQIN-1-S WMNLAITIVOUVHIIPAT
0T-8-S-68S0-TeSN-D-S/T1¢-8-V
[¢6] -0%S0-TeSIN-d-S/ 6 1-8-S-0SH0-TeSIN-D-S VUIILISOUDYIIPN
L1-8-V-€£50-39eSN-1-S/T€-8-V-0%S0
[26] -3eSN--S/ 1C-8-S-£8€0-39eSIN-1-S vIIVSOUVYITIN
[2£] OVLECOTNDN/900C IO/ IFE6dV SHIINIOUVHYIIN
[2£] OV.LI9 AVS/dSERAVS/ATIN VULLVSOUVLITP
[22] OVLI9LAVS/MSE8AVS/ATSIN v1I0SOUVHYITP]
[98] 18/ GIN/JT6EIN 4219990MAIYI0UVYIIN
[98] IQ/SSIN/ISTHSIW  wjredoutian viavsouniapy
[98] I8/ OW/ITTFIIN  supuqdontiays snafjnaonvyiapy
[¥8] N£299/401% A27TVGOMAIYIOUVYIIPN
[¥8] \68S/40%T VUIILISOUDYIIPN]
[¥8] 98S/A86¢ SHanIOUVYIIP
[ZFT-¢%1
‘TF1-6€T ‘891 AESLSIN/AT9SISIN/ATOLISIN JWIIVIIVSOUVHYITP]
[£¥1-¢F1
‘TFT-6€T ‘891 AT6F SN/ AT/ A08EISIN IVIIVUIIAVSOUD LTI
[ZFT ‘SFT-CFT ‘OFT ‘89] 98900/ ATESDOW/AS6¥DON $3]033030UBHIIP]
[ZFT-6£T ‘891 A6T6LIW/ 96T LLIW/ALSSLIW SI[VITIVYOUVLIIIN
[TFT ‘89] A098 TSI/ A6STTISIN/ACTS IS SIVULILVSOUDHYIT]
[£F1-6€T ‘89] A6¥LININ/MCESIWIN/ACSTININ L
[89] N6SO0TOAV/AST1609V/ 448209V SUITOUEIIW ISO]N NOdb
[8¢1] M908AINN /A9 TSUYITY SUITOURIIW ISOIN bastn -0 d
[ze1] NAST6-UPIV/A0FE Y21V SUITOUEIIW ISON
[og1] ST6OUV/ 70V SUITOUEIIW ISON Se3014dyDq
[senl N6SO0TONVY/A48L09V SUSSOUEYIIW ISON HODA-YOJ
[¢o1] ITL6TV/ QAN I TTUDY + 1YY sudSoueIaW SO
[z11] IC6FTAINN/IST SUSSOUEYIIW ISON
[z11] 1T6£1/35T SUdSOURYIIW ISON
[¥e1 ‘e1T ‘2rrl TC6FTAINN/J60T sudSourIAW ISON Suop-gOd  VNYIS9T  ssadoid oiqoreuy
ERIEIETEN =(9q01d/asianai/premio)) 1as aqoid dnouib yabie) uoneaiddy  auab jabie] gjdwes jo adA}

suaboueyjaw 1o} sasfjeue paseq-yod 4o} s)as Jawid apnoajonuobio jo sajdwexs

€ 9lqel



[091 ‘6511 TTIN/FTIN SUIBOURIIW JSON MOJb
4550
[8ST ‘£ST] TAN/ TAN sudourIowW SO /d' T ~L/FUNOP-YOd
[9sT] TTN/ITIN SuaSOURIIW ISOTN
[sst] ATAN/2-TWEAN Pue INETN SuaSOURIIW ISOTN Jros 1ead
[FST F91] AW/ TAN sudgoueyIouw SO Suruop-gDJ Yo ‘UdJ ‘puBPOA
[621] Jesw /A9I-yIDW /se[uu VUIILYSOUVGYII]
[6zT1] U9 /AdI-y oW /Se[uu VINGILOUGYITPT
[6T1] V3AIW /AI-yIoW /Sefur IVIIVIAIIIVGOUVYIIN
[ec1] YIDW-dequI /AdI-YIDW /Se[u IWIIV14279090UVYIIP]
[6T1] BSW /AI-YIOW /Se[wl IVIIVIIVSOUV I
[6T1] dsw /A1-y 10w /sejua avasvjprdsouiapy
[6T1] dow /ad1-y1ow /sejua JVIIVINISNGA090UVYIIP] NXDOdJb [1os 1ead
[sz1l AJI-YIOW /sepur suaSoueyIaw ISOW Suruop-gDJ Yaom  ‘ssadoid drqorseuy
[esT] ITIN/JTIN SUISOURIIOW ISON
[zst] AJI-yIDW /sejua suaSoueIouw ISON
[1s1] JeSW /AdI-yIoW /Sejul VULIAVSOUVYIIP]
[1s1] VAW /AI-yIoW /seju IVIIVIAIIIVGOUVYIIN
[1s1] BSW /AI-YIOW /Se[ul IVIIVIIVSOUV I
[1s1] dowr /ad1-yaow /sefux IWIIVNISNGL0I0UBYIIP]
[ozT] OVIOTZNOW/ACHN/ TAN SHINIOUVYIIP]
[ozT] OVI912dVS/ACAN/ TAN VULAYSOUVYIIP]
[oz1] OVILITLAVS/ACdN/ THIN vIVSOUVHIIN NOJb
[1z1l MIUAITYIDW /MIUIOFy IO suaSoueIoW ISON NOJd-H1
[osT] TTN/ITIN sudBoueIoW ISON LRRIRON!
[s01] ITIN/JTIN SUISOURIOW ISON Suruop-gDJ N
[6%1] OVLI9LAVS/dSEAVS/ATIN VULILVSOUDYIIN
[6¥1] OVLI9LAVS/SESAVS/ATSIN vIUSOUVHITIN
[8¥1] OVLI9LAVS/ASE. TeS/498S ATAN YVULIAVSOUYIIN
[8¥1] OVLI9LAVS/ASEY 28S/A58S QTSN vIIVSOUBHITIN
[s8] dT19E- N/ ALLY N/ AF LT N SHafNIOUVYIIP]
[¢F] OVLI9LAVS/ISEAVS/ATSIN vIVSOUBHIIN
[¢F] OVLIOLAVS/ASERAVS/ATIN VULIABSOUVYIIP]
[¢F] be1-noW,/4985/486¢ snajinaouvyrapy
[cF] be1 1$¢-19N/q6SE-1AN/A0 1T 19N WNLLIIVQOUVHITIN
[cF] be1 -1y -1PIV/4- 121V TVSM
ERIEIETEH <(9q01d/as1anai/piemioy) 1as aqoid dnoub jabie] uoneoyddy auab jabie) a|dwes Jo adA}

(panunuod)
€ ajqel



(ponunuoo)

[zo1]

[gz1]
[so1]
[To1]
[To1]
[191]

[Tr1]
[8oT]
[8o1]

-peIS/d-peis
NE08PIN/T0E9PIN
9qoi1d /9519421 / pIemIo) TIATWSIA
NE08PIN/0E9PIN
98¢ 11 Y21y /T9qINJ
1N/ Y21y

98¢ 1 YTy /WnIqN}
98¢ 11 Y2Iy/T£¢F SeqIN
6S8T ISN/ T Y21y

98 11 Y21V /T Y1y
I8FEV/IFTV

16TV /I
IE69V/ILSEV
MeST60/I98%°N
MeST60/I98%°N
NOFE PN/ 98PN

N-ypw-dy /g-yow-d,
AJI-yIDW /Zpow-se[u
TTIN/FTIN
S1609V/IFPeOdV

M1690/4£5€0
NMOFE TP/ I980IN

N 1690/45€0
TTIN/YTIN

TTIN/ THIN

AT AN /10T VAN
2qo1d-N-TL.IW/IN-LIN/IN-LIN
AESLSIN/ATISISIN/ATOLISIN
d6T6LIN/M96 T LLIW/ LSS LIN
A6¥LININ/MCESIIWNIN/ ACSTININ

OIA-0T9/A1-0Td/TP-01d

NVASOT 3PeIS/ SO IPEIS/ASIT IpeIs

9qoi1d /9510421 /pIemIO) TIATWSTA

VAIVGFSOUDYIIPY
suagoueyIow SO
LIS 497IVQLAIAQOUVYIITAT
suaSoueyIoW ISON
427904143490 UVYIIAT
$3]033020UVG137
MNI4IIIVGOUBYIITY
S2JV141IVQOUVYIIPT
SAVUIIAVSOUVYIITA
suaSoueIow ISON
suaoueyIow ISON
sTaSoueIIou ISON
suaSoueIouw ISON
SUISoURYIAW ISON
suaSoueIou ISON
suaSoueIouw ISON

PpaIR[RI-wIVMSU]d0M.A30) ],
SuaSOURTIW ISOTA
SuOSOURISW ISOTA
SuUISOURTIIW ISOTA

suagoueIow ISON
SuUOSOULTISW ISOTA

suagoueyIow ISON

suagourIow SO

mEUWOEGQHOE ISOIN

IVUVMIPVIS VAIVYFSOUDYIIP]
SYV4ITIVYOUVYIIPT
IVIIVIIVSOUVYIIPT
SqV141IVGOUVYIIPT
S3]V190431UOUDYITTT
sesuakurmng
SNII0IISSVUMOUBGYITPT
IVUVMIP VIS VAIVYFSOUVYIITAT
QIS 49790143490 UVYIIPT

MOJb
NOdb ‘4o5a

Suidb-40d

d55d-¥0d
d118-1/3uuop-40d
Suruop-gyDJ

NOJb
J T -L/3uruop-y40d

Suruop-gyDJ
Sezo1kd-g4DJ

d95d-¥0d
Suop-gYDJ

ODA-YOd
MOJb

JTDY-L/3uruop-40d
SuruopP-4Od

MOJb

VNI SOT

Yau
VNI S9T

VNI SOT
VNI SOT

VNI SOT

N

Yau

VNI SOT

uswrmy

$939
ums ‘Axmgs Sig

wnoad JIqqey

InSg 109suy

onberd
reardurdqns
UBWINE]

ng uewngy



[o8T1] S16DAV/FFreOavV suaBoueIIW ISO Suoifd-y0d VNI S9T ISP SRR
Jew
[61] ST6DUV/3FPEOUV SULSOURYIIW IO Se1014d-yDd VNI ST dBIOqUIOI) SULIE]y
[8£1 Ferl ATAN/2-ANEAN + AWETIN suaBoueIowW SO
[ecT] THIAW/3-HLIW suaBoueIoW SO qOdb
[£41] TTN/FTIN suaBouelIow SO
[9£1] TOW/TIDIN suaSoueIou ISON Suruop-gYDJ Yue SJUdA
[¥2£] NO000T/PoWi(FE SuaSoueRIoW ISON Sezo1kd-g4D g [eWLIdIOIPAY
[S£T 96 ‘T£]  Toutwi-goIegH(T ‘Tolewr-yo1egF0T,/J91e8S6 sudgoueIowW SO Sero14d-gDJ /SIUdWIPIS
[ss] HCE1/I9FT SUIBOURIIW JSO Suop-YOJd VNI S9T /3o1em eas-doa(g
[$£1] ST6DAV/FFreDavV suaBoueIoW SO Sejoifd-4Od VNI S9T  PdIerosse pryiueoy,
[9£] AJI-yIDW /Sejur suaSoueIoW ISON Suruop-gYDJ Y
[9/] -QQINISIN/A-QqINISON LA ROCTAEEIRY
[9/£] -IUNSIN /A -I9WISIN sudSoueIoW ISON XDJb parenosse
[9/] ASTEWPIN/I98IPN SUISOURIIIW ISOJN MOJb Sumop-yOd  VNWIS9T  rozoloxd ‘uduwmy
[sz1] ITIN/JTIN suaSoueIouW ISON
[891] TTN/ITIN SUISOURIIIW ISOTN
[£o1] TTN/JTIN SUISOURIIIW ISOTN
[zs1] TTN/ITIN SUISOURIIIW ISOJN Odb
[1z1] CTHW/THN SUISOURIIIW ISOTN SuruopP-YOd Yout
[os1] -TIPNTUN /- TI9NTUN IVIIVILIIIVGOUVYIIP]
[691] - [3_NTUN/ - [N TUN IVIIVILIIIVGOUVYIIP]
[691] NMCESIWIN/ATSTININ SO AT
[691] M9GTTLIN/ALS8TINW TR
[901] - [3_NTUN/ - [N TUN IVIIVIIIIVOUVYIIP]
TNV
[90T1] A-FINAV/I-FINAY “ds uagamqraasqonveiapy
[901] -PeIs/A-pels vaavgdsounirap
WvVA MNIJUVULULILL
[2o1] SOTWINY /Y798 SOTWINY/A0FL SO TWiy LAY
[201] 9q01d /9S19A1/PIeMIOT  206/720S 4FTIVGLADAGOUBGITPT
BRI ETEN] (8q01d/asIanai/premio)) 19s aqoid dnoub 19hie] uoneoyddy  auab jabie] a|dwes jo adA}

(panunuo?)
€ 9|qe]



(ponunuoo)

[811]

[881]
[£81]

[98T ‘9¢]
[s81]

[#81]

[¢81]
[e81]
[08]
[08]
[08]

[z81]
[z81]

[181]
[86]

908U/ 6F YTV

[21-[90U /AJI-IOW / POWI-SB[ UL
JeSW /A1-yIdW /POW-Se[Wl
AJI-IdW /POou-seuu

AJI-YIOW /POuI-Se[uI

TTIN/FTIN
DIOW/FION
M1690/d£5€0
ST6DUV/I601
ITI6Y/3601V

00T TV/ITV
ITIN/FTIN

M908URIV/ A6 UV
N 1LSV/ AUy

ST60UV/FHFE0daV
TAN/ TN

NOFE TP/ 989N

ITIN/FTIN
M8901/,155¢
NCOTT/ p AT He

N10¥1/3601
M8901/,d55¢

AQI-\IOW /Seu
AJI-yIdW /Sejua

M908UIY/ A6 UV
S1621V/ WIS TIXIN

mQUWCGdQuUE ISOIN

Y1330 UG I
VUIIAVSOUVYIIP]
SUIFOURIIW ISOTA]

susSoueour ISON

suaSourIoW ISON
sudSouRIIW ISOTA
sudSourIIW ISOT
SuISOURIIW ISOTA
SuIFoURIIW ISOTA

wGumOGNQHME ISOIN
wEU%OENQuUE ISON

wQUWCEmﬁuUE ISOIN
wEUWOGNEuUE ISOIN

susSoueouwr ISON

suaoueow SO

mQumOCdQuUE ISOIN

suaSoueyIIU ISON
V1904310 UVGIIP]
$3]033020UVGIIP]
SaJVLLIIIVGOUVYIIPT
V1004310 UVGIIP]

sudSourIOW ISOT
suaourIoW SO

mEUMOENEuUE ISOIN

vI30S0UVYIIN

Sezorkd-yDJ

MOJb
NOdJb
NOJb/Suuop-god

MOJb

NOdJb
JTDg-1L/3uruop-g0d
9D WOd
ADOAYDJ
J'TDg-1L/Suruop-g0d

H95Dd-¥0d
Suruop-YDJ

AOIb
Ger014d-gD g

HDA-Y0d
NOJb

SuruopP-yYOd

Odb ‘Buruop-y4od
OJb ‘Buriop-4od

Suruop-gYDJ

Odb
Sezorkd-gD g

Sezorkd-yDJ
g0Jb

VNI SOT

You

N

Yaau

VNI SOT

VNI SOT

Yaau

VNI SOT
VNI SOT

N

VNI SOT

Yo

VNI SOT

N

VNI S9OT

[10s 1sOJJeULId J

ISTLID [I0S 11989

[10S 119S9p P[OD)

[1os Apped 2oryg

JuoIqUIASOPUDd
SIEID

[gpue]

Suuds 10y
e[ snoInyng
JUSWIPIS e[ BPOS

SIUIWITPIS
J93eMysarg

JUDWIPIS e

SIUSWIPAS JePPNIy

J91em [elseo))



(,€-DODLODIVOLLOODDL-,S) #7070yr4p0uyN 10§ 1owiid JEN (I PIXIW sem J1TYIV,

[ 2[qeL, ut unoys se [¢9] ‘e 310 unjsey £q padojpasp 2qoid FHEOYY st pairajar A[reursiio sem towiid presmioy J%¥¢,
1 9[qe], ut umoys se [ 8] ‘Te 39 searaQ Aq padojaadp aqoid §Se(TIN/VS)IA St Pa11dJa1 A[reurSuio seam Jowtid premIo] J66¢,
Hud esroamum e se [0Og] ‘e 39 Sur Woy parigar A[feursiio seas owiid 3510A01 IZ6FTAINN
7 pue [ S9[qET, UT UMOYS 219M saduanbas xowmd oy,

[611] suaSoueIouw ISON suaSoueIouw ISON Suruop-gDJ YV4m
[661] INVASOT IPBIS/ASOT IPEIS/ASOT IPRIS  Iwunuipuis vAavgdsouneiapy Odb
[es] MOFE PN/ (98PN 10) AEIWIN SULSOURYIIW IO SurdQoqu-yOd VNI S9T oI I
[£61] M8TYISIN/A08ESW IVIIVUILVSOUVYIIN]
[z61] NT98ISIN/ATO0LISIN IWIIVIIVSOUDVYIIP] WSOd0.11W
[861 ‘z61] NMCEIWIN/ACSTININ SI[VIQOATLUOUVYIIP] NOdIb  VNYT S9T Surpes3ap-1o
[961] AQI-\IoW /seJur SUISOURIOW ISON NDJb Y4 1sodwon)
[s61] suaSoueyIoW SO suaSoueyIoW ISO Suruop-gDJ N SO0UEI[0A PO
[e61] TIOW/PIOW suaBoueyIawW SO JTd-L/Suruop-y0d
[F611 ITIN/JTIN SUdSOURIIOW ISON Suruop-gDJ
[o1] AQI-IOW /pOw-Se[u suaSoueIoW ISON Suruop-g4DJ Y4
[o1] A-CE8PIN/ d-6091P W/ A-TSTPIN vl[a30UveIIN MOJb
[e61] AFE6DAV/3601 suafoueypow 150y JTIY-L/SWUOP-YOd VNI S9T [os
ERITEYETE <(8qo1d/as1anai/premioy) 1as aqoid dnoib 19hie] uoneoiddy  auab jabie] a|dwes o adA}

(panunuo?)
€ 9|qel



5.2 Fingerprinting

5.3 High-Throughput
Sequencing
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[155], mlas/mcrA-rev set [125], and mlas-mod/mcrA-rev [16]
were used for the construction of mcrA clone libraries of some
methanogenic communities. It has been noted that these mcrA-
targeted primer sets (ME-related primer set in particular) can also
be used for the quantitative detection of ANME in methane seep
sediments [124, 203, 204]. This is due to the fact that anaerobic
methane oxidation performed by the ANME group is considered to
proceed with mer-type enzymes [205]. Detailed information about
the mcrA-based QPCR for ANMEs is described in later section.

PCR-based fingerprinting techniques, such as denaturing gradient
gel electrophoresis (DGGE), terminal restriction fragment length
polymorphism (T-RFLP), and length heterogeneity-PCR (LH-
PCR), can be used for obtaining a big picture of microbial commu-
nity structures in environmental samples in a technically simple
manner, because relative abundance and phylogenetic affiliation of
phylotypes can be evaluated on the basis of intensity and migration
time of DNA bands or T-RF in electropherogram. Some of the 16S
rRNA gene primers have been used for PCR to reveal methanogen
populations by DGGE [56, 60, 61, 70, 135, 164, 165, 170, 186],
T-RFLP [189, 193], and ribotyping [51, 53]. For mcrA-based
fingerprinting, the MCR primer set was used to elucidate the
diversity of methanogens in various environments with T-RFLP
analyses [ 189, 193]. The ME primer set was used for the polyphasic
molecular analyses of wetland-related environments (i.e., cloning,
RFLP, and DGGE) [157, 158]. Gagnon et al. developed
merA-based LH-PCR technique with a modified ML primer set
(mcrAfornew,/mcrArevnew) to identify the major methanogenic
constituents in an anaerobic reactor treating swine manure [121].
In addition, some studies have conducted DGGE [150] and
T-RFLP [127] analysis with ML and mlas-mod2 /mcrA-rev primer
sets, respectively [127, 150].

Massive parallel sequencing of PCR-amplified 16S rRNA genes
using high-throughput DNA sequencers (such as the Roche /454
pyrosequencers and Illumina HiSeq,/NextSeq,/MiSeq) allows us to
obtain a plenty of community sequence tags (e.g., ca.
10,000-100,000 16S rRNA gene reads for each sample) that the
previous Sanger-based cloning method can never provide. The
methodological advancements of high-throughput sequencing
technologies include higher resolution (more sequence reads) for
community structure analysis, analysis of multiple related samples,
and use of metadata [206]. Due to these advancements, in combi-
nation with recent development of analytical tools for massive
sequence data such as QIIME [207] and mothur [208], the
method will undoubtedly be a standard means for characterizing
the diversity of methanogens in ecosystems. So far, these techni-
ques have been used for characterizing archaeal populations
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(including methanogens) in marine-related environments [71, 74,
94,174,175,179, 180], pig manure [166], permafrost soil [ 192],
hot spring [187], and anaerobic bioreactors [136, 137] with
archaea-specific primer sets (e.g., ARC344f/ARC915). The
mcrA-based pyrotag analysis was also conducted mudflat
sediments [182].

Quantitative PCR (qPCR) has widely been used for the quantita-
tive detection of methanogens with primer set targeting 16S rRNA
and mcrA genes (Table 3). For example, the 16S rRNA gene
primers Met630F /Met803R were developed for the SYBR green-
based qPCR for virtually all known methanogens in ruminal envir-
onments [61, 107]. Tymensen et al. employed nested qPCR to
analyze methanogenic populations in the rumen, where the primers
Met86F /Met915R were used for the first PCR, and the Nestmet-
F/Nestmet-R and NestMbb-F /NestMbb-R were further used for
the second PCR to detect members of the entire methanogenic
populations and those of the Methanobrevibacter, respectively [76].
Yu et al. designed TagMan-based qPCR probes/primer sets (seven
sets in total) for the majority of methanogens and each of the orders
Methanomicrobiales, Methanosarcinales, Methanobacteriales, and
Methanococcales, as well as the families Methanosaetacene and
Methanosarcinacene [68]. These primer sets have frequently been
used for the quantification of methanogens in anaerobic biopro-
cesses [139-147, 209], human gut [161], rumen [169], and oil-
degrading microcosm [197, 198]. qPCR measurement methods
for particular groups of methanogens of interest, such as Methano-
cullens [42, 77, 84-86), Methanolinea (78], Methanospivillum
[88], Methanosaeta (77, 86, 971, Methanosarcina (77, 84, 93],
Methanolobus [101, 115], Methanocella [16], Methanomassiliicoc-
cus [111, 1271, Methanobrevibacter [79, 106, 107], Methano-
sphaera  [1006, 108], Methanobacterium — [42, 93],
Methanothermobacter [84, 86, 93], and WSA2 clade [42], have
also been developed (Table 1).

For mcrA quantification with qPCR method, ME-type primer
sets were used for methanogens and ANME populations in meth-
ane seep sediments [203, 204 ], soda lake sediment [185], and
anaerobic reactors [120]. Nunoura et al. refined the ME primer
series for the detection of methanogens and ANME organisms and
showed that the mixture of the ME3MF and ME3ME-¢ forward
primers and the ME2' reverse primer can be successfully applied for
the qPCR detection of the methanogens and ANME organisms in
anaerobic digester sludge and methane seep sediments [124, 178].
The ML primer set was also used for the quantification of metha-
nogenic populations in an anaerobic wastewater treatment reactor
[153], peat soil [159, 160], rumen [107, 168, 172, 173], lake
sediment [183], rice paddy soil [190], and human subgingival
plaque [163]. Steinberg and Regan developed the mlas/mcrA-rev
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primer set for the clone library construction and qPCR analyses of
methanogens in oligotrophic fen and anaerobic digester sludge
[125,129]. They also developed the genus-specific TagMan probes
for the mcrA-based quantitative detection of the Methanocorpuscu-
laceae, Methanospivillacene, Methanosaetacene, Methanobacterin-
ceae, Methanobacteriacene, Methanoreguln, and Methanosarcina in
anaerobic digester sludge and peat soil samples [129]. The mlas/
mcrA-rev primer set was also used for the QPCR of methanogens in
anaerobic bioreactors [151, 152], rumen [76], liver sediments
[182], and compost [196].

The probes/primers for methanogens have also been used in the
hierarchical oligonucleotide primer extension (HOPE) method
that is quantitative, multiplex detection of targeted microbial
genes among PCR-amplified genes [210]. Wu et al. developed a
set of group-specific probes for the HOPE detection of methano-
gens and used for the quantitative detection of methanogens in a
total of 19 reactors at different taxonomic levels [83].

In short, PCR-based methods using methanogen-specific
probes/primers are widely used for the characterization of metha-
nogen community in various types of environments. In particular,
qPCR and HOPE methods provide sensitive, quantitative data of
gene of interest with a sufficiently high dynamic range of quantifi-
cation. These methods may be further used for quantitative moni-
toring of methanogen taxa of interest in microbial communities. It
should be noted, however, that the results obtained by PCR-based
method, multi-template PCR methods in particular, might have
unavoidable biases involved in bulk cell lysis, DNA extraction,
probe/primer selection, and the PCR amplification step [211],
and hence researchers need to be careful about the experimental
verification of the method in use, as well as about the interpretation
of data from these analyses.

6 PCR-Independent Methods

6.1 Membrane
Hybridization

RNA-based community analysis is known to indicate the in situ
activity of individual groups in ecosystems because RNA synthesis is
known, with some exceptions [212], to reflect the in situ growth
rates of organisms [213, 214] and that the turnover of RNA is
thought to be much faster than that of DNA. Quantitative mem-
brane hybridization of labeled DNA probes to community
rRNAs has been applied to the quantitative detection of active
members of methanogens present in complex microbial commu-
nities [215, 216]. In 1994, Raskin and colleagues conducted the
first studies on the quantitative detection of methanogens in
anaerobic wastewater treatment sludge by using membrane hybri-
dization technique [63, 215]. They developed a variety of group-
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6.2 FISH

specific oligonucleotide probes targeting 16S rRNA of Methanomi-
crobiales (probes MG1200 and MSMX860), Methanobacteriaceae
(probes MB310 and MBI1174), and Methanococcales (probe
MCI1109). Because of the importance of acetoclastic methanogen-
esis in anaerobic bioreactors, specific probes for Methanosarcina-
ceae (probes MS1414 and MS821) and Methanosactaceae (probe
MX825) were also developed. These probes are still quite useful
and have been successfully applied to the quantification of metha-
nogens in laboratory- and full-scale anaerobic Dbioreactors
[217-221].

Although membrane hybridization enables the sensitive quan-
tification of individual species of rRNA molecules, this method
requires several laborious experimental steps, often radioactively
labeled DNA probes, and reference rRNA samples as external
standards for each experiment. Thus, the method itself may be
replaced by similar but more rapid and simple methods, such as
reverse transcription (RT)-qPCR and RNase H methods.

Whole-cell fluorescence in situ hybridization (FISH) targeting 16S
rRNA is now commonly used to detect specific groups of microbial
cells and to quantify populations of interest in environments by
direct counting under a microscope [213]. Basically, the sequences
of the probes developed for membrane hybridization or reverse
primers for PCR amplification of methanogen 16S rRNA genes
can be directly used for probe synthesis in FISH studies. For
example, the probes previously designed by Raskin et al. [63]
have frequently been used for FISH-based detection of methano-
gens in various anaerobic ecosystems, such as the rumen [222],
peat bog [223], aquifer [224], landfills [11], natural gas field
[104], and anaerobic bioprocesses [103, 225-228]. Crocetti et al.
refined the experimental conditions of the probes designed by
Raskin et al. for FISH analysis to accurately and sensitively detect
methanogen cells [95]. Besides, anaerobic ciliates often posses
endosymbiotic methanogens within their cells, and the distribution
of such methanogen cells in eukaryotic cells has been observed by
the FISH method [52, 229, 230].

Although FISH is a powerful method for visualizing the cells of
interest, there are some drawbacks in detecting cells; one of such
problems is concerned with the penetration of oligonucleotide
probes into the cells [213]. For methanogens, FISH staining is
often difficult for some Methanobacterium and Methanobrevibacter
cells, for which oligonucleotide probes do not penetrate into their
cells [87, 228, 231]. To solve this problem, fixed cells were sub-
jected to freeze-thaw cycles before hybridization, resulting in the
improvement of probe penetration [228]. Another way to solve
this problem is the use of recombinant pseudomurein endoisopep-
tidase, which increases the permeability of oligonucleotide probes
into methanogen cells and allows better visualization of
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methanogen cells in anaerobic granular sludge and endosymbiotic
methanogen cells in the anaerobic ciliate Trimyema compressum
[231]. An improved protocol of catalyzed reporter deposition
(CARD)-FISH for methanogens with recombinant pseudomurein
endoisopeptidase has also been reported, which can increase the
fluorescence signal intensity in FISH for detecting cells with a low
rRNA content [232]. In addition, mcrA-based in situ detection of
methanogens has also been performed using the two-pass tyramide
signal amplification (TSA)-FISH approach combined with locked
nucleic acids [130, 131, 233]. These attempts were, at this point,
only partially successful in detecting methanogen cells, because
mcrA is generally present as a single-copy gene on their chromo-
some, which results in a low sensitivity of detection.

Although the abovementioned quantitative methods such as mem-
brane hybridization and qPCR with methanogen-specific probes/
primers are becoming common approaches to determine the abun-
dance of the population of interest in a complex microbial commu-
nity, there is a need to develop more simple and rapid techniques
that meet the needs for real-time monitoring of the population of
interest in a complex community. Uyeno et al. developed a simple
and rapid quantification method based on the sequence-specific
cleavage of 16S rRNA with ribonuclease H (RNase H) and oligo-
nucleotide (scissor) probes (namely, the RNase H method) [234].
RNAs from a complex community were first mixed with an oligo-
nucleotide and subsequently digested with RNase H. Because
RNase H specifically degrades the RNA strand of RNA/DNA
hybrid heteroduplexes, the targeted rRNAs are cleaved at the
hybridization site in a sequence-dependent manner and are conse-
quently cut into two fragments. In contrast, nontargeted rRNAs
remain intact under the same conditions. For the detection of
cleaved rRNAs, the resulting RNA fragment patterns can be
resolved by gel electrophoresis or capillary electrophoresis using
RNA-staining dyes. The relative abundance of the targeted species
of 16S rRNA fragments in total 16S rRNA can also be quantified by
determining the signal intensity of individual 16S rRNA bands in an
electropherogram (without the use of external standards). Because
this method does not require an external RNA standard for each
experiment, as is required in membrane hybridization, and because
the present method is relatively easy to perform within a short time
(i.e., within 2-3 h), this technique may provide direct, rapid,
and easy means of the quantitative detection of particular groups
of anaerobes based on their rRNA, such as those of methanogens
as well.

In general, oligonucleotide probes used in FISH and mem-
brane hybridization methods can directly be used as scissor probes
in the RNase H method. This method has also been applied to the
quantification of active methanogens in anaerobic sludge
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[33, 234-236] and ruminal ecosystems [237]. Because of the
reasons that this method is based on rRNA and that the RNA
(rRNA) level is often dependent on the in situ activity of individual
cells [213], this method may be used for real-time monitoring of
active methanogens and other important bacteria in engineered
ecosystems such as waste /wastewater treatment systems to better
control such bioreactors [238]. Besides, cleavage reaction using
RNase H is further applied for the capillary electrophoresis ribo-
somal RNA single-stranded conformation polymorphism [239],
and the efficiency of the reaction can be improved by the fusion
of RNase H with a zinc finger [240].

6.4 Microarray DNA microarray platforms, such as ANAEROCHIP [72], Geo-
Chip [241], and PhyloChip [242], are useful tools for parallel,
high-throughput, and comprehensive detection of different micro-
bial community members in ecosystems. Franke-Whittle et al.
developed the ANAEROCHIP platform that consists a total of 98
methanogen-specific oligonucleotide probes [72], and it has been
successfully applied for the comprehensive detection of methano-
gens in anaerobic bioprocesses [72, 243, 244 ]. The GeoChip plat-
form is composed of a vast numbers of oligonucleotide probes for
functional genes including mcrA [241]. The GeoChip-based
profiling was conducted for the analysis of metabolic diversity in
hydrothermal vent, and significant signals of mcrA along with other
functional genes (e.g., aerobic and anaerobic methane oxidation,
denitrification, and sulfate reduction) were detected [245]. Several
researchers used the PhyloChip to the community analysis of con-
taminated subsurface sediments [246] and solar saltern [247], and
they observed Methanobacteria- and Methanomicrobia-specific sig-
nals, implying their important role in these ecosystems.

7 SIP-Based Detection

Stable isotope probing (SIP) of DNA [248] and RNA [249] has
been used in recent years in order to identify metabolically active
populations in environments. In principle, SIP technology is based
on the incorporation of '*C-labeled substrates into the nucleic
acids. The separation of isotopically labeled (active) fractions from
unlabeled (inactive) fractions is generally performed with density
gradient centrifugation. The substrate-assimilated microorganisms
in the labeled fractions are identified by a set of PCR-based molec-
ular techniques such as gene cloning, T-RFLP, and other methods.
Therefore, for the purpose of identifying active methanogens that
are responsible for particular metabolisms in environments, the
probes/primers listed in Tables 1 and 2 can potentially be used.
As examples, Conrad and colleagues have intensively analyzed
active methanogen populations in rice paddy soil by using SIP
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followed by fingerprinting [250-253]. The active methanogenic
populations in enrichment culture of municipal solid waste digester
residues [254], fen [255], rice rhizospheres [256], rice paddy soil
[257-259], swine manure storage tank [260], and coal mine [261]
were also determined by SIP-based molecular analysis.

8 Best Probes/Primers to Detect Methanogens in the Environment: Anaerobic
Sludge as a Case Study

In the previous sections, we comprehensively address the current
status of oligonucleotide probes/primers targeting 16S rRNA and
mcrA genes and molecular methods to detect methanogens in the
environments. Because these molecular methods have their own
pros and cons, researchers need to think carefully about appropriate
combinations of methods and probes/primers depending on what
the researchers need to know. For details, recent reviews may be
helpful for the selection of molecular techniques to be employed
[21, 22, 24, 262]. In a practical way, polyphasic analyses using
multiple molecular techniques are best to gain a reliable picture of
methanogen populations in environments. In this section, we pro-
pose the best possible combination of the methods and
corresponding probes/primers to detect and quantify methano-
gens in sludge samples from anaerobic wastewater treatment pro-
cess as a case study.

At the beginning of study, we may need to understand what
types of methanogens are present in the sludge. For this purpose,
clone library analysis with a primer set that covers near full length of
16S rRNA (ca. 1,300-1,400 bp) and targets most methanogens
(e.g., 109t/UNIV1492r [113] and Arch21F/UNIV1492R [103])
is a good first choice. Narihiro et al. constructed clone libraries with
the 109f/UNIV1492r primer set to analyze archaeal populations in
12 sludge samples from full-scale anaerobic upflow anaerobic
sludge blanket (UASB) reactors treating various food-processing
wastewater, and they revealed that Methanosacta- and Methanobac-
terium-related phylotypes were the major acetoclastic and hydro-
genotrophic methanogens in the processes, respectively [113].
Instead of clone library construction, high-throughput sequencing
using a primer set that covers partial 16S rRNA (ca. 300-500 bp) of
members of the domain Archaea (e.g., ARC344f/ARCI15 [136]
and Arch516F /UNIV806R [138]) is an alternative (and more
powerful) way to obtain entire picture of methanogen populations.
Kuroda et al. employed Illumina MiSeq sequencing with the
Arch516F /UNIV806R primer set to analyze archaeal communities
in 12 anaerobic (or anoxic) sludge samples. The results showed that
known methanogens (e.g., Methanosaeta, Methanobacterium,
Methanothermobacter, and Methanolinea) dominated in all of the
samples, while a relatively low percentage (0.4-6.8%) of
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WSA2-related methanogen was found in 11 out of 12 sludge
samples [138].

Once you have obtained basic information about methanogen
populations in the sludge, quantification of dominant or specific
members of interest can be the next step. qPCR-based group-
specific quantification is one of the best ways to perform temporal
monitoring of methanogen populations in the process. For exam-
ple, TagMan-based 16S rRNA-targeted qPCR probes/primer sets
developed by Yu et al. (e.g., MMB282F/MMB832R /MMB749F
tor Methanomicrobiales, MBT857F /MBT1196R /MBT929F for
Methanobacteriales,  MCC495F /MCC832R/MCC686F  for
Methanococcales, Msc380F /Msc828R /Msc492F for Methanosarci-
naceae, and Mst702F /Mst862R /Mst753F tor Methanosaetacene)
are widely used for this purpose [68]. Bialek et al. reported the
methanogenic community dynamics of two types of anaerobic
bioreactors (inverted fluidized bed and expanded granular sludge
bed) treating synthetic daily wastewater during operating tempera-
ture transition from 37 to 15°C, and they found that the domi-
nated hydrogenotrophic populations shifted from
Methanobacteriales to Methanomicrobiales in both reactor config-
urations [141].

For mcrA-targeted probes/primes, the combination of mlas-
derived forward primers (i.e., mlas-mod [126] and mlas-mod2
[127]) and mcrA-rev reverse primer [125] boasts the highest cov-
erage for mcrA gene sequences of known methanogens (Table 2).
Although the usability of these newly developed primer sets has not
yet been applied for quantification of methanogens in anaerobic
wastewater treatment process, mlas-mod/mcrA-rev and mlas-
mod2/mcrA-rev primer sets were used for the quantification of
methanogens in soil environments [16, 126] and pilot-scale pig
slurry storage facilities [127], respectively. Angel et al. further
employed dual-labeled msa and mcel-rcl probes with mlas-mod/
mcrA-rev primer set for qPCR detection of Methanosarcina and
Methanocella, respectively, in desert soil crusts [126]. Successtul
detection of methanogens in such ecosystems implies that these
primer sets can be used for the investigation of methanogen popu-
lation dynamics in anaerobic bioreactors.

RNase H method is an alternative way to monitor the metha-
nogen populations [33]. Narihiro et al. developed a total of 40
probes, including newly designed and previously reported probes
listed in Table 1. The hybridization condition has been optimized
for the specific quantification of methanogens at different taxo-
nomic levels (i.e., order, family, genus, and species) for use in the
RNase H method and has been applied to quantitative and com-
prehensive detection of methanogens in various types of anaerobic
bioreactors [33].

FISH analysis has been used for investigating the localization of
methanogens in biofilms (sludge granules) from anaerobic
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bioreactors [100, 221, 226-228, 263-265]. In anaerobic sludge
granules, hydrogenotrophic methanogens are often juxtaposed
with syntrophic substrate-degrading bacteria, such as syntrophic
propionate-oxidizing bacteria (e.g., members of the genera Syntro-
phobacter, Syntrophorbabdus, and Pelotomaculum); such close prox-
imity between syntrophic bacteria and methanogens has been
observed by FISH with confocal laser scanning microscopy
[228, 266-268]. Imachi et al. visualized the proximity between
Pelotomaculum-related propionate-oxidizing syntroph and Metha-
nobacteriaceae-type methanogen in a sludge granule taken from a
lab-scale thermophilic UASB reactor with MB1174 probe [268].
In addition, Sekiguchi et al. showed spatial distribution of the
Methanomicrobiales (MG1200 probe), Methanobacteriacene
(MB1174 probe), Methanosarcinacene (MS1414 probe), and
Methanosaetacene (MX825 probe) along with filamentous cells of
the Amnaerolinea (Chloroflex: subphylum I)-related organisms in
two lab-scale UASB reactors [228].

Thus, combined wuse of clone library/high-throughput
sequencing (to gain the big picture of community members),
qPCR/RNase H method (to quantify groups of interest), and
FISH (to visualize /localize the targeted groups) with abovemen-
tioned probes/primers is a recommended approach to explore
methanogen populations in anaerobic wastewater treatment
processes.

9 Conclusions

As described in this chapter, a vast number of oligonucleotide
probes/primers have been developed so far for deciphering and
quantifying methanogen populations, covering most parts of the
methanogens known to date. A variety of molecular methods have
also been developed that are used in combination with the probe/
primers. Most recently, a 16S rRNA gene database of ruminal and
intestinal methanogen (RIM-DB) that consists of 2,379 nearly full-
length chimera-checked 16S rRNA gene sequences in total has
been made [269]. Such database will be a useful foundation not
only for species-level taxonomic assignment of 16S rRNA gene
amplicons generated by high-throughput sequencing but also for
the development/evaluation of methanogen-specific probes/pri-
mers. Lastly, it should be noted that there are still a number of
uncultivated methanogens in various environments and that they
should be further isolated and characterized in detail. Detection
tools for such uncultured methanogens remain to be developed to
further increase in the coverage of our knowledge about methano-
gens present in environments.
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Primers: Functional Genes for Aerobic Chlorinated
Hydrocarhon-Degrading Microbes

Nicholas V. Coleman

Abstract

Bioremediation offers a solution to the problem of chlorinated hydrocarbon pollution. Small chlorinated
compounds can be mineralised by acrobic bacteria, acting as carbon and energy sources, and the genes that
encode these processes can be detected and monitored by PCR. This provides a rapid, specific, culture-
independent, and potentially quantitative tool of enormous utility to bioremediation practitioners. This
chapter summarises and evaluates available PCR primers for genes encoding metabolism of organo-
chlorines, especially chlorinated alkanes, alkenes, and alkanoic acids. The enzyme families involved include
hydrolytic dehalogenases, dehydrochlorinases, monooxygenases, glutathione- $-transferases, and corrinoid-
dependent enzymes. Although aromatic dioxygenases are important enzymes for degradation of chlori-
nated aromatic hydrocarbons, this enzyme family is not discussed here. This chapter assumes a basic
knowledge of PCR and primer design. The focus will be on the design and use of degenerate primers
and on the relationships between genes, bacteria, and chlorinated substrates.

Keywords: Biodegradation, Bioremediation, Chloroalkane, Chloroalkene, Dechlorination, Dehalo-
genase, Halidohydrolase, Monooxygenase, Organochlorine, qPCR

1 Introduction

Chlorinated hydrocarbons have been widely used as pesticides,
solvents, and plastics, and many of these chemicals have become
problematic pollutants. Bioremediation is increasingly seen as a
viable treatment technology for organochlorines, but there is a
need for better methods of monitoring and predicting the underly-
ing microbial activities [ 1, 2]. PCR offers a useful tool here, since it
is rapid, specific, culture independent, and potentially quantitative.

The aerobic biodegradation of large, highly chlorinated
hydrocarbons is incomplete and not linked to growth [3, 4], but
the smaller, less chlorinated compounds (e.g. chloromethane) can
be mineralised and act as carbon and energy sources [5-7]. The
greater solubility, bioavailability, and biodegradability of the small
organochlorines make these compounds more attractive targets for

T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks, (2017) 141-175,
DOI 10.1007/8623_2015_91, © Springer-Verlag Berlin Heidelberg 2015, Published online: 05 June 2015
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bioremediation, and thus the focus of this chapter will be PCR
primers for genes encoding metabolism of smaller compounds,
such as chloromethanes, chloroethanes, and chloroethylenes.
The enzyme families involved in these processes include hydrolytic
dehalogenases, dehydrochlorinases, monooxygenases, glutathione-
S-transferases, and corrinoid-dependent enzymes.

PCR is an excellent tool but it needs to be applied caretully.
Good basic principles include thorough reading of the literature,
careful primer design, and/or independent evaluation of existing
primers, the use of positive and negative controls, and, of course,
good hands-on training, especially in aseptic technique. The need
for caution is perhaps best explained by a casual list (below) of
unexpected things that can happen in PCR, compiled from experi-
ences in the author’s own laboratory.

Examples of Unexpected PCR Results

¢ Amplified products are the wrong size and the wrong sequence.
e Amplified products are the correct size but the wrong sequence.
e Amplified products are the wrong size but the correct sequence.
e Reverse primer mis-primes and instead acts as forward primer.

e Forward primer mis-primes, giving two products, both from the
correct target gene.

e Inhibitors prevent amplification despite careful purification of
DNA.

e Amplification of lab bacteria sequences (e.g. E. coli) from unex-
pected locations.

e Primers look good on the computer, but fail in the lab.

e Primers look bad on the computer, but work in the lab.

This chapter assumes a basic knowledge of PCR and primer
design. Issues such as dimers, hairpins, melting, and annealing
temperatures will not be discussed at length here, although these
are certainly important considerations. The focus will instead be
on the design and use of degenerate primers and on broader issues
such as the relationships between genes, bacteria, and chlorinated
substrates — these impact strongly on the interpretation of
PCR data.

The chapter is organised into sections based on different cata-
bolic genes; this corresponds to some extent to organisation based
on different organochlorine compounds. Two case studies from the
author’s laboratory describe in detail some approaches to primer
design and evaluation. All of the primers discussed in this chapter
are compiled in Table 1.
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2 Case Study: Primer Design for Soluble Di-iron Monooxygenase (SDIMO) Genes

Monooxygenase (MO) enzymes catalyse the first step in aerobic
attack on many hydrocarbons and chlorinated hydrocarbons. These
enzymes are also of interest to biocatalysis [8, 9]. Many distinct
MO types exist in bacteria, perhaps the most diverse and most
widespread is the soluble di-iron monooxygenase (SDIMO) family
[10], which includes enzymes of critical significance to biogeo-
chemistry [11] and enzymes active on many important chlorinated
pollutants [5, 12, 13]. The SDIMOs are found in both Proteobac-
teria and Actinobacteria. Six SDIMO groups can be defined based
on gene sequences [14], and these loosely correlate to types of
growth substrates (Fig. 1).

The author’s laboratory designed degenerate primers for SDI-
MOs in a project aimed at retrieving novel MO genes for bioreme-
diation and biocatalysis [ 14, 15]. The experimental strategy was to
use PCR to amplify MO genes from soil, enrichments, and isolates.
The test substrate for these experiments was ethene (ethylene,
C,H4), which is oxidised by the SDIMO enzyme EtnABCD. This
enzyme and related alkene MOs have very high enantioselectivity
[16] and are thus of special interest for biocatalysis. Primers were
needed that could retrieve sequences related to ernC, without

CH, CH,

J I
gp 1 SDIMO

O <
—»
gp 2 SDIMO

O

CH, —— CH,OH
gp 3 SDIMO
0, \
CH,=CH, ——— CH,CH,
gp 4 SDIMO
o '
CH;CH,CH; ——2—»  CH,CHCH,
gp 5 SDIMO
o o
CH;CH,CH; ——2—  CH,CH,CH,
gp 6 SDIMO

Fig. 1 Relationships between SDIMO groups and substrates. Reactions are
representative only, not a complete list. Compiled based on [10, 11]



Primers: Functional Genes for Aerobic Chlorinated Hydrocarbon-Degrading Microbes 149

retrieving non-specific sequences, even with very complex
templates.

The first step was to choose which SDIMO subunit(s) to target
for PCR. These are multicomponent enzymes (4—6 subunits), of
which the large (alpha) hydroxylase subunit is the most conserved.
There are arguments for PCRs spanning multiple MO genes; these
would retrieve more sequence data, and this approach offers more
priming sites, but the problem is that this depends on the gene
order being conserved, which is not in the SDIMO family as a
whole. Thus, only the alpha subunit was targeted.

The next step was to make a sequence alignment of SDIMO
alpha subunits. Alignments were made using protein rather than
DNA; this is a better approach for identifying homologous regions,
especially if sequence homology is low. Using protein sequences for
primer design gives broader-spectrum primers which retrieve more
sequence diversity, since this approach makes no assumptions about
codon usage. The drawback is that primers will be degenerated,
which reduces their efficiency.

The SDIMO alignment (Fig. 2) indicates that there are only two
amino acid (a.a.) motifs that are absolutely conserved (2 x DEXRH);
these are the iron-binding sites, and they are approx. 100 a.a. apart.
A very broad range PCR that targets these two sites is possible in
theory, but there were two problems with this approach. Firstly, the
use of two similar a.a. motifs as both forward and reverse priming
sites leads to problems with heterodimer formation, and secondly,
this approach only retrieves a small portion of the gene, which was
not ideal for the purpose of biocatalyst prospecting.

If the focus is restricted to just groups 3, 4, and 5 SDIMOs,
two further conserved motifs become available; these are
WFEX(N/H/K)YPGW and WT(I/L)DD(I/L/V)R (Fig. 2).
These motifs are attractive for the design of reverse primers, since
the 3’ end of each primer is at a tryptophan (W), which is one of the
only two nondegenerate a.a.s (W = TGG, M = ATG). This means
that the critical 3’ end of the primer is nondegenerate, increasing
the specificity of the PCR. With these two further motifs available as
reverse priming sites, both DEXRH motifs can be used as forward
priming sites, giving five possible PCR strategies, i.e. two regular
PCRs, one nested PCR and two semi-nested PCRs.

Different a.a.s are better or worse for degenerate primer design,
depending on how degenerate the code is. M and W are the best
(unique codons); then C, N, D, E; Q, H, K, F, and Y are good (two
codons); then T, P, A, G, and V are average (four codons); and S, R,
and L are bad (six codons). The overall degeneracy of a particular a.a.
motif can make or break the primer design process, e¢.g. SSSSSSS has
279936-fold degeneracy (6°), which is too high to be an effective
PCR primer. Inspection of the conserved regions in the SDIMO
alignment (Fig. 3) shows some problems here, especially the X
residue (any a.a.), which translates to NNN, and a degeneracy of 64.
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G4 TomA3
OX1 TouA
RHA1 PrmA
JS60 EtnC
B276 AmoC
TY6 PrmA
Bath MmoX

G4 TomA3
0OX1 TouA
RHAL1 PrmA
JS60 EtnC
B276_ AmoC
TY6_ PrmA
Bath MmoX

G4 TomA3
OX1 TouA
RHA1 PrmA
JS60 EtnC
B276 AmoC
TY6 PrmA
Bath_ MmoX

G4 TomA3
OX1 TouA
RHA1 PrmA
JS60 EtnC
B276 AmoC
TY6 PrmA
Bath MmoX

G4 TomA3
0OX1 TouA
RHALl PrmA
JS60 EtnC
B276_AmoC
TY6 PrmA
Bath MmoX

G4 TomA3
OX1 TouA
RHA1 PrmA
JS60 EtnC
B276 AmoC
TY6 PrmA
Bath MmoX

G4 TomA3
OX1 TouA
RHA1 PrmA
JS60 EtnC
B276 AmoC
TY6 PrmA
Bath MmoX
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* 100 *
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120 * 140 *

160
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* 180 * 200 * 220 * 240 L
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VEDCFHVISKEQ- - -MRWK|:HSIT AAML AAS [IBAT, HIIPWBIP LT - E S |B]F 1 NFHOIT--KAEDEVNPMA
SERSMKDNKQD---AYWAEBIDLY LLAYMLIFT GEF RLALPD- QEE M KIYPEWNARGCEDPSSEFIPM

NVC66
* 440 * 460 * * 500

YNKTLPM———LCTTCQIP\IFTEPGDATKICYRESAELEDKYHFCSDHEKEIFDNE HKFVQSWLPPQQVYQ
ME€

VPETIRAT---I@NMENLI4TAH-TPGNKWNVKDYQLE RLYHBGEHADRWCIHQ I D WK NHT{LVDRF LK

VGYQY|EH---REWTEMUIAT. TREDM - - - - - - - VVEKVDDQWRTY@SEHT®YWTDAVAFRSEYQGRPTPNMGELTGFREWET LHH[€

ELPSIHEP - - - FOOACH ALC VMETINH - -APETIHI - VY GE[EKKFAV@SHGEEW I PN LN - - - - - - - - - - - — TIMSGCANWWERFDE

ELPGBEP - — - MEOWASIOAAEC VMIZRIND - -MNAART - IEFEEQOK I AL[GSEINP ®O R T |3 T NWid- -—HAMRHRKQYWARYH[E

AFEANEP - - - LEO/ele|MEC T FJER| D——CSEVRF—ADiGGRTVPFCGPMCETLFFQEP— ——IRYAQSREFWQHHDG
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* 520 * 540 560 * 580

Fig. 2 Alignment of SDIMO alpha subunits. Conserved regions are shaded black (100% conserved), dark grey
(60% conserved), or light grey (40% conserved). Amino acid motifs targeted by PCR primers are boxed and labelled
with the primer name. Further information about sequences and strains can be obtained from the NCBI protein
database entries, as follows: G4_TomA3, AAKO7411 (group 2); 0X1_TouA, CAA06654 (group 1); RHA1_PrmA,
ABG92277 (group 5); JS60_EtnC, AA048576 (group 4); B276_AmoC, BAA07114 (group 4); TY6_PrmA, BAF34294
(group 6); Bath_MmoX, P22868 (group 3). Note that in this alignment and later alignments, the sequences
are named using the format XXX_AbcD, where XXX is the strain name, and AbcD is the enzyme name

Excessive degeneracy in this case was handled by ‘cheating’ a
little (Fig. 3). For example, the X residue was replaced by the
specific a.a. found in EtnC. The justification for this was that for
this study, it was of primary importance to ensure that ethene MO
genes were retrieved. Although some positions have EtnC-bias,
the primers overall are targeted at SDIMO conserved regions and
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Q(V/M/Q) (L/V/I)DE(I/V/F)RH

SDE (S/A)RH (M/ I
@Simplifyto EtnC sequence Q (S/A)RH(M/T)

NVC57 Translate to DNA,
NVC65 OMLDEVRH high-GC bias at (S/A)
@ Translate to DNA CAGTCNGAYGARKCSCGNCAYAT

CARATGYTNGAYGARGTNCGNCA

WT (I/L)DD(I/L/V)R
WFEX (N/H/K) YPGW
@ s c @ Simplify to EtnC sequence
implify to EtnC sequence NVC58
WTIDDIR

NVC66 WFENKYPGW

@ Translate to DNA
@ Translate to DNA

TGGACNATHGAYGAYATHCG
TGGTTYGARAAYAARTAYCCNGGNTGG

@ Reverse complement

CGDATRTCRTCDATNGTCCA

@ Reverse complement

CCANCCNGGRTAYTTRTTYTCRAACCA

Fig. 3 Design strategy for degenerate SDIMO alpha subunit primers

were hypothesised to retrieve more than just ezzC (this turned out
to be true).

Another ‘cheat’ was used to handle the S/A position (WSN +

GCN — DSN, 24-fold degenerate). In this case, changes were
made based on inspection of a DNA alignment and by assuming a
high GC codon usage at the third position (group 4 SDIMOs are
nearly exclusive to Actinobacteria). These tweaks give KCS (four-
fold deg.) and keep the overall primer degeneracy manageable
(max. 1024-fold). For a systematic approach to handling degener-
acy in primer design, the reader is referred to the CODEHOP
programme [17], which yields oligos with a degenerate 3’ end
but conserved 5’ end.

The new SDIMO primers were first tested on ethene enrich-
ment cultures. The 2-primer PCRs (NVC65-NVC66 or NVC57-
NVC58) gave products of the expected size from most samples,
and 17 /23 clones sequenced were etnC-like SDIMO genes [15].
The two-primer PCRs failed to amplity anything from unenriched
environmental samples, but the 4-primer nested PCR did work
with these, giving strong products of the expected size in 12 /13
cases. Sequencing of 45 nested PCR clones revealed that all were
SDIMOs. Very diverse genes were recovered, including SDIMO
groups 3,4, 5,and 6 [15].

It was unclear why the nested PCR was essential for detecting
SDIMO genes in unenriched samples in this study, since other
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catabolic genes (many examples below) do not require this level of
amplification to be detectable. This finding could be due to the low
lysis efficiency of SDIMO-containing bacteria in environmental
samples (perhaps mycobacteria?), the low efficiency of the very
degenerate primers used, the low abundance of the SDIMO-
containing bacteria, or a combination of these factors.

3 Primers for etnC and etnE in Vinyl Chloride (VC)-Degrading Bacteria

VC is a pollutant found in groundwater and waste gases and is of
particular concern since it is a known human carcinogen [18]. VCis
used for manufacture of PVC plastic, but the major source of VC
contamination is biogenic production from higher-chlorinated
ethenes (tetra- and trichloroethene (PCE, TCE)), which are the
primary pollutants. The PCE and TCE can be reductively dechlori-
nated by anaerobes, ideally yielding ethene, but this process may
‘stall’, yielding cis-dichloroethene (¢cDCE) or VC as persistent end
products [19].

Aerobic bacteria can cometabolise all of the chlorinated
ethenes [20] and can grow on ¢cDCE and VC [5]. The activity of
such bacteria is likely to be significant in the field [21, 22]. Many
bacteria that can grow on VC have been isolated, including Myco-
bacterium, Nocardioides, Pseudomonas, and Ochrobactrum [5, 23].
The VC degradation pathway is only partially characterised
[24-26]; the SDIMO enzyme EtnABCD attacks VC, making VC
epoxide; then the EtnE enzyme (epoxyalkane-coenzyme M trans-
ferase) acts on the epoxide.

The etnC and etnE genes can be used for detection of VC
degraders, but a major complicating factor is that these genes are
identical or near identical to genes in ethene-oxidising bacteria,
which are ubiquitous. This issue also impacts on interpretation of
enrichment experiments, since VC-assimilating bacteria can evolve
spontaneously from ethene assimilators [27]. Multiple point muta-
tions can give rise to the VC-assimilating phenotype [28]; these
changes are subtle (1 bp) and occur at variable locations, making a
diagnostic PCR impossible. For the moment, it must be accepted
that primers for VC-assimilating bacteria will also amplify ethene-
assimilating bacteria. This is not entirely inappropriate, since ethene
oxidisers can cometabolise VC, and they represent a pool of poten-
tial VC assimilators.

The SDIMO primers discussed above are not appropriate
for detection of VC-degrading bacteria, although they will detect
etnC genes. More specific eznC primers were designed (NVC105 —
NVC106) to allow tracking of this gene in enrichment cultures and
isolates [15] and for screening fosmid libraries [29]. The isolates
examined in that study contained a diverse mix of SDIMO genes, so
it was important to ensure specificity of the etnC primers. These
were designed based on alignments such as Fig. 4 to target regions
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* 20 * 40 * 60 *
JS60-EtnC Y IZK GKDP FREIAN
NBB4-EtnC : BK < IZK GKDP FREIAN
JS623-EtnC : | Y < IEKGKDPFREJAR
NBB3-EtnC : { IZKGKDPFREIAN
JS614-EtnC : KSIKIAY ) IZKGKDP FR\YI

B276-AmoC : W INKGKDPE'R\AmN
M156-PmoC : ) [KGKDPFR|

JS60-EtnC
NBB4-EtnC
JS623-EtnC
NBB3-EtnC
JS614-EtnC
B276-AmoC
M156-PmoC

JS60-EtnC : 5 \ V LSIQSDE]
NBB4-EtnC : ) \ LSIQSDE
JS623-EtnC :

NBB3-EtnC
JS614-EtnC
B276-AmoC
M156-PmoC

JS60-EtnC : R NGY] \ R S IC 5 Y] N YK IATAVAVARIDNY
NBB4-EtnC : NGY| (K] EWVVLDE]
JS623-EtnC : 3 NGY] S 3 G 4EI EWVVDDE]
NBB3-EtnC : 3 EWVVLDDE]
JS614-EtnC : . NGY] R S ) 5 /| ) IATAVAVARIDNY
B276-AmoC : <

M156-PmoC

NVC105 RTC_F RTC_R
* 320 * 340 * 360 *
JS60-EtnC : SH C @BGDVAR YD AT {GELE
NBB4-EtnC : SN ATA|
JS623-EtnC :
NBB3-EtnC : S LGEVg
A

JS614-EtnC : N 18P DV
B276-AmoC : 3 ACIMGAAIRDEM
M156-PmoC : S S LAAAEEE

JS60-EtnC
NBB4-EtnC
JS623-EtnC
NBB3-EtnC
JS614-EtnC
B276-AmoC
M156-PmoC

JS60-EtnC
NBB4-EtnC
JS623-EtnC
NBB3-EtnC
JS614-EtnC :

B276-AmoC : H{EWBINNRY

JUNRSEE =) (TCIGRNEI D Gl D 1. A D V\YEIBT. G YMR PDGIEIT LEGQ PILINUINRIFI T I DD I RIFL{EY EMKIN

Fig. 4 Alignment of alpha subunits of ethene and propene monooxygenases. Conserved regions are shaded
black (100% conserved), dark grey (80% conserved), or light grey (60% conserved). Amino acid motifs
targeted by PCR primers are boxed and labelled with the primer name. The propene MO of Xanthobacter Py2
(group 1 SDIMO) is not shown, as it is quite divergent in sequence from the Actinobacteria alkene MOs (group
4 SDIMOs). Further information about sequences and strains can be obtained from the NCBI protein database
entries, as follows: JS60-EtnC, AA048576; NBB4-EtnC, ACZ56346; JS623-EtnC, ACM61846; NBB3-EtnC,
AEV73508; JS614-EtnC, AAV52084; B276-AmoC, BAAO7114; M156-PmoC. AAS19484
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unique to ernC that are not conserved with the nearest distinct
SDIMO, i.e. the propene MO genes amoC/amoC.

Primers have also been designed for the etnE gene (CoM-F1L
and CoM-R2E) to retrieve this gene in isolates that grow on ethene
and VC. These primers have low degeneracy (eight- and onefold),
but were effective in retrieving a large fragment of etnE (891 bp)
from all ten of the VC/ethene-oxidising bacteria tested [25]. Some
non-specific products were seen from some strains. These primers
also retrieved the coenzyme M transferase gene from the propene-
oxidising Rhodococcus (Gordonia) B-276. These primers have not
yet been tested with metagenomic DNA.

Effective qPCR primers for etnC and etnE (RTC_F, RTC_R,
RTE_F, RTE_R) have now been developed [30]; this study is
recommended reading for workers new to qPCR, since the primer
design and testing process and the gene copy calculations are clearly
described. The qPCR enabled detection of both et#C and etnE in
groundwater at 103-10° genes/L. The ratio of eznC:etnE genes
unexpectedly varied between samples (from 1.1 to 17.8) — this may
indicate that etnE can be found associated with genes other than
etnC[31], or it could be an artefact arising from different relative
priming efficiencies with different templates.

The etnCand etnE primers were later modified to minimise bias
towards certain gene types [32]; these second-generation primers
(MRTC_F, MRTC_R, MRTE_F, MRTE_R) were designed using a
different strategy, i.c. individual representation of each sequence
variant. The modified primers gave increased detection levels of
etnC and ernE in groundwater compared to the first-generation
primers and also reduced the etnC:etnE gene ratio closer to the
theoretically expected 1:1 level.

4 Primers for cmuA in Halomethane-Degrading Bacteria

Chloromethane (methyl chloride) and bromomethane (methyl
bromide) have both biotic and anthropogenic sources and have a
major impact on atmospheric chemistry, since they act as ozone-
depleting agents [7]. Methyl bromide is used as an agricultural
biocide for pre-planting soil fumigation [33]. Many Alphaproteo-
bacteria can degrade methyl halides, including Aminobacter,
Hyphomicrobium, Leisingera, Methylobacterium, and Roseovarius
[7, 34].

The halomethane dehalogenase which initiates metabolism of
chloro- and bromomethane has a corrinoid-dependent (CmuA) and
a tetrahydrofolate-dependent (CmuB) component [ 34-36]. CmuA
has been more widely used as a molecular marker (Fig. 5). McAnulla
et al. [37] were the first to design degenerate primers for cmuA
(929f -1669r) — these gave sequences from all nine pure cultures
tested and from an enrichment. Miller et al. designed new primers
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CM2-CmuA
MC1-CmuA
CM4-CmuA
198-CmuA
DSM16646
Therm-JR
DSM6799
ATCC33934
* 100 * 120 * 140 * 160
CcM2-Cmua : B i O PSIL M= SE-RVLOIER-ARIMIAR - REDVEA M P iRE
MCl-CmuA : Jd v > SE-RVLOMIGKEARMMI AQEV liuela M Pl e}
CM4-CmudA SD-RVLOUMKHAQIMM LK Le|Y jqslielv T P
198-Cmua : [ SK-|RVLAMGIEHARMY VKME LtV I p i
DSM16646 : [ DKGRILRA G| KWF TKE €| olielv L A i)
Therm-JR v EXGNLRA[LGE 9T RIML T RE[EW/(8ls|A LA i
DSM6799 : 3 ' L i EKGLRAGIE 9T RIEFVKE S/ aJulsia LA )
ATCC33934 : [ v 2 0P TRGIRVLTVAEPIKILLONEFG
CM2-CmuA ) C y 5 LDPF D I YREFGLFPYQISRLIAY IKgd
MC1l-CmuA v ) DIYREFGLPYQISRLEAYIKG
CM4-Cmud v LDP IMYYREGICT P GOIMRE F AV TR
198-CmuA : T ] v LDPF 1YV R EPNL P YOINRT - Y TR
DSM16646 3 > v LDPF MUY REFGLPYOORLFAY IKG
Therm-JR 1 > > PIUYREFGL PYOORL FAY TKE
DSM6799 : 3 v LDP IIAYEIEFGL P YOIl FAY I K
ATCC33934 : K] BG EQFRNASKIRII IEIOHMO -
CM2-CmuA : HEC WRID { ] 3 ] > 3 v K AV BN G
MC1l-CmuA : E | 5 5 / AAEVGY
CM4-CmuA > \ 5 5 > J K A BN G
198-CmuA : | 5 5 / AAEVGY
DSM16646 > \ 5 5 i W2EVGY
Therm-JR : { 5 5 / ANEVGH
DSM6799 : > \ 5 5 > / K DAR BV Y
ATCC33934 g 5 5 Y G
cmuA802f 929f
CM2-CmuA GCDMD XY K TDVAEARTHHKELT
MC1l-CmuA  : |1 > >IMID < TDVAEATHHKELT
CM4-CmuA GCDM@D 7 K VKVEAGJEKHELDTS
198-CmuA : » RIE N Y PJUD)| ) < [VEGp--QATIAEV|ADVADMN
DSM16646  : ) Y PMD| K TDDPIOMVRMGIRIMT LEVKKT
Therm-JR > D TDNPIOMVRMGIQ)Y--KANKT
DSM6799 : z K TENBQIVRMGIDMTQAAVRE
ATCC33934 : ) <Y PHD ) GHRK IQRK---EVRTVHPKHKILS
MF1

* 420 * 440 * 460 * 480
CM2-CmuA EK
MC1l-CmuZ : [EHOQEUNEK
CM4-CmuA : EEGPYYEK
198-CmuA : [HTESUNHY
DSM16646 : HEEPYIN
Therm-JR : |HEEPMYSN \ 5 v v £ RN ER F T D Mhs

L

DSM6799 : EEQIYFF G \| 3 y Y E RIN SR E )1
ATCC33934 : KKNQLLED \| 5 Y

CM2-CmuA GDG[E|PTG- -}
MC1l-CmuA GDG[EPTG— - ¥
CM4-CmuA SDGE[PTG- -8
198-CmuA GDG[EPT G- -y
DSM16646 IGSEKKE - -
Therm-JR SGDEINKE — —ji§
DSM6799 GVSKKE--}§
ATCC33934 : IPKDRESGDLNDRIS
cmul609r 1669r

620
CM2-CmuA C [KGVEDKM| 1 \| BILOAANN
MC1l-CmuA C [KGVEIDKM| 1
CM4-CmuA M [RGVEIEKF] NSIURD|:|VE SRINAA -
198-CmuA F [VGLGRE L) VU EMUMEKEIVE TREIAA -
DSM16646 T [EEIAERI 1 N'/SIVKEY LAARERAN
Therm-JR T [EQINSQI 1 BIIKAT
DSM6799 Al [EKIAKQM| 1 \
ATCC33934 C SQLEISKL AKMLNEZFKPEQ

cmul1802r

Fig. 5 Alignment of representative CmuA enzymes and genomic homologues. Conserved regions are shaded
black (100%), dark grey (80%), or light grey (60%). Amino acid motifs targeted by PCR primers are boxed and
labelled with the primer name. Further information about sequences and strains can be obtained from the
NCBI protein database entries, as follows: CM2-CmuA, AAK01347; MC1-CmuA, CCB65493; CM4-CmuA,
CAB39403; 198-CmuA, CAH18515; DSM16646, ADL08278; Therm-JR, ADG81034; DSM6799, AFM28033;
ATCC33934, EX93664
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(cmuA802f — cmuA1609r) [38] — these have subsequently been
widely used for detection of halomethane degraders, e.g. with
heavy DNA fractions in C13-SIP studies [38, 39], in soil samples
and isolates [39], and in marine enrichments and isolates [ 34, 40].

Two new reverse primers (cmuAl802r and MF2) were devel-
oped for a study of chloromethane degraders in the phyllosphere
[41]. This study developed a qPCR for cmuA, which was found in
all Arabidopsisleaf samples examined, at eight copies per ng DNA,
which was estimated as 0.1% of the total bacteria based on 16S
rDNA qPCR. One possible problem with this study was that the
qPCR standard curves were done with genomic DNA of M. extor-
quens CM4; is this accurate for plasmid-borne genes such as cmuA
(see GenBank NC_011758)? Are the plasmids lost from the culture
at some rate? Is the plasmid copy number constant under all growth
conditions?

While all the experimentally characterised CmuA enzymes
are from Alphaproteobacteria, fairly close homologues (63-69%
inferred a.a. identity) are predicted from the genomes of several
Deltaproteobacteria and Firmicutes, including Desulfomonile tied-
get, Desulfurispora thermophile, Thermincola potens, and Thermose-
diminibacter oceani, and a more distant homologue is found in the
Gammaproteobacterium Vibrio orientalis (43% identity) (Fig. 5). It
is not known whether these cmu#A homologues encode functional
dehalogenating enzymes — this issue needs to be resolved to clarify
whether new cmuA primers are needed.

5 Primers for dcmA in Dichloromethane (DCM)-Degrading Bacteria

DCM is a widely used solvent and a problematic pollutant in
groundwater [42] and waste gases [43]. Several types of methylo-
trophic  Alphaproteobacteria (Methylobacterium, Methylophiln,
Methylorhabdus, Ancylobacter) are capable of aerobic growth on
DCM as a carbon and energy source [44]. The aerobic DCM
biodegradation pathway is unusual in that only a single enzyme is
required to convert DCM into a central metabolite (formaldehyde)
[45]. This key enzyme DcmA is a glutathione-S-transferase.
Although there are three possible initial aerobic attack mechanisms
for DCM (glutathione-S-transferase (GST), monooxygenase, and
hydrolase [46]), the GST-mediated pathway is the only one seen in
degraders isolated on DCM as carbon source.

There are 11 DcmA proteins or predicted proteins currently in
GenBank, which show >98% a.a. identity to each other, with one
exception, which is the DemA of Methylophilus leisingers DM11, at
58% a.a. identity to the others. The very high sequence conserva-
tion of dem A genes means that nondegenerate primers can be used
to detect demA-containing bacteria in different contexts, which
makes PCR easier. To date, there are no reports of a qPCR assay
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for demA, although this should be straightforward to develop given
the high sequence conservation.

Two different primer sets have been described for amplification
of demA genes; these are Cfor/Crev [47] and DMfor/DMrev [43,
47, 48] — these primer sets have been successfully used to retrieve
demA from pure cultures, enrichments, activated sludge, and bior-
eactors. Note that while the degenerate Ctor/Crev pair allows
amplification of both common (DM4-like) and divergent
(DM11-like) DCM dehalogenases, the nondegenerate DMfor/
DMrev primers amplify only DM4-like sequences.

6 Primers for dh/A in 1,2-Dichloroethane (DCA)-Degrading Bacteria

1,2-Dichloroethane (DCA) is used industrially for synthesis of VC
and thus PVC plastic, and DCA is a common groundwater pollutant
[49]. Many aerobic bacteria can grow on DCA as a carbon and energy
source; the majority of these are Alphaproteobacteria (e.g. Xantho-
bacter, Ancylobacter, Starkeyn) [ 50-54 ], although other types of DCA
degraders have also been reported (e.g. Pseudomonas, Polaromonas,
Azoarcus, Klebsiella, Bacillus) [55-59]. The majority of acrobic DCA
degraders use a hydrolytic pathway initiated by DhIA dehalogenase
[50-53], but in two cases, a monooxygenase is used [55, 56], and in
two cases, the mechanism is unknown [57, 59]. Here, the focus will
be only on the hydrolytic DhlA-mediated pathway.

The DhIA enzyme is a hydrolytic dehalogenase (HLD), also
known as a haloalkane halidohydrolase [60]. These enzymes are
part of an exceedingly diverse superfamily of alpha/beta-hydrolase
fold proteins [61]; these include also haloacid dehalogenases (see
below), epoxide hydrolases, lipases, proteases, peroxidases, and
esterases. Due to genomic and metagenomic sequencing, the
haloalkane dehalogenase family is constantly growing; a conserva-
tive estimate based on BLAST indicates that there are currently at
least 150 HLLD homologues in cultivated bacteria, most of which
are experimentally uncharacterised. It must be noted that while
some other HLDs can attack DCA, only the dhlA gene to date
has been linked to growth on DCA.

There is very high sequence diversity within the HLD family
(Fig. 6), butitis possible to design primers to capture at least some of
this diversity in metagenomic DNA. Kotik and Famerova [62] used
the CODEHOP approach [17] to make primers that could retrieve a
broad range of HLDs. While in silico work suggested several feasible
primer sets, only one was proven to work in practice (HId95f —
HI1d320r). The PCR had good specificity, as 35 /36 sequenced pro-
ducts from groundwater DNA template were HLDs; these were
diverse and different to homologues in cultured bacteria.

DhIA sequences from ten different bacterial isolates are available
[51-54]. Despite the fact that these belong to different genera, and
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GJ10-DhlA
Ples-DppA
Myco-DhmA
B90-LinB
Myco-DmbA
Brady-DbeA
Meso-DbjA
Rhodo-DhaA
Marine-DmmA
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GJ10-DhlA FAES[EARV
Ples-DppA FTAA[EGRV
Myco-DhmA LTDAENRVLE
B90-LinB CAGL[¢-RL
Myco-DmbA LEGL[€-RL
Brady-DbeA VAPV[E-HC
Meso-DbjA VSPVA-HC
Rhodo-DhaA VAPSH-RC
Marine-DmmA VVAA[E[YRA
C58-DatA LHGH[¢-RL |Y4PDIE----MTLENQQRYV
PCC6803 LAEK[ELTA ILDKRD-FAMTTAAYEQAT

HId95f DHLA-319F DHLA-380F

* 160 * 180 * 0Q *
GJ10-DhlA : SRFKRLIIMNACLM----TDP-VTQP----- AFSAFVTQPADGETAWK----FYDLVTHSDLRLDQFMKR
Ples-DppA H OLWDRLIVMNTALA----VGL----=--=-=--—-—-—-—-—-—-—-— SPGKGEUESWi----FDFVANYPDLDVGKLMQR
Myco-DhmA DR/ GRLVVANGFLP----TAQ-—-——-—-——-—-—-——-—-—— RRTPP--ABYAWS----FAFARYYPVLPAGRIVSV
B90-LinB RERYOGIAYMEAVT----MPLEWADFP- —--EQDRDLJEQAFISQO-AGEELVLJDNVEVEQVLPG
Myco-DmbA RDRWYOGIAFMEAIV----TPMTWADWP---------—— PAVRGVEQOGFSP-QFEPMALEHNIFVERVLPG
Brady-DbeA HOLMRGLAFMEFIR----PMRDWSDFHQ--------- HDAARETERKFETPGVEEAMILONNAFVERVLPG
Meso-DbjA IEDFRGLAFMEFIR----PMPTWQDFHHTEVAEEQDHAEAARAVERKFETPGESGEAMILHANAFVERVLPG
Rhodo-DhaA IHERYKGIACMEFIR----PIPTWDEWP---------—-— EFARETHEOQAFRTADVERELIIOONAFIEGALPK
Marine-DmmA IMDRWYAAVAFMEALVPPALPMPSYEAMG-----— -PQLGPLEBRDLEMTADVEEKMVLOGNFFVETILPE
C58-DatA IEDRJYRAVAFFEPVLR----NIDSVDLS- -PEFVTRRAKLEQPGEEFEIFVQJQENRFLTELFPW
PCC6803 IBDQIERLAILNTPVVP-----—-—-—-—-—-—-—-—-—-—-—-—-—-—-—— PVSLPWPMRQWTIP-LYGDMVTJDPLIIDRTLEG

DHLA-548R
20 * 240 * 260 * 280
GJ10-DhlA --WAPTLTEAE] AEAIPDTFSYQAGVRKFEKMVAQR-DQACIDISTEAISFWQONDWNGQTFMAIGMKD
Ples-DppA --A]PGITDAE A PGPFEFKAGVRRF|EHAIVIZEITPDMEGAEIGRQAMSFWSTQWSGETFMAVGAQD
Myco-DhmA G-TYRRVSSK A PDKIFTYQAGARAFEQLVETSPADPATIPANRKAWEALG-RWEK|IFLAIFGARD
B90-LinB L-IQJRPLSEAE EALAAGEARRPTLSWERQIEMIAGTPADVVAIARDYAGWLSESPI|ZKLFINAEPG
Myco-DmbA A-IZRQLSDEE R NGFEEDRRPTLSWERNLEIDGEPAEVVALVNEYRSWLEETDMEKLFINAEPG
Brady-DbeA S-IQRTLSEEE] A TRFESRMPTLMLIERELIHIAGEPADVTQALTAAHAALAASTYHKLLFVGSPG
Meso-DbjA G-IYRKLGDEE TISPTPFESRRPVLAF|HRELISIAGEPADVYEALQSAHAALAASSY|HKLLFTGEPG
Rhodo-DhaA C-VYRPLTEVE] E LKPFVDREPLWRFENELEIAGEPANIVALVEAYMNWLHQSPVEKLLFWGTPG
Marine-DmmA MGVYRSLSEAE A PTRFQSRLPTLQWEREVEIGGEPAFAEAEVLKNGEWLMASPIEKLLFHAEPG
C58-DatA F-FRTPLAPED TIgSPTPFHSRKAILAG|HRNL|EVDGEPASTVAFLEQAVNWLNTSDT|SKLLLTFKPG
PCC6803 G-SQGFVISDEK| KIJWLKTBPAAGRALMAVTKNLETTNALTKIGDRLR---- -~ TEWQK|ETCFIWGTAD
DHLA-603R DHM-R
* 300 * 20 * 340 *

GJ10-DhlA KLLGPDVMYPMKALINGCPEPLEIADA FEQVAREALKHFAETE------=-=-===-—-—-——-—-——
Ples-DppA PVLGPEVMGMLRQAIRGCPEPMIVEAG FEPIARAALAAFGQ--- -
Myco-DhmA PILGHADSPLIKHIPGAAGQPHARINA RGPELAERILSWQQALL-------
B90-LinB HLTT-GRIRDFCRTWPNQ-TEITV-AG FPDEIGAAIAAFVRRLRPA-----

Myco-DmbA
Brady-DbeA
Meso-DbjA
Rhodo-DhaA
Marine-DmmA
C58-DatA
PCC6803

AIIT-GRIRDYVRSWPNQ-TEITV-PG
ALVSPAFAAEFAKTLKHC-AVIQLGAG
ALVSPEFAERFAASLTRC-ALIRLGAG
VLIPPAEAARLAESLPNC-KTVDIGPG
ALAPKPVVDYLSENVPNL-EVREFVGAG
FLLTDAILKWSQVTIRNL-EIEAAGAG
KWLSVEPIEQLVQGVNHL-ELIKLSEA

EPEEIGAAIAQFVRQLRSAAGV
HPEAIGRSVAGWIAGIEAASAQRHAACRAKRART
HADAIGRSVAGWIAGIEAVRPQLAAVD-———--~-
NPDLIGSEIARWLPAL----—---—-----
HPHLIGQGIADWLRRNKPHAS---
DPETIARLLDAWLTRIAGN-----
FPOEVGTALQTFFRKQIA--—--—-—-—--—-—~-

Hid320r

Fig. 6 Alignment of representative hydrolytic haloalkane dehalogenase (HLD) proteins. Conserved regions are
shaded black (100%), dark grey (80%), or light grey (60%). Amino acid motifs targeted by PCR primers are
boxed and labelled with the primer name. Further information about sequences and strains can be obtained
from the NCBI protein database entries, as follows: GJ10-DhIA, AAA88691; Ples-DppA, 2XT0_A; Myco-DhmaA,
CAC41377; B90-LinB, AAN64241; Myco-DmbA, CAH04659; Brady-DbeA, BAJ23986; Meso-DbjA, 3A2M_A;
Rhodo-DhaA, AAC15838; Marine-DmmA, 3U1T_A; C58-DatA, BAJ23993; PCC6803, BAA17121
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were isolated in distant locations over a 30-year period
(1983-2013), the dhlA gene is 100% identical in all cases. This
pattern is consistent with horizontal gene transfer [63]. The practical
significance of the 100% identity of dhlA genesis that there isno need
for degenerate primers, which simplifies the task of primer design.
The same logic applies also to the linA, linB, and atzA genes (see
below). However, it is possible to incorporate degeneracies to cap-
ture related HLDs; this was done in a study of aquifer sediments
[64], which used degenerate primers based on dhlA and dbmA.

7 Case Study: Development of dhiA qPCR for Pilot-Scale Membrane Bioreactor

The Coleman lab has been working on DCA bioremediation at the
Botany Industrial Park site in Sydney, Australia. Currently, a
groundwater treatment plant (GTP) at the site removes DCA by
air stripping and thermal oxidation. This method is effective but
expensive, and ideally, a lower-cost, lower-energy method such as
bioremediation could be used [65]. A membrane bioreactor
(MBR) (Fig. 7) was installed to test the feasibility of DCA biore-
mediation, and the site managers wanted to be able to detect and
enumerate DCA-degrading bacteria in the MBR.

This challenge was approached using a mix of culture-based
methods (enrichments, isolations) and DNA-based methods (PCR,
qPCR, pyrosequencing) [53]. Enrichments confirmed that aerobic
DCA degraders were present in the GTP, and five DCA-degrading
bacteria (Xanthobacter, Starkeya, Leifsonia spp.) were isolated.
Four of these contained dhlA, based on PCR screening with the

Fig. 7 Bacterial community in membrane bioreactor (MBR) used for dhlA gqPCR
study. Fluorescence microscopy image after acridine orange staining
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DHLA-319F/DHLA-603R primers. In light of these results, a
dhlA-targeted qPCR was devised to enable monitoring of the
DCA-degrading bacteria in the MBR.

The job of making Ah/A primers is simplified by the 100%
sequence identity of all dhlA genes detected to date. The only
constraints were the usual issues of minimising hairpin and dimer
formation, optimising and matching Tms, and obtaining a product
of the appropriate size for qPCR (100-300 bp). Standard curves
were generated for both 16S rDNA and 44lA. The linear range of
the qPCR assays was 10*~10° and 10°~10” gene copies for 16S and
AhlA, respectively, and the quantitation limits were 4.4 x 10° and
7.44 x 10* copies of 168 and dhlA genes, respectively, per mL of
sample. Melt curves indicated a single amplicon of the expected size
was made in both cases. After validation of primers with purified
genomic DNA from a DCA-degrading Xanthobacter isolate, meta-
genomic DNA samples were tested.

The 16S and dhlA gene abundance in the MBR was studied
over a 137-day time course, including a 67-day initial period where
the feed water for the MBR was gradually switched from air-
stripped water to raw groundwater. The dbhlA gene was initially
undetectable, but rose to a maximum of 5.1 x 10” copies/mL on
day 124 — this provides evidence that the bacterial community in
the MBR was adapting to the presence of increasing DCA concen-
trations in the feed water.

The abundance of 4hlA in the MBR at each time point was
correlated to the abundance of each bacterial genus (from 16S
pyrosequencing). The only genus that gave a positive correlation
was Azoarcus (R? = 0.68). Interestingly, an Azoarcus isolate that
can grow on DCA as carbon source under anaerobic denitrifying
conditions has been previously described [59], but the genetics
were not known. Correlating the catabolic gene qPCR data with
16S pyrosequencing data, as described here, is a useful general
approach and can give clues to the phylogeny of microbes that
contain catabolic genes of interest.

The qPCR method is well suited to a geographical survey, and
the Coleman lab have subsequently used the dhlA primers to per-
form a qPCR analysis of groundwater from monitoring wells at the
Botany Industrial Park site (Munro and Coleman, unpublished
data). In this analysis, 4hlA genes were detected in several ground-
water samples (up to 10° genes/mL), but they were certainly not
ubiquitous, despite the extensive DCA contamination at the site.

8 Primers for dhaA in Haloalkane- and Haloalkene-Degrading Bacteria

DhaA is a HLD enzyme that initiates bacterial growth on C3-C8
haloalkanes, 1,3-dichloropropene, and 1,2-dibromoethane. DhaA
has only 32% a.a. identity to DhIA (the 1,2-dichloroethane
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hydrolytic dehalogenase), but is clearly part of the same
hydrolase family. The dhaA gene is 100% identical across multiple
haloalkane- and haloalkene-degrading bacterial isolates from
geographically distant locations [66] and, in some cases, phylo-
genetically distant clades (e.g. Rhodococcus, Mycobacterium, and
Pseudomonas) [67, 68].

Despite the importance of dbhaA for biodegradation of haloge-
nated pollutants, there appear to be no reports to date of a dhaA-
specific PCR or qPCR applied to environmental samples, microcosms,
or enrichment cultures. PCR has been used to confirm the presence of
dhaA genes in pure cultures [66], but note that the primers used
(shown in Table 1) were not specifically designed for this purpose.
Further primers for AbhaA would be straightforward to design, given
the 100% sequence conservation of this gene seen to date.

9 Primers for /inA and /inB in Hexachlorocyclohexane (HCH)-Degrading Bacteria

The gamma isomer of HCH was widely used as an insecticide
(Lindane), and this compound is a highly persistent pollutant [69].
Several strains of Sphingomonasand Sphingobinm can grow on y-HCH
as a carbon and energy source. The LinA dehydrochlorinase and
the LinB hydrolytic dehalogenase together mediate the first four
steps of this pathway [70]. The /inA and nB genes are highly con-
served and uniquely associated with the HCH biodegradation path-
way. This situation is very well suited to a PCR or qPCR approach.

Kuramochi et al. [71] developed a PCR and nested PCR
method using nondegenerate primers linA-F11/1inA-R418 to
retrieve /inA genes. The linA gene was amplified from the soil
that the archetypal HCH degrader UT26 was derived from, and
from 66 clones sequenced, all were /inA, with >99% identity to the
UT26 sequence. Yamamoto et al. [72] used the primers of Kur-
amochi et al. to retrieve /inA genes and also designed new primers
(linB-2F /linB-3R) to retrieve LnB from five isolates from HCH-
contaminated soil.

Because of the very high conservation of lLnA and linB
sequences, full-length genes can be amplified from metagenomic
DNA and then directly used for cloning and expression [73].
Cloned /inA and linB genes (300 and 400 clones, respectively)
were screened for activity on gamma-HCH and delta-HCH in a
high-throughput colorimetric chloride assay. Eight /inA variants
and eight /inB variants with higher dehalogenase activity than the
control (B90A) were sequenced; these varied from each other by
1-17 a.a. (linA) or 1-6 a.a. (linB).

Gupta et al. [74] developed qPCRs for /inA and /inB genes and
used these to monitor bacterial communities during pilot-scale
bioremediation of HCH-contaminated soils. The qPCR revealed
that both /nA and /inB were undetectable at the start of the
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experiment, but after biostimulation, these genes increased to
2,000-5,000 copies/ng of soil DNA, and in the case of /inB, this
increase was sustained for 360 days over four sampling points.
Manickam et al. [75] used the linAf and linArl primers to amplify
and sequence /inA genes from 8 of 11 HCH-contaminated soil
samples tested, giving products with 92-98% identity with linA
from sphingomonads.

An additional intriguing alternative to enable culture-
independent access to /inA and linB genes is a PCR targeting
1S6100 [76] which is very commonly associated with HCH bio-
degradation genes [77] and believed to be one of the prime movers
in assembling and mobilising the genes of this pathway. This
approach enabled recovery of three separate PCR amplicons from
soil samples, which among them contained the LnB, linD, linE,
linR, and /inF genes.

Despite the success of all the above studies with inA and linB,
there is still scope for improvement. It is time to revisit primer
design in light of expanded sequence databases, and there is poten-
tial for primer design with other genes in the HCH degradation
pathway.

10 Primers for dehl and dehll in Haloacid-Degrading Bacteria

Halogenated alkanoic acids occur in nature [78] and also as
metabolites of xenobiotics such as haloalkanes and haloaromatics
[6]. Some haloacids are used as herbicides, such as 2,2-
dichloropropionic acid (2,2-DCPA, Dalapon). Detection of genes
for haloacid metabolism is of interest to many areas of bioremedia-
tion, and the genes involved provide some interesting challenges
for primer design. The chlorinated substrates considered here
will include 2,2-DCPA and also monochloroacetic acid (MCA),
dichloroacetic acid (DCA), and chloropropionic acid (MCPA).
These are all metabolised by hydrolytic haloacid dehalogenases
(HADs) debI and deblI, these genes are found in diverse bacteria
including Proteobacteria, Actinobacteria, and Firmicutes [79].

Alandmark study by Hill et al. yielded the first degenerate PCR
primers for HADs [80]. These authors realised that nearly all the
HAD genes could be divided into two evolutionarily distinct
groups (dehl or debIl) (Figs. 8 and 9) and that these two groups
could be targeted separately by degenerate PCR, even though
primers targeting all HADs were not possible. The study was
successful in amplifying six new dehl genes and seven new dehll
genes from various haloacid-degrading cultures [80]. The PCRs
revealed multiple dehl and debII genes in some strains; this trend
was confirmed in a later study by Marchesi et al. [81], using the
same primers on new isolates from pristine soils.
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Fig. 8 Alignment of representative haloacid dehalogenase family | proteins (Dehl). Conserved regions are
shaded black (100%), dark grey (60%), or light grey (40%). Amino acid motifs targeted by PCR primers are
boxed and labelled with the primer name. Further information about sequences and strains can be obtained
from the NCBI protein database entries, as follows: Ps-Pp3-Dehl, AAN60470; Rhiz-dehE, CAA75670; CPA1-
DL-DEX, BAF64754; Ppu-AJ1-HadD, AAA25831; CPA-26-dehl, ADL27927; Halodehl, WP_019017884. The
DehD of Rhizobium and DehHI of Moraxella were omitted from the alignment due to their very low sequence
identity to the other enzymes

The usefulness of the degenerate debl and debII primers
designed by Hill et al. was confirmed in a PCR survey of debl and
dehII genes in activated sludge, 2,2-DCPA enrichments, and 2,2-
DCPA-degrading isolates [82]. Some of the debI and debII genes
recovered were similar to those seen in previous pure cultures such
as P. putida Pp3, but others were divergent. Notably, isolates from
this study had difterent deb gene types to those detected by PCR in
the sludge or enrichment cultures from which they were derived.
The loss of genetic diversity upon isolation is a common theme of
this and related PCR surveys and points to the continuing need for
innovative isolation approaches, e.g. [83, 84].
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Fig. 9 Alignment of representative haloacid dehalogenase family Il (Dehll) proteins. Conserved regions are
shaded black (100% conserved), dark grey (80% conserved), or light grey (60% conserved). Amino acid motifs
targeted by PCR primers are boxed and labelled with the primer name. Further information about sequences
and strains can be obtained from the NCBI protein database entries, as follows: GJ10-DhIB, AAA27590; Py2-
DhIB, YP_001415886; BJap-DhIB, WP_018648446; USDA110-DhiIB, BAC52825; Oligo-0M4, WP_012562239;
ATCC-53690, EKS30519; Pput-AJ1-HadL, HADL_PSEPU; Bpro-0530-JS666, ABE42492; Ps-YL-L-DEX,
HAD_PSEUY; Ps-WS-L-DEX, BAD91552; Pse-CBS3-DehC2, HAD2_PSEUC; Morax-DehH2, DEH2_MORSB;
Pse-CBS3-DehC1, HAD1_PSEUC; Burk-DehlVa, 2NO5_A
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The study of Marchesi and Weightman [82] highlights a useful
general approach to metagenomic PCR that our laboratory has also
adopted at times [15]; i.e. applying a single primer pair across a
related set of environmental samples, enrichment cultures, and
isolates. This gives information about the level of representation
of different genes in cultured vs. uncultured bacteria, it facilitates
PCR troubleshooting by enabling study of a gradient of template
complexity, and it can be used to guide enrichment and isolation
strategies.

The degenerate dehI and debIl primers of Hill et al. have been
used to survey drinking water and water isolates [85, 86] — there is
interest in this area due to the production of haloacetates as by-
products of disinfection. Grigorescu et al. [86] isolated 35 new
haloacetate degraders (MCA, DCA, TCA) and screened them
with dehl and debIl primers; this revealed that dehll genes were
more common than dehl. Leach et al. [85] had similar good results
with the same primers and again showed that both debI and debIl
genes could be amplified in many cases from water, enrichments,
and isolates and that debII genes were more prevalent.

Leach et al. [85] found that the dehllg,; — dehIl,.,; primers
were unsuitable for qPCR due to secondary products and designed
a set of nondegenerate debIl qQPCR primers, which were used to
quantity debIlin enrichments. The qPCR was not sensitive enough
to detect debIl genes in wastewater directly, but this was enabled
qualitatively by a nested PCR using the degenerate primers, then
the specific primers. Despite the adverse findings of Leach et al.,
one study did use the dehllg,; — dehIl,.,; primers for qPCR [87]
and was apparently successful at detecting 10*~10° dehII genes per
mL, but in light of the findings of Leach et al. above, a sizeable
fraction of these must be expected to be artefacts.

The use of highly degenerate primers for qPCR is not recom-
mended, and in cases such as this, the burden of proof is on the
investigator to show that the primers work as expected. A large
representative fraction of the amplicons must be sequenced, to get a
sense of the specificity of the primers with the particular template
type (e.g. enrichments, groundwater, soil) before the PCR or
qPCR can be applied as meaningful analytical tools.

11 Primers for dh/B in DCA-Degrading Bacteria

DhIB is a type of dehll enzyme (see above section) that removes
chloride from chloroacetate as part of the hydrolytic DCA biodeg-
radation pathway [88, 89]. The dehllg,; — dehll,.,; primers dis-
cussed above can retrieve dhlB-like genes from metagenomic DNA
[82], and there are two further examples in the literature of PCR
amplification of 44/B from metagenomes, but both these studies
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(below) are of a preliminary nature. To date, 44/B has only been
found in Alphaproteobacteria and Betaproteobacteria.

A PCR approach was used to detect 4b/B in paper mill effluent
[90], using nondegenerate primers dhiB-314 and dhlB-637, which
were designed based on the Xanthobacter GJ10 sequence. This
PCR gave the expected product from one of seven chloroacetate-
utilising pure cultures tested and gave products from metagenomic
DNA, although these were not sequenced. Another PCR survey
studied 4hIB in aquifer sediments from a chlorinated ethene-
contaminated site [64]. An 850 bp product was obtained from all
samples studied, and these were 100% identical to dhiB of Xantho-
bacter GJ10. Unfortunately, the primers used for dh/Bamplification
in this study were not described.

To date, there is still only one experimentally characterised 44/B
gene, from Xanthobacter strain GJ10, but close homologues
(>90% a.a. identity) exist in the genomes of Xanthobacter Py2
and Xanthobacter 126, which are not known to be haloacid degra-
ders. The Coleman lab has sequenced a d4/B gene from a DCA-
degrading Xanthobacterisolate (E1L4), which is 91% identical to the
GJ10 dhiB (Munro and Coleman, unpublished data). Fortin et al.
amplified a 4hiB gene from an Amncylobacter strain [90], which
reportedly had 88% DNA identity to GJ10 44/B, but this sequence
is not available. An alignment of all four available Xanthobacter
DhIB enzymes is shown in Fig. 10.

Another candidate 4hIB gene is Bpro_0530 in Polaromonas
JS666, which is believed to encode chloroacetate metabolism in this
cDCE-degrading organism [56, 91, 92]. Strain JS666 was recently
shown to grow on DCA [56], so Bpro_0530 is a 4hiB gene by the
fairly strict working definition above, which requires it to act in a
DCA pathway. However, the inclusion of Bpro_0530 as a 44/B causes
problems for primer design, since the predicted enzyme has only 51%
a.a. identity to GJ10 DhIB, and is phylogenetically closer to other
types of HADs such as HadLL and L-DEX (see Fig. 10).

If our interest is in identifying bacteria capable of growth on
chlorinated pollutants such as DCA and ¢cDCE, our instinct may be
to capture as much HAD and HLD gene diversity as possible in our
primer design. But the need to cast a wide net needs to be tempered
by the knowledge that in many cases, bacterial genomes will contain
multiple HAD and HLD homologues, and inevitably, some of
these are not going to be involved in the process of interest.
Caution is needed in interpreting HAD and HLD PCRs; one
organism may contain multiple hydrolases, and one hydrolase may
metabolise multiple substrates.

After consideration of all the above, the dehllg,,; — dehll,.;
primers [80] are still a valid choice for detection of dhiB-like genes,
especially if detection of ‘divergent’ dhiBs (such as that of JS666) is
required. These primers must be used with caution due to their
high degeneracy. If the target is constrained to just Xanthobacter-
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20 * 60

EL4 H I KAMVEDAYGTLEDVOSVADBTEQAMPGRIGIBIEI T ()
126 H I KAMVEDAYGTLFDVQSVADBTEQAMP GRG
[CRRROIEEN I KAMVEFDAYGTLFDVQSVADATERAMPGRG )
Py2 MIKARVEDAYGTLEDVQSVADMTEQANP GISIGENT T ()

* 8 O *
EL4 KA N IMYG A
126 EA RAILSNGAPBMLIEAL VI GIn
GJ10 ES RAILSNGEPBML GJAL VN GIm
Py2 T gl IMERnS)ET AT L F DD I BENE RQ@N IR A = h@=goNyV A A G GJE|S GV H 39 RRN[e] S j5O IVaND P IRYG G S AR
EL4 : 4 B GFRVARMAR L PIS
126 : GAKNFGFRVARMARL BN
GJ10 : GAKNFGFSVARMARLIESIS
Py2 : IIFVS SNGFEFDISNGAKINF G FRVARIBARL Pl

dehll,evl
200 * 240 *

EL4 : ALARE BEEEVNSIG S P IMCIpAN - RV REM N EARLAPAV
126 : ALARE BEEElNS|G I P Vv LGDL PR LNy GTR----
GJ10 : ALARE EialalVS G iy B IMCpaN -V RGMEAHLAPAV
Py2 : ARROINVAEEMT[EGA L RIZVINFY SR T CINHA T.G Y RO T |\YS S IHA AR S |R@AAVAA - - — - - — - — —

Fig. 10 Alignment of DhIB proteins from Xanthobacter strains. Conserved regions are shaded black (100%
conserved), dark grey (80% conserved), or light grey (60% conserved). Amino acid motifs targeted by PCR
primers are boxed and labelled with the primer name. Further information about sequences and strains can be
obtained from the NCBI protein database entries, as follows: GJ10-DhIB, AAA27590; Py2, ABS66229; 126,
WP_024277583; EL4 (pending)

like dhiB genes (Fig. 10), then more specific primers could be made;
e.g. qPCR primers could target MIKA(V/F)VF (forward) and
KQLEYSW (reverse) (141 bp product). Alternatively, FVSSNGF
could be used as a reverse priming site with the same forwards
primer to give a 525 bp product in a regular PCR.

12 Primers for tfdA in 2,4-p-Degrading Bacteria

The phenoxy herbicides include 2,4-dichlorophenoxyacetic acid
(2,4-p), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 2-methyl-4-
chlorophenoxyacetic acid (MCPA), and 2-(2-methyl-4-chlorophe-
noxy)propionic acid (mecoprop, MCPP), among others. These
herbicides all contain a chlorinated aromatic hydrocarbon core,
and they can be persistent pollutants under certain conditions
[93]. Many Proteobacteria and a few Firmicutes are known which
can grow on 2,4-p, and this herbicide is a model compound for
studies of bacterial catabolic diversity [94].

The TfdA enzyme encodes an a-ketoglutarate-dependent oxy-
genase [95], which cleaves the ether linkage in 2,4-p; this is the first
step in the herbicide biodegradation pathway and neutralises the
herbicidal activity. Homologues of TfdA are found in many, but not
all, bacteria isolated on 2,4-p and other phenoxy herbicides [96, 971,
and genes similar to #f# A are also seen in genomes of bacteria with no
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known exposure to herbicides [98]. Other key genes in the 2,4-D
pathway have been used as PCR targets, such as ¢fdB [99] and #fdC
[100], but the below discussion focusses only on primers for ¢fdA.

There is substantial sequence diversity in #fA genes, and primer
design is not trivial. The first serious effort to make degenerate
primers for #fdA [99] used a collection of 25 different 2,4-p degra-
ders as the test set for primer validation. The primers gave products of
the expected size from 17 strains — these were classified into four
different RFLP groups, although none were sequenced. Later work
confirmed these primers amplified genuine #fdA genes and demon-
strated their usefulness for diverse templates [ 101-103]. The primers
of Vallaeys et al. have been used directly for gPCR [104], although a
later study [105] indicated that they were unsuitable for this.

Baelum et al. [105-108] made several generations of zfdA
primers for PCR, qPCR, and RT-qPCR of soil DNA. They showed
that the response of bacteria to 2,4-D can be detected transiently as
mRNA, that exposure to herbicide increases the count of #fdA
genes in soil, and that that enrichment changes the #fdA gene
types present. Zaprasis et al. [109] revisited primer design for
tfdA and tested three new tfdA primer sets for PCR and qPCR.
They found that #fdAa genes similar to those in Alphaproteobac-
teria dominate in unenriched soil samples, rather than classical ¢fdA
genes like that in Cupriavidus JMP134.

Note that some phenoxy herbicide-degrading bacteria use
alternative enzymes to initiate the degradation pathway; these
include TftAB, CadAB, RdpA, and SdpA [103, 110] — alternative
primers are needed for these, which are not further discussed here.

13 Primers for atzA in Atrazine-Degrading Bacteria

Atrazine is a widely used triazine herbicide; other chemicals in this
family include propazine, simazine, ametryn, and prometryn. All of
these herbicides can be biodegraded by bacteria as sources of car-
bon and/or nitrogen. Isolates that biodegrade triazines include
Proteobacteria and Actinobacteria. A chlorohydrolase (AtzA or
TrzN) initiates the pathway, and then two other hydrolases (AtzB,
AtzC) act to yield cyanuric acid [111-115], which is broken down
by AtzD, AtzE, and AtzF to give urea [116].

PCR primers have been designed for atzA, atzB, atzC, and
trzN. Here, only atzA primers will be discussed, since this has been
most widely used as a biomarker, but note there are good argu-
ments for including the other genes in any study aimed at detecting
atrazine-degrading bacteria. Many of the studies discussed below
also included a#zB, a:zC, and trzN primers, and the reader is
directed to these studies for further information. Note also that
an alternative atrazine degradation pathway is initiated by a p-450
monooxygenase [117]; this is not discussed further here.
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Primers That Target Functional Genes
of Organohalide-Respiring Bacteria

Yue Lu*, Siavash Atashgahi*, Laura A. Hug, and Hauke Smidt

Abstract

Halogenated organic hydrocarbons are problematic environmental pollutants that can be reductively
dehalogenated by organohalide-respiring bacteria (OHRB) in anoxic environments. This energy-
conserving process is mediated by reductive dehalogenases (RDases). To amplify the diversity of reductive
dehalogenase-encoding genes, degenerate primers have been designed, most of which target the conserved
regions of the encoded protein sequences of the catalytic subunit, RdhA. In addition, specific primer sets
have been developed and widely used to quantify and characterise OHRB and the reductive dehalogenase
homologous (7dh) genes in the environment. The specific primers have been applied to multiple molecular
techniques including regular and quantitative PCR (qPCR), Southern blot hybridisation, terminal restric-
tion fragment length polymorphism (T-RFLP) and reverse transcriptase PCR (RT-PCR). The hunt for
novel 7dhA genes has benefited greatly from next-generation sequencing techniques, including primer-
dependent amplicon sequencing and primer-independent metagenomic analyses. This chapter provides an
overview of most primers targeting RDase-encoding genes described to date and their applications, and it
discusses the developing trend of leveraging primer-(in)dependent techniques for better understanding of
OHRB and their RDase gene pools.

Keywords: Degenerate primers, Halogenated hydrocarbons, Organohalide-respiring bacteria,
Reductive dehalogenase

1 Introduction

Halogenated organic compounds (organohalides) are problematic
environmental chemicals that over the last century have been
widely produced and used for industrial applications and chemical
manufacturing. As a result of accidental or indiscriminate disposal,
organohalides are among the most abundant soil and groundwater
contaminants. Microorganisms have evolved different strategies to
take advantage of organohalides, greatly impacting the com-
pounds’ environmental fates. Under anaerobic conditions,
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organohalides can be reductively dehalogenated, which, depending
on the degree of dehalogenation, can lead to their detoxification or
render them susceptible for further (bio)transformation [1]. Dur-
ing this process, known as organohalide respiration (OHR), the
organohalides are used as terminal electron acceptors in an energy-
conserving respiratory metabolism. The chemically stable halo-
gen—carbon bond is unlocked by replacing the halogen atom with
hydrogen and liberating it as a halide [2]. This process is mediated
by organohalide-respiring bacteria (OHRB), some of which are
extreme niche specialists with OHR as their only metabolism.
This group of obligate OHRB comprises the organohalide-
respiring members of Chloroflexi (including strains of Dehalococ-
coides mccartyi, Debalogenimonas and Debalobium) and Firmicutes
(strains of Debalobacter) [2, 3]. It should however be noted that
recent studies showed fermentative growth of a few Dehalobacter
spp- on chloromethane [4, 5]. Moreover, single cell genomic stud-
ies of marine Dehalococcoidia did not reveal any evidence for cata-
bolic reductive dehalogenation, indicating that microorganisms
closely related to known obligate OHRB do not rely on OHR for
energy conservation, but rather utilise organic matter degradation
pathways [6, 7]. Compared to obligate OHRB, facultative OHRB
have versatile metabolisms encoded by relatively large genomes and
are capable of using a broad variety of electron acceptors for respi-
ratory growth that include but are not limited to organohalides.
This group comprises phylogenetically diverse proteobacterial
OHRB such as members of the genera Geobacter, Desulfuromonas,
Anaeromyxobacter, Desulfomonile, Desulfovibrio and Sulfurospiril-
lwm and also the Desulfitobacterium spp. belonging to the
Firmicutes [2, 3].

The key enzymes of OHR are reductive dehalogenases
(RDases). For several of these enzymes, the catalytic subunits
have been purified and biochemically characterised, which are
referred to as RDase catalytic subunit (as opposed to RdhA if
only predicted based on sequence homology) [8-15]. These stud-
ies, combined with PCR-based [14-18] and genomic analyses
[19-21], have revealed a conserved operon structure for RDase-
encoding genes that consist of 7dhA, coding for the catalytic
subunit RdhA; 74hB, coding for a small putative membrane
anchor (RdhB) that (presumably) locates the A subunit to the
outside of the cytoplasmic membrane; and a variable set of acces-
sory genes, the majority of which has been predicted to code for
proteins involved in regulation and maturation of Rdh synthesis
[2]. In general, the catalytic subunits (RdhAs) are characterised by
two iron—sulphur clusters and a cobamide as cofactors in the active
holoenzyme. As an exception to this rule, the chlorobenzoate
RDase of Desulfomonile tiedjei contains a heme cofactor [8],
and  Sulfurospivillum multivorans was shown to specifically
require ‘norpseudo-B;,” as the corrinoid cofactor [22].
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Another conserved feature among the catalytic subunits is the
presence of an N-terminal Tat (twin-arginine translocation) signal
peptide. After cofactor incorporation and folding of the cytoplas-
mic precursors of an RdhA enzyme, the Tat signal peptide is
necessary for secretion of the mature protein through the cell
membrane where it is located at the exocytoplasmic face of the
cytoplasmic membrane [23].

2 Phylogenetic Context of rdhA

The genomes of OHRB encode either few (1-3) or many (10-40)
distinct RDase gene operons. In general, larger numbers of 7dhA
genes are encoded on genomes of obligate OHRB, with fewer
present on genomes of OHRB with versatile metabolism [3]. The
expansion of the gene family through gene duplication has led to
multiple non-identical »4hA genes per genome and across diverse,
unrelated genera resulting in a complicated evolutionary history
tor 7dhA. A tree of RdhA protein sequences from known micro-
organisms (not including sequences retrieved from environmental
samples) shows limited correlation between microorganism tax-
onomy and RDase phylogeny (Fig. 1). Most phyla with multiple
OHRB do not form monophyletic clades on the RdhA tree, and,
even within clades comprised of a single phylum or group, the
branching order of the RdhA does not usually follow the
corresponding 16S rRNA-based taxonomy tree. In addition,
microorganisms within the same genus often do not have the
same RdhA homologues in their genomes. Taken together, the
evolutionary relationships between the »dbA genes can only be
explained using a combination of vertical inheritance, gene dupli-
cation and lateral gene transfer [2].

Most interesting from a functional perspective is the place-
ment of the biochemically characterised RDases, which are
distributed across the tree with little apparent relationship
between proteins with shared substrate specificities when they
are present in different phyla. The five characterised
tetrachloroethene-reducing enzymes (PceA) are located in four
distinct clades (Fig. 1), indicating their low sequence similarity
despite shared specificity. In contrast, dichloroethane RDase DcrA
and the chloroform RDase CfrA from Dehalobacter strains DCA
and CF, respectively, share extremely high sequence identity
(98%) but do not have overlapping substrate specificities (Fig. 1)
[24]. The lack of correlation between sequence similarity and
substrate specificity hinders the ability to predict substrates for
novel genes, as well as to design primers targeting specific func-
tions of interest.



180 Yue Lu et al.
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Fig. 1 Maximum likelihood tree of RdhA amino acid sequences from known microorganisms. RdhAs are
coloured by genus affiliation of the source microorganism or, in two cases, order affiliation. Functionally
characterised RdhAs are highlighted with red circles and named according to Table 1. The tree was
constructed from 354 full-length RdhA sequences. Sequences were aligned using MUSCLE [41], and the
alignment was iteratively refined using HMMER 3.0 [42] for ten iterations. Alignment columns were removed if
they contained >90% gaps, and the ends of the alignment trimmed to remove trailing ends. The tree was
generated using RAXML [43, 44] under the PROTGAMMAWAG model of evolution and visualised using iTOL
[45, 46]. Microorganism information and protein NCBI accession numbers are included in each RdhA gene
name on the tree
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3 Molecular Characterisation of RDase-Encoding Genes

Initial identification of 74k gene sequences was performed by clas-
sical reverse genetic approaches based on N-terminal amino acid
sequences obtained from purified catalytic subunits [11, 16].
Subsequent availability of RDase-encoding gene sequences has
made it possible to design degenerate primers for PCR-based »dh
sequence retrieval. This has been particularly helpful for strains
of D. mccartyi whose low biomass yields have hindered protein-
based identification in the past. In recent years genomic- and
metagenomic-based approaches have also been applied for
sequence-based retrieval and characterisation of 74k genes (Fig. 2).

4 Degenerate Primers for Characterisation of RDase Genes
Degenerate primers are primer mixes with degenerate positions
instead of a single sequence with specified bases. The primer degen-

eracy allows amplification of multiple loci simultaneously from

Nucleic acid
extraction

Reverse transcription

(RNA samples)
PCR
(degenerate primers)
Clone libraries with
resulting amplicons
| Next generation Genome Metagenome
o sequencing Sequencing Sequencing
Restriction fragment
length polymorphism Sanger sequencing
analysis

Assembly of the
fragments and BLAST
analysis

(Quantitative) Transcriptional analysis of identified rdh genes

Fig. 2 Overview of the methods used for molecular characterisation of RDase-encoding genes
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different microorganisms, targeting sequences with similar but not
identical motifs. Degenerate primers are widely used to amplify
rdhA genes, especially when the aim is to amplify genes from
uncultivated microorganisms for which genomic information is
not available. Degenerate primers are usually designed based on
conserved regions of RDase catalytic subunit-encoding genes by
aligning amino acid sequences found in sequence databases like
GenBank [25] and using specific approaches including consensus-
degenerate hybrid oligonucleotide primer (CDHOP) [26]. The
first set of degenerate primers (primer pair 1, Table 2) for an
RDase gene was designed based on internal peptides in 1998,
targeting a 1,200 bp long region of the PCE dehalogenase from
Dehalospirillum multivorans [16] (later reclassified as Sulfurospir-
illum multivorans [27]) (Table 2). In the following years, with
increased availability of homologous sequences of RDase-encoding
genes, multiple degenerate primer sets were designed and applied
for »dh detection, mostly targeting conserved sequences of 7dbA[12,
14, 15, 28, 29] (Fig. 3, Table 2). von Wintzingerode et al. [30]
developed primers (primer pairs 13-16, Table 2) binding to sequence
motifs encoding the conserved regions of PceA (Sulfurospirvilium
multivorans) and CprA (Desulfitobacterinm debalogenans) (Fig. 3),
which enabled amplification of cprA-like gene fragments from Desul-
fitobacterium  hafniense, Desulfitobacterinm sp. strain PCEl and
Dehalobacter vestrictus. Expanding this technique further, Smidt
[31] designed multiple sets of highly degenerate oligonucleotide
primers (primer pairs 17-20, Table 2) based on twin-arginine signal
peptides, iron-sulphur clusters and five additional highly conserved
sequence motifs (Fig. 3), which were used to target »4bA genes from
different  ortho-chlorophenol- and chloroethene-dechlorinating
OHRB. Of all primers, the RRF2 and BIR primers (primer pair 4,
Table 2) became one of the most popular sets [17] [32]. Originally
used to identify the svcAB gene from D. mccartyi BAV1, this primer
set targets the RRXFXK motif of the Tat signal peptide (RRF2)
(Fig. 3) and the WYEW motif internal to the downstream associated
rdhBgene (B1R), yielding amplicons of 1.5-1.7 bp containing almost
complete 7dhA genes (Table 2). Using this primer set, Krajmalnik-
Brown etal. [17] found seven 7dhA genesin D. mccartyi BAV]. Later,
the RR2F /B1R pair was widely used to detect »dbAsfrom D. mccar-
tyi isolates and enrichments, including 13 74/ lodi in strain CBDBI1
[32],14instrain F1.2 [32], 14 in the mixed culture KB1 [33], 8 in the
enrichment culture TUT2264 [34] and 4 from TCE-contaminated
groundwater samples [ 35]. Although the RR2F/B1R primer set was
designed based on 17 »dhAB genes in the genome of D. mccartyi 195
[17], the primer set fails to amplify zceA-like genes [18]. Further-
more, it should be noted that the »dh-A and »dh-B genes are not
always oriented in an A-B direction in the 74k operon [36]. To
circumvent this shortcoming, Chow et al. [18] designed a compli-
mentary primer set RDH F1IC/RDH RI1C (primer pair 7, Table 2)
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Tat signal peptide Iron sulfur clusters
(RR) (FeS1, FeS2)

RR
BhbA-7D-2 (20aa) g (367aa) (55aa) 494
PceA-Dr (4aa) GF (209aa) (94aa) 359
CfrA-CF (15aa) R (149aa) & (E6aa) 282
DcrA-DCA (15aa) 2 (149a3a) B8~ (66aa) 282
DcrA-WL (4aa) ! (209aa) &F (94aa) 359
PceA-195 (Baa) (1Bbaa) EFE (73aa) 319
TceA-195 (9aa) (207aa) It (106aa) 374
BvcA-BAV1 (Baa) : (186aa) [EcE (99aa) 345
CbrA-CBDB1 (Baa) EEEE (157aa) 1 (81aa) 298
DcpA-KS (7aa) ‘o EE (150aa) SE1 (72aa) 280
MbrA-MB (1a2a) mgs (1632a) ¢ (74aa) 290
DepA-RC (7aa) i (151aa) BET (72aa) 281
VCrA-vs (Baa) ‘B EE (177aa) (101aa) 338
Cpra-Ddeh (12aa) g (134aa) (68aa) 266
DcaA-Ddich (4aa) ! (209aa) (94aa) 359
Cpra-PCP1 (3aa) E (209aa) (93aa) 357
PrdA-KBC1 (20aa) gF (140aa) (71aa) 283
PceA-Y51 (4aa) B EE (20%aa) (94aa) 359
PceA-HAW (16aa) - i (152aa) (61aa) 281
PceA-Sm (9aa) EEEE (159aa) (85aa) 305
c3 FeS1
BhbA-7D-2 (18aa) ! (20aa) (3aa) I 573
PceA-Dr (16aa) (19aa) (3aa) F 435
CfrA-CF (16aa) GLGERS (19aa) (3aa) EBoEgEEE 358
DerA-DCA (16aa)  [EHEB- (19aa) (3aa) e Ca R o 1) 358
DerA-wL (16aa) GLGES (19aa) (3aa) EoEgE s . 435
Foen;195 (172a) s (202a) (3aa) SRl 397
TceA-195 (17aa) 2 (20aa) (3aa) HTECI S CEa. 452
BvcA-BAV1 (17aa) 2 (20aa) (3aa) sl g e 423
CbrA-CBDB1  (152a) EE (20aa) (3aa) BoEgEE 374
DcpA-KS (22aa) EEB- (20aa) (3aa) EoE B E-E 363
MbrA-MB (17aa) m (20aa) (3aa) : ':Eo-n.-. L 368
DcpA-RC (22aa) ¥l (20aa) (3aa) S N 364
VerA-vs (16aa) EEE. (20aa) (3aa) |- Cim i R I 415
Cpra-Ddeh (18aa)  [EEEB.: (20aa) (3aa) EoFErEm 345
DcaA-Ddich (16aa) (19aa) (3aa) F S 435
CprA-PCP1 (16aa) (19aa) (3aa) 2 0 C Rt 433
PrdA-KBC1 (16aa) (19aa) (3aa) RT S CEE 359
PceA-Y51 (16aa) C (19aa) (3aa) Bl o 435
PceA-HAW (16aa)  [EHER-» (19aa) (3aa) g S 358
PceA-Sm (16aa)  EEEY (19aa) (3aa) B EoE - 381
C5
BhbA-7D-2 (16aa) E] (27aa) DALN (420aa) 1071
PceA-Dr (27aa) W (26aa) (30aa) 551
CfrA-CF (24aa) B (26aa) (13aa) 456
DcrA-DCA (24aa) FE (26aa) (13aa) 456
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DcaA-Ddich (27aa) SE (26aa) (30aa) 551
CprA-PCP1 (27aa) B ] (26aa) (29aa) 548
PrdA-KBC1 (24aa) HTY % (27aa) (20aa) 463
PceA-Y51 (27aa) E 4] (26aa) (30aa) 551
PceA-HAW (33aa) I j B (28aa) (16aa) 468
PceA-Sm (23aa) CHEELGY 3] (27aa) (37aa) 501

Fig. 3 Physical map of rdhAB operon (top) and primary sequence alignment of the functionally characterised
RdhAs (bottom). Note that in some cases, the order of genes in the operon is reversed (i.e. rdhBA, rather
than rdhAB). ClustalW [52] multiple sequence alignment was conducted by using BioEdit version 7.2.5
(http:/bioedit.software.informer.com/). The conserved sequence motifs among experimentally characterised
reductive dehalogenases (RR, two Fe-S and C1-C5) are indicated with black backgrounds. The functionally
characterised RdhAs are named according to Table 1


http://bioedit.software.informer.com/
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Table 1
Functionally characterised RDase catalytic subunits

Protein NCBI
Code Protein Microorganism accession numbers References
BhbA-7D-2 BhbA Comamonas sp. 7D-2 AFV28965.1 [68]
PceA-Dr PceA Dehalobacter restrictus PER-K23 CAD28790.2 [14]
CfrA-CF CfrA Dehalobacter sp. strain CF AFQ20272.1 [24]
DcrA-DCA DcrA Dehalobacter sp. strain DCA AFQ20273.1 [24]
DcrA-WL DcrA Dehalobacter sp. strain WL ACHS87594.1 [39]
PceA-195 PceA Dehalococcoides mecartyi 195 AAW40342.1 [69]
TceA-195 TceA Dehalococcoides mecartyi 195 AAF73916.1 [28]
CbrA-CBDB1  CbrA Dehalococcoides mecartyi CBDB1 CAI82345.1 [70]
DcpA-KS DcpA Dehalococcoides mecartyi KS AGS15112.1 [57]
MbrA-MB MbrA Dehalococcoides mecartyi MB ADF96893.1 [18]
DcpA-RC CbrA Dehalococcoides mecartyi RC AGS15114.1 [57]
VcrA-VS VerA Dehalococcoides mecartyi VS AAQ94119.1 [15]
CprA-Ddeh CprA Desulfitobacterinm AAD44542.1 [11,58]
debalogenans TW /IU-DC1
DcaA-Ddich DcaA Desulfitobacterium dichloroeliminans  CAJ75430.1 [38]
DCAl
CprA-PCP1 CprA Desulfitobacterium hafniense AAQ54585.2 [55]
sp. PCP-1
PrdA-KBCl1 PrdA Desulfitobacterinm sp. strain KBC1 BAE45338.1 [71]
PceA-Y51 PceA Desulfitobacterinm sp. strain Y51 AAW80323.1 [29]
PceA-HAW PceA Shewanelln sediminis HAW-EB3 ABV38373.1 [63]
PceA-Sm PceA Sulfurospivillum multivorans AAC60788.1 [16]

DSM 12446

targeting the coding region of the twin-arginine motifand conserved
PIDDG motit; respectively (Fig. 3, Table 2). With a product size of
1,200 bp, this primer pair targeted only the catabolic subunit gene
(rdbhA) and (at the time of design) could cover ~90% of the known
rdhAsin D. mccartyi populations. Using this primer set, the authors
detected seven putative 7dhA genes from D. mecartys strain MB [18].
Another potential problem with the RR2F/B1R primer pair is that,
although the N-terminal Tat signal peptide motifis highly conserved
among RdhAs, it is also found in numerous other exported proteins
and as such is not unique to this class of proteins [23]. Meanwhile
Regeard et al. [26] had designed seven degenerate primers (primer
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Primers That Target Functional Genes of Organohalide-Respiring Bacteria 193

pairs 23-28, Table 2) based on four conserved regions of chlor-
octhene RDase catalytic subunit-encoding amino acid sequences
from Desulfitobacterium sp. PCE-1, S. multivorans and D. rvestvictus
and chlorophenol RDase catalytic subunit-encoding amino acid
sequences from Desulfitobacterium debalogenans, D. hafniense strain
DCB-2 and Desulfitobacterium chlorovespirans(Table 2). This suite of
degenerate primers did not utilise the Tat signal sequence, reducing
non-specific amplification, but also resulted in shorter amplicons
than the primers developed by Chow et al. [18]. The primers were
originally used to estimate the diversity of 7dhA from tetra- and
trichloroethene-dechlorinating enrichments [26] and later to detect
rdhA from Desulfitobacterium dichlovoeliminans DCA1 [37, 38],
Dehalobacter sp. WL [ 39] and sub-seafloor sediments [40].

It is evident from the alignment of »4hA genes that one primer
pair cannot cover all possible sequences. Accordingly, Futagami
et al. [40] used an array of degenerate primer sets designed to
target different »dhAs [17, 26, 30, 32]. Using this approach, 32
putative 7dhA phylotypes were detected from marine subsurface
sediments [40]. In a further step, Wagner et al. designed 13 degen-
erate primer pairs to monitor the expression of all 32 »dhA genes
present in the genome of D. mccartyi CBDB1 [53]. Although ideal
in order to cover a range of different »dhAs, application of such an
array of degenerate primers would dramatically increase the work-
load in subsequent clone library construction. Besides, most of the
degenerate primers were designed based on the limited number of
RDase sequences available at the time, which could potentially
overlook distantly related novel 7dhAs. To adequately cover the
tull diversity of »dhA homologous sequences displaying lower simi-
larity, a suite of degenerate PCR primers (comprising 44
phylogeny-derived groups) targeting 255 RDase catalytic subunit
genes was recently designed and applied to environmental
and enrichment culture samples [54]. Subsequent application of
Illumina HiSeq next-generation sequencing identified a much
broader diversity of »dhA gene sequence than was previously
accounted for [54].

5 Specific Primers and Application Potential

In addition to degenerate primers, a broad range of specific primers
targeting selected RDase genes have been designed (Table 3). Usu-
ally, specific primers are developed and used for different purposes
than the more exploratory degenerate primer sets, including analy-
sis of gene expression in S. multivorans|[16] and Desulfitobacterinm
sp. Y51 [29], preparation of probes for Southern blot hybridisation
[38], detection of Sulfurospivillum rdhA genes by T-RELP [56]
and detection of known chloroethene RDase genes [26]. Addition-
ally, specific primers were used for putative »dhA detection from
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various OHRB encoding zceA [28], bvcA [17], verA [15], cfrA
[24], derA [24] and depA [57] (Table 3). Some primer sets have
been designed to obtain complete 7dhAB sequences of specific
reductive dehalogenases, including pceAB [14, 16, 31], verAB
[15] and ¢prAB[31, 55].

To connect the presence of specific 7dhAs with OHR activity,
multiple primer sets were developed for rdhA quantification
(Table 4). For instance, by using D. mccartyi-specific primer sets
targeting bvcA (BVC925F /1017R), verA (Ver1022F /1093R) and
teeA (TceA1270F /1336R), Ritalahti et al. [62] were able to link
abundance and identity of D. mccartyi populations to different
organohalide electron acceptors. From this, the authors were able
to predict the composition of a D. mccartyi community using the
quantitative results of 74hA and 16S rRNA gene-targeted quantita-
tive PCR (qPCR). qPCR assays with 7dhA targeted primers have
also been used for monitoring of bioremediation in polluted sites
[38, 57, 62]. Building upon this knowledge, microfluidics-based,
moderately to massively parallel qPCR approaches were recently
developed for covering much of the known »dhA sequence space.
The method was helpful in quantitative analysis of 7dhA repertoires
and identification of closely related populations of OHRB [64, 65].
It should be noted that to date, all known RDase and 16S rRNA
genes identified in the genomes of known D. mccartyi strains occur
as single copies (unlike Desulfitobacterium spp. and Debalobacter
spp. strains with multiple copies of 16S rRNA genes), suggesting
that qPCR data can be converted from gene copy numbers to cell
numbers, albeit with the restriction that actively growing cultures
might contain multiple genomes per cell.

Primers have additionally been designed for reverse transcrip-
tion, which, in conjunction with qPCR, was applied to quantify
specific 7dh transcripts from microbial samples. From this, genes
encoding the A and B subunits of reductive dehalogenases were
found to be co-transcribed [38, 39, 66], confirming previous
Northern blot hybridisation and gene-spanning RT-PCR examina-
tions of Desulfitobacterium debalogenans transcripts [58]. Never-
theless, the accuracy of RT-PCR is limited by inefficiencies in
reverse transcription and loss during sample processing. To account
for this, Johnson et al. [60] introduced an exogenous internal
reference mRNA for normalisation of RT-PCR, thereby improving
the accuracy of quantification and allowing quantification of
mRNA loss during specific steps, including RNA extraction, RT-
PCR and qPCR.
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6 Conclusions

Degenerate primers have been valuable tools for discovery of new
rdhA sequences. Their application is not costly and does not need
complicated bioinformatics data analysis. Specific primers, on the
other hand, have been successfully applied for quantitative analysis
of OHRB and their biomarkers and functionality proofs of the
identified genes. The hunt for new 7dhAs was moved to a high-
throughput approach by combined application of primer-
dependent analysis and next-generation amplicon sequencing
[54]. Additionally, primer-independent metagenomic surveys are
expected to further broaden the diversity of currently known
rdh genes, as has already been demonstrated in marine subsurface
sediments [67]. Combined application of amplicon-based or meta-
genomic surveys with high-throughput quantitative analysis meth-
ods [65] should be instrumental in obtaining a comprehensive
understanding of OHRB and their catabolic reductive dehalogena-

tion gene pools.
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Primers: Functional Genes for Nitrogen-Cycling
Microbes in 0il Reservoirs

C.J. Smith, B.A. McKew, A. Coggan, and C. Whithy

Abstract

Microbial communities found in the subsurface are important in the biogeochemical cycling of nitrogen
(N) both in the oxidative and reductive processes, and changes in their functional structure might affect the
stability of a petroleum reservoir. In petroleum reservoirs, where in situ conditions are predominantly
anoxic, denitrification involving the stepwise reduction of nitrate (NO3™) via nitrite (NO, ™) and nitric
oxide (NO) to nitrous oxide (N,O) or dinitrogen gas (N,) is a major process. Microorganisms may also
decompose organic N to ammonium (NH,") by ammonification, which can subsequently be oxidised to
NO; viaNO, ™ by the process of nitrification. Autotrophic ammonia oxidation is known in three groups of
microorganisms: acrobic autotrophic ammonia-oxidising bacteria (AOB) and Archaea (AOA) and anaero-
bic ammonia-oxidising bacteria (anammox). Since the microorganisms involved in many of these N
transformations are taxonomically diverse, 16S rRNA-based methods are generally not suitable. Instead,
a common approach has been to target the protein-encoding genes involved in the transformation of N as
biomarkers. This chapter describes the common PCR primers that have been used to target the major
functional genes involved in the cycling of N, with the key N transformations likely to occur in petroleum
reservoirs highlighted throughout.

Keywords: Anammox, Denitrification, Nitrate reductase, Nitrification, Nitrite reductase

1 Introduction

In general, petroleum contains ~0.1-2% nitrogen (N) (in the form
of diverse organic compounds), and so it may act as a N pool in
petroleum reservoir systems [ 1]. Nitrogen may also be injected into
reservoirs as a method for enhanced oil recovery. In oil reservoirs,
microorganisms have a major influence in the biochemical trans-
formations of N, both in the oxidative and reductive processes
(Fig. 1). Microbes decompose organic N to ammonium (NHy")
(by ammonification), which can be oxidised to nitrite (NO, ™) and
then nitrate (NO3 ™) by nitrification. NO3™ can be assimilated into
cellular biomass, or it can be dissimilated in denitrification,
anammox and dissimilatory NO;3;™ reduction to NH4" (DNRA),

T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks, (2017) 207-241,
DOI 10.1007/8623_2015_184, © Springer-Verlag Berlin Heidelberg 2015, Published online: 03 March 2016
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depending on the environmental conditions. Additionally, denitri-
fying anaerobic methane oxidation (DAMO) couples anaerobic
oxidation of methane (CH,) with the reduction of NO, ™ to dini-
trogen gas (N3) [2]. In reservoirs where N availability may be
limited, N may become available through the decomposition of
organic material, whilst denitrification, anammox and DAMO
remove fixed N from the system. In this chapter, the common
PCR primers used to target the major functional genes involved
in the cycling of N are described, with the key N transformations
likely to occur in petroleum reservoirs highlighted throughout.
The chapter also provides information on common applications of
the primers and the environments from which the primers were
first used.

2 Microbial Denitrification

Denitrification is a respiratory process that involves the stepwise
reduction of NO3;~ via NO, ™ and nitric oxide (NO) to nitrous
oxide (N,O) or N, and is a major process in petroleum reservoirs
(Fig. 1) [3]. Denitrification is the main biological process for the
return of fixed nitrogen into the atmosphere and results in a net loss
of nitrogen from the environment. Denitrification involves the
metalloenzymes: nitrate reductase, nitrite reductase, nitric oxide
reductase and nitrous oxide reductase [4].

Fig. 1 Nitrogen cycle and key functional genes involved
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3 Nitrate Reductase (narG, napA Genes)

Microorganisms capable of reducing NO3™ are widespread in the
environment [5]. In petroleum reservoirs, hydrogen sulphide
(H,S) produced by sulphate-reducing prokaryotes (SRPs) is a
main cause of reservoir corrosion and souring. NO3™ injection is
commonly used by the petroleum industry to mitigate reservoir
souring, since NO3~ and NO, ™ are energetically more favourable
terminal electron acceptors than sulphate, and nitrogen cycle-
related microorganisms activated by injected NOz;~ may outcom-
pete SRPs for available substrates. Anaerobic oxidation of sulphide
to elemental sulphur coupled to the reduction of nitrate to ammo-
nia may also occur.

The reduction of NO3;~ to NO,™ is catalysed by different
nitrate reductases that differ in their cellular location and biochem-
ical properties: the membrane-bound respiratory (NAR), the peri-
plasmic dissimilatory (NAP) [6] and the cytoplasmic assimilatory
(NAS) [7]. In general, NAR is more widespread among microor-
ganisms, whilst NAP is restricted to Gram-negative bacteria [8].

Dissimilatory NO3 ™ reduction to NO, ™ can be performed by
taxonomically diverse microorganisms including members of the
Alpha-, Beta-, Gamma- and Epsilonproteobacteria and Archaea [9].
Since microbes capable of NOjz™ reduction are taxonomically
diverse, 16S rRNA-based methods are generally not suitable.
Thus, many studies have generally focussed on using the narG
and napA genes as biomarkers for the whole NO; ™ -reducing com-
munity (i.e. denitrifiers and microbes reducing NO3z;~ to NH4").
However, designing primers specific to all zarG sequences is prob-
lematic due to the high taxonomic diversity of nitrate-reducing
prokaryotes [6].

One set of narG primers (narG1960f/narG2650r, Table 1)
designed to amplify a 650 bp product was used in a direct PCR
approach [8]. These primers target a wide range of microorganisms
belonging to Proteobacteria and Archaea [8]. Although these
primers provided a much higher phylogenetic diversity of the
NOj; -reducing community than previous studies, the authors
report non-specific amplification, with 9% of sequences recovered
showing no significant identity with #narG[8]. Later, Gregory et al.
[16] designed a more specific nested PCR approach to target a
366 bp fragment of the narG gene using the primers T37 /139
(first round of amplification) and W9,/T38 (second round of
amplification) (Table 1). However, phylogenetic analysis of
NOj3 -reducing bacteria and denitrifying bacteria showed that
amplification of the z#arG genes results in poor taxonomic resolu-
tion when applied to environmental samples and greater resolution
may be obtained with the napA gene [9, 15].
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In contrast to the #arG gene, the napA gene corresponding to
the Alpha-; Beta-, Gamma- and Epsilonproteobacteria has good
congruence with 16S rRNA gene-based taxonomy [9]. Flanagan
et al. [10] designed primers for a nested PCR reaction and ampli-
fied the napA sequences from at least four genera (Pseudomonas,
Paracoccus, Rhodobacter and Moraxella) (Table 1). Feng et al. [14]
used the primers (napAfl/napArl, Table 1) to detect the napA
genes in production water samples from oil reservoirs. It is apparent
that many bacteria capable of aerobic NOj3™ respiration contain
napA genes, which is consistent with the physiological evidence
for the presence of periplasmic nitrate reductases in these organisms
[22]. However, some strains (e.g. Pseudomonas sp. strain $3.29)
have periplasmic nitrate reductase genes, and although they express
the activity, they are incapable of aerobic NO3™ respiration [10].
Despite this, NO3; ™ reduction in the presence of oxygen catalysed
by NAP is widespread and makes a significant contribution to the
reduction of NO3™ in oxic/microoxic environments. Thus, primers
that target the napA genes have been the preferential choice for
assessing taxonomic composition of NOz ™ -reducing communities
in oilfields [14].

Primers (arc-Nred-f,-r) targeting dissimilatory nitrate reduc-
tase in Archaea have also been developed (Table 1) and evaluated
in silico. These primers were found to perform better when used
under low-stringency PCR protocols [19]. However, when these
primers were used with the positive control Halogeometricum bor-
ingquense, additional products were obtained [19].

Nitrite reductases: cytochrome c¢d; nitrite reductase, copper-
containing nitrite reductase (7S, nirK genes), ferredoxin nitrite
reductase (nirA gene) and ammonifying nitrite reductase (ni»B
gene).

A key step in the denitrification pathway is the reduction of
NO, . Two structurally different but functionally equivalent
nitrite reductase enzymes catalyse nitrite reduction. One enzyme
is a homotrimeric copper nitrite reductase (NirK), and the other is
a homodimeric cytochrome ¢d; nitrite reductase (NirS) [3]. Gen-
erally, denitrifiers contain only one of the two types of nitrite
reductases. The 747§ gene is more widely distributed in denitrifiers
than the ns7K gene [23]. Rarefaction analysis has shown that #i»§
total diversity is more constrained than ziK [24]. Many of the
commonly used #7S and ni7K primers have some limitations,
largely due to a lack of known cultivated denitrifiers limiting the
number of functional gene sequences available. High sequence
divergence at current primer sites and the availability of only a
few deep sequencing studies that allows primers to be evaluated
in different environmental settings also contribute to these limita-
tions [24].
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Ward [25] designed the first PCR primers targeting the nirS
gene and was based on three sequences. Braker et al. [23] improved
on this and designed several primer sets that target both the »nirS
and nirK genes (Table 1). Since then, the number of available nir
sequences has increased considerably, facilitating the construction
of additional modified primers [26-30]. The primer sets cd3aF/
nirS4R, cd3bF/nirS6R, F3nirS/R4bcd and F3nirS/NirS6R all
amplify the nirS gene from several species including Paracoccus
denitrificans, Pseudomonas aevuginosa, Pseudomonas stutzeri and
Ralstonia eutropha [31]. F3nirS/nirSO6R primer pair has been
shown to have good coverage of the Alphaproteobacteria [24].
Hallin and Lindgren [27] designed the PCR primers (Flacd/
R4cd) to amplify 800 bp fragments of the »n:irS gene. Although
this primer pair did not amplify genes of non-denitritying strains,
the primers had several shortcomings: the #:7S gene was amplified
from one isolate, which could not reduce nitrite [27]; the nirS
primers were unable to amplity the #irS gene from two strains of
P. denitrificans even though further sequence analysis of this
strain showed that the primer sites are included [27, 32]. Accord-
ing to Throbick et al. [31], the best primer pair for broad-range
nirS gene amplification for denitrifier community analysis is
cd3aF/R3cd, and the fragment size obtained with this
primer set makes it suitable for Denaturing Gradient Gel Electro-
phoresis (DGGE) and Q-PCR. Both cd3af/R3cd and nirS1F/
nirS6R have been shown to perform well in targeting Chloroflexi,
Deinococcus-Thermus, Aquificales or Bacteroidetes [24].

The majority of current #i7K primers are based on class I
CuNIR genes from Alphaproteobacteria [23, 33] and do
amplify the class II and III #7K sequences that include archaeal
nirK [34-36]. The primers FlaCu/R3Cu and FlaCu/nirK3R
amplify the nirK gene from several strains including Alcaligenes
foecalis, Blastobacter denitvificans, Pseudomonas denitrificans and
Hyphomicrobium denitrificans [27, 31]. Throback et al. [31]) sug-
gest that FlaCu/R3Cu is the best primer pair for zirK gene
amplification for denitrifier community analysis due to the broad
coverage and the fragment size generated is applicable for DGGE.
However, both F1laCu/R3Cu and FlaCu/nirK3R primer sets also
amplify the #i7K genes from ammonia-oxidising bacteria (AOB)
such as Nitrosospiva multiformis [31]. The primers designed by
[26] also amplify the »7K genes in some betaproteobacterial
AOB [37].

The production of NO and N,O by the reduction of NO, ™ in
AOB is intriguing since these organisms require oxygen to oxidise
ammonia and generate energy. It has been suggested that in low-
oxygen environments, nitrous oxide is substituted for oxygen as a
terminal electron acceptor in denitrification-like respiration [38].
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Nitrite reduction by AOB was shown initially by the discovery of a
copper-containing nitrite reductase from Nitrosomonas euvopaen
with similar biochemical characteristics to the copper-containing
nitrite reductases found in heterotrophic denitrifiers [26, 39]. Fur-
thermore, N. europaea nitrite reductase expression was found to
increase in low-oxygen environments, which is similar to some
denitrifying nitrite reductases [26]. Although it is uncertain what
the physiological role that nitrite reduction plays in AOB, they
appear to share a similar mechanism to classical denitrifiers [26].

In contrast, the primer sets nirK1F/R3Cu, nirK1F/nirK3R
and nirK1F/nirK5R also target a broad range of microorganisms
including Alcaligenes sp., Achromobacter cycloclastes, Blastobacter
denitrificans, Hyphomicrobium denitvificans and Rhbizobium meli-
lotz but not the nirK genes from Nitrosospira multiformis or Nitro-
somonas envopmea [31]. Other nirK primers that have been
developed include nirK517F/nirK1055R [40]. Indeed, both
FlaCu/R3Cu and nirK517F/nirK1055R have been shown to
preferentially amplify Alphaproteobacteria [24]. It has been sug-
gested that there is an urgent need for further investigation into
nirK primer with focus on alternate primer-binding sites [35].

To this end, Wei et al. [41 ] reassessed #:7S and nirK phylogeny
with the view to improving current PCR primer sets. Full-length
nirK sequences from the phyla Actinobacteria, Bacteroidetes, Chlor-
oflexi, Nitvospira, Proteobacteria and Spirochetes and the archaeal
phyla Euryarchacota were aligned forming five distinct phyloge-
netic clusters of nirK. Similarly, for nirS, tull-length sequences
from Bacteroidetes, NC10, Planctomycetes and Proteobacteria
revealed three distinct clusters of #:7S. From these alignments, a
suite of seven degenerate primers were designed targeting each
cluster (nirK 1-V 430 to 468 bp, nirS I-111 430-468 bp). These
primers have yet to be used in oil reservoirs, but their use in a range
of soils and sediments revealed a greater diversity and abundance
(via SYBR Green Q-PCR) of #nirS/nirK nitrite reducers than has
previously been shown.

Primers (arc-NirA-f,-r) targeting the ferredoxin nitrite reduc-
tase in Archaea have also been developed (Table 2). These primers
were found to have a high affinity to archaeal #irA sequences but
little complementarity to bacterial ones [19]. However, when
these primers were used with the positive control Halogeometricum
borinquense, additional products were obtained [19]. Other pri-
mers targeting ammonifying nitrite reductase gene (nirB) for
Archaea (arc-NirB-f,-r, Table 2) have also been developed and
found to perform better when used under low-stringency PCR
protocols [19].
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4 Nitric Oxide Reductase (norB Gene)

Nitric oxide is produced as an intermediate during respiratory
denitrification, when oxidised nitrogen compounds are used as
alternative electron acceptors under oxygen-limited conditions
[3]. Two types of nitric oxide reductase enzymes catalyse this
reaction: one receives the electrons from cytochrome ¢ (cNor)
and the other from the quinone pool (qNor). Nitric oxide reduc-
tase catalyses the reduction of NO to N,O and is encoded by the
norB gene. The norB gene is widespread in denitrifying bacteria but
has also been found in some AOB [47]. Braker and Tiedje [48]
developed norB primer sets to detect both types of nitric oxide
reductase genes in environmental samples (Table 3). In general,
these primer sets allowed a broad detection of the #orB gene in all
the denitrifier strains tested [48]. However, the primer pair target-
ing qNor (qnorB2F/qnorB5R) yielded gnorB amplification pro-
ducts of the correct size for the non-denitrifying strain Synechocystis
sp. strain PCC6803 [48]. In addition, the primer combination
cnorB2F-cnorB7R, which should have generated products of
454 bp, yielded amplification products of unexpected sizes [48].

5 Nitrous Oxide Reductase (nosZ Gene)

The reduction of N,O to N, (i.e. the last step in the complete
denitrification pathway which represents loss of biologically avail-
able N) is catalysed by nitrous oxide reductase, which is encoded by
the nosZ gene. Although the nosZ gene is largely unique to deni-
trifying bacteria, a few non-denitrifier species capable of reducing
nitrous oxide have been identified [3]. In addition, some denitri-
fiers lack the nitrous oxide reductase enzyme [31]. The nosZ gene
has been used as a target for the different populations of denitrify-
ing bacteria capable of nitrous oxide reduction [31].

PCR primer sets for the detection of the zosZ gene were pub-
lished by Scala and Kerkhot [50]. These primers were based on
three sequences from the cultures Paracoccus denitrificans and
Psendomonas denitrificans. Different combinations of these primers
give different-sized products and can be used in other applications,
e.g. DGGE and Restriction Fragment Length Polymorphism
(RFLP) (Table 3). More degenerate nosZ gene primers were later
developed [52]. The primer sets nosZ-F/nosZ-R, No661F/
Nos1527R, Nos661F/Nosl773R and Nosl1527F/Nosl773R
have a broad specificity and target the nosZ genes from several
species including Alcaligenes denitrificans, Alcaligenes fuecalis,
Blastobacter denitrificans, Paracoccus denitvificans, Pseudomonas
aeruginosa, Pseudomonas denitrificans, Pseudomonas stutzeri and
Ralstonia eutropha [31, 51]. The primer set nosLb/nosRb has a
limited specificity targeting Psendomonas spp. and Paracoccus
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denitrificans [31]. Throbiack et al. [31] suggest that nosZF/
nosZ1622R are the best primers for nosZ gene amplification for
denitrifier community analysis, and these primers also produce a
fragment size suitable for DGGE. However, many Firmicutes and
Bacteroidetes have also been identified as denitrifiers, and 70sZ genes
have been found in Geobacillus thermodenitrificans NG80-2 [61].
The discovery of nosZ sequences in Gram-positive strains has led to
questions arising about the specificity of previously designed 7osZ
PCR primers. Primers (arc-Nos-f,-r) targeting nitrous oxide reduc-
tase in Archaea have also been developed (Table 3) and evaluated i»
silico. These primers were found to be sensitive to most archaeal
nosZ sequences but little complementarity to bacterial ones [19].

6 Dissimilatory Nitrate Reduction to Ammonium (DNRA) (nrfA Gene)

The nrfA gene encodes a periplasmic nitrite reductase which cata-
lyses the conversion of NO,™ to NH," (Fig. 1). Mohan et al. [58]
designed degenerate primers targeting #7fA (NrfA-F1/NrfA-7R1,
Table 3) from the alignment of six #7fA sequences from Epsilon- and
Gammaproteobacteria including Escherichia coli and Wolinella succi-
nogenes. These primers were subsequently used to retrieve n7fA
sequences from sulphate and anammox reactors. The majority of
clones containing n7fA genes were from Bacteroides [58]. These
primers have also been used to retrieve n7fA sequences similar to
Delta-, Gamma- and Epsilonproteobacteria in addition to Chloro-
bium and Bacteroides from sediments [11]. Welsh et al. [60] rede-
signed the n7fA forward primer (nrfAF2aw, Table 3) incorporating
474 putative n7fA gene sequences drawn from genomes, pure cul-
tures and environmental gene sequences. Used in combination with
the reverse n7fA primer designed by Mohan et al. [58], it amplifies a
269 bp product. This primer set has revealed diverse #7fA sequences
from soils [60]. Furthermore, it has been used in an SYBR Green
Q-PCR assay and next-generation sequencing to reveal extensive
nrfA diversity in estuarine sediments [59].

7 Nitrogenase Reductase (nifH Gene)

N,-fixing microorganisms from both bacteria and archaea are the
only natural biological source that can reduce atmospheric N, to
biologically available NH4". Most microorganisms that perform
biological N, fixation do so using an evolutionarily conserved
nitrogenase protein complex that is composed of two multisubunit
metalloproteins. Component I, which contains the active site for
N, reduction, is composed of two heterodimers, encoded by the
nifD and nifK genes. Component 11, which couples ATP hydrolysis
to inter-protein electron transfer, is composed of two identical
subunits, encoded by the #ifH gene [62]. Since several #ifH gene
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sequences are available, this is the biomarker of choice, and PCR
primers have been designed primarily on this gene target [63].
Phylogenetic analysis of the nifH gene classified the sequences
into five clusters and includes Proteobacteria, Cyanobacteria, Fran-
kin and Paenibacillus. Primers that target the #ifH gene need to be
degenerate to encompass the sequence variability in this gene [55].
Currently, there are 51 universal #ifH primers and 35 group-
specific primers, all of which have been extensively evaluated else-
where in a recent review [64].

Primers (arc-Nif-f,-r) targeting nitrogenase reductase in archaea
have also been developed (Table 3). Whilst these primers were
highly sensitive towards the target gene, there was little discrimina-
tion between archaeal and bacterial homologues [19]. Thus, it
depends on the application of these primers whether co-detection
of bacterial #ifH sequences is desirable, if, for instance, the entire
N,-fixing communities in a given environment can be targeted
using a single primer pair that gives good coverage of both domains.

8 Microbial Nitrification

Ammonia-oxidising bacteria (AOB) and ammonia-oxidising
archaea (AOA) oxidise ammonia into hydroxylamine, which is
further oxidised to NO,™ by other microorganisms during nitrifica-
tion (Fig. 1). AOB belong to the Beta- or Gammaproteobacteria
[65], and all known AOA belong to the Thaumarchaeota [66].

9 Ammonia Monooxygenase (amoA Gene)

Both AOB and AOA contain the membrane-bound enzyme
ammonia monooxygenase (encoded by the amoA gene) [67].
AOB belonging to the Betaproteobacteria generally contain multi-
ple copies of the amoA gene, whilst those belonging to the Gam-
maproteobacteria contain one copy of the amoA gene [68, 69]. It is
thus important to consider amoA gene copy numbers in AOB Q-
PCR assays. Since the amoA gene is phylogenetically related to the
pmoA gene in methane-oxidising bacteria (MOB), some PCR pri-
mers may amplify both AOB amoA and MOB pmoA genes (e.g.
A189 (amoAl51f) and A682 (amoA681r) [70]). There are also
primers targeting the amoBand amoC gene homologues in bacteria
and archaea [37]. Whilst amoA is traditionally targeted, amoB has a
higher number of variable regions and so may be a more appropri-
ate choice if closely related species need to be resolved [71]. An
advantage of targeting amoB and amoC genes, for example, using
305F (amoC763f) and 308R (amoB506r), is that this allows ampli-
fication of the entire amoA region [68]. Most PCR primers target
the amoA gene (Table 4), and there is considerable difference in
their performance and specificity [37, 71].
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In Junier et al. [71], a standardised naming system was
devised to give more consistent information on the position and
orientation of primers. The original designation of the primer is
typically given first with the new designation afterwards in par-
entheses (Table 4). The most widely used amoA primer pair is
amoA-1F (amoA332F)/amoA-2R (amoA822r), due to the fact
that it successtully amplifies the amoA region from a range of
betaproteobacterial AOB [69]. A disadvantage with this primer
pair is the large difference in the optimum annealing temperature
of each primer [71]. Stephen et al. [74] modified amoAlF to
produce the primer amoAlFmod (amoA332fHY) designed to
increase specificity towards cultured betaproteobacterial AOB.
Variants of amoA-2R have since been proposed for DGGE such
as amoA-2R-TC (amoA822rTC) ([78] and amoA-2R-TG
(amoA822rTG) [80]. In addition, a FISH probe A337
(amoA337p) was designed to target betaproteobacterial AOB
[80]. A nested PCR approach using AMO-F/AMO-R (first
round) and AMO-F2 (amoA40f) and AMO-R2 (amoA665r) (sec-
ond round) has also been applied as general betaproteobacterial
AOB primers [73]. However, given that the primers AMO-F/
AMO-R used in the first round of PCR amplification have a high
specificity towards Nitrosomonas europaen, this nested PCR
approach seems to have a limited applicability. The primer pair
AMO-F (amoA21f)/AMO-R (amoA686r) is highly specific for
the N. europaea cluster under stringent PCR conditions [72].
Although the primers 301F (amoAl54f)/302R (amoA828r)
were designed to amplify a 675 bp amoA gene fragment from
AOB [68], the forward primer also targets the pmoA gene in
MOB. However, when used in combination with the reverse
primer, specificity is increased and only the amoA gene is amplified
[68]. Both 301F (amoAl54f) and 302R (amoA828r) have a high
melting temperature (7;,) [71], and so amoA154fs was designed
as a modification of 301F with a lower T, [77]. Primers amoA-
1FF (amoA187f) and amoA-2R (amoA822r) designed to amplify
amoA genes from N. enropaen [77] also match several AOB [71].
In addition to amplifying betaproteobacterial AOB, primers
amoA-310f (amoA-3F)/amoB-4R (amoB44r) also amplify the
amoA gene from Gammaproteobacteria [76]. Many amoA primer
pairs give short amplicons, which limits their use for phylogenetic
inference but makes them applicable for Q-PCR analysis. The
primer amoA34f, which anneals close to the 5" end of the amoA
gene, allows amplification of a larger proportion of the amoA
region from betaproteobacterial AOB when paired with existing
reverse primers [71].

Since the known diversity of thaumarchaeal lineages (based on
16S rRNA gene sequences) are greater than that derived from
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amoA gene sequences, it is possible that current amoA gene primer
sets target a restricted AOA diversity. Initial AOA amoA primers,
Arch-amoAF /Arch-amoAR [83], CrenAmolF/CrenAmolR [67]
and amol196F /amo0227R [36], were based on a limited number of
sequences and hybridise at similar positions, amplifying a large
proportion of the amoA gene and giving PCR products of ~600
bp. Since then, new sequences have become available, and forward
primers specific to the A and B group AOA (Arch-amoAFA and
Arch-amoAFB, respectively) have been designed for Q-PCR [89].
These primers allow differentiation of the A and B groups, but
Arch-amoAFA has been found to amplify N. maritimus-like
sequences in some marine samples [ 89]. Despite the recent increase
in the number of archaeal amoA sequences available, there has been
a lack of studies comparing the specificity and eftectiveness of
different archaeal amoA primer sets.

10 Hydroxylamine Oxidoreductase (hao Gene)

In AOB, the second step of ammonium oxidation, the dehydro-
genation of hydroxylamine (NH,OH) to NO, ", is performed by
hydroxylamine oxidoreductase (HAO) [97]. Multiple copies of
the hao gene have been found in AOB [98]. So far a homologue
of this enzyme (and essential cytochrome proteins found in
AOB) has not been found in AOA [84], which may rely solely
on multi-copper oxidases to relay electrons to the quinone pool
during the conversion of ammonium to nitrite [99]. Phyloge-
netic analyses of a0 gene sequences were highly congruent with
the 16S rRNA and amoA gene [93], suggesting the sao gene may
be a suitable biomarker for AOB in environmental studies.
Degenerate primers (haoF1-haoR3 and haoF4-haoR2) suitable
for detecting hao gene homologues in a variety of AOB have been
designed [93] (Table 3). Analysis of the degenerate primers
suggests that they are specific for AOB under stringent PCR
conditions but under lower stringency may also target the hao
genes in non-AOB such as MOB and the sulphur oxidiser S#lici-
bacter pomeroys [37, 100].

11

Nitrite Oxidoreductase (nxrA and nxrB Genes)

The second step of nitrification involves the oxidation of NO,™ to
NOj3™ catalysed by the enzyme nitrite oxidoreductase (NXR) and
carried out by nitrite-oxidising bacteria (NOB). The enzyme NXR
which comprises of alpha (NxrA), beta (NxrB) and gamma (NxrC)
subunits occurs in two phylogenetically distinct forms, one
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cytoplasmic type found in Nitrobacter, Nitrococcus and Nitrolance-
tus and one periplasmic type found in Nitrospina and Nitrospira
[92]. PCR primers have been developed to target the nxrA and
nxrB genes and differentiated closely related Nitrobacter strains in
pure cultures and soils [101, 102]. In addition, genome sequencing
of a Nitrospira has enabled the development of PCR primers tar-
geting the nxrB gene of Nitrospira, which cover all known lineages
of this genus [92].

12 Hydrazine Oxidoreductase (hzo Gene)

Anaerobic ammonia-oxidising bacteria (AnAOB) also oxidise
ammonia in anoxic environments such as in the case of petroleum
reservoirs but use a different metabolic pathway to AOB and
AOA. AnAOB use NO,™ as the electron acceptor to produce
dinitrogen gas (anammox, ANaerobic AMMonia OXidation)
(Fig. 1). AnAOB contain several proteins assumed to be involved
in the oxidation of hydrazine to dinitrogen gas and are called
hydrazine oxidoreductase (HZO) [103]. The hydrazine oxidore-
ductase (hzo0) gene has been used with high specificity to detect
AnAOB bacteria in oilfields [95], and phylogenetic analysis shows
that the hzo gene has good congruence with 16S rRNA gene
sequences for detecting AnAOB bacteria in oil reservoirs [95].
Since the hzo gene is highly conserved, it is a suitable alternative
target to the 16S rRNA gene for PCR primers for use in environ-
mental samples (Table 4).

AnAOB belong to the order Planctomycetales, and to date five
genera and 16 species [ 104 ] have been found to perform anammox
reactions: Candidatus ‘Brocadia® [105], Candidatus ‘Scalinduw’
[1006], Candidatus < Anammoxoglobus [107], Kuenenia [93] and
Jettenia [94]. In addition, some ammonia oxidisers belonging to
the Betaproteobacteria such as Nitrosomonas eutropha have also
been found to have anaerobic ammonium-oxidising activity using
nitrogen dioxide as the electron acceptor [108]. Although ana-
mmox has been found to occur in petroleum reservoirs, the diver-
sity of AnAOB bacteria found depends on the oil production
processes and physiological conditions in situ [95].

13 Perspective

Microbial communities found in the subsurface are important in
the biogeochemical cycling of nitrogen, and changes in their
functional structure might affect petroleum reservoir stability. In
petroleum reservoirs, where in situ conditions are predominantly
anoxic, denitrification is a major process. Microorganisms may also
decompose organic N to ammonium (NH4") by ammonification,
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which can subsequently be oxidised by nitrification whereby
ammonia oxidation may occur aerobically via AOB and AOA or
anaerobically by AnAOB bacteria.

Since many of the key functional groups of microbes involved
in N transformations are taxonomically diverse, 16S rRNA-based
methods are generally not suitable. Primers and probes targeting
functional genes may be more useful targets as biomarkers as they
can often give greater taxonomic resolution. However, the paucity
of suitable molecular tools may hamper culture-independent inves-
tigations of reservoir environments. In addition to detection,
primer sensitivity is important when assessing diversity and primer
coverage poses a continuing problem [ 19]. Furthermore, successtul
primers often double as probes for quantifying and localising gene
expression. Thus, it depends on the application of the primers
whether co-detection of functional gene sequences across microbial
guilds is tolerable or even desirable with a single primer pair [19].
Consequently, for highly divergent functional genes such as #nirK,
single primer pairs may be unsuitable, and either multiple primer
sets and /or at other conserved regions of the gene might need to
be applied [24, 41].

Here, the common PCR primers used to target the major
functional genes involved in N cycling and the environmental
setting from which the primers were first used are described. The
key N transformations likely to occur in petroleum reservoirs have
been highlighted throughout, and for each functional gene, we
have summarised the recommended applications for the most com-
monly used primer pairs (Table 5). We have also highlighted in bold
in Table 5 those primers that may be the most suitable for petro-
leum reservoirs. Thus, when designing and evaluating primer pairs
targeting metabolic genes, it is important to consider the curated
reference database as well as the environment of interest, since not
all N transformation processes may be occurring. In conclusion, by
using well-defined conditions and constant well-performing PCR
primers, the functional genes involved in N cycling in petroleum
reservoirs may provide alternative tools for analysing subsurface
microorganisms.
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